
Report for SSI
Protocol

Date: December 18, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 2
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter2Findings 4
2.1 DeFi Security . 4

2.1.1 Incorrect check on amount in function withdraw() 4
2.1.2 Insufficient status check in function rejectRedeemRequest() 5
2.1.3 Lack of implementation of pause() and unpause() in contract USSI 6
2.1.4 Potential replay attack in HedgeOrder and OrderInfo 6
2.1.5 Potential out-of-gas when processing loops 7

2.2 Recommendations . 8
2.2.1 Fix the typos . 8
2.2.2 Lack of invoking function _disableInitializers() 9
2.2.3 Remove unnecessary checks . 9
2.2.4 Check parameters in the constructors and initializers 11
2.2.5 Use safe ERC-20 operations . 12

2.3 Notes . 13
2.3.1 Potential centralization risk . 13
2.3.2 Withdrawal may not occur within the expected timeframe 15
2.3.3 Limited support tokens in the protocol . 16
2.3.4 Inconsistency of participant permissions in contracts AssetIssuer and USSI 16
2.3.5 Additional checks for rescuing funds . 16

Report Manifest

Item Description
Client SoSoValueLabs
Target SSI Protocol

Version History

Version Date Description
1.0 December 18, 2024 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

This audit focuses on the code repositories of the SSI Protocol 1 of SoSoValueLabs. The SSI
Protocol leverages on-chain smart contracts to repackage multi-chain, multi-asset portfolios
into Wrapped Tokens. These tokens represent a basket of underlying assets, enabling Wrapped
Tokens to track the value fluctuations of the basket.

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for
the code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Project Version Commit Hash

SSI Protocol Version 1 7929bfe83397e5f6f3dcacc52eaa94b762073ecf
Version 2 4ff5f0db5951905f277d5e5a71025f0968102c06

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1https://github.com/SoSoValueLabs/ssi-protocol

https://github.com/SoSoValueLabs/ssi-protocol

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,

and then manually verify (reject or confirm) the issues reported by them.
- Semantic Analysis We study the business logic of smart contracts and conduct further

investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We also manually analyze possible attack scenarios with independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and Common Weak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we found five potential security issues. Besides, we have five recommendations
and five notes.

- High Risk: 2
- Medium Risk: 3
- Recommendation: 5
- Note: 5

ID Severity Description Category Status

1 High
Incorrect check on amount in function
withdraw()

DeFi Security Fixed

2 High
Insufficient status check in function
rejectRedeemRequest()

DeFi Security Fixed

3 Medium
Lack of implementation of pause() and
unpause() in contract USSI

DeFi Security Fixed

4 Medium
Potential replay attack in HedgeOrder and
OrderInfo

DeFi Security Fixed

5 Medium
Potential out-of-gas when processing
loops

DeFi Security Fixed

6 - Fix the typos Recommendation Fixed

7 -
Lack of invoking function
_disableInitializers()

Recommendation Fixed

8 - Remove unnecessary checks Recommendation Confirmed

9 -
Check parameters in the constructors and
initializers

Recommendation Fixed

10 - Use safe ERC-20 operations Recommendation Fixed
11 - Potential centralization risk Note -

12 -
Withdrawal may not occur within the ex-
pected timeframe

Note -

13 - Limited support tokens in the protocol Note -

14 -
Inconsistency of participant permissions
in contracts AssetIssuer and USSI

Note -

15 - Additional checks for rescuing funds Note -

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Incorrect check on amount in function withdraw()

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In the contract AssetLocking, the function withdraw() checks lockData.amount
<= lockData.cooldownAmount to make sure that there is enough balance to withdraw. However
lockData.amount is actually the amount of locked tokens which cannot be withdrawn. There-
fore, the check is wrong and may result in failure of fund withdrawals for users.

120 function withdraw(address token, uint256 amount) external whenNotPaused {
121 LockData storage lockData = lockDatas[token][msg.sender];
122 require(lockData.cooldownAmount > 0, "nothing to withdraw");
123 require(lockData.cooldownEndTimestamp <= block.timestamp, "coolingdown");
124 require(lockData.amount <= lockData.cooldownAmount, "no enough balance to withdraw");
125 IERC20(token).safeTransfer(msg.sender, amount);
126 lockData.cooldownAmount -= amount;
127 LockConfig storage lockConfig = lockConfigs[token];
128 lockConfig.totalCooldown -= amount;
129 emit Withdraw(msg.sender, token, amount);
130 }

Listing 2.1: src/AssetLocking.sol

Impact It can result in failure of fund withdrawals for users.
Suggestion Change the check to amount <= lockData.cooldownAmount.

2.1.2 Insufficient status check in function rejectRedeemRequest()

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In the function rejectRedeemRequest(), the status check on swapRequest.status
is to check whether swap requests are rejected. However, it does not consider the situation
when swap requests are cancelled. Therefore, when a swap request is cancelled, the corre-
sponding redeem request can not be rejected or confirmed, leading to the DoS of the minting
and redeeming process for the corresponding asset tokens.

237 function rejectRedeemRequest(uint nonce) external onlyOwner {
238 require(nonce < redeemRequests.length, "nonce too large");
239 Request memory redeemRequest = redeemRequests[nonce];
240 require(redeemRequest.status == RequestStatus.PENDING, "redeem request is not pending");
241 ISwap swap = ISwap(redeemRequest.swapAddress);
242 SwapRequest memory swapRequest = swap.getSwapRequest(redeemRequest.orderHash);
243 require(swapRequest.status == SwapRequestStatus.REJECTED, "swap request is not rejected");
244 IAssetToken assetToken = IAssetToken(redeemRequest.assetTokenAddress);
245 require(assetToken.balanceOf(address(this)) >= redeemRequest.amount, "not enough asset token

to transfer");
246 assetToken.safeTransfer(redeemRequest.requester, redeemRequest.amount);
247 redeemRequests[nonce].status = RequestStatus.REJECTED;
248 assetToken.unlockIssue();
249 emit RejectRedeemRequest(nonce);

5

250 }

Listing 2.2: src/AssetIssuer.sol

Impact This will lead to the malfunction of the corresponding asset token and the contract
AssetIssuer.
Suggestion Change the check to swapRequest.status == SwapRequestStatus.REJECTED ||
swapRequest.status == SwapRequestStatus.CANCEL.

2.1.3 Lack of implementation of pause() and unpause() in contract USSI

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description The contract USSI inherits from the contract PausableUpgradeable. However, it
does not implement the functions pause() and unpause(). This will lead to the result that the
mechanism of pausing and unpausing can not function as expected.

19 contract USSI is Initializable, OwnableUpgradeable, AccessControlUpgradeable, ERC20Upgradeable,
UUPSUpgradeable, PausableUpgradeable {

Listing 2.3: src/USSI.sol

Impact The mechanism of pausing and unpausing cannot function as expected.
Suggestion Implement the functions of pause() and unpause().

2.1.4 Potential replay attack in HedgeOrder and OrderInfo

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description The contracts USSI and Swap lack a field for the corresponding chain in the structs
HedgeOrder and OrderInfo. When deployed on multiple chains, this omission enables the re-
play of a single signature (corresponding to a single order) across different chains, potentially
resulting in the multiple usages of OrderInfo and HedgeOrder across multiple chains.

122 function checkHedgeOrder(HedgeOrder calldata hedgeOrder, bytes32 orderHash, bytes calldata
orderSignature) public view {

123 if (hedgeOrder.orderType == HedgeOrderType.MINT) {
124 require(supportAssetIDs.contains(hedgeOrder.assetID), "assetID not supported");
125 }
126 if (hedgeOrder.orderType == HedgeOrderType.REDEEM) {
127 require(redeemToken == hedgeOrder.redeemToken, "redeem token not supported");
128 }
129 require(block.timestamp <= hedgeOrder.deadline, "expired");
130 require(!orderHashs.contains(orderHash), "order already exists");
131 require(SignatureChecker.isValidSignatureNow(orderSigner, orderHash, orderSignature), "

signature not valid");

6

132 }

Listing 2.4: src/USSI.sol

49 function checkOrderInfo(OrderInfo memory orderInfo) public view returns (uint) {
50 if (block.timestamp >= orderInfo.order.deadline) {
51 return 1;
52 }
53 bytes32 orderHash = keccak256(abi.encode(orderInfo.order));
54 if (orderHash != orderInfo.orderHash) {
55 return 2;
56 }
57 if (!SignatureChecker.isValidSignatureNow(orderInfo.order.maker, orderHash, orderInfo.

orderSign)) {
58 return 3;
59 }
60 if (orderHashs.contains(orderHash)) {
61 return 4;
62 }
63 if (orderInfo.order.inAddressList.length != orderInfo.order.inTokenset.length) {
64 return 5;
65 }
66 if (orderInfo.order.outAddressList.length != orderInfo.order.outTokenset.length) {
67 return 6;
68 }
69 if (!hasRole(MAKER_ROLE, orderInfo.order.maker)) {
70 return 7;
71 }
72 for (uint i = 0; i < orderInfo.order.outAddressList.length; i++) {
73 if (!outWhiteAddresses[orderInfo.order.outAddressList[i]]) {
74 return 8;
75 }
76 }
77 return 0;
78 }

Listing 2.5: src/Swap.sol

Impact This may cause the multiple usages of signed orders on multiple chains.
Suggestion Add a check on the corresponding chain when verifying orders.

2.1.5 Potential out-of-gas when processing loops

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In the contract AssetFactory, there is no upper limit set for creating asset tokens.
As a result, the array assetIDs can grow excessively large. This excessive growth poses a risk
of causing an out-of-gas error in the function setTokenImpl(), which iterates over the entire
array assetIDs. Such an error prevents the upgrade of existing asset tokens. Similarly, the
contract StakeFactory suffers from the same issue.

7

67 function setTokenImpl(address tokenImpl_) external onlyOwner {
68 require(tokenImpl_ != address(0), "token impl address is zero");
69 require(tokenImpl_ != tokenImpl, "token impl is not change");
70 tokenImpl = tokenImpl_;
71 emit SetTokenImpl(tokenImpl);
72 for (uint i = 0; i < assetIDs.length(); i++) {
73 address assetToken = assetTokens[assetIDs.at(i)];
74 UUPSUpgradeable(assetToken).upgradeToAndCall(tokenImpl, new bytes(0));
75 emit UpgradeAssetToken(assetIDs.at(i), tokenImpl);
76 }
77 }

Listing 2.6: src/AssetFactory.sol

39 function _setSTImpl(address stImpl_) internal {
40 require(stImpl_ != address(0), "stImpl is zero address");
41 require(stImpl_ != stImpl, "stImpl not change");
42 for (uint i = 0; i < assetIDs.length(); i++) {
43 address stakeToken = stakeTokens[assetIDs.at(i)];
44 UUPSUpgradeable(stakeToken).upgradeToAndCall(stImpl_, new bytes(0));
45 emit UpgradeStakeToken(assetIDs.at(i), stImpl, stImpl_);
46 }
47 emit SetSTImpl(stImpl, stImpl_);
48 stImpl = stImpl_;
49 }

Listing 2.7: src/StakeFactory.sol

Impact Potential out-of-gas when processing asset upgrades.
Suggestion Add an input parameter of an array of assetIDs in the function setTokenImpl(),
as well as the function setSTImpl().

2.2 Recommendations

2.2.1 Fix the typos

Status Fixed in Version 2

Introduced by Version 1

Description Several require statements contain typos. For example, in the following code
segment, the error message should be “too little left in the new tokenset”.

50 require(newTokenset[i].amount > 0, "too little left in new basket");

Listing 2.8: src/AssetRebalancer.sol

For example, in the following code segment, the error message should be “tokenset length not
match addressList length”.

99 require(tokenset.length == addressList.length, "tokenset length not maatch addressList
length");

8

Listing 2.9: src/Swap.sol

Suggestion Fix the typos.

2.2.2 Lack of invoking function _disableInitializers()

Status Fixed in Version 2

Introduced by Version 1

Description In the contracts USSI, AssetFactory, AssetLocking, AssetToken, StakeFactory
and StakeToken, the function _ disableInitializers() is not invoked in the function constructor().
Invoking this function prevents the contract itself from being initialized, thereby avoiding un-
expected scenarios.

184 /**
185 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an

initializer call.
186 * Calling this in the constructor of a contract will prevent that contract from being

initialized or reinitialized
187 * to any version. It is recommended to use this to lock implementation contracts that are

designed to be called
188 * through proxies.
189 *
190 * Emits an {Initialized} event the first time it is successfully executed.
191 */
192 function _disableInitializers() internal virtual {
193 // solhint-disable-next-line var-name-mixedcase
194 InitializableStorage storage $ = _getInitializableStorage();
195
196 if ($._initializing) {
197 revert InvalidInitialization();
198 }
199 if ($._initialized != type(uint64).max) {
200 $._initialized = type(uint64).max;
201 emit Initialized(type(uint64).max);
202 }
203 }

Listing 2.10: lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initalizable.sol

Suggestion Invoke the function _disableInitializers() in the function constructor().

2.2.3 Remove unnecessary checks

Status Confirmed
Introduced by Version 1

Description There are multiple unnecessary checks in the protocol, which are listed as fol-
lows:

9

1. In the contract AssetFactory, there is a check to see if the state variable assetIDs contains
the assetId. However, if the corresponding assetToken does not exist, the related function
will not be called successfully. Therefore, the checks including but not limited to the
following code segments are unnecessary.

102 require(assetIDs.contains(assetID), "assetID not exists");
103 IAssetToken assetToken = IAssetToken(assetTokens[assetID]);
104 require(!assetToken.issuing(), "is issuing");

Listing 2.11: src/AssetFactory.sol

113 require(assetIDs.contains(assetID), "assetID not exists");
114 IAssetToken assetToken = IAssetToken(assetTokens[assetID]);
115 require(!assetToken.rebalancing(), "is rebalancing");

Listing 2.12: src/AssetFactory.sol

124 require(assetIDs.contains(assetID), "assetID not exists");
125 IAssetToken assetToken = IAssetToken(assetTokens[assetID]);
126 address oldFeeManager = feeManagers[assetID];
127 assetToken.revokeRole(assetToken.FEEMANAGER_ROLE(), oldFeeManager);

Listing 2.13: src/AssetFactory.sol

2. The function transferFrom() will automatically revert if the balance or allowance is insuf-
ficient during execution. Thus, the checks including but not limited to the following code
segments are unnecessary.

212 require(assetToken.balanceOf(msg.sender) >= order.inAmount, "not enough asset token
balance");

213 require(assetToken.allowance(msg.sender, address(this)) >= order.inAmount, "not enough
asset token allowance");

Listing 2.14: src/AssetIssuer.sol

101 require(IERC20(token).allowance(msg.sender, address(this)) >= amount, "not enough
allowance");

Listing 2.15: src/AssetLocking.sol

62 require(IERC20(token).allowance(msg.sender, address(this)) >= amount, "not enough
allowance");

Listing 2.16: src/StakeToken.sol

159 require(token.balanceOf(from) >= tokenAmount, "not enough balance");
160 require(token.allowance(from, address(this)) >= tokenAmount, "not enough allowance

");

Listing 2.17: src/Swap.sol

140 require(assetToken.allowance(hedgeOrder.requester, address(this)) >= hedgeOrder.
inAmount, "not enough allowance");

Listing 2.18: src/USSI.sol

10

188 require(allowance(hedgeOrder.requester, address(this)) >= hedgeOrder.inAmount, "not
enough allowance");

Listing 2.19: src/USSI.sol

3. Afte rSolidity version 0.8.0, if an underflow occurs, the transaction will revert. Thus, the
following check is redundant.

111 require(lockData.amount >= amount, "not enough balance to unlock");

Listing 2.20: src/AssetLocking.sol

4. The role validation through the function hasRole() on the asset tokens are mostly re-
dundant, as the contract AssetToken implements role checking. Therefore, the checks
including but not limited to the following are redundant.

21 function setFee(uint256 assetID, uint256 fee) external onlyOwner {
22 IAssetFactory factory = IAssetFactory(factoryAddress);
23 IAssetToken assetToken = IAssetToken(factory.assetTokens(assetID));
24 require(assetToken.feeCollected(), "has fee not collected");
25 require(assetToken.hasRole(assetToken.FEEMANAGER_ROLE(), address(this)), "not a fee

manager");
26 assetToken.setFee(fee);
27 }
28
29 function collectFeeTokenset(uint256 assetID) external onlyOwner {
30 IAssetFactory factory = IAssetFactory(factoryAddress);
31 IAssetToken assetToken = IAssetToken(factory.assetTokens(assetID));
32 require(assetToken.hasRole(assetToken.FEEMANAGER_ROLE(), address(this)), "not a fee

manager");
33 require(assetToken.rebalancing() == false, "is rebalancing");
34 require(assetToken.issuing() == false, "is issuing");
35 assetToken.collectFeeTokenset();
36 }

Listing 2.21: src/AssetFeeManager.sol

Suggestion Remove these unnecessary code segments to save gas.
Feedback from the project These validations are used to facilitate debugging by providing
correct error messages.

2.2.4 Check parameters in the constructors and initializers

Status Fixed in Version 2

Introduced by Version 1

Description It is recommended to add sanity checks for parameters in the functions constructor()
and initialize(). For example, in the following code segment, the function constructor()
does not check whether the parameter factoryAddress is zero.

10 constructor(address owner, address factoryAddress_) Ownable(owner) {
11 factoryAddress = factoryAddress_;

11

12 }

Listing 2.22: src/AssetController.sol

In the following code segment, it is not checked whether the addresses factoryAddress_,
stImpl_ are zero.

26 function initialize(address owner, address factoryAddress_, address stImpl_) public initializer
{

27 __Ownable_init(owner);
28 __UUPSUpgradeable_init();
29 factoryAddress = factoryAddress_;
30 _setSTImpl(stImpl_);
31 }

Listing 2.23: src/StakeFactory.sol

Suggestion Check parameters in the constructors.

2.2.5 Use safe ERC-20 operations

Status Fixed in Version 2

Introduced by Version 1

Description The contracts USSI and AssetIssuer should avoid setting approval for other con-
tracts to type(uint256).max, as issues with the authorized contracts could lead to significant
losses.

107 if (inToken.allowance(address(this), swapAddress) < inTokenAmount) {
108 inToken.forceApprove(swapAddress, type(uint256).max);
109 }

Listing 2.24: src/AssetIssuer.sol

176 if (assetToken.allowance(address(this), address(issuer)) < hedgeOrder.inAmount) {
177 assetToken.approve(address(issuer), type(uint256).max);
178 }

Listing 2.25: src/USSI.sol

Use the SafeERC20 library for ERC-20 operations to ensure the safety of ERC-20 operations.
156 function rejectMint(bytes32 orderHash) external onlyOwner {
157 require(orderHashs.contains(orderHash), "order not exists");
158 require(orderStatus[orderHash] == HedgeOrderStatus.PENDING, "order is not pending");
159 HedgeOrder storage hedgeOrder = hedgeOrders[orderHash];
160 require(hedgeOrder.orderType == HedgeOrderType.MINT, "order type not match");
161 IERC20 assetToken = IERC20(IAssetFactory(factoryAddress).assetTokens(hedgeOrder.assetID));
162 assetToken.transfer(hedgeOrder.requester, hedgeOrder.inAmount);
163 orderStatus[orderHash] = HedgeOrderStatus.REJECTED;
164 emit RejectMint(orderHash);
165 }

Listing 2.26: src/USSI.sol

12

204 function rejectRedeem(bytes32 orderHash) external onlyOwner {
205 require(orderHashs.contains(orderHash), "order not exists");
206 require(orderStatus[orderHash] == HedgeOrderStatus.PENDING, "order is not pending");
207 HedgeOrder storage hedgeOrder = hedgeOrders[orderHash];
208 require(hedgeOrder.orderType == HedgeOrderType.REDEEM, "order type not match");
209 transfer(hedgeOrder.requester, hedgeOrder.inAmount);
210 orderStatus[orderHash] = HedgeOrderStatus.REJECTED;
211 emit RejectRedeem(orderHash);
212 }

Listing 2.27: src/USSI.sol

Suggestion Use safe ERC-20 operations and apply stricter controls on the usage of ap-
provals.

2.3 Notes

2.3.1 Potential centralization risk

Introduced by Version 1

Description The protocol has several centralization-related issues, which are as follows:
1. We assume that all the roles which are controlled by the protocol maintainers to validate

all the inputs and function correctly according to the documentation. Specifically, the
following roles are fully trusted:
(a). Owner and Default Admin.
(b). Issuer, Fee Manager and Rebalancer.
(c). Takers and Makers for the contract Swap.
(d). Participants.

2. Function AssetIssuer.withdraw() is used to rescue the tokens that are transferred in by
mistake. However, according to the current implementation, the contract’s owner can with-
draw all the funds from the contract if there is no assetToken in issuing state. In this case,
if the owner’s private key is compromised or lost, it could lead to losses for the users.

315 function withdraw(address[] memory tokenAddresses) external onlyOwner {
316 IAssetFactory factory = IAssetFactory(factoryAddress);
317 uint256[] memory assetIDs = factory.getAssetIDs();
318 for (uint i = 0; i < assetIDs.length; i++) {
319 IAssetToken assetToken = IAssetToken(factory.assetTokens(assetIDs[i]));
320 require(!assetToken.issuing(), "is issuing");
321 }
322 for (uint i = 0; i < tokenAddresses.length; i++) {
323 if (tokenAddresses[i] != address(0)) {
324 IERC20 token = IERC20(tokenAddresses[i]);
325 token.safeTransfer(owner(), token.balanceOf(address(this)));
326 }
327 }
328 }

Listing 2.28: src/AssetIssuer.sol

13

3. The contract Swap highly relies on the off-chain verification of the transaction hashes used
for the swap. Therefore, it requires both makers and takers are trusted and validate the
transaction hashes properly before confirming on the swap requests.

165 function makerConfirmSwapRequest(OrderInfo memory orderInfo, bytes[] memory outTxHashs)
external onlyRole(MAKER_ROLE) whenNotPaused {

166 validateOrderInfo(orderInfo);
167 bytes32 orderHash = orderInfo.orderHash;
168 SwapRequest memory swapRequest = swapRequests[orderHash];
169 require(orderInfo.order.maker == msg.sender, "not order maker");
170 require(swapRequest.status == SwapRequestStatus.PENDING, "status error");
171 if (swapRequest.outByContract) {
172 transferTokenset(msg.sender, orderInfo.order.outTokenset, orderInfo.order.

outAmount, orderInfo.order.outAddressList);
173 } else {
174 require(orderInfo.order.outTokenset.length == outTxHashs.length, "wrong outTxHashs

length");
175 swapRequests[orderHash].outTxHashs = outTxHashs;
176 }
177 swapRequests[orderHash].status = SwapRequestStatus.MAKER_CONFIRMED;
178 swapRequests[orderHash].blocknumber = block.number;
179 emit MakerConfirmSwapRequest(msg.sender, orderHash);
180 }

Listing 2.29: src/Swap.sol

4. The maker must complete the transfer first, followed by the taker. To securely complete
this process, the taker must be a fully trustedwhitelisted role. Malicious takers can po-
tentially cancel the transfer after the makers complete their transaction, causing losses to
the makers.

5. When outByContract is false, function rollbackSwapRequest() can change the status of
an order from MAKER_CONFIRMED to PENDING. However, all the related funds which makers
transferred during the confirmation are not handled on-chain. Therefore, it requires the
fully trusted property of the takers.

182 function rollbackSwapRequest(OrderInfo memory orderInfo) external onlyRole(TAKER_ROLE)
whenNotPaused {

183 validateOrderInfo(orderInfo);
184 bytes32 orderHash = orderInfo.orderHash;
185 require(swapRequests[orderHash].requester == msg.sender, "not order taker");
186 require(swapRequests[orderHash].status == SwapRequestStatus.MAKER_CONFIRMED, "swap

request status is not maker_confirmed");
187 require(!swapRequests[orderHash].outByContract, "out by contract cannot rollback");
188 swapRequests[orderHash].status = SwapRequestStatus.PENDING;
189 swapRequests[orderHash].blocknumber = block.number;
190 emit RollbackSwapRequest(msg.sender, orderHash);
191 }

Listing 2.30: src/Swap.sol

6. The swap process requires the maker to first call makerConfirmSwapRequest() and com-
plete the transfer. At this point, the taker must call confirmSwapRequest() or

14

cancelSwapRequest() within a certain timeframe. Otherwise, the transaction status will
remain stuck in the state MAKER_CONFIRMED, potentially causing economic losses for the
makers.

7. In Swap, AssetFeeManager, AssetIssuer, and AssetRebalancer, tokensets calculations use
10**8 as a fixed division factor. To prevent calculation errors, participants must ensure
that the decimals for inAmount or outAmount are set to 8. Non-compliance may lead to
incorrect results.

8. The orderSigner in the contract USSI must be an EOA address, as signatures require con-
firmation by the orderSigner. If it is a contract address, the contract USSI will call the
function orderSigner.isValidSignature(). Although the orderSigner is set by the owner,
its safety cannot be confirmed during this audit if it is a contract, as the contract is out of
scope. This could lead to unexpected errors caused by the orderSigner.

9. The protocol includes three types of transaction hashes: Swap.inTxHashs,
Swap.outTxHashs, and USSI.redemitTxHashs. These transaction hashes serve as alterna-
tives for token transfers within the contract. The validation of these hashes is performed
off-chain. The receiver can verify the transaction using transfer amount, receiver address,
and order hash. Incorrect validation may lead to token loss.

10. During rebalance, a swap request is initiated. Token transfers occur off-chain, with trans-
fer details recorded in the contract Swap. Once the swap request is confirmed, the owner
verifies the asset transfer, and then rebalancing is performed based on the order Info.

Feedback from the project All the privileged accounts are goverened by MPC custodial wal-
lets to ensure safety.

2.3.2 Withdrawal may not occur within the expected timeframe

Introduced by Version 1

Description In the contract AssetLocking, calling unlock() followed by withdraw() after the
cooldown period allows users to withdraw their funds. However, if the previously unlocked
funds are not withdrawn, invoking unlock() again resets the cooldown for those funds.

120 function withdraw(address token, uint256 amount) external whenNotPaused {
121 LockData storage lockData = lockDatas[token][msg.sender];
122 require(lockData.cooldownAmount > 0, "nothing to withdraw");
123 require(lockData.cooldownEndTimestamp <= block.timestamp, "coolingdown");
124 require(lockData.amount <= lockData.cooldownAmount, "no enough balance to withdraw");
125 IERC20(token).safeTransfer(msg.sender, amount);
126 lockData.cooldownAmount -= amount;
127 LockConfig storage lockConfig = lockConfigs[token];
128 lockConfig.totalCooldown -= amount;
129 emit Withdraw(msg.sender, token, amount);
130 }

Listing 2.31: src/AssetLocking.sol

Feedback from the project This is by design.

15

2.3.3 Limited support tokens in the protocol

Introduced by Version 1

Description Currently, there is no whitelist for tokens used in the protocol. When using un-
supported weird tokens, such as tokens withcallbacks (like ERC-777, or ERC-721 NFTs misused
as ERC-20 tokens), transfer-on-fee tokens, elastic supply tokens, and rebasing tokens, the pro-
tocol may not function properly and may potentially subject to attacks. Additionally, centralized
tokens like USDT and USDC, which have a function pause(), could indirectly cause a DoS on the
protocol if paused.If a user is blacklisted by a token like USDT, they will not be able to withdraw
USDT or any other tokens, potentially resulting in economic losses. In summary, the protocol
maintainers should choose the tokens to be supported properly for the trusted roles.
Feedback from the project We have added token whitelists in Verison 2 to limit the sup-
ported tokens in SSI Protocol.

2.3.4 Inconsistency of participant permissions in contracts AssetIssuer and USSI

Introduced by Version 1

Description AssetIssuer’s PARTICIPANT_ROLE and USSI’s PARTICIPANT_ROLE are distinct. Pos-
session of a participation role in USSI without the corresponding role in AssetIssuer prevents
minting in AssetIssuer, and the reverse applies.

81 function addMintRequest(uint256 assetID, OrderInfo memory orderInfo) external whenNotPaused
returns (uint) {

82 require(_participants[assetID].contains(msg.sender), "msg sender not a participant");

Listing 2.32: src/AssetIssuer.sol

134 function applyMint(HedgeOrder calldata hedgeOrder, bytes calldata orderSignature) external
onlyRole(PARTICIPANT_ROLE) whenNotPaused {

135 require(hedgeOrder.requester == msg.sender, "msg sender is not requester");
136 bytes32 orderHash = keccak256(abi.encode(hedgeOrder));
137 checkHedgeOrder(hedgeOrder, orderHash, orderSignature);
138 require(hedgeOrder.orderType == HedgeOrderType.MINT, "order type not match");

Listing 2.33: src/USSI.sol

Feedback from the project This is by design.

2.3.5 Additional checks for rescuing funds

Introduced by Version 1

Description The function withdraw() is designed to retrieve the entire balance of any token
from the contract, primarily to rescue funds that are stuck. The design requires that none of
the tokens in the assetTokens array are in the issuing state. Otherwise, the function will revert.

315 function withdraw(address[] memory tokenAddresses) external onlyOwner {
316 IAssetFactory factory = IAssetFactory(factoryAddress);
317 uint256[] memory assetIDs = factory.getAssetIDs();
318 for (uint i = 0; i < assetIDs.length; i++) {

16

319 IAssetToken assetToken = IAssetToken(factory.assetTokens(assetIDs[i]));
320 require(!assetToken.issuing(), "is issuing");
321 }
322 for (uint i = 0; i < tokenAddresses.length; i++) {
323 if (tokenAddresses[i] != address(0)) {
324 IERC20 token = IERC20(tokenAddresses[i]);
325 token.safeTransfer(owner(), token.balanceOf(address(this)));
326 }
327 }
328 }

Listing 2.34: src/AssetIssuer.sol

17

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Incorrect check on amount in function withdraw()
	2.1.2 Insufficient status check in function rejectRedeemRequest()
	2.1.3 Lack of implementation of pause() and unpause() in contract USSI
	2.1.4 Potential replay attack in structurecolorHedgeOrder and structurecolorOrderInfo
	2.1.5 Potential out-of-gas when processing loops

	2.2 Recommendations
	2.2.1 Fix the typos
	2.2.2 Lack of invoking function structurecolor_disableInitializers()
	2.2.3 Remove unnecessary checks
	2.2.4 Check parameters in the constructors and initializers
	2.2.5 Use safe ERC-20 operations

	2.3 Notes
	2.3.1 Potential centralization risk
	2.3.2 Withdrawal may not occur within the expected timeframe
	2.3.3 Limited support tokens in the protocol
	2.3.4 Inconsistency of participant permissions in contracts AssetIssuer and USSI
	2.3.5 Additional checks for rescuing funds

		2024-12-24T10:28:07+0800

