{ "cells": [ { "cell_type": "markdown", "id": "894ad88d", "metadata": {}, "source": [ "(tut_neural_ode)=\n", "# Neural ODEs\n", "\n", "We here consider, check also [Neural Hamiltonian ODE](<./NeuralHamiltonianODEs.ipynb>) example, a generic system in the form:\n", "\n", "$$\n", "\\dot {\\mathbf x} = \\mathbf f(\\mathbf x, \\mathcal N_\\theta(\\mathbf x))\n", "$$\n", "\n", "whose solution is indicated with $\\mathbf x(t; x_0, \\theta)$ to explicitly denote the dependance on the initial conditions $\\mathbf x_0$ and the network parameters $\\theta$.\n", "We refer to these systems as Neural ODEs, a term that has been made popular in the paper,\n", "\n", "*Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud.* \"Neural ordinary differential equations.\" Advances in neural information processing systems 31 (2018).\n", "\n", "where it has been used to indicate a specific form of the above equation, when the state represented the neuronal activity of a Neural Network. We here depart from that terminology and use the term in general for any ODE with a right hand side containing an Artificial Neural Network. All the cases illustrated in the [Neural Hamiltonian ODE](<./NeuralHamiltonianODEs.ipynb>) example are, therefore, also to be considered as special cases of Neural ODEs.\n", "\n", "Whenever we have a Neural ODE, it is important to be able to define a training pipeline able to change the neural parameters $\\theta$ as to make some loss decrease. \n", "\n", "We indicate such a loss with $\\mathcal L(\\mathbf x(t; x_0, \\theta))$ and show in this example how to compute, using *heyoka*, its gradient, and hence how to setup a training pipeline for Neural ODEs." ] }, { "cell_type": "code", "execution_count": 1, "id": "7030234e", "metadata": {}, "outputs": [], "source": [ "# The usual main imports\n", "import heyoka as hy\n", "import numpy as np\n", "import time\n", "from scipy.integrate import solve_ivp\n", "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "6b65e0d7", "metadata": {}, "source": [ "The gradients we seek can be written as:\n", "\n", "$$\n", "\\begin{array}{l}\n", "\\frac{\\partial \\mathcal L}{\\partial \\mathbf x_0} = \\frac{\\partial \\mathbf x}{\\partial \\mathbf x_0} \\frac{\\partial \\mathcal L}{\\partial \\mathbf x}\\\\\n", "\\frac{\\partial \\mathcal L}{\\partial \\theta} = \\frac{\\partial \\mathbf x}{\\partial \\theta} \\frac{\\partial \\mathcal L}{\\partial \\mathbf x}\n", "\\end{array}\n", "$$\n", "\n", "In the expressions above we know the functional form of $\\mathcal L$ and hence its derivatives w.r.t. $\\mathbf x$, we thus need to compute the remaining terms, i.e. the ODE sensitivities:\n", "\n", "$$\n", "\\mathbf \\Phi = \\frac{\\partial \\mathbf x(t)}{\\partial \\mathbf x_0},\n", "$$ \n", "\n", "$$\n", "\\boldsymbol \\varphi = \\frac{\\partial \\mathbf x(t)}{\\partial \\boldsymbol \\theta}.\n", "$$\n", "\n", "```{note}\n", "\n", "The computation of the ODE sensitivities can be achieved following two methods: the variational equations and the adjoint method. Both methods compute the same quantities and we shall see how they are, ultimately, two version of the same reasoning leading to algorithms sharing a similar complexity, contrary to what sometimes believed / reported in the scientific literature.\n", "```\n", "\n", "For the sake of clarity we here consider a system in the simplified form:\n", "\n", "$$\n", "\\dot {\\mathbf x} = \\mathcal N_\\theta(\\mathbf x)\n", "$$\n", "\n", "the r.h.s. is a Feed Forward Neural Network and we use the *heyoka* factory function `ffnn()` to instantiate it:" ] }, { "cell_type": "code", "execution_count": 2, "id": "ffbb6866", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(p80 + (p32 * tanh((p64 + (p0 * x) + (p1 * y)))) + (p33 * tanh((p65 + (p2 * x) + (p3 * y)))) + (p34 * tanh((p66 + (p4 * x) + (p5 * y)))) + (p35 * tanh((p67 + (p6 * x) + (p7 * y)))) + (p36 * tanh((p68 + (p8 * x) + (p9 * y)))) + (p37 * tanh((p69 + (p10 * x) + (p11 * y)))) + (p38 * tanh((p70 + (p12 * x) + (p13 * y)))) + (p39 * tanh((p71 + (p14 * x) + (p15 * y)))) + (p40 * tanh((p72 + (p16 * x) + (p17 * y)))) + (p41 * tanh((p73 + (p18 * x) + (p19 * y)))) + (p42 * tanh((p74 + (p20 * x) + (p21 * y)))) + (p43 * tanh((p75 + (p22 * x) + (p23 * y)))) + (p44 * tanh((p76 + (p24 * x) + (p25 * y)))) + (p45 * tanh((p77 + (p26 * x) + (p27 * y)))) + (p46 * tanh((p78 + (p28 * x) + (p29 * y)))) + (p47 * tanh((p79 + (p30 * x) + (p31 * y))))), (p81 + (p48 * tanh((p64 + (p0 * x) + (p1 * y)))) + (p49 * tanh((p65 + (p2 * x) + (p3 * y)))) + (p50 * tanh((p66 + (p4 * x) + (p5 * y)))) + (p51 * tanh((p67 + (p6 * x) + (p7 * y)))) + (p52 * tanh((p68 + (p8 * x) + (p9 * y)))) + (p53 * tanh((p69 + (p10 * x) + (p11 * y)))) + (p54 * tanh((p70 + (p12 * x) + (p13 * y)))) + (p55 * tanh((p71 + (p14 * x) + (p15 * y)))) + (p56 * tanh((p72 + (p16 * x) + (p17 * y)))) + (p57 * tanh((p73 + (p18 * x) + (p19 * y)))) + (p58 * tanh((p74 + (p20 * x) + (p21 * y)))) + (p59 * tanh((p75 + (p22 * x) + (p23 * y)))) + (p60 * tanh((p76 + (p24 * x) + (p25 * y)))) + (p61 * tanh((p77 + (p26 * x) + (p27 * y)))) + (p62 * tanh((p78 + (p28 * x) + (p29 * y)))) + (p63 * tanh((p79 + (p30 * x) + (p31 * y)))))]\n" ] } ], "source": [ "# We create the symbols for the network inputs (only one in this frst simple case)\n", "state = hy.make_vars(\"x\", \"y\")\n", "\n", "# We define as nonlinearity a simple linear layer\n", "linear = lambda inp: inp\n", "\n", "# We call the factory to construct the FFNN:\n", "ffnn = hy.model.ffnn(inputs = state, nn_hidden = [16], n_out = 2, activations = [hy.tanh, linear])\n", "print(ffnn)" ] }, { "cell_type": "markdown", "id": "0212cbae", "metadata": {}, "source": [ "## The Variational Equations\n", "As derived already in the examples dedicated to the [variational equations](<./The variational equations.ipynb>) and to the [periodic orbits in the CR3BP](<./Periodic orbits in the CR3BP.ipynb>) the ODE sensitivities can be computed from the differential equations:\n", "\n", "$$\n", " \\frac{d\\mathbf \\Phi}{dt} = \\nabla_\\mathbf x \\mathcal N_\\theta(\\mathbf x) \\cdot \\mathbf \\Phi \\qquad (n,n) = (n,n) (n,n)\n", "$$\n", "\n", "and\n", "\n", "$$\n", "\\frac{d\\boldsymbol \\varphi}{dt} = \\nabla_\\mathbf x \\mathcal N_\\theta(\\mathbf x) \\cdot \\boldsymbol \\varphi + \\frac{\\partial \\mathcal N_\\theta(\\mathbf x)}{\\partial \\boldsymbol \\theta} \\qquad (n,N) = (n,n) (n,N) + (n,N) \n", "$$\n", "where we have reported also the dimensions of the various terms for clarity: $n$ is the system dimension (2 in our case) and $N$ the number of parameters (87 in our case).\n", "\n", "Now this may all sound very complicated, but *heyoka* simplifies everything for you, so that the code looks like:" ] }, { "cell_type": "code", "execution_count": 3, "id": "97fd73a8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of dNdtheta: (2, 82)\n", "Shape of dNdx: (2, 2)\n" ] } ], "source": [ "# Parametes\n", "dNdtheta = hy.diff_tensors(ffnn, hy.diff_args.params)\n", "dNdtheta = dNdtheta.jacobian\n", "print(\"Shape of dNdtheta:\", dNdtheta.shape)\n", "\n", "# Variables\n", "dNdx = hy.diff_tensors(ffnn, hy.diff_args.vars)\n", "dNdx= dNdx.jacobian\n", "print(\"Shape of dNdx:\", dNdx.shape)" ] }, { "cell_type": "markdown", "id": "432af8e4", "metadata": {}, "source": [ "To assemble the differential equation we must now give names to all the symbolic variables of all the elements in $\\mathbf \\Phi$ and $\\mathbf p$." ] }, { "cell_type": "code", "execution_count": 4, "id": "d178ee0a", "metadata": {}, "outputs": [], "source": [ "# We define the symbols for phi\n", "symbols_phi = []\n", "for i in range(dNdtheta.shape[0]):\n", " for j in range(dNdtheta.shape[0]):\n", " # Here we define the symbol for the variations\n", " symbols_phi.append(\"phi_\"+str(i)+str(j)) \n", "phi = np.array(hy.make_vars(*symbols_phi)).reshape((dNdtheta.shape[0], dNdtheta.shape[0]))\n", "\n", "# We define the symbols for varphi\n", "symbols_varphi = []\n", "for i in range(dNdtheta.shape[0]):\n", " for j in range(dNdtheta.shape[1]):\n", " # Here we define the symbol for the variations\n", " symbols_varphi.append(\"varphi_\"+str(i)+str(j)) \n", "varphi = np.array(hy.make_vars(*symbols_varphi)).reshape((dNdtheta.shape[0], dNdtheta.shape[1]))" ] }, { "cell_type": "markdown", "id": "5fb179fc", "metadata": {}, "source": [ "We are now ready to finally assemble the expressions for the right hand side of all the variational equations. This can be elegantly done using the following two lines:" ] }, { "cell_type": "code", "execution_count": 5, "id": "6abcc895", "metadata": {}, "outputs": [], "source": [ "# The (variational) equations of motion in matrix form\n", "dphidt = dNdx@phi\n", "dvarphidt = dNdx@varphi + dNdtheta" ] }, { "cell_type": "markdown", "id": "7683ef5d", "metadata": {}, "source": [ "We now assemble a Taylor integrator using the computed expressions for the dynamics. We need to repack everything in tuples (lhs, rhs) where lhs is the expression for the variable corresponding to that ODE (e.g., lhs will be $x$ for the rhs representing $\\frac{dx}{dt}$):" ] }, { "cell_type": "code", "execution_count": 6, "id": "c41cb040", "metadata": {}, "outputs": [], "source": [ "dyn = []\n", "# The \\dot x = ffnn\n", "for lhs, rhs in zip(state,ffnn):\n", " dyn.append((lhs, rhs))\n", "# The variational equations for x0\n", "for lhs, rhs in zip(phi.flatten(),dphidt.flatten()):\n", " dyn.append((lhs, rhs))\n", "# The variational equations for the thetas\n", "for lhs, rhs in zip(varphi.flatten(),dvarphidt.flatten()):\n", " dyn.append((lhs, rhs))\n", " \n", "# These are the initial conditions on the variational equations (the identity matrix) and zeros \n", "ic_var = np.eye(len(state)).flatten().tolist() + [0.] * len(symbols_varphi)" ] }, { "cell_type": "markdown", "id": "1b42e793", "metadata": {}, "source": [ "## Performance test\n", "Let us profile the speed of Taylor integration in the context of Neural ODE vs the {py:mod}`scipy.integrate` counterpart, used in most existsing tools that provide some easy access to some version of Neural ODEs.\n", "\n", "We start with setting up the Taylor Integration. We create random weights and biases for the `ffnn`. We also set a very high tolerance as to match what is commonly done in the context of ML work on Neural ODEs. (This test can be repeated at dfferent tolerances and will mostly allow for a similar conclusion).\n", "\n", "```{note}\n", "\n", "For medium size networks already, the use of the ``compact_mode`` kwarg is essential as else the triggered LLVM compilation may take a long time.\n", "```" ] }, { "cell_type": "markdown", "id": "b9128890", "metadata": {}, "source": [ "### Taylor Integrator" ] }, { "cell_type": "code", "execution_count": 7, "id": "74f3957d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--- 0.37739133834838867 seconds --- to build (jit) the Taylor integrator\n" ] } ], "source": [ "start_time = time.time()\n", "ta = hy.taylor_adaptive(\n", " # The ODEs.\n", " dyn,\n", " # The initial conditions.\n", " [0.1, -0.1] + ic_var,\n", " # Operate in compact mode.\n", " compact_mode = True,\n", " # Define the tolerance\n", " tol = 1e-4\n", ")\n", "print(\"--- %s seconds --- to build (jit) the Taylor integrator\" % (time.time() - start_time))" ] }, { "cell_type": "markdown", "id": "e27827f8", "metadata": {}, "source": [ "For this test case we create random weights and biases and we perform the integrtion for a time $t_f=1$." ] }, { "cell_type": "code", "execution_count": 8, "id": "9f2ecbc6", "metadata": {}, "outputs": [], "source": [ "# Lets define the random weigths / biases\n", "n_pars = len(ta.pars)\n", "nn_wb = 0.5 - np.random.random(n_pars)\n", "\n", "# And assign them to the Taylor adaptive integrator\n", "ta.pars[:] = nn_wb\n", "\n", "# We will perform our numerical interation for a fixed final time.\n", "tf = 1." ] }, { "cell_type": "markdown", "id": "9f1022e8", "metadata": {}, "source": [ "We now set the initial conditions (thay were already set upon construction, but we here explicitly reset them) and perform the integration. We do this two times, one for the purpose of profiling and one to produce a plot, and hence compute intermediate states." ] }, { "cell_type": "code", "execution_count": 9, "id": "f42d3a50", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--- 0.00022840499877929688 seconds --- to propagate using the Taylor scheme\n" ] } ], "source": [ "ta.state[:] = [0.1, -0.1] + ic_var\n", "ta.time=0.\n", "\n", "# For profiling\n", "start_time = time.time()\n", "ta.propagate_until(tf)\n", "print(\"--- %s seconds --- to propagate using the Taylor scheme\" % (time.time() - start_time))\n", "\n", "# For plotting\n", "ta.state[:] = [0.1, -0.1] + ic_var\n", "ta.time=0.\n", "t_span = np.linspace(0,tf,100)\n", "sol_t = ta.propagate_grid(t_span)" ] }, { "cell_type": "markdown", "id": "5e03f35a", "metadata": {}, "source": [ "```{note}\n", "\n", "This is the timing that corresponds to the evaluation of all gradients (ODEs sensitivities) necessary to train the neuralODE on this one point batch. Larger batches will require linearly more time and thus benefit greatly from the batch version of the Taylor Adaptive integrator, leveraging SIMD instructions.\n", "\n", "```" ] }, { "cell_type": "code", "execution_count": 10, "id": "745cf718", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHFCAYAAADi7703AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxbdb3//zzZ91mTWTp795bSnRZQFNlE8AKK4nIRcEEEvSDX71V+96og94qKelkEBGURFeQiAqLIogIqFGgLBaF7Z9+S2bOv5/P74ySZZCYznbbTzkz7eT4eeczkk0/O+ZzkJOeV96oIIQQSiUQikUgkkoLoZnoBEolEIpFIJLMZKZYkEolEIpFIJkGKJYlEIpFIJJJJkGJJIpFIJBKJZBKkWJJIJBKJRCKZBCmWJBKJRCKRSCZBiiWJRCKRSCSSSZBiSSKRSCQSiWQSpFiSSCQSiUQimQQpliSzFkVRpnR78cUXefHFF1EUhd/+9rczvWxeeeUVrr/+eoaHhw96G08//TTXX3/9tK1ppmltbUVRFB544IGDev53v/tdnnjiiXHjmff9xRdfPKT1HQqnnXYaV1xxBQANDQ1TOmcP9nUoxKWXXkpDQ8O0bW9/+3I4HAf13O3bt3P99dfT2to6vYs6jNx5550F36tDPZ+nyimnnMI111xzWPchmRqGmV6ARDIRmzZtyrt/44038sILL/DXv/41b3zZsmW88cYbR3Jpk/LKK69www03cOmll1JcXHxQ23j66ae54447jirBdCh897vf5cILL+T888/PG1+zZg2bNm1i2bJlM7KuJ598kpdffpkHH3wQgMcff5xYLJZ9/Oc//zn33nsvzzzzDEVFRdnx+fPnH/G1zjTbt2/nhhtu4P3vf/8RE3eHyp133kl5eTmXXnpp3nhVVRWbNm067O/jjTfeyBlnnMGXvvQlFi9efFj3JZkcKZYks5aNGzfm3Xe73eh0unHjkmMXl8s1o+fDd7/7XS644ALmzZsHwOrVq/Mef+aZZwBYu3Yt5eXlR3x9B0MkEsFqtc70MqYdIQTRaHRajs1sNh+R8+5973sfixcv5kc/+hH33HPPYd+fZGKkG05yVJFIJPjP//xPqqurcblcnH766ezatWvcvD//+c+cdtppuFwubDYbJ598Mn/5y1/2u31VVfnv//5vFi9ejNVqpbi4mOOPP55bb70VgOuvv57/9//+HwCNjY15rkKARx55hDPPPJOqqiqsVitLly7lG9/4BqFQKLuPSy+9lDvuuAPId0Vm3BdCCO68805WrVqF1WqlpKSECy+8kObm5im9Rnv27OFTn/oUHo8Hs9nM0qVLs/sD6Ovrw2Qy8c1vfnPcc3fu3ImiKNx2223ZsXfeeYfzzjuPkpISLBYLq1at4he/+MV+1zGR++j6669HUZTsfUVRCIVC/OIXv8i+Fu9///uBid1wv//97znxxBOx2Ww4nU7OOOOMcZbKzH7effddPvnJT1JUVERFRQWf/exnGRkZ2e/633zzTV5//XUuvvji/c7NZSrnwC9/+UsURRm3ZoDvfOc7GI1Guru7J9xHNBrluuuuo7GxEZPJxLx587jqqqvGuYYbGho499xz+d3vfsfq1auxWCzccMMNB3Q8mW0888wzrFmzBqvVypIlS7jvvvuycx544AE+9rGPAXDqqacWdEdO9TP55JNPcvzxx2M2m2lqauLWW28dd86Adt58+ctf5qc//SlLly7FbDZnz8sbbriBDRs2UFpaisvlYs2aNdx7773k9pVvaGjg3Xff5aWXXsquN3O+TuSG+8c//sFpp52G0+nEZrNx0kkn8cc//jFvzgMPPICiKLzwwgt86Utfory8nLKyMj7ykY8UfE8vvvhiHnroIQKBwP7fDMnhQ0gkc4RLLrlE2O32go+98MILAhANDQ3i05/+tPjjH/8oHn74YVFXVycWLlwokslkdu4vf/lLoSiKOP/888Xvfvc78dRTT4lzzz1X6PV68ec//3nSNdx0001Cr9eLb3/72+Ivf/mLeOaZZ8Qtt9wirr/+eiGEEB0dHeIrX/mKAMTvfvc7sWnTJrFp0yYxMjIihBDixhtvFP/7v/8r/vjHP4oXX3xR/PSnPxWNjY3i1FNPze5j79694sILLxRA9vmbNm0S0WhUCCHEF77wBWE0GsW///u/i2eeeUY89NBDYsmSJaKiokL09vZOuv53331XFBUViRUrVogHH3xQPPfcc+Lf//3fhU6nyx6DEEJccMEFora2VqRSqbzn/8d//IcwmUyiv79fCCHEzp07hdPpFPPnzxcPPvig+OMf/yg++clPCkB8//vfzz6vpaVFAOL+++/Pjl1yySWivr5+3Bq//e1vi9yvpk2bNgmr1So+9KEPZV+Ld999Vwgx+r6/8MIL2fm//vWvBSDOPPNM8cQTT4hHHnlErF27VphMJvH3v/993H4WL14svvWtb4nnn39e/PjHPxZms1lcdtllk76OQgjxne98R+j1ehEIBCack9lHX19fdmwq50AsFhOVlZXi05/+dN72EomEqK6uFh/72McmfB1VVRVnnXWWMBgM4pvf/KZ47rnnxA9/+ENht9vF6tWrs+eREELU19eLqqoq0dTUJO677z7xwgsviNdff33C4yn0Gayvrxc1NTVi2bJl4sEHHxTPPvus+NjHPiYA8dJLLwkhhPD5fOK73/2uAMQdd9yRfR99Pp8QYuqfyT/96U9Cp9OJ97///eLxxx8Xjz76qNiwYYNoaGgQYy9ngJg3b544/vjjxUMPPST++te/infeeUcIIcSll14q7r33XvH888+L559/Xtx4443CarWKG264Ifv8N954QzQ1NYnVq1dn1/vGG28IIQqfzy+++KIwGo1i7dq14pFHHhFPPPGEOPPMM4WiKOI3v/lNdt79998vANHU1CS+8pWviGeffVb8/Oc/FyUlJXnnQIbXXntNAOL3v//9hO+L5PAjxZJkzjAVsfShD30ob/z//u//sqJDCCFCoZAoLS0VH/7wh/PmpVIpsXLlSnHCCSdMuoZzzz1XrFq1atI5N998swBES0vLpPNUVRWJREK89NJLAhBvvfVW9rGrrrpq3Je/EJpwAMSPfvSjvPGOjg5htVrFf/zHf0y6z7POOkvU1NRkxVuGL3/5y8JisYjBwUEhhBC///3vBSCee+657JxkMimqq6vFRz/60ezYJz7xCWE2m0V7e3ve9s4++2xhs9nE8PCwEOLQxJIQQtjtdnHJJZeMmztWLKVSKVFdXS1WrFiRJ/QCgYDweDzipJNOGrefH/zgB3nbvPLKK4XFYhGqqo7b39hjXLJkyaRzComlXCY7B7797W8Lk8kkvF5vduyRRx7JEyFCjH8dn3nmmYLHlXnuPffckx2rr68Xer1e7Nq1a9LjyN1XIbFksVhEW1tbdiwSiYjS0lLxxS9+MTv26KOPjhO2QhzYZ3L9+vWitrZWxGKx7FggEBBlZWUFxVJRUVH2nJ6IVColEomE+M53viPKysry3vfly5eL973vfeOeU+h83rhxo/B4PHniOZlMiuOOO07U1NRkt5sRS1deeWXeNn/wgx8IQPT09OSNx+NxoSiK+PrXvz7pcUgOL9INJzmq+Jd/+Ze8+8cffzwAbW1tgBZ8PTg4yCWXXEIymczeVFXlgx/8IJs3b85zh4zlhBNO4K233uLKK6/k2Wefxe/3H9D6mpub+dSnPkVlZSV6vR6j0cj73vc+AHbs2LHf5//hD39AURT+9V//NW/9lZWVrFy5ctKssGg0yl/+8hcuuOACbDZb3vM/9KEPEY1GefXVVwE4++yzqays5P77788+/9lnn6W7u5vPfvaz2bG//vWvnHbaadTW1ubt69JLLyUcDhd0Ix1Odu3aRXd3NxdffDE63ejXm8Ph4KMf/Sivvvoq4XA47zmFzploNIrP55t0X93d3Xg8ngNe41TPgS996UsA/OxnP8uO/eQnP2HFihWccsopE24/kwAxNij5Yx/7GHa7fZxr6/jjj2fRokUHfBy5rFq1irq6uux9i8XCokWLsp+7yZjqZzIUCrFlyxbOP/98TCZT9vkOh4MPf/jDBbf9gQ98gJKSknHjf/3rXzn99NMpKirKvgff+ta3GBgY2O/7XohQKMRrr73GhRdemJctqNfrufjii+ns7BwXDrC/76oMRqOR4uJiurq6DnhdkulDBnhLjirKysry7pvNZkALWgXwer0AXHjhhRNuY3BwELvdXvCx6667Drvdzq9+9St++tOfotfrOeWUU/j+97/PunXrJl1bMBjkve99LxaLhf/+7/9m0aJF2Gw2Ojo6+MhHPpJd42R4vV6EEFRUVBR8vKmpacLnDgwMkEwmuf3227n99tsLzunv7wfAYDBw8cUXc/vttzM8PExxcTEPPPAAVVVVnHXWWXnbrKqqGred6urq7ONHksz+JlqTqqoMDQ1hs9my4/s7ZyYiEolM+D5MxIGcAxUVFVx00UXcfffdfOMb3+Ddd9/l73//O3ffffek+xgYGMBgMOB2u/PGFUWhsrJy3HtS6LU6UMa+hqC9jlM9p2H/n0lFUSY89yd6Hwod2+uvv86ZZ57J+9//fn72s59RU1ODyWTiiSee4H/+53+mtOaxDA0NIYQ4oM/CgZx3FovloNYlmT6kWJIcU2Qykm6//fYJs1kmuwAaDAauvfZarr32WoaHh/nzn//M//f//X+cddZZdHR05F2Ex/LXv/6V7u5uXnzxxawlATigekzl5eUoisLf//737JdrLoXGMpSUlGR/6V511VUF5zQ2Nmb/v+yyy7j55pv5zW9+w0UXXcTvf/97rrnmGvR6fXZOWVkZPT0947aTCVSdLAPMYrHkpdlnyAi2gyFzAZpoTTqdrqCl4WAoLy9ncHDwgJ5zoOfA1VdfzS9/+UuefPJJnnnmGYqLi/n0pz896T7KyspIJpP09fXlCSYhBL29vaxfvz5v/tjA6CPNVD+TiUQCRVGy4iqX3t7egs8rdGy/+c1vMBqN/OEPf8BisWTHC9XxmiolJSXodLqD/izsj6GhoTmTTXm0IsWS5Jji5JNPpri4mO3bt/PlL3/5kLZVXFzMhRdeSFdXF9dccw2tra0sW7Zswl+ImS/usYKmkKUgdxu5qc7nnnsu3/ve9+jq6uLjH//4Aa3XZrNx6qmn8uabb3L88cfnuTIKsXTpUjZs2MD9999PKpUiFotx2WWX5c057bTTePzxx+nu7s7+ggZ48MEHsdlsk6ZXNzQ04PP58Hq9WYEaj8d59tlnx82dqpVi8eLFzJs3j4ceeoivfe1r2dc8FArx2GOPZTPkpoMlS5Yc8AX2QM4B0EoOnHTSSXz/+9/nnXfe4fLLL5/Q6pnhtNNO4wc/+AG/+tWv+OpXv5odf+yxxwiFQpx22mkHtObpYqLPxVQ/kyaTiXXr1vHEE0/wwx/+MHv+BoNB/vCHP0x5HYqiYDAY8kR/JBLhl7/8ZcE1T+W8s9vtbNiwgd/97nf88Ic/zH5mVVXlV7/6FTU1NQft6uzu7iYajc5YLTGJhhRLkmMKh8PB7bffziWXXMLg4CAXXnghHo+Hvr4+3nrrLfr6+rjrrrsmfP6HP/xhjjvuONatW4fb7aatrY1bbrmF+vp6Fi5cCMCKFSsAuPXWW7nkkkswGo0sXryYk046iZKSEq644gq+/e1vYzQa+fWvf81bb701bj+ZbXz/+9/n7LPPRq/Xc/zxx3PyySdz+eWXc9lll7FlyxZOOeUU7HY7PT09/OMf/2DFihXZWJdC3HrrrbznPe/hve99L1/60pdoaGggEAiwd+9ennrqqXEFPz/72c/yxS9+ke7ubk466aRxhfG+/e1v84c//IFTTz2Vb33rW5SWlvLrX/+aP/7xj/zgBz/IK8Q4losuuohvfetbfOITn+D//b//RzQa5bbbbiOVShV8PV588UWeeuopqqqqcDqdBYv06XQ6fvCDH/DpT3+ac889ly9+8YvEYjFuvvlmhoeH+d73vjfheg6U97///dx3333s3r17yhfCAzkHMlx99dVcdNFFKIrClVdeud99nHHGGZx11ll8/etfx+/3c/LJJ/P222/z7W9/m9WrVx9wqYPp4rjjjgPgnnvuwel0YrFYaGxspKysbMqfye985zucc845nHXWWVx99dWkUiluvvlmHA7HlK1855xzDj/+8Y/51Kc+xeWXX87AwAA//OEPC1plV6xYwW9+8xseeeQRmpqasFgs2c/mWG666SbOOOMMTj31VL72ta9hMpm48847eeedd3j44YcP2oKXiSM89dRTD+r5kmliZuPLJZKpM5VsuEcffTRvvFDWihBCvPTSS+Kcc84RpaWlwmg0innz5olzzjln3PPH8qMf/UicdNJJory8XJhMJlFXVyc+97nPidbW1rx51113naiurhY6nS4vA+iVV14RJ554orDZbMLtdovPf/7z4o033hi3xlgsJj7/+c8Lt9stFEUZl1133333iQ0bNgi73S6sVquYP3+++MxnPiO2bNky+YuYfk0++9nPinnz5gmj0Sjcbrc46aSTxH//93+PmzsyMiKsVqsAxM9+9rOC2/vnP/8pPvzhD4uioiJhMpnEypUrx73eE70PTz/9tFi1apWwWq2iqalJ/OQnPymYDbdt2zZx8sknC5vNJoBshlKh0gFCCPHEE0+IDRs2CIvFIux2uzjttNPEyy+/nDdnoky1TLbS/rIZR0ZGhMPhGJd1tr99TPUcyBCLxYTZbBYf/OAHC+6jUFZhJBIRX//610V9fb0wGo2iqqpKfOlLXxJDQ0N58+rr68U555wz6XGO3VehbLhC23jf+943LpPslltuEY2NjUKv14873ql+Jh9//HGxYsWK7Ofve9/7nvi3f/s3UVJSkjcPEFdddVXB47jvvvvE4sWLhdlsFk1NTeKmm24S995777j3vbW1VZx55pnC6XQKIPs6T3Q+//3vfxcf+MAHsp/LjRs3iqeeeipvTub82rx5c974ROfyxRdfLFasWFHwOCRHDkWInCpcEolEIpkyX/nKV/jLX/7Cu+++e9hif5566in+5V/+hT/+8Y986EMfOiz7mMskEglWrVrFvHnzeO6552Z6OdOK3++nurqa//3f/+ULX/jCTC/nmEaKJYlEIjlIvF4vixYt4t577500m+tg2L59O21tbVx99dXY7XbeeOONGQ/Gng187nOf44wzzqCqqore3l5++tOf8tJLL/Hcc89x+umnz/TyppUbbriBRx55hLfffhuDQUbNzCTy1ZdIJJKDpKKigl//+tcMDQ1N+7avvPJKXn75ZdasWZNt9SKBQCDA1772Nfr6+jAajaxZs4ann376qBNKoPU+fOCBB6RQmgVIy5JEIpFIJBLJJMgK3hKJRCKRSCSTIMWSRCKRSCQSySRIsSSRSCQSiUQyCXMqauxvf/sbN998M1u3bqWnp4fHH3+c888/f8L5v/vd77jrrrvYtm0bsViM5cuXc/311+f1tnrggQfGVSUGraJrbin8yVBVle7ubpxOpwzClEgkEolkjiCEIBAIUF1dndd8eyxzSiyFQiFWrlzJZZddxkc/+tH9zv/b3/7GGWecwXe/+12Ki4u5//77+fCHP8xrr73G6tWrs/NcLte4jtBTFUqglaMf23VdIpFIJBLJ3KCjo4OampoJH59TYunss8/m7LPPnvL8W265Je/+d7/7XZ588kmeeuqpPLGU6cZ9sDidTkB7sV0u10FvRyKRSCQSyZHD7/dTW1ubvY5PxJwSS4eKqqoEAgFKS0vzxoPBIPX19aRSKVatWsWNN96YJ6bGEovF8rqlBwIBQLNQSbEkkUgkEsncYn8hNMdUgPePfvQjQqFQXrf2JUuW8MADD/D73/+ehx9+GIvFwsknn8yePXsm3M5NN91EUVFR9iZdcBKJRCKRHL3M2aKUiqLsN8A7l4cffpjPf/7zPPnkk5NWelVVlTVr1nDKKadw2223FZwz1rKUMeONjIxIy5JEIpFIJHMEv99PUVHRfq/fx4Qb7pFHHuFzn/scjz766H5L4ut0OtavXz+pZclsNmM2m6d7mRKJRCKRSGYhR70b7uGHH+bSSy/loYce4pxzztnvfCEE27Zto6qq6gisTiKRSCQSyWxnTlmWgsEge/fuzd5vaWlh27ZtlJaWUldXx3XXXUdXVxcPPvggoAmlz3zmM9x6661s3LiR3t5eAKxWK0VFRYDW1Xnjxo0sXLgQv9/PbbfdxrZt27jjjjuO/AFKJBKJRCKZdcwpy9KWLVtYvXp1NlPt2muvZfXq1XzrW98CoKenh/b29uz8u+++m2QyyVVXXUVVVVX2dvXVV2fnDA8Pc/nll7N06VLOPPNMurq6+Nvf/sYJJ5xwZA9OIpFIJBLJrGTOBnjPJqYaICaRSCQSiWT2MNXr95yyLEkkEolEIpEcaaRYkkgkEolEIpkEKZYkEolEIpFIJkGKJYlEIpFIJJJJkGJJIpFIJBKJZBKkWJJIJBKJRDIrEUIQC4cY7u0hGgrO2DrmVFFKiUQikUgkc5OM8IkE/ET8fqLBgPZ/+hYNpO8HtccjAW2OmkoB8MErv8ry9502I2uXYkkikUgkEskBIVSVWDhMJDCSFjuBtOBJi59goKAgEqp6UPszmM2kEolpPooD2P+M7VkikUgkEsmMI1SVaCg4Kngylp3gGAEUCORZgYQ4OOFjNFuwulxYnS4sDidWp0u770iPOdNjztH7RtPMNq+XYkkikUgkkqMEVU0RC426ujTBM1LAyjMqhKLB4MELH4s1R9g48wSO1Vk0fszhwmAyTfNRH36kWJJIJBKJZBaiplKaxcfv1wTPBK6t0VifANFgAA6yi5nJak1be1xZy89YIZR9zOHE4nRhMBqn+ahnJ1IsSSQSiURymFFTqXEiJ9/CE8iJ/9HuH0r2l9lmL+DScmpixzkqeLQ52mN6w7EhfA4GKZYkEolEIjkAUsmkJnz8I9m4nlGLz8gYAaRld8VCoYPen9luz8bzjIv1yXNxObG6irA4nOgN8vI+nchXUyKRSCTHLMlEYoIA5pysrjFBzvFI+KD3Z7E7NGHjKtKEjkMTOra0yMm1+GREkU6vn8YjlhwMUixJJBKJ5KggEY+NWnPGxvPkjmXdYQES0cjB7UxRRq07aZEz1toz1g1msTuk8JmjSLEkkUgkklmFEIJkLDZanHA/KewZV1cyFjuo/SmKLkfUOMcHOaeDmXNjf8x2OzqdFD7HClIsSSQSieSwIYQgHokUrt2Tzu6KBANEx8T6JBPxg9qfTq/Ps/BkXVu51p4xtX3MNhuKTnb/kkyMFEsSiUQimRKZdhVj21JMmMqetgKpqeRB7U9vMIxma2Uzt0br91gc6VifnDGT1YaiKNN85JJjHSmWJBKJ5BjkQKo2Z8RQbp+uA8VgNGHJcWuNpqznFzPMq9pstkjhI5kVSLEkkUgkc5zRGj6B/RcvTI/FDqVqs9mSrcY8PpU98zdj8dHuG82WaT5qieTIIcWSRCKRzCJSyYRmzSnYkHT6a/iYrLbRoGZnbkBzxrWVU9BwDrerkEgOBSmWJBKJ5DCRiMfGWXg0687Y2J5RV1g8cpCp7OTU8CkUzFyweKFDVm2WSKaAFEsSiUSyH4QQJKKR0RienGKFWkyPPyera5pS2R2OvFYUEwofWcNHIjnsSLEkkUiOKcZldBUsVpgf3xMN+EklDy6jS6fX56ewO3JETk57itxYH5nKLpFoqELwTP8Id7T7uO+4RirMM2MJlWJJIpHMWVQ1RTQYHOfiynVvRYPjs7qEenCBzXqjcUzF5jEd2QtkepmsVpnRJZEcIBmR9KPWXt4NRgG4q8PH9Qvmzch6pFiSSCSzgrzA5uCYIOaxVp9M0HM4BEIc1P6MFmu2Vs/4+B5nXrBzJuNLZnRJJIcXVQj+1D/Cj3NEkkOv4ws1bi6vdc/YuqRYkkgk087YwOaMuBlfyHB6ApszXdmzwcu5Vp4JLEAGowxslkhmCxmR9KOWXraHxoukEuPMyhUpliQSyYQUalWR3419TOuKTKuK+MEHNpvTgc2j6eu5Vp/CmV4ysFkimZtMJJI+X+Pmi7NAJGWYHauQSCSHnYIVm8fU8xnv9jr4VhU6vWG8mysnsDm3erNm+XFisTtkYLNEcgygCsHTfVpM0o5ZaEkay+xajUQimRKpZHLUxZXbpyu3YGEwP6srGgwcdHxPtlVFARfXRK0rjBYZ2CyRSPKZayIpw+xclURyDDFhfE9uVleu+ysQIB4JH/T+TFZrgRiedOuKnP9HXWBOGdgskUgOCVUI/tinBW5nRJJTr+MLtW4ur3FTPEtFUobZvTqJZA6hxfeEs/25snV6/KMur6zomYb4HhQFi90xmrnlcI724xpb00dWbJZIJDOAKgR/SIuknXNQJGWYG6uUSI4wmfo9o1aesSInt0XFoXdkHxvfkwlmHpu+nontsTpdmO12dDoZ2CyRSGYfKSF4yjfM/7Z52ZUWSS6D5m77whwSSRnm1molkoMgmUhkhU6uKyu3MelY19eh1O8xmMyTBjOPuy/jeyQSyVFCRiT9uNXL7vCoSLq8xsMXasopmmMiKcPcXLXkmEQIQSIWzW9TMdbNFRgf+5OIRQ96n2abfbzoyevIPj7by2gyT+NRSyQSyewnJQS/9w3z49Ze9oS10IIigz5tSZq7IinD3F69ZM4iVJVoODTe0uMfGdeMNJoT63Ow/bkKNSadsBt7jgiS9XskEolkYlJC8IR3iFvavHki6Yu1bj5f48ZlODq+Q6VYkhwyY9tUjKatT5zGHgsGEeIQ+nM58uN5JrP0WB0u2ZhUIpFIppGkKnjcN8QtrV72RTSRVJwWSZ87ikRShjkllv72t79x8803s3XrVnp6enj88cc5//zzJ33OSy+9xLXXXsu7775LdXU1//Ef/8EVV1yRN+exxx7jm9/8Jvv27WP+/Pn8z//8DxdccMFhPJLZiRCCZCyW7+LKCWbOc2/lNCk9lDYVo2nsE1t68puTamnsMr5HIpFIjjxJVfCYd4hb27w0p0VSiUHPFbUePltTjvMoE0kZ5pRYCoVCrFy5kssuu4yPfvSj+53f0tLChz70Ib7whS/wq1/9ipdffpkrr7wSt9udff6mTZu46KKLuPHGG7ngggt4/PHH+fjHP84//vEPNmzYcLgP6bCR7+YKjG9CGhhTsDAtjlKJxEHtr2CbijG9uvKCnp0umcYukUgkc4SEKvitd5Bb27y0RuIAlBrTImleOY6jVCRlUIQ4yJSfGUZRlP1alr7+9a/z+9//nh07dmTHrrjiCt566y02bdoEwEUXXYTf7+dPf/pTds4HP/hBSkpKePjhh6e0Fr/fT1FRESMjI7hcroM7oEmY0M3lH+v2miY3l8Ew3sXlGGPpkW0qJBKJ5KgnoQoe7dVEUlt0VCR9KS2S7HNcJE31+j2nLEsHyqZNmzjzzDPzxs466yzuvfdeEokERqORTZs28dWvfnXcnFtuuWXC7cZiMWKx0UKCfr9/Wted4Yff/yLJtzsxJg/e5WSwWLKBzTZn0bimpHkurnQtH+nmkkgkkmObuKrySFokdUY1j0OZ0cCVdR4urS6b8yLpQDmqxVJvby8VFRV5YxUVFSSTSfr7+6mqqppwTm9v74Tbvemmm7jhhhsOy5pziafimNNCSSCIGVViJpWYMUXUpKbvp4gZVe1++v9YzmNqjrFHp+iwGWzYjDZsBhv2pB170I4tZsPut2M32LEb7ViN1uz/dqN9dP6Y+1aDrA0kkUgkRxMxVeU3PYPc1ualK6aJJLfJwJW1Hj4zrwz7MZohfFSLJWDcxTzjdcwdLzRnMhFw3XXXce2112bv+/1+amtrp2O5eVx62TcZCPSRtOhIGASRVIRQIkQoGSKcCBNOhLP3Q4kQkUQk+3/2sUSIcFLrI6YKlWAiSDARnJb15Yovu3FUbGXvG+35j2ceM+T/n3ncrDdL8SWRSCQzQDSl8lDPAD9p99GdFkkVJgNfrqvg09Vl2PTHdpjFUS2WKisrx1mIfD4fBoOBsrKySeeMtTblYjabMZsPf+HB6qomqquaDnk7qlCJJCN54mqs2CokvjL3w8nwERFfBsWgWbUmEV55oiv9f67gyp1n1MvgcYlEIpmMSErl1z0D/KTNR29cE0mVJiNfrvfw6aoyrMe4SMpwVIulE088kaeeeipv7LnnnmPdunUYjcbsnOeffz4vbum5557jpJNOOqJrPZzoFF1WSLhxH/L2MuIrK6iS+ZasUCKUfTwrsNLzClm9Ikmt9EBSJAnEAwTigUNeI4BRZ5zYopUjrBwmxzjBVeg5OkV+aUgkkqODcErll9393NHuwxfXiv1Wm418pb6CT1aWYpEiKY85JZaCwSB79+7N3m9paWHbtm2UlpZSV1fHddddR1dXFw8++CCgZb795Cc/4dprr+ULX/gCmzZt4t57783Lcrv66qs55ZRT+P73v895553Hk08+yZ///Gf+8Y9/HPHjmyvkiq/pIKWmCCfHW7EmEmKZuYWEVygRIpbSgu8TaoLh2DDDseFpWafVYM2Kq4JWrgJiLO8mXY4SiWSGCaVS/KJrgDvbffQnNJE0z2zk3+or+ERVKWaZ1VyQOVU64MUXX+TUU08dN37JJZfwwAMPcOmll9La2sqLL76Yfeyll17iq1/9arYo5de//vVxRSl/+9vf8l//9V80Nzdni1J+5CMfmfK6DnfpAMmBkVAT4wVWIpwvspLjH891SQYTwex4SqSmfY16RV9QZDmMjvEWrkmEmd2k/a/XHZtBlxKJZGoEkynu7+rnrg4fgwntO63WYuKa+go+VlmC6RgVSVO9fs8psTRbkWLp6EUIQSwVG+dKHGvVGmsBm8zteDiw6C1ZIZUnuHKsWRMJsbFuSGn1kkiOHvzJFPd19nF3Rx9DSU0kNVhNXF1fwYUVpRh1x/ZnXdZZkkimAUVRsBgsWAwWyqxlh7w9VajjrFi5Fq6x7saMlWsiy1dS1czo0VSUaCrKYHTwkNeYsXo5jI6CsVt54wVcjbmP2Qw2afWSSGaAkUSSn3f2c09nHyNpkTTfauaahgou8JRgOMZF0oEixZJEcgTRKTocJgcOk2NathdPxQuLrUKWrgKZjmPFGUBKpKY10N5qsI5zKY61cmUEmcPkyBNnuTeH0SEzHCWS/TCYSPKzjj5+3tlHIKV1cVhoM3NtQyX/4ilGL63GB4UUSxLJHMakN2HSmyixlBzytjJZjsF4cEpWr4LjGfdjPERSaFavSDJCJBmhP9J/yGvMzXAslLU40WO5IiwToC+LqkqOJvrjSe7u8HFfVz+htEhaYrfw1YYKPuwuRifP9UNCiiWJRAJMb5ajEIK4WtjqNTaAPpQIjboak4XnRFNRYHozHHWKbnyNrjGCym4c83+BuC/pbpTMJL5Ygjs7fPyia4CIqomk4xxWrm2o4IPlRUeFSBIJlcj2AazLSlGMM/M5k2JJIpFMO4qiYNabMevNlFpKD3l7STWZV1ZiQrE15v+MlWus+1EgUIVKIBEgkDgy7saJ/h8baC8LqkqmQm8swR3tXn7ZPUBU1fK0jnda+feGSs4sc815q6kQgnhHgPBWL+G3+hHRJKWfXIxtpWdG1iPFkkQimfUYdAZcJhcu06FnmwohxhVNzY31KiSuJhRgh8ndaNKZJgyozwitQgH4hW4yu/HoojMa5yftPh7uGSCWFklrXDb+vaGSD5Q65/x7nfLHCL3hI/yGl6Qvkh3XF5kRqZlL3pdiSSKRHFMoiqI1gzbaDrmi/Vh341j34f7cjWNvmYKqcTVOPBZnKDZ0yMdrUAyTuhoLuRkzQmysSJNxXjNHeyTG7e0+ftMzSCJd8eeEIjv/3lDJKSWOOf2+iIRKZMcAoS1eYnuGIK2JFKMO63Hl2NZ6MDcVo8xgBp8USxKJRHKQTLe7MVNQdSLRNVG240RB+KC1EfLH/fjj/kNen4Iyri9jpjDq2Mr2YwPtcwWYjPOaOi3hGLe2efmtd5BkWkScXOzg2oYKTiqeuyJJCEGiM0hoq5fwtj5ENJl9zNTgwr6mAuvx5egss0OmzI5VSCQSiQSjzkiRuYgic9Ehb6tQduM40TWR0CrgclSFikBk50wHuXFehdoCFXI5jhVdmXGj7uiK89oTinJrm5ffeYdQ02PvK3FybUMFG4qnp/TITJDyxwm/6SO01UvSN1qkV19kxrbWg31NBYZy6wyusDBSLEkkEslRyHRnN0aSkWzJiIw7cSplJo5knFch61ahwPpC4it3jklvOuT1HCw7ghFuafPye99wxhvF6WUurq2vYE3R9PTjPNKIpJbNFt7qJbp7jJtteRm2tRWY58+sm21/SLEkkUgkkknJjfMqt5Yf0ramWlZiv9avpCbW4moc0OK8BqODDHLoVewNOsM4N2P2736E2Nj/LXrLlFxl/wyE+d9WL0/3j2THzi4v4pqGClY6bYd8TEcaIQSJrhw3WyTHzVbvwr52drnZ9sfcWKVEIpFIjgoOV5zXRCUkphJkH4wHCSfDRJJa9lVSTTISG2EkNgKH6HEc1zR7jOgK6KrZmlrM3qTWTklBsN6e4FNuWOEMY1O9+MLaXKvBik6Z3Q1vU4EcN5s3181mwramAtvaCoyz0M22P6RYkkgkEsmcZTrjvFJqatTVmHYx7jezMcfNmCvEwokwAjFh+6CEeREh13kkrMdrA0LFHH4V28iTtCS7+Z8d49eXDbDfn8VrkgzHw9G3USRVojsHCW31Et01SDbIyqBgXV6OfW0F5gWz2822P6RYkkgkEokE0Ov0OE1OnCYnHGJ4UMEA+3iI1wNRHhswsytmATRL0hJ9F8uVf2K0+wiZ6gklyvcfYB/ZzwKmwEQB9lN1PdoHjej/GSH59jAinONmq3ViW1uBbaUbnfXokBlHx1FIJBKJRDKLyA2wF0LwwmCA/+3xstmv+fWMisInqkr5cp2Heutq4NwJtzU2wD7XfZgbYJ9n7TpMAfaupJ33+9dzxvBGFsTqskakQYOfV0rfYnPFDgKuGLZhG/ZXJhFfEwix2VrBXooliUQikUgOA0IInu33879tvbwV0ExBZp3Cp6rK+HKdh3mWqWXdHbYA+7SAysRsjRVZGfEVjoWp8DpZ3lnPkoE6DEJz3yWUJK863ub5olfZ6tiOqqiQhEONsTfqjAXdh59c8klOqTnl0DZ+kEixJJFIJBLJNKIKwR/6RriltZftIa0JtFWn4zPzyriy1kOFeeYsJwcSYJ/whQlt8RJ+04saSGTHjdV2LZttlYcay3s4O3HJONFVqLzE2EKrYy1iuQ2zh2JD4yrYn153+vS/IFNEiiWJRCKRSKaBpCp4wjfErW1e9oS11jV2vY7Pzivni7Ueyk2z/5KrRpOE3+ojvMVLvGM0KF1nN2Bb5cG2tgJT9WhRTD1QrC+mmOJD3ndSTRYukJoWYqs9qw95HwfL7H/nJBKJRCKZxcRVld96h7i9zUtLRKv75DLo+HyNmy/UuCkxzu5LrVAFsX3DhLZ6ibwzAMl0JJIOLItLsa+twLKkFMVweMsWGHSGactsnG5m9zsokUgkEsksJZpSebh3kJ+0eemKaW6qUqOeL9Z4uKymHJdhdve+Sw5EtKKRb/hIDcey4waPDfu6CmyrPeidM1fNfDYhxZJEIpFIJAdAKJXi190D3NHuwxvXMsvcJgNX1nr4THUZ9lksktR4isg/+wlv9RJrHq0Wrlj02Fa6sa+rxFgzdxv0Hi6kWJJIJBKJZAoEkike6Ornpx19DCQ0kVRtNnJVnYdPVZVh1c/O6tpCCOLtAcJbvITf7kPEUtoDCpgXFGvB2svLUIyzV+TNNFIsSSQSiUQyCcOJJD/v7OfnnX0MJzWhUWcx8W/1FXy8sgSTbnaKpJQ/TugNL+GtXpJ9o1Us9aUW7GsrsK31YCi2zOAK5w5SLEkkEolEUoC+eIJ7Ovq4v6ufYEoLel5gM3N1fQUXeEowzML2HdnWI1u8RHePth5RjDqsK8qxr6vA1FA0p1uPzARSLEkkEolEkkNvLMFd7T4e7O4nogoAltotXNNQwbnuYvSzMJ4n3hMivKWX8DYfaiin9Ui9C/u6CqzHl6Mzy0v+wSJfOYlEIpFIgPZIjDvafTzcM0hcaCJppdPKtQ2VnFHmQjfLRJIaThB+q4/QFi+JrmB2XOc0YV+r1UQyum0zuMKjBymWJBKJRHJMsy8c5fY2H7/1DpLUNBInFNn5an0F7y91zqrMMKEKYnuHCW3pJbJ9gOyC9QrWpaXY1lViWViCop89az4akGJJIpFIJMckO4IRbmvz8qRvONsQ9pQSB9fUV3JisX1WiaRsTaStPlIjozWRjJV2bJmaSPbZ14D2aEGKJYlEIpEcU2zzh7m1zcuf+kfrDJ1R5uKr9RWsKbLP4MrymbAmktWAbVW6JlL17BJ1RytSLEkkEonkmOC14SC3tHl5YVDreaYA57qLubrew3HO2RHbI4Qg3pGuifRWgZpI6yqxLitDMc7OcgVHK1IsSSQSieSoRQjB34aC/G9rL6+OhADQK3CBp4R/q69gkX121BlKBeKE3/QR2uIl6Qtnx2VNpNmBFEsSiUQiOepQheD5AT+3tHp5M6CJD6Oi8ImqUr5c56Heap7hFYJICaK70jWRdg5CukyBYtRhPa4c27oKzI2yJtJsQIoliUQikRw1pITgKd8wt7Z52RGKAmDVKfxrdRlfqvVQbZn5xrCJvjChLV7Cb3hRA4nsuKnWqQVrr3Sjs8jL82xCvhsSiUQimfMkVMFvvYP8pM3HvoiWLebQ67h0XjlfrHXjNs1sppgaSxJ5u5/QFi/xNn92XGc3Ylvtwb6+AmPF7Akul+QjxZJEIpFI5iyRlMrDPQPc0e6jK6ZZaYoNer5Q4+ZzNeUUG2fuMieEIN7mJ7TFS+TtPkQ803sELItLsa+vwLK4FMUgg7VnO1IsSSQSiWTOEUqm+EX3AD/t8OGLa+093CYDX6xxc+m8chwG/YytLRWIE37DqwVr5zSwNZRbsa2rwL7Gg9418zFTkqkjxZJEIpFI5gzDiST3dvbz884+hpJaWv08s5Gr6jx8sqoMq35mrDQipRLdOURoSy/RXTkNbE06rCvc2NdXYKp3yZpIc5Q5Z/u78847aWxsxGKxsHbtWv7+979POPfSSy9FUZRxt+XLl2fnPPDAAwXnRKPRI3E4EolEIpkCffEE/72vm3WbtnNzay9DyRRNVjM/XlLLpo1L+WyNe0aEUsIXZvjpFnpuep2BX24nukMTSqZ6FyUfXUjVf26g9GOLMDcUSaE0h5lTlqVHHnmEa665hjvvvJOTTz6Zu+++m7PPPpvt27dTV1c3bv6tt97K9773vez9ZDLJypUr+djHPpY3z+VysWvXrrwxi0XWs5BIJJKZpjMa5652H7/uGSCaTq1fZrfwb/UVfNhTjH4GBIgaSxF5u298sLbDiG2NR6us7ZkdRS4l08OcEks//vGP+dznPsfnP/95AG655RaeffZZ7rrrLm666aZx84uKiigqKsref+KJJxgaGuKyyy7Lm6coCpWVlYd38RKJRCKZMi3hGLe3e3m0d4iE0ETSaqeNrzZUcEbZkXdnCSGItwcIbe7ND9bWpYO111VgWVKKMkNuQMnhZc6IpXg8ztatW/nGN76RN37mmWfyyiuvTGkb9957L6effjr19fV548FgkPr6elKpFKtWreLGG29k9erVE24nFosRi402MvT7/RPOlUgkEsnUKdTc9uRiB9fUV/CeEscRF0mjlbV7SfpksPaxypwRS/39/aRSKSoqKvLGKyoq6O3t3e/ze3p6+NOf/sRDDz2UN75kyRIeeOABVqxYgd/v59Zbb+Xkk0/mrbfeYuHChQW3ddNNN3HDDTcc/MFIJBKJJI83RkLc2u7l2f7RH5+nl7m4pr6CdUe4ua1ICaK7BwltLlBZ+3g39nUVmBpksPaxxJwRSxnGnpxCiCmdsA888ADFxcWcf/75eeMbN25k48aN2fsnn3wya9as4fbbb+e2224ruK3rrruOa6+9Nnvf7/dTW1t7AEchkUgkEiEELw8HubXNy9+HgoDW3PbDnmL+re7IN7dN9kcIbfES2upFDcSz46ZaJ7b1FdiOl5W1j1XmzLteXl6OXq8fZ0Xy+XzjrE1jEUJw3333cfHFF2MyTV7qXqfTsX79evbs2TPhHLPZjNksza4SiURyMIh037Zb27xs9Wt92wwKXFhRypfrPSywHbkEGzWeIvJOP6HNXuItI9lxnd2AbXWFrKwtAeaQWDKZTKxdu5bnn3+eCy64IDv+/PPPc95550363Jdeeom9e/fyuc99br/7EUKwbds2VqxYcchrlkgkEskomb5tt7V52Z7u22bRKXyqqowv1XmoPUJ924QQJLqChDb3Et7Wh4hp9ZpQwLKoBNu6SqxLZWVtyShzRiwBXHvttVx88cWsW7eOE088kXvuuYf29nauuOIKQHOPdXV18eCDD+Y9795772XDhg0cd9xx47Z5ww03sHHjRhYuXIjf7+e2225j27Zt3HHHHUfkmCQSieRoJ66q/LZ3iNvbvbRENPeWXa/jsiPcty0VShDe5iO82UuiN5Qd15dasK+twLauAkOR9BpIxjOnxNJFF13EwMAA3/nOd+jp6eG4447j6aefzma39fT00N7enveckZERHnvsMW699daC2xweHubyyy+nt7eXoqIiVq9ezd/+9jdOOOGEw348EolEcjQTSqV4qHuQuzp8dKf7tpUY9Hz+CPZtE6ogtm9YS/l/dwBSWrA2BgXrceXY11VibipC0clgbcnEKEKkC1hIDhq/309RUREjIyO4XK6ZXo5EIpHMKCOJJPd39XNPZx+DCc3FVWEy8KVaDxdXl2E/An3bksMxwlt6CW31khoaLfVirLJjP6ES20o3OtuRsWhJZi9TvX7PKcuSRCKRSGYvffEE93T0cX9XP8GUViWpzmLiy3UeLqoqxaw7vDFAIqkS2TFAaLOX2J4hSJsCFIse2yoP9vWVmOY5DusaJEcnUixJJBKJ5JDoSLckeSinJcliu4V/q/NwnqcEw2F2cSW8IUKbvYTf9KGGEtlxU2MR9vUVWI8rR2c6/NYsydGLFEsSiUQiOSj2hKLc3u7ld94hkmkrziqnjWvqKziz3IXuMBZtzPZn29xLvD2QHdc5TdjXVmBfV4Gh3HrY9i85tpBiSSKRSCQHxFuBMLe1eXm6byTj6eI9xQ6uPswtSYQQxDsChDd7Cb/Vh4inU/51YFlShn19BZZFpSh6GawtmV6kWJJIJBLJfhFC8OpIiNvavLwwOGrJ+WC5i3+rq2DNYWxJkgoltP5sm3tJesPZcUOZBdv6SuxrKtC7jkyNJsmxiRRLEolEIpmQTLXt29t8bPZrtYn0ClzgKeGqOg9LHYfH1TVxyr8O24pyLVi7UfZnkxwZpFiSSCQSyTiSquCpvmFuz6m2bdYpfKKylCvrPNRbD0/xxuRIjPAWL6Etvfkp//Mc2NdVYFvlQWeVly7JkUWecRKJRCLJElNV/q93kDvafbTmVNu+pFqrtl1hnv7aRCKlEt0xSGiLl+iuQZnyL5l1SLEkkUgkEkLJFA92D3B3Rx+9cS39vtSoVdv+7LzDU2070R/R+rNt9aIGc1P+XdjXVWJdIVP+JbMDKZYkEonkGGYwkeTezj7u7exnOKlll1WbjVxR6+bT1WXY9dMrVkQiRfidAUKv9xJvGcmO6xzGbH82o9s2rfuUSA4VKZYkEonkGKQ7Gufujj4e7B4gomrVtpusZr5c7+HCihJM01xtO94d1KxIb/oQ0XTKvwKWxaVayv+SUhT94a3wLZEcLFIsSSQSyTHEvnCUO9p9PNo7RCLdGnSFw8qX6z2c6y5GP43ZZWo0SfgtrXBkojOYHdcXm7Gvr8S2tgJD8eEJFJdIphMpliQSieQY4O10Ick/5hSS3Fhk5+r6Ct5f6py2FHwhBPH2AKHXe4m83YdIaFYr9ArW5WXY11dinl+McphboEgk04kUSxKJRHKUIoRg07BWSPLFodFCkmeUufi3+grWT2MhyVQoQfiNdOFIX07hSI8V+/oqbGs86O3Tn0knkRwJpFiSSCSSoww1XUjytjYvW/2acNErcL6nhC9PYyHJiQpHKkYd1uPd2E+oxFQ3fVYriWSmkGJJIpFIjhISquAJ3xA/afex6zAWkkyNxAht8RLa6iU1GM2OG+c5tFikVW50Fnl5kRw9yLNZIpFI5jiRlMrDPQPc1dFHR1QrJOnQ67h0XjmX17jxTEMhSZESRHcNEtrcS3SnLBwpObaQYkkikUjmKCOJJA90DXBPZx8DiSQAZUYDX6x1c0l1GUXTUEgyORgltLmX0FYvqj+eHTc1uLCvl4UjJccGUixJJBLJHMMbS3BPZx+/6OonmNKyzWotJq6s8/CJylKsh1ivSCRVItsHCG3uJbZnODuusxuwranAvr4So0cWjpQcO0ixJJFIJHOE1kiMO9t9PNI7SEzV/GBL7Ba+UufhPE8JhkNMx0/4wlrhyDe8qKFkdty8sFizIi0rQzHIwpGSYw8pliQSiWSW804gzE/affzeN0y6ahHrXXa+Uu/h9DIXukPINhOJFOG3+wlt7iXe6s+O61wm7Gs1K5Kh1HKIRyCRzG2kWJJIJJJZSKZG0u3tXl4YHK2RdFqpi6/Ue9hYfGjB1PGeEKHXe8a3H1lSin19JZbFpSh6mfIvkYAUSxKJRDKrUIXguX4/t7eP1kjSAed5irmqzsNxzoOPFVJjKSJv9RHc3EuiY1SAZdqP2NdVoC+S7UckkrFIsSSRSCSzgLiq8rh3mJ+0e9kTjgHTUyNJCEGiK0jo9V7C2/oQ8bQVSZfTfmSBbD8imb2oqkpnZyeVlZWYTKYZWYMUSxKJRDKDhFIpHuoe5KcdPrpiCQCcmRpJtW7cpoOrkaRGk4Tf9BF6vZdETyg7bii3Yl9fgW1NBXrnzFx4JJL9EYvFaG5uZteuXezevZtwOMzHP/5xli1bNiPrkWJJIpFIZoDBRJJ7O/u4r7OfoaRm7fGYDFxe4+Yz88pxGQ68dtGETWwNCrbjyrX2I41Fsv2IZFbi9/vZvXs3u3btorm5mVQqlX3MbDYTCoUmefbhRYoliUQiOYJ0RuPc3eHjV92DRFRNzDRYTVxZ6+HjlaVYDqJGkhpOEMo0sfXmNLGtsGmxSGs86Gyyia1kdiGEoLe3l127drFr1y56enryHi8uLmbJkiUsXryYuro69PqZK34qxZJEIpEcAXaGItzR7uNx7xDJdKuQFQ4rX6mv4Bx3EfoDtPYIIYi3jGixSO/0k9mobGIrmc0kEglaW1uz7jW/35/3eE1NDYsXL2bRokV4PJ5Zc/5KsSSRSCSHkc0jIW5v8/LcwOhF4eRiB/9WX8EpJY4DvhikgnHCb2ixSMn+SHbcWGXHfkIlttUe2cRWMqsIBALs2bOH3bt3s2/fPhKJRPYxo9HI/PnzWbx4MQsXLsThmJ39BeUnSiKRSKYZVQj+PODnjnYfr41ocRYK8CF3EVfVeVjjsh/Q9oQqiDUPa7FI7w5AKm1FMum0JrYnVGKcd+DCSyI5HAgh8Hq9WetRV1dX3uMul4tFixaxePFiGhoaMBpnv4tYiiWJRCKZJhKq4AnfEHe0+9gZigJgVBQ+VlnClXUeFtgOrBJ2KhAntNVLaHMvqYFodtxY49CsSCvd6Mzya1wy82Tca5kA7bHuterq6qxAqqysnHPCXn7KJBKJ5BAJpVI83DPIXe2j6f92vY7PVJdxea2bKvPUU/SFKojtHSb0eg+R7YOQ7gGnmPXYVrmxn1CFad7sdFVIji0y7rVM9lque81gMNDU1JR1r7lcrhlc6aEjxZJEIpEcJAPxJPd19XF/Vz+DCS3Nudxo4As1bi6ZV0axcepfsSl/jNCWtBVpKJYdN9U5sZ9QifV4NzrTzGUDSSRCCHp6eti9eze7d++mu7s773Gn08miRYtYtGgRTU1Nc8K9NlWkWJJIJJIDpCOd/v/rnPT/eouJK+u09H/rFNP/hSqI7hki9Fov0Z0DZLrkKhY9ttUezYpUdWDxTRLJdBKPx2lpackKpEAgkPf4XHevTRUpliQSiWSK7Aim0/99Q5kYa1Y4rFxV5+FcdzGGKbYMSY3kWJGGc6xI9S7NirSiXFqRJDPG8PBwVhy1traSTCazj2Wy1xYtWsTChQtxOp0zuNIjhxRLEolEMglCCF4dCfGTNh9/GRwNWn1viYMv1009/V+ogujuIUKvj7EiWQ3Y16Qz2iqkFUly5Mn0XssIJJ/Pl/d4cXExCxcuZPHixdTX1x9V7rWpIsWSRCKRFEAVgmf6R/hJu483/FpVbB1wjruYq+o8rHLZprSd5EiM8OZeQpu9pEZyrEiNLuwnVGE7rgzFKK1IkiNLOBxm37597N69m7179xKJjNbsUhQlrzik2+0+at1rU2XOiaU777yTm2++mZ6eHpYvX84tt9zCe9/73oJzX3zxRU499dRx4zt27GDJkiXZ+4899hjf/OY32bdvH/Pnz+d//ud/uOCCCw7bMUgkktlLTFV5rHeIOzt87A1r4sasU7iospQv1XpotJn3uw2hCqK7BtNWpEFIu+x0NgO2NRWaFckzNbElkUwHQgh8Pl+2OGRHRwdCiOzjFouFBQsWsGjRIhYsWIDNNovOz8gQtG2C2g1gL5uRJcwpsfTII49wzTXXcOedd3LyySdz9913c/bZZ7N9+3bq6uomfN6uXbvy0hbdbnf2/02bNnHRRRdx4403csEFF/D444/z8Y9/nH/84x9s2LDhsB6PRCKZPfiTKR7s6udnnX1441qMRpFBz6Xzyvl8TTlu0/5dD6NWpF5SI/HsuKnRhWNDFdbl5SjGA+/9JpEcDPF4PFv7aM+ePYyMjOQ97vF4WLhwIYsWLaKmpmZGe6/lERqAtpe1W+vL4H0HEPCRn8PxH5uRJSkiV1rOcjZs2MCaNWu46667smNLly7l/PPP56abbho3P2NZGhoaori4uOA2L7roIvx+P3/605+yYx/84AcpKSnh4YcfntK6/H4/RUVFjIyMzPlaEhLJsUZvLMHPOvt4sKufQEoLJKoyG/lijZt/rS7DYZj8ArJfK9KGSozuWfQrXXJUMzQ0xJ49e9izZw8tLS15wdkGg4HGxsasQJrounjECfqg9R+j4qhvx/g55YvgvV+DlRdN666nev2eM5aleDzO1q1b+cY3vpE3fuaZZ/LKK69M+tzVq1cTjUZZtmwZ//Vf/5Xnmtu0aRNf/epX8+afddZZ3HLLLRNuLxaLEYuNxh6MrVQqkUhmP3vDUe5s9/Hb3iHi6d+Mi2wWrqrzcEFFMSbd5Bagia1IRTg2VEorkuSIkEqlaG9vzwqkvr6+vMczrUUWLVpEQ0MDJtPUC6QeNvzdmihq+we0vQL9u8fPcS+BhvdA/cnazVlx5NeZw5wRS/39/aRSKSoq8l+wiooKent7Cz6nqqqKe+65h7Vr1xKLxfjlL3/Jaaedxosvvsgpp5wCQG9v7wFtE+Cmm27ihhtuOMQjkkgkM8HWkRA/affxTP9IxgjEhiI7V9V5OL3MhW6SQNZsRttrPdKKJJkxAoEAe/fuZc+ePezbty/vx7uiKNTW1mZT+z0ez8wHZw+1aaIoI44Gm8dMUKBiuSaKGtLiyF4+I0udiDkjljKMfdOFEBOeCIsXL2bx4sXZ+yeeeCIdHR388Ic/zIqlA90mwHXXXce1116bve/3+6mtrT2g45BIJEeOTGPbO9t9vJpubAvwwXIXV9VVsL5o8pT91EiMUMGMNmlFkhx+VFWlu7s7G5zd09OT97jNZmPBggUsXLiQBQsWYLVaZ2ilgBCaGGpNC6O2l2GkI3+OooPKFVD/Hk0c1Z0IttKZWe8UmTNiqby8HL1eP87i4/P5xlmGJmPjxo386le/yt6vrKw84G2azWbM5v1nxEgkkpklrqr8zjvEne197A6PNrb9aIXW2HaRfeLGtvu1IsmMNslhJJPav2fPHvbu3Us4HM57vLq6Opu9Vl1djW4/buPDhqpC/64ccfQKBMd4ZnQGqF4N9SdpVqO6jWApmpn1HiRzRiyZTCbWrl3L888/n5fW//zzz3PeeedNeTtvvvkmVVVV2fsnnngizz//fF7c0nPPPcdJJ500PQuXSCRHnEAyxS+7B/hZZx896ca2Dr2Oz1SX84Xa8kkb26b8MUKbC1TXbnThOKEK63HSiiSZflRVpbe3NyuOOjs781L7zWYz8+fPZ+HChSxcuBCHY4aaKasp6P3nqNWo7RWIDObP0Ztg3rq0S+0kqDkBzFNfbzSRoqU/xL6+IM2+IP4OPxZvhJM/uIATV1XtfwOHgTkjlgCuvfZaLr74YtatW8eJJ57IPffcQ3t7O1dccQWguce6urp48MEHAbjllltoaGhg+fLlxONxfvWrX/HYY4/x2GOPZbd59dVXc8opp/D973+f8847jyeffJI///nP/OMf/5iRY5RIJAePN5bg5519/KK7H39Sy2yrMBn4fI2bS+aV45ogs02ogtieIYJjerRJK5LkcBKJRNi3b182/igUCuU9nkntX7hwIbW1tTOT2p+MQ8+20Uy1jtcgNiapyWCF2hNGY47mrQPjxFZb0MJdev1R9vlCNPcHae7TxFGHL0TRSJwV6FmJnjMw4EQLi/nn9n6QYmn/XHTRRQwMDPCd73yHnp4ejjvuOJ5++mnq6+sB6Onpob29PTs/Ho/zta99ja6uLqxWK8uXL+ePf/wjH/rQh7JzTjrpJH7zm9/wX//1X3zzm99k/vz5PPLII7LGkkQyh9gbjnJXu49HczLbFtrMfKnOw0crSjBP4KJIBeKEtvQSer2X1FCOFanBhX1DFTZpRZJMI0KIPOvR2MKQmb5rmfijoqIZcFXFw9C1ZdRy1LEZkpH8OWaX5kqrP0mLO6paCYbC1tpwPElzX4jm/hDNfaOiqKU/RDiewgmswMDx6PkkepZgwER+TbOkXiHisbJykbvgPo4Ec6rO0mxF1lmSSGaGLSMh7hiT2bbeZefL9R7OmCCzTaiC2L5hQq/1ENk+CKr2TMWS7tG2QfZok0wfkUiE5ubmrEAKBoN5j5eXl2etR3V1dRgMR9iGER2BjtdHXWpdb4CayJ9jLR2NN6o/SQvO1o1auVRV0OOPZsVQc1+Qfem/3SPRvE1VonB8WhytRE8jBaxldiOWRhfmhiLMjUUYK+0o+sOT0XfU1VmSSCQS0DLbnh/wc0e7j9fHZLZdWevhhOLCsRGpQJzQVq9mRRoc/QI31buwn1CJdUU5OtMsqWAsmbNMxXqUKQy5YMECSkpKjuwCQ/2jgdht6erYQs2f46yG+hNHaxyVLwKdLmsl2vd2b9ZC1NwXoqU/RCSRGrcrHbAAHSeazKw3mFiUAEdivH3GUG7F1ODC3FiEucGFvtQy8+UOxiDFkkQimRNkerbd1eFjT7pnm0lRuLCyhC/VelhYILNNqIJY8zCh13qJbB+AVMaKpMe22oNjQxXGSmlFkhwa4XCY5uZm9u7dO6n1aMGCBdTX1x9Z69Fwu9ZXre1laN9UuABkSWO2vpGoO5FeXQX7+sI09wfZtylIc/9m9vnGW4lyMegUFpTaeK/dykrFQH1EpWgwji6hQhyIZ9JJFUzzHJo4anBhqnehd8yCQpn7QYoliUQyqxlJJHkwndnmS/dscxl0XFJdzudr3FSYx/dsS4UShNNWpGT/aLyFqdaJfUMl1uPd0ookOWhUVaWnpycbmN3V1TXOetTU1MSCBQuOrPVICE0Mtb2sCaT2TeNrHAF4lpGsPYne4tVsNx7HjqBdsxL9PUhz3y7C8e0T7qLUbmK+205TuYOlLgtLUzoqA0nM3gjJnhD0x9HUkYZi1mOqd2Gud2FqcGGqdR7UZ08NhcBgQDdDZXukWJJIJLOSrmicezr7+FX3AKF0z7Zqs5HLJ+jZJoQg3uIn+HoPkX/2j1qRzHpsq9zYN1Rhqp6hdGvJnCcYDGYz1/bt2zeu7pHb7c4GZh+x2KNUEnrf1kRR2yvQ/iqE+/OmCEVPsPQ42p2reFu3jJei8/nnoJ6ulzM/IrrGbdagU6grtdHkdjDfY2d+uYOmchuNih6zL0K81U+sxU9qYLQxb6YDnb7IhKmhKGs1MlbaUXRTd6kJIUj29RHbuZPojp1Ed+4gtmMn8bY2am6/Defppx/oqzQtSLEkkUhmFduDEe5s9/GEb4hk+sf6ErvWs+08z/iebWo4QegNH6HXe0j6Rq1IxnkO7Bsqsa30oDNLK5LkwEilUnR2dmZda2OrZpvN5rzYoyOSuZaIQNfWtNXoFS0wO57v8kvqzLRYlrJVLOH50Hw2xecT7sp1UY9afYptRua7HTSV25nvGf1bV2rDoArinUFibX7i7/qJt3cSCSfJy4tTwFhhH3WpNbgwFE9eMiAXkUoRb20lumMnsZ070uJoJ6mBgYLzY80tOKe89elFiiWJRDLjCCF4eTjIHe0+XhgMZMdPKnZwVZ2HD5Q68wI+hRDE2wOEXush/HY/pGsqKSYdtpVaRpupZqa+ViVzlZGRkaw4am5uzuu5BlrHh4z1qKam5vDXPYoMa3WN2l5BtG+CrjdQxmSqBbCxJbWI19QlvK4u4R3RSDw86prW6xQaS22a6yxHGM13Oyi1j8YKpYJxzWL0uo+hNj/xrmDWOptBMeow1To1t1qDC1OdC511ajJCDYWI7t6dYzHaSWz3bkS0QByUToepqRHL4iVYli7BvGQpliWLMZTPXL84KZYkEsmMkVQFf+gb5s52H28Htd+sOuBcTzFX1npY5covBKlGk4Tf9BF6rYdE76gbxFhpx76xEtsqDzqL/FqTTI1EIkFbW1vWtdbX15f3uNVqzdY9mj9/Pk7nYRbg/m6Sra8Q2vN3dO2bcIzsRkkXxcj8VPCKYjarS3hdXcxmdQm7RC0qOpwWA01uBx9Ou86ayh0s8NipK7VjMuRbY4UqSPaFCb47QLzVT7zNT3JgvGjROY1arFG95lYzVttR9JPXHZvMjUaBSkWK1Ypl0SLMy5ZiWbIUy7KlmBcsQDeT/e0KIL9VJBLJESeUTPFw7yB3d/TREdXcAladwieqyrii1k29NT+IM94ZIPRaL+G3fIh4Os3ZoMN2fLkWi1TnnHWpxpLZhxCC/v7+bOxRa2sryWQy+7iiKMybNy8bmH04e66NhON07n2LyJ5/YOl5jYrhbbiTPRiAXIdes1rJZnUJm4UmjtTieuZ7nDSVO/i0286CtJWo3GGa8DOgxlMkOgOaS61N+ysiyXHzDBW2tDhyTSmF/0DdaAa3G/OSJViWLk1bjJZgqqtDmYnK5AeIFEsSieSI0RdPcG9nPw909TOc1OqylBr1fG6em0vnlVNmGv1KUuMpItv6CL7WQ6JrNC7D4LFh31CJfbUHnW18JpxEkkskEqGlpSVrPRoZGcl73Ol0ZsVRU1MT1mm0aKiqoGs4omWaeYeJdGzD2fs6NcG3OV7dwXIlv21ISihsF/W8qSyly7mSUOV6PFX1zHc7+Jzbzn+X27EY9y8sUv44sbaRrDBKdAWzxVcz5LrUTPUuzHXOST9PB+xGa2zEsmQJ5iWLsSxddlButFjMSyDwLsPDWxke2UxDw1WUl73vgLYxXUixJJFIDjt7w1F+2t7Ho95BYukv7UariStqPXy8shRrjmk/0Rsi+FoP4Td8iFi60J1ewbqiHMcJVZgaXdKKJJkQVVXp7u7OiqOxDWn1ej319fVZ15rH4znk8ykST2k1ifpC7PMF2dcXpMvXj2tgG6vFDtYpu7hItxe7khMDpUAUE82mJfhKVpOYtwHHgpNomFfJxa6pF2UUqiDRGyLe5k9bjvx5rXsy6FymUatR/cQutYNyoy1ejHnpEi3GaNlSzAsXHpAbTQhBLNbDyMjbDA2/wsjIm0QiraRS+RmH3t7fS7EkkUiOPl4fDnJnh49n+/3ZdiRrXTaurPPwwfIi9OkLgkiohP/ZR+i1XuJto7+2DWUWrUfb2gr0dmlFkhRmZGQk61prbm4mOsbaUV5eno09qq+vx2Q68CKIQgj6gjH2+bTK1fv6RsVR13CEMkZYp9vFet0uvqDbxXKlFYM+vzJ2RO9iuHw1ovZEipacgr1hHcsMZpYdwDrUaJJ4eyArjOLtAUR8TPVsRYvjywZi17vQF5vHCbCsG23nTk0cbd+xfzfa0iVabNHSJZgXL8FUf2BuNCEE0WgHQ0OvMTj0MoHAu0SjnahqfNLnGQxF2OxNU97PdCPFkkQimVZSQvBM/wh3tfvY4h/9ZXhWph1JkT37pZ3oC2uxSG94UcPpGAqdgnV5GfYNlZibig+oRovk2CAej+cFZvf359cWMpvN2aKQ8+fPp7i4eMrbTqRU2gfDaQuRJoz2pq1FgWgmzkfQoPSyXreLc5TdrDPtYr6uZ9y2ks556OpPRFd/EtSdiNW9BOsBxEAJIUgNRkeFUZufhDcMYww8ilmPqc6JqS4tjmqd4xId1FCIyIG40RoacmKLDi4bTQiVUGgP/QMvMjy8mWBwF/G4DyHGx0tlj0XRYzZX4nAspbj4BIpcK7HbF2E0zmzfVSmWJBLJtBBJqTzSO8jdHT5aItqvRJOi8LHKEq7IaUcikirh7f2EXushtm80fkRfbMZ+QiX2dZXoXbO//YHkyKGqKj6fLyuO2tvbSaVGrSmZwOz58+czf/585s2bt9+0/kA0QXNfKCuEMqKobSBMckx8j4Eky5Q2TjDs4r3mvawSOylSh8dsUQHPMqjbAHUnQd1GDMW1B3ScIqES7wpkY43i7X7UYGLcPH2pJe1Sc2KqL8JYYcv7UZHs6yO8OS2Kdmw/sGy0pUsO2I0GoKpJRka20j/wAiMjbxIOt5BIDAHqhM/R6x1YLbW4XCsoKTkZl+s4rNY6FOXwBNUfClIsSSSSQ6I/nuT+rj7u7+pnMN1Ms9ig59J55Xx2XjmedDuS5GCU0OZeQpt7Ry8ACliWlGLfUIVlUYm0IkmyBAIB9u3bR3NzM/v27SMUCuU97nK5spajxsZGbDbbuG0IIfD6Y3mCKCOKvP7xcT0ZyoxxPljcwXtNe1me3E5V8B0MqXQ5xoxG05ugeo3WcLbuJKhdD9YDa2uSGokRa9cy1OJtfuLd42sboU/3Usu0DKl3oXdqPyYybjT/0zuJ7Rq1GKXGWNoyZN1omdiig8xGSyYD9Pe/wODgywQC7xCJdpFKBSZ5hg6TqQybbT5FrtWUlr0Xl3M5BsP+K+oLIUiNxEl0BzHVOGfsh5QUSxKJ5KBoDse4u8PHI72DRNO/xGstJr5Y6+aTlaXYDXqEKohsHyD0Wg/R3UNZ94HOacK+vgL7CZUHVPFXcvSSqXm0b98+9u3bh8/ny3vcaDTS0NCQFUhlZWVZd248qbLXF0iLIi2OaG9fkH2+IKGx8Tw5eJxm5rsdrCoKscGwh4Wxd3APbcPY/y5KYIxFxFIMdSemLUcnQtUqMB5ItWqVRE86ELtdE0ep4QKB2A5jOjst3Uut2oFi1KGGw8R278b/hx1HLBtNCEE40kp//1/SbrTdxONeVHVioanTWTQ3mn0xJSUbKCs7Bau1YUoB6yIlSPaHSXSHiHcHSfSESHQHsy76kg9XYD950QEdw3QhxZJEIjkgtoyEuKvDx9N9I9nQieOdVq6s9XCuuxiDTiHlj+Hf3EXo9V5SI6NfrOaFxTg2VGFZWrrf4naSoxtVVfF6vVnLUVtbW55rDaCqqirrWqutrSWcFOzzBXmxLcTezbuylqK2gTApdbyLCbQK1vVlNua7tXpEC9w2lhm6aAy/jbVni9ZPrbt9/BOL67LuNOpOhPJFcADxRqlgnHh7gHi7lqWW6AwiEmMEWG4gdtpqpCs2kervJ7ZzJ4Fnjkw2GkAqFWVk5E0GBl7C799GONxCPDHIxG40BYPBiSXtRisrfS+lpe/FYLBPaX9qLEWiVxNDiZ4Q8S6/Vmi2gLZNkaLL1ENv+7usk2JJIpHMVlJC8Fz/CHe297HZP+oOOaPMxRW1bk4qdoCA2L5hRl7rIbJ9IPsdq7MZsK2twL6hCmP57KrKKzmy+P3+PNfa2Ga0LpeLpqYmyqvriFvddARSvOQLcu/zXvb17cMXmNiiYTfps208tEKNWsHGOqeCqfdN6HgB2l+Dba9DLL/WEooOKldooqh2gyaQXNVTPq5s+n5aHE1UEVuxGjCnA7FN9S6M1TaSvZ1Et+8g+JcpFnWclmy0boZHXmdw8BUCgXeIRrtIpUITPkdR9BiNpdht8ykqWkNZ2am4XKumXLAzFdDcaPHuIIn2fhLdQZIjMFqXfJSwLkqLuZN9lvTN3EG7uYeELsm15R9g3ZSPdHqRYkkikUxIOKXyaLrSdnNEu1CZFIULK0v4Yq2HxXYLqVCC4N81K1Kyf7TNpqnBhWNDFdbjylGM0op0LBKLxfJca2Oz1gwGIw53NQmbG68o4s0RuO/NMMFXe4Dx2WWguc4yVas1QeRkvsdOZaY2UcALHa9qwmjTq9DzFqhjsq+Mdi3GqHajJoxq1oF56q1M1HBCc6W1+9MCqUD6PmDwWLUMtXoXBo+R1GA7sV3vEPrbTgZ27iC26/BmoyWTIYLBXQwPv8bQ8GZCod3pbLSJXZM6nRmzuRK7fRGlJRspKzsdm61mSvsTqiDZHyHRMUiipZtY1wixAQUlbh4zUxNJ/YZhms2dNFs62WfpYJ+lk15jP0YF6kzFNNrn8YHS9TR4VtJQsoCmIlk6QCKRzCImCtr+THUZn6tx4zEZiLcHGPxDG+F/9kEy3b/KrMe22oNjYxXGyqmZ4yVHD5mCkBnrUUdHB6qa78aJm4voFUXsDNnojdpRgxkhPVpfS69TqCu1Za1EGUvRfI8Dl8WYu0Po3wV7ntIazra/CkMt4xfmrNJEUUYcVRwH+qld/oQqSPrC6ew0TSAl+yLj5ilmvVYRu86JvkigBjuI732D8Ms7GPr54c1GE0IlEmknENjB8PBrjPjfIhJpIZmcLOg6nY1mrcXpPI6y0vdSUnIiJlPplPapxpIkmttJ7O0g0DlAZAD0oSL0IjcA24ICpFDpMnnZZ+nMWo2aLZ2YTUkarG4aipp4j/s9fNq9jAZXA1X2KvS68dYyUeD1O1JIsSSRSLLsDUe5p6OP/8sJ2q6zmLg8HbRtTQrCb/rwvTqmkW21HfvGKmwrPejMs7/Pk2R6EEIwODjIvn372Ll7L+3tbSTj+a6ygGqiWy2iW3XRo7qIR0cvOzaTPsdC5MhajOrLxjd/BSARgda0KOp4DTpeh+jwmEk5Kfy1G7W/xfUwxYrY46xGHYHRSvI5GMqtGGsd6O0J1HAnifbtRF7dydADhzcbLZHwEwztSrcBeZ1AYDuxWM+ktYtAwWgs0bLRitZQVvoeXK7jp5aNFo+gduwlvKeFgY4+wgOgDxVjS5SjoENrfe0mI5GiSowWSxfNaVHUZekCZ4R5RRU0lCxmXcX7ubBkAQ2uBmzG8RmMsWSK5r4wzf0hWvpDtPRpf5v7g3z3ghWcubxyyq/VdCLFkkRyjCOE4PV00HZupe1VThtfqnNzTnkxam+I0FPNDL852shWMeqwHu/WrEg1DtmC5BggpQr2dvfz5ru7aG9tJdjfjS6RH3cUE3p60sKoW3UREBbKHWbmu+28J0cQLfA4qHRZ0E1WLiLXpdbxWtqlNqbukMGqudEysUY168FaPKXjmbLVyKTDWG1Hb4uhRnpIdL1LZPPbDP9qP9loixfnNY49EDeaqiaJRFoJBnfi9/+TkZE3CYX3kkyO7OeZOiyWKhz2xRSXbKSkeD12+2L0+rGusNwXQkCoD7V3F/3NO/F19BMe1KELleCK12BTnUAJBkrILQ05qB9hn6WDFksXgzYfalGMoopi6iuOZ6X7NM5zNVBhqxj33aCqgu6RCFv7+zQhlCOIuoYiY9vYZWnunziu6nAjxZJEcoySVAVPpyttvxnIr7T9pVoPJ9gsRP45wOCjbxHvGDXnGzxW7BuqZCPbo5hoIkVLv1awcU/PMO0d7YT7u7FE+ylVRs8VHVrzV5/qoEe4SNk9eCoqWVjh5OwcYVRsm0JtHFWFvh1pq9Hrmkgaah0/z1GZbzWqPB70UzsPU6FETpyRn3hHsGCskb7EiM6WQMR6SfZsJ/rW6/hbW/afjZaOLTIvWnRAbrR4fIBgcCfB4C78/rfxB/5JNNoxaWwRgKKYsFrrcLmOp6R4Ay7XCmy2+eh0E1zaUwkYbCHu2057x1t4u4YIDRlQImW4ErV4EtUYxRKKgeLcp5Gi0+Sl3dLFiGOQVEkS67wSquuXs6zkA5ztqsdiGF9GYSgU5432YZr7gpqVKOcWS05crNJhNtBYbqex3E6TO/233EGTe+Zc+1IsSSTHGKFkiod7B7mno4/2qFZp26xT+FhFKV+sddMQVgn9o5eerV5EJG3a12dakFRhbiqSVqSjBH80wV5fup1H9m+A8HAfFYqfap0fjy5IsSK0i2f6bQ/pHChFFZRX1bJofiOLq0toLLdjMR6ACzYWhK4tmjBqfxU6t4zPUkOBiuWa1ah2wwG51EQqk6GWYzUqlKFmVDRhlPCS7NlJdMcrpHo7Cm5T7y5PC6Il2cDrA8lGU9U4oXAzwcAOAsEd+P3/JBTaSTLp3+9z9XoHdvsCiorWUlS0GpdzORZLbeHPYmQI0bebgd5ttHjfosc3SMhvQolW4EjWURWrpSL5AeoL7Cesi9Bp6WHEPkSqXGCtc+NZsJBFZR/gJGv5uP1FEyla+0O09A3RnLUSBWnuDzEcHl99PINRr8WlNbkdaTGkiaJGt50Sq5G2wQi7egPs6vXzx7d72O0NcMN5x/G+Re79vlaHAymWJJJjBG8swb2dffyie4CRpPaLtdSoVdq+rLIM+94RQg/txju2BcmGKuzrKrJVgyVzCyEEvkAsK4qy4qgvmE7FFxQpUap0fqp0fk7SBTCZ8i0aOrMNd3UdixfOZ+1xSyhyTT1zLL0IGOlIW4zSMUfed0CMsS4Y7ZpLrW6jJo5q1oNlaj3BUv64VtOoQxNGBesaAYo5AYk+Er5dxHe+Sqq/lXHN1nKy0cxLFmctRgb31C7UQgjicV/aWrSTQGAngcDbhCPtTNb+I4PJVK71Ritah9N1HE7HcszmMftWUzDUSsK3g47eN2gZ2E77cA/+oBXi1TiS9dTEa2iMnU+VWtjKNWgcYsQ5QrJcwVrnoXx+LXU1jSwaU2xTVQVdwxH+3tmfdpsFs8KoeyRSyOCWparIkrUONZY7aCy30VTuoKbEil6n0DMS1USRN8AjmzvY2Rtgb1+QeAHL044evxRLEonk8LAjGOGnHX38zjtEIv2t1mQ1c3mtm49a7ahbvIQeepPBQLrrtwKWxaXYN8oWJHOJlCroHArni6J0a4/RBrAaVuJU6fwsMvqp0QewkN/x3Ww209jYyPz582lqaqK0tPTArImpBPS+PWo16ngdAt3j5xXVpq1GJ2h/p5ilJhIq8e5gOgBbsxwVqoaNLgXJfpJ9e4g3v0FqsBnGxFgpVivmRQvTcUXLDjgbLZWKEgrtJhjclRZG2wmGduw3Ey29QKyWGlyu43G5VuJ0LsfpXIbBkCNGY0EY2MtQ79O0eN+kdWgPLcEeBmJGVLUOV6KehlgNTbGPcFrcjY7xgfFJJcmIw0+yXIeltozyhnmUN1RTM8aNPhSK8253iOa+vqy7rLkvROvA5G4zl8VAk9tBU9ZtplmLGspt2EyG7LZ39gbY7Q3w5x0+dvUG2N0bIBArHJhuM+lZWOFkcYWDxhIzlVaV9Qumlql3OJBiSSI5ChFC8LehID/t8PHC4OiX9oYiO1+scfO+IZXIX3oZ2TEw2oLEYcS+vlJrQVIiW5DMVmLJ0Xii3NtkcSAWJclxRXEajEGciSFENN/to9frqauro6mpiaamJqqqqqZccBCA0AB0vj6aodb1BiTHBErrDFp8Ua44Kpq3300LIUgNxbLutFhHgEShHmoIRHKIVP9eEt3bUQebUYNecq1GmhttLZYli9NWo6m70bRijl1Za5GWkbadSKSNcZapAiiKCYd9YVoULcPpXI7dvgi93qJZ3gK9JPt20PnOXbT0v0urv5WW6AAdqkpS1OFO1NIUraEx9hHOjlXjShXOZIuaYyTLdZjnFVFSV4m9phiD24ai18RuNJGibSDMG/v6sxlnmZiioUncZia9jvoyWzqOSBNGjW7NfVZqN2XFdCiWZI8vyDtdIzz2RmfWatQ3QUFRg06hodxGY4mZeQ4FtzFBESF0kWGGh5oZ2jWEN5HACzTZL6DGc2D996YLKZYkkqOIuKryhG+Yn7b72B7S4jN0wNnuIr7oLmXpzgDBB/YwNDgau2FuKsK+sQrrsjKUQunakhkhGEuOE0R7fQHaB8MTZguZDTqa3A4WlFupN4VxJAaJD/Uw1O9DRAVERy/r1dXVNDU10djYSF1dHUbjFIP1VRX6d48Ko47XYGDP+HnWklFXWt1GremsaXyq+LjNx5LEO4JZi1G8IzDaeDkHkQqTGthHqm8PqaEWUsOtkExfkBVFy0Y75ezRbLQDcKMlk0GCoV051qIdBIM7UdXw/p8M6PVOnM7luNIuNKdzGTZbI0oqBUMt+HvfonX7Q7QM7qYl2ElLYoRWnUJQKaMuXkNjdB6NsZWcFZ1HTbwCPQVqDimCZKmCudqJo6YMU5UDY5UdvdOEqgp6/FH+2RekpaWP5tdD7EsLoq7hyd1m1UUWGnOCqhvdduaXO5iXdptl0FL8Q/xjb79mJfJqoqhjcHw2YXbbLhPznHoqLSlKdBHsiRF04QHCgRGEX1tUX/o2FpfLNa5m15FEEQdY5SkQCOB0HqC/+ijH7/dTVFTEyMgILtfU/OsSyXQynEjyy+4B7u3spzeuXVhseh2frCzlUp2Vsq39+cUjLXrsayqwb6zC6Nn/BUxy+BgIxrIusz1eLZZory9Iz0iBlPQ0TrOB+elss4UeB03lVopFkFB/D62tLXR0dIzrs1ZWVpa1HDU0NGCdarZWLAhdW0eFUefrEC2Qvl6+OG0xOkHLVCtbsN9eapnU/Xh7gFi7n3hHgKQvPM5QI9QU6kg7qcFm7TbUjAhrLUEUiwXz4kU5LUAWY1m8GJ1t/+e1ECnC4ba0MBqNL4rFOqf22gBmcyVO53GaC82xFKdzOWbVitq/m56eLbT43qZlpIXWiJcWNUKLwYBfZ6YuXpkWRZo4aorNoyhV+NoqLArGKgeWaifGtCgyVtjwx1M09wfzUu8zbrNogXitDM6022x+TlB1U7kjz22WIZlSaR0IsycthnZ7A+zqDdA6ST++YouOKpugzBDHpQYwRwexJUYwKhOvyWg0UlJSkr2VlpZm/y8uLsZgODy2nalevw9YLK1atYpnnnmGysqZKQw1G5FiSTJTtEVi3NPRx8O9g4RT2hdRhcnAZyvLuNCnYnjNS6J3tDaJcZ4Dx8YqrCvd6EyyeOSRQghBz0hUS8XPzT7rCzIYik/4PLfTzIKcKtaZm9thwufz0dLSQnNzM21tbcTj+dtxOp1Zy1FTU9PUvpuE0NL1O14fdat53y0QiG2DeWtHrUY168G2/3iSVCCeF2cU7wxk63bloob7SQ22kBpqJjXYgjrSDmoSfVlZTguQJViWLMHU0DAlN1o8PpgjijJ/dyPExP3m8tFht83PxhU57EtwimISA2209WylZWA7LYEOWmKDtCgp2owGYoqOkqSLplgNjbF5NEXn0RCbR22sEkMBaxEKGNxWjJX2rCjCbaUrmaC5P5wOqg5mY4kGJjl3MtlmjeVa0c8mtz2beVaW4zbLvuaqoHMokrUQ7fYG2O3VztN4qrDIseoFHnOSIsLYEiMUEaZEF8GiFI5Dcjgc44RQ5n+73T4jWbZTvX4fsFRbt24dGzZs4Nlnn2XJkiXZ8TfffJP//M//5Omnnz64FUskkimzJV1E8k99I9ncmqV2C5e7ivjAziDJ51oQsRQJAIMO20qteKSpVlqFDyfJlErHUIQ93kA2uDqTkh8qUM8HtCz4mhLrGFHkZIHbQVE6AFcIwcDAAC0tLbz0Rgutra3jmtBarVYaGhqy4qisrGz/F59EBLq3pS1Gm7W/oQJOkKI6rZdazQla+n7FcfutbSQSKeJdQeIdmist3uYnNTL+4i4SUVLDraQGm1GHWkgNtSDiAUx1dViWLcWy5LysODJ6PJMfDznp+cGdhIKj4igW9+73uRl0OgsOx1Ittsi2CEfKQXRwkDbfu7zTupuW0Eu0JAO0GHT0pC0eRtVAXayKpthS3h+bl7YaTWwtUqwGjJV2TFV2DJU2AkUm2lDZNxymuS9Ec2sPLVtCdAxFJrTgAFS4zFl3WSbAOpNtZtCPt+xlhPvuHEG0J/03kih8jhoVlWJdjCKClCgRipUIJboIVhJkjUV6LfYt1zqUK4iKi4sxmeZuRu0Bi6Wf//zn3HDDDbznPe/hiSeewOPx8F//9V889thj/Mu//MvhWKNEIgFSQvBMuojkFv/ohfJ9xQ4+mzSxausgidY+MtEdhnIr9o1V2NfI4pHTzdgg6z1pUdTcF5rwV7gWyGrPiqKFFZlmsA6sBax8IyMjbNvWQkuLdvP784OyjUYj9fX1NDY20tjYSGVl5f6Dske68oVRz9vjK2LrjFC9ShNGGbeaq3rSzWYaqGaEUaxliKQvOt6dJlRUfw+poRxhFBvAvGghthVLsSw9T7MYLVqEzj55AcKx6flZa1FoLzB5McdcjMZSzVpkacKatBMY8dPZ38G2jjZaok/QImK0GA2EMq+tgHJRQmNiIe8Nau6z+dF5VMU9BWOLcq1FeGz0WXS06AS7QhFaBsI0t/XQsjVEcIKsMAC7SZ91lWUsRE3ldhrK7TjMhS/jQgi8/mieINrlDbDHG5xwXzpUipSoJoh0EUqUMMVKBIcSz5a2slqtaWtQ3TjrkNPpPLDEgDnEQTkBv/3tb2MymTjjjDNIpVKcddZZbN68mTVr1kz3+iSSY55MEcmfdfTRli4iaVQULih28a/eFDV/6EcNJTSRpAPrsjLsG6swzy+WxSMPkVAsmY0h2pMTaN0+OHG8htmgy7bzWJjjOpuw31maYDBIS4tmNWppaWFwcDDvcb1eT01NTdZyVF1dPXkcRzI+mr7f+br21981fp7dkxNrtAGqVoFx8mzIVDCuCaN2P9E9/SR6IpAaf66p0RFSQy2og82khlqAYSyL5mNfswTL0vOwLFuKqb4eZT/xKKlUhFBojxZTlBZHodBuEomhSZ83Fqu1AaelAUPSRiAQpXuon+aAl5b467Qqr9JhNJDK+cyYDSYaYvW8Z6Saptg8lsTqqItVY0kVjvfS2QwYKu3ESsz4rDqaUXknHmPPQJjm1m563544Dk2nQG2pLV2cMSOK7Mx3O/A4zRN+loUQ9AfjaetQgN2+ILt6RtjtDRIo0NMOQEGlSIlRnBZFxUqEEiWCU4mi1ykUFRWlRVD1OLeZxXJsZsoesFjq6enhpptu4uc//znLli1j586dfOITn5BCSSKZZnrTRSR/2T3AcLqIZLFBz6fMdj62K4zz2U4QWok7vcuE/QQt7V/vmqQHlKQgI5EEe30BTRR5R4VR1/DEmT2ZIOuFaSuRJo6czCu2Tt7vLE04HKatrS1rOerry3d/KYpCdXV11nJUW1s7uRvD3zMqijo3a+611Jh4HEWfroh9wmgK/34qYqvxFInuILGWYaI7e0n0RBDxsRYUBZGMkxpuQx1uITXYgs4Wx7xgHrYTF2NZej7mJUsxeNyTCnghVKLRzhxL0S6CoZ2Ew61MJT0/g04xYTfXoVedBMMJegNB9o4MszfZRYu+hwFDzvoVUEwGKhNlbAjMY1GshmXxempjNRTFilAosF6dgq7cQshlwmfR0ayk2BaL8/ZQmLa2YeLNEwcyl9pNefWImtLus7oyG2bD5LFXA8EYu71BdvX62d45yM5ePy0DEQLxwq+NgsCpRClWopqVSBelWIlQZkrhLsu4yTzjgqn1B9DY91jhgMVSU1MTS5Ys4dFHH+Wcc87h2Wef5eMf/zidnZ18/etfPxxrlEiOKd4NRvhph48nvMPZIpINZhOXxIyc9eoQpoHh7FzzwmIcG6qwLC3L1lGRFCbzCzyTgr8nx4U2UQ0YgDK7KS+4eqHHycKKyX/tFyIajdLW1pa1HPX29o6bU1lZSWNjIw0NDdTX10/8Kz5b9HFzWiBthpH28fOspaNWo5oTYN4aME3s3hKqINkXJrLTS3RHD4meMCJqAiXXIqbX3GmBXs2VFuhA7xKYm9zYP7AYy5ILMC9ajN4xuRstkfATDO3KiSvaSTC0m1TqwJqlGnQO9JQQiYE3GKE5GGJ7LE6zsZNIrktID+iNOFJWVoRqWBGrZVmykbp4LaXhMvSpwgJB2A2EXCa8ZoW9pHgrFmfTcIg+3wj4Cq/JpNfRkK5UnXWbpUXRVPrkDYbibO8a4u22PnZ0DbOvP0T7SJICFRQyq8SZsRSlrUXz7AqNZTbcZSWUltbMimDqucwBi6X777+fT3ziE9n7Z511Fi+88ALnnnsubW1t3HnnndO6QInkWEAIwV8HA/y0w8ffh4LZ8fVmMxd7VTZsGUSfLsKnWA3Y16bT/sun3qzzWEEIQa8/mmchyoijyXpVVRVZ8gRR5v9S+8EFpcZiMdrb27PiqKenh7HJx+Xl5VnLUUNDA7aJ0t0D3jFWozchOcalo+jAs0zLTMtYjkqbJrUaJYejRN5qJbK9m0RPFDVmQVFy49ssoIy600SkB0OJgqmxDOt7FmJe/BHMTU2TutFUNUk40pIXVxQK7iIaK1DRez/ocBKNG+iPJGgJx3gnLtipJBHKQO4LAWYzBqFnfqSCtYkGlifnU5dsoDRcjilSOH5P6BWCTiO9Jk0UbYvEeDUYYSCkwgT6rdJlybrLJqtJNBGd/SO8ua+HdzuH2OMN0DYcozsE4dTE7lpHxlKki1JtV2gqs7CwwkWluypPEM3lYOrZyAGXDpiI1tZWPvShD7F9+/bp2NycQpYOkBws0ZTKY94hftrhY09Ys27ogQ/qzXxyR4QlLTlp/zVa2r9tpRvlQBqWHqVkUp33ZNxnOYHWEwWwKgrUltjy4okWVjiZ77bjtBxaEHw8HqejoyMrjrq7u8cV0SstLc1mrDU0NBSuWZeMQ+8/NVE0qdWoBOatS7vT1mup/OaJsx2T/jDhzXuI7ugm0RtFjVpQDOOrQItkjNRwGyT7MZQomJtKMS+fj3X5Mgwez6SxM/F4f17NolBwN6HwHlR14hT3whvTEU+aGIwK2qJJ3k3q2JUyEBMF9i2gIVHC+uRClqkLqUs2UhZ1YxoxMlFZn5BFR49JYY9I8WYkxrvJBJ2oBcPCJwqubiy3Y58guDqDqqoEAgH2dfXxz/Y+dvX4aRmM0BVQ8cX0RMXEz3coMUr1MapsUF9sYqHHwdKaUqrcpZSWluJyuaS7bBo4bKUDJqKhoYGXX355ujYnkRzV9MUT/KJrgPu7+hlIaBd2h07HhRE9F77hp9KvtShRjDqsmbT/mmMz7T+ZUmkbHO15tserWYn29QUnLLyXm3mWiSda4NEyzyzTJDQTiURWHLW2ttLZ2TlOHBUXF9PQ0JAVSEVFReM3lBdrtAV6to23GqFoVqNM+n7tCVrRxwmES3JomNDrO4lu7yHhjSJiVjCVoCg6wAE4UAzp7LRAN4o6hD4tjKwrm7As/Tj6SYoPp1IxQuE9Y2oW7SSRGJzgGQoTxRwlUzqG4wqdUcGOpJ62pB5fUkHNxgqNvl9NKSfr1EUsF0uoVedTGvVgHjJAtPB5ENcrdBtht5rkrXicZlSaSRGKAjkvsU6BmhLbGAuRJowqXJO7W5PJJMPDwwwODtLcM5DnNvNGFIZVC7G8S22uKBe4dAkqLCq1RUbml1tZUl3MinoP1Z6yY9ZdFk2peOMJemIJemPa355Ygo9WlrDSOTNFdKe1JGZJyeHv2XLnnXdy880309PTw/Lly7nlllt473vfW3Du7373O+666y62bdtGLBZj+fLlXH/99Zx11lnZOQ888ACXXXbZuOdGIpFjNupfcvjYFYpyT4eP33qHiKWzqap1ej7Vm+Lct0dwpH/aHotp/7Fkitb+MHt8Wnrz3r4ge71aAb6J0vFNeh1NbjsLK5x5wqhhP5lnB0MikaCzszNPHI2tku1yufIsR+O+E5MxLV0/12rkL1At2lqiudNqToCadZrVyDL+V68QgkR3N+E3dhHd0UPSG0ONWVGsFSh6I1AOgJKO+Vcjg8Bw1mJkW7MAy+KTUCZodVKoH1owuItwuAWYKIi5kDASCAHBhEJXHPYl9XQm9HTFdfjVzHM0jAIWKHbWKItYxnLqxCJKoxWYh/Sow4UsVCoq0GOA3akku0WSfajsI4U3JfKqCBRZjSxyO7NWovlpS1H9foKrY7EYQ0NDDA4OMjAwQLN3mD3eAO3DcXrDMKxaGBZW4tlL6lj3uKDUqDLPqaOh1MLiShfH1ZWzsrGSkhm6+M8EQgiGk6msAOqNJejOEUS98Tg9sQSDE9R7mm8zHx1i6XDzyCOPcM0113DnnXdy8sknc/fdd3P22Wezfft26urqxs3/29/+xhlnnMF3v/tdiouLuf/++/nwhz/Ma6+9xurVq7PzXC4Xu3btynuuFEqS6UIIwd+Hgtw1pqntClXPp/ZEOLUthkGgpf0vL8N+4tGd9h9NpEbT8b1BTRz5grRN0j7BatSPxhNVONLCyEntBIX3poOpiCOHw5EVRo2NjZSUlIy+b0LAcEdaGG3RxFHPW5Aac8FXdOBZromiTCB22fxxViORSBBrbiHy1k4tK80XQ8Tt6JzzUIw2oA6MWpkkAJEMAyOaMJpfhn3dAkzz3zPheZVMBvIy0DIVrlOpYMH5WtfBQoJJkFChN67QltTTHVfoSujoSeiI57jRHEKhSe/gONNClumOp15ZTGmsEtOAQrIvMqZRbirrJBtQBHtEin2kaE6LojZU0gZaDDqFujIbK8odnJ9TuXpsw9e8FQtBMBjMCqKhoSH6BwZp8WluM81CZGVEaKIoiR4YbyVUEHisCnUlJha6HSyrKeX4Bg+LKl3TZtGcrSRVgS+eFj7xUWuQdovTmxZFkUkKbOZi0SlUmo1UmoxUmY1Umo0sc8xcjOa0xSwdCTZs2MCaNWu46667smNLly7l/PPP56abbprSNpYvX85FF13Et771LUCzLF1zzTUMDw8f9LpkzJKkEDFV5XHvEHd39LEj3dRWAU4LK3zinRArh1IogM6ppf07TqhEX3T0pP2H40n2+UJZMZRxn7UPhids5Jmbjr/A42BRhRZoPdV0/ENhquIo161WWlo6evGNhzUXWufmdNHHzRAcn/GGrSxtNUoHYlevHhdrlAqGiO3aSeSdXUR3eUn6YoikA11RPTpr8bhNCjWJovNjKNVjbizFtn4BpvrCafqqmiQSaR11oaVjjKLRAjWYAO2sVZjIkjSUhK6Enq64QndCR1dCx0BSQaStRR70NBmLWWxpYplhNXXKMkqjbgz9goQ3hIgWtiKEEDTnCKLM38zPjTK7KVuHqCknpqi21IaxgIBWVRW/358VQ4ODgwwODtI/OERrf4i+uEETQ2lRNCKspCgsxPUKVDsNNJXbWFpdzPLaUhZWOGkst+83/X8uEk6paetPfJw1KHPzxRMT2hrHUmrUU2nSBFC12USleVQQVaf/Fhv0R+QH4xGPWTrcxONxtm7dyje+8Y288TPPPJNXXnllStvIBNuVlub3MAoGg9TX15NKpVi1ahU33nhjnuVJIjkQBuJJHuzu576ufvri2s9dK3CeN8UndkWoiWhKwdxUhP3EKqzLylAOk3XkSBCIJkYDrL0ZYTR5jaIiq5FFFVpbj9w6RZUuyxGzqGVijjLp/PsTRw0NDaMtRISAwWZ4+8+jLrXed0CMufAreqhcoVmNak7QYo5KGrNWIyEESV8fsZ1vEHl3F7E9vST6EiCK0Jc0oHPUArXoy0c3KYSKog9jKNVjWVCOdXUjppqigudQLN4/ru3HZAHXCnrEuDBnAQiSAnoTmpWoO66Jou6EjrCqoBdQq5hospRxQnETS01rqVOWUxopg74Eia4Qqn90nyojZO4lEbSjjhNFvYicFPxiTnLb+de0MJpfPtoKJpdkMsnw0GBWCOWJoqERBpOmPEE0LKz4xTzEBKLIpFeoL7GwqNLF4qqi7DlbX1ZYkM01ct1i3Vm32HhBlKnztj/0ClkRNCp8TFkBVGU2UmEyYp2Dr92cEUv9/f2kUikqKiryxisqKgrWKynEj370I0KhEB//+MezY0uWLOGBBx5gxYoV+P1+br31Vk4++WTeeustFi5cWHA7sViMWGy0LsvYNgSSY5M9oSg/6+zj0d7BrKm5IqXw8eYYF7THcCVBMeuxn5RO+/fMrViFkXCCvX1aPNHutPtsry9Iz8jEVYnLHaM1ijJWooUeJ+WOwu6Qw0lutlpbWxtdXV1TF0fREejaCu9uGXWrRQoEMzsqc9xp67Vq2CbtfRapFPG2NqKvPE10x05ie70k+hMoRrcmjJyLUMxLMdaM2aY+iqHMgGWhG8vyGkw1znFNkFOpKCH/njxLUTC4i0RigEIoQqdFFY1JF8sIpUCKcaLIm1AwC4VGvY1Gq4ezS5tYbF1Hnf44ioPFqL4IsfYQqcEoigBIERtTiKg3LYRacoRRGyqlTnPWSvQBt4PPT5KCr8UPDdDVmi+GBgcH8fv9RFVdjiDKiKJqgqIRChWYBKxGXVq0u/IyJWtLbVMqATAbSQlBXzyZFT89BeOE4lN2i1l1OqoLWIByLUPlJgP6af5cq6EQyb4+Ej4f5sZGDG73tG5/qswZsZRh7BesEGJKX7oPP/ww119/PU8++SSenGaMGzduZOPGjdn7J598MmvWrOH222/ntttuK7itm266iRtuuOEgj0ByNCGE4OXhID/t6OPPA6OieWlE8Ok9UU7vTWIQYKyyYz+xCtsqz7gL3WxjKBRnjy/Ibm8mJV8TSL5JCjdWuMxZITTf42BROiX/YGsUTQfRaDRPHBVK5Xc6nVlhVF9fr4kjoULfTmj7A7ycFkZ9uxgXtKw3Q9XKtDBap4kj1zxQFNRIhNju3UQ3PUVkxw5i+3pIDQp09mpNGBWtQldiwjw2J0afxFhuwLzQg2WhG2ONE7191IKSrXDdtyvPjaZVuB7vBFFSAqHoEYqaFwIl0iIpJcCXVOiO67IutK64DmNKR6PBSZO9mtPLF7HAtZY6/XE4RqzEe0OE24MwEEWXEkCQEKNxTQowkrYUZbLP9qHSrRd43Hbmu4tpcts5J20laiwfX7YhHA4zODjI9u58MTQ4OEgoFEIIiGBkWLXkCKJKRtQGIkx8zhVbjTnZkc6sMKoqOnIWzekgrqrj3GA9aatQ5n9vPJEf9jUJpUY9VWYjVWZT+m++IKoyGXFNs1tMDYdJ9vWR9PlI+Hzp/7X7yex9H2potHxK1U03UXzB+dO2hgNhzoil8vJy9Hr9OCuSz+cbZ20ayyOPPMLnPvc5Hn30UU4//fRJ5+p0OtavX8+ePXsmnHPddddx7bXXZu/7/X5qa2uncBSSo4WYqvKEd5h7On28G0zHIwl430CKTzXHWD2UQtEr2FZ5sG+swlTnnHVfxgPB2DjX2R5fgP7gxDVxqoosLKxIu86ywdbOgi6RI00kEqG9vT3rVitUBLKoqIj6+vqsQCopKUEJ9WmCaNsfRgs+xgsENRfXj7rTatZr7jWDieTgINEdO4hteobIjp3E9nWjBvToiurQlzSgLz4JY421gMVIxeg2YV7gxtxQjLHWid41anFLJPz4Q9sIdu4cdaUVqnAtBEpKkBIG0At0utFjFnot1kgBQinoTluJutOiSIkbqDOV0OSo4T0VS5lfsp463TLMQzqCnQHCbUF0b0QxJFRUvGR+DmScKDEELWlBlBFGAYeR0gobTW4nTW47H3E7mO+2U100GneWCageHBxk746WcW6zaFT7TKkCgsKcdZmNCDfDah1+rMTFxD86Kl2jBUZzY+DKJgjwnk2EUyo9OaKnJ20J6onF6Ylq//cnJm66m4sO8JiMVFuMoyLIZKTaoomi6rRbzDKNbjE1EskKnYJCKCOCghMlDoxHsdkwut0zGq4wZ8SSyWRi7dq1PP/881xwwQXZ8eeff57zzjtvwuc9/PDDfPazn+Xhhx/mnHPO2e9+hBBs27aNFStWTDjHbDZjNh89gbiSqZOJR7q/qx9fJh5JhXM743yyLU5dWKAvNmM/qxb7+gr0jpmtopvbZHNP2kq026tlog2GJhZF84qtLKzICCJn9mJzqIUbp5NQKERbW1v2Vsgdn6lzlBFIJQ6r1iak81X4y+3QtQWGCxR8NDm0wOuMO23eOoStjERnJ9HtO4i++ndiO35GdG8HIuVEX1yvWYyKP4B5SYH6RDqBwW3GPL8Mc60LY40DQ5kVRaegqgnC4WZGgq8Q7B+1GMViPfnbEAIlIUiqOoRewWAQmrVIURAGBV3asqQK6EsqWUHkjSsoSQseQxmNrgZOqDqOJvcGalgAviSD7SNEW0IYtkaxxFQitJCJNsucvUkEHai0pt1nnXpIlVlwVjpoTFuITnI78go1qqrKyMgIg4OD9OxtZXuOy2xoaIhEYrSaelLoGBFmzUqkljIirAQUG8OqmVShQpRotZHqSm1ZQbTAPSqOXLPoPM0ghCCQUjXrT3Rii9BU44NMipK1/oy1ClWbjVRZjLiNRgzT5EZUo1FN6PSNt/7kCiL1AMJSFKsVg8eNwe3G6KnA4PFgcLvTYx7tvsez39Y5R4I5I5YArr32Wi6++GLWrVvHiSeeyD333EN7eztXXHEFoFl8urq6ePDBBwFNKH3mM5/h1ltvZePGjdkvU6vVmi0Od8MNN7Bx40YWLlyI3+/ntttuY9u2bdxxxx0zc5CSWUkmHun/egeJpn387rjgotY4F3TGKUqAeVEJjo1VWJaUohzhOAchBH2BWNZ9lmsxmqzFR22plUUeJwsqNBfaogqtcOP+KhPPBH6/PyuMWltb6e/vHzenrKyM+vp6TRzV11OUGtCsRl0PweYtWmVsdezroYB7CdSszVqN1KJG4s0tRHfsILrpDaI7fk1sXzuKyY2+uAFdSQP64g9hXV+gtpwiMHgsmBtKMNU4MdY4tfg0HcTiXkLBHfQFdxL07SYY2kkotA8hctakCoirRFUFVafHaBQY9WiiyKSkv7S1czCsknWh9cV16JJWivQVNBQvYPW8FXyk8kQq1VqCHWEG20aI7wlhfD2GM5rEz05Auwjk1vHuRqUlbSkasukR5RYcVQ4aK7X6RKe57VS6LOh0SrYg49DQEIOdnfzt7fzg6ly3pxAQI5NxVoxfWAjqnVrmWUKXzZ4bi9mgoykthDKCaIFHq400W9LxhRAMJVOa8InGx1uE0v+HJqgXNha7XjcqesYESGfGSo3T4xZT43FS6ZigpG+MGPL5SPb5SPj6UEdGprxNxWLBUJEWPlkh5M4RQ5oI0s2hopuz7xtxEi666CIGBgb4zne+Q09PD8cddxxPP/009fX1APT09NDePvor8e677yaZTHLVVVdx1VVXZccvueQSHnjgAQCGh4e5/PLL6e3tpaioiNWrV/O3v/2NE0444Ygem2T2kamP9NMOH3/NqY+0xJ/i061xTu9NYrYasG2ch2NjFYayw18DRAiBLxBLB1nni6KRSGFRpKR/gWcawC7MxhbZsZlm51eAEIKhoaE8y9HQ0NC4eR6PJyuO6iuKcY7shM6t8M8H4ZmthYOw7W6tTUiNdks5FxJt6SK2YwfRTTuJ7nyCWFs3entVWhjVoy/9KPba8vHbUsBQbsFUV4SpxqGJo0o7KSVCKLSb4eBWgoGdBHt2EwzuIpkcHn1uSpCKqURSCimdDoNRwWoUmqvKoker9KaJolxr0WBcBykrDn0V84qWsrxuLedWn0hxrBzvvhGG20dIbg9jGY6jjw4ziLbPsY1N+lFpQaVDJwg6jShuK84aB/VVLo5z2/lwuXZ+xOPx0UBqXxdv7Bq1EI2MjIxzdY66zpwEFBthg4sANvrjBkJjvUc5RpRim3HUOpQjiqqLp9Zn7XChCsFAIqkJn2i+FShXDEWnGChdbNBnLULVudYgy6gwck5D+QGRSJDs789agBJZAZRvGUoV+FxNhGI25wsetxtjxagFKDOuczjmjAiaKnOqztJsRdZZOrqIplR+5xviZ7n1kYTgfb4kn2pLsHoohanGgWNjNbaV5YelT5sQAq8/luM20/7u8QbwRwvHK+gUqC/TMooWVWjZZwsrprfFx+FCVVX6+/vzxFEgEMiboygKlZWVmjCqraHeGsLW/7aWpda5BQYKxBnqTVB5PNSsQ8xbR9LcQLQzQHTXTk0c7dhJorcPfVEduuL6UXeao3AcpKHMgqlWsxaZahwYKq1EU53ZDLRQuqhjJJrj2ksK4pEU4ZSOpKKgM+mwmQSWCd6SUAp6EjqGEjpEyo7DUEWF63gaqzfSWL0Rhiz07htipCOA2hfBOhKnLKZinMAyE0jXK/KaFCJFJvRuK65aF3U1Rcz3aFaieDw+LpA6cxv7PmRICJ1mHdLZiZlLCCh2BhIGfBFITmBAURTNxTt/jChqcttnJJ5IzWaMaaKnO9c1Fo1ns8biU7xMlhr1zEsLoGqLKSdjbDRrzHaIcTcimSQ5MJjnBhu1AI2KodTgIBMWNBuDYjSOEzwGtxtDhQdjzrjO5TrqRNBUr99SLE0DUiwdHWT6tT3Q1Z8NoLSmBP/SmeAT7XFq42Bb6dH6tNVOT5+2jCjKtRJl/g9MIIr0OoX6MlvWQrQw7UJrcttnvSjKkEql6O3tzQqj9vZ2IpH8ukw6nY558+ZRX1dHfbmNWrqweLdpcUY9bxXon4ZWw6hmHaJ6DQmqiPgE0Z17ie7cQWzHTlKBMPqi2qww0hXXo3NWpnum5aMvMWOqcaZdaQ5wxwgn9472QgvtIhTag6qmswQTKpGwIJSEuE4Box6rSVBk1ITsuNdAQF9CYTihJ5WyYTVW4SlaTUPV+6ipXMdwL3ibhwl1BhD9ERyBBJ64wDKBKAojaFdUBix6YiUmjBU2iuuKqK110eRxQDJfEOWm3YdCoYLbFALCGAkbXCQsJYR0DoZSZrwRGIhM7FIyG3Q0ltuZnyOI5qcLR1qPUDZobuq8Jn5GrULdOfWEklO4AipAuclAtdmYFUOjFiHTtARKC1UlNTQ0Pjja68t3iw0MgDrF8o8GA4by8lHR4/ak3WH58UH64pnvGCCEIBwOEwgE8Pv9BAIBAoEAI8N+/MNBAiMh3v+B97JsxZJp3a8US0cQKZbmNjuCEe7p7ON3vUPE0h+HiojK/8/enwfftuUFneBnDXs6+5zzG+98331TDkBmMiYgoFBODA6NYBVYIpRaRQRlVLeSUSESoR1tGAatdoREtYFB2miEbUhpQVtiV9CCbYMCaQkpJjm/fJnv3eF3f/N0ztnzGvqPvc/wm+6703v5XnK/N9Zdw157n332Ob+zP/s7re+/U/M99xqWhzH933ON3tddORHG/SjivWdrVM7MZ68u+Ba9ERS9ZwpEnaP1S5feeVmCp9mxp9Fqd+/ePeHgCxAEATdv3uT5G1d5Psm5UX+OcPM/tXCU7Z49aLwMN74Of+WrqN0Vil1F8bl7bWTaK6/gG4dcuolafgG1fAu5/AJyeO18MFqKCG70CZ/ro69F1Mtb5L7NW5RNPst48pl5zqLaMZl4JgYKKSEQRJFgJfQkF9wrJxYOG0VjU2J9jfWlD/Dije9keflr2Nyo2HntmPz+BLVfMpwYrhlIL4CiCs+m9BymmmYlJLrWZ+35JW6+sMRQO46OzobbL0aYnSfGC5pomaa3RqEGHLmI3UqyMbYUFyxWDLCahrzrUp+XL7cazZcv9y/Mj/Q0xfp2aY3NsmFjQSu0aCrbrh8OhCRwZcFR+voZR+mQK6EmlI8HQt573Gg0h5+dkz5Bzc72zFcI83BRbkjZQtClS+grJ/2BZpqgy5dRKyuIxzzvxxXvPU1laUpLXRqaypKNS0aHLfBko4JsXFBkNVVez+bY2oOTCK8RTiF8VxYShj7/zYo/9kPf9lTP9xksvYXyDJbeeeK8598ejPnw3R3+3eE8hPV9R5YfuF3zB3YM/feskv6ea8TvWXloh+1FTdGjQNELa72Zg/W7rrT1O3nphGkY/xSOzstxFMcxt557judXA55Xu1ybfAJ1/7dg75WzB5Qarrwft/7+Foz2AvJX9yg//Rnq118HJHJ4E7Xy/FxrNLiOkGevnxwEhDcGBDdTuFxRDW+T+TYsfzL5TJuzyFuoPcdjz8hALiQuEISRYDmCNX3+z6bxcNxIapsSBldZG34lN65/OzL8OjY2WifrcjMjOKxYzi3POcHgAigyeHa04DjV2NWI3o0+a88PWbsaUGbjc4Gori+OcPQeVLqMTdfJ9ZARCXuVYnNi2RzVZ5a+nYqSgudXe7zUpQCYaotevpSy3Hv60Z4zjVBZzzRAp0Fo6yFzCElYiBhrNUDX49Y0dqPrXw4fP2LMZRnN9twMdkIjtABFvro4R9lpUWtrM+fo4PKVBYfoqUboEnptDaGe7m+Ds466tNSFaevSdG1DXXTgMx0vLU1hqApDmdWURUNTGkzlsI3nouSfTyKShq//xkM++Of+1FM97pfccifP5Jk8Dcmt4+e2DvjwvV1ezdsfMOk9v3/b8Kdv13x1Lel//VXSH7qGXr14MeWpo3ULRY9mPnvPlxAUTeX4+PgEHO3s7JyZMxgMuHVtjed7FbfsHS4f/gbytY/B585qPPzy87jVr6BxV8j3NfkrxxT/5nOYnX8LUrdgtPw8cvlb6H3bD1wMRv2A8EYfdU1jVg8oh1/gmE8xmbxClr2C3Z3g7jiOMjisBbkQNKEkiBTLoefKqmfpxIP5/A6dGUnpEgJ9hZXBB1i7/AepxAcp75fkt48ptnPK45qysLzA7/DuM0tqtH2LZz8QZIMAv56QXk8ZXA1RvQY5OsQfHHB0cJsv3Dng4D8fYN5A+5AOl/HpOmW4xIge+41iO/PcOaqZHBiY+byfBKth3K7L99J6qyl6ab3Puy6n3FpNCfXT0U5MfYQ2TpnGpr5CG+XDa4SmS2tcj0KudXmEbnTLa9zooOhxQ+dnYfI7O5jt7XM1QmZ390TCxDc836WluV/QrLQgFEw1ROvriODRtNfee0zjWrDpAKZt2xnszMamMHS6XxpM/bAru72RdLm08HhhQBiEbJCiJhQlociJxIRY5iRiQiLGJGJCLCfEIiMSJYEoCERBKIuuXaKEhcF/BTxdWHpYeQZLz+R3hWxVDf9oY49/vLHHYZfHJG08f2Kj4ftv1zx/qU//D9+i95WXEMH8xjANyX9lFn32xo7WX8pQBHNn7EU4Oj4nrHhtdZlbKxHPB4fcKj/JyvZ/QLxyNtzfx0u45S+jcZcp9kMmr07IP/kabvIxkEFnSruFuvGdhO97Hjm8jhDngFEaENzowaWaZmWbbPBZJu53yLJXqKotzLbj6AuwVwkmQlKHAhUpliPFtVXHy7NDehahyDgoXIJSlxn2v5ze8L9g5L6aw00Y3Z/gdnN2Rw3XGs8LfIavOwFFgunPrAOOQkExDJGXYqL1gHDVMRYZB8eH7O/vt75Ev3l4ZhmWRRFCsLS0jB6uUYUrTGSPwyZgq4B7RzUbuwV+xqonQVQKeG61x0vrc7PZS+spL13qP/ESNNOosY0FAFqEoUfxEVrUCC0mULzegdC1uNUIPerSGr5pMPv7rfZne3seHTZtP0aYvOz3TzhHn4gOW4wQuyA3n7OuDQAoGurNkiofUxeWqmio8pMAVOVzTU+1AD3uYVN1P4R44fDCdKDTIGWNFBVKVGhZEoiSUBSEMiMSObEY0xcj+vKYVIxIxTF9OSakQImnaLiSAbzwzU/veI8oz8xwT0GemeHevvKxcc4/uLvLv9w5pOm+6Tdyx5+6XfPHty2X33+J/jddI7jRZ3cyD8mfAtGDQvIXHa3byLMvLSiaijFmlpZjWk47YwshuLo25Pm+4Za/y63j36R/9Kkzx/IywA1eovFXKA5aMJp88j40ZgGMOjPaSmdKO8fHSKYadTXAXZpQL91j3Ps4E/8xsuzz1LnhKPPsloIjJFUgEXFrPrseOC5pf67DtfdQuRChLpH2vgyRfCMHzfu4uzkgu5/BXkl/0nDLS15EsnLB4qsOGEeSaimAVY1a8pikZtccsX98fg6iM+9PSlZWVkiXVqnjFTKZcmRDdgrBveOG1/Yz8vpioFrUErVrrrVwdGut91jfTe89B42dgc9GOXeU3njEqLFFH6HrnSls6ih9o2s/qmnMO4c9OFgwgS1ogra3aXbbvt3ff/gIsSia+QMFM+jpHKNnDtOXEEnvBMxUeUM1BZvZmKEqGurcnNnWVA+XhPINz1eAjhQ6FMjAgzQIKnAZwk3ATRAuQ5MTyYxYTEjkhESMSMWYVLagk4qciIrgzILKTyA6btdIDIeQLEGyAr01iAYQDdsSDyEa4MI+uU45UikHKmVPJGyLHntO8ofWl/jy/tNN0fLMDPdMfteK9Z7/z94xH767y/9+PFeTf81BG/r/rbVi9J4VPvoVmk8d5nzu//0JXtkZX5i8UQp4YS2dRZ29uwvLfyc6Wj+MFEUxc8a+c+cOGxsbZ0w/WituLkc8Hx7xXPkZnjv8CNFeDqcURy65Ru2vUh6EjF+dkH3mAO/GoKoOjF4m/sAfQK2+gEjPj0oTqUJedpi1Q8rBa4x7v82o/i3yyZiDHHaPBPtOUgQSH0tWooDrS56X1x2xhPPWTDNO4eU6QfQyNvgGdst3cXt7jey+QR+WrJWeF5G8TMUHmX4vBJxad2wSS6qhwg/BpoaRnHC/3GPvaJ+joyP86OIbs1KK1dVVllZW8UkHRC5mtxJsHDd8YS9jZ6Oi1XKdXRpCScGtqZZoQUP0qGH43nuOu4SKGwsh8xtVfSKC7GHyCAngcqhbCIqDhTD6efvKI4CQ9x43Hi9ogp6Cc7TWZxyh5fol3OpV7HAVl65gkiUaH1DkZwGoerWh+h1Dld+nyu9Ql+bMsoGPIzpSRLEi7AVEiSKMJVHo0LJCkCPsGGmOkM0estlHmwO0OST0h0TuiJ4YkYiKmLbI6Uk96U+UUKDDDnhSCAcQL0FvBXrrkF6GwRVIVjvgGZ6oa93jwMJ+YzioDfvNvBw0lv3asFe3S7jsTwxHjV34i7W03/32+184/9Rh6WHlGSw9ky8ZGRvLz27u8/+4u8udqr3BKef59i3Dn7pdIxrPP3cl/+eqwv/Hs9FVQsDzq72Zhug9VwbvuJD8RxXv/czf6O7du9y5c4ft7e0z83qR5lbfcMtvcGv8Ua41r6H2TkKI0wMaf7XVGH0+I3u9xNUC9FEXrv8eoq++hVp/GZGsXwBGAi5VNMvb5P1XOAr+d/aLT3OYw+5Ysn0syAKFjSVrYcS1oeNW4PlK7Wmh6NQ5eYEXy6BfpFJfw1b2Ine3LzPZDAiPam44wQtIvgrJtzF1wj3rM5LFgqovMKmlCAt2zCH3sh0OxoctEF2wwoPWmtXVVVZWVgkGK+RqwIiY3VJyZ9TwK3sZdz6Z01hLe5CzB1rvh7y4ns60RFMgurXaI3iIUPXM2BaCOvjZOGUi26ga8ofMLL0e6Bn4XD+lDboeh1wNA4KHBCFXFHPoOR0ev7PTaoO2d/APiOJbFC8E/tJ1/OUb+PXruOXL2MEapreMjQY0QY+GiNpKqtxQ5oYqa6j2DM3GVIvSADtdeTTRgSTsaaJeQNzThIkiijyhNkRBQ6QrIpkTigkhYwJ7gMw3UNV9gmoLWR8hmwxlCoK8ROWP4EN0wdfAIbBIHKr19dMhKoyRUb+FmWS5A55LMLgKw+uw9FwLP/Fyq/lZ8AX03jMyloPGslPPQXq7atitLfu54fDYcGwsI3NEZg8eOkfVw8jDZkB/M+QZLD2Td7x84iDjf3pti186HlN2v9NLted779Z8592K/1DV/HVq7ndPWjMo6tY9e0+nMXrX5bd/8sYnFWst29vbMzC6c+fOuUkHVxPJrfCI56rP8nz5SdaqQ8RCQI8XIbW/1ILRF3KKTU+TKQgcaukycvkW4Vc+j1p/GRmtwnlajtTj1setGS3+ONvmI2w1B+zWsDmRjEqFiSXrUczVoeN64PiA9q2j5zkmAksfJ58n533cz57n3tZVRvcHpJnjRSQvIPkWFMNZpM5JHxIPFDGUPUsZ1xz6MferPTaybQxu8QH3hARBwOrqKqurq6RLqxR6wIiE/UqyMTb85l7GFz6bdY7/52dLnuYleqnLRbTYftAixZVzM8foKQDNYagFoeOHXGtsNVCzsPnrUcCNLn/Q9SjkRhdBFj1EGPpi5uizeYLmztIXrSHmERid0AQpJrhC00sxw3Xc0iXsYB2bLtNEA4xKqEVE7TR1DVVp8Yv30qOudEeFrCsXSxAr4l5AlGqiniZKNFHkW9gJaiJVEsmMSEyIOCbyh0R2n8juocp9fL6Hzw+gHCGyAvGEKieHoCSiJKJBY1E4JF504BOEBHFKmC4RD9cIBpdheA2WbsLSLeTwBjJdAzX/DtXOMTaOsbUcdAk5t+qGnaphtzYcHBmO9hqOzRYTu0FuHaX11N49lL/Zk4gS7VIvA6Xoa0VfSfpK0deSVEn+0NrTyW/3OPIMlp7JO0ZGZdNFnU347PaI3zzO+UzsyVbD9mYs4MWJ5b++3fDy/ZL/zdX8X5Y1L764xB+/0ue9Vwa858qAly+9dYnxvthSVdXMpHb37l3u3bt3JrxcCrgaN9zy97hVfoLnuM+gyJmupuoRGLdKcRCR3a4odhXVsUYEKXLpudb5+v0vEq2/hAiWzz+R1GBWD8j7r7LrP8pd8QobbsSmlexVkkZILoW0UU2B532BI5LnQ5HzEUbcZOy/jI3xTe5vXed4c5W1KuCFDor+EIr+BeHLHk8RefK4YaxztptDNstdjkSOxUFOW6Yi2oW8p0C0tLJKEy4xIuag1myMGz6+l/Ha5zO2RxWwf+7rTrNXv3RpajJLeXG9LdeXknaZkwWx3rNdNbxynM1hqNMO3evqh119fqDkLHnijc5Etti+FoVvmFnaO4fp/ILmEWInYajZ2Zn5BXnAqohGp5ggpZkWfYNm5T00l3uYaIhJVzDRgEanNCKidooHhp5XXZlfqRObVSCJe5ooDYjToIWeWBCFhjioiXTZ+eyMiRgRuQMif0DU7CCrQyiPoDiE4giOj3kUG5s458xrNCUxRQc9i+0GjUcipELpgCCMCZI+cTokWb5Ef+Uq/dUrrC5fwSarTKIVRrrP2DrGxjIylol1jIxlbCx7tWnNWY3heNtyvHFIZvYonKd0jsb5c4zSTyYCCIQgkoJEyRnsLGnFSqBYDTRroT4JQFoRCYvyNcpXCF+ALSiqXUbFPUbFJsflNuNsj0l1wKQZkddjavHfw+p//5TfwUO+z2cO3k8uzxy8n65klWkXhN1qw/Ff6TJbbx6XeAHuaoJ4oU89nPuPfPOu4fvu1FyVmuJ9q1z/8jXedWXwtlwQ9s2SqUltqjW6e/cu29vbZ9buipTnpj7kVv0Kt/xdbrBFyPyma2xKcRiR3zWUBwHFYQBqBbl8qwWj9ZdbHyN1erWx7jz6JdXSJgf6k2yKT/OausMXxIQtoahjxaXIcy1wszK4gFu9l9Rc49i8m3vjm2xvXWeyfYn1ZtBBkeJ5JMkFN1aHJ48sk6DkwI3Yag44EhnHIseKs7eMKIpmQLS8soKLl8hEykGj2BgZXtvPeH0v4+5hgX2A/85qGvJSB0EvXkpnvkS3VucLv3rv2Z86TC9og6ZQtFE+fC6hWIqZo/TMRHaqfqO1xuwkO6H9OaEV6sCoOJjQiKgDnpQm6HcA1J+D0KltXj7+35+OFHGqiRegJ45poUeXRLogFhmxGBFxSOxaDY+u9zvYWSj24fMcnScngSemONE+WzsUSinCMKIXh6RphOovw9IKDFZb8+BgnSJaYuRlBz6ttue4A5+jxnbmLMvE2odee+5xRAsIhSRWgp5sYWZJK5Y72FnXmtXAs6wsy9IQiwpcgbMZjcvIm5ys6Wpztl80BVmTkTUTsmZCYUqMn0KuJxKQSt8WNW/3pCeVkKq23x9+PT/0e//pU33vzxy8n8nbXorazpI2vrIz7uBowsZRcWauDyX2pQHq+T5N2D4BR9bzR+83/NcH8FVfdY30j1xB9Z9+kry3q0yXDLl79+4MkM4zqS3pilvuHrfc6zzHfS7bfWR3F7Y2pDyMOd6C8iCk2A9w6nK3Vtot9PveTTp8DiHPd6q0gxHj+DW21We4o1/nU8FdPq9KikRxKeigKPR8SwDr2gBnNSHeQ+3XOWxeYuP4Bttbz2EPrrFaL3MLzQtIvhFJeAEUWeHJgpojMWHXHnMkMg5FxkjkOOHnL6laILqydrXzI1pB9pbJZMqh0WyMGn57L+e1exmvfyyjMhf7rfRCxYvrKS+sp7zcQdGL631eXEtZ6gUzP6Ep/Hwsm3D/4LD1ESrbjNPFQ9z8tOBEAsWpj9CiiexBq8/7usZsb5EvaICa7W2KnQPy3RHFYU45rqms6gBnDkB1sE4TPE/T62Pe3cOfk67hYURqMQOeWUkgjgyRroh10eXYOSbmkMgdEJttVHXQwU5Xbx2Ce0gn7nPEIagJqAgpiMnoMaFHQXwOAM3bORGVjKh1gAwlKgkQSQJJD5ekmF4fE/epo5QySCikYmw9I9tCz7GxJ31tGtpcVwenVZhPRwIBqVL0lWAgHUPVMJSGoawZiopUlPREQUABrsS5grzJmTSTGeRMgWezyXi1gx7j3/jaSzw9yQLotPCzJj3PS08v8qRJt11Ngaj9nj+MDJbe9YRX5/HlGSw9kzddysbyhd1sltX6le0Jn9sZc+cgvzCK99Ig4j1X+qxe7XOnL/lPrsaI9r53qXR8352GPxUm3PyGW8RfvvrQGbbfyZLnOffu3ZvB0cbGxpklQwSea/KA59xtbnGf57jP0LR+Gs5JysOQw91eqzE6iLBc7zJe30J/xXvopddBnAVOLzxVb5eD8PPc01/gc+EdPhptsJ80XAo91zow+srA8YcCjxbn/7DWbsB+/QL3D29wsPUCcnyDYbnGcwSdT5FEXwhFjpEs2PcjDmU2g6KxKPHTfC66zQy+urrKzdUXWVtbI0iXmYgeh0Zzf2z4+H7Oa5sTXv94zqTauvB6B6qNNpuayl5c7/PCeo9bayk2FNzvskxvVA3/oaz5+cMD7m9ucb9qOHpIP6Fp5NiNE2axeVLFi3IJzdYRu3eb4/tb5Pf3yLaPWwA6KijGNWXhqIycQVA9A6GvbDU+MXCtKw8pOpQk/ZC4H7Slp4hjSxw0JEFBLDNiOSL2R0R+j9jtElS7iPIQ8g56dg/AXpxp/I3Ed07LDZqagIKIgoQJPcb0OabPmEEHPC30jESfse5RByGVDqh1MKvrIMCFIS6KMGFEE8ZUOqRQAblQTPx5xuBTYum45+yD3qO9OQ/eIGgQrkT5klRUDGQLOSk5iSjQvkD5EuFKvM2xrsDYgtJkFFPwMTkVZwJUH/ZECDttz1DC1XAKPp4lJRnOtD+OnvQk0hELT/gEuUuF84SNI2g8QeMITFc3nsC09dJg5fFf4AnlGSw9k6cmjXW8vpfx2Q6IXtlqNUav72Vc9BC9moa8+3Kf917t8hRdbhfd/GhZ8tOf3+J/yYvWZUDAVxxb/vSG4f/w3Bor33ud4FLvLX1/b6U459jf35+B0d27d9nbO/uzF4uam35jBkY32CJ0Bu8F1bGm2A/Y3F+iOIxp/C3k8AXU2ovor3g3cXyZ8+KKvbCM43tsha/xWniXj0V3+dTgPktRw7XAcTVwXA88fzZwRBf8OBoXsVc9x+b+80z2XkRPbjIo17nhYt6L5L+4KHwHaDAciowj2cLQUVcmojXDQgtEa2trPL96jdXVVeLBMpnocWRDNkYNn9nP+cJ2xuufyjjK71/4WkLAzZWEF9ZaIHphLWVtJSbshzSxZLvLNv162fAbVcnG1pjtO81DebEMtZyZx25O/YUW6msXOEzXR2PGr91ncm+XV7YPyXZH5EcF5agFoLIRVC5szV1hH6N7wFpXaJ1Ihl15gCjliWNJ3A9IlmKSYUgSGeKwJtEFkZyQdNqexO0R2y1UtddBzwFkh3Dw8Mkbz4oAqfC0iT8bFPVM65OQ0WPEgEOG7LPMll7nQC8zCXrUuoWeRfBpSzjrN0Hbr7TGnRN5+VBy6oMWZ4e6eR4wCFeDrxG+RLgC4TKky5FugnAjks5rKfQtCElf4F2OsznGFlQm5zyvorIr53vDPVgCYF0p1pVkWcKy9AyFoy8cqXQkovUP1NKhlUcpj1Q8UYJS4TzSebT1aOMJa0dcOaLSEp2Goa5W5zlTyaBNWaB7oCMIH4Hsn7I881l6CvK7zWfJOs/t/WyW1fqV7TGf257whb0JzQVOFsNYnwCi91xtna3X+/OIpImx/M/39/kHr21z27XPctJ7/sC24c+MJN/yVddIv+YKMvrSc86uqor79++fgKPzFj5d5XAGRs9xn3UOkEA9VhQHIeV+QHGU0vgXEf0XUZdeRl96CRGscl58sRU1+9Ft7kR3+HR0j9/p36bsb3I5NFwN5r5F/QsuufWK/eIaW/vvoj54mWByk365xlXb43kkaw+AooK6BSE5BaKcQ5mRU4GYA9HUjygZrpDLHocmZHPc8Npezu39jNf3M/YmD9ZUXBlGvLiecnO1x8pyTNwPkf2AIhJsGXPCb6h6CPNYJMVs0dUbccDNmdP0HI6mfkK2cRSTmvywYLKxR7Z50ALQQd5qgHJLWQsqG1DLBKvOz/T8QPGOSBqi0BMnkqSvSQaS3lCQ9Bw9PSGRI2IOiN0usdkmqHYg7/x78n1onsAkpMI2H48AnMPbhgZBRURBRE6PAzFkW62zpS9xP7jEVrDOcTBkonsd4ITnwE9AFYQY9eTP9RLQQqCEaE8TT+M81lvwDcK32pwp6EiXIVyGcGOkHbe1z5GuaLf7AuWLVrvjCp5KsqVOhIcU6HvoO0dqLakzLOFZFo6hdKQCesqTKIgkBMqjtEApQAu8FlgtsE9pqRoA4UA5CKwkdAGhC4hdQuJSem5I5JcJRB8vEqyIcCLE0hYnIqwPMT7AEGJdQOM0xgUYp2lsQONCGqPbYgOMAWsctnFY4/i673qel7/m8lN7P/BsId23VL5UYck5z8ZRwSvbYz7bAdFnt8Z8fndCZc6PqUhDdSJP0Xs7KLo8iC58UrldVPzMF7b52e1Dxp05ZdAtRfJDSZ/3fMMNwheHT/Sk83YS7z2Hh4cnTGrnOWJrDNfZ6uBok5vcJ6XEFJJiP6Q4CKhGQyr7MqL/Murqe1DLzyPUgPOiiSo5YTO6w+eiu3y8d4eDpddRvV2udkB0NfCsXLBArPeC/eIKB3vvoTl6F8HkJoNyjcsm5dYDIs8AJpQngGjaLkVzBojSpS45ownYnBhe38t4fS/ntf2M3fGDnXTX0pAbqz1WlyN6wwiVappEM44E29ayUdazpW4eJIuJFW/GLQTdnJnKQq6HmkEDxaShGNfko5ps+5hs55h8f0JxXFFkhrKC0moMj+5HJ5whdAWRbIhCRxI7kp6nlzp6fUfab+jFOT1xQGK3CZstZNFpffJ9aB5+zbKTLyxAJ+3CxUK2GhPXgCnx3lESsK+W2VFrbAfrbASX2QiusB+ucKSHHOs+Y52SBckMfqYaH/sUFn6NpSCSkkCINgu7t1jXYFxNbUsaU4DPETZH+AnSTpB2hLTHCD9Guhzlsg54cvAl5yUtfVzR3rdw47raO/pdezqeescAR78zc8WqNV+FGpQCqVrQMYGk0YImEDRaYgKBfzN/A71AuAE0y3hzCV9dwVTXaYrLmGKNJlvBVBGmaeFlWtsL7gWPKlbAOJGMepLjXlufKInkf+wt8xe+7aWn8npTeebg/UweWrz3bI+qmZbos1vzCLSLllSIA8m7umU+3nNlwHuvtJmtbywnDwU13ns+cjThw69s8ktZjutibm9ljj+9Zfm+5y9x5XuvoZYe4yn7bSZN08y0RlNAys5ZgHPIuNMYbfIc97nCLqL2FAcB5UHI4eQyO/ZlXO+96Gtfhnr3DYRIOG+537E65PXoLp/q3WZr+Crl4C5JPJr5Fn3XBUt+ABxllzjeex/2+GWCyY0ZFH0DiuABkWdjUcxMZlOfomORo5I2D9Ha2hpXVq/zwmCZQvdnQPTqXs5rexmvfyZjZ7zxwGs57AVcWo7pDyN0GmB7ikkk2Q9gy1s2ZqzXpR0oq9PLo83MYzc6ALoRhVzXiktGslp70srRTAz5fk1+mJPt7pAfFhxNGjYLx280Cv/AVdVDTmf6Ft4S1BNCMyESJXFoSOKGXs+Q9hp6aUWaFPSiCWlwSGR2EMU+ZHttKPtUiq6czal6VoSEoNdqfaZRad7ibU1tDBMRMNZ99vSQzeAy98Kr3A8udeCzxFEHPuMgJdcxhY5o9KMt8nrmlLynJzyJEEQCAukRwuK9wbgS4woak9GYCY0ZocwRgT0kMAcoe4B0Od6XOF9haQCPPPeKP/p59Z2n7x2pcww6sGlrx6CDnBZ6FuDHexLpCRVE2oOSNIGkiSJML6AJFY3W1FpgNDTS0ig797FjbmJ7WPFegu+0RcKcm8LszD4OTLmMyVdpipW2zlcx+QpNsUqTr2DLIRdmtwQWHLMuFtEm51SBROu2VloiQkXWgdBRLBjFgsNIcBjAgfYcKDiSvr0PPECaqxcvbv5myzPN0lOQd5JmaX9StT5FHRBNw/MvWhQ2VJKXLqUdFM3h6LnVHuoxnKor5/hf7x/w05/f4lMLkS2/Z8/wg4XmOz5wjfQDlxBPUXX8Vor3nqOjoxkU3bt3j62trTPrgEks19iZgdFNNhmYjPJQUx5GlNklavcuXO/96CvvRfaucF5maYDtYJtX4tvcXXqF8fA1XLrFclRyLXBc1h51wceUZ5cZL0DRsFzliulxCY28AAYMttUOiYxjmc/gqEocy2srMyiKB8tkssexjdjqNES39x9OQ9SLNcNhRDQIcD1NEUsOA8hiBcGDvxdawLVusdXndMB1K7hiBCuVZ1h54sJhM0N+XJEf5OTHJUVmqR/D31g3GWEzIWxGRG5EoguSqKbXq0l7BWlSkiZj0uCIRB0izTGUhwjzKLfGBQlSCJJ26Qkh27XsPBQexk5wLCL2g2X2wmU2w0tshJfZC1Y5CJY51IM2P0+QMtEJTj6Zlie2DbGzJN4RYQm8RQmD8CX4HO9GGHeENwe45hBvDsEeghthfUWNaSMVn4JMtTn9Dmr6C4DTd46+b+FncXvfOQYipKdjBqpHFMTUYUITdv5OWlIr0RbpaKTFSIuRNVbUWFXiZAny/CWSHka8U7gmxtkAP80tJRxCGqSqkbrkYVytvBeYYglTrGCKFZq8rV21hjNrYNYRbhWlQ3Qg0aGaA00gUV1/Pqbm2wKJDs8Z6+ZJLXBKcoBlu2nYKku2spytvGAny9grSg7ygqOiRFqDsgbdFTWrLdoYlG0InWWJVvM28J6etyTeEjlH5Czf8Ef/BF/+dV//2Nf8PHmmWfpdLsdFm8Bx0Xz2yvaY/ez8u4KSghfWejOz2bS8sNZDP8SSCm8ku3XDP3p1i3+8ecCebH8kI+v5o1uGP9sf8tXfcoPw+vl5e97OUtc1m5ubMzC6d/cOk+zs01efSWdK2+Q5NrnqtnFHkuIwpiqvcOx+Lwe9r0Vfejfi1iqgzvxxGgyvRxvcHn6G/aXPUQ3uESQHrIcNV7Tn8nkfkxfY8TWy/a/AHL9MOLnGcrXCZZMyeMCff0nTAVHnSyQyirghXEtZW19jdXWNtf7LJDIlsQGbY8NnDnJu7+bc/kzG3uRip2qAKFLEgxB6mipRjEOB62l8qikDycEF+60ryUtO85yTXKlhrREMK0evcOjcYieG4uiIfFRTVy2gTpUxDz6jqfZnTNiMieyI2B2TcEysJqS9kjQpSHsZ/fiYNDwgYIIwI4R/gGnvIrWBDCDqQ5DgZYCRmhJFhmbkFUcE7Mkeu+EKW+E696PL7IUrHOglDoIljvSAcZDiHjOcH0A6S9zURKYhMg2Ja4hcTeQqtCtQPkO4Ed4dY90Btd+nZI+KQ0osvotOfeRg/gUOX9ToDGwLNQPn6HcANOuLgL4I6auYnozpi5REJCQiRcsUS49GJDRoCi2phaASlhpLIw1G1BhRY2XJsSo5UjlCZ6ggQ4UZMrjoG/fG4p3A1im27uOaBGcivA1aDRAeIS1S1YigQoc5KhwjgwohLSrKHrx0m1et55+4jJaX0PIKQXCZMLxCFF4ljq6S9K6gw4ggbIFGSId3BtvUmLrGdPXJftG264VtTU2T15RNjakbTF1T1hVZWVFUJUVVU0/3b2p800DTIG2DMgbt5n8H0/iCpxHoX3dlDOx+5XufOiw9rDyDpXe45LXhcwuO1p/totC2Ruc/vQoBt1Z7vPtyqymawtGbtSjs7xxn/PSn7/MLeUYjAAmXS8f373p+8PlL3Pzea8gHLOfwdhLvPQcHBy0UdWC0tb1zxtdIYrnK7szP6KbfJBkVVMc9quI6tftaNgdfj1x5F9wYIhBITirAM5nzhcGn2V7+NOPh6/jeDoN4wuXAcVPCzVPnJmwARzcpDr4Md/wicXaV5WqFdZsSPEC1PqbgqNMQHYucSVih1mP660usrK6g+9eJRY+eDTmeGD63n3N7K+P2p3KO8s0HXq8gUohUUyeKJlH4np6VMpDM4qi8J649K5XnhYnguhFcamCp9PRLT1BYxMTQjGuq7Oyt+fwV1brr4kyr+TFjIntM7EckHJHIY3rqiLSXMUgm9JMjesEhShSIh1lt/bRCQSftiulBQqMiChm14CNCjkTEnojZln02o3U2oitsheschEsc6SGHwZBGPv7fgLaGqKmJTUPUwU8LQTWhKwhcjrYTcCO8G1FzSOmPKNWYWlWUqqSRDRNx7mouCxfznNf2nuEC1Aw6M1XqBSmaVIT0COmLmD4xqUhJfI+IlMgNUC6lsT1qG1HamLKJKJuIwkgqb6i9waqKPMypwoyjMO/gpoWctuzM2jK4WGupefANz3uBa1K86bfFDhC+KwxQMkBoiVQeqRuEahAqw6tj6B1gkz2sv81pHyjvwBmJMwJnJHYicCYG10PLFSTLSJaQDJE+Bd9DuAjvIrxRNFPIqauu3sbUd07AzmxbU+Pd0/PBOk/e6DpCu06fCAKkDtFBQBBqAi2RWuKEx4rWqNfgaTzUTmC9aiHTBQgXonyMJiIiIhGaFM3W3hfPb/UZLL1DpDIncxV9dqsFpLuHF+cqurYUz5ysp+H577rcpxe+uR+7cZ5fvH/AT39uk9+aPncK+MCR5YfqgO/+yucYfMfbPzdSWZZsbGzMwOje3TsU1Vm1+6LW6CabrE/2sKMeVXmD2n8F48F/y6T/IuLyPNXBFEs9np3eHe4uf5yjpVep0/uEySFrUU0i4bnFF/Kg6gFqcpPy8N2I4xdI8issVSssuQRxUX4iHMcinzlYT4ISlgPCK32G68uQ3KCUPUoTspcZbu/n3N7Muf2JjKy+OA8RgIgUNlG4dApCcyiqhaBfOlZLT790XC0FV8ewWlsGZUNcOFRmcBODvyCKcvpUeeI1vW21P2ZE5I5J/BGJOCYRR6T6kDQ4pB8f0U+O6YXHKPVwOY9OSNDDhQNMmFKqhExGjGTMkYjZlz12ZMqWGnA3uszt+Do70RqHwZCxfnztqHK2hZ5TwDOvG0JTo+0E4cY4P8b5YxqZUXXQM61HqqSWNTMKv+BPfgo7fePoO+h5SYIi8ZqIgERExD4mJiH2KbFNSWyfpB4QVwNc1aNoEooqoqgiap9gfIRHAR6hK0yYMQ4z8jBDhTkyXACd5GAOOl2tw5wl/fh5mPASQR/BECmGKDlAq2W0XiIIlgnCFcJgmSBcRqseOIMxBXU5osz3KbJdyvyAqj6kKg6oitdpyhxrPH4BeuZ12/amjzMDnJF4q7txTq5Xd65Mk1M++OHjsSQIQAdYHWCUbiMNpaKUGqM0RgcYvdBWGqtO9nUY0o8jhlHEUhKzFCuWAkcqDdqXKFtg64JxU3NUOY4qR5krbBVCEaHrhLDpEdmEvg9YRrCEWKglg4t8BU7JJ5/ke/GE8gyW3sbycx+9x//vMzt8dnvMa3vZhUssrPfDE6az917t867LA5aSt1Zjc9QY/p+f3eIfbe1zX7XnqpznD+1a/vxwyLf8vufQ6+dngv5ii3OO3d3dORjdfo3dw7P6CoXhGjsdGG1xtdgmHCma6ia1+DJs/0+zn7yEXJ1f+6lepw6O2Fj5BDtLn6UY3EX29hhEGT3l6QOz26xTBMVV9Pg65uhdyPFzJMVllqoVYn+xG2tJw7HIOJI5I1XglhT6UkJweYiN18jETY5swNbEcucg5/b9jLufKKjtg1dY97FqTWQdCOlQtRmCvaDfePqFZ6l0XD6A5fuQlhVhViDKN4aUxRnaZMTmmNgdkfhjEnFMTx7MASg8pB8f0I+PEY/o7+JViI2XqYM+hU6ZqIQj1eNAJuzIPttqyIZe4U50mdeSG2xH6xTqMZ1JvZ/BTmzqGQAttqcQFDcNkanAjrEip1LlDHqm4FPqkrEqqcKKKq7OaHhS50gd9LxgFUXoNaENCF0f7WMCemifol2PwAxQTR9dDQnyJXQ1RFUJqoqR/iLNskMGBT7MqMMMOwWfeIwabqHCjCDIiDqtj4rmMCTkY4Dq9DJaifCd1sUPkb6PIAWXIlyMtxHehq02wihsI3CNwBpPU+bUxZi6nFBXOU05wtR7rXmpMdja8yDr6akr3JUnFx1G6DBERxHBiXbYbgvavp72wxAdtgvmVkqTS81YKEZCcozkQCj2vWDXC3acYNsLig52rNLnL2DdiQIuhYJ15Viipu8qhiYnqHNkmeHyHDspMXmN3W9oyoajxpGbHoc2YomEJYYsddBzswOgZcSFiWUfJBbHcVixm0w4jDIOo5zDIONQjzlUIw455r989/c/wdV/MnkGS29j+U93DvnfPj5/2hjEmi/rchW9dwZHfdb6X9yIsVfGOT/98Q1+vsgoJaBgqXZ83yH8Ny9c5qXfdw35Nlu4djKZdGB0l3uvfY7727vU52g3ljjutEZbXKu3WR432OoGtfwKmsH3UqiXKJdOmrl8MOGo/xk2Vz7NaNA6XCfxiES3v87LXZFNj3D8EkF2DXf0Empyg15xmUG9hLzAdOZnUWc5I1lgBgK5FuHXU/J0SCbXOGw021kLRK/fz9j8VIl/QPiUF+ATjY4V/UCRSkUqZAtDFgalZ2XiWdr3JLlBNQ/v1Cqcac1fttUA9cQhiWw1QH19QD86ZBDv0w8PURdk/T7/nCUmWqIOB2TBgLFKOVQp+yplRw24r1e4F67yenSVzyfPcRAsPfDGcZFM/XoWtT1xUxF3mp6og6C4qWbzQtMAbgY8p7U+mSo5UBVl2I7VoiRFkHhB7BUhAZoQLSIGMmEg1hGkCNcHt4QwQ6RZQTZLqHqVuI7oVY6k9vQqR6/y6HO0GUI2nfamg5pwhEy2CJKcoJcTxDkqylvtT5Ah9QShJiCzNvHPeZ+DA9e02hXbtBqWJpNURxJnet02jfAp2KSDmwhvdAs4RraA03hs7bC1wdQNTVXj7CLN1HRrhDzyZ/gwIrVHBqJzeA7QYUgQxYRxjyBOieIBYTwgjHunYCdq21E0g5sgirs6OgFHOgjPRApXzrFbG3aqhp3asF037NRdu2q6vmG3bjCP8HwwwND3BXFTEZoSVZVQ1OjcEGWQTDRpERKZmAF6BjxLhCwRscQqSwiGCKLHAB+ARnpGYcNelLMfZRyEGft6zIEYc8Axx4wYMyIXY0o5plFjvHzwb8Cvf/59/Fff/Icf63yeVJ7B0ttY/ugHrvHiWsp7rrZwdGV4ca6it1qc9/x/Nw748Ctb/HvR3TwlvGts+SEb8f0fuM7w5ZW3xfk2TcPm5ib37t5l47XPcu/+Jsf52Rt+QM0NtrjJFtfNDutZSVBdporeRxP9EQQvME7F7CHTBROq9HMcDl/lYPgqVX+DIDkkDtpjS2DZC4JinfDwfQTZNTh+gWBynV55idhenIG8wXIsMo5lQdVz+JWAarnHaJgyUpc4ahRbmeW1/Zzb93NGr84WnDpzLO0hFZI0UPSVIpWSPpK+hb6BQe0Z7ngC42kT670xtChXtgDkjkg4pCcPSdUhaXDAINpnEB3QDw6JxPihGcXqmCpcIgtbc9ah7rOrhmzpJe4HK9wN1nk9vsbt5BqHeoh/xKzM0lmSpuy0O01bZhqeOezMx2oCa2a3Coc7o/WpVMWxKtmJKnxcgapBWYQUSBkhRIKXKVb2adRlGrWEc8s4lvFmjb4ZkFYRvUrQq1vQ6VWOpPL0OvgJTmhAHCosiQYlUVoSpq8RLBUESYaKcnSYI4IMqTNQE5BjPGOcH2GbpoMX0YLNtHSg0xzNx6bg45ohrlnuTEoa17SQ44zA1h73yIqjx3AJFx4VeIR2yGkJXAs4p9sLfRVIwqRPGA2J0yXiZJW4t0rcv0yvd4Xe4Cq9/jWS9BpKPT0tvPOeg8ayVTctCGUNO4clO11/u5oD0MPk/VqUyNQEpiaoaoLKEhWQFIJeoVitPJe7supb0GmBJ2GJHsPH1PgAGOEpNBwFNbthxl4wYU9N2BcjDhhxzJixGJGLCZWa0OgJRmc49ehmM21DkqZP0gy60p/1v+LLvuKxzv9pyLPUAU9B3kmpA55UJo3hn35mk3+0dcBrXQJD4T3fduD4c8tL/MEP3kQvf/FyYUyXCdm4d497X/g0G3fvsH1U4M78SHgusc9NNrlhd7hclPTsMk34fpz8IN4/x9TeYYMJVbpB2b/HwfBz5IO7iN4e4YIzqWx6hNlVwuwaYX4VMXqOMLtOUq2i/MXPJBklRzKnjC1moJgsxRz2e+yFEfuN4vbYcOcgZ/uopDmV/E16SL2g76DvRAtBUtEXkr7rtEK1J36Ee5N2BbE7oucPSUQHQPqAQbjPINpvTWLygFA+XPh7rVPyaJlxMOBQD9kLhmzpZTaCVe6El7gdX2UrXGcvXCFXD2+iFd4RNQWxqYiaiqRpSGpD0ml7kkX46QBoEXymYoQ5AUC1rLCqxkqD1RajBE2gqIKQKkip9BKlXiHXaxRqhdCkJE2PpE5IGzEHnZmmx7cQVHoGHvqBJkoUQWJb2OkVBL0CPdXohBlCTfBMsHaEbSaYZoKpM5qqoCnLzty0ADWn2+bk+HTszRQhJWGctNqUKEJHGhUoVAAy8MjAdg7RNcgCZI6XGV5OkNqehJ5gEYo8QvoF4BaE4RphuE4YXiIM14jCy117nTC6RBReIgwvo/XgqT2sOe85MpbdDnIW6yn47NQNO1XDfmMfJkRgfu2cI6gtYeWIK8+g8ixVjpXKc6lyXK081yrPjRrWvGCAoPeY0ANQC0+hBSPp2A0m7MoJe2LMnhhzxIiRnJDLCaXOqFVGrSc0OqPRGe4NND/niXRqDj2mT9zBT88N6YkhQ7XMMFzmUrLGpf4a60tLZxde7muiXkCU6Kfu6/osg/dbKL8bYOn2uOTDH7vLPy8njDtnvLTxfO9I8N++cJn3fvXVL0pupMlk0oLR5z/Fxu0vsLE3onJnzyMlazVGbpvLdcGyHyDU+8B/DcZfB1QLRf0N6nSDyeAO48FruHQbHXRg4CRBud4CUXaNMLuKGt8gyq8Rmosdew2WkSjIwpqyLxmlIQdpzO0w4HYj2Rg3bB+WHE+X7PAQe1ozmBMMnJi1+1PzmBOk5twApXNF+YrEHdLjkJ7oACjYpx/u0Q9aAOrJw4eCoFKljMMljqJl9oMltvUy94NV7oaXuBtfYTdYYTdcZS9cppIPZyIOTElkSkJTEtct4KS1pdc0JM1J7U/Smboueu+VrKhVRSMbGtXQaEujodKSIojIwh7jaMBhskoRLuNkH0SPyPTo1UGn3fEknaYnNZ6hFwyRLEvFipKsasUwgjCp0HGGDNqYPMcI78YYM8I2OU09wVQ5TVV2sFNhqgZbMwOa84Bntgje0xYhCOOYIE7aOkoI4pggjlvYiePO/NTVSYKOQqS2oBqELkEWeJHh1RjPCCeOaOw+TXNA0+xjzPhRT4ogWDkFQeuE4TrRrN+OBcEKUj4dg0jjPHtNw15t2KsNu41htyrZLvM2X1BZs1s7Di2MvDrngevBEtWOXuXo147lyrNaOS5Vnit1Cz/PVXCz9gybh/87XhSHJ5eQSRhh2ZETdsWYfTFhJDMmakKmMgqZUeqMqgOfWucdAD1evi9tA2LTAk9sUhI3IGXIQC6xFCyxGq2y3ltjrbfKpf46y+mQpB8SpZqop9soWSEwtaUuLU1pqUszq9uxtl4cb0rL137n87zwgfXHOu+L5FmepWfyxOK959/dPeDDr2zyb2XTptpXgudyxw+6iD/zVTdZvbX0lp1PXdds3r/Pxhc+xb3Pf5aN7QOOzWlfKInGcI1tbvhtLtucFd8n5cvw7g/T+FuYIGPcv9+B0a8wHrxOk24iwzY/kqxTwvway9lzhDvfQJhfRU+uExWXkG+gJZoENeMEjhLN/STiVaV4xSh2JhGHI7B7jnTXMnB5qxHygmtO8G4nGLhwBkIXZco+LdIbYo5J/X7nDN1C0CDs+uqQvtwnEMUDzWGFTDgMljkIl9kJV9gKV7kXrnMvusJeuMJOuMpu0AJQLd8gV7J3RCYnrEakpiKpW8BJa0NaGXrN3Pcn6Wr1gGc2h6VWDbUy1Nqx1xMUgSYLI0ZRnyxMyaMBeTSYwU/SqJlWp29h4ARDL1gXkmUpWRaSlcqxVNcsyRGRP0Zwr9Xm2AnWT2h8jiGnMQV1WdKUNaZsaCrLVu3YaAS2fhS4UcCjLf6sI00Qtz4xYdIjjHtESZ8wSWfAEyYJQQc64Yk6OQE9QRyjwwjvDU1zRNMcUNct5NTNAU29WO9T1wdMmgOa5hCsb73xH9KqIkTQwk+wRhCuzuCnHVtfAKN1gmD1qQCQ856DumGnHLORHXNnMuF+XrBVNuzWlgMjOHaCsW8dpes3TNdwOqEHJI1jqfKs1I61yrPegc+lyrNae9Zqz1rXvmDloLPnjScTMMEz9o4DSg5kzrGccKwysq7kKqOUGaXOqVVGpXNqPa2Lx7pmeEFsesQ2pecGpH7AQC2xpJdYCpdZCVdYjVdYjpZZClZYiZZJgt7st8RZR1M5mmoBbCpLMzbUu5aNcsxr5dFsW1Na3KlAJY9vr4K0GFnR6IJGFRhVYWWFVQ1O1jhh4dVv4IUPfMfjvdcnlGeapacgX2qapdxY/pdP3Odntg94JZx/Pb7pqDW1fdfXP0fQf5LFBd5YrLXs7uyw8flPce9zn2Bjc5fd+rxlJjyXOOCG3+KSL1h3KWv+XRj3MmWwQtXfoU5bMCr796jSDQhzhNME+eXWdJZf60xoVwmya+g30hKpiqPQsZNo7oSaV6Xg041nf9IgM8PACgYLWqHFduq5MMT/tERM6LFPKvbp6336wT59fUAqD0jVPqk8JJGjCyPDahFwqOcAdC+6xP3ocgs+4Qrb4Rq7XftBGiDhDIHNCU1B1JTETU2vrunVhn5tSGvTQk9dkTQV0QO0PrNzk4ZKO0otKIKALAgpwpgi7JFHKXk4JI+WKMMe2mnSKfBYx2pTs2wall3D0DUMXMnAZ/TcmNBOECbDNTlNldOUHegUFU1lMJXBVB7b+DdFe6NC2gzJkUZHAWEcESQxYZISJSlRMiDqDYnTZaLeMmGSEMbJrA6m7SQhCCOEfLC21nuPtRPquoWatkyhp+237X3qbpsxF2WlerAEwQpBsLoAQWuEweoMgoJuPAzX0Prx1nL03tE0YybliL3xIbfHEzaygs2iZqe27DdwaAQjr5h4TS4CStkuvmv1g6O/zhPpPMuNZ6WDnLW6BZ2271oAqtr+au0JHnC3rPFk3pN19ZiKQ5UzUhljkTNRE3KVU8icQmVUKm81Prro6rbvHjeC0Asil5C6AT0GDMSAvhjSl20ZyGHXHzBgSE8MWr9JC6Z2LeSU9gz4mOr88/E4GlnT6IJa5RhVYVSJURVONljZ4GWDFxYvHEI4psvTCATKCxQK7dSFAS2nZfUDa/yf/uT/8fGuzwXyTLP0TB5Z7o1K/sHH7vA/lxnHWkAIsfF8dyb57168zPu/7eqbkhtpurDsxquf5N5nfpuNjS22KoU5kdu2/aoOmHDDb3HF51zyKWvuBjZ4mSx9L1V/i3H/PvvpRyn7v4DXObpaJsyuEeRXGW5/kDD/Yy0UFZe6VJDny0jU7IWOzVByRwtec3C/soxyS6+CQSYZ7HsGznDZCV7ygsQ/TLo2kBgSDknlPgPdglCq9unPIOiAVB2gxVkndIfgWA3YDVf4TPgu7seXZuCzE66xE66yE66yHa4xUb1zbx7CW7TJCU1OXBesZ6+T1K3mp18Z+rWdaXySuiI8x9fntNjOAXQcKnbTiCIMKYKEvNP6lCrBCogMJM6zZBqWmpqhqbhmG/qmoDfJiM0WgclRdYGvS2zVgU7ZYCqDOyckaJqh+9FETC8GMnCo0KNDgY4UOlIEcRvNFPYSoqRHmAyIen3i3hJxf4W4t0qvv0bSXyfspURJjyCK3xBuHiTee4wZ0zQHFNUdRpMp/Bx1Jq6jDnhOFu8f3Y9kavoKglXCYKXV/gSrMwCa9sNwnSBcI9DLb6j98d7jXEleHnN0uMVRNuY4H3Oc5xzmBTtlzW7lO+CRjJxm7ANyEbbAI0OcDrGBxoUKG0haTVxvesoPtQjcoJnCjWOlnoPQygIITbcPm5O6o8Z7cjyFhwJP7i2HMue2zBmpnEzk5ConlzmlakuucwqVU+qcqitPBD2A8prEpfT8gJ7vnyiJ65O4lNikxE1KVKfoIkaXMbb0mOZsKKTDYVRNIStGqqCRR532psSoGifrToPT4ITBhw4iC3iE8J2OTSC9QHmF8orAabTXJx7+zv4CSnDd3k4hvEJ42dUnC77V0DpEF6IruwzmCuEU0mvKgwenOXkz5Rks/S4X7z0fud2a2n5ZN1ghQAuuF44/Q8wPfvVNLl1/utqy8XjMxquf4N4nfouNjQ02S0l54hewbUdUXPc7XCHjiksYBENEr0eW3qBOtznu32cn/e32NzS/SpC32qHewVd0GqMrSHuxs3mJZSdw3FewKWCn8RzUjkntiJ1gMBb0nWfo4H0I3oeCBy9OgKYkFQf09S59dUBf7dNXe6Sybady/1xtUCUC9oIV7kfrbEXvZbcDnhZ+1mbtvXAZK0792XqHtjlhkxM3BXFRcmX0Gi/VTQs/VQs/SdOaxEL7xpofB5RakAWK/SSmlppGaIzQWNrvTWAdsfMkztCzhtQUrBdjwiZH1yWirvBVhS1rXPPGNw7DG2SQXhCpHTJ0qMB2tUNHojNbBQRxRLio0ekNiPtLxOkKSX+VJF2jN7hC3FsjCJaQT5BB+zyxtmxhxhzTNIeY5ngOPuaoA6CjBRg6xJhj/MMn/zl5PWTSQc8UgFZbGArbuu2vEnb9IFhGLCyV4r3DmIxRfsxxMWZvMuI4zzkuXmWUf5xxWTEqa8alYVRZDo3iyAZMXEAmIgoivIxxKkQEAT6Q+EBiwwFNsEQVCHwoHnm1W+E9ww5+phqgxbI8bTee1aqdY5ynwFN6qLwnx7Q+PLJgInK2VdHCjs7JooJM5xSqWACeooUeldPoB69j+Iafi1cktkvm6VKizuQVNglR1SOokxZ4TI/YpIQmRvoA8BhVY2RNoyoaVWNkSdMBz1ju4tV9nGhwwuJ7FtKpBqfVv0svUCzAjQ3QThO4AI0mQJxcbdILhElm4HISZuT5bacW5rdwM90mF/d/Aof0RWnuPp5W9GnIM1j6XSqlsfzc72zwD3cO+FREt0ar4INjx59fWeaP//7nCJ5CUsuiKLj/uY9z72Mf6cBIMGYx6qmFGYXhqt/jChNWtaSfKFRfUPZLqnSXw942k3qZILtCmF0jPn4Xw/u/t/Unqi/2m7J49qRjR8Ce9xwYx6T2VNYjrWDo2jwiEriK4OoDgCgUWasNUnst+Kg9+nKfVB3Ql+1YKPITypyRStmK1tgI19gOX2In/PoZ+MzqaI2R6p/QAilbEpqMsClJmpIkr7l0tMEL9R0Glen8gFrNT2Tqi3VkziGcBWuphcMIwRiwSJwQeOfBWQJnCY0hsu3xgqZiqa6gquERl0/wnF0NZCpCO1QHOSqcA8+0rSNFmIQzP5wobU1XcdqarqagE8UrXUbmJbQeovXwqQPP1MTVAs5xCzzmmKY56tpHNM0xptu+OO7c499kleoR6OUOaqYAtEwQrHb1ygyGtF4CIvKm5jgbcVxMGOUZozxnVBSMy4pxWTMp7zGp7jCpHHkNk1qQ1ZLMRRiR4EhAxahAIwOJDCQ+iHBBggklTSCoAknRE5RvsJjxgyQ1LeAsNW293EHQUjOHn6R2pJUjaTxh5al9w1gUZLIgkyW5ypnInENVcE8V5LIgD3KKuKBUBZUqqHVBNTMPPf5it1MJbERkel1JCG1CYCK0C1AuRFuN6gBBeolE4AEvGpw0bRSZNHgcCIckwwYZXguMlxReIpEzsFHdcaZ16CUxsgMVjTAholGnAOU8oJEdzFywfVHb8wYPgk9DWpPcecW1tbR4bLugsHCzui2C1Xjwpp/jRfIMln6Xyf3jgp/57bv8bJ1xEAiIugVtc8l/9/JVvubbLj+2qa2uazY/9zvc/ei/5/79DTZLOGTR/2fq3NqG7V9SY5aihrRvCJdy6nSM0xWqWMfmV5HZVQZbV1l7CLPZMY594NA5Jo2ntGCsx9r2R2squsswe1pCMWm1QHKPfgdDfbm/oBnaPxEptq+X2IlW2QrX2QmvsB1+BdtRqwHanmmC1ihV5wvkHaHJ2nD3piRuKtKiZunomBvV/oLmpy3aO/C+gx2DsHYGPcJZhLVYHNb79qbuPViLdIbANGhTo5oG+dTWifIt2IQOFdpZfWIsaIFnCjthr9eZrobE/SWSdIUwWkEHQwI9PAE7QbCEUoOnFuk0O2vvsDZrocYc05gRphl17SkAjWYgNAei48635/GvnxB6vsRGBzmBXkIHyyiVYn1MYwMKG5DXmrxRjErFuHJMJjWTqmFSGbLKkdWerIa8LsmbHer6AGEiRNPmcgoDSRAoVCBQWiGCPj4YYgOB1R3sxJJyICgCwSSQZMGTPe0POshZ6uBnqfEMake/9qS1b4GntihToEwOJqcUOZksmcicXJXksuBYFWzqglKWrVanX1AvldS6oFZFCzueDkLmAHGicLKfeEWv7qP80mxbYMMObs6CjfQS4UU3V6C6YwovUB2kyG67WKgX/7V01ELHaViZQ83Dji+CzsK2h/TteTJp860J0ZnghEfQ1lJ0bu8CFB4pBLqrFaAFaNFqtIKurREEXS2FQqK747TXbdqeutPLB2ihPvaeL55P8DNY+l0i//G1fT78yn1+URusFBAILleOHxAJf+6rb3L5yqMRu2katl75GHd/61e5f/8eWxXs+cFCosA5JC2JY1bDY4ZJTm84IR4UaBEQFpcJ85utCe21K63ZzF3saFx5z5H3jKynsFBbT+ZgYv0Fae7aP7pAFPTVLgO51/oGdRqhORTtzUBoP1hiO1xjK1zn8+Eq2+H72YoutWPR2swk1sgA6ZrO9FWS1CW9piYtGgbHhvfUG3xV/Xl6ZU5aZER1ibQW4cwJ4JmCENbivQPXbpPWIM0b+wo9nJwPOieAJ1ock0Rp3Jqv0gFxr0+Udjd8PUAHS+1Nv9PotMAz7fcRj5gs8oFn3sGOMePWn8eMMGbU9afgM+q2HXftEc3C+JMAD4CUIVovo1QfRIoTvRZ0fERtQgoTkpuQvA4ZVwGjOuS4iDiuQvJGkNeCslH4RkMTIU2EdiEJkh6CWAi0FqhAIQMJWuC1xAUSGwhqLWligemLFn4CSaEF4wDGWrR/z08gqWkhZ6l2DGrLoDKktSNsqnYtOlOgTAm2QNgC7zOcKzCyphYNRjQYabDCcCQsh8LipMVLh4i5EGiUVwgvSFEMmh7S9y8GoCeBBA/MtDJTQFmEk0Uo6WDHyQ6mpmakbq5TCE7OZ1reEpBpRdDqv2XrNTEDFSVE6zfUBi7P+mo2T8y3ndpnOkfC2yKZ8FQcnoY2GHM82v6incczWPoSlqqx/L8+tsE/3D3g4zGdv4DgayaeP7e6zHd/03NE8Rt/BawxbH/mo9z7zV/l/uYGWxXsMMTNfB46M5iAnsxYiQ/p9zIGCSwHin51iSB/L2F+hXDvCuoB0WbWe8bOkzvIrCdznomFifNU50SiSBr6aq81jXWmsBaCWjjqqz1CkXMUDNgO19mK1ngtXGcrvMpO9D42w0tsRWtsh+vshKs471u/n7qk11QM8oKlccagmHCruMOXlZ8hqQqiukSZGmmn2p5O+2NNC0LOgH3UzCzni5CnYCY6DTpnAShIYuK0hZ2oNyQMltBTLY4eovXgpBkrWJppe9rM009+5q0ZK8PYCcaMsR3wnCn2vPEpEE14UthpJcCLHpYY42IaF1PZiNJE5CYibyImdcS4ThiXCXmVUpQD6nIJ1/RQNmwXmAUSxKyOESgtkFqClngtiQNBoAVLWtKEgioVlFow0YKJgon2TJRjR3py5bHCo5xFOofyDuUcsqtPtL1DVo6gsKw7xxXv2n2cI3COyFhCawlsa1Ztj2mQziKdRXiL9Bbh26gk4dsiF7UjDy0SXMzUjH7yg2+jneSsSBRzrU2roVGdNqd14JVTcxCyA5SzQAMLYOIF3rdxVb5r+1m7LQ5wXpwTQfvmi2QOMWoGJ2LW1sxhZjqnHRNn9tML+00BRz7i36fHY7vi8BjRtg2eitZfsOlq48EgMB4aJNZ7LO1foaPNIuFag+JCv9NH+ek8P2u3n1Hb936qt2r/83Qr6Uzb3THEtHTfSuXb9x6Yx8sN9TTkGSx9CcrWUcHP/PYdfrbO2QsFxBA4z3cVih9++Qof/LLLF94MrbXsfOI/cPe3fpXNrU22a9hhCTNzKl6ZBRKFsmQ5zhiGnlUdcsmusFS+h3ByFX2w/MBzzJ0ns57JAgxlHSTNmcjRk0cM1C43gxaGWn+hPQZql77cw+uarbjVBG1F67wSrrMVvYut8PewFa2zFawxdhFRWbA0GTPMJ/QnE9Iyp1fmrFevcaP6FGFToZsaZU0HPB3sPIXMGjPYiRZhx84BKDql8YksQaxbM1Y6II6H6GDYaW8GLdTMwGepA5/hgv/O4ITz7qOK9xZj8g5kMqyZYMwEYydt27Z9a8bzdgdE7fikA6CMpwM64LykcQmNi2aQU5qYqokp6x51k1JVKU0zwNQpvk4RTYq2EcokBE6TCEcIRDgCPCiP0x4hoSchlI4l6THKU0lPFTqa2NOICY1wGDxWOGocJZ797pahFiGngxdVuhZWvCN0jsQ51rx7YD6p+QcAbTD1HDamkUiz9uJ2L88BE4XwGkWysG0BWLr9W02KOKEhER2EcApGpm1mMLIAJwjc9EbZgYr1zG+0XZqmabqmE5/tU/uWvLFIWuhYhJlFE5KagYpYaLe1gJkZSiyYjloTFUxNV+0laqHEdlAxBRNL+/6n7RpoumtivKBBYHwLKsYJjGB2/aaQMf0KOdqOb52junfoZ7A6hY7p+5ae7rvRwocE9Btqwy76vp5//5hqvNSZ7U8HWH/PSy88leM8jjyDpS8h+c3P7/HhVzb5xdBgpIBQsF55fkC1prarl05qdJy1bP/2v+feb/97Nrc22WoEO2IZI6aOsmuz77gWluXQsCojLtllrpQ3WC4vI/OL/9hKN9cMZW4KRq3pzAFaFAw6DdB6sMuLUwhSeyRynyyBnXiV++Ea99Qq23KVA/8ih3yA3AaYWhCWNb0sp7efE1cFUV0Q1a/zknmFd5sGYeyT/5kKfxZuOuDRkUN29QyCQoeOIeqlRGlKGA8XAGewoN3p+jMfnuHMnKXUwy+O3IZsFxiT0TRHlOUGxuZYM+k0OxnWdPW0mGwBdLITtXOPFojvvcA5hXMS7+VCe4hzEusUdZNQmxjTxDQmxtgIa2KcjXA2ABuCC8FphNUIr8F1GgcnEb67AQmHw+GEb322cFg8HofEEeEIXY4iR7KPEqJ1WO5gwyOpEZgpbDiJtK0/RXQaRPwpKJmNB91N5xS8XDh/EWIWQMVNM850odLMNSSue3qfPrWfrP0MPs7Wfg4q3XjTjZ83/81JsvcoR/UzH5jTdYtgYtae+rIsXLUT2jDR/Se6a+QF3TdjqlkBJ9q+AWovumss5iC3oCVxrv1YHCehQ/g5KKluTJ06F7qzexJ5uEQkT1+EFEg1L6orbZt2XHS1BCVBLhTR+TgpCXR6PSlatZKY+kN1mk2gXY3Zd1p41119f7o4vPNcji9/Ea5IK89g6R0uVWP4F/95g3+4e8jvJHRaccFX5p4/v7rC93zzTaJIY03D/Y/8azY+9hts7Nxnx2p2xSrNLHj08szkroVnmYh1u8IVs8Zlv8TQJ4ji7B9/4+cAtAhDE+cJxUELQx0AXQ52CNmjliUjLdjXCQdiwKZPmfiY0ka45iayvIKuK6K6IqgrVGMQ/oCYA64D1x/jOp3Q7kQd3HRanEX4mbZ1BFEv6YBnQBCszrQ2M7AJhgtjS/MxNUCp3hntXQs1Nc7lWFtgbIazBdbmHeTcx9p8VsxCewo5psmpm5y6LqibEmNqrKk7SGlBxTuF89O2xHl5aqyFGee77a6H8/2T41biXXgSYpxGuOBUvhR5Dii0tVrQemgkYQcLyp+CkhlUTPc7BRx+7vw5vzl5pPezvmTa9t3X2INodRZifvsD7zqYcO0NlbOg4RAdXExNOe2YXaxnWhSHRdJ42+LabD+5MF/OYMXOtC4ShzxlIvKc1bu8dSKwKGGQGKQwSGFRGKRoZuOL29V03qm+wiIwaGGQ3iJFM993Nm9+zMV1306ez8NB12Ob2TptzHz/af/kWZwcP71P1/an+oju23Xe/OmRZ4YnOl1QpxXqZnnRQcWpHRdsWC1viE67ND0X32oAWdwuTra7c1rUDHaIg7cKZ9q/JC8UXihc+xeHEwqP6mqJFxonJA6NFW1uPC9UdyzZnUfX7vq++97P58z70P5dcGLe9AFCkvzHz3Dz977/YT7dpy7vOFj6qZ/6Kf7O3/k7bG5u8r73vY+f/Mmf5Pf9vt934fxf/dVf5UMf+hCf/OQnuX79On/5L/9lfuRHfuTEnJ//+Z/nr/21v8bnP/95Xn75Zf7m3/ybfM/3fM+b/VaeSDYPc/7Rf7rLPzWdqS3pTG2V4s89v8Zzu7/Fnd/8p/yrf73LHj32WMEQ0P4p3phrjLxkzQ+45IasuQGX/JAl3zvxlGS8Z+RgYl0HQw2ZybB+C+nvE4l9tD9CMKHBYLs8HxOnOKolrvH4xiOsp6W5RT+HCqjoAxd7MrWyCDw6Og905hoeHdMmFExT4rRPGC8TzPxyBjPImfvqDFEqRaoIKYJOW1JQ11kLJ1VG2eSUVc4kb0Glqnepm7tUdUnTFDRNhTEN1jQ4a/DW4m2rRpO21WDQAQdWgw8QViOdQFiF8p2mw8kWKLoIIOUjpI+Rbr1TcXsUnh4ePfsZ89OfM1R3G27r7ufHt2NS+O7nyLU/Q74Ny53ful2nd/FA6xwtpqG8C54L57W9dyBoYaH7AW6hoP1Btkisb38crWihrAUMifXtD7LzEovqtimsVxg0zmssGucDLBrrp+0A6zXWB+0P9okx3Y3F3VjQIdXbU1qgaFDUbS0MWtQoarRoUKId19RI0bRjtOOL2xUNWtTtvgt9NR2jaY8z67fzpHirjGHP5Jk8nvyq+W7gv/yivPY7Cpb+2T/7Z/ylv/SX+Kmf+im+5Vu+hZ/+6Z/mu77ru/jUpz7FrVu3zsx/7bXX+CN/5I/wwz/8w/yTf/JP+PVf/3X+wl/4C1y6dIk/+Sf/JAAf+chH+P7v/37+xt/4G3zP93wP/+Jf/Au+7/u+j1/7tV/jG7/xG9/qt/iG8puf2+XDr26dMLWtVTV/YOuTvH/zNzEm4N/8xyEWBaRdaWUKRutuyLobsO4HLPkUicB6R2ZrJqZgxxwyMYcUZpei2aS0+zhfY5yjcW/0tLeofp4/KS8+Vy1Cjp5perqxuDNvxQLda9fEkkmEimK8jvAuxFmFawS+EbiK1uhfCagFohKoEcgDgXItqNTeYZ2n9hnKj1Heo3yn/vfdM083JjpokH72LIXEEuFI2uxEiK6W2Db/R4sBHWjYhTIFjfZJew4WZgYYYuEG1TpE6hkonGh73dWqA4ALts/GNM1snyloLM4NFo6lOzDR3f4L/RlwzLfZWa1O9B1PN8/RWyGS5oS2Qy5qUBa0JmKqNek+y3abRYr2s572RTc23+bm3xnRfWfw7fZO6zWFV8T0SXyqR5tqAORcazB7Aj9dM/MnMoTUxK11Q0yf4Nv2dL5HdGaqhf0RravSgqZkqk1Z1Kowa3f9mcZjPiamGhJ/qr8op5abebMcsWcaqoVEsGdf6eQ7XRybj5/ULc3GxXy+uHCfqS6nPY+T2xY0oMLPNKEC25m0pv3FJUNsm32eLhdR9/AjZtpUjxC2+3SneYqmD0Pd60z3m45PX6s7vzbP0bzdvld/op4m1xVi+k31J67DXDPWvfcFPypBp55Fg4/xLgJi8CHexXhivI+ACO8jPDFptnvxB/0myztqbbhv/MZv5Gu/9mv5+3//78/GvvzLv5w/8Sf+BD/xEz9xZv6P/diP8Qu/8At8+tOfno39yI/8CB/72Mf4yEc+AsD3f//3MxqN+MVf/MXZnO/8zu9kZWWFn/3Zn32o83qz14arasPP//Y9/uHuPp9I50/G148PeN/GF3hhb+OM46j2ijXfPwFGfRdTmAnj5pBJs8e4OWDSHDI2h+SPuF6UUO6kdide1PZYtPYEgSPUvi0SYumIhCewoI1AG9DGo40nMA5tLUHt0c4jXKtjni2y6AHhWz2Kl3O1sJ8jTduej8/0K36qZ5nvuzh2sr24f3s82x13OtehF46jF15HnRibH29hbAY1c/BZfK0vPZkumdC58Yr282yNFJ1DbPfj6hd+Sf2pm5YXnWMxi7csMTMliAWTlvC0HrgLhxALN+3ZDX12lxML5o/zbthvNNZBwtso3PqdJ9MHielN3s0eRKZazfaGP3/IEGKavNAuJDC0CHlqXE7HXfvgIru50oJc6KvuwUZNt7l2uzpdLx63Ow9pF16vPYfZOXXbZucxnSMsQr5Nb79eIGyIdCHCBggXIm3Y1QHCRkh3qrZha6aftbt97GJ9apubpgR+OLnPP+cb/q//96f6Vr/k1oar65qPfvSj/JW/8ldOjH/7t387v/Ebv3HuPh/5yEf49m//9hNj3/Ed38HP/MzP0DQNQRDwkY98hB/90R89M+cnf/Inn+r5P478Tz/xP/CfXngfv772lYyDFFKFcob3jT/LNxz+NtfLbRCg1hV9n9D3CQMXExqBaDJKs0VhMvZsxr0mo3R5+zTZxa36CIT0aO1ZDtolI4R2SO1QnZOfEBIpNJIA4QOEjxA2AdPDNzGuTnBNjK16uHGMbXqYJsagKZB4MbV9d/ZnIec2bdF5mwg5G38mp8R3cOGnPjcLT6XT9tSHgXk91+3NPSTa/oIPhmhv8DMNhZje8B8GGOag8eA0A2r+NhZO81w3jAeIOFU/dXlLOGd+g51nJrazp/z2BupnN/rZuFgcn86bH6O9IbtTc0/e0OcgcWq/M2Pn7Hf69aQ9ee6n4eTU2LS/CAyz9z977bcpNDyOOE+nAJqFxXeXdjYmuvA24RbmzOb7edtJpAkQTiNd2IKJC2b+g9K3ICNs0G7zAcJ30DLd5oPW5O9ChA/btg/Bh7MaHyIIZm2+KFriBkGFoEKKCkHZllm74mjw8IEvT1veMbC0t7eHtZYrV66cGL9y5QpbW1vn7rO1tXXufGMMe3t7XLt27cI5Fx0ToKoqqmq+nMFo9OasV/PzX/37+Wz8MgArfp8/yL/mD4hfZmk4ggsA2NN6AU0l6cqbId612We9ayOXvNP4zoG4bWu81bhp2ymcDbp2gLfTuh1zdqFtwtm22bjReKPwRoPRbZI/M00W1z2N+mmxC+3WsVfOxmwLH6fG8L7r21P72zO19Kdey53cRy4e41SOmxPHc/bU/K4/Pd4bYsRT/kyhXQZFTGuBE3NzjpOdXkh2Cn3ZGQjkdO68nO5Px6xsQdnJ09slVgqclLO+6+Y7odox1c0TArrkl3NrzoKxVzxMvxtbVEItWpYWAMqforXT/alqarbf3NYwtUedBTLPHHYFXdgVJ8FBnDT1TM04MFVkLbbbvljcJuY6uNl2MZ83Pf5iG+avuWg+mpuQFrb76bm16QqmUSJC6Lnur/NhnppqhG8f0vCtQ/6JY/r5+5/hvZ++n0Wn5fklnjozzy7+wuU7u83Pr4afmxtnH4NvF2yVXreJJ9FIdJv7iW5bm58agV7oTzNTa9rQBt1lq1YoVDs+y17djYt23/nYefVbl+jyIrHeYL3BYWZt6w2WZqHfYFloe4PFYLzBeYNx0+3tNjOtp2NummRh/uGdZzRdGa+8lW/9hLxjYGkq50UYPejJ9rz5p8cf9Zg/8RM/wV//63/9oc/5ceWbtz+BuSb5g/m/4+vy/0xoKkQjsCZCO4v081gBYP6d6tKkMP0tEPOxaQqVzmGn3d4lEfHTBCRKzBLSeuXbBB3n/M0K2dnHn8LaS08kToIJwQYL9bx4E7aA1YQtZNVt3zchvtH4JoBa443GVWE7Xuu2ePCuS7PmWujytDW+AzTXZlIR07FZ4j93cow5lLV1Z16YwVoHX8wBT5wuUy2TdyeBjWmSwXb7yT6z74ronlrb/lkR0Jp0T2ir3p5iO6A7A11StA7kkha4FrZbuThnvq+V8sLtVsp5e2GfL0Wz21lN30WaxpPSLVzRaaK7OMYL6nZOu7iqFKrtMx1r57Vz1TltNZsrRZeQQZzsy9nx27YSauHYal4W+1Kh3uaabestbgYntgWYrjbOLGybb7dnxhqsMx2wdCCzOMfN2+32hvN/By7+/XgzxWX33+RXuFjeMbC0vr6OUuqMxmdnZ+eMZmgqV69ePXe+1pq1tbUHzrnomAA//uM/zoc+9KFZfzQa8dxzzz3S+3kY+Zs/9NeQUlLXf4z/9V//c37h4/+MreCQ4zSiCAsCY4hrSKal8iS1JG6GRHaZ0C61q1nXIWlVk5QFvaokLQp6ZUGvzOmVJXFTv+G5eOGhXY+xgyjm/WmtPV6BjzQEIURdCQOIND7UECp8qCCU3crkAgKBD1rzoNcerx1eWbxq8LLGqwbX1V7WOFXj1cI5SwdhCZyf3fXhfu7PF2EipI2RJu7qBGUShGnbwsQIk7TtJmlX7TYJzPo9MEmrgfNMPXPmxXOy/4ZjU5+eNlfMjGtOzefUMRa346Zg12Ybp8vyjDdI1ybkFL4b9wZpzXybt7PtwpkWBF2nNZsdw56AxkVN3gwkO/CjA7rTdrpF8+KZz66beuEztzjdPaUiml2Iqa/R6R0XQej09oVtQuCl7BJLy7YIAVLipATZbnfdNqdUq1FTEi9Vq0GTqittWPZ5tUeCmPpkye79tONCTBNLtufTZXDqzlROEab9d2L7dF2uk3Me3JdIMU/pMD2eehtoP94Mcd51MNJl9PKuAxKLWygWs9A/uX0ONAt95vMWgcfNAGdxezMb/2LI2+2T3QzXv2iv/Y6BpTAM+bqv+zp++Zd/+URY/y//8i/z3d/93efu803f9E38q3/1r06M/dIv/RIf/OAHCYJgNueXf/mXT/gt/dIv/RLf/M3ffOG5RFFEFL35tlMp269qGAZ83x//Ab7vj/8AAN55DjYzPvKbH+FXP/+LfI5PsLd0wDiuMdoDo6504iGtUhKzRuCvIOX7MeEtymSVIoqpdYh3Hm0svaqkVxakZUGvKOiXOUlZkpYFaZGTFi1gtWueFfRnY8UCdDlacHn81PRWKKogpg4SmiChCZZowgQTJJiwLS6J8EmISzQkAcQSEStkBEQCrQ1KVihZo2SFVBVCVsiuoCqELEGWoErQJV6WeF3OdPxeV1hdYaPjx34vAMKGqKaHND1k00OZtj0d00260E9RTTprS5OcvOE/sby9n6CfyZeGODyuc+B33fIabWZrtzDeJRnFzbZNx/10HLewj52NtePtivXOd6vW45mnKm3nTre5Titsu7zabrr9dO274wJTG+n0gaUdmZrx5ijv6czTbmpRFd01aNNoiIWHl04PjPOL+wZ4ojYuzssuC3qXfqOzH0yPNY1pm9dtTi/v5/GVU+PpLE5u4XizmF8/PT85e0+Lx55u9wsF5uZRPLMtJ8bpzLMLYydq70/OXdzfnz3eojn2a6N7j/t1fGJ5x8ASwIc+9CF+8Ad/kA9+8IN80zd9Ex/+8Ie5c+fOLG/Sj//4j7OxscE//sf/GGgj3/7e3/t7fOhDH+KHf/iH+chHPsLP/MzPnIhy+4t/8S/yrd/6rfytv/W3+O7v/m7+5b/8l/ybf/Nv+LVf+7Uvynt8GBFSsHajzx+78Yf5Y/xhAMYHJfdfPeRjH/8Yv7XxK9xWn2ZnsMNxL6cJHFmckZEBd4DfBA/DI83N45C1UcTqcchylmDCFbLBkKw3JOsNGPX7bK+vkicpWZIyiXvkUUIeRQuL5rYirZ1D1QJcpWVBmucsZWOWsjH9LKOf5/TyFrKSsqRXtYvRxk3dxpZ5S6/O6NXZY1+nXEdkQcwkSMh0VwcJkyAmD1fIw4Q8SsiimCLqkccJeZKQJQlNT6NjSxRUREFFHNQkqiLRFbGuCFVNIksSWZCIklgWJCInpiAmJxJtCUXrQeZVjVE1cPTI78N5iXE9jO3TuD7GpljXx9g+1qZY28eZflvbPt4McKaPdwnKtSkRAudQDrTzSNdGHEoPynVpE1yXRsEv1nNznez8S6Yh4NJPTS9zF53FPojZWNfr5i32TwLgw+DgeXMe11h4er+5M7yft6fZ/qZlpgk7aR49ozVzU/PrtG9hYb9pVmL8Ysbik23PdI6fn8fivvg2t9Xp43X9ubl4cU63YPOZ+Q6/cI50ZmHP1FTcRoq1DuBdagxpkdIiZDNva4NQIJVHKIlXEqTCK41XGtfVVgdYFWJ1SKNDjA6pdESjY8ogogpiijChVBGlCillSKYiChmSq4hctf1Mh2QqZKQjMhVRakkjBJWCRrZm2neM+C5Pmu/WAcSivEP7tm7TmSy0F/vOtjnXnEV5i+6Kco6AtlYLx5MLtfKWYKGtvUN5MzuP6fGmvpTTVCvS+ZnWeG7e7yIaZ9t9B05+5rwu5xk0mWfxbr+SM43yKU+A6bTt9L1v8Ycyl3dU6gBok1L+7b/9t9nc3OT9738/f/fv/l2+9Vu/FYA/+2f/LK+//jq/8iu/Mpv/q7/6q/zoj/7oLCnlj/3Yj51JSvlzP/dz/NW/+lf5whe+MEtK+b3f+70PfU5vduqAx5Eya9j6/DH3Xz3iU698mk8d/zq7yefZHmxy0J9QhednCk5Kxco44Mp+xOXjiNXjiMicVcZ6L3BhQp0MKHoD8t6QSTrgcLDMUX+JUdonS3rkUUwZRl2OlzcW4RyDPGNtdMjq+IjlyYilyZg0y0gnOXFeEOU1YVERlzVRU5E0FWlTkjYFaVOS2Dc2Kz6MnICtIGHSlcX2JEiYhNPxmCKMKKKIWocoCaG0pEFFP8xJg4peWNALCpKgIAlKEp0TBQWxbkukCmLZlkgWBOLx1e8GxZgBEwaMGc7q8UI9Yti1h4wY0oi3MNrEe7QFZR2hsYTGEhjTppKwhtA4lHVoY9HOoa1HOYe2DmVb4FOzQtcXLQA60Y0JlJPz2kq0k2irUF6i3RdXy+ZxWGFwssEJgxcGLxrwDYIaZUu0KVG2IrAVQVMTmJLQzPt6WpsabRu0aVC2QVqD6hZ4lm4KaSw82b8DRPgOvNoiVescPutLj1B02zxCClASoSRCKtr1OTQohdcarwKcCnAdqLXAFtN0oFbrVptdBgmlTqhkRKkichFR6DmsTXRMJiMyHVBrQSkFtRKUEmoFlRRUEmolMFIsWH+7gInu7U1dmqd5r57Jg+VDasBf/taXn+oxH/b+/Y6DpbejvB1h6bSY2rL9+ojNV4+4/+oxr772eTbCj7KbfoG93hZ7g2OK+Pwbc2AE/VyzMgq4fBhzczemX14cWiq8J6kNadXQq2rixlLGfbLBEpurV9lYv8rOyhoHw2UmaUreSyjihCKKaPTDh6wK70jqil5d0qsLElOQNBm9asJSNqKfjennOVFWIkoPpceXAl1ZotIQNw39piBtCvpNSb/JSZuSnqne+MXfQIyQZEHCeApXYcIk6DEJEsZdexwkTMLeCegaBz0KHc38YgJZkwYT+sGYQTihH0zoBxn9IKev87YOC/pBQS/IWwjTBVo9HmQZr6iJqERISUxJQkGPgh4ZPSb0yRjMIKwiwqIxXZm31Ynxpn2+beeIt1Hyyk6rpm2X/8t6tOvyf03bi9tsC3hBV0/H2r6bt01Xu/m89hiCwIL8ItwZrbBYZbDSYGWFIEf5HOlztM/RLiewBYEtCG1BYCoCU7aA1tQETYMyhqAx6KZBNg7ZWKRxSOOR9h0EYQ8jws8hbApqyiPkIsCBUKKFswVAE0ohpAYVdCXEywCvQryKcLKrVYyTEV4leBXjRAQixBPgaR05hQhAaNplg1pzZVtcB1seIyxWWBrpcMLRKIcVDivBao8TrW+dU+CVbOFNtWA5W9xNyS64R4Lu3ouUCKWQ3RyhdNdXbURst5ifF22ErBdT/z1ATJcLWvDT9N26fX6+xqHHYzplp/MO79oFmNtUe936iN7jvedbn3uRr3rpy5/qx/wMlt5CeSfA0mlx1rF3b8Lmq8cdQB2xn++ynX6M3fQV9tMt9tNjJr3zI92Eg7CR9AvNyjjg8n7E+jhimGm0u9gtsAWppgOphnShndSG/d4yr1x9nteu3WTj0hX2l1c5Hg7J05iyF1HHMVUYUQXhw0cjeU9vBlUtWMVNRs+MSOyYnjsmcWNiN8Z3ofG6AlEKVCERpUDmAlWALhxBaQkrQ1w19OqSQVPMoasuCPyTre81A60OpKZQNQ46yAp7M7CajrdzezSqtawHsm6hKsw6uMrohxMG3dggmLT9DsAGYYaWj37etQmpbYS1IdZ1nv6+W5JFNgSqQasaqatZAr7WOb0FqylAnYWtaV+dGG/7CjOFLx/MikXT+BAzLS7E+IDGhRgbYlyAcZrGB7NlVCyqzb8uFqPfFiLnpGwj5WZFtTeTJxTZQVQwhaoZULVQde64mUJa29bWE57qL86btt8qgPHe4USDp8T7CuFLhK8QvkC6stWS2aKry05DVhI0JWFTETYlUVUR1hVxVaHs011+pdH6RDFKY5TCKtXWUmGFxEiFUxI7c7wXWNlqIFsTtJ9p6mRnZpLeIZxHdbXszLXzud2cmXnq1L6dSUp612Z6lw4l21oLh1QOKT1KeIQSbR48Kdui2mg+qQKQAUKFoKK2yAinQryK8TLE6RAnQ1AhTgd4oZkGdgosmholCgJKAoou31GX/0jUCGoEFdB0+Y+6sdm2af/pfnZTmXzzX6f/7X/pqR7zGSy9hfJOhKXT4r3neKfg/qtHM+3TaLcgV8fspr/DTu8V9tJNDvrHjHsXmLm6b1JgBP1CsTwOWR2HDLOApUwzyDXqQSDlPL26obcIUx1QJbVB0JrGtnsrbKar3F6/wd21q2yvr3O0tEw2iGn6Gh9rbBRShxFVcNa36sLX966NFqxL0q6Oq4KwLgibnMiOidwhgRijwgwVZMigROoGIR1SKryNkGWELgJUptG5hEIiM1CFJygsYWkJyylsVQyanH5dMGhyAvdkoFWqoNVWhT0mUQdZHXSNwh6jIGGkU0ZByjjsMQ56jMOESgUkQcUgaAFqEI67ui3Drj8Mx7O2fIREgs4LxnXKqEkZ1T3GdY+JSZg0MYWJKUxIZUIaG6ClJ1YNiapnpadbf7GpCTPSNaGqiVRDIGtC1TzS+ZwW79rFhtslQ9r16+iKcxJcgDUhtoyoi5i6SqiqhLpMqJuYug4xVmGcwDiJcWBon4qN6FyHRedoLMVCBNwcwto8U5ImkBglaLTEKoHRAqPasfbm3qYzaLTCSIVVcgZ1vgO86ZM+XqO8QltF4CTaKLSVhE6hrCSwgsAqAivQVhBagTaCwApC02rBTgCY8YSmhbjQzOHuzRDhGrSpULZE2gJ8iadCuBLp2lrbAmkrtCk6LVhBaAqiuiCqS+IqJ7BPJ5LMCUEW95j0ekySHlnSY9JLmSQ9xl2dLfa79qSXMu6lFFH8pqebEM51voFzAAM/AzM8LZzBzH9omlIEmLXn/olzZ+szxQNi7nu4EGOJFyc8GudzxPQ1TrqOs1DP3NMX/AWn277r6A7/43/zw0/1mj2DpbdQvhRg6TzJjqoOnlrfp/2NCXgo5YSd9HfYST/LfrrJfv+IUe9805VwzHM9eYhLyXIeMMgChrlmOdOs5AG9TCMfAqTSDqAW23FjZk/PtdTsJMvs9FbZ7q2wla6ysXKF+6uX2FteYTJIUKlFxECs8VFEE8ZUC6avNxJtDWlVzIBq2u5VBUFVI6sK0VRUwlFKg9MlBDkiyFHhCB2NieMxiS6JlUF3i+UKGyHrmGASEOQalWtUJhG5QOYenXuCws1AK6lq0qqkX7daLfXYrs7tdRuHCXkQk4cxeRhRhiFFGFEGIUUYkkUReRiRhRHjKMb0QcWWKKyIw5IkLEnDgjQs6IcTlsIxw6iFq0cBmaxJOKqWOK6GHFbLHJXDrr/EYbXEYbnMqB5i/Ul/IyEMUjZoWbdarWlRLUxFsoWrWDX0VE2saiLdEMqGUDWEsiZQbT/o+qFqjxEuQFkoG7Q0Z74uznbJV32bmPVE0sMuqso5gTcCUwXYKsDkMaaIMGWErTS2ltha4mqBNeAahzMOZy3eGrxraI0bbywej1GeOnA02lFrP6vzQFIEkiIUVIGg0p6mm2d0Z67TbcoOlAUkCM00fQGizSHiRQuUgY9RNiKw0bztQgIboqe1DQldRGADQhuibYB2Gu00gQkInCawGm3bOrT6qfiUtdBVok2Btm2tTIE2BcIVSFegbI5yxWxeYIoWvJqSsC5QT/gQA2ClZJIkLUSdAqlJr8e412fUSxmlw9n4uJcyTvvkUfxUNJrvdPkzn3yF/9v/8H1P9ZjPYOktlC9VWDotVd6w+fnjmelu+/YIZ9qvTyUzdpKPszd8hf3BfXaTA46T6lwbgLIC4QVWuRP3krRUJyBqvdAMs4Ao04gHgJT0jqQ29It6ZtabaqYiY0+cghWSvXiJnd4K270VdpKVtp2usrl6id2lFZpeBLFB9AwyBhEF+ChuUxaoh/O3Ed7Rq6s5VFUFaV3Qn7bLAl0ZaqcovKZEUQoohaOUlko2FLLG6AwVjUjCMb0gIw1yekFOXxUkuiZShgCNNBFRGRFOQoJMo3ONzhQya02IOvPo0hEWhrhsQatXVaRV+URmw1IFCxqqHnmcUvZS6l4f2x9iB0vYwRJqRaGXPcHAoJOSWB8TiUNCeUDAIYE4IOAAKR7OOb/VVA04LFuAOqqWOSiXOepg6qBc5rBaprZvjsO6wKGlmcFTMAOstp6C2knYOjVPmtncUDbdQr6uW4jXoYVFibbWwhJiUdK1QWkNuEbiK4mrNL5SLYCVAWYKXf9/9v40SJI9PesFf75vsS+5VlXWXqfqnJZaUtOt1mDQCGjRgtugrcVgQrcBQww2jC4jaQYE6CJxLwiz+SDMkGEmYYbEDl/GMASYDWAIxu6IbrpbS/c5te+Ve2bsEb4v88E9IiMyMrOy6lSVzjntj5mbe0R6RnpEZWX84nnf//N6InEAUTCGruhgWdELKBYSfDkFqaEqM1QlHFXCUQRsVcBTwFfG50REckgkhSSyTyJ5ILnZTLeXeJ0TATlSUWINLTTQQgM9MtEiHSXSUCMdOVaQYhUplid7MVYySNMOtlhDiVSUSEd8kQShJEGMgxS2Jpt9cBwd3KeENnI4mtynBOlefJ+wlQgQGxBbEFkQmRCbApEpEFrpcWiJhKZAaAlEpkRoQWhKxHKWdD/xbESSCAgFCASEIEHwRMQARE8AHxJfSrdARPDldGlhICKEAoQghAJCmJA2FJHu07F9JLEAMWnPUXTwgWG8yGeyh8kH1ElAQPbHeqb7bepTycpKmT/8i7/0vl7Lw8ph6Q3qmwWWDisMInYfDyalu60HPQL34I+CJ4xoFW7Sqd9jV3/Grtqma7pHrvpIrX8JJBFPComnat5CApYjURopVEYyi65M1ZYxRwryUOGkZSRiEmMEIaYbUHR8ClO9UuohkBqrrRXZNSsTkNrNoGrHrLJTrDEqFEg0EXSBxAjBjEETD6BKMeCUpT/d9yh4zsShKnjOzN7yXJQ4wk9EnETBQU3hKlGy23KaaCXEuFKAK3ppTpToIEg2qmxjKQOK2pCiamMpTupoyS6q4GEIMWYAhq2hD1SUkYIylFFsCXkkINkCsp0g2zGqG6E5AYabgtbh4c2nVYSQ9lypFj01LQf2s80rqQh1EbUOWjXBqEQYBR/TtDHkHrrYQhHaCJyytCIUicUmkdDAT5r4SQM7qmNHdQZBg55fwQ5kvCDGDSLcMML2Ixw/nNx2gwgvTPCCmPh3+a+lKEQpZI1hSwyQxQBFCpHFADFz18Z7SQwRhRBJCJHErPsripHjGCWOUKIIJY7SlYdhjBwkSAEIXoLgJwh+DH6MFIRISZSl/byYAkHEljUGqsxQk7FVEVsVcRQBTwVPifHlKHW05IBIDtIMNMlBEF0EyUkt6vfzusXSBJhS58pAi3TUyX0KUqwgJzJinI0xSSTEWEJKZKRYyaBLz9wxfQJhaqQjJSek8ExgK4OpwM7cKzuDLjuDKvvQOemxFL+/CQmJIoGukBgyiSGSWCKxJRJbkBQgKsTEhYioGBFZAVEhILL8VxPHliSIAchuguQmWZxdgpj1hOJI4CmInoTgiwiegBCA6JP+/oUxYpAgBDFCGON/z2e5/ld+8RVc2IFyWHqD+maFpcOK44TW+pDNe91J07gzmP2PHog2zvIDdgu32ZSesC3v0zGcdPXEISmhgO4ryKJCoggMJZfw0JukEEPBkanYMsuOQtMRUzdqqMDo+SClhRGGF1BwA8qOR9HxsbwAJT7+j/NI1tkxq+wZldSdmgKqXbNKRyuQaDKJLmUbYEbpXpdIVJVYM9IlzaeQFvgzEFXwHAru+LZNwXORkoPrjQQZX1CwY4VhLGHHCm4i46DMQlYiEwpx+qYkOQiiA1PHiuJQ1G2K2oiCNsKQbDTZRhXS5s+CH1FxEopugmlLaCMFdaigdN/xLQAAf8ZJREFUDEUUW0SxQR6BYmeOlhOgBi//CXugGPRVi75mMiyruHWZoCYSlROEcoRc9FELLoWCTdEYoMmnW9UoiFVkdQldX8Y0Vimaq+jGKrq2gq6voKoNhAx+gyiDqgyuvHD6ePZrbhilEJad42W3j/oex/dxgxAvDCf3e0GCH4EffbDWmElCkGb2CGGW3RMhJ2GW65Nm+shxukpOSqJsi5GTEDE7Prg/mjzG9LkkCZEgEYoKviDhySKuKuLICZ6aTAArUCMCJS0ZTv8ei9kx7xO0hERAC0200ETNAEmONORYRsrmxwmJgJhIqaOViOlMuWzeXZI9hoCImEjIsTJ5HGUMazN7HSWedUPFaAxaoynQGqEEqYuljMEqGE0AbHzf+5ktGSoasaYRaSqxoRLrComhEBsyiSETmxKJKZIUROKSCCUBwYhBDhHkECQfxHTqAoJPInokjLeXi3d569r/zurq//mln9NRymHpDSqHpaM10zR+L4Wn/v58qrexAO7iA56J7/I0esCGuEv7OIAKRCxPRU9UFE0mVCNaDPCP6OMQYyjZMmcchSVXourImEMZaaASj04up4nEKGGE7kVYfkDR8SjbHhXHQ36OvRCIEi29lPZMmY05l2rfKBOIcjrmRZOmoEoAI04//WkyiaaDdDqgMgMvDf/0bAruFFRlm+m5BzMEp5SIErGk4aHiIjOMZHqBxDCWDxwsUsAKJ0MHMwnB5M0pfWNykWUHU/fRNR9VddGVEYY8RJOHKMIILbIpODYFx6dsQ9FNKNpgOqAPJdSRhDISUGwBZZT2aGnOywFWqMOgqTFsjsFKIK4mCOUQpeijFR0U5fkOVRTL2FEdL1kgFBZAXEJUllHVFQzzDAVzhZJhUNRlirpMSVfQlVeX3xTHCX4UT8BrDFwHcOZje0Nsd4jjjxh5Nq7v4vguru/h+D5eGOAGAV4GeF4Y40cJfiQSRDLBeKVgrBDE8qHjD1DUwyEJE/BKQxzHzcnj1SYJ49axhFjMEsPFhDgL00TMVnJlqf6CmJUNRYdE8hGEcCaMk5nbR39NECLEBLRIRQ9NjLCAHproYQEtNJAjFSlWkBIJMcl620iIxZhAcvElN83eEiISMZ4KS03bF+QkdbnUUEeNjIm7lW5GCl6hjhpqqKGPEgxnYEoJRhlkpaClZMdyMEqPQ+el/z0CScLRNGxdZqRLDA2RvpHQM2M6hZCeGdMzY/pWyKgQ41kgy6CKoAoJqpDuNZHJsSqAKiZoArxT/VG+8Pv++vv9tZlRDktvUDksnVJJwmi/x+atrRSeHju09tLG12mZqk2j+JCe+lUeSE95oDqsGyEty+eofk8lECnbOlakYAoxiuLiyD4baoJ9TFOkHAmcdRRWPIkFR6SYuSIMFEL75DcHgRg5TFDDMO2Vylypiu1i+uFzyxQx0NdMWkaZXaPCltlgy2pk7lSFXbOKrRjpn0hZmIKpdEMXSQzS25qaBu89R0ISUwh9SoFLwXUw7RGWM8pcKpui56CGwYnXLogyKBqxpOELKi4Kw0imH4q0PZFeKE3cq+AwWM0pQpDScqEoOxSMAMtIIUtTPWTFQ5RsJHGIlgywvB6WPcQajjBHHiUnoegwAS1jBPoIlJGIOkpQTjFpJyEhMSCqJURViKoJfl3Aq0sENaAaI5aC51ZU40Sg41ZouTX2nXTrejXsqImfLJBIixR1k5KhZEClUNLT44P7Usga31/UZWTp9Tf0xrFPGPYJgh5h2Mv2fYKgSxD2CIMeXtDD9QbY7gDbt3G8EW7g4EcC4QSsxptCOANcMkGUgliYyFP3q8SYRIlOhEGUqISxln2vhB+KBKFIEAn4EQQxBLFA+KFLbownQEWWfD4LWLPH4jh2AwEpEZABORFREgElkZATKV3JiICYCAhCQkJIIgZZsGlAJAbEokckeCRimDprQtpQJAoxYgJKoqDGClqkoEQqeqyiRhpapGEECiUXCm6M5YaYfjALU8EIJRhm+4Nj8ZQLDw4rkHQCtYCvmHiqhacaeKqOo+nYmoajKQwNmaEucfnjF/nRP/vFV/kPlMPSm9Q3JSwFDthtcNrgdLLjzsFtpwNOd+r+bItmSyNubLHtv8VWcINN/zq7wWViZmFFE4YsqbepK99g13zMbd3npiLxTPdpWd7RABWKVEcG5bBIxaxTrNfBktmNdnkyeMIgGBz5tARgAY0zrsiyHVNxZMyhgjRQ8Psqkft8p0eMY5QwRgvCiStVcnzMIIWr0/T6uJJMVy/Q0ovsmRW2jTobhSYb1iK7ZpW2XiQRMq9IEeeAagJWmUuF+Pw3GTkOKIQ2pdCj5HuUPYeC7WAOh5ijIabvnrpPSZRkZM1AUDRiWScQVNxEZhjL9EOJti/ScgX2PfEUYHVYMYg+lu5TNAMKpo+hB+iqj6K4iLKLxAjd6aGNelijHvpoiDm0MQcelh1RssFyEswRGDZoI5CD+WtIxISokgFVLSGqZcf1hDC7zXOMlzgW6Dsl9uw6O16TPafBnlNj32mw59Tp+8Ujn7+uCBQ1kZKhUNJVSoY2BVvywbEhU9SUWfAyFAqqjHiKf/eXUZIkRJFNEHQzyErhKgg6hEGfIOwQBOntmXOCLkny8j04olhAlGsIUp1ErIFYJU4qBL6F52p4joLjSLguOHaC64TYjoftuDi2i+N6eH5IJIhEgkRMuh9vsSCmX2P6dnociDKhkG7TX4+F8Wy1qSHLHxFlsZJpbpKQTZoTsol0STpoVwSkJMEKfCqeS9l3KLkOZc+h5NuUvDR/ruCPKPgjLH+IFaSjrI5yu0/So0//Kb73V37mlT7HHJbeoD7UsBRH4PbAbh3Az+H9NAyN7wtffkguogxGFfQKmLX0OLsdKjV2hktstqts7RhsbYqEh/62SorI4vkSK1cq1M4qrHu/zVef/Hfea73HerzNvukQSfO/1nIoUB2ZNIIqC+YKC4tnMSoWXbHLurPOg94Det7xA3NrisZyLLJqhzRsgaKtoA4Uwr6G11OIg+c5PBJk85W0MErDOf0Ayw0w/RAjSPOk1FOE8UWCwFDV6OkWbb3IvlFm26ixZdVZLyzxzFrCUXQgK0ho00AlkxiHoEo7RdkoiZHDPmY4oBA5VAKPSuBT8Xyqjk9x5CDaPnH4Yp8wZVlGM0xkzUBUDWJJIxBVPBRGsUw/lOn4IvsetOyYrhO8dKO1IgmUTYGyFVIwAyzdx9B9FMVHT/qYTg991EWz+6iDAcpgiD4covcd9JGPNQwp2GDZYDhZeac4BVB1iOopWIWNU8JUIOIOdIaDIq1hjR17gQ1vkWfBCk+CM/ioL/VcBcDShMy1kinqGiVDnbhYM7A1droOOV+mKiG8QgCYhazuBKBS2Bofd6buP4AtXrL/RhQNVKWKolZR5CqSXIGgSOSZxI5K4MoEI/DtGH8U4A4cnP6AUa+L3esS+qdP9E+AUJBxVZORZDIQTfpiEVsysWUTRzJwRB1H0nFFnUiQM8CKQPQQRB9EL+0LEwMkQgQxRCBKBwWLYTrsV4xSQEvkLA8sDYRNkjTSYXI8tSXZ/UIsQyKn95NmiiUv/IHl/UtIYqzApeyPKHtDSv6Isjei7A8pe6Ps9jD7enr/r//ez/MTv/S/v9LryGHpDeoDA0txlLk5rYPNaU/dzgBo+n6ny8v+EZpAj1EFozYLPkZl9r5pMFILp/4ENk4aT5vG07wndzhLT4Io0DxbYPlKhZXLFUpLcPPZl/nKw9/g3b33eJZs0zIdQnn+eUpRClB1v8JZ8zyXlt6m1qwz0kZsh9s86j/iYfchLbd17DVWFZ0FWWIpCFmyAyojBWMkk2QQ5fVVkuikkopIOtM6zbYW4ggtiNJVe0GI4QcYmStl+CFaEJ5q4bMnSylQaSYd3aJllNgzqmyZdTYLC+wWFhhJJi5KOqpgDE/G2JUa306b1U/jTgmhjRR0UMI2WtDG9HtUQp9GENHwI0qBhBaqiIGYLlEOX+x3T1EULMtCNy0U3UBUdBJZIxS1FK4ShX4o0QtE2k5Cx/azLcB/QYibVlGXqVkqZVOmbEaYeoAlO5TCDgW/g2F3U8ga9lGGKWQp/RFq30HDRdMClEJMXCeFqHq2VeHEf8wYxB4IXYm4LxMMVRzHoO8WafkVWmKNtlJiX6mwo9ToUMKOzFfWZyQJYGkiRV2iqCuUDY2irlI6VEIsHiohHrhfCroivm/gSpLooDyYAZQftKegqj31tc7knCR5uUBKSSqgKjUUtYqQlEm8ErFnELo6kSMT2ALeKMIb+hlcDbF7XTz7xQZ/x5JMoBg4ssFANOkJFgPBwpYNbMlkJFnYUno8F64r+AjSCFkeYso9VHmIIo6Qsz7CRHSIJYdQHhIoI3zZPvFaxoGs6Yc6iSQREWIZLSygBkW0oJgdW6hhuimhiRKZKJGBHBnIsTL5MyEIApPJ22kaJTExoRwSSiG+FOALIb4Q4gkhPiE+EZ4Q4RMTCDEBMaGQEJJAIvGnLyzwv/7pvMH7Q6vXBkveAEZ7KeCM9mch6Kjt/YCPVkpBxqxNQc7hfWX2Pq34xm3nJEnobNuT1XZb93oM2vMuV3XJZOVKheXLFVauVBAUl6+99//lq49SB+ppvEPLOh6gKrZJzatwVl/jndVv5/LKVaJiREto8bj/mIe9hzzoPmDH3jn2WkuyxrKm0RACFl2HhiNSGCqIAxWvl27+4OQVeyCDoJD+xYkg8SBJUpjKnCjdDw9gKggw/HTw7PMUCQKuImOrCgNNp6eZtI0ie0aZHaPGtllnZNZw1CIjyaCvaAS6cuBMHYYp5RQIFwWI/gDR7yGFLeRwFyPcxwz2KfoDTD/CiHSKFCkkBfRIR83gSnjBVWGKolAoFLAsi0KhgG6YiJpBImlEko6HgpPIDCKZjhvTtX26TkDHDujaPp2RT999+fRnVRapGApVU6ViKtR0maYwohq2KXotTKeLYe+hxzvI7CNJPURtBKYLpZC4FqcrKE+QOABpT0DeE5B3BYQWJCNI3DTh2y/I+KaCa2mMdJ2+btLVC3TVIi21iB1bOKGOHZhZkrox2R8O/XxZySIUdZGClvVlGWoKXDM9XLNu1+F+Lk1+8WtJXawhvt9OXSu/PQNT/vTx1Nd4id4bQZBRlAoiNYSgQuwXiV2TwFUJbRF/BP4owh24OL0Rdr9P4L6IOy8Qaya+auHIJgPBoINOF4uRPIaq1M2Kjl1lG6EpXSy1gyH3UeUhsjRCGoOV6BKKLoHk4Eo2nnIyXB0lKVYwggJGUMAMi5hBET0sYvhFDK+Y3h8UMYISemgiHPFJQQIUAWQBFEFAFkAWEmLJ58J3n+c7Pv/WC1/XScph6Q3qtcHS//svwNf/1Yt/39jFMesZ3NSz20fcZ2Ruj/xyVv8HQYO2OxVX0KOzNf/prlDTWMmcp+XLFapLJoNui9+8+X/w1cdf4lbrJk+TFKACZf6/hBgJVJwUoM5oa9xY+jgfP/txags1htqQp8OnPOo94kHvAQ+6D9gcbk6tYpmVKams6AYLckIjHrDgRlRGCkrWF+X1VLyuSvCcRnMEHQSV1HaPU5AihSk5jidOlBFMA1WAEUZop2hEh9SdchQZR5VxFJmhptOduFQVWloZRy3iGxVsq0zPLDHQDUaqTKTLWbbLC5T6wgjBcxG9EaLfRww6SNE+YriDFm1hJj1MIrRYxIh1tEhDj9K9GZsYkZHC1VFLKU+QqqoUCoUZuCoUChimhaDoRJKWxTHI9P0khakJVAV0bJ+ufbD338dcs6ImU7EU6prAmrzPOWWTRXmDorSNoewhaS0w+qCf3PszA1I7AvIeyDsC0p6Qhg8CtglOIcErgF+AoAhRMSEuJkQFGd9S8U0d1zDxpQOgsoMDqLKnAGv6fifUs/LO+5cqQUETJzBVNjVKujoDV9NuVmnm/vRYlZ9/LUkSZw5WB99vTVwrP+gQ+K0pyGpngNUmil7MTUolIFIFv0bil4ldi9DVCW0ZfwTeMHWtnL6N0x+SnOLDz0SaQaQVcdUCI8mki8F+rNEVUqgaSSYj2SIWjv//KBBT1IaUtBaGso+mDFDEIaJkg+ASCT6B4OGLPrbo4YgOgfRivWhCImZgVcQIihlEFbDiIlZYxAzLmEEZ3S2iuAYiIp/64xf4xOcuvNDPeZ5yWHqDem2w9P/56/DVX0nBxqpngHPUVgOzkYFQ9dTLzT+qcob+pGS3da/L3rMhyaEmF72gZOBUZuVKhcaZAoIo0Nvb4bdv///42uMv8177FuvssF9wjwaoOHWgKl6ZVW2Nt5rv8PHVj3Nu9RyVRoUtb4sHvQc87KYu1MPeQ54NnhEdk5itiTIrRoElRaAu2DSiAfWswTzopwDl9TS8rkrknwQeIggmgqiTfk5L0qba2AHST7NCnKAHB46UPlXuM8ME3Q+Qoucv2Y8EAUeVcZUUptwMqmxVzlb8lRgoBWzJxCnUGNSWGJRrDMwCQ13H1lQ8TSLWZdBPA1MxghMhOAGS5yL6QwS/gxC0kcNdRKGHIA1RRBtD9NEJMUjQY3UCVmO4Gh9LL+igqJpKwSpQLBZnwGoatCTVwBMUBl48KQOOwarrHIBVxw7oZfu+G7xQwLYuOSyY+yyY+yxa+6xZeyybO9T0PXRteOL3ir0UnOTdbNtJN2kfhPhojLZV6FswtGBUAKcAbgH8IgSlhLAISTEhKSeoOmiAlKgksU4SGcSxThiNQWoasOah62BvvMC/zMnSZChOAVfqcGmZ2zULXS+yQjGKvKwM2ElLg34bP2hNnKzp+3y/TRh2X+i6kxhCTwG/SuJViN1CBlYK/hC8UYw38HF6NlF4eidU0C1io4SvFhjJFj3BYD/W2Y00hpI1KQE+b7ZmUQupGx4lo4el76HK+8hCh4Q+MTYRPj4hoyRmRMhI9HHEF8tZEhIBIyjyg5XP8f/4ob/xQt/7POWw9Ab12mApjkB8dXkt36zy3ZCdh30273fZvNdl53GfKJj9pKZoEkuXyqxk8LRwvoSsSCRxTGtrna/f+RK/+eR/cLNzi3X2aJU8fOWobCeBspMC1LJ6luv1d/jWlW/l3Oo5lpaWUHSFp/2n3O/d51H3UVrO6z3gce8xwTFJvZIgsqwXWdZkmpJLPe7RjGNKI4Wor+L3VNzuQWnv5P4oBUEsgmBk5T0gCUkSB5Jh5k4BSYISxRlETZf4QqwY9CBEcb1TuVP+IXdqDFTj254s4UsafbXIfmmBQXOVQXWRfqmSDifV0+XDoXqK/wt+jOCEGVAd7FXfRYtGSNKIRBoQCz1CsYMgDlEkB0PwMYQAgxg9EdCPACst0pBeMNZYUiV0U8ewDAqFAuVCmWq5SrlYnoOsBIGec+BOzbhXE7CahyzniKBPTfJYMPdYNPcm+0VzlyVrl6J6vBOSxAJJ30DsaCh7ItpmjPbEQd6IEIdMBqI+959BkxgVFQaWSNdKaJkx+0ZI14pxCkLqZpUgKCbIKhgi6GKCLoAhJugiGFnGjpjoEGskkUESaUSx8VzISh0uAzvU8aLn1DJfQLoMBV2kqElTqxT1dPWhNt0of6ikOAVcohBnZcFWBlKtQ0DVylyt9gvBVZJA5IkEtkzkGsRumdgtprMHbSV1rAYh7sAjOm04rCAgWiUSo4ynFbAli65osh8ZbIcqXcFkKFsE4vMrExVDpFmAuhlSNR1MvYUm7yEpeyTCPkHUww5G9PyAfhQyiGOGRNjCAQD+hcXv4y/9kb91ums/pXJYeoP6wDR45zqVoiBm9+kgLdvdS8e0+M7sJzJRFlg8X0p7ni5XWLpURjNSxy4KQ/afPeEbd7/Ebz39Kre7d1gX92iVfDx1HqCEhAygKizKZ3irep1vWf4W1lbXWF5eplgsEiURG8ON1IXqPUhLepkb5RwTEicgsKAXWNE0FuSAGj2aokvdE7O+KG0Gop7bHyWYCGIZQbQAJR3ZkkQkiQdxnyTpw9Sy72l3alLmC0IKiYAZRqiOixg8/5NuLIp4qoItiziKhKMoE6Aa7yNJJJBk+sUK7VKDVnmBfmOZfrlB3yoy1HU85TmOapKAG00ASnQiBDsDKjtMQQsQhARDjdFUH0XxEBUbxCGx0AW6CHEPDR9DiNATMBIxDSDM4GoMVi8yfywhAQVEXUTWZVRDxbRMrIJFqVCiWqpSq9RYqCzQLDWRp9xjN4gmkNUZBVO9V/4huEqPXa+LJmzQMHYnALVk7rJo7aFJx3/id3ydTr/CqFMkapvIHQ1jX6K0F1G2BxTsPsawhxS8mGsQmTpBxcQtG9hFlWFRolcQaWeAtWv4bGkOm8oIX0yXretCBlci6EIygS1DyO6bAi9VADHSIdZJYp0oMogiHS86GbKm7/de4YxBQ4GCJlDUpAyg0liIMXQVNXkGtAqaQEEdYkp9VLGPTJcwzCArAy3fb2XQtU8UPa+RGyJfJBjJBCOFwFaI3SKRYxLaKv5Iwh/E6UKaU9KBpBmIhTKRUcZTiwwkk45gshPpbPoqHcHEFfXn9rhKokCzoLFQ0lgsyjQLAjXTw9DayPIu33XxE3zszLef9qU+lXJYeoPKYenDrThOaG+mK+4276VDgu3+7B98QYD6mQIrWcP48uUKZung01Tguew8esjNe/+D33r2Ve7077EptWmVfVztaIAquSYVr0pTXOJq+RrfsvQtnF89z/LyMtVqFUEQiJOYndHOpKH8Ye/hZDsx5kC1WNENFuWYhtCnIQ5ZEGPU0bwT5XZ0Ivd4xyRBQBTLCGI1c6W0bOp8QhI7EA9Ikj5J3IPp1UeZOzUp8wUhRhBREESsMEbzfKSRjXCKP0GRquDpGo4sMRTBUaRJ6c9RZTxFxlV1esUKvVKVXrGa7ks1epUmPatMID8HpqIkdaPssSs1fRwhREdfpyCApYGlx+hqiKJ6yJKNLAyRGSDFQ8R4hBg6iKGPlkgYsTbjWJ3WsYF0RZEv+YRKSKzGCJqApEuouopmaZimSalYolwsU7JKlLQSRaVIQS1QVIsU1SKqqDLyIzojfwq0PAb2Fq7ziNB/ghQ9RRPWKUibFJUWgnD08w9jiR27ydZoke3hIvv9GnanQLivUxi5VL0BVW9AxRvS9IfUgyFVp0/R6SNHL9ZAL1YrCLUqcb1MWC3glU2cksawpNAviLSthJYV05E9BsGQgT+YbH2/P+XephA1DVrTAJZCV/Y1IUFBREw0iAyINeI4BS5/GrTC+RKjE+qp8xXo+PGrBK4ESxUo6uKBc2VolHSDqplQ0UaU1AGWMsCUe2hiH0XoIiVdiNvEUQff3z+xoT2JIXRkAls+AKuRTOgYhLZBMJTxhgmRf8rsNVlBKVXBKhNoJWylQE+02E90NgONZ77KSDBOBKr/9Y/d4M/+3rxn6UOrHJY+WkqShN6eM9M03t+bd3cqiyYrl8uTyIJiXZ9ZIu0Oh2w/uMet+1/lt9a/xr3BA7a1Hvtl71iAKromFb9KI1ngSvkq7yy8w4XVCywvL9NoNBCzRPIkSWi77RScugcA9bD7kF1n99jnVpB1Vg2LRQUawoi60GVRSShHAsEYnrK909Hxemo6nfy410pQEMVqBlKV1JUSMihJbJKoT5L0EBgSh725pdxCkqAFB43oRhBRkuS01Of5yCMb0X1+zk0iCESWiW/qOIrMSIBBEqXuVNZD1SsUU3gqZhBVqtLNjvuFMskxae9j6VGCESbIbkwyCvH7Pm7Pm3GlTquCJlI0RAo6GGqEJTvooo3KCDmyEWMHIXQRIx8xiJBCASVQUOMXW4gRCRGu5OJJHq7kTrZQDhE0AVmXUUwFwzCwDIuCkgJVQS1Mji3FoiBpGEkfKWwRuFv49jq++4QoeAzJ8au6ul6dzdESz/qLbI4W2RousTlaxAlNSBLM0KXqDqh5AyregKqbglUt21eyfdUbzsw/fK5UFbnRQGk2kZoN5GYTudGAehW/YuFWdEYljaEl0k9s+l6fYTBk6A/p+/0JYA0z4Brfd9jllUhHc8w6WhlwHSoryomAlGgQGxAZJBlwhZGGOwNc5gF4BbMOl/+C//4nSZcTilpM03JYMEc0rBFV3aaiO5TUEaY8QJN6KHSR6CDEHThigPWBS3UAVP4YrGwNf6gQOqf73yHKMlq5hmhVCM0yrlqkL1m0EpOtUOMv/LFP8j3fdv6VvQaQw9IbVQ5LH32Nut6k52nrfpfWxhEr7qraJKpg5XKF6rI5ly8zaO+zdf8ud+7/Jr+z+dvcGz1g1xjRLvvY+hF9BAkUvRSg6lGTS8VLfGzhY5xfSR2ohYUF5EOOycAf8Kj3aAJQ496o9eE68TFvOKoos2IUWVIkmpJDnQ6LckRDTsCRU4DqHkCU3TWIhiLHmA3ppYsmolhNYUqqgVhBEIz0SSVDkrhPEvUQxAEkA6KgRxLP/zGWJ71TAUYYU5JUioARRCi2gzgYIpyisTVRFOJSkcAycTUFWxQYJBH9MGCgKexWG7SrdXrFKt1SjW4GVt1yDU87udFYTWLqcUIVKCUSZiyi+BAPA5y+T2/k0x6lvUcvE6gpiwJVS6VmSFS1kKLsY4oeGg5y4iBFLkLoQuBDECD48QtHLQRCMAtVsjsHWuPjREgQBZGCYrKsGaxqIksK1KWAquBSYIDK8ZAbCTV84SxOfI5BuEbLW2VrtMzeSJ1ZVTj00n9XIYkp+SOq7jCFJ3dAzetTc/tUvCE1t5/e5/YpvEBgbiIIxKUyQq2O1GiiLTYxlhZRFxaQF5opZGWbaBiEccjQHzIIDhyrMWANDzlZh28PgvTc+QUeY5dr7GwduFxjZ2sMX0oiICQGQqQhJiZkwBVEOkGoHulw2YGBG70KhyvBkm1K2oCSmm41o0fdGFLT+5S1IUV1gCUP0KU+onDwPONImAWq4QFQBUMFf6QQ2hLPC8b8fT/yo/ye/+kLL3n9RyuHpTeoHJa++eSOArYe9CbwtPdkQHx4xZ2lTFbbjVfciYdW0yRxTGd7i+0Hd7l7/7f4+tZv88B5wl7BoVX2sY2jGzELGUDVwjoXzAu803yHi6sXWV5eZnFxEVWd/wTqRR5P+k/m3KgnvSf48dF9JiICS0aRJVWhKXnU6bEgBywqMXoC3mAKoro6o46F15URTjCDEgQSqYIkVRGFKoKUAhViJTthQBL3SKI+CAMkcUgS9wi8Lkl8FFAmqGGUOlNhREXWKIoSZpiguR7SYIDQP3q8zfwLa5FUKoQF66DsJyRsSRKPdYOdap1uqU63XKObgdTAOtmVEpKYmu+yHAesiLAkyzQVlZpiUJJ1gkShYwcpTI182nYKVq2hT9f2GfkvN0jYkGHJgLoWU1VjSnKEKQQoiYsYuRA6JL5L7PkvtjQd8ERvzq2a3M4gS1RsaprHkhKzqCQsKjFLckLliGyzsYaxTDcxGVDElWp44gJuskpCHSGySGKTKNQJAxU/UHB9CdcXGXkwdBMGToQzsJH73QymBlTdPrUxYLn9GefqRdwqXzPwyzWiao2k1kBqNFGXFjCXFrBWlymvLmMsLyEVrGMfI0kS7NCeQNYwOHCyjoKw8e2hP5wA1/E9jOmw2aNKitpUT5eKiBhrCImBGFuQGCRRulIxCFW8UJsAlztXYkzh6/nANQ1WfcpT+7LapzS1L6kDRCEhjkijE4YKwUjBHx6AVDBMIevaH/skf+QH8wbvD61yWMoVeBHbj3rpgOD7XXYe9glPueLusKIwYP/pE7bu3+X+g9/hG9u/w6Nwg1bJo1X2GR0DUJZvUPFrVP0qa/oabzff5tLKJZaXl1laWsIwjnZHojhrLp8q5Y2dqWFw/BL0mmqxrGksygE1oceC5LOoxJREiH0Rr5/2RrldjWGnhN3RiPsgnmCtxIIKchVJqiGRgpQgpnuQM0cqhSniAZIyRBRTV8p3ukc6U5D+TD0r81U0nbKkYMWgeT7KyEbo9sA5xbR1UUSsVUmqVaJikcAyGGgaT4tFHlsFnmkmm7pJ2yrTLdfpFquEysmlE8seUB/1WPAdVuKQVQnWNIVLRYPFSgXZKhNoRRzZZBgKtLPAzPaUW9WxfdqjYHL/i+U8JShEGEKIJYY0tISqGlGUIiwxQCNAjj2EwCUOXF4o30CAWImJlIhADvBkj0DuI2v76Fqbsjaipns01YDqCRDVDgW2AoHtQGQzENkORHYCgaPSwmRBRpctdKGGRhUlqSBSRIyKEJskkUkUaUS+jNIP0PsORn+I2e9TGKWAVXP72Tag6vXRo9NnCLmyysCqYBereKUqYbVOUm8gNRooiwvoS0sUV5co1ytULZWyoaAf8XfgOAVxwMgfpeXBoJ9C12GwOgKypo/DY/6fAIgZdGmHnC19Crq0REBMdKTEQEoshNjMmud1gkjNoGvK6QrGqxbnm+YFYorqkJI6oKz1020KqA7uG9AW/gT/82fzcScfWuWwlOuwojBm7+kgbRq/n45qeZEVd4fl2Ta7j+6zdf8uDx58g3f3vsG6kK7Aa5V9hubRf/xM36DqV6n4Vc6qZ7lRvzEBqOXlZQqFwrHPIUkS9py9tJTXezQDUXvO3rHfZ0kqy7rJohJTFwYsSC6LckxNTiMKg5GM11VxezqjToVh28DriYj2yUGZoVREUGrIcg0pqSAI416pEoIgkCQJJKPUlYr7yIqNLA9Jkj5R0MMbtYlPaCiWowgjiKlqBmVFo4iAEUYotovU75O0OxA8/01TUFWkxQWEep24XGan0eBJtc6TQomnusWGbrKtGbSMIs5zynuGM6LSb1Pptaj22zScAStJyFkxoWlZWJXq3GaUy6AX6fsxnVFA204dqhSsgol7NR2o2bF93OA0gJWgEaYxC0KIgY8hhJTlkKIcYYkhGj5K7CNGL7YqTtUiyhUbq9TDMDvoegtNbqNIR0cdxAl0YpWdUGLDg6d+xFYg0gqzobYvoSQRSSIdohSqktggCQ0sz6A+UqmPBKrDmMoopDLyqIxsKvaIijOg7vYxw9PPkXMklZZeoqOX6Jhl7GIFt1QnGDtXzSbK4iKFSpGKqVA2FCqGenBspnEFLzpKJkkSvMibuFpHwda4rHj4/vH3jILRsSX9sZ7ndKkIyImGlJgoiYWQmAixTpz1cfmZy+WFygSyfvATDf7nz/zZF3q+z1MOS29QOSzlep4OVtwdlO6OWnHXOFs8KN1drmAUj3clhu0WWw/usn3/Lo8evst7+zfZ0fu0yj6tks/AOgagAoOKX6XqVVmWlrlRv8HllcssLS2xvLxMuVx+7h/gvt8/AKj+o1P1RcmClEEUNMQRTdFhQYlZkNM/nnEo4PUVvJ6G3a0xaBexOzJRL0I+oScpQiJSqohqHUWuIScVhKSSgdRBxs4BTPURpSGqbiOJQ+K4T+h2cIdtosNTm6eVJKhRTE0zqGomRVHGimI010caDhE6XeJ2+1TOi2hZyMtL2GfX2Fg9w9P6As9KFZ6YFuuqwaaq05VPLnVonkO116Laa6Uw1WtT7e1T7bUwPAejWMKqVDErVaxyJd1nm1mupMflCkaxhCCKOH40AaduVhbsOgHd0XzeU/cUQZoCMTohphCgC0GWY5Xuzey2JYboBMgcX2qUZQ/T7GFZncneKvSQ5WPARNCQlLOI+jkE/Qy+vIAj1bBjASd0GAUj7MDGDtNtfNsJnbn7T3JgppUkAsQ6mqNT6atUBjLVgUhlKFAbxlRHIVU7oGa71BwH6wXiFUayTksv0dZLtPQSLaM8ud02yjjlEkGlilXQKBsyFVOlamrULZ26ZVCzNCqGStlUqBgKFTOd7XdUwOZpdVQ58XCv1vT+sMM1/p7jphwc+mmTlYv/y3f8Fb5w40df+rqPUg5Lb1A5LOV6USVJQm/XmaSMb97v0t8/esbdeLXdypUKxdrxAXtJHNPe2mD7/l227t/l8cN3udO7x37BYb/s0y779I8BKCM0qHgVqn6VBRa4Xr3OlZUrE4Cq1WqTlXgnadwXNXagHvUe8aj3iMe9x7jR8Y23DdVgSZVoig4NyWFBjllSYgpiCpGhK+F1Vexek2GnwrCl4nVjxJGLeMKfMF80iNQaslZHk+vIVCEop3lSh5KJU5iyIRmgWw6KNkIQ0lV8vt3BGbSeO4FeSBKquknVsCjLGoUY9CBAtV2Ebo+k1SLuHR/5MPNaNhfYvXadrfMX2Vw+w7NqjadGgSeKxp508igc3bVTiOq3J0BV7e1T7bbQ/dl/B0EUMUvlCVRNw5RZrqTHGWwZhSLC1O9BFCf0nWAGosYN2j1nNuNpnFw+3bg9lkyUAtXEtZqFq+nbkpAACYrqYFldLLOLVehgmV1Mq4soHg3rYViCZBVJXkPXLlEovEW5fI1iFhCqadrch4QgCrDDA5ByQieFqanjw1+bvn34eLwljkNlCNUBVAcytb5MZSBSzZyr2jCkNkpHE51WXdWipZdpGaV0n8HUvl6a3N9XrUkityQFKEqApoToaoSuJphagqULFPQ0B6pkyhPAqhoqNcugpGsYsoEmaWiyhi7pk70iKqd2uuIkxg7sWYgaA1bmaM3cFwz5kes/wqdXPn3q1+Q0ymHpDSqHpVyvQsOONwnK3Lzfpb158oy7lSsVKovzK+6mFfo+u48fTADqycObPPSe0Sr7tEse+2OAOuIh9FCn4leoelWacZNrlWtcXrrMysrKJMpAkk7XaxEnMVujrZlS3hikOl7n2O+zJIVlTaEhejQlJ20Uzkp6kpBmwfgDBW+wyLDbYNAyGLYS4p6H4h8PZzEijlIGrY6q1dGVBgoV8MscN702hSkHzXTQTQdZHgFpic8dtbG7+wTe81dimaZF3SxS1QyKgogZxqiuhzwYQadDtLNDbJ8cLOgqKlvNRTYvX2Fr7RKby6s8qzV4ZhXZec6cx0LgURt0qHT3Ke1vpSDVTR0p9SRnjQyspgHqEExN32+USojHTCAIopiuHdBzDkqDPSeg56Qw1c3u70/d7o4CBl6ASnQsTJmCR8Ns0bB2qRRaFKwOVqGDrh9dyosiCdsuMxpVGY3qOP4yQXwGVa9jWQXKpQLVcol6tUyjUpokrh9egfqiipMYN3QncOWEDm7ozgCVG7q4/Q7J3j7JXhthv4Pc6SO3B2jtEVrHwex6FPse8jEZYHOvuyDR1kvsG+XMqSqzP4Yro8x+tvdPgnEhRBAdBMkGyUEYb6KNKDkoSoiqBKhqiKHGGFqCpQmYqoChqBPI0qTZTZVUdElP93K6P3zOmeIZGkbjfb32h5XD0htUDku5XofcYcDWgzE89dh7OpibcWcUlclw4JUrFepnCojiyZ/snEE/g6c7bN2/y9NHt9gS2+yX/UkJr1cITgSoilehHta5UrrClaUrE4BaWFhAUZ4zAPiQOm6Hx/3HcyC1Mdw41qaXBZFFVWVBDmhKLgtyzOJUSQ/S/JdwuMKot0i/bTHYF3HaPtJwgHRCecUVdVy1iqQ30I0GhlpHE2rgFohOWuWXJKhagFH00AwHURpC0ifwunjDNsPOHt7o+UNXVd2gVq1R1S1KkoKVCOh+gDqyEXp94v09wu0dEv/oUo6rqGw2F1lfWGJjcYWNc+fZXFrlWa3Ovm6e+LMbRCyFHovOMAWqzi6l3U207WcEve5zr31agiBilEpHw1WlmrpZ5QpmpYJZqiCdAkDCKKbvhhlU+RlwzUJWz8kga+Qxsm08x0YOOyxb65wpbLJU3KZR2KVW2EeWjv49cF2L4bDKaFRjNKwyHNbwPIvxf4pQkIklHRQdSTPQDBPdSOcCFosFapUS9UqZZqVI+RWUvU5SkiRE3S7hzg7hzg7B7i7hzi7+zhbe9jbh7g7R3j60u6d+zJGm0zGLtIwi+0aZXa3CnlplX69kgFWhr5rPTeSek+giSHYGWylwjWELcfb25OuiA6KHIMDPfOfP8IVreXTAh1Y5LOV6E5qbcfeoTxTOlhxUXWLpUoWVK2VWrlRZWCsiPWfaepIkdLc32bp/l617d9h+cJeNp/fZt+xJA3mrnALUUdNStEij4lWo+BVqfo1LhUtcWTwAqKWlJTTtxbNd3NBNS3pZT9QYpJ70n5xY0qspCgtyRFPyWJQTFpR4skpPENKWIsE/gzdYpdcu0d2TGO4HhJ0Bqnd8xECMwEAu4Wt1FKuBZTSxtAa6UANHwR+c3N8iSgJWGcyih6LZiFJa4gu8Lk6/xaC1h9N/folOVjVK9QbVYpmKplNEwoxiVMdDGg6h3SbY3ibc2YVDw5AdTWOjucSzhWU2FpZYX1hifWmF9cUVeubxS94l4KyusqaInCViKXRZcAbU+x307j5ur4vd6zDqdrF7XZzh4MVWzQF6oZiVAyuY5RSmpgHLLJcxSylcKZr+Qo3NSZLgBnEKVU46BqZnewzsJ3jOXWLvDkp0D1N6gim3jnyMIFBTByqDp+GohmOXSZLj/3/FiYCDjJMo+II6A1iqbqKbJlY2lLls6dm8uXSwb0lPG7nHo0+k53wIeu5r4PuE+/sEOzuEO7uEuzsHxzs7BLvpceKeLqcqUVTCah2vWmdUrNKzUsdq1yixrRRYl4usixZ9D5zTLyY8RjGS7PGnfq/J//ZHvvf9PtiMclh6g8phKdfvhqIgZudJf2bGXeDOvjlKisjShVLa93SlwtKFMor2/NJZGATsPX6Yuk/37rB9/y77exu0S0HmPqUxBt1CwFHvFWqkTkp4Fa/CeeM8VxevzgCUZR3/5nySpkt6D3sPedx/PCnptd32sd9niCKLCjQlf9JYvqjENOQEWQAQUKQzJM4a/XaVzp5KdzfE3h8g9veRjhl0DOCKGl2lQmw00AtNitYCJb2JSQXsBKfrEYcn/6k1SyrFmoRecFFUG4EBUZhGIow6ewz2dxl2O8+FEFGSKdbrlGpNqlaBoqRQQMDwQxTbQej1Uhdia5twb2/yeAPTYr25xPriMs8W0v36whLrC8s4+vGr9gwBLugKlwsml0ydi6bGRU1hJfKQhn3sbge732PUS0HK7nYOjvs97F73hXOeZFWbAqjyAVCVpqCqnN5vFEuIpywXAwRBj+HwFoPhLYaDWwyGNxmN7pMk8//+cSLj+Mv0nUV6wzq9XoXhoIQQRChHnH+S/ETESRQclHQ/3rLbKAaKZqAbJsUJVB0M6i0Z84N7p7+uyeJzATNJEuJ+/7lAFbWOBso5iSJyvY60uAjNBcJaE7daZ1Sq0S/U6JgV9rQS7ZCJIzh2CVOwDfCnPhD+v37wW/ihT5x9odf1ecph6Q0qh6VcHwTFcUJrfTgVV9DFGcz+wRZFgeZacdLztHSpjG6drmxm93tsP7jL1r27bN+/w9b9O4ycAZ1iMHGfWiWfbtEnPgKglEiZAFQ1izK40jxwoMZDhV90KfS0um6XR/20oXwMUM9bpScCDUWgKQUsKklW0kv3lpSeoetnkeOLeP0m7T2d1nZMd3dA2NpFcrrHLlSPEejJJXpqFcFqUCgtUi4sUDEWsBITRiFux8OzT3alFE2i1DQo1hR000VWRsBg0i812N+lv7fHsL1PHD2nKVgQKFSqFJsLlKoNKrpBUZAw4zTEUx6OiPb2CLe20zfK/X3apQrPFpd5trjM+sLyBKg2m4tE0vHls0YUckGCy6bG5VqZK5Uyly2dc7qKnDklSRzjDAcpPPV62L3OBKLsXpdRr4vTy2Cr3yX0Tr88f/x8jUIxg6kyRrafhiqjdHCsmdbc72Ac+4xG9xkMbzIY3ExhanCTKJrPIRMECdO8RMG6gapeJuYcQ3uBdi+k2+/T6w+wRyMcZ0Tg2ES+A0eFrR6jOAEvc6vsRM2ASsYZH2eAZScKISLj0qEqiZlLdQBRRU2ZGdo7DVrT942Px8AV+z7h7u5B6W8722e3x+VATpGsDyBVq8hLSyhLS8hLiyiL2X5pibjeZFiq0U9kFooaVevVjXyBHJbeqHJYyvVBVJIkdHfsCTxt3u0y7Bx6oxGgvlLIhgOnkQVW+XQlszR9fJOte6n7tHX/DvtPHxMkIZ2iP1PC6xQDYnH+T80YoMYr8VakFa40ZgFqPFT4/ciPfJ4Nns0A1OPeYx71HzEKju8jKoiwoESpCyXHWUkvoSYlSKKEYayhq5dJnGUG7QK7mwn7mwNGe9sk3d0Ts4YcUaOjVOlrVZRSk1J5iUZ5iZpexwolhFGI0/EYdr0Tp78LokCxplFuGhQbOrrhIclDSAYEXpdRd5/+3i79/T0Ge7uEp1i2rheKlJoLlBpNSpUaZVWnkAhoQYjquNDuEO7s4Ozu8MwNeaKbPFtc4eliBlKLy7TL1WMfX44izjojLkQ+FxWRywWDK7UK184sU6+cHF0RuO6BM5UBVApZGViNQavfwxn0X7gcKEryESBVnjStm6UMukpFRG2I4z9gMHiP4eA9+oP3CIKjXBcB0zxPsfgOxeLbFIvvUCq+gywX09wjz2M0GjEYDBgOhzNbfzCgPxgyHAxwnZMb/w8rRMyg6mi36uC2TJqCdrIUSZiAU0GbBamidnBc0GWKqkTZG1LstzD6bbROC6Wzj7C3S7S7S7idwvhpy35SuUzzp36S6g/90Au9Bs9TDktvUDks5fqwqN9y0qiCrGm8uzP/x7e8YExGtBw1IPgkBZ7LzqMHbN+7M+mBGrT2iMSEbiEFp/2yT6cS0i54REcAlBzLE3iqeBUWWOBq4yorywcAVa/XT70S7yRNB29Ou1GP+o/YHm0f+30y0FRiFuSYhWyF3kLWH2VICqZ5Acu8ghSdw+9Xae3C9rM+7a1N3P0txFH32MeOEOkpJTpKlZFeRa0tUq+tsFhepqFZWD6IoxC77dHfd+f61g7LKCqUGkYKU3UdwwoRpXQ2nzdqM2jt09/fzYBq91RN6LKmUao3M6BaoFSpUpJkjChB9wOkwZDufouHtsfDWOCxovGkXEudqcVlPPV4IK8M+pzrtbngjLiYhFxWJS6XCpxv1tGWFlGWlxELhVP9TsZRhDPoHzhV/R5Or4vd7x9AVj/rs+r38E+T4n74tVC1FKqKZcxSEbOuoFVt5EIHQdslFJ4RJUeXhw1jLQWn0scoFT9Gsfg2slw89mdFUYRt23NANRwO50DLP2YBwHFKZI1I1AhEFRcFO1YYRDK9UKITiBPgCnj+DLfnyVSlFLY0iabgs+L1WfD61J0u1VGX8rCN1W9jdFuo7T3EbJVp4ef+Nmd/+Pvf188+rByW3qByWMr1YZXd9w+cp3tdWhvDORdjZkDwlQrVpZPjCg5rHJ6ZOlC32X5wj9DziIWETiGgVU77n3p12LccQmG+JCHH8sSBqvgVGmGDy/XLrC6vTgDqqKHC70d2YE/6ocb7h72HPO0/xTthWVxJPCjjLUyV9WqKSrFwGcu6gq5cJBo2sLsam0+7bD97Sn97k7C9g3DCaA1bNOioFTpKBc+sozeXWWiuslJusiAqWAFIdsSo7dHfc3BHJ/fNyIpIqWmkMNUwKDUNzBIIwoA47DPs7M24Uv39XUbd46MexhJEkWK9kYJUI4WqYqlMAQktimh7IQ9HHg/cgEeJyCPd5Empwl6lduxjKoHPmd1tzm1vstbe44LncEmIuWSolJrNtGyzvIy8mJZvxJco6Qa+h9Pv4fT7jHodnH5/prfK6femQKtLdIpEdwBZDzEaLkbTxVrwMZsuinX075AsrmDp1yiWPkat/h1U69+GLL94f9+0W3WcazXeXgQDJFlG001kzUBQDVB0IkkjEFLIGiUKw0imF0gM/ZiBm+Zq9d1wpv/o1EoSzNCl6XT5C9/3Sf7UH/6WF3+ME5TD0htUDku5Piry7IMBwZv3jhkQXFAmPU+njSuYVhxF7D97clC+u3eb9uZ6+jUhoVsIaJV8OtWQXlNgVx8QHAFQUizNAFQ9qHOxcnEGoBYXF19qJd5JiuKIrdHWQeDmFFDtO/vHfp8iJDTl2Z6oBSVmWTOpFa9SsK5gmlcQgmW8nkF7q8v646fsrT/D3tsiGXaPfexQkOjKZTpKhY5aJS41KSyssLyyyjmzRFOUKIYg2hGjlktvz2HYdk+uUAkpKI8hauxOWWUJURrhDTupI7W/l/VMpTA1aJ2ibwowiqUDZ6rZpFhfQCqWaCUy6yE89kIeBhEPRYUnhoV/Qm/UQnufc9sbnNve5NzOJmtbG5zvdWgWTNSlReSlZZSlReTFJZTlpXS/tIhYKr10iTdJEgLXSeGp18UZ9DKnqofTT92rtCTYwx70cPq9GbiS9BCz4WI0XMxmuqnFefhKs8RMwmENwVtCSs6iKxcxS/WsHFjCKJYm5ULdKswEhz5PcRzPuVXHAZb3gv1ipmlOsqkKhQKmZSFrJpJmkMg6sawRCBp2JGD7EQMvZOiGDNyQkRdObg+9dPt/fs81Pvex5Re6hucph6U3qByWcn1UFXgRO496k7LdzsPe3IDgmbiCyxUW1kpIyotlyrjDYdY8nsLT1r07uKO0eTYmoVdIm8j7CyK9BmwpXXzm31ikWKLslw9W4vkVLpQusLp0AFDLy8vHDhV+v+r7fR73Hs+s0HvUe8TTwdMTR2dUpIMy3ni/apRYLV2lVLyGZV1FldYI+gX6ux12nj5l4/ET2pvP8Nu7cMLMu4Fk0VGqdNQKXaWKWF2ktrLK6tIia6bOoihRCgVEO2Sw79Lfd+ntO4TeycCjmTKlxhii9PS4aVCsqYiiy6C1NynvDfb3pkp9ewTu88td06W+QmMBZ2GFTrXJrmqyHgk8DhMeRNA+JvgSoGAPWdvaTEEqg6hz2xsstfaQkgTBNFEWF7Nm4uVJc7GyvJQ2HC8uIp5i/M9pNIGrMVANxmDVz/Y9XHuHUFgHbRu50Eav26iF+X/bOAK3rWPv6ti7BqNdA6+nQiIgiGIKT8XSBKTMUnkCVNP7FLbKyKfMRvN9/1iX6vB9L4IWsizPQFWxWJy5Pb7PsqxXUn6fVg5Lb1A5LOX6ZtHMgOBsxp3/iuIKppUkCZ2tjSn36Q57Tx9NlpjHJPStkHY1wD5j0KmGbIj7uMl8n4YYi5T98qQHqupXOWuenQOoYvH4XpH3qzAO2RhuHPRFTa3YOynBfOxGLU6V9M6YNS5WrlIvX6dgXcMwLxOPynR3dulsbrD15Ak7z54x2N4gso/PjfIFJXWiMpDqq1X05jLNlVXWmiXWijpLokw5FhCGY5By6O072L2T+2FEUaBY1yk3Z12pUsOgWNdIIm8Gnvr7s0BlnyIAUxBErFoNaekMo5VzdOtL7BZrbGsmTxOJjSjhuKKPGvic2dnifAZPa9sbrG1tcGZ3C+WQKyboegZUqRs151ItLSFVKq8EqA4rcF26rft0W79Jf/gNbPcOQfKIRJjvNYwCMYWnPWMCUcFI5jT9RYpuYI4dqhnQmnKuige39ULh2HR2SN0qx3FOBVUv4lZ9z/d8D5/+dD7u5EOrHJZyfbMqjhNaG2lcwXjG3auMK5hW4LpsP7w3cZ82796eeVNNMoAaLMnYZ3VaRY9nyS52PO9iiEkKUOMSXtWrsqKuzADU0tLSK1mJ9zz1vN5MSS91ph7xtP+UMDne3SmP3Sg5ZkGBs1aDi5UrnKt+jFLhGoXCNYSoTmdrm87mOq2NdbafPaW1/gyntZvWd45QjEBfLmUlvRSmhnqN0uIqq8t1LjQKnK/oLEkKlViAYZi6UXsO/X2Hfst5bqaUUVQm8FRqZv1SGVCZZZUoCDJnagqk9vYYtHaz/R7Rc5alh5LMaOkMozMX6S6s0Co32DaKbEgqwTEAISUxZwZ91va2WXv6mLOPH7C2tc657U30E1YRCqo6caIOoCpbCp+V/KRa7YXKY8cpSRJcd51+/+v0B19P9/1vEB/1e04FKT5D4i4S9Go4+yZO18EZ9CfbaUqm809YQC8UJxA1D1rlg69nXzsqkgFSt+q4XqrDYPX93//9fOxjH3uZl+1Y5bD0BpXDUq5cqZIkobNtH8y4u3dMXMFqYWbGnVl68eyUJEno7+1Oynab926z++gh8VRJKiFhUIjxL5YYLavsWiOehJsMw/kVX0IizJbwvAqL4uIcQDUajVMNFX6/OuxGpSNh7vOo95Cuf7xjpAgJjUlvlMjZQpMLpUtcrn8Li5VvwbKuoshNejs7tDef0d5IQWp3/RndzXUi7/gSmSPqdJQKbbWaOlJKBc9q0Fhe5HyjyMWGxVrNZFVXqcYC0SCkn0FUClPuqZrOiw2DckOfc6VKDR1ZkUjimFGvm5b4xlA11TM12NudlHEPKxYEesUq7UqTdn2R3tIZ2tVFdq0yzjF9UQIJq3HERWfI+c4+a1sbrD1+wOrtm+ibGyc+n4N/GAWl2TyAqcVDTtXSEnKjgfASZaY4DrHtB/T7v0Ov/zv0+19nNLpDMgfbApZ1mVLpWymXPk6x9K0owgruYHQAUOOy4BRQjZvenWH/VKslj5IoSbMAVZgtFeqF4tz9qnGwmCSOY5IkyctwH2blsJQr19FKkoRBy01DMk+IK6gsmpOG8eXLZUr1l+spCn2fnUcPUoC6e5vN+3cYtmabrhMS/KZOdLlGf1FkW+vz0H1KP+jPPZ6QCJT80qSEV/ErNOIGq4uzAPWqV+I9Tz2vd9BY3nvMw+5dHnXvsz7aPdGNKorj8S8SZwtNzpcucLn+LVyqf4JK6QayXMHudWlvPKO1sU578xmt9XX2N55ht49vXg8Fia6SrtJrZxDVUaok5QbnFipcqFtcaFicb1icLejUEgG/F0zKev0953RN54BV0TJ40qcgKt2M4sHUe9+x01iE8Wq+1iGgau3PJIcnwNAq0qos0Ko2s22Bdm0BWz9+NdqKKnNFFrgUeFwcdLnQ2uXc+lOMjfU0pHFri3B//3R5T5KE3GzOOlSLU07V4iJys4mgPv/DRRQ5DAbvZQD12/T7v4PrzoOdJJkUix+jXP42yqWPUyp/G5p6/LDaKAxxh4MUoAZ9nOEgBakxVA0HE+ga33eaAdNHaQawiiW+/Xs/z5VPftdLPdZx+sjBUqfT4cd//Mf5t//23wLw+c9/nr//9/8+lUrlyPODIOBv/I2/wX/4D/+Bhw8fUi6X+UN/6A/xd//u32VlZWVy3mc+8xn+23/7bzPf+8M//MP8q3/1r059bTks5cp1eo16Hlv3D1bctTaPiCuoaTPOU2XxxeIKpjVo7U/Kdpv3brP78P58CUcQUC8t4l8s060nbMpt7g4f0PW6c48nJALFoDhpIK96VaphlZXmCktLSzMQpZ7iTe1VKoojNoebWU/UI+633+Nh9y5Ph1t0/OMDDSUS6nLCkqpw1mqwVlrjUu1trjU/xWr125Flg8B1aW9t0N5cp72ROlL768/obm8Sh0e7RQnQl4t0JxBVnZT3iuUK55sFLtRTiLrQsFirGtQFCbfrZY5U2mw+dqYOj/M5LEWTJg5Uea5XSp+ZkxjHEcN2+6BXan+PwRiq9vfo7+1Mcpds3aRVXZgA1H51gVZ1gZF1fJ9bU0i4YqhcLxe4bhlcDhzOd9qYO1sEO1ko4+4O4fZOOstvd36W37H/Xo3GAVAdBVaLi4i6Pvd9nrdHv/879Pu/nQHUN45MIdf1M5RLH08BqvztFApvIYov/7sc+j7OMAOozKEaA5U7HGD3eymATblZRyW1f/b/8uN87A989qWv4yh95GDpc5/7HOvr6/zyL/8yAD/2Yz/G+fPn+bVf+7Ujz+/1evzgD/4gf/7P/3m+9Vu/lU6nw1/+y3+ZMAz56le/OjnvM5/5DFevXuVv/a2/NbnPMAzK5fKpry2HpVy5Xl7uKEjLdhlA7T0dkByKKzBK6mxcwYqF8JKDRcdz78bwtHX3NoPW3tx5erGIee0c3ppFqxzwTNjlVuf20fPnEigFpZkeqIpfYam+NAdQpmm+1HW/Xw38AU/6T3jYvc+91m/zsHuHp/0NNpwewTH9SwCmmLCoKpwxa5wvneNi9TpXG7+HqwufQpdN4jiiv7eXuVHPJv1RrY1neMPjy4XjBPNx3EFHqdJWqgyVAssVi/MNM3Wj6hYXm2l5b0FTsNs+vX2b/p47caX6+87zk84FKFR1SuOVe1MgVW4YaJY8B+SePZpA1HTJb7zfG9rsV+oTkNqvLtKqNhkWjn//qIYe54m4rElcL1q8U6/yrUtNSpJE2GqlELW1nY4N2c1GiWxvZ8ORd0hOme0klctpaW96fMhknwKWaBmMRvdTcOr9Nr3+bzEa3efwCymK2oH7VP42yqVvR9Oap7qOl1Xge7iDWYBavnyV8sLSK/05HylYunXrFjdu3OBLX/oSn/rUpwD40pe+xKc//Wlu377NtWvXTvU4X/nKV/jkJz/JkydPOHfuHJDC0sc//nH+3t/7ey99fTks5cr16uS7ITsP+2zc67B1v8fOo/5cSrVmyixfPhjR0jxXRJJevo9o0N5P+57upvC08+j+XOCgIIo0zp3HvHqW0arKfsHlofuUm+2bR+crJVAMijPwVPEqNEqNmVV4r3sl3vMUJzHbo20edG5xd++rPOje5kn/GRt2m9YJb8wCCXVF4YxZ4WzxDJeqb3G1/om0N8paRBRE7H6P9voz2lsHblRrY53+/u6xZalJZpRanSrrpcfICmerxsSJGsPUhYbFgqVid7xJb1R/f7pXyiH0Tw5EVA05daQahxrPmzqFmn7k71ccRQw7mTuVlfkG+3vsdDs88CKeILNdKE/cqJMgqjzqs+IOWYt9Lqoib1kGb9cqLDSblBpNNNMiSRKiTieDpx3CnWx+3/YOwc72ZJ5fcsokctGyshDP1JWSlxYRlyq4C0Mca4eh+Ii+/R5h2Jv7Xl0/S6X87ZSzzbKuIopvrhT9qvSRgqV/9I/+ET/xEz9Bt9udub9SqfALv/AL/Jk/82dO9Tj/+T//Zz772c/S7XYnL8pnPvMZ3nvvPZIkYXFxkc997nP8zb/5N0/84+V53sxyx36/z9mzZ3NYypXrNSgMInYfDyZJ49sPegSHMoBkTWL5YmniPC2cLyErL98Ielr3ySxXWL7yFsblVYaLEltajzvdu9xs3WTX2Z1/4AQKQWGmB6rqVamYlRn36VXNxHu/sgObh+1vcGfvyzxov8fj/mPWRy22PRcnOf7aVEFgxShxrrjKhfIVrjQ+zsXKNc6Xz1NUiwSeS2drMwWozInqbDyjvbVxbCr2uKTXyeCpna3U6yhVXElHlUTO1c05iLrQsFgoqjiDIIWoPZveGKb2TheFIAhQqOkzjebTztRJqzs9ezSBqa39Frd6A+55IY9jkXXFYKdQYWgd876RxJT7XZrtHRYGbc6FLpckuGTp1BtNivUGxUYKU4VaHUlWSJKEeDCYOFHpfjcFq+0dwu20DBj353v0jpSmwFs1whsq3lqE2+zj6e25RAJJstLG8fK3Uyl/B+Xyt504uuWDoo8ULP2dv/N3+NVf/VXu3r07c//Vq1f5M3/mz/DTP/3Tz30M13X5vb/39/LWW2/xz/7ZP5vc/w//4T/kwoULLC0t8e677/LTP/3TXL58mf/0n/7TsY/1sz/7s/zcz/3c3P05LOXK9foVRzH762lcwcbdLlsPunij2R4kURZYPH8AT0sXy6j6+/vUe9D7dIvNu7fZffRgrvdJlCSaaxdZufYWxoUVek14HGxws3WTW+1bx86bswJrpgeq4lcoKsWZEt6rnIn3fhXHIRvdr3Nn90vcb7/L494jno122fJcWqFAfEK2T0UxOFtY4kLlMpeqb3OhfJG18hpnC2eRBHGmpNfeGDtSz45d3QbgSAZtuTLnRg3kAggCpiqxVre42BiX9wpcaJicr1vULJUwiA9ypMar9/YPHKooONmVOjKgM9sKNe1E1zOOIzb2Wnx9d4/3ugPu2h4PI3gm6wyUo9PnhTii1m3R6OzQaO/SaG3T7OyyIkG5VqdUb1JsNCjWmylMZXuzVJ7EF8SjUdo7NYaoncyd2tkl2N4i3Nklah01FBhiPcG/kBBcSPAvxvgXEpLDazISMJIVStoNKrVPUj3zGczSxd/1DwCH9aGApeOgY1pf+cpX+I//8T/yj//xP+bOnTszX7ty5Qp/7s/9Of7qX/2rJz5GEAT80A/9EE+fPuW//tf/euIL8rWvfY1PfOITfO1rX+Pbv/3bjzwnd5Zy5frgKIkT2lujScP45r0udn/WKRBEgebZwtSKu8pLZT1Na7Ly7u4tNrMG8lFnvp+pUK2xcvU6K9euY5xfYb9oc7t7l1utW9xs3WRztHnk41uBNRNjUPErWKLF4uLijAO1sLCAcsoE5tetKHLoDW5zf/9/8KD1dR71HvB0uM2277MXCPTj46FBFASWzQbnyxe5UL7C+dJ5zpfPs1ZaY8FYwOn3suby9RmYOsrxGysUZdpylfZU+GZbqdJTysRCCp0lXZ6s1Bv3R52vW1xoWpR0hSROsPt+ClGtA5ga90w5/ee4UqJAsabNZUqN3amTfg/3/IA7I5eb3QHf6PS4M3J5ECSMhKNfRzkMqHd2U4Bqb9Ns79Jo71AY9RFI57oV65kjVW9QbCxkM/yak9vaVE9d7PuEu3sZUM06VGOgCvf2SOKQcDnBv5TgX0wBKjqipUnqi+g7RczhEoX4EsXCWyiLK8iLC1km1SJSoXDi6/mq9aGApf39ffb3j1+OCnD+/Hn+xb/4Fy9dhguCgC984Qs8fPiQ//Jf/gv1ev3En5ckCZqm8U//6T/lh3/4h0/1PPKepVy5PjhKkoTerjMZDrx5t8ugPb90ub5qpU3jV6ssXy5jld/fDLkkSRjs77Fx91YaW3D3FruPH84sTweQFIXFi1dYufoWK9euY60t8zjc5GbrZupAtW6xPlw/8meYgTnjPlW9KgYGzWZzBqCWlpZe+Uy89yPfbzEc3mG393Xut36HR917PB1usxtE7AYie6GAd0JZT5c01kprnC9fSPel85wvnWetvIYeK3Q2Nw7iDrLSXmdrcyZza1qJIDBUK+xKlUnMQTtzpYKpVV91S52DqHHjuammTmXgRfRbmQu150xW741X8x3utzusA1dqqvE8A6ujXKkkSdjyAm6NXO6MXG6PHG4P02PvmLdz3XdptLZptHdotHZotndotHfQ/fn/F5ppTcp7KVQd7EuNJoV6Y2Y8ShJFhPutWaDa3cFpP2EoPGBU2MZd6BOcjeGQKSq4oDwS0B6IqA8ElEcCsmyljemLC7MN6YtL6DeuoyzlDd7Hatzg/eUvf5lPfvKTAHz5y1/mO7/zO09s8B6D0r179/j1X/91ms3nd++/++67fOxjH+O//bf/xu/7fb/vVNeXw1KuXB9sDdrupOdp616XzvYxWU9Zw/jylcpLZz1NK3Bdth/cnfQ+bd69jTuY7xWpLC5P4Gnl6nWUhQq3u3cm8HSzdZOng6dH/gwjNGYayKteFT3WqdVqMyW8paUlLOvFp9e/LiVJhOM8ZTi8y2Bwi/XuN3jYvcuz0S57gcBumELU88p6Vb2aglNpbQJSa6U1Vs0V3FYndaDWn830R500m87T0r6obbE8WaHXUSs4opE2L2VaLGmHICot852tmehZv1wSJ4x63qSc15uCqP6+M+eAHtaMK3VEr5RmHqzgi5KEJ46fwtPI5dYwBamHjkd0zLt8PfRYHnZotHaobD2hsvmEWncfKT45wsAsVyYQVZrqnRpDlVWtzoxDSZKEoLNDZ/3/oNv6Mn3vPYbSI2Lp0POPQHkmoN4XUDOAkoZTr/lf+2vUfvRPn3htL6qPFCxBGh2wubnJL/3SLwFpdMDa2tpMdMBbb73Fz//8z/N93/d9hGHID/zAD/Cbv/mb/Lt/9+9YXFycnFer1VBVlQcPHvDP//k/53u/93tpNBrcvHmTn/zJn8QwDL7yla+cujcgh6VcuT5csvv+Qcr4/S7760dnPa1eqU5Kd+UF4333WyRJQnd7k407B+7T/vrTuZVhqmGwfOWtFKCuXmf5yjU8OeJ26/bEgbrZvsmT/pMjf44RGpM5eOMSnhEZlEqlGQdqeXmZUqn0geojiSKb4egew+FthsM79Aa3edK9zaY7ZC8UZkCqFx1f1hMQWCmsTCBqDFLniucoeirdcYP5VEnvpJl0sWow0OvsiuUMpNKS3kAuzkCUIMBK2ZiDqPMNizNVA2XKKQq8aNInNWi5s65Uy31ur9RRK/jGQFWspblSbhTzwPG4NZyFqA3v6EZ6GViTEs6FHiujHs3ODrWtp0hbzxi29gn9589yE0SRQq0+U/JLoeoArPRCAdu+T7f7Vbq9r9DtfgXPm+/pU+0yxk4J9YHIme/5X6j9/j/+3J//IvrIwVK73Z4LpfzFX/zFmVBKQRD4lV/5Fb74xS/y+PFjLly4cORj/fqv/zqf+cxnePbsGT/yIz/Cu+++y3A45OzZs/zRP/pH+Zt/829Sq9VOfW05LOXK9eGWOwrYftCbwNPuk9eb9TT7s4eT2ILNu7fYundn3vkQBBpn1ybwtHLtOpXFZUbBiFvtW5MG8putmzzuPSY5InBID/W5Ep4e6VimNZcFVavV3shIl9MqSRJ8f5fh8M4EooajO7QG99kLQnZDkd1AYC+DqN1AxD2hrKeICueK5zhXOjfjSi1LDWjZmQP1bAJTvb3jow6QVTyrQVetsp4U2RHLWV9UadIXNTlVFDhbMzlfNyfxB+NVeysVA2nq92nSKzUVgfAiw4wFAayqNtUjZUwypsoNA08TuWO73Bq5E5C6OXQYREcDWlmWeMvSuaKKnI99zth9mt09okn21D6D1h7Ddmuu9Hzky6aoWRP6QanPrEtIhR1i+TFOcAvbeTDzPZcu/hTnz//F5z72i+gjB0sfZOWwlCvXR0vjrKdx39NJWU9jeGqeLSC+j6ynseI4Yv/pkyzzKV15193ZmjvPLFem4OkGixcuIasqo2DE7fbtSfnuZusmj/qPiI8IntQibVK6m/RARQaaqrG0tDTTA9VsNt/oSJfTKI4DbPvhBJ6Gw1sMh3dw3W2GMewdgqi9UGIvFAlPeNuzFGvGjVorrXFWX6E0knF3OylArWcBnCf0RSGKJMUGI6POrlThSVRgJ3OkQnG+qXscfXBUf9RSSZ9z/wI/daUGUynn0/lSz8uVmk47H8NUsa5hVxXW1YS7rs/NocOtkct92+W42chrusqNgsH1gs4Ny+AtU6XpjRhlI2UGE5DanwR6nuTgTcuoKNQuShRXXbRam3PLf5mr3/aFU33vaZXD0htUDku5cn20lWY99dm810v7nh70CA9lPSmaxNKlctY0XmFxrYSkvBp3ZtTtTCILNu/cYufhvbnYAkmW08bxa6nztHr1Oma5AqR5SXc7d3mv9d4BQPUeER0xR24MUNMulBmayJLMwsLCjAu1uLj4xke6nEZB0J1yobJtdJc4dokT6EQC+5kDtRcK7Mc6+6HMvu8TnxADXtNrrJXWOFc8x/nyec5ZZ6m7Jno/Zri1M9Nkfuw8NEFAKtbwi026apVNyjzwLXakMr50dFO+oUisTWdITYVy1i11DqSSJMlypaZW703B1PPSzgGssjoZZGw0dLo1mS1L5KmccC/wuTly2PGPBkVDFCfwdL2g83bB4EbBoCSnTlsYBAzbLQatvSmY2puBq6OiIv7wj/0lvuUP/pGTL/wFlcPSG1QOS7lyfXMpjmL2ng3ZvJs1jd/v4tmH4UVk8UKJlatZ1tOFMor2ajKSxrEFm3dusnn3Fht3buH051OWK0vLrFy9zuq1G6xcfYv6mXOTnB0ndLjbuTvjQD3oPiBM5t8A1VhNAWrKhbJCC1EQqdfrc4GahvH+m+NftcYN5YPMfRqX81z32eScMIH9MHWi9kOZDhX2I5ltz6ftj058/CVrKXWiiilMLcc1SkMJse3S29yktfGU1sb6kQ3+YynFClQWGBl19uQKT8ICdzyLoaDP9EVNq6jJ6Yq9hsWFqfLehYZFxTwaZKMgZtA+GBfTm3ao9py50NfDkhSRUl1HWNLpNDV2KxLrOjwUIh74/rGr8s7oSgpOVgpPbxcMzhsq4hHPLXBd+q0pkNrf58qnvovmufMnXtuLKoelN6gclnLl+uZWEie0NoeTqILN+12cwWwDrSgKNNeKM1lPmvFqylpJktDd2WLzzq10O6ZxXLMsVq4clO6WL19FmRq46kUe9zr3DprIWze5171HGB8NUGWvPLMSrxAWEBCoVCozJbzxSJcPUiP5WGE4yODpDsPRbYaDWwxHd4miWThy4xSk2lToCXVakca2H7BhdxkExwdmSoLEamGVc6VzrJXWOCMt0hgZGP2YcK9PZ3OD1vpThu2jAyABFNNCbSwTFJr0tBqbQom7nsUDWyY5KQDUVFJwyhrNz0+OTYr60flOSZLgDrO089aBI5U2oTsM2t5cP9+0YgFGixq9FZ39hsxWQeSpkrDL0WXBsQv1dgZPbxcMrls6BfnNhK/msPQGlcNSrly5ppXCiz0TlDnszK4iEgSonylMVtwtXyljFF5dScsdDdm6e5uNDJ627t+Zm+QuiCIL5y+xei2Fp9Vr1ynUZrPo/MjnXvcQQHXuEcTzq6mURKHslier8Kp+lUKQApRlzTeSV6vVD1Qj+VhJEuO664dcqFs4ztHxDXasMpDP0hMbtGKDHT9iy+3zdLCOEx4fUzDdaL6mnWHJK1IayihtH2e3lTaX7+yQHDPoWNZ0CosrUFnENuvsyxUeR0XujBS2BycP3G0UtEmK+fSKvfN1C0M9HlSiKGbY9uZKe+PG88Np+mM5isBuRWK3KtNeUNmpSmwaAsExrHfeUGcA6u2CwaqmvHLgzmHpDSqHpVy5cp2kJEkYtNyZoMze3vybaHXZYuVKhdXMeSpUX12wZBSG7D99zMadmylA3bl5pJtRai7OwFP97LmZzByAIAq4370/A1B3O3fx4/kVWkqiUPbKMyW8YlBEQEDTjm4k/yCMdDlKYThiNLrDYNILdYvh8C5RdLSzpCoLBPol+uIi7cRiN4jZsLs8HTzj2eDZkcA5liEbKUiZZzgXNqiPdMw+JPsjhts7JzaXS4pCeWkFrbFMUFxI3ShKPPAMHnVc9ocnr6RbKumT5vLjMqSOk+eExzeetxziqU7xWIBWQWSnIrNTkditSOxUZQbG0QD9V9YW+b9fXD7x57+oclh6g8phKVeuXC+qUdc7gKd7Xdqb8z0xpaYxgaeVKxWK9flVUS+rFOD2JuC0cecW+08ez7kYqmFOAjNXr91g+fK1mdLdWEEc8LD7cCYH6k77Dl40n8szBqiyl7pQVS91oEREJEliYWFhJlBzYWHhA9lIDgcu1HB4ewaijnOhRFHDsq5gWm/hyiu0kiJ7ocDGaJfH/cc87T9lY7hxZPP9WAWlwFrhLBeSZZbdUupGdQKC3S69ra1js5AEUaSyuExp+QxidQnbatCSyzwJCzzsBjxujejaxwPcURlSY3fqbM2cyZA68rU6IqRzMOVMjbI4BFsV2KlI7FRktqsSOxWJ/ZLEX48L/F//8JUTf8aLKoelN6gclnLlyvV+5Qx9tu4dZD3tPxvMRfsUqtqk52nlSoXKovlKyxKebbN1/84Eno7KfDpN6W6sMA552Hs400R+p3PnyNKUnMhUggplpzxZiVcMioiICIJAo9GYG+nyQWwkHysMh2mcwSCFp8HwNqPRHaJoPj0eQNdWKBSvUyhcxzCv0hcq7PgBTwfPeNJ/wpP+E572n7I12joyR2usslrminCWs0GNhm1g9oDWCHtnn8A5piQoCJSbC9TPnMNaWCUoNelnbtTjQczj/RGP9kcMvWNiEgBJFDhTNSa5URemeqRWq7MZUse+Zn5Ev+UeuFGtg4DOdsvhu3/kLd76jsXnPs6LKIelN6gclnLlyvWq5TkhW9lKu817XXYfD4gPB2UWlSl4qr6yoMyx4ihi78mjA/fp7i2Grfl5nuWFxXTF3bUbrL51g/rq2cmqu8OK4ojH/cczJbzb7dvY4TxEyKQAVXJKkx6okl9CJH3s6UbyMUB9UBvJIXWhHOdJ5kDdSl2owS1c7+hhypJkUbCuUijeoFB4i2LhOopxns1RiyeDFJ6e9J/wdPCUJ70n7Dq7J/xwWKHOxXCJZa9EZaCgdFM3KhgdDXAAxXqT2uoZ6qtnUZsrOFaDPanC0xETiHrSsnGC450wRUrDOKcbzcc9UsslHfEUv7NJkkDCK/39hhyW3qhyWMqVK9frVuBF7DzqsXEvnW+3/ag/Nw7jdQVlTqu/v3sAT7dvsvf08dyqO90qTObcrb51g6VLV5FPKKNFccSTwZOZWXi32rcYBfOlSQmJalilaBcnjeRlvzwBqA9TI/lYQdCblO/GIDUa3SU+ogcMBEzzPIXC9QygUpDStCWc0OFZ5kQ9HTyduFFP+k9oucevttM9kXN+nXNBk6ZjYvYShJZDODg+LsEsV6ifOUf9zFlqq2cRq8t0tSobrszjVgpRj/dHPGnb+CcME9ZkkbUsjPPCVJP5hYbFYkl77eCbw9IbVA5LuXLletOKgpidJ/1Jz9NxQZnLl8osZ31PC68wKHMsz7bZunebjTs309yne/Or7iRZZuHiZVav3WD1rbdZufoWZql84uPGScyzwbMZB+pW6xaDYDB3rohILapRtIuTPKhyUEZK0mZkVVXnAOqD3EgOEMchtvMojTIY3mYwvMlweBvf3zvyfFmuUMzKeMXCdQrFG1jmRUQxhdShP+Tp4OmsG9V/wrPBM9pu+8jHVAOR8lDhrFdlxS1THqqo3YCkf/wKP6NYmoKoc1RXzxKWmmz7Ko/bNo8ziHq0P+Jp2yY8IYZgHMY57pH6wzcW+bZz1Rd4FZ+vHJbeoHJYypUr1++24ihm7+lw0vN0ZFCmIrJ0oTRxnhYvllFOWCb+MorCMC3d3b7Jxp332Lh988jxFrWVM6y+lcLT6rUblBeXnusiJEnC+mCd99rvzfRB9f35oEcRkVqcAtQ4zqDsHwDUdCP5GKQ+qInk0/L8/Qygbk5cKNt+SHJEQ7ggKFjWlQyeMogqXEdRZkG17/d51n8260ZlZb6u1517XDkUqAwVykOFFbdM0zGxegJS//hVdpplUV9NIap+5hz11bOUV87SE00etzKIatmpI9Uasd5xiA6B1P/2J97hT3/n2su9cMcoh6U3qByWcuXK9UHTOChz4+5B39NcUKYksLB2kDK+fKmMqr/a+W9JktDb2c4iC9LSXXvj2dx5VqWaOU8pQDXXLiCewvlJkoSN4cZkkPB4O+pNXkSkltQoOaVJGa/sl5GT9DkLgkC9Xp9zoUzTfN+vw+tUFHmMRnezMl7mRA1uHhtpkDaT35iU8YrF6+j6GQRh3nXseb2D0l7/6YE7NXhCz5tNjZcigfJQpjJUKQ8VFm2L6khDHUQIx5CGahjUV89RG0PUmbPUV8+hV+ps9FweZS7U49aIP/l7zvHO6smO5Isqh6U3qByWcuXK9UHXdFDmxt0Unkbd+aDM5rnipGy3fLmCbh2d9Px+5Az66ZiW2yk8bT+4N5cZpGg6y1ffmgDUypW3jowsOEpJkrA92uZm6ybvtd6bgNRR5SYBgTp1Sm6JwqgwyYIaAxRAuVyeSyQvlUof2EZyyJK43Y0DB2qQ7qfHu0xLkgopPBWvZ31Q17Gsq0jHzKuDFKQOA9TYoZqGVSmC4kihMjzY6iODwlA8FqIUTae2evbAiTpzjqVLV7AqeRnuQ6sclnLlyvVhU5Ik9PddNu91JiNa+vuHhr8KUF8pzMQVmKVXX6YKfI+dB/ey0t1NNu/cwrNnm4sFUWTxwqXUebr2NivXrr/QG2eSJOzYO5Pm8bEDte/Mr+4TEKgJNSpeBWtgTca5KMkBOBqGMQNPy8vL1Gq1D3QjOUAQ9KeaydNy3nB4jySZL6EJgoRpXkrhKSvjFYs3UJTnv+6HQeooR0qM5yGqMlAojxTEZB5EP/2nfoTv+uN/8v2/CFPKYekNKoelXLlyfRQ0aLuTkt3mvS6d7fkl5ZVFMy3bXa6werVCoXo6t+dFlMQx++tPM+fpPTbu3GSwP9/YXF1eYeXaDc689Tar19+msrj8wm7Prr0710R+1BJ8AYGaWKPqVzH75qSRfBqgFEWZSyRfWFhAll9tafNVK44DbPshg8HNDKJuMhjcIgy7R56vacsUizeyZvJxGe/sqV/7ntdjfbA+aTQfw9S42VyIoWjLGUCpVAYpSK19/rv5sc//1Vf4zHNYeqPKYSlXrlwfRdl9f9Iwvnm3S2tzyOE8xFJDn3GeSg3jtZSnxpEFG7dSeNp/9mQusuBl+54Oa8/em+uB2rF3jjy3Ltaph3WMvpHmQfkV1PjAfRNFkWazOQNQS0tL6KcsKf5uKUkSPG87hafBzWw13vHJ5JJUmGokf5ti8TqWdRlRfLGRPeNm82eDZ3Ou1M98+mf4g+f+4Kt4egc/L4elN6cclnLlyvXNIHcUsPWgx+bdDpv3uuw9nU8ZtyoHKeOrV199yvjkWobDrO/pPdZv32TnwV2i8FDfk26wcvUtVt9K3aelK9dQ1Jebt9dyWjMAdat1i83R0WGSdalOPapj9k0KowIVv4IWz/7carU6l0heLBZf6trepMJwwHB4h8HgvVOU8WQs63JWxruRuVA3kOWXe55JkuSDdD/MymEpV65c34zynZCth7205+lel90nfeLozaaMjxX6PtsP7k6V7m7hO7NlRFGSWbx4idW33ubM9bdZuXYDo/DygNJxO2mEQfvAgdoYbhx5bk2q0YybWCMLo29Q9apzAFUoFOYayavV6ge6kRymy3jvZSvxUpAKw96R5+v6WYrFG1kP1NsUCtfRtOdHR7wO5bD0BpXDUq5cuXJB4EfsPOxNep6elzK+erVC48yrTxkHiOOI1rOnrN9+Ly3d3X6PYWd+NVzj7NpB3tNbb1NqNN/Xz+15vbkS3rPB0SvQqnKVxWSRol1E6ShUvSp6PFue0zRtrg/qgx6oCePVeJvZarxbGUjdwnWPhklFqU01kt+gWHwb0zyPILze55nD0htUDku5cuXKNa9TpYzracr42HlaWCsiya8enpIkobe7k7pOWemus7k+d16puZA6Txk81VbPvG/Ho+/3ud26fVDCa9/icf/xkedW5SqLwiIlu4TaUSm5JYxodmDw4UDN8fZBD9QECIJuWr7L+qAGg5vY9oMjQzVF0ZiJM6hWP41pnn+l15PD0htUDku5cuXK9XzNpIzf67B5v4fvzPYZyYrI0gSeKixeKCErr8ddsHtdNm7fTN2n2zfZffyAJJ51woxiaeI8nbn+DgvnL75U0/hhDf0ht9q3Zsp4j3uPSQ530AMVucKSuETFq6C2VQqjAnqkIzALcdOBmuO9ZVnv+1pft6LIZTS6mzlQNxkO3mMwvE0cz45VuXL5r3Pu3J99pT87h6U3qByWcuXKlevFFccJrY3hJOdp814Xd3goZVwWWDyfjmhZvVJl6VIZRXs98OQ7Npv37qTu06332Lp3hzCYbVyeaRq//g5Ll6++dNP4YY2CEXfad2YcqIe9h8TJ/CDaslxmRV6h6lVRuypGz8CIjDmAKhaLc43klUrlA98HlSQRtv2EwfC9zIW6xYUL/zcq5e94pT8nh6U3qByWcuXKlev9K0kSOls2m/c6bGSlO7s3CyuiKNBcK06cp+XLFTTj9eQYRWHAzsP7rGc9Txu3b86FZUqyzOKlq5zJ4Gnl2nU089W5OXZgc7dzN00iz1yoh92HREeUrUpyiVVllVpQw+gZyG0ZMzTnAErX9bk+qEaj8YHvg3odymHpDSqHpVy5cuV69Ur7jJxJztPGvQ7D9vyIlvqZAqtXqhOA0guvfkQLpE3j+0+fTHqeNm69y6jbOXQ9Is21C6xeT+HpzFtvY5Yrr/Q63NDlTufOzDDhB90HhEk4d25BLnBWPUs9rGMOTaQ9CcOfd6BkWZ7rg/owDBZ+v8ph6Q0qh6VcuXLlejPqt5xJw/jm3S69PWfunNqKNROUaZVfTZnssNJ5e1ts3Hpvsuquu7M1d1515QxnrqdN42euv0OpufDKr8WLPO517s2swrvXvUcYzwOUJVuc085NogzEPRHN1uYA6vBg4TFEfRj6oE6rHJbeoHJYypUrV67fHY26Xjoc+F6Xzbud40e0TMFTsfb60rOHnXbqPN16l41b77F3RNJ4sdGcgNPq9beprbz/FXdHyY987nXvzThQdzt3CeJg7lxTNlnT11hIFijaRcR9EbkvzwEUQKlUmgOoD0Mf1FHKYekNKoelXLly5fpgyBn4k7Ld5v0u++vPG9FSpdTQX9sbvTscsnHn5gSedh7dJ45m+42MUjmDp7dZvf4OzbXziOLr6R8K4oAH3QczSeR3OnfwIm/uXEMyOG+eZ0lYougUUdoKyX5yJEB9WPugclh6g8phKVeuXLk+mDrNiJZCVWM5Gwy8cuX1jWgBCFyXzXu306bxW+8eueJONczJarsz199m8eJlJPn19GFBClCPeo8m8HSzdZM7nTs44XyJU5d0zlvnWRaXqXgVtI5GsBPA/IK9uTyo5eXlD1wfVA5Lb1A5LOXKlSvXh0OTES1Zz9PJI1qqrF6tUFt+PSNaAMIgSMe0ZH1Pm3du4juzkCJrGitXrrH61jucvfHO+5pxd1pFccTj/uOZHqjb7dvY4XyZU5M0LhQusCqvUvWraF2NcDsk9Of7pSDNgzocqFkoFF7r8zlOOSy9QeWwlCtXrlwfTgV+xHYGT1vHjWixZFYmI1qq1M8UEF8TPMVRxN6TR6zfSvue1m+/hzvoz5wjSjJLl6+mTePX32H12nVUw3wt1zOtKI54MngyU8K71b7FKBjNnauKKheLFzmjnqEe1DEGBuF2iDOcd6sgzYM6XMZ7E3Pxclh6g8phKVeuXLk+GoqCmJ3H/UnK+NaDHqE/C0+qIbN8uZwC1NUKzXNFpNcw3w4giWPam+s8u/luCk+33mV0aMadIIosXrjE6vXUeVq99jb6G3Jq4iTm2eDZjAN1q3WLQTCYO1cWZS6VLnFOO0cjamAOTJK9hF7r6IG703PxlpaWOH/+PNVq9ZVefw5Lb1A5LOXKlSvXR1NRFLP3ZHAw3+5+F9+dbdCWNYnliyVWsqynxfMlJOU1wVOS0NvZ5tmtb7Bx6z2e3XyX/t7O7EmCQPPc+UnP05nr77zyrKfnXeP6YJ332u/NrMTr+/25c2VB5mL5ImvGGgvxAoVRAWFfoL3bJjrUCP/Zz36W7/qu73ql15rD0htUDku5cuXK9c2hOE7Yf5bC08bdFJ48e7Y3R1JEli6kI1pWrlZZulBCVl/fqrD+/m4KTrfeZf3We0cOCK6tnOHMjXdSgLrxDsVa47Vdz1FKkoSN4cZkjMsYoLped+5cSZC4UL7ABfMCSyxRckpIbYnP/oHPsra29kqvK4elN6gclnLlypXrm1NJnNDeGrFxNxsOfK+LMzg03046mG+3crXC0sUyqv56RrQAjLqdg56nW++y//Tx3DmVxWVWr7/N2Rsf48z1dygvLL626zlOSZKwPdrmZutmOs4lg6i22547VxREfvI7fpIffftHX+k15LD0BpXDUq5cuXLlgnGqt53BUxqUOTo0304QBZrniqxm8PQ659sBOMNButoug6fdRw9JDg3nLTaanL3+DmdufIwzN96hsrj8uxIymSQJO/bOZA7euIy35+zxC5/5Bf7Q2h96pT8vh6U3qByWcuXKlSvXUUqShP6+MwVPXQZtd+acmfl2VyusXH598+0APHuUBWW+x/rNb7DzcD4os1CtpeCUle1eV8r4abVn72EpFqbyalf95bD0BpXDUq5cuXLlOq36LYetyYiWo+fb1VetbLVd2jRull5fkKPvOmzevc36zXdZv/UNtu7dJY5m+7DMcoUz199Jy3Y33qF+5tyHcrzJYX3kYKnT6fDjP/7j/Nt/+28B+PznP8/f//t/n0qlcuz3fPGLX+Qf/+N/PHPfpz71Kb70pS9Nbnuex0/91E/xL//lv8RxHP7gH/yD/IN/8A84c+bMqa8th6VcuXLlyvWyOs18u+qSOTOipVB9faGUge+xdfcO67e+wfrNd9m8d5somO3DMoqliet09sbHaJxdQxBfzwrA16mPHCx97nOfY319nV/+5V8G4Md+7Mc4f/48v/Zrv3bs93zxi19kZ2eHX/mVX5ncp6oqtVptcvsv/sW/yK/92q/xq7/6q9TrdX7yJ3+SdrvN1772tVPPtMlhKVeuXLlyvSrZfT8t2WUz7lobw7lzSk1j0vO0crlCqWG8tusJg4Dt+3dYv/kuz269y+bdW4Te7Cw5vVBk9a23OXsj7Xt6nfPtXqU+UrB069Ytbty4wZe+9CU+9alPAfClL32JT3/609y+fZtr164d+X1f/OIX6Xa7/Jt/82+O/Hqv16PZbPJP/+k/5Yd/+IcB2Nzc5OzZs/yH//Af+J7v+Z5TXV8OS7ly5cqV63XJHQWTnKfNe132nx0x366mHfQ8XalQbhqvrUwWhQE7D++nQZk3v8HG7ZsE3mwflmZa6Wq76+9w9u1voXn+wgcSnk77/v362u9fof77f//vlMvlCSgBfOd3fiflcpnf+I3fOBaWAP7rf/2vLCwsUKlU+P2///fzt//232ZhYQGAr33tawRBwGc/+9nJ+SsrK7zzzjv8xm/8xrGw5Hke3hRV9/vzQVu5cuXKlSvXq5BuKVz8eJOLH28C4DkhW/cP4GnvyYBh2+POl7e58+VtAKyyOsl5WrlSobr06oYDS7LCytXrrFy9zqf+xA8RhSG7jx7w7OY3Uni6cxPPHvHwa/+Dh1/7H0A6HPjM9bc5c+NjnL3xMRbOX0Q8ZfXmg6APBSxtb29PAGdaCwsLbG9vH/t9n/vc5/ihH/oh1tbWePToET/zMz/Dd3/3d/O1r30NTdPY3t5GVdW5+PTFxcUTH/fnf/7n+bmf+7mXf0K5cuXKlSvXS0ozZM5/rMH5j6XBkr4bsvOwz0aW87TzuM+o53Pvq7vc++oukA0HzsazrFypUl95dcOBJVlm+co1lq9c45N//AeJo+gAnrKgTN+xefibX+Hhb34FANUwsrJdBk8XLn2g4el3FZZ+9md/9rnQ8ZWvpC/sUUScJMmJpDwurQG88847fOITn2BtbY1//+//Pd///d9/7Pc973F/+qd/mp/4iZ+Y3O73+5w9e/bE55ErV65cuXK9Dqm6zNkbNc7eSPtxQz9i51E/bRi/12H7YR9nEPDgt/Z48Ft7wOsdDixKEkuXr7J0+Sq/5/M/QBxH7D1+xLOb3+DZzW+wcfs9vNGIR7/1VR791lfT52AYrF67kTpPb3+MxQuXP1Dw9LsKS3/pL/0l/uSf/JMnnnP+/Hm+/vWvs7OzM/e1vb09FhdPnzq6vLzM2toa9+7dA2BpaQnf9+l0OjPu0u7u7onzZzRNQ9Ne30qEXLly5cqV62UlqxKr16qsXqsCF4iCmN0nY3jqsvWghzcKefQ7+zz6nX3g9Q4HFkWJxYuXWbx4mU/8se9L4enJY9YzeFq/9W4KT7/9NR799tcAUHSDM299cODpQ9Xg/eUvf5lPfvKTAHz5y1/mO7/zO09s8D6sVqvF6uoqv/zLv8yP/uiPThq8/9k/+2d84QtfAGBra4szZ87kDd65cuXKlesjqSiK2Xs6YHMclHm/S3DUcOBL5dR5ulJh4XwJSX490QBxHLH/9AnP3vvGJK7AHc2uAFR0g9/3p77Ix7/nj77Sn/2RWg0Haf/R5uYmv/RLvwSk0QFra2sz0QFvvfUWP//zP8/3fd/3MRwO+dmf/Vl+4Ad+gOXlZR4/fsxf+2t/jadPn3Lr1i2KxSKQRgf8u3/37/jVX/1VarUaP/VTP0Wr1cqjA3LlypUr1zeFpocDj7fDw4FlRWTxYpnVbLXd4oUSsvJ6nJ4kjtl7OuU8ZfD0P/3ET3P1U/+nV/qzPlKr4QD++T//5/z4j//4ZOXa5z//eX7xF39x5pw7d+7Q6/UAkCSJb3zjG/yTf/JP6Ha7LC8v8wf+wB/gX//rfz0BJYBf+IVfQJZlvvCFL0xCKX/1V3/11KCUK1euXLlyfZgligILayUW1kp8/A+dI4kTWpujdDDw3TQs0x0GbNzpsHGnk36PnA4HXs1W2y1dLKNor+Z9UxBFFs5fZOH8Rb79e//4BJ7KC0uv5PFf6po+LM7SB1m5s5QrV65cuT6qSpKEzpbN5r3OZESL3Z8dDiyKAgvni6xkWU/Ll8qo+gffj/nIleE+yMphKVeuXLlyfbMoSRJ6u042oiV1n4ad2URvQRRoni0cZD1dLqOZr2848Msqh6U3qByWcuXKlSvXN6uSJGHQctm4m0YVbN7r0t+fTfRGgMaZQtYwnpbu9MLvPjzlsPQGlcNSrly5cuXKdaBB2500i2/c7dDbdebOqa1Y2Xy7FJ7MkvrGrzOHpTeoHJZy5cqVK1eu4zXqeSk8ZQ3jna3R3DnVJTMr26Xuk1V5/XmGOSy9Qf3/27vf2KbqPY7jn3bt1tHLdsMf51gXcIaJGBm6pZMRQ2JwJhgXHhhJNAaNJi7GODRqZjBODIlRI4kY0IQgPhm6iGJ8gMoe6NzQoGAXiTXBy9DLUtC7GaT839j3PvBu945th7V3PWet71fSB5yddt9+Uvb77Oz0lLIEAMDknUte/M85T38WqP7EaemyNlI0t1BllX8fOfo0c1ZoyuegLLmIsgQAQPrOnxkYdZ2nvmNJXd5OahsqVLNqwZR+35y7zhIAAMhNoXBQFUvnqmLpXEnShXODOv6P//7Z7l//TGpO+d88m4+yBAAAppWCwoAW3DhHC26cI0m6eH5wyj6rLh2UJQAAMK15fYFL72oaAABAFqAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOKAsAQAAOPD2Y3xzhJlJkk6dOuXxJAAAYLKG1+3hdXwilKUpkEwmJUnl5eUeTwIAAFKVTCZVXFw84dd9dqU6hSsaGhpSIpHQzJkz5fP5puxxT506pfLych07dkxFRUVT9rgYi6zdQc7uIGd3kLM7MpmzmSmZTGrevHny+yc+M4kjS1PA7/crEolk7PGLior4j+gSsnYHObuDnN1Bzu7IVM5OR5SGcYI3AACAA8oSAACAA8rSNFZQUKCWlhYVFBR4PUrOI2t3kLM7yNkd5OyO6ZAzJ3gDAAA44MgSAACAA8oSAACAA8oSAACAA8oSAACAA8qSx7Zu3aprrrlGoVBI1dXV6uzsdNy/o6ND1dXVCoVCqqio0FtvveXSpNktlZw//PBD3X777Zo7d66Kioq0bNkyffbZZy5Om91SfU0P27dvnwKBgJYuXZrZAXNEqjlfuHBB69ev1/z581VQUKBrr71Wb7/9tkvTZq9Uc25tbVVVVZVmzJih0tJSPfjgg+rv73dp2uz05Zdf6q677tK8efPk8/n00UcfXfE+rq+FBs+89957FgwGbdu2bRaPx62pqcnC4bD98ssv4+7f09NjM2bMsKamJovH47Zt2zYLBoO2a9culyfPLqnm3NTUZC+//LJ98803dvjwYXv22WctGAzad9995/Lk2SfVrIedPHnSKioqrL6+3qqqqtwZNoulk3NDQ4PV1tZae3u7HT161Pbv32/79u1zcersk2rOnZ2d5vf77fXXX7eenh7r7Oy0G264wVavXu3y5Nllz549tn79evvggw9Mku3evdtxfy/WQsqSh6LRqDU2No7atmjRImtubh53/2eeecYWLVo0atsjjzxit9xyS8ZmzAWp5jyexYsX24YNG6Z6tJyTbtZr1qyx5557zlpaWihLk5Bqzp988okVFxdbf3+/G+PljFRzfvXVV62iomLUts2bN1skEsnYjLlmMmXJi7WQP8N55OLFizp48KDq6+tHba+vr9dXX3017n2+/vrrMfvfcccdOnDggAYGBjI2azZLJ+fLDQ0NKZlMatasWZkYMWekm/WOHTt05MgRtbS0ZHrEnJBOzh9//LFqamr0yiuvqKysTJWVlXrqqad07tw5N0bOSunkXFdXp97eXu3Zs0dmpl9//VW7du3SnXfe6cbIfxlerIV8kK5H+vr6dOnSJZWUlIzaXlJSohMnTox7nxMnToy7/+DgoPr6+lRaWpqxebNVOjlf7rXXXtOZM2d0zz33ZGLEnJFO1j/99JOam5vV2dmpQIAfR5ORTs49PT3q6upSKBTS7t271dfXp0cffVS///475y1NIJ2c6+rq1NraqjVr1uj8+fMaHBxUQ0OD3njjDTdG/svwYi3kyJLHfD7fqH+b2ZhtV9p/vO0YLdWch7377rt64YUX1NbWpquuuipT4+WUyWZ96dIl3XvvvdqwYYMqKyvdGi9npPKaHhoaks/nU2trq6LRqFatWqVNmzbpnXfe4ejSFaSSczwe1+OPP67nn39eBw8e1KeffqqjR4+qsbHRjVH/UtxeC/lVziNz5sxRXl7emN9QfvvttzGNedjVV1897v6BQECzZ8/O2KzZLJ2ch7W1temhhx7S+++/r5UrV2ZyzJyQatbJZFIHDhxQLBbTY489JunPRd3MFAgEtHfvXt12222uzJ5N0nlNl5aWqqysTMXFxSPbrr/+epmZent7tXDhwozOnI3Syfmll17S8uXL9fTTT0uSlixZonA4rFtvvVUbN27k6P8U8WIt5MiSR/Lz81VdXa329vZR29vb21VXVzfufZYtWzZm/71796qmpkbBYDBjs2azdHKW/jyi9MADD2jnzp2cbzBJqWZdVFSkQ4cOqbu7e+TW2Nio6667Tt3d3aqtrXVr9KySzmt6+fLlSiQSOn369Mi2w4cPy+/3KxKJZHTebJVOzmfPnpXfP3pZzcvLk/TfIx/4/3myFmbs1HFc0fDbUrdv327xeNzWrVtn4XDYfv75ZzMza25utvvvv39k/+G3Sz7xxBMWj8dt+/btXDpgElLNeefOnRYIBGzLli12/PjxkdvJkye9egpZI9WsL8e74SYn1ZyTyaRFIhG7++677YcffrCOjg5buHChPfzww149hayQas47duywQCBgW7dutSNHjlhXV5fV1NRYNBr16ilkhWQyabFYzGKxmEmyTZs2WSwWG7lEw3RYCylLHtuyZYvNnz/f8vPz7eabb7aOjo6Rr61du9ZWrFgxav8vvvjCbrrpJsvPz7cFCxbYm2++6fLE2SmVnFesWGGSxtzWrl3r/uBZKNXX9P+iLE1eqjn/+OOPtnLlSissLLRIJGJPPvmknT171uWps0+qOW/evNkWL15shYWFVlpaavfdd5/19va6PHV2+fzzzx1/5k6HtdBnxrFBAACAiXDOEgAAgAPKEgAAgAPKEgAAgAPKEgAAgAPKEgAAgAPKEgAAgAPKEgAAgAPKEgAAgAPKEgA4WLdunVavXu31GAA8RFkCAAfffvutotGo12MA8BAfdwIA4xgYGFA4HNbAwMDItmg0qv3793s4FQAvBLweAACmo7y8PHV1dam2tlbd3d0qKSlRKBTyeiwAHqAsAcA4/H6/EomEZs+eraqqKq/HAeAhzlkCgAnEYjGKEgDKEgBMpLu7m7IEgLIEABM5dOiQlixZ4vUYADxGWQKACQwNDen7779XIpHQH3/84fU4ADxCWQKACWzcuFFtbW0qKyvTiy++6PU4ADzCdZYAAAAccGQJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAAWUJAADAwb8BtBBNKyuSxngAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(t_span, sol_t[5]);\n", "plt.xlabel(\"$t$\")\n", "plt.ylabel(\"$x$\")\n", "plt.title(\"The state evolution (Taylor Integration)\");" ] }, { "cell_type": "markdown", "id": "7286bcdc", "metadata": {}, "source": [ "### Scipy Counterpart\n", "We assemble the rhs of our equations for use with the {py:mod}`scipy.integrate` suite. Note the simplicity of use of compiled functions for this task.\n", "This allows us to use identical jitted expressions also for the rhs of the case of the scipy calls. The comparison results are thus to be interpreted solely in the light of different numerical integration techniques.\n", "\n", "\n", "```{note}\n", "\n", "As it is always the case with compiled functions, here we must take care to pass the variable names in the desired order as to avoid the default lexicographic order which, in this case as well as in most cases, does not correspond with what we have in mind (classical source of bugs).\n", "\n", "```" ] }, { "cell_type": "code", "execution_count": 11, "id": "5308e492", "metadata": {}, "outputs": [], "source": [ "# Assemble the r.h.s. for scipy-integration\n", "rhs = hy.cfunc(fn = [it[1] for it in dyn], compact_mode=True, vars = state + list(phi.flatten())+ list(varphi.flatten()))" ] }, { "cell_type": "code", "execution_count": 12, "id": "f4d34896", "metadata": {}, "outputs": [], "source": [ "# Pack the r.h.s. into a func to use the scipy.integrate solve_ivp API\n", "def dydt(t, y, nn_wb = nn_wb):\n", " return rhs(y, pars = nn_wb)" ] }, { "cell_type": "markdown", "id": "ca5184e8", "metadata": {}, "source": [ "Now, lets see how a less precise integration scheme from scipy would perform ...." ] }, { "cell_type": "code", "execution_count": 13, "id": "9187e78f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--- 0.0012328624725341797 seconds --- to propagate\n" ] } ], "source": [ "start_time = time.time()\n", "sol = solve_ivp(fun = dydt, t_span = (0., tf), y0 = [0.1, -0.1] + ic_var, rtol=1e-4, atol=1e-4, method='DOP853', dense_output=False)\n", "print(\"--- %s seconds --- to propagate\" % (time.time() - start_time))" ] }, { "cell_type": "code", "execution_count": 14, "id": "d4484e4b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHFCAYAAADi7703AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXgb1bn/vzPaNVota/EeO5udfXUCYSllK1uBlhZoS1kLFAgt9N7b8usGbS+UcrmFBAL0tiWlLKWFAqVQILRlaQlJyAqJE5I43q3FlrWNttHM+f0x0tiy5CWOE9vJ+TyPHltHo5kjWdZ85z3f930ZQggBhUKhUCgUCqUo7ERPgEKhUCgUCmUyQ8UShUKhUCgUyjBQsUShUCgUCoUyDFQsUSgUCoVCoQwDFUsUCoVCoVAow0DFEoVCoVAoFMowULFEoVAoFAqFMgxULFEoFAqFQqEMAxVLFAqFQqFQKMNAxRJl0sMwzKhu77zzDt555x0wDIMXXnhhoqeNDz74AHfffTdCodCY9/H666/j7rvvHrc5TTQtLS1gGAbr168f0/PvvfdevPzyywXjub/7O++8c0TzOxLOPPNM3HzzzXljTU1NuOqqq1BXVwe9Xo/S0lIsWbIEt912GyKRyGHt/+677wbDMOM55VHDMAxuu+22MT332WefxUMPPTS+EzqKdHV14e6778aOHTsKHjsWf4NPP/0UWq0W27ZtO6rHoRweVCxRJj0bN27Mu51//vkwGAwF40uWLJnoqebxwQcf4J577jlisXTPPfeM36SmOEOJpSVLlkzoZ+CVV17Bv//9b/zwhz9UxrZv346lS5diz549+NGPfoQ33ngDjz/+OC644AK8+eabCAaDh3WMG264ARs3bhzvqR91pqJYuueee4qKpWPxN5g1axa++tWv4o477jiqx6EcHuqJngCFMhIrV67Mu+90OsGybME45cTFYrFM6Ofh3nvvxaWXXoqKigpl7KGHHgLLsnjnnXdgNpuV8csuuww//elPcbhtOSsrK1FZWTlucz5RSCQS0Ov14xIROlZ/g9tuuw3Lli3DBx98gJNPPvmoH48yMjSyRDkuEQQB3//+91FeXg6LxYKzzjoL+/btK9ju7bffxplnngmLxQKj0YhVq1bh73//+4j7lyQJP/vZzzB79mwYDAbYbDYsWLAADz/8MAA5XP+f//mfAIDa2tq8pUIAeP7553HOOeegrKwMBoMBDQ0N+N73vgee55VjXHPNNXj00UcB5C9FtrS0AAAIIVi3bh0WLVoEg8EAu92Oyy67DM3NzaN6j/bv34+vfOUrcLlc0Ol0aGhoUI4HAIFAAFqtNi9akmPv3r1gGAZr1qxRxj755BNcfPHFsNvt0Ov1WLRoEX73u9+NOI9rrrkG06ZNKxgfvOTBMAx4nsfvfvc75b34zGc+A2DoZbi//OUvOOmkk2A0GmE2m3H22WcXRAZyx9m9ezeuvPJKWK1WuN1uXHfddQiHwyPOf/v27di8eTOuuuqqvPHe3l5YLBaYTKaizxt88n7jjTdw5plnwmq1wmg0oqGhAffdd9+Q7wcATJs2DRdeeCFeeuklLFiwAHq9HnV1dXl/l1gsBpvNhptuuqlgDi0tLVCpVHjggQdGfJ0Dyb3fzz333LD/Z5/5zGfw2muvobW1Ne8znCOdTuNnP/sZ6uvrodPp4HQ6ce211yIQCOQdL5VK4Tvf+Q48Hg+MRiNOO+00bN26FdOmTcM111yjbLd+/XowDIO33noL1113HZxOJ4xGI1KpFA4cOIBrr70WM2fOhNFoREVFBS666CJ8/PHHea9r+fLlAIBrr71WmW9uKbzY30CSJPziF79QXoPL5cLXv/51dHR05G33mc98BvPmzcOWLVtw6qmnwmg0oq6uDj//+c8hSVLetkuXLkVDQwMef/zxw/q7UI4ihEKZYlx99dWE47iij/3zn/8kAMi0adPIV7/6VfLaa6+R5557jlRXV5OZM2eSTCajbPv73/+eMAxDLrnkEvLnP/+ZvPrqq+TCCy8kKpWKvP3228PO4b777iMqlYr8+Mc/Jn//+9/JG2+8QR566CFy9913E0IIaW9vJ6tXryYAyJ///GeyceNGsnHjRhIOhwkhhPz0pz8lv/zlL8lrr71G3nnnHfL444+T2tpacsYZZyjHOHDgALnssssIAOX5GzduJMlkkhBCyDe+8Q2i0WjId77zHfLGG2+QZ599ltTX1xO32028Xu+w89+9ezexWq1k/vz55KmnniJvvfUW+c53vkNYllVeAyGEXHrppaSqqoqIopj3/P/6r/8iWq2W9PT0EEII2bt3LzGbzWT69OnkqaeeIq+99hq58sorCQBy//33K887dOgQAUCefPJJZezqq68mNTU1BXP88Y9/TAZ+RW3cuJEYDAZy/vnnK+/F7t27CSH9f/d//vOfyvbPPPMMAUDOOecc8vLLL5Pnn3+eLF26lGi1WvL+++8XHGf27NnkRz/6EdmwYQP53//9X6LT6ci111477PtICCE/+clPiEqlItFoNG/8Zz/7GQFArrzySvLOO++QeDw+5D5+/etfE4ZhyGc+8xny7LPPkrfffpusW7eO3HLLLUO+H4QQUlNTQyoqKkh1dTX57W9/S15//XXy1a9+lQAgDzzwgLLdHXfcQTiOI6FQKO/5//mf/0n0er3ydxwKAOTWW29V7o/2/2z37t1k1apVxOPx5H2GCSFEFEXyuc99jnAcR+655x6yYcMG8utf/5pUVFSQOXPm5L1fV155JWFZlnzve98jb731FnnooYdIVVUVsVqt5Oqrr1a2e/LJJwkAUlFRQW688Ubyt7/9jbzwwgskk8mQd999l3znO98hL7zwAnn33XfJSy+9RC655BJiMBjI3r17CSGEhMNhZR8/+MEPlPm2t7cP+Te48cYbCQBy2223kTfeeIM8/vjjxOl0kqqqKhIIBJTtTj/9dOJwOMjMmTPJ448/TjZs2EBuueUWAoD87ne/K3jPv/nNb5LS0lIiSdKwfxvKsYGKJcqUYzRi6fzzz88b/+Mf/6iIDkII4XmelJSUkIsuuihvO1EUycKFC0ljY+Owc7jwwgvJokWLht3mgQceIADIoUOHht1OkiQiCAJ59913CQCyc+dO5bFbb7214MuZEFk4ACAPPvhg3nh7ezsxGAzkv/7rv4Y95rnnnksqKysV8ZbjtttuI3q9ngSDQUIIIX/5y18IAPLWW28p22QyGVJeXk6++MUvKmNXXHEF0el0pK2tLW9/5513HjEajcpJ+kjEEiGEcByXd3LMMVgsiaJIysvLyfz58/OEXjQaJS6Xi5x88skFx/nFL36Rt89bbrmF6PX6EU9W5513Hqmvry8YTyaT5JJLLiEACACiUqnI4sWLyfe//33i9/vz5mSxWMgpp5wy7LGGEksMw5AdO3bkjZ999tnEYrEQnucJIYQcPHiQsCxLfvnLXyrbJBIJ4nA4RiUIhxJLI/2fEULIBRdcUPTv+9xzzxEA5MUXX8wb37JlCwFA1q1bRwiRBRcA8t3vfrfo84uJpa9//esjvqZMJkPS6TSZOXMmueOOOwqOP/AzmmPw36CpqYkAyBO1hBCyadMmAoD8v//3/5Sx008/nQAgmzZtytt2zpw55Nxzzy041v/93/8RAKSpqWnE10I5+tBlOMpxyec///m8+wsWLAAAtLa2ApDN18FgEFdffTUymYxykyQJn/vc57Bly5a8JbHBNDY2YufOnbjlllvw5ptvHnZmU3NzM77yla/A4/FApVJBo9Hg9NNPByBnUI3EX//6VzAMg6997Wt58/d4PFi4cOGwWWHJZBJ///vfcemll8JoNOY9//zzz0cymcSHH34IADjvvPPg8Xjw5JNPKs9/88030dXVheuuu04Z+8c//oEzzzwTVVVVece65pprEI/Hj7kxed++fejq6sJVV10Flu3/mjOZTPjiF7+IDz/8EPF4PO85xT4zyWQSfr9/2GN1dXXB5XIVjOt0Orz00kvYs2cPfvnLX+KKK65AIBDAf//3f6OhoUFZrvrggw8QiURwyy23jMlXM3fuXCxcuDBv7Ctf+QoikYiSUVVXV4cLL7wQ69atU7xSzz77LHp7e8ec5QaM/H82HH/9619hs9lw0UUX5X0GFy1aBI/Ho3yG3333XQDAl7/85bznX3bZZVCri9tuv/jFLxaMZTIZ3HvvvZgzZw60Wi3UajW0Wi32798/qv+5Yvzzn/8EgLylQED+fmhoaChY0vd4PGhsbMwbW7BgQdH3K/eZ6uzsHNPcKOMLNXhTjkscDkfefZ1OB0A2ewKAz+cDIH/hDkUwGATHcUUfu+uuu8BxHJ5++mk8/vjjUKlUOO2003D//fdj2bJlw84tFovh1FNPhV6vx89+9jPMmjULRqMR7e3t+MIXvqDMcTh8Ph8IIXC73UUfr6urG/K5vb29yGQyWLt2LdauXVt0m56eHgCAWq3GVVddhbVr1yIUCsFms2H9+vUoKyvDueeem7fPsrKygv2Ul5crjx9Lcscbak6SJKGvrw9Go1EZH+kzMxSJRGLIvwMANDQ0oKGhAYDsM3vooYdw55134oc//CH++Mc/Kv6csRqHPR7PkGMD3/dvfetbOPPMM7Fhwwacc845ePTRR3HSSScdUQbhWN8zQP4Mh0IhaLXaoo/nPoO51zD4PVar1QXHz1Hs737nnXfi0UcfxXe/+12cfvrpsNvtYFkWN9xww6jmW4yRPmeDRVCx+ep0uqLH1+v1AEb3XlKOPlQsUU5ISktLAQBr164dMotquBOgWq3GnXfeiTvvvBOhUAhvv/02/t//+38499xz0d7enncSHsw//vEPdHV14Z133lGiSQAOq8RAaWkpGIbB+++/r5ygBlJsLIfdbodKpcJVV12FW2+9teg2tbW1yu/XXnstHnjgAfzhD3/A5Zdfjr/85S/49re/DZVKpWzjcDjQ3d1dsJ+uri5lvkOh1+uRSqUKxnMny7GQOykNNSeWZWG328e8/4GUlpaOugwAwzC444478JOf/ASffPIJADm7E0CBIXi0eL3eIccGnpw/+9nPYt68eXjkkUdgMpmwbds2PP3002M65nhQWloKh8OBN954o+jjuQzC3Gvw+Xx52YaZTGZIEV4sQvf000/j61//Ou6999688Z6eHthstrG8hLzP2WCx29XVNeznfiRyn6kj2Qdl/KBiiXJCsmrVKthsNuzZs+eIliEAwGaz4bLLLkNnZye+/e1vo6WlBXPmzBnyKjv3RT5Y0DzxxBMF+x64D4PBoIxfeOGF+PnPf47Ozs6C5YmRMBqNOOOMM7B9+3YsWLBgyCv7HA0NDVixYgWefPJJiKKIVCqFa6+9Nm+bM888Ey+99BK6urqUaBIAPPXUUzAajcOm9U+bNg1+vx8+n08RqOl0Gm+++WbBtkNdhQ9m9uzZqKiowLPPPov/+I//UN5znufx4osvKhly40F9fX3R2k/d3d1FIw5dXV2IRCJYunQpAODkk0+G1WrF448/jiuuuOKwl+J2796NnTt35i3FPfvsszCbzQVRo9tvvx0333wzwuEw3G43vvSlLx3WscbCUH+zCy+8EH/4wx8giiJWrFgx5PNPO+00AHIG6cDX88ILLyCTyYx6HgzDFPzPvfbaa+js7MSMGTPy5guMLqLz2c9+FoAsxHJZdACwZcsWNDU14fvf//6o5zeY5uZmsCyL2bNnj3kflPGDiiXKCYnJZMLatWtx9dVXIxgM4rLLLoPL5UIgEMDOnTsRCATw2GOPDfn8iy66CPPmzcOyZcvgdDrR2tqKhx56CDU1NZg5cyYAYP78+QCAhx9+GFdffTU0Gg1mz56Nk08+GXa7HTfffDN+/OMfQ6PR4JlnnsHOnTsLjpPbx/3334/zzjsPKpUKCxYswKpVq3DjjTfi2muvxUcffYTTTjsNHMehu7sb//rXvzB//nx885vfHHL+Dz/8ME455RSceuqp+OY3v4lp06YhGo3iwIEDePXVV/GPf/wjb/vrrrsON910E7q6unDyyScXfIH/+Mc/xl//+lecccYZ+NGPfoSSkhI888wzeO211/CLX/wCVqt1yLlcfvnl+NGPfoQrrrgC//mf/4lkMok1a9ZAFMWi78c777yDV199FWVlZTCbzUVPJizL4he/+AW++tWv4sILL8RNN92EVCqFBx54AKFQCD//+c+HnM/h8pnPfAa//e1v8emnn2LWrFnK+I033ohQKIQvfvGLmDdvHlQqFfbu3Ytf/vKXYFkW3/3udwHIn8UHH3wQN9xwA8466yx84xvfgNvtxoEDB7Bz50488sgjwx6/vLwcn//853H33XejrKwMTz/9NDZs2ID777+/QBB+7Wtfw1133YX33nsPP/jBD0YUyuPB/Pnz8ec//xmPPfYYli5dCpZlsWzZMlxxxRV45plncP755+Nb3/oWGhsbodFo0NHRgX/+85+4+OKLcemll2Lu3Lm48sor8eCDD0KlUuGzn/0sdu/ejQcffBBWqzXPkzYcF154IdavX4/6+nosWLAAW7duxQMPPFAQEZo+fToMBgOeeeYZNDQ0wGQyoby8PO8iIMfs2bNx4403Yu3atWBZFueddx5aWlrwwx/+EFVVVUdUWPLDDz/EokWLxi0CSjlCJthgTqEcNqPJhvvTn/6UN14sC4sQQt59911ywQUXkJKSEqLRaEhFRQW54IILCp4/mAcffJCcfPLJpLS0lGi1WlJdXU2uv/560tLSkrfdXXfdRcrLywnLsnnZWh988AE56aSTiNFoJE6nk9xwww1k27ZtBXNMpVLkhhtuIE6nkzAMU5Bd99vf/pasWLGCcBxHDAYDmT59Ovn6179OPvroo+HfxOx7ct1115GKigqi0WiI0+kkJ598MvnZz35WsG04HCYGg4EAIP/3f/9XdH8ff/wxueiii4jVaiVarZYsXLiw4P0e6u/w+uuvk0WLFhGDwUDq6urII488UjT7a8eOHWTVqlXEaDQSAOT0008nhBQvHUAIIS+//DJZsWIF0ev1hOM4cuaZZ5J///vfedvkjjMwzZuQ/syqkbIZw+EwMZlMBdl0b775JrnuuuvInDlziNVqJWq1mpSVlZEvfOELedliA9+D008/nXAcR4xGI5kzZ05e2YWhsuEuuOAC8sILL5C5c+cSrVZLpk2bRv73f/93yPlec801RK1Wk46OjmFf10AwRDbcaP7PgsEgueyyy4jNZlM+wzkEQSD/8z//QxYuXEj0ej0xmUykvr6e3HTTTWT//v3Kdslkktx5553E5XIRvV5PVq5cSTZu3EisVmteJlvub7Zly5aC19DX10euv/564nK5iNFoJKeccgp5//33yemnn658jnI899xzpL6+nmg0GgKA/PjHPyaEFP8biKJI7r//fjJr1iyi0WhIaWkp+drXvqaUG8hx+umnk7lz5xbMq1g2aDQaJUajsSDblTJxMIQcZhlZCoVCoeSxevVq/P3vf8fu3buPaf+2adOmYd68efjrX/86qu3T6TSmTZuGU045BX/84x+P8uyOLh988AFWrVqFZ555Bl/5ylcmejrjym9+8xt861vfQnt7O40sTRLoMhyFQqEcIT/4wQ/w1FNP4cUXXxw2w3KiCAQC2LdvH5588kn4fD5873vfm+gpHRYbNmzAxo0bsXTpUhgMBuzcuRM///nPMXPmTHzhC1+Y6OmNK5lMBvfffz/uuusuKpQmEVQsUSgUyhHidrvxzDPPoK+vb6KnUpTXXnsN1157LcrKyrBu3bpJ13R6JCwWC9566y089NBDiEajKC0txXnnnYf77rtPSbE/Xmhvb8fXvvY1fOc735noqVAGQJfhKBQKhUKhUIaBVvCmUCgUCoVCGQYqligUCoVCoVCGgYolCoVCoVAolGGYUgbv9957Dw888AC2bt2K7u5uvPTSS7jkkkuG3D5XCG3Hjh1IpVKYO3cu7r777ryeVuvXry+oRgzI1VtHaxyUJAldXV0wm83HNG2YQqFQKBTK2CGEIBqNory8fNgCp1NKLPE8j4ULF+Laa68t2lV6MO+99x7OPvts3HvvvbDZbHjyySdx0UUXYdOmTVi8eLGyncViUTqA5zicDIuurq6CbusUCoVCoVCmBu3t7cM2s55SYum8887DeeedN+rtH3roobz79957L1555RW8+uqreWKJYZiinbtHS67hY3t7OywWy5j3Q6FQKBQK5dgRiURQVVWlnMeHYkqJpSNFkiREo1GUlJTkjcdiMdTU1EAURSxatAg//elP88TUYFKpVF6X9Gg0CkCOUFGxRKFQKBTK1GIkC80JZfB+8MEHwfN8Xpf2+vp6rF+/Hn/5y1/w3HPPQa/XY9WqVdi/f/+Q+7nvvvtgtVqVG12Co1AoFArl+GXKFqVkGGZEg/dAnnvuOdxwww145ZVXcNZZZw25nSRJWLJkCU477TSsWbOm6DaDI0u5MF44HKaRJQqFQqFQpgiRSARWq3XE8/cJsQz3/PPP4/rrr8ef/vSnYYUSALAsi+XLlw8bWdLpdNDpdOM9TQqFQqFQKJOQ434Z7rnnnsM111yDZ599FhdccMGI2xNCsGPHDpSVlR2D2VEoFAqFQpnsTKnIUiwWw4EDB5T7hw4dwo4dO1BSUoLq6mrcdddd6OzsxFNPPQVAFkpf//rX8fDDD2PlypXwer0AAIPBAKvVCgC45557sHLlSsycORORSARr1qzBjh078Oijjx77F0ihUCgUCmXSMaUiSx999BEWL16sZKrdeeedWLx4MX70ox8BALq7u9HW1qZs/8QTTyCTyeDWW29FWVmZcvvWt76lbBMKhXDjjTeioaEB55xzDjo7O/Hee++hsbHx2L44CoVCoVAok5Ipa/CeTIzWIEahUCgUCmXyMNrz95SKLFEoFAqFQqEca6hYolAoFAqFQhkGKpYoFAqFQqFQhoGKJQqFQqFQKJRhoGKJQqFQKBQKZRioWKJQKBQKhTIpIYQgFecR8nYjyccmbB5TqiglhUKhUCiUqQmRJCTjPBKRCJKxCBLRCBLRKBLRCJLRQfdj/T8lUQQAfO6WOzD39DMnZO5ULFEoFAqFQjksJFHMCpooElnhk8wKndwtGYsiEYkgkRU+qVgMhEhjOp5ap4MoCOP8Kg7j+BN2ZAqFQqFQKBOOmBGQiEbl6E4uojOk8JHvp3h+zMfTGgwwmC3QmywwWCwwmMzyfbMZBrMVBrMZ+uxYblyjndjm9VQsUSgUCoVynJBJp/MFjrK0Fe4XQFnhk1sKSycSYz6ejuNkUZMVPgNFTr8AkgWR3myBwWyGSq0Zx1d8bKBiiUKhUCiUSQYhBJlUqj+6ExvG2zMg4pNJpcZ2QIbpFzom8wjCx6JEf1iVanxf+CSFiiUKhUKhUI4ihBCkE4l8sROLFhE+kTyPz1g9OgzL9gscRfDklros+fdzESEjB4alCfJDQcUShUKhUCijhEgSUvE4EtFwQeZWntcnK3xyJmhJzIzpeCq1Ol/kmMx53p6CiI/FAq3BCIZhxvmVn9hQsUShUCiUExJJEpGMxYYVOYMjPslodOwZXVrdED6e/kiPvARmlSNCFgs0Oj0VPpMAKpYoFAqFMuURM5n+2jyDhE9O5CSi4QHLX1G5yCEhYzqeRm8YtJxlzmZ2FUZ65KUwMzQ6/Ti/asqxgoolCoVCoUwqMoIwrJ8nWWB6jiIVH3squ87IFUR8ZJHTH/UZmOauN1ug1ky9jC7K2KFiiUKhUChHDSGVHFCluT+607/UVZjmLiTHmMrOMNBzpqI+nsFG51w0SG8yQ6Wmp0LK8NBPCIVCoVBGhBACIZkobE+RV8snUlDYMJMeWyo7w7KFmVwFRQwHRn7M0JtMYNkTI5WdcmyhYolCoVBOMHLNSYubmgdUbY5G8+r7iJmxZXSxKvWAJayhIj75tXx0BiNNZadMGqhYolAolCkMkSQk+diQtXqKFTEc2Jz0cFFrtNAr0R0z9Gar4vEpFvExmC3Q6A00o4sypaFiiUKhUCYJec1Jh/D2DI74HElzUo1OXxDdGamIIc3oopyIULFEoVAoR4G85qR5/bii+QUNByyFHVlzUmPx6E6RWj56sxkGkwVqrXYcXzGFcvxCxRKFQqGMgJBO5XVhH9yPq/+x/qWwI2lOqudMhRGfASntebV8zBboTaYp2ZyUQpkqULFEoVBOGAghEFLJPOEzuAN7sYjPWJuTMgwLvclUdDmraBFDswV6znTCNCelUEZCJASvBcJ4ot2PX8+bhjLdxERDqViiUChTErk5aXyIpa7Bwqf/8bE2J2VVqmG6sA9oUZFLZTfT5qQUylhJSRJe8Pbh0TY/mhPyxcr/tffgRzPKJ2Q+VCxRKJQJh0gSknFeaUPRv9QVzqvZk2dyPoKMLpVGM7SfZ4haPloDzeiiUI42fEbE77t68URHAN0p+cLGplbhuspSXF/hnLB5UbFEoVDGlYHNSfsztwbX8cmP+CSPIKNLrdMpdXv6l7OKC5/cTa3TUeFDoUwigkIGv+kI4LcdPejLyBdBHq0GN1c58bVyB0zqiV2apmKJQqEMycDmpIOFT16PrgGm52ScH3NzUq3BUCByhitiqDebodHqxvlVUyiUY0VXMo3H2wP4fVcvEpJ8wVRr0OK2ajcu89ihmyTL2FQsUSgnCJl0GolYkcytvPYU+d6fdCI+5uPpOG5okVO0iKGZZnRRKCcIB+NJPNLmxwvePgjZi6t5JgNW17hwodMG1SSL/FKxRKFMQeTmpEUMzNFoYQHDrPARUsmxHYxh+oWO0o29iNHZZIbBbFX6dNGMLgqFMpid0TjWtvrwWiCMXPz5JBuH1dVunFFinrTL41QsUSgTSH9z0uKZW8XGkpEIMkJ6TMdjWHZUlZr1pv7fdRxHm5NSKJQxQwjBv0MxrG31492+qDJ+jsOC22vcWGblJnB2o4OKJQplnMg1Jx0qcyvP9zNgqUsSx9acVKVW51Vp7k9lt+ZXah5gftYZuUl75UahUI4vJELwVk8Ea9p82BaRl/RVDHCJy47bql1oMBkmeIajh4olCqUIuYyu5FDRnSLNSRPRCIg0xowurS6/Zk+RIoZ5tXwsco8uKnwoFMpkQ5AIXvb34ZE2P/bx8vK/jmVwZZkD36xyosYw9ZIyqFiiHPdkBKHfxKwULIzm9ejKiZ3xyOjS6A2FlZoLihgOND2baXNSCoUy5UmIEp7t7sVj7X50JOUaSWYVi2sqSnFjlRNO7dRN4KBiiTJl6Pf3DM7i6u/HNdjgnIxGx25sBqAzcgWVmocrYqg3W6DWTN0vBAqFQjlcwkIG6zt78auOAHoF2VZQqlHjxionrqkohWWCaySNB1QsUSYESRKR4vkBGVyRgrYVhcUMo2P29zAsm9+KwlQY+cmL+tCMLgqFQhkWf0rArzoC+F1nD6KibEGo1GtwS5ULV5Y5YFBNjhpJ4wEVS5QjZuAyV3Kg0Blsbla8PlEk+diYl7nUGi30So2ewcIn15drkLHZYKQ9uigUCmUcaE2k8GibH897g0hJ8vf4bE6P1dUuXOyyQ8Mef17KKSWW3nvvPTzwwAPYunUruru78dJLL+GSSy4Z9jnvvvsu7rzzTuzevRvl5eX4r//6L9x8881527z44ov44Q9/iIMHD2L69On47//+b1x66aVH8ZVMTnId2fPaUhT1+QwUQVEIycSYj6k1GPOWsPKyukz9P6m/h0KhUCaWplgCa9v8eMXfBzF7rbvUYsTtNW6c7bCAPY4TTqaUWOJ5HgsXLsS1116LL37xiyNuf+jQIZx//vn4xje+gaeffhr//ve/ccstt8DpdCrP37hxIy6//HL89Kc/xaWXXoqXXnoJX/7yl/Gvf/0LK1asONov6ahBJAlJPpa/xDWgMamyxKW0sJCjPmJmjMtcDAu9yZRXjbmgYvMg4aM3maFST6mPIIVCoZxwbAnzWNPqw4beiDL2GbsZq2tcONlmOiGychlCxrgWMsEwDDNiZOm73/0u/vKXv6CpqUkZu/nmm7Fz505s3LgRAHD55ZcjEongb3/7m7LN5z73Odjtdjz33HOjmkskEoHVakU4HIbFYhnbCxoGMSP0+3kGLXH13x8ogqJIHUFjUpVGk5++rvTnshaKoKwA0hnpMheFQqEcLxBC8I9gFGtbffgwzAMAGAAXOm1YXePCArNxYic4Toz2/H1cX9Zv3LgR55xzTt7Yueeei9/85jcQBAEajQYbN27EHXfcUbDNQw89NOR+U6kUUqmUcj8SiQy57ZHwwP03QdzVDk1m7CJErddDbzLBaLHKYqdA6AzK7jLRjuwUCoVyoiISglf9ITzS5scnMdlioWEYfMljx63VLkw3npg2iONaLHm9Xrjd7rwxt9uNTCaDnp4elJWVDbmN1+sdcr/33Xcf7rnnnqMy54EIYhq6rFCSQJDWSEhpJSS1IlIaSb5pRXks93t2m9zv0gCdpWbUMGgM4DQcODUHLsPByBvBpTlwEQ4Gdfax7M2oNubf1xjzxrQq7VF/DygUCoVy9ElJEv7k7cOjbT4cSsjtlIwqFleVOXBTlRPl+hP7+/64FksACiIkuVXHgePFthkusnLXXXfhzjvvVO5HIhFUVVWNx3TzuObaH6I3GkBGx0LQEMTFOHiBBy/wiAtx8JkBv+fGM/GC+4mMfHWQIRlE01FE09ERjjw61KxaEV5GjTFPZA28P1h4DRZduTENS+sTUSgUyrEklhHxVFcvnmj3w5eWPat2tQrXVzpxXWUpSjTHvUwYFcf1u+DxeAoiRH6/H2q1Gg6HY9htBkebBqLT6aDTHf1y7eVldSgvqzvi/YiSiHgmrgir3O/DCa+B2w8UXrzAIyXKS5AZKYNwKoxwKnzEcwQALatVhNNAgTVYiA0WYQXCLCvG1Oxx/fGmUCiUMdObzuDXHQE82dmDUEYEAJTpNLi5yomvlTnAHQeFJMeT4/psctJJJ+HVV1/NG3vrrbewbNkyaLJVlk866SRs2LAhz7f01ltv4eSTTz6mcz2aqFgVzFozzFrzuOwvI2XACzwSmcSQoquYMFOEVyZfhAmSXBY/LaWRTqXRl+obl3nqVfqCKNZQwmso0cWp+39nGWpgp1AoU5vOZBqPt/vxdFcQiWwvyzqDDrdVu/BFjx06mqhTlCkllmKxGA4cOKDcP3ToEHbs2IGSkhJUV1fjrrvuQmdnJ5566ikAcubbI488gjvvvBPf+MY3sHHjRvzmN7/Jy3L71re+hdNOOw33338/Lr74Yrzyyit4++238a9//euYv76pgppVw6qzwqqzjsv+BFEYNto1pDAbJLxy+8hIcig5KSaRFJMIIjgu88x5ukwaU7+wUnPgtFyeqDJpTHnCbOD2ud/pkiOFQjmW7OeTeLTNjxd9fRCydpQFJgNW17hxvtMKFU3qGZYpVTrgnXfewRlnnFEwfvXVV2P9+vW45ppr0NLSgnfeeUd57N1338Udd9yhFKX87ne/W1CU8oUXXsAPfvADNDc3K0Upv/CFL4x6Xke7dADl8EiL6XxhNSi6VVSYDRBeg5clRSKO+xxzS46DI1kDhVae6FJzMGlNBcuQnIaDTkWzFykUSnF2ROJY2+bD64Ewcif7k20m3F7jwul28wn/3THa8/eUEkuTFSqWjl8IIUiJqbxoVywdKxBcI90G+73GExWjGlpoFRFXw4k0g9pAlxsplCkOIQT/DsWwptWH9/piyvi5pRbcXu3GUis3gbObXNA6SxTKOMAwDPRqPfRqPRwGxxHvT5CEPL/WkLcMDz7N50W4YkKswHAPACIRxy3LkQGjRLKKLSMOeVMXX4KkJnsK5dghEYI3esJY2+rH9qj8/aBigEtddtxW40I9Z5jgGU5d6DcZhXIM0bCacfN7SUQqFF6ZIlGtrNAanN04eHuJSCAgyn2MveWfQs5kX0xcHa7Xi9b1olCKI0gEf/b14ZE2H/bH5ei1nmVwZZkD36xyotpw9LO3j3eoWKJQpigsw8KkNcGkNR3xvgghSIrJkYXWKJchcxmOisk+eeQm+4F1vUYttHJerwGZjbnlxhPdq0GZ+sRFCc929+KxNj86U/L/nFnF4tqKUnyjygmnliaSjBdULFEoFDAMA4PaAIPagFJD6RHvTxAF8ALfL7Sy4mrwUuJwHq+cKFOKqg6s68Uf2fxYhlXKRQxnpB/KVD+41peKpTVpKMeOkJDB+s4e/F9HD3oFOfvXqVXjxkonrq4oheU4q5FEBAmJ3T0wzC0Fo5kYTyUVSxQKZdzRqDSwqWyw6W1HvK+BRVVHa6aPpWN5ZSUGijQCAolIiAkxxIQY/PAf8RwHtgpShNYwXq/BJnyT1qREvjQqGg2gFMeXEvBEewBPdfUgJso1kqr1WtxS7cLlnhIYVMdXcobg48Fv9iK+3Q8pnkHJFYBxkWtC5kLFEoVCmdSMZ1FVQkh+za6ckX5A6YjB/q68aNgg432uplcik0Aik0BPoueI56hhNcMLrQHiaiSvl16lp8uNxwEtiRTWtfnxvDeIlCQnsNdzeqyuduFilx1q9vj5G0tpEYldPeA3dyPd1p+0orLqMJG5+1QsUSiUEwaGkbP9jBojnHAe8f7SYjpPXB2O0Bq8fVJMApAzJvtSfeNSyT5XVmIspvpi29OyEseW3bEEHmn14RV/CFJ2bLmFw+oaF85yWMAeR0I43RkDv0WOIpFUtrYdC+jrHeBWeKCfaQczgaKQiiUKhUIZI1qVFiWqEpToS454X7k2QgVCq0iG40gmfF6QTV3jWVYCQFH/1pCm+mG8XrSK/fBsCsWwptWPvwcjytgZJWbcXuPGSit33EQLpVQG8R0B8Ju9EDr760GpSvTglnvALXVDZZkcWbBULFEoFMokYDzbCElEKmgRNNrCqcVM+Lkq9vGMXAE/kAgc8Rx1Kl3esuJovF5Fy09oOGhZ7ZQXEIQQ/D0YxdpWHzaFZbHLArjQZcPqahfmm40TO8FxghCCdHsU/GYvErsCIOlszEzFwDDXAW65B7rptgmNIhWDiiUKhUI5zmAZVhEVR8rgKvYDMxyHM9IPZbxPS2kAQEpMISWmxqV3o5pRK8uKh+v1KlbF/lgKr4xE8GoghLWtPuzh5aVYLcPgy54S3FLtQp3x+KiRJMWFbBSpG4I3royrnQZwyz0wLnFBZZocUaRiULFEoVAolCE5mlXsB4qrIYVWpnDZMbe9UlaCZBBJRxBJR0Y4+sgoVewHRrCG6eFYzOs1sLbXUGUlkqKEP3qDeLTNj9akLCCNKhZfL3fgpionynSTVziMFkII0i0ROaPt4x4gk40iqVkY55eCW+6BttYyJaKCVCxRKBQK5ZgxnlXsRUlEIpMY1kg/lMermDesoIr9OKBX6fMbX2ts8GqW4gC7AAnI7UcMjIBTjL0425KAS92FAwEO3UWiY1Olir3IC4hv84Hf7EUm0N8KQOMxylGkxS6wxqnlWaNiiUKhUChTEhWrOupV7Ic00xdZhhyuin0gnUbCvBwJ49kgrLw8ymZ6YYi+DkPsXewgKewYYY4aVlMQ4RpcnX40N6PaOO7LjUQiSDWHZC/S7l5AlPP8GQ0Lw0InuEYPtFXmKRFFKgYVSxQKhUI54RnvKvZpMQ1e4HEwFsFvuyN4rTeDFJGFgludxmkGH2arO5Gyl4MXPj/kMuTAKvaCJCCUCiGUCh3x/FiGHbJW1+E0zDYmdSC7ooh/5IPYm1T2r6kwgWv0wLjQCVY/9aXG1H8FFAqFQqFMMlqSEh5pi+DPvj5kCAAwWGA24PZqN85zWqE6jAhLRsrImYgDxNRo/V7F6n/lqthHhSiiQhQ++A7rtbGEwWK+AeeFTsGK6HyoIfuyEmwSW0qb8FH5pwjZ4+BiHLgtQ9f2Gsr7NRnLSlCxRKFQKBTKOLE9EsfaVh/+1hNGruD0KTYTbq9x41S7aUzLUGpWDYvWAovWcsTzK6hiP9hMP0zhVFUMWNBZi5X+uXCk+z1newzNeMP2L7xn2YYUmwZSALxjn6OW1RatzXVl/ZU4rfK0I34PxgIVSxQKhUKhHAGEELzfF8PaNh/e7+svrnheqRWrq11YYj3yEg7jxeFWsSciQXJfEPxmL5L7gsgpQMaghnGxE9plDiwrmYsG4bO4cbhiqYPM9LlG2QPFWkpMAQDSUhrpVLqgiv1Z1WeN+/sxWqhYolAoFAplDEiE4G89Yaxp9WFnVPYVqRngUrcdt1W7MZvTT/AMx04mmAS/xQt+qw9SJK2Ma2stMDWWwTDPAUYjL79xwLhUsc+VlShWlT6WjmGxa/ERH2OsULFEoVAoFMphkJYk/NnXh0fb/Ngfl6MhBpbBV8ocuLnahSr91EjxHwzJSEg09YLf7EXqQEiJIrGcGsalbnDLPdA4j14l8fEsKzHeULFEoVAoFMoo4EURz3YF8Xi7H50puTSARc3iugonrq8shVM7+YzJo0EIxMFv8SG+1QeJF5Rx3QwbuEYPDHMcYNQndhNlKpYoFAqFQhmGkJDBbzt78OuOAIKC3CfPpVXjxkonrq4ohVldvEr3ZIYIEhK7exDb5EX6UFgZZ81acMvc4Ja5oXYYJnCGkwsqligUCoVCKYI3JeCJdj+e6uoFL8qtOmr0Wtxa7cKXPSXQq6ZetEXw8XL7ke1+SPGMPMgA+ll2cI1l0NeXgFFNzcKRRxMqligUCoVCGcCheAqPtvnxR28QaSIbd+ZweqyuceMipw1qdmqJCSktIrGrB/zmbqTbosq4yqoDt9wN4zIP1Lbjo2Hv0YKKJQqFQqFQAHwSjWNtmx+v+kPItnxFo5XD6moXznJMjYavA0l3xsBvkaNIJCUvH4IF9PUOcCs80M+0g5liwm+ioGKJQqFQKCc0H4ZiWNPqwz+C/VGXM0ssuL3GhRW2I+87dyyRUhnEdwTAb/ZC6Oyv+aQq0YNb7gG31A2VZWpm600kVCxRKBQK5YSDEIINvRE80ubH5jAPAGABfN5lw+oaN+aapo65mRCCdHtUbmK7KwCSzsbFVAwMcx3glnugm26jUaQjgIolCoVCoZwwZCSCvwRCWNvqQxMvN37VMgwuLyvBLVUu1BqnjndHigvZKFI3BG9cGVc7DeCWe2Bc4oLKRKNI4wEVSxQKhUI57kmKEp73BrGuzY/WpFyRmlOxuLq8FDdVOeHWTY0aSYQQpFsickbbxz1AJhtFUrMwzi8Ft9wDbe3U81dNdqhYolAoFMpxSzQjYn1nD37VEUAgLafKl2hU+EalE9dWlMKmmRqnQZEXEN/mA7/Zi0wgoYxrPEY5irTYBdY4NQTfVGRqfEooFAqFQjkMAmkBv+7owZOdAUSy0ZcKnQbfrHbhK2UOGKdAjSQiEaSaQ7IXaXcvIMplDBgNC8NCJ7hGD7RVZhpFOgZQsUShUCiU44b2ZBqPtfnxbHcvkpIsLmYadbit2o0vuO3QTAGTsxhNg9/qA7/FC7E3qYxrKkzgGj0wLnSC1dPT97GEvtsUCoVCmfLs45NY2+rDS/6+XAAGi8xG3F7jwudKrWAnefSFSASp/X2IbfYi2RQEskKP0algXOQE11gGbcXUKmNwPEHFEoVCoVCmLNvCPNa0+fBGT0QZO81uwupqN06xmyb9ElUmnEJ8ixf8Rz6IoZQyrq02y01sFzjBaqde77njDSqWKBQKhTKlIITgvT65kOS/Q3LhRQbA+U4rbqt2Y7HFOLETHAEiEiT3BcFv9iK5LwhkI2GMQQ1usQtcowcaDzexk6TkQcUShUKhUKYEIiF4PRDG2jYfdkXljDA1A3zRXYJbq12YxekneIbDkwkmwW/xgt/qgxRJK+PaWgtMjWUwzHOA0dAo0mSEiiUKhUKhTGrSkoQXfH1Y1+bHgbi8VGVgGXy13IGbq1yo1E/ewoskIyHR1At+sxepAyElisRyahiXusEt90DjnNyRMAoVSxQKhUKZpPCiiGe6evF4ewBdKQEAYFWrcF1FKW6odMKhnbynMCEQB7/Fh/hWHyReUMZ1M2yyF2mOA4x68pcvoMhMub/UunXrUFtbC71ej6VLl+L9998fcttrrrkGDMMU3ObOnatss379+qLbJJPJIfdLoVAolKNHn5DB/xzyYtkHe/CjA13oSglwa9X40fRybD1pDr5bVzYphRIRJMR3+OF/Yhd8D25F7L0OSLwA1qyF+YwqeP5zGZw3zIdxgZMKpSnG5Pu0DcPzzz+Pb3/721i3bh1WrVqFJ554Aueddx727NmD6urqgu0ffvhh/PznP1fuZzIZLFy4EF/60pfytrNYLNi3b1/emF4/ude+KRQK5XijO5XG4+0B/L6rF3FRLiQ5zaDFrdUufMldAv0kLSQp+Hi5/ch2P6S4XCUcDKCfZQfXWAZ9fQkY1eTOyqMMz5QSS//7v/+L66+/HjfccAMA4KGHHsKbb76Jxx57DPfdd1/B9larFVarVbn/8ssvo6+vD9dee23edgzDwOPxHN3JUygUCqUozfEUHm3z4Y/ePghENvXMNemxutqNi1w2qCZh+r+UFpHY1QN+czfSbVFlXGXVgVvuhnGZB2rb1GnKSxmeKSOW0uk0tm7diu9973t54+eccw4++OCDUe3jN7/5Dc466yzU1NTkjcdiMdTU1EAURSxatAg//elPsXjx4iH3k0qlkEr118OIRCJDbkuhUCiU4nwcjWNNqx9/DYRyvmestHJYXePGZ0smZxuPdGcM/BY5ikRSojzIAvp6B7gVHuhn2sFMgSrhlMNjyoilnp4eiKIIt9udN+52u+H1ekd8fnd3N/72t7/h2WefzRuvr6/H+vXrMX/+fEQiETz88MNYtWoVdu7ciZkzZxbd13333Yd77rln7C+GQqFQTlAIIdgY4rG2zYd/BvsjMmc7LFhd7UKjbfJVqZZSGcR3BMBv8ULoiCnjqhI9uOUecEvdUFkmb0Ye5ciZMmIpx+ArDULIqK4+1q9fD5vNhksuuSRvfOXKlVi5cqVyf9WqVViyZAnWrl2LNWvWFN3XXXfdhTvvvFO5H4lEUFVVdRivgkKhUE4sJELwdm8Ea1p9+CgSByBnGF3ituO2ahfmmAwTO8FBEEKQbo/KTWx3BUDSsocKKgaGuQ5wyz3QTbfRKNIJwpQRS6WlpVCpVAVRJL/fXxBtGgwhBL/97W9x1VVXQasdXv2zLIvly5dj//79Q26j0+mg09G1aAqFQhmJjETwsr8Pj7T5sZeXs4x1LIPLPXIhyRrD5PouleKCHEXa3A3BG1fG1U4DuOUeGJe4oDLRKNKJxpQRS1qtFkuXLsWGDRtw6aWXKuMbNmzAxRdfPOxz3333XRw4cADXX3/9iMchhGDHjh2YP3/+Ec+ZQqFQTlQSooQ/eINY1+ZHe1KuVm1Ssbi6ohQ3Vjrh1mkmeIb9EEKQbonIGW0f9wCZbBRJzcA43wluuQfaWsuk9FBRjg1TRiwBwJ133omrrroKy5Ytw0knnYRf/epXaGtrw8033wxAXh7r7OzEU089lfe83/zmN1ixYgXmzZtXsM977rkHK1euxMyZMxGJRLBmzRrs2LEDjz766DF5TRQKhXI8EcmI+F1nD55oD6BHkNPoHRo1bqx04poKB6yayXPaEXkB8W0+8Ju9yAQSyrjabYSp0QPjYhdY4+QRdZSJY/J8akfB5Zdfjt7eXvzkJz9Bd3c35s2bh9dff13Jbuvu7kZbW1vec8LhMF588UU8/PDDRfcZCoVw4403wuv1wmq1YvHixXjvvffQ2Nh41F8PhUKhHC8E0gJ+1R7A+s4eRLM1kip0GtxS7cKVZQ4YJ0mNJCIRpJpDshdpdy8gynl4jIaFYaETXKMH2qrJmYlHmTgYQggZeTPKcEQiEVitVoTDYVgslomeDoVCoRwz2hIprGsP4A/dvUhK8ulkllGP22pcuNRlh2aSGKDFaBr8Vh/4LV6Ivf0dGjQVJnCNHhgXOsHqp1T8gDIOjPb8TT8ZFAqFQjlsmmIJPNrmx0v+vlxwBkssRtxe7cY5pRawkyAyQySC1P4+xDZ7kWwKAlkxx+hUMC5ygmssg7Zi8pUqoEw+qFiiUCgUyqj5KMxjTasPb/X2F+M93W7G6hoXVtlMk2L5KhNOIb7FC/4jH8RQfwFhbbVZbmK7wAlWq5rAGVKmGlQsUSgUCmVYCCF4JxjFmjYfNoZ4AAAD4HynFaur3VhkMU7sBAEQkSC5Lwh+sxfJfUHkSoIzBjW4xS5wjR5oPNzETpIyZaFiiUKhUChFEQnBa4EwHmn1YVdMzhbTMAwu89hxS5ULM7mJbzieCSbBb/GC3+qDFEkr49paC0yNZTDMc4DR0CgS5cigYolCoVAoeaQkCS94+/Bomx/NCXkZy8CyuKrcgZuqnKjQT2xRRpKRkGjqBb/Zi9SBkBJFYjk1jEvd4JZ7oHFOfLSLcvxAxRKFQqFQAAB8RsTvu3rxREcA3SkBAGBTq3BdZSmur3DCoZ3YU4YQiIPf4kN8qw8SLyjjuhk22Ys0xwFGPTlKFFCOL6hYolAolBOcoJDBbzoC+G1HD/oyIgDAo9Xg5ionvlbugEk9cctYRJCQ2N2D2CYv0ofCyjhr1oJb5ga3zA21Y3L1laMcf1CxRKFQKCcoXck0Hm8P4PddvUhIciHJWoMWt1W7cZnHDh07cVEawcfL7Ue2+yHF5UrgYAD9LDu4xjLo60vAqCY+845yYkDFEoVCoZxgHIwn8UibHy94+yBk6xLPMxmwusaFC502qCYo/V9Ki0js6gG/uRvptqgyrrLqwC13w7jMA7VtcjXepZwYULFEoVAoJwg7o3GsbfXhtUA454nGSTYOq6vdOKNk4lp8pDtj4LfIUSSSkpcBwQL6ege4FR7oZ9rBTJJK4JQTEyqWKBQK5TiGEIJ/h2JY2+rHu3390ZpzHBbcXuPGMuvE1B6SUhnEdwTAb/FC6Igp46oSPbjlHnBL3VBZJjbrjkLJQcUShUKhHIdIhOCtngjWtPmwLRIHAKgY4BKXHbdVu9BgOvamaEII0u1RuYntrgBIWvZJQcXAMNcBbrkHuuk2GkWiTDqoWKJQKJTjCEEieNnfh0fa/NjHyw1jdSyDK8sc+GaVEzWGY+/5kRIZxLf7wW/2QvDyyrjaaQC33APjEhdUJhpFokxeqFiiUCiU44CEKOHZ7l481u5HR1KuQWRWsbimohQ3Vjnh1GqO6XwIIUi3ROSMto97gEw2iqRmYJzvBLfcA22tZVL0kqNQRoKKJQqFQpnChIUM1nf24lcdAfQKcop9qUaNG6ucuKaiFJZjXCNJ5AXEt/nAb/YiE0go42q3EaZGD4yLXWCNx1a4UShHChVLFAqFMgXxpwT8qiOA33X2ICrKUZsqvRa3VLtwhacEBtWxq5FEJIJUc0j2Iu3uBUQ5147RsDAsdIJr9EBbNXHZdhTKkULFEoVCoUwhWhMprGvz4w/eIFKSLEpmc3qsrnbhYpcdmmNojhajafBbfeC3eCH2JpVxTYUJXKMHxoVOsHp6mqFMfeinmEKhUKYATbEE1rb58Yq/Lxe4wVKLEbfXuHG2wwL2GEVtiESQ2t+H2GYvkk1BICvYGJ0KxkVOcI1l0FaYjslcKJRjBRVLFAqFMonZEuaxptWHDb0RZeyMEjNWV7txko07ZktbmXAK8S1e8B/5IIZSyri22iw3sV3gBKuduB5yFMrRhIolCoVCmWQQQvCPYBRrW334MCyn2jMALnTasLrGhQVm47GZh0iQ3BcEv9mL5L4gcmW/GYMa3GIXuEYPNJ6JKWpJoRxLqFiiUCiUSYJICF71h/BImx+fxORMMg3D4EseO26tdmG6UX9M5pEJJsFv8YLf6oMUSSvj2loLTI1lMMxzgNHQKBLlxIGKJQqFQplgUpKEP3n78GibD4cSsjgxqlhcVe7ATZVOlOuPfsFGkpGQaOoFv9mL1IGQEkViOTWMS93glnugcR6biBaFMtmgYolCoVAmiFhGxO+7evFEewDetFxI0q5W4fpKJ66rLEWJ5uh/RQuBOPgtPsS3+iDxgjKum2GTvUhzHGDUx64MAYUyGaFiiUKhUI4xvekMft0RwJOdPQhlRABAmU6Dm6uc+FqZA9xRLiRJBAmJ3T2IbfIifSisjLNmLbhlbnDL3FA7jn3vOAqlGJIkoaurC6WlpdDrj81S9GCoWKJQKJRjRGcyjcfb/Xi6K4iEJBeSrDPocFu1C1/02KFjj24ER/DxcvuR7X5IcbnaNxhAP8sOrrEM+voSMCpaOJIysRBCEAgEcOjQITQ3N6OlpQWpVApf+tKXMHfu3AmZExVLFAqFcpTZzyfxaJsfL/r6IBDZDLTAZMDqGjfOd1qhOorp/1JaRGJXD/jN3Ui3RZVxlVUHbrkbxmUeqG3HvrkuhTKQcDiM5uZmRSDFYrG8x3U6HeLx+ATNjoolCoVCOWrsiMSxts2H1wPhnF8aJ9tMuL3GhdPtR7f9R7ozBn6LHEUiKXmpDyygr3eAW+GBfqYdzDGs9k2hDCQej+PQoUOKOAoGg3mPq9VqVFVVoa6uDrW1tSgrK4NKNXEZmFQsUSgUyjhCCMG/QzGsafXhvb7+q+NzSy24vdqNpdajV5dISmUQ3xEAv8ULoaP/2KoSPbjlHnBL3VBZjn5mHYUymHQ6jdbWVkUceb3evMcZhkF5ebkijqqqqqDRTJ6Gy1QsUSgUyjggEYI3esJY2+rH9qi8XKBigEtddtxW40I9d3QM04QQpNujchPbXQGQtOyFgoqBYa4D3HIPdNNtNIpEOaaIoojOzk40NzejubkZHR0dkLI+vRxOp1MRR9OmTZsw8/ZooGKJQqFQjgBBIvizrw+PtPmwPy63AdGzDK4sc+CbVU5UG46OH0hKZBDf7ge/2QvByyvjaqcB3HIPjEtcUJloFIlybJAkCX6/X/Edtba2Ip1O521jtVpRW1urCCSz2TxBsz18qFiiUCiUMRAXJTzb3YvH2vzoTMn1icwqFtdWlOIbVU44teO/hEAIQbolIme0fdwDZLJX6moGxvlOcMs90NZajlm/OMqJCyEEfX19ijg6dOhQgQHbYDDkiaOSkpIp+9mkYolCoVAOg7CQwZOdPfi/jh70CnL6vVOrxo2VTlxdUQrLUaiRJPIC4tt84Dd7kQkklHG12whTowfGxS6wxsnj76Acn8RisbyMtXA4nPe4RqNBTU2NIo7cbjfYo1wO41hBxRKFQqGMAl9KwBPtATzV1YOYKEd0qvVa3FLtwuWeEhhU43tSIBJBqjkke5F29wKinE/HaFgYFjrBNXqgrTq6GXWUE5tkMonW1lZFIPn9/rzHWZZFZWWlEj2qqKiAWn18yorj81VRKBTKONGSSGFdmx/Pe4NISbJgqef0WF3twsUuO9TjbJwWo2nwW33gt3gh9iaVcU2FCVyjB8aFTrB6+tVNGX8EQUBHR4cijjo7O0EIydvG4/Eo4qi6uho63YlRo4v+x1EoFEoR9sQSWNvqwyv+EHI5PMstHFbXuHCWwwJ2HCM6RCJI7e9DbLMXyaYgkBVljE4F4yInuMYyaCtM43Y8CgWQTdnd3d2KOGpra0Mmk8nbpqSkRBFH06ZNA8cdvdIXkxkqligUCmUAm0IxrG3z4+3eiDJ2RokZt9e4sdLKjeuyVyacQnyLF/xHPoihlDKurTbLTWwXOMFqJ64QH+X4ghCCnp6evDYiyWQybxuTyZRnyrbZbBMz2UkGFUsUCuWEhxCCvwejWNvqw6awnIbPArjQZcPqahfmm43jdyyRILkvCH6zF8l9QeRKezMGNbjFLnCNHmg8J+bVO2X8CYfDijg6dOgQotFo3uM6nQ7Tpk1TxJHT6aQ+uCJMObG0bt06PPDAA+ju7sbcuXPx0EMP4dRTTy267TvvvIMzzjijYLypqQn19fXK/RdffBE//OEPcfDgQUyfPh3//d//jUsvvfSovQYKhTI5yEgEfw2EsLbNh90x+QpbyzD4sqcEt1S7UGccPz9GJpgEv8ULfqsPUqS//oy21gJTYxkM8xxgNDSKRDky4vE4WlpaFHHU29ub97hKpUJ1dbUSPZroNiKjIh4E2jcDFUsBk3NCpjClxNLzzz+Pb3/721i3bh1WrVqFJ554Aueddx727NmD6urqIZ+3b98+WCwW5b7T2f9mb9y4EZdffjl++tOf4tJLL8VLL72EL3/5y/jXv/6FFStWHNXXQ6FQJoakKOGP3iDWtfvRkpCFi1HF4uvlDtxc5YJHNz5p+CQjIdHUC36zF6kDISWKxHJqGJe6wS33QOMcv6gV5cQjnU6jra1NiR51d3fnPZ5rI5ITR5OtjUgBkgQE9gLtm4COLfLP3gPyY1/4P2DBlydkWgwZbHWfxKxYsQJLlizBY489pow1NDTgkksuwX333VewfS6y1NfXN+S66+WXX45IJIK//e1vytjnPvc52O12PPfcc6OaVyQSgdVqRTgczhNlFAplchHLiPhdVy+eaPfDn5aNrCUaFa6vcOK6ylLYNeNz/SgE4uC3+BDf6oPEC8q4boZN9iLNcYBRHx/1ZyjHllwbkZw46ujogCiKeduUlpairq4OdXV1qKmpgcFwdFrtjAvJMNDxkRw56tgs/56KFG5XOgs49T+AhZeP6+FHe/6eMpGldDqNrVu34nvf+17e+DnnnIMPPvhg2OcuXrwYyWQSc+bMwQ9+8IO8pbmNGzfijjvuyNv+3HPPxUMPPTTk/lKpFFKpfjNmJFLkD0uhUCYNPekMftMRwG87exDOyCeWcp0G36xy4SvlJeDGYRmCCBISu3sQ2+RF+lB/sT7WrAW3zA1umRtqxyQ+aVEmJbk2IjlxVKyNiMViUTxHtbW1k/einRA5StS+uT9y5G+CEnLNoeGAyqVA1QqgshGoXAYYSyZkyjmmjFjq6emBKIpwu9154263u6B7cY6ysjL86le/wtKlS5FKpfD73/8eZ555Jt555x2cdtppAACv13tY+wSA++67D/fcc88RviIKhXK06Uim8VibH8929yKRTcefYdTh1moXvui2QzsO1YUFHy+3H9nuhxTPpl0zgH6WHVxjGfT1JWBU1DBLGT3BYDDPlD1UG5Hc0tqkbSOSigFd27LiaLMsjhLBwu3s07LCaLn80zUHUE0ueTK5ZjMKBn8gCCFDfkhmz56N2bNnK/dPOukktLe343/+538UsXS4+wSAu+66C3feeadyPxKJoKqq6rBeB4VCOXp8yifxSJsPf/b1IZO9aF1gNuD2ajfOc1qhOsITi5QWkdjVA35zN9Jt/dlFKqsO3HI3jMs8UNtOjGJ9lCMnFovliaNQKJT3eK6NSE4cTco2IoQAodZ+YdS+CfDtBkj+EiHUeqB8CVC1vF8gmVwTM+fDYMqIpdLSUqhUqoKIj9/vL4gMDcfKlSvx9NNPK/c9Hs9h71On050wVUsplKnE9kgca1t9+FtPWAnsn2Iz4fYaN061m4746jvdGQO/RY4ikVT2JMAC+noHuBUe6GfawYxzRW/K8UeujUhOIBVrI1JRUaEsrVVWVk6+NiJCEujeIYuinEDi/YXbWSqBqsb+m3s+oNYe8+keKZPs3R8arVaLpUuXYsOGDXlp/Rs2bMDFF1886v1s374dZWVlyv2TTjoJGzZsyPMtvfXWWzj55JPHZ+IUCuWoQgjB+30xrG3z4f2+mDJ+XqkVq2tcWGI5sppFUiqD+I4A+C1eCB39+1eV6MEt94Bb6obKMvW+/CnHjkwmg/b2dkUcFWsj4na7FXFUU1Mz+S7Iw52yATsnjLp3ApKQvw2rAcoWyhGjquWy38hacdiHyogSWoNxHPDHcNAbRaQtApUvjlPOnYGTFpeNvIOjwJQRSwBw55134qqrrsKyZctw0kkn4Ve/+hXa2tpw8803A5CXxzo7O/HUU08BAB566CFMmzYNc+fORTqdxtNPP40XX3wRL774orLPb33rWzjttNNw//334+KLL8Yrr7yCt99+G//6178m5DVSKJTRIRGCv/WEsabVh53RBABAzQCXuu24rdqN2Zx+zPsmhCDdHpWb2O4KgKSzDU9UDAxzHeCWe6CbbqNRJEpRcm1EcuKoWBsRu92eZ8qeVG1EMmnA+3FWHG0C2rcAkY7C7ThXNmK0Qv5ZtgjQjP7/LpEWcTAQw8FADAf8MRzwRRHp5mHuS2EWYdEAFc6FCjrI/2cfN/UAVCyNzOWXX47e3l785Cc/QXd3N+bNm4fXX38dNTU1AIDu7m60tbUp26fTafzHf/wHOjs7YTAYMHfuXLz22ms4//zzlW1OPvlk/OEPf8APfvAD/PCHP8T06dPx/PPP0xpLFMokJS1J+LOvD4+2+bE/LmelGlgGXylz4OZqF6r0Y4/ySIkM4tv94Dd7IXh5ZVztNIBb7oFxiQsqE40iUfIhhKC3t1fxHB06dKigjQjHcYrnqK6ubnK1EYn58zPUurYDmfz5g1EBnnlytCgXObLVAKNY2g7F07IYyt72Z3/yoSTmQIUGqDAHKpwHFSxgAeRnjabVDFJOAxbOmpiClMAUq7M0WaF1liiUow8vini2K4jH2/3oTMnhf4uaxXUVTlxfWQqndmyF9gghSLdE5Iy2j3uATDaKpGZgnO8Et9wDba1lcmYbUSaMSCSiiKPm5uaCNiJarTavjYjL5ZocnyExA/h3D8hQ2wz0tRRuZ7DnZ6hVLAG0Q0e/CCHoDicVQZSLFh0MxNATS8MAYFZWFDVkb2UoNKlLKgasxwiuxgpdtRnaSjNUDv1Re++OuzpLFArlxCQkZPDbzh78uiOAoCCbql1aNW6sdOLqilKY1WOrkSTyAuLbfOA3e5EJJJRxtdsIU6MHxsUusMZJXOmYckxJJBJK1Ki5ubloG5GqqipFHJWXl0+ONiLxYLYSdjZy1LkNEPhBGzGAq0FeSstFjhzTi0aNBvqJDvhjOOiP4UBA/smn5f9PFYBasJgDFT4DFRrAoQ4sWBTuT+02QltphrZKvmncxklZsJWKJQqFMinxpgQ80e7HU1294EU52lOj1+LWahe+7CmBXnX4X6hEIkg1h2Qv0u5eQJQD64yGhWGhE1yjB9oq8+SIAFAmlHQ6jfb2djQ3NxdtIwIA5eXlijiqrq6e+DYikgT07Ov3GbVvAnr3F26ns8iFHnORo8plgN6at0mBnyh7a+nlIYj5C1LlYLASKsyFHovUGtSKDDRF1qxUVi20lWZossJIW2ECq58aMmRqzJJCoZwwHIqn8GibH3/0BpHOugTmcHqsrnHjIqcN6jGYqsVoGvxWH/gtXoi9/V4MTYUJXKMHxoXOKfOlTTk6iKKIrq4uZWmtvb29aBuRnO9o2rRpE99GJBkBOj8asKT2EZAKF27nmNmful/ZCDjrgWydplA8jQPeGA7422RBlBVHnaEEipl0bGCwUKXFSUY95kCFiqQEnTBgw1xdVr2qP2JUaYa2ygSVZewZfhLPA2o12AnKEqTfDhQKZVLwSTSOtW1+vOoPIesaQqOVw+pqF85yHL5niEgEqf19iG32ItkUBLIVvBmdCsZFTnCNZdBWmMb5VVCmCoQQ+P1+RRy1tLQUbSOSE0cT3kaEEKD3YH6Gmn8PCluFGIGKpf1ZapXLQQx2eCNZP9GBGA58sDvPTzQUHoMGp1k5LNFoMT3DoDSagSYmACKAKCD/AkDFQFNugrbSpCynqR2GMWeLZgIBJPfuRXJPE5J7m5Bq2ot0aysq166B+ayzxrTPI4WKJQqFMqF8GIphTasP/wj2G2TPLLHg9hoXVtgOX8xkwinEt3jBf+SDGOrv4aitNstNbBc4wWongZeEcszp6+vLq5TN8/neHYPBkGfKdjgcE7ckm+Zlf1HHgFYh8d7C7Ww1Sup+pnw52jTTcKAnKUeIdsRw8K09OBjgEUtlCp+bpdyqxwwnh2UmA+YyalQmJJj60iCBOOCVAORnxqmdBkUUaSvN0JRxY/IZEUlCurUVqaYmJJv2ygKpqQliT0/R7VOHDsF82EcZH6hYolAoxxxCCDb0RvBImx+bw/IJiwXweZcNq2vcmGs6vOUNIhIk9wXBb/YiuS+oXGwzBjW4xS5wjR5oPJOojg3lmMDzfJ446uvry3tcrVbntRHxeDwT00aEECDU1p+d1r4J8H5S2CpEpQPKFyNTsRxd5vnYo5qNPRGDLIz+HUNLTzfSYmfRQ6hYBjUOI2Y4TZjh5DDHpMd0kUVpRADp5iG0xUDS/U3hc/Eq1qztF0ZVJmgrzWNaspaSSaT270eyqQmpXNTo009BBvW9AwAwDLS1tdDX10M/pwG6+gboG+qhdjgO+7jjBRVLFArlmJGRCP4SCGFtqw9NvHy1qmUYXF5WgluqXKg1Hp4fIRNMgt/iBb/VBynSv5ygrbXA1FgGwzwHGA2NIp0opFIptLa2KuLI5/PlPc4wDCorKxVxNGFtRISkXAG7fVN/5CjmK9hMMpUhVLoYrcZ52EFm4d98Ofb1pNBxIOcnKhRGeg2L6U4TZrhMsjBymTDDoocnLoF08Ui3R5HeGoYUk6M3qQHPZXSq/qW0rN9IZT18j1Cmr08WRE17s+KoCanmQ8AgD5h8TB10s2dD3yALIn19PXSzZoE1Gg/7uEcTKpYoFMpRJylKeN4bxLo2P1qTsqjhVCyuLi/FTVVOuHWjzyIiGQmJpl7wm71IHQgpl8Asp4ZxqRvccg80zsn1RUs5OmQyGXR0dCjiqLOzE5Ik5W3jdrsVcTRhbUQiXfl1jbp3AmK+V0hi1Og112O/tgGbxZnYEKnB7h4zkLciFVJ+sxk1/WLIZcL0rDgq57TIeOOyKOqIQtjWgUxvEgW2bxUDTRmXl7avLj08nxEhBEJnpyyIBiylZYpkDgKAym6HvqEBuoZ66OsboJ/TAG1NDZjJ1veuCJN/hhQKZcoSzYhY39mDX3UEEEjLnokSjQrfqHTi2opS2DSj/woSAnHwW3yIb/VB4vt7Uulm2GQv0hzHpKzPQhk/JEmC1+tVxFFra2vRNiIDM9ZMpmNs4hcFwLurP3W/YwsQbi/YLKqyY7eqHh+k6vBBejo+JnVIJQqrw5dZ9bIYGiCMZrhMcHBagACZQFYY7Qkj3dGJ7m5eSWYYiLo06zOqNMmp+2UmMJrR/7+QdBqp5uY803Vy715Ig4px5tBUV8vLaA310DU0QN/QAPVhFOYkREIi0YZYbC/C4R0IR7ZjWs03UVr6mVHPeTyhYolCoYw7gbSAX3f04MnOACLZitgVOg2+We3CV8ocMI6yRhIRJCR29yC2yYv0of5rY9asBbfMDW6ZG2rHBKdvU44auTYiOd9RS0sLEolE3ja5NiI5gWS324/tJGOBvAazpGs7mEz+HEWw2Eeq8ZE4E9ukmdhKZqKduIBskcacn2i6K3/5bLrLBJNOPk0TQiCG07Iwer8LPe1RpDtiIOnCpS3WpBngM8rWMzqMAqtiNNq/jJY1XacOHAAEoXBjjQa6mTPkZbSst0g3ezZU5tFbsTOZGGKxvYhG9yAU2oxobA+SyU4Qki+Efb5XqViiUChTn/ZkGo+1+fFsdy+S2avbmUYdbqt24wtuOzSjDPELPl5uP7LdDymeK9wC6GfZwTWWQV9fAkZFC0cej0QikTxTdiQSyXs810YkJ46OaRsRSZTT9ds3Id2yCVLbJuijrXmbMABChJNFkTQL28hM7JSmIw499BoWdW4TFrtM+NKAKFGNwwjdoEr0UlxAui2KSHtUWVKTooVihdGq+qNFis9IO6r3hBCCjM+Xb7reuxdCe2EkDABYs1nxFumyy2i62low2tH1SyREQjLZgWi0CaHwR4hEdoDnm5HJhEZ8rlpthZGrG9VxjgZULFEolCNmH5/E2lYfXvL35YpiY5HZiNtrXPhcqRXsKL64pbSIxK4e8Ju7kW7rD+2rrDpwy90wLvNAbZuYgnSUo0cikUBLS4sijnoGpY3n2ojkxNGxbCNC4n0I7f8Asf3/hqrrIzhCu6CT5KjRQHmwT6rENmkmthE5ctSrq8b0cgtmOE34rMuEG7OiqMJmAFvkgoEIElJtEQjZaFG6PYpMT6JgO7A5n9GAekZO46h8RiSTQbqlJc90nWzaC3FQhmAOdXmZHCkakJGmqSgftTDNZHjw/KeIRHaiL7QZsVgTksluEFIkOjUAhtFAr6+E2TwHNusymM1zYDLNhlo9UUUDZKhYolAoY2ZbmMeaNh/e6Om/+j/NbsLqajdOsZtG9cWa7oyB3yJHkUgqu6TAAvp6B7gVHuhn2sdc3I4y+RAEAW1tbUr0qLu7G4P7uZeVlaGurg51dXWoqqqCdpSRi7EiSgTtvTF0H9iFVMuHMPg+Qnn0Y1SJ7bADGLiwFyUGbJdmYDuZiWb9XCRci1Hu8WC6y4QvOE34L5cJpaahIztEIsj0JORoUc6E3c0rrXcGonbo8yJG2nJuVNmdUjyO1KefIjnAdJ3atw8klSrcWKWCrq5ONl03zFGW0dSjXM4khCCZ7EQ0uhuh0GaEIzsQjx9CJlOkkngeDDQaBzhuOqzWJbBaF8PE1UOvH70gO5ZQsUShUA4LQgje65MLSf47FAMgLz2c77Titmo3FltGzkSTUhnEdwTAb/FC6Igp46oSPbjlHnBL3VBZju4JknJsyLURyYmjYm1EHA6HUghy2rRpMB6ltPGkIOJQD48D/hjaurwQO7bC1rsd0+KfYCGzH9OYwpo/hyQP9mnnwG9dAKF8Oaw18zHDbcV1Tg5m/cg+IDGcUkRROuczShXxGXH5PiNNhQkqbuT9Z3p7803XTU1It7SgWK8SxmiEPpumn8tI082aOeoWIqKYQIz/FKHQRwiFtiAW24tUyjtitIhlDTDoq2A2z4Xd3gizeS6MxhlQqUY+LpEIxFAKgo+HtsI8Yd8LVCxRKJRRIRKC1wNhrG3zYVdUXiJQM8AX3SW4tdqFWZx+2OcTQpBuj8pNbHcFQNLZFG8VA8NcB7jlHuim22gUaYqTayOSE0etra1IDYpomM1mRRzV1tbCarUOsbexEUkKSuPXg/4YDviiSPgPoCyyE4uZ/VjK7sf5TDtUTK7uhPwjCR3aDfUIOZYAVcthn7VKXgJUj27ZT0pmsqIo1u8zihS2E2E0LDSD6xnZdMNGVIgkQWhryxqu9yLZtAeppr3IBAJFt1c5S/NM1/qGBmiqq8GMougmIQSpVDcikV3o69uISGQX4onWUUSLWOh0LnDcTFity2CzLobJNBtabemojilFBQg+HoIvDsHLI+OLQ/DFFRO7/fMecCfPHHFfRwMqligUyrCkJQkv+Pqwrs2PA3H5pGdgGXyt3IGbqlyo1A9/pSclMohv94Pf7IXg7W8voXYawC33wLjEBZWJRpGmMqFQCM3NzUO2EdHr9XkZa+PRRoQQgkA0ldf8NXeLRCNYwDRjKbsfy9j9uJH9FA4mCgwK1ET05Yi7l0JbsxLWWaugL5uHmarRZY2RjAShm++PGLVHkQkU8xkBGjfX3xqkygyNyzhsgoKUSiG1/4DsK8qarlN790Iaqtr1tGn9puuGBujrZ0PtdI7qdYhiErHYpwiFPpSjRfynSKV8I0aL1CozDIZqmC3zYbOthMU8F0ZjDRhmNMuEAgRvHIKfl3/6eGS8cUiJ4i1ZMhDQpfWiu20PllOxRKFQJhO8KOKZrl483h5AV0r+4rSqVbiuohQ3VDrh0A799UEIQbolIme0fdwDZMsHQM3AON8JbrkH2trDb45LmRzk2ojkokfF2ohUV1cr0aOysrIxtxERJYKOvnieGMqJo2gyA4CgAj1Ywu7H2ex+fJfdjzm6VmiY/KUuidUi41kITc0KMNleahazB6NpjUskgkzvQJ9RDEJXrKjPSFWizzNga8pNw/YiFEMhJPfuyzNdp5qbgUyhcGB0OuhmzRpguq6HftYssNzIrXzkaJEX4fA2BPs2Ihr9GIlEGzKZyLDPYxgNdDoPTKZZsFmXwWZbDo6bCbV65PpVUioDwRdXIkSCj4fg5Ytm9QGABAndGj8O6bvQoutGq64LrbpudGn9EBkJ3y45A8tHPOrRgYolCoWSR5+QwW86evCbjgD6MvIJx61V46YqF75e7oBpmCUJkRcQ3+YDv9mbd5WtdhthavTAuNh1WPVeKJODXBuRnDgq1kakoqJCEUdVVVWH3UYklen3Ew28Herhkcr0V+XWQsA85hC+zO7HMs1+LFMfgJMEC3doLgOqGoHKRqBqBdiyBdCqR+nNiaQH+YyiIMkiPiOjWhZEOQN2pWnIKCkhBJmurjzTdbJpDzJdQ1S7tlqhm9OgmK719fXQ1taOqtq1KKYQi+1FsO9fCIe2gucPIJX2jxAtYqBR22Aw1sBiWQi7bSUslvnQ6TwjXtQQQYIQyImibLTIG4MYKlyCzOHT9KBF142WrCBq1XWhXeuFwGbAAqhUm1HHleOskkbUuRejrmQWptumj/jajxZULFEoFABAdyqNx9sD+H1XL+KifHKaZtDi1moXvuQugX6IQpJEIkg1h2Qv0u5e5Wqb0bAwLHSCa/RAW2WmUaQpRCaTQWdnp7K0VqyNiMvlUsRRTU0N9PrhPWs5ogP8RAcCWU+RP4a2YLxY4Wm40IdGzQF8xngIS5j9qE59CvXAkz4BwKoBz3ygagVQuVz+aa0ERlOyIplBulP2GAlZYSSGi5zk1Sy0Faa8hrKqEn3RzzURBLnadVO/6Tq5dy+kSPEojqaysqANiNrtHlmkEIJ02o++0GYEgx8gGv0EyWQ7MpniVbVzsKween0ZTFw9bLZGWG3LYeKmg2WHXw4nohxhywmijI+H0B1FJpju77w7iF51CK2DRFGbthsJVQpaMKjR2lBnqsK5jlWo8yxBrW06plmnQVfE/D04a/JYQsUShXKC0xxP4dE2H/7k7UM6+2U016TH6mo3LnLZoBriC1uMpsFv9YHf4oXYm1TGNRUmcI0eGBc6x9SdnHLskSQJPp8vr42IMKhas81mUzxHtbW1w7YRIYQgEEv1G6wHLJ35IkXS17PY9cCZdj9O0R3CXGkfKmMfwxDPNosd+DRjqSyIqpbLkaPyxYB25Aw6kpEgePk8E3YmEC880TOAxm3sjxhVmaFxG8EUuWAQYzGk9u3LM12n9u8HGara9YwZShsQfUODXO3aMvJioCSlEInuQbD3PYTD28HHDyCdDhRUuc6HhVZbAqOxFhbzIpSUrILFMh8ajW349ymXgeYdYLbuDkPoSQFS8e+DKMujRd8liyJtN1r18s+omoeJUaFOV4paSw3Od56JOtdC1Nmmo8JUARWbH6nOiBLa+xJoDoTQHOBxMBBDc4BHc08M9146H+fM9Yz4Xh0N6DcZhXKC8nE0jjWtfvw1EFLOFSutHFbXuPHZkuKRICIRpPb3IbbZi2RTUOlBxehUMC5ygmssg7biGPfiohw2hBAEg0FFHB06dKigjYjRaMwTRyUlJQX7ESWCzr4EDgSiBctnkeTQJ3GXWYcZLhMW2AU0ag5iVroJrtBOaHw7wPQNMkkzLOCaKy+p5W722hGjRoQQZHqTcrQot6TWFQMyRXxGNl1/2n6lnLbP6lQF+xN8/qyvKLeU1gShta3o8VmTCfr6/r5o+oZ66KZPH1W162TSh76+fyHY9yFi0T1IJDshisNHi1QqI/T6CphMc2C3N8JmXQmjsRoMM7RXTM5ASysma8HLQ+gKIRNIgWSKvb8MEkyyIFLUoutCnzoCh0qHOr0TdbY6XOg6D9NdC1BnrYPT4Cz4PgnF09jRHkFzIIaDAR7NgRiae3i09vIQinjBAOBggC86fiygYolCOYEghGBjiMfaNh/+Gez/8j3bYcHqahcabcWFTiacQnyLF/xHPoih/kt8bbUZ3HIPDAudw5pYKRNPNBpVxFFzc3PRNiI1NTWKOHK5XIopO5URsc8bLTBYNwdieX6igbAMUFViVPqczXAaME/ThWnxT2DwbZObzHY2Fz5Rb+tfSqtaDlQsBXQjV28Wo+m8zLR0RwykSHYVY1Ar/qKcOFKZ8wUMEUWlaWzOdJ1saoIYLOKNAqD2ePJN1w0N0FRWjriMJklphCM70dv7HiKRHYjHDyKd7h02WsQwami1pTAa62C1LIHDcQrM5nlQqYbvkSjygrxs5otD6I5C6OyDEEiBpIuJKQZpRkC71jtAGMmiqEfThzK1AXXGMtTZZ+IS9yWoK52LWmstrLr8EhCCKKE9GMeuFn9ehOhggEeQH9rPpNewqC01oc7JYbrThOlODnXZ+xMFFUsUygmARAje7o1gTasPH0Xk9GMWwCVuO26rdmGOqfCLlogEyX1B8Ju9SO4LKksVjEENbrELXKMHGs/EfXlRhifXRiQnjga3EWFZFlVVVYo4qqioQFyQcDDA41+dMRzY/qm8jBaQ/URiMUMRAK2aRV0pJzeBdfb3O6s1ZaD3bgPa35Ibze7YCqSLREec9QPEUSPgmAmMkDknpUQInf2tQdLt0TwRr6BmoC035UWNVI58n5GUSCCxc6cSKUo2NSG171OQZLJwfywLbV2tbLrOLqXpGhpGVe06mfSit/cd9IU2IRbbi2SyE6I4fKRErbZkW380wG47GXb7SdDphu+FJyUzEPxxZLxxCN1hCB29SAfSIMliFzMsRIjo1PoLRFFA24sqrQl1XDnqShqwzHMF6hyzUWOpgUGd/33Rx6dxwBvDQX87DvbElOWztt44MkN8bgCgzKpXBFFdKYc6pwm1pUbo1Sq0BONK1OnVnV1oDvD44YVzcEa9a9j37GhBxRKFchyTkQhe9vfhkTY/9vLyl7+OZXC5Ry4kWWMoNFFmgknwW7zgt/ryCuppay0wNZbBMM8xqpYLlGOLIAhob29XokddXV1F24jU1tbCUVaFuMaOllAK//TH8H9vdeOAfz+8kSICIYtZp5YFUe6WFUZVJUaoQIDe/XK0qHUz8K/NQGBv4U60JqByWTZDrVH+3TC80CCiBMEX748YtUeR8Rf3Galdxv7WIDmfkbpfeGWCQfAfbMtrGps+dAiQCqNjjMEA/ezZeaZr3cyZYEcwsotiGqHwRwgG30MkshPxeAsEoReEFGbTKcditNBpneC4GbBYl8DhOB1mUz1YdujMUSKIEPxZs3VnHzIdvUgFUiDxYs+R/1+7NT2KGJJ/diOoDaDKYEGduQp1jrlo9JyFOvsMVJoroRlwfEGU0BaM4/19YTT3dOUtn/XFh86yM2hUqM2KaVkQyeKowmZAL5/CAb8cbfqkK4K/7OzCwQCPcKL4/vb7o1QsUSiU8SMhSviDN4h1bX60J2XBY1KxuLqiFDdWOuHW5X+hkoyERFMv+M1epA6ElBMRy6lhXOoGt9wDjfPotKCgjA1RFNHd3a2Io7a2toI2IlabHVxpOZL6UnRmTHirT8CBjTGEE0WWv7I4zbq8CFHu5jIPqDCdigKdW4HdW2SB1LEFSIYKd1ZSl5+h5moA2KGFNiEEYjCZZ8AWumIgQqGYUVl1clZaLnW/0gRWJ5/SiCRB6OhA9O8fKKbr5N69yAwqeaDsy+FQfEX6BrlprLamGswIDXuTyS4EAn9HKLwZsdg+pFLdEMUihSMVGKjVVhgMVTCb56HEfjLs9lXQaoeuYE5ECZmehOwnau+B0NGDZCAFwmvBYHAETv6/7lGH8kRRq64bEX0Pyo0WTLdMQ51zPk52n4c6+wy4jflZd0E+jYOBGDZ/2p1nsG4LDh8lKrfqBwgiecmsrpSDRsXiUA+P5h5ZWP1lRxcOBmJo70sMGa1kGKDcalCEVaVVA4cmg2UzCn1zxwoqliiU44hIRsTvOnvwq44AAmnZ9+DQqHFjpRPXVDhg1eT/ywuBOPgtPsS3+iDx/Vdzuhk2cI0eGOY48q7MKRMHIQSBQEARRy0tLQVtRBitAUm9A50ZCz6JahH0agAvAMSzt+x2DFBlN+ZFiXJRI6thUGSCEKDvELBrM9Cevfl3A2SQgFEbgIol/bWNKpcDpuGrSIuxtLKUJmT9RlK8iM9Ir8prDaKt7O8RJqXTSB84gMhf+03Xqaa9kPjiS1zampp803V9PTSu4aMVophCX99GBIP/QiS6C4lEK9LpPgBDR4tYVp9t/TELVusylDpOB8fNHLbBrtiXlEVRazfSHT1IBJJAzACGDBRtDAA9GABhVWyAKJLN1klDEB6TBbW26ahzLcIprotQZ5sOu74/gpfOSGgL8tjZwqM50JwVRLLBOjRMlMioVWVFUFYMZf1EFTYD/NGUEm3a2RHCS9s70RwY3ujPaVWKsKq0aFCqFWFlk9ALEfCRXgSD+xHcHURHKoUOAHXcpahyja7B73hDxRKFchwQSAv4VXsA6zt7EM3WSKrQaXBLtQtXljlgHJDyTAQJid09iG3yIn2ov9cTa9aCW+YGt8wNtWN4syjl2BAKhRTPUXPzIfB8LO9xAWp0S2Z0iWZ0SxaEk3og0n8y1qpY1JZymOHqF0Mzsicn/VBLqUIC6NouR4zat8h+I75I/zFrtWzAzkWOPPOBYVqFSGkRQlcsz4AtBoss+6n6fUaarBFb7TCAYRmIkQiSTXsRfqnfdJ06eLB4tWutFrqZM/NM17pZs6EyDe+z4/lD6On9B0Khj8BnW39IUpE2JgosNBo7jIZqmM3zUVJyCuz2k6FWF/8fIoRAjKSR6YpAaOlEsiOAeCAJJsaBlQa+f2owkBMu4mwyTxS167qQMYbhtFhQVzITtZ4lON35BdRaamHUGJXj9PJpNAd4vNkWxcFAd9ZgzQ/rQQOAClt/VCf3s7bUCDXLZiNEcsTppW0daO7h0T5EjSxAFuaVdgPqSjlUWDRw6gnsbApGMQox1oe+vmb0HewDLwgYzsFlsVgKan0dSxhymFWeotEozOaRMxNOJCKRCKxWK8LhMCyjqJdBoYwXbYkU1rUH8IfuXiSz31azjHrcVuPCpS47NAOa0go+Xm4/st3ff/XOAPpZdnCNZdDXlwzbr4py9OF5Hh/v3Y/d+w7A29EKIZ5viM4QBn5JFkZdkhlBwoGAgSnnJxq0fFZlN0A9RDFRAHLUKNwhC6Jc1Mi7C5AGiQ+VFihb1J+6X9kIWMqG3q1IIPjjSpHHdHsUgo8Hipzr1C5Dvs/IwwEqBpnu7myV6yaluKPQ2Vn0eKzVmu2J1m+61tXWgtEMLd5EMY7e3vcR7Psg2/qjHYIQQtFJ5o7DGqDXl4HjZsNmW4ZSx2dgNE4b+hixNITOEDKH2sC3+xEPpMHEOKil4r6nNCOgTduNFr0cJerSdYNwMdjtZtSVzkadZxnqHPWoNldDkxWmqYyItt44Dg6qSdQ8jPcHyI/q1JWaMN0l/yy36uGLpvqjTQEeB3t4NPtjiKaGjhKZdWrUlnKotGrgMhDYVWmYJB7qZB+ioSD6+voKlokHwjAMbDYbSkpKCm42mw2aYf6WR8Joz9+HLZYWLVqEN954Ax7PxBSGmoxQsUQ51jTFEni0zY+X/H1Ke6olFiNur3bjnFIL2GyoX0qLSOzqAb+5G+m2/hOvyqoDt9wN4zIP1LbRtYCgjB+SRNAZSmBfVx+a9jfD19kGIeSFYVDlZYkAPYRDt2RBt2SBZHCgzm0eYLCWf3dbhu9Yr5BJAd27suIoGzmKdhVuZ/IMqGu0AihbCAzRKoQQArEvlZe2L3QW9xmxFm1eZpq20gRGDaSam/NM16mmJojh4h3uNRUVeaZrfX091GVlQy9vEQKe/xQ9Pf9EOLwVPL8fqbQfkjR0cUyGUUGjKYHBMA0WywI4Sk6F3b5ySMO1lMzIfqKDLYi0exHvEcDGTNCKxUtxiBDRofUp/c8COh9gTsDmNGFa6RzUlS1DXclMlHFlYBkWhBD0xNIFNYmaA0NXPpdfRy5KZFIyFqeXcqgt5cAykEVQgB+Q0h9DR18CQ6kCNru/KpsWHiNgVwswSXHoUn1IR3oRDoeGrbLNsizsdvuQgkg1gkfsaDDa8/dhL8MtW7YMK1aswJtvvon6+nplfPv27fj+97+P119/fWwzplAoI/JRmMeaVh/e6u2vkXO63YzVNS6sspmUE0a6MwZ+ixxFIqns1RwL6Osd4FZ4oJ9pB8PSKNLRJp2R0No7sN9ZBN6uLohhL5wIo5ThoWII1Oj/Mu6TDIhqS6C3e1BeWYXTy0uy4sgM6+H21Yt65WhRLnLUtQMQB4kERtXfKiQnkKxVQxZ9FHlB8Rfl/EYD/W7KbnWqvFpG2iozGHUGyX2fItm0Hfzf98pNYz/9FCRdrL2IGrrp0wfUL2qAvn42VNahzdCCEEZv8H309X2AaHQ3Eon2bKPYoU/gKhUHva4MJlM9bPZGlDo+C72+eNRMSovItHUjdfAQQm3diPdmwMbMMGRsA7ZyIBc3kiDBm+2B1qrrQp/eD8aSgsVlwTT3PMzynITP2WegRF8ChmGQyoho7Y3joD+Glw/yOBjYpYij6DDeH5NOrRiq5aUzOWJUZtWjO5zMCqIYtrX24U8ftaM5wCM2XJRIr0aVVYsyjoVDm4GZxKFLh8HwPeAjISC7KikCGCxp1Wp1UTFkt9thtVrH3FB5ojlssfTrX/8a99xzD0455RS8/PLLcLlc+MEPfoAXX3wRn//854/GHCmUExpCCN4JRrGmzYeNIXlVnwFwgdOK26rdWGSRPQpSKgN+RwD8Fi+Ejn5vi6pED265B9xSt2KKpYwvfCqDg4H8CtYHAjG09vKwkjjK2AjK2AjcbBQNjISBSUyi2gB9SRnKq2qwoGEm5lS7YRhLgU8xA/g+GSCONgGhItWljY7+1P2qXKuQ4j4eIohId/EDfEbRvNY2CioGmjIubzkNiMnRoqYPEX2zCak9TUi3taFY2ILlOMVXlDNd62bOBDtEtWtJyiAa3YPe3ncQjmxDPN6MVCoAQoYudMgwamg0DhiNtbBaFsHhOA1W61KwbOFpkAgiMq1tSBw4iN52LxK9IljeAk4oUTLQGJRh4LsWUPehRdeFNl0XooZeMNY0zB4basoXoMF9Gs631sGkNSmtYA76eXzaHsMb23xoDhzEwQCPjr6RvT9yTaKcwZrD9FIOEgEO9cjLZQf9MWxpbUdzIIbO0PBRojKLFuUmFRzaDCxIwCBEoIr3QOTDYMJQlJCIgekBcgHTYoKopKQEJpNpygqi4RiTwfvHP/4xtFotzj77bIiiiHPPPRdbtmzBkiVLxnt+FMoJi0gIXguE8UirD7ti8qWchmFwmceOW6tdmGHUgxCCVFtEbmK7KwCSzi59qBgY5jrALfdAN91Go0jjRG+239mBAcLooD+GrnBOQBCYmRTK2Aiq2AgaNVHomfwreLVWj4rqGsydPQMzpk+H3W4fW5NhvldO2c+l7nduBYTBaesM4J6bX/SxpK5o1IhIBBl/vL81SHsUgjeOYmdvdalBqYKtqeBA0kGkD+xFsumfiP5VXkoTBxXBVJ7rchU0jdVUVoIZ4gSbTPkRDL6PUN+HiEb3IJnqHLFRrEplgkFfAZO5ATbbSpQ6PgOdrjAzj2QyyDTvQ2T/fvS0e5EMAqq4Baa0EyqoAeigQQ0GxvPCqigO6brQoetGzBgEaxNhLrejumoh5jnPxAWWGmhVWiQFES298hLXux/H8GTggOIpGsn7M9BcLWecyaUbusNJebnMz2NLSxDPb5FFEZ8e2gtk0qlQYVKhVCfByiZhzESgTgShSYagSpH8nnuQHVsMAxgMhiEjRBzHnXCNsQ9bLHV3d+O+++7Dr3/9a8yZMwd79+7FFVdcQYUShTJOpCQJL3j78GibH80J+ZvMwLK4qtyBm6qcqNBrISUyiH3QBX6zF4K3P4dE7TSAW+6BcYkLKhONIo0FSSLoCif6xdAAYVSs+J4BAurYCKbpYihjI9CI+ZEXjUaDadOmKX3WBrYRGf2kRLnIY86E3bEZ6D1QuJ3O2t9ctqpRbhWiL/RhEEIghlPZiFE2db8z2i+2B8CaNEq0SO3WgSS8SDfvQ7KpCZGX9iL56acg8SK1hVgW2traPNO1vr4eaoej6EsUxSQikV1y64/oTvD8wWwxx+Faf2ig1ZaCM9bBYl2CUsfpsFgWgGEG9XUTkhD270Jw/6fo7fAj2Qeo4jZY0m5oiBaAFUZYMbCSGM8m0JI1WceNYbB2CebKUlRNW4SFjnNxnqkcLMPCr5iheXy4L4bmwA4094zs/am0G+U2HoMyzkSJ4FBPXNnnpkNtaA7w6AwNnZGnYgAXp4JLT2BVpcCJUWgSQRgyUeiRAcMDBalmDMBx3JCCyGikddUGcthiqa6uDvX19fjTn/6ECy64AG+++Sa+/OUvo6OjA9/97nePxhwplBMCPiPi9129eKIjgO6UfFK2qVW4rrIU11c4UaJRId0SQXDzIcQ/7gFyPbnUDIzzneCWe6CttZxwV3xjJVdrZvDS2UE/j4RQ/EqdYYBqqwZzzCl4mAg08QDSsZD8IAEgyibWyspK1NXVoa6uDhUVFYdvXE2EgM6PZAN2+yY5apSKFG5XOqs/O61qhXy/iBCT4kJ/a5BcPaNYEZ+RVvYZaarMUNsZkHgXUs17kPpkLyIvNCHVfAgoktHE6PXQzZ4lR4pyS2mzZoE1FGmjQyQkEh3o6/s3+vo+RIzfl239MVwxx4GtP+bAblsJh+M0aLWDhFcqBmH/Nvg+3YuergBSfSzUcTusaQ/0xAjADQvcGCgfk0wabbpu+HQ+JLgwmBIGlioXKusWYInjApxjKEUqI8mFFQM8djbH8NKmHjT3tI7K+zMw/T4njpxmLTr7kopJe1NzEM9uasOhHh7x4aJEWgZuA2BXpcFJMWiTIXBSDGYmBVWGALFBT2DklPtiYqikpAQ6HU3uGC2HnQ33hz/8AVdccUXe2LZt23DhhRfikksuwbp168Z1glMBmg1HORKCQga/6Qjgtx096MvIX5QerQY3VzlxVbkD+pSE+DYf+M1eZAL9V5dqtxGmRg+Mi11gD9f4ewIRT2dw0M/jQKC/Eex+//B9qzQqBtMc2fpEpQZ4VDGo+R6E/Z3wdhe2EfF4PEqPtZqaGmhH0VlegRA5StS+qT9yFNiLAlOyhgMql2brGmVbhRgLKxoTQUK6OxstypqwMz1FohJszmdkAssJkGKdENqbkGqSl9EyXm/R6arsdlkQ5UzXDfXQTptWtNq1IEQQjuxEMPg+IpGdSMRbkBaCGC49n2E0cjFH4wxYrUvhcJwGk6kh31sUDyLVthud+/egtyuIVEgNdcIOa7oMZqn4d3AGIjp0Xvh1fiRMEagcKliqPSifsQB1jpkwa8zwRXKFFbNZZ1kxM5L3p7rEmJdxVlfKYVopB0HsF1lKWn9g4LJt8f059UCJRoBJ4qFLh2FGHFYmWbCkK79fDKxW65ARoqOVcn+8cNRKBwxFS0sLzj//fOzZs2c8djeloGKJMha6kmk80R7A77t7Ec8Wkqw1aHFbtRtfdNmAlqwXaXcvcvUBGA0Lw0InuEaPnF1Eo0gKOT/RwQA/IEoUG3b5gtOqlPpEuaKNdaVGaFJhtLe2oLm5Ge3t7cgMKnpYUlKiiKPa2trDW7JIxYCubflFHxN9hdvZa/PrGrnmAKr8xQAiEWQCcXkpLecz6uaL+4wcemgqOLC6JKRYJ9Ltu5HeuxvJvXshxQaHJGQ01dV5pmt9wxyoXc6Cz50kCeD5g+jr+xCh8BbEYnuRSnkhSUOLArn1hyWv9YfNthI6XTZaRAgQ7QbfvgvtB5rQ6w0jFdZAk3DAmi5DiVi89YUECd2aAHr0ASTMMahK1bBOq0DFjPmoKakFkTSyGXpQTaKRvD9Wg6agJtF0JweHSYuuULJfYGX3e6hn6AglAHBqyJlmiMMgRGBBAlYmCTOTAsvk//0Gp9wP/N1ms0GtpvWlx8oxF0sA0NfXB/soui8fb1CxRDkcDsaTeKTNjxe8fRCy/37zTQbcVuPCeXojktv84Ld487KONBUmcI0eGBc6wepP3C/Gw/UT5XBw2rwK1rmijWVWOck7EAgolbKLtRExmUx54shms41uwoQAfS39Ruz2zXLGWkGrED1QviS/IrbJNWhXcuVnYUBD2XRnrL80xABYTgNNmQGsNg4p1oF02ydI7fsYqQMHAKHI8ptGA93MmflNY2fPhsqUXyeIEIJ02o9IZCeCwY2IRHYhkWyBIIQxXHo+w2ih07nBcTNhsy5FScmpMJlmyXWLJBEItSHYvg3th/ah1xtFOqKFJumATaiAUygFW9ADTSagDqJHH0DSwkPl1ME6rQoVMxtQYa9CT0yOKObEUE4cDev9YRk5SpTX+FX2EiUFSYk0KXWJ/PywzYdZhqBEI8LCJGHMRGFlkrCySViYBPRM/t9NrVYPWYPIYrFMSA2iiUIkBIF0Bl3JNDpTArpSaXQmBVzmsWOBeXy9VBMilo4F69atwwMPPIDu7m7MnTsXDz30EE499dSi2/75z3/GY489hh07diCVSmHu3Lm4++67ce655yrbrF+/Htdee23BcxOJBPQjdJfOQcUSZTTsisaxptWH1wJh5bRyko3D6ioXTurJgN/iQ7IpqEQFGJ0KxkVOcI1l0FYUL253vCKIg+sTyZGi5sDwno4Km6GgAewMpwl2Ln9ZLBwOKz3WmpubERsUWdHpdJg2bZoikJzOwmhK8Ykn5FpGAyti8/7C7SyVA4o+NgLu+YA6f45SIiNHiwY0lZWihanxjIaF2qUDo+Yh8e3ItH2C5J6tEDo6ik6RtVjyTde5ateDlg5FMY5o7FOEQpvyWn8QMrQozTWKNRpqYLHMh92+CjbbEmi1pUAmDdJ7EN3tm9DedgBBH4901ABNqhQlQgU8aTfUKC4IQqoIeg09SJnjULn1sNZOQ8WMWbCYXDjUE88TMQcDsRG9PzajpqAm0XQnhxJOh46+uBJpyqXit/TySBYpspnDqJJgZZIwEV4WREwCFiYJM5POixINTrkfKI7MZvNxmXI/GEIIegURXak0upICOlNpdKUEdCXln52pNLwpAZkiyuQXsyrx9YrScZ3PUStKOZE8//zz+Pa3v41169Zh1apVeOKJJ3Deeedhz549qK6uLtj+vffew9lnn417770XNpsNTz75JC666CJs2rQJixcvVrazWCzYt29f3nNHK5QolOEghOCDUAxrW/14p68/3fkchwW3OuxoaIqAf3MfekP9kQxttRnccg8MC51gx1JvZwpRzE90wB9D6zB+IjXLYFopV9Dao87Jwagt/pUWj8dx6NAhRRwFg8G8x1UqFaqrqxVxVFZWNror+XBnf+p++ya5OrY0SEywGrkCdtWK/kw1a0XeJiQj5UeMOqJ5/rT+fQFqmxqMhs9GjHYh9ckmiH3Bwm0BqMvL8k3X9Q3QVJTnCT9CRCQSbYgEP0Ff34eIRD9GItEGURw+PZ9htNDrPdnWH8tRYj8ZHDcdbEZAxr8X7R2b0PTxGwgFXkYqaoA27UKJUImKdBUqyHRUFNlnnE2g19CDpCUBtccIW+00lNfNAKM2oS8QQ3dOxHzMo/kfe9EV3jHk/NS5KJFirJajRNMcHJKCmLcM996nATT3xOCLDF3VmwWBlU3BnF0uszAJWNkkrEwSugFRIr1enxVAVQURouM95Z4QgkhGzIqefAHUlZQjRN0pQWnNNBwsgDKdBuU6Lcr1GpTrNGgwTVzPyikVWVqxYgWWLFmCxx57TBlraGjAJZdcgvvuu29U+5g7dy4uv/xy/OhHPwIgR5a+/e1vIxQKjXleNLJEGYxECN7qiWBNmw/bInKWj4oBLnba8I2MDlXbg0juCyorF4xBDW6xC1yjR+6NdZwR5NNFss6G9xMZtSpMHyCIcr/XOIzQDNfvDEA6nUZra6sijryDzMoMw6C8vFwRR1VVVSMbYTNpwPtxVhxlo0aRIr3KTO78ukZliwBN/8UXkQgyPYn+zLSOGISumOJLGwjLMbIwirRDaP8YyU8+AEkU8RepVNDV1eWZrvX19VANWi5Mp4OIxvYiHP4I4dC2bOuPAOSyg0PBQKOxwWiYBrNlAUrsJ8NiWQidpEbC+zFaOj5EW3cz+nrSEHgTtGk3HEIlqtNlMErFT25pJo2goRcpawpqNwfb9FqUVFbDJ6qUFhwHR+n9sRs1BTWJ6pwc7EYN2oMJZbkstxx3qIdHKjN0lMjACLJ/iE3CwiSzkaIkTEwKuXJluZT7Ystmx3PKfVyU8iNCyf4lslyEiBdH1+zWqVWjXKdBhSKGtPJ9vfzTrdVAfQzqwx13kaV0Oo2tW7fie9/7Xt74Oeecgw8++GBU+5AkCdFoFCUl+cbAWCyGmpoaiKKIRYsW4ac//Wle5IlCGS2CRPCyvw+PtPmxj5e9DDqWwRV2K67qFlHyig9SJI2cy0Fba4GpsQyGeQ4wQ3WBnyIQQtAVTuaJooNZYRTkh66sXMJp8wzWip/Iogc7yi9LURTR2dmJ5uZmNDc3o6Ojo6BDudPpVGod1dTUwFAkrT2PmD+7lJaNHHVtBzKD/CmMCvDM60/dr1oO2Gryij6KkTTSn/bm9U4r5jNiNACjjkGKtkNo24XUvk0gqUJhxBqNstm6vl72GDXMgW7mDLAD0sAlKQWeb0akcwNCYbmYYyLRDkkaWpwCuWhROUym2bDbVsBmXQaOmBH1foLm7i1oOngAod69EOIW6IRylKYrUJOej7niSUX3l2EyCOn7kLalofGYYZ1WA9bhRodI+vuS9cTQ/HYQ3eEiPeqyqFkGNQ5jXk2i6U4ONSUc4mkRB3vkz1pzD4939vnRHODhjw4XJZIUIWTJ+ohyv+eiRGazOSuAyguWzo7HlYeUJMGbEtCZFUBdKQGd2chQTiDlsnVHwq5WFRVA5TotKvQaeHQa6KbYkuOUEUs9PT0QRRFutztv3O12F1w1DsWDDz4Inufx5S9/WRmrr6/H+vXrMX/+fEQiETz88MNYtWoVdu7ciZkzZxbdTyqVyjOARiJF6p9QTigSooTnunuxrt2PjqS8DGNWsfiq1ojL98ZhfqMdIHLCNMupYVzqBrfcA41z6l2Fyn6ieIHB+mAgNqKfaPogg/UMlwkl3OEXz5QkCX6/X/Edtba2Ij2ov5jValXEUW1tLcxm89A7FDOAf3d+0ce+lsLtDPZ+A3bVCqBiSV6rECmZQbo5PCBtPwoxXEQosgSMShZG6dZdEFp3gsR7CzZTO50FTWM11dVKtWtCCFKpbvRG/o1weCvC4W3g4wchCEEMZ7iWo0V2GI21sFgWocS2AibJgpDvEA75t2J3SzPCwb9ASL4HnVABt1CBmtQSLMt8tujeJEiI6CNI29LQllthqKxAgrPhoCjKvp8eHs1eHoc+aUdSaB1yVg5OW5BxVufkYDVo0BaMK+Lqn3v9+PX7MbT0xpEeLkqEdJ4YygmiXJTIZrNlo0OeAkF0WOUfJjkZicCXFooKoFxEKJAeul7UQDgVq0SEKvT9y2S5CFGZTgNuHM3oUiKBjM8Hwe+HrrYWamdhJfZjwZQRSzkGr/cSQka1Bvzcc8/h7rvvxiuvvAKXqz/LZOXKlVi5cqVyf9WqVViyZAnWrl2LNWvWFN3Xfffdh3vuuWeMr4ByPBEWMljf2YtfdQTQK8hfNqUqFa5KqnHJxjC4SH+bSd0MG7hGDwxzHGDUk/+qKpEWh+x3JhRZMgL6IwD5Bmsz6pwcON3Yv24IIejr61PE0aFDhxAfVDXaYDDkiaOSkpKhvxviwfwMtc5tgFCkxLGrIb/oo2O6EjUiGQmCl0e6o0sxYGcC8SIahQCMvJSWbtsF0b8PUqQbIAOEJcPI1a6VStfyUpq6tN/MmslEEeM/RbTrPYRCHyEa3Y1ksnMEw7UcLcq1/rBblsFE7Ojr8aLF/wl2tR1CX/gDiMm90GcqUZ6uQE1qJU4VLhxyfzFdFGlbBppyG1iXC0E9h31pAQf6sstnB2LwbWse8vkaFYMaB1eQcVbjMCCWFAdkr/F4u8mP5kAMPbGhI5MDo0T92Wby73oVgc1my4ogd0GX++Mh5V4iBL1CpnhEKDvmTQvFVnkL0LGMEgFSBJBOg3K9FhU62TdkUavGxXdFBAGZ3l5FCGV8fmT8uVv/mBTt986V3XcfbJdecsTHHgtT5pNSWloKlUpVEEXy+/0F0abBPP/887j++uvxpz/9CWedddaw27Isi+XLl2P//v1DbnPXXXfhzjvvVO5HIhFUVVWN4lVQjhf8KQG/6gjgd509iGbX6CtZFb7eLeH8XSHosxe7rFkLbpkb3DI31I6JMycORx+fzut1lrsN5ycyaFSY7io0Wdc4uBH9RKMlFovlZayFw/n9zTUaDWpqahSB5Ha7i2cTSRLQsy+/6GNvkf9vnUUu9JiLHFUuA/Ryh3tCCDK9SQg7Av1eo64YiqbskDjESBuEjt2Qgs0QQ22A2B+JZnQ66OfPVTLS9A0NcrXrrNdFkjJIJFrRG9uE8P7tCId3IB5vRiYzuL97IRpNCTjjdFhM88ARJ/r6gmjvbca+jhYEo/uQSfXCkKlCVbocNalTcWb6C1ANkYGW0CYg2EWwbgvSdge8ajWaBAGf9nFyxtnHPFKZg0POpdSkLYgQ1TlNsOjVaA32Z5y93eTDwXcPojUYH1KEA3KUaOBymZJ1phbhKLEXNVVbrdYpnXJPCEEoZ5hOFmaNdSUFdKcEpEdhPVYzgEeXL4AGe4YcmiMXQoQQiKGQLHp8PmT8fgg+HzL+QP/9gB9iT2/RpsrFYAwGaFwuMOP03TIWpoxY0mq1WLp0KTZs2IBLL71UGd+wYQMuvvjiIZ/33HPP4brrrsNzzz2HCy64YMTjEEKwY8cOzJ8/f8htdDodLRN/gtKaSGFdmx9/8AaRymZ0zBRZfH1/Eme3paAmABhAP9sOrrEM+voSMKqJz34hhKB7oJ8o0O8p6h3GT2Q3agoM1jNcJpRbDaP2E42WZDKJ1tZWRSD5/fkp97k2IjlxVFFRUTwykIxkW4XkltQ+AlJFhIZjZn7RR2e90ipEjKaRbo4i3dGSFUcxkEThMgUhKUjhNmS8+yD2HYIUagFJ9V8Jq2w2cCuWZE3XA6pdZ+edSveAj+2DP/A0QqGtiPFNSCa7MVyFayAbLTJUwmycBT1xIhSOoj3YjUPhLvTy3cgIEsyZSlSnKlCTOgOfS3ugIcUN7Gl1GoJdgug0gzdb0M6y2J1KYXdILXt/doUAhIo+V6tiUeMw5hms65wcakqMiCQzA6phx/Dm7m4c9MfQV+R9VN6vol6iBBxaER5HLkJUmSeIpnLKPZ8RlTpCXUkBHQNM011Z/1BCGtkwzQBwadUFEaGKXERIr4VTq4bqCIWQxPP9UaCAv6gQyvj9IEVqeRVFrYba6YTa5YTG5YLa5Yba5YLa7ZLvu+X7rOn/s/fn0bZseV0n+plzRrva3e99+ntukz2JJJmQCUKJRScPTQEhpUrAqno4GOJ7Sr5RImPoGA8dDkv9Q+xQEikptJ6PskGkhCfwXgGVmAomZJ+3P/3ZfbPa6Gbz/ohY3d5rn7PPuefcvDfz/PaIETNmzIgVK/Zaa37j+/v+fr/GFzyK8E0DlgA+/OEP833f9328973v5QMf+AAf+chHuHnzJj/0Qz8ElIzPnTt3+Lmf+zmgBErf//3fz9/9u3+X97///WNWKo5j2u3yifHHf/zHef/7389zzz1Ht9vl7/29v8cnPvEJ/uE//IdfmDf5xN6Q9vl+wt+/ucMv7hyO6ex3D+EHnh/ydbsGCah2SP1969Teu4G38IUB09pYbhwMTwisX9m5d3bi8+1oVmBdAaPlxuN7H0VRcPv27TE4unPnztwyIiNwdPny5ZMPKc7B/itTEWq/CzufY26pkAvvmUSoXXzfuFSIzQzFnR7583fHImxzdFIc7JzGdm9j9l7GHF7HHF7DDXYnL3HpErWvf38lui7Bkbe+jhACY1IGg5fYH3yCzss/S6/7KQbDa1h773poULFF4RUClun1C24fHfByd4edpI8pNlnQHk9l57mSfTl/NDtH7OaLj7XS5AuWbKlBp1bjOo5PphmfOnRcOxiQ7+4DJ3VTACuNcFzXbBSG/8xqg3qguHGQjCPXfuXTd3h5u8edTsY9pETUKpZomiFajSyXl5ssL58UVTfeAJPlg1pqLJvZnDxCU2Coc0bB9JKvTo0aOx+WgungNQBGVxTo3d0K/ExcYXpnZ8ZFdlqm93mmFhcrsLOKv76Ot7o2BkLe2hr++jpqaWmsv3uj25sKLH3oQx9if3+fv/pX/yqbm5u8613v4pd/+Ze5cuUKAJubm9y8eXM8/qd+6qfQWvPDP/zD/PAP//C4/wd+4Af42Z/9WQCOjo74M3/mz7C1tUW73eYrvuIr+K3f+i2+6qu+6nV9b0/sjWfOOX7joMdHbu/yfxxM2IIPHBj+9MsZ7zk0CAnRO5apf/UG0XOLiNch1BUmeqLjmqLr99ATqZGe6Jjr7JnVxmvSE53VrLVsbm6OwdHNmzdPlBFZXFwcF6B96qmnqNePpVHIB6W+aJzb6HcgmZNjaOHKBBhd+ipYeycoD2csxdaQ/NM98lsvljqjnZM6I+cctr+JPbiGObyGObyO7d4pdUa+T/jss9Tf9wdnSoGoZhPnLGl6h37/eXZ7/xudT/4e/f4L5PmcxJTHTIiAONhAuUUGqWSz2+HFboe7qcXogtXC46nsMleyP8h3ZOdp2vkpJqy0ZC3HcKHGXhDwsrN8Ikn5+FHGzn4G+/MzTgdKcnVllI9oJLJucHExppsUvFKF83/uziG/+PEb3DhM6WanIyKFoSWyMRhqy5S1GK6u1Dm3ssjS0rkZQBTH8ZsGEBXWsZVPA6DjoulirGG8n7U8eWrU2Pkw4FzoEz+k+8lZW7rETnOHVUyQ2Z8PkueZqNVmWB+/Aj9jVmhtDW9tFflFJJCHN1mepTeqPcmz9MVlA2P4V1uH/JPbu7w0LBkG4Rz/9bbmT7+a87aeRS1F1N+3Qf0r11Gtx/ejcDQ8mZ9opCc67Zsb+XLiMlud1RMFr6Ow3DnH3t7eTBmRNJ2dqOv1+liQ/fTTT8+WEXEOjm6UbNGIOdr6zKwwGkCFcP4rZl1qzfVSO3GQTiV67JPf6TOP8rDDg9KNdngdc3QNc3QDdIZsNMoQ/XdMRNfhM88ggoCi6NIfvEC//zy97qfodj/FMLmJc6e7NUfmqzbStRlmPtuDhJf6PV5JHNZc5Hxxkaeyc1zJznMlO8eyXph7DocjbTr6zYgt3+MFo/m9JOV3Doek93DdrDXDicusElk/s9IgDlSVNb3HC3ePeHGrw/X9IVt9c09xcMkSJWOB9XpN8NRyzFNrC6wsz+YgejOE3Nuq1MZMHqFjoumdvLiPo7S0WIqppIrHAFHlLmt6D6epMv3BmP2ZD4S20bt7c8vbzDXfx1tdwZ8GPcfcYd7aOqrxxZUH7ou23Mkb0Z6ApS8Ou53m/NM7e/zzu/tjeryuHX/sTsGHbuRczCF+5zL1920QPrPwyFgk5xxb3fSEwPqV+0QBLdT8GTA0Csu/sPDo9URntU6nMwZH165do9ebzQI9KiMyAkczZUSKFDY/MZvbqL998kVaF2aTPm68G7wA089LQDSVCXuuzqgYjt1o5vA69vA6LuvgbWzMFo19xzvwL1zAOc1w+Cr9/gv0+p+n0/kEg8GLaH103/sh8BA0SfOQ3aTglUHC5xNHYS5yKb8wA4o2itPLOCQ1R6cecscTfF4X/Jd+wqeSjNM+HYEnqyiz2TD8i0sxh4OCV3Z6fPbWHi9udri2P+R2t2BwjznVw8xoic7VJVeWIp7baHNu9c0Tcu+c42BUamOGESrGdci2smJcs/Fe5gtRZZieBkCTqLHzUcDiQ0SOuTxH7+7e0x2mt7exw/u7cEemlpdLFmgMgkr32Mgd5q2toRYXv2AuMeccaZrS7/fnLAP63QH9o4Sv/8N/kHd+2dse6Wt/0SWlfGJP7HGYc47f6Qz46du7/MpuZ5zH+OLQ8idv5Hz7nYJ2K6Txh56i9pVrqMbDTwTaWG6O9ERTAutXdgf0s9Mp+3Pt6ITA+tm1Bsv14AvuthgOh1y/fn0MjvaP0fmjMiIjcDRTRqR7Fz73byfM0eYnTykV8u6p3EZfBe2L2NxQ3OmXIuzfeoX8ZhdzdBI6OFNgO7fGwMgcXsMl+4TPXC2Zord9c5X1usx2nec79PvPc9h/ge7hL9G79RmS5Db3E1yXLxaRFSF7qeXaMOOzuWSQn+Nydr7SFJ3nW7Nz/Pf5GuqUwrBpCAc1j5vS8dm84L8MEl62hmQIDE+WH1lvheNIs7HIeqVO5Cuu7fb59M1dXri7z8c+f5NbnZy9xGE5/TNTJxtHnG3UJZcXQ55bb3F1Y4WV5eVxyP19s51/gaynDbfn5RFKS0C0meUkZyy1sT4CPZVLbFozdCH0WQk85AN8/5y1mIODkyzQ7uy2OTw88zllozFmgY67w8bbKysn6v69XpZl2Rj0DAYD+v0+vW6f7mEJfgbdjLSfkw8tGIWwPrJaJu06ghLEXF/afuRg6az2BCw9sS9Jy63lF3eO+Onbu3yqNwmRf9++5ntv5HztrqH2lkUaf+oc0VuXHohFGtWdmhZYv7zT5/rekPyUUgBKCq4s1SYi69UJW9R4HfREZ7U8z7l58+YYHG1ubs7sF0Jw7ty5sWvt8uXL5cRqCtj6FPzuL02i1LpzCr3W12bdaef/AE5GFNsD8ts9il/vk13/HfTu/OzMpnsXezRhjVy+T/SWZ4nf9Tait39bGab/3HM439IfvFRpi/4D3Zf/FoPBy2cSXDsnyXXAQQY3U8Nnc8FRus65dASKzvEN2Xm+P18/NQIt82EvVFwTlk9nOZ/Oc65h6GXAsbcWepK3rUyyVo8izi4uxGx1hnz6+g7P3zngNz65xT87ytkaWhJzGkMg8DBVPqKMjbrg8kLIM6sN3nphifNryywuLrKwsPCGC7lPjpfaqFxi0wLq3hlLbaz43ql5hM5HARsPUGqj1Lf1x4xPqQM65g7b2UXv7oI+m45J+P6U/ueYO2y1Ekmvrn1BXGJFUUyAT69H57BPd79P7yhh0ElJBgXZQFMkFqdVBXi8CfhxPlCvFvCr5X4myVkv7p8+43HZEzfcI7Anbrg3j+3mBT93Z5//5e4eO1XG2sA4/shmwffeKHiuEGVepPefu2927c6wOFEA9uXdPrcP760nenplliF6dq0s7vl66onOaqMyIiPX2q1bt06UEVlZWRmDo6eeeqosI9LfraLT/nPJHN39vTmlQiSsv6sCRyVz5BauYI7yyo3WJXt5n2InBXty4rLJ4URndHgNZI/oLU/PFo29fJE0v02//yL9/vN0e5+h1/sseT7HvTfHcq04yiW3MsvnC0knXaY1OM+V7AJXplxokZsfNZgr2AkErzjDp7Ocl53hVSwHc7Jrb7SiEzmJnl6pIa3lU9e3+PztfV7e6XHjMGOzbzgsFO4+LNGCyliP4dJCwNMrdd52fpFnL6ywvLxMq9V6w4Tc57aMHJvNIzRp381yDu5RH27aFjx1Sh6h0l22EfhEZxRM2zyfJEoci6R3ZvqK3V3cWV1iQqCWl+/pDvPW11ELC68ra2yMYTAY0DnqcrjXo7Pfp3c0ZNBJGXZz0kFBkRh0Ck7LGeZHnMKS3tscvhgQyh6x7BLLDnV5RE12iWSX+PhadPFEhnj3d8N3/ZNH+t6fuOGe2BObss/0hvz07T1+YftwnMBtNbV8982C77xdsLIU0/jGS9S+Yg0ZTp6onXPs9jJe3O7z8k5vKnnjgL3+6bWn2rF/QmD97NoXVk90FhuVERmBo3llRFqt1hgcXb16lVa9Vobr3/5t+JW/U7JGh9dOnjxerDJhV3qj8+/B6LAM179+RPqb2xTbN0Ef//EVuCIZu9Hs0XVkXRM+d5Ha176d6O3fQfT2t+MWPHr95xn0X2Cv91t0d/8hwxuvnklwbS10CsmdDF7SioOkSdC/OGaL3p2d549m52na+QBaC9jy4CVreN4UvIrlVQw7xuGmcntGvuTqSpOvmQrDf2a1wXIkePnODp+7tc/L25v88sspd/uavUyRueMMj2D00+1hWFAZaxFcbHs8vVznLecWeOflVc6tLdNsNr/grlrjHDt5MY4SK3VCs2H0u7m+Z3GWkdWUrBigKQB0LLdQ/QyCaWdMmT16Z3dWF3RMJG0eoMC6bDYnDNDqlCh6fUortLKCeJ1cmEYbjg56HO52Odrv0T0Y0j9KGPYykn5BPjTo1GFyQFcuMHccEkx4H8HpDJAUOb7sE4o+sexSk0fU5BF12aEmOyfATygGSHE2FnBsKoDL82sQvh72hFl6BPaEWXpjmnGO/7DX4adv7/Kxo0kpi3ceGb73Rs437mqab1+m/oHzhE+3ORjkvLjd58XtHi9u93hpu88L2z06yenK141WdEJg/exag5XGF15PdFY7ODiYEWWfVkZkpDtaikDc+fiEObrze5Afz78iyiSPUy4127pKsTkkfWmX9IVt9HaGK07+/DqrK53RdWzvFmpBED6zXmW7fgfBc1dI2Kbff57+4AV6vc/Q7z1Poc+m9RhowWYueLWQ7KU1VO8C7eGFiiUqmaIl0557rAG2lONFo3mFkiW6huUulmne41w7mtEQPb1a51xd0ut2+PztfV7YPOL6fsKdnmY3FfRscA+WyNGUBauh5ULL46mlmLdstHnXlVWeu7hGvV7/gn3WnHPsFXpGIH33WNmN7byYm+j8uIVyJJg+mUdo1G7fRzDtnMP2enNLaIzdYdvb6L09MGdjqkQQzLBAc5Mnrq2NM7A/LtO5YdjL6ez3Odrv0TkY0D8cMuiW4Gfk+jI5uEKC8RD3YB5PN4uSCYHsl8yP6FbA56hifyYAqAQ/PTxx/weSGZMexEtQX4HacpnzLF6C2jK2tsQwXKQbLHDot9nzWmyrFtuEfONKm7c3Hm0lhCfRcK+jPQFLbyzrasP/6+4+P3Nnj1tp+SVWtgz9/94bOe/Wiu5b23xmLeAznWQMkE7LZC0FXFmunxBYP7Napxm9MYWu97J+vz8Djo6OPT37vs/ly5fLfEdPPcW610XerorL3vod2Hvx5EnDFlz4yipC7X24819J0fFJP3Ob9Pktip0cm4cIcZKyN70t7OE1bLqFt6wIn14lfufbCN/6Ntz5iEH2Shme33+eXu8zJMlNziK41ha2C8HNQrKbhZjeeeL+Bc5nF7iSlqBoXS+fevymsLzsDNcqluhVLLewjKBz7KuZEPynV+ucr0Fkh7yyecgLm0dc2xtwu1uwkwgOTUBxDzLfF4bVwHK+qbiyFPHsWot3Xlrmy65usNhq3Pf9PmpzztE5XmrjWE6hzawYZ7K/lykBG8FsHqGSDZq4y1Z8755AyKZpmTjxuDtsqoSG3t7BpfPzSJ0wKfGqKLGZ5Ilr00Lp1cfiErPWkQ0Lkl5B2i/oHg5nXF9JLycdaPKhwWRgCwH24VymQuQoOSSQfSLZK8GOKIFPQx5WLFBn7AILxRAhHgAWCAnRAtSXob5agZ9liJdwtSXSaGkG+OyoFtsi5kAbDgrNQTFaa/bygiNtT2UZ/x9PrfM/Xj33UPfhNHvihntiX3L26jDjn9ze5f+9ecCw0tW0c8d33s75EzcLMgH/RuT835OE4vfmJ2G7tBTz1vUmz603ect6g7esN3lmtUHkv7HErg9iozIiI4A0r4zIhQsXStfahXUusol397/AtX8L/+fvQjqvVMizlUvtq3AX34cWlxj+/g3ST22hfz3FFr+PkCMgqYAYIcCmnVJfZA7wlxXBs8vE73wr3nNfQdo8YjB4kaP+C9zu/TP6W89j7pxNC9LRcLuQbGU+eW8Dv3+RpeQ8l7MLfGN2jvP5KvIUbcVOxQ69OmaKDNexpNUv9oWFmKdXm3zdSp2nV2ucj6GtMg6Puryweciruzt89NWcfz2EIxvQdyGMn+iDahmZY9G3nKsizZ5Za/KOi8u8++o6F5dfX5fZwJhxlNhMTqGp3ELDMwqmR6U2LkQ+8wqxrof+qaU2nDHovX3Se+YM2sF2zi7ule02/trqfHfYaHt5eVx25rWYc44iM6T9gnQwAkA5/U5G73BAv5My7Gak/YIsMejEVUGfZ/lfH//dMQiZ4lfgJ65Ynro8oiEOqctDGhX4GbE+SpxNVA6URaKDFtQWS+DTWBuDHxcvkceLdINFjvw2+16LHa9dAR/LfgV4DgrDfl4m5TzMzHRZRMqHnCNOK59zP+uf8fP4OOwJs/QI7Amz9IUz5xy/utvhJ69t85+HE3HI0z3D994s+MN3cz5qC/4NOS9MsRHn2xHPrTd560aT59ZKUPTs2uuTyfpxm9aaW7dujcHRvDIi6+vrPH31KldXa1yxtwi3frfMa7T9WU6WCqmVrFGV26iI38rgM7tkz29T7Oa4oo7wTkbluCLFdG4iRKdkjJ5dJnzX0/BUnaG4XbnQnqfX+xx5PhVVN7rWOZNr4WCrEGzmikFvDdm/SGNwgfOVtuhito53yjPgEbbSEpWA6Fq17gG1QI1zEj29XONC3bLk5Yh8yKvbR7yy0+PmUc7WwHFkQ7ouojilAC1AJC3rdcmldsCzaw3edn6RL3tqjWfW268L8M4qwfR0IsXjZTeOHqDUxvlTosbOhz7nTim14ZzDdjrH3GEno8X03l4pGjuDiTCccoedkjxxdRUZP7yrxhpLOtAlu9MvSPol+En6BcNeXup+uilJryAbaorUnciTelYTIkPJBE8OCCvwM2J8GuKQpjygLo/GLi9fJPO+FqedHYJ6WQy6tlwCn8b62PVVRIv0wgWO/AUOvDbbXottWeNAuzHTs58X7BaGg1xzpDX564QWAiFY8BULnseir8bt795Y5A8uNh/paz1xw72O9gQsvT42Csl/abvPZ7e7/EZ/wAuxIK9NJp+v29H8yRs5lw8K/i05/6kuOHeuyVsqpui59SbPrTdovQndZ6fZqIzICBydVkbk6pVLPN12XLXXqG//l9KtNpzDsC1chktfXTJG8bMMXpWkL+6hd3Ns0UBGSycOcdZg+3cRsou37BE+t4r/zhWKcwWD/JUqoePnGAxexrnKkeUcDk5lUzpGcDcTHA2WoXeRuH+R5aQERZezcwRufu6YAY5Xx2Bowhgd4Ti/EJc5iZZjLtUty35BbBP2jnq8vN3lxmHK5sDRcRFdF9F3AacxAALHSiS42PZ5erXB284v8I5LK7xlo/1YNWv6eKmNOZXo985YaqOh5AwjdOFYBNm5MKA2J3LMJskUCzTlDtudTZ7ostODIGZMSryVlXuU0ChdZLLVeqD76pwjT80Y7KS9EfgpSPr5eD3oZNW2Rt+jhMu9TVfAZ4gvB0SyNwY/TblPUx7SFAczWp8HEjn7cenujhZKwNNYh9Z5qK9g4iX6wQJHQZsDb4Edr8WOrLNvyiScu3nBdl6wn2sOtaGjzZncp6/VYimmAE+19sr2gqdoK0dTJIT2CIodbL6FLTYZJtv08gM6+RG9rE+vGDDQCd/9jh/kG9/25x7pNT4BS6+jPQFLj9Zybbm+P+CFrR4vbffGmqLr+wNMINGXG9iLdVxQ/ojXtOOP3in40M0c6SsO37bA8rvXeMu5Jgu1N2424Yc15xz7+/tjzdG1a9fmlhG5enGdp+spV80rLO78J9j+DNhjk6gKy1xGF99H4T/FYLNOer1A7xRYXUfWzyHkSSbEJvslMFr1CJ5egnd6pEsHDIYv0e89T6//uUmGa+dKskjMB0a6Yov2hy1M5xJ+/yKtYakrupydJ7bzWYIMx/UKDF2bYoz6vuTptQbPLIdcbjhW/YIGKUUy4Npul+sHCZsDR9dGdFy56HuwRDUPLrQ8ri7XeMu5Bd5xcZln15tcWa4RPmSpitPMOsdermcq0R9nhLays5XaiEalNqZKaxwvu9E6dv1Oa/Te3pQrbH7OINvtnvk9qXZ7Shc0J2fQ2hreyjLiDHmdjLZjgDMGPZXba8QCjZigYS8nG2jsvWq1nGoOKVKUHOLL4TjEvXR5HdKS+7TkATXZIRIl+PFEdnbWR4UV67MwcXk1N6B1AVtfYxgu0Ana7Htt9rw226rBrnbs5JrtvGA3L5mfI23oaXOmRJuvxepK0vYUS77Hkq9YrMDOaN32JCE5yh7h8h1ssU2e3WWY7dJJ9+nmHbp5j14xoF8kDHTOwGgS4yicI5BQkxBLR126cbsmHfWpdrP9VXz/1/6vj/S9PdEsPbE3vGljuXEw5KXtHi9s9Xlxp8eLWz2u7Q3QU19+B7h2gP6yRex6XCqugQtDy/fczPngjmHjKzaof9s5/LXHG5HyhbJutzsGR6+++uqJMiJBEPDUxgJPx32u5i+wtvNRxAtbJ0/UPIc7/16K4ArJQYvBrRj9uxb7n5qo1iWEXwITEU/UEk4PELKHt+KhrgaYt+YkzTuVG+3zJMl12HWw7TC21HvOpEcQYjyJdA3sDOtk3YvIXuVCSy7w1dl5GmY+va5x3DzhPrOwEPLMSshTTY9LgeYdIkXlCduHPa7tD9nchhcqMNSxEQNCYLFaZk0KWK8rnlqOeW6jXeYjWmvy9Gr9kWVKd85xqM18RmgKCOVneH71BJyrMkmfnxM1dj4MWPInkWPOubKg6s4O+pWSBcp2dticYoGKnW3M3j6nJgk7ZiKKKuCzfjJabEooLcP5OaicdWSJZtAvSK73J+xPv5i4wAazYChPH87fJUSBEgm+HFRC5+5Y69OUB7Tk/kyI+wOFtku/Yn1WyvQY8VLF+pzDtS+S1tboBAsc+C32vDZbss6dQrCVF+xkmr2i4LAo2Z6+sSQ9CzNf7x7HOh7uHlCCnpanWPQUy4HHiu+NAU9dOSKR47sM5YYI08Vk26T5Jv10l052QKffoZd36RQD7oxBT0FmLZGEmnQV4Jm0axLq0rEsHZcU1PwS+NSqMf4DfLUazadf8314WHsClp7YYzdrHbcOhzNh+S9ul7XP8jlFTQEaoccz6w2Ciw1ebQruTD1Lf+WB5nuvF3yD8Gl/4DK196whvwi0RtOWJMmYNXr11VfnlBGRXFqu8XTY4Wr6Gc7v/zbq5jGXh/Rwq+9Eh0+R9BYY3GmQ3Yhxn1pALTyFjBfKYQuMpc/OFgjVRy0LuGIonu0yjF6k1/88/cGLWDvEbVn0HUAKPG+KLZKCkcfGONhJQ4bdC7juReL+Bc4NL/KW7ALvO6UwrMVxpwJCI/fZlg+1FZ8rbdgINRdlxlN6yFf1e9zYH7J9Az5RgaGR60yzeup9bQSCK4txKeA/t1AWkV2tc3nptScF7WszA4COl924mxUkZ9DmCGA98E/kETo/BY5WA28smLbDYQl27tyeyRl0Zzp54s4OLj9jeLdSeKurE3fYlEh64h5bQx7L4aRzMwY7R/2cdLMgeXGnFD33C9JeBYYGxTjayz0UI2LH7q5A9Ct3VxnePg/4xA8S2i4UeBEEKxC1SvBTWxmzPln7It14nUO/ZHtuiAa3tWArG7E9hiOt6WnDwFjSocPNxCj0q+XhTVKCnqanxmzPSuCx6ivq0hBS4IsUzw4RdgCmi9VdsnyPTrpLJzmgmx3RzXtcK/p8qgI92ll84YiFo6aoWB1HXIGamnS0JZyTjlroqMWT/kiMn2Efzhz4VuFr8LTDLwx+XuAVBl87/MLiaUf7fadHrz5u++KaYZ7YF9Scc9w5SnipAkUvVLmKXt7pk5ySfTfyJc+tTTRFb1lvsroc86v9Af/LnT22Cw04AuP4lk3N997MefflRRofPE/4TPtNk8vofpbnObdu3eLVV1/l1VdfPVFGBOB82+eqv8fTw09xafgJgp1Zl5qLltC1Z0iHCwy3mgy3FkFuIBevopobIMFbnxrvLMJLkEsF9mJKemWLfvgpeoPPkWeb2MKR3wUrBL4PvirvtfAk/tQvR79QdLvn0Z2LhP2LrA0uspFe4O3F8ql5XranANE1DHlTEC1Y1mqGBS9jWSe0kx6bRwN29wS3diM+U7FEXRsx4PTwYSngQjvk2bUGz220JyVCVuosPSRLlJhRhulJtNjxMPruKcD/uC37XgV65lWiLzNM+1LgiqJ0iW1vU1ybdYfdnsoZZPtnn3zV4uJJUfSxnEFqaQkn5Gxo+8j11SlIbxckg1tTLrCSAdLZw7I+WQl85GAmr09DHtKqBM4j0BPJzplD2x0C4QXg1SBcnwid66vQPEfRukC/eZHtaI1bssU16tyxip2sYC/XHGpNV1v62pBYS2Yd9hAYp/NKquXhzBMQS0lDKVqeYsGXLHqCtrK0ZEEscpRLkBXgMbqDLg5J8iN6RZfu4IhOdkgn73G76DPU5cOSoAQvNemoKUftWLuuHKvSUfOgFpT9cTUmeI0J3ZUBT1v8wuJri1e4EuxoW4Ggan2srcy9ctELCJulXstfP3XU47YnmqVHYF9qmiXnHDu9jBe2ejNM0cs7/VMLwgaeLOtPVSLrt6w3eet6k4uLk4zWn+sn/PTtXf7N1iFZ9bFczsos23/iwHLpD5yj/v4NvIXodXuvj8uMMdy9e3fsWrt16xbmWJK8lRiuets8Pfh9nrKvEk8VDXNCYsMLpNkKyU6NwdYSRj2HWryKbF9CyDnPQSqFxRRzoUuyfo1O+Lv00+cpspxMgxECzxfE/vynRGMFvd46aeciQe8iS/1LLKcXWcxWUKdofg6mQNGep3FNi2oUNKKMyCS4rM9Rp8t+rsbushFD1L2PlqgdKZ5eLT9Pk1xHDS4v1R6IJSqsYzObn0dopBk6a6mNliercPmpMPop0fS50CeUAnN4OFtLbE7yRLP/AC6xWu1ECY2RO0ytrsLiGkXcJs8Zu7Um+p4R0zOlARoWJ4Iiz3QdGJRMymzO0+4ucURL7k8Bn+4DhbY7BFZ6CBUig1o5ecaLVZTXOrp5nsPGOW7XLnEjWC0ZH+uxl5c5fI4KTc/Yku2xlsK6M+m+zmKegEhKakrSUJKmcjSloSk1DZlTEymBG4LpYXUHrQ8p8gMGxRG9vEc379LNu/TyHnpKU+hRuasU1MT923HVjuVrZXncDKA5Dmy8Ud8YALkSIGmHPP6Z8eslQxc2cWELFzRwXgPjNdGyjpF1CuoUokbu6uQ2JjMxqY5JdURSxKSZT5458lTzVd9+latffjpz/DD2RLP0xB6J7fUzXhyBop3+uN1N5//AeVLw9Gq9DMufYosuL9Xw5kTVjLJsf+TmDr/dmWTZfkfH8Cdv5HybF7H4/qeovXsV4b8x6lg9jDnn2NnZGYOj69evnywj4huuijs8nX+Oq9yklUzuh5U10uIyw72Y4c4iOe9Ctt+KWnwK0YxRzWMZWWSBW+iTn99nuPgCh/5H6Wa3SQuBlgKZCGoGYgV+JGfLGDjIBksknUuo7iVa/YssDC+xmK3jnyiHUFofxzUMtygYRBpdL7BxgpQDyPokvS6ZUXT6EZ1eCYRKcHSeIU+det/KAsMxz1T6oWdWGuP6aYv1+4v3jXPs5nqSXfqYaPpOmrNzxlIbsZSn5hEahdTHaTpxfd04mTzx9s4OencXV5yeFX7GPA9vdXUGCMnVNeziOrqxTBEvUARNskLSG4GdUaj77YL0+YKk38M8ZAFST6b4coAv+oQzOp9D6uJwxtUVy86ZQtstAoOHkz7Ga+LCGipqIWpLuPoqw/oGe/Xz3I3OcyM+x7VwjdsmKPP2FIauMfS1HbM9uoqqZFAtWODsAvTxexUQCEk81t1oakJTEzk1kREzJHB9pO1h9CFFcUCS7TEoOnSzEuz09HBGXTTD8kzpdEbC5VVVMT51qDXdROCseCAtzzwTtgQ9ninBTpBb/KIEOccB0AmWx4srgNPEBU2s18T6DYxXRwd1tGhQiBoDVyN3tRLgmBqpDknzmGERkWQBeQb5vqZIDUVqsJXb1QpIAkESCNJATrVn+9IaJAuaJJCkgcdfOOzyf7uHm/1x2hOw9MQAOBqWpT5K19mELTq4R1brp1bqvGWtyVs2JqDorAVhe9rwLzb3+Zmbu9zIy4lDWcc37Gi+91bB+59aovmdbyG49Ghzaryednh4OBOxNhgMZvZHUnPV3eKqe5WnuclycTSmogvdprO/TrK/SO7egYnfjVp8BtlehPaxNIfC4NpdsrUtevVPssl/oiP3yYVE+IJYwYKCuK6YiStzINIWSecionOJWv8SzeElFpJzhKeE5ac4bqHZljnDqCALU1K/R2Y6ZEmP3FCyQ92I7lFEx8V03Hm67irmHizRYq2spTcqIjsqFXJpqYZ/StFT5xz7hTk1auxOlrOVna3URiCqUhvHANDIRXZOQuNgv8wgvXWzBD+7s8kT7+zsYI/9j+9lamkJtb4Oa+ewy+cx7Q10Y4kiXkAHDTIRkWlFOtAT8fNBQXZ79KCSAdvVcn+TQhOoMplhKHpEokNcAZ+GPBwXLB2FvIeyjxL3ZtQsggIPjU8uQ3K/hQzqqLhF0VhlUN9gP95gs3aOW+EGr0Yb3JJtDowbsz3DKbZn/GqOKS/XsFrOeF8BXzgCYYiEIRYFkciJSIkYEroBnu0hbQdbHJLluyT5Pr28Qy/vYZwhq+7uQXXOkuWZAJ2RiHlBulLDE0A9mhI0q2qcmJsu7OzmHNKCMiXoGbm4wtwR5JagmAAgTzt8o/BUA6WaCK+JVQ2M10DLOlo20NQoqJHJGgMvJpM1UhmRiphERAxtSKJD0p6g2DUU93CtOqDwIBkBmwrolMBGkDQtybIgDXySIJgaI8kfEgnKc4+21MmD2BOw9CVmvbTgxe1+GYE2Vf9stzc/H4oQcHmpVumKGlUSx/Ip/2GS612rsmz//N19+pWLoVU4vuNWzoeOBM++5xz1P7qOarz5Qv4Hg8FYkP3qq6+eKCPiYbjCLa5yi6e5yYbdReKw1iM5iNg/ukCun6Xw3gOttyNbG4h2mXd6LMDGYZsdkoXrbKvfZzv+PAfRDs6HMBQsBY6mgugYMJFFDde9gOlcIuxdpta/TCs5R+2UsPwCxxYFB15OP0gZ+n167ojD/ADjHAMX0Ckiunlchd9v0LVPMeT0/5uvBFeW62N32TNTxWTnpXjoasPLSTY3j9Co1EZ6BoGwBDamEilemNYI+R7nkj7Ng33M7g765vzkidsHB2eCJFYoTHsNu3YRs3IB3V7FNJYpwjaFXycTEbn1yXJIBpq0X5Sh7QdMZmYc94+AcgQqJVQDQtEjFB1icVRlcD4cu7jiKrQ9kj18kd5z4rYIMgJyfFJ8hnIZ68fkYYu8tkRaX6XbWGc73uBOuMGNaI2b3hL7+HS0o28MiXFkznIiWt8BabWcReDsHAKLJyw+moCCUGSELiUkIRgBHnOEMEfoYp8832GQ75PqiY7IMYFax1meuIrSao1EzJGjXpv0N5SrWKbXzvKMQY91qCm2xy9K0BPmjtCEeCJGuRpKNBGuiaOJlg0KV6NwNTJXIzcxqa5xZCoWJw8ZZhGDNCLNBPYsTwdTNsvyCJIAkgVIA48k8Ekr8JPFkiSsgJAvGHilnvFBTBpNUCQ005ygyFlwBYvW0DYFLatpmIK6Loh1QaRzAp3jFzkqzxB5xvu+/TuA8w/0mo/KnoClL1Ib5nostB6xRC9t97jbOb1u0oWFeMwQjZZn1xrEwWvLJeOc46OHfT5yc4dfP+yNXR5X+4Y/eaPgj0cxa+9/hujtywj15hFsZ1nGjRs3xuzR9vbsdCqwXGSLq9zkaW5ykS08DHnfIzlsspd9OTnvwtTei2xfQTRKZ9j03dZRh6Pay2zGn2Kr8TKH9W1UaFkMHeu+Y1nAJD7EIXSAf3QB27mI6l4m6l+mPrxA08yvLWZx7ImCIy+lp4Z0RZd9c0BHDMkQdF1Mp4joZBEdt0DXbdB1EeaU0iEAK43gBEP09GqDS4vx2BU7NHbMCP1Kp8fd7WnRdNk+a2mD1cA7ETV2PvC4YArWu0csHOzjdndP1hKrXGIHWk9wypQ5BNqLKPwmResqedzGLp7DtNcoGkvosE3h18iIyK1HmkFxPMXxCQ1wUS2z5smC0BuWOh/RIRJHZf2umSSGU6zPfULbS5AQkREyxOeIJTI/JvUbJFGbYbREt7bKQW2Nndo6N6M1bvnLHBDScZKBdaR2DuiZthRKl9c9Ek86Cxik03iUYekBKT4JgS0Bj7Id0EdYvYcu9sjyHZw9eU5b3cqcSe6d8Lh7qzZpN6WjriYh7MFrjtgqb4ZwJeiRI7bHSDyj8LWPZyJ8U0PpBrJYANNE6zaFaZCZiETXSIuQXhFXACdgmEboeyQ/PdOlMWJ5BEljBG4URU2R1RRZJMnCktVJfMHQg4GCvnQk817WOTxdVGAlJShK0BL0MtpFzupou8iJdF6CHDMFcqr9XlGCHJFnuCzFnbF4MYCulmnbf/db4Svf99D36bXYE7D0Jre0MLy80+elnSp541aPF3d63Do4PUpjvRVOAaISHD233qTxiMPvE2P5N9uHfOT6Ni9kE3fe1+5qvveO5g9fXab53efx10+Wyngjmtaa27dvj8HRnTu3xz74ka2xy9MVc3SF2/hakx5FpINz7NpvovC/CtF6J2J18p5H4KhQA/bil7jT+jSb7ZfpNnaoRxnnA0tbwWXKBUBYj6C/gexegM4V/N4VaoMLNHUbecqPbkfkHKqEjuhxSIdDMeCAAV38kh3SI3H1RbouZuhOz3IeKMmV5doMGBppiuJIVaU2StDz2azgV/cPuHt3ohk6PGOpjUVPnYgauyAcF/pd1joHtA8PEbd259YSc8PhRMYCGOlT+HUKv0HuNyj8CxTrb6UIGujGCrq+SBG2KLw6GSG5VTh3ygRmOOYZmnwOhLBEXkak+oSiSySOiDmkJg7G2p5oCgDdL7S99EhFDInpEbEjVxjKSyRejUHQpBct0ImWOIhX2InX2IpXuRsucyhjuk4xtHDfu+2AfNQ4NtpVfU4jXI50GZ5L8N0Qzw3wbB/PdhH6EKcPMMUeVh8i7ABx6is7pKACO1OanpF+Rzoa0tGU0JCWmoRIOkIJrzHDw8z7klYgHUirUEYhjY/UEVLHiKyJy1uY4RJ5f4VsuESSxwyzkCSPyV2NwoVwjweHBzIBKlLohodueOQ1RT4GOpJhxfwMPBgq6AvoC0fPaZIsQxY5fpGN2ZgxwCky/MNyXSty2jP7cnydERQ5YZETjpmcHPEwCv855jgZK+CkBKVwSuFEqV9zwgMRIAgRIkCKCCVCAhkQiYBIBmztf+FqdD4BS28Sy7Xl2t7ghKboxv6A0zwRK42A59aq+mfrjbJA7FqTdu3xlvrYzHL+6e09/tmtPQ5d+fQba8e33y34b3uSd33FOWp/bB0ZvbE/foPBgLt373Lnzh1u3bjOjZs30cfYjgU6PM1NrnKTq9wiGBSkvSWy/Cp78pswtfcjG2tQETujn1UjCjbrn+fW4ifZal/DNLZZjIZs+I6mgLFSywn84TpBr9QVye5TRINLtPJF1Ck/0gNRcCT6HIoeh2LAoeyzTcpeBYrKzNV1emKVjg0xpwECYKURzrjLnlqp02qHuFixmetx1NgvpwV3dna4e+sOu/nZSm3UlZxlhDzF5WzAhW6H1aMDWkcHqN3dyh02iRgzh4c4BD2/xoHfoKiWEgAtUvgXyS83Kfw6OmqRhy0KVcOIM37uj83vviqI/WHpzhJHRByW4KcCPSO2pwxtLxMa3iu0PSFkQExf1NmUy3TVFXpenb5Xpxu06EQL7IVL7EYrbMVr3A2X6KqYgVDYs7IPczBPCXoKhM0RLkPYFGEHFeDpoWwXZY5AH2D1PtL2EaaPcMmpE6c6puWpTYekS0dblG6u+sj1pSCQ4MvXqOWZ836FEwijEMYDHUIRYbI6OmlS9BfI+iuk/XWyZIM0W8adost7EJOeIIg8gkjhh+XaixQ2UuR1RR5KkqjS9PiCgTAkNicxKUmRkeYJWZ6SZSlFmmKytAQxOsfv5wSHFQCqwE2ryFnWFQAaAR59xmCBhzThKfA9nJLYEbgRHlZ4OOFTKihDpAiRRHhEeCIikiGx8KnJgLoIaMiQpghoSp9APNxv/2f9M+bLegz2xp6tvsTtX338Nv/H8zu8sN3j+rGs1tO2UPMroXXFElX6ouXG/My5j8t+rzPgI9d3+N8POmP69Fxi+dDNnO+pNzn/NU8RPrvwhsyNlGUZd+/eLcHR7VvcvXWDo/5Jdq7OgKuV7ugpc5Na15ImF8jdOzkK/wdc/R2Ihcn7k4AVBXfan+HW0qfptK4h6zsshkPanmMJWAJw4KXLhJ2LqO5FROcpgv4lmukq/inC6IxiDIYOxIAD0ec2BVt442izvlikYzYYmNOfyAIlubpS5+pqnXNLMa12RNj0sXWPfWe5mxV8Ji341Sxha7uLmZMY/LiFUkyixkKPK7rgcu+Ic70OK0cHNA9LIGR2d8i3d8h2D0k6KYWKKfwGt/1GxQI1q/XbyOP3Ujw76q+XqcIf0KSwRH5CrCp3F4fEHBCLk2xPyQDdO7Q9IWQgavREnR3VoqPOc+i1OPTaHAUNDoMF9sNFduJltqIVNsNlet5rFKk6C24EeBKkHSJsH2n7KNNBmQ7CHCBMB2EHJeixA4RLT4Fa01qeqZw8vqMpHAvC0qqYnpqESJX5eDxVRis+FrMCq31cEeKKGJ01KdIW+XCZIllBD5cwWROdNTBZE1vUOKsbyw8VcUsRRB5+qAjiCdDxI48gVPiRBM8ylAVDCoYuZWgyUpMzLFLSPC1BTpqQpSk6TdFZgu1msJfiTTM302DHGh5bchkhUIGP9D3wS9bGKomVEiMUFg+Lj8PDEYILEEQVwInxiQlERCwD6iKkIX0aIqAhJHUE9dfgJpxnucjpeBk9P6XvpwyCnIGXM/AyEr9gqDIGMmEoM4akDBjync/9iUd6DQ9iT8DSG9g+fuOQf//pSXLCZujx3DFN0VvWG6w2wy8YACms49/vHvGRV7f4vXSiM3jPgeZ7twzf9vQq7e85j7f0xsmNVBQF29vb3Llzh7u3b3Hn1nX2juaLTpc54DzbXGCLS9kmzZ6i0M+Qe9/EsPYBkrjGdIiZ9fpsLXyOrcXPMGhdR9Z2WQgTfFlqi5YdqLxN2Hk7Yf8idK7gda/QSNYJTnF7FRgORZ9DOeBQ9NkRCdfR3HWKjosZeg26bpXDYgN9nCWaYhdWmiHnlmIWFyLiVoCoe2Sxx6Hn2Mw1v5wV5C6HPId9ymWOKQEbgc/FKOCScDw96HKx12Gjc8hS55Da/gFur0Oy12fYGZL0NYXzyf0GB36D7TELdInCfwdFu45derin/NDLiLwBsegRiUNit09UgZxYjNieCesTiOGpjEZCQF/U6ck6e6pBx1vl0Guz77fYDxbZ9xfYjRbYCZfZilfYCZco5GtgaV2BsFkJYuwQaQdI0y0XWwqXpR3MAB5p+wg3n0mYx/LUfceisCyIEviMAY90BAp8BVKdXsx4vj34b43VPiavYfI6Jmuh0xY6WUCnbUzWrJYGulo7M3nQk1Lgx4og9PAjRRQp/IUK1MQefiBQnkUqjZQaIQoQGkGBczmZLQFOUqQkWUqSJiRJwlGaUKQJ5ijDZCnkKSLPkHmGV+TIe+S48qrlYQUETilEECJDH+H7CN9DepWPUYKREo3EOIV1Hsb5OBfgbAlwhIvxXIxHjYCYWETUhDcFbKBWAZzoEYEchyMXBT2Z0PVTel5Kz88Y+FkJclTGUOUMVMpQpAxFQuJShiSkJGSk5CJFV4uTD57EdOPld/A9X/Mtj+T9PKg9AUtvYPu/fNk5rq7UxsDoXDt6w7AyB4Xmn93e45/e2GGrcrX5tsyy/acSj/d9xSVqf2wF8RARc4/SjDHs7u6WjNGtm9y9dY3t/c5c12WLLhfY5jzbbBS7LA00Mj9HFr6DIvx2HFfoNqpaW1jy2had9n9he+HzJM3rePV96hVN3ABaRZ2wf4lw7wJet3Sh1YbnCc184GiwHIlBqSUSfe6KnOtobjhFErbpEbNfNOgfnyunfnN8T7Lcjqi3A7yGT1FT9CPJri+4LeH29EHOwHBWSCuAtcDjgq94NhvydLfDuaMOiwc9agd9VGeIqep2Zaklsz6F3yDzG7zs1yn8DbT/THmyWrWc0ZTQJesje8TiiIiDUu8zlcCwZIDuH9qeEtCTdbqqwV3V4Mi7woHXZt9vsx8ssBsushMusR0tsxsucei3yOVDADbnwOVIlyDsEGXKPDzSdMF2xoyPMIMK+PTHAGi+nucky9MWliVvBHgsjao/khCoiuFRPGBwxGsQE1tRAZ8GOm1isla1NEuwkzbAthAsoMQCSrUJwqh0UQWCwDcopVELGiHKBVGAy8EVONfFmgKrM4zJ0FlKnqYMk4Q0Teh0EoqsZHNslkJ+D4H5fUzBPRJalFZ4PiYIsX6AC0IIAkTgg+8hfIVQJchxUuBwlQtUglU4E+Csj7MRwkUoWysBjo0InU8NSQ3GzE3dlfnP6kbgz/sfiWPr+5jDkYiURGV0VEJXJXS9jJ6XMvAyBiqjrzISmVUAJyURKSkpqUjIREohUgqZomUGZ62X9wDmGR/fhPgmIjARvg0JdLke95kQ34S84+3veOSvf1Z7ksH7EdiXUgbvz/cTfvrVbf713hFZ9YVdzizfdbvgT7VaXHn/BYJLzS8IqHPOcXBwUDFGN7lz4xW29o4o5oT01BhWjNE2G3qPlcSi7Hmy4F048ZVY1hn9Ihm/T9a4w7B5jb32C6TNm/i1QzxZ/nAIHRIOzhP0LxL2L6A6TxH2LxDp+TmiLI6uGHIoBuyJIbdEwXVhuRvGdGWdA+2zm3DPSKS45hE0AmzdYxhLkkjhGh4uUvcUg6wIwduTnGePepw7GrDUTaj1UrxBAYlBZ45MK3IXkldiaDcvG/h9zRHJIZEaEKvK3SWOTri4ytw+nXuGtud4dFSTjmrQUS0OvSYHfpu9YIG9oAQ9O+ES++ECB36bQ69Nqh7QBe0s0palJUow0ysX0zvJ7Ey7tuxwrp5HMRWCLizLwrIoSuDTko6GmHVplQyPQHg8YjHP/c1qH5M1sEUbp5s40wbbAtNCmCbCjTiKGpII4RRCGoQrsDbH2RxrcqzJMDrHFKX+pkhT8rQENnmalizOWZNxPoQ5BLkfUPjB7NoL0UFQgZwS6AjPK7U4FZODAJxEWIHSElVIfO0RZh6eCVEmIDABvvUJnTcGN9NAp1YxOqcFWJzVDJZUZgxlSiJTjlRC10vpehl9ldBXGQOZMRTVmArkZCIlFSm5LBctswrgPPopfgReJkBmFtSU7Qr4EBMQE8mYWNWJvRr1oE4zqNOKm9TjkFrNJ4xLt6gfqkoDVrpH/VDhR5N+eUretYe1s87fT8DSI7AvdrBknePX97r81Eub/HY2ST3w1q7hv922fOczayx+1TlU8/XLjeSco9vtThij6y9xd2efdE6OkYCM8+xwnm3O6X2WcwjEBaz8cox7B4ZVHKDDI/L6XfLGXXqNG/SbN3C1HTy/qrlkfILhxhgU+b1LBL1LRNnSqdfZEwkHYsA2KXeU4U7oc90P2bMBOwl0j4eaT5mQAtHwKGoeruZh6x6uWvAkOEdUOGqZo5ZZ1hPN1V7CRj9jcZgTDzVeZnGFwGiPggCtHs4d6pGVjI6q3FoV4xNNAZ/Jukso+nND2ws8uqrOkWpy6LU58Ntj4LMbLrEdLo37DvwFDv0WyQNcs7AaVTE45dKrQE1/zOwIO0CaY31z9TyOUJSAZwHLirBjl1Zr7NJyRJVo2RsDHnF/uuI+5tzZMZNzYLXAFhJbSExWxxZNXN4AXcOZGtgYTAjWxxkPrMIagTNgdIGuBMZ5llIkCXma4M5Q9PdhzUhJ7odTgGYEcMIx0JkGO6M+Ah/le0hPgRJIIRAIhJN4RpT5ijJHmEI9E9QySTP1qGuPGDUFamZdVfFrBjim1NbIhERl9GVSMTkZPZXSl2kJcGTKQKYkIisZHJmQyYxcpOSqAjjqMYiYnRiDmaACN9OgJjAhng0JXalbCkSNWNSIvBp1v07Dr9MMG7TjBgu1JrVaMNZ8TYOZCdjx8KpCczq36Nygc0tRrXVhpvqP7bvHmPd8yxWeevfKI701T8qdPLHXbH1t+Be39/gn13e44UqXgXSOP7St+f4i4Ov+wGVq375c0tCP2caRabducPfaS9zd2aWfnfwxV2g22OUCW2yYA1aMos4FHO+msN+GZpm0vk+3AkVJ/d/Sb97E1naQXg6VpigYbLDUu0qw/QH8wQZ+/zxhsoo4ZRYckLEvhuyonO1IcTPweUkobuaSnX6AdUGZKGb8YD0BSS5S2JqHjBVx4BH7ikhK6k4Q545GYljZzVi5mdJKDUHukFpircf8sOUQCGfT+0xdtnCWUJSgJlbdE2CnZH8mep+S9Tn5A66RdFWDI68EPi/7i+wFT4+BzwT0jJYWQxmfCQUok+GZBFHsE2d9cD2c7d6T5TlNzyMpwc2KMKxQMjwLwpYaHm8EeAS+lCglkAqkByh3n6hwwb38Ic4BrjqBsAhRarNtITFajsGNLSSmkNhCYPX0tsQWCqcjnA5x2scar+zXYHJXTSL3quP2YNmv55nxfHQFbDI/IPX8CshUYMebZnPCk+yOF85sa88jlBAaQ6A1oTaEuSHMLVEOcQ61TLCcC1q5ZCEVLBeOZQ0tN8voBK8B5OSiIJEZHZmyKVOGsgQ1HZXQlRWLIzMGMmUoMhKZkMiMVKRkKiWXGYVMyVWGkY+eMZNW4tsIX0cE9hhjY0ICF1WsTUQkakSqRm0K3LSiJou1Jgtxi2ZcK8FNBWI8rywgJ6Uov44CrHGYwt4DuFSgpqfZ28/L7WJqTG4ocoMpLEW1ffxz6apEAk4YnLAgLFoWGJljZIaWBbZajNQ4qbHCYIUBYeCV9/HUu7/1kd/rs9gTsPTETtiNJOMjL23y83tH9Kvfombh+ON3C35goc1bv+Ei/sbjy400jky7dZM7157n7tYOR8lJfYfAssY+59liwx6wYn0WuYi1byV3f5ikZhk0Njmo3yWvf5Jh439H13YQSiOLGsFgg2C4zvLO+0rGaLCBP1xHnaIpAkgpOFApu4Hjdujxoqf4jHHcGGjSXIGOoV8y35GzxM5xzkliBLGviJUiluWTbGwFjdzQPLREO2Wiu9OSFpY2kpUyUwTUZ0gkesSqU4IfMZvAcMT2jCK95oW2ayRdr0HHa7LvtbkWLLAbXGIvWOTQb5Vgx5swPvt+m4G6P/DxdYavUzyTEBSbRHYAtg+2i6WDcR2E6yPNMffWybh3Fp1lTViWXcnwtGUpWq5LSeQJQiHxlcBTAqVAeg48g/BOY0jmgZ3JfbEGbCoxhYfNvHJdCKwGq90Y2IzBzcx2xfQcAz/OvJYHC8M9MyYJgQxCRBjighDrh+igBC+5F5B4AUPPZ+D59KRPeoLVCWbZnmqfk/OvOTCGUGtCbYlyS1Q44sJRzwSNQtDuw2LhWCocy9qxVsB6oVkyGm/mvp9FOTQRGI/cU/syY6hKANOVKV2Z0JMjFidlKDOSyk2VqpRMZmQVuClkinkIgfH9TFlvvlvKxvhEhESEIh6Dm7pXp+7XaYZ12lGThahBw69T8xqEKkB5EsSsAN85h9UWXThMYcbAZAbcDA3FkaGfW47yQ3SxPzPmuD+pBDEWKwxGFmiVVQAmx8gCMwYxGis0VmqcsDOgxwmLiBxEZbb08tslkAiEE0gkyknEGQHuvE/EbfsS8AQsPbEvoDnn+I+Hff7x83f59TTBVfPIlb7hvzmADz29ztqHNpDxo/3IjCPTbt7g7rXPc+fuJnsDzbwn9lFk2oY9ZNUFLLvzaC4ziN9C0kjo1jfZq98lbfwiRW0HaXyCZB2/AkWr+19GMFjHH27gFafXnCs1RRl7AWwGkpu+4LqBV1PN0VATF4JaIomtI3aGK07wNudRsxAjiR1E9l7aheNp2iaTkUCPwU6spsDOOLR9Nrorlt0Toe0GSderc+S12PMXuB4ssh88OwV22hz6pdh5tN1T9VOBj3CWsCgIdYavM7w0YXFwk+Ux8OmXolx3hOGIgkOgcn9NvU/PORasYRXLMpaWFLSEoC4lNSGJpCT0JIEUBFKhPIf0LNIz4OeIEyXNyzvmnMNpMNphC4EpBEUyxc5oickltvCxhYctVOW2EhgNtqA6bhbwOPv4tENCSoI4xo9igjBCRREiiHBhKSTWQYj2AlI/IPUCEs+nr8qlKz2OlM+hUBxJbwxwCs974HQK0jqiwhBpRy13LBTQHDha2rFYOBaKlOUCVgtYLRytwtEuoKEd3qls1uTz7XCkImOoUhKZceSn3A1LsDOQKV2ZHgM45b5EZqSyAjgqJZMpmcrKifkRm2eCWa2NjUrWxkUEIiYiJpI1YhlTG7E3qk7Tq5fbskYoa8QiwhMBOFfq/p3DGYc2dszYzICaYsTGlOtObjmyo5owZSiqxaBVPnbPGZlV4CXHSD0FYAxOaJy0OAxOmPKJTVhQINQIxJS/SwKBdALpJAqJcvcGq4J7QFonwSmEk6Xuy0kEU+1j24y3RfVJEVW7XFO5VUfjynMopFOk+zuP8D//YPYELH2JW2os/+bWHh+5ts3zo6dWAR/Y0/yACfnmr7hM/Nwi4hHkUxlHpt26wZ1XPsfd27fZ7hfYE74OMY5M23CHrNmABbVEHrcZ1K6Q1pc5aNxls/4JdPgb+MnqmCWq738ZCze/kWC4jp8tz72OkR2Jgm3PcdeDuwi2C8tBZskKR80KWj1ByzpaFt6F4F1TzM5ZLaBPJLvU1By2R8yCnnmh7RZBx2tw4LfZ9xe44y9w4F+edW95rTHjc+C36Xp13JxJU1pDVOSEuijXeUE4yLhkbk0Jm0fAp4Ohg+aAXHTIVPkk3jSWurMsOEFbCtpCUpeKmpTUhCISklBKQiEIZB1fOTxpUH6B8DOEyue4mkr302g7KyTJXLZGVkBHHWNwys/M4zLpSfzQxwsD/CgiiGqEcZ0gbhLENYIowo9iVBBhgokLKq3YnL7yKpDjc6QUh8Lj0MKR1hwWmo5xFK9RORoWlsXU0Sg0rQrUlKwOLBbQrvpa2o33twpHbE7euWmB8TR46aqELT9jECR0VUpfjHQ4ZS6cVKYkFYOTypGrKsc9NoFxqbWZgJuYwEVExBV7E1MTNWIRl0BH1AiJCV1Urk2IZyOklRjjsMaiixGwmWVqRpn6LRYjCwqZs6NSjOyhZY5Reek6EnriQhIaK0fMy2hdMjilvx9kDCKaMDAjACOdQjmJOoVxm64XCVTYVCKsh3DBqaAFptpTYGR6/MR9PAItYuo8JSiSqBkQ83qZvt193V7ruD0BS1+itpUV/M/P3+Wf7x1yUH3rIu349h3Df7fU5sv/8EW85YdPnjeOTLt5nbuvfIY7N2+y1Sso3PFJXI4j0865Q5aVohYH2HrAsCZIG4Lt2k123N0ZV1nt4B1lO11B3OPL2hOGTWnZFrBrHQeFo19YcgOxE7SsoGkFDaCB5Jl7iFQk+Yw7a14Cw0jM1vE6Htp+6DXZr0DNTb/Fgb/KgffsGPjsV6Lm0XbHa2DF7PvzjB6DnrCqzRQOCtp6yJo+IizycXg6tjsGP7nso2WClDlCZngqJ1KOllLUxEgr5RELSSgkIYLAODzTwLMx0hZIVwB5qb3JpgHPRHdTFJJMz+4b6XScfrz6NulZpF8uyneooIyo8aKAIIzw45gwKoFOWGsR1RaJ6kvE9WWi+jJBFGOCgKEqXVY96dFx0CkMh9qwl+cc5il7Wc5+XnBUGDrG0beCZN5nZ8ZzZjkmXJsxZR3NMXtTsTyFo10BnGbV35pZoKkdOEMyAjeqEhofAzx3ZcoLKmXgpxMxcuWqSivmJpUp+WMQGAsnJtFRpgI3tgQ4oYsIRyCHiMjFpdDYlVqdwET4OsTLA7wiQuYepqAEMq5yG8mcQuZomWNlXrEwpQtpKBN6olfpX/TYdTRaly7pahEO4VVC/XgWwCinxos89r9WDhSCYBqQ2AjMcdAiqt+rEWgR80HLHGBTboupfYoZ5uYNYCN3nqvcciP3nGOqLezJMdgSVAsD2Mr1WIJKIUrJhRSCpegLF0D1BCx9idnvH/b5x5+7w7/PEnTJybKeWP6bI/i+ZzfY+K/WkQ9YOHccmXbzOnde/hR3rl9js5uTuuMfLzmOTFtVh7RDS1y3iKYmrSfoIGWYL6AHC/jDdeKDddq3NvCTdaQ9PflfimVLOHZxHGhHzzhS49AaAlvmLoHyx2wVweqcHxaBoS73aapdmmqPptqloXar7V0ach9fJDOsz1HF+Bx4be5Wrq0D/9KMe2vs9vLaHPkNzFSa/7IIZTGuyRTqgjDLiQYFa7rDpWKvBEIVMBKmYn1kMtEUKI3wcjxf4wuHLwS+KvPyBk4SOEdgLL52+EZXBUAB4+H0rKtqGvDkhSSzj/EHWLgK0FTgxrOz237pgptsW/wwIIjrhHGDsNYijBfGQCdurBDX1gijFXx/Cekv0jMBXWM5KjQHec5+NuB2MmA7ydjPcg4KzZF29Az0e4Kkl5EKjXkgV9bJsfUpBqddzAKg5hTLE+uCsBKye3aIcUnF4owAT5nYr68yOmIiQk7ilKRRMTkVyCkeo8B4nPvGxhXAiQhtBWRG+3WIp0M87YNWSC0RVlUOn5KRsao4qX8Zu5BKN1IuuuTiaIaBEQACZCgQIRVwkZUGpqzp5jkP5dQYdPiu/PyPQYiNEPoMTMtDsjE8gBbncZtjBEgqN9xoqcBgCUBKlksIV+qLxEhjBFK4EiSKCYOlqu3qDqOEQDFZPFGCSg+JEmWUYvUfmrj9mEQvjuDdyfW9Uy988i1PwNITe4ymreOXbu7xkVe2+H05cbV9+aHhB4j44HsuUrvSOnNupOFwyJ2b17jz4ie48+or3O1kDE5kn/ZQaNbEHsvhAc04JW4leI0MJ2v46QrBYJ1guE5we4PlwQbKnM5kFTj2cOxbS9c4hgZy48qooGNZq31OJnTzRVKBngkAKgFRCYzq8gApLEMZcTdcZStc4fPBClvh29kKv46tYGXMCB34LY68Flp64CyBzirXVkFcFBPGJ8sJi4LLepe36Dul7qfIiLOUIM+QzmBdhhY51hXg5UihQVikcAhrUQ584/C0wTMGVViENqAdrnCl3kbLytc/30bkRlrdnXI5u0klUEG1+GIMXoTKEV6G9PQUm3MP8OPbMtOybxFKEASLBMESvr9K4C/hB0vl2l/ED5bwvSUK2eLI+Gwlgs1hyq00ZS/N2c81h4Wj24HBgSRxikSoSueyTe7t3eddHXOpHsM8np1lb8q1pa5NWVndZAQjoGOSMZNnXY9MJFWI+KRcw45MuT7S4tRKJufxCYxL1mYiLg7xTIBnfJTxUc5HWYWwCq+a7KUTCBxOOBwOKdz4yd8Jg6PUwJSTqUA4h3QFEo1wQ5wr64YZoVDKRwY+0nooq1DOnwUgJgZTvzcAOTNIEWN30BuFXSmtAiMjIDJul9GZYgREqu0SXFTApGp7ooy9lQi8CqiMgMlo7VXjvPF4gf9assq/Ac3iKCh/w7rd7S/YdTwBS1/EdpAX/Nxn7/Kze4dsVVHmnnV8y57lf1he4Ku/8RKqde/cSFmWsXnrOnc+/3Fuv/ISm92EI3s8WsxHYFlSByzEBzRqCY2aoOH5ROk6wfDL8YcbBHsbeMXpTwbWOY5wHBlH3zpy48gNDCwM5+o6JwChJg+mWKA9mmqHptobs0OhGLAXLI6B0I1ghc3wLWyFX8NmUPZthiv0REykE+IipZaltJKUdr9PPemzmm1zKb9BlGdlIcs8xzcFwhqwFmENwmmE04AGZxHOgrEI4xDackrC6TOZK8/KvULWpedQgcALFV7g4YU+XuhVbYXyyyzKI/AiVA4qAdXH0gXZRUyDH88izkA0Shni+0tj0ON7CwhVR9uY1ETsFzV2dcxuFrFfBBxkPv2+YmgkifVIhEcmPDLlkSlF5ilSX1aAYvqmhdVS3YL7YL+6djQLS6MwxEaXQEfnBCYlMCnKDpGmLDXibA/rumjbIRW9mcSAt2RKqjKssA+DN+9pnvHxbIivA3wbEuoyF04ZLu6hUBWbUj6tV4Rw+SlwAiFGOpdyjHBqDIiU9VCuXKT1kJXGZKI1mcesiCnQohhpV+7LrLyB3EHgyns0BiMTcKLG6wlbomACSAQVc1KW9pFVnxxv36//QcvHPH4zbgI4ihL6Yih/TwyuWleLK/sqhxjGOSxips+6iVPZOjduuyqBuR2tKTtHHOFI+A6VzMqNBN5uHKEnKA90FVcnmGTx8PUkz9/rbU/A0hehPX804Kc+fZtfyIekUoAHi5nle3qS/+65c1z5Q2tzcyNprdm6fYM7n/0dbr/8PJudhD1zPDy8BEpN74iFaEgrFCx4ISt6iVryLoL+Bv7evYXVfevoW0tiHEMr6FfgaGhnQ+JHpshpqwkAmjBEZdvzuuxGC2yGK2yGq7wSrLIZPsNW+NUlEAqWGWif+nDIQr9La9ijcdinng6I0yOeSe/y9goAKZ0jrUYYDcYgTile/JpNzDIto8ULJCrw8EMfPwzHguIgrhPEDYKohh8GeKFXMT0gfI2QKVZ00eaQPD+gKMpF695DXZ6UdZBNnKijXZ3MxPRMnaO8zWHRplu06BZN+qZBYuskROTKJ1cemafIPEnmSxJfkPjHPmuSsp7eGSVxyjpqWlPTBaHJCU2GrxM8m6BMWUTW2f4Y6GjXoXBH5OKQXA4xwtEBOgCudONI5ARgCIWUEilm+6WTKKOIdY2Ga6LsxN1TCosnQKRkUKrjrRz3SeeXAMUqFB7CyhmwMtadzAMt4/7R2DkuoilwMxLlPk6x+4PYKIJqFqCUzNSD9U/Ay3TfiIWZd4zg0QOWwk2DDIfBkTMCGG4KaJRri6vWHAMZbtx2U/0TkOEmwGKUmchNgAjVdtmAUYWV6SDbEZC2k67XaPc6yylRtIyi545np5s3/mz/q/c//dSZxj0OewKWvkjMOsevXStdbb/tVU/iUvDWnuEHZMyf+IpLtC5MwuWNMext3eH2J3+b2y9+js1uwo6Jp8TEAqiBgFhlLASGJRmyahZZTy9QH6wj+6dTDplzDIxjYBmDoYF1DMyIHRmZIxJdmmqXVf+kXkgHGYdxwHa0wh1/hRfFErtijUN3lb6N0JlAZZpaOqB+NCROB8T5kKh4heeKz/NWrRHFaww3Fg4V3M/NZCcam0BUEVIlyAmjBmGtSVRbIKwtEjUWiaJlfL+FEF5VT0pjbIouOhTFIXlxQJEflOtiewyAEpuVySYr8uos5pzAuBqFqZHpBt1iiY5epqeX6JlFBnaBoW2S0SATdTIVklfMztAXDD1BLxAUSpwN5DiHchZlLdJa6lm5jnRGVGSEOsW3KZ4eokyCtAnCJjBaXIJnC5QtUFYjrUMdAzEzgGZKeKtcDekaSHsJZX2U8/Csj2c9PMrt8jivjOoZRfQcF8xOMSpMiXNHgMS5UeizwDkx03ZvELACU5oTcVZW5N79s0DldMBSsjiz92GagSgZixGb4caAYgIuHNZN2I8MVzEck2PH7IYrvdDWTQGL8WsyAybGU/6xfgGnAxgeFeA4q4lT2me3e12vVGV1AKmmFimrdrlWqmIsVVnIWEqQsqoqgCvbogJlsnItjgTyTOdZKlGeqO6kgHLbjXmnkn2v0KBzDuEszpbHOFf9o6sxa+HaQ92PR2FPwNKb3PqF5n/91B3+6d4h1wPAA+Ec33Dk+O9XFvmG//oCsuZzsHOXT/z7X+L2i59lsztkx9YoxMiXoIAGCAiEY0n6LJsFzhUbrJkFaoQwOPna2h0DQ8bRtyVzNAqFlmjqap+m3GPD36Ee7lKTu0hxRN+zHPmSA1lnxzV42cUk1sPqGJGfRxWrpasry1G5Rpguki7rwPpD3CvhWbzQoKrFC+1Ue6o/sngRBLUaUb1GWG/g+0v4/gK+18bz2/heG99fwPPa+H4bz19AyRJFaDNEFyOgczgBPfkBw+JVOjsH5PkBWh/h3IP75Yz16OeLdPJ1usUKQ71EahZJTZPc1smJyAkp8MmEIpOCTDpS6SiERVZARrkSxJRtg7SHKLdPzVoao/3G4ltD4MA3Ft86AmvxjcWzFt+Vrl3fgXIC30q8SkuiECUoQSLtiBkZrQXC1RGuAU5VmqsJU+KsnMm74qbBSJWfxU6tJxPnwz9NH89+9ahsGkioKSAxr/9+gEVULqURfyQoMzALRzlROcbzazUVTbEaE1Ayul+ucq24qe3cjeeusWtlzHdU99dOHWMrYDMXZEy5a9585qqoLFCi0hkJqv/BaLu850LYis0qgYAYITBnJ+DBjRDaCDxUfaOFY+sxwpssZZcbX964WtmUG2tqdwnkp9ui+h6V76JcC4FFYoQs+4TACVmmHxESJ1Q1TuGEeOBcXqNv1ijn2ui9T7fLe2fH40+OLcfEv/t5Ln7dux7w9R+NvenA0k/+5E/yt//232Zzc5N3vvOd/MRP/ARf93Vfd+r43/zN3+TDH/4wn/3sZzl//jx/8S/+RX7oh35oZsy//tf/mr/yV/4Kr7zyCs888wx//a//db7jO77jcb+V12Q3Dgd85JO3+fliSN8TEJRRON81lHxoIyQYfpzbv/spfvb/N2SHJtlI54EPtEGAh2TZNlmzbVZti1XXouEipqM6rHP07DQYKgFST2tSm6E4pCa2Cdkl4JA6HSJScmnIMKRAp1AcaIEtHK6g+p5M0xMW6BLS5f7lTx2qAjmzwMeU/VG5HcQeQS0mqseEjQZRo0UYtfC8Fp7XnFo38VQDKSOUihAiQMoAEFibURQpRZGQ5QOS9JBhekDaOyJJXiRJj8jzHroY4nQKrsBaVYpdrazWCmckzvkI4+OsB+Ycwl4C66NtiDU1nI1wJgDrI5wPduR6GYUuC6QDz1VaCgdtJIuIyv0zijAZtXWpoRq5d0auGiRYnxEAgSqvCmUSxgk7whigjDQMoyf92fXJ/hFj8EYxgZsCJuVEV2678cQnZ9ZVqPLslIIQU20cohLxSjcS85bKjlFbOoulnARK8FD+6Ds31R65WbBjtwsVgNFMnrZH/QImEU3A9MQyb5IRlQBkduxkjMDhlz6byXnEnPNMsQbzzjN5DXtsgqvuE6P7M90/ARAzrzM+r52cX8x5f+Ofqcl1IZi0y4FTxzDnPBw75th7FCcn9ZPXy1T6gdPHTo+b3Kv5/7fJdd/r/+yOne8egGTqf3d8/Mz/S5z2WievZ97nYXrs8SoBj8J+Q38Q+O5Hft6z2JsKLP38z/88f+Ev/AV+8id/kq/92q/lp37qp/gjf+SP8LnPfY7Lly+fGH/t2jW+7du+jR/8wR/kn//zf85v//Zv82f/7J9ldXWV7/qu7wLgYx/7GB/60If4a3/tr/Ed3/Ed/MIv/ALf8z3fw0c/+lG++qu/+vV+i/c05xwffaV0tf1/fY0VAjzB+eGQP7T5aZ7Z+Rz9osYvfWIEOWrVAspJllyjBEW2xYprseBqCMoMyENr6JucHX1ATw/o6x694ojc7CDpItwA5zKM1WhnMVOPiqdXnpp2081+cYSaZnlKkOMFpgI7Fj9SeLGHF3nI0EeGHiLwsJ6HsQqtPUyhsIUALSGTiEKgConMFCoB9iyFBWcdhYWh66Ncr5wwrUM5V7YdJYviyglSMWpbFBqFJcIQA8tMP9VP081ldNXxfc6Zcgp1BuMEBotxBu08jNMYcqwbYlBopzDOKxc8TLWt8corcf6x/R6F80iQU/3+TPu12eQH97WaIkeJHE8UKIqqnaNEgaLqr/rm9StR4JFV29XYmfPkKIqp8xQokaHQcwv6PrEn9sTub6MHKapfxklbzvS76kHMTiUbGPVVjyjlWHf6OU70OzU1pmw3hruv59ufMeHGPN4b3776q7+a97znPfyjf/SPxn1vf/vb+eN//I/zN/7G3zgx/kd/9Ef5d//u3/H5z39+3PdDP/RDfPKTn+RjH/sYAB/60Ifodrv8yq/8ynjMt37rt7K4uMi/+Bf/4kzXddaqxQ9raa75l5+4zU/v7fNiPAEglw92eOedV7h8sD3FBZXCvkVXZ8W2WHVNVm2LRdcgNxn9okuvOKRX7NMrdukV+/T1IfYh3EEAagxwppiewOL5Dt93+B4EyhFUldlDKQiBwEmUFigty6Uot6UGZSa+7smEPXo2r/5c+fRlXUUdV19UN709bqtj26O2us9xk22Lwjgf4wI0waTtfAwB2p3sM87HvkGeRwRmBmAoUQILj2wCPk4AmeN9BZ7IZrYnoGZ6/Oj8Zb9En6V27utm07qiSXaZSbt0dcjpZ+TTxzqYhc3T55k+37SWad7Y6jxOHHtdcWJM6Z68z3mmx7t555nwDqPLGk8EU/+rUfZtNzVuMsbhpseP+qYYn8m+42NH2xMGaNKesCuuYijc1HHT45yYMBiuYsTKt2unrrf6v41cSK70p4nKLTX7BmQlDB8dM9GsjSIHxxO7m0z2c9vu2DhXTvrTY0X1WyNOGSNc+dskjp9npm80vkp4Oa2zmxo/Ot+kXY2tGOZJwICafY03kN3lX/JV/9Pfe6TnPOv8/cb4JT+D5XnOxz/+cf7SX/pLM/3f/M3fzH/8j/9x7jEf+9jH+OZv/uaZvm/5lm/hZ37mZyiKAt/3+djHPsaP/MiPnBjzEz/xE4/0+h/G/v7/9Of4+JV38tHlL6fv1yBWeLbgnYcv8pU7n2Np2MU6ST2ssWhbLOkF2kUdP7Ek+YB+vsth8RK3igN6xSHazc/MK6TFi6eYHt8hfVBKIj2JFB5S+ggRIAgRxGBrYBvYoobVNUxeQ2c1zKCGsQHZCGyICeh4cF/3F5tZJAaBQWARwiCxZXt6EYaR+2LSZ8eU+YxbQ9hqXqko/fHkMe3mKOeE45Nv2S7/JyXIC5k74bqTE/aJyRuqJ8n7TNyj13Ynx81eH1OT/PR5TgEuTuCwICsXhhhlBHYwytIsq7Uo73F5r0y5LW3VP1mLqYR+Qo62zbFz3PvY2X2jY025LWePOT5eVJmMy8+IKK+h+l+e+E+K6X7GU5ys7t3kPz5qT6LqpifV6Wi88ZpT+u1UZJ6d7R9nqp7ZJ2BKRD9dUkNYNTVm8pojof2JazkGMKbBxHj/GYrzPrHXaqUibkoZV/0+mal29Zme1398vDg+xsyMPWzeO9XN47Q3DVja29vDGMP6+qy0d319na2trbnHbG1tzR2vtWZvb49z586dOua0c0KZeyjLsvF2t9t90LdzJvuXX/4NvBg9A8CS2+Ob+P/wDeLXaC71YWn+MdMusQBYMrBkSz2KsALsKFy5rCEkXICwIdgAoWOodDPOemC9aq1w1seZcntmMR7WWpxNsEZj7QBrfawpj7HGw1gPaxTGeFjrlWtXTgEzAtAqL5FwlbbhPtvCmUogOeqzZ9qeOY7ROU9uC1d9mavjZRWhJa0uS3/YAmmq9XSf1Sibn+hzOIyUaCUwUmJkudZytF326al94211bPvY2EdF3UzYD5imEtzME/hk/4RFEOPV6BzjXL1yNEWX4flCVALvKpsvQlaZfVU18cvxPiGqzEKiOtcoA/Cx7XE/CuHK9ADT5xjtlTNjR2Mm1yOZ3lZIvOpYUV47s+MnSrHJeUd9s9tzzjH92qdsP7HHZ86NmGpb6cLsbF/Fbrsq2H88BjfVtmNN2SibUHmO2X433T/6m/v6JRCft5/x1vR1Vix72Ytz5TXYE9fpZl4bNxphT44ZX3d5vGXquqf3Vd/0YwKLe9/zU/ZPHojciXNMH7PYW3yg//GjtDcNWBrZ8R8Q59w9f1TmjT/e/6Dn/Bt/42/w4z/+42e+5oe1r9v6DPqC5JuGv8F7s48TuBThLBYPqWxZSVoBXrl2HifKQgsFKDv1cSvjzV+LGmXetPnA5kRZ9NF6JXCzfvl0aT2E8SbtKtMwpgRtWIUw5RpTLZWIerxt5NR22XZGlRFWWo77zKitPZypSn5YUY6rfkzKqCEL1pZ10XQONgObI22OqOqlKatLIOVMFTZvKj2UQTKKs5X4QpUTfxVpMm8RI3fBif5RWzCm3m35ZG6FwkmJk8fWQoJUJcMnJ9EtVRzwPa5Bjq9zZiIXc8CCmICBUVt+ybOIj9emJ9fRRGbd8Un2lIn72LF2+pgHPIc9MW4ekLCTSXce4Jh7jjmTuTt2Pceu0x6/zlPAyBgIvcHtUVzhSehxdnsjQnU7vPsFe+03DVhaWVlBKXWC8dnZ2TnBDI1sY2Nj7njP81heXr7nmNPOCfBjP/ZjfPjDHx5vd7tdLl269EDv5yz2137gryClJM++nV/4Dz/PL37mf+Nu0KFTKzAiIdQFcQ61FGqZo5ZDnEHdNIlck9hE1K1PZAQ1nVLTCbFOiUxKZDI8oXEeuGmw5VH1Vf2jtprdh+cmbQXOF+XiiakxgHI45cCzs98+4XCqwKlHX9PqQe2466J0I3gTMGd9pAnxk1WCwQbBcB1/eJVgsI6XLfJG8+u/Gcw5M3lqd6Og9dFT79QkPvU3GjVO6ofDiknCPzPuHz9njyfo6Wd6Oz15j/orUDwe45hqj8aOwu8n5yrD7qs+N3VdzPa5Kmnh9PGW0ZN7ee2jMa6KorPYSVj/zHEwed52lYRnOmKp+kw7N9V/7Jjyn3Csf3L8KLz9RP/49UZuwMmUPnb5nrgWV7mKp8ZOHXvq9TPSLc72n379E5czjglziWQmcsvNuRfjc55y/VPvb/r6HyegeBTnfiMCntdim8HKF+y13zRgKQgCvvIrv5Jf+7Vfmwnr/7Vf+zU++MEPzj3mAx/4AL/0S7800/erv/qrvPe978X3/fGYX/u1X5vRLf3qr/4qX/M1X3PqtYRhSBjeP8j9tZqU5SQchD4f+mN/ig/9sT8FgLOOvTs9/uN/+i0+ev3XeTn4LLfah/SinMJ3lEmRphIjOYh0G9+uIeRFTHCFLHqGwm8gLPha00iG1NKEejKkkQypJwm1dEh9kNBIh9SScl89Lfc3huX4Wna29PMOV8oLjgEyPHCqBF7WF2SBTx755KFPEfjo0Ef7HiZUWF9hQ4XzJS4o1/gC4QuED8IDoRxSWZTUSKHHayk0QmqkKBBCQ7U9Xs/ceIsjxx2rvp437jJY/eRMnzA+KlnHG66jqkUmG6jhOuRtJoLdig2YbEweHUsWfdx0U7vd3D433sZZhNXgTFl2xWmEnSxYjbBFuV25DIUtECZH2BxpKnbMZEhTIKq1tAVlIrhRwjhTgprxth0vbqp9st+d3PcanpkrTu0eapTycyaVQ6gRUSYQSlRa3cotKGWZxb7MuodTqmTglIdTCqu8cpE+RpWL9gK0F1CoAK0Ccj+g8AJyFZL5IbkfkqmQJAhJvZg8CEj8iMQLKreqxQqHEQ4tRm2LFRYrLYaybap6bLaqxi6q9ASqciNLLMKWa+Uq1hMQWLAOVQVrSFsyynLsVp7o2Mp9U322VBaW/xpbSr9Gx4zC+ytwIqqEgWNgUbmsRfWhHAG1cb6hkV57env8YS9f1033MQFYI80cU+cph5XfKzF9ulFOoakxk5cZQRs3Hmen4M5EDVgmjbCVXs5O9c2OGSVCmJYTjPbL8aVaK6aOk1hK9/TxY6avxyGq12emPd7vGF+bm7oX5XuXjBSNI7fW6DrF1E2eBsGT/8lJcHw6AGb8mZjXPzp2Lphl8jmZvvrj/ZPrG70WvCe8zRfK3jRgCeDDH/4w3/d938d73/tePvCBD/CRj3yEmzdvjvMm/diP/Rh37tzh537u54Ay8u0f/IN/wIc//GF+8Ad/kI997GP8zM/8zEyU25//83+er//6r+dv/s2/yQc/+EF+8Rd/kV//9V/nox/96BfkPZ7FhBSsXmrxwUvfzgf5dpxz9PZT7rx4wMc/+Tt8cvv/5LZ6ie3WLkf1hMK3pH6HlA7wUvk5HMLCwGO5E7DQi6nlC3hugyxeot9oc2elxTA+TxLXGUZ1BnGNQVRDq9mPjLCWWpZST0pA1UiHJahKhtTThHa/R3vQozXo0xgOqCdD4jQlTlOiNCMaZMRFim9LtBCNU1MnD31/Mukx8GOGXsjQj+j5NYZeyMCPGHpxtQ4ZBhFJGJEGIXnsk8cBOvbIYx8dSzzfonyD71liP2E52GUl2GHN32bN22FF7uGpAt24jW6c/BInxGxx7thyni3O0Rcnoy6kdXgGfO0IjMPXk23fOIJj2/6ofXzbOHxNtZ7d5501it5ZlMlQJq/WGcrmM9vS5CibTY07PjZD2hxpJmM8kyEfawCuAAuZ8NDCo5AeWpQFXrX0MFKVei+lMFJghcIKUUZA2jJyzJnq57tUxYPQJQh1wzKlhHNlIk9jUNYSW0Ojao/6lDUzbc9plHBV9uRyQYkKuJXgDSkrUKcqUFcCOJRXulWVh5MeVvk45WFkgFU+RgUYz0erEK0qAOeFFF5EVi1pEJKomCSIGAQ1Uj8kV4pCCjIJhS/IJeRSkCtBLgWFhEKW/VqU7UJSbY/2QzFSmL/JTVTpQmQFSKVz4xQiM32YY9t2/LkYtznlWGem9jm8uee3Zzp2/rWNrmUyRlBm1B9pMSUVuLUT8FyC4PJ9iQoEi+r9CzsFll0JvkfgRVRPcGKUfNO5KcBM9XDEFLAe3esxoh0DNaZW05uCCQDerr/18X0A7mNvqtQBUCal/Ft/62+xubnJu971Lv7O3/k7fP3Xfz0Af/pP/2muX7/Ob/zGb4zH/+Zv/iY/8iM/Mk5K+aM/+qMnklL+q3/1r/jLf/kv8+qrr46TUn7nd37nma/pcacOeBhLejmbL3e489Ihn3v+93hh8J/ZrV1jt7HLXrNPFs6fNWuJYrkbsHYQstINWOqEhHoU5QS5HzKoNUiiBnncIIlbDOtNBrUm3Xq11BoMorjUyJzFnCPMM1a6Ryz1Oiz2OiwMurQGPZrDPvXhkChJCYcpQZrjZxo/14RFTlRkxDqjXqTEZn6038OYEbIEVF7EwI8Y+DFHYWNm6UR13JLFX0qpLQxYbB6yXttlvbbLcnyAvEdStmERc5AtcJS1OcrbdIo2naJFVzcweCjlkNIipUXI6Sf06lnLCoxV48VW69GTpZWUzIUCo0pRuVYCK6uyHqIU+itXFWm1CkVZC005iWckvpH4VozbnhH4RuDram2o+qjAGWNgdi8TVp8CxCagSpoMz+RIe2ycyeeOVbYEYo/bjBCkYUQShqRBRBqGJRAZ95Xt9JR25vvkvl/W0Qt8Cs+nUB7a80CICmDNB17SumqfQRk7p23nH1/1jbO1j4+pMng5g+csnptqVxOs5xwe5QRbedXLgrOuLDrrIapCtIKqaAyqqrFXrhVCSqRQpexdlqwdFXPnRotUOK8EkVZYnKxcjhUTV67BjJk5MLIqACurbQGFdGjhKITASCiEq9bld9pWGayNEFhRsTCiYopEGbAw3l+xSdPHOMTUeDlmmpyY3bbVGCPk1LlVdQ2qfO0KxNsqW7YVEoOcbFfHu6lzWCbvwY6ulfK6R0yTFROy2lXv74vFPiwb/MX/6tlHes6zzt9vOrD0RrQ3Ilg6bnmq2X61y92Xj7j70iEv3/gsm+En2K1f46C+x16zxzCeP8sFhaA58Fnq+mzsR1zciwmL0x0hnjbEuQbpo4OYLGzQa7bpNhfYX1hke2GFw2abbqPJII5Jw+iB3osyhlqeEhcZtTwjzlNiPaSW92kNOzSHHRrDPrVkiJ9rZO4gAzKHSC1+ZglyTZQXpZaryKjrhHqRUtNZ6dp4CMulNwFTtRrJukexJmBV4y9lxAsDWq0urdq9i9t2sibbw1W2B2tsD1fZGa6yNVxjZ7hCYc8eOquEwZMFvtR4QuNTrhUazxmkLSdgaS3C2HICNRalNZ7RSKcRooDKXelkUenMNFbmOFVgvQKjCoxXYLwc7RUUSpf6NRXgZIAUIZ4JUS7EtyGeCfBsVNVsC6t1gG+Csm2Cspab9fHN9NrDMwrfePh2Dik+ilgcg6tqPQO4RkCsZL1mQNgJpmwKjLkzFuJ7DZZ73n3B1jRIG7Gio3ZStaePS4KILAjO/uDyOpg09wF51uBV7XFpHmvwqhI8yhk8O6k/qJzDc9W2o9ous0iMAJ5yglE8jESU24yy4U+1ESgh8ChBoicMZda0At8V+C7HcwWe0/gUeC5HuQKv2qfI8V2Bcjmey/Fchsek7bsM5fJSDoBGUAAaUTHqrwXXjFK1QBXEQRkoUoIzDyu9si39ql25msUUYyk9jCzHOuFhpSrHjvoqsGtGbXFsOd4nFRZVAs2qbWUJGsvEKRVoRJTjxu5Kia7eT5lspQSMX3/pKl/+9Ntf+4dwyp6ApdfR3gxg6bgZbdm92ePuS0dsvnzE3ZePOExvsF3/JHv1a+w1djlo9OnX5k8S0kKYS5pDn+WOz8ZBzEonoJ7e27Pra0MtK6jnRbnOCkJtyYOYfr3JbnuRa2sXub26we7iCoetNv16nWEtJgsDtP9gWakDXRDnaQWqMmp5SlQkhHpAbHpErkdku0S2h1RFmdhOC1QOMpPIVEIqkUMIBoZooImTnMYwpZEmtLMBC1mfmj47q2EDh1l1dM8HDDc8inWBWzV4Sxl+/d6C96Nsgd10lb1ktQJSK2wPV9kaLJNrH+veQJOiM6jxokv3BbpcRDVBjLVjJShzssBJjVUaq4pqnWO9EpwhKgAnTMV+lGV7yhp1Et9JfKfwrSJwHp4NymUExMbbfgncxuCs3O+Px5bbI/G+sGYKXN3bNVkCsWwOaDt5vDR5pWR5vJYHHkXgkYceeVCyW1kQkAVB1Q5Jg4DMD8mCoARhfgnMkhH4CiKGYUQSxjMubCtV6d4UcsrN+aZSeLzupuwE6I3XzuHZMvOZslR91RqmgGBZZcBzDs+ZmUVRrV0JOD3K757ndDVGT20XKKfxK7CnXIFCV2CvqABeXoJAV1RAr8CnOr+bei1nkM6e6DutXcKiB7f+B/6fNL7lR+4/8AHsCVh6He3NCJaOm7OOg83BFHjq0D9MSeRdduqfZrf+Cvv1XfYbPXr1+QBqJLaMMklz6LHcDVjqBTQHPq2hdyYgVc8KankJokZgqp4X+FV9lUEQ8erqBa6tXuTW8gabS6vsLS7RazYZNmrkkY8JPfIwwMkHS0oXVWBqxFjV8pQwz/CLFL8YEucHRPYQ4aUIf4gKBkg/QXpl6oD6EKKeIup7hD1BOICob4kGhnAMsjLqWXqqbsdGDr1WLmaNsr3q0OsOVzv92q0VdIZt9tMV9ooNenqNoVkn5TxWrBH5MVEQEgUhgZJ4SuIJixQ5uKwsZWNyMp2R5hlpnpMUBakuyApDpi25duQGci0orKKwHoXxKaxPYT209THujZQI0CCErpJHjhiyAmQl8h8J/EUxI/hnKghACjuerEaZOXwn8KrFdxLfSgLr4TtF4BS+UYTWw8fHMxOA5k+BsDFo037JiNxD93V831zX5DwwZh+dW/o0cwJcILABuAhcaHGBw0WUfYHAhOViA4EOJSaU6EBiAonxJcZXFPgUnleuhY+WAdpWOdq0h7Wyyt2mMLasuWir7NbWqSpv22hROCcqt5aq2IuqLUvIPgZ3YgrkCYWWFdMxo22r9s+0R8Bwql2tbTVGe08A471MjdjBCiiWQNCO+7wqDcu0e/hbj27xP/7A//WRXscTsPQ62hcDWDpuI9H43ZeP2HypBE9H20Occ6RiswJQr7Lf2GG/0aN7CiMibRXJIR3SQHPo0R74tAY+rYFHa+jTHnrE9wNSpmKk0hI8TYOpkTgcSr/9QdRiq7bIrcV1bqxc4O7SGtsLy+y32gwbdYgFIgQbKkzgo4Owoq/vb8oaWsmAdjKgnfSrZUB72CfIclIUKYoESIUjlYZU5jgvxQV9VNDH8zssmT5L2ZDFJKM9tNT7gnggiPuSuO+IBo54YIkHBb6uQtzrYNYmYEpXYMqslpPTqf9LI0iPYnqdFof9BXYGq9xJNriRX+CmPU/qTQ6OPEs9cDRCaIaSZqRoxgGtKKAdR7SjiFbo0/I1La9PXXWJVZeII0LRw+kOmR4wzAYMi4RhkZPonFRrhsaQWkdqobA+2voUxhuDraLazoqAvAjItU+hA3LtUZiAwnjko+Osh65q4xnhoRnpP95YYA05AWPTLNoYrKERI1CGm6RNq1xInqt0Qa6sPOhX7iTPiRKYOUVoFYH1xktofULjExiPUAui3OEZc0z3NV+YP9c1Oc+V+Tq4Ja2SOH8U/SpxgYAAXOhwoYOwfLhwocWFDhsZbGhwkcWGDheAC6nWbtIu62SftJGA2Za/VTJ3yKLE1y5VuLxStxcScoEoBKIAiqqtXbUGoR1Sl989Z0UJ6KwqC2xTlVAaLRXnWvIts9talIuhClQYA7hjbTVh9exxcPcggG90/InXODtgtGJy/KMGjN/32Rf423/uQ4/0nE/A0utoX4xgaZ4Nuzmbrxyx+VKHuy8fsXerV0aGO0cmttiJP8N+61X2Gtvs1bp06sXcHyXPCJRVWOUoZKmTUhpawwpEDb1SIzX0aA09gvsAKc+WQKqRTsDUPCA1soOwyU5tke3aEju1BbZqS9xZWGNrcYXdhSWKOMSFFhlrZOQQoYcLI7Kgfk/th2f0FIgazACpuMhmbkWBYuh8EueTOG+yFpAKS6o0qcjJVEbo+izlh6zrI1bzDivZkMUsYTHNaQ8LGkNDLBx+zaFadgpQgV513KuershB7krMfkB6GNPvNDnqLbAzWGHXLHEUtqZE7U16QXxfYFmTCXWZ0BRDGmJIUwxpkdBiQNsNabs+bdWn5fdo+AmxnxB5KaGf4XkFwjNoX6I9QeEJtCerdbmcJuywBvLUJ0tCsjQkSUOyLCDPArI8JMsDstwnL8IKjJVLYRQar2IZFFp4Fcugqr6piDoxPW60TPrcGwysjZi10TJWigg34mCq6bl07agpMbeHKAX+buTelCVAsyUIaxSWWmGoFY6atkSFJjQ5vskITIZnihmma65rco4rczof0+MwBxhPlYtfLtYX2AqQuUCMwRjVNiEzi4uAyMIIrEUGF5VRDm7EYD6Si3VIWwE4C7JwiByULoEcmUDkogRyhcRVII5CIHQJ5iYArlxLLRCmwu/GlW3jZtpU22USMDcus+AMZdSoEVUmEMFUGv+5ZoU4CbZOAWP2OBA7BsgunF/gm/7+P34097ayJ2DpdbQvFbB03PJUs/Vqh82XO9x96Yjt611MUaXMc45MbHPQ+BwHC9fYjjbZjTt06vnc75anJaHxkNIrUx2QTu0TYwDVGnisJB6LQ4/awMc7A5CKCk0tLWglOY0sH7NSvp3/0e8EdbZrixNAFS9W2wtsL6/SazdwdR9X88qlrnCRB/L0Hw1PF7TSPgvDPgvJcMJKDQdEOr+n/944KJwkwWfgAjouZuiCEmBRAq7U+aQCFEPa+oCF4pCF/IjFrMOGv896fMRSvUermRK3C9SiwS25eyUsQiTg7QrUjsDbAW9HIHcleSeiT51OWOcoaLAfttj3F9gP2mWUYNjgMGxyFDYo1INpzKCsO17zNY3A0AwcjUDQCiXNyKcV+yzVBIt1Ryu21IO8BFtqQCAH+KKPpI8zXbTuUugOuqjWusu8HE/OgdUCk6nxojN5bFthMonJfWzmozOvGuNmTllGMFVswAh0HQdhx/alMmDoBaSeT+b5ZFJRKI9Clm6h0l1UMRJiVABawLhoqsK5MuP9GysbjEWO6h+KsZx3ikVzY9H1mEWzEBtHXRfUc0NNa2paExeamjZE2hDpjMDkBKZa6xKg+RVQ80yOd8I1maHs40+Aa4Us3YlK0JobGwAAge5JREFUUfiKwpMUviQPJNqHIgAdOHQAJrSYyJbuyhDwJYSyzBsXCkQgIBTIUCAjgeeBEg4lR0sFeoUpo2bHoFhT1lTTo4yfj86m2TdLma5AlyycKECVXu7xthvlmshHAE5CoZC6DFGUWoAGaYCKkRMG0G4GwFEBuPybv4l3/KV/8Ejf0hOw9DralypYOm6msOzc7I0F45svd8iTCV3vnEOrXQZrL7Nde5FNdYft8Iijes48XbJfSGpFgK8iZOiRqIyemY0k87SgNfBoDn3WE8Xq0Kc59Aj7PuI+QEo5Q1gY4kzTSHNa///2/jxKkvWs78Q/sUfkvtReva/3XiGJRdaGbQmMhQUHGbNIHptFHNuYmcMRGPCMBMxIYGxmxmeMbWxmDAcjjy0wZzyDD3iwDfMzyGCQEBfJCPVSvVVvtee+RGRs7++PyMzKrMzK7urbXX3v1fs5J05mZUVmRkZXV3zreb7v93F9cl6PdC9AP0RIQZLjtOfk2XUSAbXnFNhOF3kwt8TW3Dz1UpFe1t4XU442M4dGCwIcr03GbZHzWhTdFuVuh/muixM+frtDIIZLiAN0fAy6wqIlLGqRTS22+xUsAx8NlYhVY4uz5n1O2psspreZy1TI5ZrYWW/myhylnQgpfWew0RdVCmpv/4m+qeKmDbqOScexaTsOLTtNzcpSNbNUjAK7RpFtvcSuUiSaVQY7ArrabyeagozdbyfaKiUnpuSEFJyQnBWRNT0cvYutdzGUNrrSQaWFEreIoiZh2CAImn2hNVmlFAIif1RYqX1hNU14GcS+0f++witNuohR6KkWnpqEYXqqSdsw6Bg6XVPHNTQ8TcU3NAItyUmKtGSJvVD3h/Umw0v7n4dB7E2SGiuEkcyIHKTIxsbwvuh/vX//1SXW9tdV9atmIiIVBaRDn1To94VY8rUThqQGt0GAFflYYS+5jfy+KEvE2UCUGX1Rpke9YRDosyRSdULNINSSyIlQ1wl0DV/X8A0VX1fxDIWeAZ4JrhnhWSE9O8K3QnpWTGBFBHaMbwWEdkxkB8SGwFQVLEXFRMVSFExUTEXBUhQMVcFUFHRFwVASTacroCsCXRXoikhEnCJQlYEgTqqYg6HgT4sXLv8Eq6v/zVN7PZBi6ViRYmk6IhZUNjqJeLqRCKhuY/wKIRCk59s0S2vcV65xX9xjy6hSO0RAmYFKpmeTUlJYtg1WTCWuU4+7E/sagUK2a7Dsaix5+9UorWUgHiGkVGKMMMLuRaT9gKzbo9D1KHR9tMf4L+NpBnU7TcXOsZUpcXPpFHcXT/JwYZF6sUgnlyZKG+DMPg7Fj9C7Pla3h+N2yHpN8l6dotcgG/VwiLAB+4ir4IQCka4Q6zqRZhJqFoFi0RM2XWHSjVQUrYGhVciZuyykdllO7bCY2qHgPGJwdFPB2AFjRxkKKH0nEVdKcLgCi1SBm1bw0ipuWsNL67gpi65j0XUcOnaKlpWlYWepGnnaIkM3dHBDGzdw6IY2buggntL4GVMb9W8JSqmQsuNTdEIKTkDWCsiaASnDxVKTypamtNFoQ9xCxInICsNmMt7lACKCyB+pWg0rWNOEl07kG8k+nsIrvTYnFS2LXn/zNHsovDzVxDM0XEOhZyh4OgSGwNdjQj0C1UfRPBS1h6p6aKqHqvVQlF6/rxsQKxGxEgEjQmogvkR/QLfQQRjD++LA1xNiLTZQYhNFGH2Rtv89gUYstKf2b39UtDjCDn2cqIcV+tiRn+S/hT2caCDOks2JAlKhjxX6OJGPPRBlYSLKDoqzZ9+WVJJg0/4WamaSWN8XZYGuE2o6vqHh6yq+oSY/Fwb0DHDNmK4V45kC14xxTYFnxnTNCN+IiNUANB+1X3ZSNB9VC1G0ZFXsqPgylP599u8biuh/H95Y+nbe/2d+9Kl+fimWjhEplh4PIQTNPZeNG42+gKrR2J0cl5JNe+Syt6kYf8xt5R63tSabTo9a1ic+REDl3RTZ0CCrxNi6R1f32DBiKvr0PpMRKKy6Bqs9lXlXT6pRLRPRMohmCqkkIFIPRVKVChKvVK7bI9PzSQXhcOXeo/B0nb10jlvLJ7m9fJJ7CytszC9RKZVp5vMEqUeM1OlFKN0QtROidAOsbo9U103G1QgfhwBH9XAUD0f1+8Iq5qiDekIlxNdCAl0QasmIGcfxSNkeKbNDxmyRNevkzQppoz37M7ds/KoNezrajoKzFZHZ8Mlv9VCioy0mdm2VTkahkxJ0MjFeBvy0wMvo+CmDXsrCTaVwbQfPSBPFDlHoEMY2fl9YDcVW6NANHNzQwYuOlvs1C1uPyFgxJcdnLuVRcnoUHZ+87ZOzfNJGQNroYeldTKWNprRRRRtECxE1icImycS4ceJQGRFSU4SWpxL6I0Krp/f3UaZ1Io+Erxp46r642hdc/VvVTsa+qCY9XaWng28IAi1G0XoomgdqD0X10DQXYyi4PBTVR1F6CK2HUHvEao9I8x67nSSEsi+04r74OijWYgMtctAjBzWy0SIbNbJQYwsltlEiE0WYyXDvvrhLnqv1RVkSUBmSJJsPZg4E/UDKp4oQmHGIHSaiyo72hZjdF2X7oiv5erhf6JPqizU79HFCf1gps0If61jakloiwlSLSLOINJNYM/v3LSLVTKplukmo6UkLs18x6w2EmQmekWzn33SO7/jrH3yqxyjF0jHyRS2WhICgC25tf+tWx78ebnVwR74XenSiApvBi2z6L7Hhv0glPNNfE7SPo9ZY1q+Q0j7PlnWXa1bImq2xkY6oZnziKXrICFWKnTSlKEcpVSJfKkNKZ1eps95eZ8/dO/QjzQuTU57KkiuG1Si1ZeLXTWJ/loE3mVymxEmoox0kxvNsz8cJQmw/8V7YQTizzTegY9ncWV7h7tIKd5dWub+wzObcIrvlebqp9OwneyFqN0LphCjd/tYJUdwQPY6xCXCU/c0mHN5PKb3kMSXEOOKVNTLaGOkqRqqG7bRIOR2ylkvecrH1w1uKsVCouwXqjQLtRga/ahNXDPQdBXs3ouB1KPZa5HttCr02+hGDQ0NNpZux6GQMOhmNVkalk45opUPajk875eNnIMqCyICiWqiRjSpsiJNNRA5RZBP2t16YiKtEdI2Ir8DGj5/O7EiFmKLjMud0Kadcio5H0emRs3p9seWTMnrYmouhdtBpo9KCuEUctUgu4/sIAbE/EFIqkacl1a3+beT1hZevDb8X9Yy+X+uVCQGBkszRUy1cZVRcjVe3xluLFj3VJFQFit4biixFTUSXrnUxtC666qJpPbT+95IKV49Y9YlVn0jtEWk9hHK0n5vZH0jBjCyMyMaMLMzIxohs9MhBD1JoUX8LU2iRgxLbaJGFFptosYUqDFRhogq93z4nSR9XIwI1xlcifCUmUAQ+gkBJEsuDgUATSaxlKJLQxuiIlTVVxMMqmD1y60SJELMOiLLhflNE2UCQDZ5z1P+fj8vtr/w2vv7nf+SpvqYUS8fI60IsCQF+e1LgjAmf+sj9kcdfiflC0cApQqoEThHfWGDTu8Bm+wQbtXl2qmmiaPwXgGGpLJ/Ps3Q+j11sc7f9OT774DNcb9xgQ61QzfaItMkfaz1UKXZTzIUlVtKnWVo8iZWzaWgN7rv3ud24PVNEFTSTlUhhpRtR7uhk2gZGyyRqmAQtg8NnfCugWCRW1hiEjxYmAsoJQhw/EVD22P1oZruv7aR4OL/E/YUl7i6vcG9xhYcLi2yWF2cLKSGwuh6228N0Q1RPgCvwOzFuK5qoOuhEiYjqiytbCce+Hm4EaDP/+hfoeg/HaeGkmjhOE9Np4KQapO0OunZ4XymMFSp+il0/T8UrU/HmaTXL9Cp54opBuu2R6XbHxNTolg4fb9jzKK7j4GYc3KyDl7VwcwbdrE47q9BOC2rpiIrtUbO6dLQWiB6OKnBUga2CJRR0kYgtNbIRcX8bEVxB5NCLBi3E/QqXG9p0gxSheKX+H4Gl+WSMDuVUh7LToeR45C2PnN0jZ/ZImx6O7mFrHqba7Ve2ErE1IbRikkqVrybiatT87veF18EKl68T9VTi8JUJrVjVCLR+xUqx6GKOV7LGxNW+2Oqp1kichEhiG9Qe9NuIht7B1jt90eWiqS7qmODyiZWAWA2IFJ9Q7RFo/tMVXYARJmJrILjM2BoKMDOy+993MEIHM+pvoT0i1pJNRUlmqamDRWqCWAWhKsTE+GpETwvwlZCeFvYFWYSvxsk2FGcxPhAg8EmEWZI1ribiTPRzq4SatEEHrdL+H7r6oBp2oOI1qG6NirJHVceGz4l8/vM7vp6/9XN/96meeymWjpFXlVgSAnrN6ZWd7rRqz4jwiV9BdopqjIme8a3Qv53yPSs70/wcBTHbd5v9tl2DrVt1fG/8wqrqCouncyxfKLB0PouRavEndz/Fy/f+gOv1NR6qe1QOEVBapFDspCkHRU6nznFh5SVKc2U6VoetYIvbjdvcatyaKaIMRWERlROeYME1yLd17JaJ2jTxGyYinPHXnmKhKA6D9f2CEGIPRBczjLCDaFiVsvvialChsoJw6t+RjXSGhwtLPJhf4sHCEg8Wl7m/uMzG3CJd5/BkSyWOyLYb5BoN0q0mTrtLKohJhSqa0An0NJ5m08GkE2u0Amj24r6+EpgDYaUE45WrkarV4HvjCwcFpuniOC1sJxFSjtMa3qrq4RemIFaoBjp7gcZWoLPlW+z0Mmy7BVp+DhGlMXomuY5OydUodCHfDcl2fXKuS97rUui1hsIq73eOPO4m0Aw6qSxeJksvl8HPpfBzDkHBppc36OV1ujmVblbQTIW04g5Nv0nLb+L6TYKwhSo8bFVgK/RFFxho6LGFGidVCfqiK45tosghDG2CyMaL9luI7oH2YvzEIaECU/NJ611ShkvO7FByOhTtLnnbI2d5ZE2PtDEQWy6G2kVX2iii3R/jsc9gteHkKsNpqw4HQksj9IZX/Scm0kxC3cbXbDzVpINFB+OQStb+Yz3VPOR3k+hnZnmYRpeU2cE0OphaF13roKkuiuKiKB6oPkLxEUpApIRESkCoBARqgK/6xE9bdA3EUzgQXongsuJ+9Sve/74RJKLLiJxEbIX7Yk2d8pslWXcJutoPaFUUNGVwHxQlItB69LQAT/MJ1JCeEeBrIZ4a0VNDekqIR0yPkJ4S44mYnhLji6R65gP+YAjMoHJGEkKqCJO/em6Oj33bX3mq50yKpWPkmYmlXgs6u9MrO4e2umq8IvenZu6LmqHwKUwRQAeEj5k+lsnjcSyoPGwPxdPmzTrd5oHKlgLl1QwrFwosX8izfD5Ht7PD59Z+j5fv/QHXatd5qOxSyfYI9ekCqtBNUeoVOOWc5Q0rX86llUtE2Yi6Vud++z7rjXXWm+vcbd4lmNH7z6pwMoDlrjGsRuktk7hhEnZnrfzSUdQcqCnATCaMihghXBCd5C9/EWP15/CNCqnR+1a4P1ZAALVsPhFS/e1hX1A9XFjGsw5vHalRSL5Vo9iojG35RhWz6xGZGURujjhTInTyBFaWnpHCVW06GLQjlVYADS+m7vpYowJqKKzCA1WsRFjZdmdEPDWx+/dtu42qHv7rK4h0mj2bmm9S8TX2QpWtULAZR9QUn0iNELGBiFLDjdAh3THIdzTyHZVcB/LdmIIbUnAD8l6Pgtul0OtQ6LWOPLw5RqFtpWg7ObrpHH62QJQrEBXyiGKauJgiKtnERZOwqBOlYiJcAtGh5bf6Iqs1cr+JGzQx8IdCy1bBUQS2IjAw0YSFGjkosbXfToztsQqXGzpjJvmB2PJC+wlM0wJTDUgZXdJGl5TukjK6FKw2BbtL3nLJWS6ZvtiyNXdcbI0ILSEgDtRHrDI8EO8wNMS/MrO3QEEYNqExEFpJVauDQUuYBypZ9rCS5akWoaI/xu9DgW34pCyXlNXBMjqYRhtd7aAqXVS1C7gIegg8IiUgJiRUIkJCAiURHz01eOqiS4/M8UpXuF+9MmMrEV+xhRnb+xWvwEYP7P1KV2ijzsomOfieJKJLU/qirC/GNEBVYoQWcO7PneXLvuHyU/2sUiwdI89MLP3K98B//aUne67ujIuZ1EGxc4jwMZxjET1PCyEEjV13OKJl80adxq47sV9u3mHlQp7lCwVWLhTIzVlUth7wueu/zx/1BdQDZZdKxiMwJv9LqJFCwU0E1InUOV6afyNvPvFmVpZXiDMxD7oPhgJqvbnOemOdXXf30OPWgEUhOOnpLHQM8h0du22iNkz8ppmMDj8MNYeiFlHVzEh7D0TsJsbguInot1GUWGCH436p0ftOEGOGIQKo5It94dSvSi0u82BhiY25RXzz8AG+ehhQbFQoNKoUmuNiKtNpTazm0Z00amEBcnNEmRKhk8M3s/h6iq5q0RE67Uil6QsaXZ9Op0vQ605UqlKqR9mpUXb2KKRqZJ3GsMVnWZ2ZP8ZBYOK6ebq9HF0/TyfM0opTNIRBR+vRUds0RZMqVRqiQTxS3RJCgdhERGlMzybbNsi3DfJtjVwXCh1Bzo3Id0MKbo+C1yPf65LvdVGP6AHzNGMYCNpJ5fAyOYJckThXgGIJvVzGnC+jz+XQyxaGFaLpiVk6Vrr04s4BcdXa34IWzV6Ttt9EJRwTWo5KUukCDGGhikGFy0JENiJ2iGObMLQJIwc/Gm8h7le4bHpHNMwbqk/acEnp3THBlTa65K0OeatL1nTJmC5pw8XWXSzVxVQ7qCNhkCKm77maNMA/qsIVz6oGPw6qRmw6RIZDoNt9n5ZJV7FoxwYNYfRbh/aIZ+tg2/DR2AZkTUhbPo7VxTbbmEYbQ2+jqW0UOgi6CFxi4RIJn1D4hAQEIqKHoEdET4noKSHRMxJdo74uM3RGWocWVmxhCRtLOPviK3KS/QIbLbSSXCbgrd9wlj/19Wef6jFKsXSMPDOx9B9+GF7++Hg7a2qb66DoKSSi54uUTqOXBGXeTObc7T1oT3hxUjkzqTr1xVP5RAYFwd7Gff74+qf47IPPcKV6jQfssJc9REDFCnk3TdEvsWKf4sXSi7xp5U2cWjnF0tISsR5zt3mXO807+0KqkVSjvOhwH00GwSlfZclNqlHplonRMogaNnHv8F/isWKiaCU0tYSiFlHUNMn8dEC0+yKqL6REExH3+p8jnvBLDatVYYQVxtQyuWEFalRQbcwvzhxpYIYBC80apUaVXG2HTGOPQrNKsb5H2m3PXjukKDjZHOlCETtfhGyZOF0ksHP4VgZPT+EpibhqBlBre7Tabbxuh6jXIGdss+TsMJ/ao5yukHdqZFN1HGsyZmIUv+fgellcN4vbzeG6Obq9Am44D0YK1dLRbA3VUlDsEGH7RGYXV+vSpEkrbNH220NR0g7aCARKpJBu2+TbJvlW0hrMtxXy3aR6le9G5AfVK8/Fjo7WFo9QaFpp6v1A0LqVoWln6WWyBLkCSrGMWiyjz5Ww5ufJFzIUUgZ5xyBtx+hGD013QfFwo/ZUcdXyE4E1/F7/MSGiscqWrYqh6DIVBSO20GIbRVgQORDbxJFDHFuEkUMQ2viRM2aSH61wBfHhYn0UXQ36rcPuUHCljaSVmO7fz1mdvthKRFgitrro6r7QiiPl8DiHofF9utASs/7QeRwME8wUkeEQ6ha+ZuOqiU+rg0kzNmjE+rCaNRBbvmo+9timASlTJWupw3iMlOVjDypcehtda6GqLRS1RSw6RHGXIHYJ4h5B5OPFEW4c48XxmPAKn7roMjAim/cXv44f+hYZHfCa5ZmJpTiGGeM1JI9Hzw3ZurUvnrbXm8Th+I+9aWssnd8XTwtnsuiGhojjREBd+31evvsprlau8VCrUMn7+MbkLwQ1Vsj1MhSCEsvaCpcLl3nz8ps5uXKS5eVlstksAsF2Z3tCRK0319nsbB76OVQEi5HCSVdnoduvRrVMaDhErcP/Gk1yVPIoWglDLaGqJVStBEoahD8iopJNURJhFYed4WtoUTy1zWdGMZ18id18mY3ywr6QWlhis7xArB1+XI7vs9pusNRtstBtUew0yDQrmNUt2N1Kfv4fE1XTSRUKpPNF0oUCqXwRK19EpAuEdo6emcHTHbqYtH0Pt3OTuHcHI7qLo26SMXbI23s45mwh5XkpPDcRUK7bF1RuDs/LJCnaQKgYCN1GNW0MO4WTSmGlbJy0iZXSsNIKZjpCcXw6YV9Q+e19MeI3afda9NpNlFoTreaSbqnkBtWrjkKhK/riKqTg+uR6R19k0dUtGmaGmp2hbu4nrzesDO10Bj+bIy7kUUslUuUSc5k05YxNIWVScAyKaYNCyiRv69hmCJpHO2hOiiu/SbM3+fjws/qJmFTpV7RGKluOKnAUMFHRhZ0s7e9vxDZR2K9wRYl/q3dgdeKoeT56hGFeV5LMrKSS1Rdbw/vjgitrdckY+2LLUJPzfzANPuwNVhX2hddw1eGIUd7fF2KHLxJ5HBQUywYrhTCdoU+rp1p0h+1Dg0ZsUI+MkWqWTfBYbcNJUqZGzjb6oa8KWQsyliBl9DCNDobeQtMSsaUoDQQtYlqEok0v6tINfLpBiDucHZn4mBJfUzwhuv7Gwjfyoff+nVdwjiaRYukYeVUZvCWPJAwidtZbQ/G0eatBcMA0rukqC2eyQ/G0dD6P1Q+Q9DptNtau8cfXfp//+vBlbnRus5t2qeR9eubkBV4RCjk/S8Evssgil3KXeOPSGzm9epqlpSWKxSJqXxS7ocu95j3uNO9wpzEuprrh4RfyVAynfZXlrkGpo5NuW2jNFHFDO7ioaYxAdYi0IppWwtTK6EoRRS0lfikiRNwaq0gpNFHVNnHUJOyNjA8RAiOKx4SUHsV0MkXq5QX2CvNsFstDj9R2aW7mnL2M53KyUeOE1+GE77Ic9pgPPYp+FxH2aPsunUaDTr2G124d+jrTMCx7RFgVSRUSgZUuFNGzJr7WwlMq9OIter17RP5dtPghmtI59DWFUPC89FBEeW6OrpvDc7N4Xhqm+H5iAb5iEKoW6DaqZWPaKZxUmkwmQz6XZa6QY66YI58zMU0fFHcoNtpBeyg4Om6TXnWPaK+CqNWHIkuv+zitiGwrIucKCv3qlfmYWWADIkWlYaaHYqpuZaj1R9sM2oR1K003myHKpbEzFjlHo5gyKadsyhmbxWyGhUyaQsqkmDIppAwKKYOUqdIJO2NVrEHlqtlrToirgy3FTjAi6pkUWgPjvIWGGttoYtBOdPorFBP/VhQ7+KGNF+6b5bsHvFyH+bc0JRxrF6YOCK6BUT49Ir4yZlL5MrW+0IohCg7EOfTUobgazdUa3u9/75W2DRVVQ7VTKHYKYRxoH6omXSxaGDQjnVpkUIv0YdzDKxlePRBbOUfv3/aFlyVImzEpo4eht1G1Jqra4O1n38KbTnzZK/qsB5Fi6RiRYum1TRwLKg/aQ/G0cbOBe8A0rigwdzLLyoUCK5cS47iTSVoDcRSxe/cOD65d4crNz/D57T/mobrHXt6nkvPpWdMFVDbIUuwVmYvmuJC7wBsX38jplURAzc/Po41UZYQQ7Lq7Q/F0p3Gnf3ubzfYm8SFeGEUIlgOVE31vVK5jYbbS0DCge/gFM0KjpxcItSKmXsbWyhiiiKoVURSzf0wRIm5DX0gJ0UTXO0nJPmziu3XE6ApLITDDZHWfHgva6QKNXJlaaZG98jxbxXk2yvPslOZm/nvl2i1O7G1zst3gtN/jjCo4qcGKrmBaBq6h01UVOr0unUadbqNOp16jU68TeJN+tlnY6cy+mCo7pMoRZtZHS7XBqBKxix9uEMeHv24ca3R7eTpunk43i9dNE7ppXC+H30vxONWESCi4JDMAQ80C3UKzHKwRcVXMZykV8szn0xTTJsWUQTFtkrV0wjikFfQrWL0mzfoO3u4m3u4OQWWXaK/aF1kt1HoXs+7htHwyHZ+0d/RVsh3dniKmMge25LGOaWFZEY4Zk7Yg66jkHJ1CyqCctplLp1jIpljKZlnO5vvVLQPb6Ffy4pBO0JkqpKab4sfvu+Hov12SHD0QWYOVibYisBQwMdEiC0XYKLHTN8z3BVfsEEQOQWhNBJ4OvFzTAk81JSQ1pWWYiCx3wig/KspsPWmlxxEzzO6HfZ08JqYl/R4B1TDRnTSKlQIrRWTYY6sPu4pFW5g0hUE91KlFOtVQp/cEbcO/8xffwLe/48wrOt6DSLF0jEix9PpCCEFjxx0TT80ppvHSSpqVi4Xhls7vryZr7u2ycf0KD9eucu3WZ1lr3aSS7VHJ++zle3hTBBSCRED5RUpBiXPpc3zJwpdwZuUMy8vLLC4uYhiTK+j8yOde897QXH6ncYfb9TXuNu/RCmZUoyI47eksuTrljkOqnUFtmohGhDIjNNPVMnhakVgvYhlzpPQydlxAERmUkVK+EAJEZ1iV0rQ2utFBUdpEQYNet0YUjHu3FCFQY4VuukAjV6KRK1EtLbBXWmCrNEc1Vzj0uACKjTondrdY3dniZK3C6cjnjApn0za5hQWUuRJRJkPPtnBNna7bpVuv0ekLqm5fVHXqNeLH9gwJjHRMfsUgvaDilCLMrIdmNxF6PRnvfigWEYv0wjk6XpF2J0eznabZSuF3FdTIRxdHEyuBUIdDlj2h42GCYaObNqaTJpVOk81mKOSylDIOpbRJMW1S6ld8immDjKUP/y2F7xPUqrS2HtDeeYi7s4m3u01Q2SOuVhHVBkqthV7vYLVctCNWrQJFGxFV0wXV4H7DShOqSYVXUUNMw8cyQmyrL7RshZxjUEwZlNIWcxmHxWyGxWyWlVye1VyBlDkuWII4OFRcHVbNGv1eL+od+EQCcxABMRRdydcWoAsLTdgooysUY5s4ThNHNn5oEUT2MA5iVuCppkQ4MytY043yKaOLo/eONkR6ytevrG0IhpNKFnzYidCKDYfIsPvhpTZdJfFptYRJI9b5rq/9cr7uLedf0XseRIqlY0SKpdc/nXovmW93o87DG3Vqm5MtmfyCMyaecuV9k73vuWzdXONhX0DdWv8TNs36sPpUyfu49pTIBwGZIEPRL1L0i5yxz/CGhTdwZjkRUEtLSzjOdDO/EIJar7Zfjarf4lbtKuvNdTa6e0SH/NdXBCz11MQb5abJdTOYDRsaArzDYxICxaCtF/H0IuhFHGuOjD6HIwpoU5ZxJ2Kqh4iboDSxbA9Nb6OIFmHQoNep4rvj41N83aSeLdHJFGjmStTzZSrFOXZLCzTT2UOPDWCuXmV1Z4sTO1uc2NnkxM4WJ7ttThsamfk59OUljKVljOUltKUl4nwO3zTodjuJkBpWqGr7wqpRp9tsJGaVQ06mkQ6x8j2svI+VD7CLAXYhxEh7KDOiDzQtTSp1Bts+ja6tEETztN0itXaaWl3QbLfotjv0vC5hr4vwPZQjxob4QhsKK1fo+4OWFRPdcrCcNKl0ilw2QzFt98WUSSltUEyZidDqP5Y2k0pP3GoR7lWIqhXCSpWwskdYqeDv7tDb2yGo7BFVqlBroHaOVukDaBnOIWJqIKiSFmHdytDV7QkvjqK6aHoPw/CxzDCpaNmQsdVh67CUspjLpFjIplnO5ljIZMlbObJmFkd3xv4o6EW9CRE19GodIrBGvx9OybdTSCpZQ6Gl9FcqqgILBS22E8EV2yiRjSJsRJxG9L1bfmjTiyzcYKSdeCDwVFWi/WrVWNVqiuAaEWLJ970jDpEer2bFwZO17t71HR/kLV//LU/03MOQYukYkWLpiw+35Scr7m7UeXijNnXFXaZksXKxwOrFIisXC+QX9n/Jijim8uAeD69fZeP6FTbWrrFRvz8UTpW+iOo60y9+mSBDoVeg4Bc4aZzkDXNv4OzKWZaWloZG8lkEccCDVhJ3cLt+g5vVz3OncZv77W2a4cG/lPdJ+QqnezorXpqym8NpOSh1BdH0UA75VRKj0NKztPUiPb2IapTI2PPkzXnSkYPqRsmshykIESDiJqbtYjldNLWDEE3CXh2vU8Vt1YdCpWda1PJlavk56rkSzWyRWn6OSnGOrnN4qrkSxyzUKqzuJkJqX1Btsby3jV0oYCwtjYkpfWkJY3kZY2kJtVzGnSKougNh1UiqVd16jV53RGSrAjMT9EWUj1XwsXLJfTMbzPTbKqQxtRUc+xSZ7AVyhRdIZ8+hqSv0etBut2m329QbLfbqDeqNFq12m06nje92CXtuYpI5At6ImHIZud8XW5FiYaUc0qk0xbTVr1gZlFImhYGw6lewCimDUtrEJiKuVgkr1URcHRBZUaVKWK0S7e0RVqsQHVEMqhoNO03dzFC3csPWYK0vskbvN800kXrYRTxC0VwUrYuiuRhGgGUG2GacrCRzVLIDoZW2mEs5LGQzlFMZcn2RlTWzZIwMGSOD1n8fIcSY2JolsA57PDpEIKv0VyYq+5WtwX0DLUmYj+z+TLw0ikglpvm+2PIjCy+0JuIg3NDGi0wsbXTl4fQ24agQ27/vHnGI9L7wuvx1b+cvfOuPHeln4FFIsXSMSLEk6XUDNm81htWn3bst4gOtLCdnsnKhwOqlpPJUWk6jjERZd+o1Nq5f5eFaIqC2b9+io/X6wql/mw/oONPbMukgTaFXoOgXWVaXebH0IudWzg0rUMVicewv4sNo9BqsN9e5Vf0CNyr/ldv1m9xvb7LptQkP+XWhxrDk6pzy0yz1cmTbafSGjqj1wD98pZar2tSNAm29gK8X0cwyxdQiRbNEJlTRuhHCP/yiLkSEpndJZTwMq4uqtRFxi8Cr47UrdGoV4ijEtZyhkEpuy9TzJWr5Mj3r8JgNNY5ZquwOBdTq7uZQSC1VdtH6K1b1+fm+oEoEVCKo9oWVPjeHoqqEvj9RoUpE1uj9Ot1mBdXu7IuofF9IFXzM9Oy2XOzbEBTRWMAyVnGc02SylyiULpMpLeFkktR8z/Not9t0Op2huGq32zSaLerNFq1WG7ebVK4OrZxNe38BHvtCypsirAb30Q1KKWsonobtwL7nalC5KqVN8rZGIfIwmnWiapWoUhkTWWG1koirSoWoUiHuHG7IP4y27dCw0zSsNFUzS83IUjNz1O1sX3BlqPdXD7q69egVZEowIrL2N9MIcExByhZkbYW8Y/TPgcVc2qFgZ/cFlpkhZ+aGYitn5jC0fuK/ELihe+TW4XAlYtAmniGaNfYrWvvp8n3/ljDQhI0WW2gijSbSQ8N82G8n9kIzEVkjJnk3TNqImhLjGN7MqIfUAcFVU/4i3/keOe7kNYsUS5KDBL2Irdv74mn7TpMoHP+lZKX1xDDeb9vNncigavvtqtD32bp9g43rV9lYu8rD61fxWk08M9qvQOV8qqWQljVdkKSCFEW/SKFXYEEs8ELpBc4tJQJqeXmZcrk8ZiSfRRRHbLQ3WKv8ETf2/ojb9TXutTZ46Daoh4f8xS8g7auc7qU50csx5+WwmxaiFiCa7enPASJU6kaemlGgpRfx9SKOPc9cZpE5PUU2Ar0bEbUf5ecRpHIhTsbDMDsoahsRNfHdGl6rSrOyS0PRqBXK1PsianQLjMNTzbUoYrmyw+r2Fid2tzixvTls8c3XKuOz/QwDY2Hh0OqUvryMVijsVx6FwHfdkXbfiLhq7OD17hPEmwh1D8VsYvbbfMYhlcgBfkun17SIvSxKWEJXljCNE6TSp0jn50iPrAxMF4oYtpNckF13TFAdFFmtVjvJuHJnRy8cZGBcd4WxX7kaEVOjXyfDfRQsXaWUHlSrDrQD+6b2UtqkqMXke22ybgutUSMaVLAqewdEVpWoWj1SVAVAaBh001lazkBcJduenmVPz1Ezs8M2YdNKEx/FzKz2EmGldlH07v59Lfna1ENStiBjK+T7ZvhSyiZn7YusrDFdbI22EmMR0w26j2WEPyzY9FHofcGVUsXYSB9bUdAx0CIbkwyaSKPGDiJ2iCKLIDTxQ3NY3XJDm2/5U/N857u+60j/To9CiqVjRIolyaMYxhXcqLNxo8bm7SZhb/zCZtgay+fzffFUZOF0Fk3f/wUrhKC2uZEYx/sCqvrwPgA9Y19A1UsxlWJI3Zh+4UqFqWELby6c41L+EueXzw9beAsLC1ON5LNo9Rpc3/kUa3svc6t+jbvNBzx0a2z7AcEhs720SGHJtTgd5Fn2CuS6abS6IKw0ITxcBLW1FDWjQM0o0jAK+FqRXGaBpfQcS7pOLlQwvJiwGRAHsy+ApqORLYGd9vrm8xZR0CRwa3Qae2x0XLZ0a0JE1fNlQv3wc2REISu1amI2f3if1e3NRFDtbDJXr6FO+bWr2DbG4uKwOjVNWGlT2qsijnHbLTr1Gs3qA1qN63Q763j+fcJ4C6FVUO0mqnH4ORUx+C2DXsMc20I3g6kvks6XSOX3RdTByIVUvohuGERRRLfbnRBW0wSW5x1twHEoVLojxvVplapBRSs6sMTfNtSRitWggmXsf+3olCOXQq9N1muR6jRQ6/WkSjWlLSi6RxOFQlGIsnn8TI5OOkfLSVM1U1TMFHt6im0txbaaZVtNxFVPP1ykH04MqjdRxRq0DhWtM7yv6z0ytkIupZG3bXLmeCUra2bJmbmhuDq4ZYwMqqISxdEw9mE0S+tgaOnge01/PApiNPZhxtnDVJJ24vd9xf/A+1/6jic4N4cjxdIxIsWS5KhEUczevfZQPG3cbOC74xcz3VBZPJdjpe95WjybwzDHq0Buq8nmjes8vH6FjetX2bq5RhgkVaaeHlPN96gWItrLOrsZlz21OfV4nNAZtvCKfpEL2QucX9oXUEtLS9j20cZWAARhl/XKZ7i++wfcql3hbvMeDzoVtvyAWnTIX9oCsp7GaT/PCb/EvJfDbupElTZx+/BfroGi90VUgXpfTHlGgfncEqdTaZY0nXykYHoxcSuk1z7crA7JgOZc2SFTULFTLprRQaFF6NdxuzUedjrcDWI2VTMRUYVESDVyJSJtdqr5SrPOyXqFk7vbnHhwj5X125zY2aLUrM9cX6Sm05Miang/uVWnGP6FEARBlXbrJvXqNVqNNVx3nV7wgFBsg3L4uYgjBb85KaR6DZOgozNYEWWnM0NBlRoRVelCkXS+MHzMyeVQVY0gCMbE08F24OgWBLP/rQ4SouNh0Il1ulOElTfivTosO8kxtKHvqpgyxypYZT2iHHQo+m1y3RZpt4nVbkCtlrQHqyMVrFrtSG3M5M0d4nyRMF+gl8nTTeVoOTnqZppdw2FLc9hQLDYUh83Yxn1FOUvhRKuQA+LqoPhSNZeMZY2Jp2H16jHEVtbIYmgGYRwO0+6bwYFW4pSk+G978dt4x8o7XsFnnUSKpWNEiiXJKyWOBdWNNg/X6mzeqLNxs47bGr9AqJrCwukcK33P0/L5PKY9flGOwoCd9dtsXL82jC7o1KrD7/t6TDXn01k1aS3pbFpNduIqYkpOkx3aFPwCxV7SxjvjnOH84nlWVlaGIiqTyTzR5w2CJpXG51nb+wNuVb/AncYdHnR22fJDdkKV3iHVKDNQWHBTnAnnWO4VyXUs1FqPoNI4tI0igKaepW4UqBrFYVXKM4ucypc4m7JZ1gwKQsH2YuJ2iFvrEUezfzWmcib5eYdMycByksoUokmv1+CB2+aO53M/hE3dopZL/FGNbHFmqrkV+Cy3G5xoNzhVr3GqssPJh/c5cesG2c2Nx1qoreXzM6tT+uIi6sisPyEEvr9Dt7tOt3uHrruO212n07mN691HiMM9Z3Go0mua9OrTqlLTl5YrioqTy01WqUbS1wePW+k0iqLQ6/Wmiqlpj0VHNIHHmkmgmLgiEVfNUKMd62OVKlcY9NARj/gXSJnaUFQNfFglS2MRj7mBuPLaZNwmdruB0awjarWhzyqsVBC9wxdYTEVV0YpFKJaI80X8bB4vk6eTytGwEwN7xUixrabZVGx2fEGt61PvhgSP+BmfieIfWrkaF14HKlz9VG5bs8fEVdbMkjNyY18PWomD7VTuFCW79OTHPAUplo4RKZYkTxshBLWt7tDztHGjTqc+/ktUUWD+VJbli4Wh98lOGxOv09zd6QunREDt3buLGDF1BlpMc17FP5elXhY81Ko89LemCigrtIYeqMFKvHPz51hZWRlWoAoj3pujfmbf36HVus6D2ue4UfmvyQq9zi7bQcxOoFCNlKkXLCWGXFfnVFDiZDBP2U1hN2LiSpvIPbzd46kmNaPYr0QlIqpmFPDsApcKGc47Niu6QUko2D2BaId0q72JKuBBdEsjP2eTm3PIzVlYTg9N6+BHTTaCNrc6Hnf9kAdobBsO1VyRZqYwM9Xc8j0W2w1Wuy1OdVqcbjU4U93j9NYG+a1Nou0d4sdsD2lzc+NG9IOm9Pl5FF1HiAjP26Lr3sHtrtN1+4Kqu47nPUDMyoCKTeJenrCTwqsbdHahtRXSa5j9jJ7HOE5dH69S5QfC6mAFq4Bh2QghDjWuTxNZR7r8KQqKbhFpFoGaiKt2rNMINGq+OhRYrjDwefwMorSpDX1WBcdgUY9YjF0Wwg5Fv0O+1ybTbeB0mpitBmq9RlxLDO5Rvf74x99HTafRymX0chmlWCTMFehlC7j96lXDyVA1MuzoKXaFSd0LqXUD6l2fejeg7gZEM3LYHn0ABytVk5WrgxtqD0UR/PDbfpj/5oX/5snfewpSLB0jUixJnjVCCJp73n7b7kad5t6kCCivpvsp40WWL+THgjIH9LpdNm9eH0YWbN64hu+O592EOkQXS/ROp6nkA+7GW9zr3CeessbfiqyheCr2iiwqi1xYuMDy0vKYkVx9wjmHQkS47n06nTVqzSvcqv4xt+s3edDZZTuAnVBhN1TpThtgKsD2VebdFGejRRa9HNm2hlbrEdRah7ZHIlSaRm4ooKrD9l4R3UlxsZjiQspm1TAoxSqpAGiHdGse7VpvIkZiFEWBTCkRUvl5h2zZwslEhEqbjbDF7W6H226P+6FgQzXZcdI00/mZ58j2upSbVRa9Nqe8Lme8Lmc7Lc436hSaTdRGk3hvj3BrCzFjdeIQTRtZ4TfdlK4Uc/T8jaQi5a7T7a4PBZXnPWTWSdDUHLqyiBKVib0sQTuFW9Po7Ao6lTadRo3eEVezmY4z9E+Ntv3GK1gFUrkCmq4Tx/GEcf0wgdU9okdJUVV00wHTJtYs/H7lqhVpNAKNiq+y6yq0Y31oXD8KGUunmDaYs1SWFZ9l4bIQdCgHSeUq67VwOk2sVh2tWUPptwfFEduZ6Dp6sYg2N4deKqGVS+jlMmGugJfO00nnaTlZ6maaPT1NLYR6N+hXrhKBNRBazSdIgt8nRtN7/NU/neHH/8JfeAWvM4kUS8eIFEuS50G75o1Vnmpbk7/QC4upsaDMbGnSdxTHEXv37iaxBdevsLF2lebuzsR+1lwR5fIinVWDnVSXW7173G7enrr02IzMsRbefDzPublzrCyvjBnJdX32cNNZxHGPTvcOnfZ1Wu3rbDa+wJ36DR509tgJVXYChZ1QZS9UiKdcjLQIsh2DU2GZk36ZYtcaVqNi//CLSld1qJn7VaiBoGrpGXIpi3OlFBczDicMgzIa6UCgdiI6VY/mrkv4CNO5ldbJzznk5p3hrZoWbIgm616bm+0O672QB0JlS7dp2qmZr5fqtik2KpRaVZYCj9ORz/mgxwXPoxQEWJ6P1m6j1GqEW9sEOzszDfYDFMNAX1wci0wYCCttqURQCOnpFVx3XEz1/O2Zr2ua86ScM9j2KXRlEYISkZclaJl0652RVYH7ieuhf7TWlZPNjRnWD1av0oVEbDmZLIqqPlPjuq4bmE4K3bTBsIn64qordFqRTsPX2PMVdl2ouPETV3WypsayGXNC8ViOuyyGXcpBp29qb5JqJ74rvVVHqVURraPNXARQs1n0cjmpXJVKaHNl9FIZrVxCKZb67cEsDTtLDYu6F/YF1UBcTQotN9hvq/79b3kT3/qWk0/0+Q9DiqVjRIolyauBbtNPxrP0PU/TgjKzJXvoeVq5WCA/70xtmbWqe4nvqZ/5tLN+m/iAF0S3LOYvnCe+UKaxoLBpNLjeWONm/SbhlPaMERn7AsovUA7KnCmeYWV5v4W3tLSEZT3JSqB9wrBFp3ODdnuNduc6jdZ17tavs+G1hgJqcNs+pBqV8jTKXYcz4TyLvSzZVlKNCpuHVztCRRtp5+37o+pGgVA1mMtYnCunOJ9zOGEaLCga6QDUbkSn4tHYdSd8agcZmM4HVan8vINRNtlLCe4FbW62WtzuetwLYjZUg6Zuzny9TKdJsVGh2KhQaFRYiXqc0hQuKDCv6aSFghOEGF0Xtdkk2tkh3Nwi3N19LNOy4jj9FX771SlluUS0qBAWevTsJl74cCimgqA669WwrWWc1BlSqTOknDOkUmexndNoYg6v1R7OADyYXTWIYOg2GxM/xzOPX1WnVqmGvqqR75lO8n/pcY3rnU4H/3GqfCNYlkUqlcZ0UmiWA7pNqJp9cZVUrmq+SqWnUO2GQ/HxJPpKj0NW8DileKwIj4Wok/iuem2yXpt0t4HV912p9dqRA0MxDPRSaaq40ufKaKUyerlEmC/SdjLUfcFi1qaYnv0zfVSkWDpGpFiSvBrxOgFbtxrDES2791qIA781U3kzEU79AcGlpfGgzAFBz2Pr1n7m08b1q3idyZyk8olTLFy+RHA6R70UsR5scKVyhRv1GwTxpBAYCKjRKtTp/OmxFt7S0hLp9OEJ3I9Lz9+j075Ou7NGp71Gu7PGbnONzZ7HTqiwE6jD291QIZpSjdJDhXzbYNUvsOqXKHVt7GZEXOkgZlwsWlomEVHmeDWqo6VAUVjJ25yZS3OukOKUZbKgamRCkopUX0i1Kt5E0OlBUvnEdD4QU2rZopHX2bEEt7stbrY6rHsB92OF1qFp1YCIybYHQmpvKKiWwx6nbJNSsUTBdsgpOk4cY/cC9FaHuLJHuLlFsLWVZBc9Bmo2O6xKqSfKxCcNwnnwcy6+3cBjG9e7SxgeXulQFA3bXiXlnOmLqbN9MXUG215FUfqJ2f2YheEMwMaU8TX9r93W9JWjh6Gb1rAilc4PRFVhshWYL6D3DfbP0rjuOA6ZTIZMJoNpp9BMG2E4RKqJpxh0Y4NWpFPvKVTdgFrHp9qv6tS6/tEW8AlBJkiiF1aFywouS1GXubDbN7W3SHebOO0mRquO2j16YKiaz7P4t3+IwrfIcSevWaRYkrwW8L2Q7dtNHvY9T9vrTeJw/L+/nTZYvpBn9VISV1A+kUGdIp5EHFPdeDiMLNhYu0pt8+HEfk4uz8qlF1m8dBH/RIbtVJvr9TWuVK6wVlvDjyf/stZjfcwDVfALrDgrrC6vjkUZ5PP5JzKSj30OEeN5D2m3r9PprNHui6l25zaVMBqrRO2GiZhqTIk8UARkujqlrsWpYJ4FL0O2raJWe8Tdw9syvmpQ04v9tt6+iKobeWJFQ1MVThQdzpTTnC2lOJ2yWFB18hEonYjWnkdzz6Wx6z7SdG5Y2lBE5eZslDmLekFnL6WyoUbcane41Xa5F8S0Z3holDgm164PBdRwq+8xH3oUyvPk5hfIFkrkdZMMKk4QYroeSq1OsL01FFRx8/EEiVosoJ6dR5zPEK3qhPMxQdalZ9bwxDaxOPwcK4qJ45zsC6jTY2LKshZRDgmLjMKQbrNOt35gJuDoSJu+2Dro+XsUVjo9IaimeawGMQuPY1wfffwol3VFUUin02QymZHbDLrlEOsWkWbiYdGNdOoB1AfCqpOIqlqn30Zzg8cWWEYUkO91KPZaFHptlkWXpdhlPuxQ8jvkvRZpt4XTbmC2Gyj9la7Zj/0dTvxlKZZes0ixJHktEgYR23eaQ8/T1u0G4YHRIqatsTySMj5/OoumTb+4dJuNsbTx7ds3iA4YSjVdZ/HcRVYuv8jCpYv0lhzu9O5zpXKFK9UrXK9cpxdP+k+0WEsqUIMsqF6ReX1+TEAtLy9TKpWe2Eg+Shz7dLt3+lWo67Q7N+i013C9e3gx7A4rUfstvZ1QJZjy29TyVXIdg2Uvx6pf7HujIuLa4WNEBApNI0dVLxzwRxXxtMR3Zmoqp8qpREiVHU7nUiyqGoVYQWmHNEeEVLv+eKbz/LxDds5GmbepFwz20gpbBtwLAm51utxxfdwZr6NGEflWbay1N7ifa9cxdJ3c3DzZuQVycwvkcjlyqkEqFliej95uE25vD8VUsLX1yABIgSAuKIiLOeJzaaIVjbAcEWQ69Iw6QjlcRKqqTSp1BscZtPbOJl+nzmAa5ccW44Hn0WmMtv/qU9PXu/Ua0WP4wQYMYxamtQJHK1iFAnY6k6RyP0PjuqZpQ0E1uqXTaVLpDIph4ysmvmLQ6AnqbkC1k/iPqn1Rldzue5MeeQ5ETCZwKXot/sZf/FN8+9e+6UjH/CikWDpGpFiSvB6Iwpjde62h52nzRh3fO+BTMlWWzuWH4mnxTA7dnN7OCYOAnTs3+8OCExHVbdQn9issLbN6+aWkAnXxEvVMwLXatURAVa5wrXoNL5qsHGixRt7PD6tPxV6REiVWlvY9UMvLy8zPz78iI/nYZwo7dLo3D7TzruP7e8QCGpEy3tILNXZDg+qUcTBqBNmuQbFjciIosehmyLQ11JqH6B1+EfF1h4peoKrnR9p6RZp6FtGvkjiGxulyinPzac6U05wuOKwYBvlYgXZIc9ejsefS3HOPaDq3ieZtGiWDakZl24AHIuKO2+O226M3o02oRSH5ZrVfhRqvSmU7TRQEiqKSKZXJzc8nYmpugVwmQ0aoOGGE0XWJd/cINjeGgirc2jp0lZdQBFERwgVBtKQQn7aJljWCUkCQ7iYlwcOOV8uMeaOckfuGMXt14mEIIeh1OiPm9P12YLc+7rFym82xiI9Hoel630tVmGJYH28JGv2A2WdpXDcMY6xaNU1gOak0kWrSCgS1bpAIqZF24MGv/4e/cJm/8CXLRzqORyHF0jEixZLk9UgcCyoP2mMr7rzOgaBMXWHxTG7oeVo6NxmUOUAIQWN7a6x1t/fg3kR1xUqnWbn4Ait9AbVw7jwP/a2heLpSucLV6lXccLL1ocbq0AM1qEIVwgJLC0tjHqilpSVM8+kZRX2/MuaFGlSjoijxdfmDatSgpReZ7EUW236EGx+oNAhwehr5js6Cm0mqUR0LqxEhmoe3e2JFo20X2FXz/YrUvj8qUPc/a9bWOTuXiKjkNsUJ26IgFKJmkIioXXdYlXpc03l23iZctGmVTCpZlR0TNpSIO57PXdfHn3Gp0aMwqUTV9ybae+lua6wpmMoXyM0lYio7v0CuNEfOcUhFArsXQLXWF1GbBANBtbMzYUAWqiAqJ0JqsEWLCuGyQpQLZ67mN4ziSDWqf5s6i+OcRtefLKj1IHEc4TabY36qg4b1gcdqmn9wFobt7M8AHMmumjSy59H6Y31GjeuPyrB6EuP6QSF1mMB63FmWj4sUS8eIFEuSLwZEPAjKrA1N493G+C9FRVWYP5lhpe95Wj6fnwjKHMXrtNm8cX04727z5nXCAwnGiqqycOY8K5dfGFagUsUid1t398VT5SpXq1enzppSY5V8kN8XT70CeT/PwtzCWAtvaWmJVGr2MvyjkPhMNhIv1FBArdHp3BqmYgsBzZhhS68SO1TiFNt+zE6vS3ygd6aHCrmOTqFjsuoXWXAzpNsqas2Dw4YZA76VJJhvqbkRj1SRtpZOenB9SmlzKKQGVakTWYsyKn59X0gNbh/HdJ7Om2TmHcJFm+acQTWrs2PDhhJzL/C55/mEM17CikJK7Tr56g6F2s5+e69eIeV1JjSNlUonrb75fmVqfoFsaY6spuEEEVqrnUQkbG2OtPs2ifYqQ+EudEE4B+GiIJoXY4IqLsz8uJjGHKn0uRGzeSKoHOc0mnb0kUGPQxgEI6v/9k3qo4b1TqNGp1Y7csyCnc3th4BOnQ/Y91f1Yxbg2RnXv/Zrv5Z3vEOOO3nNIsWS5IsRIQSNXZeNG0nL7uGNOq3KgVK9AuXVzP6Ku4sFUrnDKzpxFLF7906/dZeMa2lX9ib2y87Ns3LpRVYvv8jK5ZeYP3UGVIV7zXtcrV4dE1HTJqMrQiHv58c8UDk/RylfGmvhLS8vk81mX7GRfOwzxgGuezcxko8Yy133HqPGolDse6Nq5KnEGbZD2HQ7tA5W1QRkXI18x2Cum2LFL1DsWJiNEDqH/5UvdJOuU2JPy7NJbliNqut5InW8QriYszg7lx6rSp0upiirKm7dH6tGNXYTMXWwjXsQw9JIzzkEKzateZN6TmPHVtjUYu6HIfc9f0oM6j5OHDLvtik1q2T3tsjuPBxWpJze9Cqcblpk5+aT6tSooMoXSKNiuh7Rzg7B5oHq1OYmUb1ObPUF1HwipsK+mIoWBPHknOORk61gqmVS9ilS+YukMxeGfinHOYGqPt0l8VMPQQgCzx2pUNXHPVaNcSP7UWMWUvnCWE5V+kA7cDB82XRSKIoyNK4/Ttp6u93mm77pm3jjG9/4VM+JFEvHiBRLEklCq+oNPU8ba3Xq25MG0uJSiuWLBVb7vqdMcfZf28293WHlaWPtKrvrdya8HIbtsHzhEiuXX2L10gssX3oBK5VGCMGD1gO+UP3CmIBq+pOrsBShkPNzw+pT0S+S9/NknexY9Wl5eZlisfhUjOSjRJGb5EONtfPWJkIchYBODDuhQV2dpyqy7IQqm16XjW6VSIxf4MxAJd/WyXcMlnt55t0MmbaCWu9xeACPQpgq0LSLbCs5Nsn3ow8KuKozVo1SFVgpOONCaj7NmVKKedOgU+sl1agRMdXcewzTuarglC38FScRUnmdPUdhUxc8iEI2/GDW08mKmKXApdxpkK/tkt1+gLNxj2JjD2tGdUVRVbLlub5nap7cwuLQP5XNZrHDGLG31xdRmyPeqU16tQ38dHu/rTciqMSsoqVQMMM8trpMyjlDunCJzMKXkM5exLZXhtEHx8lYzEJjvFo11gp8kpgFwxwKp4nsqrEVggUMM8ldi+MYIYRsw72WkWJJIplOt+mPeZ4qDye9Fbk5e+h5WrlYIDc3PShzgO+5bN1c66eNX2Nz7Rq9g7ktisLcydPDytPKpRfJLywO/5p92H449D4NRFS9V594r4GAGvVA5f08KSM1FmMwMJI/7V/kAEFQo92+0W/nXafdXqPTuT41dygSUIsdGtoyNZFnNzLY7Hk86OxRPfD5lBiy3URElTo2K34+qUbVQ+jNWLFlOXjpOWp6gQciy7aSjIVpGjniAxd1XVU4VUpxZiCk5tKc7YupeScRUgPxNDCdD76OHmE617IG/gmHzrxJvWiwm1LY1gUPRMR2MHvFWUmBZRGw4LUpNWvkKlukNu5i3ruNfkhFapR0objvmRqpUOXnF8g4KZR6I2nvbW4Sbm3hb27Sq93DDR7iqbuERT8RVPMQLQjErBzWSMHsprHCMra2TCp1jkzpMpmlLyW1/AKq9nQWL7wSojDEbTb223312qGRC757tBV4Vio9FFZf/t73cfGt73yqx/66E0u1Wo0PfehD/Oqv/ioA73vf+/jpn/5pCoXC1P2DIOBHf/RH+fVf/3Vu375NPp/na77ma/if/+f/mZWVleF+7373u/nkJz859twPfOAD/Ot//a8f+9ikWJJIHg+vE+ynjN+os3u/PRGUmS5Y+yNaLhQoLqdmiicRx+w9uJeYxvutu8b21sR+6UKRlUsvsnL5RVYvv8TC2XND86oQgs3OJlcrV/lC5QtcqSYVqKo3GayoCIVskB3zQBX8ApZqsbCwMFaFWlxcfKpG8uFnFoJeb2ssG6rTXqPTvUE8JbsKwFfytIyT1CixGxls9XwedKvcaz0YDwztz9PLtw3yHYNFL8u8mybTUlCbM4y7qorIztGxS+xqee5GGXbUpCLla5NqwNJVzpTTnJlLxNS5karUXNrEHTGbH6xKPcp0HlkqvRMOnUWLRtGgklbZNhIhVXlEa2lBVzmhCpYCj7luk0J9j+zOQ6wH67g7mxOeumnY6cyIZ2p+2OrLzS2QnZvHigTh9hbB5hb+1gbe3i06nTt4wUN6+h5+qk04FxPOCzjc8ofSA71uYHazWNEcjr5KKnOOTPlF7MWLmCsraMXiU20jv1KCnjeWVTXeAqyPxS0cjB55z/d8iDd+1Xue6vG87sTSe9/7Xh48eMDP/uzPAvDd3/3dnDlzhl/7tV+bun+j0eBbvuVb+Bt/42/w5je/mVqtxvd///cThiF/+Id/ONzv3e9+N5cuXeLHf/zHh485jkM+//hLQ6VYkkieDN8Lhynjw6DM6EBQZsYYSxkvr04PyhylU68ls+7641q2b98ijsarDbphsnj+Yl88vcjKpRdxsvv/f4UQbHe3x1bhXalcoeJVJt9QQDbIjomnQq+Aicnc3NyEkdxxnCc/aTNIhg7f2w/X7Huiut11OMT9Y5iLeOYZakqZvchm2w950K1zt3mPHXd8RqAWJQbzfMeg2LFY8nIUuiZWI4QZlSA1lSPIztG0imyQYz1Is6vlaenZsZbegLSpDatRo629s+U0xbSJ74X71aiB4XyQKfUI03lPh+6yTXfJplkyqGSSlXsPiajHs6tZK5bBaVNjVYQs9DqUW3VylS3srYe4u1u0dncea2WablkjAmpcTOXmF0jl84haHX/zIZ2tq3Rq1+h27+BFm/T0Cn66Q1gIYUYhU3FB31HQKxqmm8WOF3CMVVLZ89jzZ/uDkZMRNOpT9uU9DYQQ9LqdsXbf8sXL5BeWnur7vK7E0tWrV3nppZf41Kc+xdve9jYAPvWpT/GOd7yDa9eucfny5cd6nc985jO89a1v5e7du5w6dQpIxNKXfumX8g//4T984uOTYkkieTqEfhKU+XAgnm43JjKATEdn+cJ+1tP8qcODMgcEfo/t2zfHQjO9KT6L4sqJoXBaufwipZUTExeRne7O0Ps0EFAHRQWQmK6DzJgHqtArYAiDQqEw1Uj+rIiiHt3uzeG8vKQitUavt3nIM1RSqTOo9jka6kJ/hV7EQ7fOevMud5t3x6Mb+vP0BtWoBTfNvJsm3VJQO4dXgRTDRM3P46XKVIwC9+MMt/00VT1PqE4vqRRSxtBgPmjtnevfZiydOIppj7T3xm4fYTp3DYVm2aC7bNMqG1QzGjsWPFQi2jMulSqwapuccyzOmCpLoc+826JY38Pe3aC7t0trd4fm3g6deu3Q1xm+nqaTLZf3RdSIkEqqU3MQh3Q2P09r64/p1K/jundx4016Ro0w5c6MPlDboO0oiZjaUTAaFhaLpMwTmPMnhnP89KUljP6QZPUprhR9NfG6Ekv//J//c37gB36Aer0+9nihUOCnfuqn+K7v+q7Hep3/7//7/3jPe95DvV4fnpR3v/vdfOELX0AIweLiIu9973v56Ec/OvMXV6/XozdSim02m5w8eVKKJYnkKROFMTt3W/24ggabt+oEhwRlrvY9TwtncujGbO+QEILa5sOk+tQXUNWH9yf2szNZVi690DeOv8jihYtDw+koe+7eRAVqu7s9sR9AOkiPBWkW/AJmbJJOp6cayZ/lX/xB0ByJNhh4oq4Tho2p+6uqRTp1ASd9kZ6+QkWk2Q4UHnarrDfXudO4w2ZnXIAZgUKuk4ioQttkqZel0DExGiHKjAqQkS8T5+Zp2yV21DzrYZqbfopuf57eNOYyVl84pTg7l+Fsv8V3ppzGNrR+KGQ4JqBGc6UOM50LoGsp1HIa3UWL5pxJLaexaylsqDHuDKu5psAp2+SsY3EuZXHa1FnyXebaDZzaDp29HZq7/W1vh1ZlD/GICheKQqZQHItHGHimcvMLZEp5gnibTusmnd0v0Klfp9u7hye2CfXZlS+1DvpuIqL2BRWYfgFzfmU4x++goNIXF1GfQcv5WfO6Ekt/7+/9PT7+8Y+ztrY29vilS5f4ru/6Lj7ykY888jU8z+NP/+k/zQsvvMC/+lf/avj4z/3cz3H27FmWlpb4kz/5Ez7ykY9w4cIFfvM3f/PQ1/rYxz7Gj/3Yj008LsWSRPJsiaOYvdGgzJt1ep3x9pqmqyyezQ1bd0vn8xjWo43XbqvJxtq14aDgrZtrhMG4R0fVdBbPJplPA+N4plia+noVtzI0kA+qUBudjan7poP0pAcqtrAsa6KFNzc390yM5AOEEPj+7sS8vE7nBnE8PcVZ13Ok05fIZC6h2+eoiRw7ocL9zg7rzXXWG+usN9fHcrCUGDKuPqxGzXUd5twU6aaC2ju8+qPbDnppCT8zR8MssiGy3PQd1oPUhMF8lJW8nazSO1CVOllMYepJZTIMIlr9wcX7VSlvpulcAB1boZLVaM2ZtOZM6nmNXVthS4uZ5XAyFYXTTiKkzqaspDJlGSz6HVL1Cu3K3lBEJbdJhergz+U07GxuSotvnnQpi5n1iNih667Tbd6k07qF27tHyOHDiolBq4G2u1+RGmzaHiixgjY3h7G0tN/iG72/vIQ+P4/ylNL0nxavCbF0mOgY5TOf+Qy/8Ru/wb/4F/+C69evj33v4sWL/LW/9tf48Ic/PPM1giDgW7/1W7l37x6//du/PfOEvPzyy7zlLW/h5Zdf5su//Mun7iMrSxLJqwMRC6qbnbEVd90DJmRVVZg/nR16npbP57FSM1yzfaIwYGf9dt84nvifOrVJw3d+YXEonFYvv0j55ClUdfpFu+bVEuFU3a9APWxPDiAGSIdp8r3xcS5WbKHrOouLi2MiamFhAcN49Gd6JSR+qPsTAqrbvY0Q08WNZS6Szlwik75EKn2Rnr7ATqBxr70xJqIeth8Sj8RBWCMG83xbZ9HLku8YGK3o0AkliqrilBagsICbKlPR8tyLs1x1bfaCwy/QY8OK58a3lYKD1vfHiVjQbfrjVanBSr5DTOcCaDkK1axGLa/T7kcg7KYUdjRBMKNoaKsKp51EQJ3rC6mzjsVZxyTrtmlVdmnu7o4IqZ1+q293cnXoFAzbmciaypTTWAUfzW4TKbu43l263Tt0u3eGafRTiUCr9D1SB6pSWjVZFAGAqqIvLBxanTKWltDK5WG45XHwmhBLe3t77O1NBs6NcubMGX7xF3/xidtwQRDw/ve/n9u3b/Of/tN/olwuz3w/IQSWZfEv/+W/5AMf+MBjfQ7pWZJIXh0IIWjsuGPiqVWdDMqcO5EZW3HnZB/dPhBC0NzdGc98urc+Ma7FdFIsX7w8TBtfvngJ0znc79HoNcYiDK5UrnC/NdkSBEiFqWHlqdhLqlB2bKMoCvPz82MtvKWlJWz72SRGjxLHPTrdOxPz8jxvuggEBcc5RSZzOalGpS9hOufYC1XutR5wp3lnKKLuNO6MZWKpEeS6Rl9I6ZS6DnNdh1RLQZ1hMLezOay5ZaLsPC2ryJaa406Q5mpLpzsjPnx0WPEg0fzMXIpzcxkWc9ZYi9R3Q5qVgTeqP3tvt0tjz5tqOo8VaDoq1axKNavRLJs0CjqVtMKODtEMIZXSVM72K1LnRqpS51IWc4aO73aHAqqxMyqkEjE1bUbjQTRdJ1ueT1bzzS+Qnc/glCOMjItiNYjENq53j253nTieEbcQKRhVHW0rRtsW6Nv7gkqtg3LQXGUYGIuLfUG1PCas7JdexFiSBu9DGRi8P/3pT/PWt74VgE9/+tO8/e1vn2nwHgilGzdu8Fu/9VvMz88/8r3+5E/+hDe+8Y188pOf5M/+2T/7WMcnxZJE8uqlWXHZHLbtGtODMpfTffGUZ+VCkUxxVvDNPr1ul82bI+Nablwn8MYvHIqiMnf6zDDzafXSi2Tn5md6kZp+k2uVa2Oz8Nab61P3TUUp8l5+rIXnRMlqu2KxOGEkz2SezuyyRxGGrSRksz0+7iUIJqtzAIpikk6fJ5O+1G/pXSaVuoirONxt3h1WogZi6kHrAaHot2AFpHoaub6IyrcN5t00hY6B0TlcRGmGQXZhGa24SC8zR90ocF9kuek53K6H+NHhz3WMwYq91ERrr5w2x/59R03n+7lS+36pg6bzWIF6KhFR1axKvaAPIxAqRvL9w8hq6lA8nR2tSqUsSkZSYQv8Hq293ZEW36BCtU1zd5d2tfLIIb6KopIulZLq1FKKzIKKXQjQUm2EXiWMNnG9B8PRPlNfI9Ix2yn0iob2MERdd9F2QN9WUNuTQmrxh3+Y0nd8+8zjOiqvK7EESXTAxsYG/+yf/TMgiQ44ffr0WHTACy+8wE/+5E/yl/7SXyIMQ775m7+ZP/qjP+Lf/bt/x+Li4nC/UqmEaZrcunWLT3ziE3zd130dc3NzXLlyhR/8wR/EcRw+85nPPLYvQIolieS1Q6fRG6s8VTcmWxa5eWdYdVq9VCBbth/LaB3HEXv37o4NC27uTq6Uy5TK4+NaTp9Fe4SXo+23uVq9OtbGW2+sI6aYi53YSQTUSAvPjmwUFDKZzISRvFAoHNvS8Z6/d6AKtUans0YUTQ8r1LQMmfTFfjvv8vBW0bM8bD0ca+fdadxhvbk+lo+VzNMzhinmxY7FnJtUo5To8MtfpjRHemEZkZ+n65SH2VE3Wir36x7RDHP6YFjx6GiYgZDKO+PtUiEEXifoV6O6I1Wpvum8Nu56ilSopVWqmURI1bIajaKRVKgMBTHjn7Gga2MC6lxqX1Dl9P3rXRSGtKuVsRbfQFC1+o9F4ezgTwAnn6O4miW3ouGUBGbWQ7EaxMoufrgNHO5N04SdmMqbKbRdFe2Bz8p7v5e5d33zI9/3KLzuxFK1Wp0Ipfwn/+SfjIVSKorCL/zCL/DBD36Q9fV1zp49O/W1fuu3fot3v/vd3L9/n2/7tm/jT/7kT2i325w8eZKv//qv56Mf/Sil0nTT5jSkWJJIXrt47SAZz9IXT3v3Wwc7a2SKFst94bRysUBhcXZQ5iit6h4b16+xcf0KG2tX2Vm/PTFzS7csls8n41pWLr/AysUXsR+jAtQJOlyvXh9r4d1p3hnz/wxwYoeclxsTUE7koKBg2/ZUI/nTHulyGELEeN7DfVN53xeV+KGmX5RNc25EPF0inblMOnUBXU/T9JtDATUqpO417+H3QzsVAWlXH4qofNug7Drk2waGN2OVnu1QXF7FmlsizM7RsEpskuVOL8XtWo+Nhjvx8zNKOW0OV+idGzGcn5lLkTInBfOo6Xy8KuVNmM5DlaGIGtzWCzq1rEbdnP3zWjb0fgXKHG/tORZpfbxwIOKYTqM+aT4fEVe++4gkdFWQmVMpnHTILCj9qlQXjCqRqDJtWeLFiz/KqZOPt/r9cXndiaVXM1IsSSSvH3w3ZHMkKHPn7mRQppM19j1PFwuUVzIojwjKHBD0PLZu3ejHFlxhc+3a1CDD8olTw7TxlUsvUFhaeSyB1g26rNXWkiTyfgvvdv32xMw4AFvY5L3+QOG+iEqFKRQUdF1naWlpwkiuH+Nqpjj26XbvTMzLc717hz7HsU/1BdRF0pnLibk8dQ5VNYjiiM3O5n5Lr1+JWm+sj2Vlmb46bOflOwaFjkm56+C0OdxgrqjkFhYoLK2ilRZxU3PUBtlRLVivdNlpzU7/Hh1WPFqVOlVOYemTnQ4RCzoNfzJPaorp3NegNiKkKlmNWi7ZWo8QUoumPqxAjVamzjgWzpSMsySioZN4pna39/1SI4b0WfPkFC3GygU4pYjcioFTFlhZjxMr380LX/5tM4/1qEixdIxIsSSRvH4J/Ijt2/viaetOc2IJuZXSWb6wnzI+fzKD+oigzAEijqluPEhM49evsrF2hdrmZMSAk8vvt+4uvcjiuQvoj5lr44Yua7W1sSDNW/Vb+56fEWxhk+/lx9p46TCNgoKqqlON5Jb1eB6vp0UYduh0bw7N5INb35++YEhRDFKps2T6XqiBJ8q2V1GU5N+pE3TGKlGD29EATnUwT2+4Us+g1LXJtXX0GRNY7EyW0soJsksriNwCbafErppn3be4U/VY3+tQ6x7+AocNKz5bTnOi6KAf8rPmu+FYunlzz0tM57surWpvOGqop5P4ow5UpWo5nc4jhNSKZYwJqfP929OOiTWjMhl4Hs293QOtvv377Vp1YvHEn/8b38ubvuYvzDyeoyLF0jEixZJE8sVDFMTs3E1Sxjdv1Nm81SA4kAtkWBpL5/ND8bR4OodmPH5Lq9tsjKWNb9++MTEnS9N1Fs8l41pWLr/I6qUXSeULj/0evajHjdqNsRbejfoNwnhSQFlYFHtFcu7+UOFMmBkacEul0oSRPJ1OP/axPC18v9I3lV8fMZXfOHTZu6alSKcvTrTzTKM8rOLFImanuzNWhRrcbnY2E8+YAMdX+wbzREQVOomQsjsT672GqJpOYWmZ0soJ0gvL+Jl5GlaBDZFlvSW4s9dmfa9Le8Zg41nDipdz9qGjgeIoplXtjaWbN/fc4TDjQfirayjDFXvjYkrDmyGkRlPNk5befjDnKdvCeEQlNgoDWpXKmJC6+LZ3Mn/qzMznHRUplo4RKZYkki9eBkGZD9eSytPmzTq97iFBmX3P09LZxwvKHBAGATt3bvarT1fYWLs2dfl3YWl5GFmwcvlFyqsnj5RZ40c+N+o3xoI012pr44N2+1hYFIMi2e7+UOFMsC+gstnshJE8n88f+wyyZOjw5gEBtUanc+vQlVqGUeoLp8RMnslcIp2+iK6PT3bwQm/qSr3RAM7hPL0RIVXsWuTaOtqMmb7pYonSyglKK6uY5WXcVImKVuCeb7JecVmvdLiz16EXHr5qbdaw4vmMdei/xcB0PuGR6vumOvUeAnDNJEOqMlKNGogq3zj831lT4GRfSA1be/37J2wT7Rh/RqRYOkakWJJIJANELKhsjAZl1iYCC1VVYeFMlpWLBZYvJJvlPL4XSAhBfXtzGJi5sXaVvQf3JtoWVjrNysX9tPHlC5cwjpi9FEQBN+s3x7KgrlevD43So5iYlMISmU5m2MLLBtmhgHIcZ8JIXi6Xj81IPkoch7ju+tjA4Xb7Oq57j6kzTwDbXh228AYRB+n0OVR1vA0phGDP3RtboTcRwCkgPTJPb3Bb7FjY3uFiQTctiiurlFZOUFw+gVpcoGWX2CbL3UbAnb0Odyod7lW6hDNW7B0cVjxalSqmZ7d3wyBKWnoHq1L9Vl8YxnRsZSigKv1K1KAqFeqHfz5jJNV8UJU6379dsQzUpyykpFg6RqRYkkgkh5EIm+5YXMHB5eCKAnMnR1LGL+RxMkebs+V12mz2x7U8vH6VzZvXCXsH3kdVWTiTjGsZVKCy5bkjf6YgDrhdv73fwqteYa26hhdNjkMxMSlFiYAq9JIWXjbIopIIJMMwJozk8/Pzx2okHyWKXDqdmyNeqMRU3vOnz/pTFA3HOUum38YbeKIc5yTKlPErfuRzv3V/ohK13lyn0Utm8hmBMiag8m2DQtck29FRDyskKQq5uQVKqycoLa+SX14lys1TN4rc9zTuVrrc3uuwXunwsOYyQ0cNhxUPBhQfHFY8i33TeZfGrjdhPnfbwTDVfFxMqdQyGpF2uBj68OlFvv/c8sz3PypSLB0jUixJJJLHRQhBq+KNiafG7uQy69JKeiieVi4WSOePZqKOo4jdu3eGmU8P167SrkwaoLNz88MVdyuXX2L+1BnUJ5g9F8Yhdxp3hivwrlSucK16bWiOHsXAYC6eI91JD43kowJKVVUWFhbGWniLi4vHbiQfJQjqtNtr/WiD6/371wnD6fPUVNXu+6FGTeWXMM2FQ9tfNa82taV3v3mfUIQT8/QGSebFtoU5Y3aKlUonLb3VExRXTpBbWsFLldlVsqzXPO7sdVnfS9p6W83p8/8GzGctzpbHhxWfnctwupzCfsQAaxgxnR8YYtzYdWlUezRsZcwXVc2oVLIa9YzKh+MMH/rzFx/5HkdBiqVjRIoliUTySujUe2PDgacFZeYXnLERLbk558jv09zb6UcW9Me1rN+ZSGo2bIflC5f6aeMvsHzpBazUk5m1ozhivbk+ZiK/Vr1GN5wMoNTRmWOObCdLtpul6BfJ+bmhgAIol8sTPqhU6vBRMs+axA+1dWBe3hqdzk3ieHpMgK4X+lWoEVN5+hKGcfi1I4iD2QGcoj9Pb0RAJSZzk4yrHxp3oGoa+cVlSv22XmnlBKmFZVpWiYeukrT09jpDIVXpzB7g+zjDimcRRTHtam9MSA1W81X3XL7q217gha9YfOTrHAUplo4RKZYkEsnTxG35bN5M4goe3qix96A9YaPJlKyRlPEi+QXnyOZp33PZurk2kjh+Dd89IGQUhbmTp4dp4yuXXiS/sPjERu1YxNxt3h0b5XK1cpV2MLliTUNjnnlybo50J52syPNzaOxXMPL5/IQPKpfLHbuRfJRk6PC9EVN5Uo3qdteB6X00y1oam5eXjHs5j6bN9pg9KoBTiyDbNcYGEw+ElD5jAF0qXxgKqNJqcmvMLVERKdar7piQur3XoeUdvmJvMKz4YKL5wWHFs89psurwcfPMHhcplo4RKZYkEsmzpNcNxoIyd++2JgazOjlzOJ5l5WKB0nL6yBeWOI6oPLifrLjrt+4a21sT+6ULxeGKu9XLL7Fw9hyabkx5xcd8XxFzv3V/bBXeleoVWv5ki0tDY16ZJ+/lSbWSwcL5II8m9gVUKpWaiDIoFovPxUg+ShT16HZv9uflDUzla/R6m4c8QyWVOjMmoNLpS6RSp6f6ocbe60AA52h7b6e7M5ynl28bYynm+Y5B2jvcl6QZBsXl1TERVVxZhdw8Dzsxt3cTX9T6Xt8jtdfBDQ5f9neUYcXPAimWjhEpliQSyXES9CK2RoIyt+80iQ4sIbfSeuJ56rfu5k48flDmKJ16bZg2vrF2le3bt4ij8SqCbpgsnr/YF09JaKaTfWW/C4UQPGg9GM7BG2xNfzL5WUVlQV2g0CvgNJ1EQPnjAso0zalG8sedAfosCYLmcMzLwFTebl8nDOtT91dVk3TqIunMxbF5eZa19Ngp79NW6g0COPVQmWjp5TqJkNJmTPHNlueHAmogpgrLq3S0NOuV7jDuYFCRulvpHmlY8XvesMSXniw88vMdBSmWjhEpliQSyfMkCmK215vDqILN203Cg0GZtsby+fywdbdwJof2GD6SgwR+j+3bN0cE1DW8KaMriisnhsJp5fKLlFZOvOIqgRCCjc7GmHi6UrlCvVef2FdFZUFboOgXcZoOOTdH3s+ji/2qiaZpU43k5mMmoz9LhBD4/u7EvLxO5wZxPN2ErevZYbRBUo1KMqIMo/BY7/moAE6E2J+ndyDywPEPF52G7YxVoga32YVldjphIp4OCKn7NXdiWPHf+cYv4dvffvqxz+HjIMXSMSLFkkQieTURRTF799pD8bRxs4HvHgjKNFSWzuX6K+6KLJ7NYZhHr7IIIahtPtw3jl+/QnXjwcR+diY7XHG3evlFFs9fxDBf+eo2IQRbna1h624goKpedWJfBYUFbYFSWMJpOmQ7WQp+YUxAKYoy1UjuOEc31D8LEj/U/WELL2nn3egPHZ7e7jLNhf1sqKGp/CKa9vif6WAA5+htO2hj+WpSfTrQ0st2dVQxXSQrikp+cbHfyjvgj0pnuV9NqlGD1t4H3nKKN57IP9F5Owwplo4RKZYkEsmrmTgWVDeSlPHN/oq7iaBMTWHh9H7K+PK5POYRgjJHcVtNNvqZTxvXr7J1c40wGF9JpWo6i2eTzKeBcTxTLD3xZxxFCMF2dzvxP40IqD13MjpBQWFen2cumiPVTJFqJz4oQ4x7sAqFwoSRPJvNPlcj+Shx3KPTvTMxL8/zHh7yDAXHOTUc8TIQUinnDKr6+P4zIQQVrzKsRt1p3BkL4CSK9+fpHahGmeHhlU07m5swmC+eu/DUfkYGSLF0jEixJJFIXksIIahtjQdlduqTQZnzp7Is99t2KxcL2OknM3FHYcDO+u391t31q3TqtYn98guLQ+G0evlFyidPoapPz1O0290db+FVryRm5yks6AvMx/Ok22msRjIb76CASqfTU43krxYBBRCGrSRk88C4lyCYrLwBKIpJOn0u8UL1s6HS6cvY9srRV1vOCuD0Gjg9beiJGhVRGXe6SH/nX/kO3vEX33/kczALKZaOESmWJBLJaxkhBM09b79td6NOc2/SF1NeTYIyly8+WVDm2Pvtbo9nPt1bnxjXYjopli9eHqaNL1+8hOk83VylPXdvYhXeVmdyBSDAgrHAglgg3Ulj1kwKvQJmPO5vsixrKJ4Gt3Nzc68KI/kovr93INogyYiKoskMLABNy5BJXxyayQftPNMsP9H7zwrgJIjITalGnfqGr+Jv/sWPvJKPPYEUS8eIFEsSieT1RrvmsXGzzkZ/QHBta/IiWlhMsXIhz8qlIisXC2RLR5s7N0qv22Xzxsi4lhvXCbzx9G9FUZk/fXbYulu99CLZufmnXsmpetV98dTfNjobU/edM+ZYYomsm8WoGuTcHFY8LiJ1XZ9qJDeMJ49beBYIEeN5D8cqUO329b4fanqOkmnOTZmXdxFdf7Ig0zAOedh+OBG+eadxh4++46N89amvfiUfcQIplo4RKZYkEsnrnW7TZ/Pmfsr4tKDMbMkeep5WLhSeKChzQBxF7N2/OxKYeZXm7mTLLFMqD9t2K5dfYv70WbRnMFeu7tWH/qeBkHrQnjSyQ19AqUvk3BxG1SDbyU4IKEVRmJubG/NALS0tvWqM5KPEsU+3uz4xL8/17h36HNs+2RdQF4diKpU6i6o++UpDIcRTF8ZSLB0jUixJJJIvNrxOwNatQcp4nd17LcSBpd6pvDkUTiuXCpSWjh6UOUqrusfG9WtJaObaVXbWbxNH4yvAdMti+XwyrmXl8gusXHwRO5N54vecRaPXGCaQDypQ91rTBUTZKLOsLSetu6qJ03Sw48lKXLFYnGokfzUShh063ZsHTOVr+P7u1P0VRSeVOjeyKi+JNrDtEyjK8wkMlWLpGJFiSSKRfLHjeyHbt5s87HuettebxOH45cVOGyxfyLPab9uVT2RQX4F4CjyPrVtrbKxdG4Zm9jqTc/XKJ04N08ZXLr1AYenoZuXHpek3uV69zpXKFb5Q+QJXK1dZb65P3bdklFjRVyj6Ray6hVkzcaLJylImk5kwkhcKhVeVkXwU36/Q6dwYm5fXbq8RRZMjbQA0LUV6pAI1WKFnGmWZ4P16QooliUQiGScMInbWmzzse562bjcI/fG0ZtPWWB5JGZ8/lX2ioMwBIo6pbjzot+6usbF2hdrmpNfIyeXHWneLZ8+jP8Mgyrbf5lr12tBAfrVylTuNO4iDfUygaBQ5YZygGCRhmuquihM5KIyLBtu2J4zk5XL5VWckH5AMHd6cWJXX6dxCiOkDeg2jRDp9cSigisW3k0qdfarHJcXSMSLFkkQikcwmimJ277aGnqfNG3V870ALzVRZOrefMr54Nof+BEGZo3SbjbG08e1ba0ThgYBOXWfxXDKuZeXyi6xeepFUvvCK3veRxxV0uVa9xtXqfgvvduM2sZgc/1EwCpwwT1AOy6SaKdRdFSuwJgSUrussLi6OtfAWFhZedUbyUeI4xHXXRxLKkyqU697loCnu4sUf5dTJ73qq7y/F0jEixZJEIpEcjTgWVB60x7KevM6BoExdYfFMbuh5WjqXx7RfmXk7DAJ27twcpo1vrF2j26hP7FdYWh5GFqxcfpHy6kmUZzyItxt0WautDcXT1epVbtVvEU1J5s4beU5aJ5mP5km1Uyg7CqZnTggoVVWZn58fa+EtLi5i20++cvE4iCI3yYca8UKdPfO9FApvearvI8XSMSLFkkQikbwyRDwIyqwNTePdxnh7RlEV5k9mksrTpSLL5/NPHJQ5fF8hqG9vJivu+hWoyoNJk7aVTrNycT9tfPnCJYxjEBxe6E0IqJu1m4RTlvLnjByn7FPMi3ky7QzqrorW1iYEFECpVBpr4S0tLZF5Rkb4VzNSLB0jUixJJBLJ0yUJynSHI1oe3qjTqhwIylSgvJrZX3F3sUAq98q9R167PZ75dPM6Ye9AwrmqsnAmGdcyqEBly3Ov+L0fh17U40btxlgO1I36DcJ4UkBljAxnnDMsiAWy3SzangZ1pgqobDY7YSTP5/OvWiP500CKpWNEiiWJRCJ59rSq3tDztLFWp749GZRZXEoNR7SsXiqQKb7y6k8UhuzdW+fh9SvD9l27WpnYLzs3P1xxt3L5JeZPnUE9JsO1H/ncrN8cE1BrtTWCOJjYN62nOZM6w5KynwUV7oZTBZTjOFON5OozbkkeF1IsHSNSLEkkEsnx0236Y56nysZkUGZuzh56nlYuFsjNPXlQ5ijNvZ3xcS3rdxAHzNmG7bB84VI/bfwFli+9gJV6smTrJyGIA27Vb+238CpXuV67Ti/qTeyb0lOcTZ9lWV0m7+UTAbUTTmRnARiGMdVIrj+DMNBnjRRLx4gUSxKJRPL88TrBfsr4jTq799sTF/t0wRpGFaxcKFBcTj0V8eR7Lps3rrOxdrWfOH4N3z1Q+VIU5k+e7q+6S1p3+YXFY21zBXHA7frtsVV416vX8aLJWYC2ZnMuc44VLcmCMmsm/pZPHE6u2FNVlYWFhQkjuWU92fzA40KKpWNEiiWJRCJ59eF74TBlfBiUGR0IyswYY56nVxqUOSCOIyoP7icr7q5f5eHaVRrbkwN604XicMXd6uWXWDh7Dk0/3qX+YRyy3lgfjnO5UrnCteo13NCd2NfWbM5lz7Gqr1L0i9hNm2AzwPemZyWVy+UJI3k6fXzVtUchxdIxIsWSRCKRvPoJ/YjtO002btZ5uFZn+3aDMDgQlOnoLF/ID1t386eyaNrT8ee0a1U2R9LGt2/fIo7GTdm6YbJ4/mI/MPNFVi69iJM9/utKFEfcbd7lC5UvDFfhXa1cpRtO+sRM1eR87jwnzZOUghJ20ybajui2JvcFyOVyYy285eVlcrncczGSS7F0jEixJJFIJK89ojBm916Lh2s1Nm402LxVJzgkKHO173laOJNDN56OaTvwe2zfujEyruUaXqs5sV9x5cSYeCqtnHguwiIWMXebd/dn4fXTyNvB5BgTQzUSATXIgmqliHdiGtXG1NdOpVITRvJSqfTMjeRSLB0jUixJJBLJa584itkbDcq8WafXOZj2rbJ4Njds3S2dz2NYT0c8CSGobT7cH9dy/QrVjQcT+9mZ7HDF3erlF1k8fxHDfD7eoFjEPGg92F+F12/ltfzWxL66qnM+d57T9mnmxTzpdhqxI6jt1pgmRUzTHDOSnzlzhmKx+FSPX4qlY0SKJYlEInn9IWJBdbMztuKu2xz35qiqwvzp7NDztHwhj5V6ep4jt9VkY+3aMG186+YaYXDgGDSdxbNJ5lMioF4iXXi6ouIoCCF40H4wtgrvSvUKjd5kVUlXdM7lz41lQSl7CpXtCuGBsTTvec97eOc73/lUj1WKpWNEiiWJRCJ5/SOEoLHjjomnVnUyKHPuRGY/ruBCASf79Ib0RmHAzp3b/cDMxDzeqdcm9ssvLA5X3K1efpHyyVOo6vMbsiuEYKOzsd/C62+13uSxa4rG2fxZzqXPscRSEqZZ1XjPV72H06dPP9XjkmLpGJFiSSKRSL44aVZcNodtu8ahQZkrl4qsXMyzcqFIpvj0WmZCCJq72/2wzCQwc/f+XThwaTedFMsXLw/TxpcvXsJ0Uk/tOJ4EIQTb3e2hiXywVb3qxL6qovKDX/GDfMcbvuOpHoMUS8eIFEsSiUQiAeg0emzc2B/RUt3oTOyTm3eGnqfVSwWyZfupGrZ73e74uJYb1wm88RgARVGZP312v3V36UWyc/PPfbSJEIKd7s5wBd5AQO26u/zUu3+Krzn9NU/1/aRYOkakWJJIJBLJNLx2kIxn6Vef9u63DhZ9yBQtlvvCaeVigcLi0wnKHBBHEXv37w7bdhtrV2nu7kzslymVh2njK5dfYv70WbRXSSr3bneXtJEmZTzdapgUS8eIFEsSiUQieRx8N2RzJChz5+5kUKaTNfZTxi8WKK9kUJ5CUOYorerecMXdxtpVdtZvE0cHYhMsi+XzybiWlcsvsHLxRexM5qkex/PmdSeWarUaH/rQh/jVX/1VAN73vvfx0z/90xQKhUOf88EPfpB/8S/+xdhjb3vb2/jUpz41/LrX6/FDP/RD/NIv/RKu6/Ln/tyf42d+5mc4ceLEYx+bFEsSiUQieRICP2L7dmMYVbB1u0l0ICjTSuksX9hPGZ8/lUF9SkGZw+PwPLZurY1kPl2l15lsIZZPnBqmja9ceoHC0spzb929El53Yum9730vDx484Gd/9mcB+O7v/m7OnDnDr/3arx36nA9+8INsb2/zC7/wC8PHTNOkVCoNv/5v/9v/ll/7tV/j4x//OOVymR/8wR+kWq3y8ssvoz3mtGgpliQSiUTyNIiCmJ27Scr4xlqdzVsNgt7Bio/G8vn9lPHF0zk04+mKJxHHVDce7Gc+rV2htrkxsZ+Tyw9X3K1cfonFcxfQjeMd1/JKeF2JpatXr/LSSy/xqU99ire97W0AfOpTn+Id73gH165d4/Lly1Of98EPfpB6vc6//bf/dur3G40G8/Pz/Mt/+S/5wAc+AMDGxgYnT57k13/91/nar/3axzo+KZYkEolE8iwYBGU+XEvadps36/S6hwRl9j1PS2efXlDmKN1Gfb/ydP0q27dvEIUHj0Vn8dzF/rDgF1m99CKpfOGpH8vT4nGv368O59Yj+P3f/33y+fxQKAG8/e1vJ5/P83u/93uHiiWA3/7t32ZhYYFCocC73vUu/u7f/bssLCwA8PLLLxMEAe95z3uG+6+srPAlX/Il/N7v/d6hYqnX69Hr9YZfN5uT8fQSiUQikbxSVE1l4XSOhdM5vuzPn0LEgsrGaFBmDbcVDL+GJChz4Uy2H5KZbJbzyi/3qXyBC3/q7Vz4U28HIAwCtm/fZGMtiSx4eP0qbrORfL12FfqNn8LS8jCyYOXyi5RXT6I84zEmT5vXhFja2toaCpxRFhYW2NqanOI84L3vfS/f+q3fyunTp7lz5w7/4//4P/LVX/3VvPzyy1iWxdbWFqZpTsSnLy4uznzdn/zJn+THfuzHnvwDSSQSiUTyBCiqwtyJDHMnMrzpq04ghKC+3R16njbW6rRrPbZuN9m63YT/eA9FgbmTIynjF/M4mVcelKkbBquXkxYc3/BN/WPZ7Oc9JaGZlQf3qG9tUt/a5Auf/P8BYKXTrFzcH9eydP4Shm2/4uN5ljxXsfSxj33skaLjM5/5DMBUA5kQYqaxbNBaA/iSL/kS3vKWt3D69Gn+3//3/+WbvumbDn3eo173Ix/5CD/wAz8w/LrZbHLy5MmZn0MikUgkkqeNoigUl9IUl9K84c+sIoSgVfGGwmnjRp3GrsvuvRa791r81/90H4DSSno/ZfxigXT+lQdlJseyQnFphTe8688B4LXbbN64loRmrl1l8+Z1ep0Odz73Mnc+93LyPFVl4UwyrmVQgcqW517x8TxNnqtY+t7v/V7+8l/+yzP3OXPmDH/8x3/M9vb2xPd2d3dZXFx87PdbXl7m9OnT3LhxA4ClpSV836dWq41Vl3Z2dmbOn7EsC8t6PkMLJRKJRCI5DEVRyM055OYcXnj7MgCdem9sOHB1ozPc/uQ/PwQgP+8MhdPKhQK5OeepHI+dyXD2y97C2S97CwBRGLJ7984wMHPj+hXa1Qrbt2+wffsGn/33Se8uOzc/XHG3cvkl5k+dQX3MRVfPgteUwfvTn/40b33rWwH49Kc/zdvf/vaZBu+DVCoVVldX+dmf/Vm+4zu+Y2jw/lf/6l/x/ve/H4DNzU1OnDghDd4SiUQieV3itnw2byZxBQ9v1Nh70IaDQZklayicnkVQ5ijNvZ2RcS1X2b17ByHG4xMM2+HP/pUP8qVf+/VP971fT6vhIPEfbWxs8M/+2T8DkuiA06dPj0UHvPDCC/zkT/4kf+kv/SXa7TYf+9jH+OZv/maWl5dZX1/nh3/4h7l37x5Xr14lm80CSXTAv/t3/46Pf/zjlEolfuiHfohKpSKjAyQSiUTyRUHPDdkcSRnfvdsijg8EZebMoXBavVSgtJx+6kGZA3zPZfPG9WHa+MbaNXy3yzf8rQ9z6e1/+qm+1+tqNRzAJz7xCT70oQ8NV669733v45/8k38yts/169dpNBoAaJrG5z//ef7P//P/pF6vs7y8zFd91Vfxy7/8y0OhBPBTP/VT6LrO+9///mEo5cc//vHHFkoSiUQikbyWsRydM2+c48wbE59Q0IvYur2fMr59p4nb9Ln1Rzvc+qNkTMogKHMwomXuxNMLyjRth9Nv/FJOv/FLAYjjiMqD++TmJhd6HRevmcrSqxlZWZJIJBLJ65UoiNlebw49T5u3GoQHgjINux+U2W/dLTyDoMxnweuusiSRSCQSieT40Qx1OKcOIIpi9u61hzlPGzcb+G7IvS9UufeF6vA5S+dy/RV3RRbP5jDM127HRlaWngKysiSRSCSSL1biWFDdSFLGN/vVJ7cVjO2jagoLp/dTxpfP5TGfQlDmK+V1Z/B+NSPFkkQikUgkCUIIalvdkZTxOp16b2yfYVDmpf6KuwsF7Mzxz5STYukYkWJJIpFIJJLpCCFo7nkjKeM1mnvexH7l1SQoc/ni0wvKfBRSLB0jUixJJBKJRPL4tGvjKeO1re7EPoXFFCsX8qxcKrJysUC29PRHokixdIxIsSSRSCQSyZPTbfr7WU8361ODMt/2vnO85evOPNX3lavhJBKJRCKRvCZI5UzOf/kC5788yVLyOgFbtxpD8bRzt8XcycxzOz4pliQSiUQikbyqsNMGZ940x5k3JUGZvheiPaXQyydBiiWJRCKRSCSvakz7+cqVV3+8pkQikUgkEslzRIoliUQikUgkkhlIsSSRSCQSiUQyAymWJBKJRCKRSGYgxZJEIpFIJBLJDKRYkkgkEolEIpmBFEsSiUQikUgkM5BiSSKRSCQSiWQGUixJJBKJRCKRzECKJYlEIpFIJJIZSLEkkUgkEolEMgMpliQSiUQikUhmIMWSRCKRSCQSyQye7xjf1wlCCACazeZzPhKJRCKRSCSPy+C6PbiOH4YUS0+BVqsFwMmTJ5/zkUgkEolEIjkqrVaLfD5/6PcV8Sg5JXkkcRyzsbFBNptFUZSn9rrNZpOTJ09y//59crncU3tdySTyXB8P8jwfD/I8Hw/yPB8Pz/I8CyFotVqsrKygqoc7k2Rl6SmgqionTpx4Zq+fy+Xkf8RjQp7r40Ge5+NBnufjQZ7n4+FZnedZFaUB0uAtkUgkEolEMgMpliQSiUQikUhmIMXSqxjLsvjoRz+KZVnP+1Be98hzfTzI83w8yPN8PMjzfDy8Gs6zNHhLJBKJRCKRzEBWliQSiUQikUhmIMWSRCKRSCQSyQykWJJIJBKJRCKZgRRLEolEIpFIJDOQYuk58zM/8zOcPXsW27b5iq/4Cn7nd35n5v6f/OQn+Yqv+Aps2+bcuXP8H//H/3FMR/ra5ijn+f/5f/4f/vyf//PMz8+Ty+V4xzvewX/8j//xGI/2tc1Rf6YH/Jf/8l/QdZ0v/dIvfbYH+DrhqOe51+vxIz/yI5w+fRrLsjh//jz//J//82M62tcuRz3Pn/jEJ3jzm99MKpVieXmZ7/qu76JSqRzT0b42+c//+T/zDd/wDaysrKAoCv/23/7bRz7n2K+FQvLc+Nf/+l8LwzDEz/3cz4krV66I7/u+7xPpdFrcvXt36v63b98WqVRKfN/3fZ+4cuWK+Lmf+zlhGIb4N//m3xzzkb+2OOp5/r7v+z7xv/wv/4v4gz/4A7G2tiY+8pGPCMMwxB/90R8d85G/9jjquR5Qr9fFuXPnxHve8x7x5je/+XgO9jXMk5zn973vfeJtb3ub+M3f/E1x584d8elPf1r8l//yX47xqF97HPU8/87v/I5QVVX8o3/0j8Tt27fF7/zO74g3vOEN4hu/8RuP+chfW/z6r/+6+JEf+RHxf//f/7cAxK/8yq/M3P95XAulWHqOvPWtbxXf8z3fM/bYCy+8ID784Q9P3f+//+//e/HCCy+MPfY3/+bfFG9/+9uf2TG+HjjqeZ7GSy+9JH7sx37saR/a644nPdcf+MAHxI/+6I+Kj370o1IsPQZHPc///t//e5HP50WlUjmOw3vdcNTz/Pf//t8X586dG3vsH//jfyxOnDjxzI7x9cbjiKXncS2UbbjnhO/7vPzyy7znPe8Ze/w973kPv/d7vzf1Ob//+78/sf/Xfu3X8od/+IcEQfDMjvW1zJOc54PEcUyr1aJUKj2LQ3zd8KTn+hd+4Re4desWH/3oR5/1Ib4ueJLz/Ku/+qu85S1v4X/9X/9XVldXuXTpEj/0Qz+E67rHccivSZ7kPL/zne/kwYMH/Pqv/zpCCLa3t/k3/+bf8PVf//XHcchfNDyPa6EcpPuc2NvbI4oiFhcXxx5fXFxka2tr6nO2tram7h+GIXt7eywvLz+z432t8iTn+SD/2//2v9HpdHj/+9//LA7xdcOTnOsbN27w4Q9/mN/5nd9B1+Wvo8fhSc7z7du3+d3f/V1s2+ZXfuVX2Nvb47/77/47qtWq9C0dwpOc53e+85184hOf4AMf+ACe5xGGIe973/v46Z/+6eM45C8anse1UFaWnjOKoox9LYSYeOxR+097XDLOUc/zgF/6pV/iYx/7GL/8y7/MwsLCszq81xWPe66jKOKv/JW/wo/92I9x6dKl4zq81w1H+ZmO4xhFUfjEJz7BW9/6Vr7u676Of/AP/gEf//jHZXXpERzlPF+5coUPfehD/E//0//Eyy+/zH/4D/+BO3fu8D3f8z3HcahfVBz3tVD+KfecmJubQ9O0ib9QdnZ2JhTzgKWlpan767pOuVx+Zsf6WuZJzvOAX/7lX+av/bW/xv/1f/1ffM3XfM2zPMzXBUc9161Wiz/8wz/ks5/9LN/7vd8LJBd1IQS6rvMbv/EbfPVXf/WxHPtriSf5mV5eXmZ1dZV8Pj987MUXX0QIwYMHD7h48eIzPebXIk9ynn/yJ3+Sr/zKr+Rv/+2/DcCb3vQm0uk0f+bP/Bl+4id+Qlb/nxLP41ooK0vPCdM0+Yqv+Ap+8zd/c+zx3/zN3+Sd73zn1Oe84x3vmNj/N37jN3jLW96CYRjP7FhfyzzJeYakovTBD36QX/zFX5R+g8fkqOc6l8vx+c9/ns997nPD7Xu+53u4fPkyn/vc53jb2952XIf+muJJfqa/8iu/ko2NDdrt9vCxtbU1VFXlxIkTz/R4X6s8yXnudruo6vhlVdM0YL/yIXnlPJdr4TOzjkseyWBZ6s///M+LK1euiO///u8X6XRarK+vCyGE+PCHPyy+/du/fbj/YLnk3/pbf0tcuXJF/PzP/7yMDngMjnqef/EXf1Houi7+6T/9p2Jzc3O41ev15/URXjMc9VwfRK6GezyOep5brZY4ceKE+JZv+RbxhS98QXzyk58UFy9eFH/9r//15/URXhMc9Tz/wi/8gtB1XfzMz/yMuHXrlvjd3/1d8Za3vEW89a1vfV4f4TVBq9USn/3sZ8VnP/tZAYh/8A/+gfjsZz87jGh4NVwLpVh6zvzTf/pPxenTp4VpmuLLv/zLxSc/+cnh977zO79TvOtd7xrb/7d/+7fFl33ZlwnTNMWZM2fE//6//+/HfMSvTY5ynt/1rncJYGL7zu/8zuM/8NcgR/2ZHkWKpcfnqOf56tWr4mu+5muE4zjixIkT4gd+4AdEt9s95qN+7XHU8/yP//E/Fi+99JJwHEcsLy+Lv/pX/6p48ODBMR/1a4vf+q3fmvk799VwLVSEkLVBiUQikUgkksOQniWJRCKRSCSSGUixJJFIJBKJRDIDKZYkEolEIpFIZiDFkkQikUgkEskMpFiSSCQSiUQimYEUSxKJRCKRSCQzkGJJIpFIJBKJZAZSLEkkEolEIpHMQIoliUQimcH3f//3843f+I3P+zAkEslzRIoliUQimcFnPvMZ3vrWtz7vw5BIJM8ROe5EIpFIphAEAel0miAIho+99a1v5dOf/vRzPCqJRPI80J/3AUgkEsmrEU3T+N3f/V3e9ra38bnPfY7FxUVs237ehyWRSJ4DUixJJBLJFFRVZWNjg3K5zJvf/ObnfTgSieQ5Ij1LEolEcgif/exnpVCSSCRSLEkkEslhfO5zn5NiSSKRSLEkkUgkh/H5z3+eN73pTc/7MCQSyXNGiiWJRCI5hDiO+eM//mM2NjZoNBrP+3AkEslzQooliUQiOYSf+Imf4Jd/+ZdZXV3lx3/8x5/34UgkkueEzFmSSCQSiUQimYGsLEkkEolEIpHMQIoliUQikUgkkhlIsSSRSCQSiUQyAymWJBKJRCKRSGYgxZJEIpFIJBLJDKRYkkgkEolEIpmBFEsSiUQikUgkM5BiSSKRSCQSiWQGUixJJBKJRCKRzECKJYlEIpFIJJIZSLEkkUgkEolEMgMpliQSiUQikUhm8P8HE4JKu+y6rfUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(sol.t, sol.y.transpose())\n", "plt.xlabel(\"$t$\")\n", "plt.ylabel(\"$x$\")\n", "plt.title(\"The state evolution (Scipy Integration)\");" ] }, { "cell_type": "markdown", "id": "e9b80c22", "metadata": {}, "source": [ "We see a net advantage in timings using the Taylor integration scheme. Note we are here not using batch propagation, which would add an additional 2-4 factor speedup in performances." ] }, { "cell_type": "markdown", "id": "2e6e77e3", "metadata": {}, "source": [ "## A note on the Adjoint Method\n", "\n", "In the above code we have used the variational equations to compute the ODE sensitivities. It is instead common in the ML community to also use the adjoint method instead. In this paragraph we show how the two things are very related and thus one must expect the complexity of the resulting algorithms to also be similar, and hence our conclusions above to hold in general.\n", "\n", "Let us, for a moment, instead of seeking $\\frac{\\partial \\mathbf x(t)}{\\partial \\mathbf x_0}$, seek the opposite, and thus define:\n", "\n", "$$\n", "\\mathbf a = \\frac{\\partial \\mathbf x_0}{\\partial \\mathbf x(t)}.\n", "$$\n", "\n", "By definition $\\mathbf a$ is the inverse of $\\mathbf \\Phi$, which implies $\\mathbf a = \\mathbf \\Phi^{-1}$ and thus we also have (accounting fo the fact that the derivative of a matrix inverse is $\\frac{d\\mathbf A^{-1}}{dt} = - \\mathbf A^{-1}\\frac{d \\mathbf A}{dt}\\mathbf A^{-1}$):\n", "\n", "$$\n", "\\frac{\\partial \\mathbf a}{\\partial t} = - \\mathbf \\Phi^{-1} \\frac{\\partial \\mathbf \\Phi}{\\partial t} \\mathbf \\Phi^{-1} =- \\mathbf \\Phi^{-1} \\nabla_\\mathbf x \\mathcal N_\\theta(\\mathbf x) \\mathbf \\Phi \\mathbf \\Phi^{-1} = -\\mathbf a \\nabla_\\mathbf x \\mathcal N_\\theta(\\mathbf x),\n", "$$\n", "\n", "which is a very compact and elegant demonstration (I know right?) of the adjoint equation for our case, otherwise often derived using the calculus of variations and a much more lengthy sequence of variational identities. \n", "\n", "More importantly the derivation shows how the adjoint method is strongly related to the variational equations and thus the resulting algorithm complexity cannot, and will not be different.\n", "\n", "In the classic derivation of the adjoint method the sensitivities are taken with respect to $\\mathbf x(T)$ and not $\\mathbf x_0 = \\mathbf x(t_0)$. This is irrelevant for the purpose of the demonstration as $t_0$ is just a point in time and can represent a point in the future as well as a point in the past.\n", "\n", "In the paper \"Neural ordinary differential equations\" which popularized the use of ffnn on the r.h.s od ODEs, the derivation is made for a loss $\\mathcal L$, and and ODE is seeked for $\\mathbf {\\hat a} = \\frac{\\partial \\mathcal L(\\mathbf x(T))}{\\partial \\mathbf x(t)}$.\n", " \n", "Since:" ] }, { "cell_type": "markdown", "id": "dfd18d1a", "metadata": {}, "source": [ "$$\n", "\\mathbf {\\hat a} = \\frac{\\partial \\mathcal L(\\mathbf x(T))}{\\partial \\mathbf x(t)} = \\frac{\\partial \\mathcal L(\\mathbf x(T))}{\\partial \\mathbf x(T)}\\frac{\\partial \\mathbf x(T)}{\\partial \\mathbf x(t)},\n", "$$\n", "\n", "it is easy to see that the same differential equation we proved above holds for $\\mathbf {\\hat a}$ by taking the time derivatoive of the above identity and noting that $\\frac{\\partial \\mathcal L(\\mathbf x(T))}{\\partial \\mathbf x(T)}$ is a constant." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }