
Security Audit Report for Windranger
Auction Contract

Date: Feb 25, 2022

Version: 1.2

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Incorrect Check of Parameters for the selectWinner() Function 4

2.1.2 Incorrect Initialization Pattern . 5

2.1.3 Unsafe Signatures . 5

2.1.4 Potential Denial-of-Service Attack . 6

2.2 DeFi Security . 7

2.2.1 Inconsistent Auction Design . 7

2.3 Additional Recommendation . 8

2.3.1 Remove Unused State Variable . 8

2.3.2 Remove Unused receive() Function . 8

2.3.3 Remove Unused Inherited Contract . 8

i

Report Manifest

Item Description
Client Windranger Auction
Target Windranger Auction Contract

Version History

Version Date Description
1.0 Feb 19, 2022 First Release
1.1 Feb 21, 2022 Status Update
1.2 Feb 25, 2022 New Commit

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values of the repo 1 during the

audit are shown in the following.

Contract Name Stage Commit SHA
windranger-auction Initial 823c23966b9c16d2a999a184f8ebe354b2ead8c4

windranger-auction Final b6ff3a26644e9e6a148033d5bb900f456a6d27a1

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

1https://github.com/windranger-io/auction-contracts

1

https://github.com/windranger-io/auction-contracts

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

2

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

Accordingly, the severity measured in this report are classified into four categories: High, Medium, Low
and Undetermined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

Fixed The issue has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find five potential issues in the smart contract. We also have three recommendations,

as follows:

High Risk: 2

Medium Risk: 1

Low Risk: 2

Recommendations: 3

ID Severity Description Category Status

1 Medium
Incorrect Check of Parameters for the

selectWinner() Function
Software Security Fixed

2 High Incorrect Initialization Pattern Software Security Fixed

3 High Unsafe Signatures Software Security Fixed

4 Low Potential Denial-of-Service Attack DeFi Security Fixed

5 Low Inconsistent Auction Design DeFi Security Confirmed

6 - Remove Unused State Variable Recommendation Fixed

7 - Remove Unused receive() Function Recommendation Fixed

8 - Remove Unused Inherited Contract Undetermined Fixed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Incorrect Check of Parameters for the selectWinner() Function

Status Fixed

Description The selectWinner() function in both Auction and AuctionWithTime contracts accept a se-

ries of signatures in three arrays which specify the raw data (i.e., R, S, V). However, there is a duplicate

check for the length of sigsV and sigsR, while leaving sigS unchecked.

57 function selectWinners(

58 address[] calldata bidders,

59 uint256[] calldata bids,

60 bytes32[] calldata sigsR,

61 bytes32[] calldata sigsS,

62 uint8[] memory sigsV,

63 uint256 startID

64) external onlyOperator returns (uint256) {

65 require(bidders.length <= items, "Too much winners");

66 require(bidders.length == bids.length, "Incorrect number of bids");

67 require(

68 bidders.length == sigsV.length &&

69 sigsV.length == sigsR.length &&

70 sigsV.length == sigsR.length,

71 "Incorrect number of signatures"

4

72);

Listing 2.1: selectWinners():Auction.sol

Impact sigsS will not be checked as one may expect.

Suggestion Fix the incorrect check.

2.1.2 Incorrect Initialization Pattern

Status Fixed

Description In the AuctionWithTime contract, the initialization procedure is done in the constructor()

function with the initializer modifier, which is not the recommended way of implementing the initial-

ization logic in the upgradeable context. Instead, the correct implementation is to define a standalone

initialize() function with the initializer modifier, and put all the related initialization logic there.

29 constructor(

30 uint256 startTime_,

31 uint256 endTime_,

32 IERC721 nft_,

33 uint256 items_,

34 IERC20Upgradeable weth_

35) initializer {

Listing 2.2: constructor():AuctionWithTime.sol

Impact The related variables cannot be properly initialized.

Suggestion Adopt the correct pattern to implement the initialization logic.

2.1.3 Unsafe Signatures

Status Fixed

Description The signatures used in the selectWinners() function only sign on the bid amount of each

bidder in the auction. These signatures are subject to replay attacks. Specifically, these signatures can

be used multiple times in this contract to maliciously extract WETH from the bidders. Furthermore, these

signatures are generated from simple elements, which may also result in the signature reuse problem.

Specifically, user signatures in other projects may be used in the Auction contract due to the limited

information of the signatures.

57 function selectWinners(

58 address[] calldata bidders,

59 uint256[] calldata bids,

60 bytes32[] calldata sigsR,

61 bytes32[] calldata sigsS,

62 uint8[] memory sigsV,

63 uint256 startID

64) external onlyOperator returns (uint256) {

65 require(bidders.length <= items, "Too much winners");

66 require(bidders.length == bids.length, "Incorrect number of bids");

67 require(

68 bidders.length == sigsV.length &&

5

69 sigsV.length == sigsR.length &&

70 sigsV.length == sigsR.length,

71 "Incorrect number of signatures"

72);

73 uint256 minted = 0;

74 for (uint256 i = 0; i < bidders.length; i++) {

75 if (

76 ecrecover(

77 keccak256(

78 abi.encodePacked(

79 "\x19Ethereum Signed Message:\n32",

80 keccak256(abi.encodePacked(bids[i]))

81)

82),

83 sigsV[i],

84 sigsR[i],

85 sigsS[i]

86) != bidders[i]

87) {

Listing 2.3: selectWinners():Auction.sol

Impact The signatures may be used multiple times to extract WETH from the bidders.

Suggestion Include more information to prevent replay attacks.

Feedback from the Developers The signatures are unchanged. We add a new state variable named

used to ensure no address can provide more than one signature to the selectWinners() function.

2.1.4 Potential Denial-of-Service Attack

Status Fixed

Description In the selectWinners() function of the AuctionWithTime contract, for each bidder, the auc-

tion procedure is implemented as follows:

verifying the signatures provided by the bidder.

transferring WETH from the bidder to the beneficiary address.

minting NFT to the bidder.

However, the logic implemented for the AuctionWithTime contract is not fail-safe. Specifically, the checks

for the first two steps are implemented using the require statements. Therefore, the entire transaction will

revert if the first two steps of any bidder fail to execute. This design is subject to Denial-of-Service attacks.

66 function selectWinners(

67 address[] calldata bidders,

68 uint256[] calldata bids,

69 bytes32[] calldata sigsR,

70 bytes32[] calldata sigsS,

71 uint8[] calldata sigsV,

72 uint256[] memory ids

73) external onlyOwner {

74 require(block.timestamp > endTime, "Auction hasn’t ended");

75 require(bidders.length <= items, "Too much winners");

76 require(

6

77 bidders.length == ids.length && bidders.length == bids.length,

78 "Incorrect number of ids"

79);

80 require(

81 bidders.length == sigsV.length &&

82 sigsV.length == sigsR.length &&

83 sigsV.length == sigsR.length,

84 "Incorrect number of signatures"

85);

86 for (uint256 i = 0; i < bidders.length; i++) {

87 require(

88 ecrecover(

89 keccak256(

90 abi.encodePacked(

91 "\x19Ethereum Signed Message:\n32",

92 keccak256(abi.encodePacked(bids[i]))

93)

94),

95 sigsV[i],

96 sigsR[i],

97 sigsS[i]

98) == bidders[i],

99 "Incorrect signature"

100);

101 weth.safeTransferFrom(bidders[i], beneficiaryAddress, bids[i]);

102 nft.mint(bidders[i], ids[i]);

103 }

104 items -= bidders.length;

105 }

Listing 2.4: selectWinners():AuctionWithTime.sol

Impact The selectWinners() function may subject to Denial-of-Service attacks.

Suggestion Use conditional checks rather than the require() statements.

2.2 DeFi Security

2.2.1 Inconsistent Auction Design

Status Confirmed

Description The auction procedure consists of two steps. Firstly, the bidders submit their signatures

to the project. Secondly, the project invokes the selectWinners() function of the Auction contract with

corresponding bids. For each bid to succeed, the bidder must also have sufficient WETH and approve to the

Auction contract. The issue is that the bidders can control the WETH-related condition after the signatures

are provided (i.e., the auction kicks off), which may lead to the following problems:

1. The bidders can force to cancel the auction after signatures are submitted, with or without front-

running the selectWinners transaction.

2. A malicious bidder may batch submit false (higher) bids with multiple addresses (i.e., the signatures

are correct, but the bid address has insufficient balance or allowance for WETH). This way may cause a

7

fake bloom of the NFT auction with a specific auction display interface, and turn down the enthusiasm

of other competitors to undermine the valid offers. As a result, this malicious bidder is able to hide

his/her true bids and purchase the items with a relatively lower price (even down to 0).

3. It results in the mismatching between the valid offers and the shown offers, which may break the

confidence of the community.

Impact N/A

Suggestion Revise the auction design.

Feedback from the Developers
1. Only we ourselves can execute the selectWinners() function, so there won’t be any DoS attacks.

The users funds cannot be compromised either.

2. We don’t allow making false bids (i.e., with zero bid amount) in UI strictly and only push bidders with

bid amount larger than zero.

3. We do check to make sure that the allowance exceeds or is equal to the bid at the time the bid is

made before saving it to the database. We do the check inside the contract to still be able to process

the whole batch and just skip ones that revoked approval or withdrawn balance without demanding

with requirement.

2.3 Additional Recommendation

2.3.1 Remove Unused State Variable

Status Fixed

Description The startTime state variable in the AuctionWithTime contract is not used.

Impact Unnecessary gas consumption.

Suggestion Remove the unused state variables.

2.3.2 Remove Unused receive() Function

Status Fixed

Description The receive() function of the Auction and AuctionWithTime contracts are unused, and

there is no actual logic implemented. Besides, there is no way to withdraw the Ether sent to these contracts.

Thus, the receive() function in both contracts should be removed.

Impact N/A

Suggestion Remove the unused receive() function.

2.3.3 Remove Unused Inherited Contract

Status Fixed

Description Both Auction and AuctionWithTime contracts inherit from the PausableUpgradeable con-

tract of OpenZeppelin. However, the PausableUpgradeable contract has no public interface to pause and

unpause the contract. Specifically, the _pause() and _unpause() functions of the PausableUpgradeable

contract are private.

8

Impact Unnecessary gas consumption.

Suggestion Remove the unused inheritance.

9

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Incorrect Check of Parameters for the structurecolorselectWinner() Function
	2.1.2 Incorrect Initialization Pattern
	2.1.3 Unsafe Signatures
	2.1.4 Potential Denial-of-Service Attack

	2.2 DeFi Security
	2.2.1 Inconsistent Auction Design

	2.3 Additional Recommendation
	2.3.1 Remove Unused State Variable
	2.3.2 Remove Unused structurecolorreceive() Function
	2.3.3 Remove Unused Inherited Contract

		2022-02-25T18:25:16+0800
	BlockSec Audit Team

