
Security Audit Report for YPool Smart
Contract

Date: Jan 26, 2022

Version: 1.2

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 DeFi Security . 4

2.1.1 Possible Loss with Incorrect Call Sequence . 4

2.1.2 Arbitrary External Calls with NO Access Control . 5

2.1.3 Lack of Checks on Parameters of the multiswap() Function 6

2.2 Additional Recommendation . 7

2.2.1 Fix Typos in Variables and Function Names . 7

2.2.2 Give Concrete Revert Messages . 7

i

Report Manifest

Item Description
Client XYPool
Target YPool Smart Contract

Version History

Version Date Description
1.0 Jan 11, 2022 First Release
1.1 Jan 26, 2022 Status Update
1.2 Jan 26, 2022 Status Update

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values of the repo 1 during the

audit are shown in the following.

Contract Name Stage Commit SHA
YPool Initial 74cc313fae9c1fa5a9a51c869c0add0876185e11

YPool Final 73ca274046f4681c037d2d67b702ea70a0af15a6

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

1https://github.com/XY-Finance/ypool-contracts-audit

1

https://github.com/XY-Finance/ypool-contracts-audit

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data Flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

2

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

Accordingly, the severity measured in this report are classified into four categories: High, Medium, Low
and Undetermined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

Fixed The issue has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find three potential issues in the smart contract. We also have two recommendations, as

follows:

High Risk: 0

Medium Risk: 1

Low Risk: 2

Recommendations: 2

ID Severity Description Category Status

1 Low
Possible Loss with Incorrect Call Se-

quence
DeFi Security Fixed

2 Medium
Arbitrary External Calls with NO Ac-

cess Control
DeFi Security Fixed

3 Low
Lack of Checks on Parameters of the

multiswap() Function
DeFi Security Confirmed

4 -
Fix Typos in Variables and Function

Names
Recommendation Fixed

5 - Give Concrete Revert Messages Recommendation Fixed

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Possible Loss with Incorrect Call Sequence

Status Fixed

Description In StakingRewardsAsync.sol, a user may call the exit() function to withdraw the early

stake. However, stakerExists[msg.sender] is set to false in the completeExitRequest() function (in-

voked by the stake worker). As such, if the user calls the stake() function prior to the invocation of

completeExitRequest(), then he/she may lose the last stake.

96 /// @notice Stake the specific amount of token (requred approval from address)

97 /// @param amount The amount of token to stake

98 function stake(uint256 amount) external {

99 require(amount > 0, "ERR_INVALID_STAKE_AMOUNT");

100 stakeToken.safeTransferFrom(msg.sender, address(this), amount);

101 _totalSupply += amount;

102 _balances[msg.sender] += amount;

103 stakerExists[msg.sender] = true;

104 emit Staked(msg.sender, amount);

105 }

Listing 2.1: StakingRewardsAsync.sol

195 /// @notice Complete the exit request by returning staked token and transferring reward token

(could be executed only by stake worker)

4

196 /// @param _nonce The request nonce to be processed

197 /// @param rewardAmount Amount of reward token to be minted to request account

198 function completeExitRequest(uint256 _nonce, uint256 rewardAmount) external onlyRole(

ROLE_STAKE_WORKER) {

199 require(_nonce < nonce , "ERR_INVALID_NONCE");

200
201 Request storage request = requests[_nonce];

202 require(request.requestType == RequestType.Exit, "ERR_INVALID_REQUEST_TYPE");

203 require(request.status == RequestStatus.Pending, "ERR_REQUEST_NOT_PENDING");

204
205 request.status = RequestStatus.Completed;

206 stakeToken.safeTransfer(request.account, request.amount);

207 rewardToken.safeTransfer(request.account, rewardAmount);

208 stakerExists[request.account] = false;

209 emit ExitCompleted(_nonce, request.account, request.amount, rewardAmount);

210 }

Listing 2.2: StakingRewardsAsync.sol

Impact If a user accidentally calls these functions with incorrect call sequence, he/she may lose the last

stake.

Suggestion N/A

2.1.2 Arbitrary External Calls with NO Access Control

Status Fixed

Description The multiswap() function of Multicaller.sol has no access control (i.e., everyone can call

this function). What’s more, there are no checks to verify the target contract and function being called (i.e.,

the target callee and the four bytes signature of the calldata for the Call struct).

67 function multiswap(Call[] memory calls, address payable receiver) public payable nonReentrant

returns (uint256 blockNumber, bytes[] memory returnData) {

68 blockNumber = block.number;

69 returnData = new bytes[](calls.length);

70
71 // ‘calls‘ contain only swap actions

72 uint256 amountIn;

73 for(uint256 i = 0; i < calls.length; i++) {

74 approveIfNeeded(IERC20(calls[i].fromToken), calls[i].target);

75
76 if (calls[i].amountIn > 0) {

77 amountIn = calls[i].amountIn;

78 }

79 uint256 value = 0;

80 bytes memory callData;

81 if (calls[i].fromToken == ETHER_ADDRESS) {

82 value = amountIn;

83 callData = abi.encodePacked(calls[i].prefix, calls[i].suffix);

84 } else {

85 callData = abi.encodePacked(calls[i].prefix, amountIn, calls[i].suffix);

86 }

87 uint256 balance = uniBalanceOf(IERC20(calls[i].toToken), address(this));

5

88 bytes memory ret = Address.functionCallWithValue(calls[i].target, callData, value, "

Multicall multiswap: call failed");

89 amountIn = uniBalanceOf(IERC20(calls[i].toToken), address(this)) - balance;

90 returnData[i] = ret;

91 }

92...

Listing 2.3: MultiCaller.sol

Impact The insufficient access control and parameter checks may lead to potential problems. For exam-

ple, an external bot may be able to harvest funds that are stored in this contract.

Suggestion Add corresponding access control and sanity checks.

2.1.3 Lack of Checks on Parameters of the multiswap() Function

Status Confirmed

Description The function multiswap() in Multicaller.sol performs insufficient check with the parame-

ters. Specifically,

1. No checks if the swaps in calls are continuous, i.e., calls[i].fromToken == calls[i-1].toToken.

2. The amountIn specified in the call parameter takes priority for constructing calls. If amountIn in the

calls passed as parameters is incorrect, it may result in a loss of funds froze in this contract or a

failure of the swap.

67 function multiswap(Call[] memory calls, address payable receiver) public payable nonReentrant

returns (uint256 blockNumber, bytes[] memory returnData) {

68 blockNumber = block.number;

69 returnData = new bytes[](calls.length);

70
71 // ‘calls‘ contain only swap actions

72 uint256 amountIn;

73 for(uint256 i = 0; i < calls.length; i++) {

74 approveIfNeeded(IERC20(calls[i].fromToken), calls[i].target);

75
76 if (calls[i].amountIn > 0) {

77 amountIn = calls[i].amountIn;

78 }

79 uint256 value = 0;

80 bytes memory callData;

81 if (calls[i].fromToken == ETHER_ADDRESS) {

82 value = amountIn;

83 callData = abi.encodePacked(calls[i].prefix, calls[i].suffix);

84 } else {

85 callData = abi.encodePacked(calls[i].prefix, amountIn, calls[i].suffix);

86 }

87 uint256 balance = uniBalanceOf(IERC20(calls[i].toToken), address(this));

88 bytes memory ret = Address.functionCallWithValue(calls[i].target, callData, value, "

Multicall multiswap: call failed");

89 amountIn = uniBalanceOf(IERC20(calls[i].toToken), address(this)) - balance;

90 returnData[i] = ret;

91 }

92...

6

Listing 2.4: MultiCaller.sol

Impact Combining with issue 2.1.2, funds frozen in this contract can be harvested by external attackers

or bots.

Suggestion Add more sanity checks on parameters calls.

Feedback from the Developers On one hand, we don’t check amountIn in the calls. Because for con-

tinuous calls calls[i] and calls[i+1], we can only determine calls[i+1].amountIn after calls[i] is

actually executed. Instead, we verify that the swap is successful in Aggregator.swap() by checking the

total amount out from Multicaller.multiswap() is greater than or equal to minReturnAmount. Apart from

that, we also require the caller of Multicaller.multiswap() must be an Aggregator. On the other hand,

we cannot add the check to ensure the continuous sequence of the swap, i.e., require(calls[i].toToken

== calls[i+1].fromToken). This is because in some scenarios we might have split routes aggregated for

a swap.

2.2 Additional Recommendation

2.2.1 Fix Typos in Variables and Function Names

Status Fixed

Description There are some mis-spelling in variable and function names. For example, YPoolSupoortedToken

and setYPoolSupoortedToken() in RebalanceRewardsAsync.sol (notice the extraneous “o” in the names).

43 // mappings of YPool tokens that are allowed to request redeem reward

44 mapping (address => bool) public YPoolSupoortedToken;

Listing 2.5: RebalanceRewardsAsync.sol

74 /// @notice Set the pool token allowed to sent redeem request (could be set only by manager)

75 /// @param _supportedToken The YPool supported token

76 /// @param isSet Set to enable or disable

77 function setYPoolSupoortedToken(address _supportedToken, bool isSet) external onlyRole(

ROLE_MANAGER) {

78 YPoolSupoortedToken[_supportedToken] = isSet;

79 }

Listing 2.6: RebalanceRewardsAsync.sol

Impact N/A

Suggestion Fix these typos.

2.2.2 Give Concrete Revert Messages

Status Fixed

Description Some functions do not have clear revert messages, e.g., XSwapper.getSwapRequest().

7

215 /// @notice Get a certain swap request

216 /// @param _swapId Swap Id of a swap request

217 function getSwapRequest(uint256 _swapId) external view returns (SwapRequest memory) {

218 if (_swapId >= swapId) revert();

219 return swapRequests[_swapId];

220 }

Listing 2.7: XSwapper.sol

Impact N/A

Suggestion Add corresponding revert messages.

8

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Possible Loss with Incorrect Call Sequence
	2.1.2 Arbitrary External Calls with NO Access Control
	2.1.3 Lack of Checks on Parameters of the structurecolormultiswap() Function

	2.2 Additional Recommendation
	2.2.1 Fix Typos in Variables and Function Names
	2.2.2 Give Concrete Revert Messages

		2022-01-27T00:04:01+0800
	BlockSec Audit Team

