
Report for Halo-token-
earn-contract and
HaloMembershipPass

Date: January 2, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 2
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter2Findings 4
2.1 DeFi Security . 4

2.1.1 Potential loss of influencer airdrop in function setInfluencerInfos() . . . 4
2.1.2 Configuration overwrites and lack of validations in function setAirdropDetail() 5
2.1.3 Potential incorrect reward distribution in function updateRewardRate() . . 6
2.1.4 Reuse of AdminSig enables upgrading multiple NFTs of users 7

2.2 Additional Recommendation . 9
2.2.1 Lack of comparison check in function setJustClaimPct() 9
2.2.2 Lack of non-zero check for key parameters 10
2.2.3 Lack of check in function setClaimStartAt() 14

2.3 Note . 14
2.3.1 Potential centralization risk . 14
2.3.2 HGP burn verification reliance on off-chain mechanisms 15
2.3.3 Potential unavailability of claimRewardsAndStake() function due to StakeToken

and RewardToken inconsistency . 15

Report Manifest

Item Description
Client Halo

Target Halo-token-earn-contract and HaloMem-
bershipPass

Version History

Version Date Description
1.0 January 2, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

This audit focuses on the code repositories of the halo-token-earn-contract 1 andHaloMem-
bershipPass.sol 2 of Halo.

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for
the code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Project Version Commit Hash

halo-token-earn-contract Version 1 05733631f676529f3095b75bbdbd8289cce6a8bb
Version 2 c258fbfca83de43daaef32606417838132150e72

HaloMembershipPass.sol Version 1 94fc54ddf8aae66ce1d3a6e82f28dc884ef6b9f8
Version 2 66ef3c6e727144c6d5707c404ee96fdfd7315ec6

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1https://github.com/halowalletdev/halo-token-earn-contract/tree/main/contracts

2https://github.com/halowalletdev/halo-membership-pass/blob/main/contracts/HaloMembershipPass.sol

https://github.com/halowalletdev/halo-token-earn-contract/tree/main/contracts
https://github.com/halowalletdev/halo-membership-pass/blob/main/contracts/HaloMembershipPass.sol

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.
- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarios with independent
auditors to cross-check the result.
- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology and Common Weak-
ness Enumeration. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:
- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

3

Chapter 2 Findings

In total, we found four potential security issues. Besides, we have three recommendations
and three notes.
- High Risk: 1
- Low Risk: 3
- Recommendation: 3
- Note: 3

ID Severity Description Category Status

1 Low Potential loss of influencer airdrop in
function setInfluencerInfos()

DeFi Security Confirmed

2 Low Configuration overwrites and lack of vali-
dations in function setAirdropDetail()

DeFi Security Confirmed

3 Low Potential incorrect reward distribution in
function updateRewardRate()

DeFi Security Confirmed

4 High Reuse of AdminSig enables upgrading
multiple NFTs of users DeFi Security Fixed

5 - Lack of non-zero check for key parame-
ters Recommendation Confirmed

6 - Lack of comparison check in function
setJustClaimPct()

Recommendation Confirmed

7 - Lack of check in function
setClaimStartAt()

Recommendation Confirmed

8 - Potential centralization risk Note -

9 - HGP burn verification reliance on off-
chain mechanisms Note -

10 -

Potential unavailability of
claimRewardsAndStake() function due
to StakeToken and RewardToken inconsis-
tency

Note -

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Potential loss of influencer airdrop in function setInfluencerInfos()

Severity Low
Status Confirmed
Introduced by Version 1

Description The function setInfluencerInfos() allows the privileged owner to update the
amount of tokens claimable for influencers. According to the design, once the airdrop is open,
influencers should be able to claim their tokens at any time. However, if the owner invokes
the function to update values before the influencers claimed their tokens, the unclaimed token
amounts will be overwritten with the new values, which is incorrect.

283 function setInfluencerInfos(
284 address[] calldata influencers,
285 uint256[] calldata amounts
286) external onlyOwner {
287 address influencer;
288 uint256 amount;
289 for (uint256 i = 0; i < influencers.length; i++) {
290 influencer = influencers[i];
291 amount = amounts[i];
292 influencerClaimableAmt[influencer] = amount;
293 }
294}

Listing 2.1: contracts/HaloAirdrop.sol

Impact The influencers may lose unclaimed tokens.
Suggestion Revise the logic to accumulate the claimable token amount when updating in-
stead of overwriting.
Feedback from the project The number of influencers is fixed at approximately 60 and will
be configured once before the airdrop begins. Under normal circumstances, each address will
be configured only once, and the token amounts will remain unchanged thereafter.

2.1.2 Configuration overwrites and lack of validations in function
setAirdropDetail()

Severity Low
Status Confirmed
Introduced by Version 1

Description The setAirdropDetail() function allows the privileged owner to configure the
merkle tree root, the immediate claimable token percentage, and the number of phases re-
quired to fully unlock the remaining tokens for Halo Membership Pass (HMP) and Halo Genesis
Pass (HGP) holders. However, this function permits the owner to invoke it repeatedly, overwrit-
ing previously set configurations, which contradicts the design intent stating that "there is no
time limit for holders to claim." Moreover, the function does not ensure that the merkle tree
roots for these two airdrops are distinct, which is also incorrect.
300 function setAirdropDetail(
301 bytes32 root_,
302 uint256 imdClaimPct_,
303 uint256 totalUnlockPhases_,
304 bool isMP
305) external onlyOwner {
306 require(imdClaimPct_ <= 100, "INV_ARG");
307 if (isMP) {
308 airdropMP.root = root_;
309 airdropMP.imdClaimPct = imdClaimPct_;
310 airdropMP.totalUnlockPhases = totalUnlockPhases_;
311 } else {

5

312 airdropGP.root = root_;
313 airdropGP.imdClaimPct = imdClaimPct_;
314 airdropGP.totalUnlockPhases = totalUnlockPhases_;
315 }
316 }

Listing 2.2: contracts/HaloAirdrop.sol

Impact This issue risks misconfiguration, causing inconsistencies and unexpected results.
Suggestion Add necessary checks and restrict the function to be invoked only once to pre-
vent the configured parameters from being overwritten.
Feedback from the project In order to prevent configuration errors from being unable to be
modified, we will not add stricter verification. Instead, we manually check the parameters for
correctness.

2.1.3 Potential incorrect reward distribution in function updateRewardRate()

Severity Low
Status Confirmed
Introduced by Version 1

Description In the HaloStakeVault contract, users can deposit Halo tokens to earn rewards.
The rewards are calculated based on the rewardRatePerBlock and staking time. However, the
privileged owner is allowed to dynamically update the rewardRatePerBlock via the function
updateRewardRate(). If rewardRatePerBlock is updated during the user’s staking period, their
rewards may not be distributed correctly, as new rewardRatePerBlock can be incorrectly ap-
plied to the earlier time intervals.
1185 function updateRewardRate(
1186 uint256 newRatePerBlock_,
1187 bool _withUpdate
1188) external onlyOwner {
1189 // whether check 0
1190 // require(newRatePerBlock_ > 0, "INV_RATE");
1191 if (_withUpdate) {
1192 updatePool();
1193 }
1194 rewardRatePerBlock = newRatePerBlock_;
1195 emit RewardRateChanged(newRatePerBlock_);
1196}

Listing 2.3: contracts/HaloStakeVault.sol

110 function updatePool() public {
111 if (block.number <= poolInfo.lastRewardBlock) {
112 return;
113 }
114 if (poolInfo.totalStaked > 0) {
115 uint256 multiplier = block.number - poolInfo.lastRewardBlock;
116 uint256 haloReward = multiplier * rewardRatePerBlock;

6

117 poolInfo.accHaloPerShare += Math.mulDiv(
118 haloReward,
119 ACC_PRECISION,
120 poolInfo.totalStaked
121);
122 }
123 poolInfo.lastRewardBlock = block.number;
124 // event
125 emit UpdatePool(
126 poolInfo.lastRewardBlock,
127 poolInfo.totalStaked,
128 poolInfo.accHaloPerShare
129);
130 }

Listing 2.4: contracts/HaloStakeVault.sol

Impact The user’s reward is calculated with the new rewardRatePerBlock, which is incorrect.
Suggestion Revise the logic to ensure that the function updatePool() must be invoked when
updating rewardRatePerBlock.
Feedback from the project This method can only be called by the owner. By default, the
parameter _withUpdate will be set to true.

2.1.4 Reuse of AdminSig enables upgrading multiple NFTs of users

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description The user can upgrade the level of a specified NFT through the function
upgradeMainProfileWithToken(), provided that the NFT is the user’s current userMainProfile
and the user has obtained the protocol admin’s signature. However, the function’s signature
validation does not include the NFT’s token_id. In this case, users can repeatedly replay the
signature before it expires to upgrade their other NFTs, as long as the NFTs meet the level
requirement specified in the signature, which is incorrect.
241 function upgradeMainProfileWithToken(
242 uint8 toLevel,
243 address payCurrency,
244 uint256 payAmount,
245 uint256 sigExpiredAt,
246 bytes calldata adminSig
247) external payable nonReentrant whenNotPaused {
248 // Verify parameters
249 require(adminSigner != address(0), "Invalid signer");
250 require(
251 adminSig.length > 0 &&
252 sigExpiredAt > block.timestamp &&
253 toLevel <= MAX_LEVEL,
254 "Invalid parameters"

7

255);
256 require(isCurrencyEnabled[payCurrency], "Invalid currency");
257 require(
258 payAmount >= minPayAmtToUpgrade[toLevel][payCurrency],
259 "Invalid amount"
260);
261 // Verify signature
262 require(
263 verifyAdminSig(
264 keccak256(
265 abi.encode(
266 msg.sender,
267 toLevel,
268 payCurrency,
269 payAmount,
270 sigExpiredAt
271)
272),
273 adminSig
274),
275 "Invalid signature"
276);
277
278
279 // Limit the maximum quantity
280 require(canUpgradeTo(toLevel), "Exceed the target proportion");
281
282
283 // the main profile nft is used by default
284 uint256 tokenId = userMainProfile[msg.sender];
285 require(
286 tokenId != 0 && ownerOf(tokenId) == msg.sender,
287 "Not user’s main profile"
288);
289
290
291 require(toLevel == levelOfToken[tokenId] + 1, "Invalid target level");
292 // Charge the mint fee
293 _chargeMintFee(payCurrency, payAmount);
294
295
296 // Upgrade:1.burn old token 2.mint new token
297 _burn(tokenId); // unbind main profile simultaneously
298 uint256 newTokenId = ++currentIndex;
299 levelOfToken[newTokenId] = toLevel;
300 _safeMint(msg.sender, newTokenId);
301 // bind the new token as main profile(because the old main profile has burnt)
302 userMainProfile[msg.sender] = newTokenId;
303 upgradedFrom[newTokenId] = tokenId;
304
305
306 emit NFTUpgraded(msg.sender, tokenId, newTokenId, toLevel);
307 emit MainProfileSet(msg.sender, newTokenId);

8

308 }

Listing 2.5: contracts/HaloMembershipPass.sol

306 function bindMainProfile(uint256 tokenId) external {
307 require(ownerOf(tokenId) == msg.sender, "Not token owner");
308 userMainProfile[msg.sender] = tokenId;
309 emit MainProfileSet(msg.sender, tokenId);
310}

Listing 2.6: contracts/HaloMembershipPass.sol

Impact The user can upgrade the levels of multiple NFTs with a single signature.
Suggestion Revise the logic, incorporating the token_id into the signature validation process
to ensure that a single signature is only valid for one specific token_id.

2.2 Additional Recommendation

2.2.1 Lack of comparison check in function setJustClaimPct()

Status Confirmed
Introduced by Version 1

Description In the claimOrLockForMP() function, users can select from two claiming modes:
direct and partial with subsequent locking. In direct mode, users receive a predefined percent-
age (i.e., justClaimPct) of tokens immediately, while the remaining tokens are transferred to
the treasury. In partial mode, users claim an immediate percentage (i.e., imdClaimPct) with the
rest being locked and gradually unlocked over time for future claims. Ideally, the justClaimPct
should be higher than the imdClaimPct to fairly compensate for the immediate loss in direct
claiming, where users forfeit part of their airdrop. If justClaimPct is lower, users may prefer
partial claiming for its higher upfront payout, disrupting the intended design.
322 function setJustClaimPct(uint256 newPct_) external onlyOwner {
323 require(newPct_ <= 100, "INV_ARG");
324 justClaimPct = newPct_;
325 }

Listing 2.7: contracts/HaloAirdrop.sol

70 function claimOrLockForMP(
71 bytes32[] calldata proof,
72 uint256 amount,
73 bool isLock
74) external nonReentrant whenNotPaused {
75 // verify parameters
76 require(
77 block.timestamp > claimStartAt && airdropMP.root != 0x0,
78 "NOT_START"
79);
80 require(proof.length > 0 && amount > 0, "INV_PARAM");

9

81 require(!isClaimedMP[msg.sender], "HAS_CLAIMED");
82 // merkle verify
83 bytes32 leaf = keccak256(abi.encode(msg.sender, amount));
84 require(MerkleProof.verify(proof, airdropMP.root, leaf), "INV_PROOF");
85 // mark it claimed
86 isClaimedMP[msg.sender] = true;
87
88
89 if (isLock) {
90 // lock: claim part + lock others
91 uint256 toUserAmount = (amount * airdropMP.imdClaimPct) / 100;
92 SafeERC20.safeTransfer(IERC20(HALO), msg.sender, toUserAmount);
93 uint256 lockAmount = amount - toUserAmount;
94 userInfoMP[msg.sender] = UserLockInfo({
95 lockStartAt: block.timestamp,
96 totalAmount: lockAmount,
97 claimedAmount: 0
98 });
99 emit ClaimAndLock(
100 msg.sender,
101 toUserAmount,
102 lockAmount,
103 AIRDROP_FOR_MP
104);
105 } else {
106 // just claim part
107 uint256 toUserAmount = (amount * justClaimPct) / 100;
108 uint256 toTreasuryAmount = amount - toUserAmount;
109 // transfer: address(this)-> 1. to user + 2. to treasury
110 SafeERC20.safeTransfer(IERC20(HALO), msg.sender, toUserAmount);
111 SafeERC20.safeTransfer(IERC20(HALO), treasury, toTreasuryAmount);
112 // event
113 emit ClaimOnlyForMP(msg.sender, toUserAmount, toTreasuryAmount);
114 }
115 }

Listing 2.8: contracts/HaloAirdrop.sol

Suggestion Revise the logic to ensure that justClaimPct is greater than imdClaimPct.
Feedback from the project Since justClaimPct and imdClaimPct are not configured syn-
chronously, we will verify them manually.

2.2.2 Lack of non-zero check for key parameters

Status Confirmed
Introduced by Version 1

Description In the HaloAirdrop, HaloSocialMining, HaloStakeVault, and HaloMembershipPass
contracts, some key parameters lack non-zero validation, which could lead to unexpected be-
haviors. Specifically, in the following code segment:
1. The constructor() function lacks zero address checks, whichmay lead to critical contract
addresses being incorrectly initialized.

10

2. The setAirdropDetail() function lacks zero check for the totalUnlockPhases_ parameter.
If totalUnlockPhases_ is set to 0, it will lead to a division by zero error when performing
the division operation.

56 constructor(
57 address owner_,
58 IERC20 HALO_,
59 address treasury_,
60 uint256 claimStartAt_,
61 uint256 justClaimPct_
62) Ownable(owner_) {
63 HALO = HALO_;
64 treasury = treasury_;
65 claimStartAt = claimStartAt_;
66 justClaimPct = justClaimPct_;
67 }

Listing 2.9: contracts/HaloAirdrop.sol

25 constructor(
26 address owner_,
27 IERC20 HALO_,
28 address rewardVault_
29) Ownable(owner_) {
30 HALO = HALO_;
31 rewardVault = rewardVault_;
32 }

Listing 2.10: contracts/HaloSocialMining.sol

40 constructor(
41 address owner_,
42 IERC20 stakeToken_,
43 IERC20 rewardToken_,
44 uint256 cooldownSeconds_,
45 uint256 unstakeSeconds_,
46 uint256 rewardRatePerBlock_,
47 address rewardVault_,
48 uint256 startBlock // the block number when reward starts
49) Ownable(owner_) {
50 stakeToken = stakeToken_;
51 rewardToken = rewardToken_;
52 cooldownSeconds = cooldownSeconds_;
53 unstakeSeconds = unstakeSeconds_;
54 rewardRatePerBlock = rewardRatePerBlock_;
55 rewardVault = rewardVault_;
56 poolInfo = PoolInfo({
57 accHaloPerShare: 0,
58 lastRewardBlock: Math.max(startBlock, block.number),
59 totalStaked: 0
60 });
61 // for restake(when stakeToken=rewardToken)
62 rewardToken.approve(address(this), type(uint256).max);

11

63 }

Listing 2.11: contracts/HaloStakeVault.sol

67 function initialize(
68 string memory name_,
69 string memory symbol_,
70 address feeRecipient_,
71 uint256 level6UpperProportion_
72) public initializer {
73 feeRecipient = feeRecipient_;
74 level5UpperProportion = 100;
75 level6UpperProportion = level6UpperProportion_;
76
77
78 __ReentrancyGuard_init();
79 __Pausable_init();
80 __Ownable2Step_init();
81 __ERC721_init(name_, symbol_);
82 }

Listing 2.12: contracts/HaloMembershipPass.sol

300 function setAirdropDetail(
301 bytes32 root_,
302 uint256 imdClaimPct_,
303 uint256 totalUnlockPhases_,
304 bool isMP
305) external onlyOwner {
306 require(imdClaimPct_ <= 100, "INV_ARG");
307 if (isMP) {
308 airdropMP.root = root_;
309 airdropMP.imdClaimPct = imdClaimPct_;
310 airdropMP.totalUnlockPhases = totalUnlockPhases_;
311 } else {
312 airdropGP.root = root_;
313 airdropGP.imdClaimPct = imdClaimPct_;
314 airdropGP.totalUnlockPhases = totalUnlockPhases_;
315 }
316 }

Listing 2.13: contracts/HaloAirdrop.sol

200 function getUnlockInfo(
201 address user
202)
203 public
204 view
205 returns (
206 uint256 unlockableAmtForMP,
207 uint256 unlockableAmtForGP,
208 uint256 nextUnlockTimeForMP,
209 uint256 nextUnlockTimeForGP

12

210)
211 {
212 // for hmp
213 UserLockInfo memory userInfoForMP = userInfoMP[user];
214 if (userInfoForMP.lockStartAt > 0) {
215 // else: lockStartAt=0 ==> unlockableAmtForMP = 0, nextUnlockTimeForMP=0
216 uint256 currentPhases = (block.timestamp -
217 userInfoForMP.lockStartAt) / DURATION_PER_PHASE;
218 uint256 maxUnlockPhases = Math.min(
219 airdropMP.totalUnlockPhases,
220 currentPhases
221);
222 uint256 maxUnlockAmount = (maxUnlockPhases *
223 userInfoForMP.totalAmount) / airdropMP.totalUnlockPhases;
224 unlockableAmtForMP = maxUnlockAmount - userInfoForMP.claimedAmount;
225 // next unlock time
226 if (currentPhases < airdropMP.totalUnlockPhases) {
227 nextUnlockTimeForMP =
228 userInfoForMP.lockStartAt +
229 (currentPhases + 1) *
230 DURATION_PER_PHASE;
231 }
232 }
233 // for gp
234 UserLockInfo memory userInfoForGP = userInfoGP[user];
235 if (userInfoForGP.lockStartAt > 0) {
236 uint256 currentPhases = (block.timestamp -
237 userInfoForGP.lockStartAt) / DURATION_PER_PHASE;
238
239
240 uint256 maxUnlockPhases = Math.min(
241 airdropGP.totalUnlockPhases,
242 currentPhases
243);
244 uint256 maxUnlockAmount = (maxUnlockPhases *
245 userInfoForGP.totalAmount) / airdropGP.totalUnlockPhases;
246 unlockableAmtForGP = maxUnlockAmount - userInfoForGP.claimedAmount;
247 // next unlock time
248 if (currentPhases < airdropGP.totalUnlockPhases) {
249 nextUnlockTimeForGP =
250 userInfoForGP.lockStartAt +
251 (currentPhases + 1) *
252 DURATION_PER_PHASE;
253 }
254 }
255 }

Listing 2.14: contracts/HaloAirdrop.sol

Suggestion Add a check to ensure that key parameters are not zero.
Feedback from the project We will manually check the parameters in constructor().

13

2.2.3 Lack of check in function setClaimStartAt()

Status Confirmed
Introduced by Version 1

Description In the constructor() function, the global variable claimStartAt lacks proper val-
idation. Specifically, it should be greater than or equal to the current timestamp. Additionally,
the extra implementation of the setClaimStartAt() function, which allows the owner to up-
date claimStartAt, is unnecessary, as this variable only determines whether users can start
claiming the airdrop.
56 constructor(
57 address owner_,
58 IERC20 HALO_,
59 address treasury_,
60 uint256 claimStartAt_,
61 uint256 justClaimPct_
62) Ownable(owner_) {
63 HALO = HALO_;
64 treasury = treasury_;
65 claimStartAt = claimStartAt_;
66 justClaimPct = justClaimPct_;
67}

Listing 2.15: contracts/HaloAirdrop.sol

296 function setClaimStartAt(uint256 newStartAt) external onlyOwner {
297 claimStartAt = newStartAt;
298}

Listing 2.16: contracts/HaloAirdrop.sol

Suggestion Add check to ensure that claimStartAt is greater than or equal to the current
timestamp, and remove the redundant implementation.
Feedback from the project When deploying the contract, we will manually check it.

2.3 Note

2.3.1 Potential centralization risk

Introduced by Version 1

Description In the current implementation, several privileged roles are set to govern and reg-
ulate the system-wide operations (e.g., parameter setting, pause/unpause). Additionally, the
owner of the contract HaloMembershipPass can mint NFTs of any quantity and any level through
the function adminMint(). If the private keys of these privileged roles are lost or maliciously
exploited, it could potentially lead to losses for users.

14

2.3.2 HGP burn verification reliance on off-chain mechanisms

Introduced by Version 1

Description According to the documentation, users are required to burn the corresponding
HGP tokens in the HGPBurn contract before claiming the airdrop. However, the HaloAirdrop con-
tract does not have relevant implementation to verify whether these NFT tokens have been
burned. This verification should be ensured off-chain, which is beyond the scope of our audit.

2.3.3 Potential unavailability of claimRewardsAndStake() function due to
StakeToken and RewardToken inconsistency

Introduced by Version 1

Description In the HaloStakeVault contract, stakeToken and rewardToken are initialized as im-
mutable variables in the constructor and are designed to be set only once. Separate contracts
will be deployed for each unique combination of stakeToken and rewardToken. Additionally, only
stake vaults where the stakeToken and rewardToken are the same support the functionality of
restaking rewards.

15

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Potential loss of influencer airdrop in function setInfluencerInfos()
	2.1.2 Configuration overwrites and lack of validations in function setAirdropDetail()
	2.1.3 Potential incorrect reward distribution in function updateRewardRate()
	2.1.4 Reuse of AdminSig enables upgrading multiple NFTs of users

	2.2 Additional Recommendation
	2.2.1 Lack of comparison check in function setJustClaimPct()
	2.2.2 Lack of non-zero check for key parameters
	2.2.3 Lack of check in function setClaimStartAt()

	2.3 Note
	2.3.1 Potential centralization risk
	2.3.2 HGP burn verification reliance on off-chain mechanisms
	2.3.3 Potential unavailability of claimRewardsAndStake() function due to StakeToken and RewardToken inconsistency

		2025-01-02T20:34:49+0800

