{ "cells": [ { "cell_type": "markdown", "id": "894ad88d", "metadata": {}, "source": [ "# Box control in satellite Formation Flying \n", "\n", "We show how *heyoka.py*'s [event detection](<./Event detection.ipynb>) machinery can be used in an innovative formulation of the box-control problem for formation flying satellites. This is the problem of controlling a Deputy satellite to remain within a predefined control box defined in the Local Horizontal Local Vertical frame of the Chief satellite. Our solution is to apply impulsive DV when certain events trigger.\n", "\n", "To derive all equations we used and abused the [Vectrix notation from Hugues](https://vatankhahghadim.github.io/AER506/Notes/1%20-%20Fundamentals.pdf).\n", "\n", "## Preliminaries\n", "We consider the fundamental problem of satellite formation flying. A main satellite called Chief orbits some primary body (here the Earth). We consider two reference frames. $\\mathcal F_i=\\left[\\hat{\\mathbf e}_i, \\hat{\\mathbf e}_j, \\hat{\\mathbf e}_k \\right]$ is the inertial frame where the motion of both satellites will be described, while $\\mathcal F_L=\\left[\\hat{\\mathbf e}_r, \\hat{\\mathbf e}_\\theta, \\hat{\\mathbf e}_h \\right]$ is the Local Horizontal Local Vertical frame referred to the Chief satellite. Its definition in terms of the Chief satellite position $\\overrightarrow{\\mathbf r}$ and velocity $\\overrightarrow{\\mathbf v}$ is:\n", "\n", "$$\n", "\\left\\{\n", "\\begin{array}{ll}\n", "\\hat{\\mathbf e}_r &= \\frac{\\overrightarrow{\\mathbf r}}{r} \\\\\n", "\\hat{\\mathbf e}_\\theta &= \\hat{\\mathbf e}_h \\times \\hat{\\mathbf e}_r\\\\ \n", "\\hat{\\mathbf e}_h &= \\frac{\\overrightarrow{\\mathbf r} \\times {\\overrightarrow{\\mathbf v}}} {\\vert\\overrightarrow{\\mathbf r} \\times {\\overrightarrow{\\mathbf v}}\\vert}\n", "\\end{array}\n", "\\right.\n", "$$\n", "\n", "We indicate with capital letters $X,Y,Z$ the components of the satellite position vector in the frame $\\mathcal F_i$, we introduce the quantities $r = \\vert\\overrightarrow{\\mathbf r}\\vert$, $r = \\vert\\overrightarrow{\\mathbf h}\\vert$ and $\\sigma = \\overrightarrow{\\mathbf r}\\cdot \\overrightarrow{\\mathbf v}$ and write the rotation matrix $\\mathbf C_{Li} = \\mathcal F_L^T \\cdot \\mathcal F_i$ for the LHLV frame:\n", "\n", "$$\n", "\\mathbf C_{Li} = \n", "\\frac{1}{hr}\\left[\n", "\\begin{array}{ccc}\n", "hX & hY & hZ \\\\\n", "r^2\\dot X - \\sigma X & r^2\\dot Y - \\sigma Y & r^2\\dot Z - \\sigma Z \\\\\n", "r(Y\\dot Z - Z\\dot Y) & r(Z\\dot X - X\\dot Z) & r(X\\dot Y - Y\\dot X) \\\\\n", "\\end{array}\n", "\\right]\n", "$$\n", "\n", "which allows to find the $\\mathcal F_i$ components of a vector $\\mathbf v_i$ from its $\\mathcal F_L$ components as $\\mathbf v_i = \\mathbf C_{Li} \\mathbf v_L$. The angular velocity of the LHLV frame is:\n", "\n", "$$\n", "\\overrightarrow{\\boldsymbol \\omega} = \\mathcal F_L \\boldsymbol \\omega_L = \n", "\\left[\\hat{\\mathbf e}_r, \\hat{\\mathbf e}_\\theta, \\hat{\\mathbf e}_h \\right]\n", "\\left[\n", "\\begin{array}{l}\n", "\\omega_x\\\\\n", "\\omega_y\\\\\n", "\\omega_z\\\\\n", "\\end{array}\n", "\\right] = \n", "\\left[\\hat{\\mathbf e}_r, \\hat{\\mathbf e}_\\theta, \\hat{\\mathbf e}_h \\right]\n", "\\left[\n", "\\begin{array}{l}\n", "\\frac rh f_h\\\\\n", "0 \\\\\n", "\\frac{h}{r^2}\n", "\\end{array}\n", "\\right]\n", "$$\n", "\n", "where $f_h$ is the perturbative acceleration acting on the satellite along the $\\hat{\\mathbf e}_h$ direction.\n", "\n", "## The Equations of Motion\n", "We consider the dynamics of both the Chief and the Deputy expressed in terms of their position and velocity in $\\mathcal F_i$ and subject to the J2 term only (the expression of additional terms for the Earth gravitational potential can be found [here](https://space.stackexchange.com/questions/22266/j2-long-period-perturbations-in-the-inclination):\n", "\n", "$$\n", "\\left\\{\n", "\\begin{array}{ll}\n", "\\ddot X_C &= -\\frac \\mu{r_C^3}X_C + c\\frac 1{r_C^5} \\left(5\\frac{Z_C^2}{r_C^2}-1 \\right) X_C\\\\\n", "\\ddot Y_C &= -\\frac \\mu{r_C^3}Y_C + c\\frac 1{r_C^5} \\left(5\\frac{Z_C^2}{r_C^2}-1 \\right) Y_C\\\\ \n", "\\ddot Z_C &= -\\frac \\mu{r_C^3}Z_C + c\\frac 1{r_C^5} \\left(5\\frac{Z_C^2}{r_C^2}-1 \\right) Z_C - 2c\\frac 1{r_C^5} Z_C\\\\\n", "\\ddot X_D &= -\\frac \\mu{r_D^3}X_D + c\\frac 1{r_D^5} \\left(5\\frac{Z_D^2}{r_D^2}-1 \\right) X_D\\\\\n", "\\ddot Y_D &= -\\frac \\mu{r_D^3}Y_D + c\\frac 1{r_D^5} \\left(5\\frac{Z_D^2}{r_D^2}-1 \\right) Y_D\\\\ \n", "\\ddot Z_D &= -\\frac \\mu{r_D^3}Z_D + c\\frac 1{r_D^5} \\left(5\\frac{Z_D^2}{r_D^2}-1 \\right) Z_D - 2c\\frac 1{r_D^5} Z_D\\\\\n", "\\end{array}\n", "\\right.\n", "$$\n", "\n", "## The Initial conditions\n", "The initial conditions for the Chief satellite can be generic and are given in the $\\mathcal F_i$ frame. The initial conditions for the Deputy, instead, are given in the $\\mathcal F_L$ frame,. This simple fact couples the system breaking the symmetry of the equations of motion written above. Expressing the relative position and velocity as absolute and viceversa requires the use of $\\mathbf C_{Li}$, and most importantly of $\\omega_L$ which is, in turn, affected by the perturbative accelerations acting on the Chief. The following transformations hold:\n", "\n", "$$\n", "\\begin{array}{ll}\n", "\\left[\n", "\\begin{array}{l}\n", " X_D\\\\\n", " Y_D \\\\\n", " Z_D\n", "\\end{array}\n", "\\right] &= \n", "\\left[\n", "\\begin{array}{l}\n", " X_C\\\\\n", " Y_C \\\\\n", " Z_C\n", "\\end{array}\n", "\\right]+\n", "\\mathbf C_{Li}^T \\left[\n", "\\begin{array}{l}\n", " x\\\\\n", " y \\\\\n", " z\n", "\\end{array}\n", "\\right]\n", "\\\\\n", "\\left[\n", "\\begin{array}{l}\n", "\\dot X_D\\\\\n", "\\dot Y_D \\\\\n", "\\dot Z_D\n", "\\end{array}\n", "\\right] &= \n", "\\left[\n", "\\begin{array}{l}\n", "\\dot X_C\\\\\n", "\\dot Y_C \\\\\n", "\\dot Z_C\n", "\\end{array}\n", "\\right]+\n", "\\mathbf C_{Li}^T \\left[\n", "\\begin{array}{l}\n", " \\dot x\\\\\n", " \\dot y \\\\\n", " \\dot z\n", "\\end{array}\n", "\\right]\n", "+ \\mathbf C_{Li}^T \\boldsymbol w_L^\\times \\left[\\begin{array}{l}\n", " x\\\\\n", " y \\\\\n", " z\n", "\\end{array}\n", "\\right]\n", "\\end{array}\n", "$$\n", "\n", "where we have indicated with small letters $x,y,z$ the components of the relative position vector of the Deputy.\n", "\n", "We can now start to code this in *heyoka.py*, we will introduce later the control part of the problem." ] }, { "cell_type": "code", "execution_count": 1, "id": "7030234e", "metadata": {}, "outputs": [], "source": [ "# The usual main imports\n", "import heyoka as hy\n", "import numpy as np\n", "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "fccb5d27", "metadata": {}, "source": [ "We start writing down the Equation of Motion (EOM):" ] }, { "cell_type": "code", "execution_count": 2, "id": "2e4dfeb4", "metadata": {}, "outputs": [], "source": [ "# The state (using km as unit length)\n", "xC, yC, zC, vxC, vyC, vzC, xD, yD, zD, vxD, vyD, vzD, = hy.make_vars(\"xC\", \"yC\", \"zC\", \"vxC\", \"vyC\", \"vzC\", \"xD\", \"yD\", \"zD\", \"vxD\", \"vyD\", \"vzD\")\n", "\n", "# Parameters\n", "mu = 398600.4418 #km^3/sec^2 \n", "J2 = 1082.645E-6\n", "Re = 6371 #km\n", "c = 3./2. * J2*mu*Re**2\n", "\n", "# Auxiliary variables\n", "rC2 = xC**2+yC**2+zC**2\n", "rD2 = xD**2+yD**2+zD**2\n", "\n", "# EOM \n", "# Chief\n", "dxC = vxC\n", "dyC = vyC\n", "dzC = vzC\n", "dvxC = (- mu * xC/rC2 - c * xC / rC2**2 * (1 - 5*zC**2/rC2)) / hy.sqrt(rC2)\n", "dvyC = (- mu * yC/rC2 - c * yC / rC2**2 * (1 - 5*zC**2/rC2)) / hy.sqrt(rC2)\n", "dvzC = (- mu * zC/rC2 - c * zC / rC2**2 * (3 - 5*zC**2/rC2)) / hy.sqrt(rC2)\n", "\n", "# Deputy\n", "dxD = vxD\n", "dyD = vyD\n", "dzD = vzD\n", "dvxD = (- mu * xD/rD2 - c * xD / rD2**2 * (1 - 5*zD**2/rD2)) / hy.sqrt(rD2)\n", "dvyD = (- mu * yD/rD2 - c * yD / rD2**2 * (1 - 5*zD**2/rD2)) / hy.sqrt(rD2)\n", "dvzD = (- mu * zD/rD2 - c * zD / rD2**2 * (3 - 5*zD**2/rD2)) / hy.sqrt(rD2)\n", "\n", "# Equations\n", "eqns = [(xC, dxC), (yC, dyC), (zC, dzC), (vxC, dvxC), (vyC, dvyC), (vzC, dvzC), (xD, dxD), (yD, dyD), (zD, dzD), (vxD, dvxD), (vyD, dvyD), (vzD, dvzD)]" ] }, { "cell_type": "markdown", "id": "f66c8c99", "metadata": {}, "source": [ "And some helper functions allowing conversions between inertial and LHLV frames:" ] }, { "cell_type": "code", "execution_count": 3, "id": "b850f574", "metadata": {}, "outputs": [], "source": [ "def compute_LHLV_rot(state, fh):\n", " \"\"\"Computes the rotation matrix C from inertial to LHLV. i.e. v_{LHLV} = C v_{inertial} \n", " and the angular velocity of the LHLV frame\n", " \n", " Args:\n", " state (1D np.array): the satellite state in the inertial frame\n", " fh (float): disturbance acting on the satellite along the i_h axis (aligned with angular momentum)\n", "\n", " Returns:\n", " np.matrix (3x3): the rotation matrix\n", " np.matrix (3x1): the angular velocity\n", " \"\"\"\n", " # We dispatch to the correct implementation of sqrt according to the state type\n", " if type(state[0]) == type(xC):\n", " sqrt = hy.sqrt\n", " zero = hy.expression(0)\n", " else:\n", " sqrt = np.sqrt\n", " state_type = float\n", " zero = 0.\n", " # Rotation Matrix\n", " X, Y, Z, DX, DY, DZ = state\n", " r2 = X*X+Y*Y+Z*Z\n", " r = sqrt(r2)\n", " h2 = (Y*DZ-Z*DY)**2 + (Z*DX-X*DZ)**2 + (X*DY-Y*DX)**2\n", " h = sqrt(h2)\n", " sigma = X*DX+Y*DY+Z*DZ\n", " retval1 = np.matrix([[h*X, h*Y, h*Z], [r2*DX-sigma*X, r2*DY-sigma*Y, r2*DZ-sigma*Z], [r*(Y*DZ-Z*DY), r*(Z*DX-X*DZ), r*(X*DY-Y*DX)]]) / h / r\n", " \n", " # Angular velocity\n", " retval2 = np.matrix([[r/h*fh],[zero],[h/r2]])\n", " \n", " return retval1, retval2\n", "\n", "def to_relative(stateC, stateD, fh):\n", " \"\"\"Transforms the state of the Deputy to the LHLV frame attached to the Chief\n", " \n", " Args:\n", " stateC (1D np.array): the Chief state in the inertial frame \n", " stateD (1D np.array): the Deputy state in the inertial frame\n", " fh (float): disturbance acting on the Chief satellite along the i_h axis (aligned with angular momentum)\n", "\n", " Returns:\n", " np.array, np.array: r,v in the LHLV frame\n", " \"\"\"\n", " # We reshape the input state into column vectors and alike\n", " X, Y, Z, DX, DY, DZ = stateC\n", " XD, YD, ZD, DXD, DYD, DZD = stateD\n", " rC = np.matrix([[X],[Y],[Z]])\n", " rD = np.matrix([[XD],[YD],[ZD]])\n", " vC = np.matrix([[DX],[DY],[DZ]])\n", " vD = np.matrix([[DXD],[DYD],[DZD]])\n", " # We compute the LHLV rotation matrix and angular velocity\n", " C, omega = compute_LHLV_rot(stateC, fh)\n", " # We compute the relative state\n", " xD = C * (rD - rC)\n", " dxD = C * (vD - vC) - np.cross(omega.transpose(), xD.transpose()).transpose()\n", " return [xD[0,0], xD[1,0], xD[2,0], dxD[0,0], dxD[1,0], dxD[2,0]]\n", " \n", " \n", "def to_absolute(stateC, stateD, fh):\n", " \"\"\"Transforms the state of the Deputy to the inertial frame\n", " \n", " Args:\n", " stateC (1D np.array): the Chief state in the inertial frame \n", " stateD (1D np.array): the Deputy state in the LHLV frame attached to the Chief\n", " fh (float): disturbance acting on the Chief satellite along the i_h axis (aligned with angular momentum)\n", "\n", " Returns:\n", " np.array, np.array: r,v in the LHLV frame\n", " \"\"\"\n", " # We reshape the input state into column vectors and alike\n", " X, Y, Z, DX, DY, DZ = stateC\n", " x, y, z, dx, dy, dz = stateD\n", " rC = np.matrix([[X],[Y],[Z]])\n", " xD = np.matrix([[x],[y],[z]])\n", " vC = np.matrix([[DX],[DY],[DZ]])\n", " dxD = np.matrix([[dx],[dy],[dz]])\n", " # We compute the LHLV rotation matrix and angular velocity\n", " C, omega = compute_LHLV_rot(stateC, fh)\n", " C = C.transpose()\n", " # We compute the absolute state\n", " rD = rC + C * xD\n", " vD = vC + C * (dxD + np.cross(omega.transpose(), xD.transpose()).transpose())\n", " return [rD[0,0], rD[1,0], rD[2,0], vD[0,0], vD[1,0], vD[2,0]]\n", "\n", "def J2_LHLV(state, c):\n", " \"\"\"Computes the J2 perturbation in the LHLV frame\n", " \n", " Args:\n", " state (1D np.array): the state in the inertial frame \n", " c (float): the constant 3/2 * J2 * mu * Re**2\n", " \n", " Returns:\n", " np.array: the resulting J2 perturbation in the LHLV frame\n", " \"\"\"\n", " # We dispatch to the correct implementation of sqrt according to the state type\n", " if type(state[0]) == type(xC):\n", " sqrt = hy.sqrt\n", " state_type = object\n", " else:\n", " sqrt = np.sqrt\n", " state_type = float\n", " \n", " X, Y, Z, DX, DY, DZ = state\n", " r2 = X*X+Y*Y+Z*Z\n", " r = sqrt(r2)\n", " h2 = (Y*DZ-Z*DY)**2 + (Z*DX-X*DZ)**2 + (X*DY-Y*DX)**2\n", " h = sqrt(h2)\n", " sigma = X*DX+Y*DY+Z*DZ\n", " return np.array([c/r2**2*(3*Z/r2-1), -2*c/h/r2**3*Z*(r2*DZ-sigma*Z), - 2*c/h/r2**2/r*Z*(X*DY-Y*DX)], dtype = state_type)" ] }, { "cell_type": "markdown", "id": "de8be1d1", "metadata": {}, "source": [ "## Testing the Adaptive Taylor Integration and plotting the trajectories\n", "Lets visualize the solution of the numerical integration in the LHLV frame for the Deputy and in the inertial frame for the Chief.\n", "\n", "We use, as reference orbit for the Chief, a circular orbit at 750km of altitude and an inclination of 98.2 degrees. The deputy is set to follow behind in the LHLV frame at a distance of 100m. We also add 1m offset in the z direction to make the problem third dimension count." ] }, { "cell_type": "code", "execution_count": 4, "id": "e4a41144", "metadata": {}, "outputs": [], "source": [ "# Chief Orbit\n", "incl = 98.2/180*np.pi\n", "h = 750.\n", "a = Re+h\n", "# Deputy orbit\n", "trailing = -0.1 # 100 m\n", "hover = -6.7567E-7 # accounts for non linearities and puts the Deputy trailing the Chief.\n", "# Initial Conditions for the Chief\n", "chief_ic = [a,0.,0.,0.,np.sqrt(mu/a)*np.cos(incl),np.sqrt(mu/a)*np.sin(incl)]\n", "# Initial Conditions for the Deputy (we start in the LHLV frame)\n", "deputy_ic_r = [0., trailing, hover, 0., 0., 0.]\n", "fh = J2_LHLV(chief_ic, c)[2]\n", "# Initial Conditions for the Chief (in the inertial frame)\n", "deputy_ic = to_absolute(chief_ic, deputy_ic_r, fh)\n" ] }, { "cell_type": "markdown", "id": "2cd7ae2f", "metadata": {}, "source": [ "we are now able to instantiate the the Taylor integrator:" ] }, { "cell_type": "code", "execution_count": 5, "id": "2ea0137b", "metadata": {}, "outputs": [], "source": [ "# The Taylor integrator\n", "ta = hy.taylor_adaptive(eqns, chief_ic + deputy_ic)" ] }, { "cell_type": "markdown", "id": "fc02ad66", "metadata": {}, "source": [ "and to perform the integration:" ] }, { "cell_type": "code", "execution_count": 6, "id": "bb3d8bde", "metadata": {}, "outputs": [], "source": [ "# As a test we propagate for 10 orbits\n", "# Number of points in the time grid\n", "N = 1500\n", "t_grid = np.linspace(0, 20*np.pi*np.sqrt(a**3/mu), N)\n", "# Propagate and return the state at the grid points\n", "oc, _, _, _, res = ta.propagate_grid(t_grid)" ] }, { "cell_type": "markdown", "id": "850d230a", "metadata": {}, "source": [ "Since we wrote the equation in the inertial frame we need to retreive the Deputy state in the LHL frame:" ] }, { "cell_type": "code", "execution_count": 7, "id": "65a9e8b4", "metadata": {}, "outputs": [], "source": [ "# We compute the results in the LHLV frame for the Deputy\n", "deputy_rel = np.zeros((N,6))\n", "for i, item in enumerate(res):\n", " fh = J2_LHLV(item[:6], c)[2]\n", " deputy_rel[i] = to_relative(item[:6], item[6:], fh)" ] }, { "cell_type": "markdown", "id": "9882a60e", "metadata": {}, "source": [ "We can finally plot the resulting orbit:" ] }, { "cell_type": "code", "execution_count": 8, "id": "1a94a15d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAEOCAYAAADPFr42AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xbd7n/319tecjy3jN2HMdO4iR2OtIk3ZvVFihQ6GTDhQuXWX5QuKzLuvSyd2npYBRoKW1pS0c60sSJ43jEju147yFLlq0tnd8f0lFlRx7ySNP2vF+vvCJLR0dH9jnPeb7P+DxCkiQUFBQUFBQUFNYD1at9AAoKCgoKCgqvXxRHQ0FBQUFBQWHdUBwNBQUFBQUFhXVDcTQUFBQUFBQU1g3F0VBQUFBQUFBYNxRHQ0FBQUFBQWHdUByNJRBC3CGE+MMir7cIIc5f5r7eJoToF0LMCCG2L7DN/UKIt4Yev0cI8cQKDntFCCH2CCFOLHPbm4QQLyzy+pLf9XQhhNgqhHjp1TwGBYUzGSGEXghxXAiR9Wofi4wQwiiE+IcQwiaE+PMZcDx/FUJc/mofx2sRxdEAhBDvFkIcDt0Uh4UQjwkhzlvOeyVJqpQk6dllftT3gI9JkpQgSdLRKMexFdgGPBTa972SJF26zH3HjBBCEkKUyj9LkvS8JEnla7T7Rb/r6USSpEbAKoR406t5HAqvX4QQPUIIpxDCLoSwCiFeEkJ8SAhxWmzs/Gt5BXwA2C9J0khof3cJIb6+3M+avyCbv40Q4hdCiLuj7GurEMIthEiJ8lHXAZlAqiRJb1/Z11pTvg1849U+iNcib3hHQwjxKeCHwDcJntQFwE+Bt6zDxxUCLYu8/kHgXmmdVdSEEJr13H+IBb/rafr8+dxL8PeroLBevEmSpESC5/63gc8Bv3l1D2nZfBC4Zx33fxdwjRAift7z7wMekSTJEuU9hUC7JEm+aDs83XZEkqRDgEkIUXM6P/f1wBva0RBCJAFfAz4qSdJfJUmalSTJK0nSPyRJ+kzEpjohxN2h1UpL5IkWWslcHHqsEkJ8XghxUggxKYT4kxAiJRSWnAHUwDEhxMkFDukK4LmIfc9JT4RWCR8SQnQIIaaEED8RQoiI128RQrSGXvuXEKJw3ns/KoToADqEEPtDLx0LRXLeKYQ4XwgxEPEe+bvYQ2HVty3jdxr1u4Z+T58TQjQCs0IIzWL7D333F4UQ/xtaIXYJIc4NPd8vhBgTQtw473O/J4ToE0KMCiF+LoQwRhzas8BFQgj9Ut9BQWE1SJJkkyTpYeCdwI1CiCpY/ByVrz0hxBeFEBOh6+U98j6FEM8KIW6L+DlsGxa4lpsjI3hCCG1ov9Xzj1cIUQBsAA6u/W8jiCRJB4BB4NqIz1UD7wZ+H+WYvgp8GXhn6DvdOs8mWIA7hBAbhBBPh+zthBDiXiGEOWI/PUKIzwghGoUQs0KI3wghMkUwam0XQjwlhEiO2P5sEYxGWYUQx8SpafFngavW7BfzBuEN7WgA5wAG4G9LbPdm4AHADDwM/HiB7f4DeCuwD8gBpoCfSJLkliQpIbTNNkmSNsx/owh6+sXAUjUSVwO1BFMs7wAuC73/rcAXgWuAdOB54P55730rcBawWZKkvRHHkyBJ0h+jfNZJYA+QBHwV+IMQInuxg1viu76L4EVqDq1Sltr/WUAjkArcR/BvUAuUAjcAPxZCyJ/1P8BGoDr0ei5BQyUf1yDgBdYqNaSgsCihFfAAwXMcljhHgSwgLfT8jcAvhRBLnq8LXMt3E7xGZK4EhiVJaoiyiy1A10KRgzXkboIRDJmLAS3w2PwNJUn6CsEo8x9D30mODJ0FdAEZBNMYAvgWQXtbAeQDd8zb3bXAJQR/928Kfd4XCf6uVQTtNkKIXOCfwNeBFOC/gAeFEOkR+2olaHsVYuCN7mikAhPLuMBekCTpUUmS/ATDiwudaB8EbpckaUCSJDfBE/46sbwQnzn0v32J7b4tSZJVkqQ+4BmCRkv+7G9JktQa+j7fBKojoxqh1y2SJDmXcTxIkvRnSZKGJEkKhIxXB7BrOe9dgP+TJKlf/vxl7L9bkqTfhX7vfyRoRL4WcmaeADxAaSiq837gP0Pfzx76/tfP+3w7r/yeFRROB0NASgzn6P8Lnd/PEbzpvWOFn/sH4EohhCn083tZODViZmm7M5/60KrfKoSwAp9fxnvuAfYJIfJCP78PuE+SJG8MnzskSdKPJEnySZLklCSpU5KkJ0O/s3HgBwQXepH8SJKk0dBi43ngoCRJR0M2+m+AXKx+A/BoyNYHJEl6EjhM0EmTUWzICnijOxqTQNoyHIGRiMcOwLDAewqBv0VcfK2An2Dtx1JYQ/8nxngs8oq+ELgz4rMtBL393Ijt+5dxHGGEEO8TQjRE7LOK4Cpgpcz5/GXsfzTiseyczH8ugWAEJw44ErGvx0PPR5LIK79nBYXTQS7Ba3E55+iUJEmzET/3Elypx4wkSUPAi8C1oVTCFQTrlKIxxdJ2Zz47JEkyy/8I1qQsdUx9wH7ghlAk8q1ESZsswXwbkiGEeEAIMSiEmCboYM23UfNtRjQbAkEb+vZ5DtR5QGSUVbEhK+DVKMo7kzgAuAie8H9Zg/31A7dIkvRirG+UJGlWBOsZNgLjK/zsb0iStJAxAVh2kWkoEvIr4CLggCRJfiFEA0HnZaWEP3+N9z9B0GBUhlYtpyCEyAF0LJ2aUlBYE4QQtQQdjRdYxjkKJAsh4iOcjQKgOfR4lqCjIrOcNtTfA7cRtPMHFvncRqBECKE5DemT3xOMfgwTjFjWx/j++TbsW6HntkqSNBlKIS+U2l6KfuAeSZLev8g2FcCxFe7/DcsbOqIhSZKNYI70J0KItwoh4kJFU1cIIb6zgl3+HPiGnK4QQqQLIWLpXnmUU8N+sXz2F4QQlaHPThJCLNUSNgqULPBaPMELeDy0v5sJRhzWijXbvyRJAYJOy/8KITJC+8sVQlwWsdn5wNOhcKmCwrohhDAJIa4mWFP0B0mSmpZ5jgJ8VQihE0LsIViPJetHNBDs2ogTwbbRW+e9L9q1/HdgB/AJgvURUZEkaYDoaVG1EMIQ8U+35Jefi27e+9XAgwRToF8l9mhGNBKBGYLt67nAZ5bYfjH+ALxJCHGZEEL+7udHpHogaJ9PqSlRWJw3tKMBIEnSD4BPAV8ieNPrBz5G8CKNlTsJFos+IYSwAy8TLF5aLr8E3hPK58aEJEl/I1hs9kAohNhMMFy6GHcAvw+FCefkgiVJOg58n2DUZ5RgwVjMkZpFjnet9/85oBN4OfT9n2Ju4ed7CDpjCgrrxT9C130/cDvBeoGbI15f6hwdIZjGGCKY5viQJEltodf+l2BN0ijBG/T8yOUdzLuWQ7VQDxIsMv/rEsf+C4J1HJF8nmAURv739BL7mE/LvPffHIrWyM7GYtHX5fJVgs6UjWBNy1Lfc0EkSeonKGvwRV65F3yG0H0yFKGaDRX5KsSAWGfJBoUYEULcB/xJkqS/v9rH8npBCLEF+KUkSee82seioBCNUBvlHyRJylti01j3+2VgoyRJNyyxnR44ClwkSdLwWh7D6wUhxIPAbyRJevTVPpbXGoqjoaCgoPAqsx6OhgiqbR4F3itJ0v6ltldQWC/e8KkTBQUFhdcbQoj3Ewz9P6Y4GQqvNkpEQ0FBQUFBQWHdUCIaCgoKCgoKCuuG4mgoKCgoKCgorBsrEexSci0KCmcOqxFQezVR7IiCwpnDutoRJaKhoKCgoKCgsG4ojoaCgoKCgoLCuqE4GgoKCgoKCgrrhuJoKCgoKCgoKKwbiqOhoKCgoKCgsG4ojoaCgoKCgoLCuqE4GgoKCgoKCgrrhuJoKCgoKCgoKKwbiqOhoKCgoKCgsG4ojoaCgoKCgoLCuqE4GgoKCgoKCgrrhuJoKCgoKCgoKKwbiqOhoKCgoKCgsG4ojoaCgoKCgoLCuqE4GgoKCgoKCgrrhuJoKCgoKCgoKKwbmlf7ABSiI0kSbrcbAK1Wi0qlQgjxKh+VgoLCawnFjiicCQhJkmJ9T8xvUIgNj8eDy+VCkiQCgQA2mw2VSkVqaioajQaNRqMYDAWZ1+pJoNiRdcbn8+H1evF4PAQCAYQQCCHCNkSxIwoRrOtJoEQ0ziAkScLn8zE2NsbY2BiBQACdTofP58NoNJKUlITX6wVQDIaCgkJUZDvi8/kQQoRtgxACSZLwer2n2BGtVotarVbsiMK6oEQ0zhACgQBer5dAIEBPTw/d3d2Ul5cTCAQYHBzE5XIRHx9PcnIyycnJxMfHz3m/YjDesLxW/8iKHVkHIu2I7Fx4PB4kSYpqD+SoqczExAQ5OTloNBrFjryxUCIar2ckScLv94eNQ1dXFxMTE2RkZJCRkRE2BIFAgLS0NKamphgYGGBmZga9Xj/H8Zi/UtFqtYrBUFB4AxBpRwBUquXV+QshUKvV4Z97e3tJS0sL13WoVKqwHdFoNGHnRUEhFhRH41UkMsTpcrloamoiPT2dTZs2MTIyEg51ytsaDAays7PJzs4GwOl0MjU1RV9fH7OzsxgMhrDjERcXh8fjwe12h42DYjAUFF5/SJKEw+Ggp6eHDRs2rOq6nu94SJIU1Y7IkVPFjigsB8XReJWIDHGOjo7S1dXF5s2bSU5Oxmq1EpnSWuhCNhqNGI1GcnJykCQp7Hj09PQwOztLfHw8ZrOZ5ORkjEZjuMhUNkiKwVBQeG0TCATweDz4fD6mpqbW/BqOdDxkm+TxePB4PEAw4jE/ZaugMB/F0TjNzE+VnDhxAq/Xy65du9BqtQBzIhnRfo6GEIK4uDji4uLIzc0Nr3Kmpqbo6urC4XCQkJCA2WzGYrGwYcMGxWAoKLxGiVbwud7ITozieCjEiuJonEbkMGQgEGB2dpbm5mby8vLIy8ubsxKJ5ljEWrQrhCA+Pp74+Hjy8vKQJInZ2VksFgtut5vDhw+HHY/k5GQMBoNiMBQUXgNE2hE5EqlSqWK2EaslmuMhH1ukHZlfK6bwxkNxNE4TcohT7iIZHBykqqqKxMTEU7aNFtFYLUIIEhISiI+PZ3R0lJqaGmZmZpiamqK9vR23201iYiLJycmYzWb0er3ieCgonGHI0VC5i0S2DcuJeq4389OvsuPhdrvDxaXT09Okp6crjscbDMXRWGdkD7+np4ecnByOHz+OVqtl165dc4quFmM9jIgQgsTERBITEykoKCAQCGC325mamqKtrQ2Px4PJZAo7HlqtVlmpKCi8SiyVKhFCzGlTPROI5nh0dHRgMpnCjodarQ4vXuQidYXXH4qjsY7ITobP56O/v5/BwUE2bNhAVlbWou9bSY3GclnoQlapVCQlJZGUlAQEIzDT09NMTU0xNDSEz+cLOx5JSUlotVrcbjcTExM4nU6ys7MVg6GgsA5E08aYz2vhepOPPTLVEggEwirI8muRC5jXwvdSWBrF0VgnZPlfSZLo7e3F5XKxe/du4uLilnzvmRAGValUmM1mzGYzEAzZyo7HwMAAfr+fpKQk1Gp1WOfD5XKF368YDAWF1TFfG2OpzrCFbMaZYE+iES3iodiR1yeKo7HGRIY4PR4PTU1NJCUlhTtClsN6RjRWilqtDmt0QNDxsNlsDA4OMj09jc1mIykpKRzxEEIoBkNBYYXIUuF+v39Zreevh+tJcTxevyiOxhoSGeKcmJigo6ODTZs2kZqaysTExLL3cyY6GvNRq9WkpKTg9/tJSEggPz8fm80W1vEQQsxxPBSDoaCwPOTC8fkFn6eLheTKTzcLOR5Op3NOx4tiR858FEdjDZivjdHZ2cns7Cw1NTXo9fqY93cmOhYLIRsljUZDamoqqampQDB1ZLVasVgsdHd3I4QIF5aaTCbFYCgozCPSjpwubYzXEpGtvBDd8VCpVKhUKgwGg2JHziAUR2OVRIY4nU4nTU1NZGZmUl5evuKTPLJlTf7/teJ4yGg0GtLS0khLSwPA6/VitVqZmJjg5MmT4VTMfMfD6XTicDjIzMxUHA+FNwzRtDEUFiea4zE5ORkWJATmtOQrduTVQ3E0VkFkiHNkZISenh4qKyvDnRsrRW5V6+3tJRAIoNFozrjWNZnlhlm1Wi3p6emkp6cDQTVBq9XK2NgYnZ2daDQakpOTUavVuFwu0tPT56xUFIOh8HplPVMlsh2RHXuj0bjo/uVFTbRtJmY8nBidodfiZMjmZnjahWXWi9Xpxe7y4fFLuH0B/AEJlQCVEOg0KhL1akwGLUlGDV6Hh39NdGAyasg2Gcg1G8hPNpBl0qNVry6CE9nVolarwxEin883J/IqL2CUQZOnD8XRWAGRBZ9+v5+2tjYCgQC7du1Co1n9r9TtdoeLK3U6HaOjo8zMzODxeMIFmUsZjDMdnU4XnlALwe88NTXFyMgIMzMzzM7OzplMKxsMGcVgKLzWWW8ZcafTSWNjY7iAu7OzE5fLFRbmS05OXjS12z/l5PlOC4f7bNT325ic9YZf02tUZJv0pMRrKUg2YjJo0GtUaDUqtCqBX5IIBMDjD2B3+Zh2+bA5fYxNB2i3jTPt8hGICNKqBGSZ9OSaDRQkGynPTGBTZjzlmQnE6ZanNwRzFz7Rajwi7YjseMj/FDuyfiiORoxIkoTdbqe3t5fMzExaWlooKCggNzd3TU7S8fFxTpw4gdFopKSkBL/fT1xcHKOjo+Tl5TE1NRU2GAkJCSQnJ5OSkrKiWpC1YK0Kx/R6PVlZWWg0Gux2O9nZ2eFW2pmZGfR6/YKOh2IwFF5ryAXjDoeDrKysNT9fx8bG6OjoYPPmzSQkJBAIBE4R5jt+/Dg+ny9ctG02m7F74bcH+nn8+AQnxmYByEnSsyUnkTidGrNRS7wuGFGc9fiYcfvx+AM4vH5m3H7UKoFWHfxnMmjJTtCzOSsBc5yW5DgtAyfbuPCcnRi1asbsbgasruC/KReDtuD/T52Y4MGGEQAEUJBipDwznk2ZCVRmJ7At10S8PvqtazF7FM3xkGUI5NcVO7I+KI5GDMiFWn6/n7GxMSYnJ9m6dSsJCQmr3rdcRDo9Pc2OHTtoamoKvyaf7PNnl8w3GLKgVnJycnhA22sNOUdtMBjIzs4mOzsbIDyZtq+vj5mZGYxGY/i7xsXFKQZD4TVBZMGny+UKO9VrRSAQoL29ndnZWWpra9HpdOHrAuYK8xUVFYX1cVr7xrj30Q5eGvTikxwAJOjVpMRpcXgCPNthmfM5IvR6vD4YyVCrBCoB/oCE1y/h8QWwuXy4fVFSvi++REqclvxkI/nJwQhGcZqRfWUplKbHY9SqGLW7aRuZpW10hhOjs7QMz/BEa7BzTy2gIiuRnQVJ7CxIYke+iSSjNvz7Xe61Hs3x8Hq9p9iRyLELih1ZGYqjsQwiQ5xerzd8Yz/nnHOWLSO+GC6Xi8bGRlJTU9m5cyeBQCBc/LnQhSOEwGQyYTKZKCwsJBAIhNtL+/v7kSQpPDDNbDavyXFGY61b4Rban9FoxGg0kpOTgyRJYcejp6eH2dlZ4uPjw9/XaDTOMRjj4+Pk5OQojofCq8r8VIlGo1nTIu9AIEBdXR0ZGRnLLkb3BOB39VP87uXR0DOvvGfW7SdFJ7E1w0CWOYmUxDiMOjWJoTSJz//KsatUYNCoMWhVJOjVpMbrSInTolIJbE4vUw4fUw4vR5rbiE/Po8/iZMDq4kifjX82jyFFfHpRqpGKrAQ2ZwediffU5pJo0DDt8tE8NM2RvmmO9Nu4//Agvz84AEBZRjy7CpOoSlWxKXllKahI1VKI7njMH7ug2JHloTgaSxCpjWG1WmltbaW4uJj+/v41uXmPj4/T3t5ORUUFKSkpwMqmt6pUqjmCWvPbSyNfP5M7WJbjuAghwgJoubm5SJKEw+FgamqKrq4uHA7HnMm0vb29pKenKysVhVeNaDLiazmfZGxsDIfDQW1tbdgGLMXxYTs33XMMp/eVY1ALSI3XkRqvI8EQTG/s73Xg63as6LgMGhUp8drwPnUeibPy1FxVlUFhipH0BB0ev8Sg1UXPpIMTY7O0jsxwpM/Goy3j4f0UJBvYnp9EbWES127P4uPnF+H2BWgesnOkz8bhPisPHh3hXl8Ag0Zwbsks+8pS2LMhhfTElaWVozkeHo8Hi8WCzWYjLy8v7HjIYxcUOxIdxdFYgMgQpyRJdHd3Y7FY2LFjBzqdjr6+vlXtPzJVMl9vYy0Eu+a3l8pdHqOjozgcDhoaGsL1HQkJCSu+QE5XRGMxhBCnpJVmZ2fD9SxOp5MTJ06EHQ+DwYDX68Xj8YSNg2IwFNaDxbQxVCrVqh2NyFRJXFxcVCcj2uf8rWGEL/+z/ZRt/RKMzXiwOLwUpRopS0/gwvI0MhP1pMRpUePH7ZjF75rB53aSEGckNTmJhMQk0Ghx+yTsLh8Wh4fJWS+Tsx4sof8HrE56J3080dsZ/rw4nZrCFCMlaXFUZidwVpGZG8/KI06nZnLWQ+vIDK0jMzQP2XmuY5KHGoORl1yzgdqCJGoLzbxpSwYfOK8Ap9fPv45283KvnSMjMzzdPglAZXYC55elckVl0LlZKbLjEQgEcLvdCCHweDzhx7IdkRcwih15BcXRiEKkNobb7aa5uRmz2UxNTQ0qlSosFBMLkW1j81Mly1nBrzYKEdnlMT09zaZNm8JpFrvdHjZScs3Dq3WBrIXjIoQgISEhrFh66NAh8vPzmZqaor29HbfbPafyXqfThQ0GvDKZVjEYCqthKRlx2ZasFLmrRE6VHDhwYMHjiOSOf7aHiy1ldGpBjtmAPuAhK9VEokHLxKyHHouDhoFprE4vvkC0Y/WiU9uJ0wxg1ECiXk1yvI7UxDhyzUZKUuPYsyHYxppl0lN/5DAF5VvpnnTSa3HSa3HQM+mkrtfKP5vHgr8XARvS46nMSqAqJ5HdJcncck4+QkDnuIO6XiuHe2082zHJ30OOR0laHOeXpVKVLPjwWWkU5OfRPjbL/k4Lz3ZM8tP9vfxkfy9V2YlcWZXO5RXpK450BAKBcBQ0ckAccMqE6/mR0zcqiqMxj8ie9vHxcTo7O+ekNWBlcwVkZ2FiYuKUVEm0bdebyGLL+akHp9MZ7miRIwALsdZpmPWQPxZCkJiYSGJi4imV962trXg8nnAhrVzPErlSUQyGQqwsRxtjNamTyK6S5aZKAG6+5xiH+2xRX+uZdAJwYmqKlHgteUnBQs1tuVpMRg1GrTrYwqoWBCQIhAo/Z9xy+6qXqVk3E7MeTk5MMuWSiCjjQC3ArBeUdrSHu0iuqc6mONWIVq1i3O6mZXiG5mE7LcN2nuu0hB0Jk0FDbWESuwrNnF1k5t01OUgEHY+DPVPs77Rw98EBfAGJJL2K88sdXFCWyntqc3n/7gJGpl08fnycR5vH+c6TXXzvqS5qC81cVZnBxZvSSDQs/1Yop78iiVQ4BsXxmI/iaISYnyppb28P5zx1Ot2afEZ7ezszMzMxS5OvtzJotNTDzMwMFouFtra28I04JSUFs9l8yu9jrVMna3kBRjPkkZX38jbyZNqhoaE5HTyylkmkwZAkCUmSSExMfMMZDIXFiUUbYyWpk2hdJfM/P9r1KEkSF/3fQcZnPKe8lm3SU5YRT6JBg2fGSkF2Ot4A2F0+7C4/Y3YPQzZXUIhLJdCqgs5GokFDclxQiKswxYjZqMUcpyUjUUeWSY8kSXQOTtA+NEn32DTjjgAjdh9Tsy4eOGzDE/JCtGpBaVo85ZnxbM5O5JJNaXxkbyECGLK5OTpg41CPlYM9Vv59IpgOSYvXsasoibOLk7mqMoP37srD7vLxcF0nBwccPN0eTLPo1II9pSlcXZXJu2tyuensfLomHDzWMsY/W8b48j/b+ea/OrmqKoN37Mhmc3bikn+D5dgoxfGYi+JoMFf+1+Fw0NzcTFZWFps2bVqTm6jL5WJmZoaUlJRlpUpkXi0J8sgIgNzRMn9EvFzvIIcR14r1qPlY6vhUKhVmsxmz2QwQbvmL/L6RA+IcDgcjIyOUlZWF3/9GMRgKCxOrjHisqZP5qZJoq+po109Aktj2rRdO2Z9WLUhP0OHyBtjfGdG+2jOIUavCZNCEO0w0KhVqFQT8EnZ/sG3V7vJhdUZvYVULyDEbXmlhzcpja5IOx1An5Xlmpqw2xpyCCb+BYaeKbquP/RERjESDhh15pmD7akESl1Wko1WrGLA6Odht5WBv0PF4tGUclYDqPBMXbkxjU4qOC0uTSMvIpGFgmn+fmODx4+P8+8QkiQYNl25K4+otGXx4byEf2VtI85CdBxtGeLRljAcbRtiam8g7d+Rw2eZ09Jro1/FKbF40x0M+XyIdj/ldLa8X3vCORiAQoKenh8TERKanp+nr66OqqgqTybQm+5e7SuLj4ykqKnpN5vojb8TFxcX4/X6sVitTU1OMjY0hhMDtdodvxKu5QNba0ViJUZDlmuWQtN/vD7cO9/X14fV6UavVTE1NkZSUFC4KeyMYDIXozNdxWc45HEvqZDmpkmgLEq8/wJavPxf9mP0S8XoNtYUJpCXoSNRrsIwNU1qYi0ajweMLIAGSBGoV6DVqDBoVCQY1KXE6UuK1mI1aPP7AnBbWUbub/ikn/VMu+ixOmgansbv94c81GSaoyEqgPCOO/AQ4x+TmwjQn+s0GvLoMumfUHJ/wUN9v47mQA2TQqKjON7FnQwp7S1O4dnsw5ds2OsvTJyZ4pn2S7/27C4Ais45LKl1cXJ7G5y7ZwH9dvIGD3VM80jwWdiiyTXquqsrgmuos7rhqI5+6qIR/NI3ywJEhbv/HCb771Eneti2Ld9fmkGWamzpei8VVNA0PSZJwu93hWjGn04nJZEKn04WL1F+riBWslM/c3sgYiAxxnjhxArvdjsFgYPPmzcuSEX/ppZc499xzF3w9sqtky5YtNDc3U1lZuWi9w/z9n3XWWXi9XtxuN52dnWzZsmXZ328x6urqqK2tXZN9DQwMIEkSer2eqakppqenw3NLUlJSSExMjOkC6e3txWg0hqXJV4vb7aatrY1t27atyf4ARkdHGR8fx2AwYLVaEUKEHTHZ0Yq8riIdj3UwGK9V6/O6syOxFg17PB6OHTu26LUYmSrZsmXLomncgwcPsnPnzrD98vgCbPnvp0/ZTm43TTJosDi89FmcCxR6Lo1KgDlOS0qclvQEHQXJRgpTjRSmxFGYYiQnSY9GJbA5ffROOfnXwWachjRaR2ZoH5vFG0qfxOvUbMlJoCJVQ0m8j3SNE1NCPBgS6ZnV0Dzq4mCPlZMTwTbbgmQDe0tT2VOaQk1BEjpNMNrx15c7OTTkomnESUCCDWlxvGlLJldVZZBl0uPw+HmmfZJHmkc50DVFQII9pSm8qyaHc0uSEcChXit/PDLM0ycmEELwlq2Z3HpuPvnJwY6VgYEBhBDk5uau6He2HCRJorGxkbKyMnQ6XbjwdB0HTa6rHXlDRjQie9rtdjvDw8NkZ2dTUVGxJvuP1lWymvTH6U6dxIIkSWg0mlPmllgslrB8uMFgmCMfvtgFcia0yy6F3NVSVFQEnKpZIoSYM5l2/kplnQ2GwmkimjZGLCyVOlkqVTKfSDsx4/Kx81vPRt3OMuvF6vBSlBpHUUpQkTMrUU9qgo7xwV5KigpJTjCi16jQaYI1GQFJwuUL4PYGsLt9WBxeJkNtsJZZLxaHhzG7h0ePj2N3RcwkUgnyzIZQ+2oi6UYVb91XTHKcFq8/QNeEg+MjM7QM2TnSb+N3PcFCVYNWxdZsP5tS7RTH+dhrcvPm8xJxa9JptsCB3mn+fHSYP9QF0zy7S1K4bHM6l5bGc/2OTHQJyTzZNsE/mkb54TPd3PlMN2cVm3nzlkwuKk/jqqoMRqfd/PnoMH85OsyHH2imINnA9TU5vGVrFj+4Nplhm4vfvTzAg0eH+duxEa6szOC2c/PRSdK6CSBG/i0DgUDYTsidji6XK7zNa8mOvKEcjfkFn319fYyOjpKdnR1T5fZiRBPggjPbWVhr9Hr9nI6W+SqekR0tRuPcvvYzIXUS6z7na5Z4vV6sVisTExOcPHkynIqRHY/XssFQmGtHgBWfX4ulTlbSVSLbGMush3O+s/+U11PjteGiTVMomjE87eb4yAw2p/cV4a6DrXPeZ9SqSNQH6zXkuo0ko4Ysk548s4HawqRQ+6oBtQCr0xduW+21OOmZdNI5PhvWtfhB/QFyk/RU5iRSmZ3I1txErqrMQKdRYZn1cKTfxuFeG3V9Nu4+Og0EazbOKvCzPWOW0jgPm0o8fKgqlR6njoYxH891TvHUiQkMGsHuokTetkPNW7dl8vYd2fRZnDzSPMrDTWN88eETGLUdXFaRzrtrc/nYviI+eF4BT7ZNcP/hIb7zZBc/eraHN2/J5JZz8/niZaW8/9x87j40yB+PDPHP5jHOKYjjpp3prKFyfFT8fn/YoYmWankt2ZE3jKMxX0a8ubmZuLg4du3aFR7HvhoWE+CC2CvMJUmiq6uL2dlZTCYTfr9/6Te9CizlGERT8ZyZmZmjaRE5o2U9HI21vuD8fv+iNxetVkt6ejrp6enAK2JpY2NjdHZ2hlNLycnJ4YFXFouFkZERSkpK+Pe//82GDRuorq5e8DOsViu33XYbDz74YBvBNMQtwAngj0AR0AO8Q5KkKQAhxBeAWwE/8B+SJP0r9PxO4C7ACDwKfEJ6o3jEK2ApbYxYiGYTluoqWQwhBMM2F5f++FDU14MCWkHnKF6nJs9sICMx2HGSbNRi1KqwTIyRnZmORqMhIAVrPOwuf7ADJdTGOj7joWNsljG7+5T21SyTPjQELYGNGfFcWZlBUah9ddrl4+/PHsaXlEvLsH3O/BKDRsW2PBNnFZmpLTTzXxeXoFWrsDq81PVZ2d9hYf9JC0+1e1EL2J5vYleehqoUP2/KnuXydBWD3hT2d89yqH+Gf3e2YDJouGRTMHrx4T2FfHhPIUcHpnm4cZRHW8b4e+MoO/JNvLs2l0s2pXFlZQatIzPcf3iQvx4b4cGGkXDa5NMXlXDLOfn84dAgfzjUzwf/1subT7r42L7CU2o41opYB8QFAgGcTmf4+UceeYSzzz6b0tLSdTm+WHhDOBqRIc6pqSna2tooKysLh/pXqtAXiwBXLBENt9uNw+FAkiSys7OxWCzY7Xbq6uowm83hNtP1Dt+tBwtpWlgsFgYHB3E4HMzMzIRntSynXmYx1rpdFoLnUyzHFSmWBsG/r9xKa7fb0el0GI3GcDHpCy+8gNFoXNTR+MQnPsHll1/OX/7yl01CCB0QB3wR+LckSd8WQnwe+DzwOSHEZuB6oBLIAZ4SQmyUJMkP/Az4APAyQUfjcuCx2H4jbwyWo40RC/PfH2uqZD799gDvWcDJALhoQyIZSXEkJxgIBCTsbh92lw+X10+/y4c/IDEz42cyMINBF4x6mI0aspP0VGQlYDZqMBu1ZJr0pMZr8UswMu1iyOpmMDSFddDmomvCwX11g6e0r27MjCfRI/HW7cncdHYeKiGYcng52m+jrtfGwV4r//dsDxBUDN2Rb+Kc4mQu2JjKJZvSCUgSTSGF0Oc6LPz0pWEgOOfkys2ZnJOro0Dv4rqSACdsWhos6nDxZ1Gqkbdvz+YtWzPDxZ9/PzbC/YeH+K+/tpKZqOOdO3O4tjqLr11dzkf2FvLbA8G0yd+PjXD1lkzev7uAj59fxN5ML4+c9PDX5jEePz7OjWflcdvufIzatbfHsXQoRrZTS5LEU089RVlZ2RnhaLyui0Hnp0q6urqwWq1s2bJlTlGmPISsoKBg2fs+cOAAZ511FpOTk0sKcAE0NTVRWFi4ZDeLPI3V7/eze/duvF4vPp+PlpYWtm7dGq4FsFqt4ZC8XHS53BvqWhaD9vb2YjAYyMzMXJP9nThxAoPBgM/nY2pqKlxoKXe0xOpc2Ww2RkZGKC8vX5Pjg7X/zi6Xi4GBASYnJ/nNb35Dc3Mz+/bt47bbbmPr1q2n/F2np6fZtm0bXV1diAhLJIQ4AZwvSdKwECIbeFaSpPJQNANJkr4V2u5fwB0Eox7PSJK0KfT8u0Lv/+CafLHFeU3ZEZ/PR29vb8x2YinkovKVCnDJHBuw8Y5f1cX0nnidikRDUIhLo1ahEYJZpxO1Ros3ANOuYAQjGkatioJkY7B9NcVAvtlIYYqRjRnxmOO0+AISPZMO2kZnaB+d5cRYcBKrJRRRSTRo2J5nYkd+cAJrZXYCWnUwdVLXZ6OuJ9jCKouIbUiL44KNqVywMZWqnERUQjBkc/FM+ySPtYxzbDCYYqlI03HF5jSu3pYD7llGxi38u8PCcwN+Oq0BdGrBpRXpvGNHNtV5JgISPN9p4d7Dg7zcbUWnFly7PZtbz8kn06RnzO7mdy8P8Of6Ybz+AFdVZXBVgURFQSYudRx3PtPNoy3jZJv0fOaSEi4uT1uzCOpq7fTNN9/MHXfcQVVV1XI2V4pBV0JkT7vL5aK5uZnU1FRqampOORHUanW4UG+5CCFiEuBaKqIhSRI9PT2MjY2xY8cOjh49Oue98nGmpqaSmpoKBEPykStjg8FASkrKqy4jvhqEECQlJYU1LebXO0SmHZbjXK1HjcZSqZNYMRgMmM1mVCoVv/jFL7jllltITk7me9/7HjfddBMXX3zxnO27urpIT0/n5ptv5ve///1R4AjwCSBTkqRhgJCzIbfu5BKMWMgMhJ7zhh7Pf14hRKQdUalUc0aur9X+29raVpQqkdnfMcH7/9Cw6DY3nZVLeqKeOJ2aBJ2agMfJ1LQ9GD0kQFJiHClJiUxPTbCppJCc1ETModHr065g22qwhTVY1zEw5aJvysnJiVme65wMd49AUABsU1ZCcAJrVgLvqc0lIzH4vR7bfwhfchH1/TaO9NvC+h16jYrtofbV8zakcOmm4A27f8rJcx0Wnmmf4HcH+vn1S/2kxevYV5bCxZvSeOfOHN5Tm0v/lJPHWsb529EBfrB/iP97YZjdJclcU53Fx960kQ97PRw5OcKDx0Z5qnWMR5rHKDRredfObK7bmc/5G1M5OT7LPYcG+XP9MA8eHea67dncem4+n7tkA7eek89dLw/wwJEhHm8J8PZt8LELy/ift1bwjh05fPNfnXzqwVb2labw/64oI9O0MnnztWR2dpbExKUFyE4Hr0tHIzLEOTY2xsmTJxddKcSaOlmJANdinyHXjBgMBmpra0+5iS3kpOh0OjIzM8nMzAwXXVoslrCMuDzPIyUlZc3UTeez3l0i8+sd5qcdlupoWY+uk/VwXnw+X7j11efzccMNNywYhfH5fNTX1/OjH/2Iu+66a7sQ4k6CaZKFiPYLkBZ5XgHmREPl9sLI4rvV4nQ6cTgc5OTkrChVAvC3hiE+/7fjS25396FBFu9gdQPBYk1ebAGCJ4c5TktqfKh9NVFPYah9tTrXREGKkUSDBn9AYszupnvSyYnR4BC01tEZnm2fDJ9MqfFaduQnkU6AazbFc/WWDFRCMDnr4Wh/cOz7y91TfPepLr77VBe5ZgN7NqSwpzSFa7dnccOuXGxOL8+ftASjGMfHebBhhJR4LVdsTudNVZm8f3c++9Kd2NUm9vc6+WfzGJ/4y3GyTHqu257FtdXZfH9zIbNuHw83DPLH+mG+/e8+fv5CH1eXxnHt9iw+d2E+t+3O59cv9vOn+mBHytt3ZHPLOfn818Ul3LArh68/1Mh9R8d5/ISV/7ywmLdszeSPt+7g3rpBfvxsD2/95WH+66ISrqnOelUXe3Lh/ZnA68rRkCQJu92Ox+PBaDSGiw2XWinE4mhECnAVFhbGlEOL5izY7XaampooLi4me14ZcyzKoJFFl7KMuFz70NLSgs/nC9d3nMm1fks5Bnq9nqysLLKysgDCzpXc0RIfHz+no2W9uk7Wuj4m8jiXWonk5eWRl5fHWWedJT/1F4KOxqgQIjsidTIWen0AyI/cBTAUej4vyvNvaBaSEV+LaasycqpEr9dTXFy8on38/kAf33z81Ams0bj1nHwyEvWkxGtJ0KuJ02nQqQUqIRACfAEJjy9AW0cX+sRkxqYdDE/NMDnjwREQzDoD9FmcPNo8NscTlTtZytLjqcxO5NySZN57Vh4alWDW7QuPfW8esnO4z8bItJf72upJMmrYkZ9ETWgC64XlqeF0yAudFp4/aeGhxhEeODKEXqPi7CIzl21O54KNqVxdlYnHF+CFkxYeaR7jT/XD3Fs3RFGqkbOzVFyzM5lPXVTCf1xQzHPtk/yxfogfP9fLz5/v46LyNN65M5vrdxVw/a4CXu6x8usX+/hDi42/d/RwSeEg+3LgnSUm3lJWyINtszxweIg/1w+H56Z8ZGcCN+8u4n/3D/H/Hmnnb8dG+NLlZdx4Vh4Xbkzljn+2c8ejHezvtPDVqzZijtPG/LddCxvtcDgUR2OtkUOck5OT2Gw2rFYrubm5VFRULEsKeCkDMr+rpKWlJSajE81ZGBgYoL+/n61bt675CSGEwGQyYTKZKCoqmqPm6XA4qK+vX1F9x3xebd0Lo9FIbm5uuKMlcjy8y+UKS4O73e6Y5sssxnqlY+QC06VWIllZWeTn53PixAk56nERcDz070bg26H/Hwq95WHgPiHEDwgWg5YBhyRJ8gsh7EKIs4GDwPuAH63pF3uNsZg2xlqPda+treXw4cMr2s83HzvB71/uX/b2T7ZN4PIF8PgCeP3ydwOdOlinEWxfVSO53WSlOEkzxVFdmkJ2kp5krR+dbxabdYpZp8CpSWBaMjDpUdNvddMz6eSR5jH+WB8sztRrVJRnBh2PyuwEztuQwrtrcoBg6sSbXMjhXhuH+2w8E2p5TU/QBVU/y1K4eksm79iZg9sX4EifledDravPdVrCs0su35zB3tIULixPY9rl48nWcf7RPMYDLTYeaGmjtnCY63fmcMHGVC7alEbPpIM/1Q/zUOMo/2odpzQ9jlvOyeeKygzOKU6mcXCa37zUz9/aJ3msR8VbKuHqEg/X5rs4J0nP4/2C3708wN8bR7imTMct++K4+8Zt/P3YCP/7dDfv+E09H9pTwC3n5POr92zlnkOD/PDpbq791RG+87YKdhYkxfT3jWxtXSler3fdItmx8rooBpVbViVJ4sSJE4yOjlJTU7Ps/JTFYmF0dHRBwa7IrpKSkhKEEDQ0NFBWVkZ8fPyS+x+xufjhY8f4W6s9pu8F8LlLSnjzlgzaWxqpqamJ+f3RqKurY9u2bUxNTYU7WlZa39Hd3U1CQkI4tbFajh8/TkFBwZo4XrK8/PT0dHiVKs8sMZvNaLWxrzQAWlpaKCwsXFPnsKenh7i4ODIyMti7dy91dXWLdrY0NDRw2223ceTIkSagC7gZUAF/AgqAPuDtkiRZAIQQtxNsgfUBn5Qk6bHQ8zW80t76GPDx09TeekbZkfnaGNG6SqamphgeHmbz5s0r+ozIrhJ5HMFSCsPR+PRfmnikaTSm91y6KQ2jLighrlELJAkCUlA91O72hTtQJqcdOP0Cu9s/J9Uit65mJ+nJS9SQbQyQqnaSn6gmKz2FJLMZm19H66gj1Lpqp3VkJqzNkZmoo7bQTLo0xTvOrybPHNTPGZl2c6jHyv5OCy92WZhx+9GqBbsKzewtDToeeWYjAUmicXCax4+P86/jE0zMejBqVewrS+WqygzOK01BoxLsP9JMo03PI8ctDNrcZCTqePv2bK7bnk1agg6n18/jx8e5++AAneMO8swGbj03nzdvyUSnUXFyfJbfHujnkeYxjFo1N56dx3t2ZuFzzVJ3cpRf1k3SPhWgJFnD5y8qZFdpFtPuAN/6VyePHR+nIjOBb791EyVpcbSOzPCZv7UyaHXxmYtLeFdNzrLtqsfj4fjx44t2ni3FeeedR0NDw3I/c11zPK9pRyMyxOnz+Th+/Dg+n4/4+PiYVD6tViuDg4NUVlae8tpCAlyNjY2UlJTMudk82jzCf/65eXVfKkY+sqeQD+8tjOk986uZI0W1LBYLDoeDxMTEsOOxWCSgq6sLk8kUFqtaLS0tLRQVFS3LgVsOw8PD+Hw+8vPz58wssVqt4RbalJSUmDpampqaKC0tPUVsbDWcPHkSs9lMamoqe/bs4ejRo2eEgVhHzig7shxtDJvNRn9//3Kr+OewUFdJrI7GO39VR8NA9DHvMu/Zlce9hwb437dv4RuPneCCjWl86bKSZUXhZEdfb4xj1B5sWw23rlpdDFrdnJyYZSY0u0QAuUk68hMF2QY/G9P01BalkpOZhsEYR4/FyZE+G4d6rRzutWFxBB25nCQ9tYVmdpcks3tDCiaDBq8/wNH+aZ7rnGR/h4UeS7DjpDI7gSsqM7i8Ip1Mkx5/QKK+38ZjLeM8dWKCKYeXjAQdb92WxZZ4OzUVxRjj4nm+08IDR4Z4sWsKjUpwaUUa76rJZVtuIhLwTPskv3qxj5bhGTISddx8dj7Xbs/CqFXTNeHgx8/18GTbBCnxWj55fjFv2ZaJAH7+aB0PnPBidfq5sEDNOzcZyUpPodEi+N5zQzg9fj5/6Qauqc5ixu3niw+38WyHhWu2ZfGlK0rRqpf+OzidzlWNnZAkib17954xduQ1mzqJDHHabDZaW1spLi7GYDAwPDwc074WEs5ZTIBLCME/msa44/GXeTX56fO9/PT53jnPGTQqDn12d0z1I/NFteT6Dtl5k1tM10LbYjHWUxlUrVaTkpISdhhl6fDJyck5Cp7JycmYTKYFDfN6pU7UavUZXT/zeiQWbYz1GOsOyzvnAwGJPd9/nokoY96r85I4Nmjjhi2J3NNoZ29ZGvceGiBer0ajEvhXMMdEq1aRZzaGIw/zj3fQ5uLE6GyodXWGttFZDgz4oNOH6uAsxUmDlJhgS5aRszak85bKEvR6PQ89ewhHQh51vTae7QiOcteoBDsLkji/LJV9ZSl85uINfObiDfRanDzTPsGjLeN876kuvv9UFzWFSVyxOYNLNqVRe6WZL1y2gf2dFv5ydJhfvdgHwFkn/Fxfk8feshTO35hKz6SDP9YP89CxER5tGac6z8SHzivgwo2pXLgxlQPdU/zyxX7+58mT/OrFPj5wXgFv357ND67dTNPgNN95qosv/7OdB44M8YXLSjk7R8s7927hZy8G1ULbpr18+jyJMqOTL9Wo+O3xAHc82sGBkxN87c0V3Pn2Sn78XA+/erGfsRk3379mM3G6xRc1a2Fj1qMQfqW85hyNaDLiY2NjVFdXExcXx/T0dMzGYL4BWUyA689HBvnSw63RdjOHe27eSW2hOSwzXFdXh9/vp6amZll5swMHDlBbW4vP50OlUoWjEJIkcd/hIb79xMkF3+vyBdj6zefnPFf/+fOW5UnD4vUdPT09qFSqcH3HWitvns4x8fOlw+V24ZGREdrb29Hr9XMUPOXjWuv2VnmfkSOkzxQD8Xol0o5EFnwuhlqtjkmhdzkCXHLt1mJ/70BAouKr/z7l+Y0ZcdhcfnLMBiZnPXhChxYfuolpVAKtWhV1jPtCLLfwXHZCLip/JZI57fLRODhNfZ+N+oFpnhuc5sm+GTg0Q3Z8L5tSBJtMft60ScM7tm9EqNQ0Ddl5tmOSZ9sn+Z8nT/I/T56kND2O88tSubg8jRvPyuOms/PpmXTwWMs4jx4f42uPdfDNf3WG21f3laVyUXkaQzYXv3iykecHnXzyweOkxet4+44s3lWTy+cu2cDH9xXxUOMovzvQz4ceaKYqO5EPnlfAvrIUzi1Job7fxk/39/LtJ05yz6FBPr6viCsq07n7fdt4tGWcHzzdxft+38AF+Rru2Ci4/fJSLtucxpf+0c6nHunnlnPz+ejecs7d4eLnz3Vx91ELrT8/wGfPMXFtWRqphkK+83Qv77+vkV+8awsJ+oVvv6ut0fB6veu6IIyVM+dIlkFkiNPj8dDc3ExiYuKcllCVShWzXHekoxEtVSJJEpvuOPVCl3nHzly+9qZNUY2F7LSo1Wry8/OXXZyz0AUvhOA9tbm8p/ZUuYMfPdvDL0Ne/Xx2fPuFOT83xaADs5h+x8TEBFarFYfDQUpKyqr1O9ZayTMWFc/IdmEgnE7q6+tjZmaGuLg4UlJS8Hq9SkTjNUykNkYsCp+xRDSWK8Al73Oh8ynaBFYBFKfF4QtAVY6JkWkXOWYDTp+HOG2wBgPAH5AwGTTYXWur/bEQJoOG80I6GPKxHx+xc6RvmiN9Ng70WXmmH37deoLyZBVb0zXsKU3mpu2Z/Me+QgZt7rDTIWtmFKUaubIyg6urMvjw3kI+tKeAttFZHmsZC7evZiTquLY6i2uqs7mu3Mh/XbGB+iEnf6of5mfP9/G7AwO8rTqLG8/K4101OVy3PYuHG0f59Uv9fPzPLVRkJvCB8wq4sDyVX717Cy91TfG/T3fz+YfauP/wEF+4bANXVWVwwcZUfvRcD/ceGqTp1w185coy9pWl8tf37+Q7T57kNy/1c6TPxnffton/urKK2rJJPvf3Nr7ywixfvTCeLXEOPrxVy88b7dzy+3p+dn0lqaboKeLVRjTkDrwzhdeMoxEZ4pTVODdu3HhKEaJarV5RRMPv99Pe3j4nVbKYg/GrN2dRWZQdvvlGY3Jykra2NjZt2oTdbo/pJrKSIWwfP7+Ij59fFP7ZF5DY/q3no2675RuvDF069NndMcnnRt6QOzo6iI+PDyuvxlLfEY0zaaia0WjEaDSSk5ODJEk4HA4sFgtut5vDhw/P0SlZbUeL7Gi43e41rf1QmMtqZMSX250Wy6ySxfY56/ax45vPznku16RlbNbHuSUp3Fc3wKWbM3i8ZZbN2YlIHi9qlUAXilx6fAGSjFqsTt+r4sDqNCqq85Kozkvi1nPzcfsC3P/UIcbU6bxw0sJ9bU7uaxslK36Cralwbr6BfSXpvG3zBnwqHf8+MckjzWP8dH8vP93fGx6+dvnm9HD76v6OSf5UP8zPn+/jFy/0sT1Dw41aO/vKM9hXFhThuiuk7PmnI0Ncujk9VIuRzVu2ZfFo8xi/fLGP/3zwOJsy4/nURSXs3pDCOSXJPHRslB8+2827fnuUa7dn8ckLivncJRsoFhP8sVvDx/7UwrXVWXzm4hLuuGoju4rMfPXRDt7+63p+cO1m9pWlcu9N1Xzw/iY+/+Qo//f2Sj5wpYnc3AH+32M9fPi+Bv5zu5bUZPMpBeqrjWicSRoa8BpwNCILPiVJorOzE7vdvqAa50oiGrL6ZHJycjhVUv6Vp07ZriQtjsc+Hizcam9vX9BASJJEd3c3ExMT7Ny5E4PBEJ7fsVxW4mjMR6MSNN2+N/yz1x84JbIBsOs7L4Yfv/Cpc0gyLr8bQwgR7lhZi/qOM3WomhCC+Ph44uPjGRkZoaamBrvdHpaM93q94Y6W5OTkmDtaZMMyPT1NXFzcqo9XYS4LaWPEwlKpk5XMKlloVLzXH+Cm39ef8nx5dhKDJybITjIQkCA3ycis20eCXoPDG6ywNRmC15jd7SM9UUfXxOyq9X7WAr1GRWWqmptqN/DZSzYwYHXyQudUUISre4on+mbJPOamNmuE6hR/UJfj4gw8mmL+3WnjkeYxvvXESb7z5En2lKZy/c5szt+YyoXlafRPOXmwYYQ/Hx7gPx48QZ65l5vOzuOt27L47zeV87F9RfyhLqj6+VjLOLtLkvn4+UW8eWsmV1Vl8NjxMX78bA8fuK+J3SXJfObiEt5WncXFm9L42fO93Fc3yLPtFr54+QaKk1Tcf/N2frK/l98d6OdQr5XvX7OZKysz2JyVwMf/3MIH7mviS5eXcu32bP5wUzUfuK+JDz/QzM+ur+JN2wtAo+eLD5/g4ZEUPlOWhtVqpa+vL1ygvtqIqRLRiIHIEKfT6aS5uZn09PRF1ThjjWiMj4+H52ts2LCBYZuL838w92Z849n5fPGKuSqNC12QXq+XpqYm4uLiqKmpCZ8wsV7A8vZrWXioVatoun1vuN7j2l8doX1sds425/3gQPjxsS/uQRXjTTpafYfNZguLakXWd0TT7zidNRqrIfJ7FhYWhouSp6amwrNzIme0LOVgyY7GzMzMGbUSeT2wmDZGLCwWfVjprBK5hms+33mig8bQ/A6A4lQj3ZNOckPFmWkJwUhJeqIOb0BCoxLo1So8vgCJhqCTa3V4KUiO4+FjI7h9AYy6tb8OVkOe2cj1NUaur8lh2uXj2fZJ/tU6zuNdUzzSKZFjmuHcfB/bk31siZM4b18SVimT5/tdPNw0zrMdk+QnG3jHjmzeujUYcdhtmmJUm839R0b4+uOd/Oz5Xm7Ylcs7d+Tw6YtKeP/uAv5UP8TvXx7g+t8e5YrN6Xz8/CKursrk0k3p3H94iF+82Md1v67nPbW5fHhPAZ+9ZANXV2Vwxz87+NSDrdRkqvjfSj//eWExe0tT+OzfW7nhrqN84bJSrq3O4t6btvOZv7Vyx6MdjNk9fGhPAXe9dxu3/KGRj/6xmV+8awtv2pLJgNXFT/f3Uplt4oZdJcArBeoDAwPMzs5is9mWVaA+HyWisUz8fj+9vb3ExcXhcrno6uqisrIyPANjIZYb0YjsKtm5cycNDQ1RoxgnvnpxlHdHNzo2m43m5mZKS0tPGbi1kjHxTU1NuFwu9Ho9Ho+HmZmZqDLbK+XB9+8MP/71S33c+UzPnNe3hQpKi1ONPPyh6EUdSzkG8zs95PqO4eHhsIMnOx5xcXFrXly6Hh0i0ZAdKPkmIxsMi8VCd3c3KpVqjuMR7ZiEEGeUmt9rneVoY8RCtPeuZqw7RLcLB7os3D1PjCs/JY4hm5skY9Bky1HHBL0GJBAC4rQqPH6JOJ0ao1bFkM1FZY4JCRiyudiQvvR5tZ4RjcUwGTS8eWsmb96aic3p5en2Sf51fJy/t1r5S0CiKjuBKzaq2JHmZJ/Zxu7ztLTZE3myx8X3/93Nj57t4fLN6VQn+Hnb3nSu2pLF4T4bv3mpnzuf6eE3L/Xzzp053FCby23nFvDOHTn87uV+7jk4yJNtE7x9RzYfPK+AG8/O481bM7nzmW5+f3CAR1vG+OJlpVy8KY17b67m9y8P8OPnerj2V0f47zeVc25JMn++dQeff6iNrz7aQdvoDJ+/tJSfvLOKr/yznZ8+38u028dnLy7h1+/Zyk33HONjf2rhvpu386HzCjg+bOcHT3exI9/E5uzEcIG6nN5LT09fVoH6fOR7xZnCGedoRIY4Z2dnGRoaQqvVsmvXrmWFoxcKRUYSravkpsfnruyPf+Ui1KrltbpJksTAwAADAwNUV1dH/QMvtHKJht1uZ3p6mvLycjIyMnC73Rw5ciQssy3XQKzlDJPbzi3gtnODUymv/Okh+qdemenQPekM13TEWs8xn2gFl/J8FofDgcfjYXR0lNTU1DVR8jxdjsZ8onW0WK3W8MpXp9PNGQ4ns9yQp9zB1NDQ8IgkSVcLIVKAPwJFBKeyvkOSpCmA0PTWWwE/8B+SJP0r9PxOXhHrehT4xGkS61p35qdK1qOLZ7Vj3eFUe+UPSHz1H6/MLsk1G1CrBIGARGlGPJZZL2ajNvxZOo0KvTbYWZJpCF6XUw4PeclGBq0urqgMXmcnR6eX5WicCSQZtbxtWxZv25bFlMPLI82j/LVhhO8+N4RRq+KKzRm8eUsaVxR4OTtniuODPvYPw5Ot4zzsk3i4v4kP7C7kvA3J1BaaaR2Z4Tcv9fO7A/3cc3CAd+zM4f3n5vMf5xfzrp05/PyFPv50ZIiHGke5+ew8bj4nnzuu2sg11Vn892Md/OeDx7m0Io0vXFrKbbsLSHIOcU+nmg/e38SHzivgQ3sK+dn1W7jzmW5+9/IAA1MuvndNBf999UZMeg1/ODSIWgg+fVExP7u+inf/7igf+2Mzf7ipmv++upxrf32E2/9xgj/duiPcGSgrBS+nQF1eqBmNxvB5sdLUiRCiB7ATtBU+SZJq5r0ugDuBKwEHcJMkSafm+OZxRjkakSHOmZkZhoaGSE1Npaqqas0MRbSukvmRjIWiGJHInr/f76elpQUhBLt27VqwgGe5K4WhoSF6enpITEwMF5oaDAZ0Oh1VVVVzaiCam5vx+/3hE20lY9Sj8ehHdgFBYz2/TVau57jlnHz+88LiVac65kuIHzx4MKyKJyt5pqSkrFi/Yz1SMSu5F+t0OjIyMsjICA5UdblcTE1NMTAwgN1ux+12c/ToUdra2pZVo3HnnXdSUVFBQ0OD/NTngX9LkvRtIcTnQz9/TgixGbgeqCQoP/6UEGKjJEl+4GfABwhOdn0UuJygOuhrmkAgwPDwMEIIUlJS1sXJWO1Yd5nIBYgkSdz1dBPdlqCTX5GVwLDNzYWb0qjrsbIl18Ssx0e8/pVrXABGrRqHx09GcnAhNmxzk2s2MjDlJFUf3PfRjn7MjoGwQN1C19OZ1ladHKflvbvyuKE2l8YhO389OsJjx8f467ERStPjeFdNDm/eW8YVPg8DoxPc/3I3/x6w85E/NlOaque2c/O5Yks237umgl5LEb9+sY/76gb5a8MIN56Vy41n5fH/rijjhl25/OjZHn6yv5eHm0a5/bJSdm9I4b6bt/P7lwf46fO91PXa+NpVGylKUvPHW3fwjcc7+fkLfTQN2fmft27iUxeVUJhi5OuPd/KB+5r42fVVfPaSEgKSxO8PDpBoUPPB8wr54XWV3HZvI199tIPvX1PB7ZeV8om/HOcPhwa5+ZzgSCK/3x91oRWtQH1qaoqTJ0/idDpJSEjA4/EwODi4msjoBZIkTSzw2hUERxiUAWcRtCFnLbBtmDPC0ZivjTE4OMjg4CC5ubno9fo1OfkXEuCKdDLeui2b/7nmVHXQaKhUKpxOJ4cOHSI/P5+8vLxFt1/K0QgEArS1teHxeNi1axeNjY0LtrdG1kDIIXp5jLpWqw1HO1abZhHilWLSvxwd5quPdoRf++2Bfn57IBjeff6jGVHfv5LPU6vVFBUVLVrfEUu+cq0jGmtV82EwGMjOziY7OxtJkjh06BDj4+Pcc889dHd3Y7FYeO9738ull156ynsHBgb45z//ye233879998vP/0W4PzQ498DzwKfCz3/gCRJbqBbCNEJ7AqtXEySJB0AEELcDbyV17CjEWlHHA4HQohFu8JW+hmrHeseiRzRkGu7Hm6dISVOi8XhZWteEq0jg2zOSuSx5lEyE/UMWp0YtWp0oRZWjz9AWoKOiRk3GRuCN5Yhm4s8s4G6HgsDna0k6NW49Mns3LnhlOtJthWJiYlhW3EmBrWEEGzLNbEt18RnLynhsePj/Ll+mP9+rJMfP9fL9TuzuX5nDleWjvLZa7bxt6OD3HVwiM//o5M7nz7JdZtNvHlbDl+5YgM3n5PPj5/r4WfP9/Hn+hE+cUGwKPQH127mpa4pvvmvTj70QDNXbE7nC5cFoxgXlqfxub+38vE/t3BBvprvVMN/X72RrbmJfPuJk9zw+wZ++s4qrt2eTWq8jk/99Ti3/KGRX79nK5+7dAN2t48fP9dLYUocl29O56P7CrnzmR4eahzlrduyOL8shV+80Mc11VkkGbXLsluRBeqRgzSfeOIJ7rrrLiYnJxkeHuaGG26IWeZ+Ed4C3B2KfL4shDDLgxwXe9Or7mhEamP4fD5aWlrQ6XTs2rWL0dFR3G73qj9jIQGuSCfjtiodn1mmkwHB9Mb4+Dg7duzAZDItuf1iKR2Xy8WxY8fIyMgID4GTHZOlVuTzQ/Qul2vONNO1SrNcF5oXEK1zZc9PGgFo/OKeNV0RRavvsFqtc/KV8usL6Xe8Fmo+JElCrVZz6aWXYrFYGB8f5/LLL8fjOVUFEuCTn/wk3/nOd7Db58zOyZQv9tD0Vtn7yyUYsZAZCD3nDT2e//xrkvky4hqNZsHf30pZi7Hu8xFCYLfbaWlpQZ+aS9uEhdpCM5ZeK5mJwcVQfkocTm8Ak1HDkE0gAXG60AA+t58sk57GwWkyE4KRlSGrE513hllPgLKq7VR1tNI6PBP1erJYLOGoWnx8PF6vd01s7kKshRMTr9dw3fZsrq3O4ki/jd+/PMDPnu/jtwcGOCdL8KkiD+86q4h31BbyZNsEv3qxjx/V2fhz6wxvLVGzK1vDx3ekcm1lKT89MMr/e6Sd+w8P8aXLSzm3JJm/vn8nvznQzy9f6ONgr5UvX17GRZvSuPem7dz5bDd3HxzkxruP8cPrNvOOHTlsSIvnE39p4Ya7GvjJO6s4f2MqP35HFf/x5xY+8kAzv37PFu64ciP9Uy6+/MgJilON3Hx2Pi+cnOK7T3WxryyVj59fzLW/OsK9dYN8ZG/Ritpb5UXoddddx9jYGCaTicrKylgjwRLwhBBCAn4hSdIv572eC0QWEMl2Y1FH41UtQw4EArjd7rDyZF1dHdnZ2VRWVqJWq1ekiTGf8fFxjhw5QmlpKRs2bIjqZHzu0jJ25y7vjxEIBGhtbcVms5Gfn78sJwMWrtGYmpoKH19xcXH4+JajGBgNg8FATk4OVVVV7Nq1i7y8PFwuF83NzdTV1dHZ2YnP54u5BVhG7lyJbJuV2frN59nyjf34ViB5vBzk9MOmTZvYtWsXGzduRKVS0d3dzaFDhzh+/DjDw8NzDOVad52shypopPMyMzODyWRix44dnH322ads+8gjj5CRkcHOnTtPeW0Bop1A0iLPv+aItCOykx6riudSjI2NUV9fj16vDw9EWy3ytOHu7m62bdtGsyW4z/yUYGdJekLQ0ZALQOO0atQhSXG562TM7iYj0cDItJt4nZo4rYqGjj5KUoLvPTnpYnN2Iu3js3j9c+2PTqcjKyuLzZs3s2vXLoqKiggEAvT19XHo0CHa29uZmJjA5/Ot+ruuB0IIagrM/OgdVTz0wRqursrghSE/b/nFET75lxa6Jhxcvjmdv9y2gx+9vZLEOAM/b/TwnQZBuxVSmebjmz18ZHscozYn77mrgW883oHbF+DDewp54JbtZCbo+eSDx7njn+34JYlPX1jMJ7br6Jty8s7fHqWu18rOgiTuubEao07N++9rpGFgmnNLkvne2ypoHbHznw8eR6US/O+1m0nQa/j8Q234AhJfuryUWbePHz3bw8aMeC7YmMr9h4fw+gNrIthlNpvZu3cvu3btiuWtuyVJ2kEwRfJRIcR8Q78iu/GqOBpyoZbb7Q5rTnR0dLBjxw6ysrJeOTiVasUnuSzA1dvbS01NzZyBaH88PDBn21t2L28omcvloq6uDoPBELOxmZ86kSSJnp4e2tvb2blz5ykh3rVaLckplh07drB9+3bMZjM+n4/6+noaGhrCRUUrWWk03b6XP1+bQXXO3KKj7d8KOhwrmbEQC3J9h+xU5efnh+s76urqaG9vx+VyrdpZjSQQCKxJHUwksYyIf/HFF3n44YcpKiri+uuvB7hQCPEHYFQIkQ0Q+n8s9JYBID9iF3nAUOj5vCjPv2aQoxiyY6lSqcLXzWpsRyRySrO/v5/a2lq0Wu2arMr9fj/Nzc243W42btxIfHw8B3umKEwx4vVL5JoNeEKOgVnWtRGCRIOGaZeX9JCjMT7jJsukx+MLMD7tIE0fwOrXcdHOYDt+y9A0VTmJeP0SHfNa2SMRQpCQkIDJZKK0tJSdO3eSlhbUdzh69Cj19fVzJiGvlPWqASlJi+OOqzbyvT0GPnBeAYd6rFz7qyN84aE2Bqwuzt+Yyp9v3cE331yOzenjvx7t5xfNAfLKt3LTBZX88m0FXFqs549HhrnqJy/z0KFOisxa7r25mvefm89fG0a4/rdHaR+1syNLx303b8ds1PDB+5t4/PgYxalx3PXebaTG6/jg/U00DExz/sZUvnLlRg50W/nfp7tIS9Dx1as20jnu4Cf7eyhNj+cdO3P4a8MwQzYX11VnYXX6eOHk1Ksm2CVJ0lDo/zHgb8B8L2Uhe7Iop93RkLUxZANx5MgR/H4/tbW1pygiajSaFd0kJEni8OHDqNVqdu7ceUpRzZf/0RZ+HFn4udgFNDExwZEjRygrK6O4uDhmuehIR8Pn89HY2BjO8xoMhqjbrzVymsVgMFBbW8umTZvQaDT09PSEIwIjIyMxh05/cm0ZTbfv5cN7CuY8Xx1yOE5HzlcIQWJiIoWFhWzfvp0dO3aE28SOHz/OkSNH6Orqwmq1rsrxWK+BavI+nU7notXi3/rWtxgYGKCnp4cHHngA4GlJkm4AHgZuDG12I/BQ6PHDwPVCCL0QophgEdehUJrFLoQ4O1RJ/r6I95zxyHZkoa4SjUaz6oiG0+mkrq4OvV7Pjh070Ol0axIpmZ2d5dChQ5jNZjIyMsLH3jI0zZZcE6PTbjJNelze4OfEh2ZiBAISqfE6phxeNGoVSUYN43YPWUlB+9baN0Z5ZgInLW6S47TkJBloHbFTmR3sajo+MrPkscl2Sk6zlJaWUltbS2VlJQaDgYGBAQ4dOkRzczNDQ0O4XK4l93k6MekFH9tXxGMf3cXN5+TzVNsEb/75Yb7+WAeWWQ9v2pLJwx+q4eP7inixy8Jbfn6Yuw6PUVyQy/fefRb33lRNUpyOLz05xH/9sZ4Dhw5zea6X715VgM3p5X33NHFk1Edxahz33FjNlpxEPvO3Nu6tGyTLpOe3N2wlLV7Lx/7UTPekg7dVZ/GumhzuPjjIE63j7ClN4ZptWdxzcJCeSQe3nJOHEIK7Dw5wTkkyyXFanmgdX7WdWUmbvBAiXgiRKD8GLgXmjyN/GHifCHI2YFuqPgNOs6MhhzgDgQATExPU19dTUlISDoGfcnArUPkcHx/H4XBQXFw8J1UiE5kyiXQyFirWlNVIu7u750RGYmlXlb9LIBBgdnaWuro6UlNTqaysXPBkOh397AulWVpaWsJpFovFsujfIDK985G9RTTdvpf/iJBBh1dSKqcT2VAajUa2b9/O1q1bSUhIYGRkhMOHD3Ps2DH6+/tjjuas5+RWCKZOIttdY+DbwCVCiA7gktDPSJLUAvwJOA48Dnw01HEC8GHg10AncJLXSCGoz+cLR6oWal1dbdpVTpVs3LhxTkpzJRNcIxkZGaGhoYHNmzeTn58fPs5Zt4+RaTcbMxKYnPWQFq8LRwQTQ46Gw+MnNV6HJAXFuNIT9IzZ3WAL2nmvMY3SNCOWWS/jMx4qshNpGbaTn2zEZNDQPGRf8LiWQq/Xn5Jm8fl8tLa2UldXR0dHB5OTk2uarloNSUYt/3lhMY9+pJZrq7N4sGGEK39axw+f6cYfkPjAeQU8/KFaLixP46f7e3n7r+s52m9jS66Jv7y/hpvPzuO5fi/faQCbSGBDgo/ba9Rkx8H/1bu486l2EnQqfvnurVxUnsq3nzjJHw4NkpGo5+fv2oJaJfjw/U1MObx85uIStuQk8t+PdTA56+Hj5xeh16j436e7yTIZuLQijYcbR5EkqC1Moq7Xis/nW3VEYwXtrZnAC0KIY8Ah4J+SJD0uhPiQEOJDoW0eBboI2oxfAR9Zzo5PSzHofBnxjo6OZVVtx7J6iOwqMZvNJCUlnbKNLyJHeXnl3E6JaMONPB4PTU1NJCYmsnPnzjmvxWpwZDGmhoYGqqqqoh7f/O1PZ/X3WnazvH93Ae/fXcCtfzjGoV5b+Pkt39jPrsIkfnPDttPxlYBXHAOVSjWnvVTW74gsml3O3JLVhjSX2mcsBuL8889HkqSrASRJmgQuiradJEnfAL4R5fnDQNUKD/u0E4s2hlqtXlHqZCkBrpU6MPJ+HQ7HHE0g2Y6MTAejiDlmIy6vH6NOPef7xenU2N0+NmQEz43JWQ/ZJh0nBicpO7sEndpCj9XDrtxgVLh1xM7m7ESePjGOw+OnOs/EkX4bS7EcuyOnWRISEigoKAjX2Ml6OLKTn5qaOkdU6tXoZklP1POlK8q48ew8frq/l9+81M/DjaN86qJirqrM4Ltvq+BNWzL5+mMd3Hj3Md57Vi7/cX4xn7qohD2lKXz2b218+K9d3H5ZKW87r5TqzVa+9FALvz44QsfAOLdtT+ATtcn4/X7+58mT6NSCd+zM4SfvqOLGuxv4wkNt/PT6Kv776o28/Tf1/M8TJ/nO2yrCx9M14eCqqkwebRnnpa4pduQn8UTrBBandlULmpUoDEuS1AWcYpwlSfp5xGMJ+Gisx7PuEQ15Fd/Y2IjD4QjXOMihyMVYrqPhcrnmpEoWCptWfu2VKYh3vmPrnNfmOw5ycWp+fn7UiEssjoYs6GW326mtrV3SyYh836uFnGbZuHHjgmmW4eHhsNGPxm9u2HZK0eihXhtbvrGfE6NLh3HXgoUKapdT3xGtEG69IxpnmnTwmYI8DG25AlwrSXFES5XMZyVRVtk+6XQ6tm/fPkd4UL6xT8wEHY20BB0efwCdWkVcaNy70+snPUHH6LSbtPjgMZ0cGifBb2fEIZFfUEBZRjxdFjfFIS2NtmE7W3NNSBI0Dk5TU2CiZ9LJxMzaduLAK9Ody8rKwmkWvV4fLiptaWk5pUj7dJOfbORbb9nEvTdVk5Go4wsPneCWPzTSa3GytzSFv3+whrfvyObug4Nc/9t6TozOUFto5s+37WB7vokv/7Odbz/RiU6r4eO1SdxyTj7PDfq5q12FWqXilk2wNU3F1x/v5KFDnZSl6vjcpRt4sWuK3x0YYEN6PLeek89jx8dpGpzmnTuy0akF99UNck6xmXidmhdOWigKFQKPzKw+orHCyOi6sO6OhnxRWiwWGhsbqaioWHYh5XKMRbSukqVWHbdFKf6UHQdJkujr66OtrY3t27eHV8DzWW7EwePxUF8fFE5LTU1d9Zj4V4v5aZb8/Hzcbjc2m42WlhY6OzsXDJ023b6Xxi/umfPcdb+uPy0Fo7B0vctC9R02m42GhoY59R3r0XUS6WjI028V5uLz+cJO3lrZjkgWSpXMJ9ZI5uTkJEeOHGHDhg2UlJScsl95fw5P8FgT9Bo0oc4SWZjL7vKRYzYybHNRGLoRHW4fYHdVCV6/RJ/FSXlmAl0WN3FaFfnJRpqHptmRb0Yl4HCvlZoCc/B9fdYlj3m1dkev14e7B3ft2kVBQQEej4fW1lZmZ2df1TTL1lwT9928nS9fUcaJ0Rmu/dURfvNSPzqNiv93RRk/fWcVVoePd//uKH9tGCYtQcfPrt/CDbtyubduiE//vQOvpOI/Lyzm0xcV8+/2KX5yxM7WLVv45U1nU5Zu5OvPDPPkwSaKfAOcnWfgJ/t7ODlm56az80iJ03Lnsz2kxOu4pCKdx1vHEUJQlZNI46CdLFMwmjrpXF1b/plmR05LRKO1tRWv18uuXbuWvZqHxY2FHIqM1lUSbdVx411Hwo8/c2nZKftTqVR4vV4aGxvDkYfFFBqXY3Cmp6epq6sjLy+PoqKi0z69db2Qb8xFRUUkJydTUVFBcnIyFouF+vp6jh49Sl9fH3a7PfwdZPGvZz85t2Wz+lvPc8EPX472Ma8acuh3w4YN1NTUzKnv6OjoYGxsbEX1HQuhRDSWRq1Wx+TgLdfRmN9VspTK53JTJ5IkcfLkSU6ePBm1q0xGtiNuX3CfOo0KnVqFxx8I62iM2t1kJwXFugZPtpKgE3iNaVTmmQFoH5uhPDMBi8OHxeFje34SR/psxOvVVGQncrjPyqasBOJ1ag73Lp4+Wesi9Egnftu2bcTFxZGSkjLHVvT29s6xFeuNSgjeviObv3+whvM2JPPDZ7q58e4G+qec7ClN4S/v38H2/CS+8s8OvvzICQIBic9dsoGvXFlGXb+dr79gw+b0ctPZ+Xzi/CIebRnnm//qJE6n5qfXbyVOp+E3bVC5tZrPXliIVgW3//UYJ1oaedPGOA72WGkftXNxeRo2p4/6PhubsxPoGJ9FpwlJkAdW97c406a3rrujMTU1RWpqKgaDIWYJ6YVu5vNTJfNz6tGMwcvdU4t+lt/v59ixY6SlpYV1PFZybDKDg4O0tLRQXV1NZmZmzI7DmexozGd+6LSiogKtVhs1dJoar6Pp9r28uyYn/P6JWQ9bvrGfcfurF1pdDK1WG9bvKC4uJiMjA7VaHU4jrTY0PL8YVHE0Vs9yZh4tJ1USbb9LOTBer5f6+np8Ph81NTVRu8pk5OtcFVHHYDJqsTp9ZCUF3zcy7SI9Ts34jAdzahobs0x0TcxSkhaPSkDH6AxVucEFXNu4i5pCM5OzHnomHdQWJnNsYJpAQGJ7vonDfUvXaawnKpVqjq3YvHkzOp3uVUmzZCTq+eF1lXznrZvonnBw3a/rebhxlNR4Hb941xY+eF4Bfzs2yvvva2TK4eW67dl87bICuqxebvlDIzanl9t2F3DLOfn8qX6Y+w4PkWnS8403l9M57uDH+/spy8/ko/uKaZkM4E4q4E2VaWhU8NN/NZLoGEQAB06Ok5mgwxeQmHIEBwCu1vJHtsyfCay7o5GRkUFubu6KvLNo71lIgCuSxYzBIx89VQRpaGgIm83Ghg0byM1dnjjiQo5AIBDg+PHjjI+PU1tbG/YqV+JoOJ1Ourq6mJycXPGMjfUm2jHJ8trzQ6dy/UNHRwcfqEnm6OfmyuJe+H8HueUJ5+k69BURCATQ6/Vz0kiRoWG5vmN8fHzZxYiRjobL5TqlzVth7VluqmQ+Sy0wbDYbhw4dIi8vj/Ly8iWjMPL+NBGS4ukJOsbt7nBE4+TQJF7rKAAiPpXS9AQ6x2cxaNUUpcZxfNjOlpxEtCpBy5iLmsJgVOZIn5XaQjNuX4CWYTu7Cs2cnHAwOr3wTfx0L3AWSrNE2or1TrNcUZnBg+/fyeasBG7/xwm++mg7/oDEx/YV8d23baJ5yM577jrKgNXJnmITt+9JoXvSwYcfaGbW7eMTFxRx4cZUvvPkSep6rZy3IYV37szmvsODtI7M8I4d2aQn6PjNy0OUF+WyryyVFpuGqvJSck1ajvZMMDncB8DRk8EOIpNu5dGMM/E+8aoqg8bCYqmS+cw3Bm0jr7R1lWW8slqUnYKxsTEyMzNjMvDRDI4s6BUXF8e2bdvmeJSxXsBOp5OTJ08SFxeHxWIJd6z09fUxOzt7Rp1MixnpaPUPcuj06NGj3H1lIj+9OnvOe7Z8Yz99ljPT4ZhfoxH5/aqrq8P1HdPT06fUdyx0g5rfyfJqTJs901mrkH6sqZL5LJQ6kSSJ/v5+jh8/Ho5iLgc58pIQamGdcfnISAy2rcbp1MTrVHQNW7hkV7A5qH10hg3p8Uw5vEzMuKnOT+LogA2dRkV5hpHWMRclaXGY47Qc6bWyI1SbUddnY09p0GY+f9IS03c+XSxmK9Y7zZKdZOBX79nKrefm85ejI9x49zHG7G4u35zBb27Yhs3p48a7j9FjcbIjJ47vvq2C48N2Pv3XVgISfOstm8hPNvLFh09gc3r5+L4izHFavv1EJ3qNinfX5HCwx0qfxcl5G1IYmXYz4oCyLBM2v5aSkg0AjE4HdUn0ARcdHR2rUmZdL3G0lXBaLdpKT46lUiXzmZ+ffcvPDp6yjTwQTXYKYi0emx+atVgsYUGvaMWuyy0ik3U7pqen2bhxI1lZWZSVlZGQkEB5eTlqtZquri4OHTpEa2srY2NjeL3eZR/3q838NMvmzZspzUjggbfOzWFf9bO60669sRyWUgZdqL5jdHQ0rN8xX41VdjSWuj76+/u54IILqKiooLKykjvvvBMAIUSKEOJJIURH6P/w3VMI8QUhRKcQ4oQQ4rKI53cKIZpCr/2fOJOs0jqxklTJfKJFS/1+P01NTVitVnbt2hVTblzW4zEZgo6GzeUjPVHPlMPLocNHyIxX41AnsDk3WNjZOmKnKidY5Nc0GCz4tDq89Ew62JqTQIfFg8cXYGeBmcN9VlLidVRkJfByt5UNaXHkJOl5rmNhR2M9IxqxjlSIZivWM82iUQk+eUExP7xuM12TDt5zVwMdY7NU55n47Q1b8fklPvlwD8N2HxeVp/H/rijjxa4p7nymmzidmm+/ZRMTMx6++1QXSUYtHzqvkPr+aQ732XjTlkxUAh5uGmVHfjDNdXxkBrNRg83pw+kN3hssfj0alaA41UhKSgpWq5WGhgbq6+vp7u7GZrOtqdLx6WLdHQ35xFqpUp/P51syVTKfpfKo4+Pj1NfXU15eHnYKYu2Plw2ELCXe0dHBzp07F4y0LOcC9vl8NDQ04PP5yM7OnnNDE0Kg1+vJzc1ly5Yt1NbWkpOTw8zMDI2NjRw5ciR8Ip7OaMdqx7BHhk6Pfu5c/vucucZ/yzf2MzAyfsYIAcXa3irXd5SXl4fns0S2Cbe0tGC32+d8v4V+nxqNhu9///u0trby8ssv85Of/AQRHAMvj4gvA/4d+ll+TR4RfznwUyGEfFLJI+Llkc+Xx/abeG0gXwsrTZXMZ/6CQVb5TElJYcuWLTG3JMr7y5ALP6fdmDTB/evNmWwtSOPE2AwGrZqStPiQ0qcJjUrQ0G9je+im1TBgY2t2PL4ANA/b2VWUTJ/FyZDVxdYMHUf7bTS3dXBWfjwv90yFi09fS0RLs7jd7jlpltXMcZK5qDyNu967DX9A4n13N3C030Z5ZgK/Cz33lWcnGLe7uXZ7cGLsXS8P8O+2CapyEnnvWbk81DhK0+A0b9uWSWq8lt8dGCDTpGdbromXuqbITzagUQk6xx3oNWo8/gBDNhcalWDI6mJjRjxGvZbU1FRKS0upqamhqqqKuLg4hoaGOHz4MI2NjQwMDESNbns8npidaCFEvhDiGSFEqxCiRQjxiSjbnC+EsAkhGkL/vrzc/Z+2iEasAjpyqsTj8YRDaLF81kJOQ0dHB729vaeETWNtW5OdmWPHjuFwOBaUEpdZytGQDVZmZiabNm06Zfv5P6tUKpKSkigpKWHnzp1s3bo1fCJGSgS/mr3rK6HArDtFe+OK37Ty5T8djDl0uh4O12rbW41G4yn1HT6fj7a2Nmpra7Hb7Tz88MPYbKcW7WVnZ7Njxw4AEhMTqaiogODkxLcQHA1P6P+3hh6HR8RLktRNUM1vlwjOQjFJknQgJMBzd8R7zkhW4hjI805WkyqJtk/ZToyMjHDs2DEqKyvJy8tb4p2L7y85Tku8Xk3bwAQ+azBPP42R8swExu0eLLMeNmUl0jZix6hTU56VQMOAjZK0eEwGDUf7bGzLDUY66nqm2L0haC//8kIT5SY/fgm6ZzVsNgdweQP86dmjDAwM4HSemSnKpYjsfJPTLGazGb/fvyZznCqyErj3pmrSQrNLDvdZKUmL4+uX5mJz+fnon1pwef189pISKrIS+FpI9fODuwtIi9fx/ae7MWjVvG1bFi91WZic9bCryEzLsB23L1iHMznrwen1Y9Sq6Zl0EqdT0zg4zTlFSafYGJ1OR2ZmJhUVFdTW1lJaWooQgq6uLurq6mhtbWVkZASPx7PSjhMf8GlJkiqAswkOVNscZbvnJUmqDv372nJ3flodjeV6mpGpksTExJirZxdyNPbkBcVsdu7ceYrHF6uj4XQ6mZ6eJj09nc2bNy+r6GuhE358fDysGJqTE+zGiDWEqdVqwydipERwpLe/lJz4SlhtRGOhfTXdvpcfXFsRfu3hLh/ve9QeU+h0PcS11nKommwsDQYDNTU1PPbYYyQkJPDyyy9z6623Lvrenp4ejh49CnCQeSPigcgR8dFGOufyOhoRvxiHDx9eVapkPvKCqbW1laGhIWpra5c9wTka8nUuSRLpBkHvhJ03760BoGNslvKsYE3ZidEZKrISGLa5scx6qM5LonFwGgmozk/iSJ+V5DgtRWYNB7os5Js0JOsFTeM+rt23HYNGRctkgLftrsKoVdHlCrbut7e3z5nUup5F5+sZaY0cObDYHCePZ/mCZdlJBn57w1ayTHo+8kAzTYPTbEzV8YV9mbSOzPCNxzvRqATffHM5dreP7z3VRbxew83n5HGkz0bT4DRXVWXgl+CptgkqshIISNAbciocHj+WWS9JBg31AzamXT78EuzbkLSojRFCEBcXNye6nZubi8vl4qmnnuKSSy5hbGyMxx57jJmZ5QkjSpI0LElSfeixHWhlDW3CaU2dLCeiMb+rZCUpl4VSJ3vKg/UOC3WqLNfRGBsbo6mpKawuuRyizUaRe+17enpOMVhLRTSW+ixZHlj29pOTk8OD4RwOB/39/WdcUel8p+WSTenUf/68Odtc+tsO8ko2LqtCXZ6FsZaspzJoIBAgPT2db37zm/zlL39ZcPuZmRmuvfZafvjDHyJJ0vQiu37dj4hfiLGxMWZmZiguLl5VqmQ+Pp+P/v5+9Hr9KSqfK0HW76mrqyMnSY/dryPNZCQ9UUfH2AybMoNRihMjdrbmBdMkxwZsVOcn4fD46RibobYwmc7xWSwOH9sy9Rzps/LSocOcXWymcdSDRq2ipjCJl7qm0GtUnFWUzIGeaXJzc9m2bRs1NTXhSa1DQ0P09PTQ29u7ZjoxkaxnKVCk/VhojlNzc/Oy5zhBUML8tzcEp7J+9E8tDFjdnF2QwAfPK+DvjaM82jJOaXo87zsrj0eaxzg+bOfa6iwS9WruPzLEhrQ4MhN1HOmzkZ8cbDbotzrxB4Itzd2TDrwBCctssM5uQ1ocZWmGmGyMPD6iqKiIK6+8kl/+8pdkZmby9NNP89nPfjbm36MQogjYTnARM59zhBDHhBCPCSEql7vP09Zou1REIxAI0NHRgd1up6amJlzwuRIpYdloS5JEb29v+Pm8jOV3qkQjslCzpqaGI0eOLLp9JPMdBZ/PF3ZW5s9Ribb9aoq01Go1aWlppKWlAXDw4EFUKhVdXV04nU5MJlN4jkms0aP1imjIaNUqmm7fO6cw9LwfHOArV5Zx3fbscJX6/HkLGo2GpKSk8HmwVse4nsqgyxHr8nq9XHvttbznPe/hmmuukZ8eFUJkS5I0LN4gI+IXInJWiTxrY62YnJyku7ub5ORkSkpK1mSfMzMzjI+Ps337djZOTVJ/eIBAQGJjRgLtozOkJuhIT9DRMmzn+to8tGrB4V4r19cG/3xHeq2cUxK0a0cG7JSZAnj9ElJqCReaBY+1tXB82M65xcl852QXA1Yn+8pSeLZjkpMTDkrT41GpVOHrX6fThWvW5DlAkfZhtY7VerLQdS7fiKPNcers7ESn0y06xymoDlrFe3/fwB1Pj/CTtxTx4T2FHOie4ttPdHJ2sZlbzwmOkv/xc7389PoqLt6UxpNtE3j9Etvzkzg2OI3JEFL/9fixOoOOxaDVNcfDf3dtzqqjppIkUVxczHe/+92Y3yuESAAeBD4ZZRFTDxRKkjQjhLgS+DvB+q4lOS2pEyHEohENuS1Uo9Gc0lWykiFG8iqhoaEBh8MRft7uWrg7YylHw+PxhB2LHTt2LNn5Mp9IR0Ge+SLXY0S7cUVzNNYKlUoVDrvV1NSQlZWF3W6fU908PT192qMdizkETbfv5RfvemX+11cf7ZjjfESrUNdoNLjd7jWtUF+PiIb8vZfKrUqSxK233kpFRQWf+tSnIl963Y+IX875P7+rRKvVrkmqMFLlc+PGjWuSgpEXQb29veEBZKXp8bi8AfqnnGzMCGpl+PwBqvOTqO+3YdCqqcoxcaTPSn6ykVyzgZe7LWzOTsRk0PD08SEKjZ6gMzIwy7khB+TFk5Ph1tbnOizs2fDK42hotdo50YCcnBwcDke46Lyrq+u0F50vh+UuKCLnOO3atWtZaZai1Dh+cO1mhuw+7nxpDJWA/766nFmPnzuf6SbRoOH6ndm8cNJCn8XJxZvSmXH7OdxnpTDFGBqaFzy2KYcPq9NHr8Uxx8lIiddydVXmqm3MStWFhRBagk7GvZIk/XX+65IkTUuSNBN6/CigFUKkLWffr3qNhpwqKSsri9pVspIpjG63m+Hh4fBYY5ljAwtHmRdzNGw2G3V1dRQUFCyYelkK+T3j4+McPXqUzZs3h+sxFts+kvW4sFUqFWazOdyOWVVVhdFoZGBgYFk36PWOaERybkkKhz67e85zC7XA6vV60tLSMJlMayoEtJY1GpHIjsZiBuLFF1/knnvu4emnn6a6uprq6mpCK4s3xIj4xc6NaF0lK4mGzkeeVRSp8rna9kK5HdZut7N169bw96oMta22DNvZnJOI2xegc3yWnQVmBqacjNnd7Cgw0zw0jcvr5+ziFA72TOHxeNhohuYxLxmpyewoMHOga5K0BD2V2Yns75ikMMVIUaqR/Z0WMk16KjIT2N85ecqxRVvgJCUlUVxcHC46j4+PX1HR+Xo7Jiu1RYulWQ4fPhxOs+zMN/HuLSaePjnNoy3jlKTF8c6dOTzUOErXhIO3b89GrRL87dgIO/KDafDGQTsZiToCEvRMBhe9Q7agVsagbe7v7IO7C4jTqVc9IXpmZibmYtDQguM3QKskST9YYJssuQ1eCLGLoP9w6kkUhdOWOplfa7FQqmQ+sUY0BgcH6erqIjk5mezsuUJQ99UN8JWrN0V930KOxsDAAP39/VRXV69KO16SJNxud7geY6lV0VqmTmJBp9ORlZVFVlYWkiQxMzODxWLh+PHj+P1+zGYzKSkpmM3mdVvZL4ZRq6bxi3vY+s3nw89t+cZ+6j9/Hlr13OORJCk8hCsxMXHRNIscOo0cax2N9YhoyCxlIM4777xo58Cjof9f1yPiF2Kxse6rdTRsNhvNzc2UlpaGBbhiLRqfj8Ph4NixY+Tl5ZGfn4/L5Qr/TUvTE9CqBceHp3lnTTA1Ut9nC4tu1fdZqSk085sXe2kcnObskmQePDrE3545xN6NGfxg/xAjM352l6Twg3+fZMzu5vyNafxsfzdTDi/7SlO57/Ags24fe8tS+NWLfdicXpKMy0+HyEXnmZmZSJLE7Oxs2D74fD6Sk5MXtQ+nq0ZjpSyVZtmd4uVgiob/eaKT3SVm3n9uPg8eHea3B/r5+pvK2ZFv4tmOST5xQTGFKUZOjM6yNxRNGgkpsnaHHA6765UFdJ7ZwNt3BO9Xr1JEYzfwXqBJCNEQeu6LQAGER8VfB3xYCOEDnMD10jJvSqctdRIZmVgsVXLKAS5zLLPf76e5uZmJiQm2bt0a8x9qvgEJBAK0tLQwOTk5R0p8Jfh8Po4dO4YkSVE7XqLxajka848hUqmvuroas9nM+Ph4WHzK6XTOMZarYbmGQoQGtEWy49svnCKtvNAFuxwhoKGhIVwu1ynvXY8aDRmHw6HMOYmBpQS4VupoSKEJzsePH2f79u1zVD5X47xERjPz84OlM5FF4jqNio0ZCbQM2ckzG0hP0HG030pFViJ6jYojfVZ25JsRAg51T1ESF0wFW/WZXLItOJG6cczDvo3BaPb+jgnOL08jIMGLXVPsK0vB65c40G1lX2kKAQleODl3BtRqi87NZjMTExNh+9Df34/D4Tgttmsto6sy89MsKcnJfKjGjM3l42sP1jHS28mFJYk8fnycaZePvWWpdI47GLO7yUwMtrD6QhOqO8eDDkY01eOvXFkWXiitNqKxEjsiSdILkiQJSZK2RrSvPipJ0s9DTgaSJP1YkqRKSZK2SZJ0tiRJLy13/6c9dbJUqmQ+y+k6kWseTCYTW7duRafTraiuQ36P7AjFx8ezdevWVQ2nkY8tPT0dgyG2auL1uHBWg3zRyeJTZWXBOiC5l/vEiRMxzfiYT6zft+n2vXxkb2H454t/dJCGiPTYclcG0YSA5BbGaGmWtXQ0Ig2wMlBtcSLPjeUIcK3EKZCLtKenp9m1a9cpE5xXEtGY310WOcF6/v42ZydyfDg4MmF7fhJH+4Py4tvygrUZ5jgtW3JM/KtpAM/0BCVpcRwZnKU4NY7cJD1HRzyUZyaQnaTn2fYJqrJNpMXr2N8xyfb8JBINGp7tmKQyJ5GUeC3PRUmfrBS56Fy+KW/cuBEhBJ2dneFOD4/Hs2L7sBSnw16q1WrO2pjL1VsyeX5IwpicyYVFBty+AL/512HMgaD9OTEyQ5JRi9XpZXzGjQD6p4IOxqh9bovtm7ZkcHbxK/ouq41onIl25LQ6GmNjY8uaVRLJUhGNsbExjh49SkVFBQUFBStS+ZQ/JxAIMDk5uaiUeCxMTEyEVzDLbYOVORMiGksRFxeHXq+nqqqKmpoaMjIywjM+6uvr6enpiWkuwUoMxYf3FHLXe7eFf37v7xv4y9HhFe9PjuJErtJSUlKYmpqivr4eh8MR8/dajEijooyIX5pYZpXE2ho/MzNDXV0dKSkpVFVVRV1VxupoeL1ejh49is/nW1C/J/I82pJrwur00mtxsj3fTP+Uk3G7m9rCZFqH7UzanZQleOiY9FC0sZLdG1KpCyl97i1NoXnCi9sXYF9ZGi+etOALSOzbmMqLXVNIksR5G5J5vjNYBLpnQwovnJwKr7jXGqPRSF5eHlu3bg230Pr9/hXbh6U4HY6GfL1+cHcBbl+AxzrsXLJzI2nxOgb9Jirzgve1/cdOYJmyQsBP9/gMKfFa6haYnPvFy0rn/LzaiMaZaEdOi6Phcrlob28HWNaskkgWWpUEAgFOnDgRNjjzVwmR77nn5p3hx54FpHdVKhVWq5XOzs5FpcSXgyRJdHd309XVRU1NzZxjWy5ySNVqteLz+c5IRyMSlUpFcnLynKJSvV4/Jx2xlGCOXFMRKzsLknjso7Xhn7/6aAd3/LN9Teop5DRLaWlpWP018nvJxXDR0izLIdKonIkG4kwi1lkly027QlDls7GxcUmVz1iiJHa7PaiPkZOz4CTX+fo68uTVup6pcG3G4T4r524Ipjruf6qOS6pykYAXuizsLUvF7QtwqGeKvWWpePxwsHuK8zem4fD4qesNPra7/TQMTHN+WSoWh5emITv7ylKwu3xziuTXy87ISsZxcXHU1NRQWVk55zpaiaDWfE6no1GQYuSsYjMPN40hAbuKkjg6ME1xbjDNlpKRi9AZMWgER/us2JzeOTUZMn+4qTo8UE9GcTRWyPDwMIWFhVF7lJci2oXtdrs5cuQIGo1mwdxs5MVbW2gOP/7Z/u5TPsPn84V18peSEp/P/IvS7/fT2NiI0+lctMh1OfsdGhqiv7+fhoYGLBYLQ0ND6yKisxoWurh1Ot2cdIRc+CZXcp88eZKpqak5f6fVGIo8s5EXP/3K2PkHG0b49D+617yeQqVSzflecsFYW1tbeET8xMTEsm9GkUbF4XCsqhbo9U5/f39Ms0qWIxIYCARobW1leHh4WSqfy41oDA8P09TUxNatW8nKylpwu/k39pK0OJLjtBzutVKZk0icTs2BLgtZWhd6NYyQzL6qIlLitezvmGRXUTIGrYr9HZPUFprRq+HZ9gnOLk5Br1HxbPsE55SkoFUL9nda2F2SjFrAcx2TnFOcjEYl1jR9slzmpyvnd3osNfE4GqfL0ZA/4+qqDAatLtpGZihNj2fM7sHtC6BVC5w+P4M2D0aDnlFHgGjr25uqTRTE+U/5jqtdIJ2JtV6npeukpKQEu93O+Ph4zO+d72hYLBZaW1vZtGkTqampUd+zmAbFT5/r5hMXbgj/LA8ly87OxmazxazIFnlyyxXl+fn5K559AMGVW3d3NyaTiYqKimDxY1NTuNdbFtFJTU1dkcjW6SZaJffU1BRjY2N0dHRgMBjC32M1hsJk0FD/+fPY8e0XADg8MMtXnvFxzxqJK81HLoaTC+L8fj82mw2LxUJ3d3dYFjklJYXExMSo3y3S0ZiZmSExMXFdjvX1QHl5eUypkKVSqC6Xi2PHjpGRkRGeL7QUSzkacheM0+lk165dS16b8z9TCEFtYXDyqlatorbQzP4To7w5e5ZdxSkcHrCjUgn2lKbyXMckWnVQ6XN/xwSfu6SEyjQNz7ZP8OWryjm7OJln2yf4wmVl1BYk8VzHJJ++qITt+Uk812HhP84vZmdBEvs7LHzqwpLw56/XdNBYBLUsFgsjIyO0t7djNBrDWiOLLQJPh6MRGXU9uygYfTrcZyPXHDyuPosTr18CCYan3cx4op+v23ITeW9tTtgG6vX6sK1Yi4jGmbZgOS13qNX0tMvvk0JTUsfGxti5c2dMUYeFGB0dpbOzky1btqDVarFarTG9PzK/Ojk5SVtbG5WVlZjN5hUf09TUFMePHycnJ2eO0yMXYhYXFxMIBLDb7UxOTtLX1xdW9pOVEE9nAelKLm6NRkN6ejrp6elIkoTT6cRisYSHPEmSFG6Ri9WJ0qpVHPviHraF2l8bRtx8+q/H+f410eYDxcZSkaRIxwKCkbepqSkGBgaw2+3Ex8eHX5fP3/mpkzPNQLyWWczmTExMcOLECSoqKmJKky52rrvdbhobG0lJSaG8vHzF12FNYTJPtI7TPzlDgd7Jc3Yf2RsqOc8zxrf+1cGwzcXesjQeOjZC0+A0+8rSeK7jBH0WJ9vS1dQ3u+gYm2XfxjSe++cJuicd7ClN4X+e7KLPElQG/f6/uxm2udhXlsJ3ngwqhuaZjSs63rVGo9GQkZFBRkYGkiThcDiwWCy0tbXh9XrntNhH3pBPZ+oEINOkJydJT/Owncsq0oGgcwHQPjYLEDVdAvC7925Dq1aRkREcSyTbwK6uLqampnA4HHg8nhWpsZ6JqZPTqqOxkmpjtVodLqiKi4ujtrZ2RWGlP95Wyzt/XQdAv8WBcyJo/Hft2oVWq8XtdsfsCAkh8Pv99Pf3MzY2tqpUCQQ1OwYGBtixYwc2m43Z2dmo28n5Tnl6q8fjCTsd8qpYjnacyZLB8MqAoLi4OIxGI1NTU6SkpISjArFoXMiohODoF/aw/VtBZ+OJ1gm+8kg7X71646qONdaQpl6vn6NJImsOyAYzKSkJrVY7JyK2FgZCCHE5cCegBn4tSdK3V73T1yDRxP7kDhCLxbLq6zUSq9VKS0sL5eXlYan/lVJbZAbgj8/Uc0FFPvc0n+TlninO2ZAKdPBSl4ULy9NQiWAL69uqg/oLz5+cYmt68Mb7bPsEV23J5Gv/PMETzUMUaYN1GE8dH+H8TRl8/9/dPNdhYV9pKt95sov9HRbeXZt7xtWCCSGIj48nPj6e/Pz8UzRwtFpt2Natx2yj+cy3AXlmA8MRwlsnRoNDzGRRrmi8/F/nnqL5I8/Nys3NpaWlhdTUVBwOBwMDA0iSFNYnSUo6dbLrfGZnZ8+4yOhp6zpZqdCN0+lkbGyMnJycBeW6l0N1/isFmRff+RJCiLBM8UqPTwhBS0sLs7OzqzJacp54YmKC2tpajEZjTF0n8+shcnNzmZ2dDUsGr6ek+FruUw5LpqSkhIsvZY2L3t7emIrGNCrBI+97JUX212Mj/PrFvlUd32pyp5GaA9XV1ezYsYO0tLRwSvEjH/kIAwMDdHd3ryp0LYRQAz8BrgA2A+8S0cc9v+ZYbX2XrPLp9/vXzMmQJIn+/n7a2trYvn37qp0MgFS1i0QtDPgSObeyiNR4HQe6LGzMiCcjUc9z7RMkx+nYlhdMh+SnxFGcFsfznZMk6wWbsxN5tn2CXLORkhQDjx8bYHtpHgVJWp5sGWb8ZDNZCWqePD5MbpIurBj6WmC+Bo58T+jq6qK1tTWckl2vFtr5zkxqvA7LrIfJ2aA9GrQGHYzuyVO1MgCe+cTZxOsXX99LkoTJZAqrsVZXV2MymRgbG+Pw4cM0NjYyMDCwoD7JSiIaQojLhRAnhBCdQojPR3ldCCH+L/R6oxBiRyz7P22CXSvxNAcGBujq6sJkMi1aULUS5kuJr2RMvM1mIykpicrKymXfgOafGPIMFZ1Ox7Zt28KhwEjHQg4JLuemLksGl5SUsHPnTrZs2YLRaKS/vz98o/Z6vXi9C899iZX1lCCXi8Yi5YGdTidNTU1LFo2phcTD732lPuPOZ3t4qWvlBnUtVUHlNEtGRgb5+fl88YtfxOfzcf/997Nt2za6urpWuutdQKckSV2SJHmAB4C3rMlBv8aIdDTkMQL5+fkLdoDEiiwSaLVaqa2tPUVzI1YkSaKrq4u+3l72lWdwsG8aSYJzSlJ46aQFSYJ9Zam8eHISrz/A3rJUmoemmZhxs68sjUM9Vly+AOdvTONov5XGtk4qkyU6bRLaOBMXVWTSZvFTsXU7e0rMHB2c5cChI1SY/BzsmWLCunatpgt9v7WOOBgMhvDcpvLycuLj45mZmZnTQruWi6z5nXHy1xm0utGoBM0hDZRoPPbRWtISlhZrnF+jIaeaZf2i0tJShBCcPHmSuro62traGBsbC9t0h8MR07kYukaWWpxcQXBWUhnwAeBny/4ATmNEIxbkWQAWi4Xt27ev+OSMPLkGBgb45nmv5CAPzLvhxOJoTE5OUl9fT2JiYkwO0Pye+ZmZGQ4fPkxhYeGC4mXycyv9HciS4pHV3YFA4LREO2JlKUMkF43Jnv62bdtISEhgZGSEw4cP09TUxODgIE5ncDURCAQw6jQc+K9XulE+eH/zKQqiy2U9J7fKf5ff/e53NDY2UlxcvNJd5gL9ET8PhJ57wyGnTiJVPuWc+GqRW22TkpIW1NyIBVk92O12s3PnTs4vz8Ay66V5eJp9G1OZnPXQMmxn38Y0Ztx+6vus7CsLRk9e6JwMtbYGaLME2LMhOaQGauWdeyvxBSRe6p5ib1kKvoDEwV4bl23JwRsAb+oG3lxTgi8ADx9qp7u7m7GxsZg6p84kjEYjJSUl4RZ7g8Fwytym1bTQwlxb7PIG0GlUtAzbMWpVYfXP+fz9AzuXXQOz1IImLi5uzlDM7OzscAT7qquuwuv1cuDAgWUvJg8dOgRLL07eAtwtBXkZMIvgpOhlccY5GrOzsxw6dAiz2cyWLVvQ6XQrOuFlxyEQCNDc3IzFYuGtF54dfv2m39fP2X45N3K5IFXW2oh1wFJkRffY2BiNjY1s2bIlqvGLFsFYrTMg36j1en14QFJcXNycC3ElvezrGdFYDK1WG+4YqK2tpaSkJFz1f+jQIcbGxpiZmcGoETz0wZrw+y7+0cEF9VQWYz0GqkWuXjweD3q9fsURwBDR3vjqe5FrQKy/E7kuZiGVz5Xi8/mor6+nvLw8LBK4GgKBQFg9uKKiApVKxe4NKQgB+zsmOW9DKkLAcx2vtKo+1zFJRVYi6Qk6nuuYpLYwmTidmoYxH+7hdswGNZ0OA9vzzSQZNezvmKQ6L6gM+lyHhR35SSTo1TzXMclZG9JI0Kvp8yZSUlJCfHw8VquV+vp6GhoaTquM+GqYbz/kRdbmzZvDir9ut3vRFvtYGba5SY7T0jg4jd0d/T71tw/sZEP68ou8Y+k6kev15MXXXXfdhSRJ3HvvvZx77rnLsuWDg4Ow9OJkVQuY094XudjNZGRkhK6uLqqqqsL97KvpVnE4HLS0tJCdnR02COkJOsZngr/8yRkPqcsIZUHwj9/S0oJKpQoXpMZaOCU7Gl1dXUxOTlJTU7Og6NDpUAadPyBpZmaGyclJmpubCQQC4U4Wk8l0WjpZVhNajVY0duLECRwOB/X19Wg0Gj5xTip3HghqBuz8nxdo/OKemD5vPQaqzTcqa7D/ASA/4uc8YGi1O32tIbetq9VqqqrWZnacLMTn8XjYvXs3RuPquzQmJiZwOBzs2rVrTrdaSryOrbkmnu+Y5GPnl7A118T+jgk+dn4JNYXJPNc+wWcvLWNPaSpPtY2jElCbn8ixgSnKSku5YHiUZ05MALCnNJXnT1oQEFQGPWlBrRKcW5LM/k4LX4l4/MGdJoxGI4WFQWl/l8vF5OQknZ2duFwukpKSSE1NJTk5OWane70dlcXsh6z4m5iYuGCLvVxUuty/q9cfoMfiwGTQ4PRGd1Ye+XAthSmxnSersYNpaWloNBp+8YtfxPR50Z6e9/OqFjCnrUYDFlf5bGtrY2ho6BTRnJX+wn0+Hw0NDZSXl1NYWBjez3Of3hPe5tzvRh8xPh85TGo2m6mqqgrfDFZSQNrS0oLL5VpyuNrpliCXL8SioiJ27NgRTktEjoOOFnZc62LQtXJo1Go1er2e3Nxcamtrqaio4MpNyZQlv2Ict37z+ZhqVdYzdbKGv8c6oEwIUSyE0AHXAw+v1c5fCwwPD4ejhcsZYLgcZHvidrtJTExctXaNHB3t6uoiPj4+qlDY3tI0jg3amHJ42FuWRuPgNJZZD+eXpdI5PsvAlJO9G9OYdvl4+lg3JQYHU27BpN/Avo1pWJ3eoBroxjSmHF6ah+3sK03FMuulZSj4eHzGQ+vITPhx5+TctKJcAyHLiKenp68q2rGeC5ZY7Edk3UNtbS2lpaVzoqELCe9Ffs+W4Rmc3sAps0tkHv1I7E6GzFqUCyyXkObTUouTVS1gTmvqJFqLqzzATKfTsX379lW3Y8qrDqfTSVVV1SmzENSquX9Al3fxaInFYpkTJo0kFkfD5XIxPT1NUlISmzdvXvKG9Wq3mclpiYqKCnbt2kVhYeEpYUer1XrGOhowt0LcYDCQk5PDXz+ye842b//FQY4cOUJXVxc2m21JMaa1Tp3M3+dqv78kST7gY8C/gFbgT5Iktaxqp2cIS/1u5O6tkZERamtr16zFb2ZmhkOHDpGZmUlFRQUajWZV4Xa5Bk3uVtNoNFGvoz1lqUgSvHjSwr6yNCQJnu+cZG94Ousk5xYnoxLw1PFhbrwkOGrhufYJztuQGlT9DD1WC9jfYeG8DcHtn+sMPhbMfXywf3bBa3p+R5jc8SEPTTtx4sSrWtuxUvsht9jn5+ezbdu28FwW2aE6evRoWDog8nezv2NhRdXHP7qL/OTTr0vi8Xhi1piqra2FpRcnDwPvC3WfnA3YJEkaXu5nnFZHY35EI3KAWUlJyaqNrLzqcLlcpKamLrjqaP7yheHH277+TNRtJEmit7eXjo4Odu7cGXV403KdgampKY4cOUJCQgLZ2curnzndEY2ljiUy2lFdXU1iYiLDw8M4nc7wvA+3e2VFljJr7WgsNDslcsT8SVsAfeaGcPRGLiqNNr9kPVMna6kBIAXHO2+UJGmDJEnfWJOdnuHIUUeDwUB1dfWa6ceMjo6GoyM5OTlAbDNUFjrO5OTkcLfaQmqcVTkmzHFa9ndMUJmdSGpoCmtxahz5yUaebR+j60QLm9L0dNi1ZCfH/3/2rjO8jTLrnpFkyb3JvXcnjrsdp5AKCSULSYAQ6lJC6J1lKRuWj6WEukuH3aWXhewmARJSgJBAEtLtxL13uUmyLLmol/l+yO9EkiVZ1U4g53nyRB7NjGakmXfue++55yAlmIWfm8UI8uWgJDkUvzSLEervg4KEYBxolSDEzweFCcE40DLElGdMXx/tHnP4XJzNdkxn6cQZWGuxJ6rMSqXSGMwKhdhRK7K6/b775zBKoVONsbExp7lI48/JCZMTiqLupCjqzvHVdgFoB9AK4H0Adzv1GU4dkYsgPz5xUyRtXBKJxGMqn6Qmm5KSgri4ONTV1dmcdViKpYhG1YgKOt1Tr9frUV9fDwB2BcIcyWj09PRAIBCguLgYjY2NLqcYpzvDYQpT5b7R0VGkpKRAIpGgvr4eer3eKXEZU7hqqmYL9gKD44+eh7KXDwEArv20GpVPLDRTIiRKr6ZKhFqt1iuBBovFOudz4gaIymdOTo7VCYErDyCaptHc3IyxsTHMnj3bLHBxVROI2CdYHqet/bFZFBak83Fw3ItkUSYfPzcNwkAD56WF4OtTA3hi0QxcUhCGv//UCuGIGvmRLOxoN5ZblmZF4MUfWtA/rMbiTD5e29eBgZHTr4UjaizODMebv3RicEyDRRnheGt/J4YUOqQ4eW7k4UxUVq1xO7ytVuktZVAej4e4uDjExcXh+PHjiIuLw+7qHkYF1BT7H5yL8ADPlOtcgasW8TRN74IxmDBd9k+T1zSAe1w9rinPaKhUKpw8eRI6nQ6lpaUOBxn2HrLEedGZWUfNX09nNRa+epB5rVQqUV5ezrSt2XuwWLarmsKWCJejAxQJLFQqlde8BzwBIkSVnJyMoqIiRlxGKBSaZQccyXZ4s3RiCT8fNl678nSreOG4iighlZoKaxGl0s7OTvT396O7uxtyue0UszMgGQ1XZiK/N1j+ljRNo7W1FR0dHSgtLbUaZLhCJtdoNCgvLwebzTYT9TPdp7NmX93d3Tazo/bGkUWZ45yK/lEsyuRDptTi1wYBYukhaAxAt9oXizKNnk8HWwdREMmGYbzEsni8xPJL8yAWZ4zbl7dKTF4PYdH464OtQ1g4/vpUv2tOxKawlu0YGRmBVCr1WieLtyXIyXgSHByMb1smjmdvLuair6PZreyuu9/HmSg/Dkxh1wlFUdDpdGhoaMDMmTOd6mcnN7ZlfdxgMKClpcXmrMPeAMPlsBAVxINo1HhBHG6TQK/X4+TJkw77H9gKHLRaLaqqqhAWFmZm1mRvQLGG0dFRVFdXM+eq1WoRFBTkMdlkb8DSx4RkB+rr66HT6RAWFgY+n2812zFVpROCZTPMVRyf2tGEZy7NNltGlAj5fD78/PyYwKC9vR1KpZKRew8LC3MpXU/2dyY6Lp7J0Gg0qK6uRnBwMEpKSmz+ziTQcJS8OTw8jNraWmRmZtoco5wpnRgMBtTX14OmaZSWllrl+NibgCzM4I+3uQ7ihjmJYFHAjooOPHnFbLxXcxQHmgfx5IpsRAfzcKBFgrUJLEQEcvFL0yAuy4tBcrgffmkW48qCSMSF8HCwdQhXFcUiPtQXB1olWFMUg5hgHva3SrCqIBphfmyc7FfhVofOzjGQbIevry/0ej0yMjI81sliCm8HGmQ82VErQl2/eYnp6CPz4c9lQy6XTxjviC+LI9lQTzi3nomZ0SkJNAjfQSKRIDU11WnRHHJjm16EGo2GeZgXFxdPuMAcmXUcfGQhsv/vJwDALZ+dwtsLgHnz5jo84FtLeZISTnp6OqKjo83ec7T8YTAY0NHRAbVajdJSo/5De3s7U9Ih5QnSeurpdL4zsHc+pi2nSUlJ0Ol0kMlkE1rKiCujpzkQjuyvZsMi5D1v7D76pkqIJy7KgJ+P9cHOYDAw/iXx8fFm5nYCgbHFnKSPHW0JNs1onAs0JgdFUZBKpairq7MbDBA4k9EgZc6ioiK72SVHSyfEHTYmJsau3oa9/YUHcJEbZ2xtPT9ajaxwDloVPIQE+mNeajh+aZHgSQCLMvjYXSfEmnguFmXy8VODGHoDjUWZEdhc0Qu5SoOF6WHYVi2CWmfA4oxwfF05wLzeXiOETk+jNCEQR7tGoTfQE4jz7oKMFSTbQe4h4l3S0dHBeJeQwN6ZwMHTpVdLGAwGdIzQ+NvhJrPlx/58Hvy5xjGDuDknJydDr9dDKpVicHAQra2t4PF4TAutrevLXefWsbGx32+gARhvpuTkZJe+RMLtICCzjqysLERGRlrdxtEB5vmVM7BheyMA4N5fgZrFjtfXLDMUYrEYzc3NyM/Pt8p4dyTQ0Gq1qKysZB7QZBu1Wo3o6GjGPEgmkzE2ygEBAcwF7Kl2Pm+AONBGRERYdWWkKAp8Pt9jAYej+/n5gblY+sZRAEDZy4fMyKKmsKZ5QcztAONvNzQ0hN7eXjQ2NjJurXw+324WiqKoM3aAOJNAJix9fX2TBgMEjowDpMyp0+lQVlY26RjlSKBBXJgdyY5ONi6clxaGfx3sgpoOxSWFyXhtbxtEo2osyozAz82D6JAojAHFyT60yowS5F+f6scpwTAWZfLx+TEBTvWMYVF6GP57cgBH2iQ4LzUEX5b34XiXcZ3/nuzHiS4ZyhIDsadlGA0DY8iN87wxl2Xg4Ai3w9Fsh7czGp8f78Vrh82VP8sfWwAex3Y2jYx3gLEsb3lu4eHhCAsLYzJungg0zsQJy5SRQZOSktDd3e2yyifZTiAQoKenxyOzDpVKhURdr9myzsExZMU5ZhtNUp6kJ57wMWw97Cc7JrlcjqqqKqSlpSEsLAzNzc2oqKiAVqtFcHCwWbmBpOQoimIe2LW1tYzFOp/PR1BQ0JQIbbkCawJbDQ0NGBkZQXl5OXx9fZnzcFUYydGBJyKQCx6HBfW4Wuh7B7tw18LkCetNFrhYCqARt1ZH0qjOpDz//Oc/47vvvgOXy0VNTc03AG6haVoGABRFPQHgVgB6APfTNP3D+PISAJ8A8IOR9PUATdM0RVE8AJ8BKAEgAXA1TdOdDh3INICiKMyePdvhwXiyQINkHaKjo830dtzZp6kLsyPXrr1xYWxsDBGaAdAAevXBWJIVgNf2tjGy4wBwoHkQa4rjwWFRqBnUY+0yPnzYFH5pHsTdi5Lgy2HhUIcMjyxPh59PE37tGMaflibDz4eFX5rEeGhpMngclrGsMisIFIBf24a8EmhMBneyHd4KNNQ6A658vwJdQ+ZGaRWPLQDXRpBhDX5+fkhISGDsBoaHhyGRSNDV1cV4HzmbxbHEmVqCnXYdDUdArOJra2shlUodkhOerHRCWk4zMzNR/eRSZvll/zppcxtLsFgs6HQ61NTUQKlUOi3CZQqJRILKykrMmjULfD4fLBYLqampTCYoNDQUDQ0NqKysRE9PD1QqFfOw8vPzQ1xcHPLz85Gbm2smK15fX+9VN0NPCmyRG5EYBxHm//Hjx9HS0gKJROJUoOpMZqT8sQXM63cPdMFg5XdyZn+EJJuUlISioiIUFxcjNDQUg4ODKC8vR1VVFQQCAROoOmPtvHz5ctTW1hL+TjOAJ8Y/MwfGHvhZAC4G8C5ldHMFjCZIt+O0MdLF48tvBSClaToDwGsAXnLoIKYBFEU5nRW1FxQMDQ0xY0BKSorD17KtwIDwMSQSCUMAd2d/YrEYVVVVuOy8gvE2VwmyowONDq4tg0gI80NGZAD2t0gQON7OWi3WG18nheLnJjG4bBbmpBpVP3kcNualheNA6xAC/X0xLy0Mv7bL4M/zQVFCEI50SBHAoZEW5oNDbdPv5uqsboc3Ao0WkRylL/06Icg4+bhzQYYlWCwWwsLCkJGRgdLSUsaluq+vj5mcuGIHcaZmRqdUgtxVOXGaplFXV4fExESHvQVYLJZN1UeBQIDe3l6zGcc9i1Pxzv4OAED2//2Epr8tm/Qz9Ho9urq6kJqaOkHMyxpsBRrd3d1MOtjHxwcURWF4eJhphSOp+dTUVGi1WkgkEvT29mJ0dBTBwcFM+o2cN0lFkpT80NAQuru7wWKxwOfzmRbjMy3bYXpM/v7+jIiOXq+HTCaDRCJBW1ubQ7VOwHli1de3leCK9ysAAAUbD04oobijDGotjTo0NAS1Wo1//OMfOHjwIBITExlHYHu48MILTf88CmDN+OtVADbRNK0G0EFRVCuAMoqiOgEE0zR9BAAoivoMwGoAu8e3eXp8+y0A3qYoiqLPlF5qN2FtzCElGKFQ6FJ7vbXAQK1Wo6qqivErcebeshwXSIZULBYzGdIF6eE42CoBTRs7UX6oF407uEbg82PdkKt1WJTBxysdUvQMybE4Ixwv7WlD37AaizL42N8iQadEgSWZfOxrGkSLSI4F6Xzsa5Kgb1SH8zIi8Pef2lDZ1Inz0kLxxUkxJKNKBPHYYLPZoCjK7XKmu5fUZNkOiqIQHh7ukbGNpmm8d7AL7x3snvDeqScWguNh/gpxqfbz84NQKERsbCxjB0HTNMPJCwoKsvs7yOVypvPyTMKUdp24ktGQSCQQi8VITU1l9PcdgbWMBqnF6vX6CenX+89PZwINwNgStiTLvCvBFDKZDJ2dnYiMjHQoyAAmDigGgwFNTU1Qq9UMoZWiKAwMDEAgEKCwsHDCrMjHxwcxMTGIiYkBTdMYGRmBWCyGQCBgAglTcqUlGVMqlUKj0TDOk55ge3sKtgYI084P4HSts6WlBWq1GqGhoeDz+QgNDTU7D2cHnMwo85mAQqNnSF6AZ5VB/fz8EBsbi/7+ftx7772QyWRoamrCxRdfjNtuuw3r1q1zdFfrAPx3/HU8jIEHATE+0o6/tlxOthEARlVRiqKGAfABDLp0YmcYLAMNnU6H2tpacLlcuxo5zuyTcMays7OZQNIZmAYuBoOB8VQqLS1ljm9hZgR21AhRPzCKxZkR2HKyD5WCYSzO4uOjw1040jGERZl8vLKnFd9XdWPJzDi8tKcN+1skWMy0v0qwbIaR03aofQjnZxuP9XD7EGaOd9yOBcZjeUYoPqsQo6JnDBdkhTPHptfrmYDD1aDDU5Mba9yOpqYmCIVC9Pf3uzW2SRVanP/GUegMEwOj/14R6fEgwxSkQyo4OJhxqtZqtZBKpejr68Po6Cj8/PyYiZZlkOxO6YSiqFcAXAZAA6ANJiVZi/U6AYzCWJ7V0TRdarmOJc7YjAaREh8cHER8fLzTdXrLFjS1Wo3Kykq7tdjNV8Xiqs1GVdU7/lOJ6ieXgmelA6G3txfd3d1ITU11KnAyJY+SFtjQ0FBkZmYyy9va2jA2Nobi4uJJW/IoijIjI6rVagwODqKjowMKhYJ5AJMOCPLA7urqQlFREUZHR63WP53Rc5iOPnjLWifJdrS3t5udhyszm/LHFqD0pV8BAHNeMSeGerorhhC/eDwewsPDcf311+OGG24ATdNYtmwZBgYGJmzz/PPPY9WqVcxrADoA/xl/25bxkT1DpLPK7dXZ39N0zCFW2klJSYiPd9h4cgJMs6VkLHCUnGprfwaDgRmjiAmkKRamj/MxWgZx45wkcFgUDrRIcN/SNATw2NjfPIj/W5GF6CAf7G8exAwfCWIDWfihthdXFUYhLcIfB1ok+OOcRKRF+ONIuxQ3z01EfKgv9tb24o5cFsL8fVDRq8CVpUkI4nFwuEOGS3JjABivfZIJ1ev1zGtPZTvcha+vL4KCgpgMrzVuB8mA2ruGfm0bwl2baq2+t//uPAyKxd46BQDWxxhiB2FPUJBIBripo7EHwBPjE46XYCzJPmZj3aU0TTs8GZnSQMOye8QWCO/B19cXpaWlLpFITQMNmUyGuro6zJgxg5kVWwOXw8a7V2bi7q0tAID85342K6EQzoBCocDs2bMxNDSEkZERh4+JkEcVCgUqKyuRmprK6E2Q+q6vry8KCgpcivyJiZhpanFwcBDt7e3gcrnMDUjKLKZuhhqNBlKplGFEk4s3LCxsygYRVwIDy5kNKUm0trZCoVCgqanJqZmNJYN8YESFmGDjrMHTpmqmDHPTAYKiKPz00092t/3000+xY8cOALjepMxhy/ioZ/y15XLTbXooiuIACAEw/QV6D4HNZkOn0zEt1Xl5eVYNzJwBGVsaGhqgUqkwe/Zst0zWWCwW5HI5WlpabI5R/EDS5irB3YvTUJwUiv0tg/jT8gzMTwvHgRYJDAYDFmdGYEetCMWzz8MSSRO2VApx4mQlMgO12NupgFAixbzUMGw91Q+VVo+ccBZ+7Vai8I8LMV/QiCPtUrApCmUpoTjaITU7RnLtE16RXq9nsh06nY5Zx9Y9MlUS5LY6Wdra2mx2sqh1Bvxpaz32t1q/9Kv+shAyqdTr5ebJuk4sJQNMy8pPPfUUTpw4AYPBgNTUVGRnZzvbHvyjyZ+mJVm3MWVhKJlRT5YBIAZGMTExmDlzJlgslkvcDlI66enpQUNDA4qKiuwGGYDxZsqP9UdG5OkUOtHZ0Gq1OHnyJNhsNgoLC8HhcJxS+gSM38Ho6ChOnTqFnJwcps1Tq9Xi1KlT4PP5yMrK8qhef1ZWFubOnYvMzEz09fVBLpdjZGSEMQkin2VqolZUVITw8HBIJBKUl5ejuroavb29E7w/PA1P1Fb9/PwYRUJ/f/8J/guOqHpW/eW0w+/yt44zrz1tqmYr0JgM33//PV566SVs374dNE2b9tttB3ANRVE8iqJSYSR9Hh83PxqlKGouZfyCbwSwzWSbm8ZfrwGw77fCzwCM44BIJEJ3d/cEZ2hXQdM0ent7weVymbHAHYyNjTFZEXtj1KJMPqp6hiFTaLE4k48m4Rj6ZUosSAvDwIga7RIlFmVGQKHR45RgBEtmRENrABCZgcvnZkFnAHZXtIGvFUGlM2DTnmMojvODUkejrn8M89LCIZFr0CySoywlDL0yFXplygnHQcZkLpcLX19fcLlcs/ZMrVYLrVZrFogQeFtQy9r+J/Nk2VfZitKXfrUZZFT/ZSFY42Vvb0+6nM2akix1ZmYm3n77bcycORPBwcHYsGEDjh8/PvkObGMdjBwua6AB/EhRVAVFUbc7srMzqnQyMDCA9vZ25OXlmTHw2Wy205KuFEVBIpE43BsPnE5h7rx3HhNgAMCT39RgRfQo0tLSEBMTM2F9RzEyMoLR0VGmO4UEHnV1dcjOznZIjdQVqFQq1NfXMyJier0eQ0NDEIvFaGlpgb+/P5NaJM6UISEhCA4OBpvNhlKphFQqZVJ1puqenlby9OT+CDnMdGYzNDTEqHpa62MHABZFIczfB1KFMT0+JNcgPIDrtdIJ4Fz/+7333gu1Wo3ly5ejqqqqEsBRmqbvHDdC+h+AehhLKvfQNE1uuLtwur11N04PIh8C+HycODoEY9fKbwIajQYdHR1gsViYPXu2R66tkZERtLS0ICgoCOnp6W7ti0ioj4yMIDU1ddLSy6JMPt7d34HD7RKGj/FLs5jhYBxokeCaUmOb6+H2Idy1KAU+bOPrB5amwZfDQp8hBLctysY7VeVoHKZwYbACFIDdpzpw7RwjB+5w+xDOSzPeMye6ZIgPtV+2tsx2mP4zzTJ420rBkfHDNNuhM9B4dmcjvq627XZe/ZeFzD69YapoCWdUbK1Bp9PhpptuQmZmptX3bZVk6+rqVtE0vQ0AKIraAPOSrCXOo2m6j6KoKAB7KIpqpGn6gL3jOiMCDSIlLpfLJ0iJ29vOFtRqNerr68Fms5Gfn+/wAGNKIG18+gLMeHovAGBzpRBL1mSbBRmA45LiNE2jqakJCoUCKSkpTJAhFovR3t6OgoICr/lcjI6Oora2FjNnzkRoaCgA43mayoTL5XIMDg6ivr4eBoOBCToCAgJA0zSjhknOXyqVQigUoqWlBSqVCv39/eDz+W6LhXm7E4ZYxcfFxTF97ENDQ0wfu+l5739wLvI3Gv1PFr9+FDUbFnk10HBGR6O1tdX0z0LTP2ijW+sEx1aapssB5FpZrgJwlaPHPN1w9PoYGRlBTU0NoqOjGTE4d9Hf34+Ojg5kZGRAJpO5tS9SHvb390dSUpJD11V+fAhC/Xywv1mCC2dEIDaYh19bh7C2JB4zYgJxoHUIt56XjIKEYBxpl+LhC9JRnBiCw+1S/Hk5C8VJITjcNoilIYPIjQ1Am5zCBQtnI6fhOE71KXFJXydiAyjsqenBZVkBCPXj4HinDKsLHHOcBqyXWEjQQbxNtFot2Gy2xx/azowfnRIFLvtnuc33eWzg/YuC0NPTw3A7POmwbAvuZk0ny4zaKcmSIOMmAJcCuMBWZpOm6b7x/0UURX0DoAzAmRFokI4KS6jValRXVyM8PBxFRUU2uw4cDTQIAzw1NRX9/f1Ot5mZRt2br03BVV91AgDu2dKEI2nRZs58jpROdDodqqqqEBwcjOTkZHR1dUGn00Gj0TDZDU9ZWltCLBajra3NbiBD9B4CAwORkpJipm45OjrKeHmQjg6DwYCwsDCEhYWBoiicOHECGo0GtbW1MBgMCA8PR0REhEtiYVPZckv62AlfRa1WQyKRoLOzEwqFYkKK3UDTHj8+y9KJozoa52AffX196OzsREFBAfR6PSMP7yoIN0sul6OsrIwRyHMVSqUSlZWVSE5ORlxcHKOnMhnYLArzx9tc9QYDFmXy8V2NEBq9AYsy+PjwUDdGVTrMTwvH2790QKrQYF5aOF7f147BMQ1yI31wuF2KxMxiLNJKmXXOy4jAh4e6kZkzG0v62/B1ZT/6B0RICzLg12YRenuDERER4bTHEgkkSPmqt7cXs2bNAkVRDKGUrOep9tnJ7k+apvHPX7vx7oEum+ssnxGBf1yZM4Hb4ePjw/i1eKtLz10emDtkUIqiLoaR/LnYoiRruk4AABZN06Pjry8E8Mxk+55WqrBMJkN5eTlSUlKQnp5u8yJxNNDo7e1FfX09ioqKEBER4XSqjqT39Ho9ampqwNar8c0ds5n35718ABqdYcL6tqBQKHDixAnExsYiNTUV0dHRyMvLg1AoZMRYOjo6IJVKPZ5WFAgE6OrqQnFxsVPZEqJumZubi7lz5yIxMREKhQI1NTWorq5mnAlZLBZGRkbg4+PDiIXl5eUhMDDQTCxMKBTa1DOxxHRqexAr6NzcXJSWliImJgb/XXO6H/2PHx5nmPaegmmG5Ex1XTybQAjVIpEIZWVlCAwMdFm7h4Bws1gsFoqKisDhcJwyVbOEVCpljBtNnaYduf9pmsaCtDBI5Bo0CeVYmMGHQqPHye5hLMoIh56mcbh9CPPTwkADONohZUog3x1vRryPHABQNaAyW2d+Whj0NI0TnTLMTgmDWkfDEBKHi4vTMKg0QDBkvP+PHz+OtrY2DA8PO3UfdHd3QyAQoLi4GIGBgeDxeOByufDx8WEmL4TbodPpXB4LJxs/hCNq5G88aDfIeOLCdPxj3NXZktsRGBjIuI8TB1pPuTgTuJs1VSqVLispA3gbQBCM5ZBKiqL+CQAURcVRFEUs5KMB/EpRVBWA4wB20jT9/WQ7ntLSCQFN04xMryNtYZMNFqZ6FIQBbo2INBkIH6G8vNysxeyZy2bgqe+Mfih5z+5D/f9dADaLsls6IV4HOTk5CAoKYlKGDQ0NiImJQWJiIgwGA4aGhtDf34/GxkYEBgYiIiLCrTIETdNMSaOoqMityNu0fTY9PZ2Z9Xd1dWF4eJhxYiQwzRIQsTCpVIqenh6GL8Hn8xEYGGh1QPBkoOHOzc9isRAaGjpeajLWb6uFamizgOPHjyM4ONgtx1YC03rsmSodfKbB1vWhUqlQXV09QTDLnUDDlkGiq3wDIhRoKRJmTzGYgKZp6HQ6zEsNBQAc6ZDi2tnx8GFTONgqwUMXpCGQx8bhdin+uiLT2J7aLsXyFREI4lI4IRjFG9eX4dUTh3GsQ4qL/5CNYF8ODrUZ1/dhUyjvluHmecampYruYZyXbgxSRHQQVpZmMmKBAoGAEQsk45U1XgHhoJCxyPQBaprt8PHx8Uj7rK3xg6ZpbD7Vj2d3t1rZ6jQ+v6kAhQnWxfJYLBb8/PwQEBCAuLg4hzpZXIEnsiWubj+uDmxteR+AFeOv2wEUOLvvKS2dAMYfvbbW2KfsKEnT3mBBXFwjIiImWLI7O8CoVCoIBALk5+ebsb+vLk3Aj/Ui/Douy5vzt71ofPoCm6UT0ltfWFjIBAwKhQK1tbXIyMhgRH0suRJjY2OM7DAAREREIDIykjFXmwx6vR51dXXw8/NDXl6ex7MDZNZPev5TUlIgk8lQWVkJLpfLcBx4PJ6ZWFhiYiIjFtbV1QW5XG52Y5JBypOsbk8FLU9dkolndhvbnSkfX8yeXco4thK11ckCKFswTZNqNBqnU9PnYAQJ6q21hroaaAiFQrS1tU0gppN9OhNoWE6ELMc8e4GLKceBoihEh/ghMyoAh9ulWH9eMkqTQvFr2xD+vDwDs5NDcaxTCg6LhbmpYTjcNoSqykoUxfmjblALDpuF2SnGddgsCqXJoSjvloHHYSMvLhgV3cP48/IMJIX7oaJ7GDfNTYQ/l43q3hGszI+ZIBY4PDyMwcFBhuNElG/9/f0ZNWdfX1/k5uY6RNK01z7riFiYtXt+SK7Bpe+dwKja/jXw8wNzERFof3Jnyp+wVCklviXO6nZYwp1Agx4v756JmNKMhlKphEKhQHx8vMMGRoDtwcKeIp+zD5m+vj709vYiNjbWaovZhzcWI//ZfYzx1oyn96Ly8fPMBgjTWm5JSQnDSxkaGkJLSwtyc3NtzlopimJ0LdLS0qDRaDA4OIi2tjYoFAqEhYUhIiLCZsRMAq7Y2FgkJCRY+QT3QdM02tvbGUExEihlZmZCqVQydshqtdpMMtdULIz4uBCxsM7OTnA4HPD5fIdLLI7AU8TNq4pjmUDj7n0q1Mw77dhKfici8T42NsZwWsLDwyfNduj1eq/xc34PoGka3d3d6O/vt2lg5mygQWbhw8PDVonpgHOTGCLMFxYWZjYRstyftUDDMsgg285PC8dXJ3qh0uoxNzUMr+1rh0SuwdzUMPzcLEHfsAolCQHY0ygGHZSI5XlsHPiuCa1iBeamhmFf0yB6ZUqUJIVgX9MgxGNqFCeF4JMjAig0emY5RQF5cUGo7BmecGwURZlk/YyTtMHBQbS0tECpVEKr1SIqKspuSdwWTLMdwGmxMPK/LW6HZaCxs1aEx7c12v2sjEh//HddsUO+JbbGFEu+lzvZDk+MW9NVfraHKQs01Go1Tp48icDAQMTGxjr1ZVibQfT19TEKl+50bJgGB1lZWXYFuKr/er5Z22vhi4fwn8tCARhJn9XV1QgMDER+fj5z0ff09GBgYADFxcVOlUO4XK5Zh4RUKmUe5L6+vky2g8fjQS6Xo6amxixb4mkYDAY0NjaCoiirnTx+fn5ITExkvEnI8dpqnw0MDERAQACSk5MZiV0iZEaCFEtJcWePdyqExrhcrtksj2Q7enqMit/2nHTJ7OVMnYWciSDfIcnekdZVW9eJM2UOcg8HBAQwEwVrcDSjYav0YglrpRNbQQYAzE8Lw6dHBajoHsacVOPD7ViHFHNSjK9/rutFiNLYwtgko7A021gCOdohxdzx9Y92yFCSFArAWCYpSQrFB4e6Ud07gpKkUHxTOYA2sQKFCSH44FA3lFo9/KyoJBP4+voiISEBERERqKysRHx8PLRaLY4fP86MVxEREU77ygCOiYWR34SiKIyodLj6w5PokdnX/fnTBam4aU6Cw88iRzOu7mQ73M1onKmYskCDx+Nhzpw5qK2tdUl8i2xjjY/hKkw7QoqKijA0NDTpANL0t2Vmwcb138lwKkeBqqoqJCUlMRbhJIDR6XTM7N9VmHqYAGDaUWtra6FWq6HRaJCdnT2pIJmrIOTYkJAQh1wuTdOopu2zDQ0N0Ol0zLmQ9lkOh4PIyEj09/cjJyeHYfUTRVNTa2hH4Um+x90Lk/Huwa5J90tRlJlHAcl29PT0MB08JPDw8fGZMKg4c7yvvvoq/vznPwNABJECpn7jFvEECoXxfktISEBiYqLddR39TuVyOaqqqpCamorYWPvtnI50mxGNGmulF0tYBkPkQUquNctzKE0OhQ+bwqG2IfxpWTqCeBwc65TikllRCPVjY199L965oQzv1J3C4XYpri9LQFyILyq6ZbihLB78AC6OdkixMj8afj4sVHTLcN+SVFAAKrpl+EOuMSiq6hlGQUIw9DSNur5RlCaH2j0Pa630RDJ7cHAQdXV10Ov1TGeaKzo8trIdGo0GCoUCB9qk+PP2tkn3s2V9MbKjneNEuTJ5cTbb4c4ESaVSeU0mwV1MuamaI+qg1rY1GAxMeYDP59tMQzoKawOLo7Mfy2Cj6KXDOPxAMUKCg5lBoqamBmFhYU7LwDoCwn3g8Xjo6upCeno605oZHByMyMhIJnvgLsh3Hh8f75IroGX7rE6ng0QiQV9fH0ZGRhAYGAg+n890srDZbOZhzWKxoFKpIJVK0dzcDI1GYyYWZu+G9GRG446FSUygcahdigXpjgmr2cp2jNu7MzwWf39/p45VIBBgz549SEpKQne30V2SMreIjwPwE0VRWeOCXcQi/iiMgcbFMAp2MRbxFEVdA6NF/NUOH8g0QKPRoLKyEjk5OczDzF2IxWI0Nzc7LE9u736mTZxXS0tLHcpimo47hPRJlluDnw8bxYkhONIxBDYrA7PH5cI7OjowM4yF1hEKPB4PZSlh+KlRDANNozQ5hLF+L0sJRUW3DD5sFgoSQlDRPYxgXx9kRQfilGAYdy9KQRCPg9r+UTywNBWAMeiwF2gMDQ2hubkZ+fn5ZnowlIlkNslekvb5hoYGBAUFMYRSV8qIxHemoqoWf6+k0DJoP8jIiwvCB9fnm5klOgpPjCmTZTsUCgXUajWjPO0MxsbGzgUawGkZcmczGqTv+sSJE8jKykJkZKRbxzE4OIimpqYJA4szaVbLYGP+GydRtWERtGo1ampqkJKSYjdd6g7IYCaTyVBSUgIOh4PExESGoCUWi5kLl5RYXGl5UiqVqKqq8mhJhsPhIDo6msn8jIyMoLW1FaOjo/D392fEv/z8/EDTNLhcLrM+YOTlEN8K4mLI5/MnECk9GWiwTG74uzbVTrCPdwSW2Q6tVovq6mp0dHTgkksuAU3T+OKLL3DRRRdNen0/9NBDePnllxlztXH8LiziSWbUEzoG9Lhxo0QiYezY3YEt59XJQLrXSDnAluaQKeanheO1fe0Qj6lRlhzC8C4uKkrFkZ3N6JAoUJocgq8r+9EmlqMkKRTbq4XolChRmBCM3XUiCEfUKE0KwTv7OzGq0iE/Pgg/1BtNw2bFBaG2bwRh/lzEhfiiYWDM5rH09/dDIBCgqKhoUkIzaZ83vf8HBwcZYjXJhDpKgFcqldi07yReqdBMuu6TF6XhysIYsFx0X/V0OdZatqOiogLt7e0udbI4oy481Zjy9lZXrOL7+vqgVCpx3nnnOayeSGCa6qZpGl1dXRAKhSgtLZ1wUzjTz97a2oovV4bhsZ9lEIwax+WC5w/grSU8lBbMYhxVPQ1TrkRBQYHZhW9J0CIEzcbGRqjVavD5fCZlOdkNMzIygrq6OuTk5HjtXACj7Lyvry+Kioqg0+kYFrtpZwpJsdI0zRAxKYpipNHr6+uh1+sZwmxwcPCUqPi5Ax8fH/j4+GDWrFnYsWMHbr/9dggEAjz//PN4/fXXbW63fft2xMfHo6BgQofZ78Yi3hNBBrGL5/F4KCkpcfsBQpxXY2JikJSU5PS150yQAZwONH5tFiNYaXScFlFhmMdwMKRYlGEspZZ3DTPcjIpuGQrGWzgre4ZRkBACGkBd/yhy44Kx+WQ/uqVK5MYG4ZOjAqh1esyICUSjcGKgQcZTqVTqkNu0Jay1zztDgJfIRnDbF6fQODT5mL3z7tlICOFNSii1B2+PKcQ3Jj8/36VOFmfUhacaUx5oOJPRMBgMaG5uhlKpZNJvzn4WaUkiYj4AMHv2bJvsYUeUPmtqauDn54eCggL8nVOH98uHsKfbeE73/aLGlkwWvPFsJmS18PBwh7p2LAma1jQ7IiIiJqQsJRIJWlpavCqNTn4PLpeLnJwcUBQ1gQBL2uc6Ozvh4+PD8BuIOp+vry9iY2OZ9WUyGfr6+tDY2Mi02Go0GrdnqgDA9+dAonAuQJ4MhKOhUqkQExODJ554AoBtP4Lnn38eGzduxI8//jjhPfwOLOIJHNGdsFzfdDZKOB7u2sUTkO63ydyhrYFk7cbGxlBZWYnIyEhERERMmoGcGRuIEF8Odp1sx8ZVM8E/2YyjHTJcURiLuBBfHO2Q4trSeMQE81DeLcM1pXHgB/igvFuGlQUx4HFYqBQM445FKQCA2r4RzB8X96rtG0VufBB0BhrNQjmyowPxS/OgGSGU2Cro9foJEx5XYek+bUqA5/F4zHfj6+uLXxt6cfvm5kn3efuCZNy3JBVskyyGO+2zU+Vk7Uoni1wudznQoCjqaQC3ARCPL/oLTdO7rKx3MYA3ALABfEDT9IuO7H9aSieOZDQINyA8PBzZ2dk4cuSI059H2tB0Op1Ds43JAg2VSoXKykokJCQwdfecnBzcw21FWugg/lVtNH5b8345bi6JwEMXzvBY+6JKpUJVVZXLJRlLzY7R0VEMDg7i1KlTZinLkZER9PT0ON0l4wwIhyU0NBQpKSlW17F2o5HZjkqlQlhYGMLDwxEcHMzMAsPCwhAaGgoWi4WBgQEMDAygpqYGABgCmrNaFwTPX5KCO7faF/xxFiTQsEx52vIjqKmpQUdHB5PNGO9sOUlRVBnOWcTbBJncsFgsSCQSNDY2Ijc31yOZOmIE6Ur3G3nYcTgclJWVQaVSQSwWo6GhAVqtFnw+H5GRkcw1bgqZVIqMYAPax4xE6rmpIhzrNNq6l6WE4kCLBABQkhSC450yAEBRYghOCYbBZbMwKzYIlT0jCPXzQWKYH2r7RnHT3ETwOCzU9o3ihjLjJVPbN4qZMYEw0ECLSI78+GDo9XrU1tYiMDDQKxw0YCIBnhBKq2pq8Vb5GE6KJw80v7ljtlXCpy1CKfk9yPPJUixsqjrZrGEybgcANDY2upvReI2m6VdtvUlRFBvAOwCWwzh2nKAoajtN0/WT7XhaSieTZTSIIVJmZiaioqIATJyVOAI2m43h4WE0Nzc7NNuwF2iQWQux4SXtZ3V1dfD398f9q+bh0vMUuOw9ozXvJxWD+KTiV3y2IshMeMsVWGNzuwNTvkBaWhqTsqypqYFSqURsbCxGR0cRFhbm8RuLcBOio6Od0vsg7XMJCQlm7bOtra0MV4NoV5AUJzk/sj7RuiDKns4QZjMjTpfZtHoDfNjufy9khjQ2NubQtZGXlweRSMT8nZKSgq6urmKapgcpitoO4EuKov4BIxmUWMTrKYoapShqLoBjMFrEvzW+C2IRfwS/QYt4AjK56e3thUgkslo2dRZEgXdkZARlZWVOlw2sdZb4+fkhKSkJSUlJDGmaqHCGhIQwpMmBgQH09fXh/LwkvLK3E33DKpSlhGFnrQgdEmNL6rdVA+iWKlGSFIqdtSIIpCrkxwfjp8ZByBRaFCYE47NjPVDr9Mgd18rwYbMwIzoQtX0jiAvhIdiXg2bRGBZkGBWSm4RjmBHpi+rqasTGxnokG+Qo/P39oeCG45bdk3eU3FCWgEeWp4Pr4D3qSPsseTacCeVYa5Oww4cP4/PPP0dXVxe0Wi1uuukmlJWVefqjywC0jquDgqKoTTDyvM7MQEOjsU3cIQ6JBQUFZrM801mJo1Cr1WhqanLY78NWf3x/fz86OzsZpU+apqHRaFBdXY2EhASmGyM9MgCn/rIIRRtPG9nduGsUP9wSzciCh4eHIzIy0iGeBADmYerNMgZJ3QYFBWH27NlMyaK5uRn+/v5MtsPdwZl0DCQnJ7tFlLVsnyWzncbGRuh0Ovj5+WFkZAQFBQXMjIQEFkQsjAQe5D2iaGgz22VSURBIVUiL8Nxv4YnaKv07soh3tnTCYrHQ0NAAHo/nFEnTFnQ6HVQqFfR6PYqLi93iY9g6FkvStEwmY7IdAJCamgof2njNVHTLUJxozM6cEoygKNFIcK8UjKAgwfi6pm8EuXHG17V9I8iLD4bOQKNFJEduXBB214kwOKZBTmwQtlcby3bpEf5oE8sRH+oLfy4bDX3DSNR0e1Wvxxr0BhpP72zC1lP9k6779Hw/zE7nQK2Qw8eF7KWtbIdarTZzn/WUEZwpXI3xfX19cf7550MoFEIsFmP+/Pmuih/eS1HUjQDKAfyJpmmpxfsMp2scPQDmOLLjaeFoWCudmApnWZshkEDDkVIEmW2o1WqnHtDW+tmJiVBxcTFzcY2OjqKurg4zZsxgokoCHoeN+qeWIueZn5llF33ciuOPLYQfhzLjSUzW2uWq2JczMBgMqK2thb+/P7KyskBRFJOyJA9xsViMmpoaxkI+MjLSaXdW0sGSlZWF8HDH2kMdgWX7XH9/P9rb2xESEsKkdy371IlYWFJSEiMW1t7eDqVSaZPpbXpdCKRKjwYarjq3dnZ2AibETfo3bhHvCghhODExEZmZmR7ZX2VlJXg8ntOql/ZEuOyBZOcEAgHDYRocHIRW3AE/DrCvRoCFSVkI9uWgsmcYlxfGIJDHxqmeYazIjYIvh4Xa3hHcvdiolVHTN8poZTQOjCE31njt1fWPIiMyAHKNHgMjamREBWBPwyAoAAkhXNR1ifDAwkKvksMt0SlRYMU7xyZd7+5FKbhjYTJovZFQ3tHRAblcjtDQUERERCA8PNwlEjFpn62rq0NmZib8/f0ncDs8FXS4W5ohBPqlS5dafd8e9wvGFvhnYeRoPQvg7wDWWazqMqfrjGhvJdmB0NBQt63iTRU6IyIinBoITIV4CI+Ax+OhoKCASXGKRCLGgtpeAGMZbJS9dBBP/yEba0viGJ4Eae3q6upiRKsiIyPh6+uL1tZWKJVKt43R7IGUMaKioqwKH5k+xImFPDFVGxsbM0vn2jvGsbEx1NTUTEkHS09PD8rKyuDj42PmH0P8dUzFv0zFwkhL6cjICKRSqRnTm8/nm117UoXnpNIB90hc52AbQ0NDaGhoYLoX3AXpcJo1axba2tqckpB3NcgAjJnZ6upqxMXFMeUKEliXNlWiYVAOQXc3kgMNONYqwpAkAgXxwagUGMshM2MCUdM3iiBfDlIj/FHbN4I7FiYjkMdGw8AYls00XvutYjkK4oOZ1xmRAdh8sh8tggEEszQY0PpMWZBhoGm8sqcNnx4V2F0v3N8HX9xSjBT++FjMNieUy2QyhtvF4/GYTKij7f6El2c6QTLNfJOgg2Q+yPuAbR0UW3DXUE0ul9sVsLPF/QIAmqaF5DVFUe8D2GFlNVs8sEkx7RyN0dFRRj6b8DGswZFAg7DJk5OTERcXh4aGBqc0O8jNTy4uIlJFLqrOzk6mlcuRAab+qaXYXj2Ax781pjuf3tmEp3c2of6ppRNauwgRrL6+HiMjIwgICEBmZqbXyEeukEtNTZUMBgNGRkbMNDusMeZlMhkaGhomCPl4Gr29vRgYGGCsvAHr/jHEDM2Uq0EIpAaDAUFBQYzWBRELa2lpwdjY6fa+AK5n+BkEZCZyDo5hsoc0TdMQCATo7+9HSUkJurq63LKKByY6rzqjuTOZ0qc9jI2Noba21mYmcHZKGA62SRGflo2l0l68+UsnOvvEiMAoDot0aO7oRk5MALZWCqEzGJAbF4TD7VJQALKjA9E4MIpQPx9EBnLRJpbjykKjeGGrWI7sKGPp+mh9JwrSYnHqaK/H+En2IBpVY8lrhydd72+XZmNNkW07C2J4SL43UmJtaGiARqOZtN1foVCguroaM2bMmMCNI+ubcjssAw5nsx3uBhrulGApioqlaZrUpi4HUGtltRMAMimKSgXQC2Op9TpH9j+tpRPC2M7Pz59UaGSyQMMam9xZl0XA+GNXVFRgxowZCAkJYchBDQ0N4HA4KCwsdOrhvzI/BhflRJrxNnKe+Rknn1gEXxPvAF9fX0RHR2NgYADp6enw9fVlWjU9rfZJMgzWSj+OwtxK/bRmh+lNzOVy0dfXh8LCQpcEwxxFd3c3JBIJCgsL7d6oXC4XsbGxiI2NneA+SYzdwsPD4evry7QdRkVFITo6Gr29vQCMKpzy/nZUaweYbIcr/g2mTpByuXxKiXW/ZZC2aZqmUVpaCjab7ZZVvC3nVWc0d1wNMgg/Ky8vz+YDhNia1/SOoHjcu0TuF4VL5kRiW3sNGoVyBGmlUOkM2H+qBRnhXGyv1kAi12JmTBC2nuqH3kAjIzIALSI5Qv19wA/golUkR06gEgDgE56ANC4HeppGr0x1OnvgBXx1ohfP7rbftlqcGILX1sxCZJBznDF/f3+GbKvX6yGRSJgydkBAACIjI5lxSy6Xo7q6GrNmzXJILdYaodQy6Jisfdbd0ombgl0vUxRVCGMppBPAHQBAUVQcjG2sK8a1du4F8AOM7a0f0TRd58jOp629tbm5GaOjozYdEi1ha7AgDo4DAwMT2OTODjADAwNQKpWYP38+eDweIwdMuiQm81WwBWu8jeIXDuDmuYl49MIMALBqjBYVFWVV7dO0xOIsSIYhLy/PoypyppodOp0O7e3t6OjoAJfLRVtbm1syw/bQ0dHBED+duUlNxc0yMjKY9lnC1SBS56TDaHj4tIPlxQtKoNOoIZVKGf8WovFBpNMng+ns5UxW9DubQLJ0lm3srgYa9pxXHdmnI6RPWxAIBBAKhZPys2bGBoJFAdV9o7h1fpLxde8Iri01Bq5SBGLlgmT8s+oYOkcM8NOPAgD2VTQgIdAfSq0eAqkSmVEB2HyyDwaaRnqEP+oEElyXyQeHRaF/VIPFmUYeR/eQ0iuBhkqrR/ELByZd7821uVg2wz1laMD4+0VFRTFj7NjYmLF9tqqKIX/OmDHDJe6UKaGUdMGZts+S155un5XL5S6PIzRN/9HG8j4AK0z+3gWjjYFTmPKMBhm0Q0JCnGJsW7uxTWcv1kS4nJl1tLe3QyqVwt/fHz4+PqAoCnK5HLW1tcjMzPSIYVn9U0vxdWU/ntxutC7+5KgAnxwV4Nd7C9DU1ITc3NwJF7Y1tU+xWMwYFJH0n7Vee0uIRCJ0dHSgqKjIpSDFUfT392N0dBQLFiwAm83G6OgoxGKxmcxwZGSk3S6PyUCIuiqVCnl5eR7xICDts6ZiQW1tbdBoNPA3mVGyKYDN4yEmJgaxsbFMX/vAwACampoQEBDAZDtsPSRMAw2FQnEu0HAC1q4ZmUyGuro6zJw5c0KJwRV/pcmcV+2NLe7wMQgpXqPROMTPCuBykBEZgJreEfhz2Ujh+6NxYBQRgVxEBXHRMGDUxPDlsDCo4eDW8/Lx/OFDGNL7IpZtzFj8UlGPCG4AlFoDugfH4E8r0KIwIGfmDMSGDKNPpkL0ePZAPDa51LezONw2hPX/qbK7zlXFcXh0eToCeJ5/ZJmWWMPDw1FXV4fk5GQIhUKGWO4IF80WJmufJdkOrVbrNkfjTB1HpjTQGB0dxalTp8DhcJxmgFsGGmq1GlVVVYiKirKpkulI6YSIz/j4+KCgoAAdHR04ceIEfHx8oFQqkZ+f79H6+RWFsViZH4385/Yzyxa8XYVXV2c5FD2b9toTcqZprz0psVhesAKBACKRyGF+iSsg3hGjo6NmZQyi2WEqM0zIrqYyw44GC2QwNhgMmDVrlsd720nLa1hYGOrq6hAaGopGGQCMADB+l+Hh4Yz4FwkGSa2XuM/W1taCpmmrVvGmrdrnAg330NPTw4jMWSvRsdlsp9r9iMlafn6+zXvSVqDhTpBBZNGDgoKYDjBHkBcfjD0NYqOAYGwQTowLdM2MCUJ9/xjYLAoZUQFoEcvBD/BBmL8P+uQ0rpk3E9j3K9TcEMTwjN/PzgMnEB0YAGm3BmqdAXEhPPTKVIgMMgbM4lG1w+czGWiaxtLXD0M0ajt48eWw8NWtJU47rboCqVSKpqYmFBUVMdeRqUKxqX8UaYd3FvbEwkZHR8FisaDRaCZkOxyBQqFwKQMzFZjSQIPFYiE/P59xr3QGpkEDEfTKzs62yyYnyqC2QPwJiPiMwWBAamoqOBwO+vv7ERUVhcbGRvj4+CAqKoqRv3UXHBYLdX9dgts/PY5D3QoAwCPfNuORb5tR99clDg8wluRMUmJpa2uDr68vc0P09PRAoVBMymFwB+Thr9Pp7GYYrMkMk4Hd39+fIZTaygSY8mXcdfC1B9L2GxgYiLS0NFxhUvYKCQmBUChEc3Mzk70gwZ3BYICfnx/i4+MZcTGZTGZmFc/n8xknYwAOC3YBwFtvvYW3334bHA4Hf/jDH/Dyyy8D+P1YxJuC+P5otVoz/oQliMz7ZDB1Xp3MZM3aJMYdPoZKpUJ1dTUSExMntam3RF5cMLaeMnqUzIwJxI4aISRyDXJiAvFr6xBUWj0yIgNwqG0IFEUhk/Ax/HwQ6ueDfrkBy7JjAAjhy49DKkUDUGD3gWMIpNholWngw6IQ7MvxWEajb1iFZW/YV3v+26XZuLIo1szU0FsgtguFhYVmY7ylOBbhohHeDlEcJoRyZ0GyHQMDA5BIJMjPzzfrfiRiYfa4HQRncvfalAYagYGBrgqJMLMSQiAtLCyc9Eu1N5MxDVZCQ0OZlBaZKZeVlZnNOE3LFREREYiKinLYYdASZIB8qCwIb15XgpIXDzLvzXr2F6w/LwkPX5Du1D4tbwi5XA6RSIRjx4w96AkJCczM2dMPZ1LC4vF4jG+Jo8dsqtkhl8sxODiI6upq0DTNlIVIJsBUiTUtLc3rQUZQUBBSU1MnvG+ttkuyF+R8/P39GeVPwnynKApjY2OQSqUQCoXQ6/U4duyYwynPn3/+Gdu2bUN1dTV4PB6jEkr9TiziTUEympGRkZg5c6bda8GR0omzzquWkxh3ggxiYOgqOTsvflwHo28UOTHG1w39o5gREwQ9bRTlyowKwLdVA5AptMiICsD26gHQNI0Uvh9aB0bQ3y4Bm0Vh1MDFooxwYP8AwhMzkaASYm+HAoePHEWwDw3B4Ai0Wq1bWdH3DnTirV86bL6/OJOPF1bNRKi/dzKvliD8N0f0iqz5RwmFQjQ1NTk0UbIG0pZv2jEHnM52OGoER0QXz0RMOUfDVbBYLIhEIrDZbIcJpLYyGkKhEG1tbSgoKGBIn0Q3w5phmb+/P5KTk5GcnAytVmvmMEiUPh2NaK0Zo9U/tRQ3fXoKJ7pkAIAPDnXjg0PdqPzLYnA5rnEPfH19IZPJmFZfoosvl8uZcgVRynQHjviWOAKKohAYGIjAwEBGs4N0hJBW1LGxMURGRiItLc2tY7YHg8GAmpoahISEWD2fXx6ab3bMpLZLrN8lEgmTvQgODjYLMgwGAwICAuDv7w9/f3+MjIygtbUVra2tWLFiBRYsWICXXnrJpsz8e++9h8cff5whPJu0g/8uLOIJxsbGUFFRMWlGk2Ay2wNXnFdNSyeENO4K6VMkEqG9vd0t5d/0iACwKQrNIjnWzTfyU+oHxnBBtvG76ZAokDXeqtoiGkNimB/G1HoMK3WI9mfhWNcoSkvmIrbiFHplSsSFGmf0A6MaxEeGAhBjZkEJopqqMSTX4NSpU4x3kjMlBJqmMevZX+yu8+UtxShMnLpWb6FQiO7ubhQVFTkdPFn6R8nlcojFYlRXVzssbkiCjMLCwgkdhZbcDtN/JKA1DTrUarVXuXfuYMq7TghM7dsng06nQ1dXFwCj86ozM2bLWUdHRwckEgmKi4uZOphSqUR1dTXS0tLsankAxnIFaZE0GAxmEW1QUBDTImWtDdWedsWnNxVBb6CR99wvzLLCjUYeR/1T1pXebIEY0iUkJDBpWNNjJkTHlpYWl6Nw4DQr3xu+B6bfs1arxcmTJ8HhcCASiTA8POy08I4jMBgMqK6uRlhYGJKTk5nlD2053VIeZaelzrSUZdo+KxAIGBJseHg4k43g8/m47rrr8Pbbb+P48eM4efKk3cxGc3MzDh48iA0bNsDX1xevvvoqZs+eDfyOLOIBY/nNGRMzex0iJLPprPMq2aez9u4EpFtucHAQJSUlbmUIuBwWUiL80CIaQ7CvD2KCeWgflOPmeYlgUxQ6JQqUJBkf3t1SJeLHA4mKpk740QoMq2mwfbiID/VFr0yFcH/jOCBVaJEYZry/hlU6hPjzoNABZWWzGd2fxsZGpp2dWCtY+x4mU/h88Pw0rJufCM4Umpb19fWhr69vQibBFZhOlMikw3KiRAil5LPsBRmWsNU+S/7pdDqMjY1Nm+nbZJiWjAaZDTjCFyAiXOHh4U4FJ4B5HZWkw9lsNgoLCwEYLw5CAHK0X9ryPEw9N4iAFbE1N+V1OGKMxmYZsxv7mwdx16YaZnnOMz/jofPTcNuCZKvbmYKIzNjqlLFWrhCLxaiqMrK+TQ3g7H3XJHWdkpIyaXDmDnQ6HaqqqpCYmMh4ypDOG1OXSyK842o5hQQZ4eHhSEpKMnvvh3qxja1sw7JbiNg8k+4mHo+HlpYWSKVSUBQFDoeDhQsX2pUJ1ul0kEqlOHr0KE6cOIG1a9eis7OTwu/IIh4w6qE48zvbymw6U4a1tk+tVutSkEG0OQwGA4qKijzycMiKCkR1r5GsnML3R8egAlw2CwlhvmgfVCA6mAc2RaFHqmLKK23CYRRkJuPblhYMjmkQGcRDpWAYXA4LAVw2ZAot8sb9UaQKLfy5HMjVRk6Zr6+vWTv70NAQent70dDQMEH358HNtfixwfo9lBkVgH9fV4DoYPd8lJxFT08PRCKR15SXTSdKppOOzs5OcDgc8Hg8yOVylJSUOB3kWCOUvvnmmwgKCnL4uTrVmJZAg6QyJ/tCiIRwbq7RpmHcFtthkFmHRmNM9xEtDDI49PX1obe31yPtnqZKnxkZGWZtqGq1Glqt1mEJ7sVZERN0N17b147X9rVj34PzEBNs/VhJrdfRoMkyCtdoNExZiHSEWCsLecu3xBJarRaVlZVISkoyywBZulyaDnKT+cdYg16vR3V1NSIiIiZopXRKFMzryg2LXT4XX19fxMXFYXh4GAkJCeDxeHj99ddx5MgRlJWVYfPmzbjhhhvsygS/9957uOKKK0BRlCmHKAK/M4t4Z4NJy9IJTdNobW3FyMiIw2VYU9A0DT8/P3R0dEChUCAyMtLhrimtVouamhqEhYUhJSXFYzyjzKgA7K4TQa7WIS3Cn+FgpPL90SlRgMNiITaEB4FUiZH+dgAAKygS0eNjiWhUjXB/H0ZeP3T8daif8buRKbUI4LGh0EzkunA4HDPeEiGlt7e3Y92PSpvH/K9r87Awc+rM2Qi6uroglUpRUFAwJQ9lS80egUCA7u5u+Pn5oby83KXOOwKapvHvf/8bR48exbFjx87IIAOYptIJIWfZS9V3d3czEsIkI+Cs6A6pW504cQJZWVkICwtjMhzETbWkpMQrPw55GLJYLPT19SExMRH9/f1obW11mNdR/9RS6AwGs1bY8183MrUrNyw2s0H2hMsrl3vaJ4BYq5OyEFHO8/PzQ0NDg9d9S0jdPC0tjfEhsQbLQY74x3R3d5u5vNqaser1eqZN2pptvWm611HbaWugaZrpYMrIyMDWrVsxOjqKrq4uiEQitLa2TrqP1atXY9++fViyZAmjtQBjqeOcRbwdmJZOdDodampq4O/v75LzKuFzBQcHY86cOYyranNz86SlU1KidUb231Gc5mDIkcL3x5haj8ExDVL4/jjSIYWBphEXwkNzrwSxs1MQ4jeCvmEV5qcZJwqiUQ1C/X0g1+ih0RkQNh5o+I3L7au1Bvj5sKHQ2JcLIA/VIZ0P1n1lfWJ4cZovnl87G37cqZ3nktL52NgY8vPzp6XMMDAwAKFQiDlz5jABsGXnnaNu2TRN46OPPsKePXvwzTffeM140xOYloyGvZqpwWBgPEqIhPBk29iCTCaDVCrFnDlzGBMt07bFvLw8r3UukFmTUqlkghmSTXGG18FhsVD/1FL0D6twgUk7WOHzxuCj9q9LMNDfj97eXo+6vFpasY+NjUEgEKC+vh6BgYGQyWTgcDheaaeyZmTkCCz9Y4hmBwkqLTM0kwUZ7+w/zYw/+ugCl8+HdDOxWCxkZGTgu+++w7///W/s3LmTySg5QnBdt24d1q1bh9zcXHC5XHz66ac4//zzaQC/G4t4V0DGDuK8mpSU5BKniJA+gdPpa9MypGnplMvlMkRBHo+H4eFh1NfXey1AJ27CXUNKpI0rd3ZIFEgI84VaZ0D/0Ch8dWOQqIGkpCTwA/oxJNcyJQvRqBph410eUoUWgTwOxtQ6xtdEqzfGoI4Ml7f/pwq/tk1MjnFYwN8vCENsEAeVFSfs6v54GmQ81mg0Xh337aF/fJw25WRYjrOk887ULduWIOPnn3+O7du3Y/v27WcsCZRgygMNUo+21m5GSIwRERET0orOBBqkH14oFCI4OJj5EYhLrCu96s5Ar9ejrq4Ofn5+Ey7qyXgdtuTFY0N8Uf/UUmw52YendjQxy3Of/QUAUP2XhR7xQbEGiqKgVqsxMjKC8847D4Axg9Lc3Mz0khMimLuzBHtGRs7CVLODzBxEIhHTikY8RqwFGQDwzv5O5nWwr2tkPZqm0dLSApqmkZ2dje+//x5vvPEGdu7c6fQDh8vl4osvvrD1Ob8bi3hnHxKET3Hy5EnMmjXL6evKEREuy9IpaYmvqamBRqOBTqcz82HyNOJCfUEBEEiVp4mfQ0omkDhQXoOM+Egc6B2AVm9AuL8PhuQaBPkax4xRtQ6p4wGKTKkFl01hVEXDh208V61+vNPBzjHY6yq5s8AXV5QkMveape4Pj8czC8w8CZqm0dTUZBQ0c6L93pOwFmRYwlrnnakgIzF89Pf3x549e/Df//4XO3bs8KqPlKdwxmQ0RkdHUV1djaysLKupckcDDaLpAACFhYUoLy9HXV0dAgMD0d/fj5ycHLcfYPZAgqXY2FibDzACe7wOotcRGRlppn2xpjgOa4rjsPH7ZnxxvJfZV/5GoxZH7V+XeFzgZmBgAAKBwCxjQuS6SS85MSeaLENjD8TszRVi7mQwnTnodDpUVFQgICAAIpGI6QAx/a5N+THOdv0QkFmUTqfDzJkz8dNPP+Gll17Crl27vMptOQdz9PT0QK1WY+HChU7P/FxV+iQGXiSDmZiYiO7ubjQ3N4PP5yMqKsoh2wBHwWWzEDPOwYgaDy6Eo2rE+RlLHSExyYCGAjAAmVKL8AAuWsVycNks8DgsyNV68MZb6dU6o0OrqVOrRm8ADdgcWzoGFfjDuxO7Ss5LC8X1qRrkZKaakcat6f6QwMxgMFgd+1yBqcBfZmbmGRtkWINlF9vIyAiOHDmCJ554AkNDQ3jooYfQ39+PjIwMLx69ZzBtZFDTjIaproWt9j5HAg2NRoPKykpERkYiMTERNE1jzpw56OrqQnd3N7hcLjo6OhAVFYXIyEiP17SsGaM5A0t5cSJ7K5fLzXgdNE3jD7FKXH19Et6vUWN7tZDZB8lwlD++CP5c99ORRLrcVguYZS+5ZYaGDBiTRd2kK8fTZm+W0Ol0TPqcZLWIfTz5rm/dc1pF8t1r8lz+rPb2dmg0GuTk5GD//v149tlnsWvXLpeujXMwB0VRmIxSYuq86u/vP2VBBvnshoYGsFgsprOEiDxZ2gZERUV5RNMmMdQPPVIluGwW+AFcdAhlyGQZJcNlGiA8YLw0ItcizN8HsnHiZyCPjTG1juEgaXQGcDksaPQGGAzG75jNoqDVG8BmTfwObvuiEofapROWf/7HXGiFbQ6VQAMCAhAQEGCmoeOu7s9UCfzZg6tBhiXIpFSj0SAiIgLffvstDh8+jCNHjpwLNKyBOLgSFb22tjbIZLJJ2d+TXSTEBCkjI4NphQVOu3ued9554HA4Zu2cFEUxD0lXCZQEUqmUsan3hDqbLb0OIrkcGRmJ5ORkvJjOwYurc/DX7xqx9VQ/s33pi0YnxE23liA/3vnsgKlviaMteNYyNMQ6nrShRkZGTpjJyWQyNDY2ukVkdQQkyEhISEBMTAyz3NQ+3jSTAQAhcgF6elROy88TF9hZs2bh0KFDePLJJ7Fz506vtgKfw2lYOq8eOWJf7toS7ih9arVaVFdXMxMeyxIwIS8bDAaGTNrS0sIQriMiIlzS1UgI88OBVglomkaYL9AjGcOSy+eCs/8QBkbUyIg08qmGFFqE+PlgWGmc7AXwOBhT6xlxQK3eABZFQW8wZjcAgMdhYVSlY0ot5DuyViq5b0kqri0IR0O94x1wprAc+0y/I0d1fyYT3psKeCrIINi9ezdef/11JiM6c+ZMDxzl1GDaMhqkddHPzw8lJSVuRZumJkimpM+GhgZwuVwUFhYy+zeNnNVqNcRiMZqamphIcTIlN2sYGBhg1OW8QcohvI7AwEAMDw8jOTmZSf8TXseG5Sl49rIZ+LlpEPf897QGxzUfVgAAwvx9cOgRxwiNhLyo1+sZ7X1XYGkdT1QzR0ZGmF57iqLQ1tY2wWPA07DVKmsKyyCj/qmlUCgUGBwcRF1dHXQ6nUOaHZ2dnRgbG0NeXh6OHTuGxx57DN99951XeUHncBq2nFcd1eGxRvp0FIRjlJ6ebrdbiuybKMcSwrVIJGKMJ23xtWwhLoSHwTEN6hqaEMYFZDoeuD4+CPHjYFipQ9i4ENeQXAMehwU9TUNnMIDHYUGt0zN8DI2ehlZvXK4yCTRGVDoEjwcaTcIxXP6vE2afH+zLwfa7ysDVK9HYUI/8/Hy3yeKW35Ejuj/22tWnCp4OMs72suu0BBp6vR6dnZ3IzMx0S1GSqOsJhUIUFxczPyiZUUzGk+DxeAzXgDwIiZKbIy2ohHQqk8nMPt8bIPwFU8Eva7yO5IgIHHuoFHo2D/NfPcRsL1VomQfp8ccWItCG3bKpb4kzDpKTgcPhIDo6GtHR0UyvfXd3N8RiMUJDQyEWi50aVJ2Bq0EGcLrWTjQ7JBKJmWaHJR+lq6sLw8PDyMvLw8mTJ/Hwww9j27Ztk/J1zsE52Cqd2HJedVQk0FWlT8C9rKapnH16erpVvtZk/kph/sZrUKGnkBYXwYhkkQ4SUkpVag1M9kKtMzAET914mcSHRUGtMwYaSo2xXM3jsDGsNAYa131UgcqeEbPPfnNtLpbNiDRO3MZF0Dx9L9vT/SF2EOHh4ejq6vKKWrGj8HSQsX//fjzzzDPYuXPnWVt2nfJAQyqVorOzE3w+360LgWQsiLoeAMa0qra2FllZWU5JCps+CIlMN2lBJbNvPp9vpsbW2NgIACgoKPBqTzYZwKzNEOzxOr65Og4RERFY+I65W27ZS6dN3EyJjmQmQMSEvAXSxaJSqbBw4ULodDoma6DX6x3yCHAUWq0Wp06dsqlgqtUbUPD8frNltsiflsES0ezo6uoCm81mMnXFxcWoqanBvffei6+//tpMzvwcvIPJnFdJudZWoOEOHwMwPlwEAoHHsprW7msipGc6CSLHqdVqMSw06lYERcYhSCTCqEoHmqYR5MvBqErHkD01OgPDx9DqTgdrmvHsBZfDYgKNIbnRrZUf4IO+YRUGrbi3VjyxCH4+bPT39zPmYFOh6WCq+2MwGCAWi1FfXw8WiwWJRMJkgt2Rd3cWng4yDh06hA0bNmDHjh0e116ZSkx5oKFUKpGdnQ2pdCJ5yBHQNM3UX/l8PpKSkpiUKLkZ3U3ZWcp0j4yMMOZHvr6+4PP5EAqFiIiImGDA5mkIhUJ0dXU5NIBZ43WIRCJ8uNwXQUFBaJb74skfBGbbkJn8JTmRuDZFNSUzAXIzEiMjLpdrNqiaZpbc6bUnQUZqaqrVNPb8V36FTHna3TeV74+d98xxaN+Wmh0dHR0YGBhAb28v1q1bB41Gg2effXaCnPk5eB6E9EdRlE3nVXtkcneCDJqm0d7ejtHRUa+J/5ne15ZdXsHBwQgJCUFPTw+ykmKBkx2QjGkQxONAZ6Ch0hmYjAYTaIyXRchrAtNAY0SlRUQAF4PjgUbXkHJCkFGaFIJPbyoCRVGMbwvxkJpqED+smTNnIjIyEmNjYxCLxTh16hRYLBbD6/Cmjbqng4xjx47h0Ucfxfbt2xn7hbMVUx5oxMfHY2hoCIODzns3sdlsRmY7PT2dCQQAmF3onoymTR8omZmZGBoaYjxTSNTsSFeFKyClBVecBS31OkZHR+ErEuHji/zh4+ODG3YMm62/u16M3fUAMIo/zlHgiYsyPXciJpjMY8C0pYsQwUgA6evrywwYk/Xakw4ka0HGKcEwrv/4pNmynx+c77LfQm9vL6RSKcrKytDS0oLAwEDccccdOH78OFpaWvDcc8+5tN9zsA0SDDjqvGor0HCH9KnX65kyY0FBwZR0NVh2efX19aGlpQU+Pj7QjhpFsoTDSoa0OabSIYDLZngZgLFcwhnvHmGzKGj0BnBYLCjHAw1fDguDYxrMiA6CaNQYXDz+bYPZcdy+IBkPnp/GtHArFAoUFhZOi9omuQbS09OZ0gIpQ6WlpTFcPG/o/hB4OsioqKjAgw8+iG3btk0bz8STOCPaWx0FsSTPz8+Hv78/aJpmxFgAeMygyBZGR0fR1NSE/Px8hIaGMg6GDQ0N0Ol0Hu39JqqinjgniqIQHByM4OBghtfxfYQYYrEYKrUGt/2kMlv/82M9+PzYaflgV3UkLOGsx4ApEQww77WnaXqC9gUB8bYxHXgAoFIwjOssAgzAvfPr6+vDwMAACgsL0d7ejptvvhlffPEF8vPzXd7nOTgGZ5xXrQUa7pA+ifhfTEzMtPFvSJtsWVkZ/P390SuWAXtPoam9C0E84/mIh+VgURQMJhZ7BppmMhnGbhI9gnw5TJkkzN8HkjEtwv198NYvHRM+974lqbhrUQojqw9g2tQ2HfFdMuXieVL3h6C/vx99fX0eCzKqqqpwzz334Ouvv562jhlPY1rbW51Bd3c3lEoliouLmc4SU3axvdmMJ2DNS8TUwdCUH0GISZZ1VEdAyJg+Pj5eu3lJ/Tc8PBzV1dXYcUOykfEuG8P9v6gnrG9KlLxzYTLuXzq5XLYpSHpZLpe75TFg2jFkqX1B5MX9/f2ZNmeS8Sp76SDkmonX26m/LAKP43qat7+/H/39/SgsLIRAIMCNN96ITz75xOkgQyaTYf369aitrQVFUfjoo4+QnZ2Nq6++Gp2dnUhJScH//vc/RtzohRdewIcffgg2m43m5uaLaJr+AQAoiirBabnxXQAe+K36lwwMDKClpcVh51XLMccd0ifhgdlySJ4KEENI0wxuWIiRgBodn4iYQDZQ2Yym1jZIpUqoNSxIpMYsJpfNOl0mYbMwptYhiMfG4JgGLMrYdaKnaXxwuHvC515VHIc7FyYzVg4BAQHTplFBOnxmzpzpsOKqPd0f004fRzPUpkGGJ0pGdXV1uOOOO7B58+azQh/DUUyre6sjIKRLosMwOjqKgIAAqFQq1NTUONRG5i56enowMDBgtywzWR2ViPLYuxh1Oh2qq6vB5/O9TiA01a4gA7XBYMCBnCGIxWLIZDIz4SqCfx7swj8PdjF/58UF4b/rS21+DpHg1mq1Hg2cTLUvCHl3YGAAAwMDCA4OxppP6yEcs541O/DweYgIdK+8JhQKmVRpX18frrvuOrz//vsoLi52el8PPPAALr74YmzZsgUajQYKhQIbN27EBRdcgMcffxwvvvgiXnzxRbz00kuor6/Hpk2bUFdXh76+PqSlpb1LUVTWuLfJewBuB3AUxkDjYpz2NvlNISAgwCnnVVPtHndInxKJBC0tLcjNzfWqsJwtEH2bkZGRCXwIpjSi1YPHNT4oZ8yYgXBRJ0QDI+joNAYO0kExdBxfsChjdkOtMyDQl4NemQph/lwsf9O25sj//SFrwgRvOkC68NzRLXJE98deK7ung4zGxkbceuut+Oqrr5Cdne32/s4kTJsEuSOlE1PRnaysLIyOjqK3txft7e3Q6XRIT0/3ak+xZQnD0YvJMmoeHh6GSCRCW1sb/Pz8EBUVNYENrVarUVVVhaSkJDMxKW+AcB4sW9AseR1HZ41CJBJBIpHguJDGe5UTLZ9r+kYntIYCRia6L4eFxsZGo6S3Nz0GKApP/diDn1uGALAAjFldrXrDYnDccGAlEIlEjG6KSCTCNddcg3feeQdlZWVO72tkZAQHDhzAJ598AsAYQHG5XGzbtg2//PILAOCmm27CkiVL8NJLL2Hbtm245pprwOPxkJqaCgCtAMooiuoEEEzT9BEAoCjqMwCr8RsNNIKDg50qv5Ixx2AwQK/Xg8ViOX099vT0oL+/H0VFRR7343AEZNJFUZRVTgibRYHDohjtCwCgaYBiGf2lMrJnALsOIywkCFUCKQJ9gIMVRs2dyAAf/NIsgUQ+sauE4P6lqdCNj8kJCQnTpgvjLRVha7o/pJXdsvPQ00FGS0sLbr75Znz++eeYNWuWB87mzMK0lE4cucHlcjmqqqoYm3CDwcAQfEZHRzFjxgxIpVIcP34cAQEBzMPbU1oW9ozRnAGxTSbS4XK5nBHlISqBAQEBaG5udtqt1BUQ35LJWtAseR35SiVWFRp5HXq9Hs0Kf2w8ILa5fckLByyWnFYtvXBmJG5fkIys6ABwHCij0DSNMbUelT3D+Mu2Bkjk2km3Idhz72xAaTRvKj9xfIKDq7MgadaioiIMDg5i7dq1eO211xizOWfR3t6OyMhI3HLLLaiqqkJJSQneeOMNCIVCZiCPjY2FSCQCYCSezp0713QXPQDiAWjHX1suPwcYAw2NRgODweB0kGE64ZiurgqSRQgNDZ1gOGkKHsdYFiFv0zSg0Ojhz2VjRGUMzGL4ITg5oEZMKAUE8AFIcbi2HdW99gO3CzJCrXKfphLDw8NoaGjwuoqwNd0fsViM9vZ2JivmqSCjs7MTf/zjH/Hxxx+joKDAA0d/5mFaMhqTQSKRMMI3AQEBMBiMEXpzczM0Gg3TRkYyBkRRr6urC1wu120vE28RvUwFZ9LS0qBUKiEQCNDS0gI/Pz8MDw+Dy+XaFeVxBwKBgOlicTYgs+zrTxwcRH64wYwf8c/jEvznRO+k+/qxQcyICXkaS7P4eOvqPAvzp0AzB1eijxIYGMjMUhxJwRMOTlFREaRSKa666iq8/PLLWLJkicvHq9PpcPLkSbz11luYM2cOHnjgAbz44os217dBuTCh+k1Y/puEs4FCSEgIGhsbIRQKmfHBEb0LvV7PcBGmi/BIjBodySLoDTQ4LAq6cVt3DpvCmEqHQN5psmd4ABeDYxqEB3Ah0xoflLs7bQcZF+dEAbQekq5Gj7gquwqpVIqmpiYUFBRMqWOp6WQxMDAQAoEAsbGxaGxsdFv3RyAQMGXXkpISh7YZGhqyyd8yxffff48HHngAer0e69evx+OPPw7ASDa98847MTY2hpSUFPznP/8hthBcAP8CUArAACPH65fx74AL4G0AS8bf20DT9FZHz/OMCzQEAgF6e3uZYIJEjzU1NQgODp6gVmmpqKdQKCASiRgvE+Ir4KiIjrvGaM5gbGwMQ0NDmDdvHjgcDmOZrFQqmYvXntS1ozD1LfFEC5otvY7zQ2W4bDUfCoUC0dHRSE1NNZZgOqS49Ysqtz7TGq4vjcV5wVIU5s50aPAzdXAlLb9isRjd3d3Me7Z8byQSCdra2lBUVISRkRFcddVVeO6557Bs2TK3zoGw4efMMep3rFmzBi+++CKio6PR39+P2NhY9Pf3M2JjCQkJEAjMtFASAPTBmMFIsLL8dw1C+gwKCkJZWRlUKhVEIhFqa2tB0zQiIyMRFRVl9TdXq9Worq5GfHz8tOkYEMKjo8RTrZ6GD5uFMbWRAxfI42BMowc/kMtkAvkBXHQPKXFeehj+b0fTpPu8MlYGrVaL5ORsr9ncTwaJRILW1tZpK1sBpzkZ5NlkauXuiu5PX18frrnmGrz99tvM/e8IXnzxRav8LVPo9Xrcc8892LNnDxISEjB79mysXLkSOTk5WL9+PV599VUsXrwYH330EV555RU8++yzAHAbANA0nUdRVBSA3RRFzaZp2gBgAwARTdNZFEWxADiVeqdcIKW7NUuiaRoajQaHDx/GvHnzmIcoaZVSq9VMPZ+iKKhUKlRXVyM5Odlp7gJpPxWJRNDr9cygYoulLpPJ0NDQ4DFjNHvo7e1FX18fCgoKJmReiMOjWCzGyMiIWw6PpP3XYDBg5syZXp2RabVanDx5ElwuFxqNhvFh8Ya0OGlrc4Zxbg8qlQqDg4MQi8VQq9VmgZ5UKkVLSwuKioogl8tx5ZVX4i9/+QtWrlzpgTMBFi5ciA8++ADZ2dl4+umnIZfLAQB8Pp8ZTIaGhvDyyy+jrq4O1113HY4fP07IoB0AMmma1lMUdQLAfQCOwUgGfYum6V0eOUjPw61xxGAwQKu1XUJzhPSp0WiY8UGj0ZiND2NjY6irq5uScqYtkDLBrFmzHBqP9AYaec/9gnsWpyDYl4MXfmjFkT8vwGXvHcfiTD7SI/zx8p427LpnDla8M9HS3RRXFcchLy4Ic+N8IOhoRWJiImQymccdZx2BSCRCZ2cnCgsLp0Rx1Boc4WSY6v4MDQ3Z1f0ZGBjAmjVr8Pe//x1LlzrXXp+dnY1ffvmFmYQsWbKEkXggOHLkCJ5++mn88MMPAIydagDwxBNPIDg4GMPDw6AoCgKBABdddBHq6+spiqLeAXCEpukvAICiqL0AnqBp+jhFUQIAM2ialjt1sOOYtoyGqfeATqdDVVUVI4pFxHPIjZaTk+PSw8S0/ZTo4hPRFuIdQNJd3jZGI7DHGieYzOHRUT6KqW9Jdna214MMS/t1a34NntAZcaWtbTL4+vqa9dpLJBL09fWhtrYWWq0WbDYbAwMDuPXWW/HnP//ZY0EGALz11lu4/vrrodFokJaWho8//hgGgwFr167Fhx9+iKSkJGzevBkAMGvWLKxduxY5OTnk979nvOMEAO7C6fbW3fiNEkEng6OdJVwuF/Hx8YiPjzeT+R4dHYVer0d2drbVlPRUQCQSoaOjw6kyAdHG4LKNTqsA4MM2im/FBvPQIVEi1M8H95qYLtrCX1dkQiIWo6urA8XFxYwWhacdZyeDKadsKqXETeEo8dMR3R+9Xo/g4GBcddVVePHFF50OMgDY5G+Zore310zoKyEhAceOGYPL3NxcbN++HatWrcLmzZtNM6RVAFZRFLUJQCKAEgCJFEU1j7//LEVRSwC0AbiXpmmho8c8bYEGaTcjqm6pqanMg5U8+AUCAQoLCz1SjzPVxSeM4s7OTsjlcnA4HNA07fWLmWRtaJp2WE/ClsNjV1cXfHx8mHqzZcQ8Vb4lwGkVTks/EXs+LGFhYYiKinKalKlQKFBVVeWS/bSjIIEel8vF8PAwsrOz8cEHH2D9+vXg8/no7++HRCLxmIZCYWEhysvLJyzfu3ev1fU3bNiADRs2kD+ZYIKm6XIAuR45qDMctoIHV5U+STlQq9VCo9EgPj6euV7DwsIQHR3ttCaOqxAIBBCJRCguLnZqPJIqjBmeMH8f1PaPIszfB+Ixoy5ObIgvDrYOQabUmsnuW2LbnWWICuJioK8PQqFwwpjoacdZe+jr62O6fLxpWOnIMbhC/LSm+/PII4/g0KFDTKlEq9Va/Y2XLVuGgYGBCcuff/55hz7bWqWCXLsfffQR7r//fjzzzDNYuXKlaZboIwAzAZQD6AJwGIAOxjghAcAhmqYfpijqYQCvAvijQweDaeo6AYysXnIjz5o1C4GBgQzps62tDWNjY15zRCWM4sjISDQ0NECtVoPL5aK8vBwhISGIjo5GWFiYR9OCRNU0ODgYqampLg1Y1hweRSIREzGTm5zL5aKqqooJrLwJEigSgSxbsOR1WCNlTpalkcvlqK6unpLS1vDwMBobG1FUVAS9Xo9Dhw5h48aNWLx4MXbs2IGRkZFpE2s6B+twR06clBh1Oh1KSkrAYrEYsy6pVMpo4nizbEDTNONE6ooisCnZs39YhdgQHgRDxpZ0NotCVe+Ivc3xw31zkRDqi87OTgwPD0/6cPWE46wtEOK6pzo7XIE7QYYluFwu/Pz80N/fj3fffRdhYWH47rvvMH/+fKuBxk8//WRzX7b4W6aw5HL19PQwz4IZM2bgxx9/BGBssNi5cycAgKZpHYCHyDYURR0G0AJAAkAB4JvxtzYDuNWZ859yjgZgfDgdPXoUer3eLJigaRp1dXXw9fVFZmamV2cPRBwrPDycMUYjaUGRSASpVIqgoCBERUWZuba6AlJWiIuL85phGak3C4VCyGQy8Pl8pKSkEDaxVz6T8CTcSTGbkjIHBwdt8jqmMsgYGRlBfX0902p2zTXX4Oqrr8b69eud3pder0dpaSni4+OxY8cOu4xxU8XPN998ExdddBEAo+/BzTffDKVSiRUrVuCNN94w/U2nvg3CM/AI14uA6GMAzsuJ63Q61NTUICQkxO4kgKZpZnwYGhpCYGAgU8Z090FEypxcLtflse9AiwR3flWNL28pxlM7mpAc7oeChGD8Y2+73e2OP7YQOgONEF8OmpubodPpMHPmTLcCKZLBFIlENh1nbYEEOnl5edPinQJ4NsgAjGPKlVdeiYceeghr1qxxa19//vOfrfK3TKHT6ZCVlYW9e/ciPj4es2fPxpdffolZs2ZBJBIx1YObb74ZS5Yswbp16yiKovxhjAnkFEUtB/BXmqYXAcB4OeXfNE3voyjqZgB/oGn6KkePeVrIoDU1NRAKhZgxYwbCwsJAURTTUurNhzGBSqVCVVWVXYKpqWurRCKxKbQ1GcjDeCoUTE0/i9gmj46OMu2nnszSkO4cT/IkgNO8DqLXQRwXiSuvt9UYiRgQ8WO57rrrcNlll+Guu+5yafD/xz/+gfLycoyMjGDHjh149NFHER4ezgwSUqmUUfy89tprGZLnsmXL0NzcDDabjbKyMrzxxhuYO3cuVqxYgfvvvx+XXHIJ+YjfZaABGCcs7ip9ErK5s0J5JEAWiUQYHBx0eXwATk963FXa3FTei2d2NeOH++bi0neP4Y9lCfjoiMDuNo9dmIGb5iZ6JNCxBaKULBaLMTw8PEH8ioBYFSgUCsyaNes3E2SMjY1hzZo1uOuuu3Dttde6vT+JRIK1a9eiu7ub4W+Fh4ejr68P69evx65dRv73rl278OCDD0Kv12PdunVMufWNN97AO++8AwC44oor8MILL4AyIgXADzC2r/YCuJWm6S4AoCgqGcDnAEIBiAHcQtP0RI16G5iWQKOrqwvDw8PQ6XRISkpixLGys7O9zvAmD5KZMx1riSTHTIS2BgcHweFwbHIjrH2Wq2RWZ0A+y5K7YJmlIbMwd0yEPCH/6wi0Wi16enrQ2dkJLpcLPp/vEq/DUZDzys/Ph4+PD/74xz9i2bJluP/++10aeHt6enDTTTdhw4YN+Mc//oEdO3bYZIybssIB4KKLLsLTTz+NlJQULF26lDGv+uqrr/DLL7/gX//6F/mY33Wg4Y5nCXGCdmYssAXCVTAdHwjPxx5Mu+qio6PdOoYXf2jB5pN9+M8tJbji3yfApijobYzvO+4uQ1K4HzgsFlPWJWJg3oSp+BWZwJGgo6urC1qt1rsqwpPA00GGQqHA2rVrcdNNN+Gmm27ywBF6DV79wqeco6FSqdDV1YW8vDxIJBJUVVVBqVQiPj7e661LxBgtPz/fISMmAmtCWyKRCNXV1aAoimmLMyWtDg0Nobm52enPcgXEt8TaZ1mSt8gsjDy8nRU3I4PzVJyXSqXCwMAAysrK4Ofn5xKvw1GQDE1eXh64XC5uueUWLFq0yOUgAwAefPBBvPzyyxgdHWWWOar4mZCQgN7eXvj4+JiJxpHlv3fIZDLU19cjNzcXbDbb6d+IdHV4imxubXyYTMuHmLN5qrulQ6JAMt8f1eNcDGtBRri/DxZl8pEWYbx3ic1DbGys1zPJgLn4VWZmJjOBO3r0KCiKQnJyMlQq1ZQKchF4OshQKpW49tprce21157pQYbXMeWBxsjICP79738znAUA+M9//oPR0VFGrCoiIgLR0dFut0GawhFjNEfh5+eH5ORkJCcnQ61WT7CKZ7FYEIlEUyIuY8u3xBosZcVJ+xUZEAk3wpa0L1Hm89TgbA+jo6MTAho+n884shJeB+m+cYftTtpl8/Ly4Ovri9tuuw3FxcV45JFHXL7+duzYgaioKJSUlDCeJfZgiyVujz3+e4ZMJsNrr72GpqYmXHDBBVi1ahVKS0snzXSRjOrQ0JDTXR2OwnJ8EIlEDEGSTEo0Gg2ampo8Zs5G0zTq+8dQmBCMp3daF+F6akUWrik9HUwQfyXLbrGphL+/PxQKBeLi4pCYmGhmakba4V1R3HQWng4y1Go1/vjHP2L16tUucbt+a5jyQCM6Ohoff/wxbr/9dkYO+Pzzz8f8+fOxevVqzJ07F8PDw0wbJGEuu0pqdNUYzVGQ/vKEhARotVo0NjZCIpGAx+Ohu7vbrWOfDP39/ejp6ZnUt8QWTNuvSMDU1NQEjUYz4SYnynyOBDTugmRNbPkZmAZM1tjupMTiSKBKeC25ubnw8/PDXXfdhaysLGzYsMGt3+zQoUPYvn07du3aBZVKhZGREdxwww0OK34SlnhCQgJ6enomLP+9IyUlBZs3b4ZCocDu3bvx73//G/fddx8WL16MVatWYe7cuRPudWJKBsAjCrmOgMfjMVo+Wq0WYrEYtbW1kMvliI+PB03TTJeMO+iVqSCRa7C3aXDCe9eUxkE8qjELMkhwPZ2CZMRqPjAwkCHhkrFUp9NhcHCQUdx0tR3eEXg6yNBoNLjpppuwfPly3H333ecmBpimrhOtVotvvvkGV111FUME/fnnn7F161YcPnwYs2fPxurVq7FgwQIm1T86Oorw8HDmYnPkxzM1RsvIyPDqD07s0DUaDXJyckDTNMO6HhsbY1jXhPzqLkj7V35+vsdbgInOCDl2X19fKJVKlJSUeD1DQ0Ta8vPzXTJNImx3sVhs5sNijQhLgoycnBwEBgbi/vvvR2RkJF544QWPDma//PILXn31VezYscMmY9xS8fOCCy5AS0sL2Gw2Zs+ezXihrFixAvfddx9WrFhBdn+2jmIe92FRqVTYs2cPtmzZgoqKCsyfPx+XX345zjvvPEilUtTX1zOZhuka/Lu6uiCRSJCTk8Nwp+RyORMcu2o58PkxAV74oXXC8tKkEHx2c7HZMlt8rqkE4YWEhYUhOTnZ7rqkxVgkEkEmkyEoKIjhdbg79nk6yNBqtVi3bh3Kysrw6KOPnk1BhlcPdFoCDXvQ6XQ4ePAgNm/ejAMHDqCwsBCrV6/GkiVLoFAoIBQKMTIygtDQUEZEx9pDwVvGaNZgMBiYtlxrAY2pH8jw8LDbkuLt7e2Qy+XIzc31+qysr68PnZ2dCAkJwcjIiMdafq3B1JnRE6UZMkCJxWKGCEt4HTqdDpWVlZg5cyaCgoLwpz/9CX5+fvjHP/7h8e/UNNCwxRgHjGI8H330ETgcDl5//XWms6S8vJxpb73kkkvw1ltv/e7bWyeDRqPBvn37sHXrVvzyyy9Qq9W44447cM8990yLjDVN02hubmbIjqbXGOnKEIlEzNgWFRXlcJfYsFKLea/8arbsxjkJkCq0eHblDHDZp/dB+Fx5eXle51jZgl6vR1VVFSIjI83UKx0B6QYkZFIul8uUTZ2dBHk6yNDpdLj99tsxa9YsPPnkk2dTkAH83gINU+j1ehw+fBhbtmzBvn37kJOTg9WrV2PZsmWMOZJMJpvw4J5KYzQinx4ZGelQa5qtXnxHovOp9C0BjATFgYEBFBQUMOqppi2/vr6+TEufu4M3GQC95cxoyusQi8VQKBTg8XiIjo7G+++/D71ej7fffnvaWurcwFk1mplgSsaRiooKrFu3DnfeeSeqq6tx4MABFBcXY/Xq1Vi6dKnXy4DA6cyqv78/0tPT7d63ll1iwcHBzNhm7WGo0Rmw5v1ytIrNLSjqn5oobU1szgsKCqbkvK2BBPieEhNUKBTMPW0qWjhZEOXpIEOv1+Puu+9GcnIynn322bMtyAB+z4GGKQwGA06cOIHNmzdjz549yMjIwMqVK3HRRRdBr9dDKBRCKpWCx+NBLpcjPz/f6y2lhEzlamuaZS8+eXBHRkZOIKmRrImfn9+kg5Un0N3dDYlEgvz8fJs3omnLL4vFYm5yZwMFEmRMBf9DrVbj1KlTSElJwfHjx/Hcc89BLBbj7rvvxtVXX40ZM2Z49fO9gLNuRBvHlIwj/f390Ol0zMyZqLxu2bIFP//8M2bNmoVVq1Zh+fLlLpXqJgPp6nAls0paQUlgb+lzZKBpPPZNPXbWGjuXFqSHY2ZMIK6dHY+YYPP7iPC5CgsLp80zxNQPyd1WXmsgooVisRgqlYopR1ly5DwdZBgMBjzwwAPg8/l48cUXz8bJCnAu0JgIg8GAyspKbNmyBbt370ZiYiJWrlyJ4eFh+Pn5oaysDMPDwx5V7rMEyZp4kkxFHtxisdjMWI3D4ZipmHobxPTNGWU+4pQrFosZxrgjhEzTThZvBxkajQanTp1CZmYmwsLC8Pzzz6OnpwevvfYafvzxRwQFBeHSSy/16jF4AecCDRdhMBhw/PhxZvKSmZmJ1atX46KLLvJIJ4hSqUR1dTXS0tLcFusz9RUZHBwEl8vF3n4OPio/Tf6s2rAYPuyJ92t3dzcGBwcZEbrpAPFDSk1N9bpwIXDaAZvw+0JDQxEZGQmVSgWhUOjRIOORRx4Bj8fDa6+9drYGGcC5QMM+iNLoww8/jMbGRuTm5mL16tVYsWIFuFzuBOW+yMhItwlEU2EnTzophEIhxsbGwOfzkZGR4ZVZFwHxWlCpVBPqyM7AkpBpi8RLtEamog2YDHTp6ekIDw/HK6+8gubmZnz22WdOXQ8CgQA33ngjBgYGwGKxcPvtt+OBBx7whrS4ozgXaHgABoMBp06dYiYvSUlJWLVqFVasWOFSZtTbYn0/1PTioW+aMSeGjdxIH5yXFYWijASz+8jUO2Uq+Fy2QJSYJ/ND8hZIOaqjowPDw8Pg8/mIjo4Gn893K7tjMBiwYcMGaDQavPPOOw59v/bGCVN8//33eOCBB6DX67F+/Xo8/vjjAICqqirceeedGBsbQ0pKCv7zn/8gODgYGo0Gd9xxB8rLy8FisfDGG29gyZIlAIwifxs3bgRFUYiLi8MXX3xhjVJwLtCYDD/++CO2bNmCt99+G+3t7diyZQu+++47BAcHY+XKlbj00kvh7+9vNhsgpmrOXmim9s1TkeavrKxEQkICaJqGSCRyKlvgDAhZzWAwYMaMGR7brzX54aioKFAUxeh/eDvI0Gq1OHXqFNLS0sDn8/Hmm2/i5MmT+PLLL53+/fv7+9Hf34/i4mKMjo6ipKQE3377LT755BNPS4s7inOBhodB2i63bNmCnTt3IioqCqtWrcKll17qUPZSIpGgpaXF5c4pR1D64gEoNHocfmQBeJQOYrEYIpGI4SlERUWhq6sLFEUhOzt72jgDnvBD8gRIuaSgoIARVJNIJC47zhoMBvztb3/D0NAQ3n//fYeDOFsWBKbQ6/XIysrCnj17kJCQgNmzZ+Orr75CTk4OZs+ejVdffRWLFy/GRx99hI6ODjz77LN45513UF5ejo8//hgikQiXXHIJTpw4AYPBgLi4ONTX1yMiIgKPPvoo/P398fTTT1se2rlAYzKQczC9mUg0v3XrVmzbtg1cLhcrV67EqlWrEBQUxKT5nZELJqJfBQUFXq9z2upztzQrslWHdAY0TaOhoQEcDserZnak5tzV1YXBwUGEh4cjJibGJX8IR0HqwikpKYiIiMA///lPHDhwAJs3b/ZI98GqVatw77334t577/W0tLijOBdoeBE0TaOxsRFbtmzBjh07EBISwkxeIiMjJ9wrfX196O3tRUFBgVe7W050SuHHZSM3zrw9VaPRQCgUor29HRRFIT4+HtHR0S45qLoLYoQ4FRYM9tDb2wuhUGi1dGTNW2kyx1maprFx40Z0d3fjk08+caoEY8uCwBRHjhzB008/jR9++AEAzMaQ4OBgDA8Pg6IoCAQCXHTRRaivr8c999yDefPm4YYbbgAAXHDBBXjhhRdQVFSEuLg4lJeXIykpCXfddReKi4tx++23Wx7ab0uC3BuwdkFQFIWMjAw89thjePTRR9Hd3Y2tW7filltugcFgwGWXXYbVq1eDz+czcsEsFosJOixTkO3t7RgbG/OK6Jcl7PW5m9qtkzqkQCBgzNOcFbUhJFN/f3+kpaV5dTCiKAo6nQ4qlQoLFiyAVquFSCTCqVOnGE6Kq+qe1kAY7klJSYiIiMCHH36IvXv34ptvvvHIQ6CzsxOnTp3CnDlzzkmL/0ZBURRmzpyJv/71r3jyySfR1taGLVu24LrrrgOPx8Nll12GVatWISoqCr/88gv4fD6Ki4u9PkbMTrGeHWCxWBCLxUhNTUVsbCyjHOypSYmjmCo/pMlgL8gAjCquSUlJSEpKYiZx5Puy5jhL0zReffVVtLe34/PPP3f6d7Y1Tlges2nbb0JCAo4dOwYAyM3Nxfbt27Fq1Sps3ryZEfkrKCjAtm3bcM0110AgEKCiogICgQBlZWV47733mHbmzMxMxlBtKvGbCDQmA9HQf/jhh/HQQw+hv78fW7duxV133QWlUok//OEPWLVqFeLi4iAWi1FTUwOappkHX2dnJ1gsFvLz871+g9rzLbGEKWGUaEYQL5DJ2uIAY5BB7LG9baYEGNvrOjo6GCVTHo9n5g9hqu5p2qbmYjd+hgAAK25JREFUyneu1+tRWVmJxMREREdH49NPP8WOHTuwbds2j5RqxsbGcOWVV+L111+3K3p0Tlr8twMyeXn88cfx2GOPoaurC1u3bsVNN90EkUiElJQUvPnmm9PGhdBoNKiqqkJCQoLZw8zapMRZ8UNnMJV+SPYwWZBhCctJ3NDQEPr7+9HY2Ag2m43W1lYMDAyguroamzZtssntWrZsGQYGBiYsf/755x06bntjw0cffYT7778fzzzzDFauXMlMmNatW4eGhgaUlpYiOTkZ8+fPB4fDgVarxXvvvceUju+77z688MILePLJJx06Fk/hdxFomIIQYu677z7ce++9EIvF+Oabb/DII49gaGgIK1aswOrVq5GcnIyenh4cPXqUmX0qlUqvkjFJn7srHRgsFsvMC4S0xbW2tk5oiwPcE81xBaZBhrUyieXMQiwWm83EIiMjHVZNJEFGfHw8YmJi8OWXX2Lz5s3YsWOHRzQ6tFotrrzySlx//fW44oorAOCctPjvDBRFISUlBQ888AAOHDiA8847D3FxcbjrrrugUqlw6aWXYtWqVYy0trehUqlQWVlpUzvIclJi+hB1R0DQEqZ6ON4cKyeDs0GGJdhsNjPZIWX4r7/+GseOHcPChQvxzTffYO3atVa3/emnn2zu19Y4YQpbYwYAzJgxAz/++CMAoLm5GTt37gQAcDgcvPbaa8w28+fPR2ZmJiorKwEA6enpAIC1a9fixRdfdOKb8Ax+d4GGKYiz4h133IE77rgDEokE27Ztw5NPPomenh4olUrcdddduOmmmyCRSNDY2AitVovIyEim7ukpuOtbYgpTh0TTtriuri5wuVxERERgYGAA8fHxU/JwI26xtoIMS/j4+DCCPmQm1tvbi4aGhkkHRRJAkZnJli1b8Pnnn2Pnzp0eGfhomsatt96KmTNn4uGHH2aWr1y5Ep9++ikef/xxfPrpp1i1ahWz/LrrrsPDDz+Mvr4+tLS0oKysDGw2G0FBQTh69CjmzJmDzz77DPfdd5/bx3cOUwsOh4OnnnoKJSUlAID7778fIpEI33zzDR5++GHIZDKsWLECq1atQlZWlleCDsKFcNTunsViISIiAhEREWYCgi0tLW4p/5IusqloVbcHd4MMayDGiD09Pejs7GS4Vc7C1jhhitmzZ6OlpQUdHR2Ij4/Hpk2b8OWXXwIwjqUkWHzuuedw5513AjBy+miaRkBAAPbs2QMOh4OcnBz09fWhvr4eYrEYkZGR2LNnD2bOnOnal+AGfhNkUE+js7MTl19+OZYtW4bW1lZ0dHRg+fLlWL16NXJycjA0NAShUAiVSsUwvN3pACF97t7wLbHE8PAwqqurwWKx4Ovryxy/twYGoVCI7u5ujwgFkTY1sViMoaEhJlND2tQMBgOTpUlISMC2bdvwzjvvYOfOnR4jo/36669YuHChmcbIxo0bMWfOHE9LizuKs7Xe8psfRwBjB8q3336LrVu3QigU4uKLL8bll1/uMWXf4eFh1NfXIy8vz23tD0vlXyIJ4AhZ29RF2ttdZPbgjSDjs88+w9atW7F9+3a3M6K2LAj6+vqwfv167Nq1CwCwa9cuPPjgg9Dr9Vi3bh02bNgAAHjjjTcYjsUVV1yBF154ARRFobOzExdddBFYLBbi4+Px4YcfMppL//znP/HGG2/Ax8cHycnJ+OSTT6y1GZ/rOplqtLW1QSqVorS0FICRnLlz505s3boVTU1NOP/887F69WoUFhYyHgUKhcJpstVU+5YQJVMimkNk3AnjmgQdnsrUeDLIsISlgJGPjw/UajWio6ORlpaGXbt24e9//zt27tw5be6UU4RzgcZZAplMhu3bt+Prr79GV1cXM3nJz8936d4nbbTekO2nadpMQNDHx8dmdx7JWBYWFk6LjwyBN4KMr776Cv/5z3/w3XffTSvfZApwLtA4k6BUKvH9999jy5YtqK6uxqJFi7B69WrMnj0bMpmMEdgKDw9HdHS0TV7BVPuWkBquLSVTIt8rEomgVqsRERGB6OholzM1AwMDjOSxt7M0RCmWxWJh9+7d2Lp1K+RyOf73v/9hzpw5Xv3sMwDnAo2zECMjI9i5cye+/vprNDc3M5OXkpISh4IOoVCIrq4uFBQUTEkGQaFQMEEHKTlHRUVBKpVOu7Q54J0gY+vWrfjggw+wY8eOae2cmSKc2YHGW2+9hbfffhscDgd/+MMf8PLLLwNwXg1RrVbjxhtvREVFBfh8Pv773/9OSSeEO7BlSz1v3jyGjDkyMsK0nRKL+Kn2LSGaHDNmzHCohqvT6RitDlcsrPv7+9Hb2ztlQUZtbS2Cg4ORkpKCn3/+Gc888wyuv/567N27F+effz4eeOABrx7DNONcoHGWQ6FQYNeuXfj6669RU1ODxYsXY/Xq1ZgzZ47Vh2ZPTw+EQiHy8/On5eFO7AYEAgHUajWSkpIQExMzbTN+bwQZ27dvx9tvv40dO3Y4NGb+BnDmBho///wznn/+eezcuRM8Ho8hqriihvjuu++iuroa//znP7Fp0yZ88803+O9//+vZs/UiNBoNfv75Z2zZsgVHjhxBWVkZVq9ejQULFkAul0MoFDLKmGNjY4iOjp6SQIoQxaxpcjgCZy2sPW1YZA80TaO2thaBgYFITU3FwYMH8cQTT2Dnzp1Me5+nYUsaeBpxLtD4DYFMXjZv3oyKigosWLAAl19+OebPnw8Wi4WqqipQFIW8vLxp8y0BTpsuzpw5k+GsaTQar6gW24M3gozdu3fj1Vdf/T2UXU1x5gYaa9euxe23345ly5aZreCKGiJZZ968edDpdIiJiWHSdGcbdDodoz558OBBFBUVYfXq1Zg1axZ27NiBOXPmQKPRMFoXfD7fK/wMIvzlCaIYMNHC2pKhPtVBhmlW6OjRo3j44YexY8cOp10yHYU9aeBpxNl3gxhxLtCYBBqNBvv27cOWLVtw+PBhhISEIC4uDh988MG0Ei5tmS66mwl1Ft4IMn766Sc899xz2LVrl9U24d8wvDqOuPV0a25uxsGDBzFnzhwsXrwYJ06cAGBd2ay3txe9vb021RBNt+FwOAgJCYFEInHn8KYNHA4H559/Pt577z1UVVXhtttuw+7duzF//nz8+uuv6OnpQX5+PuLj4zE0NIRjx46hpqYGIpEIer3eI8cwPDyMuro6FBQUeCTIAIxtceHh4ZgxYwbmzp2LxMREDA8P48SJEzh69Ci6urowa9asKQkyGhoa4Ovri/T0dJSXl+Phhx/Gtm3bvBZkAMDx48eRkZGBtLQ0cLlcXHPNNdi2bZvXPu/3hKGhISxfvhyZmZlYvnw5pFKp1fW+//57ZGdnIyMjw0wPwN72L7zwAjIyMpCdnc3IOgPAhg0bkJiYOOH+UKvVuPrqq5GRkYE5c+ags7PTsyfrILhcLi6++GK89957KCkpYRRuFy5ciDvvvBO7d++GWq2esuOhaRqtra2Qy+VWnZ05HA5iYmKQn5+PsrIyhIWFobe3F0ePHkVjYyOGhoZgMBg8cizeCDL279+PZ555Bt99993vLcjwOiYNNCiK+omiqFryLzc3F7m5udi2bRt0Oh2kUimOHj2KV155BWvXrgVN0y6pIf5WlRLZbDbmzJmDqqoqbN26FY8//jgqKiqwbNky3HfffaitrUVubi6SkpKYh3Z1dTUGBgag0+lc+syhoSE0NDR4VTSHoiiEhIQgMzMT8fHxYLFYiIyMRFVVFU6ePImenh5oNBqPfy7xnvDx8UF6ejoqKytx7733YuvWrUw7l7dgK4A+B/fx4osv4oILLkBLSwsuuOACq6JCer0e99xzD3bv3o36+np89dVXqK+vt7t9fX09Nm3ahLq6Onz//fe4++67mWD+sssuw/Hjxyd8zocffoiwsDC0trbioYcewmOPPebFM58cNE3j0ksvxX//+1/861//QlVVFW699Vbs378fixYtwq233ort27dDoVB49Riam5uh0Wgwa9asSTOwRPBq1qxZmDNnDiIjIyEUCnHs2DHU1dUxnW6uwBtBxq+//ooNGzbgu+++Q3R0tEf2eQ6nMSlTj6bpZZaLyIv33nsPV1xxBSiKQllZGVgsFgYHB11SQyTbJCQkQKfTYXh4+DdTH+PxePjpp58YLYe5c+cynRKbN2/GP/7xDyQmJmLVqlW45JJLwGazIRQK0dnZCV9fX0RHRztsPEb62afCeh0w2qYPDg6ipKQEbDYbGRkZDEOd1JNJ26y7LXikU4fFYiEjIwN1dXW48847sXnzZkb5zpv4rQbDZwK2bdvGiCLddNNNWLJkyQRXS9OMEgAmo5STk2Nze+L/wOPxkJqaioyMDBw/fhzz5s0z86CxPBbibrlmzRrce++9oGl62n5rLpeLq6++mvmbzWZj8eLFWLx4MQwGA44ePYqtW7di48aNyMzMxOWXX44LL7zQY5lMEtyzWCyXOuQmUy0mlu2OEMe9EWQcO3YMjz32GL777juvcbt+73CrdLJ69Wrs27cPAJhoNyIiAitXrsSmTZugVqvR0dHBqCHGxsYyaog0TeOzzz4zU1D89NNPAQA333wzJBKJWenEVvqzoqICeXl5yMjIwP333888DM6U9CeBpWAUi8VCcXExXnjhBZw8eRLPP/88urq6sHLlStx88804fPgwsrKykJGRAaVSiZMnT+LUqVPo7e21mSkQiURob2+fsiCDEMIsb3p/f3+kpKRg9uzZTIq1vr4ex48fR0dHB8bGxpz+LJqm0dLSAgDIyspCY2Mj1q9fj02bNiE7O9tj52QP9qSBz8E9uGo2RTJK9kztnM1CnU1lXBaLhfnz5+Pvf/87Kisr8Ze//AW1tbW48MILce2112LTpk0YHh52ef+kQ87Hx8cjyqZEtTgrKwtz585FamoqRkdHUV5ejsrKSvT19UGr1Vrd1htBRkVFBR566CF8++23Xi27/t7hVu/hunXrsG7dOuTm5oLL5eLTTz8FRVGYNWsW1q5di5ycHHA4HLzzzjvMhfHee++ZqSESlcRbb70Vf/zjH5GSkgKpVGo2gJumPy27WO666y78+9//ZrpYvv/+e1xyySVm6c9NmzbhscceO2O7WAiLPC8vD3/7298YW+orr7wSwcHBWLlyJS677DIEBARALBajsrLSzLuAx+MxLaWOyny7i66uLkil0knFhng8HhITE5GYmMh4mLS2tkKlUjEM9aCgILsDGKkN63Q6zJw5Ey0tLbjlllvwxRdfTCkR05408DlMDoqifgIQAwCzZs1ilnvCbGq6tzkTwGKxUFJSgpKSEmzcuBG1tbXYvHkzLr30UkRHR2PVqlX4wx/+4HCmmJguBgcHIzU11ePHS1EUgoKCEBQUhIyMDEYgzNTNmYxvPT09EIlEHg0yqqqqcM899+Drr7/2etn19w63Ag0ul4svvvjC6nsbNmxgZFNNUVpaitra2gnLfX19sXnzZqxZswZ//etfzTTgbaU/U1JSMDIygnnz5gEAbrzxRnz77be45JJLzrj0p6Nw1JY6NDQUIpEI1dXVTIZjqkRzOjs7MTw87LSioaWHyeDgILq6uhiBM1tuku3t7dBoNMjJyUFnZyduvPFGfPLJJ8jPz/f0qdkFh8PB22+/jYsuuoiRBjZ9YJ6DfViUYc2e5u6aTTlramcPv4UyLnGbzs/PxzPPPIOGhgZs2bIFV1xxBUJDQ5nJS2RkpNXt9Xo9qqurER4ePmUP4YCAAKSmpiI1NZVxc66pqYFKpQJFUR4NMurq6nDHHXdg8+bNyMjIcGiboaEhXH311ejs7ERKSgr+97//ISwsbMJ669atw44dOxAVFWX2rLO3vbO6U2cbpsfP2Aa2b9+O+Ph4FBQUmC3/vXaxmNpSHzp0CB9//DEAY2lp9erV2L59O7Zu3Yrm5mYkJCSgsbERJ06cQGdnJ5RKpVeOyVZrm7Ngs9mIjo5GXl4e5syZAz6fj/7+fhw9ehT19fUYHByEwWBAe3s7lEolcnJyIBAIcN111+GDDz5AcXGxB8/KcaxYsQLNzc1oa2uzGkifg2swLZ06Yjal0WiwadMmrFy50u72tsq4jh7Lli1bcP7555+VgzsBRVHIycnBU089hWPHjuGdd97B6Ogorr32Wlx66aX417/+hYGBASaTY+rsPF0zfeLmHBMTA19fXyQmJqK5uRnHjx9He3u7S+VXgsbGRtx666346quvnCq7OkJYBozj8/fff+/w9vYIyyRj39LSgpaWFqv7PRsw5e6ty5Ytw8DAwITlzz//PDZu3MhY4JriXBfLaVvqhx9+GA899BD6+vpw2223McGFTCbDqlWrEB8fD7FYjIaGBuh0Oo/6lxB+had9WWy5SdbV1YHFYkGpVMLHxwe33HIL3n333UkfFOdw9uHxxx/H2rVr8eGHHzJmUwDMzKbsZZRsbW+vjPvoo4/iyy+/hEKhQEJCAtavX4+nn36aKeNmZGQgPDwcmzZtmp4vxQugKAqZmZl44okn8Pjjj6Orqwtbt27FjTfeCIqicOGFF2L37t145513pp2zQMolRUVFYLPZSEpKglarZQjvSqXS4fIrQUtLC26++WZ8/vnnTmcjHSEsA8CiRYuscgKdJSzby9ifbZjyjMZPP/2E2traCf/S0tLQ0dGBgoICpKSkoKenB8XFxRgYGHCriwXAWZv+tAWKoiAQCBAbG4vm5mZ8++234PP5ePjhh3HRRRfhyy+/REBAAOOk2NzcjGPHjqGtrQ1jY2NWg7DJQLZ1pLXNHVAUhbCwMPj6+iI0NBR5eXn48ccfcckllyAoKMjt2cw5nJng8/nYu3cvWlpasHfvXuZejYuLYxwtAdsZJVvbA8Yy7okTJ5CUlIT777+f0dl4+eWX0dPTA4PBgJ6eHjz99NP4/vvvUVBQgFOnTmH9+vU4fvw40tLSXNLpsEVU/+STTxAZGYnCwkIUFhbigw8+8Nr3ag9k8vKnP/0JBw8exHvvvYePP/4YLBYL99xzD15//XV0dHS4NF64C1ucDB8fH8TGxqKgoACzZ89GUFAQurq6cPToUTQ1NUEqldo8XtOyq2XW3BE4Qlh2ZXtXMvZnG86Y0kleXh7jAtjZ2YmEhAScPHkSMTExbnex/BbSn5aYO3cuPvjgA3A4HERHR+POO+/Ejz/+iN27dyMxMRFPPvkkLrjgAnz88cfgcrkoKiqCv78/2tracOzYMbS2tmJkZGTSQYSmaWb2MBUOs4Cxm0UqlSIvLw8ajQbHjh3DF198gX//+98QCASQyWReP4Zz+G1hOnQ67KW9r776alRWVqKyshLr16+fgm/APiiKwg8//IC3334bBw8exDfffIOwsDA8+OCDWLp0KV555RU0NzdPSdDhKPFzsvKrRCJhBMJI2fX999+3W3ZdtmwZiFaU6T9vCvO5krE/60AEtpz4NyVITk6mxWIx8/dzzz1Hp6Wl0VlZWfSuXbuY5SdOnKBnzZpFp6Wl0ffccw9tMBhomqZppVJJZ2Vl0T4+PrSfnx+9fPlyWiqVMttt3LiRTk9Pp7Oysujvv/+eWV5eXk7n5ubS6enp9H333cfsT6VS0WvXrqXT09PpsrIyuqOjw7tfgAcglUrpTz/9lF61ahVdWFhIP/LII/ShQ4domUxGt7e300eOHKF/+ukn+tSpU3RfXx89NjZGy+Vy5t/Y2BhdVVVFHz9+fMJ73vrX1NRE//rrr/To6Cjd1dVFl5aWmv3eruKRRx6hs7Oz6by8PHr16tW/pWvBlXv4TPg3pcjKyqL7+vpomqbpvr4+Oisra8I6hw8fpi+88ELm740bN9IbN260u73pOjRN0xdeeCF9+PBhuq+vj87OzmaWf/nll/Ttt99O0zRNf/zxx/Q999zj4TP0HsRiMf3+++/Tl1xyCV1SUkI/+eST9IkTJ7wyJpD7f2RkxOV9jI2N0QKBgK6oqKBfeuklevny5fSMGTPoPXv2uPU9OHINEXR0dNCzZs1yaHtXriEvwKv3+xmT0bBEZ2enmQzshg0b0NbWhqamJrMaFeliaWtrw9tvv81EfL6+vnjrrbegUCigUChQVFTEeLC4Mgs509QCHUFoaChT1ztw4ABKSkrw2muvYdGiRXjzzTehVqtRWlqK0NBQCAQCs/SjwWBAa2sr0+0xVQZJIpEI+fn5GB4exlVXXYW//vWvHqlJLl++HLW1taiurkZWVtbv7lr4vWOqdTomS3tv3boV+fn5WLNmjVlZ+ExEREQEw5PZs2cPMjMz8eyzz2LBggV4+umnUVVV5RFp8Z6eHojFYuTn57vVXUJRFGOVcMUVVzDj/6OPPoq//e1vLu/XEcKyK9u7krE/23DGBhqewIUXXsiozc2dO5fhc9gi3/T39zPkG4qimIc02eamm24CYGyX3bt377TULl1FUFAQrrnmGmzevBlHjhzBggUL8K9//QsLFizAq6++ipGREZSWloLP56Ovrw8HDhyAWCxGdHT0lJxnX18fI8YzNjaGq666Co8++ijTVeAuzl0Lv324m/a29hu6qrlhb1+XXXYZOjs7UV1djWXLljHX0tmAsLAw3Hjjjdi2bRv279+PoqIi/P3vf8d5552HJ598EuXl5S4FHZ4KMkwhEolw9dVX4//+7//w5ZdfoqKiAg8++KDL+3v88ceZQGvPnj2Mc3NfXx9WrFjBrHfttddi3rx5aGpqQkJCAj788EO725sSli+++OIJulPr169HRkYG0tPTz0oiKDANXSfThY8++oiR8e3t7TWTHyazDR8fH6fbZc9G8x1/f39ceeWVuPLKKxlb6s8++wwPPvgg5s+fD6FQiCVLlmDNmjUQiURobm5GcHAwoqOjER4e7nGeRn9/P+P6qlAocPXVV+P+++/HlVde6dHPITh3Lfw28dNPP9l8b6p1OuwR1fl8PrP8tttuO2szYsHBwbj22mtx7bXXQqFQYNeuXXj33XdRV1eHJUuWYNWqVZgzZ86kgYM3ggyJRIK1a9fi2WefxfLlywGc9mdyFYRwbAlLwvJXX33l1PaA87pTZxvO+oyGI7OY559/HhwOB9dffz2Ac+2ypvD19cVll12Gzz77DBUVFRCJROju7sYHH3yAp59+Gr29vSguLkZcXBwkEgmOHTuG2tpajznNCoVC9Pb2oqCgACqVCtdccw3Wr1+Pa665xul9nbsWzsEWplqnw17au7+/n/nM7du3Y+bMmV4996mAv78/1qxZg02bNuHEiRNYvnw5Pv30U8ybNw8PP/wwDhw4YNUk0htBhkwmw1VXXYUnn3zSLNNwDtOHsz6jYW8WAxgHhR07dmDv3r3Mw+Cc6Zt1tLa2Ijs7G9988w30ej3279+PLVu24C9/+QuKi4uxatUqLF26FGq1GkKhEG1tbYwpUkREhNMDBQlqioqKoNVqce211+KGG27AjTfe6NLxn7sWzsEWpkOnw5bdwptvvont27eDw+EgPDwcn3zyydR/IV6Er68vVq5ciZUrV0Kj0WDv3r343//+hz/96U+YN28eVq1ahUWLFuHbb79Famoqo5PhCYyMjOCqq67CI4884rGy6zl4AC4wSM8a7N69m545cyYtEonMltfW1tL5+fm0SqWi29vb6dTUVFqn09E0TdOlpaX0kSNHaIPBQF988cX0zp07aZqm6bfffpu+4447aJqm6a+++oq+6qqrpvZkphE6nY7ev38/fd9999G5ubn01VdfTX/11Ve0SCSi+/v76aqqKnrv3r304cOH6dbWVnp4eHhSZnhnZyf9888/0zKZjJZIJPRFF11Ev/vuu0xnh6fxG74Wprt75KzoOvEmdu/eTWdlZdHp6en0Cy+8MOF9g8FA33fffXR6ejqdl5dHV1RUTLqtRCKhly1bRmdkZNDLli2jh4aGmPec7ZI6U6DRaOg9e/bQd9xxB52cnEzn5OTQmzZtooeGhjzSsSIUCumFCxfSX3755XSf6tkIr97vv+kBIj09nU5ISKALCgrogoIC5uFA0661y65Zs4ZOT0+nZ8+eTbe1tU34vMkGnN8C9Ho9ffjwYfrhhx+m8/Pz6SuuuIL+/PPP6YGBAVooFNLV1dX0vn376F9//ZVuaWmhZTLZhAGhq6uLCTKkUil96aWX0q+//rpXB8apvhamENMdMPyuAw2dTkenpaXRbW1ttFqtpvPz8+m6ujqzdXbu3ElffPHFtMFgoI8cOUKXlZVNuu2f//xnZgx54YUX6EcffZSmaZquq6szC4zT0tKYwHj27Nn04cOHmcDYE23h3sCHH35IX3LJJfQPP/xA33vvvfSsWbPoa665ht60aRM9ODjoUpAhEonopUuX0p9++ul0n97ZinOBxtkARwac3xr0ej1dXl5OP/bYY3RhYSG9cuVK+oMPPqD7+vpokUhE19bW0j///DN98OBBuqmpiZZKpXR3dze9b98+WiqV0jKZjL788svpl19++YybfZ1FmO6A4XcdaNjT3iC4/fbbzWbZRE9hqnQ7zjQ0NDTQSqWS+Vuv19OHDh2iH3roITovL4++8sor6S+++IIWCoUOBRmDg4P0smXL6Pfff38az+qsh1fv97Oeo3Gm4Pjx48jIyEBaWhoA4JprrsG2bdum1MZ8qmHNlnrLli2MLfXKlStx6aWXws/PD0KhEOXl5VCpVGCxWBAIBHj22WdRXFyMRx555ByZ8hzOSljT0Th27Nik6xCtDVvb2tPtcLZL6kzDjBkzzP5msViYP38+5s+fD4PBgJMnT2Lz5s145ZVXkJKS8v/t3XFslOUdwPHvw5ra2QSDorMpM1KuHK3UNrWOmqCp7aqzGFw9p0WRwhqJ2FEqKYJR/9BKICJLF2VsDtxQUKPNsiJazGRuMWYVoTTaFpAWL20Z4AAhohkt9Lc/7u15V+6ud0ev17v7fZI3vXv7PHf3trnn/b3P+zzPj7lz51JWVsbEiRMveq1z584xf/58ysvLqaqqGqtDUCHSQGOUBNPgxDPPtNTPPvssBw4coLGxEYfDwRVXXEFeXh6tra1s3bqVpqYmamtrOXfuHIWFhRctbqRUrBAZeQaSvzLB1A32/cJ5rfFowoQJFBQUUFBQwJo1a/jiiy9obGxkzpw57nQUd999N5MmTaK/v5/KykruvPNOlixZEpPHmyhifnrreBEvX/TRYIwhKyuLZ555hpaWFh555BHeeOMN+vv7qaio4LXXXqO8vJyWlhZSU1PZs2dPtD+yUmEJtPbGSGWCWbcDuOR1O2LVhAkTyM3Npb6+nj179rBu3TqOHz9OeXk5c+fOpbS0lNmzZ7Ns2bKEbWtjRhj3W5QPwdyrTVSLFy+Wnp4eGRwclO7ublm+fLlcuHBh1F5/3bp1Anjlxonx/CWhiPZYi4QeozEwMCBTp06Vw4cPu8dmtbe3e5XZsWOH12DQm2++ecS6dXV1XoNBV6xYISLhzZKKN4ODg9LR0SGrVq3SsV2jJ6Lf94RtIEZbMA2OGn09PT1yxx13yHXXXecONMIZmb9hwwavKav3339/dA4odNEOGBI60BBxzSrJzMyUjIwMef7550VEZOPGjbJx40YRcZ0YH3vsMcnIyJCZM2fKZ599FrCuiMiJEyekuLhYbDabFBcXy8mTJ92/C3WWlFJB0EAjVvhrNIbr6emRoqIimTFjhmRnZ0tDQ4OIxOfc+UhzOBzS1tbmle03nJH5Q2VEXEHjVVddFSt/y2gHDAkfaKjxLVC76mnRokVy9dVXX5R1NdR2+bvvvpOysjKx2+2SnZ0tK1eujNzBjZ6Ift91jMYoKisr48svv6S7u9vnuvVDkpKSWL9+Pfv376elpYUNGzbQ2dnJ2rVrKSkp4dChQ5SUlLB27VogvAyjiWD79u2kp6eTm5vrtT+cjJr+8pcoNV7s3LkTu92OzWZztw2eRISamhpsNhs33ngjra2tI9Y9deoUpaWlZGZmUlpayjfffOP+3Zo1a7DZbNjtdj744AP3/qKiIux2O3l5eeTl5fnMhDue+GtXh1u4cKHP9jOcdrmuro4DBw6wb98+PvnkE5qbmyN3gDFAA40oSEtLIz8/H3BlVc3KyuLIkSNeWUErKyu9soWGmmE0XgTKX7J69Wqee+65i+qIaP4SFV8uXLhAdXU1zc3NdHZ28uabb9LZ2elVprm52X3B8corr7BkyZIR64ZzEgXYtm0bbW1ttLW1+UxQN574a1eHu+2223ymEgi1Xb788su5/fbbAUhOTiY/P99roG4i0kAjypxOJ/v27WPWrFkB586HeoUeLz788EPa29sv2jIyMvjqq6/Izc3l+uuvp6+vj/z8fI4dO3ZJ+UsAzV+ixh3PdXqSk5Pd6/R4ampqYsGCBRhjKCws5PTp0xw9ejRg3VBPorHIX7t6qfX9tcueTp8+zbvvvktJScmlHELM00Ajis6ePYvD4aChocHnYjRDwrlCj3c5OTl8/fXXOJ1OnE4nU6ZMobW11T3XPtSMmp7ZORsbGykuLk6Yv6Ua/4I5qYWyMNhQ3XBPoosWLSIvL4/6+nqf7dBYCyZz82gbqf09f/488+bNo6amxr2QY6LSBbuiZGBgAIfDwUMPPcS9994L/DB3Pi0tLWHnzo+GcDJqVlVV8fDDD2Oz2bjyyit56623onkISnkJ5qJiNC9IAtXZtm0b6enpfPvttzgcDl5//fWwMy6PlkCZm/21q8EKtV0esnjxYjIzM6mtrQ3tYOKQ9mhEgYhQVVVFVlYWy5cvd+/3vKresmWL19V2qFfoicbpdDJ58mT386eeeoru7m4OHjzoDiYACgoKaG9vp7u7m5dfftndeKakpPDOO+/Q1dXF7t27E/4KRI0v42VhMID09HTANb7swQcfHPe3VPy1q5da31+7DPD0009z5swZGhoaRu9AYlkYU1XUJfr4448FkJycHHc20ffee29U5s4PDAxIXl6ezJkzR0R0ymwCiPY0VZ3eOgbGy8JgAwMD7mnk/f394nA43OuFjFf+2tUjR47IXXfd5S5XUVEh1157rSQlJUl6erps2rQpYH0R3+1yb2+vADJjxgx3+x4DCd8i+n3XBiLOrF+/XubNm+cONOI53bQSkegHDBpojJHxsDDY2bNnJT8/X3JyciQ7O1tqamrc7YaKaRpoqOD09vZKcXGx7Nq1yx1oxHO6aSUi0Q8YNNCIM83NzTJ9+nSZNm2a+yLF0+DgoCxdulSmTZsmOTk5snfv3hHr+utZPXHihBQVFUlqaqpUV1d7vY/2rI6piH7fdYxGHKmtreWFF15gwoQf/q2xNmX2pZdewm63c8MNN/DEE0+49/tbPGjv3r3k5ORgs9moqalxRc+40kc/8MAD2Gw2Zs2ahdPpHLNjUCpWjfV6HSkpKdTX1/Piiy9e9FkSeTHCeKOBRpzYsWMH11xzDTfddFNQ5YdOyJ6iPWX2o48+oqmpic8//5yOjg7q6uqA8FZG3bx5M5MmTaKrq4vHH3+clStXjskxKBXLxnq9jtTUVGbPnk1KSorXeyTCYoQJJdJdJrqNzQasAfoAJ3AM+B7YChwE0qwyacBB6/GTwJMe9T8AbrHKHPDYPw/44xgdw9vAz33sD/mzDpWxHicBJwAT7f+TbrqN5w24D9jk8fxh4OVhZXYAsz2e7wIKAtUFTg97jW+GPV/o+T7W633o8fxWYEe0/z66hbdpj0acEJEnRWSKiFwPVAD/EJH5wHag0ipWCQxdnmwHKowxlxljpgKZwG4ROQp8a4wpNK6ujAUedSJtOnCrMeZTY8y/jDE3W/vTgV6Pcn3WvnTr8fD9XnVE5DxwBrgqgp9dqXjgq/tyeDenvzLB1B3Nz6FihAYa8W8tUGqMOQSUWs8RkQ5cPQidwE6gWkSGkhksATYBXbhO1r82xhwwxuw3xtxijLnSGPN3Y8wh6+ekoTczxjxpjOkyxhw0xtzpsf8mY8wXxpjvjTEnjTHtw7Z7cPU8TAIKgRXA21awE07Dpg2VUqHrA37q8XwK8J8gywSqe9wYkwZg/RxpHfA+q36gz6FihAYacUhE/ikid1uPT4pIiYhkWj9PeZRbLSLTRMQuIs0e+/eIyEwRmQZcBuwUkRlALrAfWAXsEpFMXN2mqwCMMdm4elNuAH4B/N4Y8yPrZTcCi4FUYDewwnqPoa0JV+PyV3HZDQwCkwncsPlrjNx1jDFJwBXAKZRSgXwGZBpjphpjknF9n7cPK7MdWGBcCoEzVk9ooLr+elZ9inLPqhplGmgov4wxE4HbgM0AItIvIqeBe4AtVrEtwC+tx/cAb4nIORH5ClePyM+sK5iJIvJvERHgNY86nv4GFFvvPR1IxjW2IpzbPJ4N2324biVpj4ZSAVi3GX+Da4zTfuBtEekwxjxqjHnUKvY+cBjX9/tPwGOB6lp1fPasAhhjnMBvgYXGmD7rggW8e1a7gcTOtR7DNNeJCiQD+C/wZ2NMLrAXWAb8xDrJIyJHjTFDyQPSgRaP+kNjJgbwP5bC06vAq8aYdqAfqLSCgw5jzNBtnvNcfJvnL8CPcTVEQ43RZuB1Y0wXrp6MirD+AkolGBF5H1cw4bnvDx6PBagOtq61/yTgM4WpNa7M1/49wMxgP7cavzTQUIEkAfnAUhH51BjzO6zbJH5c0iAxEekH5vt6YRFZDaz2sd9nYyQi/wN+FeCzKqWUGgN660QF0gf0icin1vNGXIGHv4Fd4YylUEopFcc00FB+icgxoNcYY7d2leC6fRFLU2aVUkpFkd46USNZCmyzRpEfBhbhClDfNsZUAT1YtyisQWOhjqVQSikVx4wOxFdKKaVUpOitE6WUUkpFjAYaSimllIoYDTSUUkopFTEaaCillFIqYjTQUEoppVTEaKChlFJKqYjRQEMppZRSEaOBhlJKKaUi5v8tdu3f5FStSQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# And plot\n", "fig = plt.figure(figsize = (9,9))\n", "ax1 = fig.add_subplot(1, 2, 1, projection='3d')\n", "ax2 = fig.add_subplot(1, 2, 2, projection='3d')\n", "\n", "ax1.plot3D(res[:, 0], res[:, 1], res[:, 2])\n", "ax1.set_title(\"Chief (inertial frame)\")\n", "ax1.set_xlim([-6000,6000])\n", "ax1.set_ylim([-6000,6000])\n", "ax1.set_zlim([-6000,6000])\n", "ax2.plot3D(deputy_rel[:, 0], deputy_rel[:, 1], deputy_rel[:, 2])\n", "ax2.set_title(\"Deputy (LHLV frame)\");\n" ] }, { "cell_type": "markdown", "id": "7f2f8de2", "metadata": {}, "source": [ "## Controlling the formation within a predefined box\n", "Now that we have established the equation of motion, we can simulate a box-control strategy. \n", "In essence, we want to keep the Deputy within a box centered around its initial trailing position and of a predefined size.\n", "\n", "To do so, each time the box border is reached, we will apply a $\\Delta V$ flipping the relative velocity component along the corresponding axis, thus keeping the Deputy within the desired box.\n", "\n", "First we write two callbacks which will flip or cancel the velocity and update the $\\Delta V$ count." ] }, { "cell_type": "code", "execution_count": 9, "id": "2715d70b", "metadata": {}, "outputs": [], "source": [ "# This callback flips the selected component (x = 3, y = 4, z = 5)\n", "# of the relative velocity\n", "def cb_flip_rel_component(ta, mr, component):\n", " global DV\n", " # Compute the perturbation effect on w\n", " fh = J2_LHLV(ta.state[:6], c)[2]\n", " # Getting the relative state of the Deputy\n", " rel_state = to_relative(ta.state[:6], ta.state[6:], fh)\n", " # Flipping the corresponding component\n", " rel_state[component] = -rel_state[component]\n", " # Getting the absolute state back\n", " new_abs_state = to_absolute(ta.state[:6], rel_state, fh)\n", " # Updating the Taylor integrator internal state\n", " ta.state[6:] = new_abs_state\n", " # Updating the DV count\n", " DV+=2*np.abs(rel_state[component])\n", " return True\n", "\n", "# This callback flips the selected component (x = 3, y = 4, z = 5)\n", "# of the relative velocity\n", "def cb_zero_rel_component(ta, mr, component):\n", " global DV\n", " # Compute the perturbation effect on w\n", " fh = J2_LHLV(ta.state[:6], c)[2]\n", " # Getting the relative state of the Deputy\n", " rel_state = to_relative(ta.state[:6], ta.state[6:], fh)\n", " # Zeroing the corresponding component\n", " rel_state[component] = 0.\n", " # Getting the absolute state back\n", " new_abs_state = to_absolute(ta.state[:6], rel_state, fh)\n", " # Updating the Taylor integrator internal state\n", " ta.state[6:] = new_abs_state\n", " # Updating the DV count\n", " DV+=np.abs(rel_state[component])\n", " return True" ] }, { "cell_type": "markdown", "id": "c31bc05f", "metadata": {}, "source": [ "We then define the various events triggering when the box boundary is reached. Since the control box is defined in the LHLV frame, we first need to compute the expressions of the relative state as a function of the absolute state:" ] }, { "cell_type": "code", "execution_count": 10, "id": "401a0c9f", "metadata": {}, "outputs": [], "source": [ "fh_sym = J2_LHLV([xC, yC, zC, vxC, vyC, vzC], c)[2]\n", "state_rel_sym = to_relative([xC, yC, zC, vxC, vyC, vzC],[xD, yD, zD, vxD, vyD, vzD], fh_sym)" ] }, { "cell_type": "markdown", "id": "dc078b85", "metadata": {}, "source": [ "The events can now be defined:" ] }, { "cell_type": "code", "execution_count": 11, "id": "b59d7cf6", "metadata": {}, "outputs": [], "source": [ "# The size of the control box is 10 cm\n", "box_size = 0.0001\n", "# We define one event per cube side\n", "ev_left = hy.t_event(state_rel_sym[0] - box_size / 2, callback = lambda ta, mr, d_sgn: cb_flip_rel_component(ta, mr, 3), direction=hy.event_direction.positive)\n", "ev_right = hy.t_event(state_rel_sym[0] + box_size / 2, callback = lambda ta, mr, d_sgn: cb_flip_rel_component(ta, mr, 3), direction=hy.event_direction.negative)\n", "ev_front = hy.t_event(state_rel_sym[1] - trailing - box_size / 2, callback = lambda ta, mr, d_sgn: cb_flip_rel_component(ta, mr, 4), direction=hy.event_direction.positive)\n", "ev_back = hy.t_event(state_rel_sym[1] - trailing + box_size / 2, callback = lambda ta, mr, d_sgn: cb_flip_rel_component(ta, mr, 4), direction=hy.event_direction.negative)\n", "ev_top = hy.t_event(state_rel_sym[2] - hover - box_size / 2, callback = lambda ta, mr, d_sgn: cb_flip_rel_component(ta, mr, 5), direction=hy.event_direction.positive)\n", "ev_bottom = hy.t_event(state_rel_sym[2] - hover + box_size / 2, callback = lambda ta, mr, d_sgn: cb_flip_rel_component(ta, mr, 5), direction=hy.event_direction.negative)\n", "\n", "# We define events when crossing the cube halves.\n", "# Here the callback will cancel the velocity along that direction, so we need a cooldown\n", "# As to avoid the event triggering immediately again.\n", "ev_x = hy.t_event(state_rel_sym[0] , callback = lambda ta, mr, d_sgn: cb_zero_rel_component(ta, mr, 3), cooldown=20.)\n", "ev_y = hy.t_event(state_rel_sym[1] - trailing , callback = lambda ta, mr, d_sgn: cb_zero_rel_component(ta, mr, 4), cooldown=20.)\n", "ev_z = hy.t_event(state_rel_sym[2] - hover, callback = lambda ta, mr, d_sgn: cb_zero_rel_component(ta, mr, 5), cooldown=20.)\n", "\n", "# We put all the control box events in a list as to pass them to the adaptive Taylor constructor.\n", "bounce_events = [ev_top, ev_bottom, ev_front, ev_back, ev_left, ev_right]\n", "\n", "# We put all the stop events in a list as to pass them to the adaptive Taylor constructor.\n", "stop_events = [ev_x, ev_y, ev_z]" ] }, { "cell_type": "markdown", "id": "bf1c08dc", "metadata": {}, "source": [ "We may now instantiate the Taylor integrator, we use the compact mode here to obtain a faster compilation time, since the integration time is anyway very small:" ] }, { "cell_type": "code", "execution_count": 12, "id": "1d48026a", "metadata": {}, "outputs": [], "source": [ "ta = hy.taylor_adaptive(eqns, chief_ic + deputy_ic, t_events=bounce_events+stop_events, compact_mode=True)" ] }, { "cell_type": "markdown", "id": "a40791a3", "metadata": {}, "source": [ "And propagate, taking care to reset first the $\\Delta V$ count:" ] }, { "cell_type": "code", "execution_count": 13, "id": "9a61ac07", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DV to maintain the formation for one day: 0.060317926080592686 m/s\n" ] } ], "source": [ "# Resetting the DV counter\n", "DV = 0\n", "# We propagate for one day\n", "N = 1500\n", "t_grid = np.linspace(0, 60*60*24, N)\n", "oc, _, _, _, res = ta.propagate_grid(t_grid)\n", "print(\"DV to maintain the formation for one day:\", DV*1000, \" m/s\")" ] }, { "cell_type": "markdown", "id": "46dca312", "metadata": {}, "source": [ "We may now plot the trajectory as done above, first computing the LHLV Deputy position:" ] }, { "cell_type": "code", "execution_count": 14, "id": "a682ac94", "metadata": {}, "outputs": [], "source": [ "# We compute the results in the LHLV frame for the Deputy\n", "deputy_rel = np.zeros((N,6))\n", "for i, item in enumerate(res):\n", " fh = J2_LHLV(item[:6], c)[2]\n", " deputy_rel[i] = to_relative(item[:6], item[6:], fh)" ] }, { "cell_type": "markdown", "id": "9abb0d5d", "metadata": {}, "source": [ "... then plotting the trajectories:" ] }, { "cell_type": "code", "execution_count": 15, "id": "2c441ef3", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAENCAYAAAC1l+dSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD0YElEQVR4nOydd5xjdbn/398kk+m97k7d3stsZQUEBKSICogNBASUq9d6LdeCetH7Q0TFcu0oCAIqWEC69LYL7C67O2V3eu81U5LMpH5/f2TO2SSTOsmUhfN+vfa1M5mck5PknOc836d8HiGlRENDQ0NDQ0NjrugW+wA0NDQ0NDQ0Tm00Z0JDQ0NDQ0MjJjRnQkNDQ0NDQyMmNGdCQ0NDQ0NDIyY0Z0JDQ0NDQ0MjJjRnQkNDQ0NDQyMmNGciCEKIm4UQ94X4+3EhxNkR7usyIUSXEMIshKgM8py/CCEunfn5KiHE03M47DkhhDhTCNEQ4XM/LoR4NcTfw77XhUIIsVUIcWAxj0FDYykjhEgUQpwQQhQt9rEoCCGShRCPCiHGhRB/WwLH808hxIWLfRxLnbe1MyGEuFIIcXjmxtcnhHhSCHFGJNtKKTdJKV+M8KV+DHxWSpkmpTwa4Di2AtuAf83s+34p5bsj3HfUCCGkEGK18ruU8hUp5bo47T7ke11IpJTVwJgQ4r2LeRwab12EEO1CiCkhxKQQYkwIcUAI8SkhxILYVv9reQ7cCLwspeyf2d/dQoj/F+lr+S+6/J8jhPidEOJPAfa1VQhhE0LkBHipK4BCIFdK+cG5va248gPglsU+iKXO29aZEEJ8CfgZ8H08J24Z8Gvg/fPwcuXA8RB//w/gfjnPCmJCCMN87n+GoO91gV7fn/vxfL4aGvPFe6WU6XjO/R8AXwPuXNxDipj/AO6dx/3fDVwuhEj1e/wa4DEp5WiAbcqBRimlM9AOF9qOSCkPAhlCiF0L+bqnGm9LZ0IIkQl8D/iMlPKfUkqLlNIhpXxUSvlVr6cahRB/mll1HPc+mWZWJOfN/KwTQnxdCNEihBgRQjwohMiZCSGaAT1QJYRoCXJIFwEvee3bJ5Uw4+1/SgjRJIQwCSF+JYQQXn+/XghRN/O3fwshyv22/YwQogloEkK8PPOnqpmIzIeFEGcLIbq9tlHey+RMCPSyCD7TgO915nP6mhCiGrAIIQyh9j/z3vcLIX46s9JrFUK8Y+bxLiHEoBDiWr/X/bEQolMIMSCE+K0QItnr0F4EzhVCJIZ7DxoasSClHJdSPgJ8GLhWCLEZQp+jyrUnhPimEGJ45nq5StmnEOJFIcQnvH5XbUOQa7nWOxInhEiY2e92/+MVQpQBq4A34v9peJBSvgb0AB/wel09cCVwT4Bj+i7wHeDDM+/pBj+bMArcLIRYJYR4fsbeDgsh7hdCZHntp10I8VUhRLUQwiKEuFMIUSg80edJIcSzQohsr+efJjxRpTEhRJWYncJ+EXhP3D6YtyBvS2cC2AckAQ+Fed77gL8CWcAjwC+DPO/zwKXAWcBywAT8Skppk1KmzTxnm5Rylf+GwuOxrwDC1SxcAuzGkw75EHDBzPaXAt8ELgfygVeAv/hteymwF9gopXyn1/GkSSkfCPBaLcCZQCbwXeA+IcSyUAcX5r1+FM+FmDWz2gi3/71ANZAL/BnPd7AbWA18DPilEEJ5rduAtcD2mb8X4zFGynH1AA4gXmkcDY2QzKxku/Gc4xDmHAWKgLyZx68F7hBChD1fg1zLf8JzjShcDPRJKY8F2MUWoDVYBCCO/AlPJELhPCABeNL/iVLK/8ETLX5g5j0pEZ69QCtQgCflIIBb8djbDUApcLPf7j4AnI/ns3/vzOt9E89nrcNjtxFCFAOPA/8PyAG+AvxDCJHvta86PLZXIwhvV2ciFxiO4CJ6VUr5hJTShScUGOxk+g/gJillt5TShuekvkJEFo7Lmvl/MszzfiClHJNSdgIv4DFMymvfKqWsm3k/3we2e0cnZv4+KqWciuB4kFL+TUrZK6V0zxioJmBPJNsG4f+klF3K60ew/zYp5R9nPvcH8BiK7804LE8DdmD1THTmk8B/zby/yZn3/xG/15/k5OesobEQ9AI5UZyj3545v1/Cc2P70Bxf9z7gYiFExszvVxM8jZFFeLvjz5GZ1fuYEGIM+HoE29wLnCWEKJn5/Rrgz1JKRxSv2yul/IWU0imlnJJSNkspn5n5zIaAn+BZzHnzCynlwMyC4hXgDSnl0Rkb/RCgFIh/DHhixta7pZTPAIfxOGIKmg0Jw9vVmRgB8iK42fd7/WwFkoJsUw485HWB1QEuPLUY4Rib+T89ymNRVublwM+9XnsUj9de7PX8rgiOQ0UIcY0Q4pjXPjfj8ebnis/rR7D/Aa+fFQfE/7E0PJGYFOBNr309NfO4N+mc/Jw1NBaCYjzXYiTnqElKafH6vQPPijtqpJS9wH7gAzNh/4vw1A0FwkR4u+PPDilllvIPT41IuGPqBF4GPjYTUbyUACmOMPjbkAIhxF+FED1CiAk8TpS/jfK3GYFsCHhs6Af9nKQzAO9oqWZDwrAYBXFLgdeAaTwn9d/jsL8u4Hop5f5oN5RSWoSnvmAtMDTH175FShnMYABEXNg5E9H4PXAu8JqU0iWEOIbHQZkr6uvHef/DeIzCppnVxyyEEMsBI+HTSBoacUEIsRuPM/EqEZyjQLYQItXLoSgDamd+tuBxRhQiaeG8B/gEHvv+WojXrQZWCiEMC5DquAdPFKMPT+TxSJTb+9uwW2ce2yqlHJlJ9wZLQ4ejC7hXSvnJEM/ZAFTNcf9vC96WkQkp5TienOWvhBCXCiFSZgqVLhJC/HAOu/wtcIuSWhBC5AshoukKeYLZIbpoXvsbQohNM6+dKYQI1041AKwM8rdUPBfp0Mz+rsMTOYgXcdu/lNKNxzH5qRCiYGZ/xUKIC7yedjbw/ExoU0Nj3hBCZAghLsFT43OflLImwnMU4LtCCKMQ4kw89VGKvsIxPN0QKcLTcnmD33aBruWHgR3AF/DUKwREStlN4BSmXgiR5PXPGPbN+2L0214P/ANPuvK7RB+VCEQ6YMbT+l0MfDXM80NxH/BeIcQFQgjlvZ/tlZYBj32eVeOhcZK3pTMBIKX8CfAl4Ft4bmxdwGfxXIjR8nM8BZpPCyEmgdfxFAxFyh3AVTP51aiQUj6Ep8DrrzPhvlo8oc1Q3AzcMxPS88nNSilPALfjid4M4CnSijriEuJ4473/rwHNwOsz7/9ZfIstr8LjcGlozBePzlz3XcBNePL313n9Pdw52o8n5dCLJyXxKSll/czffoqnRmgAz03YPwJ5M37X8kxt0j/wFHb/M8yx/w5PXYU3X8cTTVH+PR9mH/4c99v+upmoi+JQhIqiRsp38ThM43hqTMK9z6BIKbvwSAJ8k5P3gq8yc3+ciTRZZgprNYIg5lnaQCNChBB/Bh6UUj682MfyVkEIsQW4Q0q5b7GPRUMjEDMtiPdJKUvCPDXa/X4HWCul/FiY5yUCR4FzpZR98TyGtwpCiH8Ad0opn1jsY1nKaM6EhoaGxiIxH86E8KhKHgWullK+HO75Ghrx4G2b5tDQ0NB4qyGE+CSeMP2TmiOhsZBokQkNDQ0NDQ2NmNAiExoaGhoaGhoxoTkTGhoaGhoaGjERjWiVlg/R0Fg6xCIitlhoNkRDY2kRNzuiRSY0NDQ0NDQ0YkJzJjQ0NDQ0NDRiQnMmNDQ0NDQ0NGJCcyY0NDQ0NDQ0YkJzJjQ0NDQ0NDRiQnMmNDQ0NDQ0NGJCcyY0NDQ0NDQ0YkJzJjQ0NDQ0NDRiQnMmNDQ0NDQ0NGJCcyY0NDQ0NDQ0YkJzJjQ0NDQ0NDRiQnMmNDQ0NDQ0NGJCcyY0NDQ0NDQ0YkJzJjQ0NDQ0NDRiQnMmNDQ0NDQ0NGJCcyY0NDQ0NDQ0YsKw2AegcRIpJS6XC5vNhsFgwGAwoNPpEEIs9qFpaGicIkgpcTqd2Gw2jEYjer1esyMa846QUkb63IifqBE9UkocDgdOpxO73a4+LoRAp9ORkJBAQkKCZhQ0FE7Fk0CzIfOMlBK73a7aEcVWCCFISEhQFylCCM2OaEAc7YjmTCwB3G43drsd5btwOBzqhS6lpKOjA6PRSGFhoY9R0FYcb2tOxS9dsyHziL8dsdvt6HSeTLaUErfbrf7Ne4Gi1+s15+LtS9y+dC3NsYgo4Uin06lGINxut89zlMd1Oh16vV5dedhsNuCkUdBWHBoab08itSN6vV59PnicDSUKqtPpMBgMqnOhOCEaGpGiOROLhJSSgYEBkpKSSEpK8glH+iOEUA2At1FQ9qM4F4oh8TYKmnOhofHWxe1243A4cLvdEV/rynMCORdDQ0PYbDaKioo050IjKjRnYhFwuVw4HA76+vooKioiOTk55PO9nYlAf9NWHBoaby+UYm2HwwEQ0JGIdBHh7Vw4nU6mp6cBzY5oRIfmTCwg/uHIeEcMQq04FKMwNjZGQUGBZhQ0NE5RpJRYrVa1XiqedsQ7QuptR5QIqLdz4V+7pfH2RnMmFohA4UidThc04uBNqMhEuO3A17loaWkhKytLMwoaGqcgih05ePAgp5122oKkMP0dFsW5sNlsPrVbShuqUrul8fZCcybmmXDhSP9CKWWb+bgYldf2X3H4GwXNudDQWFoEsiOLRTDnQkmPgGcB421HNOfirY/mTMwjinaEy+UKGI4MdqMOlPsM5HTESiQrDsUoaCsODY3FIZAdmWu0Mhxz2W8gO+J2uzXn4m2G5kzME94936HymvOZ5ogWzShoaCwtgtmRcDbB5XIxNjZGZmbmgkcXQ9mRpqYmVq1apWpcaHbkrYPmTMQZ73CkUhcRjEhrJhaLcM5Fd3c35eXlmlHQ0IgzgbQjvAnlTIyPj1NbW0tqairNzc0YDAays7PJzs4mPT19UZ0Ls9ms6mBMTU351HVpduTURnMm4ohS8RxNz/dSikxEchze72lgYIDS0lItcqGhEUcisSOBbIKUks7OTnp7e9m2bRsJCQkIIbDZbJhMJnp7e5mcnCQxMVF1LtLS0nz2P9+2RomwKEJ8ymOac3HqozkTcSLStIY3Sz0yEQ7/FZNmFDQ0YsPpdIbUjlDwtx0Oh4Pa2loSExPZu3cvQgi1YysxMZGioiKKiooAmJqawmQy0dnZidlsJiUlRXUuFiqd6v+7ty0JZEcUhV/NjixdNGciRsKFI0MR6SpgqUQmwqEZBQ2NuRGtBo23TRgbG+P48eOsXr2awsJCdX/BSE5OJjk5meXLl6uaFSaTidbWViYnJ9Hr9SQnJ5OdnR1WUG8+CGRHXC4XTqdTfY4ioKVNVl46aM5EDMxFyjbQPryZmJigs7OTzMxMsrOzSUxMPGWcCX+CGQXvQWaaUdB4uzNXSWyXy0VbWxuDg4NUVlaSkpIS9WsLIUhNTSU1NZWSkhJGRkYYGBjA6XTS2NiIzWYjPT1djVwkJibO5S3Oes1on+9fu+XtXCjt7podWVw0Z2IOKCdze3s7SUlJ5OXlzenk9U8RdHV1qUWNFouFEydO4HQ61cpnh8NBQkJCPN/KghJqxdHe3k5JSQlJSUmaUdB4W+CvHRFNVFNKSW1tLVlZWezevTtuRZVCCIxGI2VlZZSVleF2u5mcnMRkMqn2SFnoZGVlLYo9CuVctLW1UVFRgdFoVCOgmh1ZGDRnIkq8w5EOhyNm7QW3243T6aS2thaDwcCePXtwuVzk5+dTUVGBy+Wis7MTk8lEdXU1UkqysrLUi9l76NephrdRmJiYUFdb3isO77SIZhQ03ipIKZmYmGB4eJji4uKozuvR0VFGR0dZu3YtZWVl83iUHgcnMzOTzMxM1R5NTEyoNRdSSh/nwmBY+FuKtx0ZGxtDp9PNqj3R7Mj8ozkTUeAfjgw06jcadDodFouFgwcPUlFRoeYwXS6X+hy9Xk96ejpSSlauXInT6WRsbIzR0VHa2trQ6XRkZWWRk5NDRkbGKatY6Xa7fSq84aTjphkFjbcSSrG2zWZjdHSUkpKSiLZT5PBHR0fJzc0lOzs77scWLqWq1+vVlAd4CkbHx8cxmUy0t7cjhFAXO5mZmQu+2AlUAK+IfvnbEe/5RJodiR3NmYiAYNoRsdQySCkZGRnBZDKxe/duUlNTI9rOYDCQl5dHXl4e4BniNTY2xsDAAI2NjRiNRp+e8lPlIpFSBuyl14yCxlsF/yJLvV4fsf2Ynp6mpqaGrKwsdu3axfHjx5dEHZXBYCA3N5fc3FzA01UyNjbG8PAwLS0tGAwGdbGTnp6+IMcUqFvE26kJZEf8RwhodiR6NGciDKEksecamXA4HBw/fhy73U5ZWVlYRyKU02I0GikoKKCgoADwGB2TyUR3dzeTk5MkJyeTk5NDdnb2nAq0FopI5pFoRkHjVCWQdkSk9mN4eJiGhgbWr1+v3rSXalF2QkIC+fn55OfnA57Fjslkoq+vj4aGBqampujs7AyocbFQBLIjSqQITs4nUhYpcy2uf7uhORMhCKcdIUT0MzPGx8c5fvw4K1asUOdgxJOkpCSWLVvGsmXLkFKqPeWtra1YrVZsNhu9vb0xt30tBUMWzCiMjo4yPj5OSUmJ6lwotS2aUdBYaJSopr8dCedMuN1umpubmZiYYNeuXT6dFPOlURNvJ8VoNFJYWKi2rL7xxhskJCTQ1dWF2WxWW1CVxc5Scy4Up887AqrZkcBozkQAItWO0Ol06qo4kn16q9OlpqbS398/7yPIU1JSSElJobi4GCklb7zxxqy2LyVyYTQao36NeBLrBaoYBbfbrRoCb6OgRC40o6CxEMQiiT01NUVNTQ25ubns3Lkz4EJmKTj00aLT6QIudtra2rBYLKSlpanORVJS0qI7F8pnbLfbsdvtTE1N4XA4yMvL80mvamjOxCyikcSOdHXgrU63Z88e9URdaNEq5SLxb/saHR2lp6cHl8sVcdvXfI1JjwdKMWcoowDMWnFoRkEjXkSiHREsMjE4OEhTUxMbN24MWmQ5l6hoJCzkNR1osWOxWDCZTDQ1NTE9PR13jYu5HCOg2hGr1YrFYiEjI0OzI35ozoQXkUrZKkRyQStDd1atWqXK2Uaz/Xzi3fa1YsUKXC6XWpmttH0pF/J8V2bHc5UVyNHxNwqac6ExH/hrR4SyI/6LBLfbTUNDA1arld27d4eMFM5nZGKxIh5CCNLS0khLS6O0tBS3243ZbMZkMlFXV4fdbvdZ7CxGJNXtdqPX633siLIA9bYj/rVbbwc0Z4LopWwVQl3QUko6Ojro7+8Pqk4XyshE+jrxRK/Xk5OTQ05ODoDahjoyMkJLS4tPW1ik3SeLgRKZCEWkzsXb0ShozI1QxdqB8I5MWK1WqqurKSoqYv369REtZE7FNEc06HQ6MjIyyMjIoLy8HLfbrWpcdHd343K5fDR3FkLjwn+hEqjjTKmF8y/ofKvbkbe9MxGLJHawMKV/WiPUyRNJZGKx0gmB2lBNJhP9/f1MTEwwPT0dt8rseL7HSJyJYK/vv+Kw2Wz09PSg1+vJzc19WxgFjeiZy6A/xSHo7++npaWFTZs2kZWVFdHrzZczsVRTl4CqqZOVlTUrktre3g6ganfMVyQ1nG2JxLlQpL/1en3MoodLibetMxGLlK1CoDSFMnQnUFrDn2jlcxcb78psl8vFkSNHMBgMAacPLlZlNqA6hrHgbRSmp6dJTEx82xgFjcgJpkETCcoQvL6+Pvbs2ROVNPVbMc0RLYEiqYcOHQoYSY2XoJ/b7Y4qAhLIuXC73UxPT/u8j7fCZOW3pTOhhCNramrYtGnTnL887wLMSNIagYg0MrHULnApJXq9nuXLlwecPmi1Wn2Kp5KSkhb02OIZNVDypIHGrb8VjYJGZCjnfHNzM+vWrYvq+zabzdTU1KDX69m+fXvU50o4m+B2uxkaGiIjI2NBr73FRGkBX7NmDTA/gn5ziXp6E4lzIaXEYDCQnJx8StmRt50z4R2OVOZBzBUlzWG326mtrSU5OTlsWsN/+0AEKiBcas6EP0L4Th+UUqrFU/X19djtdjIyMtSLeT6Lp6JdPUSyv0jUOTXn4u2Dct273W7Gx8ej+m57e3tpb29n8+bN1NbWzum8COVMKPUXqamp9Pb2qoWLOTk5Ybu0luLCZa4EE/Tr6elhcnKSpKQknxqwSL6HWJ0JfwLZkb6+PhwOhyqzfqrYkbeNMxGpdkQ0CCGw2WwcOnSI1atXq8Is0WwfaWvoUiNca6gQgvT0dNLT09U2VKV4SmlD9S6eWshjixaXyxVRQafmXLz18bcjBoMh4o4sp9NJXV0dbrebPXv2xOTwBrMd3m2lSqpRcXhGR0d9urRycnLIzMx8y9T+hLOl/oJ+inPR0dGB2WwmNTVVdS6Sk5MDXp/z3RKvfK+KjVDsyNTUlE9d11K0I28LZyIa7Yho9tnb28vY2Bj79u2bk1R1oJqLyclJ6uvrVfGWrKyst8RqIVjx1OjoKO3t7VitVlpaWuLShhrv1YOS5oiGYM7F1NQUZrMZu91OQUHBkjQKGoEJVKwd6bU5OTlJTU0NZWVlUU8JDUSgttKmpibMZjO7d+8mISHBpx7MeziXMj9jaGiI5uZmEhISVOfiVLYz0dzohRAkJyeTnJw8K03b0tLC1NTULAEtiL9tCYR3ZFU5x5TXDORceA8/XEw78pZ3JoJJ2caC3W6npqYGo9FITk7OnGde+B9Ld3c3nZ2drF27VpWFbm1tVZ2OiYmJJTO8K1YP3b946uDBg2RkZPgMCPLOb0Zb2BZvZyLW/XkbBZvNxvT09Cyj8P3vf58f/vCH8ThkjTgSjXZEoG27u7vp7u5m69atpKWlxeWYvOu1pqenqa6uJjc3lx07doR1cPznZygr9M7OTiYmJpBS0tPTQ05OTkyS+wtNLDYpVJq2oaEBm81GRkYG09PTZGZmxvnIfXG5XEEFugI5F94FwG63m9tuu43bbrttXo8xEG9ZZ2I+0hoAJpOJEydOsGbNGtLT06mvr5/zvpQv3+VyUVdXh8vlYs+ePbjdbqSUakum4i0rw7uUrgnlYl8s5yJer6sYAW8DZ7PZMJlM9Pb2Mjk5SWJioupchGtDjXcoMt7OicvlUgs6vY3CM888E7fX0IgPc9WgAU9a4/jx4+j1eh/l23ig2I6RkRHq6+t9hoBFi3f4f3JyktbWVjXSMT09vWC1TrESz+s+UJp2cnKSxsZG2tvbaW9vj1gtOFoiSat6H6f3/c1isbB///64HUs0vCWdiVi0I4IhpaS9vZ3BwUF27NhBcnKyurqcK0IInE4nBw8epLi4mNLSUoQQqmiSgtFoJDk5mY0bN/qE45qbm1XJ2YWerzHfipWJiYkUFRWp7bWKhr/ShhoqvzlfN/947s8/X2632xdEdEcjcmKxI8pAv4qKCpYvXz4vxzc0NER/fz87d+6MW8eGEJ75NaWlpaoKpbfkvtvt9ql1mk9V3GiZz3oGRS04NTWVsrIykpOTZ6kFx+tzmUtaVcFisSzadOi3lPWaSzgykhuPktZITU1l9+7d6vPnOoJcYWRkhNHRUXbv3h0ydOYdtvQPxwWar5GVlaVWbs/nxR7vyEQoAuU3R0dHVYdKyW/m5OQsyTSHN4HCmBaLZUmrir6diEWDJtBAv0i2ieZastvtdHZ2kpCQwK5du6LqCguHf4rEX3Lf6XSqtU6tra2qlkNOTk7U6ch4sxDzgpTXCKYWPDo6Sltbm1ojptSARfO5xLJ4UYalLQZvGWciWilbQJ0wGeqL9k5rKC1GCnMtjHS73TQ2NjIxMaFWVIci1OsEmq+hnNSBLvZ4Md+RiVB4O1SlpaVIKZmcnFQ1/CcmJrDb7RQWFpKdnR1zCHIhIh1ms3nRjIDGSeZiRxS8lW/37t0b0TmjXNuRvo4iipeTk0NSUtKC37wNBgO5ublqSkWp7VLSkUlJSWqUdKGF6xbCmQhmC/zVgh0OByaTicHBQZqbm6OqAYvF3mjORIzMRcoWQkcWpJS0tbUxNDSkpjWi2T4YSrFUXl4emzZtorGxMartw6HIPge72Kenp+nu7o75Yl9MZ8IfIYSPhv/x48fJzs7GbDbT3d2N2+32yW9Gm05YCGfCarVqzsQiM1c7AtEp33qj2JBw55cS8ejr66OyspLx8XGmpqYifp35wmg0qulIKU+OFPcXrsvJyZn3qZ+L6Uz4k5CQ4KNxEU0NWCyRCSUFvBic0s5ELFK2ENwZsNvtVFdXk56e7pPW8CfayIR/sdT09HTEOhNzvXn7X+wHDx4E8LnYlXBdtPUWC5nmiHZ/WVlZau5QCc0qGv5CCB+Z3XAX7nzoVvi/5mLmOt/uxFKsrbSd19fXR6V8q+DdlREMp9NJbW0tCQkJ7N69G71er3ZdxJtYbI0Qs0eKKxHDEydO4HQ6mZ6eZnh4eF4Gcy0lZ8KfcDVg3qMIoinA9Gcx06WnrDMRD+2IQM7E6OgodXV1rF27Vu0sCEakF56UktbWVkZGRnyKpRZatEoxlMXFxWr7k1Jvcfz4cZxO54JP4YP5cSa89+cfmg0WgszJySEtLW1B+sj9X0NLcywOUkoGBgbQ6/VRt10rtVRSSnbs2DGn4udAWjPeKPoU/oWc4WyHtwbGYnZ7eUcMXS4XBw8eZHx8fJZTHw/xrKXsTPgTTOOitbWVsbExmpqa1HRRNO25WpojShwOBxMTE2qYfq4nkLczodzwh4eHI66OjuR1FYOTlpY2q1gqnCHxZr5WIcrFXlFRodZbKCt4RewmUHFVPC/chW7lDBaCjEVmNxqCRSY0Z2JhUaIRJpOJxMREMjIyIt5WWXSsWbOGjo6OOR9DqMhET08PHR0dAfUpTkUhO2Ug3qpVqwBfp76pqSmq9u9ALGQBZjzxL6o/dOgQZWVljI2N0djYiM1m85lzFCpdtJjp0lPKmVDCkUq/744dO2Lan+JM2Gw2ampqyMjICJnWiJbx8XFqa2uDSm1Ho9a2EIYjUL2Fd55PuckqFczxYrF1IbxDkN553/b2diwWizqGXCl6i/VYgzkTWjfHwhCLJHagKGNXV9ecu7oCLSj8dWcCRQjnyyYspJPi79QHav+OZnW+UM7EQhS9Kos8b40L73SRt/aHd4F5PGsmhBB64DDQI6W8JNzzTxlnwrvnW+nCiBWdTofJZKK7uzuitEakSCnp6uqip6cnZB51sSMT4fAeOe5fXGU2m9WhNLEWV813miMaAuV933jjDR8Rn0hXCcHQIhOLRyDtCL1er7aBhsJms1FdXU1WVpZPlDGWFnH/ba1WK1VVVT66M8G2O9UiE+HwD/1bLBZGR0fV1XlGRobqXATq0FrMlE488f9evTv2Kioq1Fkryr1LKTBXlEyjKQAOwxeAOiCikN2SdyYCaUcYDAZcLlfM+52YmGBsbCyuoi/RqN5FE5lYbPxvsmazmebmZux2u+ote08mjKbeYrEjE+HQ6/U+Ij5ms5nR0VGfVUIkExkVAq1uzGZz1IPiNCInlHZEJM7A8PAwDQ0NrFu3Tm3/i2b7YHhHAgYGBmhubmbz5s0RtYvHY0G1VBFCkJaWRlpams+gwNHRUbq6utQia6W1XhmK9VYZWhYK/1krSoH5X/7yF/76179iNBqpq6vj6quvZv369XN6DSFECfAe4BbgS5Fss6SdiWBStrGKRSkrDCEEa9eujZsjYTabqa6upry8nOLi4rDPD2YQ/EONSzU/ajQaKS8vV4urvAd3KcVVOTk5ZGRkhLzIl1Jkwh9/x0Sn082qM1GmocaihKe1hs4f4bQj9Hp90MWJ2+2mubmZ8fFxdu3aFTASFUukVKfT4XQ6qa+vx2q1smfPnogc0rdCmiMavAcFwkmRKO9ZPsnJyTidzrdMhCJSlALzz372s/T09HDuueei0+lmKSlHyc+A/wYiFidass5EKCnbWEJ8SnvmunXrMJlMcbtw+vr6aGtrY8uWLRGLQ72VTnh/RTiluKq/v5/GxkYSExPVEKV/UeN8FTXFg3BRDkUUzHuVMBclPK1mYn6IRDsi2OJkampK1YTZtWtXyJTDXJ0Jt9vNiRMnWL58OevWrVtydVRLFX+RKJvNRnd3N2NjYxw8eHDJzC9aaMxmM0VFRezbt2/O+xBCXAIMSinfFEKcHel2S86ZiFU7ItR+W1paMJlMalpjfHw85lChlJITJ05gt9uDFkuF294f5b0rq9qlaDjCOQCBiquUqIVSH6A4F0s5PBmtTr6/kbPb7YyNjakV60ajEZvNNmsCbCQ1ExUVFaSnp6PX66mqqjospdwlhMgBHgAqgHbgQ1JKE4AQ4hvADYAL+LyU8t8zj+8E7gaSgSeAL8ildoLFSDTaEYEiE8r3tWHDhrAFx3NNOQwPDzM0NMTq1aspLy+PattwNmF6epq6ujpVkTLS1stT9aardIJIKVm1atWsceLe4llLeVhZrCnaONVenQ68TwhxMZAEZAgh7pNSfizURkvKmYhFyjYU/oVT8UqXTE1NYbVaKS4uZsOGDVEfb6Dn9/b20tLSAkBKSopqCE51W5+cnExxcbFa1KjUHdTX1zM1NYVOp2NoaIjs7OwlNfAqFgEZ8KSC/J2qo0eP0t3djdlsJikpiebmZsbGxiKKTLzwwguKo7Jr5qGvA89JKX8ghPj6zO9fE0JsBD4CbAKWA88KIdZKKV3Ab4AbgdfxOBMXAk/O+U0uMaLVoPF2JhSpe4vFwu7duyO68YRKkwQ7PmVhs2zZsjlFpEI5E0rb6sqVK3G5XD6tl0r0MJT67alqa7yjT/7zixR7s5h6OpEQqzOhCBHGgpTyG8A3AGYiE18J50jAEnImYpGyDcV8FU4NDQ2p4fvy8vKYj9ftdtPQ0IDNZlMdHmU139zcjNlspqGhQV3NL/YFEGvHhDLet7y8nJGREXp7e5mYmKCjoyNmMZt4GsN4F3MajUYSExPVCbBTU1McPnyYmpoarrrqKnbt2sV3v/tdVq9eHeku3w+cPfPzPcCLwNdmHv+rlNIGtAkhmoE9Qoh2IENK+RqAEOJPwKW8RZwJJaoZjR1R7IDVaqW6uprCwsKoUg7RpF0Vdd3MzEx27dpFU1PTnM7XQM6ElJKOjg4GBgbYuXOnelz+0cHW1lZ1tb7Q04bnk2A2KVCdUyA9HUURN9TgtPkm1gnFb2vRqlikbMPtV1nxBSucmoszoex3fHyc3bt38+abb8ac81fmdeTn57N+/XqcTidut3uWkElBQQGjo6PqDVdZZSz2tL5YEUKQnJwcVswmJydnXkSkQjGfczmUDpnrr7+exx9/nDvvvJPR0VFV58MfIQTvfve7EUJw5MiRG6WUdwCFUso+ACllnxBCmUZXjCfyoNA985hj5mf/x09pYrEjer0ei8XC0aNH2bRpk1rkFymR2hFFJ8C7DX2uCxp/Z0LpIlMkt/0L8OxON081jnP6yjy2FBcHHC2uDKE61SMT4QikpzM2Nha2vivetiAQSyTNoSKlfBHPAiUsi+pMxCqJHezkmZ6epqamhuzs7JCFU3q9HpvNFvHreadLdu7cqRqtWC4+p9PJm2++qc7rCIb3ah08N1xlgJeiBqo4F+EEXuJR8DifCpjBxGw6OjpU2WnFuQjUiRNPZyPWNEeg/QVaeVgsFjIzMyktLQ267f79+1m+fDmDg4MUFhZ+RghRH+KlAn0IMsTjpyyhirXD4XK51DH2Z5555pwmzOp0upBpDu+Igf/QwLnWQ3lvZ7FYqK6upqyszKeLzPs5rcNWvvNYIwad4OJN+Vy9p4T1Rb6jxU0mE8PDw4yPj1NVVRVRSmQpMVebFCgV6S1ap9R3RSu3PhdijUzY7fZ5H6gWjEVzJpRVxFzTGkqe0j/cr6Q1wt2cIbpVQaBVBZwsvor2BJDSMwXQZrNxxhlnhHQAAn02CQkJPoJSVqvVR+DFW/PB20AuRaMQzgj4i9mYzWZMJhP19fXY7fag7zUezOW7DUUwYzE1NRV2SJQym2HG6D0E7AEGhBDLZqISy4DBmad3A96eSQnQO/N4SYDHTzmUYu3Ozk7A8/lEc34rN+GioiIsFsucz51QdkQZS56UlBRQXTfWyIQyX2bz5s0h5cDXFaaytiCVxkELz9QP80jNIJuXpfOhHcvYVZ5JTkoC+fn5ZGZmYrPZWLt2rZoSsVqtPoJRSzUlEq8FTjB709jYyOTkpJpuXor2ZjHt+4I7E/FKa/hfhJH0g4fbR7DjbW9vZ3BwMOAo8rlEJlwuF7W1tRgMBlJSUqIa5BII74IjRVhJ0XzwrkHIzc2NWwhzPiMTofCut1DEbBQ1OEXnQZm1EY/hQfEObQYzFuGMiMViwe12k56ejsViAXg38D3gEeBa4Acz//9rZpNHgD8LIX6CpwBzDXBQSukSQkwKIU4D3gCuAX4Rr/e3UHgXa8PJDqhI6e3tpb29nc2bN5OWlkZfX9+cjyVYZGJiYoLa2lpWrlwZVJVwrp0gQggmJyfp6upi165d6g1+2Gyjb9zG3a91YrLYGJ9yUNtn9tl2yuF5vdq+SWofn1QfT0vUszovhTSm2G4epDwnmdK8CjZkJYFjipGREZ+UiFLAGOn1Md/pk/lqMVfsTUFBAQ0NDRQUFPjYG+/6rlgXHrFEQqWUi5qiWlBnwu12Mzo6quahYvnivSuolZqD3NzckGkNf8I5E+FWFRC9MVDkcktLSykpKeHAgQMRbxsp/gppSg1Cb28vFouF2tpanxDmYhOLEfB/rzabjSNHjvi0YiorqrkMD5qPmgn//UViAAYGBrjssssAT1QPeFxK+ZQQ4hDwoBDiBqAT+ODMPo8LIR4ETgBO4DMznRwAn+Zka+iTnGLFl/7F2nq9nunp6Yi2dTqd1NXV4Xa759TKHQidTucjxy2lpLu7m+7ubrZt2xayW2MuixFleCDAjh07fM7pz/61mqNd41G+Aw9mm4tjPR7n4tWe2cPLyrKT2FaSQXFmIrkON+lDvaS6mshOS1q0miZv5lusSnH4/W2rv3iWYlvnYm9iTXPA4kUnFsSZ8NaOqK6u5vTTT495n4ozoXRVRNIP7k8oZ0JZVaxYsYJly5bNaR/+KDe4SORy44l3DYLZbGblypWMjY2pueLMzMyAQ2NCsViRiXDo9XoSExNZt24dgKpXP9fhQQtVMwGhjcDKlSupqqryfugWACnlCHBuoG2klLcoz/N7/DCwOeKDXiIE06CJtDVTGeet1BbE65zztgEul4vjx48jhAgrp69sG01bqTI8cMWKFfT09Mx6Dzdfsp7/ebSeY92ROxTpiXombb7HUJhuZGDSV0Gx0zRNp2m203b26mS+eJpOrTFQukQWWtNhIZwJf1uQkOBJDympb5vNpkp+T05OkpqaqtrWSMSzYlm8xMMRiYV5dybmSztCp9PR2tqK3W6POK0RaB+BHIHu7m66uroCjv71J5ICKv8OkHAXWKz6F6FQOgjS0tLUHmzvNIGSEolEBjtezKf8dVJSEsuWLWPZsmUBhweFc6QWombiVK2eX0hCFWsbDAYlWhN0256eHjo7O6NSqI0U5Xo1m83U1NSoUcdIiKYAU7FL27dvx2g00t19sinH6XLTPGQhQa/jxx/YxO9eaedvR2aXwqQY9bxjRTbPNgyrj/k7EgADk3Y+tqeYtQWpZCYZEELQZZqiddhK/YCZ416pkxebx3ixeQyAizfls95hZKPbTG9vL263W52hMd8FjPPtTESy/8TERB97o9SyKQu3cO24sTgEiz0scF6difnSjpienmZ4eJj8/Hy1q2Iu+N+0XS4XJ06cQErJ7t27IwqBRpIqqa6uJj09PeJjXcibi3eaYOXKlbNksBUFPf+UyFKNTITalxDhhwf55z/dbndcNT0CGYvFrMA+FQhnR0JFJrwH7+3du3deVm46nY6JiQmGhobCFkIG2jbcwsHtdlNXV4fT6VSjHUrxusLvX+3gZ8+3hH09q93Fsw3DVJZk8J7NBfzmlQ5GLA7OXpPLhRvz6Rmz8ouXPAWt9x3sUbcz6AQr8lJYV5DKhRvz+fzZKyhMNzI25eRvR/t4vNZT9/vE8SGemNlmdX4KZ6zMojIxAcfgEM3NzUxNTdHZ2TkvKZH5VtKNNmoQqJbNvx3Xf45PLJEJs9m8qGnreXEmwhVZxnLzUNIa2dnZFBUVxXQyel/ISmV3SUkJJSUlURUEBrv5K6mSVatWnTITIb1TIoqokrdnrVR1x5P5jEyEItDwIKU9Tsl/KpGaeB1joA4kJf2i4UukxdrBnAnl+quoqFA7YeKN2+2ms7MTi8XCvn37oq7uDxeZmJ6epqqqiqKiIsrKytRzUAiBadrFwISNBL3gkq1FETkTCke7JzjaPaH+/mLTCEe7x/nVBzey88IRHu1P5x/H+vnYnmK2FafTMGChYcDCwY4xHqsdVLfLSzWyrjCVq3Yv54XGEXrHT7baNw9ZaR6ycvfM7xduzKNU56LQJZiYh5TIYqQ5osF7lPiKFStU8Syla0av16sCW3N5rbdsZCJYWkO5gUe7QnC73TQ1NTE5Ocnu3bvp6OiIORWgHEs0o3+D7cMfpVo8klTJUkVJiaSkpKgpEWUlPzg4qNYTxJoSWSxnwh+DwTAr/1lfX8/IyAj9/f1q/jMSLY9guFyuWVEIRTtDYzaRpEf9nQml7bq3tzdsAaQ30Z6HyiCwzMxMjEbjnDUqgtkxZSjhxo0b1YI/hZ8938odr1rh+Veifs1gjE85+difqmd+swAz0Yk9xdx4ehkZSQb0OoHJ6qBhwEzDoIXjfZM8eXyI/a2msPt/o32cp6wO7jzexq6yTD51xlpKcvSMjo5SW1uLy+VSr6+5dEYsdWfCn0DiWQ0NDYyPj3P48GGSkk4Wtkai9fGWdCZCiTkpF340J4py0XqnNaLVww/GxMQEUsqIR//647+ycLvdqv5BLNXi831hzAXvlXxmZiYjIyOkpaUFTIlEM6kvnuHJeH5uiYmJpKSkkJeXR1ZWlpr/bGpq8onSZGVlRbyqCnTuW61WLTIRgEhF4bxtgdKBlZiYGFEBpP8+Ir1elQjpxo0bMRgMtLe3R7SdP4GcCaUdfWhoSB1K6M3AhI03O8fm9Hpz4b6DPT4pj7lisno6XtwSDnaMc7CjhjNWZfOFs1ewY0fFrLHiCQkJqj2JJCUy3wqV871/o9FISkqKWmOiiGcpWh/ew8oCpUUXO8I5b5GJYOE7pVgqUuOrdED4e+exOhNKO6kQgsrKyrjUXSghyYKCgqgGfy1FxyEcUkoMBkNEKZFwXSJLJTIRan+B8p8TExOYTCa6u7t9Cs1CraoCHZ82fjw2FFswNjbG8ePHWbVqVVBdh2BEWvSs6NlMTEyoxdRms3nOUVJ/O+l0OlVnaNeuXbPOlTc7x7jyzsM+jz3x2X2kGvVYHS7+8y9VtA1b+cK7VrIiJxmzzcGDR/qo7pn02ea8dXm4pOSFxpE5HXe8qOqZ5IN3HuHiTfl89qwKSr0m7k5PT/tMGg53M10KBZixokR7vaPCynDEyclJVTzR6XT6FI8bDIa42BEhRCnwJ6AIcAN3SCl/Hsm2Cy5aFakTEG56XywdD0r4cO3atbS2tsZ0gijGQJnUF4nypv/2bwVCpUS6uroAgnaJnArOhD/eURpFjnhsbIyRkRG13kJ5v95V7IEiE1qaIzaEEExPT1NfX09lZeWcitAisUuKnH52drZPMbVSODcXvO2Y2Wymuro6ZI1HZUkmq/NTaR6yqI9d/MvX1J/PWZtH27CVnz/fCsCHdixjZ1kmpdnJapEk4NPNMRfKspPYUpzB4KSNo10TON1zKxqfnPZ04TxxfIin64b5QGURnzqjnLw0I0lJSSxfvtxHiXJkZES9mSrOu1K8eKqlOYK9RqCFiBBCHVZWXl6Oy+VSu/A6Ojo4cuQI+/fvJzs7G5vNFktBtxP4spTyiBAiHXhTCPGMlPJEuA2XpDOhpDUKCgqCTu+Ldq4GeG5ara2tjIyMsHPnToxGI83NzVHtwx8hBP39/VgsloAhyUi2974IlNoQh8OhhtcXe0JoIMJduP7FjaG6ROKp5RBvgxLpsRkMBvK8VlWKCmd3dzeTk5Pq7BSbzRZ1ZKKrq4trrrmG/v5+dDodN954I1/4whcQQtwMfBIYmnnqN6WUTwAIIb4B3AC4gM9LKf898/hOTgpWPQF8QS7h3tRwBYqKgJOSqoxFUTeUXVIWC/GePqy8v/7+flpbW4O2rjpcbkxWB3V9kz6OhD8vNPo6CQ8embuyZyiCaU7EgtMteeDNPh6uGuChG3dSmu07w0RRovSe/KkULxoMBqSUGI3GeXMqFsKZiLQEQK/Xq/YToKKigtbWVo4dO8a+ffu47rrr+NznPhf160vP0EBlcOCkEKIOzyDAxXMmgn2Z4ZyJYGmNaPfjj2J00tLSfMKHsQ7pGhwcDKmQGQ5FQVOn02Gz2aiqqiI3N5esrCxMJhNtbW2q4zQ5OTknVbWlQKgukYmJCfVmGo1wViAWSv46HImJiRQVFVFUVKT2m5tMJiYnJ6mtrfWZJxKucMpgMHD77bezY8cOJicn2blzJ1/84hc3zvz5p1LKH3s/XwixEfgIsAmPlPazQoi1MwqYvwFuxDNR9AngQk4xBUwF5Qa/Zs2agE5aNASLLkgpaWtrY3h4OOhiIVZnwmQyYbPZ2L17t8+5/51H6ni9bRST1cHEdHAdjWjYWZZJRpJBTW/kpCQwOlPLoBNw5a7llOtG2LRhAyMWB0+eGOSJ40OhdqmyozSDrcUZTNldtI5YOdQxNyVOm9PNxb8+xBfOruAdK7PJTzMyaXMxNuXAZHVgtjk5e00uhpQMGvtcPNlq46M7Cki19DI0NERPT486nCtYSmQuLOWpoXl5eZSXl7Nt2zZuvPFGH0XWuSKEqAAq8cjuh2XBl7zBBGbcbjcNDQ1MTU3FXdhJyaWuWbNGnQwXK0oraWpqKkVFRXM+yRTHQFG2W7duHVlZWTidTjVdYrPZePPNN1UVx8VSmPMmFu/fPyWipAXMZnPYlEg4FirNEQ3e9RZDQ0Ns2rRJdab++Mc/8sADD1BeXs6OHTs488wzZ4XpFREcgPT0dDZs2EBTU1OoseHvB/4qpbQBbUKIZmCPEKIdyJBSvjZzXH8CLuUUcyb8I4xJSUkxRxgDLU4UjZjU1NSA9QsK0apYKtjtdurq6oLWbVnsLjpGp8hPM/K5c1aSaNDx42eayUszcve1O2g5XoU5s4Kb/lUHwEd2FfPd927A7Xbz7JsN/KtmkGc7fG8qb3b63uBHrQ4MOsGO0gwOdYxz36FeMo3wsUQTH9qxjLPX5nLbpRt49y/eoG8idCT4SNcE6wvT+O/zV2E0nPysrrnnmE8bqsLFm/JVRyU9yaCmPBR+/mI7P3+xPfSHOMOkzcm39qWq0Vyz2czo6GjQlMhciLfmTCBiFa1SxNJiHUAmhEgD/gF8UUo5+8sLwJJIc1itVqqrqyksLGT9+vUR3aQiiUxIKenq6qK3t3fOudRAKNGTLVu2MDIyElN0QwhBT0+PzzH6O1uJiYkkJCSwadMmtRBnZGSE2tpadehObm7ugilWzgdpaWmq8xQqJRKuSyTeIc75mM1hMBjUfvOvf/3rGAwGJicnefrppxkaGuJjH/tY0O3b29s5evQoeFYLpwOfFUJcAxzGk+s04QlLvu61WffMY46Zn/0fX7L4f5dK3UJmZuasG3ysM168FyeKc7969eqwGjFziUwo+y8rK2NkZMTnuDtGrHzqz8dI0Hve25DZzi9eaFXD/p88vZxEg45EPZy3bRnVPRM8cLiHvx7uYWdpBmUMUZqWyE8/ts8zJ2Rsmn/X9vK7A71MO2fbKqdbctArijBuh1+93MGvXvbM57huX4nqHPzosvX89Pk2Hz0Jb/58uJc/H/Yob354xzJKs5M52j3B6SuzAUn74ARfvXA9f3qj2yfikWzQoUs2MD41twjMka4J7LuT1TZiJSWi1Bf4p0TmMj9jKUcmIH6toUKIBDyOxP1Syn9Gut2iOxOKxsOmTZvU/Ppc9uOPonxnMBjYvXt3XJTvAslim0ymOYc43W43FouFkZERH8XNUCe3dyHOihUrfG68DQ0Nam4+lBZCPFLk86la6Z0SAWZJ0obqElmIwVyxEOhzc7lc7Nu3jw9+8IMhtzWbzXzgAx/gZz/7GZdffvmEEOI3wP8Ccub/24HrgUBfjAzx+CnB8PAwDQ0NAesWom3t9EfZXlmA9PT0RLwAifY66Orqoru7W41GDA/71jlkJicw5XDROmylKCOR/pmIQJdpCoBb/93Erf9uAiDllZfITzsZnfzqQ3WctzqDj+4rJdvqJCtJR2l2Mp84cxWfOHMVw2Y7//X34+pAL38+WFlETfsg9aaTNu2Pr530P7/6UP2sbTYWpTE+5aDHz8F4wKtew1uH4ot/n51+HzTbZz0WDf9z8RoMugmEEIxY7GQkGbDaXZisDiSwwkvPQZmfoUR6I02JLFQ3x1zvVVarNWZnQnje4J1AnZTyJ9Fsu+A1EwaDQdXYV9Iac9F4CLUaUKqiy8vLKS6Oz8LLbrerKyLvSu5otPX991dVVYVer2fDhg1zNoL+tQjKjbehoQG73U5WVpZag6HX65dkvUW4i9S/S0SJzCgS2IohmKtyXDjivT//9xpJN4fD4eADH/gAV111FZdffjkAUsoBr33+Hnhs5tduoNRr8xKgd+bxkgCPL2mUdszx8fGgc3hidSaUyZ/V1dXo9fqoNCoixeVyUVdXpxaLKtNO/e1YVkoCv7uqkivvPERGkoHHPrOPa+95k+O9Hgfg1x/dxsS0g8O1TaTmFjFstpOTrOdoj2dexrPNEzzbfBTw1ESsK0xlbUHazP+p3HX1NqSEL/3jBC81j/q89r+q+vnfPbBn20YyMzMZsDi549VOHqpSTzXSE/W8c02u2h1yot/zuoLF80y/+0TTzE8DAf/+rQtXY3O6yU8zUlma4TM/I9KUyEJEJmJxWOLUYn46cDVQI4Q4NvOYWtgdikWJTExNTXHw4EGKiooiTmsE2k+gyISiPBlqoI+Ukj8e6OS2p2dOwH8/6/P3K3Ys590bCthZlkVakoGJiQlqamoC1lzMJV+q7G/t2rV0dXXF7Qbvr4UQKLxns9nUnu1YXnexZnN4S9LCyRHAAwMDNDY2IqVUJ4NGI5y1mIQLT0opueGGG9iwYQNf+tKX1MeFEMtmqq8BLgNqZ35+BPizEOIneAow1wAHpZQuIcSkEOI0PGmSa4BfxP8dxY/p6WmOHj1Kbm4uu3btmnNhdzicTifNzc2sWbNmXqS3p6amqKqqYvny5ZSWlqrvI9iiaF1hGr/48FY+ed8xvvBgNT+4dBPv/bUnc/XVf9by8pfOpNDazr59a+no6GBwcIpt157Jbc+2cf9BTyThvHV5pCbqaBy08pfDPdhdnlu995yNL5xTwQsNI1TPOCp2N3ztdfjQZCfnL3OSaEzg+s3Z9JrSeaNzklV5KbQMW3m8dpDtJRnsLs/k9/s9dU4r81L42J5ibE43ZpuTOw90MeWYn4GF0fL/njpZU/O+LQV89qwKqnsnqe2dpK7fzAd3LOOCysApESWNHO8oZbyJR5pDSvkqgSOYYVlwZ2JiYoK+vj527twZ0xhu/+rrSJUnBydtnPnj0BK0fz/Sy98DTNzbdqKdb1+cxObl6T7GINTEQn96e3vp6Ohg+/btpKamqoJH84G/XKtimDs6OrBarWRkZJCbmxtzB0WsxOKY+I8AbmlpwWaz0dLSwtTUFOnp6UviPYYi3Ipi//793HvvvWzZsoXt27cDUFVVdTHwUSHEdjwLwnbgPwCklMeFEA/iaedyAp+Z6eQA+DQnW0OfZIkXX05MTLB69eqw82BicSZ6e3vp6+tTNQ3ijZKe8U7lSimx2FyMmG20jTlxtIwwNuVkzOpgfOrkP6dbsr9llPf++nVyUhMYtTiw2FzsvPVFitMEWUdeRjeziNDXH/e5CyhaEu9Ymc3W4gzaRqyMWDz7bBq00DQYvMX0weNmHjwOMA2cTIm0DFvVn491T3DMq7CyZdjqFSEIzfrCVM5Zm0t2ipE32k081zDC/16ylhGLg5+90BbRPubKIzWDPFLjiaoY9QKnW7I8M5ELNuTPspneKZGRkREsFgtTU1Pk5ORELQMw3yiLxMViwdIcys1+cnKSgoKCmBwJ8I0IKF7/smXLQipP/uy5Fn7z8txP1KruCa6446DPY+etzuRTu4O3sCooIlxKt4p3fcRCtfknJSVhNBrZuHEjQgifdAHgky4Id3NfqlNDDQaD2mHjPaXPeyqoolK50KuMYN+zIpUbjDPOOCPQtk/M/Av2WrcAtwR4/DCwOYLDXRIUFhZG5KyHG0MeCCXt4HK5WLlyZdydeqXrZHR01Cc98+1H6vjH0V5c3kJPrx6dtX1Wsq/zO2rx7czoMUt6zMpjdvQ6QXqiQXU6FA60mthekkF5TjKr8lLQ6QR6IdAJgdnmDNhpEYzLt+RhnZpizDJN67ibQWtw27W7PHNWe+g9F2ewo3K7z2MrcpN5rmGE4qwkLtiYP+/OhDd3Xb2Nr/yzjmAm2Cb1HBnRc8aqtQjRRG5uLjabTZ3iqrR4Z2dnz8tE2mh4S87m8Efp1igqKqKkpGTOOvbeKCsRRSM/XAHnl/9ey2M1/TG/rj/PNo/zbPM4noWhh1e+ciYF6Sfzukp9RE5OziwRroV0JrwJlC4YHR2lt7eX+vp6NVWQm5s77+Ox4+2YKE6C/5Q+JSWidOMkJib6jFef75RIsJyrpoAZnEi/k2gjE4pNUtIOAwMDWCzBV+rR4nQ6qampITk5mZ07d/p872sKUnG5JSXZyXz6zAoGulrZsXUTLzeN8NfD3VjtnvcxNhWdVoDLLYNuc6x7grPX5JCbakQImHa4sTndSPTsKsvE5nQzaXPSPjIV8jX+WeNbLJqbYmB5qmDQ4mTAz7FQZnF48+aAkx1+jylO0zcfaVCLTReCvFQjn//bcUYtDsamnIxa7Lilx4ZU907ytyN9auHore9fx0oduA2JHOmXdI1n8x+nl2Ce9Kj8KnpAij2ZSxo51vvAW96ZUJTdNm3aRGZmJlarNS4DusATkejo6AirS2F3uoM6Eh9Ym8jNH9yrbq8I4WzYsIHU9Ex6xqc51G7ir4d7ONEXuALaH/80yi/PSWLbxrUBNS6icSbms5o4ISGBwsJCCgsLPSFYi2VWUVJubq46d2KpRiZCFUn5p0QUrYfW1lY1JaIYg4SEhLg7ecEqtRc7PPlWIBpnItCU4FiEpxSU83hycpKamhpKyyt4qdtFzdE+SrKTyU8zUpGbwjWnldE7Ns0fX+ukf9LGpE1y079O0DM2zaZl6fSMTfs4BZkRtEx+8oxyynNSMBp0TEw5GJ9y8osXW32e82LTKIkGHemJBhITdCQn6Egy6ElM0JGRZKAg3cimZelMmkYoXlbIoY4xmoesAV/voo35fOGcFRRnJanv3WKxUN85yB8O9rO/x+mz7YM37OB/Hqvn7popPnCmnZxUj1LlIzUDfOvRRoC4OxL/eWY5v36lI+jfhy0nO0hebBrhrJ8Fn1PyjX81KFupj/WMT3P++jzKspexuXwFOrfTR/VWWZBFmhKJdeChy+Va1FTuvDkTbrebEydOzFJ2i8e0T6XXXAjh01kRjMHJ4CfpPxpt1P7hTf5yw24Ge7sYHBz0UbpbmZfKyrxUPryrZNa20w4XD7zezPef7Qr5+p99YRpeqFZ/r7/5XJ9ukEjwl92eT4QQpKWlkZaWRllZGS6XC5PJxPDwMM3NzSQmJqLX60lJSYnLMcXbmYh0X8nJyRQXF1NcXOyTEunu7kZKSVZWFi6XK25V3MGcienp6TmPNNfwEIldCTXvJ1a75C2L3dbWxtatW7G4E/jxM/tDFiH+4oWTN/zLti/jaxes4e4Dnfz2lXZW5KXw/963gV3l2YyYbbxwuJbOcSe/OzJ7UfP7Vz03zbREPdtLMtlRlsW1p5Vyz+td/P7KLQyZ7XznsUaWZyby649spiQr+Pl26NAhdu9eDYDZ5mTfjw/Mes6TJ4Z48sQQl20r5IOVy9i8PJ20tDQ2rk7mtIkEXuttwzuL89G7jlCYZmDCLjnrZ6/P2t98EMqRiAeP1w6qHS0CWF2QSmVJBpWluVSuW0GG3uNcKLV83l0igWr6YmkLXQqK+PPmTDidTlWtz9u4x3rRKlPT1q1bR2NjY0Q3juWZob3ChgELO77/Ire8K5fLz4xcFjspQc8lG/PYmy9Zv369+nj/+DRn/eTVoNutv/k5n98f+2TRkl6Z6vV6n7kTU1NTtLa2Mjw8zPDwsE8h51xa8+YrzREN/ikRp9PJ0NAQ/f39HD58OC4pkWDV4PEcwf52JZxdUaYE5+XlBZz3E2tkQqfTUV9fj81mUwvAm7rGoupmeOhYHw8dO6nN0DZs5aq73gTg0tVGPrKrmA+ctZIvvV/QMGDmc/cdpGPCd//nbyjgRN8kv3ixVa0D+OSfa7h2bwkf2bmc+w71cNXdx/jFBzextTgj7DH51zxsKEyjbsB88pirBnioaoDlmYkMme04XIFvai4JvZPxkQSPB4GiPdkpCQFTM/4k6IX6Pj95eilr8lNpG7FS3TPJ47WD6jyUFKOeq3Yt5z2b11CRk8T4+Lg6BVWn081KicRLbXexmDdnIjExkdLS0lmPz9WZkFLS3t7O4OAgO3bsIDk5mcbGxoi21ekEv/rIVj7z1+qQz7vp+RHurzvEH6/ZQVZKZOEifyPkcDjobqrl8asrWLVqlfrltg1buPAXrwXcxyW/r/L5/W+f2MXafF8HaLFqKwKRnJysDvFatmwZExMTjIyM0NHREfAiCcdSnBqqqOQNDg6ybdu2sCmRSI/Nf+WxVL7TpUo0NRPB5hEoU4I3bNgQtCsklkWOzWbDbDaTk5OjLp7cbqnKXMeDh5vtPNzcBniKE/PTjezNN1BRmMZLTSe1IhoHzdxx1XZSjHoOd5j49F88Ns+7NXTU4uCqu49x9pocvnreKkqzkwJ+zg6Xm9ufa2VFbjIP3rCDL/2jjldaRrl6TzFPHh/ySRMEU8RcqgRKG0XiSAA+xZpKW+yqvBTGp5zYXSfvBVa7i98f6OL3B7pYX5jKu9bmsa0klw5SuPe1bsqzRvn0NgtTFjOpqamnfN3UgotWzeWm4XA4qK2tjWmg1nkbCvjyeau5/dnQGv4n+ibZe9tLfPm81Xzi9HJ0utDH632TV3Klq1atmiXBuyIvlYbvnqf+3jc+zdlBohcf/MNhn9/vuWZbyGNYDJTVtP90ULvdrqYKlMFkSiFnsLqWeK7M4yks472vYCmRnp4eVdI8XJdIqDDmqaCHsZRRBKC8kVLS0tKCyWQKKnblvf1cnAll7o+i7SKEYNetL86aMzFXPr4pkayCIn72gm/IfmjSzmOTAL6iU8d7JznrJ6/yjQvXcunWQj51Rim/fbWL+z9eSduIldfaTDxxfAib082LTaO8OOOIrC9M5V3r8kjQC+pbHTzc38Aj1ScFoN7189eZtHk+n3sP9sTlvS1V8lKNJCXo6B4LPBU10Lh175bZQNQPWKgf8C3w7RqD924v4aI9G7FYLPT39zM5OcnBgwfDpkT8cTgciz5deunNtvZjYmKC2tpaVq5cSVFR0ay/R7OqvfHMCpZlJvGVf9SGfe7tzzZz+7PN/O6q7Zy9Ni/o85TIhFJounXr1og8zGWZSTR89zzq6uooLCzku89289TxwYDPvfZPM5GLp/YD8K//2MXKvPjMGYk3RqPRZ1qm2WyeNUfE/6YbTZ1DOBYiyhEoJWIymcJ2iQRyJrTIRHzwdwYUxdqMjIxZ3RSBiDbN4T33Z8eOHTQ0NOB2u9nfMhI3RwLg7uM2OB597v/Wpxq59amTkdsP3nkk5PP9b3YG3aDXz0J1JJYiqUY9FruLFANY4/DRe0dc5pMEveD+Qz1csCGfxOQU0rNyMU87KF+xEtPYOO39I5jqW8lO1pM7syALFu2Nk/plTMyrMxFraL67u5uuri62bdsW8INSDEA0RSsXrM+h8JJMXurT8Yc3TWGf/x/3HwPgn/+xh03LA+cYx8fHsdvts0YIR4qUkp9/aCtSSjo7O9lf38N3DwT3dN//u5ORi63L0/nFhzaRk7qw00MjuWl7D9ypqKiYddNVBng5nc4ll+aAyOdyGAyGiLpEnE7nrHNVK74MTaTnhbfOxFymBEcTmXC5XBw/fhydTqfO/VF0bw60jIbfQRypyEmmsiyLYbOdV5qDdyMEYkdpBke6TmpMeNdDeK++A63ElxKWmVbaeDgSC4nDJanumWT7rf4iir4j36/evYxripPVaG+g+UtmszkuzoQQ4kLg54Ae+IOU8geRbrtokYlQNyOXy8WJEyd8NOwDoRiASJ0JZVLfmjVr2LO7gI+cOcV5P9sf0baX/+4gQsDjn9nHqnzPl+ZwOKivr0dKyY4dO+Z0Q9TpdEgp1e4XKSUfOncPl5/lRKfTMWa1c+ZPg1c/V/dO+lRHf/vC1Vy2vUidOLiU8L7pSinVm67VauXIkSNq1CLS0F4g4hnliNZRVfBOiUgpmZjw9KL39/cjpcTpdKrRmaVgBJY6kSxK9Ho9TqeT9vZ2+vv71bqqSIk0MmG1WqmqqqKkpMSnJkzZ/r/OXcWoxc4/j/WRnZLA2JQjqCBSPGgfnaJ91KMNcf07yvnjax1ctKmQLcszTo4LCIK3IwH4FFYuNpUlGWSnJPB8Y3QO0luNc9fl8pFdJRTlJKvRXmX+UmNjIzabDbfbzeHDh2Oeii2E0AO/As7HM8fnkBDiESnl7MlsAVgUZyJURMFisVBdXU1JSQklJSUhbwzRrCaUKIciYw1Qmp3M41dX8Ea/i+89E7q9EzyFNxf/8jUS9IK/XLuVyZ4miouLGR0dnfMNTAiB3W7n8OHDFBQUUF5e7mM4s1KM1Nz0To4dO8bKNev5+iONvNI6FnR///tUM/87o0Ofk5LAXR/bqjo/8STWdIIQQh3gNTAwwNatW9U6hLa2tjmPCV5q9RdCCDUlojhISUlJDA4O8uKLL/KrX/0Kt9tNXV3dnOfUxGoE3gpIKRkZGcFgMLBnz56ov7dIbIkikOetT6Gg2DSDXsct799IVoqRuw50sLU4g5svWc+/Twzyu1fao31bUXHXAU865InaAZ6oDTzw6lSgKCMxKlXO+eQdK7MpSDNSkJ5IV08vrdZEGkLIkIfjS+9aQffYNA8e6cOgEz5Rn4psI+0mT4olP83IHVduYXV+Knanm8OdY9x5oItXW0z84P3rec/mUkpLS9V252PHjvHqq69y1llnce2113L99dfP5fD2AM1SylYAIcRfgffjkeUPy6KkOYJFFJS6g82bN5OREb5tKZLVhLLid7lcPjLW3vt416pULt9zDrc82cDfAszk8MfhklxxVxU6Af/4RDpu93DYbYJht9tpampi48aNapg80GcmhCApQcevP7p15hjc3PrvZv52NLiq56jVwaV3vKn+/u2LVlO+BEOWUkof9Tg4qYnf0dGhijrl5uaG7Z6YrwLMeOByuUhJSVGjM+vWrSM5OZmf/OQnfOc73yEnJ4ff/e53c9l1TEbgVEcZnKdIxc+FUE6cdyGnvz7FwXYTDx/rI1tYWGc1kZTioL5/koYBjxZEdc8El//uYLBdawQglHhVkkHHtDM+sud//8QOrviDp5bk6DfOxOBVbH/hL99gW0kGt126QX3s0KEhdu/eyW1Pt3DfIU8R6n++s5y8VCNPnRjkoF8bbSB+8vxJqXD/9JHiSKwvTOVje4r5/f5Onjjum/IA6B0/WRiq0+lYv34911xzDQUFBXznO9+ht3fOg4CLAe9VdTewN9KNFyUy4b8KULwrq9UaVd1BuNWEMrOjqKiI8vLygAZDcUiSjXr+3/s38uXzV/PFB2t4vS18PYVbwmW/95yMf84fY2dZVkTHrdDf38/Q0BCrVq1SHYlQeDsZCXod37l4Ld+5eC1Ot+Q3L3dwx/7OkNv/75MznSxP7+dda3P51oWryU+fm1T2fCtgJiYm+owJVuaIKIJS3nNEvG/48UxzxHtKYCDnJDs7my1btnDHHXfEsuuYjMCpjBJx3Lx5c8St4tGgjCVPT0+fNbVUSsnf3uzhkeoZh/7I7JtJcVYSPTNdAcVZSXz5vNU8UzfEk8c9kYPKQgObs9xkLyune2yaf3rpTLxVKMlKCtoZES2ROBJpiXrMERSMfvvRk+fL/zzeyE0XrCbFqMfplvRP2Lg4gD6RW0qeqR/i7DW5dI9NccernVyyuYA3O2d/95UlGXz8tBJOW5FNz9g09QNmTvSbOdE3OSvF5E39gEVVBVXITkngc2dV8L6thSQaAkvyp6am+tRuzYFAhjPi1eeiOBPexVLT09NUVVVRUFAQUEwmFKGcCaW3fOPGjWRnBx/E5R/dyE4xcs/Hd9I/Ps319x6lZSiykNaVd3qKIn/2oS1cuLEgopXO2NgYxcXFIaXAFULljQ06wefOruBzZ1fgdEt+/2pnWPW35xtH1HykQSe455ptbFke21jyWAj1ukIIMjIyyMjIUGdsmEwm+vv7aWhoUAuScnNz457miOfwnkDRuDjN5YjJCCx1Ap373nVVSrt4vGT6FfxbvZ0uN7c82YDTLTnWPU5jkBqDpASPZPWQ2a46EgA9Y9N86e+13H3tDq7fU8DNjxzn6IATu1PPzy4opCw3jVsv24TD5eaLD9bwbP3sVempSLwciVB88ZwVZE718t3Xbexbkc2BVhP56UZ+cvlGGgct/Ku6j9fafG/43jUij1QP8Ej1AMkJOlVo7PcHujjaPUGqUU9Koh7ruJ1f1lUxMGlnYPJkLcfD1bNTSqevzGZ9URqvtnhacSemPRLnE9Oef4LwF+h1+0o4d10eW5anowtjl61WazzsSDfgLQ5VAkQc5pj3NEcgFCcgEjGZUARKc3iLW3nLYofaRyAjVJSZxBOf3cfAxDSf/csxqnsjK0764oM1AHzjgjVctbd0ViGk/wCgtrb4Tsgz6ASffmc5n35nOdMOFz97oY37D4U+H5xuyVV3H1N///kVGzlrTS76EBobCyXtHYiEhAQKCgooKCjwKUiqr6/HbDbT3NxMbm4uWVlZMTkD85Hm8D8eq9UajwLMmIzAqUawuqp4ttn29vbS3t7u0+ptc7r586HusNtOO9xMO+ysyk9FJ2DM6mBsyqGqJn78Hk80c2VuMjDF8REX5//f63zrorVcfVoZCXodv/roNqx2F1f/8U1qe5dG/UBWsoHr9pWyb0U2pdlJfOvRBp5rmN8CyQ/vWMZZa3LZUJTGOT8PXIiuF/Dhncuoq+4nLVHPM/XD5KQk8Icrt1KYkciaglTes7kAq93F3h+FLrj3Vyw93DlOqlFPVrKBMYsLizOy72J/q4k32sfISDKQkWwgI8kzzXVFXgqpRj3NQ5aA0Ykb9xbw3soyKnKjK6aM05CvQ8AaIcQKoAf4CHBlpBsvWgFmV1cX09PTYcVkQuEfmXA6ndTW1mI0GiMWt9LpdEGV8wDE9ARf3Oyi9P2V3PJcFy82RlYfceu/m7j1301ctaeEL523mrREA1NTUxw7dozS0lJKSjyzPhQZ1Vmv63ejnkubbVKCnq+/ezVff/dqxqccfPORBl5uDt+69oW/n0y133TBai7dVkhSwuKO1w2GEILU1FRVNOjgwYPk5uaqrZkJCQlq1CJaGWy32x1XIZh5jEzEZAROJaKtq4oWt9utzlJQZLEBukxTfOYvvkq1eWlGvnzeanJSjdS39zJmk4w5DaokdrioZqvfhM7/92Qj/+/JRs5Yncv6wjTWF6Xzg8s2otcJrv7jmwybF0b/IBjv2VxAw4CZe17vZjRCtci5kJyg4z/fWc67N+SzPDOJwUkb//UP3/Kfn12xkcdrB3mmfhiXhF+82I593KGmN/ZWZFGY4XtfqQ8SSbrrqs18/V/1DJqdpCaA36R3LHaX2n4a6FgVB+RL71rB6vxU/vOBWtIS9bzwhdNUu2m1u9jfOsoLjSM8dWKIiWknRr0gPz1RjV7d/u58dq7MJzdKRwI8diSG9AYAUkqnEOKzwL/xdIXdJaU8Hun2C+5M2O12hoaGSE9Pj0hMJhR6vV69EZvNZqqrq6moqGD58uUR7yNYEaeUktbWVkZHR9Wiq99dlYvZ5uRXL7apldPhuP9gN/cf7KYsO5FPb4Rzdm/2SbtE6iTEqtmRmZzArz68mSNHjlBQsY5P/OW4Twg2GLf8u5lb/u2ptfjSu1bw0V3LSUqI79TQeJObm0tubi7gSaP5az4oc0TC1ea4XK64jl8P5EzEY0URqxFY6igOd0NDA9PT03PWcwmHlJJDhw5RUFDgM1OoadDMdX86gt3p5idXbObCTYW81DTMt/5Vx3cereML71rFBWszMeh1lJaW8oPLNtE+YuXrDx3naNc471yTy5U7l3GsvpVJt5H7q8fU19QJ8K+JfrV5hFej1IxYCMJFOOPFlMPN7c+1cftzgaO2u8szyUgysK0kg2fqPYu7Px/2HNv6wlSmnW6ePDHEtXtLWJGXQoJeYNAJDraPBdzf0/Wj7CzL5skTQ7MciUiOVcG7uNJsc7H7h6GjIOW5KfR5FVOWZ+jmHEmNU4QTKeUTwBNz2XZB0xyKmEx2dja5ubkxh5CVFMXAwAAtLS1zWq0Ecib8UxHex5mWaOBrF6zhK+ev5tGafr72z8hsdqfJxjf2A/vf5Fcf2cq56/MRQizKzI2ijESe+sweAOr6zXwojDqewk+eb1MvmOsrs7iicmmqcHqTlJTE8uXLWb58uSqDPTIyQleXp14xJ4Sy3EKkOSwWy5xSfP7EYgSWOlNTUxw9epSCgoI5t8+GQ9E72bZtm4/QVXXPOJ+89xgJBsF91+1ibaHH8XvXunwe+0wm//NoHT9+ppmnCpP56pmFKNITFbkp3HvdTv7v+VbueLWd1r5RfvC+NexeV8a3L5f84N9N3P1aJzeeWcHGpHGM2cvoGHNw679Da0O81bhkcwHX7i3hx8+18kb7GLvLM2cNF/PnUMc4hzoCz1nyVvH8yB+PRnQMf32zl4L04HVrF6zNYnDCytF+O1/bk8Tpq/PRp2QyatczaXNhd7m572APh2eKMAvSjQxOzo4ilWUnsWlZOi4psTvdTDvdNHm1mU5MO1k+R2ciTmmOmFiQyISi7NjX10dlZSXDw8NxKZbS6XT09vaqSnRzWa34OxOKKE15eXnICIdeJ7h02zIu3baM+558hR8cCj4xzx9l4Nj17yjj0tVGUnTzH5kIxoaiNGpueicut+TJE4N8418NEW1319Ex7jo6BjTwtfNXcUVl0ZJIhYS60XjLYIOnUt97jkhqaqrafpqYmDgvzoT//uK1ongrMzIywtq1a0MWUitEGzGTUtLR0cHAwAAZGRk++hGvt43y6T9XkZNq5O5rKinN8XWec1KN/N+Ht/Kv6n6+91gdn3q4g5vsyVyxYzlCCBL0Oq7akkaaNZG76lx88m/N3HyJgUu3L+frF6xhYtrBb19u55Pb0/jUtgzO2ZjG+7Yt4+o/vknv+DT3XLuDzcszGLbY6RufpmdsmpqecV5qGom4MHyp4K+p8Okzy/jNK508VjvIR3ct5/LtRbzRPjbLkThnbS43vKOUg+1jPHikL2TbKMCuskwu3lTA7/d30jdhY29FFnvKs3C63bzcPMrxPjOXbSvkoSrfoskrdxXzfOMw1T0nx7vnpxn592f3UN0zyXX3VnFeuZEPvnMbo6OjjA73YTObyU5LY9CZwqaiVNWZGJy0k2jQYXO62VmWyR8/tnVWF9CkzcV/P+Q7CK5h2M7G1XOzN28LZ0KpY0hISFClZ0NN+IsUu91OZ2cniYmJc1afBF9nIpQoTShWZuqp/c65mKx2fvpsCw+8GdkgnLsOdHLXAShINXD/J3Ip8zJWC51G0OsEl2wu5JLNhUxOO/nRsy2zLrhg3PZMC7c90wLADy9dz/kb8n16tpcqCQkJFBYWUlhYiJQSi8XCyMgIJ06cwOl0IqXEaDSSlZUVF6ciUKeJ2Wxe0uPnlwKlpaVq91colBqqSOtcnE4nx48fx2AwsHv3bo4dO6bagvYRKzfed4yynGTuvHrHrPy7ghCeRcXKVCf/75kOvvVIHc81DPHTKzbT3dHGxMQE1198Gpee4+Yr/6jhaw+d4I02E99+z3r+970bGJq0c0/1COdtt7A9LY2cVCN3XbODq+46zCfuO8q91+1iXWEaBemJbCvJ5Ly12ZyTPUZBwWpGJ6189+Ux6gdDD5laCvhrKvzmlU5OX5nN/laTT/G3N9++aDUfrFyGEIKty9M5c1UOfz/WxwNvBm+fPdw5zhWVy7jv49u57t4qhsx2rttXQoJexztWZnP1PVXU9s2unfjZC22szEvhk6eXcueBLtwSCtMTcbgk33msgWWZiVy5KZnExEQycws4MZHAS0MGXtw/gmlqBL2AsnRB56TnfX7pXRX86Nk23uwc54b7q8lI8nT3jJjtDFsc2LxaXCtyk+kanaJ+xD7nNMdSmM0xr5rLZrOZgwcPUlBQwKZNm9QPKpZxv+CRxVZymzk5OTHddJVUSWtrK+3t7ezevTsqR8Kb7BQj33vfBg59ZS+fq4x8Vsagxcn5Pz/Auv95lr+92YMzgFbCQqZD0pMMfO+SddTc9E7++cmdpBgjP8H/++F6Km99hW3ff5lDHWOnzCArIQRpaWmUl5dTWVnJjh07SEhIYGJigsOHD1NVVUVXVxdWqzWm9+T/vS6FFcVbhWjsisVi4dChQ+Tm5jKZsowjXROYbGB3eJyWnzzbjF4nuOua4I6EN8syk/jfcwv4xoVrebFhmP+8+wBut1s9jwozEvnjNTv4zFkreKiqjyvuOEjrsJVbL91IUoKO/3miBfvMDaYwI5E/XruDRIOe6/90hPYRj7MwOTnJ4cOHWbFiBRUVFbzUMXVKOBJnl56MGK/LPeno7W/11fL5ynkrfX7fsjyD6t5JfvJcKxf/+hAfvPMIfzvSR0aSZx+nr8zmvo9vZ0OR7/Xz9X/Vc+7/vUGnaZrWYSsX//oQhzvH1NRDUxAFy19+aBOfP3sFP/2AR/istm+S6++ross0zZU7Cnigbprt33+ZvT/azxf/foKHqgYwzYwyF+KkIwFw69OtqgN1qGOctpEpkhP0rClIVR0JnYA7rtzCvddsZ31RGo0jzjkvWpaCHZnXyIRer2fLli2zVl6Kjv5c6Orqoru7m8rKSiwWCyZTeHGpcAwPD1NYWBhzQSicjG5ce24ln700nYEJGz98upHHaiJb5X/rkTq+9UgdG4tSuf2yDSzPSkKn0y1KbQXAmoJU3vjq6bjckieOD/LNRyJLg7glXH+fJ52zsSiNH1y6nhVzqFKOlnh9Rnq9HqPRSEVFBampqeockebmZqanp8nMzCQnJ4fs7OyYOj6WworirUKkzoQyaG7Lli049Ulc96OX1SJI/b/fwDtbef/BLoozk1mWlcTyTM+/5ADOtU6nQ7rdXLElh8aWBP7RZOelwUTWrTvpPBr0Oj7/rlXsrsjmK/+o5Yo7DvKd96zjP3dl8oP9Jn71Uiv/de5qwCP1f/e1ngjFp/98jD9csZKONs9UYpGQxObvPRdxWnWxebHrZBS6fczJrmWJHO6bna748bOt7CjN4IxVOfzfi+1qLZdBJ9hbkcUN7yjlnLW55KYauf9QDz94uoV3rs7hvmu3c+GvDpJlcLKpLJ+Hqwc4b10ePePT1PWb6Z+wcd29s2ssvAXFAC7+9SH+88xyppwnz6HjM1GMH78we9xCepKBkswkCtI9ctv56Uby04yMTTn4+QvtAGwpTKRmwMbWTDt7K5K5+SVPN93aglTOX5/Hk8cH+cP+TjpGp3A65y6Sp6gELyYiCuMb9ZnrdrsDpjNMJhN9fX1RSd+6XC7q6upwu91qlGNkZITBwUE2bNgQfgcBsFqtHD16FJ1Ox759++a0D4ADBw6wb98+2tvbGR4eZtu2bbOEqKSUvNFu4tq7Iyt29OZ7F69mjdFEaUnJnKMmCkeOHGHr1q0x3QBHLXa++rdjHOyJXozm43uLufGMctKTTr7+oUOH2L1795yPR0FKyeHDh+OyL4CamhpWr149a2CU2+1mfHyc0dFRTCYTOp1OLeQMNUck0Pu86qqr+OlPf8qqVauiPbyln0eazZzufsHsiD/V1dWsWLEiqFGVUtLc3Mz4+Dhbt25Vr9FXmke46V8nGJiwkWLUYbV7Vo5ZKQmMRdACWZyVREGqgSRspBsk68qX8YuXPTefD+8q5trTyijOSvKpKRo22/jqP45zoHWUr5+RS+2o5Im6Ue6/fhc7vJR0X2oc4sb7q/jI+iRu+sAerE7B3tteCntMkZJk0HH6qux514vw5qrKfIqSnNz+WmQLwdsv38C7N/i2PUop+cwDx3mj3cRfrt9BTc8ENz/RhFEvsM+Tk7Uq28BZ65eRn2YkJzUBvc6zwHO5PcqYbilxu8ElJUNmO79+OXzHX26KgZLsZIqzksh1j/HVy06bU6T9oosu4vHHH5/L/SFudmRJyGmHQ5HFXrZsGWVlZeqH7d0aGi2KYNbq1atj0TIHPCd2TU0Ner0+aHRDCMFpK3Jo+O55WO0u7jrQwS9eaI1o/995wtOaub5gip9/YAP56UY1WhHPAsFIyUk18o0zPKvy2lH47IORdyHe/UYPd7/hqSm57ZKVvHtz5G284Yh3wWSw/el0OrKzs9WCQLvdzujoKJ2dnapuhFLIqdywgjntSyE8+VbBYDAEtSt2u53q6moyMzPZuXOnj8HeW5HNLz+ylU/c8ybjNm813AQmp524wsyz6Rmbpmfs5O9Pd5xcxT5wuIcHDvvWUOWkJrC9JJNd5VkcaB3lB6+OcO+V63i1fZIr7zrMo/95GjkpRgw6SZqlhz3FSfyrxc7UY438q+rkLJ5kg+D0FRm8Z3spZ67OI9Wo59uP1PH3o5Hbs8rSDD6xr5Rz1+Xxu1c9K+T55v6j4ZU9X/2vvTjcghv/UsPX/1WPQSd417o8AKYcLpoGLawvSuWVllE+8PuT84cidSR2lGaQnKCflWoJRYvJSctr4QdChuK9Wwq4aGMB+ckCo9OMZWIMq9VKZmYyo6OeicJzaSSwWq0xTw2NlXmNTEgpsdtnt8hYLBaamprYvn172H2EksWenJykra2NrVu3RnVM7e3tDA0NsW3bNsCzAt21a1fE+/BmenqaV155hXXr1lFWVhb19ofrO/jGE+10jkdXkPr181dw2dYCEvQnnYpIbqTxiEwANDU1kZeXp34noxY7t/y7mafroh96tjYTbr5oFevLCmLSD3A6nVRXV7Njx44578ObuXxWUkrMZjMjIyOMjo7idrvJzs4mKyuLtra2WefZeeedx/PPPx821fHVr36VRx99FKPRyKpVq3j44YezpZRjQogKoA5Q8k+vSyk/BSCE2AncDSTjaRv9gpRSCiESgT8BO4ER4MNSyvaI3+TcmdfIRENDA7m5ueTl5fk8rgwCW7NmjU/bp9Xu4n8ereOxmv5ZWg8K17+jjBW5qZTmJFOek0JmssHzJqTnzTicDt44epxRG5imXCTnFDE0aWPIbONo13hEWi4a88u3LlzN/5uZpFyanUSXaZr0JAOr8lKo7pkI+N1nJRu46cLVfPWhegBu2FPA2gw35aWl6HQCnQCdEOh1AiFALwQ6neexI13jPPhmX8DJp1nJBh779G4yk0/aObfbrZ6jycnJCCFCtqwH4swzz+To0aNziWq89SMTUkra2toYHh4OqpIZydRQb1wul9pZsmvXLlX9cq7RjfHxcWpra0lMTJyTIwFQkpXI/11UwIqVK3mtbYxP/aUmou1+8EwbP3jGo/nw549vY31BCi6XS53AudBRi5xUI7dfvhEpJS81jfK5v0UerWgchyv/2gK0cOPWRC7eVEBBfl5Uo8dh4SIToRBCkJ6eTnp6OhUVFTidTkwmEwMDA6oMtBK1SE5OZnp6OqzkO8D555/PrbfeisFg4Gtf+xrAN4Cvzfy5RUq5PcBmvwFuBF7H40xcCDwJ3ACYpJSrhRAfAW4DPhzVG11AIj0HAtmVnp4eOjs72b59u4/D1jlq5TN/raZ50ExumhGHS5JmgO4JX6flrgOdFGYkUpyVhMPl0Qewu9ye/51upmx2pNCRmZxAis5F8fgow2Y7TUMWtaBSY3FRHAmALpPHuZucdnIsxJjzsSmn6kgA3HlwkP86LZtCp5vkBB3GBD3JCXqSE3SkGPX0jE3z9IlhHq8dpHnISoJe8K61ubxrXS6JBj1/PtTD0e4JxqacfO7B4/zp2u3qvnU6HVlZWSQmJrJr1y410qm0rKelpamDDQPdB5dKkfuiD/oKhCIalZSUpN70AxFNukRJlRQXF1NaenKMQbQOiUJvby8dHR1UVlZSVVU1p1ZOKSXp6en09vZy+NAh8jIzeenTm0lOTeOuZ6v57bHIKrWvvNsj83v++jy+feEq0oTn/TidTjViEW/HItj7FUJw9tpcam56J6MWO995rJGXIpDwVrij2sYd1V1UFvbz0TWC8vyMiEaPQ/ydiXi05xoMBvLz80lLS8PhcLB69WpGRkZobGzkS1/6EjabjSeffJJzzjknZHTi3e9+t/rzaaedBp75G0ERQiwDMqSUr838/ifgUjzOxPuBm2ee+nfgl0IIIZeKVZoj3vbA7XZTV1eH0+lk9+7dPtGlrf/7vE9r3tBMlf9YkP0OTNgYCKlv4MZi9/y92bT0lCtPdbYVZ/CVc1fwk2ebOdprYU2Wjk9uS2Z9aT4p6Vk4dAl86A9HmLS5uHRrIasLUvnxs5GlkKPhp6+b4PXI0iIOl/QZpuhNOK0Mo9FIUVERRUVFPpHO48eP43a7ycrKIjc3l8zMTB97F08pASHEj4D3AnagBbhOSjkWaptFHfQViGhksSN1JpRUyaZNm8jKyvL5W7TOhJSSpqYmzGazaqQUud9oeoRdLhdut5vExES2bdumFvX19/fTV1PD7vxkLv34KtIyc3iwepj/eyH8QLBn6odVedlb3ruOizflgZS4XK5ZI98XgpxUI7/88Gacbsmj1QN85/HIR0QfHXBwdABgmG+fJVmZ1BU2/Dcf2hzx2p8y5yMlJYWUlBRKS0t59NFHede73sVLL73ED3/4Q55//vmIUip33XUXeJwChRVCiKPABPAtKeUreMaSe0+l6p55DLxGls9IcY8DuUD0OaolhGIPlEnEhYWFlJeXI4Tg70d6eLlphH+fGFzsw1wUgqkyngpU9Uxw9Z9OzkVpGnPz3y9ZAAsZRkGKAaYdHj840ATPcJyzNhcpoXtsiuah+Wm13V2eyYUb8zl9ZQ7FWbMjkcH8+GCRTqUjKSEhgeeff34+5OWfAb4xYx9uwzcSGpBFiUwEM9DKEJ9A7aSBCFeAqShv9vf3B50gGs3Nwul0UlVVRXp6OpWVleq2Op0u4lCTlBK32417RkvCex86nY6xsTF27NhBYmIiw8PDdLQ2sT3BxsMfKcaYlsUfDo/wz2P9YV4Fbnq0gZse9aTR/3JdJZuXpzM+Po7NZkNKicPhiKmIM5obt0EnuGx7EZdtL+JE3yQfv7dq1nS+UPzvSx7v/lOnl/CewkS6urpUsSfvqEW8IxPxJJCUdnJyMgkJCfzoRz8CPPUT/f2zv9tbbrmF97///erPMw7H/TN/7gPKpJQjMzUSDwshNhF6LPlbcmS5Xq9nbGyMzs7OWTVWr7WagjoSF20qJNmo459HPWJI/3FmBUaDjsSZfwadjkeq+zjaFVjm+R0rc9hdnonN1M+a1asQgBAe2+JyS56vH+Lx2pM3uY/vK+OcdXlkpxgZs9p5s7GLV5pHODIYu5N/xqocPrqrmMIMT6viCw0j3Px4A184ZyVFGYnccF9V+J2cQkzYJRMx+kg9Y9MIiFpoLzlBx9lrcslPN2LQ6TDoBAa9IEH5X69j8/J0Ni1LD7vvSBejSqQzPz8fKSVjY2PY7Xa6urqorKzkoosu4vvf/35U7yMQUsqnvX59Hbgi7LHF/KphiEQfwe12+6z2I/Wygk3cBI/xPn78uCq1HetNxmq1cuzYMVasWMGyZcsiPg5vgjkSAAMDA7S3t7N9+3a1FbG0tJTS0lJcLhejo6MMDw/znvwxPnRpLobULP5y3Mw/joX3xD86o1GfmyS462NbSEpKUiMjbrdbjVro9fp5vxlvXJbOwf8+gzGrg1ufbuaJ4+EruxV+u7+b3+6HfSuy+O57tpEq7IyMjNDd7VmAp6WlqcqVS20IWSBnQjkPFJ599tmQ+7jnnnt47LHHeO6550hJSfHUAUppA2wzP78phGgB1uKJRHinQrzHkisjy7uFEAYgE4g8F7XARPJdSikZGRnBZDKxd+/eWQuHb128lsdqPI7a6vxUmmfkqOv+51x0M4b+QPMwq3OMfOm81bP2f0ZFGt/4+1EOD3iuldNX5fA/71lP+Yx2it3p5PlXB6jIT2XYbKdjxMqvX24LOOnz7tc6ufu1zig+gcBU5CbzmXcsY8oyydMNJg73O3m1ZZTGATPv3VrEe7cUcsWOZTxS3c9Nj9TzwR3x65x68Yv7yEkxcLDdxCf+XBu3/S4EBWlGPnVmOd970jMHpXHQwt6KLIbMdlKN+qATQr259f3ruGRzYdyOaa71WdnZ2dx444289tprPPXUUzQ2Rh79jYLrgQfCPWlRIhPe2O12qqqqyM7OjloWO9hzp6enOXbsGMuXL59zYaQ3SpokmMx2JKkSOZNuUG50yrEr3SUmk0lVy/NHr9f7eKMWi4WhoSHev9zKe4tSSUrP5uFmO389GjqEOzItef8fPOIt56zN5bbLNpJi1KkOhXc6JFzUItYbdlZKArdduoH/uXAlv326ij/WRF71/lrbGO/+5UESDToeuL6SnStW4HA46O7uZnR0lIMHD5Kenq6mROZjwmS0BHImpqamIm7neuqpp7jtttt46aWXfLYRQuQDo1JKlxBiJbAGaJVSjgohJoUQpwFvANcAv5jZ7BHgWuA1PCuO55d6vUSoRYki2e92uykqKgoYgcxOOan7ojgSGUkG7C43STo9NoeL/kkH561I8cxOmHZisjpoHrJw65P1dI355rn3t4zy+QermXa4MVntjM8oIfLCGwGPcdPydFqGLEw73BRnJXHNaWUkYcc81MsYqfz+TRNZyQnceGYFP3w68LCv71y8DqNBx7ce8cx06DZN89VHWynKSOSCDUVcfUYG7f2j/OXYEHce6OTOA74Oy9+OxG/q59k/ey1u+1poBs121ZFQeKN9jI1FabxvayErclOo7ZvkEa+UyXvWpnNVZR5XPuBJN3/jXw38+8QQ375oDQXpsU8WDmQfIkURvktMTGTLli0Rb3feeefx3HPPBfIEb5JS/gtACHET4ORkJDQoi+pMKFNE165dG/MsdgWTycSJEycCtpJGi3eaJFhHCYSPvgRzJNxuNydOnMBgMLB9+/aIPFNF9jktLY0VMzfRkZERLl8xzPl5SRhT0nm6S3LvkdDp7xcaR9hz2ysAfOL0Mj539gr04mT0RHEqXC5XVK2n0aIXcG55Il963x6OdY9z9T2Rh2FtTjeX3uHpMb/32u1UZGfjcDhYs2aNOh20utrjPEXbahVvAg35MpvNETsTn/3sZ7HZbJx//vkAVFVV/XamBfSdwPeEEE7ABXxKSqlEGT7NydbQJzlZZ3EncK8QohlPROIjMby1RcW7xio5OTlgmsjmcGEKID41Me3ktNte4qy1eQxOepyF+6rH+Wvt87NmSSgk6IWqPFnfb+aiTYXkpiaQnWJkpL+LZ3oEQ5N2irOSuOX9GzltRbbX9S45//8OUJKVxLklgo6uIQ4YC7jzNU9kbWzKEdSR+NEHNvHeLUU4nU5SEgRf+scJbv+AZ9T5T59v5Z43urknsB8TF/wHdS11/vOd5bQOW3nqhCfyuaEwjbqB2TM5vDnRb+ZEv5nTV2azIi+F89bl8WyDx44+3jiJC8HrX3kHp99+AJeEF5tGebHpDT59ZhkfP600qrED/sSSop2rVs1MJHRzsL8LIa4FLgHOjWSxsShpDiVnX1dXR2VlZVzENqSUdHV10dvbG7Q+IhqUG73b7Q6bJgkVmVDSCcrzFBQRnYKCgpiiJwkJCT6Vv+Pj43wwdZh35acwaZ3ijWEj99eFrh7+w/5O/rDfs4r56vmruHpvCUkzNQiKE6RELZTWU/8Q/VzxjnBsL8mk5qZ30mWa4tN/rY1KQOfqe44BcPNZuaxdK8jIyCAjI0N1uPxbrfxFpfyJ1/tTCDZ+PFIj0Nzc7P/QpwCklP8A/hFoGynlYQIYCynlNPDBiF54CTMwMEBLS4taYzUxMaF2iX357zUc7RrHZHVgDRG2nnK4aRgwk+MVubjh9HJ6x6Z4dEYC/7uXrOP01XlkpySQavS0Xf/h1XZ+9EwzK/NS+Py7VmGedvLx37czNOnmun1lfPXda9D75cl1OsE5a3O5941u/uPvk7SMOYHg0z9vOL2cO/d7VBRTE3Q09I9T32+hutfT0viFvy1ceuFUciQAVX1S4CkGqhswk56opyQ7mbp+MwIoykikL0Bnxf5WE2+0j816z081TvDUjw9w/b5S7vISr/rNK538/Wg/nzurgvdtLZz1vUdCPCIT8UQIcSGegsuzpJQRVaUueGTC5XKpN2nv+oBYUG78Ukp1Mmks2O12jh07Rn5+PhUVFWFvKsEcpmD1EWazmdraWlavXj1LYCcWhBBkZWWRkpLC2NgYK8vLWL/GyHvWDDM1NUWvM5VvvxC6de1Hz7Two5kJoF8+dyUf31eGXuepCVGcCqfTydTUlPpzLFGLQJM0S7OTeezTuzFZHXzviSZ1dRAJN780ws0vvcz9H9/O1uIMYPZ0UKXVqra2Fikl2dnZ5ObmkpGR4RM1irdmRSBnQpvLERne11iwGiulm8PudPNYzQCbl2fw7g0FZKckkJNq5DuP1gUUKLrl/RvZWZbFpu8+xyVrktlblsZnXmunINXAvTfsoSLATJkbTi+nZdjCr15qIylBz6PVfTSPuPnee9fz4V0nS1WklDQPWXihYZjn6wdVISOPI+EhL9XAsOXk719410p+83K76kgA/OdfT+rPnAoTeaNlW3E6N55eSkF6Ek/XDfH7A7EpTSp4f92TNhd1/Wb18UCOhILTLfn66dnkZWdwfNjJH18/qWJ6VwAVzCGzne883sj9h3r41kWr2V4Snax1LPZGUd2NM78EEoFnZmyiKoYXjAV1JhSth+XLlwdUxpwLbrebQ4cOUVRU5CO1HS3KCnlycpLq6uqoUi/+kYlQjsTIyAhNTU1s3rx5XmSUrVYr1dXVrFq1Sj3+kpIS3G43JpOJf+YbGRsbwyqN/OqYjbqh4LUKtz/Xyu3Pefq1P3/OCm48oxydlDQ0NJCfn09GRoZP1EL5LKLpEAkVAchOSeCnV2zEanfxsxfa+MvhyHO+yljjh27cyer8kzds/1YrJWrR09NDfX29GrVIT0+PqzPhcrlm1W5oUtrRE6rGyubyiBGNWjy25fLty7hq70lNmeN9kzx5fICLNhXytzd7OHN1Li80DnPlnYdp+O55JOgFh3qmeaKplmWZidxz3W6WZQaOcAoh+O4lG3i0up/bn/VEjb6yK5EP7yrB7nRzqMPECw3DvNA4TLfJE2ErzxB8fFcBj9SZGLWcTLsMW5xkJekYm/bYkJ8/H1oj4VSLEgCUZhrZUpLFE8cD13VV9UzymQdPcNGGPJ6cg4rufPCD/SbARGmaYHUmNPs185yxKptXW07qTuSmJtAwaOGnz7dxzzXbo3qtpRaZkFLOrkIOw7zKaYOnOMrlcjE8PExDQ4Nay1BVVcWqVatiMqYmk4lDhw5RWVkZU83Fa6+9xt69exkaGqKlpYWtW7dGdVy1tbWUlpaSmZkZ0pHo6upiYGDAZ8hQPBkbG6Ouro5NmzaRkZER9HlSSqxWK8PDwwwPD2NzOHmh38D91cEV4bz50NYcvv2+rWo4zztqoThVkSpxms1mtZUvHNMOF799tZM7o1y1bF2ezm8+ukUdXRwM76jF8PAwVquVkpKSWVGLudDa2kpGRoZPJOqZZ55h//793H777XPZ5am4PJ3zXdDhcGAymaitrQ3o6HeZprjoFwdmTdLMSk4gMcHT4tkZRdrsun1lFKQnIvGcF8peFXMppaRx0OwzDTjFANYAWnypRh15SRKzy8CIJTrZ/GhJNep539Yi3rEqm23FmeSmJtDZ2ckdB7p5qGnhdCaWZyYxOGk7JR2faLnx9DLu2N/Jrz+8mW0lGRj1wmeoWyQMDQ0xOTnJypUrwz/ZjwcffJCBgQG++c1vRr0tp5KctpSSlpYWRkZGfIoYox325U9XVxc9PT1kZGTEPElTCEFzczMTExNRtaYqKJGJUB0bjY2NOBwOKisrY07DBCJQa2kwhBCkpqaSmppKeXk5TqeTVSMjXLpmmImJCUzuZL7+golgasAPVo/yYPWLAKwrTOUv1+8kKUGvvi+l1sK/9TRQ1CKarpCkBD1fPGcFn3lnOX/Y38WvXwk/lQ+guneS028/wNffvYordy0P+nreUYv8/HxaW1tJS0ujt7dXjVoohZzROoOx1ky83enu7lYVZwPVWBVnJvHNC9fyyKFmjg6etCtjUw6Y8hROZiYbTnZdhOGPc2jdDORIAFjsbjzBksCORElmIt3jnpD7VXtK+PPB7qi8ruv2lXLBxgLWF6Vh1J+8ttxuN29UneC2/SYaRubXifGndzx+M0nW5KdQnpPEsw1Ls3v5jpl6sx8928wjn9ozp31EK3rozVKxI/PuTLS0tOBwOGbJYuv1+pCS2sFQZHJdLhe7d+/m2LFjMSk6Op1OrFYr6enp7NixY06hbUVnQnk/3vtQpMEzMzNZu3Zt3DsJlI6TkZGRoK2l4TAYDD41BRMTEzxUlM7IyAgIwWsDOn53JHDUomHAwo5bX1Z/f+GL76AwI1H9DBSHQvmnOA+KYzGXFtMEvY5Pv7Oc699Ryq9eauePr3eH3wj4wdMt/ODpFp793F4KM0K3cymKlQUFBRQUFMyqtXC73apjEUnUQnMmYiMtLY09e/YENbg6neDKPaVUOLtw5K3lxvuPceGmAhwuyaF2ExPTzogdiayUBEqyktHrINGgJylBR5JBh9GgZ8xq59WWyG9q63ITqFxRQHaKkTsPdPjM6/jUOyu4onI55/38gPrY/QdDn8s3vKOMytJMijISaRm28LWH6ni5eYSSrGQOd4wx7XAx7XAzOe3ggSN9ER9ntOQnC/LTjJhskr4oVKNSjXoykxOYCtJhE4imIStN86RMGU9yDE4OHTqkyl1nZWVFfD+JNc1RVFQ0p23jybw7E6tWrQp4sw81LjgYNpuNY8eO+cjkxhLhmJqa4tixYyQmJrJy5cqYlCCHh4dJSUnxWbFOTU1RXV1NeXn5vHzZcqZ+weVyRdxaGg4hBJmZmWRmZrJq1Sr6+vqwTTdz3yWZ2Gw2DCkZfPulcTrHAhcvnfOzk4bxp1ds4oKNBT6OhXcayO12Y7fb1ceiPf5Eg44vnbuS/zijjP/3VDOP1UYmlXzeL97gtkvXc/GmgqDP8T+eQLUWJpNJjVqkpqaSm5sbNGoRzJnQCjAjIzs7O+Lr3GL3OA2tQxYcbqmKUkXKmNXBWIQ3unC0mJw0jPQE/NtvX27nty+3B/zbGatysNpdHPFT3bzzQOcsYaWWISv/++S8iBX5YNTryEw2kJFsYMRs58SQxwYkG8DbT9ucZ6B2+OQDmckG8tKMOF0Sq90V16hFMD6wvYinTgxFJEA1Vy7amM9rbSasdhcGvY7KVcvYsaOMsbExhoeHaW5uJikpyWewXzBibQ1dCnZk3p2JYG2T0ToBiibF+vXryc3NDbv/cHjrUXR0dMxpH8pNsKSkhN7eXo4dO4ZOpyMvL4/ExETa2trYtGlTzGmYQLhcLmpqatT2x/nQTujt7aWnp4e9e/diNBpxu92MjY3xfxcmMDo6SmJiIjZjBtf/I3BI+L/+fhw4OT206qazSNCfTIdYrVba2tpYsWJFTEWcqYkGbn3/eq7ckMS3nu2n1RR+pfS1h+t5pm6Yn3xgQ8DPLtzFnZCQ4BO1sFgsPlEL7w4RnU4XUGfCYrH4jMTWiA/rCtPZVZ6FUa8jI9lAZnICmUkJZM78nJZkoKlrgF+9FtucjvPW53PNaaWsKUjDZHXwtb8epGbYRX6yYNwOdpecc81AqOjHBRsLWFuQSnF2Ene80kFN7yQvfekdvNZq4usP18317YTF7nIzZLaTYtRzzro8dpRmsbMsk7LsJMbHx/nb/jp+dsTm40gAjE9FHhUKhtLiGSn/mBk58OVzV/CnN3oYCqBEGgs3XbCaj+w6qSjqHWFVFhXgsXEjIyM0NDTgcDiCRi0CFWhHylKJcC6aaFU0zkR3d7eqPe6fL51LZKK7u5vu7m527NhBcnIyXV1dUTsT3ivspKQkVq1axapVq7DZbLS0tNDW1kZiYiL9/f24XK6oQl7hsNlsVFVVUVJSEnYY2lxQVDmVOSHKzV+n06mjcAG1iPO+SzJxOBzk5ORg0adx5X31Afe77ZaXfH6/47wkNm/cQFZWlk/UYq6CWRmJgjs+sAKTTOWDdx4J+/xnG4a54f5q7vrYtll/iybs6C0kptSgjI6O0tfXR0NDA6mpqVit1lnnqdVqjWhFcfPNN/P73/9eLTr8/ve/z8UXX6y89jfwjBR3AZ+XUv575vGdnBSsegL4gpRSCiESgT8BO4ER4MNSyvaI3ugiEo2zvCo/lfuv3xXwb263m/r6epYvk3zym2dReetLRF6D7suz9UM8Wz9bDn5oan6LDv95bHb64qyfHAjwzNjRC8HGZWnsKM1kR1kWlaWZ5KUZmXK4ONE3yQuNw1R1j/Nm+ygjU4Ft6NkVyZTnpWN26mgestI0ZAmp/RGI920t4kM7l9M8ZKG+30zDgJmjXeNhHYzbnws+IPF771nLnw52z2m4V2Wpb4F7sPPTe7Cfy+XCZDLNilrk5uYGXGxEytvGmQg1OTRczYRy4dvt9qD50micCbfbTUNDAzabzUePYi6TQ4MVWnZ3d2O32znzzDMRQmAymRgYGFBvKvn5+eTl5c3ZC1U0KtauXave1OOJd+pk27ZtIU/wlJQUysrKKCsrU2+gjuFh7jw/ibS0NPLy8jC5k7jizmMBt7/x2Wl49qj6+68/soWz1uSqQ7uCCWYFi1ooHTTrC9Oo/uaZPHF8iHte7w6pfHeoY5wH3+zlQzt9nbJYwo7+tRYWi4Xq6moaGxvVqIXb7VaHlUXCf/3Xf/GVr3zF5zEhxEY86pWbgOXAs0KItVJKF/Ab4EY8Q3qeAC7Eo4B5A2CSUq4WQnwEuA348Jze6BIlWB2O4oTn5+ezYYMnIvWxPaXc+0Z8NA3eirik5Oy1ebx7Qz61vZP8+uU2qnsmaBywqFGXvGTB5qJUTltTxJbl6RRnJfukO19sn+KbJUmsTLKSWp5Kfv5qXInp/HZ/Nw9FMLQQ4F/V/fyrup/PnlXB2sJUtpVkcPnmbOraenAm5/DA0einhUYzxdifK/5whO+/bx3v3RL5fA69Xk9eXh55eXlIKZmamlJHNZjNZjIzM9Hr9VEvPCNdlMw3ixaZMBgM2GzBRUMCXfiBCDc5VMHhcKj96evXr/fZXzTOhJQyYKGlIsZlNBrZtm2bun/vk8dsNjM0NMTRo0fVdEh+fn7EJ8Lo6CiNjY3zplGhDEdLSUlh3bp1Ua0GAxUrDg8PYxnu5p6L0tTPYWDMyvv+eCLgPryFeRR+cOkGLtiQh0EnfFpPA0UtvAWwhBC8Z3MB79lcwMvNo3zmgeBqgf/7VHNcnQlvlKhFQkIClZWV6urkd7/7HQ8//DAnTpygq6uLyy67bC7y7+8H/joz7KttRh57jxCiHciQUr42cwx/Ai7F40y8H7h5Zvu/A78UQoilPpsjUpTFhf8o9/HxcWpra1m3bp1Pe+7BdhOpiXrOXpPH+RsLMI40c+Y79vG+37yO0yXZU5HNP46G1jcpzdAjEXRPhA/l56cZed+2ZfzjSK+n0wT49kVr+ejuYp/nSSnpHjJxwW+ryEkSjE4v3tfzixfb+MWLJ1f4e8qzuG5fKRsLkhGmTravX0lBQQEOl5uesWnq+idn7eP7ryp6DDaSDCbsLhlQQCwcv3ypPcCj0TsS0fLBtUZy8gt4pGZIFbsqjGEmhxDCJ2pRX19PSkoKQ0NDs6IW4dScLRZLxIuS+WRJpjmCXfiBUPLRoVD0+1etWkVh4WxPMtJBXcH0I2w2G9XV1SxbtoySkpKA23sX8K1cuRKbzcbw8DBNTU1MT0+TnZ1Nfn5+UK+0t7eX7u5uKisrg84IiQWHw0F1dTWFhYVB30OkeL/XFStWYLfbVQ98YmKCBy4roLCwkNzcXF5sHuVzIW70X3+4jq8/7PtYRpKBb124itMqMkkz6n3SIoF45+oc9n/Zo6kfKfMxzlwIoY4Q/ta3vkVraysf/ehHaW1tZXR0NKQz8ctf/pI//elP7Nq1i9tvv115bjGeyINC98xjjpmf/R9XtukCkFI6hRDjQC6wNJSCghCpYxvImejt7Q3aVvqXG3aRoNdhNHi+6wMHWjAadHzn4nVcf+9RRo7b2V6SybqiNNYXprO+KI3S7GQeOtbHnfvbGZty0md2BW2j9mfIbOeVpmHVkQB498bZGjlCCBKTPYsMo9EI06El8eeLQO20BzvGONI1zooMgTExieMv+tZGhWPaeer5rX9vtPOLbRl89uzodSAiQVHiLSsrU3WARkdHqa+vx+FwqDVYmZmZAWf8zMfiUgjxFeBHQL6UMqx9WHLORKgLP5r9KAwNDdHY2MjWrVuDem/hnIlIpLHXrFnjUxgajsTERIqLiykuLlZXq4HSIQaDgdbWViYnJ9m5c+e8aFRMT09TVVXFihUr5qUgUCneFEJwxhlnqLUWbW1tZCck8NTHV5GXl0dKSgqP1w7w1X8GjlwoTEw7+e+HG4L8tY+SrER2lWWyaVk6yzOTSDDocLklP7tiI1/8e+h9KwRa3cabqakpKisrufzyyznvvPMCDqm65ZZb+PSnP823v/1thBB8+9vf5stf/jJ33XUXBBackSEeD7XNWwJve+B2u2lsbGRqaordu3cH/D5TE30fU9q837Eql9f/+ywykgwBu0E+tCWLlW4DdfZCrG7PzIfvPe57TlaWZvL1C9bikpIr7zzMNXtLyU4x8Ea7yed5//mXai6vXMYlWwpJNRoYszp46sQgv32lHYB+L9nnT7yjjD8cCFzwPB8EK5x0uiVNYxJY+i2b0ZJoENickpyUBN6xMgsA0+goy7Nim/cUCu+aCW8dIO9ai8HBQZqamkhOTlY7RJKSklRpg3gihCgFzgciPtkWrWbCYDD41Ez41zNEasiDOQJKEeHQ0BC7d+8OKTIUypkI5UgoiplbtmyJKWfln0vzTodMTU2RnJzMxo0b58WRUJyh9evXk5WVFff9A2oxpyLYlZiYqK7Cp6amVHVUm83GmpwcXv3sNrKyshBC8FzDMJ9/MLqBRt1jNrrHBnm4OrJq/epvnjnrsfmITPjjXTg1M8EvLJ/85Ce55JJLlF+7gVKvP5cAvTOPlwR43HubbiGEAcjEMzn0LYE6n2NGdjsnJyeqlJ2yvU6nIyslcF2TsuA5fc9OzktOZtRiZ98PT2qtnLYim9fbTJy3Pp/tpZnc9u9GEvSCz5xVTqpRzydPL+PnL7Tx+xmxo5reSWp6J/luBDn8WB2Jspxk9q3I5oE34zeOPJ6kJer52J4SrNN2TJNWHq33tMZuyDNitrvompi/Vk+FZRlJfOfiNewszVBrt44cGaMiO3He7EIo0Sr/+4PSIVJXV8f3vvc9JiYmOHjwIO985zvnXIsXgJ8C/w38K9INlkRkQrnwc3NzZ9UzRLIfh8O3J1zJ/ev1+lliWYEI5ZAEK7Ts6upiaGiIHTt2xFUaW0kRJCUlMTY2RklJCYmJiTQ3N0eUDokGk8lEQ0PDvNVgSClpbm7GZrOxdevWgMebnJxMaWmp6oGPjo6qEZqUlBQ25udz9GvvUFM7PWNTfOuRet5oH4vLMVZ/88w5tYZGQ7ByhEirsPv6+li2bBkADz30EJs3q4NAHwH+LIT4CZ4CzDXAQSmlSwgxKYQ4DXgDuAb4hdc21wKvAVcAz58K9RKR2gSDwcDExAQdHR2sWbMmapn9cAuLxsZGrFarz4JHmQWytySZb1+4ijWlRXzkD4e4/2A3naYpHjjs0ZnY+8NXozqW+aB3bHrBHYlPnF7GxmXpJOhFyJQmgNnmYn/LKFuKM8jMSAc8zsQ7Swwk4iYtwUhCYhL/96YF01Rox8Ko12F3Rd/y3z46xQ33VfPsF/ZRkJbAiRMnKCkpQQgRUwt7KCLtHvOOWpSVlfHHP/6Riy66iL///e987Wtf49VXX415YrYQ4n1Aj5SyKqq6uZheNQYUZ2JiYkJNE8xlvoZer2d6+qQIihKyX7ZsWcSjvQMZkGCFlkoExe12U1lZOS9eqiJ2VVFRodZ4lJSUhEyHROuRDg4O0tbWxvbt22M++QKhKJUaDAY2bdoU0c1Ar9eTn59Pfn6+2gUxPDxMTU0Nbreb3Nxc8vLyuOvq7QghmJqa4sjRY+hzS3mkfpKHqyKrDFd486unqatQ/+8xns5EsGFmNpstovqX//7v/+bYsWMIIaioqOB3v/sdAFLK40KIB4ETgBP4zEwnB8CnOdka+uTMP4A7gXtnijVH8XSDvGVQIl07d+6cU7QwWNrU6XRSVVVFRkYG27dv9/k+Vxek0fDd82hqaiIryXNDuHpvKV976LjqSISjNDsJq90177M7FmNWxh/2RxdNUSI16V4pqN8d806nBNaM2FiUxon+k51bdpebj59WSk5qAj95LvDwtB2lmXzxXSvpm5imccDCssxEyrKTsbnc5KUaqKqqoqCgQK0ji0cLeyDmam8yMzMxGAz8+te/jmoRrqRVjx8/7u/d3QR8E3h3tMcy74O+gIBdGw6Hg9dffx2DwcDWrVvnnCYYHBxkfHycNWvWqIWb/sJW4ejs9JzsivOhdA34pzUcDgc1NTXk5OSoCpzxZmJiguPHj7Nhw4aQaQfvdMjw8HBU3SFdXV0MDg6ydevWeIbFVFwuF7W1tWoBZjw+J4fDoQ7gmpycJCUlhYmJCTZt2hS0RXZy2knP2DRDZhujFgdGg471hWmUZCehFye/Z+9rQFltNDc3k5+fP5cOi4DHXltbS2Vlpc/jZ555JkePHp3r5/O2GvQlpQw5aViJGgwODrJq1ao5668EGkBotVqpqqqioqJCjRAFoqWlhbS0NFWW3uVyYXO4uP9QDylGA6XZSZTlpLAsM5GEmRkab7SZuO7eY/zHGeV8+p0V/LtukJv+Vb8oN32DTrAyL4U1Bak8HqGa7HxSmG7kE5sT+GuDg5ZRO189fxWr81NnRLAcjE85qO2Z4MXmk1m6JIPAJZk18M2fs9fk8mLTiPr7M58/jeKskwqVTqeTY8eOUVxcHPI7925hj3bIoTcHDx5k9+7dUdsCKSVnnXUWR48eDf/kwPi8oBBiC/AcJ4thlBTpHillyNXagkQmlBkMCsrwL5vNxr59+2IqdFNWEtEWbnqj0+lwOp0h6yOsVis1NTXzVqQIJ2swtm3bFvY9zKU7RPncrVbrvEVVlBVcQUEBpaWl4TeIkISEBIqKiigqKmJyclJNizU3N/vkFFNSUtTvLT3JwPqiNNYTOJXgL/Pt3XqqpM7iEaEIFMKUUgZNf2jMJpSRVTqRMjIyKC4uDvq8SPCPTChdSJs3bw6rZKt0lil2REpJYoKeG04vD7rN3hXZvH9rEXce6OQvh3uYmHZSkG7kvVuKKM1O5ubHgxUax4dNeXrOXK5jU0kOuTk59E8JWobnVlRp0Im4OkEDk3Zuee2kA/mjZ1p8/p6bmkBFbgqXbitSo5LTTsll69PYk+dkzKHjgQYn7WOefawpSKVp0ALAi00j3H3Ndj7+p2MAnP9/r3PL+9Zz2fZlOBwOjh07RllZWcDuP2+8oxGB7Eg0UYu5LCribUeklDWAeoObaTPftSS7Oex2O9XV1WRlZZGcnBxzxbxOp2N0dHRWHjPafXhPuFRWpwomk4n6+vqwo71jQRlPPtcaDP/uEO/ag9TUVPLy8hgZGcFoNLJly5Z5iarY7Xb1IpyvwTNK5KayslKNwExPT/s4UllZWWpUIRJHQHmOcsPv6enBZrORlpYWsWBWKELlQ+fje3g7MTk5SU1Njdr23dnZGdM0Ym9norOzk76+Pnbu3BlRKtDbjgRakATjq+evomXYQnmO58Z42ops9DqBxWrl5sfn/FZCctOFa7jlqSZ2r15OUrKen73RT8uIR6/B+4gvXJfF+uIcfvZ8K3ohKMpMpGdsmku3FeFwuX0iGAsdTRmxOBixjPNmp+/8kofqzTwU4PmKI6GgOBIKNz1Sz96ydLqbT7BixYo51dvASTviPT15vmotbDbbvKSp58KCOhPKhb969WoKCgoYHIwtlOZ0OmlsbERKSWVl5ZwNs06nY3p6OqAj4a3vMB9fmpRSvQnGazy5f+3B+Pg4x48fx+12k5ycTEdHR1RiWZEwNTVFVVVV1C2y0TA2NkZ9ff2syE1SUhIlJSWUlJTgdrtVydqmpiaSkpLUqEUk319PTw/9/f2qjHig1YbT6VRXGpEYhEDORCxTAt+u+Ec4BwYGaGlpYevWrWpaIlBBdjQoUcoTJ07gdDrZtWtXVLLqwexIKHJSjTz4CV/57/HxcWpqj7M2P5nGoamo30c4bnmqCYC7X/eof6YnGvjGBWvYUZpBimuSl481cdtRyepUGxeV69h19WY++dc6Eg069q3I5uGq/9/eeYdHVaV//HtnJr13EhKSkBASIAWkBERBihTRhKBSRCwgrC7oiqIoi4uugAVFcV3xp7CCopQQEAKooCBdaiqQhPQ+M6mTOu38/gjnMklmkil3JgTu53l4SCaTe89M5p77nvO+7/dbgceH+iLl7XGob1EiOb0C+1MrkN3hhm0JhAwDNSGc9DefvZKOh4aGcTKHdbdroVQq2QWKsTQ0NJhV/ZIQEqTvcy0WTFRUVCAvL6/dhW8KTU1NSElJga+vL+rq6oz+gxBC4OTkhIqKCly4cKHdqjY/Px+NjY1m03egXSd2dnZm2y1QKBTIyclB//794evri9bWVkgkEr3FsvSBykV3V+dhClVVVcjJyem2YFQgELQz2qFFnJmZmVAqlWwRp4uLS6f3u6SkBGKxGDExMe2k1gHTVhvaAoc7RQK3N0K7hOrr6zFixIh2dT8dC7KNIScnB76+vgbV+xBC4OrqipycHFy8eNGk66qyshIFBQX4vdoV2ZLb6o7PxAZg23n9pb9/f2U0XO2t8My2q8go66xKqYmsVYnv/ypGdpkD+lnJED92GDZlpEBMnNsCuJpiLIkUYdPVJng7iPD86ABsPVeMbHEjPn9iCJ4d3Q/Pju6H7MoGXC6qQ1ppPdLL6pFnZMrEEFQmbvMvibLBtEGeEIvFGDRooFlsCrqaR1pbW0EIgUKh6DTvdMed4hgKWKgAMzMzE3V1dZ0K/s6ePYsxY8YYfDzNPKaNjQ0yMzNx3333GXycjoWW1BWzsrISFRUVsLa2Zre7uC5UpO2wXalmmkpTUxPS0tJ07hbQdIhUKkVtbS3rp2FId0hdXR2uXbuGyMhIs5nNSCQStvPElDZcpVLJFnHW19fDyckJnp6e8PDwQEVFBaRSKaKiovQOHLWtNoDOgYVUKkVdXR1CQkLY55SVleHll1/Gr7/+auzL6Y35EZNmfblcztZHODo6YsCAAZ1u9hKJBDU1NQgLCzP4+A0NDbh48SL8/PwwcOBAvX5HW52VpshQXV0dnJyc4OXlBQ8Pjy7TsIQQFBYWorq6GoMGD8H4z/9CfYsSzrYi/LI0FmM2dN1a+sgQHwz0cdDZuaDJ+rgIvPVzm8NoP3c7zB/pj+PXynG5pAFyNWBnJUCzou0znbl6PBiGgVKpxP9O3cTGU+V4yF+IoX0d8N/LDXC0EeGzJwZjWD/XTuepb1Ego0yGj4/mIquDR461UAAC0qlY8plR/ngsug8+PpqL8/m3Bb7Ghrjj2dgALNqR2u3rM5SVw4QY7OsAuVwOFxcXeHl5wd3d3ey7hwqFAleuXEFQUBDr2UOlCPRJh2RmZmLTpk348ccfjR0CZ/OIRYIJiUQCJyenThf+uXPnMGrUKL2jMKrvUF5ejujoaNja2rI35REjRug9nu6ksVNTU9G3b184Ozuz3RKaqYOufOn1obGxkU33dCcXbiy0tkDfOg9CCGQyGSQSCaqqqvTqDqG7BdHR0Sa/J7qoqKhAcXExYmJiOA3oNF9vWVkZlEolAgMD4e3tDQcHB4N3iTQLrjp2iFRVVaGlpQVBQUHsYzk5OVi7di327t1r7Eu454KJmpoapKSkIDg4WGeFfU1NDSoqKhAREWHQseluHS3i1SfA72oe0XxOfX09e11ZW1uz84hmWzA1NQSA8PBwCAQCyJVqWAnbjpuUUo5/HtDuxvvMKH88f38/eDnaoFmhwkMbz6JJrupUw2BnJYCbvTXK6tp2boYFuOBKcVu9wRBvW/w9xgr3RUfiSkkDTt6swo8X29paXexE+MeE/ngsqg/srITYcPQmtp4rxtsT+6GPdSvePyFGVQvBS7FeeHZsiM654MNfc7Dtr5JbYxFi9n1+SC+rR0ZZPVq1SGxH+jlB1qpEQVX7NI/muJ8e5Y+j1yWoqG/FQB8HLBwTiOKa5nZeIgFudlgXFw65Uo2aJgWqmxSoaZSjukkBSX0zKqrqsPzhMIwJ84VarUZdXR2kUmm7v5enpyfnc5xCocDVq1fb1Wdotp5qziO6ijgvXLiAnTt34ptvvjF2GL0rmFAoFFqFYC5cuIChQ4fqdZOgugUqlQqDBw9mI0aVSoWLFy8iNjZWr7F0NQHIZDK2tbRjS2BLSwskEgkkEgkUCgU8PDzg5eUFZ2dng248tbW1uH79OoYMGWI2cxZ6k4+KijK4s4VC0yFSqRQtLS1wd3eHp6cnu21bWVmJwsJCREdHm8UrBLhdvxAdHW02aevCwkLU1NQgPDyc3aVpbGyEq6srPD09jV6daBb03rx5Ew4ODujTpw+72khLS8O3336Lbdu2GTv0ey6YoEF+V9dNfX09ioqKNIW9uh7QLaVcqVSK6OhoiMViqFQqBAbq7sCgv2dooSXQtltI5xG1Ws2mVHNzc+Hh4aGz5bzlluX3wh9SEePvjFcnhuCmpBEPhnrA07H9bt2m43n47lwxHhroiUeG+MDVToRfrklwOKMS1U1d15McemkUgj3b5owbFQ1I+L+L7M+cbUV4cpgfZg/3w+qDWbhSVIcdzw2Dv5stXk/MwJn8WowPsMK8cBH6eHl2mh8VKjWi1/7JHu/aOw+hvLwchUXF8A4Oh6RRhee+T2k3HgaAjUiAFn3NTzrw0/PDEO2vvQuHzvdd7ao2Nzez86BcLm+XJjWlgFJbIKENzXSIthb2P//8E8ePH8fGjRuNHUrvCiaUSqXWCuvLly9j8ODB3RbG0S4BLy8vBAUFtbvYCCE4d+6cXukSXYqWQJteBa3p6O4GTLfLJRIJZDIZW2fh7u7e5QeM5kLproo5KC8vR0lJCaKjozlT5uyYDqEtcDExMUYHK91RVFSEqqoqg9IOhlJQUIC6ujpERkZ2Eiarra2FVCpFdXU1bGxs2PSPoauT3NxcNDc3Izw8nP38AcCRI0eQmJiIffu01Z3rxT0XTOhalGjS2NjI1tZ0h6ZSbkREBAQCAcrKytDa2org4GCdv9fVPGIIcrkc5eXlyMvLY113u6uzkCvVrClZV+NTE0DYwVNEpSYormlGVmUDsisb8HuWVGfBpLu9FUb3d2O7NZ4Y5osjmWI0tLZ9fkcEuuJiYS38XGyR+MJwONmK8MWJfPzf6UJE+jlh9YQ+QFMtZDIZXFxc2HRiQXULHv3qAgBg77wgNNfXICoqil0stCpVGLvhDBrlbecRCRjMH+mPOcP7oqFViYPplXrXjSS/NBL9PbXvqtbV1eH69esGLbhUKhWbJq2rq2NFAz08PAyaa/UNJDqiLa36/fffIz09Hd9++63ex+nA3RFMpKSkIDQ0tMtcu0wmQ1paGsLCwnS+8frUXnQljV1YWMjeuAzdSqc3HolEgurqaq2qlJq5UM0Lh0voOWpqasx6A87Pz4dUKoWbmxuqq6uNslLX5xz19fWdbvJckp+fD5lMhiFDhnR7Ds3ViUKhYHdpulud5Ofno6GhAUOGDOnk6fLoo49iwYIFeP311419CfdcMKFrHtGkpaVFrxqq1tZWtoBbUym3srISMpkMoaGhWn9PlzKuMdB6o0GDBsHR0dGoOgtjobUnYuKE1w6XYmyIO07nGm/REhvsBgdrIU7nVqP11i5CpJ8TJgz0BJRyKFuboGhugIOtNTZevB3AfBgfjvA+bSlwAQMwYHA+vwb/PpINkYBBVF9nNqWxbHwwZsb0QZNchfeP5LSrp9CGg7UQGxIGYVxY+1QytREwJT2rKRpYVdUmfkUXHI6OjjoDTGMDCW0UFxcjLi4OK1aswMKFC409zN0RTGRkZCAgIECnGIy21i9tdBdM6FK0pKkThmHYPKUpdFSlFAqF8PDwgEwmg1Ao5OQcus6blZUFlUrFrrDMcY6cnBzI5XIMGjSIPQfVeNCVDjH0HLm5uWhpaWl3Dq7Jy8tDY2MjBg8ebJRmRHV1NSQSSZerk4KCAtTX13cKVqqrq5GQkIDVq1fj0UcfNeVl8MGEFuhkPXLkSJ3Pqa+vR3p6ulal3K4KOHXNI8ZAdymjoqI63dD0rbMwFk2XYA9PLzz46RkEe9jjvUcHwsvRBgu2XUFWZecdC3trIXycbODtZA1nWyscvSFp93NnWxFc7EQorjGtm8ZYXnwgEM+O7oerxXU4ebMKp25W48EB7lg19fbfsqqqCjdv3kRMTAyn6Vm5XM7Og7rSpFwGEhUVFXj88cexceNGjBs3zpRD9a5gQqVStXMIpVy/fh0+Pj6dWnEIIcjLy0NNTQ2io6O73S3QFUx0ldekkbmnpyf69etnlrbMxsZGpKamghACkUhkdJ1FV9CtWnt7e4SEhJjldWj6bISFhek8R8cbrSHdIVQOWa1WG2z2pi/0c9Xc3Ky3X0h3x2toaGAnEQDw8PCAQqFAS0tLp52Vuro6JCQkYMWKFUhISDDp3OCDCa2o1Wr89ddfGD16tNaf0xZ1XSk6KvamWcBpbH2ENmiNRk1NDSIjI/XaCaV1FlKpFCqVig0sjCkUpnUCmm3c288XY8OxXCjVBKOCXPHkfX3xV0ENdl8uw6ggV9ZUL8zbAbmSJrYV093eCv3c7ZBSUs8ef9H9/bB4bCCEAgb/PpyN/akVCO/jiPdmDISdlQAZN3JwplSJ5OyGjkPDgihH9PNyhb2DAwQCAbb/VYxr5Q0QCRisnh6G5PRKXCys1fnaHo30wT+nhcHJVvtODlddYd2hLU3q5uaGiooKhISEmBxIiMVizJo1Cx9++CEmTZpk6nDvjmAiOzub7cfWfG56ejpsbW0RFham18pRWzDR1QRAuym4+MPqoqWlBWlpaQgICICvr6/RdRZdQQMirqWrNaE+G87Ozp3qVbpCW3cITf90TIcQQnDt2jVYWVlpbffjAk0J90GDBplNATQ7OxvV1dWwsrJic8XOzs5QKBR4/PHHsXTpUsyePZuL0/HBhA50zQdUm6Krgt66ujoUFxezBZyapk6GCFFpg4udUIVCAalUCrFYjObmZoP0LKqrq5GdnY3IyMhO16C0QY69V8uw63IZKupb4eNkA7mqrfuBsmvhfRjg7YBr5TJcKKjFhcJaXCyo1anzEORh164TY5SvFe7v7wp/X28sT8xkH58/0h8/XGjr8lg20hXRLi2ws7WFl5cXdl5rwtbzpXjxwSAsGx+MRrkS/3eqkLVvd7WzwrFXRuN/54rw1ckC+LrY4sP4iE5tqubqCtOH+vp6pKamwsrKCgzD6J0m1YZUKsWsWbPw73//G1OnTuVieHdHMJGXlwc7Ozu2zau5uRkpKSkICAgwSHvh7NmzGD16dLs6CF0FUtXV1azttrm6KRoaGpCRkYGBAwdqNYrSp86iOzS3Ks3lFUJ9Nnx8fEzWwqDpEIlEgtbWVvaCcnZ2xrVr1+Dg4ID+/fubLZC4efMmFAoFIiIizCZhXVxczNbeAGC3ql966SWUlpZi7NixePfdd9vpTZjAPRdM6JpHOtIxmFAqlUhPT4e9vX2XO2tA28o9Pz8fUVFRnBVaAuYxCVSr1exOYG1tbZd1FhUVFSgqKuq2+0qlJvgzpwo7L5WaVEPBBY7WAlgJCGpabn9s+jjboKK+s3Gkg7UQzQoV1AQQMMDuRcMxyLdtfi8rK2PlBMzVFaaLjqkNpVLJFrMbuntbU1ODhIQE/POf/zQ1RaoJZ/OIxYy+tKGpg19TU8MWIxnq1Ehldun/uiaA0tJSlJWVYdiwYWZrZ6Rtmdqif4pAIIC7uzvc3d3b1VlcvXpVLz0LGqyEh4ebTXGSdtAEBgZ2a3ajD5qS1zQdUl5ejpSUFNjb27MXGterBs30iTkDiZKSEra9kK42XF1dYW1tDVtbW/z973+Hs7Mz3nzzTfz4449m3WbluQ1doPTr108vEzA6J2nOI6bW7jQ3NyMtLY3zwJ8WP3t6erarsygoKICVlRW8vb3h6emJyspKVFVVYdiwYd3eTIUCBhMGemLCQE8UVjdh9+UyXC2ua5fK0IazrQj1LbcDvei+zkgt7fp3uqNB3rlzR1sgMTbEHf097SG4VcRpby2Ev1tbt5w2VVtLoa1GgnbteHt7s7u3UqkUKSkpAHQXcdbV1eGJJ57Am2++yWUgwSkW2ZlQq9Va9fJLSkpYqWG6BWVMdS3VqxCJRFAqlZ2CCE3/C02NCq4pKytDaWmpSW2Z3elZUH+KIUOGmE1x0hI+GyqVCqmpqfDy8oKLi4te6RBDoYWpADBw4ECzBRKlpaWorKxEdHR0u89WS0sL5s6di5kzZ2LJkiVcn5/fmdAB3ZkwZoHS0tKCjIwMREdHc1Joqdmx0Z3rKJfQOovCwkKo1WoEBATAx8fHqDoLAJC1KPFnThW+OJGP4prbqYt+7nbo62KL2mYFapsVKK/rfLM3B2vGeaCvVSMc7O3Y+aLjAlGzu81cxdy6MKbYUlsRZ3NzM/z8/PDMM89wmSLVpHftTOhCIBCgpKQEtra2GDlypNE3eU1zn44TgFKpREZGBpycnMzmf0EL+xoaGliDKGOxtbVFQEAAAgIC2DqL4uJiyGQy2NjYoLm52SibdX1paGhAenq6WSc/hULBChDRFJezszNCQkLYdEh2dna7dIih3SGEENy4cQMCgaDbrW1TKCsr0xpItLa2YsGCBXjkkUfMEUjckxjyHpaUlKCkpATDhg3Te4FCdyFoeyld2Rt7PdOODWMXSaZgY2ODuro6+Pn5oV+/fqiqqkJubi6amprg7u5usG+Ik60IMyJ9MCPSB/UtCuy4UIpt54tRVN2MIHc7vDM9DNH+LmhoVWLGf/9CTZMCrw21QlBwMBrVIqz/NQfSBjk8HKyx6P5+2HyqAHXNSjwY6o6TN9vSKc62Inw1NwreTjbIqmzA0l3p7PlHBbli9vC++Oi3m5C1KPHQfW2dJ42NjZBIJEhPTwchhF18icViNDY29ppAAgCsra3h5+cHPz8/NhX+5ZdfYvv27fDy8kJ1dTVqamoM3rm3FBbZmSCEQC6Xt3tMoVDg4sWLEAqFGDlypElGXSkpKXB2doavr2+76LRjEaQ5UKvVbPGgOW9aRUVFKCsrg4uLC2pra2Fvb89OdlylBizhs2FI+kRbdwjNCXf1mgkhbPeJuQo6gTaBsLKysk5bqAqFAs888wzGjh2L1157zVzn743RiUk7E7p2ONudgBCcOHECLi4uBmm6aBZsA21BtVgshlQqhY2NDSsopc+Oo2bHhrl0ZbqCFmZrq3UypM6iOxpaldhxoQTfnS9GXbMS9/d3w8wYX+RV1OC/Z8sRG+iMLQuGsenng+mVWPdLDlqVajw/OgCF1c04nNneOdreWoj/zonEyKC2G+av18RYkXQNakIwKsgN5/JrMNDHET88OxQONu3Hq1Ao2DRPa2sr+vTpY3KRu6Fw2f7Z3NyM2bNnY+7cuRg/fjwOHTqEhIQErr2celcBZsdgoqGhgf2wy+Vyg3X0NY+rVqvR1NSEyspKSKVSdpvc1tYWubm5ZnWypBetl5dXO+EbLqFdCE1NTWyKRpuehaenJ7y9vY1eAVnCZ4MKBYWEhBjsSaJvdwjtDLGxsTFbqyzQVtBGrek1AwmlUonnn38ew4YNw1tvvWXOHQk+mOgAvR4bGxsxcuRIvVVmuyu0pKtfiUQChmHYwELbdUI7NgQCAQYOHGjxVbEhhdkd9Sw06ywMUehtbFVi56VS/O9csVa5bm8na7g7WMPD3gpqApzTEJsa6OPQTtMiwM0WYpkcnz8xBCIBg09+z8X1itttpPNH+uO1Sf1hI+q8W6RZHxUWFoa6ujpWN8TO7nY6xFz1SlwGEi0tLZg3bx7i4+PNvbPZe4MJiUSC7OxsREVFQa1Wt2vDMvSY2iaAlpYW5ObmorKykl29G2ve1BXmKqrShE5MQqGwy5w/TQ2IxWKjfEOoz4Y5+69pHUZYWBgnFr+6ukNKS0thb29vts4QoO39KioqYut0KCqVCkuWLMGAAQOwZs0ac6c27rlgQtsOJ4VquvTv3x/l5eUYOHCgXqlAQzs2qGeNWCxmLe29vb3h6OgIpVJpdu2artCmIWEIVOlVIpFApVKxCxR9586C4lJcySmGl38IalpUWLn/uhGvQjsudiJ8EBfRSc2SQncjhUJhpx1iQggbEFI9GE3VXi7+TlwGEnK5HE8//TQmTZqEl19+udfMIxYLJlpbW1FQUACJRMLetBoaGlg1MkOPp03StqMgDIB2Pdn0Juvi4mLSH8gSRVUqlQppaWlwc3MzqJXMUD2LkpISNudvru1YqusRERFhlveLauZnZ2ezE7w+6RBjEIvFKCws1BpILFu2DL6+vli3bp0lbiR8MHGLqqoq3LhxA5GRkXB2dmaD/O5av01VtKSaDxKJBA0NDVAoFAgICEBwcLDFA4muNCSMQfO1NTY2dltnUVRUxHYz0Z06sawVnx/PQ1WDHE1yFZoVajTJVWiSqyBtkOvUp+jI6GA3fBAfAS8n7R14NNVsa2ur124kLXSUSCRoampitTrc3NyM1v7gKpBQKBR47rnnMHr0aLz++uu9ah6xWDfH5cuX2xnqAPrr6LMD6EKIin6gqEpjxw8FveFIJBLU19fD1dUV3t7eBn+AJBIJcnNzzZoOoLbqffv2hZ+fn9HH6ahnoVlnIRKJ2hldmavDhRZ0mlPXQ61Ws0W2QUFB7dIhNAXERXcIzcd2FL5Rq9V49dVX4eTkhA0bNlhqa/ueDyYIISgqKkJFRUU7eeRr167Bz89P5+qcS0VLoM0J+Nq1a/D390dDQwPq6urg4uLCBrTm/jzoqyFhLF3VWQiFQlaeXh+fm47IVWocSK3AO8lZOp+zauoAPDVSe52A5rXflTmbLtRqNWpqath0CG1T1zcdwmUgoVQqsWjRIkRHR+Ptt9+2VEDau4IJQghKS0s7vdn66OhrHkPXBCCXy9kaDH2UIOlNViwWo6amBo6OjvD29u62CKmoqAgSicQoQzB9MVdbJt3qo0VlLS0tsLGxwZAhQzgz6OpIfX09MjMzERUVZbZzqNVqpKenw8XFBUFBQZ1+ri0dQnenDJn4pFIp8vLyMHTo0E6BxJtvvgmGYbBp0yZL5sjvuWACaEszALcXD4SQTh4rWVlZrEtlpwFwHEhUVFSgsLCwnRMwIYSdX6goHZ1fuJw3LGEgqO2cmnUWcrkctra2iIyMNMkJubZJge//Ksa1igb8mVPV6ef/mR3ZZhqmAd299fDw4KRmzdB0CJeBhEqlwosvvoiQkBBLpEg16V3BBNB2w+94ru509NkTdzEBUAGn0NBQg4v66LFlMhnEYjFrqtOxcpsW9igUCrMaUNGb7+DBg+Hs7GyWc2hK+jo5OenUszAVqodhzh0ctVrdLhXUHcZ2h9C2uo41JWq1GqtXr0ZjYyM2b95s6WK7ezaYoB1BXl5eWiXeb968CWdn5061TFwqWtKUam1tLSIjI3XeyGmxNJ1fNK3GTdlFoHOSUqk0m7lfV6jVamRmZkIkEsHe3p71DaE3366cM/VBImvFuI1n2e/fmjIAT4+6vTtBdWq8vb257m5g6ZgOoXVZbm5uUKlUnAYSL7/8Mnx8fLB+/XpLp8jujmAC6N7xs6sJgHYgcCng1LFy29PTE9XV1awOgrn+0PS1REVFmU1Dgvqe0FU8fS0d6yxcXFzg7e1tdEsVdebTXK1xDQ0k3N3djVqVdOwOoekQLy+vdu8/fS1Dhw5tF0gQQvDee++hsrISW7Zssbi6Hu7RYKKqqgppaWkYMGCAzkk8Pz8fNjY27VKEXAYSpnRsNDc3QywWQyKRgBDSzrRLXyxh7tfd+VNTU9lCU4qhdRb68MWJfHx1sgALx/TDa5PaZOiVSiVSUlLa6dSYG5rqoeZdcrkcvr6+CA4ONqloXa1WY/ny5XB0dLRkilST3hdMKBQKtodbk66CCV2FlkCbD0JlZSWioqLM1oEgk8mQmpoKgUAAkUhkcHWzvpSXl6OkpMQk5czu0NdnQ1udBZ3w9NmitYQzH93e9PT05MzgTFs6xMbGBuXl5Rg2bFinQOLDDz9Ebm4utm/f3hOBBHAPBhOEEPz1118YMGBAl4uHoqIiMAzDfjaoURfQeR4xFC7dhuVyOdsZ0trays4vTk5OOo9LBd/69OljthV5VygUCvZG3lU9F5d6FoQQEAAChmHP369fP05k/g1FoVDgypUr7cwb6aKTLkT0/Uyo1WqsXLkSACydItXk7g8mdFVaa6YcIiIizDaR0w4EWrvQ0a3P3d0d3t7eJnWG0Jwn7T4xV87TWJ+NjnUW3elZWMKZzxLbmyqVCkVFRSgsLISVlRWcnZ3ZjhgrKyts3LgRaWlp+PHHHw36mz3//PNITk6Gt7c3MjIyALRV4c+ePRsFBQUICgrC7t27WYW79evXs7semzZtwpQpUwAAly9fxvDhwzMA2AE4DOAVYsCF3IOYPEZdO5yalJaWQqFQIDAwkNP6iKamJqSnp5ulHZzemMRiMRoaGuDm5gZvb+92q3rajt6/f3+zuR13BdWwMPT8HVPJVlZW7ALFkJ1LOo9xkVowBl01Eq2trexCpKWlRS8nV7VajX/961+QyWQ9kSLV5O4NJrqqj6Dufy4uLmZtv6qpqWH9L7R1INDcu1gsRn19vVFpAUvlPLks6NRcvcvl8nZ1FmVlZaioqDBriykNJHx8fPQybTIWWu9BOwRoOmTTpk04e/YsBAIBdu3ahUGDBhl03JMnT8LR0RELFixgg4k33ngD7u7uWLlyJT744APU1NTgww8/xLVr1zB37lxcuHABZWVlmDRpErKzs1nF2IsXL44BcB5twcQmQsgRzt8I7jE5mNA1j2hSUVGBhoYGBAcHc9qxcf36dbPWM1Foh4FYLGZX9U5OTigtLcXgwYMt6vFBaWpqQlpamk4nZEPQpmfRXZ0FDWRCQ0PN5hfUFfoWW6pUKrY7pLa2VqsjNCEE77//PsrLy3sqRarJ3RVMxMbGQiAQdBlI0Kg8MDAQffr0MWUoXULbrKKiovSKmjumBfTpDKHtTObOeZrTZ0OzzoIqUg4cOBCenp5mCYxomsbX19ekdtnuqKurw/Xr1xETE9Pu708IwTfffINffvkFjz76KH755Re8+uqrmDBhgkHHLygowIwZM9hgYuDAgThx4gR8fX1RXl6O8ePHIysrC+vXrwcAvPXWWwCAKVOmYM2aNQgKCsJDDz2EGzduMADAMMxcAOMJIUu4eP1mxiLBBL1RhYaGQiAQcNKxYcicwCWEEJSUlCAvLw9WVlZse7e+aUcuoGJY5mjv1qfOgi6IuAhkjB2jMcWWHZWKVSoVfvvtN1b4bNu2bRaXWtdC7zP60nVBi0QiqFQqMAyjs0CKrgrMKRKlWZ2tj1UvpaOdON3OKygo0NoZQnOu3t7enOX7tWFunw2RSAQfHx80NTVBqVQiICAAUqkUubm5BtdZdIelCq5oIKGtcPS7777DkSNH8PPPP7OW4lxQWVnJviZfX1+IxW1eBaWlpYiNjWWf5+/vj9LSUlhZWXVM75QAMN82TS+DEAIHBwcUFRXh4sWLrEKlMV1Kxs4JXFJRUYHy8nLExsbCxsaGTTtevXoVQqEQXl5e8Pb2NluQU1NTg6ysLERHR5ulMNzKygq+vr7w9fVl6ywqKyuRlZUFJycnODs7o7S01OKuqxRT2j9px5yTkxP69++P2tpabN26FWfOnIGbmxvWrl2Lf/3rX5yPWaVSYfjw4ejbty+Sk5M5P74uejwsEgqF7WyFO65qy8vLTbIn1we1Wo0bN24AAKKjo41eWTMMA2dnZzg7OyM0NBRNTU0Qi8VITU0FwzBwc3ODWCxG//79zVo8RDtDzPmeUc+QlpYW1pnPw8OjXa/21atXWQ+Njl0S+qJUKnH16lUEBASYdUeqvr6eDSQ6vmc//PADkpKScPDgQYutTLXtGFLDJG1PN/uA7hC6CghowbaVlRViYmKgUqkglUpRVFSEhoYGts7J1dW128BCU8relDnBWDTrqTQDGQcHBwQHByM4OBgtLS2QSCTIzMw0Sv66OyQSCfLy8jrt0pkLgUDACswRQlBZWYkbN27A2toaubm5RtVZmAKXOhKEEOzYsQONjY3Izs6GSqXC9evcyY1r8vnnnyMiIgL19fVmOb4uejyYEAgEkMlkcHd371RomZeXB5lMZtZVAdXTd3d3N0i2Wh/s7e0RFBSEoKAgVFdXIyMjAzY2NigoKEBDQwOr6c/lOanPRscOBC4hhCArK4sVDNIcP8MwcHR0hKOjIzvhSaVSZGVldaqz6O51W6pyWyaTITMzU2sgsXv3buzYsQOHDh0yy8rMx8cH5eXlbJqDFvb5+/ujuLiYfV5JSQn8/Pzg7++PkpISzUP4AyjjfGC9CF3pUaFQCB8fH/j4+ECtVqOqqgplZWW4ceNGlwq4ljDw6+71ZGVlQaVSdRnI2NraIiAgAAEBAWy6IDc3lxPrANphNmzYMIulUzSRyWTIz8/HiBEj4ODgwNZZaAZOXOhZ6ILrQGLLli04ceIEkpKS2Hl52LBhXAy1HSUlJTh06BBWrVqFTz/9lPPjd0WPpTnoBODv74/CwkLk5OSwW3Z2dna4fv06rK2tER0dbbaaAmpR3q9fP7Ouemtra5GVlYVhw4bB0dGRvfDz8/PZPKG+K6auoD4b5gy+qCunlZWVXvbetra28Pf3h7+/P1tnUVxc3E7Pws3NrVMREg0kAgMDzWakBtzOB2vbxt23bx+2bNmC5ORks1myP/bYY9i2bRtWrlyJbdu2IS4ujn183rx5WL58OcrKypCTk4ORI0dCKBTS1sFYAH8BWADgC7MMrhegr6Kl5g6ZpgJudnY2nJyc2Dqn1tZWpKWlISQkpEc6BlQqFTIyMuDo6NiluV9HNNMFtEC8tLQU169fN7hAnPpsDBs2rEeKAzXTjfSatLOzQ79+/dCvXz+t86epehaacBlIAMC2bdtw6NAh/Pzzz2aRO9fkH//4Bz766CPIZDKznkcbFivAVKlUbDqDTgAqlYotkFIqlZBKpSgvL0dNTQ1cXV0REhLCmSJjR+hNJDw83KxFPWKxGPn5+ToFnLR1hhiq6U9zu+b22aCFo3TXwVThH116FoQQi7SA0QJVbXLfycnJ+Oyzz3Do0CHOPh9z587FiRMnIJVK4ePjg3fffRfx8fF48sknUVRUhH79+mHPnj2sq+ratWuxdetWiEQifPbZZ5g2bRoA4NKlSxgxYkQm2lpDjwBYdq+0hmqbR0zp2CCEoK6uDmKxmHXdDQoKQkBAgMVrJMyhIaGtQJx2F3R8fTR12dTUZJTPBhdo1mjok6Lt2PmirzWCLrgOJHbs2IGdO3fi4MGDZhMjpCQnJ+Pw4cP473//ixMnTmDDhg361Ez0vm4OOgl0pURHpbFDQkJACIFYLGZTIFys3ClSqRQ3b97kzGFPFyUlJWy7pD5bhbo0/bVd+Jq/Y4kWU6qeqa90tSFo1lmIxWI0NjaiT58+CAoKMtsF2NjYiLS0NK0Fqr/++is++OADHD58uEfa0PTknhOtAvSbR4yhvLwcRUVFCAkJQW1tLaRSKWxsbODj42ORzglLaEhoqr5KpVJYW1uzu8FWVlZs3Vh4eLjFVTWB22qzmqZthtDx9RmqZ8F1ILFnzx5s3boVhw4dMtvOpiZvvfUWvv/+e4hEIrS0tKC+vh4JCQn44Ycfuvq13hdMqNVqyOVynRMAdePseIOnFb5isRh1dXVGu31SSktLUVZWZla1SVrv0dDQgCFDhhi1U6Cp6U8vjI6a/tTsyNraWq+Ug7FYQigKaBOluXr1KgIDA6FUKlk1Spof5WqXqqtA4o8//sC7776LQ4cOmTW9wgH3bDChUCh0KuMaPCBCkJ+fz+7qaQbttHNCIpFAKBTC29sb3t7enG9V011SS3cs0AJx2pbp5OSE8PBwsy6wdEE74LhUzjVEz4LrQGL//v346quvkJyc3CNdKMbuTDAM40gIaTDmnBYLJk6fPg17e/tO9uCEEBQXF0MikSAyMrLLD1JHt09q5qNPSoBu4VGrXHOmAm7cuMHqLnB1g29qamIvDEII6xni7u5ulPWuvtCtV3O3Zba2tiIlJaWTKI023xCqRmnM37CpqQmpqalae+ZPnjyJVatW4dChQ2atoeGIezKYOH78ODw9PREcHGxyIEGDcZFI1O212tFTgwYWpnZL0c4rc++S6oIuFFxdXWFtbc0K0tHOEHMVOGpiCeXcrvQsuDTtAoBDhw5h48aNnKZIDcWYYOKWZs1UtIngXTb0nBYLJmgup7y8HFOmTEF8fDxCQkJw8OBBDB482OAteprrrKysbCcW5enp2ekmQx3ubGxszL6CT0tLg6urq1Y3Q65obGxESkoKGIZpJ3HN9YVP5WuDgoLMukpvaWlBSkoKwsLC2HoBbWjmf2tqamBnZ8fmf/VZzVDxm0GDBnVSMTx79ixWrFiB5ORks6prcsg9GUzs2bMH33zzDWprazF9+nTExcUhLCzM4M+9KR0bra2tbI2FSqViUwWGBgO07T06OtrshXnaoEXO/v7+7RYKtH6NphzpjdfNzY3zOa2srAzl5eVmVc7tiGadRU1NDeRyOfr27Yvg4GCTx/Dbb79h/fr1d3qKVBMqfjcEwK8AbgA4BeCgoQGFxYIJSm1tLQ4ePIidO3fiypUrGDVqFF5//XXExMQYvdLQFIuSSqWws7NjAwsArASzOUWi5HI5u4I3p0JjR58NbRc+F/UldKcgJCTEKGt3faGBhKHqdpp1FlKpFAzDdKln0VUgcfHiRbzyyis4cOBAj7QCGsk9GUxQqqqqsH//fiQlJaGiogJTp07FzJkzERER0e3nnkpDc9GxoVAo2FqflpYWeHp6wsfHp8vA3lKePF2hr89GxzQz3Q02dmdQE7ojHR0d3SNdI9S0q0+fPuw8aqxvCNC2a7ZmzZrekCLVhAYTAwD0AZAN4J8AmgHsAXCFEKJiGEZICFF1eSBLBxNA28p6/PjxePXVVyEQCLB3715kZWVhwoQJiI+Px/Dhw00KLBobG1FZWcmacvn5+aF///5mq5GgN6rQ0FCz3ni789ng6sK3lHwtPU94eDhcXV1NOhaVqNVWZ0EDo4iIiE75y6tXr+Kll17C/v37zZouMgP3dDChSW1tLQ4cOICkpCQUFhZi8uTJiI+PZ8XUOj7XXB4bHQN7qr6pqfWgqSFhzoLprqAmhsYE8LTzpbq6ut2izdD0BA2mtP2NLIGuGgljfEMA4NSpU3j77bd7S4pUE800hxMhRMYwjAeA1QBUAHYRQi4wDBNMCMnv8kA9EUwAYIV6KM3NzThy5Aj27t2LtLQ0PPjgg4iPj0dsbKxRUSuVkw4JCWELjcxRRGWp4ilDfTY0L/yqqiqthjPaoBONthsvl9BAwhzn0ayzqKura9fup/lZSk9PxwsvvIDExESEhYVxOgYLwAcTWqivr8ehQ4eQlJSE7OxsdoFy33334ffff4eLi4tFPDZUKhXrAiqTyeDm5gZPT0+UlJSw8so90THBlc+GNkdhWiDe3XurWZx+JwUS2p6nWWehzckVAM6dO4fXX3+9N6VINelYgMkQQsitgOJtADK0CeONAjCCENKi80A9FUx0RWtrK44ePYo9e/bg8uXLGDNmDGbOnIn7779fry1Bqu0QFRXVrkCqpaWFzXVyUURFi6eioqLM2kNsqs+GZmdIVVUVRCJRp84Q4HbAYg5DH03oNrO5A5bW1lZcuXIFffv2RXNzM6tnkZubC29vb7z++uvYtWsXIiIiTDpPUFAQnJycIBQKIRKJcOnSJaOsxQ2EDya6oampCUeOHEFiYiLrh/DBBx9g7NixFt1WV6vVkEgkuHHjBhiGgYeHB3x8fAxyGeYCquFgjvmq44peWx0JIQQ3b95Ea2trJ+VcS2Fs1wats6D1Wo6OjsjOzoa7uztWrVrV21KkmjAMwwgIIVrd8xiGuQTAGcDDhJCCLg90JwYTmsjlchw/fhyJiYk4e/YsRo0ahbi4OIwbN05r2qKwsBBSqRRRUVFdrsDptrhYLIZSqTS4iErTM8Rc6RPgdsCir4iLPnSsTPfy8oKdnR3y8vK0CjhxCQ0ktNUucAlNbQwYMIAt6qSrqffeew979+5FQEAA5syZgxdeeMGk4CkoKAiXLl1ql+IyxlrcQPhgQk9efPFFCAQCTJ48GUlJSbhy5Qruv/9+zJw5E2PGjDF7zYKmhoSnp2c7LZmuCse5hPps6BLP4xK5XM6me1paWlhp74qKChBCekzHgqv2T0II6uvrsXLlShw+fBgRERGYM2cOFi5cyGkhbXFxMRYsWICKigoIBAIsXrwYr7zyCmfHB4BbtRDqW18vApBJCDl36/toAIcBjCOE3Oz2WHd6MKGJUqnEyZMnsWfPHpw6dQpDhw5FXFwcJkyYAJFIhHPnzsHNzQ2DBg0yKOKnRVSVlZV6tUUVFBSguroaUVFRZp2IqM+GOQMWuVyOgoIClJSUsN0R3t7eVLKZ03NRfQdz73xQvQrNQIKSl5eHefPmYdu2bfD19cXBgwcxf/58kwI1bcGEodbio0ePNvS0fDChJ3l5eejfvz/7vVwuxx9//IHExEScO3cOsbGxiI+PxwMPPMD5ddZVGpTelOiOoSk1CF1RVlaG0tJSs7Ze6oKareXk5ECpVMLHx8cknSBj4VpHQjNFam1tjSNHjmDx4sWcBoTl5eUoLy/HsGHDIJPJcN9992H//v0YNGgQJ8dXq9UQCAS0APN9AA8AmEwIkd96zB2AiBAi1ud4vSqY0ESlUuHMmTPYu3cvjh07BrVajTFjxuCDDz4waWVNxZJo8aamhTEAZGdnQ6FQGBywGAr12TB3yxRVnaPnoXle6rLIlea9JQMJ2oXSsUi1sLAQc+bMwbfffosRI0Zwds7g4GC2bW7JkiVYvHgxXF1dUVtbyz7Hzc0NNTU1WLp0KWJjYzF//nwAwMKFCzFt2jQ8/vjjhp6WDyY4QKlU4s8//8SePXtw+vRpDBs2jF2gmLrKNCQNqlmDIJFIWJE6b29vkwKcwsJCduHTEx0TVMvD1tYWwcHBbB1XTU0NnJyc2Douc46N60Di+vXreO6557Bz507Obuz6EBcXh6VLl2Ly5MkmH+tWIAG0pTn+CeAhAHGEkIau0h5d0eOuocYiFArx4IMPYvDgwbh8+TIeeughNDc3Y9KkSQgNDUV8fDymTJlicI2BSCRqZ5hTVVXFWhir1Wq4uLiYNZCgPhv19fWIiYkx60VGVeeGDh3KTliaLovV1dWoqKhAVlaWSS1htBbD2JoPfaF98/379+8USJSUlGDu3LnYvHkzp4EEAJw5cwZ+fn4Qi8WYPHkywsPDdT5Xl7U4T88gEokwceJETJw4ESqVCqdPn8bevXuxZs0aDBkyBHFxcZg0aZLBNQaarpv6BAOabrv9+/dni8ZTU1NZkzJvb2+9UxRUpK+5ublHLNSBthtWeno6nJ2d2U4pd3d3uLu7s7syEokE+fn5sLGxYeu4uNwd4jqQyM7OxnPPPYcdO3ZYNJAoKCjA1atXMWrUKJOOQ+cf+nlgGGYlgIcBPHYrkOi2BVQXvTaYoDg6OuKTTz5h32S1Wo2UlBTs2bMHn376KQICAhAXF4fp06cbXOxHK5Td3NyQmpoKBwcHqNVq/PXXXybLemtD02cjMjLSrBMAVZ0bOnSo1q1PgUAAT09PeHp6tusMyc3NNWg7lm7zmrsWQ3PS6NieW15ejtmzZ2PTpk3GpBO6heqKeHt7Y+bMmbhw4YLB1uI8PY9QKMS4ceMwbtw49jpPTEzEunXrMGDAAMycORMPP/xwlwExXQzU1taa5Lppb2+PoKAgBAUFsYXjmZmZUKvVbGChK8AhhLDFnkOGDOmRYJUK+Hl4eGgtTGQYBi4uLnBxcUFoaCirGZOamgqGYdjAwpT0I9eBRH5+PhYsWIBt27YhMjLS5OPpS0NDA2bNmoXPPvvM6DozbRYW+/btA4BHACQQQmpNCSSAXpzm0AdCCDIyMrBnzx4cPnwYXl5eiIuLw4wZM7pUWtSE2pRTkSjgthJjZWUlamtrDZL11oWlfDaANn8SakBmaAqlY0uYSCTSKfJiyUBCl115ZWUlZs2ahY8//hgTJ07k/NyNjY1Qq9VwcnJCY2MjJk+ejHfeeQe///47PDw82ALM6upqfPTRR8jMzMS8efPYAsyJEyciJyeHL8C8g1Gr1bh69Sr27NmDX375BYGBgYiLi8O0adPaLVCohoRarUZ4eLhZFgNyuZxNw9L6Lh8fHzg4OIBhGNbZ18HBocfaT0318qEKoxKJBEqlkk01G6Lwy3UgUVRUhNmzZ3OeIu0OhUKBGTNmYMqUKVi+fLlRx6CBxJkzZ3DkyBHExMRg0KBB6NOnDzw8PNwJITWmBhLAXR5MaEKj9cTERCQnJ8PZ2ZkNLLy8vLR+SPURdzFE1lsX1JGTynCbk6KiIlRVVXGWQ6UtYbTdlhavqlQqXLt2zexts0qlElevXkW/fv3YYI8ilUqRkJCA999/H1OnTjXL+fPy8jBz5kx2LPPmzcOqVatQVVVlsLW4gfDBRA9Ab9Z0geLj44O4uDg89NBD2LJlC+bPn2+xmzjVQaD1XW5ubqirq4OPjw/nzr76olQqkZKSwpmXj6bWQ1NTU7s6Ll3vMdeBRGlpKZ544gn897//xZgxY0w+nr4QQvDMM8/A3d0dn332mUnHOnnyJF588UWsXLkSX3/9Ne6//3588MEHYG5BDAgEdHHPBBOa0HxiYmIiDhw4ABsbGzz66KOIi4tDnz59wDAMqqurkZWVZVCeX1d1tpeXl84dAGqk5evra3bBk/z8fMhkMrOJxdBVU1lZGerr6+Hn5wc/Pz/O3D47Qicuf3//Tqpz1dXVSEhIwDvvvIMZM2Zwfu47AD6Y6GEIIbh+/Tq2b9+Ob7/9FjExMZg5cya7QLEkLS0tuHz5MqysrKBSqTiT1TcEukOoLbDnApVKherqalaMjpr+ae4Icx1IVFRU4PHHH8fGjRsxbtw4k49nCKdPn8YDDzzQLuW9bt06TJ8+3aDjKJVKvP/++0hISGADlIMHDyIgIAAMw7gTQmq4GO89GUxoQnXyk5KSaA4J4eHhKCgowM6dO43O2WnKekulUlhbW3cqMGptbUVqamq7FIo50BSLMXcXSm1tLW7cuIEhQ4aw6ZCGhgad6nHGolKpkJKSAj8/v04roNraWsyaNQtvvPEGu2twF8IHE3cAhBBMmjQJy5cvR1hYGBITE3Hw4EHY2tqyCxQfHx+z3tA7+mx0lNV3cXGBj4+PWdsxaRcVVzfx7iCEtNPrcHBwgLu7O0pLS7v1G9EXsViMhIQEs6VIzYVCoYBSqWx379q4cSMOHjyI+vp67N69G/3798fhw4fxyCOPzAGwx5jujY7c88GEJoQQbNiwAd988w0CAgLQ1NSEGTNmIC4uDsHBwSZNCJptX0KhEG5ubqioqEB4eLje9RvGQPO4ADi1RNcGDSRiYmLa1U9ouvTV1tbCycmJrTExJtVCAwlfX99OxYv19fV4/PHHsWzZMsyePdvk13QHwwcTdwjNzc3tJm66QNm7dy/27dsHgUCAGTNmID4+Hn379uX0GuwuFUvruzTbMU259rRBzfp0eQaZGxpYpKenQygUttsRNra91xIpUnMgk8nw1FNP4aGHHmJTJABw5coVvPHGG5gyZQpWrFiB1NRUzJkzBzdu3JhGCPmFi3PzwYQGCoUCa9aswerVq2FjYwOxWIx9+/YhKSnJZMtjTaqqqpCRkQEbGxu2gNEUWW9dEELYos7Q0FCzBhJUqrdjIKFtTHV1dZBIJGwqiBZw6iOoQ4u7fHx8OqWFGhsb8cQTT2DRokWsjsNdDB9M9AIIISgrK2MDi9bWVnaBEhQUZNI1WV9fj8zMTL21W2gatrKykvXrofVdxmrZWMoUsCs6pja0Kfx6eXnpXQReU1ODhIQE/POf/8Sjjz5q5tFzh1qtxrx585CRkYG4uDj4+flh9uzZ8PT0RGNjI3766SecPHkSBQUFaGpqwooVKzB79mzO5hE+mNATanm8d+9eVFZWYurUqYiPjzfY+Y+6FtIOB1q5LBaLWU17Hx8fk4sWaaGYo6Ojybsq3VFdXY3s7GwMHTrUoJWAoWZBarUaqamp8PLy6lQl3tTUhNmzZ+Opp57C888/b/Jr6gXwwUQvgxACsViMpKQkJCUloa6uDo888gji4uIM7uAy1WdD069HIpHAxsYGPj4+egf1wG0hOnObHHZFdzUSmt0v1E24K4Xfuro6zJo1C6+//joSEhIs8RI4Q6lU4syZMxgwYADOnz+PEydOYMCAAXjiiSfQp08fyOVyqFQqZGdna2p/3BnBxOzZs9kt9NraWri6uiIlJQUFBQWIiIjAwIEDAQCxsbHYvHkzAODy5ct49tln0dzcjOnTp+Pzzz8HwzBobW3FggULcPnyZXh4eGDXrl1m72wwFkMsjzWRSqWs2qS2XYju2r70hXaHuLm5mb2qmypoxsTEmKwYSPvptZkF0UDC09MTAQEBnX5v7ty5SEhIwOLFi+8VEaje+CLv6WCiI1KplF2gSCQSTJs2DXFxcYiIiOjyM0yNDLm45igd07DduStbyhSwKwwttqRuwrrquGQyGR5//HEsXbq016ZIW1pa2IVYUlIS/vzzTwQGBmL58uWor6/XplNxZwQTmrz22mtwcXHBO++8g4KCAsyYMQMZGRmdnjdy5Eh8/vnniI2NxfTp0/Hyyy9j2rRp+O9//4u0tDRs3rwZO3fuxL59+7Br1y4jXpJl6cryWDOwqKioQFFRkd4+Gx3bvqjTYHeeGUqlkk0DGNPjbQhSqRS5ubntFDS5oqNZEDVj65hiam1txfz58zFlyhQsW7bMLIHEL7/8gldeeQUqlQqLFi3CypUrOT+HEfDBxF1ETU0Nu0ApKirCww8/jPj4+E7idWVlZSgrK0N0dLTZfDY6pgk6uivT9Iq59WO6wtSuDc06rvT0dOzevRtVVVV44YUXsGjRIjOM2HLziIZUNvbu3YurV69CoVDgP//5D/bv399RjvvOCiYIIejXrx/++OMPDBgwQGcwUV5ejoceegg3btwAAPz00084ceIEvv7663aGR0qlEn369IFEIulVq0xqebx3716kp6dj3LhxiI+Px19//YUBAwZg6tSpRuUmqVmOpmeGj48PXFxc2r0/tDXL39+fkx7vrqAyuOZ2TVWr1UhLS2PfN5lMBjc3N6hUKgQGBmLx4sUYO3YsXnvtNbN8VlQqFcLCwnD06FH4+/tjxIgR+OmnnywqpauD3nNh3IYPJvSgvr4eycnJSEpKQk5ODiZOnIj4+Hj88ccfGDp0KCZMmGAxn42O7spOTk6oqalBTEyMWfVjuoLr9s+GhgbMnz8fIpEIFRUVGDt2LDZt2sTBSG9jiXmEilMplcp295nNmzfjzTffxNq1a7F06dKOv8bZPMKJnPapU6fg4+ODAQMGsI/l5+dj6NChcHZ2xvvvv48HHngApaWl7VbL/v7+KC0tBdAmDEK3r0UiEVxcXFBVVdVJGvlOxt7eHrNmzcKsWbPQ0tKC3377DStWrEBdXR0mTpwIZ2dnoyyPhUJhO8+MqqoqlJaW4vr163B1dWVTIampqQgKCuqkAsk1NJDQJcXNFbTuQ1PMi64ovvjiC+zYsQPe3t5YsGABmpubzTK5XbhwAaGhoazr5Jw5c/Dzzz/fCcEEz12Ks7Mz5s2bh3nz5qGpqQmHDh3Ciy++yLobOzo6YuTIkRYJKGxsbODv7w9/f3+IxWJkZWXB3t4eaWlpbBrWEGVKU+E6kGhpacGCBQuQkJCAJUuWgGEYVFVVcTDS9ph7HqG7EZcuXcLx48fxj3/8AwKBAAKBAN9//z1ef/11bYEEp3RbOcgwzDGGYTKGDBkCzX8///wz+5yffvoJc+fOZb/39fVFUVERrl69ik8//RTz5s1DfX19lyZHd5sBkq2tLWpqanDfffchMzMTs2bNQmJiIkaPHo1ly5bh2LFjkMvlBh+Xmv4MHjwYo0aNgre3N8rKynD69GmIRCIIBAKo1Sa3DOtE0xzMnIEEIQSZmZlwcnJqVzsjEAjg6uqKkpISLFq0CJs3b8alS5dw6dIls4xDM8gF2gfAPHcuGzZsAMMwkEqlPT0Uk7C3t4dYLMaECROQkpKCKVOm4LvvvsPo0aOxfPlynDx5Ekql0uzjkEqlyM/Px8iRI3Hfffdh+PDhcHR0RH5+Ps6fP4/s7GzU1tZqnce5gutAgtbpTZ8+nQ0kAJilvdWc84hmIPH000+zKTChUAiGYbBr1y6sXr2ak3N1RbdLZELIJPqltp8rlUokJSXh8uXL7GM2NjZs4c59992HkJAQZGdnw9/fHyUlJezzNE2OqAGSv78/lEol6urqzKq/YAnmzp2LBQsWgGEYTJ06FVOnTm1nefz222+bZHksEAhgb2+PhoYGDB06FAzDQCwWIycnB46OjvDx8eG0n7yyspKt+7BEIOHg4MC6DVJUKhWWLVuGwMBArFmzBgzDmOyk191YOtKbg9x7geLiYhw9elSrwVRvZNGiRbC2tgbDMHjsscfw2GOPQS6X4/fff8eePXvw2muvYfTo0YiPj8cDDzzA+bWpzV1YJBKhT58+6NOnD6tMSXdLuRaoA7gPJBQKBZ5//nmMHz/ebLVWmphrHqGBREpKChYtWoR169bh4Ycfbvccc9fOUUxOcxw7dgzh4eHtBiyRSFir6ry8POTk5KB///5wd3eHk5MTzp8/j1GjRmH79u1YtmwZAOCxxx7Dtm3bMHr0aCQmJmLChAm9ftLWVkvApeUxFayJiIhgW7Pc3NzayXrn5eXBzs4OPj4+JvWTV1RUoKSkBEOHDjX6GPpAtTHs7OzYLUGKWq3Gq6++Cg8PD6xdu9Yinw/e5bP38eqrr+Kjjz5CXFxcTw+FE7QtMqytrTFt2jRMmzYNCoUCf/75JxITE7Fy5Urcd999rF+Iqd0e3bkLA21pWKrlQNOQlZWVyMrK4sQEketAQqlUYtGiRRgxYoTZaq06wtU8kp2djbCwMPZ7gUCAjIwMPPPMM1i1alWPKv6aXID57LPPIjY2Fn/729/Yx/bu3Yt33nkHIpEIQqEQ7777Liv+cenSJbY1dNq0afjiiy/AMAz++c9/4pNPPoFarYZQKMQXX3yBhQsXAgDWr1+PLVu2QCgUYtOmTZgyZQqAu6PNlKJpeXz06NFuLY+pI2d3rVma/eRU1tvQfvLy8nK2gtzcgcT169dhbW2NkJCQdhe5Wq3Gm2++CYZhsGnTJrNKgmuiVCoRFhaG33//HX379sWIESPw448/YvDgwRY5fxf0xkjb7AWYBw4cwO+//47PP/8cQUFBuHTpUq+quzIVlUqFU6dOYe/evTh+/DiioqLYBYqhonhlZWUoLy83+rrnwgSR60BCpVLhb3/7G0JDQ9mdTUvAxTyyZMkSiEQifPnll+xj1dXVeO655zBr1iwsWLAAwO1CTD25s7o5uGDNmjVwdHTE66+/3u7xa9euYe7cuaxl86RJk5CdnQ2hUHjXtZlS1Go1rly5gsTERK2Wx/n5+aioqDCqNUuzn1wkEnUrO0snlJiYGLMWfFFXV6FQ2EnAR61WY/Xq1WhqasJXX31lsUCCcvjwYfzjH/+ASqXC888/j1WrVln0/Dq4Z4OJSZMmoaKiotPja9euxbp16/Dbb7/BxcXlngwmNFGpVDh//jz27t2LY8eOISwsjF2gdDdvFBcXQyKRIDo6mpPrnhACmUzGLmqo5LWnp6fORY05Aolly5bB19cX69ats/jOtynzyIsvvoiWlhb873//6/SzGzduIDw8HIDBgQRwLwUT69evBwC89dZbAMC2kAYFBd3VbaaUjpbHDg4OKC0txYEDBzrVExgK7ScXi8VgGIbtJ6eiJ6WlpaisrORsQtEF9Q9hGKaTjgQhBO+99x7EYjG+/fZbi7XE9QJ634fZzHNIeno6Jk6cyKYI6VbyhQsXOrnK3mvQBcqePXvw66+/IigoiF2gdBQyKiwsRE1NTbcifKagqb5pZWXFzj00Ncx1IEFTpE5OTtiwYYPFFySmcPr0aTz44INIS0vDkCFDsGPHDlRWVgIAHn/8cbY2yIhAArjTWkO54j//+Q+2b9+O4cOH45NPPoGbmxtKS0sRGxvLPodWwVpZWd3VbaYUgUCAqKgoREVF4YEHHsDy5cuRkJCA5557Dq6uroiLi8OMGTPg6elp8AfJzs4OgYGBCAwMZGW9MzMzoVKpYGNjA7lcjmHDhpk9kMjOzgYArYHEBx98gJKSEmzfvp0PJHi6JDIyEmKxmP3+Xt+Z0EQgEGD48OEYPnw41q9fj/T0dOzZswfTp0+Hr68v4uLiMH36dPz000+IjY3F0KFDzXrDdXR0hKOjI/r374+mpiaIxWKkpqaCYRh4eHigsrISISEhnAUSb775JmxsbHpdIAEAY8eOxSeffIJHHnkETz75JM6fP4+FCxciMTERFRUVeO+992Bra9vji2WLBhNdbU+++OKLWL16NRiGwerVq/Haa69h69atOqtg76U2U4pMJsPx48fh5eXF2oonJiZi7ty5Jlse29jYICAgAAEBAWwaxcbGBpcuXWJlrbXVbpgCIQQ5OTlQq9UIDw/vFEhs3LgRWVlZ+PHHH/lAgoeHIwQCAaKjoxEdHY1///vfuHbtGvbs2YMxY8bAw8ODXWRYKgizt7dHUFAQgoKC0NDQgKtXr0IkEiE/Px+NjY3w9vY2WkNGrVbjnXfegUKhwObNm3tdIEG7NV599VVYWVlh1apVOH/+PCIiIvDYY4/hoYcewiOPPIJx48b19FAtG0wcO3ZMr+e98MILmDFjBgDdVbD3WpspAMyaNYv9mmEYDBgwAG+99RZWrlzJWh4vWLDAJMvjoqIi1NXVYdSoURAIBKysd25uLpqbm7s1ytEXGgwplcpOXgSEEHz55Ze4fPkydu3aZdaiT56egZoS3X///Wb7+xYUFHB+zBUrVuDgwYNskfD//vc/uLq6cn4eS8EwDAYPHoykpCQ88sgjeOWVV5CUlITZs2fDzs6ObUU1ZoFiKAqFAteuXUN4eDi8vLxYr6KsrCyjvIoIIXj//fdRXV2NLVu29LpAAmgL/Kii5dKlS5GQkMDe59zd3REYGHjHLJTvmJqJ8vJyVgJ648aN+Ouvv7Bz505kZmZi3rx5bAHmxIkTkZOTA6FQiBEjRuCLL77AqFGjMH36dCxbtgzTp0/HpEmTcPnyZQQEBMDGxgZ9+/bF/v3773oDMqC95XFSUhJaW1vZHYvuLI8LCwtRW1vbyQ+AQmW9Kysr0djYCA8PD3h7e3eS9daH3NxctLS0YNCgQZ0CiW+++QbHjh3D3r17OTMyugu5M2YQw2DnkJs3b2LJkiU4f/48tm3bhscff7wnx6U3v/32GyZMmACRSIQ333wTAPDhhx/28KhMp7KyEt7e3u12dwsKCljrdKFQiEcffRTx8fHw8/Pj/AbWXY2ENq8ib29vODs7ax0LIQQffvghcnNzsW3btl67IFGpVBAKhWhsbISNjU271zFnzhxYW1tj+/btppzi7ivAfPrpp5GSkgKGYRAUFISvv/6aDS7Wrl2LrVu3QiQS4bPPPsO0adMA6G4zTU5Oxv/+9z+kpqaisbERjz32GL7++ut7yoAMaLugKisrsW/fvm4tjwsKClBfX48hQ4boFcFToRqxWIz6+nqDhGry8vLQ1NSEwYMHdwokvvvuOxw8eBD79+/XakPOw9KrgwmZTAYrKyuMGzcOH3/8MR588EGo1Wo2hdkbVpH79u1DYmIiduzY0dNDMSuEEJSWlrKBhVwuZxcoXKyMDS22VKlUrPunTCaDu7s7O/fQz89nn32GlJQU/Pjjj2YV2DMnNJBobm7G1KlT8eKLL2LOnDlobm7Gvn37cOTIEXz//femnubuCybMheYFf68akFF0WR4fOHAAY8eOxZgxY4yaxDWFaurq6uDi4gJvb2+4u7t3Ol5+fj4aGhowZMiQTu/h999/j927d+PgwYM9ZiLUi+h9H8AOc8j58+fx0ksv4cqVKz01HpN49NFHMXv2bMyfP7+nh2Ix6AIlKSkJSUlJkMlk7AIlNDTU4HmRC/dPuqipqanBtm3b4OzsjJKSEiQmJprVhJBijtQXDSRo4DZixAi8//777M9lMhlX1u+czSN3fvhvIlu3bmV3MoDbBmTjxo3DqVOnAMAoA7LeiKenJxYtWoQjR47g6NGjCA0Nxfz587F7924cPXoU6enpRvl6CAQCeHh4YNCgQYiNjYWvry+qqqrw119/ISMjA2KxGCqVCgUFBZDJZJ12JABg9+7d+Omnn3DgwAE+kLhHOHLkCIYPHw6grVXw/PnzeO2113DixIkeHdekSZPQ0Yuoox/R2rVrIRKJ8NRTT/XgSC0PwzDo06cPXnrpJRw7dgzJycnw9fXFm2++ifHjx+ODDz7AtWvX9PLo4KL9UyAQwNPTE4MGDcLIkSPh7e2NEydOID8/H4sWLUJjY6NRxzWEyZMnIyMjA2lpaQgLC2PlDIyFCjeq1WrMnDkT0dHRbCChUqkAgKtAglN6ZyIJXXeGUBndjhc8NSDz8PDA5cuXER8fj8zMzHuyM8TNzQ1yuRyjR4/Gp59+iiNHjmDDhg24efMma3k8bNgwg3cqGIaBm5tbJ1lvuuszYMAAtkKZsm/fPmzduhXJyckGi3B1xZo1a/DNN9+wE9W6deswffp0AIarqvJwh1qtRmtrK06cOMHqx6xatQp9+/ZFbGwsNmzYgOPHj+Pdd9/tkfF1Vyi+bds2JCcn4/fff7/nPxteXl544YUX8MILL6C6uhoHDhzAe++9h+LiYkyZMgXx8fFaU6dc60gAwI4dO5CZmYkrV67A2toaV69etcjCRNMLIzY2FomJiQb9fsf5kJo1Tp48GVFRUfjoo4/Y593RXW2EEH3/9Sq+++47EhsbSxobG3U+Z9y4ceTixYukrKyMDBw4kH38xx9/JIsXLyaEEPLwww+Ts2fPEkIIUSgUxMPDg6jVavMO3kLIZDKiUqnaPdbQ0EB2795NZs+eTYYMGUKWLl1Kjh07Rurr60ljY6NR/65fv05Onz5NysrKSGpqKvn999/J6dOnycaNG8mWLVvI6NGjSXV1Neev71//+hf5+OOPOz2emZlJoqKiSEtLC8nLyyP9+/cnSqWSEELIiBEjyNmzZ4larSZTp04lhw8f5nxcHGHItXun/GPJy8sjMTExRKVSkdbWVuLt7U2GDx9Ovv/+e3L9+nXy9NNPk6ysLPb5SqWy03VHv6+vryfFxcVGvo2GceTIERIREUHEYrFFztdbqa2tJT/88ANJSEggUVFRZPny5eTkyZNEJpORgoICcujQIVJQUGD0nNLx39dff00mTJjQ5XxvCWbMmEG+//57vZ+vOf+WlJSwn+MrV66Qjz76SOvzOIaz6/uuTHP88ssv+PDDDzttmUskEnabSNOAzNfXlzUgI4Rg+/bt7O4GNSADcNcYkFEcHR07rRgcHBzwxBNPYOfOnbh48SImT55skuVxcXExqqqqEB0dDRcXF4SGhiI2NhaBgYG4ePEi3nzzTdjZ2WHPnj1QKBRcv0St/Pzzz5gzZw5sbGwQHByM0NBQXLhwAeXl5aivr8fo0aPBMAwWLFiA/fv3W2RM9wo3btzA3/72N6xYsYIVRjp+/Dj8/f2xZ88enD9/Hs888wyOHTuGkJAQNDU1AQBrpwy0bfWq1Wr2Wl6zZg369euHGTNm4KOPPjJrGnLp0qWQyWSYPHkyYmJi2nkS8dzGxcUFTz31FPbu3YszZ84gNjYW//nPfzBq1ChMmDAB165d46xdf/fu3dixYwd+/vlns+1EmCv1ReffFStW4LXXXsNLL72Ed955B0OHDsWKFSsAtH3ee0NBcq9Nc3TF0qVL0draismTJwO43QJ68uTJdgZkmzdvZj/QX331VbvOEFpnsXDhQjz99NMIDQ2Fu7s7du7c2e5cv/zyC1555RWoVCosWrQIK1eutOyLNSO2trZdWh7HxcXhwQcf1FktXVJSAqlUiujo6E4XQ0pKCrKzs5GZmYnGxkYcOXLELO1bXKmq8nBD3759ERYWhvT0dBw6dIgt+o2IiEBQUBD+85//AGhrVRQKhfi///s/bNu2jVX/i4qKYrd6aXBx+PBh/Pnnn3B2dsa3336L9PR0jB8/3lh54S65efMmp8ej3M3ziKOjI5544glMmjQJ06dPx8yZM5GamorRo0fjgQceQHx8PEaPHm3U9b9v3z5s2bIFycnJnIvqaWKO1Bctsvziiy9QWFiIH374AXPmzGmn4grgzk5taGLANgZPB5RKJenfvz/Jzc0lra2tJCoqimRmZvb0sMyOXC4nR48eJUuWLCGDBg0iCxYsIHv37iXV1dXstmNWVhY5deqU1vTIkSNHyLBhw0h5ebnJY5k4cSIZPHhwp3/79+8nFRUVRKlUEpVKRd5++23y3HPPEUIIeemll9ptRT7//PMkMTGRXLhwgUycOJF9/OTJk2TGjBkmj9FM9HTKwqQ0ByGEVFZWkosXLxKFQkHmz59PnnjiCbJv3z6Snp5OWlpa2OddvXqVrF69mowePZqMHDmSLF++nGRnZxNCCMnPzycMw5j2TvYw98o8UlpaSn799Vf2+5aWFnLo0CHy7LPPkkGDBpFFixaR5ORkUltbq1dqY9euXWZLkRqCoamv3Nzcdt//9NNPJCUlhbzxxhtk7ty5hBBCGhsbyenTpzkfqxY4u775YMIEzp49Sx5++GH2+3Xr1pF169b14Igsj0KhIMePHyd///vfyeDBg8ncuXPJ0qVLycKFC7UGEkePHiUxMTGkpKTEouPMz88ngwcPJoR0/jvRupiuamfuQHo6MDA5mNCkvr6ebN26lTz22GPkvffe05kjvnbtGvnXv/5FfvnlF0IIIadOnSKDBg0iY8aMIe+//z6Ry+X6vXt3EPw80rZA+e2338jixYvJ4MGDyTPPPEOSkpLaLVA0/yUlJZGRI0cSqVTa00MnISEhxN/fn0RHR5Po6GiyZMkSnc9NTEwkDg4OZPny5exjmzZtIg4ODuSpp55iH3vnnXfIq6++as5aCQofTNwJ7NmzhyxcuJD9fvv27eTvf/97D46oZ1EqleSdd94hgYGBJCYmhsyaNYv88MMPRCwWk8bGRnL8+HESHR1NCgsLLTKesrIy9utPP/2UzJ49mxBCSEZGRrsCzODgYLYAc/jw4eTcuXNsAeahQ4csMlYj6OnAgNNgQhP6t6Co1epOj3WkqqqKPProo+Ty5cv6nuaOgZ9H2tNxgTJv3jyya9cuIpVKSWNjIzl48CAZPnw4qays7OmhGkRVVRV54IEHyJdffklmzJhBXn75ZfZnL7/8MomJiSF//vkneeONNyy548LZ9X1X1kxYCkLuzrZRY2ltbUVOTg4yMjJgb2+Py5cvIzExER9//DHc3NxQUlKC3377jbXMNTdvvPFGJ1VVABg8eDCefPJJDBo0CCKRCF9++SWbl9RVO8NjOTrmiBmGYR+jbXSEECgUClaUyN3dHS0tLZBIJBYfr6nw80h7RCIRxo8fj/Hjx0OlUuHcuXPYu3cv/v3vf8PDwwNisRh//PEHvL29e3qoBuHu7o5vvvkGQUFBmD59OpYsWYK//e1v2Lx5Mz7//HOsXbsWhw4dQmNjIw4cOAA3N7eeHrJB8MGECegyIbtXsbe3x48//sh+P2LECIwYMQLr16/HsWPHIBQKERwcbLHxdCU1u2rVKqxatarT48OHD9cqt85zZ0ALeZuamvD1119DKBRi8eLFuHjxIgCYtQjPXPDziG6EQiHGjh2LsWPHQq1WY9++fejXrx/69OnT00MzCuoLFRQUhC1btrAaHd988w1mzJgBV1dXBAYG9vAojcSAbQyeDigUChIcHEzy8vLYwqmMjAytzy0qKiLjx48n4eHhZNCgQeSzzz4jhLRpIfj5+bH5Ns1t9XXr1pGQkBASFhbG5ogJIeTSpUtkyJAhJCQkhCxbtuyu0b3gMYieTlmYLc2hLydOnCDz588n4eHhZNasWWTr1q1cn8IiGDKP8NxdlJaWkjlz5pDQ0FASERHREzUgnF3ffDBhIocOHSIDBgwg/fv3J++//77O55WVlbH53Pr6ejJgwACSmZl5twsr8ZiPng4MejyY0KS3i0jpO4/w3H2sX7+e9O3bl9y8ebMnTs/Z9c2nOUxk+vTprERzV/j6+rIuqE5OToiIiOhSw0CXsFJQUBArrASAFVbic/s89zJcSTL3FPrOI8ZSXFyMBQsWoKKiAgKBAIsXL8Yrr7xitvPx6EdVVRWOHTvGirT1Zu58Wa27kIKCAly9ehWjRo0C0CasFBUVheeffx41NTUA2huMAbcFlLoyJePh4eHRhkgkwieffILr16/j/Pnz+PLLL3Ht2rWeHtY9j4eHB5KTkxEeHt7TQzEZPpiwMA0NDZg1axY+++wzODs748UXX0Rubi5SUlLg6+uL1157DYDuCm9dj/Pw8PDowtfXF8OGDQOg387ovcyGDRvAMAykUqlFzmdra2uR85gbPpiwIAqFArNmzcJTTz2FhIQEAICPjw+EQiEEAgFeeOEFXLhwAYDuCm9/f3+UlJR0epyHh4dHHzrujPLcpri4GEePHrVY+/rdBB9MWAhCCBYuXIiIiAgsX76cfby8vJz9et++fRgyZAiANoOxnTt3orW1Ffn5+cjJycHIkSO7NCXj4eHh6YqOO6M87Xn11Vfx0Ucf8bu9RsAHExbizJkz+P777/HHH38gJiYGMTExOHz4MN544w1ERkYiKioKx48fx8aNGwG0F1aaOnVqJ2GlRYsWwdraGhcuXMDbb7+N4cOHAwCqq6sxefJkDBgwAJMnT2ZrMABg/fr1CA0NxcCBA/Hrr7+yj1++fBmRkZEIDQ3Fyy+/rDWVYin27NmDwYMHQyAQ4NKlS+1+Zuj4W1tbMXv2bISGhmLUqFEoKCiw5Evh4bmj0LYzynObAwcOoG/fvoiOju7pofRODGj94LnDCAwMJBKJpN1jK1asIOvXryeEtLUcvfHGG4SQ3tNqeu3aNXLjxg0ybtw4cvHiRfZxY8b/5Zdfsjr5P/30E3nyySct/4LMR0+3ed5RraE8XaNWq8nTTz9NXnnllZ4eSo/SlTHgyJEjSW1tLSFE+9x6l8LZ9c1PBL0YbR/4sLAw1pOirKyMhIWFEUJ6n7lVx2DCmPHT5xDSJgzk4eFxNwl89XRgwAcTvYhTp04RACQyMlKrQN69TlpaGvHy8iKBgYEkMDCQCIVCEhAQwImz8R0OZ9c3rzPRi2EYBg8//DAYhsGSJUuwePFiVFZWsnoWvr6+EIvFANpaTWNjY9nfpS2lVlZWvaLV1Jjxa7bXikQiuLi4oKqqCp6enpYdPA9PDzN27Ni21SOPViIjI9m5EmiTu7506RI/VxgAH0z0Ys6cOQM/Pz+IxWJMnjy5y15lbRNJT7WaTpo0CRUVFZ0eX7t2rc5iUmPG3xOvjYfnXkelUmH48OHo27cvkpOTe3o4PBaCDyZ6MbQl1NvbGzNnzsSFCxfg4+OD8vJy+Pr6ory8nHXWu5NaTY8dO2bw7xgzfvo7/v7+UCqVqKurg7u7u+kvgIeHRyeff/45IiIiUF9f39NDMRq+WNtwGH7rq3fCMIwDAAEhRHbr66MA3gMwEUAVIeQDhmFWAnAnhLzBMMxgAD8CGAnAD8DvAAYQQlQMw1wEsAzAXwAOA/iCEHK4B14WC8MwJwC8Tgi5dOt7g8fPMMzfAUQSQv7GMMwcAAmEkCd74OXw8NwTMAzjD2AbgLUAlhNCZvTwkHgsBN8a2nvxAXCaYZhUABcAHCKE/ALgAwCTGYbJATD51vcghGQC2A3gGoBfAPydEKK6dawXAWwH0AJgOIB1DMPUMwzzD4Zh1jAMU8owTMqtf6yBAMMwbzEMc5NhmCyGYaZoPH4fwzDpt362iTEgt8AwzEyGYUoAjAZwiGGYX/Uc/7cAbgLIBXDk1uNbAHgwDHMTwHIAK/UdBw8Pj1F8BuANAOoeHgePheF3Jng6wTCMEEApgFEAngPQQAjZ0OE5gwD8hNs7BccAhN3aKbgA4BUA59G2U7CJEHIEPDw8dy0Mw8wAMJ0Q8hLDMOPRtrPI70zcI/A7EzzamAgglxBS2MVz4gDsJIS0EkLy0bYrMJJhGF8AzoSQc6QtUt0OIN7sI+bh4elp7gfwGMMwBQB2ApjAMMwPPTskHkvBBxM82piDtl0HylKGYdIYhtnKMIzbrcf6AijWeE7Jrcf63vq64+M8PDx3MYSQtwgh/oSQILTNIX8QQub38LB4LAQfTPC0g2EYawCPAdhz66GvAIQAiAFQDuAT+lQtv066eJyHh4eH5y6Fbw3l6cg0AFcIIZUAQP8HAIZhvgFAG8dLAARo/J4/gLJbj/treZyHh+cegRByAsCJHh4GjwXhdyZ4OjIXGimOWzUQlJkAMm59fQDAHIZhbBiGCQYwAMAFQkg5ABnDMLG3ujgWAPjZMkPn4eHh4ekJ+J0JHhaGYezR1k66ROPhjxiGiUFbqqKA/owQkskwDG3VVKJzq+Z3AOzQ1qbJd3Lw8PDw3MXwraE8PDw8PDw8JsGnOXh4eHh4eHhMgg8meHh4eHh4eEyCDyZ4eHh4eHh4TIIPJnh4eHh4eHhMgg8meHh4eHh4eEyCDyZ4eHh4eHh4TIIPJnh4eHh4eHhMgg8meHh4eHh4eEzi/wFnLuNXKYU2pAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# And plot\n", "limit = N\n", "fig = plt.figure(figsize = (9,9))\n", "ax1 = fig.add_subplot(1, 2, 1, projection='3d')\n", "ax2 = fig.add_subplot(1, 2, 2, projection='3d')\n", "\n", "ax1.plot3D(res[:limit, 0], res[:limit, 1], res[:limit, 2])\n", "ax1.set_title(\"Chief (inertial frame)\")\n", "ax2.plot3D(deputy_rel[:limit, 0], deputy_rel[:limit, 1], deputy_rel[:limit, 2])\n", "ax2.set_title(\"Deputy (LHLV frame)\")\n", "ax2.set_xlim([-box_size/2, box_size/2])\n", "ax2.set_ylim([trailing - box_size/2, trailing + box_size/2])\n", "ax2.set_zlim([hover-box_size/2, hover + box_size/2]);" ] }, { "cell_type": "markdown", "id": "8baa1540", "metadata": {}, "source": [ "A different plot shows the x,y,z, components of the relative Deputy position along time:" ] }, { "cell_type": "code", "execution_count": 16, "id": "cba6864d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAEDCAYAAACvXRuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADW/UlEQVR4nOx9eZxdRZn2U+fe293ZQ1ZCFkII+yYQEFdAQBYVGLdBxxG3cRmccZxFcdRvxlFHRsfRwQVl1BEdlQEXQNlERlzZwr6TsCYhJCF70um+955T3x/n1DlvrafO7dvp7nQ9vx+k7zm1na3qraee9y3GOUdAQEBAQEBAQEBAwJ6DaKQbEBAQEBAQEBAQEBDQXQQjPyAgICAgICAgIGAPQzDyAwICAgICAgICAvYwBCM/ICAgICAgICAgYA9DMPIDAgICAgICAgIC9jAEIz8gICAgICAgICBgD8OIGfmMse8wxtYzxh7sUnkxY+ze7L9rulFmQEDA7gdj7E2MsYcYYwljbFmXyvwgY2wlY4wzxmZ1o8yAgIDOEMb/gIDdAzZScfIZY68EsAPA9zjnh3ehvB2c88lDb1lAQMBIgjF2CIAEwDcB/D3nfHkXyjwawGYAtwBYxjl/YahlBgQEdIYw/gcE7B6MGJPPOf8tgE30GGNsf8bYDYyxuxhjv2OMHTxCzQsICBghcM4f4Zw/ph5njNUYY19gjN3JGLufMfa+CmXewzl/uqsNDQgI6Ahh/A8I2D0YbZr8SwH8Fef8WAB/D+DrFfL2McaWM8ZuY4ydOyytCwgIGEm8G8BWzvlxAI4D8BeMsf1GuE0BAQHdQRj/AwK6jPpIN0CAMTYZwEsBXMkYE4d7s3OvB/AvhmxrOOenZ38v4pw/xxhbAuD/GGMPcM6fGO52BwQEVAdj7FcA9jac+jjn/GpLtlcDOJIx9sbs9zQABzDGngVwnyXPOznndw6ttQEBAcOJMP4HBAwPRo2Rj3RVYQvn/EXqCc75TwH81JWZc/5c9u+TjLFbABwNIHzkAQGjEJzzUzvIxpAyfTcazg1Z1xsQEDBiCON/QMAwYNTIdTjn2wA8xRh7EwCwFEf55GWM7cUYE7P+WQBeBuDhYWtsQEDASOBGAB9gjDUAgDF2IGNs0gi3KSAgYIgI439AwPBgJENo/gjArQAOYoytZoy9G8CfAXg3Y+w+AA8BOMezuEMALM/y/RrARZzz8JEHBIxBMMb+hDG2GsBLAFzLGBPM/beQDt53Z6H3vgnP1UjG2F9nZS4AcD9j7FvD0PSAgAAPhPE/IGD3YMRCaAYEBAQEBAQEBAQEDA9GjVwnICAgICAgICAgIKA7GBHH21mzZvHFixePRNUBAXsk7rrrrhc457NHuh0+CN9/QEB3Eb7/gIDxC9f3PyJG/uLFi7F8+ZA3sQwICMjAGHtmpNvgi/D9BwR0F+H7DwgYv3B9/0GuExAQEBAQEBAQELCHIRj5AQEBAQEBAQEBAXsYgpEfEBAQEBAQEBAQsIchGPkBAQEBAQEBAQEBexiCkR8QEBAQEBAQEBCwhyEY+QEBAQEBAQEBAQF7GIKRHxAQEBAQEBAQELCHYUTi5PvipJNOGukmBASMOG655ZaRbsKIIHz/Ad0Az/7H2Ei3pDOE7z8gYPxiqN9/YPID9gjc9uRGPPTctpFuhhEbtg/ihR2D2LB9ELc9uREJ5yPdpIAMCed4YccgNvc3sXlns6tlb+5v4vYnN6Idj8zzvuOpTVi1uX9E6h4qlj+9Gc9vHehKWY+v247bn9rYlbICAgICxhJGNZM/GhiMGx58Hr986Hn8x5++SDq++MJr8b4Tl+BjZx5Sqbzfr3gBEQNeunSWdx7OOb70qxU450X7YP/Zk/Pj1z+wFh/4wd34w4WvwvzpE7zLW/70JrzxG7fiive9BMfvN6NS+0crFl94LQDgloteM+Sy/uOmxzFvWh/ecvyiIZcFFG2bP30C9t6yCz/86MlYsNfErpS9J2N3fP9/9aN78PP7nst/3/mZM9FT7w73ce7X/oCtq7bg397zYryswvdeBVcsX4WP/Ph+PPip0zG5V+7OF194LWLYv4mnXtiJt33rdvz0L1+KuVP7utKet3/nDsya1KP1l1Wx+MJrMYDufM+LL7wWe3eprOHEd37/FA6fP22P6ZOHitEw/gcEjHUEJr8E7/+fu/DTe9ZIx3jGxH7zN09Kx3c1Y9z1zGZneW/79u1467dur9SGF3Y0cfHNK/D2b98hHf/xXasBAI94MtjtOME7/vsOfPlXKwAAv1/5QqV2dIKHn9uGrbtaw17PULBtoIVWnOS/L755BT720wdGsEUpNu9sYqAVj3Qz9ggsvvBafPh/78W3f/8UzvzP3+XHH1yzVUrXzVWWKJOHDLaH7xl+45YnAKAj1vv7tz6DNVt2SZOcTvDff3gKiy+8FtsHWvjt4xu0/tKFN3/zVnz/NuuO7JXwy4eex+9WbOhKWSOBf/nFw3jzN28d6WYEBATsQQhGvic4GfxtdsDf//g+vOGSP2L9tu4sMwsIw4Maop3g+W0DuOWxDUbjfuX6HXhkrXuycNczm7BjsF2pzrMu/h3eVnFSs7tx5D//Ehf84O6ulLV5ZxNX3+tv5Lhw9Kdvwlv/67aulBUA/OyeNfj0Lx6W3nNVph0n+sfdipOOpDxRJgLfMTh0I//yO57Fqk3dld7Ua2n7TNdcBZf98WkAqSytKu54ahM+edWD0jHe4UTrvd+/C3+uECEUX7l5hfH481sH8K3fPdlxvQEBAQGjFWPOyP/4zx7Ayf9+y26vt00GQhvbJ1jBnc3uMneiPpvjWDeGplP/4zcSw6lia38Lb7jkVvzVD6sbww8obOloxC8fXqcdu+qeNXhuy65K5fzlD+7Ghy6/F6sdWugqtsTdz26pVH+AH3KDTvmmYsPD+eiP78fRn74JSUVjWBj5/RUnxioGWjEu/OkDOO/S7k74RPvENa/a1I/P/OLhytfJsnK6ZSK7vo9Hn9/WMVv/xZseNx5/3//chc9c+wie2didSdSNDz1vnVAEBAQE7E6MOSP/B7c/i6de2Lnb6x1sFyx6t/meX9z/HK64c5Xx3An/ejO+d2u6nB0pVr4rWsSuZox/vuYhJ/NeJdjEQCY5eLBLzq39zTZ2VZwMHfDx6/DGS/7Ylfp98Df/e2/l5fO1W9NJQbM9tFWXgOFFM1sVU78Bk4F7VbYy067KeGeFq9/g2V/9PX54+7PexYhJ/sadBqY8vwD/tiUJR7OdoBYVvwHgry+/B9/6/VNY8o/XYeX6Hd7liSZ0iwh3FXPGl3/nZOs7wbZMTmia4HWC933/LuuEIiAgIGB3YkwZ+Rt3VF8O7hao0WZj8juN0PbBH96Dj/zkfuO557cN4JJMd6sa+S784PZn8N0/Po2v/3plh60yo8o1upa/D/1/N+LoT//SeO7mR9bh9yt0SVEr5lhe4vNQpW0/uuNZ9DfdLCvVOicJxxXLVzllU2ysxukbhRhoxWgPUaJmLzsz8pXnZTLka5m4vp1Ua4souV+ZzN6/eiv+8WeyzwfnHBf88G78oUt+Mq5v77PXPYIDP3E9xKWKW0wv/YrlZtLBiC6/8iMVfSp8uQEBAXsaxpSRf+xnfmU9t7W/hf939YPD5qhIdasjJd2MOnhawpgxwWSP3vbkRqNh1ck1l+Wxte3dly3H2749vDr+3654AR/76QP4l58/7ExHDY4f370aH/nx/fjK/60sdbB2XXqQ/vrh4E/egHd+985hKVt8zz5Mvphct9rFuXac4JbH1jvrEKsFPqs67YTj2vvX4vzv6Cx1J5p5Vxbh6NrK2iUchCNyM6qsRBXZuvNiD+f3sX677i8VtPgBAQF7KsaUke/Cf9z0GL536zP4yd2rh6X8xMPxlmLl+u34wo2PVta3UqiDTxUmv5GtxVdlH8+79DZc7NCTViGqR3M8+J2ZhGJ9ibMgfXxb+lPny4tvXoE3XPJHo+7eR7owmu/LaMPvDCs6Zdgx2MYbL/kjHn3eLi3LjXzlfXYx+S3yLV38fyvxjv++06kPF3I0H4d59/tiT2N733zeMSFPibLrq5Gb0aywgpJr8rv0Wg/n93H8Z2/2njQlCccPbn/GOOH5z1+lfUBAQEDAaMYeY+SLwXmIgSJy3Pbkxtyoo+U/s3GnlyPpP/7sQXzt10/gsXXbO26DOtbZ7GsTEyUiZ1ADw3fsfGKD7vPAO2DpRospu2bLLtz1zCbjuaFEFjH6O3hMgqj2d/POJu55tjsSpPGCL930uBaRheLeZ7dg+TOb8f+ufsiaJndmVx6Y6X3ImXzyLT2d+QVt3GGPurMrW1X0MZhdhq2LKLDJw3zeazVNRKh802reT+5arcmMfHDTw+vw5AZ/jf9wz4G3eYb0vereNfj4zx7EVw2Sxy/96vHS1byAgICAkcYeY+R3c1xoxwnOu/Q2STIiBtoTv3CL1RmTtmHN5tQBc3N/E0nC8fGfPYAnKgx0gD7w60y+3aJsZNqeVpd22yyCkfhT+Z0wct+/9enKecpw4ud/jTdcYn5mQ2EN6b24+9nNeNlF/4cdA8Lw9zPa3vJft+FPvh4YwSr4z5tXOGOri82sXMaxjck3vQ/C9jXtXOta2RJafJ8db10RtDp5R32yCOJC9CuUyTfdur+78j6jw3C+mmCp5y++txyv+uJvyhuUlzO8Vv72AbMfjjphEpP4TSaH5w7xrd89iXO+9oeulRcQEBDgwh5j5AtUdZ7aPtDCV25eIbFa4s8H1xTL/VUZX7HEv21XC09t3Ikf3P4s3nPZ8kplqDVSps0XNIe31GY3GhoUz2zciU862NdOYZJgiLb5GGA++PKvVmDNll2l8h9ANqAefX571o4QjWeoGGjFuOWx9fnmUy55m+17dkXQqfoNCJmHj1zH1b+IlZ8qtfu0VbxzolupefYv6sqhuM1Vv3ebFt6nq926q4UP/M9dWFMxxC0ANGPZb0tUp18X826PLz5z7SO4b9UW7fhQZJ0BAQEBNuxxRn4VPLuxH/98zcP44k2P47oH1ubHTUyST/g8OkSKAXNLfwsTe2oALPIOB3Qm35xObdlP7lqNh54rlxT5svI7BtvWFYHBdmwdoKoO+t1adaAo28RoKGHzqA3ZUB6Oq1hq0IkyqmigA8z4+i1P4B3/fSdufiR1iHVNagvmXE7kw/4Dfga3MKKbkmTObdiavkmfV1RN4jTyxQRXYfLprfDxEdCLrfYtWcvxuOAf3P4Mrn/wefyoQihSgUGLU7Gtvx0Ox1y1zG6F7wwICAigqI90A7qFTlikV37h1/lv6qBqKqsKi0c78O0D7XzgHqgYF16t0hYnX033d1feV6keFaqZcfg/3YhjFk2X6kzr5TjoEzfgLccvwudef4RWzkg7mLbiBEd/+qb8N+c8N+rEdQyFQTNN6nxA70ujFqHZTtBsJ5jY03FTAgCsy8KdCodbl5Fvi67jZvKrtaeVZaCT104MW9d3ZLtEH397sYpluk8ugz1OuPS+i/6N1qmmMbZxCEy+yNqqGFgA0CMHibLUekV/20EVpeBcvu8j3VcGBATsmdjjmHx1wIoTjr/933s1Zlt3amXWc6IcX3AUk4ZmnHSsMS3r901DqCr78GXn7G1IM5l2XhXl/egOM5s20sOWKpMwseVVNjhy3T8RzShP6yiHDug9WT4buxjgD/Gu72oJGYrdyLRp4F3feVVGV3yLLY89NpxynY5CaDquI3s7C7+EajJAtWyRnRIlPhIlaxs9LldMIDqZpNvCg2qOyIJEGYaeTL324ZhIBAQEBOxxRr6KjTsG8dN71mhbwjujWRjO+Qy0Jm3nYDvpWNOpDi4+ITRdxqKvjUIHfVeEnzL2aaTZKbV6+rtg77oj1xHRjAR8jTZRxlCi/ATIGPTYK0PYoD6Ot+IIlVSUGfxxwvPvnhq8pey1iVXPOxZ7fZ2E0FTD60rGfoW6BOh1+kyebeVU+SY72XzOJo3TJy/lmvxOpTxqmSPdVwYEBOyZGDNGfnlnajmfjQEqs6SmLhvfKjH5HIizpfDBdty1gcBHEuLD4FVrg3ngS8+58/LK7FR3BzofnfLQjOviXqgTMPck0nQsDPLdgjAwhRzF9P0Vcp3yHW8FTGyrzcik/U3TI4yt6/m73lFmYZvphOT3K14wbhLouj+ut1HVj4t70CSbhfm8z/YJT3lecU+q7B0iYGPy1eeby3U6fDYuqGWOdU0+Y6zGGLuHMfaLkW5LQEBAga4Z+cP9kat9qc1w1hzXrBpYV10Go6BCJ5zwQo872Eryuqp24/pmWB55StpFYRsfZbbeVZf7ioY7FF4Z1PvXDRlW2REB1/I7fb9smxmVTQxvuOEGHHTQQVi6dCkuuugi7TxLcTFjbCVj7H7G2DHk3BmMsceycxeS4zMYYzcxxlZk/+5Fzn0sS/8YY+x0Q33XMMbswesrYii+EiKvYKpdkyqNye9SdB06WfDZq6LqyqKWRnnfaJa3fft2/PTuNdq5Ym8RMeHxgzbxz/6VrtNjgm934B1eaJp8IV+yOt7ay+p4lVb93se+XOdDAB4Z6UYEBATI6CaTP6wfuWqM6Ua/OZ8taoWT8TZ0uFWMwYRzKbJGpySNbpRbt8Mq/lLaLvsaDJ3Jl2otKa7qANhtMsvF5IuBfSgMOr0+9cmYynVJczSNrqNZcRzjggsuwPXXX4+HH34YP/rRjwCgT0l2JoADsv/eC+CStA2sBuBr2flDAbyFMXZoludCADdzzg8AcHP2G9n58wAcBuAMAF/Pysmui70eQLVNIEowlOeihpx0reCo35SRyReTdK4dsoL6xsjheW3sdfqv6QvPd7x11KqeU+t5YM0WLY9ol0m94nQEtrycPrIkVxur5C2CDlR/T3zlOoLJd/X9nb6nexKTzxhbAOA1AL410m0JCAiQ0RUjf3d85FqnaOl4VTtYDH5lrLKkQzek9THyRQkJ57mxMNhK8rZXHpBKmPeqUTHUM7YpA10xqLriIdVX8Xq7PczpOmU9TZXJm8uQV0txDdpG3XcFJv+OO+7A0qVLsWTJEvT09OC8884DgOlKsnMAfI+nuA3AdMbYPADHA1jJOX+Sc94EcHmWVuS5LPv7MgDnkuOXc84HOedPAViZlQPG2GQAfwvgM9YGd4BOGNLcATQWEzhRln1lTnumHvHqpTotaWlEnbaPkd+hISkm8WXvummCIoxylx+CuT1KGwySSJ8+z8peezx7cb866TOsITR3o1+Mi4AYg/gygI8AsK5HMMbeyxhbzhhbvmHDht3WsICA8Y5uMflfxjB/5J04lqXp/Mork6hUGQA4LwyNwXbcsfFavuOtuW77Ob+WyLp7rpzzqyvN61Wdta6hQrte03OtUKU2MDuW2N1MqKkd/kz+mjVrsHDhwvz3ggULAEANwDkfwCrye3V2zHYcAOZyztdm7V8LYE5JWQDwaQBfBNBvb3H1739oKywy9W4qKsmZfPl41cmZDdSplfYdthJ8drxtxRx/d8V92LhD33BNj9Yi/3ZJ1Wz3wgZ1Ylzs9VAcF/fR9R4PJYSmmE90Ypir7RfN6MTG7xaTP1Y3w2KMvRbAes75Xa50nPNLOefLOOfLZs+evZtaFxAQMGQjf3d95LoRVD6IZfV6lVeWx2c5VaRImfxMrtNOOh4I1Fw1j1F4KPKaquV1m8nvdoQZnwgWQ6nTpK231Q2YI/rYIng4V2TM99VnoYY7jrtgzMMYexGApZzzn5Xkr/z9D0muk2vNRd32NOo3ZdwdWfxbQa/TtjD5NvbaKc8iJ39y92p8+Vcr9DaWvOuRoadvK/fJVZ58znyShgo1vesqbOd8fHl8JhE22JyrO+kLOn1N1fdgDMt1XgbgbMbY00hXBV/FGPufkW1SQECAQDeY/N3ykXvLdZTfVuNfzSdtTKKnrxJPPeHFcv1geyiafDuLTuGyPcquywRpVcPpQOoup+pla4bKEI1+bSJoSFM1apKtfLUUZwhNo1zHb9IKpMz9qlUFsb569WoAaCnJVgNYSLMBeM5xHADWZZIeZP+uLynrJQCOzb793wM4kDF2i73l/hjKoxfPRXUspRDPoK9Rk467ZTP6Mds32ayoyXfH51fSSpNEc7k+YR8FEWF8H+3Z9eg6WY9hkutUjTLlOi61z6N8a72WCrrts1Ql3xgl8sE5/xjnfAHnfDFSv53/45y/bYSbFRAQkGHIRv7u+shVY9O3U6zK8ANmJqmKwUmd7mgIzaEavdqOt0KPS44NfwhNqcBKecugGjpDZbfKVn9MdVYr379uwLzLbmGkyWldl37cccdhxYoVeOqpp9BsNnH55ZcDwBYl2TUA3p5F2TkBwNZMgnMngAMYY/sxxnqQfrPXkDznZ3+fD+Bqcvw8xlgvY2w/pM68d3DOL+Gc75N9+y8H8Djn/CR7y/0xlOcijPs4sWvORX+i7m9gZPK5KK9KH1Ck9THyRR1adDBDvUb5UQmTb4KIMlPVuPXT5CMr216OdZXV4z7nYVI72EXKyuR3ZOTbz1XZxXisynUCAgJGN+oj3QBflGpOLRan7bg2UHVxx1vK4jXbibEFnPPSjVzUQcKHyXc562p+CLbqPbdbL5frOE9rUAfZOOFQiNZqcBjO4u+hTCScch3PFRDqrG0rW0W9XsdXv/pVnH766YjjGO9617tw//33DzDG3g8AnPNvALgOwFlInWT7AbwzO9dmjH0QwI0AagC+wzl/KCv6IgBXMMbeDeBZAG/K8jzEGLsCwMMA2gAu4JyX7zg1BHS6twRQfKsuOYp47tMnNKTjvg6wZRNmYfD21CN5Ey1bmyt9Z+UrQT6afGHkmx3BHe2x3COqyU/ye98Jk+9h5Gf3l06mfBErH2eZJt/ZTTuNfHveTiZlox2c81sA3DLCzQgICCDoqpE/nB95pyHHrMkcBu9QGV8ah3mwTaPr0DqAmtvG18YPm+OtSzZCzc+OlrYdk6Gy8qrWpxkqQ2by3eUD1Rg01bCrwtRR2EJovuXS23DcfjPwt6cdWLrmctZZZ+Gss87Kf3/iE58Qxr1oGwdwgSkv5/w6pJMA9fhGAKdY8nwWwGdt7eGcPw3g8JJme2NIch1h5Ds2e0osEwBXv2I6ZWLegWKC0VeP/EJoWnbgNbXRtCmeWqqTYc7+FZJCYwhNe3brNZjlOtXL8Xn2ou1VZJQClgiaHbHpZSRIZHk/1Hcy7HgdEBAwHBgzO96WMR+2wbYT5y4jk1/B4KTh85ptuhlW+WBPoTvPlV9jNxxvfWPrlxVXmclXndG6rMl3Mbqdle9fd9k5zoFbn9yIi29eUZp/PKCzZ5++t4Vcx8HkW5jmbsVEF0xzb6Mmsc22Iqq8L3WDF61qoPq0dbAdZ22qdq/1iX8K6ngr0nRyP72YfOFP4PGeHDpvqvRbZfJt9frIGztZqTCdCzZ+QEDAcGDMGPn6crRy3irXMcM2UKXnusfktxNuZLV8BjJdk1+ezq2BLa1Sg01/m55zF1jdyHc/46pwDdrir2px8pUN1To0CI0acbWtY38HzCGhM7mObLi74sDnG2apTL4jug49V9Y8Idmb0Kh5TcKd74vSJhOTr61IeMh1BlsOQ9lxfbZvpnKcfMspn2cvJk4tGy1PoN7brkbXcZ7z7wPG+6Q+ICBgeDBmjHxNr23pFLXNsGxMfsXBp5omv5Art8iOt0kFIwEwrVbIMEXW6Ibjra8hX3YNQ5XrDNXxVs1ueoRDkes4mTqH7UHfJeGXoW7Q04mT9J6EoTCbxU6uZrYeKJ57nHDMntKbH3fJP4xyHcvEWxihfY1IDqFpZfKz8gzn1O9AdRYGTFIydxkAMJhPgvQ6K4VwzW5CU1qxsK+iCHRDruPTLyeco7deDHW2b76Td67T/lE9FYz8gICA4cCYMfK15U0Ppsp5XPldtslTFSO/1eZ5me2YG508fcrzMVLV45bx15jf55JcE42ycanqsGVyvC3qqmB05MfL03Wi6fVpk3F3VEu4QwDY1ZT9WMf78n1nEzx5zwHB8rrkdwnnmDmpB3+88FXp727JdbJZXm+9JpXZjRCaDYNcR+8r7N+SgOp467kXlvXZtKSwoeZ2yG20Hfdg8rP76/P9xgnHqYfMxeXvPcGZpyNDu4NJDKC/Z0GTHxAQMBwYO0a+p+ZUlVTYuk49P9Ghm0JoVhgABslSfTvheXm0iE40+T7X4pbr+N5DkkZhpF274bra5QNNruN9XX71m9Lpafzb3HH4PHJPxd3c1VKN/PE96HcjpKCLyafnahFDPZL1/BT5SpxjMq2iVZHJd04YlTaZfHPK5B/UAC+bEADulSjbuepx8i3GtodUTayUtD3kOpyn9+yEJTPRqzhCp+fL22pDFd292iYp7TiX5wUEBAwPxoyR76OdNcHacVdgvIFqjK9gyFIjPzHLRLxYdPm3j/TIuczu2QZfuU65Jr/aoOl6xh0ZCx5Gvo922XauU6c7ExOqM/nj28jvxuW3HI634v62k9TIF5PXKsa2C8II9WXyq8haTG3shMl3nauiJ88db42afGsx9jj5Hg+/5ZAaqYg5z/2Z6hHrqia/0/4xaPIDAgJ2B8aMkV/WKdq6SF+5jqtsoBqzKAagviyyRtU41LZ2+BgIlZh8Tz2rvbzi7xXrtksOx2VtMUHbDEsyjuz57Csc6m/KqJoNwCqDbdUwmSI5fQ5iQqUy+eN9zB+qPwZA2HrDsxD2aJxwRIzlzqxVV2ds74CQk/gy+ZV2vDWkLYsk5SIpzNGHrMmt19xs69fpjq5jPu7z6NXdjMvC2dayD60WMX1iX6Fera2ucxUmbt143wMCAgJUjBkjX+0ErWOHspLdSTQL04DRSXSdvkYkOd5WLa8sopCP461LQ+8jefJdcj7tS7/Fh6+4Vynfls/CpDkmNVWYRVs9LvmPbedZF5wTKkc+kwHVH5h8Cd24/jjh4JwbnxPdrKkesZzp9TVKxftoSy76gN5GrdqOtwZPXtfkt8ivtFVJ45K1mCZBVVapzDveyka4CbZ7XY3JL18xSJLivpqM/LL2uOAiStwTD/+0AQEBAZ1izBj5nW4eYtfA2n8PVa4jBqAJPTUphCZFJ3IdLya/UnnmdLITsn3SoLbn2vvXSr99dxu21eUbstB3tYb+tk2GqkS1qTpRFPfVxNoNaJp872bskejE6DFFurF9f+IZtGOOKGK5zt246qaE5vRpZ7EZVk163j7O8/q58r6vjBl2Rg0yvPOu9D4hNEWaKmx2ntfj2beV6Dplk4laNtLVosjb8XaodneVVSEP14KAgICAyhgzRr7aYVq11J4ds2koL+qqxmypoJr8OOEW5q28PN9BR9LkVzA8bWmd/gkV4uTbnMnsEUbs6TpzirNfr85GCk12lfL967a1Q/ypafLHuZXfrcuPbUa+xuTbjfyiTeUMukA7LlbzxIpCmr66Yesj7XCRFkB12UwVhtqsyRf/usrxK98EIYcSfUzZtyjkWPWIOUJocuV3aTOGoMn3TxsQEBDQKcaQke9p8GqxzC0duhbJpfjbNCBWYVoG24UmH4CmVQf82CrfDb9c8fdl9lrJ18FEw1Z2lby+DB69550Y1Nr9I8nssgl7Pb71muqmML1fQZMvo1shBVuxzfE9Y/Izx9vIQ65lknvZ3oEWcbyl5dqKd4WxLCM4TO1Qf7s1+fZJkAm2c7szTr6qyS8ztqlcR70XxbOEctynf7Sfq7KKMd4n9QEBAcODsWPkK0aTzUjWO2r5XxvoeaOG16PDF0mo4y1gNvJNfXpZiEuNfYbuLKgW64q8Yx9XClNDHdBljX9nA5Mvg+fL5NtOue6fjY2swqiVOfvZ4GPkj3dmr1vXT1l09TiQGlcRczP5uRFomLhZmXzieEt/+5IO0jkvuU7J7wqOvbY6bGULA7rVrsbkW6VLHgav6GNtOxer9ciOt+YZuG112LV/QCf7d9CyaRsDAgICuo2xY+SXDHQ23ayt79Q7WbdB2Y79e+GmwuSbtl43DWRlS+4+zLjOENEC5XydbMgl1+vOa5fl+B331eT7svJckmTJ51wbVdnrpQW46y47N9iS35HxbuT7XL7PJLMVc+N7mu+Kq8p1KjLe3ky+kJVYJWzZHwaL0rV/RAE3M1xFDtRJesCmya9ejheTH4v+3l2WaAsNoWnryvWxY2hMfiU/i3H+vQcEBAwPxqyR77vLab4MXhJ1h0vn9HJ9OmE1ysSEjMVrGox8n9UCX42oJENx6trVfOYCXXHyafSPKqsjtjZRuDfDcrBi1uP2CY91YmCtRYdUhuW9k/wARNhGQ93qOzLemb2hTkAF0n0q7Ma5cLz1CaEpR3tyt6EVV2TyK7C+fky+mxQx5aXftjMaj2UVTN5wK5tEOWRrPvt+2JBH1xGTCUfaJOG5Y7WJyc8JIoeE04ZOV/O0cWq8f/ABAQHDgjFk5Mu/bYOW7lxqLk89LDtlGgbRCkZHMzfyUxZPZWkBi/OcWqfnxMbF5HPp7+qDWKeOZa7zPpMVoEKcfOtkwt4eNY+QPvEKRokPiyfLwIThYzDy26omf3wP+j6yFp/VDrvjbVFGWQhNccQosbOYl+04ZY8bWViXskmLq39R85r09WWEgNvI1yekgwaJYVlZVJM/JLmO1+SNS+WX9VNUrmNblVUPe60mOc5V6TvH+8pdQEDA8GAMGfkKM6VrMbJ0ymFPtshkjFF0suNtX09m5JvkOh5L/2XsnClWt1uGVN4GQA2T6TpXZuSbj3cSJ983Wo0tf2meTuQ69AItK0Wm+29qr+q3Md6JPbsBSCZqyjmj02riXjVrZywvYwyM+TOz4k9bO1tJgnotQr2Wtqos1GPOppfUC8DoaD8UJj+ffJIkakhXOb35eNU4+b5Rbox1Zd9LLgtyObpzmcm3y/uqG96d+AqZ8nXL0TwgICCAYswY+WUbQ9nS8fy4nM41KLqicfhgsC0z+SbHW5+t6X2v2cnkOyYvtnHFFSffVrYlhfGorV5dk0/zVG+H25FXTlvEyfeHS66Th0w0pDdJGHS5zvge9H1WgXzuUTtJLNGyMiM0KVjeiDHzu2k0pN1GbDvmaBCtf2Hkm9tZLYSmoYmOiYCrnWlavYynN/ZXNsJNRr7b0LUd9zDyE7l8l7Qv4cifQ90QXUfAthOuC66mVrn2YOMHBAQMB8aMke/LQutMvq1EuzFsGty8NMJZmVWi67hkQtq1WOql7XXvGmvPZ0MnMpmyvLJDrX1wHqrjretd0H0N3GWZyvOR65gmFqY6dCZ/fI/6Pgamzy1KuDtOvnC8BYCIlRjbHs7yAu04Y/KzskW5viyyfA1q28t9fDqR66hte2HnoDG9dTOsdjUm39evyoS2El3HuWJJHG8jw463ttWQTvYy8T3n3o17fH/7AQEB3cOYMfI1ltc2QCi/bY63VWQtpvqNdWdJRGQNF5Nv2hHS1ab0vGKYmkJoOiYKvsvRjIgGbMawK39Rn+24+V67HW8d9ViOu9hM2wSgymRC+m2R69AkJudL8VczVp+1vR3jAV5O5h43KU7cK3NxXEg5Uia/mtFmM8iaMUejFuVlCx24rfiin9IFOz7Sjk6d9uk5tdzNO1vO9AKiyZIm32uTKtvx8ucq+ljxjbv6uZjLm2HZ+nLXKqgNnZAP6Tl72iDdCQgI6BbGjJHv0qVS2LT2A60EZ3z5t9iwfTArT8nnqAuo1vE2VblOrOtbzZrtsoFauTaDZKCKs6mX461Ly1uS1z6YkjLo4OZgHzuS6zh+296TKoyqT1rabmHomR1vA5NP4ROFxs9BMzE+JzOTb98NVa3Pxv7m9cYJGjVWMPn5pN6cwRWFxifqSxlB4KPJF0ned+ISAObQv6ayBUxyHZ8VBBU+fW0eXYfr91XtXzgv5DrGzbBEvgoSp6J8xzlHPtfzCTZ+QEBAtzBmjPwyAzXvqB3s96PPb8ddz2zO0tvTGY38CkaXMNh6s/B5pug6JiOhTGqkL0OLdJRBc12XWr75mmS2XjnnYPlV+EUDsqePS55JlXrUdDZHbrc8qdzYUtPSwbswTPR0g1p0HXvZ4wFWA9DxDA0kOBILkx+T5yM7ZeppRV8hbywH7RhFO+Go14rQnGXvl23F0ZTHNBEpIwR8o+u8dP+ZeMmSmQDMoX9NZYs+QTbykZdZVq9+3JolhzDUTffV1L9E0mZY5e+Wbzs66ZfSc/ZyxvsEPyAgoHuoj3QDfOE7aKn9o5pKDLpaOoexDbgZbRVqCE3jZlgGJt8Wa73styR50VY8SPEOI9qGTgcxV/m2AU2T63hq8m2nXJMkm2bZtQFO2fMwnaP1qGH/KCiTnyRmHfl4glWuI73Pyjnyu6cWoRkniLn5Xop3K04Kx1vG3M/U5Etia2crTtCIIm2TrU40+aLe/WZNgupjUExA5DzaDuEeKxRxwtFbZ+jJwn62LGE0bRsRmqPrWKv1dph3tSEnOsh32044mu0EPfUob0d2SYiYSZNvbuvQNfn2fK6gCuP92w8ICOgexgyT75KhuNLZGBOXZrVTuY7Ipu54a2LETJr8Usdbi9HqluTorJYtrYArTKYcecec31ZfftxiqKmTAl+5jo+0Q63Lpq+uoiH2SSs5RRPDUgU18uOSdowH+DneqsZmgUYeutK8GZb4JOOk0GtXkeuY2kPRjs1Mvu01dsp1skxXf/BlmD6xx7naYGuXT/SehKeOqfWa2MDLfK9tk6uWFCffPalxnavy7psmE2f+529x+D/fCKD41hiJrmPrZ/VVUEh5TXA1tcoEgD6foMkPCAjoFsYOk1+il+SWQUX9LeI/64y/3XgAqsl11Og6po1lTAZ6VU2+aYBzTxTc5Qn47mpbNhb56ao7m6BQ2NpYxT8BSAfXKvICn7RGFtnE5Css6HiPsNGJJp9madQjoBkjLomTT418q1zH8K2WoZ0kqBMmv1STnx13xcmPWLppF22Hyfne1Fanbw0X/4oNvNIy6TvpJiNM77j9nJpGP+5/n/PvjBS2atMu7Tx9xupmWLY9DFyrenkaR1vdfae9Lwk2fkBAQLcwhph8c8dcBjWVbSdHyVA2JKkq16lFrBgsHXHy3UaLmVkq0uuGg6sMGwNna5vaPr297nviw8a65DqxQ2oktdd23HH/bBM55yWp99/DcDJNDk35ZLlOGOh9nLZdhlIjZ6NtTH5m5HPK5Lsn8yZNvt0JlaNBmPyyaDOibHN0nfTfGmOoWSIAla0C+jD5MeeIGMvvXUtZXcr/1ggXvcx8n4gKhm7ZcRNEH1E20Zf3QjBPgDrR5HdyfaZz0p4g4/3jDwgI6BrGkJGv/rYMECWMvzDytfwlxqtlJ3Qjmu0E9agYLF1x8iUnTJVpV7JZl5m9jXJ3eaZ0LomKml8YNLa8ZeW7wqQ6pTG+/hkl5XFebWD2aZOZRdaP6XKd8T3QlxnDaRr7JE7oypPEPGGgjrdUruPWxut12drZzna8FVrwsjj5Po6xjOmactOu16Z6XCsJBRuelt9Tz4x80um59qxwluk5aZKPW7NYyyi7r2LuZHK8bWUdrS8JQtHJCqPpnER2jPNvPyAgoHsYQ0a+nfkAKLMG84kMgxa5jsuwBfzYFTHgNNsJGmRLe9PqgWnQdXX8pvMmhzFXuL0y3a4pnXPZX8mu2PgO52he+rdaVyfyFX353X4OEHIdV3mO8i3vk3nCSI20FFT/HCfByLcabZ7fS67Jt6zOmBxvTU6ZgJu1tz2mVpyG5tTkOubkhTFqOCfaGjGGKLIYlq7vlPw2+xWIf1O5jgj72SYsg/R+ekx2qc+DDd2Q6/huMpZP5CJm9f1x7dNhQyc+B6ZzVVZIAwICAnwxZox8342ctNCYym9hcKu5XQ59QDVnKBE+rx7ZmXyjgV4yeNrYOV+23sXKy20jaRwDn5pflRqU6Y/VMtyOt+a2qm2Sj9vTGQ2TEga9iiMv1Xxr5ZS8SyK293iG3x4L9nNiFc3ueMtzR2sq1zEbwYYJuXJORRonPyrkOqXGaPqvK4RmLZs0mJlz9+/Y8j721CKJDadyHdpvtQ2Rc2y/6TH3pNnvu3Wh6APd5/MQmopzNee82Firg4+uCingOkfbZJKLBgQEBHSCMWPkq8y979bkaoepbqKi5gfMy6U+S6g0RT0qNsIxh9AU/9oNz7KJjWkgdV1Xmcbf1A6X8aDeE5XJtzJ1Fq296xm7l/0t9TgmTSZDiZdo4V3Mse3ZGVnkkndJZfLHoxOujxzP5ShZGPk2ppnn7xdleU06f1vfIs6bkMfJr+h4azyXG6r21QZb3/C3px2It79kX+ITIKfrbUSkL0rvhUmuI0XOcawWCpTJaGz5yvLo9eR/aefihOf3VeyFUFc2w3KuglZYva16TiNsHH14QEBAQKcYM0a+6Ph662LwthjADokGzVfFYAP8OnyKelTIdXzj5JdttmT77SpDjhok57cPQnZDSrpPSoMihYb0i5NvPg6oIfwsTYVpeDfn8dvwzH9gdiiX8nNGPXgJU5dwN2M9HlDGeJvS0J8N0k/YnrV4P10hNF2TWrVOilSuE+XGZS6XsTz74j3RqXzOORhLV8qikghAarvPf+liTO1rWJn83nqt6IuStB4TOUGlO2VkBE3jnjSXT+TK4GLyW3GS35dckhXJz9i0gVfePo/6q7D1Utnq81LkemMFjLGFjLFfM8YeYYw9xBj70Ei3KSAgoMCQjfzd9ZGLgegH73kxAH8mXx1ICsOxGgNjGuDVpXWahMp1jJp8A9PrmniY2uUToUdizT01+a6NWaQVjxIj38exzrRb7xfeeGRWvl0iILXXWo+97TZ2t4osyMfh2ScSiopURuKekNxwww046KCDsHTpUlx00UXaeZbiYsbYSsbY/YyxY8i5Mxhjj2XnLiTHZzDGbmKMrcj+3Yuc+1iW/jHG2OnZsYmMsWsZY49m377ekA5hmwjJE1r5HH3ePbWCQbfJ71Qm3xRCs215B8s2w0rlOoY4+ebkJLqOfk5EvQGghdA0tQ0A0fFnOvTsPqj92IQeyuSnTsimOPltixOuqW56rJPv1i4jrFZPmzxjscpYY7Im3+1rUG5su8Js2vpr0znXez3K0Qbwd5zzQwCcAOACxtihI9ymgICADN1g8nfLRy46voZhAALsnb2mTbUwPy6jqlEzL5Hbt0iBpMc1bYYlOnmXJIX+3m/WJK3zN12LawC2sX1a2xzsvysKhGqg2HXV5klJzDmm9NZx2qFzAcgSASeTbzmnM3Pu8sq08K4JpG0VphMjP+HqqoN8Po5jXHDBBbj++uvx8MMP40c/+hEA9CnFnAnggOy/9wK4BAAYYzUAX8vOHwrgLeR7vRDAzZzzAwDcnP1Gdv48AIcBOAPA17NyAODfOecHAzgawMsYY2c6L84TVcOvpr+Lv3O5DjdP3BJOjHyy463LL8T4zliMvFSuo8fJt0eBMR7O8shGqo8DsEhTiwrJUML1+9pXr+WZ03oKmWFscbx133d55cIpWfGYyFGYDherEPq5dlz4Y0TU8ZakjR0yJB9ju5Lu3kEyxI5+dTSDc76Wc3539vd2AI8AmD+yrQoICBAYspG/uz5y0VlThzrTecPwJ/0SjJTOApKylAGjpxaVGmYq6iROvlGuY4g+YWvTp885DK84YJZ1cPUNK+ia2JjKNaVxyXV8JxGxpb1JwhFFhP20GBYuhszW1rR8d54yx1vX9dlYZduKgQsJ587VlDvuuANLly7FkiVL0NPTg/POOw8ApivFnAPgezzFbQCmM8bmATgewErO+ZOc8yaAy7O0Is9l2d+XATiXHL+ccz7IOX8KwEoAx3PO+znnv86utwngbgALnBfniapSL/VcIw+haZHrJMU9zpl8g1OrZNwavlXbo2zFCRrkXTY570rtyc/r55KkYPIZY+Z9PCx9Q8RYEcaTMNsCfY2aJC1jrLgfMpNv3hhLrTsPXVpyf0xtLsr3+57levRzrbh4xrnjbSSnbZGbqa8Ol09UqpxzTVDlfnrsGPkUjLHFSCf7txvOvZcxtpwxtnzDhg27vW0BAeMVXdXkuz7yoUJ0wD11fQAC7J29zuSLmMj2dBqTX4+8dJKU1auRAb7VNg1OPGuPiyFLf7/ywNnZJi5KfQYWyzUA+zreuicGxd9ly9s+g7hqtNXI/gI29tBXO6s7ZrrbVha6ssqgPRS5ju54K59fs2YNFi5cmP9esGABAPQoxcwHsIr8Xp0dsx0HgLmc87VpnXwtgDklZeVgjE0H8DqkKwBDhs8EVPc/KUDfIfNEq5DiyJp8JR2VqRiet9XxNlYdb/X2S9flkBHKsfzN90Y9ItIwVrDYCTfIdRo16VpqjG7gRYxhy31I8xV/C18IU/+mtdl2Lyoct/lYAenzLfwu0mM1xXG57bqukvbY6rW119XXS+fGkCZfgDE2GcBPAPwN53ybep5zfinnfBnnfNns2bN3fwMDAsYpumbkl33kQ53Jiz4xZ/JjdaAxd/bqb2E4VpFy9NQiI3umh4ws/m7UoiKEpsPx1rXhE2XjmGFwN01sXIa2awIgX4d9wJGj4dgHKlNetd1qm1LtMQiTb3aK852s6PXa77Uoxz1o26/P9uzMITTlOk3tcE06LYaletCkJuOO4y448zDG6gB+BOBizvmTxgIqfv9+ch2lQRKTXxiqprKowSuMYJNcx+b8XRjG5vaLzbAiwqK70heTQv1czItY/jVDBCCaP68/6x/rUSRF+FH7MTW6TsSKiYnE5Dv8Y0xMfpk8yXWu6nHVhyVvc1wcL5h8mbCRrssidXR9HFVIAfrT1RePJbkOADDGGkjH/h9wzn860u0JCAgo0BUj3+cjH+pMXpXr2Jh8V3QZgG5KY++AdU1+ZHa8dbS3XmNFdB3XjreSEWEeZMROl2oTfDT5dC7kvxmWPY3b+IQ1rXTcxtBnsoQiugctwGVQ+xkFZUvi1TfDMpdNyzeVJ2/oZDbYuGPQX7BgAVatKoj11atXA0BLKWY1gIU0G4DnHMcBYF0m6UH27/qSsgQuBbCCc/5l7WIyVP3+bcymS3KlTrIBswSrpxZJBq9432qRSa5jNm5dMhEgfXdNch2rJt+18pNw1GrmDbtEcq1vyI1bSM6/6rvU16gV/kGcI4rSSQ9j8jNwhdCk6cR9V9tngm3ibus3bGXZVuBacSJtJAakjL6NyVfHFF7yjF1tSvOpv839HmB/x0c7WMp0fRvAI5zz/xjp9gQEBMjoRnSd3fKRiz5QyGBsDqYuQwwgHbly3DXI9HrKdSgahEEbdDD5ElOopOG8GKBMy/QmyYA26DiZfLketVyaRoDeBy2uvboEbTW+zX+3k3SXUMb0ZywZBI4JmlSPuiuy6z5l7XVFy3CvkpjbZNxBtYSpS7gsMeHKdRx33HFYsWIFnnrqKTSbTVx++eUAsEUp5hoAb8+i7JwAYGsmwbkTwAGMsf0YYz1IHWqvIXnOz/4+H8DV5Ph5jLFexth+SJ157wAAxthnAEwD8DfOi6oIOr+z+nA4jCgR690k16nXGDiIXMex4y01Ak3+KLZuoR0nlRxvixCb+vl2wiXnYPPqj2p4J6iRb0mUrZZfJysDnBfa/3qkylpcITSLv/MVlJJJjXpOZrn9Ju0C6Xergz572463Xg7FTkPeMQFQCSbnu+tX5ijEywD8OYBXMcbuzf47a6QbFRAQkKLehTLER/4AY+ze7Ng/cs6v60LZOSirXYuY5DAF2FkXffArWCu5fJLGwOT7dLw0Rb2WxrSOmHnHW5Ocox2b25TKdUwb9Yh0HgMVTIOz2VBxMd4ux1tPWYm1vcLxFkifcZnTo61ee9vdeTh3h9B0rVRU0eSXO97KBoJaRr1ex1e/+lWcfvrpiOMY73rXu3D//fcPMMben13HNwBcB+AspE6y/QDemZ1rM8Y+COBGADUA3+GcP5QVfRGAKxhj7wbwLIA3ZXkeYoxdAeBhpNG0LuCcx4yxBQA+DuBRAHdn8rWvcs6/5bxAD6iysEZNvxeu5yvJdZR0grFXHW9NMehtk9pCymF+lq0k1eQLo7nM6C0m3KZz8nfhckClbaWhQcW1qHmpr4+Q64g88rWb/1avSTD5nJRpg+qbE0G+V/o1ysd7ahGaWSx8U19D+1MpOpFFrqM53qJ8ouL6krV+1eFMb5vIjnZwzn8P96J2QEDACGLIRv7u+sgpq12PmKbJt8kjNGbOwsC5mKQeC5Ovx8kv0oiBtV6LzEa+gdmzGYoRMzN4ptUL7bqor4Em13HXq15T+rv42+SAxznPfRXENar3ycbgCSYfEEyimT38uyvuw7+98UhM7nW/vur9chnOQGoYuQxw1yRGzeVa6o8tVYjdONXJhqmMs846C2edVRBmn/jEJ4RxL9rGAVxgqiebgGuTcM75RgCnWPJ8FsBnlWOrMUzfvs1J0VcuRmV96jvcW4/AucnxVi9T1uTr7bDZY+04SVfzFLmOLVSmi+mPCZMfKXHei/YoRmOSSHmA9HtVJSnU1ydOeG4M16NISttyMt7F7566Gl3H9T2V/02hHm7UGJqxfX8LES0IUCYvlMmX4v8r9ZU84/Scf38h/Vb7csckKiAgIKBTjJkdb4tNTZjG8gK0Q7aze2k5aU/uYqHVc7Y4+SpkJjG9tcJo1dOmiaWBVBllxCnGmFmTb2AHda2nuX00rWYsGdpgKt/oVCpNArTTWhpVe04ZSzlOfvH3tQ+sxTX3PkfOmeuxTWrUv/P6Ez3EIK3brbE1nzPVYzMMeomB5KNR3pPhI6nQJnEGRjkxyXWidGUun0TT6DqWlT+9bp6Xr0LUaYyuY3mYrvelnXBrBCCRXCc3ZF8DcS20/r0mNqR+ha4YRIomn8p1dCa/+Du/7477U+SzTeTMeVTZGo3kY6qH+mPQVQ3Oi3a55DrFd+83UdHaW4Gtd/UlAQEBAZ1izBj5ubaSpSEWbUvGav+odv6CudGXZvW6BHrqZrkOU0hMmoYy0ibkTJeDwSlWL8wso4lpcrNH5vyao5dneWbZgG4IqXfANqDFccHkq89YN9QYOWeeDNjkSenfWtPBYTbyC9bWbtzYzhmND8so3ptpUvQQmuNv1JcdEc33Ql+pKeByvK3XUmNe2K25MWwIodm2rCbl74Sh7UJK2CDRdcQ1lMX/tzreEuObG94NkyY/IteVHiuY/Ev+7Bjc/cnTpH6F84LxrivfX8ux460pqlFxXcbLdZ6zPW/13hQTufJJe87kk1UNwG/y4vr6XJ+m+i65fZ3M6QICAgKGgjFk5GcGY6Trtel5p5EL+7J42WDiw+SbokzUa+ZbTJfIBbRrIgOUiWU0XbNrgyqb0VuFVZKM8hID1rrjrYU9S0NomjX5KitPw5LSM64Jjzzf0Q0Tzm2rE4URZDpuOkcjlqiw3ZeeGmUmaT3G5Hs0bO+ZS65jko2YpBw9NVmuU2w0ZQihaYkq45LXFOErmRTZRr0WCvE6m+y7mMux/GPDe6cZjbyYMOdx8okcLcqccmm/QuU66vdHJzu2yGaAvIKSnrO/vK79MtTrM5XVIFIo00SYPvtIuRfiPrQsjtX0dxVJjo+Ez5RP2l3YtgQaEBAQUBFjzsjPNfnajrfyvwK2uNduA1Auo7ceaRIKQDc86WkRPrNmY/IFs+cwivMBKne8VcowGfmqsSnF/zeX77oXVeLka3mzv9X9BKx664Tn982lyQfUlZdyYyHNY05HJQZtQ/w6q6zJw+A0rhjQd40cF4Yp537yhT0Ztu+Cvo8/v+85DLTi4hw1Nokxp773jczI9wuhaXu37M83N/Jrcox6tQwKl1EsMfmKc7Dt3YwTKn3LjpFVDXHNdAddKtdJN40ys9wux1tVk+8ykH0mb67vWch10usyl0/9mgAYfCTs18W5/K8JVfoEOfSp/T0LmvyAgIBuYcwY+YLpqlk1+eZBV18WFZ27ms5uVAkmv6xsmk8MJg2bkZ8lpZMQXZOfnmNRMUjJG1Xp7dCNzeJvdeiw6YCdGn9HXYBZd6reAVOcb0AOFViLmDV8oVqmzWjW/C4s7Hhh5LsnLi7m2PZuGFc7LPl6iMaYHh+Pg766wmP6+1u/fwoXXf9o/ltanSFMvnr/GnUmTegkvbulv0jbVBwvDED92RRyHSbtNquWR+GS67QlJ1p1JSxrh5InTjiZvBT3QvSbVHtP+07bSlpLiiev9FMkndgA0OVjkLfRZsxb77neL4v0pihH9NnXVLmOYPKza+mtR/YxRSnXNXHhjnRuuY79/gYEBAR0ijFj5BdOcnoM5/R8+q8eDUZlTBKpvDydoSwBEV1HD7tp/93IBrtazWbk86w95UxSxFiu/zcZ2S6dso/0Rl+h0NOYyjNFCnFJh/J8VqaOSw5yZZtGmVrsw66rf8tMvl5PZ5Mhu9FmW8mQ5DqOZzoeYGNY1Xvx3JZdxnO1bG8Jk1zH5nirbgAFuDbDshuxtt1m9WvRJy9mRhrWEJq2MI/thGs69FQGJhu9dGIjdpwGMr8Fang6tOu06lz6lv12rULRCGnUqdYm09OfY1GX8b4ZnjGVLtE29NQjfdXScg2271c/J7fH1TdJ0qgg1wkICOgSxoyRLzrPehaWzleTr+0Aa1kWL2PyVcMLMBjUZKAqZCfmW2yKzmG7JuF4a2snzWYKa6nWqbVBG4zs94Jzd9QJEwunhtC0DYTtmBj5ysZE2sZWtE7L4OlyrjYaJtwcpcM2GTIxu+pv0z2y3V8qdShbMdnTIb3TDqNKeqbkl9hPI+YmuU66GZbmeGuQ69jqdu1QK1bk6hHTNOC2SXfZztd1y2pDYtHyU+lbLtchzHah15f7zpqNyc/+btSYshO13OfUsr1Bcp8UB5Vvm+zbiA/1Xst+F+a+SNwfuskXrbudM/k1K4mjFm1biVPbWIVwcflmBQQEBHSKMWPk58vMLDWc9Tj56b96x2ouRxt8HMawWDkw2Vo2g60shKaJ2XNthiWMBZkNkstS26C2zzbouP0TTEZqlt9hEAPFYOge7GTDSdYek7ar9ThWQExlp+1wP6uEmwdYG2trYmK1PIbVDtvOl4Umn1vv0XiBbbKmPgP6ddF7LXbGNm2GlU7adcdbUwx6eUM2cjz7Vk1PRuSp15hBA16ks0WCMu3tQVcbTBMCk8Zbi5NPjPyivHTSwHnavzFmnmQLJr+vUTO2T6CR7fLrWsnKr9nSb7UsqwZqWXVyb42bYZHVVzHREdctnr2YsPSamHzRz6nftsMp3pflD5r8gICA3YExY+QnCc82hXJr8jVJhZXJV9JJRoV8ThicRrZIMrqLH2qMals+lxYz17Szgg03yWF8tOGAyRDVy9TqMIw3eaQQw/0wDWRqKpuhEycOJt9lfFmu371cXvxNd0c1avJzttQ+2NvkYybDJLFcfy9hJsd9nHzL83XL7IpftSiNUd9OdLlO6nhbsLyC8VZj0AOw+oUIo9e802rG5EuOt6ZrKfLY/A6A9L0Uqr+aEmWreM/kNqjSN3FMlF2sDIhJJbLfRC5nICD6GjVrFDCRj27cZ9v8C1C/4eK4bQVPvdV0d13jZJpM8JgqXUqKNED67bl2QZfKdbyP7lj49muJkyR/TkGTHxAQ0C2MGSOfsrz1mim6jpnR0ozDbLByh5qUzwmD09Tp2wZtocWvl2jypcHdMnERITRt7ZSOWSQ/puuysc02w0nPZzCIDfXpTJjZKE+N/PSVjCJmnQyoZcjMmv1+2iZknTL5nWjyhfTL1MZei1xnPMbJt8kXnE6P5BTLVr9MUg6ha9eZfBP7mpBzxfFm3o/o7RDscCNiRZz8nMm3TF4cTG7qREu+C49vjErfCvba5HgrExiC8a4rGwC2qTGsXDRtTz2SI4HJE3C7QUzP2Zx8Td+SOG4jHFQfBBppKK0rLT/1u5Lz22SJ0vNR+wRL31Z2Le2Yoy/7/oMmPyAgoFsYM0Z+yuSb9aLp+fRftXtUO/9cJuNkWXSjwKb7zFcGlPYIx1u7Jl/OD9jjT0eZE2F6zMTiEQNBZTodEwDrcjQ3/6213XQ/DCsiGmtlYzMpYxmZr1VAWt4m6b7z+6dIO5XrlTRZxZ+STMZp5Nvvk22CprPI6gpFca63XivaMc6ZfFuoVhczLGnDs1C7qZRDThdlTHNh2MoGL4V4z9TJmTAOV23ux47BtpLHxOTrRr7Udkc/kIbDFG2XNfniT/UaJSafFStVNsdbUT9lvGVn0EKuo+4dQOtWNfm2SDmuc7bQnWp+QaAk3Ew40NCa9BnTuunkxbbqq91bzxVGNeKPvCqktDXh0mZ4AQEBAd3AmDHyaUg4c3QdsyFmY1N0p0x7BywGQjNzLdcvQOO9G6/HwOzpmnye1U8GpxIWT5eo2A0k+z2TB3EVJn2xqX7TzpxpPvvfgskvk+tIMfRJui/e9DhJY2+bSVplZ/LFNcjHXXsGqHIAAWosqpOQ4HhbQJoIOnYDpV8XvdcRK8gA9R1muWGb/qbSOpPxBei7Xguj949PbMS//PwhKY9Jk292vLUYuQbH1qo73rYTXa4jhZSkGn8yEZKiW5FGCcfb3rq8MaA60W/UIjCwvDd1RciSVupA7625fBuTb4p8BkCS37GcPJCfR2Hk6463NudqG0kh6iz+ls/ZJIZAen/FSl4ryHUCAgK6hDFj5FPnMxOTb9Pa26Lr6JFmir/15X2h79TbZZNyiAHIrsnXjXxNgqSwa2o9ieGaxXX95Un749wX7SMbD5ZrdtmQLqPXFtEir8/CwtmW8FMjP/1bdbx1MvnKSbFBkn695jzSsr9hgPXZGdh30imcPk3X1GNpx3hk9qgB6BtKld7rKMp2czV8t8JQjhW5jurUChQGZw95boAsKbli+WpjnkYUgTGWG9LpdZV/E6bVR8k52FCGqd/TjHyuG/kRY9Kqhuhp6pFszLfjBPWIoV6LnN+eYPLzvsnBxNs2u2uRH5t3tvK/TVGSxHHTN5L6Y8jXW+jeeX5dANDb0Hc192HyVbbeNSmhYUj1CU+CvsDkBwQEdBljxsiny8/qAATYjXeNMYn1wVbNZ2LyacxlqV6LMSfYQWFAqsglL3QgVQ2MhOcDWaHJ19up6uDrEcNHzjgYE3pqVt0vbbPb8dZk5Bf3sBYxLJoxEWcftY8hr7lMGxMY80J7rDL5rtCGqlG0M5NP+E7k6CZUVSY1rgmULU+jXlyXeo62gxqR45DIVyaL9p2PKeg7IeQ61NATYGDZRCpLa4lBT8sUzrpA+l652NbC8VZ3IrcZgbbVLfG7CHnpv+MtDYcJpMxyEW1G9kMQ772NyW8naUjO9J7aJ6B1MbkS/ZujL5FXa8zP+6yLf4fNO5t5GyioL42NcChWQ3UnZNp+dYWCnlOLdjH5cp8ln2s55DrtuGDygyY/ICCgWxgzRr46aGlMPjd3yDbDVu1HabK2ovOIsvjZLuba5NxH/7XlowOG2rlTNk4UYzJU5UG/GNAAs0EgIH6qAw5N5oo2EyccE3tq+O1HTsarDp6jpbdNFlxyHbppTZnhU7RXnxyZ8tjaQKN0mK7XxMJq12eZNKq2YCOKrIZZ4Rtgv4/jBfKzMh9XIcl1oswgNhj5UZTeY9OOt+pkLd+9lkzO0uhH9rbTmPJpfUW5NsdMSQpkeNfVfkBlytXmyHncTH7CC0kTlS5RY77ZTtCoRdpO1Or9EtF1TJI+zVi2nFPj8K/dOgBA7x/p7rom6WA7ISFDLTveNgWTX9dDg+ayOpWtp+nUyb3jXXU53sYJz5n8EF0nICCgWxgzRn7CCwMw1eTLHWERt1rtqOVyrHId2AdZwcSZBnabTKg0Tr5h0Dcx+bmDnMJApdcA7ViS8Fx/mmaxD8g+TL7L6KWrK0X7zOXYDBq1Lup3UWb4FH/L7RNOkc7JC/mbxtvu1Mj3vbeNWuHgp75PNIQmnWiORyPfFnXKxeRLcp2MyTetwDEtoow9hGaznR6Y0ChWxco2K8qZfLIqlU/qrXHy7RPGhJt3r03L0MtK6zGE0CRGby2XKKVEQM7kE5kh/UaacYLeeqQ5jqv+A/VapMgLSR+gGcvmd1wlWQbbqfyupRwXkygaRUcqnzzjutJPiWtotdN/exuR9p7Y5Trkb3V8ka5Xhsvxtp0QJr/k/QoICAjwxZgx8qkBqLJJADGqlEHaZnzpBlvxtzqYiCVyswEolytQLw2hmf4r61uV0HRkoGZMN6ILqRAtlyssHTlnY6ocspYyo7eI0iGfU/+mZcrXLNdli6CkaaVpGSpjJsIbOicvRcUN4vBqGmBFNptzrfq3KMvUhnqNSBmU8iS5jqdhu6fC6tvhuBn02YkN5Exx8oUOXXW8VZ1aAWBQMvLTY01XiB8UTHSx42wRDtbqbFsy2a/XzJPp2NHvqdF1TI63hX+CbPyrREorZ/Ij57dXF5p8Qz+rEy4g5+zXb+uzpRU4w0Q4jpO8L9AiDWXpm3GMWsTQU7PLddyOt+Y8pnMtpyafRNcJcp2AgIAuYcwY+W1iAKoxnMV5wG3YAUUn7Ao1qU4g1CVeU/lcGWRdITSpMSFFsDDIderZQFbIdfRBRNXp2+J+26LN6PGhSRsMgyc1YCPL4KmWa2MqVUlOXWJV7QO/y/CzRVCy5ZcdXu3P2GZ8mOoySamA1DCJLeXR6DouJ73xgNjyDqoTcHpn1E2ZBIOua/LFs84cbx1yncFWETpSPIcyzbR4/xrk2zUZqvYdb3UHfOocDOjvpElSUqyyIU9rluuQsJ+E8abX2YwT9NQjLbKZ+u3Vck2+yci3fz+0GPX+NjO2Xe0fe+vu7zYmk3Y64aLtarYT9NQizdGfplFLdunubdcEqPs96OdEP9Ry9FsBAQEBVTBmjPxEWn7WWRebNtXGAKudrLQZizLICt9ZE4NnmzSogwqFbdt308RFi+/Mi/aa5DpxwvMIGUwxlGk6RiYamlafSnzIwEplLaIuuuyvXoNNjuBi8GgEJddGYS7nv5YXk1/8TaN0uBxvXas/tkmjxtYTuY7pnKkd43HMt00KnbItRa6T72+h5IlY2k/kjrdEEqfe68F2jEaNpZOzRBibbiZfTAyEEUqdWG1Om85rNLDyqhGts+TyyqfIY3O8FZ9TEdxANuaFMayusKltFZthmfomtc+19RWqJl3cb/V4b6Mw8m3+UiaHYlp3s51OXlRHf6CYaKr31rZa6bomeh3mfAkamWOzKcJXQEBAQCcYM0Z+zOUBSDXEC+PdbojVI2Y1sGinqzJG+Y6RBgZPlKPqSOnuvCrSMHhyu9W/07KTfKAWpZhYZXorYrK0z5g86VGdTRPDQJz+Jnm4nIemjxN98KRFWaUJFmM74TKTr0p5KFwMoW1XY5ktNV2XWQ5ikwu49hOwSaFSuY75nemVmHz79Y0H2Ixe9Z5JhhM5FbHCuFa/KzHJFsaUZPAqaQfbCXrrNWkCIEK02iAkPmJzMzphTSxGoGtCa3SiTbgkszEZmyZn03wzLCID5LwgNiSJESlTGMOqEapF16lFmeOtft4VIYsWM9hO8pVLgBj5Sv/bU6vleU1MfjvhiLO8YmVVM/JjnjsU24gjdXbiu0LomtSYWP5axIxBJQICAgI6xZgx8tMl6/TvWsQ03aLokJc/s9nKmPTWC6mEbrAVf2sGezZImhi8QtupOoXZHW/T6B7yoJ86tOkTF53JFwai2QhsJwmR+DCr0d0gy9OuVQ1qlNAdJkV5xU6c6b82h1hbmarDXTFpsMt60rR2I1gYLOpYKcuQir/p5MWsyS+fGNp8P9QJYw8J1WeX63BnJI7xAFXGJaDeTynSC0knDKaYc31yztIJgSpdMYXQHGzH6K1HksRuoGXfS0HkAYpJG5WeCUdewM7kG418Ta4jp/vNYxsUNpxrq4n0/aY73gLFfcwlkSqTH5uj62g+J5Gy461DvmKbqA+0Ykzqqee/Rb+r9r+UybfJ7AqHYmWSxIvn0Vs3G/muVRJTu/Xrtb+rWkSwOCU4GrUohNAMCAjoGsaMkU/ZrLqB7RCd9pb+Fi66/tH8OB08exu1nO1zMf6qIaFuoGLKp4d3E0y+SZNP2NysgL56zajJpztTpu3O2kiMQK60vaEsxRdtpQZ7IRtxMfn0mgUzSVdDVGPB5tzqx+QrcboVo8XWRnXuJZ6FzfBW29YgkxfTUnnOSrpWPCztUyUGffXCgdPpeEsNqXG4ek8dyNVJLIVNrkPZWROTzznPJ3o2R3UgNehTI9/N5A8S410Y8sIIpQbkIPW1IOtsrbjYE+O+1Vu1a9RXzOTr2rizieseeD7/TXX8ph1vI9JHpPWXaPIJk+9afRSafJNcTWPyLVKewXaCSb2Fkd+MzZPifOUrMct12nFxvZp0KRFlZ3KdSPfHKDT5LkNertPF1rccE/f0GZsnGwEBAQGdYswY+e2sEwTcjrcA8MCaYpCkyfrqUeGU6dChq4ZEwXbZNfl6eDcHk08MhmY7leT09dRyBpCWrTL5+eBpY/LjgslnjCmGLTWCqG5Wbh/9Se9TL4njLsrLVw0MBlnLwlzZWMt2ksgGl5ROcbh0sOjiObkisdDHVbdo4fP2GlZP6HFTXaJ96sStj4Tq05hJMYlSmMnxyOS3Yo4Jhh1A1fspGU7S+13orLV9L3JNvizXMe14O5gZtxEr2mEy8nc1YykPUPhYUIdeG5PfiosdTz951YNS2WrELEA22AU27RzM/24nsvRNzaOGlBTvIiVS6HsnQmjWlSg06v2qRyx3bFavsQqTP7G3lv9utYUmXzXyC7mO6buNuUmTX5wDgGY7Th1vDeFTrZGLHJIc2QdBPml79um1ZTsKR0wbfwICAgI6xZgx8tOBLv27roRxAxQJiIXd683C4HHOpQ4XKImukw+EdgNQPaculVNbnzF5ctCoRehrRJoMQIo2Eyn1WVihVqJo8i2Md0/NvikTLMYrZZqB1JihEUTSc0UxsmyqON62DO5JYmfy9chAdkNDRKfQVigsk4Y+YlwbNfmJyGM38m0rDSZDPnfCVJl8IRtK3E564wGp0VvsGyCgfpu2jZkaNZZvqKbe50KTn/7ON9ljulxnVzPGhJ66tPo20NaNsF0tauTHqcFGYs6L94oy/vRdo0a+Ckm2l0+m3U7IgnkX9ad5dMdbsUIo+i8a3KCttK9RS5l8+m6aN8MqSAybNE9tr8bkG+Q66mSt2DxO/27FPRfvh4hylq845v0vR6POUIv0axHte3jtNmztbxmv499ueFS+H5JEUSoO/c1CxmW6F/UaQ72mh4cOCAgI6BRjxshvxUmxuYxhSdPmrCQZqcTBUjWopeg6pKdmTGe7KGxMvhgshREsWCdxTtQnBuO+ek1jCOnqhUuTLxnysczg2TT5fY1azti7pEtt4/0rrrmnVhhIgG64FG2UDZC8vUQ+1SKOxmq0C20PAWnyohp+IoSmdNjqhCyMySSxSbIyo5zL98K1u6WN/aeb7jg1+ZbnO17QipP8m1FXeyjkPReokR/lbLQaklA4hiaKwRtFumSjv9nGpJ6a9C2ZmHx6bDCT+AjQjaWabbPTLl25AJT+qJ0QIzU9ZtKhq5tXqUZ+nBTfp7oyoDL5tcgwaahF6KlH0netOcPWI8nnyOVQLDPbxbmBVoyJPYTJtzje5pvHcX3H2xpjWcjQBIzRFQp5w6k8apAhug5t02eufZhch1zXtl0tcs4+qelvtlGLGHrrkTGEZsrk6wRWQEBAQKcYM0b+IGGm1CVNlcVpEB08dYgVGtl2kkjMG6Abtr2kLmHAmpZRC4NNYZlq8gAr6gYUuU4W3aGvoRv5lMlXN8OyDSbpsq8en1tN10PYJN0YNrPkjbrchhYxJPIQmhZ2m97fJomeEecThjQkaO6sGLnj5Lsc3AQrqU9ezO0pi7dt0hdTJ271HC2/lST5uyDyiXMmA0nUN94db5sxL5h8RTZC0ZZY1CJdvVZEKlEZYBFRRt0oyaTJ39mMMbG3jogwvUa5TkuW6/QSg51G7bEZtnTlQpRBr1n0H3Syr/Y5VBjYaid59BnqbKo73hb1A4URXI8i6b4JMqK3HsmrEcq7KaQv4ih9Jo8+v01KK00WkuKbHWiZNflqRDUajUqdnEVR4XhLJZNiRVQNoZmvkFhWjTb3N/O/1W+9n0i1XJr8nYPp5MUYkz9OwwcHTX5AQEA3MWaMfBEFAdCZfC1WMwlbSWU0uSwj0QdqWkKbLJ2n8bb1sgRyB662fE7kFwMMZfao8S2uq6ce4dePbcDvVmyQrksMPuKKCq13WjENVyfaKBz4GOya/F6yg6dqBEkhOSUJRLE8LtrQUCYzdOxyGTSCtSxkDGIpu7hvrp01fWQALkdZaiCJZ5Ua1w4mX7l/MTFMaDa6UtNq89x4F3UV0XVsRkvqeFvsS6A1aY9Hq118g6pchxFr1haFp9BZy34WjJFdXrNnJGxAGhVGoH8wZfKpf8ugQa4zoMh1NCbfJNdRiAUq1xHpkiR9F3LSgEz2tQhh5O/BOMkn5TmTHyf5d0M3AANMch2mTcx7sn5qsG2eWAHpRFXW5Bfn3/Xd5VJautog+iAxiaNGvpXJb9hldukkhUt+TfT68mcpogYZSApbjH/1mukEzzU5T1eF6toKK1CQWPUaM64YBwQEBHSCMWnkqwagKYybQIsMSD1keVeV66gOo7QuMRCaBvdi91KzwSaYMWroUYNBsOHCSHjnf99ZtCnRnedywzz7g2rrRTvoLrn0zkhynXpUGKIOY0FiRxWjs2nQ5NsmX7TuwTjBhB7ZgFMjkqhslxYy1aHXF89CM44V/b+ATyg+9dp6SShMNQt9Junz0I0MbqiL7ngbJ1zbl2A8gWrUZSM/ySfrgN03Rch1BJMvJgbiexZx8oWGHBB7M+gs7cSeOmrEMBs0Ot7KrLc8qbc53pI+py1fl0gnjN5ixSzLm+ihQYWhLHyOepUJeMwznx3SP7LcyNcdb2mfJlYchU9J7tyuvvtKJCIXK91sJ5iU9QNikiH65Uk9uuOt7t9SkA4ak8/oZJlMuJRN+1rZsxKTHtukMSL3rBnLz3+QjCV0jFAnjOmqUM2wEzlHM3uv1dClAQEBAUPB2DHyJY1pqmkU7I3O5JvlOoLhjhOuRbKhlm07IUx+toQKmAd3myY/Z6SzOqlko0YiOaSGMsuNfDqYyNFmRDOza44LI5+OJZQBFrIEU5x3F5PPuXmgM20kI56JOboOHfBIG9uJFEkGoBsIFYyla7WG/rTJdVybYUlMPonSESdcelY0n8z+2x2XG7Xi+apGBo10oq4MyUx+IjkWjjdQ+YrqWE5lLXTyp8p1hONtmzzTWh79JZ0c1siygGnH2/5mO5VYEMPMFCd/QJHr9ChMfi7XiQupmvRNJIkk6WsqzDZdxRT3RDUGi51h0+PqKluScAy0YmnFQJXrSP4JpHyxOiHa0SQTCoqebDOsos+BFU0SKlNM1kS/PNHgeKtebxFCU//WRRSgmPSh4roAspIaF6FB1TrkHZSLsgeV50/HEvoerFy/Q0qXrgrVJcdkmr+vUQua/ICAgK5i7Bj57ULbLAxn0RmqnX+DMKeUORODXpwNdhRyGMrCkKhRI9/A5LtCJYr8gLz8TA2GVj7IpOknk3TyJjhioM7amBQMnxpCs2DXZQkNHXD76jSUo8LkW5amRRtlx1uzY7BariTjMUROMe4SamHV0vtgPycmLerzor4G9F6oTD5lYdO2i0kDyUOi5Gi65HrN6JwsrgsQzoKq0VJMfKhfyHhcvaeOqGq8dmqkilUoVTLVQxxv22RlrhFF2eQ3ja0uGYCEJRco2NfiffTS5CuO9sJg3DnYzr9xrnwr1PE2Z/LbxXeettEeXceWh0pRBlqJYuTLcp18fw/y/XHOsXOwjUm9tfw+CkPXKNeR4uTbX95mXETREWy9KHcSCaFpi5Of9+eGbynKHG/bCZfGA9WY39WMMaFRl75LAfreRWQyqPqF0H6GTgCuuvc5KV26KlTTZGFi0tjXiLLoOuPwgw8ICBgW1MuTjA6YQsLlRpZBjymwfbCd/92oF4bl9oG2lEc1Qif19mRllch1ypj8rK3TJjTyc4wu32dG+cSetG10oE+4HoJTjcyiGfmJHEJT5IkUfX5fo5az/KrUyKbjV3X3YhUCoNF1inJsYSCpoSbug3GXUDrZ0PT15hUDoDD8dg62lTzm/ILJF/eitxFh+6Cej96n3kaUx0ZX7ZgesgcB3bdAXFdal8FZm2zu0yZM/niU66TOpvJqDwBs3tnEXhN7sHbrAABYZSP1WirBSCOscPTUawDaKcNPHG8lvTaZqEZIja1mFs7xBdbMn+m2gZYW8pYa+TsH27kcDZBlQNsH2pjS1wDQxnf+8BQ+9/ojkWRt7HMZ+fneF+l5U2hQYQxrEwPibDrYiqWVkCKEphpdJ/3+koRjsJ0g4cDk3kb+THKfAeW+iz0FXP4L9BrnTJHlOjub6Tc7pa98x9viW9LlOvVs9YQz2UDP9zzJn0cLU/rqWmhNQH6mtAwXk79D6XModjbbmDOlD+u2DeLyO1fhojccCaCYNPY1armz+FgCY+wMAP8JoAbgW5zzi4ajnj+sfAG/fnQ9oojhpINm4yVLZubkl4ptAy387O41uPPpTZg6oYE3HDMfx+47w1r2qk39+PFdq/HQc9swubeGs46Yh9MOnWstf7Ad48aH1uG+VVtQjxhevGQGTjxwjtSfqHhm407c+NDz2NzfwqHzpuKUQ+ZIK1YmcM5x3+qteHzddkyb0MCL95uB6RN7nHkEHl+3HX9Y+QJacYLD95mG4/abIQUlMWHl+u245bEN2DbQxv6zJ+GUQ+ZKxKMJa7fuwq8eXodNO1tYMnsSXnXwHInUtF3Xvau24MHntqG3HuGYRdOxdM6U0mt6+oWduOWx9dg+0MaBe0/BiQfOtoYeFuhvtnHDg8/j8XU7sNfEBk48aDYO3nuqM0+ccPx2xQY8/Nw2TOqp4aVLZ+HAueXte3ZjP2598gW0E44j5k/DEfOnWd8hgcF2jN88tgFPvrAT86b14eVLZ2Hm5N7SunzRFSN/d3zkVK4jDOfUSKppRhDVnG4hURHETrAJ51K0BHFMgDL5qeOtMPINch1hdBtCJaZ50gFhzpS+/FwaYi67rkzX/ulzDsfpX/4tDt67eJESXjgZqqy8qK9Ri6TBiMp1ColPUVfePhLJRR086ZXQwVN1WpOj6+jpW5kWmvNyx1uNfVRC+KmafPpTNSSE4ScMhvy6uJ4GoA58NrkOz3bVLI711WvYkU0UdSY/ylcN6L4FgOy7YI2Tn7G0ashSihtuuAEf+tCHEMcx3vOe92jnWdqz/CeAswD0A3gH5/zu7Jzxe2WMzQDwvwAWA3gawJs555uzcx8D8G4AMYC/5pzfmB0/FsB3AUwAcB2AD/Eu6ItaRHtP79MLOwYxa0ovsDb9LQwilV1v1Fgmi0tDs+Y+MrXCCNWYfMLm1oGcCJjcW0ctKp7Dtl1tTJvQwECrmAnS+rf0t7B41sT8dy1bUWi2Ewy2E0zMJnc/umMVPvf6I3Opig+TL+94q0xuFWM4l+sQA3agLct1VE1+XZm0x5xj+2Aruw+1/J0UfaE1ug7p32xIyZR0CBLXsiWLRz+LDHLU8TZ9dpDuRcJTNnxCo5b3hbWoCKFJr5dKlzjn2DHYxpS+gsmnLH0/MdjpOP3spn7ZmZoY/Zv7m1IbKTbvbOGgubpxIfqvvkaERhRp/cJoBmOsBuBrAE4DsBrAnYyxazjnD7tz+mPrrhb+6eoHcdW9z6XhRwFc+tsncfJBs/HFN78IMyYVRi/nHD+7Zw3+9bpH8MKOJuZPn4Btu1r44e3P4q0vXoT/99pDFQf3GF//9RP4+i0rESccS+dMxqadLVx173M45eA5+Pwbj9QMrtue3Ih//NkDeHLDTkzIAil887dPYumcyfi3NxyhTSa27mrhi798DD+4/dk8Yl474dhrYgPvecUSvOtl+0mkgMDvV7yAf7vhUWlzz556hD950Xy878QlWDJ7svF+rd26C/9+4+P46T2rpTFv4YwJ+PtXH4Szj9pHMzzXbRvAv13/KH56zxrp+OTeOt5/4hK878T9tQlCf7ONb9zyBL752yelMXiviQ38xSuX4J0vNV/XXc9swqd/8QjuXbVFOv6ihdNx4ZkH44QlM7U8m3c28aVfPZ7fQ4FZk3vxoVOW4q0v3lebYHHO8Yv71+Jfr3sEa7cO5Pf9c9c/ilccMAv/fPZh2N9wD/+48gX8yy8exqPPb5eOv2zpTHzszENw+PxpWp41W3bhi798DD+7Z410zw+YMxkffNVS4z3nnOO6B57HRTc8glWbduXHe+oR3nTsAnz4tAOlfrBTDNnI3x0fOZDq4UVIOJXJt7G8nPOc8QNABhSOzf0tNGqsCLdI8lNNvsTkG7S4dHt0CjEYiknGktmTcMi8qXjXyxbja79eSdqYXs9Be0/BYfvIAwDdml7dDEsMirWIYQOhnQdbcW60MiYb5f3E6O0jLOmOQbt0iX5Q4oOlRn69phsfAq1sAtNsJ7j0t0/mzFWznWBqtrIhihesqFgBUWOWazsUk9+qr4SYAO3QVmvIakKsT3iEXKenrhv56oRhQk+t2BFTaVtfo1YYn80YffUaJvXUsLMZS7IAlbGr1Yrn1Y45JvfVccT8afm9yu9FHOOCCy7ATTfdhAULFuC4444DgD7IOBPAAdl/LwZwCYAXl3yvFwK4mXN+EWPswuz3RxljhwI4D8BhAPYB8CvG2IGc8zgr970AbkNq5J8B4HoMEc12ggk9ckxzAFi3bVBifMSzVldtUn0zy6UchVyH5RGp2opem7LkALBue9p3zJnai0fWIu9Ltu5qYdqEBtZtK767Gx58Hm9/yWIAwJZdTUyfMD0/J/xLBMs7saeOzWRzJfHu16jMMHPuHFRZeUl6I7/3uZGfa/ILVr7II4fqFJcvjPF8nwriv7Qz6x8m99Xzgb5g8hWZTCQ2wypWKm1otZM8Hr6oXxj5exHDTfTRrSyogEhLVzcHWjEm99VzI1+E0BQSGQF6L/qbcbZCUceTG1L9/FduXolPn3s4WnGCfnJ/6VU+snYblsyahBWZ5p4aOJuylaaNO2USiXOeTlAnywYpY4U/Vl+9hk39TaxcvwNPv7ATi2dNst67UYTjAazknD8JAIyxywGcA6Ar4/+vH1uPf/zpA1i/fRB/c+oB+MBJ+4Nz4H9uewafv+ExvObi3+HitxyN4xbPwMr1O/DJqx7ErU9uxFELp+Nb5x+HFy2cjv5mG//5qxX45m+fxAOrt+Jrbz0Gi2ZOxEPPbcXfXXEfHn1+O8550T746BkHY5/pExAnHP/9h6fw+Rsew1kX/w5f/tOj8ZL9Z+bG80/uXo2FMybg2+cvw0kHzUHCOW586Hl87rpH8aZv3Ir3n7g//ubUA1GPGH7xwFp8+hcPY+OOQfzZi/fFB07aH3Om9GL5M5tx6W+fxBdufAyX/fFpfPi0A/GmYxegFjHcs2oLvvjLx/CHlRsxf/oEXPT6I/DS/Wdh/fYB/OyeNfjxXatx5V2rcM6L5uOCk5di6ZzUUH1hxyD+63dP4rt/eBocwHtfmU4g+uo1/PGJF/C1W1biQ5ffi5/f9xw+fe7hmDdtAnYOtvHD25/Ff968As04wftP3B/vfNlizJzUg/tWb8Glv30S//7Lx/GL+9fi3990FA6fPw3NdoKr7lmD/7jpcTy/bQCvO2offPjUA7BoxkQsf2YzvvmbJ/D5G7LrOvVAvPHYBajXIjyzcSe+dNPjuOre5zBnSi/+9U+OwMkHz8ZAK8GvH12Pb//+KZx36W147ZHz8InXHIq9p/VhVzPGD25/Bl/5v5XYPtDCn714X7zvxCWYNbkXtz+1CZfcshKfvPohXHnXavzT6w7NJ1j3PLsZn7vuUdzx9CYcts9UfPHNR+GE/WZi484mfnzXalxyy0qc+eXf4YKTl+L9Jy1Bb72GR9Zuw7/f+BhufnQ9Fuw1ARe/5WicesgcbN3VwjX3Pof/+t2TOPurv8f5L12MD592IKb2NbBh+yC++Zsn8L1bnwEY8N5XLMGfHrcQPfUIf3xiI/77D0/jQ5ffix/c9iw++dpDccSCaeCc47YnN+ELNz6Ku5/dgoP3noLvvGMZjls8A0+9sBM/umMVrli+Cr+4fy0+csZBOO+4Rc4VojJ0g8nv+kfebCd47/eX44MnLwWQOjD1t+Jc8lIw+YWhTCEGubVbByQmSRhLG3cMotlOcNYRe+O6B57PykjzPLFhB17Y0cw77qkTGvkNvv7BtXlZRy6YhvtXb80Hsxd2pAP+uS/aB1fd+1zOCu7MJB2zp/Ti+g+9AgBwyS1P5MZtwnm+wtCoRVKkGyrXYVkQzZsfWYdnN/Vj+sT0Wp56YScA4Pu3PYMXLZiOrbtamJ5dpzAIlj+9GVP66lI855nZYJNwYKuyqiE5IRPKXJS7aWcTL+wYTPWuSvSfrbta+Pbvn8I7X7oYm/qb+f2ny9M0JKAwqDZm92+vSWkdgoX93zufxeHzp2nGRMI5vn/bMzh64XTNEbKVJLjrmc3YuLOJ/WZNwjGL9sK1DzyXl7F1V0vKM3dqah832wnWbx/Ml1D3nz0JT2zYiSRBbugITO6toxUn+N2KDXknKzC1r4Hntu7CLY+tT5/HxAaufP+p4ACuuHMVAOD+VVu1FQjq17CrFWPp3Mn42luPgYo77rgDS5cuxZIlSwAA5513Hu6///7pSrJzAHwvY9VvY4xNZ4zNQ8rS277XcwCclOW/DMAtAD6aHb+ccz4I4CnG2EoAxzPGngYwlXN+a1bW9wCciyEa+QOtGP3NOGcxxGrP9oEWnt82gP3nFMaPeH+e2LBTKqORyXXiOJ0wCeNv6oRGFsc93UCJyjB+81gavvai6x/FixZOzxm8OVP6cOVdqwGkGu5tAy1M7ZMnXn98YmP+95b+FqZNLM5HUUoGiMn4+09cgk9e/RBOPmh2lj79/miZ4t0Qk3l9x1bgv377lNQG8a3lYTKJPw9j6fHbntworRaq8pVaHiefGvnF5ESk37yzmUsnAOBVB8/B/z26HlP66rljM2AmRlIn3hpaMc+/NWHIb92V3ovJlhCa9YhB9Fb53hyZj9WU3np+j+sZI75LczQumHxxXZP76li9OWXS7lm1GUDK1ksSznaCXc0YT2/cieXPbMarD52Lzf3NbKwo+obntw5g5mTdyN/c38JgO5GYucFMtkhXa1Zv7gcAfOTH9+OMw/fGu16+n3b/RhnmA1hFfq9GSipIYIy9FykZgEWLFjkL3NrfwieufhCPPb8Nj6/bgaVzJuOnbzsWRy2cnqd5zyuW4IQlM3HBD+/GeZfehsPnT8P9q7dgcm8dnzn3cLz1+EX5uzmxp46PnXUIjtl3L/zDlffhrIt/h/1nT8J9q7di1uQefOvty3DqoXPzsmsRw3tesQQv2X8m/uqH9+Ct37oNR8yfhgfXbEU9ivCBk/bHX7/qgJz0qoHhtUfug5MOmoNP//xhfP2WJ3DdA2vRijnWbNmFw+dPxX+/4ziJAT5hyUycsGQmlj+9Cf963SP42E8fwDd/8wSiiOHJDTsxc1IP/t9rD8WfnbAoJ74WzZyIZYtn4G9OPRCX/vYJ/M9tz+Kqe9fg8H2mIU44Hlu3HZxznH3UPvi7Vx+EhTOK1cQzj5iHVx+2N/77D0/hCzc+hhO/cAuOXjgdDz23DTsG23jlgbPxL2cfJk0sj913Br755zPwy4eexyeuehDnfO0POHbfvfDY89uxdVcLRy2cjq++9WgsWzxDu647ntqEi65/BBf+9AFc8psnMG1CAw+s2YpGFOGDJy/FX568vyRV2u/l++GtL16Eb/zmCVxyyxP4v0fX48gF0/DQmm3YnrXv42cdgoNI33XigbPxygNm4ef3pxOpN1xyK45aOB07B9tYuX4HZk7qwb/+yRH40+MW5nbU7Cm9+MBJ++MNx87Hp3/xCL70q8fx47tXYVJPHY8+vx1Teuv4yBkHpZOjrN+Y2FPH+07cH+cdtwj/duOj+O4fn8Y19z6HxbMm4d5VW8A5xxuOSZn3faZPyNv35mUT8cZjFuCK5avw+Rsfw+u++nss23cvrN8+iGc39WPu1F5c9Poj8KZlRfuOXDAdRy6Yjne9bDE+efWD+PjPHsSOgTbed+L+zm/GhW4Y+V3/yNdu3YV7nt2CT1/7CO4jSzriAYuB6J+ufgjrtg3gK289GgByo73ZTvCey5bjoL1T4+ufXncont3Uj0PnpUy5MIxfc8Q++Pwbj8L7v39XztKd+Z+/AwAcOm8q9p7ahw++amne8T6+LmVufv33J2FzfxOv//of8Yv7n8OaLbvw+RseAwB88rWH4svnHZ23+fyXLMb6bYM44/C9yb0Abnl0PT577cOp/pcJI59h085BLL7wWlz8lqOzc0UeALj4/1YCAP77nccBSJeDVmQMBgBM7Knly/4i759963YAwPSJDZx91D748GkH5hMWMRDWI4aV/3oWPnnVg/gZWbKLE44TlszAS5bMwjH7TscPbn8W774sjXc9pbeePwuxkve56x/Flv4W5k3rw0ArwZ8uW4j/XZ6+HosvvBZ3feLUXCYxbUIDGzLjXkyGhKEjnBU/+pMHAKSTp9lTevGihdOxYt129Dfj/Jpff8x8AMAJS2bgtic3YdWmXfj8DX8EALzx2AX45GsPxf89ui6v4/3fvwsA8I6XLsbbTtg376w/d/2jAIBl++6Fuz5xKl7Y0cTpX/4t3vbt27HPtHQicNqhc7HXxAamTWhg1aZd+PNv34Hj90s7udcfPT9fxr/j6U14RxYO9RSiURTP5G3fvh17ZYbg1//sGEzIHPKA1MhMOHCEYVkQANasWYOFCxfmvxcsWAAAqlDT9F3OtxwX3+tczvlaAOCcr2WMzSFl3WYoq5X9rR7XUOX73zHYxsF7T8F+syYhYsBAZkQJlnfOlD788sOvxPdvfQb/c/sz4JzjLf+VNu8txy/C/Onps6qxgsk/dN5UHL1oOj50yoG4+t41aMWplINK+952wr64/alN+N6tz+B7tz6Db7wtnWBN6avj9cfMx0/vXoO//MFd+OMTG/HypbNw8VuOxprNu/BvN6Tvzblf+wM+csZBqT+BEl2nFSf5RPaAuVOwZNak/J0QE5AjF0zDnxw9Hz+7Z01u+AlD0+Sb88jz2zCxp4Z/POsQfOKqBwsjn3MpD5Aa7Xc9uxn9zRh3P7slP25l8rPvevXmXXjtV34PIF3xEn3VP/z4fjy7qR+feM0hAIC/etVSfPFNR2GvST3Ya1LxXbeTBK88cDZ++/gGzJjUg3tXbcG5X/sD/ufdL0bCC1mkmMyIdiyeOQkXnnkwvnTT41J0nXrE8LO/fCkSznNW/LktA9i4o4lZk3tx4kGz8bqj9sE/XHlfGppSiXQk/r7q3udw3+pUBtFTi/APZxyEmx9dj70m9uBVX7wF//DqgwCkY8enfv4wdgy08XdX3puTQgfOnYKPnnkwln3mV9Jkff32QewzfQImNGq4b/XWdDU2YliTTSIWzZyIJbMm4ckXduKWxzbgyuWr8N5XLsmf17+cczg+8uP7ccfTm3DH05vw9pfsK/n0jEKYKEZNb8Q5vxTApQCwbNkypx5pQk8ND6zegoUzJuLPT9gXbz5uoeTILnD4/Gn4xV+9HJ+7/lE89vx2fPDkpXj7SxZj9hSzxOH0w/bGofOm4lM/fxjbBlr4u9MOxJ+/ZF+rxv2wfabh53/1clx0/aN4bN12XHDyUrx52ULJeKaY3FvHv73xSJx66FxccstKzJrciwvPPBhnHr639RkuWzwDP/nAS3HjQ+vwnT88hUk9NbzzZfvhT46eb9XCz57Si4+/5lC878T98b0/Po17Vm1BLWI45ZA5OPfo+UYJClBMXk4/bG98/ZaVeOi5bXjdUfPwpmULccyivYx5AODVh+2NF+83E/9x02O4d9UWnHrIXLzuqHk48cDZVr358fvJ11WPGD586oH40+MW5qSair5GDX9z6oF4wzEL8J83r8CK9Ttw1hHz8Ppj5uPFBgkPkE70zz5qH5x6yBx8/9Zn8MuH12H+9Ak4/yX74tyj52f+TzrmTOnDV95yNF5/zHxc+psnUa8xvPHYBXjDMQukVUSKaRMb+Nc/OQLnHbcQF9+8Elv6m/iLVyzBm5YtsN7zKGI47/hFeM2R8/Cd3z+NWx5fjwPnTsYHT16K1x21j1HOBKRjxI/+4gT8/P61OPHA2cY0vuiGkd/1j3zfmZPwJ0fPx5XLV0nHxbKrGIiufaAwVAHgpAPn4OkX+rGlv4k7n96MXz2yDkBqsL/zZfvh1oxtE2xPLWKY3FvH3tP68ES2XEuZ/4vfkhrrz20p9FIAMGtyTy59uWL5alyxvLBzGorU46C9p+Bb5y+TjtUihu2DbfzX757CixZOzz+URi3CfavSgedbv3sSCS/Yqkj5mARbd+7R8/GFGx8rjvNiAy1VdtLfjDF/rwnYb9YkTMwmAv3NNgZbxUC497Q+7Bhs56H22kmCmZN68aFTD8Bdz2yWyqNOvqITFhIZMWnab/YkHDF/Wq4rfHZTfz6xmTu1F5t2NPN2A/ImPZRJE8vq//X2Zbjgh3fjkee2Sfdi0YyJ+NFfnID9Pnad5PwmOsq9p03A+m2D2LB9EHc9uzl/DkvnTNYdd+MEMyf3Srra57Lrec0R83Du0fPx9VtW5ufERPRFi6bj7S9ZjH++5iGpPBoWlRpeQrJx0N5TsP/syfmyvahXlQgJWCTv6kHbd+n1vXa7rCrf/6zJvbjhb14JAPinax7KtfFxzjanRtbe0/oyn5KiuMP2mYq3nbBvmq7GECeZ/K6nlq+KTOypZeyvLNd5xQGzpHbQDaJOP2xv/PTuNfh1xvY3aungAqQOdZffuQr3rtqCT1z1YC7BExCOt1RLPrG3ljPJQvIXMYZ3v3w/ycjPv4usOCGXacYJOAdefehcvO2EffHdPz6dT4ZEPbTPmDmpF0+sl1c7gKJ/yY387HsWfew19xUT/p56sWnUs5tS4kMY87WI5YPjnCl9eHbTprwt0yY08JbjF+LmR9bj9ifTPvjXj61HzHnebxTXW9yj95+4P35y12rJ16BRi3A0MUim9tXx/NZdWLNlF47fbwb+6XWHZe0XITRl+Z2Iv3/XM5vz/qynHuHgvadiQqOG3614AQDwm8fT53z4/Gk4/bC5eOqFnVi5oQiJ2dsowolS2VTC04hoZx0xD/et3opdrRiTeuu5tK9RY3j/SfvjIz++H+//n5RsOPtF++TP603HLsBHf3J/3vdt7m9ZjdZRgtUAFpLfCwA8Z0nrhZ56hFv+4WSvtFP6UsPLFwtnTNTGYxcm9dbx6XMP904PpETQaWRloAyMMZxx+N4SEeiDWZN78bfZZLQKFs6YiM+9/shKeaZNbOBT51S7D51e18IZE/HvbzqqUh7BtldlvE8+aA5OPmhOeUKCIxdMr/QOAel7+qFTD8CHTj3AO4+YwAwV3aAIuv6RA+mD3tmUJRJizNIdLNJ/o4ihXmOafKNYtssM0WxwFeVM6atr0XboEqxa35S+hpFZAKA5bZpAB19O2Pp6LZLiYqeafHMbhMEzUZkJcl5YXqrXOa1LsIj9zTgL+Ze2e2oW1YIaVqLuCUp59FyfEgllV2ag1iMmhbBL06TXM6WvkT8LrhgzdfV6iRPyhEZNGljF1vWMpXX1G4z8yb01bBto4bjP/io3KITzbep3UdSV66ANz1K0gT5/kV4YTOozoWWbmA91w7P8ugw7LAMpc79qVTEBXr16NZCy6hS279L1va7LJD3I/l3vUdYCS1ldwaSeev6OFAavmFimz2dXK85X6SjrkWrhk5wBFpjQI97xlvRdqY5l4j2pRUx7F6jhKG12lrWNxt8X4Shp+xu1Ih46NeRFuWKCIb5zcc3iOxtoxYiTYkI/oVHLoz2JPPR12ntaH7buUl+R4h0fIA6rojzaDiB951XiQNRJ391JvbVc3paGAc6kiHExqeI8/U+Nu2+a1IjdxNux7MQOpKzmhh2D2NzfxEzCwOWRlRTn6not0kLkCikU3aeA7kswa3IvXtjRlN6h3npEngWNIpbWLfqAfuWZRIxp/fK2gWI8Ykx+11w+DaMEdwI4gDG2H2OsB6nvzjUj3KaAgIAM3TDyh+Uj32uivswidOlqR08HhlrEtCg4qtErOl7Rl/bUC+NajFViYEnTFfWdm7Eu6kAhoBqnJlBDL6ZyHZK3nRkF4pzNyJ+khODipHy1jQkvBmOxTLSrFecaWQD58ta2gVbevnpuyMvltYncoXDKTc8NEgNJNZ5E1KDJvfU8xKnIJ55xTX3GSbFnQKPGFN+FwtipR5EUNlVooyf11vECjYuJdDkW2f0yhS9U3zNANzDlc8iv2ZQnbZ+9TPWcbYA/7rjjsGLFCjz11FNoNpu4/PLLAWCLkuwaAG9nKU4AsDWT4ri+12sAnJ/9fT6Aq8nx8xhjvYyx/ZA6896RlbedMXZCFs3n7SRPV9CosXyyk78jyjs80IqxaMZEHDh3srSULqRT7UQ29IQBSx2hRXoKIaOpR0wzbnvIJI+G7BV9C129EQYu7afqUXFdnFxXwdQrrLzyDQ62EnBefBMTemp53WLCTK9n5qQeKQoXbZt8renviVmceurUnm6GJRuogmWn7/jk3ka+oicmIuk94PmzE/IcESTA9owb9Yg4FCfSvQaAmZkBrkZK6qmlO/bGyrNPz8llCBJC3kk5u4eMYa+JPdjS35T6g956Ld9VWWLyM2JG6I3zMLvkmajfubhXpn7AFZ1oNIBz3gbwQQA3AngEwBWc84fcuQICAnYXhizX4Zy3GWPiI68B+E43PvLpBiO/jNWOGEMjirSOkTF5gBTL5IVxHeWsbo0xtDmXJBzSrpgOI8/UNhNokmY7kVgrAWEUFMarzmwDMvsEiIgNyNooD8gJLwZZMVi2sljgwogR8am/+4ensd+sSYhJLHF1gKWTBvV+DBKNLzWQWjEHz/KlDm/9Wbvle6NeLx3E68ozppuG1WvyoLtXprfsqUXYojCZb1pWkNA99Sg3kkTbTTGFxfWqRh9QvCcqIy/F6Ta8H3SXURFyFLAP8PV6HV/96ldx+umnI45jvOtd78L9998/wBh7PwBwzr+BNNLNWQBWIg2h+c7snOt7vQjAFYyxdwN4FsCbsjwPMcauQOqc2wZwQRZZBwA+gCKE5vXoQmQdCmEgZ+0AULwjwigbaMXY2WxrMadFrHeVyRd/02+PHhfY1SzYbfVdaNT0PkG0RS2rkZEIxTvOpBCMItwqZfILTb5yzZTJJyTAhEYtd+A1yXWo9nPetEITK66DXitQrEbRiWZPPbL3veT2TO6toRknGGzHuXylka1Siuz5Ph+1dBVNPOPCaRj5eXHu2vvXaqtkk3vrWLdtIL1m0jTx3rRjrj1X9RsUz7ZRL44Lh+FaxDChJ90dnK6siedEw3YCyIkZSqLQ+1QjIZkFdmQhSk3jmyls82gD5/w6pP1NQEDAKENX4uQPx0c+bYLB+cFiAAqjLIrSDlST6ygDpDqg0Y1f0oGRSwaWxOhaJhr56ZKND9S8g+2kYHCUnXo5MaJVxx3RPn131mKsM8ma8sEzG9BaMZfkOsJQ+v5tzwAA5kzpLWJnG5jt3FFPue7BfPk/kpizgVacOxRPaOhSDHH/asqEIk6Kc/WavFoTJ8W1ipCdAmJFqF5j2EaM/Cm9delZ1Q0DqyozAshAbHjOtlUXmtSUTzVAhUTCtZHQWWedhbPOOiv//YlPfEIY9wCALKrOBaa8tu+Vc74RwCmWPJ8F8FnD8eUAqok1K6CeMcCAbrxSQ2qXEioRELHSk4zJlx1hgfQbqhuOC1B2W53U9VrkOrsU2QsA9GpMfmr07mzLq1gRK6RtTds1N4prjhNIcp21LVUaUrSXrvh98c2F3rVRV5l8YeSn6ek72Gsw8tuEYMnryiRyOwfjnEnvyRh5kUrse8HIBCC9Xrk8Yaw/v3UAg9k+AxSTeuvYOdjOpIjK6klb3wsB0J+zup9Aet3Fc5yoGOziXgDpSoQs1ylWLgDD5MXB5NPxSGC0M/kBAQGjG6PWbd/kWZ5LORQDUDjBRkw3ANPj8nJsrskn8g8gZcfFYCMv40daWUOJW0qNyyYx8ntqMuNNo+toLGNLGKKKkV/SxmJJOItqEacDp1gRUI0ZutxtMlCF4R9Fsq69uI/6pCbOJlO9jUhjLJnletPBGvk104E1JvHO1eXzRZl8oxZFUrx1VYpj2tGSGVi3yDAQC9h8RmjZxmdikYyoOzmPR1AmV9VrTyCa6J3NWGPyI8aQJDqTTzc+oveeMfkd7idkgPru0++OPrM8TrticDaz9z6tp9isiV4XY0BvTXVElb8LqgOn38TEnoJRVg1lQPEhIP1ZjyrXqSlMfltm8rXVQYORT51phdErdoGmMe9Fvh4yMaeOt/m9izme2ag7DQPpqsHOZiwRGECxeqJKtdS20muOlH4qvVfEyG9SIz89NqEnkvobQcyIMvPIQESuk4dFzqoT8sKibymej2uiHxAQEFCGUWvkq06egN0AFJs5RSxlSdSOMZevZIZsv8bkC4O3iN9OIxrIcp3s3yEY+TTrYDvJl7pVJp8ux2ssY9Ns5NNdcs36b0j5WnG6aiEGLXVlIHVqzWJ0G94WmYUmg1O+3C2zfwOtbEDO2K7cyM/bZ75esexvOhfz4nk0alH+/D919mGYk4XrUu+Fi90btEi1aPtMCzb5xmVaHvK3Sa7DzPeQlwa92fNRr0W5fltd7RHf865mjP5mW2Py64LJj+UoOpTJVxVZ9P5T53H13acTcvpuCUkO/ZZTFptLrLysySesdr7CZma2heRQON6Kd6enHuXfHJUFqdes/p1r8puyJn8CkQXRa1ZJgGauySf3JnceTvI2inpExKh2HrlI1t2rk5qUkU+wTvGnEZjUkzL5icLki8lhrKziiDopzEx+sTo8wbCqIa6xry4HAYgzYqYhxpREd6BW+57c6XkMavIDAgJGN0atkd/XY9dDq53kIGHPapHMrNB8woAVAw1lf4EipjMAfPSMg/P80q6YYjXBQ5Zjg8wax1IITYF2kiAhm/WoRuqAjcknch2TQVnUVRgTg+04N1pUI58y+aomH5BZJ2rYCEOZ7hgMpAOlWKGgDs+qFlfzQUgKf4KGOgHIIniINojBmG4+ohreqqyKnqcDq3rJJt2sgBrL3FS2aeJFZVC03JMPrhbaa09Eo8bQassOqpHyvbSTBP3NGJN6lahGmQyvnZg1+YPt2GAAGlj5SDfMaKhc14qZaGcqv6POl1GhySf+KOI7VOPkF31Y5hCbfUdUwpYblHk4WvN1yUZ++vdA3oemx4URSzfQ623UdN8bol1XyxSrdtSnwRRtpieT1qTXK09qeuqpsS4kLT//4Mul+if21vOda+lTEDIfdRUH0PtudWdgej/qEcvDDVMUcp1IMv7FZCPvXw17F9AIQ0BxD03jWzDyAwIChoJRa+Q7mXxFakHZpEaNQVU5iHwiPNkuJQKGKC9OODjnOGyfqZKjGq1PDJyq0VgFKmOkGi2ACDEnh9ekEAZIT11vB7NMDGi768RAcsl1aASdMj25xIaTwZ9ONhISNagn01snJIZ4IcnSjfx8slHTJyJiAlKPGPEHsBvX6pWYIukAdida072wyXXohML03tCyaN6PnH6wlna8Id0F2izXEfeqnXD0D7YxoSHLdcQzb8WJNJES72OznUB97PQ92dUyT1QBO5MvIBm9dYZmnBAmP53YFSsU4jjLwiiamHy53DhJ0sktmYDrbLj5/a8pExAgNb5FGFqg6AdoGOMeQ/jJou9lUjogvQYhXxGTIhH0QFy7WL0o2g6pPGGsi3yLZ8kbEdEJP1OuK93wjOvfsDphy9pL09HQoOoKEVCsItH7DiAnZkQf1cqZ/PR8jTGNLClWDbI0kmxo9DveBgQEjF6MLSM/+1ftJAcIE1LGqtVrrNCLK8ZwoYO3s7z55lSGO/cezy3IafFtEgufOnpyyNFr9MgfIpa7fTJkMijVupptjsFW4Xir5pE0+QZD2GZIi8FJjUHfTnjuRJsv6yeFUyIzSJfS8hIy4dHbKJ4HletIxrNDg6+mdaXL763jPXPJdVwrAPTvyb31Ifl97Cmg0XU0A5DI7PpbOpNfI9+1LbqO2pfQ92QXWfHT3hfpmdkjLQGp462Q3wHpu59KiRRNPgoiQtWoqxP3VizHgKehRvMVA8vkkV5KD3G8lUNQChlPEY62UWPSdwvIsha1zFacZG1M5TNAYeTnexCw7Jt1xMlvxTzXrashg+mE3+YHofad6m8Tk099FEy7UooVlQbxGQEKYiaf6LSL3XrT+6T3AeoeBaoPU0BAQECnGLVGfr0WafGMi8grqgFYdJImVo0OarWIaUvMYqCIE545riptIQdyRs1gFL7myHklVyXKMBucdYnJTwdxE7sDEMdbE5Nv2U+A1kWlDs240OSr9VADqZzJL9pPNxKi+eIki+8dkY1wqDwmf8bqRC7WjLu8TBpek8gWaDKNyVcuxeZjoaYrJDn2e+t2vNXrME2UhrBQtEdBjpMv67XFfUujq8DoeCtgjK4TJ9pknb6rNOKMKVKVQCmTr0hwIpYSFfp1ZSy6MdpMdk3ZpDlOuCTnSx3LzZMhtT303RJtG2jF0kpizuQPxiSf+P6KAug1ma6XxskHipWBnJiJhFzHPKkRkXd2DrYxqaemfaemvjltP4mspE7wtTIi7Xg+pjCmvVdp+QWTT0NrCj8q1fHWJNcp6pJJCcn53ry7dUBAQIAXRq2RD+j68Fyuo3aSeTQUXcoB6JpoulET/beVLamrem2jJr9kxcAF1bCgTmYCSS7XMRvsNk1+2g57e9S62jHHYCvOBy1X9BfT6oWNyR8gG0rR+0k3+aLGgGrMmMKkUkOegi7J20IilkbYIOd/+BcvtqYrjCpoEMdUI4LeN1+5TmDxU9BdoFW9tngPtmcbt5kcb81/F07nLgdsOlFVHwd1inbtfQAUBuFASw4QINhd5EZ5lrdGYugbIuXUMwmTHHGKGZw8ze1hRKwmWOx+ZWMwyvCrMPmvqCw6gEyiJDve7sr3oijuRU9d3gtBMtYzpnznYDsPzUlB26xvQMbTyFslq3Z5iGBymBJBJrmOIKAa9UjZmA9yCE3lmdSYTkSJe2GSWdIdhwMCAgKqYlQb+ergKX5py51tefDUyiGH6rUIzba8PJqH0Mw0+Tb2lpbFGNPZYF8j3zLoUIYs4VyR6+jMNqDv3pi2DVke+0QklyzECXa14lwe5TJCTY631OCWNflFnHzaxDgprivf+IfolW2TqMF2TIw7uR0J2ZXXpj0u24lYlH3IvKl46f6zyHE5nUsKla80aRIf+2QDkN9z0c6h+HzsSeipRdpuqOqKybbMKVM1xmyhSWWHVPldUiObpBp5Xa6TlDD5prrbRL9u1OSTd1gYhVkSjaiIM7kO7R84F98Xl8oD5HfS5JCbSpeIkS+Yd7J7tAC9FdRYz/PWi0mU6ngr+i2q5a9HTFq50CY07QTbB9vGsMqmvSzS44VcxzWRE2nV4zSUskmuI6IcNSKWP1egmKTYHG9NTtwDysoyvf44CUZ+QEBA5xjVRr7NgVHTa5NO0syAygOk6iyWh9BMit1YKejgJxlsFr12GWzsMI3YwbkY8LK6bHIdo5FvZ4PFIcrk72oVGwkZNeMijrTh+mzRdWh0CnXQEmE+ewxMvm2CMtAqYpqr0XXasSzXya9VMrTk+6TJNCLzNdpWAFwrOdrEwFGeLbRnIPJT1IgRpUZgErItscmZaozRbsIW6lW1Eam0g64e6XKdwvgyvQuyjCQz8omMrBGZNfkifayeU66FOrUCkOQhxhCa5Look18jbasp/VxPLTJqwk3GsMy+0+9aTOjTBIKQKfyoIEUaihO53YKR77cy+WZNfi2bKJk0+Tb/CjnqmZvJF/LGOpGTpe2XVynFRM6Hya8Zxrd2MPIDAgKGgFFt5NscGG073jLmlq8AmSZfkevQEJqJslxM04k6bO3zN/KV38LZVGHyadhI3fFWRNexP0IXaywGkmY7xkAryTfZMRmXRWx4fRJlk0RQZ2hqbLcTnu8s3CAOeqphojH5rdg64aHsn7RJkYPJZ0p8HdFG/RmaDQSXU7Mm13FMDG36YJ+dk8cDaozlDquqXrtGpCYAtI2aapYNq1xOs3QCkEbfMT9vW+QaAZMeXkgvRKjf2KLJl5h8i1xH3bRPMMftzLBN89DropMO83WofaeNJbcZwwKqPElm8tP0+QpARsyIFQt1JVXsddCME2NfJ03qlb455ty4GZatDzNFtalFLN9EkULcGyGdEkiyTbny/jVW5DoR0755V3SdONYnWQEBAQG+GNVGvmqv23a8pUvGZVr5Ri3KDUo1uk47FiyzfVCgZekx1P0MM5vB0KMw+ZxT52A5T6HJt1+v6V6okhLhCCdYUHPUmOJvTd9qYUgFY1evyXpmIdehTtJxYtrxVpEnEYNLvS45lr/ZmNMNb/kabTIZXboFYzpah76BFs2v3D8rq6gVPy4RRSwPP1jo09Pf4pnZvgV5EzubkS/Xp7LU+XuhpLO9Z6ZjUd6/EIlKjeXGoeBq6SSxMPL18uoRQ7PNpeN0B2uTXEeOEGZup3odtD96+F9OJ/nle6QeU2Pvp9+6bPgPKhHR6IZn6r1LuB4hid4L0zXWoiJcb6mRb5Dr0PseRUybYFAnZMrkFzv8Fs9DHE/zmVYpZckTfW8Dkx8QEDAUjG4j32Jw2Zh8W3Qd2wCv7jTbzgxQtQSTJt/UPn/HW7MRSA3bVJPPjeeAVK6TDhh2Tb5LriPaIDS3QpNviqDjmtjYjB06wKuDlpDr5FrlhMYQNxvyzXYh11HvcyumTrlk+d6yygAYnKvFaoV8efpvD7mOTWamtsnUrnrNfI3jFfWI5QaSql0X99kmXaM/bay2a9LleucOnDulKM8w0Tb5hrSItCViMntN66hHdPXCzMoXxrXcBiE5VNvsIzlU30Vh2DImRy6iydqx3r6ctW/Lkxp6DwZJVB4hrUmv17zy1WwnxlVa+r1LkxfC5Jftdu3ygxH191lWTOu1SNHki+stVikBEic/ckTXMawoBE1+QEDAUDCqjXzVELMZr4NU32kYcNXl3+LvLHRaluCvf3QP7nhqk0GTTwcSu8HWsVzHIMkR2nWbzntXK0aNMWPEG5HUZbCLe5gb+Q5NvixNUA0pck7S5KfPpBFFUv40hCZyhztxrXTXT1s7xCH1smiUFMrmuow5tQxxWWUyGVd0HXUCpeYByuU6Jn3weIakyS9l8tV30zzhc8l16LlWbN4I7nVH7YMzDt+7KNuxqpOWmZWXFLKcWlRcjzD2GXl/2gqTL32DtahwbM/7jsLHxhhdhxrDUjvN1w4QI1+5NvUeqcdEVLSBppjoF/dISJbUsMd0UiOvNCBLn5ROptS+WayGat+YZfXMtSLTZ9i3Bcji5BNDPE4Ux1sh1yF7F6h9qEuqGJj8gICAoWBUG/maYSbiv6vLnSQEmWljGsnId+xe++ymfum4mk4tS3fKtFyIApvjLT3MeTr4s/ycnGdXM2UZfQx5UxtFvh1ZHGxXdB1ajFqkLWRlfr7GFGZKxJKmTD7XdMmuePIayx8nmrGjXkvpjre5Fl4+rk0G8omGnfVTb4PrnbE59gYbP0XEih2sNe26CMtok+tYQpfKLLtcn2zAchI+tjh+6LypWhtVmKRCbZXJ19j6on+LlY2tbEy+KudrUbmOZXIZWf7WjHzDTrDq79yZWJLr6CFDc7+EtszkM5bKYYqNvNSVQ5alj83RvTxWWTXHW8tqpMkhV7xrYodbvX6ZyRdyHeEUTkODiusxETOiPvovAEkKFBAQEFAVY8vIZ+bjufMXY1rkFUAdyHTHTE2HrZiANsPRFSrRBZvumx4Xch2b5GCgFWuRa9TyXKy8SKPKdUwTFdXpj0JiRQ1taWia/CJ2trivptClpntpc3ptxYkm4XD9bSrDJsvQHHTFJMR4383nJOOjrB2Gd2E8oxYVkgWV8RTGmXBCV5l8mzHrirpEbzudPLomukYj3/DuCVZXGI9iLwzVKK9FkUGuQ79BJmna02unE2a9XXbtum6cC/TUzRN/+jM2GfmCyW/rkr1iz4Os/mxFj0541AkNkPbxJv8j2fHW/Ixtq2XF9Yj7LpdNv2OT862onxriYpIiHIrbquMtMxMzafv19sXEqTcgICCgKka1kW+XtTgcbx2OqIAcftHm5Ghjb9W/NTmRfglG2JaPpcGTy3KdtO7i70KuY6/V5Z+Qy3WacoxxF/uvtgGwh6ws2hBJeVpxKs2hkXpSh2e7UaYeU6tpWaKg2NhLwOBQmxvXWrXGNvj4O5jqdkUnSttlL388Iors+nRxj3JpmGKlyZPz4ri8+Zhcn+RUagmhaZuYUZiMfOFcyoihl4bKldPRiY0pTn4t0qPrmB1vSRslWQttu/3dpJp827UV5RR/C2N8V5NsJiYkS0q0mIip8iRznzfQio0bHcpSSnMby0Jo2q6L/rbLdeToOjGnflSMaPIJk28z8g1EQ5DrBAQEDAV64OFRBCuTb4mTz5jZsLV1/jYpjCtcnhRjuuPoOspvQ+fOeRp1g2kDXsEM2Qz83Bj2kuukRn5fZuSbGHTmMIrkAVlvS72mhtDUnfEGWrE0ONrKEs9ObWMr4UR6RcqwrIKo7U7LFvpj92RAlXjJ5zIjTT3nmCTZJF+ByE9RYyyPj68y1DmT3yoiOUl5LXId9wqPXL/peWuP1/iu6nVTJ1VRT8x1DX2NxI03xclv1BjZaTY9VoQBLlYGbJIVX2O410OuYy4ni5Mf63Id1WZlTN79V91xXOQbbFuYfEN/DqgTOXXy5+43TdfUR+Q6nzn3cKmslhpdJ19difJz+TOJGGCx202rRsHxNiAgYCgY1Ua+Lp1IYd1MJNKdmgCHJp/J/6rH1WMiBrJAx9F1LKyyKbu8ciCfs7G9+WTIxYZneXcMyHKdsvZqW8I7GE4gHehoM1vtwqAR7X/nd+8EIO/eqxrbgP26WnFilPK4QmiqEFWXPcLi/tnPuSQ52jnLpCnIdVLUDEx+8b2kxmO+Z4TD8ZZZviPd70ep3/A89IAAJqNX91Whm/BFudGr71BbYwaJkjIx6R+MpeOC5RarYmq7TORG2hYY0wBAo64bnWl+7XKNZTZJ1BibREVEmylWLrixTYPtONe5q/lN1yLv9mvP4zpumgwePn8q3nbCvvnxRi3K5YYAtA3KhNxGMPL1iEkbqVEU71hRb2DyAwIChoJRLtcxG8O2EGSUHbaVY3IU1aPkmAxMpp3rNLqOxg47DDuXhMVq5Fvap9Zdi5imyTdBnmjY22Bqf10Z4PMwgpEe7tRmiOV1WQxsOrDaY4O7J2TFKoFer5xPbovpnIPItzr8qu0Kap0UERNRUrgWahJIn5vQfrtDaJrfi7KJusnXo2xVSC1X1eRHrJBsJAk05r1uYPIlOUwUWXdJbSWJtjOwq/2MMS0Mp4CYNNnCzZrKE+npakONMWOfKvLWmLz5l+lZtWJu7Ntt/Q9NWlPeC1tbXASGLeoVjaJj8hlpJRzrtg3kqzg2PyoAxtXIwOQHBAQMBaOaybc6SCmdZFOJuayizAHNh8nPORbKFlkmIWWwDZLmZX+7cWFjx5jluug5cV5shmXaur1Ipw92AnTgNTWnXpNDaFI208V4uyQBZqdc+V+9PDm9ZohbJlpqTW4plG4Q6u0oM5DM6cYrxL0Um6gB+vcsmHzVCJQdMc3HVSmH5nOSG3f2NMaVPxqaMkvfJrHthd2Z7mwtlxtRTb7hmmsRketklTciyuTLG2WpbVRXyWqMoc25NuG0afJ9yIZaJMfytxESgpih12uTU5ni5PusSpRF1srza6ts+ner9j35CkqSgDEhbyra8OzGfrz4X2/OJ0w1h5FvWjVqB8fbgICAIWB0M/mWztm+LTgzLunS1PKytfjXPJmQj2V1OwzHTuU6LibfNamwDpwW1ik9Jpe3U9HkmyC3QT5XLteRjXm6IZDOYtNrMLXDcV2Ga5aetSVKjvrb5Y9BzztDlzqMQDWbPYRmMPIB6rTKjax2LWL59+92vLUZg3J9NoNW8sspmTDSdtO/aXQdUW7MecG8i835okjaAVato15j0mRZHAOE461+zTZjOK03K0M54RNdRy07b2MUecl1hCMqZfKZ8nyLMt39Gf3GZbmO+9u3pfMhhOrk2aqyq3oUYePOJoAsUlPEpJUTrf58Zbk4Fpj8gICAoWBUG/nq6qxtoKJynTImnxoCNsPOZDurmzWp7TGVY4NqwLqYd5fDny3ecj4ZchiiQDqoCM2nrybf5rAqylORRtcpflPJgm2lxtb2mmE5W00vT2LMf6d1qfnNx+31mCYaonDlhMtA1CYf5vaOVxQOm2atOf2eVU2+vL+FxeB1SMZo/XIa90QQUAzEfKJCNPlZHp6QjZKINEj4cpokSnUysalFxTEgdUIXkwYrQaBeo2UFyhZxSusDLKtudCdXW1+VTvaLfkiNky85DxuYfBNpo+azBXDQ2uIIKpCvIip5GrkvRKLLdWosl1XRMuy+VKKO4nwrxMkPCAgYAka3ka+xnPTv4kczD6Fp2fHWsqujdfMiRzBMOdKODF/DTJ8cmI+rZaoGicnJOM2TDRZGY7j4u9AAM+NSeFFv8bdapm0zGoGGEl2nFdsjIblWDGh7XXp4OVSgfdJgm6CVMej5io7D8dY1abTt4lxWxniFeNbUudEqy1Cj61hIAdM3UJxTJ7Hub9KURz0m6mhJm2Gl5yTHW2JsC4dNUxz6ei2SiA3aziTRy1PbbHs/bf4IZffE9K3WqaTIQr4A6b2pRRGJoGR2vAX0zc7UtsnyLPt7Yfu2dCmOXrbtXsSGlSbq8wTYN92i5aTtKI4HJj8gIGAoGNVGvq6PNneEdMBzbaIEmEPJ6YObvU1O28vTLtO2Vc8ZHB1V9Nx5MyzXlZ7TB8IJDqmOWo7L8dZ0jjFZg+oa+F310GPGZ6wMoGXMvVqCOF/2CN1SKPNzdEm8VBTPrqQh4wR5FJrEsjGUQ85h2yjJHUKz3CD0+Q7lyE7pv4KVFbu8AopcRzLy0zyJYQWRGtAqO0x9F2yGo/Z+WhjmmuV785nkUE1+mVynFoHEyXcY64aO2eZ34dojw/aR2/rl9BrMZdXIc1QnZI0oyqOX0bQuAkOtI0TXCQgIGArGlpFPftIoZFSTb+pA6SEx8DNGjUYlvdHANLfJ1V57OuW3h+Foymd3ZjOnt5XnkuoA7tULF5Mvzpmi69QiPRKSzOTb2S4fuU6ZsWYzVMomB6aNy9Qybb4k6d/udySXbgUrH0AhGUmN4fRvk8Heozh4A3Z5n026k/5W6jfJdZTfZcwsdbxV38+EGIc18r3EmibfMklRGOaYrAwwyzXbDFX1MmhfSaEZ/YZ7pDL5rj091B1+afG07xAhPeW6SbtgvkeuzbDOO24hOS6XbYrcY3s/4oS8n2TSJAIb0HaYSQravuLvsONtQEDAUDCqjXybEWtDugzuNpSFhtzFkLtqdTXJ18i3GRZmCYi9ZWXLzmWOt+L+ljP5elvVMkz1NfIQfMWxFtkQyCWVMF2ZzYgGiLFjmTCVGioek7iydEXd5uOmdlQpfzzCJIegt0YYTmWhc20Gvz6pUwxgDybf9KRMqwXtpAgPmRv5ic7W10i0GZMvkGn1rFyuY38HTVFd6O8ycsHITNeYZ5z89L/ieuUQmlRFaAqqYLsudV8BU3tfe+Q8XPSGI0l+8+SHlme7d/T9FK+ivjmb3X/J9q62gyY/ICBgCBjVRr4rpJkJNWYOTyYxQ1GRNi/XY4k+L4sM6Wr362uW2epzyVDS8/K5sjj5ZrZZv27VYbGsvRS2CCZAMciZouuIjYzketx1+kQNsjFuvky+PhlQf2fptBbQOhzvT6mRbzasxivoplGmjaFUTbqU1/I+VZHAmR1v1d/2SSdtbyvmpL3pOfNmWMTIh2FvAAOrT2UjQv5j80mwrXjYrr2Te1SPIiLXsffdOZOf+VzEiWrkF/1L2USu7B4JMEN602/XiomaJk54vhphkz+5Vj1pe2kVQZMfEBAwFIzuOPnqYFqSPtV/68dNnb/E+mgGn6sO+zlf9lW1qZ3ssNPAtg+cgFt2lLbDbiCZ2meCiKUN6AO5ydGMhv5TNbauMIWA3VGa5hXnSo115W2y6f1t0W9ML6NNJiWvUJTda/uzG48wMaWS8e54h30cT13PylZumUZdzSfJdfKdlYlxqBjl9YhhoJXgIz++L48oY9Opq1px234CbtmfXi7No6+KuX+nZTIMiF15DRN6mk70EwlP/zORMoA5uo7tudKk9jC19rIAv82w5OhPuibflDatm4HSRLZN/IImPyAgYCgY3Ua+ysCU2D02uQ49ZJKyVAmF6WT5PddFrEx+xfqs7JijHaaB3xVZB1A1+XKdDcm5UcuZ5S+O0AgjNVWTT9vpMNpcGugy6UFel8XQKTOtXW2wGegueYgKkTUw+SnKNsPKJS4l372PrAOwO6VKx1Tj0CQfMxiIrTgpmPzsX86hOcrWIobntw3giuWrjW02rUKajE3aH5n6QLU8X61+2Y63gO4cbHW8JROAdpKAc26VAJrj5Fueq5RPjVmspwEMkxzDKqreb4i26z4jGpPv6Cvlay6Oh82wAgIChoJRLdepGofeFo/Z5KjnNLwc1XSDybcvl5cbFBTWHW8dF2C6F+VMvv28S5Oft4cyUyROvsshzrgi4yHXsclpyph9O2tpboNxQmZ4t9Qy1GfPFaLONYkYjyjT5DulbhYD0PXO6gaw3iYfTb6JmaVyHdFPmRxlyyRCRrlSzuSDaMPN12mbpHjLdZQ+1hYnPzfymbwBlLT6R4x84Z9g6qNc9ZiuyxTdiNYJlPcRdUPdtjFJ0uSLvQs0Tb79vZPkVKRlo1mTzxj7AmPsUcbY/YyxnzHGpo90mwICAmQMycgf7o9cM5bI36auL91N0G0oF7sKujpcwyCLcuPL1yyzyYPKpEbaOYtx7p6I6H+b4k/b8ujGstmQAmCMay6WnxlzO/AZ2XrLMjtth51N9/vts1pka18+0XA4SJcx9K7yAWDTpk047bTTcMABB+C0007D5s2bjekYY2cwxh5jjK1kjF1Ijs9gjN3EGFuR/bsXOfexLP1jjLHTyfFjGWMPZOcuZtnNZYz9LWPs4ez7v5kxtq/76qqDas1NG0OpGncKHx1+mVSvU02+SerRThKyUpMZtlyX65RJj0xSFGHIJh5yHdv76cvkl02MgGzDLov/TR8x8inL304SPU6+o39Rj9k2OVMnB8yQ3nRdptUY2/uRJIV+XnWGFjBNGkx1j6Edb28CcDjn/EgAjwP42Ai3JyAgQMFQmfzd+5F7GEjmZXt9sKvifAdQBzhX/X5mvhaPOh9MDYO7o0KbJt+l5zYNhENh8l3pxPAkM1MkTr7DWDBVmTtNO+QRNuWRi12nv8tYWtdkwHbOJXfyLUPgoosuwimnnIIVK1bglFNOwUUXXaSlYYzVAHwNwJkADgXwFsbYodnpCwHczDk/AMDN2W9k588DcBiAMwB8PSsHAC4B8F4AB2T/nZEdvwfAsuz7/zGAzzsvrgPkxrDFeLWxzekxvRzXcaDcoE3TlPcXJqO8HevRdTinDLD9e6RHzJOcYjIUJ6YVD9p+uWxb/+MrfTM63tYiq1ynj4TsTaPrZG3PnrHNWHfJ9NTzLsdbX02+KbqO2gbRB6dSI7luVSZUk+N9WuuSVj5HsZHPOf8l51xsBHAbgAUj2Z6AgAAdQzLyh/sjdzGiJtQic3QduQz5X8BglHnueKufc1ZtLcMWrx8wGxBlMhv3RISUk1VYrsl3nrbWywzHc7mOIeKGxMoZnoEp/KlaNyPGk1y2+12yDfzqEOsjD3FNFMr8NlzSLQC4+uqrcf755wMAzj//fFx11VWmZMcDWMk5f5Jz3gRwOYBzsnPnALgs+/syAOeS45dzzgc5508BWAngeMbYPABTOee38vSmfk/k4Zz/mnPen+UflkFeihpjcry1TM4AdXJvPl6FzTWVZavbZHy2DHHyN/e38mg4NgZYrcMouWOFocyVSQMtO/3bfD02GY8+0XX/VutWo+vQkL0RK/bLEG2n5ZlWROS6zc/Ydu3pb9t1qM+eyoqyvGr9gsnnNLqO3va0PK35xrpptlHO5FO8C8D1tpOMsfcyxpYzxpZv2LBhNzYrIGB8o5uOt+8C8L9dLE9Dma0ZMXN0HQoT86c7XDnaQJLqhmRJA/N2mn+7nDkppk1oYNPOpnXC4Svx6YYmn8I+6SiOt5JEOyZgYx6L8u3nyrTsvpO/sqg2jMn/msswHwfK32GR13Yv161bh3nz5gEA5s2bh/Xr15uSzQewivxeDeDF2d9zOedrAYBzvpYxNofkuU3JMx9AK/tbPa7i3XAM8p1C1jynx3xXo2yGvS0NrU+gzLBMy9bLNTHJrZjnenTxLr/pG7eipxaVas/pIZMOnRqbphUP+dsyX6N23PNbsm2GpaavRWloULr5Xtpn02fMrX2zqTkSMWC5Rn0Vz3y9Ln8Mmybf5AuRX68jTj5tM+fymCOtfI6wkc8Y+xWAvQ2nPs45vzpL83EAbQA/sJXDOb8UwKUAsGzZsjEzcwkIGOsoNfK79ZEzxt6LdMkfixYt6qixPgZYWRoTE6vmMIaeBAPA3Qa0pzFsY5FNdp3MbqcQRn6zHesZ4DYkTVIF03bxtvb6SoHS3/K/QMHk+z4n0zEXi25jyzQGrsIzoMilDYZzVibf8/6J+tdd/nH8rL0dd/z7BOncZz/7WXfjSJWGY2UDqy1PaVmMsbcBWAbgRGvhHX7/VPNs8vFwhVX18YUoM9jLpDOmMgDzZLoVJ2CsntVTnG/GibRXRVnYTpOMhDL5gv21yZJs7dflKum/2n4gJasfWhtZ0cYYXGLyaQhNsauxr+xGPW+9Rx79klpWWoYeHtgm6Ul3vJWNfJXJp7/FX41M1kQNe5nJH9noOpzzU13nGWPnA3gtgFO4ynoFBASMOEqN/G595J3M5NVOuMyErnkw+T5suamM4dTku1hkG5MPAINt8wDgr8lP/7Vp+9X2lUGkm9hTQz/Zzt2kMTWVScczl+HgYm1zrbN63lMmo5ZcJfqNj9bX5/2ce95ncdqhc/Ffb1+mnZ87dy7Wrl2LefPmYe3atZgzZ46hFKwGsJD8XgDguezvdYyxeRmLPw/A+pI8qyHLcGhZYIydCuDjAE7knA/arqtTJk8YmrJcRzfgXCFXbefTNPJvG1PrSlP22dMwi6I+3R/FXr5rtUHd6VlIXlTCw2bw099avVkmtVu37fNBYYwxHwGIITP5Ecvracep5MW+alHyjCUj35yGtrfsPpscZW2rIHQzLHFM1+TrE5KezMjnpMei7Vq3bRCD7Ri9dfeu5CMBxtgZAD6K9NvvL0sfEBCw+zHU6DriIz97OD5y3VgqDpjmExFjTkdVgHb+ZCMSbTLhMJKd4SmdVRdlWAwL47K/odC9JqZG/q6mmcn3nYjkDmIl0XXK2Ge17Kl9aftasd2gNw3Y9JmatOu2CBdAYZDY2urDoNvaZUpnShZZ5ERVHG8LKYH5/Nlnn43LLrsMAHDZZZfhnHPOMSW7E8ABjLH9GGM9SB1qr8nOXQPg/Ozv8wFcTY6fxxjrZYzth9TB9o5M2rOdMXZCFlXn7SIPY+xoAN9E+v0bdUNDhUmuY4pE0on8K81fYlCXyIBsdVOYQllqYSgVDburfFN0HTlOvt2QB+yrFTa5js0vxfY7LVPfCVuUN5Ey+Yww+bkm32y4u7579bzrevNJjaOs9Br0SaJ+79J/xSoEbYeLyRcQkc3ocEbr2LqrhavvfQ6jFF8FMAXATYyxexlj3xjpBgUEBMgYqib/qwB6kX7kAHAb5/z9Q25VBs0gKrE1GfMw0kqWwgGLbCaT67iKr2oMq79dDqUUB8ydgl8/tgFnHTGvcjukgTBnnPwMW6BMCpSe3XfmRDy/bQAXnnmwdNxWpgCVn7qYfBejJ+YrNgZewNehlispXY6xxTH5nMzSatmUMsztFbjwwgvx5je/Gd/+9rexaNEiXHnlleJUgzF2Hef8LM55mzH2QQA3AqgB+A7n/KEs3UUArmCMvRvAswDeBACc84cYY1cAeBip9O4CzrmYRX4AwHcBTECquxfa+y8AmAzgyuy+PMs5P9t9hdUg2NCyOPkmxr0sMovpuI8u3UeTX9YOVz2lEiJDWqoNjxXnVbUMG2Nvk6IkysfkY+Sbmfz03z5Jk686V6sTHvczlPsmv3zMdtxy/TStzTk3SfSVJl2TbzLy0/zc0feVhTgeKXDOl450GwICAtwYkpG/uz9y02DaW48w2E6jVjDWqVxHrcdlJA+9w9WZQPNxW1v2nTkRv/zwK7FoxkSv8uVzZCAUg1GZJt9Q4OuPno/3nrhEaWv678SeGp6+6DXacTmtfpAaE6ZrcMXJd8k2gHKpl4uh94VN2+xiFRt1/wkfAMycORM333yz6VSLc36W+ME5vw7AdWoizvlGAKeYCuCcfxaAJvznnC8HcLjhuFPK1w3km0YlPDeEZFmG652gf9uMfPm3mspMCqhluF8aU6x3l4Fpi75lalO+kiHi5HPdebWsjcKGtDHZqizcxXjnxwy7u4p0lMmPIiZJXpIhyXUsx9UNby39iEu2me+IbZlwtRM9FGrDpcnP/hSO2K6+ryz6WUBAQIAN3Yyu0314DKY9uZHvNo4E6HbytnJdZXTBxq/I5JuPHTh3inf5FBILKgajCpthCSxbPAMH7z1VOmbTrfr6GpQx+a5IKsUgnD1fuNlHW4hN38frkoe4jAX1XKwaUF2YbOxJEO9UwqljY3G+k7CTFGUGddkmW2p7TDDuUOswlPWNkuTyJGdUjclPJ0NV+jSbL4lviN4yTb7qHDyxpxh2VLmOa8dbExdhC5Vpc95N0+lpbNehlqHlIZPQWHG8VckTE5nS48XkByM/ICCgM4yp3sPUB4tO0tfIL3PQA9wGVneYfDszp8LUv5e2wLP9KsNmLc7IRBrKtujizZp8U01uf0zbQEvrNE3i7PXR8+YENldyU3Ibq0xlBPTU3Km9+MezDlbK9XuPxwvUjZIA1YDTjwnI7Li5/DJDzxR5Snu+ZcSCQX7iMqjLfIQikwFN7lOc6HId5+qeRQYX5d+Se8Jsun7TpEXU09uQo9ZQvws1Tr5LxpTWTdtlrt8nGpDpOL1q2zMW74cUulTIIBXyxKzJ15l8tf/uCUZ+QEBAhxjVTL7aJZr6WbHcGVmWU1UYJTEe0SJcbagKu1zHbrzSusudQ8tZO4BGgahenpvJVo4bZh2dXINbmiEMFXN5vo63vnDdE9ekkZ77zT+cLOmT5TKqtWdPRR41hrs1+aXRdayGnT2PLZ/G/lvabqrD9q3bdnk1tdFkQDPGwJhdruN6/21hSEU9ZY63xh1vjXr29HdD2WRKGMNC8mKTtxn7BCkt7dtoPjkPy4+775HP+5PvZpzom7VpqzWGFVMh16P3ODD5AQEB3cKY6j1MxmJu5HsyoKaBq5Ol7aFAH8SFoeJXX1kTXKdN0pEqBnCe1Glou40UqRwCeclaP+9yvC02yvIz5rTzFoPGyuRXqMO226h5siK3Z7wjl+vYQkPm74Se16XLNqUB7NFT5DzuMlx12MLAuhhrXyfdGmNoC7lOyURBKs/yXfmuipm/VcrWy+WpewjUqHN1Yp/wVNnx1ibdoWWWXYepbPVRR+T9FHKyfCdxpcA+EgZTnDEZ8LomP/QFAQEBnWFUM/kqaAcrxh1VrtPJ7q1aFkcR3WHyzQOwV9ss6XzPmzaMqVKemGi52mpzdPNto+28T3Qdm7Huu5OtL0zpmcGISdtmbkcVXf94hRqH3PbtmKPg0L/N91M9rL4ndaMR5k8KALYoLa40aiOV+i069VrE8igvGnvt7BMsaSxZfK7fFF1HldSJvNSfQG27kWAwtF1tv4uFZ3l6uSynL41lXBHX9ujz27X7qGrwqUxJwGzky3VN7htTw3RAQMAowqjuPXw2nREdp2k3TBNMOlOvQbuLxpdtmdhUsjk0YFn5fudcu4XK7fOrw7YyYM5f3eiODEZCkd59LZ1q8u3ts6f3ZXrdkp9KzdljkTOlIryiyjY7Jn62zaBM+W3pVDY2Ldf9W6vDY2JNf+ptsrdR1fsXmnz3dZnKt723mjFcEsdfa5f2zOR0xWZhiSbXKZPM2Df8omnMecruURlhRNN84zdPaMdUTX6fYUOr3mwlmqZUaxVpAgICAqpiVBv5KoxynWzEiHO9bhmrZihXG9wMGbl+rtM9vO2DqXsQU9Nb4TGgA2TZuoPVD5cRrp7yXaGwObrVo1SGkDOCpigbloHbVB5glyB0Y2N29T21PS7T4eB4K0MYSnECLbwiQFdP9Ly2FRQ5jfs+m5h83+drOm+VxpDGljmu2wzoGmN5rHmbJNAF34mBjyafSkzyiFeCiFHaT0N1pm0311VlldbUzxXnRMOU/JH6XN0TDFubbJp8NVwuYGbyRb2vPnQujlwwDfvPnmysOyAgIKAMo5oiULtEUz+bRydQdhu0wceJ1D0gDt34sst1TGkNLSgZsH19Cmw6U1cel5ykih7ed+MwoBh86xYDidaRn+pSdJ1O4CuVcK2QVLk/ezLEc2kniTE0pGty14njrQofzXT5qhQj33j6h1uTr+e31adG2kkMEWrSMpxNtNRrS1c+yaFSFdUPqqa0X9o1VmPy7e1TQdshTaws7S31fSCP3nYvXJuwaQENDASCmAwx6TrTH7On9OKDrzog9AUBAQEdY3Qb+R6DqXC8FXHRfbXeLsdbYwkOQ7wqrI63jgHD0BR7+Y57YBpMTAOVXJ6pHLuh7dOeKvdRddhztcce21s+btvJVj3eEbT31pLMYZgGuU4KuuuqKzRkFadMijJpmcnpsROWXHW41Vck9LRF+eay1LprUcrkm+U65W20TSbUnD6THEmTX8L8U+dVdSLnM1ErS2tdOdXyu8qDMY/rvVON/MF2sSmGuNeuSWQXeqKAgIBxjtFt5Cu/TQN1b75joEjjHghyVskRyWW373hrGfjV+lxOrxSu06YY2z5MpHaspOyyxFWix4jB0sXaljkRl69WeDenFPqk0b9wlfEd7yicMlNDXzOw82/H8I4aJrQqSuU6DjmG7bernmKXabvhW7pBlyLRoXXEQvLSgZFv8xUqc2I3GrpSP5P+a9qxmOZ/53fvxFMv7FTYe38j3/a8bSFPbddrLMPyDRs35hPPWDHgm+rOdzDHwA+ffkBAQLcwqo18FbQTFgOGui14qVOq0ZHOf0DsRgdsl+uUGxS2Y77nTQNolfJsAyTgv7xvq1PddCdPm/sOlJdXsGDuDXysbew+kV9pApE7YYeBHkDxzE0sL0CNZ0NeydCzlF9yn02afO0JezyrWsk7LDHylv4h/20woNM6UETX6WDvD43ssKT30e6bwnyKb7Lcsdh8fdWYfHv7bN+Yqx3W98c4nqT/qhNEEWKTosfgVBvkOQEBAd3CqHa89ens1G3ByweC8nrdRvLQO2Db4FLG5Bf5y9pgP2/W5KuMlnubdZrXVLa+eY6hhRXuo0jayMOl2uvumMmPzG23TTycZZUwhD55wzCfIg+haZHruDX59G/zHS37nk1Ma1VNPk1TrDjZy9CNbZX5pn/LkwNxn3Qdun8b1d9lk1ajXIfMujSjPmL4zT+chHXbBo3nraEwSwgc2gyX06z4WXZdJudhFaaVHtsmgycdNFtLK/o0+ozDKl5AQEC3MKqNfB+oTEipXMejA3UlGQ4mv2DSTIaKn4Hte14aCB11lLXBlMV2bzvZ8ZZC2NkiBJ3LdyGfaGiOt3Kesg1+hgIfx0R7XpEnDPQAleuYd3LNmfFSTb7FyC958GoYRFNZ9PfBe0/Bm5YtNOSR09okK+by7fWrTriJ2E+gRNdvgk4++Kardu8jBuw7cxL2nTkJgNsHoXNNvr19NumNmm7Z4hlaeT6rvqYQmnd+/FTMntJL2pAiN/Kl9hqbFxAQEFAZo9rI9+nrdCO/pEyvwc6eiHbqnYZbtA2SvsZ0J0a56RzPjzmLk9uQrzr4tdVWvlGuY6lfSLHEngjme5L9K/S/nm0r8ovJwXA43vqP2mGnWxn5CktJaEjzahFNZym/5HYbQ2g6jOEb/uaVxnJUx1t9ssKMf6f1+U0IhONtYmDyO9Pk+6UzMeym1QbbaquvTKbKKq1UhqcoVWQ5etF0/NsbjsSBc6do5an9gzuEZlExNfApTGE1RTu60RUFBASMb4wpTb4JPTV5g5HynU2FkWpPM9yafJVJcsl16CCSRxCqsGytwsWCW/OUsKSuY2l7/NOaIAa7fOMYR3m+sozhZfLl38Fs7xziucWW0JCqDIaCScai33uhwrQZVieO1bmRb2mvS0OulaUY9vS42AxLl8DYyxOn7Np196SjnMm3tx8wyXnM5RjdIyztqrICoKZjgGTgp2Wb85h3Wk6Pmd4dFWY5WOgxAgICuoOxb+RXZPJ9NM+mPrYYCIfeAduic/iy9kOLk0/KsaRXc5vymGrwXd63HbPhq289Gq88cDbmTu2zpik38t112CKJdALNCKrwlYUBXkYu1+EwhoYsQlL6s7wUZbfbvFmR8tvj+Rabdpkn9DbDHUj3CKCQWH8mHxehRl06dxtsqyQqe+0j16F69LIwpS7/AVfUIRXM8sMmI9R9h+x9gG3C4yJAfHbMNUfXKSeiAgICAnwwquU6PhSoauSX74pYXqZLStIVJt/CmPnq78ua4GTtPOuQz9OBNjtm2mG0CG1jze86ZsPx+83ASQfNKWmjXK5umMj1+Ubf6cTotzGineQd76DRdUyhIcXP8r0ebJM/NyvfMEQ/KZObmJAz+DYm32HMqqtONWZOmzP5XDfy/TT5fnnUw8Ywko4KXcw9YN8YrMozlogJz2/K6cvkVwQAXZplLC87Jd4vmjLvRoNcJyAgYIgY80x+rzIIl8t1ytO5lt+rxDx3tEL65YrxLkkOfOPkO6Pr6GWXlmdk4u1t1Q1oPb9pALQNal5GlLiHFk1+N6Iu+UK9/1WKDky+DLoZFjeEhiyi67jL6TS6zqSemnZMZ7LddQMemnxm/hso9gBRy1IRRWmc/E43w9Inp6VZrOlcEkCX07FanitKjqtcH7mOerTw/3CXXYacCKlwz6VJnndNAQEBAW6MaiPfx6BWjXxfWYYrmVuuU9qkUtiMBFPRZTt5muCSh/g695bmMaSzRtcxGQEV7qPP+KpOWNQsZUXYovJ0Ah85g2/e8Y5ck89t0XWY9K8NNklNJ463nWjy1ShALkNX/Y7UVSnbtdaidDKUcK6Fb+zM8ZZJ/+r12UkCU2hJ22qor5Nw2SXQ8y6fABu65Ytl29XYBDGBWzpnctGOsJwXEBDQJYxuuY4HqobQHCpT2o0OWGOQKsp1SicynnHyXcds55nhWFm7XKy/DyoxYh0ytt00rjthUYt2hAGeQty7NDSk/d52+t3b7vffnnYgGrUIR86fZihLLcNZtVR/LX9P7e1T25SoRr6lPiHXacd6CE0fCZ+rTRSiNbUorc+UyvU8XFIl0/my46ZybAa/M78jmYuI0dP6vZMAcNDcKbjo9UfgzMPn5cdCHxAQENAtjGoj36evUx3jhluWQbOrspSOyxQDiEnn3oGB7NSWdjBpME807JOFshj1tmPWHW+ryHWsEw21LnM6fTOs0qpL6wpjduco5DrImHz5fB6usMNvwmY4TpvQwPkvXWwprfokLpcVWeU6duZZk+vYJrKZ423K5FfrFwGDg2xJetc9dxnk2ipGiXzHlk8FPWsLw+mCm8nP+rYK5fjdc+C84xfJxzzqCAgICPDBKJfrlEONTlAaXhL+S6nG/MNgsbkGhU6Mct84/wJlkTh8Y+LnkxWLIVZ2zIYq7Jk1VOJuXAK3OYdWQZgYpBCPrQihaTYIy777TqMu+eTxcuYXmnzF2BeQ5DrKOY3JtzHdzB5C0y/gQLXJi6vMKka+LaqPlq/CMzb5HpXBudrhVYJct/ue+/T5wfM2ICBgaBjdRr5Hz1pdrpOX3lGbhsNWdIX1NGryy/THFZn8KisDrvButnKGuuOtT1JWMrCqh4dz+FTr6o6z9vgEYwyMIQ8NWVU3LtCpjMsnj48RqUbVcUlj1PK16DoOx9s/PrERjz2/3WDkl7fRd/KSb2pVIYKOq1xVv2+Lh19l0jGU5+oMoelRjm9YV1pnQEBAwHBgVBv5Pqhq5A+ViR+OTtmlJ/d1ei3LIyCF3/NIX6VdhW61nMmuchu9jChFBlE1uo5AN3a89VnJCPBHjQkZioEB9zS+fGVcVfT1ZWWbys0ZfQfTrl5jnKiafPeqxM5mXGkzLGu5JXlcDqYmKY9tx1u1rVY5UoW+vZNuult9u83HwVyns6SutCcgIGD8Yg808t3ph6zJH4Z+18mOO9Lb0H1Nvt9Ew9Ysb02+uxlOlOlgtWtUKrPd0078Lnw2zLGhG5OMPQ0RS0NDmna8LdsFlZZR5bgL+sTAfxJaK3lP03Pyb1WuY2PJd7WKTbOqrDawPI3ajs5WR4BqLH+ZfCfPV2rk0787YfIrZzGikXlX+3z37naGviAgIGBoGNVGvlcIzVrVOPl2g9qdL/23G2yP2nW7QtGZd1R0l++M8+9pcMt5aNke5Xiwo91eEclXEayMrSeT36X2SHV3lCeweAJRHhqyM6lMms5SdheMfB+Uxcmn753rHOAwdslkwHfyQ+GryRcTX6cm3zWp0CZqfvWW7Sw81D6lW/5WwunZh2wJq3wBAQHDiVFt5PtAZfLLUCUUGoUYP4eDyXcZqHSwLAZXf6PcB2XpfQfPfJD0iq7jVaQ3KjP5CmynuxM3v/rFdity056AGmNpCM3ExORXfDcVdOZ42wlLzJR/5fP0PVPLT1S5jqXLo6nU6DouiHxVHcYLXyI9Ya1mz1zmFNxpdJ2h9il5ftdH71GH8DHwIZRCTPyAgIDhxKg28n3G0qpG/lDZmuFgWJ1x8skgYNO0uvL4oCx0nux4K9qiD4S2Wk3NMT6HIdi1+T20vA4jGXu6k3E8MPkFIsaKzbA6iBrjglWm5TD0hsbky79Jjflfncp1pIlCBzfG5njbySqIi8kvW42xlVsu1xnayyDuq+nJV5HR2cKkGtOa+sbw7QcEBHQJo9rI90GnTH5VFI5zneWnUMcL19Kt2UB2l+99iZ4J5c2wPDJ5yXX86vZFVSbfypQPA4FexfgIknwdUZQy+dyxGVan8F0JGGqduXO9R+QVtU2+ch36TjuIdA0iqb6BVmb0Wt5J170zn+NZue722KRGpf3eME34OoXPqnHY+CogIGA4MaqNfC8mv6L41GcJtWqc+aHCFeOdDpa2ZXVbed2Cb3E2+7QTP4CqEJMvexSVMhawq82RUMWO9NE7jzfUopTJN8l1hvoedbTKMgSJj9VAJx+P+q5qm8sNG5PvOYHykC46JwAd9l+lO94O47vQmSOvvV9nShoTwoQ/ICBgqBjVRr4PRMc/qafmld4W5pHCuVTv3zRvuCNtGAaILjNaZUvRpkHKlUOX++wGI98xoKbn5d/2HW+58nvo6GT5PRB8BSJW7HirPt9OmHi5bIW97iCPD1THWxVUklN2ST4TBTX2vA/UHGUlOOU6rjj5JW0bKU2+y5AfStQrV7P2hMk8Y+zvGWOcMTZrpNsSEBAgoytG/vB95OU9IAPDl//0Rbj2r1/hVWI3IzB0i2lxdfSdGMi+l2gzPp35O2E+TccMb95QbqcrQhHgweQPow62yitX9k5t2rQJp512Gg444ACcdtpp2Lx5s6VOdgZj7DHG2ErG2IXk+AzG2E2MsRXZv3uRcx/L0j/GGDudHD+WMfZAdu5iptxMxtgbs+9/mf+V+iNihVxHNXC7HRLX5x3spMoyORlF2cTFqsmvUIYPiomz+bw4bpbjdb4aajfyndm8+3abVM8nd5V+ouz+0TRjFYyxhQBOA/DsSLclICBAx5CN/JH+yBkDzj16PhbPmuSdvjyNa4DybZk/fPW5heOtu7yhDnadwsZ2dbKhV1Wofg2axMHTmBuOJfLOwjSa81x00UU45ZRTsGLFCpxyyim46KKLTHlrAL4G4EwAhwJ4C2Ps0Oz0hQBu5pwfAODm7Dey8+cBOAzAGQC+npUDAJcAeC+AA7L/ziB1TQHw1wBur3yRnqhFDHEiHG+7W3Y3drytAh8DvVPHei6tBgz9CxtKEVV2vNXPdzhR71Kn0jXyJntX3SGN/Y6NYnwJwEcQgvoHBIxKdGPIHLaP3KezqxxJBuXsigm+kW06QdUBsZyVHn44o8xp0TP0NI1OAnk7UO5462cgDIeRX4nJLzl/9dVX4/zzzwcAnH/++bjqqqtMyY4HsJJz/iTnvAngcgDnZOfOAXBZ9vdlAM4lxy/nnA9yzp8CsBLA8YyxeQCmcs5v5akV+T2SBwA+DeDzAAZ8r7EqIsZw5V2rsfyZzWi1u/uAdpdcR0yofSLjlBXvI8WpwuTn777leCcwtdG3D+10FcKXZe9oBbMDuK6zICXs92m0gzF2NoA1nPP7PNK+lzG2nDG2fMOGDbuhdQEBAcAQjfzR8JFXHQ8KdqUzdGMgUBlvf4cvP6dM77j2nWjFK+cwT8RMA/lQdK/5TqKWm1Pqx2A53o0Bt4pRmO/HYDm/bt06zJs3DwAwb948rF+/3pRsPoBV5Pfq7BgAzOWcr03r4msBzCnJMz/7WyuLMXY0gIWc81+UXddQvn/K3m/ub1bKW1p2J/KzDnrNJNuMtmEJe1NFamPdpIoU0k25Trfzll9fp3V2ls8HnXQDeXvGsFyHMfYrxtiDhv/OAfBxAP/PpxzO+aWc82Wc82WzZ88e3kYHBATkqJclYIz9CsDehlMfB/CPAF7tUxHn/FIAlwLAsmXLvPrM4WDVhh6BYeidcqxYjt67seZRLTozAqzlVkpdDrV2U2s6cQx0wbbJkHq+DMOxCVXVS113+cfx5ct34geTe6Xjn/3sZ32LMNVYdmG2PMbjjLEI6SreO3wa1Mn3L0B1+P3NuErWUnQShaaTN7edWfm2aGBVpDZ2yU9RRjd8TOw73sowJXMZ8mWfYqd97O4wmKtUkUdyc6TpJETy7gTn/FTTccbYEQD2A3Bfdp0LANzNGDuec/78bmxiQECAA6VG/kh+5H76+WpldttRrxPE6g6WnmWKXGUh6HaHXsdlDKtnzBGCuttIlofQ9JPrqKsGwzmwVpPrcMw977N434lL8LEzD9HOz507F2vXrsW8efOwdu1azJkzx1AKVgNYSH4vAPBc9vc6xtg8zvnaTIqzviTP6uxv9fgUAIcDuCV7lnsDuIYxdjbnfLn/FZeDGuKD7S4b+ep70UEeH4hPvqdeHgWsYyOfNF7dQKsTDKWbcanxhisU5u4wjqvcVp/rGKtx8jnnD6BYBQRj7GkAyzjnL4xYowICAjR0LNfhnD/AOZ/DOV/MOV+M1Bg4ZnfP4qsPCBm70vFA0gUmXzPyfZn8TK5T8tR8Jw3WqBk+jmKVBjv/tJ1CTHxs1+Q9kRolm2HZnsHZZ5+Nyy67DABw2WWX4ZxzzjEluxPAAYyx/RhjPUgdaq/Jzl0D4Pzs7/MBXE2On8cY62WM7YfUwfaOTNKznTF2QhZV5+0Aruacb+WczyLf/20Aum7gq0i6/Hw6eTeHshmWz+Z9pSE0PZx31T7GjbQ8m4zQdrmuGmqOTqpb0cH0fEPraMQ3163VvLL7R9OYMFa0+QEBAaMXpUz+SGL6hJ7SNFW79aEanN0wWNsdGvkiWxkTVnmwqzCY+MgAtBQVVyo6QZnjrbbBkJ5iGFqVorPoOubjF154Id785jfj29/+NhYtWoQrr7xSnGowxq7jnJ/FOW8zxj4I4EYANQDf4Zw/lKW7CMAVjLF3I42I9SYA4Jw/xBi7AsDDANoALuCcC9r8AwC+C2ACgOuz/3YbntywM/+7mvFaDs1J3CtPB/VkJfsZ+SVMvlWTX9wbVRLYCYZiNJvaWGzm13GxwwqX8724t1VuidPxFu7+aqwhm+gHBASMMnTNyB+Oj/yDr1qKGZN68C+/eNiaZjg0+W4NZXG203E0UQwV30sQA035jpEdNasSTJduux/DGYM+ryOrYjQOmp20yJZn5syZuPnmm02nWpzzs8QPzvl1AK5TE3HONwI4xVQA5/yzADThf8bOH+5qL+f8JNf5bkH9dgQ6fey7a8db8UB9dujuRpz8oTixC9haIZ6Bs590XOZo/EbLIIgZm+O0CeIyq4bQDAgICOgWRvWOt32NGt718v2caYbDyK+ym2snUFk2f7lOlr7bmtYKyTvxk9gdA1mxGZZfevuOt37pqqBadJ2wRu9CN7TmFLsrTr54L3s9mPyy4q2TAKrJTzwb5oDtOhOtH9LT1Ycg1xnuTyDObk4Vp2uxglQlalGnm2EFuz8gIKBbGNVGvg8m9ZY7spng6ngn9djL7IYmf+YkOWqK77iReDL5laGFy7Anff0xqQ/mktn65mOiWZ1KKoYyuBcD6uhz2qvkeJtHUBqetox1dEOGQrG7HG8Fm+uzP0SnISYlTX4H90nNIdoxb+oE6bjoh5y72g7B8Xa4p7nbBtoAgCl9De887ThtlWvyosInTr4pSZjmBwQEdAtj1sg/eO8pAIB6h5squcbpEw/S4/h2U096+mFz8V9vX5b/9mWH8jaUpPcNT9nJpbzx2AV4+qLXYN60Cdq5CY10cjTQ6m4EFB+ISx7q8xnpzbDyPIHPM0JlqIf6uDp7NtVRZafecsfUck1+lRUPW3UL9pqAT7zmEHztz46RjouyXa10EREjPYE9+eA0KMzLls40njfdOkFcuPrWT519GH72ly/Nf+eOt4a0+RrISN+MgICAPRqj2vHWhf9930vwwo7Brpf79EWvcZ7vznbxDKcdOlf67YOcye9QszvcmD4xdZTu9m62PhD3sNPnM6Uv/RTmTO0tSVkdleQ6Xa99z0K3mXz1Wxkux1vxTdQ9NN1dsfu6cJsYY3jPK5Zox9UJhOlzd212N9Ka/BMPnI2nPndWJQM773sdz+/8ly6WfrMOVxeD2R8QENAtjFkjf9qEBqZNsC+3LpwxAas27ep6vSM5PomxtUyuU3VQ6VbIuOMW74V/POtgvPHYheWJhwn+m17JeMmSmfj3Nx2F1xwxz5nOFy9fOgu/X5mGjO6ILQ4jvRGjQZPfCfv6idccikUznsayffcqTdupHG+och1fCDWeSz7oIhpGioSgMD3DJbMnYUpvHf9w+kHaubedsC+e2LADf3nSUu86RsFlBgQEjHOMWbmOCw996nTc9OETjeeEQdupHGIkl1cLx1v/PN942zH4k6PnD0+DFDDG8N5X7o8Zk8pDn5rQjcnGUGJsv/HYBZjg8Meogv95z4sxN1sVqPKuBb9bN7oVwWn+9AlZvt2DpXMm41/OOdxLXtgp051Icp3q+X3fPS2evsGaHcqOtyOFiT11PPCp03M5D8Wk3jo+/8ajnMSSitxPyJHG5Wg/HLtvBwQEjC/skUb+pN46+hpmY22ojo2msevUQ+biS396VOWyPn3u4Tho7hTv9AtmTMja4N/4Mw6fhy/96YuqNq2rmDahgZ5ahP/32kOHvS7ve+Np0Uyf6D+od1iFnCefhAb4oNNJ0ZXvfwm+8pajNQN1pMwqeh3iHa7KeHe6423Vd034Rbh24HZ9h2UrFarhe+ohc/CKA2ZVauNogNvxNnzhAQEBw48xK9cZKZg653963aFYOGNi5bL+/IR98ecn7Oud/vK/OAF3P7ula5r3qRkrpU6IPnTKAfjCjY91pQ4g1SM//tkzESfcuedBN9DtJfLvv/vF+PWj6/GJqx7sWpmX/Nkx9l1EhX0TjIBhxT7TJ2Cf6brz+Ehhx2A7/1us1DVqrFKkKmobD2co1smZ/0pfPe03TJMRk4Nq8WpXe7e/df5x1Ro42hA+5YCAgBFCMPIzfO2tx3g5xY2kznLO1D6ccfjeXSvv7199EOZM6cVrj9xHOn7ByUtxwclLsfjCa7tWF+AROq+CXfKZcw/HQCvGZ659RDreqSbfhvnTJ+BtJ+zbVSP/TEX3T5EbQl2rLaAKRuq+n2KQiKThGjsLeF9lcvCOly7GLx9eh2MWTfdK/3evPhBzp/ZisJXg4bXbKst1xgs6XZUL8/uAgIBuYUzIdeZO7R2SbIJCsNcnHSiHyXzNkfNw+mEOA1ro4XdTD7w7xsgJPTW878T9R3RA/uafH4s3Hrugcr63nbCvMfKHeDzHLdYdHI9ZNB2vO2qfLF21a37L8Qvx5Q5lT1Wqmpzt+zC5N8y/Ba7/0Cvyv1+83wxjmrFoGJ144Gycesgc3P/Pr8YFJxcOneLdnF9xpYGXaPJPOXgO3v4SfeXwpUtn4emLXoM5U/u86pnYU8d7X7k/3nDsAsyfPgFvPX6RloYxhiMXTMOnzj7Mq8wHP3U6Tj9sbnnCUYjXHz0fsybrUbkKaaj+cv77m47CcYv3wt6Gex78cgICArqFMWFJ3HrhKR3nPXLBNOn3jEk9+OOFr8KcKd0PldhNXHXBy9CKq/X2bzthEa6+57lhatHw4PTD9saJB87Gj+9a3ZXyGGO4/kOvwIK9dAPpp3/5MiQJx8xJPXh3yU7KKj73+iO70r4yvOOl+yHheji+8YxD5k3FP7/uUMye0odXHihrs8fyDsGXvet44/HJvXV85S1H48X7zcDx/3qzlWGfNVl2cKd3wnRbvv2O7spe9pk+AX+48FXW89d88OXeZU3urWNyb0rAVH2iB+89BY8+v71iru7hPyyT/95GyqGZ4vG/ZP+ZuHL/l2rHAwICArqJMWHkV9l+nOL+f341egz69dGkxbXhyAXTK+f5zLlH4DPnHmE896mzD0O7YsiNxTMn4umN/ZXb4cIv/urlmKrsNCl8DFTDe9m+e2FDyV4It/z9Sdi6qyUdO2TeVGv6KGL4Z0920RdfecvROGDuZO14J+ZnTz3C+0/cf+iN2sPwjpdVm5QNFSM9dRArTr/7yMmYOVmPVvX7j56MKb3yd0QN+3e9fPFwNq8jvOtl++E/bnrcukv5/GxiPrNidK6f/eXLsLPZLk+4mzGxp45f/e2JRsLBhVMOmYs5Ux7Hu1+ur1QGBAQEVMGYMPI7hWpMDgULZkzAkxt2jvhGLp2iE2b4lx8+setxyQ+fP007VouYcROyH3+gnOlaPGtSV9rVCV596FzsasW5QRYw+nDl+1+C/qb/Dsx/c+qB2DEY40+P0/d6uOnDr8RDz23rZvNKYXPoX7CX3dH/1o+9yrgj9Ujjr085AH99ygHW83/1qqU4dN4UvMrgn+DChJ5a10LfdhtL5+iT/zLMntKLOz5+6jC0JiAgYLyBjcRy97Jly/jy5ctL05100knD3xhPtOIE2wfaUgz4NVt2YdWmfhy3eEbXdO3bBlpo1CJMsIQANaG/GWPHYHvUS5DGGx5+bhu2DbSwbN8ZXk7dNtxyyy2laRhjd3HOl3VcyW5EN7//gVaMe1dtwWH7TMt3LR4J3PbkRvTUIxyzqHyzq+HC2q0DeGbjThy/34wxS0Z0E3c/uxn1iHW0KjqaEL7/gIDxi6F+/3s0k99NNGqRtsnT/OkTKjvHlaGT1YeJPTVMHKVM1njGgXtPwY6B9pAM/AA3+ho1nLBE1zzvbhy3eMaIO//Om9aHedP8nGfHA0ZywhUQEBAwGjCqjXyfGUxAQMCeifD9BwSMX4TvPyBg6BgTITQDAgICAgICAgICAvwRjPyAgICAgICAgICAPQzByA8ICAgICAgICAj4/+3dTYhVZRzH8e8fTS17UXtjUkkFCVyludBqEdqrRG1aGEi2aNWml0UorloWERJBLxQRvVomJUJYaGvN6M3SScXKKUsjsGhV9LS4z9RVZybvnZk7z3P8fuBwz33uPff87hl/8DjnHKZhnORLkiRJDeMkX5IkSWoYJ/mSJElSwzjJlyRJkhrGSb4kSZLUMJFS6v1OI44D353BWy8BfhnnOGOttsy15QUzD+XKlNKl4/j5Y8b+F6W2vGDmodj/MtSWuba8YOahDNv/CZnkn6mI2JNSWjrROTpRW+ba8oKZzxY1HrPaMteWF8x8tqjxmNWWuba8YOZOebmOJEmS1DBO8iVJkqSGKX2S//xEB+hCbZlrywtmPlvUeMxqy1xbXjDz2aLGY1Zb5trygpk7UvQ1+ZIkSZI6V/pv8iVJkiR1yEm+JEmS1DBFTvIj4taI6I+IgxGxrsf7nhsRH0XEvoj4KiIeyOOzIuLDiDiQH2e2bbM+Z+2PiFvaxq+JiC/za09FROTxqRGxKY/vioh5Y5R9UkR8GhHbasgcETMiYnNE7M/He3kFmR/K/y72RsQbETGt9My1sf9dZ7f/9r969r/r7Pbf/p8upVTUAkwCDgELgCnA58CiHu6/D1iS1y8AvgEWAY8D6/L4OuCxvL4oZ5wKzM/ZJ+XXdgPLgQDeB27L4/cDz+b11cCmMcr+MPA6sC0/Lzoz8DJwX16fAswoOTMwGzgMnJufvwXcW3Lm2hbsv/0vNDP23/4X/DPG/tv/oXL3qjwdHMjlwPa25+uB9ROY5z3gJqAf6MtjfUD/UPmA7fk79AH728bvBp5rf09en0zrL6HFKHPOAXYAK9pKXmxm4MJcmDhlvOTMs4EjwKz8eduAm0vOXNti/7vOaf/HP7P9H+fF/ned0/6Pf+Yq+1/i5TqDB3LQQB7ruXyqZDGwC7g8pXQUID9elt82XN7Zef3U8ZO2SSn9BZwALh5l3I3AI8DfbWMlZ14AHAdeyqcYX4iI6SVnTin9ADwBfA8cBU6klD4oOXOF7H93NmL/xzWz/e8J+9+djdj/cc1ca/9LnOTHEGOp5yEizgfeAR5MKf020luHGEsjjI+0TVci4nbgWErpkzPdZJj99ywzrf+lLgGeSSktBv6gdaprOBOeOV9rdyetU29XANMjYs1Imwyz/14e59oU8f3t/2m57L/974Uivr/9Py2X/a+0/yVO8geAuW3P5wA/9jJARJxDq+CvpZS25OGfI6Ivv94HHMvjw+UdyOunjp+0TURMBi4Cfh1F5OuAOyLiW+BNYEVEvFp45gFgIKW0Kz/fTKv0JWe+ETicUjqeUvoT2AJcW3jm2tj/ztn/3mS2/+PP/nfO/vcmc5X9L3GS/zGwMCLmR8QUWjcfbO3VzvNdzi8C+1JKT7a9tBVYm9fX0rpWb3B8db4rej6wENidT9v8HhHL8mfec8o2g591F7Az5YuwupFSWp9SmpNSmkfreO1MKa0pPPNPwJGIuCoPrQS+LjkzrdN0yyLivLyvlcC+wjPXxv53yP7b/wax/x2y//Z/RP930f5ELMAqWne1HwI29Hjf19M6PfIF8FleVtG6LmoHcCA/zmrbZkPO2k++SzqPLwX25teehn//wvA04G3gIK27rBeMYf4b+O/Gm6IzA1cDe/KxfheYWUHmR4H9eX+v0LpzvujMtS32f1T57b/9r3qx/6PKb//t/0nL4AdLkiRJaogSL9eRJEmSNApO8iVJkqSGcZIvSZIkNYyTfEmSJKlhnORLkiRJDeMkX5IkSWoYJ/mSJElSw/wDxKRfXJotfwQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(1, 3, figsize=(13,4))\n", "axs[0].plot(t_grid[:limit], deputy_rel[:limit, 0])\n", "axs[0].hlines([ - box_size / 2, + box_size / 2], 0, t_grid[:limit][-1], 'k')\n", "axs[1].plot(t_grid[:limit], deputy_rel[:limit, 1])\n", "axs[1].hlines([ trailing - box_size / 2, trailing + box_size / 2], 0, t_grid[:limit][-1], 'k')\n", "axs[2].plot(t_grid[:limit], deputy_rel[:limit, 2])\n", "axs[2].hlines([hover - box_size / 2,hover + box_size / 2], 0, t_grid[:limit][-1], 'k');" ] }, { "cell_type": "markdown", "id": "499d5581", "metadata": {}, "source": [ "Thats all folks! " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }