{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \n", "

Bokeh Tutorial

\n", "
\n", "\n", "

12. Datashader: Visualizing Big Data

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Bokeh gets its power by mirroring data from Python (or R) into the web browser. This approach provides full flexibility and interactivity, but because of the way web browsers are designed and built, there are limitations to how much data can be shown in this way. Most web browsers can handle up to about 100,000 or 200,000 datapoints in a Bokeh plot before they will slow down or have memory issues. What do you do when you have larger datasets than that?\n", "\n", "The [`datashader`](http://github.com/bokeh/datashader) library is designed to complement Bokeh by providing visualizations for very large datasets, focusing on faithfully revealing the overall distribution, not just individual data points. datashader installs separately from bokeh, e.g. using `conda install datashader`.\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## When *not* to use datashader\n", "\n", "* Plotting less than 1e5 or 1e6 data points\n", "* When *every* datapoint matters; standard Bokeh will render all of them\n", "* For full interactivity (hover tools) with *every* datapoint\n", "\n", "## When *to* use datashader\n", "\n", "* Actual *big data*; when Bokeh/Matplotlib have trouble\n", "* When the *distribution* matters more than individual points\n", "* When you find yourself sampling or binning to better understand the *distribution*\n", "\n", "\n", "# How does datashader work?\n", "\n", "\n", "\n", "* Tools like Bokeh map Data directly into an HTML/JavaScript Plot\n", "* datashader renders Data into a screen-sized Aggregate array, from which an Image can be constructed then embedded into a Bokeh Plot \n", "* Only the fixed-sized Image needs to be sent to the browser, allowing millions or billions of datapoints to be used\n", "* Every step automatically adjusts to the data, but can be customized\n", "\n", "# Visualizations supported by datashader\n", "\n", "Datashader currently supports:\n", "\n", "* Scatterplots/heatmaps\n", "* Time series\n", "* Connected points (trajectories)\n", "* Rasters\n", "\n", "In each case, the output is easily embedded into Bokeh plots, with interactive resampling on pan and zoom, in notebooks or apps. Legends/hover information can be generated from the aggregate arrays, helping provide interactivity.\n", "\n", "# Faithfully visualizing big data\n", "\n", "Once data is large enough that individual points are not easily discerned, it is crucial that the visualization be constructed in a principled way, faithfully revealing the underlying distribution for your visual system to process. For instance, all of these plots show the same data -- is any of them the real distribution?\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's find out! The data in the above images was created by summing five normal (Gaussian) distributions as follows:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
catvalxy
49995d550-1.3975790.610189
49996d550-2.6496103.080821
49997d5501.9333600.243676
49998d5504.3063741.032139
49999d550-0.493567-2.242669
\n", "
" ], "text/plain": [ " cat val x y\n", "49995 d5 50 -1.397579 0.610189\n", "49996 d5 50 -2.649610 3.080821\n", "49997 d5 50 1.933360 0.243676\n", "49998 d5 50 4.306374 1.032139\n", "49999 d5 50 -0.493567 -2.242669" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "np.random.seed(1)\n", "num=10000\n", "\n", "dists = {cat: pd.DataFrame(dict(x=np.random.normal(x,s,num),\n", " y=np.random.normal(y,s,num),\n", " val=val,cat=cat))\n", " for x,y,s,val,cat in \n", " [(2,2,0.01,10,\"d1\"), (2,-2,0.1,20,\"d2\"), (-2,-2,0.5,30,\"d3\"), (-2,2,1.0,40,\"d4\"), (0,0,3,50,\"d5\")]}\n", "\n", "df = pd.concat(dists,ignore_index=True)\n", "df[\"cat\"]=df[\"cat\"].astype(\"category\")\n", "df.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we have 50000 points, 10000 in each of five categories with associated numerical values. This amount of data will be slow to plot directly with Bokeh or any similar libraries that copy the full data into the web browser. Moreover, plotting data of this size with standard approaches has fatal flaws that make the above plots misrepresent the data:\n", "\n", "* Plot A suffers from _overplotting_, with the distribution obscured by later-plotted datapoints. \n", "* Plot B uses smaller dots to avoid overplotting,but suffers from _oversaturation_, with differences in datapoint density not visible because all densities above a certain value show up as the same pure black color\n", "* Plot C uses transparency to avoid oversaturation, but then suffers from _undersaturation_, with the 10,000 datapoints in the largest Gaussian (at 0,0) not visible at all.\n", "* Bokeh can handle 50,000 points, but if the data were larger then these plots would suffer from *undersampling*, with the distribution not visible or misleading due to too few data points in sparse or zoomed-in regions.\n", "\n", "Plots A-B also required time-consuming and error-prone manual tweaking of parameters, which is problematic if the data is large enough that the visualization is the main way for us to understand the data.\n", "\n", "Using datashader, we can avoid all of these problems by rendering the data to an intermediate array that allows automatic ranging in all dimensions, revealing the true distribution with no parameter tweaking and very little code:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 189 ms, sys: 4.45 ms, total: 193 ms\n", "Wall time: 193 ms\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJYCAYAAAC+ZpjcAABuB0lEQVR4nO2976tdx5nv+Rwd6fj4\n2MeSpbYV+UfrYimDZ3LMcBtsCMMlAQeHQJPBRAOjF0M3NAQzDhe/CvkTTGYSCxOBaBB0XgkGi3BD\nIMSkoc2dJuCG3HuxcxETt2lfx3I7ulZsy5Zl/drz4qi2nvOoqlbVWrXWqrX35wNH2nut+vFUrR/1\n3U89q5YIAAAABDl77vxsbBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAADk7Lnzs7FtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAIAlg0UxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAABKcvbc+dnYNgzJsrUXAAAABAEAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAALDU5DxYwEMIAAAAAAAAAFCGRfMyLFp7AAAAAAAAAABgSPAuAQAAAAAAAAAAAAAAAAAAAAAA\nAOyE2DoAAABIAtEAAABQGAZXAAAAAAAAAAAAAAAAAAAAAAAAgH4gRg8AAAAAAAAAAKAG8NQBAAAA\nAAAAAAAAAAAAtIbpNgAAAAAAAACAqYAnBwAAAGBgEGAAAAAALUFIAQAAAEDvIDoBAACgV1LEBoIE\nAAAAYGAQYAAAAAAAAAAAAABdwMsKAAAAAACwTPArEAAAAAalrfhAtAAAAAAAAAAAwGKApwtqhPMS\nAAAAYIGxYg/xBwAAAJMC8QIAALAAlBjQEQXtoN8AAAAAADqAoAYAAAAAAADog2X4xb0MbRRZnnYC\nAADAAoKQiUP/AAAAQGcQFAAAAFANqcIEAVMeX5/SzwAAAAAdQEwBAAAALDGIQQAAAABBFAEAAEyS\n2ADO4A4AAAAAo4MonS4cOwAA8DLWAMHABAAAAACTBTELAAAAkwUhAwAAAAAAAACLCV4PmBqcswAA\nAAAAAAAAJcDLAgAAMBBTHXSnajcsLpyTAAAwCfoYsJrKDO1n8AQAAAAYgUUXYYvePgAAgKWFQR6W\nDc55AAAAAAAAAKgTvBaLRV/Hk/MEAACqYYxBqVSdyzagjt3esesHAACoGgbKPMbsL44VAABABxhI\nF4+pH9Op2w8AANBIm8Fu6AGyNk8PAgEAAABgwkxBzE3BRgAAgFYwyAEAAMCgID6gK6nnUC3n2hB2\n1NJWAAAAAAAAAAAoTc2en7FtG7t+HzXaBAAwCtwQAQAAAAAWhCmvYA8AADA5GATHo9a+r9WuRYd+\nBwCAydF18FqGwY+XEkNXONYAAFAVTQNTrQNXrXY5arbP2VazjSVY9PYBAAAAAAAA1MXYgeKhz1Ni\nqnYvCxwfAIDKKHVjXrYbfG57z547P5taH03NXgAAALjF0IM4osHPVPtlqnYDAMCSswyemilAnwIA\nwFJQ+4BXu32LAv08XY6/8CrHDgAAxicmJoYQGjWJmTaevb5sGYKp2z8V6GcAgCVkyJs/A00zffQR\n/Q4AAFARUxyYp2hzH9TYDzXaBAAA0DsMgO0Ye2qRpzYBAAAqYqqvhKmBIRca5TjcZmp9MTV7AQAW\nkrFXJ58aU7Zd0/XJtzb9UFvfpdpTm91NTM1eAIClgxv14sCxBAAAWFC6Ls8wBZFgbYzZPMb6SVPo\nwy50bd/Y+QEAAJIY+x2FtQ94Y/fP0PWNHZwPAABQBYs6wNXerqkLkdrs8THkQwMAAABVUXLgyylr\nSk87lrAlZ4q2b2FSU9/2zbK0dVnaCQBQnClOddV606cv6z02AAAwIAwGUJqpnlNTFnVt6p7qcQIA\ngAlQ2yDTJQC7trbAuCzK060AAACw4IyxCn1fdSKuAABgNKY2CIXs7bqOVxfGWnG/b6/eMgXJD/Fk\naK1tBwCAQgzpRShBzgKhbdJ1tWcM+nySsob2AaTC+QoAVd0IxvT41ECNbexi0xgrz8Ow1HjOAgBA\nYab+RFqbAOnaV6wvZS/0D8cGAKACpjal1zdDrUXV5OUbWjgt8zEHAABYWhZBAHSNbZrSKvNwG44L\nAMCCMLUb+hRjtmpewbzkq4GGKgMAAAAKU+KptJoG+ZqXbijtBavt5dQ1nQcAAIPAjQ80tZ0PpVfu\nHssjNTasgA4AAJDAGItN5nilpj5Yt1nctE15bdKFnhyc4iKkMAwcOwAYDW5Ay0OqiNHpaptyK8mi\ntm3oaeqp9AsAACw5Jdd4yo1xGlN09NHOKS9KOtQSHbWXDwAAlVLj9NGYg9IYno0uXrHcukqmjeVB\nWGxDPwAALBBjC5Qh6mfgambI5Sk4HnXB8fBDvwAsKFzc7RhrGidVUHS1r2/hUuN5N7anEIaDfgeA\npWfoG+GYU0s5nrbcp/imNqC0tb1tjFoN51ktsOI/AMBAcEPdCf3RTJ/Tsl3i6GoVXH2xKO0AAFg4\npnSDnmIAu2Xoqcca2l6DDQAA0BPc5MvR9qkvApbvZFnb3RX6bXw4BgBQFdyU6qX0uk/LcKy7LLFQ\no7dtaKYcRwcAsBSMuZbR0K+sGXpJhthK3EMuBOrzApbuewb5cZhqv0/VbgCAbGq64fW54nkputaT\nuzJ5Tat4j32utFmqAuqH41cvHBuAJaXNk2k13jDatKFEu5u2Tc2LOAWWdWoYAACWiKkMbLV5mfoQ\ntV29UyUfiBh6OYnaji8AABRmyjfv2gapmvsyFiPWpbwpU3oxzan2yVTtBgCAAuTGMWn6EmJ9LaR5\n9tz52fEXXm1ddqkV0EuRa09XD9YU4vqmxlT6ZSp2AgAsNKUH6BI395rWAWvTP12WVegjFiy3P/s+\nhgAAsCAsy1NYYy3LMIYdvnpyvWklhUTXslKXu4Dlg/MAAKIs801ijNinrp4Qmz9l0B/jSbxliRFK\npcsxGHqdNgAAqJhlv+GXeNosNU+Th2gI79aQ3p0uHrKY4H3y6TODn7NNx63E+dGFZb+Oc6G/AKAK\naroZlZxK6tuWrmKmxgG41nJKn6NDTtOWfhIRAACgkZJrIfX1tF7XNEM8sZY6TTkkbWxPKa902q7U\n0t+O2uzpk2VqKwBAFrXdIIdYhiCnvtjSE7nCbiixOFYgPZSB/gQAmDhtY1tSyx6y3D5jdFLSOSFW\nUgD1tURBm3qb0pfqyz4fCkC4AADApOji5cmly9OIoScP7f62TwWWEgfLIAS6LEo7Nab2IwYAYKEY\n8mZZoxcklD9H0AwdA1bCttKB9jUFdC+iAKjt2qmhj2uwAQCgamp5gjC2TEDuVFRugH6XwU2X0dZD\n03Wqs9b4qzFjvRAAAAADwk13ONp4erpMxYU8OaWeJiwdaD4WQy6VMGR9JWgTnzik2AQAAJhjB5aQ\nl6eLOGozRdZXMLlPPIaWc6hd7MTyDT1t1mUadJG8YGMdCwCYMNwkblNbzEdOHp+AquXYxjwUscG8\nlHfMlZMjMtvW1TVfadr2Xy32d2Gsdi5C3wEAZFPbza/EIJAag1Si7aWEnPXSWI9TLE+XepvKTKGv\np/Ks2Cw1zRrb1pW+fjAMTY02AUDlcONII3fQrK1fc4Ra1ymr0LRb6tSSTzykbmuysU+6Cp6u8VF9\niKYazmN97TEVBwCwIEzh5l3SxiYh+eTTZ4JCJ2WBz5LxW6keq7E8WX3WMUXh1FegOgAATIRluLG3\nbWPX6a+YlyuWpykWK7WsPulzqjYl71D9UEvcWZcA+65lw3LAeQDJTPlkmbLtQ5AyXRYTKbHYqRRx\nE8sbmtbJjSMqdQ6E1vZKXQVff26avhqCHM9d7Pg1TeF2jfsqQU1TwotYz9h1AowOJ/40aDMYDDkV\n1cYDkOOFKT2FlxrH1Tawus3UZsmYoJQ6Uvq1jynREtO+JezoKw8AVAIX8LAsUn/XNhjFyig1uKUK\nOZ+QSBGDoZgwX9q+39WYOuXZtZ629FF3CS9km37r4lEr2Q+LdH8CAAAp47lo65lo4/1qE3+VQqgf\n7PRdTQNhjj25fd3nNFqpYzfG1HDfTMVOAIBqqeFXc065ud6BruLJJ3D0vpL9kBMD5au/do9TKn1P\nG5acCs2tr7QgH4Mp2w4AI8LNoyw5A0qXvg8JodQ67PYuL1VOXaDUJxz08hBd4svs9qb6xz7vS09z\nDdGeIaYohxBkTXFx0A/0MwAUIVVgxLbFhEQoTSj+KXfK8PgLr97hLfJ5ulLKaiI2yMZEUSyd/t70\nGp0u03Klp3aHKqvUNF9pD2tT+X1NTafs61sgIEAARmasi38KlPAI9WFHn3bFpmO6DGbau5SyCKlL\nF2u7K7NJWDZtbytec0kto4vdpUgRv7F8pe3os44aGPLYAgAUp4Zf+l3LShElse0pnpgmfLFOIWHm\nVnu3nrBQniZi+dtOCca8VV0HvlyhUmpKayxPWF/vXnQgPAAABqTLlMyQpA78JQdXn3hoEjnu/1Bg\neih9zP5QmantsPU3iaTUOpxNbcob2uuQKxyHLq9rfUPYsIiU6CP6GapnjF+dQ1GzbVOmy7RRE6lP\n7oW2h+oPea18SyG4ldLt/pR6QmW7tjUJ0hQB0cZb1XXaLOYxa1tXaXHVlZrK594FAAAi0s0bEyrH\nfU+Zoms71ebLHxJvR7ZO3+HRinnCmrxk+rvv9Tc+cVdyOivW1pwyStnTR3k5ZbcVvTpNCRHV5XiU\nAHEHAHCLIW6IXaafUkTB8RdenflirlLa5vN6NeXVwes2nd7ns8t5p1ID31O9bL5tug+b+iU2HRkq\nN6XMFNv78mjmlNfXdYDgiJPaP/QjQAVwIbZnKh6FlME8x9sU2u+2hdapcn9aMOmn/Jo8VLZ+K7x8\n5bjym5aBCPWdTduULmVbqNymKclUco/t0KRMe+aU1SV/m/QAALCg5IgDX97Y99QyY1NxqaLC/e+e\nJLTl2iUW7DYdvxVrm+//WJ7Qa3NCItPXvqZyS5AinNqIhzEER5911iSgms7VWB4AAGig9HRLmwG1\n6Ubvm87zxS7ZvFo0xey06V2ddl/Kfm1zasxWzA7fvrZerJKDY9tBuKl9TflT6hmqnaG0pbx9EIa+\nAlgAhrqQU6aGplBHG0rXGxrEQ/FMLn3oab+YOGryQMXs8eURuS0IY96uWNtT9ueKkxzxUEpApTDV\ngbZ0H+QcV1+asftx7PoBAEahhCeky8Cs98c8Tz4vV85UnUjzOlM+O6zX6smnz+xYtDTUztDUnbU7\nxaYmYgNsaF+qp8yW1SZfU5mhbUN4sWJ2NYmVnP1DessAAKIs282lrbDpSxCVJNczkzroNnmYdOC5\n/juydXrHFKNL4ys/VJftexvkHvJM+fI54aW3pfRFbHtOPl1f6lOUobJDT3+Woo9zt7RojNXTdx0A\nAIPCjS2NtoNqqgfFfQ95mPRn34Kebr/2INkn/ELrTIX2OZzA8QmlJ58+c0cdPjHV1E+h76G+yCGW\nP2ZjG89KF9rWN/VruE8R17XcHDG+jNAXACNQw4XXx821bX5blu+lyrkCwJbn8xpZD5QWafbJQS2M\nnHDyeZliK7ZrMRbqA+3ligXtx6bdckVRirgN2VECX/lN74tMLSdlX5t0Q5fVJ1OxEwAqZeybyBCD\n1NhtzCVVHDV9jgmN2JN9Oo9bmd3nKXvy6TMzvXK7Flnuz3rGtEA6e+787MjW6dmRrdM7YrF0edam\nlCUTrADz2a73xcoqKU6smA1ts59T6x5DBJXy2JXyCgIAQI/UeEOOPe3meyLPem5cOTEPjc4XmsaL\niSu93wokncbncbJ/NhbK1x5f3aG/WBt8Afq6Tl8/2v12W+j/WB2hemP5m/bFykzNW5q2oqrUj50p\n/mhyTNVuy6K0A2ChmOKF2fc0SpsByzfI2PWkQmXrQPSYiAmJL/05lM7Z4/NIucB4t13bHxNYvrRN\nfZMicEoSOz65+e22rjZ1JVcI9m3PIpUNAJBELTeiWuzQlJra8YkOt90ninxizHqcfN4ykZ0eIl8A\nfMgD5vL6todsbfI0nT23c4ox5CFJ7edQYH3smJRe2b2pzjber5DA63L+lfI+dS2jTZljC78a6wWA\nkRny1+9QNNnSRfDklNEkZjQpcVYxUeUTIqE/O2Wpt9mlGuw6VlYAhd5vqPf7ln/Q9cba0NSvIY+e\nT9g1lVuStp61PjxyTQJujGu3pvtFVxapLWNBHwJMjKGnjdqmtUseuHTWgxSaIrRixQokvS8mrpx4\n8ompQ4dPeUVeaDkGn/fLBqc3xVY1eawsTU/gherK8ZT5vIUh+3MYcoAp6anCKzQcbdu8jH0FABOj\nzVROLG2KZ8Gugm4FQSggXS+pYOv0ebNC02Jnz52fHTp8KjjVaJ9CDImckP0+20O2+cSk9oj5bG9a\nCDT1aT6bv6vICpUXE5xNZTfV2XZR0yYvV0nB5tuW264aQeQAwCTp++bV5AXxkeLp8OWx9fgGN+vJ\n8q05pfNZMWLbZkWPFk061soKLO2tCgkZ600LxXXZPy0s7ZOKvn6Jlefr65ioTCVmvy/tWJ6tWgf3\nNtfVUOkBAKoj5UbW5WY31I2yZD0+MaD3p8Rc+bxHPuwUnyvbve4mVrYWSnp60WeXT2Rpgea+69fs\nuLxWEIZEpNvvszfVoxISYm0ET44Xp63HLFR2F3Hmq3NIr0/ba6mrl1Cny/EYAgBMjr6nGUqW06be\n0E07Nv1mt8WmvGx5vkHDZ4cv/krvt94uK4CsV8z3pKGOr9Ll6oVJfdOd2i4r6KzNTQH1Vlzadum0\nXQVGyBPXpcwQvvJjnrnU7TkCJc3SYUmd3g19b6JLnwEAjMIi3aSavFG+NL5tVijo7XpBT7095Nmw\nAkKnsULDrtR+6PCpHVN5Np/1pukYMF9Qva4/NJUYEnghO0S2BZ0vNivU5lBdqYIkRdxYckVcrI7U\nwb5JnIdEZpNYH4Kx7wttjvGisaztBoCeafuL1ecJSi2nyRPi88qEyg95eLR3RwsTK5qc4Nq8/+W5\nSHKCSwsnX4C5z0afhysUw+Vrm/VK2b70BfGH+td3LFKOm6/s3IG4Tw9X1zL79Gwt2mDdpT19ezkB\nAAajyQNQ4kbX9aapBYgWDaE6fN4X7UXSAsraZoWNe8+gTzRZL5YWOtrj5Zs69HnibFlHtk7Pn0y0\nwey2H6xg831OEVF2u69vc4+fr54U8ZUqaprKyrW5zfka6ps+xdVYeafOMrcdIAgXxjSIDVCpg3ST\npyTkybKfddB6aJkDXbadyrOxVvopPy3GXD12n/VI2SlGu3yEE2Y6jxV3WpA19X2srSkiqo1XKlRf\nkz2xsrqm8eWJfW9TVo33pxpt0pS2b8j2LptnEgAqIPXXfM53O4jZ+CufZ0iLKhtwbr1UvuURXD0H\nDp7c4c1y5bmyjmydnosl/WefNLR9o0WVfqJQ//k8VL6+crbGRGfoScSYUItNL+Z4o1L2pZYTK7dt\nGbEyc/aH+ioWxxXLNwQxgdpGiNYsOAEARqHtDTH1htokupo8EU03ey2UdDyU26c/x+Kr3HabT3uS\nfIHq2iOlbfHZrf+090vXo+sLCR6foEhZ3iHU1ylesSaxkLIvB985kiIIcgV9STunSEn7++yLqfcz\nACwwfd2gcn7dWnyeJjuwxwZXnwjR6bQocmVpEWOD231P1Om4LVuHFkJWMPnEnPOG2SlMK+K0Z0uX\n7xN6TV4vewx8wjJFBMfK95UTipcL1RMTpSnllKCpH2qihMittW0AACB5N3rfY/K+wdmXxvceQN92\nnc9OwbmyYt4h35N7TvTowHdbjs7r6nbbtaCyr89x5Yde66NFns87F3tS0dc+W4etq2nQ7ct7FRI3\nKedLrTTZmLtURYm6h+y3lPMJAFrCxQWO3IG7aR0i97+Ns/LltX92BXQnYFxclRVQdkFR6/3avP/l\nO4LjXR63rIMTWVqkufL09KZto/WE2fWvYtOHOk1ouQfbvzHBm3I9xwb2LveDVI9Y6v6cdEN60Yas\no0Sdpe1kzACApcAOsl1vwF0GeJ9IcJ99U3hWxDhvlu9pQFePb8rSBbvbcnwB8jYIXtsden+gttWK\nNCsArectJLRcHuslC3ntfJ+tsLPHJOUYlqZJSDbZlUuTh8n2VSlqFhk12wYABajhIu/bhpLl9z3g\ndc3vG6B8U2V6gLVLIei07rMvvkkLEy1grGfJbddl6fLcfusZO3T41B1l6ncOunJcOifibJl2ujEU\nr6Y9aqFYNrvdijjbLznHL5QnRYzleI9yPU32nEnJ49vX53Xu84wNWR8AAPRIiWkBOwj6BorY1JH+\n7psm872M2dbhK9+JFS1g9HZdlhZHWrQ4oeS+6xgqvSCoi9GyAfNWzNgpSL0GlktvPU0+r5J+YtL+\n+bxOtkwrqPryxuiyQ/tyRJSPNiKvS32hcrr03RDiZwgvY99ll2AKP14hH47FAlLjQU0VNyn5U8oK\neTLaeAeaBoGQmPN5b2zguF2vyooNLX4OHT4VfMLPlRnykDlb3efN+1/e4XnTXiy9xIMWlC6vs8Pn\npbL9b2PLfH0SI9ejkrqv6TinkpOnlFBM/WFgt3W55rrYMDZdbKqxPQAwAWq8eeQMQl1FWmhAShmU\nmqa+QvFITtCEvDz66TyR27FONq2u26X1vfjZebJ0eUe2Ts89aFqMOY+X9Yj5hJZLb2PNtKDSy0T4\nPIm+4+FrY6gf9XHQ5aWKpzaCJ1UYNpXh255iz1Aen5T6p8JQXsMaWKS2AICU9UaVtidnMAtNUdmy\nrZDS+0JCyi7h4Fsx3RcUrj9bj5b2fPk8Znoa89DhU3NRpT1WWkzZKUfrJdNeK+uhcmUcOHhyhw3W\nc+fKtWLIF7eWEvhu+0+XGfOyxKbw7JSoL12s/DZpUq+JttdLSe9ViXwhod21/q55AWCJWKRfX2PZ\nmlNvLG1IfGkvUMxLZkWJ3a9FjNvnRJH1BjmvlCvTBp1b4WLzuXKPv/DqfNkG3/sKdVu1SLSv7dHB\n7z5vVO6inU2eIivgmugqhtpch6XOu7ZpYgIz1a62lKojdH4AwEgs6kW4qO1qw1B9YUWT3m7tsIN+\n0+dDh0/tmL6zcVNauIWCxJ23ya4Ab71U+glC7fVy4kgv/eDK03ntgqJasNltVohq8ebD1x6flynF\nQxXyjOSIsVjZqflTy+4jgD+l/pL11v4jsA+PIABAJ0p6B9qk7aOOHC9AzmBt13gKpdeeJV+8kvZe\naY+WS+cLhteeJCt+XD36z9bjW9NKt8fGZIXs0Z4sGwtm2x7qm5B3L8Ub4/vs6/eUslM9JyFPWpvz\nPCSiU2zoWncuKaJqbGEzZeEHABCk6eZaUry1KSt3AAsNYtoboAfvUJC7yO14JLcMQ2jA93mzrJfK\nxnaFtul1r6xnTJenn1R0Nuq2hLxTrkzrjdN9FloE1fa3ba/ep9th+9+WETumtq9TPseEWI4Nqd6j\nLgNwm7xdRVMJG0rTx49EAIDJMOTNLeaJig2kobJ8g471OrltdjDW4sYJLZvX7vMt86CnAN1TfzqI\n3j61aBcwtfFcOubLtckJL1uWFX36qUMrAnV/6EB6vS/mcbICUduQemxjxzKUN4RPAOacQymep7Y/\nMHJ+LORS0mM2hvcNAGBpSZ0KyS0j5CXKrcc3GPs8WlZYuO92mk0vr2AFhfYuOXHk/nyeLZfGxVVp\nr5H1tFnBpKckbQyYtsc31ag9cTqtyJ1eJ5/Y9PWnTwz4BFjKsfN51GLlxiiVJpaub6ER+mGQI8By\nf5D48pZKBwAwOVK9AH3cCHOETptyfdNeueXr+CQrNNyApYWOfeLO5bXTidq7pYWO+76xeWLHMgw6\njV24VL8qRwsrLbC0fU7wuSlDvSK8b+kJV6b2hPmEliO0Lpbud9tu3Te5np4mEeM7x0NCo42oyD1P\n2573XQLX+7jWUuwZWkAts2Bb5rYDVEPNF2JsgEvZl/I9dQAPTQNqwWS36bQh74sWKk7U2Gk87XGy\n7XaCytZjpxGdeHJlOSFoxZoWd774KO0l01OYNq+z0SdiQttCgsrmaTpWTdtLC6c2oi217FCa3HO6\nTZ2wGHCsAQZiqIut9K/+LlMUvrJypi18IiA2ULplEHR8k0+QWYHjq0cHx2sPlRZFdpuNoXKCSmRb\n0Fnvk+1Xu0yDLcsG0vv6xC6cavtIizfdZl9/xsRSbEmIEGOIkZIep76u4ZBQ7KOuVNrW36fXsWu+\nmlnENsESsYwncMqv/1LCKVZWkyfM531KSacHT7vfTs3pcrUA0+nta3D0VKCNdbLeKe1F0i9y1sLI\nrp8lctsTpus6cPDkjjWztP0+D5f703bGvFj6T/e19Qja7SEvka+skHDLjccLlR1K72tPbr4YuSKx\n73JK0NePsrZ1lMwLACNQ00Vbky1tSJ3GsYKo6bPN5xNZzrvj9tt4J5GdC4SKbIseJ460x0qLLhtj\nZcWFXpldx0b5Yrusx8yV416t4+yyQezaBhub5frGt6q7ttPWGfLa6f635fiOZ0hspZwTNl2q2MgR\n8JoSQqtpGjXlfC7lTYv9oAkdjyGY8n1sKrZPxU4A6AnfoKw9MLH0oQE9dXDSoscKDJvGxmA5IaNj\nqLRgcl4lJ+q0OAmtmyUi4sSYS+f2u+lDV6e2UU9LWrFkPXjaa6U9d9bz5OvX2GAd2x/abmPgQmWG\npnyb7AmVGxdq/9ds+89PWw9Zankly+5af231tBXNi8wytx0myJRO2Nybc1PbSre9rTcgZLuelnL/\nWy+KSxvaLnJ7DSmfB8fab59C1NN02i47xaiD1a2delmHI1unZ5v3vzyPydJPCWrBpleBty+K1k9C\nOjHm80BZr5YVlFZkaTEWOkYxr0uqMAuVnZM293wPC/udAit2bqXW1+c9JaXOPuof0/vl6h+yzCmN\nCwCTgItqWHwix23Xn0PHJSS4QuXYJQx8U2taQNk1qmwMk/WE2fgn/a5DnU6LLSfo7BpdTz59ZrZ5\n/8s78tgpTiuctO02gN+KS7u8he4jX//5+jVHYNhYtybssQtNITfZmlJ2l/2l9uXQpZySonDoH3AA\nAK3IvRml/KIc4pf0kL/WfXVZj4wvZijkAbNrY+lYKZ3eiQ4bkO4EkZ4ytEJG5M5lH5znytVj17jS\na2DZftbeM+s1c14uG1tlRZSvT31i1SeAfUHttp6u3o4pehb69iDlkmJDDXYCQAUsmnu6BH3ZFfrV\n3kYE5pQf2u8TLU1Ps/nstgLKlm3jqlxe7VUKPUkosnNKTk/p2XRahGgR59Lp9tkYKivStCfK9otd\nt8snQG3eUN81eRp95fnSp4jmlOOfK2hy60353JWm/utaV2o5XerpEpxfov5lhP4CGIjUi63NFEpO\nntiNtu2v6Zigsml84kAv+KmFhvuuA9Ptquh2itDltWtWae+XyM6lF6ynzHm7nPhy+XUf2uUadCyW\ns9lO79n2W++VjR+z7fX1s28tq9SBOkeQhM4bnyeyrT2x/ak2t21HCqn1dbnW2w7KpfIhCgCgN6Z6\ng+l7qsF6J2IeKJ8nw+a1sUf2/X42dkmns1NyekrQ5wnSU3t6DSy3Twef66cBfWtXOeHkyrC2uAHc\nbXdl+5Z5sF4w64XS9fv6LKXfm7xRIY9i7rnRVE9IfIXKyqmrlAcpdV8ofeyaGArfuTBk/QAAkyN3\nEOijrthgE4sB0jd7+0Lj0CBkBZYVKFaI2RXSrfBy5djgcvdZL7egPWPa86UFmI3F0kHw1qvkE5Za\nyGnPmu073ZYmkRujpBfJ2taUPySKmkSZ77ue9vXVleJRi7UrVveUyW1LrheuxBQkACwBfd9Yx7hx\nd5m2sIHVIe9BLDaoaRDzeZ58nhon0rQXyS4mqoPSXV6Xzgaou/KcSNLpdCyYfZ+hDbDXgevaVi0M\nnQjTtlsR6ev7nOPn69vQ96Z9OZ6aULkx+5vODRuL1hZ7vtYgBlKujb7qLZG2VpsBAIrQNE1S4sYU\n+oUf80q473pwjYkHjW/azOd50vusKNLeJl2/Fklu4VBdtluR3S5aamO3nK36s/aEWfucDTY+zecF\nCnmp9Gef6LRl6u/aTl95IXIFVpMtenvsvGqyqcuPhTHpU7A0nQNdyu5KX/cmAOiRmi7SMW8iXX4J\np+SJPdEWS6u3WdFhP7sytWdHe6zsS5idmLFTgzqWSy9G6gSVfdLQCTK93U4f6jY50abr0bY62+yL\nqn2iKCSwdGC97U9rU8q6VU37U46vzzsZKzNUR5MoTClX92ff3qhSXqY+BVSf9Q7JlGwFgAS6XNS1\n3RCGuPH6fh2HfjH7PDZaJNk/LZTslJlPfGlPk96m07tyXdl6GlCLH19Zur5QYLqOy/IJpZC4dOnc\nQqUhweVbUFSX5fb5puKsOPSJBVumzw57nFNFjbXRV19KOSXou67c8ocQbIsqxABgotR+o2n7SzZW\nTk6epl/0VkT48mvRYl8nY2ObXF5foLtPsOi8Vqg4oWVf6qw9RiI73zWo7bLbtLCyU5I+saJt9wki\nbb/PQ2UFm17rq+m8CIlg/TnVWxPzZoXKiJ0vTXlj6buIiCEFSM33laHF4VRYlnYCgIe+bgC2XDug\npj7J5YvB0iLK582wnh7rmdKeIrv+lY6/0mXoZRi0DdabpgWc9ma5uvR6XSK3l2Lweap8L3n2tcsJ\nO+upsrZZb5UVc257k+iI7feVGSsndV9uoH5MnLcRhn1NI6aIxpx9XdICABSBG8+d5Pw6b/NLPia6\nfE/Xuc9WbPm8H76y9WBvn+Bz2+3Unk6jX0+j16pyU4RaCLlpOpfPBse7z/pl1G6f22/X4rILoPpE\nlW6/nbK0/eoTET5Poa3H9rGvv62A8x1vW0Yond3eVHdse4hQGan5fembbIzV0ff9qG8h1yZ9X2Vy\nbweApSHVG6E9QNZj40svcttj4vb7xJgWTz4xpQWVXpVd53VlWW+QDlS37wu0bbFeLdtO/bShFUw6\nnWurT3hYb5SdwrT9aMVW6JjpNCFR5guWbxJSOQN/k5epqcxY2jY/GGz+tnbVIgja9kFuuQCwQHCB\n36ZEX+R6q2KDtU4TCqa2g6BOZ5+I02l93h+f2NJ1u/2b9798h7ixebWY8gkqLdac3fYJRG2T7geX\nR08ThuLS9H775KFPiDlbrIC1fe+bFvMJCZ9n0R7LXMGSu69LeT77Qudvk0gNpUkhdRqyi2cpdv4M\neZ/sWhf3dAComrYDQais1AHZ1uvbH/LUaEEUEw/WQ+QTP9rzZLfpcvRn3+Kiug73ffP+l+8QUM5D\n5sqzU4B2+QjXXttXPs+Ur798gicWuxab4muKmbPp7ecmwRI6N9rQ5CnqS8h0pbS4LJk/tdyh6pla\n+QCw5PQ5haGFgU8UOYFh84WEhK9MkZ0CTMdh2bJdHjslqEWX8x45sWNFjs2jFxjVi4xaL5fe52yz\n7dNrbDl7td22D3RbrCiz6bQg9PW1S59yPsSmb1O8PW3ypJbRlDblvC4tIHL6IkaqSGyyI6cv+04D\nAAPDhXknXW9obfs0NV/MAxVLKxJeZNRnQ8j7ooWEXUpBCxYtkvSrbnwxV/ZPl2eFkk+oaFu0iHL/\n237QTzzaqU7fVKW1zU5P+o5FbGow1eOUQsq52CRkYudQKF8f9w7rGRybpn6JeQ9L1Z+zHYaHYwGQ\nSR83ypwy29y07cAeigES2enVsWX4vCw+L5cVJzFBoqfzrFcr9L8TQW4Jh0OHT93xYmjfFKL1rrm8\nOp+OpdLbfO0OiZPYcbGeP11um0HZHpem9CnYckJCO4TPI1qS3HamesNyrkVfutRtsTQpwi3Fvq70\ndS4BAHSmq8ehVP5Uj1ZKvT6R4xMHWrBYMaG36Wk9vZyDXp7BfbdCzi4SqkWVfqegL5bK2eG++xZB\ntUH4uqxQzJstz24PxWGFhJvP6xUSxm3EQUjUNXmKYgIsNU8TXbxVUxrUcwVYyTqm1E+OPmyeYj8A\nQAFSB87Um2jIyxLyqNg8vgHf5bOiRP/vRJBej8p6Rmxwu56us9N/2qukBY32wNmlHnxTkr4YMxvQ\nr8WebxpTt8/X/zGPTuz4NnlEfF60WF4fqcHzKdtSPUV2X444zMVXT2iKNqec2P5cu5aJZW03ALRk\niJtGzDsVsyUWR5VTrsM+gWcFSix+yufl8QkXbbtvAVBbh22/jfNygsy+Zsd64Wy7Dh0+tWMFeNte\nO2Xq89jZYxESrrqcNt6e0HHUx6VJTIXqbiOcuoiQHBtC060p9TTh8zg2pSlJDWKkBhsAoCLGuinU\ncDPKmT7y/Zr35fOJI/s0nE3jy2On67TnKSRMrOdKe5eObJ3eMR1o2+L2+cq3U3Fuu120MzWf3h/q\nA1/fhvrfbo+JKJs35zxMEdUp+VPTNHmCUstqK0ZLXKM5bWg6TjXcMwBgiZn6TSjlF39Tupy8vpt6\nSMDEvClNaUNTfFo42NfIWNHmm0505flEivMs6bKtxyrkVbNeHG2TrtMn6GxclRWXNr2zLyQI7FSj\nLqurQGoqI8Uj1SS8bLtS8zlyPD9NNqTuSxVDXWgrmtq0cQzGtqfrDwoAuMUyXDhd29gmf2zqww6c\nvtgin/fAeppiac6eux2kLnI7xkqXr71kWoSEBI+114oq37SgS+PW29Ll6z8X72Xz+frOCsJUwRE7\nHr76fOXFgu9TaHsuxgRb04AYEqBd6g+V7Usf8iDm2NH3U5M+UvtqGe6hMFE4OfOhz8YhNtVXYhDR\nZfkGw9jAb6fd9ICk46zs04C2XJ+ocmVYQbWxecLrKdN5Q/FkVij6BtDQgO1LbwWbzy6fB6+NYCr9\nCz9F2HWtr8uPhNLlli4zp98AAEZn6JtVX16Apl/6TeXFfsX6vAoxT0NTHb5geZ/IskHqdjFPLWJ0\nXJZ92s9XtvZiiWx7vtx3/Vocn1iydlkvhm6TLyBc26/ThTwwOUIn1LexvvaVZ/OkCOucc8ja3PU6\nbCM+Yud1CZu60uQdS7nmhwYRCAAiwk0ghdQ+8gmC2AAREz0xcWG9Xr6n7+x3F2sV8g7pKT+d3iee\n3DpbvlfjaKFkRZJui6tDr0gfEyqh9obShjyDqaSKr5B4tXlSyrOCOpS2D3J+HAxVXx95YSf0JQC0\npvQNpOkXtcWXRsdL2XRO9PiEROjJN4eNh/LVb9ey8g30vngrLcZ8cVu2vFC/+2KydH5bZ1N5qd4C\nK2Cs58znZbOExE+Kt82mT91u06Rss3bFyvSVU4OI6ru+Nn09NDXYALBULPpFN+aNr2kQL1Ge9br4\nBJAvrdvmC2rX5dm67LRiyNuky9a22DS2Lve/Dd73TdPZ9bd0WTkeIOt5C3m7fP2eQ0x0pYqoJtEW\nszPVq9SUxpHiHSvtWeqyrQSlr+k2dfWVDwAWkBpvCENOozQNrinf7QCcIhJSX5bsq8eKKL2mlc4b\nEi7aFvsUoM7nE5C+z7ZPdHvcNhtP1iS83PeQp6/NYJ9yzJvKi9VTMrg8dMy7lFk6b4myxrr/dP3x\nN7SIhOWBc6ASajgQY3ih2qQt+eve0fSaF99335SeFkfuu89DFdqn6/B5tPTAHxNPPhu0zTE7fEIm\nFDA/xqAeCsxPKbtJLIfKa3POlXyqtU0ZoXYM4Q1bFIb8gQgAFbMIF2pIcFh8QsGW4/scG5x99TZ5\nXUKiJLV+LYb01JfzFPny6tgrn9Dxec3cZxdQ73vvoLUn1r+hBwNC4sz2pS9tzGvU1uuT47my29vE\nfuXaV5Lcfmgr0kqmb8Mi3Odqhb4FaMkiXDypU0NtBwY70MeEkhUVTz59Zsdinrq8UOC6e3egb/mG\n0FN5Nq5K22ED0UNCy5dPtyunL5u8X65vQnmbtsXaGkoXoumJUbvPV3dTHV1pW0cbL9sQlLZrrHaV\nqreW4wJQFVO8MMaYwum7DJHwQqC++mL7UwfQkPDy5Ylts2JLb/e9GDo0DegLkLeeLV+8ls1vY82a\nbA+1MySsbNm+712IeRhDbQmVE0vTxdYUz1JKnTk2+IR0at6UMnP2xfbnbi9JSh192tHXOTUVFqEN\nAIPSx00rNnjH8uSkbUrTtNRCbGC3g6j2UOWIOivM3JpYul47rWht8ok4XZ7Om/OknbUrlj8kVlNp\nGpR9Xri2dbXJ31YINe1PEYc1MPWBs61YBICJ09fF3bbcoX9phn7p54owK3p83hg7YFtBIrJz7Syf\nHT7h4aYEbT7rTQoJhablGXxPCNqpR/3EoW2j3qb/D/VPrG9Leals+bFyrb0+23yEPEap7e1SVyiN\nPgd9djW1MeVYNLWvBLkicAibQnUuA8vUVlhCcm/+UyB30BjbHjsQ+V53o9Npz0+KQNNlh9L7yvOl\n8dlu/+xTgwcOnvQu1ukTY772+t41GOrb2EDeJIp9/dZG3HQ9r0Ki1X33Ld2Rc47l2hE7L3LaUoIp\n3pumaDMAQGfa/OqPpQsN4qEYndyyHD6vUiweLCXGK0WYxWx27bSB6jqNL9aqTZu1GGsSTm0XBE1N\n09VDFMoXEnw552Yftln6nhpsOr591IcoAoA5td8Qav8l22YQzbWhSxmh5Qps8Hnss69eLXRiwih1\nkI8t+qnL9nmsfE85+kSVbUfI4xSboov1R066Jm9TUzmpdsW+tzmvfEI1lrft+ZBKFyEa+l7yHlFa\nRPYpDvsoFwBaUPMFWdK2PtqZ6tWJbdPixre9yQZfoLpvMNSCw+Z3aUJLKzTF3VhPUcwGn0DxebhC\nniktNFNiolIEn69f2w7UTYKoKX3Ovty6YunaXB9drqmYiNNtqy1wvis1328BYCJM6UaS6r2w6XPT\nxAbt1MUtUwZk979vBXX93SfsYoJEb7NPCTa1N7auVawuX1or1FJETFN+G/dm8/rWz4p5dUJ9EtsX\nEq2xtuVSWtCVFllt0uTmbytM2zC2QGz7QwFgDicOjE3uYJOatsnDkjLIh17mHMoTejrQCgD35KKv\nPJ93SeS26GtawiB3YMwtK5YnlraLQInZFCq/qS9SPVlN50nb7U3puvRJV1LOoTZldC0TAGAhCImK\nvuts2pc6KOaUkVu/9ViFpudsTFZoRXObJibqHL71snz5Q+3Ri6D69vns1NtS1tjqOijniqHc8mNl\nlxCXTXakipC2dVph77OhRD19UqNNAJNnUS6s2tsxhH1d6kgdJFJElf4LPZUXW4TUZ5NOGxM8vu2x\nttjyfeXEXl/T9PLrUN+lihBtW8rgnVJWrsBO6demclO9lKnncJcFWFPyNYnmNvWNSe33RwCA1uTc\n4Lp4EUIDax+DkC+Nz4sUKycWCJ4yiOrX3vjsciIvJOh8aXyDfcpyC759vu0pxMRml3NJxP8UZhdK\nD962nSkCP8euEl66JvqOTUu1uVTbpigqAWBAuk6llCq3dP7ccpsEmO9z04Ac837pfblPxfkW8bRi\nKfb0YUhMhDwpvv0+u30iUD8xGWpbSpub8MWJhQRYqP+bnl60bcoV2k3p2pybOf3V9txPLbON2M2t\nY1kp0Qf0I8BA1HaxlfYydbXF93+OXTFxJeIXSakDVNPTi7Ff9iGhocuNlR8LdLf5UtuY65myQi+W\nP1RHiDaiKSZM20zbhZbYiNlT2qOVmyaHMa/ptvunwCK0AQAy6euXbVe6DMQ2rU+U+BYaDfWFDhzP\nscknmGIiSuexnphUz1zIpli+UHxSU105wjs0JerqT+3HlP05faXzxLxIsXOkhEDUfZFaTkzEus9t\n3xVYitruK45a7QIAaE3OVEgsTerAEfJSnD0XXqMq15aQlyL0Oh1fejtd12Y5iSbxF7KzyWMVssP9\nxZ6C9OUN2RtqZ07eXFGVUl9K/pT9bWzuIgT6EhGIE+gTzi+ATNpeNENebClPmsUEUExkxcTNk0+f\n2bFie2rZIVHQJD5j73FsU3ZMqMWEX5tjmypamtK0FTSx/Tnep9j2JmHcpsyU7V32pcDACQALzdBP\n13T9Zd404Lcd8FLtsgNf6B2GoWkbLZpibbB5UtsXWqohlLfJBlduSj/oslJf/hwTCznvOgyVH7I3\nd3+TrTmkihafmM3xbpUSMCnXWt/3kVLldxHMAAB3MJWbRsrNL3UgjKVp8piEBrGY58WXJ2WRzVBZ\ntowmgWPFXqg9OQK3acCOid0UEZMSV9ZmEO8i4kNtSBFXXTxxKTbk5C19zQ9xD+lbvAIAZJHqqRiD\nLgNFbvmpdXQRGKF8TUKjjZ0pT7Tpst20YiiOLGVqMlRHU92hdubS1JepdsXs7GpXX+WUFhd9eWpq\nubcAwMhwM2hHzKOQk79L3aFtbX/R+7bbP5snRxg5j0yT7SnTXloo6W36f/3ZJ3T0Nj19F1oY1ed9\n03lyplfbHK+cPi95XYeOfciW2IKvXe3s6n0q/eNhLFKvu6brsbRdTdTcpwCwYHSJm0gVdyV/+XcV\nBqUGyNDredy22OKlIdHoszVFFMbstNty2l96MOriGQr1U5OIyj1fmgR9l7ZYm9sE2Of8kKpFTAxp\nR1915fyQA1h6arxASnl+UvLV2H5N28G4ybPX1tPmEz4pnrwmcRfyYsXyxfalBOa777G0obY391Re\n3lTxG6s75r3rch6Etnd58lDvb2pTl/LbUMM9oQYbhqTLjw6oDA7a4jK1KQZHTAz40rb1loUG2DYC\nwH2PvSIn1a5SbYuV3VRX16e/UrxlKTbm2BHq965B9qn7bboux6brD6XY+TalewAAQDFK/npZlJtU\n7kAcE00aO2WX+sqVtmKpTTyUL/YqJZ6ryRabvyu+On39Gevj2LpeXexo2u/z+KXkzxEsbdsS8+L1\n8QMqpY425ZQoEwBg4Uj1NuSWmbO/aTDpYl/oJckxb0BoaQWfPSHh4Bs4Y9NWvm0hG0N1hARZTntC\ndvnyhNLF+jxWfqjPmmxpSpcjkpquh7aitcYfUVMSQ1OytW/oC1ga+jzZp3QhxYREar6mfTGBEvMG\ntKk7VH/b8kL2pQgx37aQOIv1fZP9OiYsl1CbUqezUj02pYRKTjlt0vr+b3tcujClewgAQDUM7aof\n+mad6ulKFVZ2kEudgtPbjmydTl4gNNWzFSujaV+XaZ8Ub1mOXb60VmC0eUIyNW3blybn/CDIraeN\nNy5Gkzcy9xVMmlz7SojxsanJFoCFZUoXWttBNddb1Mamkr/SUwVW6mf3f87rTULtytme47HxbY89\nMddmZXpffV0GS9+g3zRNaNPkCJGm/SWe+kslxbNo95Xywg1Nm+NSg91dmLr9AL3Q5cLo+6Kaevld\n6ksZZGLCqou3o8TA7Etryw2JC/uORJ89sVfr+L63FSMlPCspC3um0sYbmyvQuv6IKE2TOCvl2Wuq\nv03fl6ak4C1RDsAocALXTdvH1ksMjrGBLWWQbFu39kzl2mX3Ww9Liiiz6VLWaPJtj5EyGPrS2/Jj\n/eVLG9sfqqfNC7xjNMWGlXypcUlPWmp9fdSTm2eqXjUACMAFGifl5jvkdEio7NTy24i/lCmYVC9N\n7lINviUTYuXn2FfCg9SEjhcLkSP2Qu3IEbBN+WL9EnpVUWp5vn1NYjhWRhuvXR8/bEqnrZm+2rEo\n/QMAPZDj2Yhty73RlF60Mjbouf1tREOs3SmeKr3fTvX5PsderROrw+cN6jqQ5gqPpv2pbUnZl2KH\nrw9TRLX+HhPtfdO1L0vW1yV/KVvbCOES9QJARxb5YhxiKmGIaZGmsksP4E3TWjmiJPR6m1S7rQ05\nHpsmG9s83WafpGzqlxg5MVG+bU5M5jwJ13T+tj02OdvbkGp3av629Q6dHwAqouYLumbb+sDnoemz\nji74lmDw1RVL5xNqVpj40rtyfYO7b1orNrjGBI/P45XjyQyJHF95Pk9ajggIicnYdl85fZ13ljGv\n7RruK11/5IxFjTYBjM7QF8ai19e1/hIu+xSR0wafsIjZ5ksTiq+y+2J1idyOcwoJgljbm7xHXY5B\ninjy5Um1/cjW6Syx1WRr1/whO3IF59jCqu/6+6hj7HsbAICX1AGtRkpPY7S5+adMKVl7QnW08XrF\nvEq2rJT2xaa4YqIppazc/bE8TR4pW3ZuLFkXmo5figjXadt6Cfuiy3EbkpI/6gAAdlDihjFFT1uO\n16BLupB4CU3fOXHUJBLc0gvuT6cNDbjak+Urt43wsm1q653x0eSZS/UQptiV6omzXrEm+/XnnL4o\ndU2lCLU+vVKpT8WmgLipi0U9HovaLlAsm4u8hl+SOV6ApsEzJa9PCITy6+96lXf3pwd+O7XovvtE\nnW+NrCY77b4UcRkqM1f45Hq8uryaxpaXKlZS60gl5UGCvj1Gtd8/SrEs7ewT+nCBmYprelHoY0qi\nz1/vpWgjCK1IipWpPVkxj4NOY9Nrz9bxF16dvy4mJApi9uk6fHakiMZQW3Px1dmlvBwBkyq6m8rL\ns/DOfDFvYw2MYc+YfVDDD0QAmBhTvhGU/IXe5QaqxY9vn/4c84g8+fSZmfY4+dLbacPQkg2+aUXf\nlKO1I2afT9g15be2+8ptS6kpqTaiKser2cePlFT68LjVROnrumuZU+5LgMEo8Su0z/IgndyBMLTd\ntz/mHTl0+NSO6TstdkI2+ab8jr/w6uzAwZM7RFysPLuWk83jC5APBdeneJFS+1fvz53aC72CKMeD\nVlKQl8hfu/BKzRfztKV6B7va0EceAOiZkhdm7kDUpy2LQteBtI/6fdjpPe31CnmtXNyVTuO+63Ks\n58vVZ+vRduhyUgbBPn+1D/3jw+cV9HkBQ3Wk9FFf52CXcvvw9kyVse8bAFCA0hftUDeBsQbNUBlt\ng5lLpQulDT3B5hMtdgDW4kiXZUVYSFy56UFXztlz52eHDp/aMSVo628SEDEPRBvaeC98/RTy/IXy\n59aXIyyHEFK55Nqfevzt9hrbrqnRphBTshWgGJz4O+nTe+HK8ImAkuWmps9JExt8tejRQskGovsE\nk/s/FoiuhZnIzqcFfVODut7QdFvIrpT2xsqzZflisUJttWX7sCI3JCSbyiwpypvOjZQy2rx2qG36\n2jxu3IMBYKEY66ZWWgR1KSNlUGsapGMvWXZrVfnWubJLMehAdvfn8mqhpe22dfs8bC6fFTehgV8L\nRV8fhERSap91Ta9ffN2WkFcnx+OX6w1K3R7aFzsmsbwlfkjklFWKproQZQBQLV1vxEPSVZTlehBC\ng6/+bj1WLo0WP9qT5Ut39tz2mldWiPn2u32+tDp+y9Zz6PCpuT2+QTpFTDSR4zlKFWYp5eQuG5Eq\nJFLsa1uGzRsTjKFjo8l5WrOkKAMAALiD0CKdOWWcPXd+h6fJbdPlOZHw5NNnZke2Ts+0d8qlcaJJ\nl+VE1JGt07NDh0/dkV+LNle+Fl26/pB9WsDoQT7kxYlNNeryUkSBrT+XNh6y1Dy5IiVV0KeIwdR8\nJcRhjD7WOytBl3MGAGA0SkzrlLr55YodX/19DEI+0WE/++KjtCfr0OFTc7HkPlvxdODgybmo2rz/\n5R2iynmz3P/OHiemrLDT23xCSucPtbNtP4cEZ0ofdz0HmtbvanP+pojHNl6iUuKvDbF+qFHMlLhP\nAQBUQYkppCHpY+DU3pmQ10cHrbttejrPLsMgIuLWu9KeLPdkoBNHTnxpUXbg4Mk70urvWoDpIHld\nd6hdOX0b8tyl9Hmoj225MfGXIlK6BNTn2h+zo8mGIa6nWq/Z0vTVTsQdVElNJ1pNtiw7fXrBcurU\n2JiYmOdFCxYrBtzCo1o4WQGkRZT2cDk7tDdr8/6X59OFdkrQ1avjuXQ92jYt6ELeolRvi69ffE/5\n2f05xyOHXI9bjrjsatfQ95229ZX0pnGvBQBIJOeG2devvS43bZ+XISQmtHBJXWNKi6TjL7y6Y50q\n563SosqJLCeONjZPzDbvf3mHKDuydXq2vvHSXKC5fEe2Ts8OHDx5x1Sgq8eVo59atG0LBUinToF1\nmUry9WuoriaB0vacaDsN2ZU2QrBNPan92xe+66QvO4YUczWIVwCQOi6WoWzo8wYylNs/5uHwpbXp\nbWyUfgrQiSL32YmetfUf75j+c0JqY/PEXKhpUbWxeWLuzTpw8ORMTzXqAHldv7Y/9ASeDZ63bfTl\naxo4cwb3EudPjjAJTR9a8dnVpjbpSuTNsamG+xQATAhuGsPQ1M9tB5+ux6/NgBTy0DSJLBeM7gZn\nK3Lc/wcOnpxt3v/y/LMv8F17oXav/Wguntw0oRNhbpueBtSxYHr60cZ6xZ5+dJ91mpQ+bpO2a359\nDPq83vvy3qa0f8gfSLleyTHusaXvE4sIfQKwgJS6sLt4OErUFfNuuP06ePzQ4VN3xEnZJ/o2Nk/M\nDhw8OVvfeGm2sXliPg2oBZSeGtTvHXTThy4ea33jpR3TkdrzokWd+3PptLiyg6ldT8u2tU3/237M\n8QyVEBwpHrcS03GpNAmYlPr7nm6bKsvcdgCIwM1hJyWFWu6gZdO7Qdq3urpLo8WQFl96iQQtejbv\nf3mHR8pN5WlxtXvtR3PhpqcL1zdemqdx04U6r7PNrrclcjsWS4snn6BK6aeU/s0Ryk0eribaeF18\nnrDU/CEbfbFtpURRjr1dxVqbdDkM6Znrs/yxYvmgPnaNbcAiUuIC/s7jD62UsGVRKNUf33n8oRVd\nVmh6Qadxn92+Y89tyfEXXp0dfeKAiIicOfHMyiun3pznP3vu/Oyf/v74PP+rZ34vIiJvvfGh/OKn\n5+TF51+Tix9cFhGR733z5/J/PPn/yL33rcna2qqIiOx7YF32H9yQP773mWxs7pF33/pY3n7zovxv\n/+cT8uknV0VE5O6NPfIPP3tbPr54RZ797lfkj+99Jj84+TVZ3b1LNjb3yFPfeFQeObpXPrpwRb73\nzZ/P2+du/q4Nun3HX3h19g8/e1tERFx7jr/w6uzMiWdWQoOG77iEjtXZc+dnti9jgus7jz+04vrT\n5XPbfHntdl1XTDDrdLp81wdN9mrbbPvPnjs/O3PiGW8fhe4Tsf4LtdHXltRyU/M3ldU0pViLKOv7\n3uo73gAAk6Srp8NXjkN7fnxeHvvdTs1pr5XzSrkn+py3yk0PbmyemHugnGdqbf3H87Rr6z+ex1sd\nOnxqPsXotrkpQufl0kH0+olF3zSZz6Nll5xwbbV5U70yMW9L0/GyHkJdZ9vB3FeGry0ptuVO8ZXw\nNjXlC/XR0N7xpmNVqvw+yxm6zwAAJkvqoByK2bFrTmkxouOT3Ge9CKgWQG56T3/XC4e67Ue2Ts9W\nd/9oLrJc7NXG5onZ6u7/e7a+8dL8+4GDJ2dr6z/eESj/5NNnZusbL93xkmkdf6Vt9vWHFSKlRKze\nZ9fN0nmapuLsNtuuprxtbbfHP7fcrnbVQN8Cbqr9AssNU4RwB6UeSa/pphiaFrL77YDs3P16SsZN\nm7nvr5x6U449tyVnz52fvfj8a/KHtz6el3n0iQPynccfWvnv//qZvPj8a+KmFW9cvykiInvuWpWP\nLlyRe+9bk/fe/kRERNbWt7d9+slVefDhe+SP730m779zSXatipz5z/+7PLa1X974zb+KiNyaElyT\nJ776JRHZnjrc98C6bO69S0RE3n7zooiI/O71D+TZ735F3nrjQxER+cVPz8nZc+dnPzj5tR1TYU8+\nfWb2g5Nfk+MvvDoLTf+5qTQ7FZbi6dF1WV459aacOfHMSmjaK/S/rjeU19ofszG0z5Zlp1h1+SnX\nkM/upumrlD72betDwOkyfVPqKbal1jHVkIma7oEwPJM8afvC3ihqx2ev2za1tqSQ2yad3g3ux57b\nanWz9vWrvnm++Pxr8oOTXxORbaFw7Lmt+f86BkpE5nFUf/lXj8urZ34v+x5Yl/ffuSSru3fJlcvX\nZH1jj9x735p8+slVuXH9pty8MZNdq9sm792/Lv/9Xz+TP/vSPbKxuUf++N5nIrIt2O7e2CNXr94Q\nEZEHH75H9h/cmAustfVV+cmvvi3fP/ZL2X9wQy5+cFkuX7omP/nVt+XF518TEZF/+vvjK0e2Ts9+\n+Mq3JNRWK6py+lIL01if9nXehsoO1R8a3PVxd4LxrTc+lLffvCiPbe0XF383xDVY+3Veu30AfbIU\nJ37NF3nNtpWmVvHXZI/d7/M8aAHnPDFnz52f/fVXX5G/+80x+d43fy6PHN0r5357Qa5cviZ/9qV7\nROS22Lpx/abs3b8uIiIffnBZDtwKcr/r7u3A92tXb8j6xh65fOnafNvq7l1y4/pNuX7t5tzW3Xt2\nyaHDm3L50jXZ2NxOf/XKtuhaW9/O98jRvXLxg8vy1Dce3WHv8RdenTkP1w9Ofu0OkdWm33Qf2XxN\n50PMM5WarsS55hPqZ048s/Lk02dmTqiKbB83EZEDBzdEROQnv/q2iNz2zNnyfOdVTGh2bUup6y61\nnFj7mvKJTNdrFWOR2wZ3wkGGYpQWTrnCpy9CXivfAOieENx/cEOOPnFgPiV39IkD8vqv35U/vveZ\nPP4XD8jvXv9A9u5fn08Dvvf2J7JrdUWu3fJA3bdvXT6/fG3uvXIiajabyZ9/eZ98dOGKiGw/cXj5\n0jX59JOr8sXn1+XAwQ3Z2Nwj779zSfbuX5dHju6V//KP78ujR/fKD1/51tzT9sqpN3fY5nBCwHmb\nXNtdXNY//f3xFd8gkXIsYoLKbrPerhK09ZTptPrdlP/pP56X3bt3zY/ZNiuyuntFNvfeJZ9fviZ7\n96/LT3717eBTdyJ3CrCQDSLpU4ix+voQoaXp4q0GqAVOyAWnjxtP21+wFj2I9nFDbeOZsp4Vkdtx\nV8ee2xIRmU+pWaGi45ncVKR7WfPVKzfm03f33rc29yL98b3P5NoXN+SJr35Jzv32gnz+2TWZ3ZzJ\nyq4Vmd0U2djcI1cub3tI9qytyleeOihvv3lRrl69IffetyYbm3tEROaC6+rVG/Lgw/fsaOcf3/tM\n1tZWZW19de7NEhF55viX5dhzW/L9Y7+UH77yLfF54HT7teCK9Wmbqdgcj81Yg6nrj+8f+6X8y7k/\niYjIysqK3Lx5Z5jNrl0rsmt1RR49uncutmMiKsXb4zsfc/uh775D6CwWHM9uLF2Q+7IFHfZxcaSW\n2ZRODzg53oTU9E1pUoOpRWQuPES2PT5uCs2tG3X0iQPz/WdOPLPy4vOvye61H802NvfIT371bdn3\nwPb039raqnz6yVW5+MFl+ZdzH8na2qrcs7kmFz+4LFcub4srEZG1u1ZlZZfI5UtX5c++dI+sb+yR\nQ4c35b/84/siInLtixty4f3t4Pf337m0LZ5uiaunvvGoXL50TT66cEXef+eS/N1vjsm+B9bl6pUb\n8szxL8//XJue+saj8r1v/nwutnzrXjlx6YSnfdJQHxdfoLrFBV6nTCP6jlvoOrbl6u36f7vNt93y\n/WO/lBeff03ef+eSyExkNhO5ceOmzGYzmd2cbf8/m4nMZC663nv7E3n7zYvzhyBC/ZEajO/SxcRV\nrG9Sp1rb7A+lDR2LRWWR2oe46sbSCaw+A2j7KBd24puqy8U32KbU6xYUdWJDROT9d55bccHtb73x\n4Vyc/OGtj+Xf/ruHZP/BDfneN38uT33jUXnw4XvkmeNfliuXr8n771ySBx++Rz67dFU+v+Whum/f\nutx1927Z2FzbnhrctSKru3fJxxevyNraquw/uCEHDm7I2vqq3LhxU+6+Z49cu3pDrl3dFltra6vy\n1DcelV/89Jw8cnSviIh85amD8r1v/lw+unBFHtvaL6+e+b0ce25r3obXf/2unDnxzIqLF/rnN/9m\n7q1ygsJ5pfQSCi6QO/XpN9v3Ls8rp968YzAOxbylxmR95/GHggJPP8WobU8RhD985Vvy9psX5YvP\nr8tMRGR2+28mIrObtz7fElluWvexrf13tD/lHAz9APDti+Vz9eT+4IgRstt3PsTaUYI213NKeW1B\nlIBj6QRWXyz7ReXzGqTkaZumbX/rgSZ1ilF7a7R35uy57cfxv/P4QytOsBx/4dXZ679+V95/57kV\nkW3P1iNH98qx57bk8qVr8vqv35U///K+eXzUjRs35drVG3L50jX5+OIVuXtjj3zx+XW5eXNbYDmR\ndenjL+S//OP78uEHl+XDDy7LysqKXPtie7rv5o2ZrN21HcD+i5+ek7W1VTn32wuytr79v8j2IP+H\ntz6WtfVVefH51+TF51+TV069KT985VvipjGd2Dn23JY8+fSZ2T+/+Tdz8XjmxDNzz1RoqYWmpQme\nfPrMHV4p54nRfRny5jQFwru0ofrd8Ws676y407FSn3x0RWa3cs9ufZg5oXXr8/bX7Q1Xv7gh//n/\nPS9//dVXGgVSnwIh9MMk90eG73PMY5Zadol8pe7By34vh3IgsKAIbmDMvWHnDnb6/1SaAtPd4G63\nu7ROZLjYF5fmxedfm3usvvP4Qys/OPk1eeuND+Wf3/yblSefPjM7+sQB+cVPz8nbb16U737tZ/Lp\nJ1e3p5dkO7bqD299LKuru2TP2qp8+MFlufvePbK2viqPHt0rN29sV/PEV78kly9dkxvXZ7J7z675\n/7PZTG7enMmetVV58OF7ZXX3rvlTgldV0PW9963Jny58LkefOCBXr9yQn/zq2/KHtz6WP7z1sbz+\n63flO48/tPLI0b2iPXPfefyhlaNPHNgRhK2xa4M5tGfPd4xcgLwWUfr/0Ctl9P+5gso3BZk7gL5y\n6k35zuMPrbz1xoey59brjHaIKx+3phBXVrZj5y796d+v+NYWa2tX7KXVoditNnGOKftjsWK+slKu\n+bbCb2xS7WbGYzmo5sSE+plawGNK4LDeHor78eXR7/Rz6DWRXMD7mRPPrKxvvDR79rtfkf9w+r9u\nC6G1VXnm+JflZ3/7O3n4sfvkowtX5LNLV+X6tZty97175Mb1m3L1ixuy9/51uXr1hly5fE1u3hDZ\ntbo9aP/bf/eQ/O71D+TQ4U35l3N/kn0H7pZLH3+x48m1jc098tGFK3L16g259Kd/v7J5/8uze+9b\nk6tXbsjfvvbs3N7Xf/2uPPWNR+fLDrhgbD1IxuKgSjyYkBJXF5o2tMet6/mpy9APYRw6fGr2yNG9\n8tvX3pt7rLZjrjyFrGzfWFdWVmRll8i+A3fLY1v753F7vvaUZqhrNXXaNhS0X8LGqd2XYHlY+pOS\nizNOqkgpWUffNAkt/Vn/7562E9k5mDz59JmZXlzSCZfLl67NnxZ0T+m5BSnX1lflkaN75T/9x/Oy\na9etJ9FmInffu0c+//Sa7N6zS3atrsjdG3vm4unjP12R3bt3yT2ba7K2vioX3v9MVla2B/LNvXfJ\nZ5euyhNf/dJ8JXn3hKFbnuHoEwfmC5tevnRNvv7sYyJyWyTqlebfeuPD+ZNvWkzmxFo1eTZsf7t9\nuUs0xM6fpoHdt18fT51n++nBj0RmM7k5E5HZ7HYslmaHwFqRPWu75OHH7tsR35batpQ2dknbJc+Y\nTM1eWE44QVswhYt7yJtsytNJXT0MXdZF6ksUisiOdaVEZL5kw7nfXpg/0bcdk3VJ7t7YFjz7Hlif\nB6O7pRY+unBF1ta3nzD8/NNr8sBD98iHH1yWG9dvyuru7Zn8G9dnsrG5R9bWVmXfA+vy0YUr2wHw\nt6YGRWReh/N8uRXf3bpYri5ng4jMvVd6JXq7JINepsJhl2PwidIm4dPntdQkpGLpQ2V875s/lz++\n96ncvCniotutF8uJXlnZ/vzgw/fOxWxXcZXbphJM4X7nmJKtsPgQg9WCKVzAoZiVlDxt62ranxtb\noUkZmEIBvF3qDcWOfP/YL0VkOz7rxedfk7fe+FCOPbclPzj5NfnDWx/L3/3mmPzwlW/Jsee25KML\nV+QrTx2UZ45/eR4f9eqZ38uDD2+LqPffuSSfXdpe0f3zz67NX4uze88u2Xfgbrnr7t0iIrJnbfty\ndeJq3wPrsnLrCr5+bfuVOvse2J5W/LvfHJM///I+eeToXrl86ZocOrwpIiKXL12TfQ+sy/5bq43r\ndrn1vZy4cqLRiVsX4O5iqNw265lKOd42rbajS3yKfVm0i8NKObdj4sp58f504XNZ2bWyLaJu/T5d\nWdn5t/3P7V+vV6/cmJ8fbdpn47R0bFlOeW0D3FOEaRc7UtOl5Ovj3pxSLzFV4AOBVQF9XpylYhxK\n2GJ/feeUm3tztYNqG2+ezaeD3N202yun3pQfnPya/NPfH58/XffI0b3y4vOvyfeP/VJeOfXm3MP0\n+q/flQcfvkd++Mq35tN0d929W27emMmNGzflTxc+l923vFV/uvD5XBQ59ty1Kjeu35TLl67JY1v7\n5V/O/Unu27cu169tr8W0565VeffW9OD3vvlzee/tT+TiB5fni4t++snV+etbROSOoPaLH1ze0V79\n+hzXH741snLEvBNAvuPvE12Wpjr0U54p5ekyU2Lvnvjql0RmIqu7nYfKzQfK/LvSWPLgw/fK3772\nbNKrh1JxAjf1h0soxq3tNeGzJ6e8tulKiqccUdhGnC8KCMduILAqoPaLs5R9VqzkDKShpQFSB8fc\nX9m+QctNk7lB0k2pOY49tyXuVTlHnzggT33j0fmU4e9e/0D2H9yQp77xqHz/2C/lowtX5NNPrsra\n2qrcvDnbHqhFZNfq9tIMe+5alffe/kREtt9TuP0E4U25emV7zatzv70gq7t3zT1fq6vbl/Lm3rtE\nROTji1fk2e9+Rf7b7z+StfVVuXzpmtx735qIyHxq0MWEuXbuP7hxh8fnzIlnvO10fdm0NIM9DlYA\n+Y5H7Bjl5sk5d2MB+M7uo08ckLvv3SOrq7vmi8GurKzIrpWVbY/WisjKrhXZtXtF/s3/eL98/dnH\n5MXnX8sWIbnEyo21K4TPQ9bGK55bVxva5O/7eFhSBHCXMvqi9rGpdhBYMDgpYsc3MMfKjMX6aMHg\nm5Ly2eIeqXciQseAOU+WmyYTETmydXomsr3ulQuEf/3X78of3vpYNja3V2G/+MFl+cVPz8n+gxvz\nxUXX1lfnyy48/Nh9IiJyz+a2ENq1uiJXby0kurp7l1y/ti20RGQeCH/P5pps7r1L7n/gbvni8+vy\n2aVt0ba6e5f8w8/elvWNPfL1Zx+TR47unS8++uqZ38/b+YOTX9sx3Ski88VFdd+F4qycR8t6ZpoG\ng9DxSCnHd6xjU40xW3IF4rHntuTBh++RZ7/7FXn2u1+Ru+7evT01uGv7icG1u1bl3zy+T/78y/tk\n/8ENOXPimR1LXvgo4cntMu0YE1Pus06TO+imhhBYW0qVXwO5ArhLOqgHDhgUJzQlEUufkjYlaLpt\n2anl6AFAv7vPLc3w/WO/nMc36Zc+66f3XKD5M8e/LCK3Fwf9/PI1uXpr8dAHDm2/T/DC+5/J2l3b\ngunBh++Rd/6/j2TtrlU5dHhTPrpwRT756Iqsb2wv7XDzxkzu2VyTZ45/WX7x03Py4MP3zF8EfeP6\nTflf/+Z/mtv51199Zb42k/O86XWqbJtLBqR3La8pX5vzL5beV59bfPbiB5dFROT9dy7JocOb8sf3\nPpO/+82xHU9DptiT0qbccz9GqWNZM13buAx9BACZlI5t6tuGUJ4uUxFNnonc8nxl2/fxuc/Om/Xk\n02dmx194dXbg4MnZocOnZk8+fWa2ef/Ls837X549+fSZ2ZNPn5mtrf94vu3I1unZ+sZLsz13/Wi2\nsXliduDgydnG5onZ5v0vz9bWfzz/29g8MVtb//FsfeOl2eb9L8/WN16aHTp8ara2/uPZ2XPb7wl0\ndR7ZOj3f5v7Xn52HznmPdJC43qbbV8qLkkPM2xhLn+LFytln+8ZtP7J1euaOd8nzsOQ10ee13vf0\n1SLEAi1CGyAP1Dn0ypR+BYa8Ny7+yy1JoJcs0EsVuO16VfS//uor8pd/9bj8w8/elo3NPbL/4Ia8\n/ebF+TIJ/+H0f517Pi5fuib7Dmw/Bbi2tiqXPv5CHr31FOCnn1yVK5evyfrGHnnw4Xvkv/3+I/mz\nL20/hbi59y65evWG3Hvfmnz6yVX5y796XH72t7+TezbX5l4zEZlPEbq1rhxvvfGh/OGtj+Unv/r2\nPNbNLd1g14PK8cr4+rUNPjtSym5Tb6yuFPS5EXroIsWukh6tnH7o63ot5UkekhpsgGnDyVMBXMjj\nkTMYucEzdqz0lJvI7dfDfPdrP5svLnrxg8vy1DcenYuuP773mTz+Fw/Iud9ekBvXb+5YL8vte+M3\n/yrPfvcr87WzRLYXEn3v7U/k+vWbsnbXqnzlqYPy9psX5bNLV2XPXaty731r8vVnH5Njz23N46xE\nZP7eQzdlqAWXnS4U8a/a3teg3SQcnD12m9vetF6ab6q3VDtCU59alPYpXmq9j4xtV+n6S4UjAECP\nLJPLOGdap2RdKdM/vjSxaTAX9K6nCI9snZ5Pxx1/4dWZmzIS2Z4+0mnc9kOHT80OHT41O3Dw5Gzz\n/pfn03puyvDQ4VOz3Xt+NP/s/n/y6TOzI1unZ5v3vzzb2Dwxn050038ujUvn8rp6nX2uDXYasKkv\nc6bffOV1nfYK2RMipW2xOtpMITaVmZsntbzY8SpRPtzJEFOkALAgNN2Yh7qZlBZcMSERy2vtCC1m\n6T47UePSutgc910Lq0OHT80FkouZ0gJpfeOl2frGS7MjW6dnu9d+NDuydXpHjJYr6+y58zuE2tlz\n5+flOHtdPJizVQtFHX9l2xdqt+5bt99uix0L3/42x6fE9tz8ffwYyEkXGtSb+j5XDKemzS0j1/Y+\nqMEGWGxwZ8LCUcJV3zQNYKeYzp7bflfdP7/5N3dMo7m0+l1/jrfe+FAu3lrN/eaN7cVC3atwRLbX\nrHr1zO/lsa3989fv7D+4MX967d23PpbNvXfJvgfW52Vcv35TDv8P++brXbkXOr/+63dFZHu9q3/6\n++PBJwi1vSmxT3bqzk5ZlT4efU/F+KYiU+xqSuNL23b6NLU/ap62qtk2gBJwck+ArjfmWihpc9Mg\nmBov07bu7zz+0DwI3MXY2Pf1vXLqzXmclXu58rHntuSvv/qKPP4XD8jRJw7MY57cC6CvXrkh+x5Y\nl3ff+lj+5//lkLz95kV5bGv//P+LH1yex2WJyHydLRGZvz7HCTAX3H71yg1ZW1+Vrz/72Pwl1F9/\n9jF5640Pd8Ra6eD8nBgTuz1XYJU4Fvq7z34riH3lxPaXsC0nnW5Har+3tWMIwTpEDNTYZQEATI5S\nUxVdyvFNM+opMTfNZqcOdayWmx7UyyLoWKiNzRPzaT09Xehir9wUn4u9Wt94aba2/uMdsVYuzkuX\n6+K+9NSgbo9Lo9vp67vYtGhq/zVtS6H0NE4p22z/dClL5+tj2ir3mE1x6myKNgMAFKNrrEzpetuW\noQdD91mLLid2Qn86EF7HSh04eHJ2ZOv0PIjdCS23zcVgORHl4rHc/1YM2jgrLfacENT4tvVFTqB9\nbr6cfXr/kIN0ybr6jBFDuHSHPgQAEZnmzaCtxyokmpryNS3Gab1dNvhcB5s7oeXSODHlnhzUHisn\nptxCpTqo3v2v/7TY8714OaffbDpff2mRl0obcdPHOWrtnuJ1IDLej5gaCZ2zJctcZJaprVARy3Li\ndZ1qS62j7/JTPBht0vi+azGjxY8TSVr8uJXbrUfKJ4zclKMTX1ZEuW22DJHb3jXfE5ExQZQjvpo8\nT3qbz1OWIuB8aZsEReqxzdmeiha1vrK7TMuN4XVbNOg7ABiURbzp5A6gqX2gxYl9BY0TOtozpYWW\n9mw5caWXb3AixOU5cPDkHV4o59HSa3K5Ot02Z4dum/3L7YuuXqcu03m5daWmyfFc2vbn1tfWa9g2\nzZDUZs8y0/d1BrAU1HyxTMUD5qbqRNLWZ4pNL7qy9JSgS6tFkF4/y4kyHaelY7lcOi2+9BSjyE5P\nlftubdVl+dqSM8VnRZouP7Xv7PchvKY+G7rsa/JQ9eltqnkQHbt+AOgRLvDh6avP+zyWOQLDTj1Z\nr4aeuhPZKXqcaNLeLC3A9D732QbEW++T9nT5phXtSvQpfRDqi5zptpR0MZHaZFtftLV/CJsWhUVr\nD8DSMPTFu2w3i0Vqb86v/1jMjPUk2bRa5Lg/9+SgntrTIkzntR4vO/1o7dB/OqA+1OaQRylVbDb1\nZVN9obJyp/HaijMtkn1euZz6aiS1H2tvT5vj31ddQ9gAAJXChX6bpgGl7cAcGoxDXib3OTSNp6fv\ndF4duK6Fk/aW6elG62Vzdvk8Ujp9iqBqIzxyp1ybtofsyBF8OR60VFtzCL2iqER9XPsAABAcDHyD\n8pDTMiloz5PInZ4sK3bsk372iUMdX+ULqI55Inyiy+1z4svaZMvJ6ds2osn2VVP62P7c/DmCOTdf\nibqb6CJSU0DEAQD0REmXeM033y6eklhb7bpTNr/1WtlH+H3xVTo+S69zFSrbBrU3tanrVFGO4B1C\nHFuP4hDnYc450rb8tnmnVGeNNgBAR7iQd1JDHEMthLxovjTW0+S8Rr5B3wor++oanxDz2aFFW2wJ\ngbbiJlWA5ZQdmz5s4wVKzd+lji5ldim3qRz9vWmh1C7HLNcuAICFoeYb3FBehL7KCnlDfIOb9UD5\n0tspPC2QYnXrYHXfApZabIXstN6xUJtD21L2NdHnQJ9bf9e6u+a3U8hdyorV0Ue5Q1Lz/Q0AQET6\n+4XelRpvoG29MlY4aayI0k/36Tw+L1fT9J8WXqlt8Im0rgN+SOj50sW+90GN55mmVvtKitIhmZKt\nAAB30GV6qLY6fR6h3MHl7Lnzd8Rg+abtQgHyNp9LE1sYNGZjzKPmyxebUkyZpov1S1M5Tfl822OC\nM9cz18a+Lnn6Lq8v71ibPuzbUwf9wnEDkMW9ENoOlm3ypHh+7HffdI/1QoXakLIQqC7P/ekXRuf2\nRVeRkzNgtn0itElcpaTNKTu1jKlcY1OxswR9CWcAgF4Z48bURjTkll8qn/Za+dKFAtBj6WLiIuR9\n0uWkvMQ5V+Q0ecpieXNIrbNUPSneFi2UU+xOrbtEWV3ypJQ5dWEydfsBloIpX6gpHodabupNdaQM\n7m3KTU2fKy6avEyx4PQUL1VMkOR4ZXT6nLY2ldsmX0qZqYREUVvvX6ysruW0qatP7+WYZQIALAzL\nepPsMr2Q4tHQnqnQSuupA3TIgxXK31RuiWmxNn1j87q+sdva2DMUfQp0AACYKH14Foagb3tjg1+q\nd6iNN8MnvHLeBWi3pU5L5pbfJV1XcvvV55HzMeRSBl3EfFPaNoI0ZXq0Fmq0CWCScDGVpeYbpyPm\nhdH/+/aVqDulzNAUWptBMdTepkUjdd4+xUEbMVBKQHQ9rl3ryJ2O7ULpa7Kva7zme4fINO5xAABV\nUNuNsuSUVVNAexvPQorYabttiGm7oY93l7bk9FnXukpS2zUFiwXnF0yWMU/eMequbeBpa0+bfHqq\nL+bl8nm7cgfzsX/550zL5pZVwh6okz68iU31AMCCM9RAUxO1ia0a6i7lFRkj+Dq37FKDaaycMcRc\nm7JS0i7CK3K60MYDCQBLxhRvBLkBtX3UVbLM2o5Bav/G0rp9XeLaSk8J1nQsSwse2Al9BgBQEVO5\nKVs7Q9N8sTw5dbTxVjQF2neh7wDxtrFmXeoe07sFALD0TOGmWnJgq4mpPDmVU17JaZ6caSWfmBjK\nu9RWGNV8bqZS0jNZ0q62TO2hBwAASKDEU2ClmfqDAl3FVo63rO0UXV9esj7KGPKhidz8Qz/4MFZf\nlKQmWwAAkmkzcNYc6Nv1ab42aWrujxgxYdZluq/P/hnqCbdUanpgoVTeMcoFAABFbTfbEgN5TW0q\nZUvfg22qR6lJHJUUe2MxZBum1C8AAFCQPgK929JGBJQqJ6UfQvFZYwzMYz6FOtb50jVAv3amZCsA\nTJwhbjjc1IalL+9BTVOAsTZ2eWIy5XsX+/rIn9vmEtOLxBMCAEBxahOlfQR2p+QZI5C/bR0+cdin\nCErdN7bYKXW8xhDffVwjsA39BTAhao+jyWVIO5rWuUrdlyoyaprSzCU00PvalDIdqvMN/eRbF6Zg\nIwDAwjO1m3Gu52SIJ4mm0odWaOR4v2qJCyp5rJs8L6Vi1myekt6zksdlKucxAACMQIkpsykMNF2n\n6EKesTb9V7ovmzxrbePMhghsL1Fmn+dfSj+G8rWdCpzC9RRiyrYDABSj5qnIqXgaStuZIr66BqaX\nzjPlQXVsQTeGiAUAWAim7vmZCiWeiCuVti2pAqpUoP4Y7R9CHA5Rli1vilPgAAAwQXxioYaBJ2W6\nrGuQvBZ7epooZ8qub0HTR5xY12nYnHJLlt+GFPGaMzVbw3VSw/UJAFAEbmh51NxfQ4iVPsrISVNK\nlHUpwydEcmKdaj6HfDCFCACwJIwlJMYKuG4T92QHfN+TfT6x0lRHqpDoe9DNFVptjl1u3+Smy6Hm\nWMWa6gOAJWLIuJk2dU/9BtjW/qGPS60DZN8LTqZOrdV0rjZdT0MtgtomVqz267l2+wAARmVM0Vi6\nvGW84fcda1NCVJUORB/Co9Zn+QAASwM31DrpU0gt0jHPjXvqs85S5bfxLLWpu9QDAqnljHXe1fQu\nSwAAyKDGoOxS1Nq2oZYo6Cqm+ui/VMFY03kUoy87a3iaEAAAKmCRBoGx44yGLkOXNWYQ+RRpG4Tf\nF23iyMa2GQAmCjePO6mlT8YIjp9CEPJYlJpS64OpHrM+BetU+wQAAHqg1mm7scp3dQwpXFJFZsmn\n8vp4wq8GarULAAA6UtsNvhZ7mqZuprK0RNc8uR6UkutalaLPeKRaztdlgf4GgKLUflMp+ah+ibxj\n9FdfsTR9xVkN+WTeUMSOgc+2Lk/YpRzvMftj7GMxJMvUVgCASTLVG3Wu98i3Qnxo2i+lzJhQaVtm\nSQFI3BwAwMThJl4fYwVVj0mfyyO0rbOEl7P08hRN4m/q58gQS0AAAEwabmh+Sk0h1rbcQWlyBEyp\nvqi5P3KoYboZhodjAADQA0M8ITc0U7O3LVOK2yvJ2PaPXT8AwFLQ5oky2EktT+O1sSNlOjAnNqum\npTRqOadrscPHIv5AWWQ4FgCw0LSJL2orSMZ4QnBK07AMONOA4wQAk2YKQeIhW/p40e3Q7S4d2F2a\nms4Dy5C2jbXW1lDePdYPA4DJwY0mnT76qq8n2KZOTU/TjV1/nyxy2wAAlpohFwKtfTCpxeMxtOgb\nYvqv5mPfxUM0pXjDKdgIADA6U7lZjrEWT619s2jTLE8+fWb0fi7ZB2P357JAPwMALBBTW8+oj7W6\nYnU0CdYagtynRK3tPXvu/KyP2EQAAKiItq9RgcWk1PlQ6zmESB0G+gkmCycvlKCm86gmW8agbUB7\nDetHLZNoYZkKAAAoyiLf8GtuW62iaAhqDF7HFgAYBC7wepnisVnkYOmctcxqfyKwJi9Obcd5ytCX\nAACVscjCSFOzbYvOoj39CQDQO9zohmGIfp76sVykYO6pUkNMWel6OUcAABaAGm7mNdgwRXLeXzgF\nIeKru60ty3RO1Rh7Njb0BQCAIkcwLBNdREbb91JOra9Leomm1nYAAIDJ0laolKx3KBtqEhhWJI5t\n29j198UU2zVFmwFgARj75jN2/W2paSptjKfiSpRX+n2LNU+B1dj/AACwpEwhOJyB7jYpAqc2T1OI\nWu0amtr7oXb7AKACuFGMx1T6vjY7m95jOMXg+RooKUCXvS8BACbDot+wl/lR+THasix1QhocGwCo\njkW+MdXYtrYrpZequ3Qge4193Cep7S21HAQAAABkUHIAHjLmbCpCYdGWiQCOGQDAUjKkZ6pP8dBn\n3ikEqS8Sy9THy9RWAADoSJ8B3jWtpg4AALDUjD0wjl3/0NTe3trtg8WC8w0AYCLUesNOnWrrOi1Z\na/v7oGlpiKa8pe2ZIl36EAAARmYKN3ACqMvA4q5hpmQrAADAHYw9kA1R/9htdHR9JU0t7agBvEkA\nADA58Kz0Q+rq7al5YJsx11aDbnCcYCnhxL+TReqTRZnmW8ZXokzRZlhOOFcBIMgy3yCGbDsenHqg\nzwEAABaU2gf5nGmps+fOz46/8Grnaaza+8THFG2uCaY/AQAUbWJt+qoPFgOO8TCM3c9j1w8AAAtK\n1yfthmTIl1SPmb9GUtrEC6cBABaMqdzIa4ixmhKpbVhmQVTS9in3AwAAwEJSw1RszWt8IV4AAKAY\nYwwqYw1kNQ+gNQqVKTH0EhtdymNBUAAAWEgY3NJguvROhnxYA09cWfhhBwBQGdwgb1PyxdFDCBKO\nHQAAQAAGyWnjW++qDzhP6mSqx2WqdgMALCwlbsylyyjpeepqS01lDQFLIwAAwMKziINbTYJoyGD9\nUu1exHMCAACgkSkPgFO2PYepPxlX8/IRY9Y15WMKAAABFvXmvqjtWgY4du2h7wAAIJmpDho12V2T\nLYsE/QoAAFCIoV+qDXHocwAAyIKBY7pM4dj18dTjFNoNAAAt6esmvyiDx6K0I0QN7avJhhpsacNU\n7QYAAA/LeFNf5DYvWtum2p6p2g0AAAvE1B/HBwAAAAAZ/p12iwR9sw39MB70PQAAzFm0QWHRFtIE\n8ME5CAAwANxsp0Xp48XxnwYcJwCATMa8cdZ4067RphoIvZSa/gIN5wMAwALAzbweOBbDQ58DAAAs\nALycGAAAACbJ1MXH1O1fRjhmAABwB8s4OCxjm9tCXwEAACw4DPYwFThXAQAAoHcQHAAAAJBESdGw\nrIukLmu7AQAAeoFBDwAAAGBBWSSht0htAQAAAEgGEQQAAACjgAgBAACAhSYmdhBCAAAAABAFwQgA\nAFWxiANTTpsWsf2loG/6hf4FAIBeYaCZDu5Y2WPGMQQAAICFB8HTjiH7bQrHaAo2AgBAhTCADAP9\nDAAAAAAAAAAAAIsPnlAAAAAAAABYTPjFCzXD+QkAAACwoCD0AAAAADKZmoCamr0AAABLB4M1TAHO\nUwAAaA2DCAAAAMACgbhbTDiuAAADUfMNt2bblpUajkkNNgAAAICBARoAAAAAAAAAAGDRWDSv36K1\nBwAAAAAAAABg8cCDUxccDwAAgCViagP/1OwFAABYSJZ5QJ5q26dqNwAAQBEYCAEAAABg6UAEAwAA\nAEA2iEgAAAAYlbPnzs8QJAAAAAAAAAAAAAAAAAAAAAAAi0tN8UE12dKVRWoLAAAAAAAAAAAAAAAA\nAMCSwFQvAECFcHOuC45He+g7AAAAAAAAAAAAAACAO2AKBRYBzmMAAIAlgUEfAAAAAAC88GMBAABg\nSUEEAAAAAAAAAAAAAAAAQCUwdQUAAABeEAkAAAAASwxiEAAAAKAnEFr9Qx8DAAAAAAAAACwSeHsA\nAAAAAAAAAAAAAAAAYElgehQAAAAAAAAAAAAAAACgSpjKAwAAAAAAAAAAAD94DwEAAAAAAACgPXgW\nAAAAAAASQTwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAABAPZw9d342tg19sKjtAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAvZ8+dn41tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQCTx4CTI//H84sVa9lnNyuAAAA\nAElFTkSuQmCC\n", "text/plain": [ "\n", "array([[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ..., \n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -10.99 -10.96 -10.92 -10.88 -10.84 -10.8 ...\n", " * x_axis (x_axis) float64 -11.02 -10.98 -10.94 -10.9 -10.87 -10.83 ..." ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import datashader as ds\n", "import datashader.transfer_functions as tf\n", "\n", "%time tf.interpolate(ds.Canvas().points(df,'x','y'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This plot reveals the structure we already know was in this data, i.e. 5 separate 2D Gaussian distributions:\n", "\n", "\n", "\n", "Let's look at each of the stages in the datashader pipeline in turn, to see how images like this are constructed and how they can be controlled and embedded into Bokeh plots.\n", "\n", "# Projection and Aggregation\n", "\n", "The first stages of the datashader pipeline are to choose:\n", "\n", "* which variables you want to plot on the x and y axes,\n", "* what size array do you want to aggregate the values into,\n", "* what range of data values should that array cover, and\n", "* what \"reduction\" function you want to use for aggregating:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\n", "array([[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ..., \n", " [0, 0, 0, ..., 0, 0, 0],\n", " [1, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]], dtype=int32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "canvas = ds.Canvas(plot_width=250, plot_height=250, x_range=(-4,4), y_range=(-4,4))\n", "agg = canvas.points(df, 'x', 'y', agg=ds.count())\n", "agg" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we have chosen to plot the 'x' and 'y' columns of the dataframe on the x and y axes (unsurprisingly!), and to aggregate them by `count`. The result is a 2D [xarray](http://xarray.pydata.org/en/stable/computation.html) of the requested size, containing one value for each eventual pixel, counting the number of datapoints that were mapped to that pixel. An xarray is similar to a Numpy or Pandas data structure and supports similar operations, but allows arbitrary multidimensional data.\n", "\n", "Available reduction functions that you could use for aggregating include:\n", "\n", "**`count()`**: integer count of datapoints for each pixel (the default reduction).\n", "\n", "**`any()`**: each pixel 1 if any datapoint maps to it; 0 otherwise.\n", " \n", "**`sum(column)`**: total value of the given column for all datapoints in this pixel.\n", "\n", "**`count_cat(column)`**: count datapoints _per category_ using the given categorical column (which must be declared using [Pandas' `categorical` datatype](https://pandas-docs.github.io/pandas-docs-travis/categorical.html)). " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "### EXERCISE: try some of these other reduction operators and see if you can understand the \n", "### resulting differences in the plots. The arr can be visualized using `tf.interpolate(arr)` \n", "### for most reduction operators (other than count_cat, below)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Transformation\n", "\n", "Once data is in the xarray aggregate form, it can be processed in a variety of ways that provide flexibility and power. For instance, instead of plotting all the data, we can easily plot only those bins in the 99th percentile by count:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AAAKQUlEQVR4nO3dXWhb5x3H8d+xXizb\nsZ06KW58EcrWFHfeStzNTWnLMGsIVBeltWcKrX01g8mgF70fulB2Ueggd4Ow7GK4SVtaJcMUdx2l\nmJKNQsbsDbyJpi3FZUrdpW4SR2/Wy7ML8SjHypFje3b04u8HQiLlSDqHo//z/z/Pc84jCQAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2sFg8YWq9DwCaFA0MAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA3WGJKAAA6gEZGQCARkHWBrAlsXjCVDYcNCQAAAAAAAAA\ncBeP/fSckV43jvP6nh1Qban1DtST6PT8pr8IjMI3jqtLq5IkwxnDTiD469f9fb81T5x4i/MDAAAA\nAA2CPjZwDxBowB6ylwJ+Lx0rAAAAAAAAmhgDXQAAAEBNbFSKU6YDexTBDwAAAAAAAAAAAAAAAOwA\nLsQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAE4lO\nz5ta7wOAbYrFEwQwgPW2ktlpRAAA2ElbyawjU7Om2vb004EGR5kNNJntBHV4fKbqa9zvR4MB1JAN\nwJGpWeN+vNG2BC1QR7YTkDsZzLbxANAgvALfDsLF4gkzGZkzXv+30esB7CKvoKt8jsAEbmup9Q5s\nx2h/n+P1vDsrL15evuP/3Fm62pQaDQTQIGLxhOeceeUo+mRkznj1wycjc2YyMmdi8YRxl/e7u9cA\ntuxuF8HYQHY/NzI1azZ6nXugj64CsAu2GljVRszdGbrae9iMvp39ArDDvLKvDbzw+IxxB7Pd1pbr\n7uej0/PrAttuu5k+PYBdEosnPPvW1diBOHf2tcF+fOziHZWCDXz7Ovrpjc2ev/D4zJa+N6ghd7B5\nZVn7nFcguzO5zex365OTyRuTbdij0/NmZGrWPHHiLRMenylXbjbgN9tFa3Se01SNKBZPmHOnF3Th\nTLh8TMPPv2t+Nvp9DQz1avHysiITg45U+hIsXbmhw0e6y89tZGRq1rjf14pOz5vNvB73ViyeMPZ8\n/3j4vMllCwq0+pRN59Xa5pfP56irJ6SunlZ5nddm1JDz6JUltM269qTZvvlDjx7UxzNfavHysj6K\nfV4u4QeGenU2OuxUBqlt3e3f9nNefvXoXfeJzF8fotPz5tTkR/rz25/pB0N/MMmba1q9ntW3yyll\nkjndXMkodSuna1eTOvr0oT1z3hoy0Ef7+5zKYBzt73PsSVu8vKxzpxeU+OKmTp46poGhXr3y2pP6\n7J/XNDDUW77gpnJefWU5pVg8Yc5Gh53JyJyx24329zle19C7G4q7ZXb69/fGwFCv2jsDuvltRplk\nTjdWMsqk88qm8sqkC7p+LaPV61mtZQv64+/+pU8++GpPnJuGLVsqy+njYxfNh++8UH5sM7cNUlvK\nTUbmzNno8Lrjdp/oxcvLsmX9xzNf6uSpY1WvxKsUiyfMZrfFzhuZmjVfL60qmy5oZTml1etZFQpG\nxULp9KZv5dTRFVRrm0+BoE9tHQF13teqtn0BXXpvrKnPW0NmdEl39K0efOQ+uafMBoZ6JZXKcBu8\nNsjtQMzxsYvlwbn3z3+q0f4+JzIx6MT//l8tXbmhk6eOVf18r5KPIK+d6PS8uXAm7KRWcyrki8rn\niyoWjAq5ojKpvDKpnPyBFuVyBaVu5ZRJ5VUsGqWTOfn9TtOX8A0R6JVz4dXuLBvt73OOj100dvBt\ntL/PsQNuh49062x02InFE+ab/yQlSR++84Lz+1//TZJky/bw+Iy59N6Y8+xLD2u0v89xl/n2jx2E\n2wslX6OITAw6I1OzJp8rauWbtNKrORUKRvlcUcVCUWuZgtKpnHKZgoyRWlocZVI5FQtGqdWcFi5d\nrfUh7KqGyEDukriy9PYa+XaX8dHpefPJB19p9o3n1o24ryyn1NPbrsoyfmRq1rz86lGN9vc51Ubb\nUZ8ef+ZNk1xdU/pWTsnVnG5dzyq3VlSxaFQsGslIwZBP/kCLgqFS6X7wUIf+8Zfxpj/HDXuA7uB3\nl9/uAPYK1MnInDl8pFt/Ov+pHjjcqUwyX24ErOHn3zWvvPakpPXluLty2OXDwzY8ceIts5YpKJ3M\n6drVVLk8z2bykpGMKRVggaBP+7qCausMqHN/q/oe7NKDj9x3R6PfTJruwNwZ2V3i2z77++c/XXdC\n3Q3GyNSssYHvNWjn/gzm1evT48+8aa5dTSqXK2r1u6yy6bwKeSNjjAoFo9aQT61tfoXa/WoN+dV9\nIKSuA6GmH4xrqIMLj8+YyuwrVR/tttl76coNnY0OO+HxGRPq8EuSenrb9eW/v9OH77zguF9vG4fI\nxKDjHrm3n2Pf2/0cGb5+hMdnzOeL3yp5szQol1xdUyFXVKFo5PO1yHFK5Xt3T0jBUGn0/eGjB5v+\nwpmGGIyzvIJcuh107uvZo9PzJvHFTUkqZ/Bf/OonunAm7GSSeZ2NDju2H+8O1MjEoLN05Ybne9vB\nOYK8Ph0fu2hCHX61dwa1/2BILT5HbR0BhToCamv3q63DX5pS29+qUHupwe/qadXXS6s13vPd1zRf\n0vD4jOn7Xpek24Ft58+l9Re0VGZqy30ZbXR63ixcuqoLZ8IblvGoL8fHLppMOl+6YCaVV6FQVDqZ\nVyDYotxaUW0dfrW0ODrwQHvp8R6YQ5caLKNXMxmZM7NvPOesLKckSU8++7aRpHOnFzQw1Cv3VNhk\nZM5EJgadc6cXJJUaCLsIxWh/n3P06UPltd57etslqTwtV3kHHOrPyVPH9OpvntLPf/lD7T8Y0v6D\nberoDGhfd6v2dQXl87Wooysof9Cntn0BnXjxoVrv8j3RMIG+0QUNh490SypdRHP4SLf++v6LTiye\nKA/KSbdLcNsYZJJ5RafnzVq2dBXV4uXlciMw+8Zzzkexz/XsSw+v+9zIxKDjXouOoK9fkYlB59Gn\nDikQbNGBB9rVuT+ofd1BPfSjA1q4NO70P3a/Lr03dsf9DqhDmw20yltT3detV96m6PWelfes79R+\nYffZtQu81iRAA3MvMlC58mu1hSC9lqmyi09s5ovBlwe4B7wWD7ALDnitDmO3t31xd2a3/678qScA\nNbDRSjPuEq3yHnM3d0DbEo/sDNTQdpb8qbZAxUYrwG702ZTxwA7basBsZj32zd6K6P4Bh63sA4Bd\n5g7magFql4C2j70CfyvZG0AN3C04K6fT7GBceHxmU7/QAqAOeJXoGwXpRr/U4t7Gvcb7Tu4vgB2w\nmR9e+H+zNb/BBtTITg7kAWgyXks6AwCAesY0GrCHEfhAHSIwAQAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAP/A8AklAP+b27FAAAAAElFTkSu\nQmCC\n", "text/plain": [ "\n", "array([[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ..., \n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.interpolate(agg.where(agg>=np.percentile(agg,99)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or apply any [NumPy ufunc](http://docs.scipy.org/doc/numpy/reference/ufuncs.html) to the bin values, whether or not it makes any sense:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AABokUlEQVR4nO29zY9Ux7YnujKhJcQE\nIaYXUYNCdMMxg34ue1JDujhSDZvEJB/XIwv/B22wZZePbHDrDe7U6I58gCpD0rqjki71GNbkuFAP\n8AE1ogaFuFOEmCCkC+QbZP0if3vlWvGx986Cc/ssCZG1d8SKFbFjfcaKiM6J3r8M5e/wd/g7/IeG\n7vrqVlbB9dUtscry8xSuVFnrPZfLpVXjzMGTQ3tdKG0vVl6/Sz3PxZ8DXr0mYzNtaEpbkznXBs6S\n7xqDDmv09dUtmV+cqYVIE5PCo8vg7zZo0DiePn4hh47sD+8AOe2sr27J61dv5ERvNtoGyu3Zu9vE\njXa9Nq333ljEnsfaKIHS7xArf2+wOTF+ddpoAtxW3XanTe808XdO9P5lmNuA98FE/IFsQjwzv4jN\nPB5j3Btsyp69uyv1LRwerqZQZwzqCMg6OHLpiH1vq/xOMm4KSoVkCnLHok1oU3B3SxChozEz+N5g\ns/K3ZjQPrDI8eZhp8H+MaU/0ZieEhBYKuq1cgIsBHLrPTHsJbl3u3mBzwjT3LAUPRx0zEThyJzbK\ntyFgYn+XQJtMLpI3Fm27d3rONoFunUqsNfVH1gzGUOp3a40uIvL61ZsJGjz68Bs4Ss12i1YWPB5D\ncDmNowRgkWh6dT9ivnPMxK8DJfGY0vY0rXW+UQn+tqEJ/mnTVovRAd4EF5lkNm/SxSay9Y7bXF/d\nCj4xl7s32Az/REY+Or8vCVSlJp/W7ihjtZWrsaDJPXr187a0Vyp+wGVSuEstmiYBwp12F9oKdE6r\nrFWnEaOXmOSe/27hSfmgXM5ihhO9Wdmzd3cQCoeO7K/gPDi7L9TRjBijjSdvTBh5lkPuhGRNHqsX\nw5eKRei+xyAnblCnXk7ZFI1tM3kTa0ekXp9z2ixxyax33fXVLdP89YA1ZU6gy9OIsXqxTuhJmqJ9\nfXUraHSUfbb5stIu+mQJoxxz0irj9c96zsLDCjBafUqZxqln7NJYUEeIl8A0ze22ffuSMnXartPH\nHCHPZTp1EmYscykVHLMCTd6SlS6fWp5BhF1EwlIYR901DTH6dVspf9gyo1P0lo5fU8jBncO0pd84\nt1wbeOu0WxePSP1xSuGe1hxIMnrbjZcyWWlAhhkJGpyX2Zgxse6tNSivm2scsT5xXcsNKB1HjEfK\narLosARKTNDE2i+F0u9Wd369D//8fUBdxcBlijR6SYOxyZk7gbgcJ72UgsVolqbOYQrU00k0Xn3r\nb28cGWddJm36ftqQa915ddqkf1q4muKdxjfqAnEOpHxHfu75uCIyoaU84I8Pv1q3E/NhY5pU08f+\nOv7WbfAH4Gi/RZfXnld2fnGm0t/Xr96Y7aYmgOVe6LGo68PmxgJi7735EAOuU8oAqXhPW9CERkCT\nmIeHC1CUMGNBLFiVEzDwQAecWFpaE5+DcyX+qGZmT6NyWwhkMT5PcFgTjc18LsNlefKXBn8sunO/\nS4yZLUHfVHPF2m0Dmgi2nYa6fn0OLnN5LWdgcrS7xpmjEXgCzS/OyNPHLyYY3mJQPCv1j5kxOYJv\n+fSIziOK7+G2NLF+f3B2n+zZu3tCSHA2XM4Y5wq1GI7Y9/P6kBt4i7XRphb0nue4Mu8DUmOeKqfn\niMdHgFpRdyCqG3BpEiTyyliBq4Oz++TQkf3y9PELefLgeUVbIxBnBc+8drRQsYSB/h3D60X4X796\nI4ePH6jEJLhsTIBM0z/X9XnMmwbU3nfsYFrgCe2d7mtFo9eR+DllY+Y9/w1T1sLjZYuxyY33+Ae/\n/tnmy6A90R5SddnXtmhHu4wbv9kCgMugpXHMsrAi6qCNmRyWih4vDSX+u6U1PKvLqg/6Y+2WWoZ1\n6qfAsyJ3SpNrtwnPdgK4j6ZG97SU9XdOPU/Tifhmr8hII4NZoYGhpUVkYq2c60NoaI2pl9S0JaAj\n36CR6da4S6R2LH9AQ13NbZXX9JXCh6JxPxQ6PnTQ33zCR9cDaUkjIGFt5zXgPbcknfZXn22+lPnF\nmQpzcvRdM/m9wWZgwj17dwdtzZlvqHNxaS6UY3r27N09kRvP2np+cUYOHz8ge/bunvDpNeA9xshb\nRrKslNiELtWgPNYp/69uLMCDHM3pleHxy8XVRrveu7atgBxfvC5o/kpq9BiktL3ng3paSr9Lmb5Y\nW/f8PPjmIlUzmc1u+Ok6qcZzQS4uzcnl/po8efC84uOjv97BEyV7u601+tjYWH/XhTrWgjX2Xn91\nrEGkmRD5ULT7NGjJGZ/cdrtaWloT3fNpdDndoPZ/oZ0tYrk+azTv3frqljzbfDkx0ZgemPjeuj2Y\nGwyLdqDB9b/11S25MDeQZ5svg4/PfWAm1zn4oMEaS20ZWIk4MYGX+tgxv1yDJ+Q8vF67lnuin1tW\nXYxOTdf7ZPI6tOg6OTGRnLhLTlsdkf93WCfNkbWX1aDWbqnTadj31kc/ef49cONv4EDbHFH36ETb\niMpzWT4aitvK8ZtjMQorA07HA6z2SlNS29QybTPZtLXxtDTsh2JBeODRWHt5zUKcMxAxc0Qv11gM\nqjU4tGFq6Um3gzox94AFCOIFnvlvWR+xQJ81LjlauvR56h33c9qT2KKjiSDLbaNNqOvWtlW2Lphn\nxtVp2JssMY1ptcHaPGY1aGGgd63hGdajrQg9Tyw9ybzdb5ZgYPpymMoSCvzOKh97Btq1FfUhaKC2\naagr0LxxFEkLuGmO4059o5ACi07H9ndz1pYuqyee9pV5zTXmqyOqvr66Vamj8fJEZr+WBYPOR+f8\ncb0GDkYBWGfOAYc3RtrK4OcW6A/sCZBYPR4n0Iz3Jf5229CGlWD55zF8pe9yfOBpuj8eXaU4ciAs\nr6FBbzvm08cvJoJE0NBW4MkjioMyennu9as3Mr84SnvFKTAsEKxINC/B8IYU/P/kwfNA6+BhP0z+\nE73ZQD+WyphuFipacKHcwdl9EwG7p49fTAiYVMAk5v9asQ+u7wmHmIVl/dZ4c2m1oAlzeBbfTlom\nKauzLr42cNXFMbGOricO/oc5zUwEANMyU3I5nkS8kYM10Prqlhw+fkDWV7fkyYPnoT02wy1znTPe\nrOwxPLu4NCfXljZEZMSgPPjzizOhbcYFwcPanaPn+qx4PGMLhIE1vsWgFuOhLfyz+sjtpyYVBKgu\n42Xe1dEguZZEqoz33hNqddvRZXItq9x2mo5n3Xb5eeMTZvTEsiaaDn7piw54PVzjAmN4loa1Vq/z\n19k0t4JjWnDo9q3+ozxAr9NzfU0TgGljvPy+dKw9mFbEXpeL0dRUs03bn20L/07TmdNeZ8/efxqW\nBID0/977XAKsE1yYITXTWjh10E5EXAbTkW9rYwZPSA4O8uaYGD2WIOG+sZWiE2xiZrwH3E8Lmkaz\nY/MBv3NpbQqxca8DJSnJOwlt0MA4Oid6/zLMmQgpKaI/vHV2Ww7xPGnYEnj6+EVY4tJtoo7OgxcR\nM1PNM3U4t95iTLzXDBoTVrGxYnciF0oFrbc7ry6kmD72jN+J7KzfrduPKaMPgdHbhq72+zR4pjgm\nuGdO6kiwxsFl2bfkchwws06Y4Yk9vzgTtqQicAgadKQcvjfaml8crQJASHB0nuMIoEHHDXC0tOWb\ngtn4OUz+a0sb7hhYv/l/jnVYTI9nuaf51AEd/LS+oQUYz7qgx0P/tsBbIbK+mRdjidEzrTFuC6Ln\nunv+FybP4eMHsgMNOnItIhPMZrUfe48AIAYa5RFp58nOUX78ZmGlNT+Ew/qqHc2fX5yZ8Oe5DLsS\nvFaPtnijDdfT/r+1/RV90uNo/e19QwssIaX/ZlxaQVguVR1I0WFZNJ7rg2cxgafr4v/UFuZcwbYT\nkBI0WZcsahPZMnvWV8dprLkmuvb5gVtrP206eyYqtrH+cHNBPvtoJfx9ZWVBesdWKoc5aPdCxDbz\nUZYBAsJKTrF8Vwtn7HRZb7xj4JW1zNSS7xN7lmvipkzlDxk8ekv78b77nTwzDgyMcrEPxnvHRSYl\nOv5mLQWNDHOaTXGRqukPJocmZysBTHfoyH757KOVQMehI/vlwtxA9uzdHTLk0CdIeTbz0TccYQV6\n9KYXS5t/8e1ceM9WgD7okc19rg+wBEZMO+ZMRl0mpW0tfB6Te9rEEj6pOql3OWXqmNGeG+DxRswC\ntZ7nCsRpuQATy2sxovCuZMulVV7/bR3lzHV1Ljmn1ALf4GFfesfGWtyKlCOgJ2JbCiJVJotF89l6\nYXycdsv0po6q1pMrRwuWaOtcq630HdOeay2U4AaUzrmdhPetrTVY9LgJMxbETFr+zdoMmWIXl+aC\nZmJ/aX21mniicXIcAFr1yspC8HOhkaG1ETSDRsaW0nuDzRAxF6n6Xzqaz23zWjkSbeYXZ8I+d7Y+\n4Dvz9lkRqQgdDRgTy8+OaXLPR2XGx1haBzhYVgSX0e3EtA2PgU5tTmkp7ap5oH3slL+tIeVjp/B6\nkGPZxOqWPM8FawzMdXQ0FtMWJYkeXJ5x6TVuCAaOsLMfzVlul/trE1tS9QYYMNazzZfBV78wNwgW\nAVsKrHU9DQV8XNfbGGMl8pRoWk2DteaOdmK3yORCXa1Up14d66KJRdI25Fo/VkxDJD9w12af3Asc\ntLbQjWoGxbvrG71QBktd8EkBrMGePn4R6kPr6nZEqhoYTI73ODpZZCQY4BMfOrI/aN4nD57LhblB\n0PiAi0sjv5pNay2h8f+VlYVKXfRLWzOwMqDN9Mf3NIl+p8cB48R06QMwLKuB29D/l2iP1DzJBWvy\np9pLWZOx9zltlUCui2NZaSXj1abg6nKgScQ3x/mZJZnwDAkgr1+9kWebL0PuN09QZg4wDmsmzpu3\nluXg/1oTQfvU2q+DGXv4+IFArzfxX796I9c3eiHwx8ktGDf0DWfQ8XiwOcv9ODi7r+LeWOa5tW+A\n//aEh843sIC/Ra5f3US76PG1vpv1LGbWxxiq5JlHa+pZiqYPAZjursiYObRpbg2mTtTgD8eJKWwW\na+ZBFJ9NTmwiAWgzHP4xMwjqPnnwXJ4+fhGYkvuDNvWxUeyvwwrRQo+TfvS6OLsi66ujI6Z0OZjc\nImPBAosCwg5amfvEz3isuU/83NIUKQtBC1+NO/YsFjewQMcPPCaMWRhtaeMU1BUQObBTfQAw3ZWo\ne13Jbq0pW79R3/rbu9lUm6VWpBtaUdNg5bmL2PemMa0cUWd/XuO7vtGT3rEVN/fditqjLWujjWY8\na5x1vKLU79PQph/YxI+O+bZt09kWzmnFBZruTbCgEnW3iGafj9e/OZILP5HX2/EOf2uT35rQqK99\nXvyDv80MCyuCGQp+/+HjBwKdB2f3yeBhv+LLAw7O7qtYBE8ePA++u8jYP9aR38v9tXA8tNZW8N8x\nLtCgbM3w/7wN19PQ1g48Lutpff0M48r0xsDy7a0yKVyx9ykfO5ehSrRmnb7XoakUclLSS62Droi9\nbxrAQSrr9BbuLPvb7MMCtGn89PGLSr44lqVAA5iLE1ow0YEXJjHw86TnNfMnD57LtaWNCvMCEGRD\n9tyevbuld2wl9F/n9AMH8B86sr+yfIj+zy+OVxEwxkwTM4d2XTA++ntoC0HTpjUjgHHHVkz4mbYW\nShi1CWhBFzPpPTraNpNzLF2R+mm/Fi7rec63sMDc1GIFeSzTFKADUZiMevcWGJoDR1gn15McbXDk\nnnGLjDPfOB5wb7Aph47sD0IGFzmwPw0r4PpGT+YXZ+TC3CDgvLKyUGkH1sL1jV7Fijk4u09u3D8d\n6OwdWwm/rRiBzh3gsVlfHWXisdBiQeXFTXhpkb+VtdmIv3EsT957VvIe9PP/OeDFCywLxyrHf8cC\nebH6GnLxWONcFzzrpokwDbnuGpG1zTLlI1r+t+Vzg9kGD/thyQtten76l99/Ij9/91ulTRYOg4d9\nuba0MREM1HnsB2f3ydVfT8rP3/1WicBzcI6Z0roWytvTzn9bF0J4vrs1mTwf1dLY3oEZHKeYJuTG\ndkTyo/xN2qyz7XoaZdvwtduKA5gnzHgEekkg1iS0To3BxNPMAg0pMl464+i5ToYRGafBioyZHPu7\nIRQ0I/CmGBYc3BctbDTT3rh/Wi6duVvZ945+6D3znPzDbVsbWliwYLst3IbUvva2g0K5jBsLnk2b\njmm1WYeWnPJN6G2j7sQFDjECc6SVFWTjuqnoOGt6kcmUSpHqNUqMRzMqBAii5hpYg7MZPHjYryTl\nrK9uhQg72mctfH2jV6GXd8RxvwB4ZmXjxcZO//bAEwAsQEsYOQcsq3CnmVFkOhHrGLyPPtZpv5va\nU+z5KNY6r9co10c99nnZVD7Rmw3+LnxsAB/wgMnKu8rg+zJTMZNbvh4i84ePHwiRedytdm+wGSLq\nYOTDxw9Usv9ERtF3kbHg4JgFYgGgn2nho625PurpsfPGlX1ybbZrwavHx9thGJs8ll9sja3na1p9\n0vGgupATZBTJG1+rXsrFStVvE0qETNb96DxxUM4qyxNIZ4Nh0iHSzptQWBvo45I5yIGywMExA966\nig0v0K6sDTnrDrBn72558uB5SJPlE2h5f/3gYX9iFxqfTAO6ry1tyInebIjgc7YgW0Q37p+u9JGF\nAPoABsJY6vHiVQj+Jlbf8Z6TdThwqP/m/xm01k6Bvp3WAhYUdSwJC5/3DAohpy3NTHW0d+l45ZYt\nETLJU2A9H5FNZZG86410easc+69snrPpjPeWP6vLx4JnbMrCxB887IvIODX29as3cufRWTn/8e2J\nc/AAbCbrrbBwQ6xkHWsjjhdgA1gmsv42JcGoOqZnm+ZqaTxgJ9orLdumPz4t6GqpobV1aimG17hj\nphtrZkxuaGY240VsHxwZaAzQpDg6CvVgakOjwTznDTacCMSR9WtLG8EUR4Dw0pm7lbHQ5u+X338S\nLBZ9pztM/sHDfsVtYUa2zF4PuCxrXU420httANq8Bz4PSrRlTn3POqijuUrNYU9AlrabUy5Vz9q/\n0RZ4eLueiWP5JSwEtAaG+YxyGoeV2AH/GWb8xaW5CjOJVA9g5EMf2ZwF47FrcX2jF0x1ROd5Ce3J\ng+cT2XFgEC4Ps177u1jzfv3qjZw6ulwZOxGRO4/OVp5BeIiIXJgbyJ1HZ8M4oB/s65YuD/H+eP7f\nAktQMF7tGuiyOiZg0ZaiwaLHw1OHKXSf6prPddpLgd5x2CZ4eLt6QADe7ik9YJzKydFmBjZ1eULv\n2bu7knTCu8NQ5kRvVq5v9CZOaQGDc2BMWwA47WXP3t3hOqbBw37QpncenQ0ZeVoT81jc+n2cOov+\nYVfe4eMHKlYKGOH8x7cD066vbgXXAumwp44uZ2lW0MEMZ/mNOEFHpLrxiP9nPNymxsV/a2sNbbHZ\nr9vRgkS3p/tXh/FSjJLa/cfjABpiQssCfvc+TPUSQegePOEhZk2uD1+wfHgLOIgmMl6u0kdK6bzu\n6xs9udxfCwdJ8EGROtmFTWPg5XVuXUYPFvvU84ujdffzH9+WG/dPy/mPb5tLY9ZBGugHjpcCHmuz\njO6/R28sCYZjIV7ykZ6gVlkef1237qTOnR94D/qs8jlCxGo3l7660HR5b1oxi+IrmWIfS094fqYv\nV9BBKYC3Rg7trE9x1RMfS1sciLv1e18+/3RQKY+2AFpgMB1YJ0cZ+MP6kIyLS3OVc+v4XDs9Xrxu\nz7Qj4GjVsza0WAxoMTTKo21vGapO8M8Cj56cOrEcjfcRlGuzfkoQlOK1eNCqn63RYxLV0hI6S4zf\nc4IJgDPdOKJumSXQ5vgf5rveMsoWA/BBo2ptznR60fDrG70QjWdNqIGFhU6hxXPGrZOI9NhZFpOV\npWh9j5hL4JXLscZymbZN5syhr06dadCYQ4vV7rTcgeL96CK2RtAZaDyJwNhWmquIfUEh08Takc1+\nXkp7907CWe7Ao1NQRcZBKwTTtEnPp8ay1mXAkpmFk7U4jw2b4Jag4zGzTo3NNaM9l8QSKBpKtHTu\nOy1Ec9puqtXahlS/RZozZRvuRYyW2repegh5MsHcto5Y1pPQ0kg40JGPe2LND7/Ww89gMTBrR5FR\npPzU0WW59ftoLZ0Fxy9/6cnnnw4mmBR9FBln4Vlptyx42BJhCwHvrXX/1LhZwTFu24JpaVtuc6e0\nZcxC0WVSz+q27T3byRiBB9GbWixiPf8ulkPNWoo/iHfeuWU+xza53Lh/Wk4dXQ6WgWViY+OLyGQw\nEJoYoM9lF5l0FyyaRKq75k70ZicuUvTo0/vtU+a69Vx/x5LAkFVXxN52WRpIK4GcuiUM0cRKSdG1\n0yZ/E5i4qQUd0p3Ab73MhOdWGibK4eAHkZGZjUQZPuSR/1kbWdDW/OLMhDkNJkfKKGtc0NM7tiJf\nfv+JrK+OlwSRxHLoyP6wTHaiNzqX/cvvP5H5xdGJMKD/+kavctglJ7wgjx1puOg7ts5i7fnG/dNy\nYW5g9pMZ01qqtFKD+TknzXA/Gfj76rHlMlguTZW1AGPC9axYS25dq0wOeH2tgwt01albBzTN3ljm\njmvluGdmbr0WC8BH8DZH6MkL5oHGuba0UTGhMTmBe35xJqxLWzu+vvz+k5DcwodLIEeeT63hJBqR\nUYYbnq2vbsnl/lol0YfpGA6Hlew5bLbh8npzi8jY9z98/EBIp2WteP7j2+E31us5F4FpQVINvgMf\nMGF9YD6ogicmr8HzJiCAToqJTWirXe9iihIcGixmz53UjEMzaCmOGFjfoS38MSFiKeAUTJwZB0Jj\nJh8zO8rzpMUzHK8kMjbfUQZZbnw8MbQerIA7j85OCBzNKNgdBjx8uQIEzOHjB+TOo7OVa4+hpcGY\nuN0FNEAg8XIe8KGPnU4n1JlfnAkaH5thWJCwYOIPxBrs+kYvjOn66lalr/gmXvDNmnCW+c3fR39r\ny+dPafP11S3T/bI0ILfp/W21lfK7c8AzvetCSiha1kSq71aymcZbQhvjT969Zv1dt3H2zfUhDFqw\nwK/GltHDxw+Em1Y4MYX9c7Sjo+E68IayOiqPdjBxLy7NmYE37avzb4wLxoljExzH0PvmgZ9p1RMh\nFmzUfePxbiPYxG1af6ciwYBYLKgurSm/HoFYkXaOeqoL79Onn9imysynJQPeW1LLk1a8hRSTHWe6\nQUtqXxJm+LWljUq+OQ53ZBP9/Me3Q5482nm2+TIwLRJedMojABbDs82XMrut3YFLRCquBdJlX796\nIz/cHJ0tBy0OX/71qzeBNuAVGU1CWA+wZjAG84szFSbX44m0WW/zkCUs2WLwfNWYD6sFujYXU360\nLptjiubgtLReStNzoDXl37Il5JXxIFW2JOjXRnsMgdH5o/OE4o8a8w28TiCog4mtd4Cx3ygy+pDQ\nmABoUjAABwBRF3vAmZYnD56H4BzMfN4QIyLBjxYR6YhUToOV7b9v3D8d2gFDfnNuTQ7O7pPL/TV5\n+viFXP31ZFiWg0UA5se46uucgA/ujOU/zy/OhNNxPUaF4PMYV7sLAH08t66bEgQeXm8Cxsrpb2u1\nJ+JrZGs+sgC89Xu/cmGnRSNcMC0wU8LBo6EOlOCIldV0mplxOQOu87pzGub93HoNnE1rvWQFYGbg\n5SheqxeRsHzFpje3jfVyvVzHuFGXl83gJvBhkvhtmetWhpteMtTr+jFXRpv1ejxzTMNcf9fD4+XF\n54BFXw7tbbkf046Sp+b/NNrPxdu1pHksYAENz76iJSXZdNfPMYl5yY3LMXPBtIf25l1i2NYKV0Bk\ntKZ+ub8m66tbgcmZ3j17d4cgF0flgRt71/n4ZuyS+/m73+REb1aePHgejp2yAlH6GZb1cA0zHy1l\nLVNqAYox0z4x94lxoIwX3PHMeW3B6fegr3TCxoSL545oepvCtJic+zZtbd8Eb2V5zarEHdD7zWN1\nUY81Eya61lpsdp/ozYYtpRxNBqNgae3g7D7pHVupmLTzi6Ptn9Z95/OLo4sQ9QYa/A8thZgAMxuE\nBjbMYLXgwtzAZSbsg3/96o1cOnM3aPkTvdmwQQbChYODEHjzizOViD5AB65ik0tvDebv5AW/rHIa\nYiZ9Llhmu4Uzt41UnCH2PGaal/jdJcycoq2NMWaoJMxgwLU2Zm2D8mymAhgPX1OEd1j6YrMbS26A\ne4PNoIkRSANg3zh+w78G8/NaPkxbBMeePn4hnU4n4NIm9PzijHzx7fhQx/XVUfSeNRjW0bnvJ3qz\noQ8QIk8fvwjXP2GpjW+hAehNKXwZBfqId8DLNPPY8rfDN4sxq/fc82Ets96q7wXLYowYozXlQsbK\n6XmN35bgtOrE2gfElsRi4FnNqW+my+eCm+vu7Y7yCNQ+u/ZfgZMnsj77HfnkemJwfjsAvim3gW2e\nVu45+9ScsCNSDcjhmGcwLvvu7JtbWWfaN+ftrFYd7id+6y2+1sSLaWJrr3rM94614dWJgecz5liB\n2lopgdy60/bVm0Ipfdk+Olfg/3X6o4WMo8TaZ4cvy9lcbEqKjHeOwYz9/NORJmfNKjJiFJj0nLAC\nbYn7xi/31ypJOLxDDXBlZaGSNLJn7+goq96xFekdWwlluU+Dh30ZPOxXEm7Y0sDY4BQZRPv55Bpt\nQYiMBN8vf+mF+hAGOlaB3/obINLOWkX79/xNUvEYrVm1v54DurxuR1sbuq4um2tKlwgI7YrG8Oa+\n1+Vi5a1+AXItGC6fQ1tgdJ5sGrH1sUQkmK2aQHQETGlNNJTjpBYAGB4C4PWrN0Fb88ecX5wJy3Ei\n4+Ae1tKRl85uxIW50Q606xu9oK1hgouMmIfX5HGa7LWljVD24Oy+sFHl4Oy+kBcPK0gHx7R25AMn\n0FcILtwHp8cEAgD9vzfYDP3TAa2cyc5lUuZn7mTyhAe/z8WlYxP6nUenRY9VDvPTq2ulRefQnSNw\nPEGXwlvnHSCY7tq08vyv0kMHQAingfJER3kAtoFyOW8XG5hYZ9np5S+RqhkPzeuVRQYeZ7zpD8j9\nGTzsV25x0X0G3ZxVx8dIWVtmreU1y6Qvhbp1c0zynHep9mP9zJmjDHp5sylY9Fiu0ocEoDlcm6yl\nsDYvmMnxt4VUa1yWntwGm6gMiEjz5NfZadDIrM3ZNeCyV1YWKnvDcTT04GG/cpIrABl47JZwBpvI\nOHMP2vRyf00OHz9QuRmW6UE5uBmIvut+ikjFNUG/8Nwbb/2duB6XBS0ATrKJ1dH12gDLxE1pWQZP\n6DDA4km1mwOWYGFr6kMF0NwVycv/ZfOQA296slkmDqLS/CGBB5F3pHlyBJuvNmJmhE8Njcj+6+Bh\nv2LCczm851x4Xk6DQIBQ0+vh66tblQMc0Sf44hAifP0xmB4Rc30HPAOvqcMiwHhyWq4WyrwMCfqt\nSan7ovunXQ3L9dC0Wy4b47PiBdb/+rf2n7U2rwuW8sg1yacBTfpi4fLwucc9WxPDY1YwKJvPKMvB\nKRF7SQ0Mh80H8JmxzIZgnN62KiIhyUVkfEosGBtpj6iHjLlDR/aHtFh8cM4/R9aeNWjMqBBQGAPQ\nxFl6eMaHbmB8mKH14RPaIoDAYuDEImZ2bx+59SzGjLG6HtN5pnYu6DkGnDGhk6LbAivRaadgWpaS\nFwcTcXx0jzjP3+JJihNVeOlM+7caF4SD9sV1aivwaL8dz1lT4xolFj6wQvjYaG+pDHit/qMtTn3V\nZVFfxzW0X4ey1nIkxobHlu+Tj/mw/HeMPg0xbZ7jH8e+c505lkNzLo6c9znQBo6dbm8i6s7I+WQU\nfm6ZCGAmMDkHsRD1hgmr27KSV7BMZm30wMTXKwTYP440Vyy74fQYmM8X5gYTN7XgIgmtPS4uzVXo\nR7tXVhZCfbTD44D6TCsLNCsZCf1l85jjIszkjBPWh96lx6AZNqaRtTltlfdMRE2f907j0ALCchEs\nYWX1rQS8+Rwrb1lBmo6S9lOQE49I4ers2ftPQw+ZhcjSzh5RueX1JhcIB63Nv/h2Tj7/dFA5FRa4\nv/h2Tv75TxuViSFS3XPOsQWtkQGsbeFK6M0kXNc60JHPicsxd9GuyGS2nLX6oCO93Gc95tY7Buvb\neGX0BRM5mqZumbpmf6lFUNr2Tmnzpu3o+l32E1EA/2upaQUwoIEtqa8DLvDPURaaEFFmjpIyk0Nz\n/fOfRsyDqPXFpblA+zfn1irBqvXVLfni27kKnsHDvjx9/KJyIg3Wy5lO0P9s82XIr9eBMM56Exnf\ns44UXlhEevAB84szYc3ccmNQloUMyrIFxL6+JVQsTajL4ZmFh8vwWMbA07A52kuXiWnbmJLR4Fkx\nuS5Nqo2Yhk1ZQdbzmFLIAU2necKMV0mnxWqw/DPLX2WfGaY1DorQ21ZZoGBpjSPpeKa3o2rNxqeM\nWNtgYVFwCitrUb2mjvHg9vk0mRv3T8vP3/02YS3oU2U8c9YSmnxktWcteRMx9u300qnGwfkAKS3j\nrYM30dC5GrZtbVuKry4tO2ElTDC6lRTDDBqbEPATOeHFk5hslloaTeeVs9Wh944Dlw5wecc4sUmO\n58yY/LF0ogsn2+iAIOfyP338IpxJr/uux0zX1XsCvD3glmbmcbC+pTepUvvMrb0PKSaMQdP6bQCP\nj+UO1XEn2hQ8Fg+W1gNUDp6Idc5qiAdILw9xWT2gFoNYWl3EPhTiy+8/qRwcwYMBwNlvvOOL8fJG\nGWS2ccaeRas+G47pY3/dG0P94XSGoEg1m4sPv9CWAPdb0+p9zzq+pxbyKKvb4b9LoQ0fvY2+lpQt\nYeidEGop3F1tRmq/HOAlyPAGE5FJ001rFW02Y8LD776yMjqLDevTfHwy6uKcON1R3gL75MHzkDmH\nZBYGaPQ9e3cHJgd96Nvh4wfkxv3TYWyg1bVPD2GFAzCwj5y3zTKdPEY8VuwHr69uBWtAa1rtS4Pu\nnEmkvy/75xZoOrl9htjcifmvHpQyhEWPR0sJbq+s/h45OJpq95w2PJjQ6F7u7vqqHamOBVtYimmt\nY0WZGQdbEdpP5+2mnIWm1+2ZBgY+8VVkzPRwO7TPD2ANzH4rjwPcAiveIOJv/wVdeoVAg+6LtXeA\n2xKpCpNcLZfKrfc0aFNtmaNBc/Dlatm26awL04g18DfsauSsuRmg0fhvDRyBZ63H2nx+cSZErHk9\nmdNdRcaZahAwIiMTG3ixzAONDd+Z2+N1bs5gg3ZnTT+/OBPWqfUJMLAU5hdnJtJb9Vjoq5KxnVVr\nFa3xMb7AhbGB68GCizUEWyIa2MLR+QvW92VI5Zx7ZnIdbem5IzH6GCxXIlfLltCpn9U9dCLVRlsC\nhL9hVyduoCHvI3gEra9umRpIRCoMh5RYTEyknWJJCniZcfk0V2wegakOhuRlOnyEPXtHx0BDEAwe\n9mV9dSvg0APCqbkoh1x6POM96UihRZ17g9HBkyLju9NxxxovJYIx0Xf2rflbIIkm5n/OL85MCAPr\n+3hXUDPO2Dtvs4xuJ4U/tz73KwWeZTFN0PO9bnt16tWpE6LuXrBNxL9A0WpQJ5x4wSldVgfzRMb3\ni+tbSrVJGeu4dhf0cpk2xYGP33vuhufqWK4Gj4lmupg5bZWJPcffuam3lhaMmc8xemOQchtSeEva\nnqZZvRNQ4mLlQkiBjUkn6x2bx2iYmQLBKZTFPyS5iFQvbMSkvDfYDCfJsJn9+tX4okbgOji7ryL1\nOVAmIsEVwTve7aaB3YLXr95UTobRZvwX384FxoFlAMsIdPHHYBfl2ebLYKlYzMtpx55lxWPO9Vno\noU2GVEDNctkYrDopsARK3eCYJ3xyzfwcTbgTlkCqrbaFrEji2uRcYG3hBS4AOuAjUr05VKd56rRL\nvd6Ltj08KKe3lzIdvK6OtoGPXQHgZYby3ullOr62mWmwtLC2LvR4egG9koBRzje38ieaBqVKkq5y\nQFsiImW++k4E2nLxWkuZTdvB7wqje75gDoH6TnG99qtNbOu5bsMyc1HOMvUHD/uVaLmVdBMTRFZE\nHTvdOKuOt4d6sQz8feP+abl05m5FyHjA9OmIuQWeu+X1L+dbehBjCP1/Du2o760uWG2W0N6W+Rtz\nY2LjkZOA0wZYqyNWW5VtqiJlgRWU5w9sJW1wOV0HgwIf3Nq37eHTNFmJJexOXN/oSafTCdtXrQ+i\nN7J4NDNoK8XKCKzLfFY2Ykwwe3RZ7Vr1mmrDFOy0v+u1a2m9png9y7UujW1ARaPjgcjkh/b+18AT\nEgzL76zMLhE72wx06LVqkarWTaXjavOfhQHqaG3uBctiaajWh7bw802tul0Ln97Tb2WneX2PfaNS\niNWry+wi9f1NrVgshi0VVG0xWQpPG25ynfpdb8JoZPjb00yYCPOLMybjWkTOL86EHWv8j5fL8Axg\nZWqJjC830LvMsJz39PGLEJDT9LA/bdG+vro1UW99dSsE1ZADgDYRLGP8cCP0ePMyn5542rrhrD3U\n11qK32vB4x2wkdrDrtOZLXo9sFwVTbcuG3NvUB90WXM2Zemk6Eu1n3K/YuW0UsA3i303D38OrYDs\nSxZZA4lMpmWK2Pnb3qB7vh20KjaE4B1fisDZY1aeeY45pU17ndfuPWcBIjLOk/c0bczyiGk2y4JK\nWVUpN8Mbm5SbYdGV+zwGbbkHMbO8LjS1OlK4c/E2DcwBso+SioHl6+r3IvageYEbPSGxPVVvOPHc\nC3YfLOYD6B1sl87cnTjiWa/3WymnWhDqNWxu3xofzz3iQyz0uMW2vMYEBep7KbYpczY2V9oyXVPM\nOw1/tinetpiyLeC+dONFfQQwXUVGE8wybRk0g2GtWGTydhGka2JNGRcmcOabyPiEVW4DoE1wnuB7\n9u4Ox0uJjK9kOnV02Tw0kD8eZ/RpejEOvMyHtvHPMtX0uj4zGmcMejRZpjDGz/Nfecz5/5j7ZtEn\nIhN9ZbDmQY4p7bmOGLs2mdzrf2l9bdXx+OSa2G0C98U9M05k8iPxIM8vzrjmuQat5fCbcTATwJc9\n0ZsNO9u0WYrkFcDFpblKGUx0TRtvZIGlAI1pWRXXN3qyvrplngoLevXOOJHJ9XY9FsjfR19AN+O1\nfHD+P8U0jEvXi/0fw2Xh8TIDLUGQwp8jKHjnY4zOXMjtf6q+N746lgCYBvN7OCvXJnMhz+xkBvKA\ny3EOugeMT2s/aG1+xh8bz3HCC7cDE5sZR6+H4zBLqw9wF7iepgO4eMxQTqR6gOX66vjMd7Yc5hft\nfHVr4lgTn8vye0ww/qfHXf+GpWbh032zyvB7AI+PVd/ri4UL+KAILLCEI0OOcGwKOW1Mw/XwcLq3\nqaYIsrQKmNvKaLPq6zxyL/sq1ib/zfW8NX3tC6NtK6vNGwPLvPR8W28cLFp4/DR4J7zwO8/stXCl\n9q/HcFl98vrv4U752zmMkIOnLlhCKTYvdyJ+0AR/1Ef3pBJrVW1iYjKyj+xphxO92XBAot55hvIp\nych+Ourp7Z+epYK8d2h3+LQ6447rrq9uVczu2HjBDYFlo7fiYhx4fKy2tfbi8njnmfrW+HmmpKbL\nK+NlK1q/YxAbv5TVYLVTMvkty0njysXXhI4YlFoWsfIVRrc+XoxoTBhMKP4oXE/vTRcZm+scUQbT\n6g0Z2qxn+tg8hbBAoI0TeFh7gz6U4d8MvMbNbfLNM5o+DoABEKBDeq4eC30CjQeeD6h/ewyemtw5\nbZfU8cpbsQFPS2kXKLeNFJSOnWVxNIUUDq9NjydjNCZNdw05SwieKaaJ8U4x8bLTSnB4tHgnw3g5\nw7qcps0y7azf2u3Q762NIzGt2RaUmoEptyW3vZhLmGvG1zX5AW1n/MWgzhi1SVfQ6DyprGgm3lvL\nMhaOGHGQmprhUF8fwcRSXXeSTV293CZSvUWFywMvB55gYvNEnF+cqZjq1ik766vV6DyDDhrCZdCM\nz6sPGrQlYwVDtfuirSx+p+lLaRYt8EonmiUwLYvIe87CmMEbq9wov5XkFMPdBGKMW9K2pwRSUKzR\nLQ3F7zQxmjBLAsfOj0tJfxzVhNNS9TZPDw+bzd4Jq9ok1ymkVh291VBvj7UO8ciV0rHxtcrWYcgY\nXRbj1d2hlTJDPUgFN3cS2mgzNeZttVNZXkuBpe2sxBALJ2u09dVqso2IhOOhLMYBWPns15Y2Kkci\nc+Ya1r450GZNMB1UZM1rgfbvuI4GvYzmRbtT/nFKaLKVlbK0vLY0XZYgYxp0YpCFP9aWNaE9Hxmg\nr4SqKzBKYVpaf6eEUxeN5TC7Ni/Z5NSQmsxc70RvNuSp63rWiTWW+4ByYKQTver95taONTAer/Py\nOz7+KbXcpg+80JtVuJ4nBNFPDXpcPLNXl9XugUV7Cixm5OfWsp5lSWnwGKdECMYEbAnkuC4xkznm\nspa2GbOgmkCR6Z5rKvJBFCLx0130IKZMdZHxDSwlucWpdu4NNsPBFTx5Yscue0c/M8Aq4YM5PNM3\nh3aPhtSkqHNBYh1g9yRGT1unqJT2Y5r9LjHBd9rVSOa6W9ooZsZAyzNjI90U5WBSa5ye9uDfmkmY\nPp3Rhd/6qGP9QUDztaWNwJjQFliyY3ysvXU8QAffUM7yK3XGGP/O1cA6uOiBbj93klkWRizYxZZQ\nLt0exLSnth5y68c0c0793PKcEanb1r+9tmLumFUvRm+S0S2pCWa1iLEGXidosJmuPxzj8KQf7kDH\nczCm3s2GOtCknpmrBRgf5ji/OD4Akw+jxDPtc8e2q/J4QvPpZ9z3lPDjv2PmvFU+d+LoDUfcxxjk\n0lMCOkeBXSbdVkpA5pj8KWEYa8tyFbmO15YlGDyXRtMYo7fW4ZAp81O/t9atLf/NM0950pfQyoIg\n90BC/m2tmTMuvfZtmW8lfdPt5/RP4/bql6wZ59KQar9t8zTH7ZtGO23V32lzndvs7Nn7T8FHzwkE\nlBKbOnjBw5/yOZlGlIsxVqotTZf2fT2cAH0IRursdj1JvfPhvTP1NR4rtz9W3vu7LWgLb2oelDJV\nzrzS0NY+8/e5Xz1cyaQ7zuYCm7UxH8cypdhf09sLS80VLqfNuFh+u4XDMpMZeMedHgsGvGP3RAfd\nPPON8XvBPMbL30Gb+im/2JvgJZrboh2/c5JZUjg98L5nzLWJMX+JSS7ib8ON1bHKWm5QE9DuaKxt\nM+pumbwxXzDXpLbweVFj671+x+16tMa0pafNLXwx7aDpjo0Rl42NT84JMFa9FL05mrGO1vOgjmav\n60rGrLambZe4M01pKKWN34vY/GgmzKAgTx4r/ZSlY0z7AvTEZU3mmZNaU2lNjt9W1hq3q+nhJBkL\nYtFsDtRpba+1b2yMuL/6t5dqbOGwXAy0b0l5nXjEeEGzlyyUo7n475w+e6AtOA9i45vLYG0ItxST\nN9XmMUsV7z0rsjgF1oISaQcirHra5y3RUl7Qj8tY2hVXJGspyHVitMTatej0wLMscuvG2q+jUaxN\nNnXB61tJn3OskVyLpeRdCbRhPZTOk9x2zcMhU5H0nMYBORMm9cEBmrmsSZHaBeYNEuNMmc11TcVU\nlN4qL+IvZ3kmu0eX1X8N0zS1PfevROuWmM91hEOOJdKEmdsSKqX4Jhi9rY6kBllETKapM9CpE1M4\nwSXGyFY7oEfHClhAWIdC6EssGGeKgXP6HCsr4gu0nHaaaFbddtsT22rTs2JEqpZhTv/qtjsNBhYp\ncyViiqerEcYGzfpbl9c+Avt0HG1P+a26rZi/5t2Bht98wAT+5jIp/8+aFHy+vS4vIuaBkXinD7a0\ngMfO8s08Xw306vc8zt6Zf9Y3sb5vqm2v3VgfPJypTTPe/EFMKZaLz79zx9eDlPDLAd2v2NiV0lX7\nzLhU2dQ5ZqUWRI5f59XBfWopPzt1GSPqedq9xJRPaZVp+o36m9Sx4ri+fp5a+68L78M6aKK5S6yo\n0nql0NWSQktZLfFyJQtHyxmHh1+Dp5Fg+npmIh+8AHi2+TJqJvOk1P+DZm4vZ80atFgf0RtD3U4p\nxLS0fobnvA9Aa3rvt2c14B0fMebRBSg5H7CJhkvh9+ZiiYWSqpvbZgnkWkkTZ8Z5Zk2uqW01zjis\nE1e4TkpbiPh3iDET6ucaj9U3a5MJTMDYmWWWxLdo4ba5fR4TXdYSjhon/nlmKMBiKo4jaAZNgRaG\n+nvmzBnvYMtYP0TKzpADDdp90e8tsL5DzKUqpSn1vFSYeG5X9vKaNZGsD+Pdu5Yy4fXvWPultNYx\nx0pdi5J2cywZi74SU7CuS2TVy0keKoEUDg6u5vY5diWYbtP7/nVcmLpmfF2zPvYuVr7WOnqKyFIC\nm04kK4qeWiIEQ1n3qonELYpSf7xuX1JjFYMcwZrCmzqbX+Or2/82xq1uG1o7l87r3LneVCiAxhLa\nGLoi8ayjHKKs3/w3m4xWB7wsNAu39cwyua195IwbZ7rzcUi5BzTGXBPrufW37kdqLAA5y4KWe4L/\nrX3SHt4Uk+s2vIkWm1/a5M+BmDvj4YmZybluaY4Pr0Hv62Cw5oJV1nJrNJ4UHa1kxqWgVJqJjDpn\nrY/nmF0ps9lbW0W7JbQ30boxqyP1v4UnVxOgXKxeUy3t1W2i2dosX+o+leApsWibmvC57VUYPcd3\nqnOmey6kfC3L9BYZfxBvSa+OT5bTD1xpHEvYqTPZdT9jm3IYtGVSMmFLaAPOOt+6DSYoEUR1xiAH\ncvue4zKU1K3LX5Wou2VC8d9eWqjG4b1PmeLzizMTZrjF0OisNmliB1VqPMzs3Jb1ASxzkO8t1yfo\nWG1perhs7P384swE4+oygBO92ejmHobYt2BTW5ezTN0SsztWx/pOKRwxfHwkWAw8EzoGpUye099U\nG02UqJnrnoJcqVzX9Ipd4tdUC1umei6dfFY7jsPy6Mo91Sbl28asG0Dd/ng0eW3lmvdNv9HfoQpt\n8GbtCxxynudM5ibtiUgRc8XwlvpsMS1sbbqxyrVpmk0DYgzeJp25ZqxHS6xsGwKQ26oz/+tCkwsy\nNBTfpsqTl02e2KROuQReu/cGm1mJKihvmbge3vnFycsn9GUR3uSyXAduE+m0eO6V9cx6PbaxjLXc\nZyVmqaZb05eqV/IcOFN4rfdejAL4vD4wPbn0anfFoyXH9ciFnENfNFiuoEiC0WOEal/Nm7yetI75\nJyiLW0g1Lo0vdzIyXpFxVhbwsn976Mj+ipCxpLnuG/9tBc+Yfm/ZxfKDdaDPm/SxyZujLXPLx95b\n/anTfkmb1vdLKakS643fWSnW1rxM9anOe+ugEA2eYEse95xLSO6H1++sAYtpvDpgMQC34Vke+pQX\n/V4LOA3ehwHzWjRZDIu6+tz6FHjWl1eO3zcZ91ytZn1nTyNZuHUbsMpSmjzGjJ6gwrtUirXI5ClI\nFqQEgiXYc3Y8ehD10WN+SYnvHMMde894mvhAlibO2anWFLxlNz3ZUuNQSpv+bm2akzGamvqpdU5J\nteYo+ptKi/VwtQ0xPsptu+5cB0wtYWYaa+45A2bRUGeAPYFlCQ2vTM7EL+1TLv2579sCtKPz1EXq\nmfN1228LclY8dmJcvfZz5xCeFZnuuebc+uqW61vz37GB4mubNFgmvVXOSmm1XA5tPpdoLM8E8wZd\nQ+4hjDkmtbX+XccayHmmA4RoR+cU5Lh0KXPdo8HD59X3cFguXUpJ6e9ex+Wp6x5pV4ddF4/OLNM9\n9cx6XiJh62p2kbjkTR0x5UHOskbqWaxPpWfy5eJgXDlmaxtasNRaKrVgSoRuE5imRSXSTPu3gaN2\n1N0raxGlpWlMq+ZIOcYdC1Doyw8YYu3lrF3ys5gmtdrxMt2sst54WFc9M67UUqPuAy8nlkCO1SJS\nPSJb1/O+RSmT19WQMahjSejvWqLwrP9zBWIMiqPudQND2pzzCMuRjtaESJmcliCC5osxvSUo9G99\nmo7Vbs646bKWlaTLpnDnMOK9wWbWTjWvvteeFsjcL/5mVr8t2i28bUGsLcu1K8WVs0NUj0OMT3La\nZGg1GFfH/LFMuZxggzfp26Kn7bKpeqnJXcd8y6GvLfM9dk5czK2bhivoQc5NOCk62oASl9h7X0rX\nBKNbH6FJZ5v4WHV9vFSb1vvUqSaeYElZDRaOOh+0hNFz8uw1zXWh5Kba1LvSlM+S+TGNOdwU2sKb\ng2fCdLdML29ix55pAlImSOx9rikc8209/xDA56WVuBb4W2fRxeqmxssza3MEI/piPdcXUebii4F1\nsg/XL5nI1pVdpZAjXHPnWoqOOjGBNoUs8HnxHYaiCxymacY0kcC51oFIeWAD5ZuYetPSCFYbTayw\nHA0qkvb7U2Z5W5BzpHgOPXUshybl2oYija4DAHUlW85vCzxNyeBt7vA0pZZyOhikgcvhn6clrfZQ\nt46kbwrzizPh8kT87UFd+mJWAI+ZpiFnHqSOm7L+jh27hcmfI3RSTBLjCaanxHot+QYlfORBUTCu\nxHe16qbKxNqJtV+qQSzrwTu9Vv+ts+2aXG7P2rc0XTMXd+pZbt026WijvGdF5ODJnV9NrKMPDYqW\n12JSM0cq5oA12NZOL0jFlLRFWYuW9dXxFcJaO7A1wO3qbLuUpuffVjZZzGLw6MeznKuEU8/qWGAp\nraI385SW1215lpM193heeLSnXA9NS5NYxjStu5Rfzu929NrkUpwieQIi57jopn58qeVQZ7LFLIS2\nfH/0MfdsviZtpXCX/La+jS6n3+fS3bRvH4rGj9HRLfUXSpCn6nnPtH8Vw7G+umX6ajHTjvusyx2c\n3efSAy3qWRH8zErEiflynoXAdTw8pTC/OLndMnbQRuy35z97zzymjQXSeD7EXMVcK6ZOGU0bf+sP\ngclF/DEUkbJTYJtAE38nZm7xc+8KY0vqW353DHcd8Ppcah1Y9XLf1b0cI6dszgUPdduYVpzA+iZN\nrMAPEaz5241JyByEudaA5e941/d6ddGm9VxEKllP1nu2EvgjMyNY1oSlvTTdlr+cM3m0lqprYXm+\ncI614+HzAPWfbb50NbrWegyxSw1y2i8Fy3KIWRMicea3wLPecvzotsGyhrtNBjRmXucECKxNJ16A\niZnQO44YwIwLE/reYHPiGCA2w7lPKGMlf1hWwvrqVvQYo5SJyq4Aklms/qe+VV1/PfY89h35+yOo\nqRnJ6m9J4JGXDEuA8dS5icgTnN4Ye/22xiFn3GPl6sBE1N3TXjmMG4OYJuZJzAkQDFwnpaWYXpTV\n58/hnT72x5tY/MEsXzkl/WMfka2ImI/uQYm/zP1NTVqrjBY4YCLLhM/1mb25sb66Jc82X0bLe8+8\n+VLCPF5cJwWpcqlx1y5mG9D6CTN1/MAm/pKnaS3fFJPy8PED4Vz2GH72QTWNdda9c2IIXhwj9qyp\nL+kJk7b9ZN2GF7vIEW5NaGxjvLxv9r78+lS7O7a8lsPAuVoff1s7pjyhkTOpgFNEJm5V9RgNDB/T\nKCxo6hwGYdGu22gbcoTvtKFtQVN3jk6rvbYgp62K6V5qggNyzErLDLKYjTVyrG2Yubrt16/eyL3B\nZjDBdTu8scPqC0x8jZctAq7Ht7GiXMmNpZ6A8G6gRZmUWafHr8T0ZDr0b42zDfBcnCbxn5jg9eq0\nyZhNcZW4yjltdbliTsDA0r4xQmL+iOcrakbhKC0LCatd3D/25MFzs+3Dxw+Y96BDO3Mb2hfds3e3\neZQvX9ggUs2ei/npugwzZ+55dx5ooeIF+VIQG2uLJqtM6nmOUOF6sTKp+INFQ06b+ve0IaePJdD1\nKqaQtU0Iw4nebPSQQUvY6FtdMNH14YvPNl/K4eMHJrTi/OLMxLFUPMlP9GYn8uEt2nQ9670G0NFm\nrrsGL8iXAhbI+jn/79UteS7in13vuXgMuUKnxKzOFUI57daFXByxclk+el1/w6uXSvO0JLcVyHr9\n6o0cPn5Anjx4HrSqPmpYRMLz2PXD0NhaMAA/r9GzQMiJAUwrqNQ2ePEBhjZpjLX3vsdiJyD2zWMx\nLZHy8ens2ftPw50c1FwG0HuNRez8bM/EBsPCh9ZHCOkJrAN72rznwBva1e+0OxDrU2mkNjeY6Qke\naxUixdi58yLm+ul2SvDnBCa953UEZ53v0gTawG+NrYWzmwrqeMj5/9zyTIQ3weCn7tm7u+I3i4y0\nK8qyecz/g1nhq7NJjN96QCAUdGyAA2vMyLos2rP6qwN3/GF0+7m70VK7vSyI7d3W7Xjmugfe2fQW\ns+TizxEO+nkdv1vTa/2fAzlJOW1ZR14/Y+Pq+ugxJi4lkD9Cyo/ChDw4u6/iN88vzsizzZchGMaT\nS//WPjJH2i8uzYX6rIkRF2CfnIGZnLWjHgumTTO8J8G1QNJjon97vnwug8Ykfx2fMnYfWd3J7Llw\nIr4F4QkB/XfK10+9s5g6Jeg9wVVKQ4kryND1XuQMhqdldD2txTQTWkypM63A4IePH5D11a2g3dmc\nZvP79as38vrVGzk4uy8w0p69u+XC3CD8ho9/faMn66tbIaB3cHZf+Juz53iN3ZpYN+6fjo6VHlOe\nsN545wSDGF9MoDCelFbzJmsMp4hUUo1jtKbexfpgPU9NfqvPqTHygC3E1B4HS+BZv7Vy8vofE2a6\nHL8vTphpO0iAesxEOX4m1smfbb6UG/dPy/mPb4f2oak17Nm7Ww7O7pNnmy/DdtQnD54HoQE4dGR/\n5QPqQJ8OyOEdcKcCLN5pp5aPnaO9eBzr+Jht+4p16oqUzZ1p9C01rqnyXlslZwzkQmndyjo6IymF\nUr9Om1Iwn5HwwuUsf/zZ5kt58uC5HJzdJ+c/vl3RpmC8w8cPhH8ArK9f/fWkiIjMHj8gh47sl2eb\nL8M/jhOAptjFgSgDJoeV4m2+0feyW5OLNUGOv8nlYmazde5eylLQvy2oK+DRvqWp2nAfc2MYHs6U\nUsuJC3hmfRPhWlrXPEqqjkmT64OnniOIptuD2Q4A8x06sl9ev3ojp44uByFx59FZ+eUvvSAMsHb+\n+tUbGTzsy73Bppz/+LY8efBc/m3zpTx9/ELmF2fk4Ow+ub7RExGRwcO+XN/oydPHLwI99wabwRKA\nmQ/LAfjhFmh6cyR/rl/raX09ntocxPjG/F+uV8IkMdBzg3Gz5aXbbRJD8IRUnT7Fvl3MDUrhagNy\neEokw3RvavrodzFTFP9fXJqTa0sb8vTxi7CGvb66FUxjwMHZfXLoyP5gqoMhefKA6S4uzcnl/lpl\nzV1E5M6js3Lq6LLMHj8gm9vvbtw/LcPhUC7MDQKtbK7/8peefP7pIOC9MDf6ze5E6uYSPQY546pN\newsHxqLOJZGp9lPtApqY4KVuRxNItVX6fJrQtM3WfHQG7Ppin9S6BSVnAsG/AUMdnN1X8auv/noy\n+OciItc3enK5vxb88CcPnovIiOGvb/Tk2tJGBaeISO/YioiMmP7SmbsiIqEe6mpAIA9Bw3uDzfA3\n9wvPIWA8YVd6w2rTSZjrX7YFdfG3ZerWhffB1DlQOjeK70fPMVV0xBw+rKfVrUknIsFs/vL7T+TC\n3ECub/Tk0JH9wWT/4eZCYHKY3b1jK/LkwfNQVmRkVh+c3Sfv3o1wDx72g+AQGfnpFpPDv7++0aus\np79+9UbuPDorz7bNftbkKMOnyz7bfDkxBnocY0tUelz0uzrM4NXPgRw3rS5dVv3S+E+bUGLqx2Jd\ndd0ehlj+BIP1rvE21RyzMMdU9Uz66xu9wJAAaGqY4DC/oTmx3/z6Rk/evRP57KMVGTzsi0hVe4uI\nnDq6LIOHfel0OgEHAnVgfODqHVupLMsdOrI/uBeIunO6rLZorDHQprZn8eAjl96rnqORvDZLcU1D\n+8XuY7PclBJoyy2dZrttteMyehMfLjZxATHf6OLSXGAqETsrDczMy2U/3FyQzz+tmvdsuvOS2p1H\nZ+X8x7flz7/15PQfVoJp3+l0ZDgcDcm7dyLfnFuTq7+elLdvh/LZRyvB/H76+EXwxRFD0Et6HAtg\nM1+PHYN2dUrGvm6ZkhhAKV5AzG2rA20zSx18Je7P++hvFqO3AbkThzWfyJhBBg/7FW2OMrwH/Nbv\nfdm1qxO07w83F2TXrk4IpsEigCDodkcMvGtXR85/fLvCqAdn98mVlQW53F+TKysLoW3QAmsA7WtG\nFqma7yISBIo30dkiQB+1JZCrtXInWpsMV0KDVVYkb0ViJ5kqhnOnrZq28LXG6DkfiAdLa2kEyvDx\nb9w/LW/fDqXblcCozEQ6cUZE5MrKQtDC0O7McJfO3A04+Px2kVFQD8ICuBClZ9fg0JH9weJghheR\nSt8AHKBDmdh4WWPG9VLlc9/XuUpqp5gr11L4EBlqmm02odENxq2vbkWDCxp0cMma2Fad+cXR+jUv\nZc0vzsipo8vyz3/aqGh0BMJwAMS9waZcWVkQkVEAsHdsRb45tyYiI2aHJj58/IC8fTuUKysLcuP+\naXn96o1c/fWkDGXE0D/cXJBTR5flysqCXFlZGDF9f4Tn8PEDMhwO5dbv/eC7946NfH70idfTQR+S\nbUAfH2qBNXgkr/A/HjMeD28M63587xBOxuu1433LXFwp8AJgdYJz1pwsCSKWlM195/FGqq06fQa4\njG4NpqexrfeWRvL8QGSUWcIFuedXfz0ZzONf/jJKajl8/EBYSvvi27kQYAPz7tm7W3rHVuTqryfl\nm3NrQWgMHvbl0pm70hGRTqcj3e1R6HQ6IiIyHA5l88FzubKyIM82X8rl/pp8c25NTh1dDhr8cn8t\nJNcgC0+fV76+ujVh7vP2Wb2jjN0XC+pGrq3AKFtXurzug8Zh1bNweKZ5KSOhvqbJakuDNSdTwWPu\nX6qvsW9iCcaYYI4J0hKw8HSbILWIxkfQxz+JTB6V5L1jmnAs1M/f/SZPHjyXwcO+fHNurZJ1BoaD\nVr7cX5OvtzU7mP/Jg+fyD7P7ZDgcjgJuMhII5z++LZf7a6Hcu3cjnIOHfbncXwuMCUFz59HZifV5\nCzAuzMwnerMyeNg3T6nhMno8GGJM5JXVdFnMo+nmvz0hjDb0c8ZtvbOYz8MZY4pYPxgX/58LpTGM\nXGFg4cph8BLhaLXVyEeP+eXckPbNdWIJH8igA0/QoNi4Mr84ExJdQidoaUxkFJATkRCkg4DAUtue\nvbvll7/05LOPVuTw8QNyZWVBri1tyJfffyLD4TBo4Vu/9+Xrc2vy03bUHUE+DtbduH+6sgxnWS16\nww4vlWnNOq1ATwy/Z5VZ7Zb46Z4i8HClcHv0ldBVZww9OnfKr2+jnayEmTp+iGcyIYFERCpmLP7e\ns3e3PH38IvivON9tOBzKwdl9cm+wKdeWNqTT6cjl/lowt8GwV389Kd2uyNfn1uTSmbtBE3c6nWAJ\nXN8YMfmt30dr651OR+4NNuXSmbvBNx887Eu3K3J1W+t//ulA3r4dWQM/3BwF/a5v9IIV8cPNBZlf\nHEXRsc0VY8NmOj/TGgm/OcCoTe2cb+J9H2+yIH7gmakWk1ia0rMOPGuA31uHbnIfUn6559cDLLeq\nLqSsiLYh5T7kgHlTi3WPt1XOmxzeYGpzFEE1TASYwcgkm1+cCULh3bvxltKnj1/I27cjQ+TU0WUR\nGZnhvAbekVH54XA4CrwNR8G4oYhc7q8FJn+2+VKGw6EMHvblyYPnsrltkveOrcjl/pr0jq3Ijfun\n5cb90/L5pwO5dOaufP7pQD77aCXg6R1bkc8/HQQGRWYenxyj3RELMA65t57kQkojWKfuWJDyd3PM\nV6s8FICm2Wo31RaeW8d5s3DyTsWxoOnYNy1rCdhSmNimOr84E03WsCZErg9jZTghPRU4+HQWfJCL\nS3Oya1cnJMA823w5MqO3cZ06uiyX+6Ng2bt3I0b+cXlBbv0+MtdPHV2WS/01udxfC4wsItLtivzD\n7D65tM3QCKrNHj8ge/bulqGMNPtwOJSvztyVG/dPy5MHz0M0/8rKaF0eO9dExqfM8thwH7Gsx+Yf\nj6mlFWPaMAc8bae/e1tBIO+5pxBK6uT67pxyDDg4uy/sVEytOlhtNi2TKp8av1iZFEwtYcbSIrEN\n+ACdVYf19S+//yRo71u/jwJyWLrqdEa+OP996uhyWDt/8uC5zB4/ID9uJ8yg/A83F2T3f+rK8N14\nCN6+HcrX58YCYXabaTcfPJdbv/dDOu3lbRNfpLoGzym4vLsOE5Az+ZpcOWxByg+3YiYpczlH09cp\n3wZY7gzmD2cuzh4/IP+2+VL+/FtPvj47ynTklGnLoklZQTvln7fVZtGmlqaAI5g0QJNB28FHFxmZ\n0OurW/Lzd7/J4eMHApM/23wZtLTIeB2d17/fvh3KT7f/KIOHfflpe4kNUfUnD57LN+fW5H+c/teR\nb779b9eujmxuMyvM+59+PRmi/YjOi4wYHO7BoSP7w6ThnW8iVTMSATvkyYtUBR1vkvEixrG4SMpX\nRTn8b73XFzHmTK7S8hqaWhMa11BGy7Czxw9IR6SS/jwcDivp0fomWP0btLELliP46tCdqlcnXibi\nnDCTC95EFBkPhPZPtd/KVw9Bw8FHF5GwGeXL7z8ZEdwd+eOvX72RDrX3xbdzo6Db9t9Xfz0pnY7I\n/zj9r/LunchX2xp/166OfLWtfYciYb386q8n5crKQiV6/812xJ2j6uc/vi2dTkeePHguX525GzbE\n3Btshl1xnA6LgCKPCyYWZ8xhDJ5tvqxoekuK60kYmyCpwJHF7DlmbVPGLDHjPeA6Tx+/CC4V8iy6\nXZEry6Nv++PygnS7Hbn91750uh356fYfw3KpR5NuRy8J59DG3ybGL6hTEnAsee+eAqshpRm4jFUW\nH4IPauTTWvA/crtxmgsSUxBMExkF5u48Ohsy2b6i1NUnD57L27dDeft2KKf/sCL/8/Yf5etza3Jl\neUF6x1bkqzN35cebC0Eo3Hl0NgTxesdWKpL+h5sLwcRHGq6IhICfyCg99+fvfgsm/uX+yDTEmFzf\n6FU0PAs0zcS5WsIKVNX5hjHtlJrQJRrNajdlFlv1PMB+ARGRS9s5FB0Z71QUEfn2H+/Ju3ejOSHD\nkQIYylgBIHhawsQWzTnlm5j8dXm1VdPd8vs4wqyPSNY7yxAE3LN3t9x5dFau/npSrv56MiynAT7/\ndCCnji5L79hKMMW73ZGGPnz8gHx9bpTJdvuvfXnz7+/kx5sLMhyK3P5rX37czoHHkpiIhCDe4eMH\n5IdtIfDkwXP5/NOBPHnwXD77aCVoCc7K29w+s+7i0pxsPnguF+YG8mzzZYgliEgI8v3yl15IldVM\noM+I5/Hk6LDH1LkTRwf/YuAxY4yBvbKxZbdY+ZyIPgTnid6sHN6Ow2w+eC5Xfz0pt37vy+k/rMip\no8vypz+fkNN/GC2pnv/4tmw+eC4dGWl8BHBj8aNUX3M0fU6Zuqa5bkdDq0dJ5dTxrlbi01d45xrv\nNwdAMPC+8Z9u/1HO/ddbYaspNDd2q319bk2uriyEPHU+hQYMLyIhEDd7/ID8z9t/lDf//i4k1gAg\noDgohw01//ynDRGRyq40aywwDnxclj5dVqR5UMtjttyTaNugQUMsQSoGVkCRf2Msb/+1L91uR96+\nHYZ4zo37p+Wb8/+fvH3zTq7eOilffTZKgf5xeSEE6H7+7rdimnYKcgKoMYhuahEp+8ietOff+MCc\nwADG5XV2mMp79u6W8x/fDgOPpawnD57LpTN3gwD47//5pvzylyqTi4w0Kpi3d2xF7jw6G8zrm//7\ns8Dkn320Irt2deTqykLQ1m/+fWQuDB72Q+Dtyvb72e08e5Ex439zbi1c2YyTcOYXZ+TL7z+p+NJ8\nMyvKiYwz5/AvtdabczsIb6bh74A29fNc7ctQ6q+zZVeyzGW5OQgcbj1+IVd/PTn6LmfXRpmMu0ex\nlD//1hu5YDf+m4iIfPXZeH6c/sOK/Lg8cv++/P4TlyaLxjYDiCl8MRcthw73fvQYQmZUjxhtcnLQ\n7eDsvsqRx4hC6/PVkXjyy19GFyzMbme/zR4/EJgP5rbIiFk73Y78eHMhmO849HF2+1goJNqIiLx7\n+07gEeDdcDgKot36fZQZ99lHK9LpjLQD1uWHMsqY++HmQtjG2ju2Is82X4bEm4tLc8FMR+oumI5d\nlBh4xwTj7xytwxl4FqOwYNGQikJb7zyIMU5diwGxnvXVLdncFvw//XpSdu/uymcfrcj5/+e23Hl0\nVrrdjly9NbL+du3uypXlBfnsoxGD3/5rX7q7OtKRkWWIuZ3jHtWxdGPPphHJB3RLGuLJEbtiWGTy\nyCOecLy2DIGAdU9mBBGpHP4A0xtr3KeOLstQRjntSHb56vS/yu7/1JWftjWwyMg3/2nbzP/63Fqw\nBnrHVqTb7cjnnw7CDrevz67JL3/pSbcrlc0u3e5IY3/20YpcXRkLFpFRcO7Oo7Py+tWbEAC63F8L\ngUUwPN/6osG76Sbl5+ryFuQEvlKg54nlu6ZoaMLcuh2eP9c3eqMjwG6dlK/O3JXvfzkhh48fkH/Y\nPvP/3XaexFdn7sqf/nxCRCQw+HAoIkMJOxVF/MzFaUCOhk5Z1zljafroni9kvednfFoLm1bW5g0Q\naPmEfPMJH/QAjQ9/GNtLEZCDL61PiQUgsg4tf/j4gbDsgvcX5gby5996gsA6jpI6//HtEIjDxhjE\nCaCx+YQcPs6KT4oVkZBQo3P9PUao65cxTm9Cte1/e3hjbel3Xn2RyTmDMeXDPUW2v3tH5NR/GR3l\nfWV5QU7/YSV8cwTmPvtoRf7X/zkn//0/3wzfhduoO0bTGtu6bdbOjMv5cDqwYTG1iEwIFaxJY5cY\nTnrhTCb4uTj+CUtkl/tr4TgpXnb78WZVC2MTDE6kCeW2GR++PzT6pTN3gyWiz6TDeXOX+qOAH58f\nr/sH8K6g0gdM5ox37veI/Q0665w8k0NfGxBr4+LS3GhlpiPy9s32foeOhPMAb9w/HZbXwOz/+Ml4\n9yH2QyBIu9NMCpjWOFYYfdofy5LEIuMz4sA4YC4c5QymuP3X0XLJnUdnK2fC4Qw4aGw+8RXaG/W/\nPjsOoP2v/3NO3r19F6wDBPJEJPj1iNyLjC0HkbFw+OHmQviN7bB8+QQzsj5QUo+JHisAW0JaKOZo\nQ+vdTmqcUg2fU073BfPnx+VxkA3xG6yri0h43+2OhIIMJaRP4yKOppAjWHfaSqhkxmnTug6kgi5P\nH78I/irWPhGcw4aQU0eXK5cygHH/8ZOBDB72wyaWG/dPy4W5QWDyS7Qr7VJ/tI4uMj64Eeb4j8uj\nyDly3BFwQzBnc5thRUYCBPj++U8b8vmng7Bkg8Mmn2yv24qMfHPL3+akDo7qctAyFeDMeR4DL7gG\nGvn/pqDTRXnVwWrfg5gJD4Cr99PtP8rXZ9eCMrh6axR3wTLaD9v5FP/4ySCY+aeOLsuTB8/DISM6\n1lRnPKxvpfHWwV0Sl9HQ2bP3n4Y7IdnZV+dbRyGN9aEMIhLW0mHOIt0UQoCvTsKxzSJjxoY0Fxnl\nq+MM90v9NflxWxPzWjy087PNl/IPs/ukIxI2QLAJbx0kicMiuT/6WiYsu8XGRmTS1C/5PpbU13GS\nJrDTvmeOywI4OLtPfrr9R/nq9L+Gb3T11kl593Yo//jJaI50d3Xk1H9ZDtofFp6IuBmL7xPaoqXb\nRkSWy+o6HKAC8P1pIuNgFB+4cKI3K71jK+EgxzuPzsq1pY1wRPPB2X1Bs79+9Ua+Pjs+Xgrr3d+c\nGzF0R0a70rAM1hEJu9/evRvKqaPL42OiReTPv/UCnuFwKHv27pa3b0dbVUdaYRjSbwF3Hp0Nabsn\nerPhf4wJzHYeJ/xG4oy1BGa5OnrMGazvqZfpLO0Sw5nCnwslEf5cIceWzZPt3Icfbo7WxcHkp/8w\nymz8+uyaXPrsbkhX/vrsmgxl9J35quyddGlSEHPDStowE2ZyBtlriM1/Duyw9vYmLwQAJv7h7fXy\n8x/flq/O3JWLS3NhKUVkxFzYgioiIWHi8PED8u7d+Ix3nDpz6czdEFn9cXlBLvXXZNfubkibPXV0\nWa6ujKT8le397Jf6ayHH/d82XwYLodPpBJ/92tKGXDpzN+xcuzfYDGY6ln+wjx2nz2itbW1w4b+t\n5czY2rb3bfifrhuLdqee5dBQ4pOnymqXUAcROzKKuEMBII7y4/KCXF1ZCMpgk4K7O50N10Sg5Jrx\nKBeCcSnmLo366uU079384vj2VI668/Ia+7fWEhuW3hA5FZGJ1NRdu8bnyuHMd5wbB5dAm+8iI/eg\n0+3IV6f/NUT3cR87XAFE2UUk5LUDh7dUw2Z8SfDGWq34UIGZJ1dDl7grsSAfrs9GGqw+k+Da0obZ\nbqztaQTRpuEmWDi7/CLWYMqE8AIQwKtNRv4gF+YGsr46OmQCWh5+OUxe3k4oMmLkXbs6cmFuIHv2\n7h772tt71H9cHkntS/21EDWHMNi1qzPKfd6W8u/ejSOvu3aNzoT7h9l98vrVm1G23LuhPNlOob10\n5u5oKY22qP5wc6GiDXbt6gRBoQUe+mcxeWws+XeOxtPQNMDk4YqBXlnIobnESvHwQcAMh8OwgQm7\nFaEYgF+3kcMDOf2fpuBI0WDhbP2EGW8Jhyexd+kgAnVgAmhy1uJYL8cpMrw0xxr9Un8NqydylbS6\niATNjjVz3KsGbY+DI3kzC+hAcE5kbE7zrTMcaISlojeraC3P41KqAXcKmiwRaYsmp25dC9L6G1dX\nW/fWtz3OMSujKa4mgqHV4561lNGZcl50metaFyoyE4mMfHmYxzDJOjK+RmkoowQZNteRhPJ0e/MD\n1tyR085XOXUpcoEECuyi4zVXvpQR7gN8bT7WmjPi8DevMlg73FKR8p2KDKMvTf3Xptqr6coDngNy\ntGxuu9P8Fm0JieL70RksE5P/6f3neuLGAgjzi6OjpQYP+yFf/Mp2EOXg7D7pdsfm70/bp8OIjJj9\np+3g29u3o9Ndsdlkazuq//btMATSdu3qSO/YStD2u3Z1wlHSIqMAH5gc1zphb3zv2EpY6gMTf/Ht\nXOXYIg44IuqOqLzIODNOj4UeuxITUyRvZ5sGL4rPVob3zVLt5U5WC09qF1/u2HCE3qqn6+bSXGLZ\nlJapK0BMH72ksiYkx/dDkgw2dFg+G25bgTD44ts5OXRkv1xb2gj3mF2YG4TdYRfmBsEk41Ne+a42\n+GPIURcZMV+3S4kwZ+5W/P9TR5dDEgVOkIVF8c25teAyIPp/cHaf9I6thB1rn386bh93sFkRc/jw\n1uSzou8lvivGUbeZgtSk8vzs9dXxLjJuy2rTu5EHvy3LIWVNpEx8/s3xIj2mMbotfKXgRcq57dLv\nnAuVqHvMt2jLPNH+Kvu0eH+iNytffv9J0JY4CRaMjTRZPnkVh0ay2Q5AuR+XR5lRyHdnkx+ps9iz\njptc9fFSIuNNKdjUwrEC5L1fW9qYWE2I+YOxsW469jth/reBq9TvF0mP5U7RU4pXpP7KQh0wc92b\nBCi8gIvlH1lBGvbDmRb293l3GwDMju2lvNyFE2twJRMCbMiM+nF5QS6fHW1I4VNtfv7uN3n6+EXl\nznXksWNXHQTQid6sXFyaC/nSoFNk8oIEnUTkSfqY4C3JdssV2NPY0FL3XdttNYW6tIpMzve6+Jvw\n5dTvR9fvdWBOZGzOeZOM6wC0OYwjobBr7aftgNu7d6Mz5q5v9AITQ3Pf+r0f7lCH1sY7rI8jCi8y\ntgBgdl/f6IUz4bCLju94Z9qs1Nc2Jg/jmYYFptvw/p42eAokp04b+KfR31Ih3QQa370GKAlcaF/I\n8mNFJBzLJDLahoibSGEea43+2Ucro6U3kbDJpdsdHeiIq5WwWeXw8QPh0Ec827N3dwi0XZgbrb8i\noQbHS+HEUGyoufV7X+YXZ0Lc4Itv50IGHHxaCAa+forHIjW+dQI0uWZhLliBVw9PytdFn3P6rQVb\nyaSvUzYVyKsTUNPPSzSzFRcraROQPHiiCXha3HquN4EgUUZkrBHZjBeRiaU71sK7dnXk5+9+Cze8\nYP85tDrgzqOzwQIQGfvzWKpDHXYpYBUgm05EwrKZvilWZPLAiZzgEZcpNal3WttOAyzr5H1p1Rzw\nNix9KGBesthW5E9LST1ZmcnnF6vHU4EhXr96I882X4YNI/CfRcYMBK0PLYzjoEUkZLBhKyJrdZwu\ni/3qb9+OLmTEOe7IhsOKAPLV9+zdHTbY4C449E9fwcTBR72ZB5C61DJ2dpwFMS1Q53tadUrxNLFa\n6mjznHa0MGkC+tKNnYCSdqZ291oMcv0gK4MOndMRbz71BRFxjpQjWIb0xzuPzsr5j28H3x3MzDny\nnH1nnSrDKwZsgegAo36WOx51x7KOBQAa67RXiqMJTFO716XlfeLNLdvoSiZd1/utQVsMmhnwHFfg\nQPMzzicPnsvP3/0WrAEw36Ej+yvJKCd6s3Ln0Vl5+vhFCLLt2btbTh1dlvnFmZA4AwHAwoGvZ0JC\nDk6rhaUBmiHRcXgBjq+2zM86PrfnB1t1S45QBg4tSL36KR922oC54K1UtAVtxqVKoaRvuTQkr2RK\nBU20iZUj2TVzW5FiLQxwDe784kzluGgwFBjy3mBTnm2+lKu/npTrGz25uDQXznvDMU8i411w35xb\nC21dW9qQW7/3KzvloKX5cErW6NhHvr5aTRXls+2s8WgagLPwafM/x3z33IZUEMh6p+vk1s8JzHFZ\ny1rJDVqVQEzoldDcpB2RdgRKY9PdCprUBWtTBwfOEFDjO7WQKINgGJbHRKrmOupaB01i8wzXRXCQ\n6dE3yohU4wwi1QQgy3zX4xYbs7rvSiCFp83v2xbk0mG5TXX6YMWtSlywaZjipZDF6CUDq6PrIuUS\nyfoozGj63nEAsun0CasI1nHUnRl5fXUr+Oooz6e4ikhlh9z5j29XTmuFfw4m5z7H8gXa+KjWphht\nXXjj64EXkG1rApb0OxVvqDuGsXrv4xAKkby+1O1v1jp6CZOvr47znkukrvW/1iRgTmwO0T79z9/9\nJvOLM3J4+5SZ16/eBKaFD42o+8HZfXL4+AG5N9iU16/eyOX+WhBSYFY+DQeHVyItl/eb4/ehI/sr\nVyChHv/mCcTlvAscUs+8CRmbqCk3wnIT2tQyJbhy8txL3KAcc9tb5Whqqqfq54xL3e/Q2m2q7Nt5\nfnusHoJYuj60EzMLmAlMCl99fXVLvvz+E3ny4Hnws/lus2tLG3Lq6LJcmBvIoSP7w6mze/buDswK\nPxxMqQXQ/OJM2E3Hu9DYkhEZCZSSccvRIN5Yxvz3Et/X+9vzR1O+5TTBUggeWAHRXIbRc7kJvE+3\npzGj5wQQrA5qDYYIuy4zvzgT3umbTZBRd32jFxJZOFIO+jhqz0G7+cWZihbGWW9gUtyfhiw3bh9C\ngNfGcXHivcFm5fbXmJ/tPfO2ZsaYOEcIWO2lNLYVlWfcJZZb6TsGnjPMsLlbckvo/VuAXKtPpIUU\nWGsC5NSP+Y/4gLqM3goJBuStqXv27g6+M0x9RGpfv3oTTHjgAr6LS3NhOe78x7dlfXUrHFPFG2Rg\nNQDYvEcZNtG901s9JvU0vKU9SzV57Nx463lMcJRq8VhEPhUvAOh98SXWUNtWR118bdazxs0by8Y+\nek6gpiTwosszI0Kz4Bmf5iIi4eqdPXt3h2UvPsnlzqOzrj/KwgLP8Y8vR5xfnJGfv/ttYgcaa8an\nj1+YgTcLv/XOAq2NPHNalwdA2On26prfMSulpD+55SzBUKLR6mrxNiyRNuhoaoXUMt1j0rjEl9N/\nc/QYJjCYFIwIv5zbhbYWkUruOZ8TP3jYD8E6TYN1lJNmBtYajBeMzfUPHdkfTVvVE7VOsKtuefZT\nWSuWaAcLcgV+TBCUCC5vzErdiLoatvSbMQ/UjZs0gR1Jgc2ZBF5Z/hsRdMtU43I8gS18npawGDJW\n3qNfWySMJxUIKgkUcZ0YTSV46rRdOhapujl01KE1Vb8pziaQOzaleACtRd1jEJN+KdOImezZ5suK\nqawtBc2s0LR8p5anVdg01/RyXQ7Kcds6iKbdkNxAUK45r4VO3UkRe9amCW5NwNL4QJ12S6B0jjax\nDDwrr6ROCZ6p3b0Wk1ApaZrSujG81nG+PHG8utahFnwCrWfap8aOk4f0qbh1NVpbmud9arASaJvO\nNsdPZDpCJwZ1Enqmbrq3YQ5qhrQ6qZ8jW43xWPvhRcTEnWtqx+guKZcShKXQNLvrfQmBvxXh48GH\nSn/SdK8TELC0cAkea6AQAEvtzUZbnLmG/zmlVX8QbIzxpLTuA9blrbVdbc5rPJ5bwHisejHQ760T\ne7x6Fu4cHzn1LmbaemOUY7bn0rET9TXkBKebQGxuxWBHNXoqUKWfexo2ddtGaWAjZkKLjPPc9WaV\nOpAy11MuhlU+l6ZY2bbyu3dKo03D0vpbgLp9KWb0nRpgbRXEyqSYWMQ/oDHWroU7V1jFaK07LqUC\nLAdHUxpyyovU92PbGLdpwU7FUtqA4qi7nmi5ZT0owRFLdfTMRUTJ+WqkmGmpI+8pxtdlvP5wZLzE\nPI0JvFwzMUdo5tJhBUljfcldEcgdt1g963eO21jXvM5dQUm17bk1+ncTaBx1b0Nr14k86zJ1tRuD\nZzrHaGqTBm/VoakW13U/JE0DiNHUhqCK4f3QxqIuxMawVR89dwLlfNQckyimBRgXnpXSl/KXPcZP\n0e/VrVu2TRPS61+OkPiQBQlgGoLyQ+4vYGrBuJT2y3let5wFOthUOilzGDy3vzlQxxdOMWAdGkSm\nq/FKgoDvm6F2ov1SIZJLU6uZcZYGZfD8e5SN+VMlDGn9b+0tzwGrrO6H9XGsciXQFpOncJX417Fv\nU9eXzL0Msomv2pbPWycI2bQNyzrNpYnrvJfjnpmI9xG1zLEsdJmdPl5oJ62BaeOZNv73rek/BBpS\n7e9IrrsF0xoU1i6eBtdSMkdrW5rHqheLoKbK8nPP98+JILc1ttOeuCVxg7agzjfbyTGvC6n2W9fo\nO9nppm3Fgm5WG23fNvqhBq9y/MRUzCIXd1P40MbuQ4XWNXoTv7RJW03qx9Z6eTLHtsemfF2rHrdf\nqkXaBh0zYbDojy3/xaAkzpLzd8qHTeFuE+rgLqG7Ce1T9dHbjkS3Be+bhphl8KFpx78VP/3vEIep\n+ugxTVAKnm9VR8o18Q1TGjzHJy85ijkGTRlE96Xp92rrW5SujuT43aXv/6NB47vXdgpSpnUMmi51\npIJ1ufRYy3LThFwz2utnSQCQ8eTiSC0Z5QqZHAHlBWQt+Fvgh1LYseW1nTDR6rQxzWWzXHqYUbxA\n2N9N3J2Dku9WmgBWp04JTR6Ypvs0TKYPkclF8o4KLqUDUKKRPC3mBeyaap26FkXTOm32wWujKTSx\nJFL1PUsj1WZTyzWq0d/XHVRNoa7ULMGVUzb3I/4tQm7fmmiiWBsfgiX2vqGEzlYvWfwQIIfW0v78\nLfR/WjR+6H3PWfMvxZH77kMFi+bWLln8W4JpMHmp6dh2wGda32gnvn0dc97T9rGAoAclpvaHAqV5\nG60tr+1EFLkNyKEx18+u449bE7Rk7GL+7k6Nf+kYpoDHIqZZvTo5+HcyJpGLpwnuUgH03ja1vA/Y\niQSTDw1yzNK6/cgxm5uO0YfiZn0IdDTBOaHR35dWfp/Stm57uWbi+xjTnGBZar061ZeSVFkP2hib\nGE1trE5YeFPQNh0ezly8E4xu5V3vBOhO4DjlpsA4vKuIdTn9rORjt5kN2ASaZP/FnlurCjHclqtR\n4vLUHfOS+nVwl87NacwBXpZNwf9VpjugaaT2QzTZ204Wii1RiuSv65aUqxsxz6Xn/2aIBuOmldww\nLcgNEvGkwJ1rJbg8q0c/m/aYWZqx5JvVybkvDYKVlKtj5pdotVxoOzGpzru24W9So/9HCartRNJH\n0zXiUq38IcNO0thWYPLp4xdZ9xGkYCq716YlqWJm2jSWKqYpcddX7f3tXvvT8AnbnPSWRfGhQV23\nIPd5qq1Y/Mt7XsLkMbr+fw3HHpYrUaHqAAAAAElFTkSuQmCC\n", "text/plain": [ "\n", "array([[4289680708, 4289680708, 4289680708, ..., 4289680708, 4289680708,\n", " 4289680708],\n", " [4289680708, 4289680708, 4289680708, ..., 4289680708, 4289680708,\n", " 4289680708],\n", " [4289680708, 4289680708, 4289680708, ..., 4289680708, 4289680708,\n", " 4289680708],\n", " ..., \n", " [4289680708, 4289680708, 4289680708, ..., 4289680708, 4289680708,\n", " 4289680708],\n", " [4287564296, 4289680708, 4289680708, ..., 4289680708, 4289680708,\n", " 4289680708],\n", " [4289680708, 4289680708, 4289680708, ..., 4289680708, 4289680708,\n", " 4289680708]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.interpolate(np.sin(agg))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Multiple aggregates can be made for the same plot range, allowing quite complicated queries to be expressed easily (e.g. `agg1.where(agg2>2*agg1)`)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "### EXERCISE: try making new aggregates using other numpy ufuncs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Colormapping\n", "\n", "Once you have an aggregate array you want to visualize, you need to translate the values in that array into pixel colors. datashader supports any Bokeh palette or list of colors:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AABC+ElEQVR4nO19PY9lSXJd9nApSlxQ\nJGWIu4LWWMig5IgSQGeFhex15NGTQYuO/PXGbK8sOXJo0aDHH9A/YMEGBAHC0CFolSXu9hjD1mi6\ne6Z6ZlrG6+A7depEZER+3PeqdwIovPfuzYyI/IiIk5F5b7X2HX1H39GHTzetvcuWU2Xxeo9Xr6y6\nj+WyujLPDJ+M7lXZo/Ki8nyvdz3LP0NevZm+2U2zus3MuRU8K+OaplUDluGTnbAr5N8+u2/kntPy\neD1/2jdUK5dxiJ6c7KBG148cw2x51X8jMmZoNmDM1LsW/mkB3oAxjxWdinUj4/F+m9Fh/R1RLsOv\n4lRmy6x0lNF4q/LXFNlXo49sX6yklY57WAH+jpNjBG5kB6YH/ZV+I1C9pyvy3RWx2FmNyJiBiUfT\nFpi6kd9K/pfu+5CqET5aL2cNl2Xi7yo0zlDGafRk7V4Tj0D8ynVVpuJgrtnAvqMBigyhMvAVqKvK\nPn96Wi+bE7h9lje86r3esgDvZQ2UUdGIYa5cphyxpr3WdXNV5q42zwapKVITtzeZs9E8KzMjh8mS\nc1Hk7RlnZIi7Iu4K4rzFSp476GhDXpEn2SGzUkfO3Zums8oeYaRUAmejcYaHWh9HBmmGrcpa+7NL\ngIqO2euR8UUoIsMzqlfVc6TMjrqX5H3NspdTdmJF96ItKy7fS3bhtpaVjeBvpD/LYmiOv5mnx6PX\nPu/aKsoa7cySquLgd/AdkTvKZ6afdtRbQkfAlMjIKnzZkCxSe3Db2yFAPZhH1Cas6zmBCiGvygSr\nLDsy8qu0Yim2u+5jotHAMNw/FYHR5MxOICyHh16q5EFW5RzwvnddLXd6kDiDKDJLotlocmnjGJkP\nvb5bqcsKXrN8t43RCOOegfT4VmVWJr4HrTM6sLEpZxCtdTMGmSmT2UPv8ed2ePdH+WZ4XaNjuVa6\nSie2uwM9NBBdb+0h3FX6qu+R4e5YuyqY30MFVdkjlDXmrNxs3+ycT4/J2Ks01bbZCOKVyUwY/s17\n4FwuMtqsTCMPjiNcf/70nMWPjLh339rFZbx8wIoo3NNXlZmZSNHSaBWNjkGv/m6adYCVpeIUVRhl\nlZqJYCpxZQZ5++zh+tcMqrc9x9ciiF5BCqgz80dnospmB796v0fKKc3y3e0ILk3RMu9iVJlAo5Mt\nomgye9tlmWiExu/p60F99UQa30Pde/w8+RGtnBg9JLTSWcyWXdHunsP+kKnbxlEo14tu+D0yPIzI\nGOUwSrfmP0CDMJvvcR1GAioZx3qrAzbZfso88jp63aMVE/taDONa9Lh26o55JcJwtOsZb5Yvf0Z7\n4Vgf97xRJhqmXfv0Ex9a8/PrXNccUARd+T47kV77RyZ0FR3siqIzOiH1UNIuud69nX1zEQc22pnK\n8Ph+FKUifuo+J8XUfTZyNn6O8jyp2Gl8+snJEfAa33h6baw8253ptwrSqtAIWlD1vPb2kNCI7Gug\nHbpk+ict14uiPSPLCFIey4Ounjx1XRlgb8KpKM9wnOt4eqKMiH+mfiRPtWck0mTQUIWfKrdsQgZ8\nH7thq7Hc1aYHfEePOSqI7N3vyWG4zNCZvysjRx4qo+7pafVUWdXGrMOLJqtKOqr2cN3qWK2cRMq5\nzvJbodeR/K/J0Xi0Tceqx40mircm84zd6lSfPFNrdqUbOhBlhOosfRTtZyP3yPXePaX3LuqhkRWv\na7oWBzKKYLZSdpL1eFQjpuKjsuqqPBsXP7Vm1zjKI48Irme387IR39Nb3ateU23P6HIErdZh1KF5\n/ZgNTnkNa3T4GGGUiiJu5IEVj1705vpcDz+jR0+Zh4LzvO+NBhLpxHorp8WR3uORMcIKSpq9v4tW\nw/vH3I6VvJbp04u0ngFy3V4kbs1fx98+818W4UVydgTK6agtNQWrkRfz7T1R5x3Z5faPRl5vmTIC\n/T2nHaGI3RHw1w2FXJyqUNQ7oGL37Fp05JT3p5mHMvIMdL5p7Z0ZeWvaGPFwTi8yswPzZPf6I9Ld\nQw3ctmwZbGd0X/GO2tirVy2TieJZp7ZSlwztdoJVntOyVET0frf2EO5yJO+9w623nGDd2JkwNFdo\ngCM3t5NlWHlvnx7rK1nKmSiDrfa1R7sy9sroev1W0WNEp0vzP1rPlLysJ+t5dm9i9uTz2tmuWX0P\nujMPz0h6me9e9p23/TL6KEeidFUHbCrRGetEhjybzc5E3t2Tm+WukpfJy1yCVujwgEdmIvS8CA88\nZ4KlYEcORjtct0fO5aY9PAfvnVRjY8L6XB554NJC6amcVdRXuJzIUtXRekulUaoGBo/HJY2pF4yu\nwdCXU69RXgS1zwp083h7UJV5erAYy2Iiz+5z/sCLtFi+p0cUkXv8egdmWDcuo5BKr692GHq0u7CT\nRtBj5QxDpg7Xv3rn0PO83m+OoHbNa3S0zo5kRPc4aptOXiRX2XNVFtfeDIsjA1S64ifDdmUoSj+8\nl0VWvU9FWd5ZGl0yZOR6ukRls0Et60iyfI+glA6VDoiiTu/NKx5P5u1FTT6hhrys3O2z9u7Vi/u/\nP/3k4csc0IAjmM/6oCGyzkqvyPFFyEH1d68/ewZRmZgZ46roVq1zLVRxKCN8roZU5Lbr/NuLRkYq\nSnHUjBwJ8lfRXN1XdT2nxMhA1ePvWOfVi4eOIyrPuqn+RYcXjZE3Jt73lQm6EWMYvbeqflRn1Chn\nnULFsU9TpgMraxdVnn9HjkQZCb8a6vnTc9Rmx4Rl1YsslFGrqM33eUsQHRbfy+xdKxncF14f4ffR\nyTZjOJ7eGcqWr865I+naovUyfXrRFwfFjOjTT3Tk9qK2MhIzJuSlImMUkZXxsi7sUNghcBv5tzfx\nPYcWJdZ68N4j1fYeilB8M3WQorxDpGuPL5db4VBG+nW3TiN8lglTk7Zy0APL4301wfmEmloG2Msf\n7LoyYONl/GytzgZs8nn97hkq11XZfP6e7We+zn2ljCab5OzRKI+ReiOGv8pZrKAs+lFOs6Ln0jZl\nhWc636KtfUdDUwbOCTIvQrMsjowMydX6mHkjOoj6BfVgJMH3WTbfj9oVOcooyrLe0TKB60WOOaq/\nkqJ5NWpQlWsr6UhnM0S97SP87jkGvh7tsaNRskHadxWpPXneehnLMj+VwVcOydb+nEDkfsNyig8v\nATj6K6cRjZnnPCrGcZSRR46vx/9o47mEg9hFD/RWA+5NNG+NixOaefKkj/55AcvgRJrSy3hiQo6N\nRkVz44VRnfXnJ97YEFUkVn2iXl5RieCeU4qivWdUPd4eP+4jr2xPXkaXSP5jpatpw+hARckeHjzv\nt4cA8HcUub1IyuV7yTiLuPZbvQjSypljQV3ZIDxZaqsReXv9jJ+qP6u0cvJlnErm3lFRdZbnLsOd\n3focIl5Dt/bQiFTZKNJhPZz46pl33BP3Ij4bFP+HFrtma2x0EnYPEYFBdm4TtwMTfdxv2Fb1PjzV\n/owhqH7nMspouHxlMnljpsqsoBnntdr4rg1RTOlTzRB7A+FFK3WPo6UX+VhP5slZ8NZ0ck7pgpHZ\nyqolQi/f0Nr9RJ3aXmQDVTx5HNTjuz0HodAS8/ZyMqp/+F50fReNGP4qHbN8VD+vljnVpl4U8SYY\n1vPWsSxDGTNvk/GgYuaeJ3W0Zae27tj4UW+7jlEf9WKYfvusvXt5+1AXtW2XWc+rh3HYaNlAVcKS\nf3tjm6GZ+iORx3NY2TojPFaV2UnL5KtJEUVjb42oJqdSmI0KZXp10KhUtDaj5S0ulfE2Xpwo42Si\nlWcDYq+tfkeOUTk1doBqjJgP6+X1M/NaTVljGTH+EZmZNo86oErZndF9CUUZd6WEGkAPdipj4YjG\nUUnBe/wvLGbk9mmGzPUx842OA3VXqAH1f3n7cO8f28x9wA7D6ijjRITD78zj/vX6fQVVo9yuyRjx\nPTrKVuVFSGO3bFm3tz73BjTaYlFRiQ1JRR2O9By10UAUH+Rv16I8gErwmXyG0bxPjm1lfY0ft4uv\necnL7Bh45DkAFf17PLLU0/soOjpjfYk2bpPfixweDOX7+Bv3vLmMWot68LSX8FPrVTRKcwSYeUe0\nwCjDyiAfhv7oFPC30oP1YYfh1eH28hhFRu0l5tRvRaMGHc0j5bRnyJNh3zm/k+U1otslEM9wxd7k\nU5FZwW/1Ygj8rl4ZpWA+R2MV8VUugcuwkUbGw0sE1ScelGd9nj+9n8xTzpLLK0Pw8iUKqXF/e9dQ\nRm8yqUjOpLYoo/IV2m14q430aNlpHt4aUU3gXhTn8qqcB885SprBt3Z/Pcvl2WCwTcoBffrJ/Yht\nBol8vGSa6YJGz9tuWC9KynnR2DMsz/g9momeRxvqpRxDFamMyDiMlJIrOr+HDlo7H2jBrStvDc7R\nmye2QhV2H+G5lcNIznvdfODGQxnG6+Wt1heNGJ0HL1u4byJDV/2ITo8dh1c+4svlRylrAEc4m2sy\nvmyeZITSfNVk4GiD5b3kE/NQa+zIGFQZhoAMtdEJcCRlB4LX+Sk7BcdZf4b8fN9QADo15Ik7A2r9\n3hs01Ze9eh5/5qXQgRoTT9Yqgx6Roe4fEXGvyZFI8gZZwb8o+nMkU9c42vCEV3xbu//8OeuC++c4\n4dGI0YlgNEVjjHR99eKhEzBSkVQ5NePNywzs66h/vfyI0sVzuEr/GVL81f0ej55jGDGiXjvV8rHq\nUC5t3KX+qSjrRWhvje7x8WC4itjGy4wVz5fzBFZrb+Sr6uBvNla8b07BPtXWmGeMaOBYn52T95w9\n6xtNYuVw+Z7n3Lxx4rqe7B5l5wfq6JVXgSMjd0W5iGYdadY5zsgoK+J1vvKW6gUTbFTe+tyusXGp\niW/JNLxnEZlhu0IYSg88wWdtUet2fm8dD7pylKw7OiyupxyJMkDPeaFsHp8oolUjXaRPpo5nLCsn\n+Cyv0fo9R1Dlm0ZRo95OGQn+ZkPA+3jABB0BGpmCxFgWP9G4UVfFDzPonpF4ToBzCArms7Pw3n6j\nIqrXdwoxKWegxqM3nqpcVM9bZkT8o3IjNMIz0xdHUdQ3kdNdrkCPvIitIjEatjrm2lt7cnTET+SP\n73Jng0HZnIDDcvadZSDieP70YXuQp9c37DCUg8D29vrcGy/lxDyHoup6Y967n+GZlT0b1VZTr90r\n5I8G3B26pBjiZMJkGEdK5uNNeHUKDR1ExB9JGTDq/PzpeZvs1YuHjsPgPxspOg2G7dwmhUSsbXif\no3Wm35CPciDeOPZHu0Ys86homUEynmNcJdu7tsKIl1DFy3rrOy+hY+XUCxdU5LJ7ah2vvt+0s4Fa\nXQWx1euiOBLjb24fG6nSSSUo+eWTnn5KNx4DFdW9sly+R6ru6Fp5JrJk6lZ4r+Kl9DrKiW0hjg7e\n/WiNi+XRgFo7b5UxZGejVoaOMtjITBa3Afnx3jYaISf6bNtPPSWn2sqysM3YHtRBLUe47zKRAREB\n96lXthfpV0TlGR6rIu2M07kkRU5luF/V4EdJF45EatJGcrAsRkguqyCrPSaKMjniemtrlfDjKG5k\nDokhPzst1Bd54rLD6iqnxu3D/uOz8Go54I0fkhon7z7z9MYQSSGzyMAqUXSkXoXnLK+jovwSvtEA\n9wYrmrhqWwoNguuzgfLRUqyLddS74FBXe9mEkuGtrVt7mPjDtqPTYcPHCIuORSEO5Mn5iMiLs3NQ\n5dmolWPpzYXeBBuJ1NWI1EMfWbmjdT1+Gb0qtlVZavV0U/xloej3CBxSBt+avxY0A+YIyQaD63Pk\nz0aGfO07Ox6O7F7iTTktZUTs0NiJcFnPofD9XuTm/q6MkyJlnFljVQFAlZnRtTcfv/6yvfv229Pf\nCP9VtCval4kjWRQB1KT2eKmo5q3xW3t4IoyjE0dfi4YsB7PbSi7zePPZ/bfB4kk8NjjMwiMvRgnY\nNnQSrIsyfHYWqq9wvHrj6o3RaLSrGuhs9G4tf5gGf3/ztr179+5k6D0HpeZaT+eRsit4DMnLel11\nLXvPSzZx1llFQl7LK2NBGYgUlLNglICRme/hEgL1w7+Xt+ctOeSvnCY/EOM5M8/wVR+zc1RjyOSt\nrZV8r5yiEcPvReWRSY39+c3X7d3bL2N5GSdyNVG5Qw/0HBlEnJQ9B4H1OGGnEnE88RUiUAaLeuAD\nLKyvWvsr3uo5cqvHDoGNQx3E4baxThjZvaUMTzjuz2zEjJx5byxVDiRLERpZbeQ7eMzw3yV/OKpn\nGSmopDyfMigrY7/5bDrDXuaF9ZgXZuUVD8+JcEKOjYhl8WEe1QemBz/Iot6JF/Wv6mv1yWUivr3o\nX0UHET2WKDhCjyraZ72R8r7ZCamMyKvPj55ifbWN5kVHNjx2KPip6vB9tZ3myUMHgsdtuT/ZMagc\ngtenqo2sX69M5ppXJjuxe3KUQ67ok5ERXc/M4dWUdbBb5HMUjGAaTkZ1LzOxFfRlw/HOheM9XvMy\nOsB1tILPZkz43LlqA6MNhuiICvgfQXiTORpY7g/ereB6PH5qvLI0OuErybKZSVypO+JIZttboUjW\nirEMSUUSb7AwouJvb41qv3kv3QyNefMRVU54WR2L2OrsOerECTt7+g1fcMFRn9fmyvGw4SMCUXW4\nX7Ef7bfq/yiCe3A94wCUXrMOoidHlRmZyNm6uyL0KlrV390Kkcfjexx9mSdHQDV5OHuOBs/lvQMl\nvAfORmbX1PpYRXZs7007OwGUqyI2thnrs87oQF69eOgIOWrzd47wXk4jompEzJbl8qPIwMpW6mfb\nrfp3lYPIjMFKB1rR7R55kNBj3Dv+qOqqCOY5A4y6yrGojLmHHDCJx/9Y0e7jPjrKxfvsUPBfPHGb\nvSju9TPnARQflKXKVikDP1c4j4oj8rLx2Hcj+mR16CVIq3KvhiIvbJTdxlFOQiXBsDxHSpUsU9FL\nnbJjqM4wvleW1/5qcqB+fFiH24z8jS+3D/mqSVaJPpmxWVWvGmkqBhYFmEw7eOk4SzNO51J0T+do\nXcdlcOL26ihhbLhYTxkVGgg6A/7vJ8qgrCwbnF3no7K8fvcO5fAEwoMzXhuxrDsQoh97USkap54c\nbkemjqdL9h63q2K8s/c9uRm66ig9Q57RtqaPyEaT04uMnBXHshgpeSuNIz7q4+3Js4Grf5Ok0AZe\nR0Sg2s7JP77G/eoZqepnXELgGKF+dq0CxTNRVxljz0F5vLKkEF+PZ0VW71jxUbQacbj8sh7di1A2\nIF40Y0NkuIzGqJJqOIlV0gmNCM+mW6ILI7b3WCnywPYoufiHiED1kxe9lIFz4k2V8foe+6lnEDOR\ntGfIK4w8nKx0f5WRHG3oR8p7IGsEFqEh2DV8yAPLRBOC17fsEHhwPfiPhmen0ZC/lWOHoIy4N6Gj\ns+VYXyXdlGPA9nLfYN9WDCujH5NyFtmIyveqhp818FEemfsZ+qAcA0ZcFUV5MuOEVGtYq+tl6b0k\nHUeyyOB5ScEIgSE1tk/9v3R0Ciibs/G8tlfGwX3JcFu11/tkntYuhvdRJOYyWfIcoaLeEsJzCpmo\nXUEkXj2UleUR6TWKYKp1huTPNjITBXvlFVxW0dz21/mpMLun2sPGbWXUwyjsaPhIqqqLyMDKqCVC\n1AfoeLj/OMfAsrjN6jM7Ob25gG316no0Wma10fTaVuFT1WuEZuW49RXEVBOc73nZd08GThZOsjEP\nZQRYDs/Es1HetIcHbzARx7yxPchDrcN5Lx2dj4rabOz2yQ/KcDu9fs5EQkWRQ+5FyMiRq7Kj1yNH\nleXXo9X8vLqe863I3eZYVLSxeyNQTE1WnNBopJydx/qYNVeZdBW18dMzRNTFO7uOUZz7A+Wj8eP/\nlOM2cL+o/le/FZLpGWhm7Ni5qPs9J6LkZHXzqGcgK2Rk5I+Ur9Q9CiXcIxU50SjtnjdJ+cAL38fB\n8zLJnJlHR4FGzllnluNl79WBFe+fPaIufNhGRV2UoSC86jOuy/2i+gl5cp9GY+lNKk8G82I+s1H1\nIpP8PXnzx65x+YyuKx1PJch69dKKcTTme+wEVFlvGwh5q6iO5dGw1f8jNz7oKFq7f5gF+fK2GycD\nla7MQzmQqA+V8XJf8UM6HhJQDkldV3ooihwAj2mEOkZo1Kii8iNtrZStGPQRTi3F21PaG1Dvr7WH\nE8Jb+3NEtToIgzmaqsnO10yH3no5yoCjYeM2HerF7VVLEQ8JeZG2167eWEX3e+OpZ0aOerJ7hrzT\nAI6WtYum9VaRwSunjI3LqImKvHGyeyiBjUg5B3QEnBxjPqwX1+W1tkrWcQRWyKS1+0/SqT5SEBH1\nYmfg9Y/qEy7LfVyJcr16XgSdjZZe/QzfikHv0nOUdjgjOYeUp1dlIoU8+M6TQK2R1f9Ys9+8T6yM\nDWXyb86cR2t9rq8MmXmoPkCdFU/lPNgx4RKkZ1i9yTiyNZalVYhglKfXN7upsm6+OPWSMNlOyxi9\nynyjDmxUCvryetvuezzxNBn/F1SOhNE63uSzMfJRWS+pp7b/VP8rA+5NZA89RGNUMQ7ljKo0EvHV\n4aodckZolXMZqTfVtghGZ7K+CnJGySkuy99NJhqIOlfu6cG683c2dDZCtcWmoHCm37hPWGdvTLwy\n0XXuT2xTL6Gmviu5nr4RZdrZqz8adGbpKISQkbdUFxVNvE+Vpebr+McQXfHwDpJw5Obo7h3AYcPF\nNbTJ9v7JA0fem3Y+iIPQmvXia/xd9TW2l/WPjNgbH9WOaMwzzqdKnpPy9M7y8fiN8OiV2dUfFb5L\ndJhlgpO3F/nxOq+3lTEwfFNGEPGxctFjiewg1LqdDZAdFd+LnBfyVQbcM1Avoaf6na9l7il9vDrV\nudNb11b5RQ7xGgy7wpf7e4WcezK9SZX1tpw08qIJG7wyGiQFcxkF2HczJpSvDt1Ejkgl+fD/v6lE\nGvPgNtl75lU51S52Hr1+V23x2ufdz1BkECO6W/monDcfR/VdyafXH8oZZ2VWKEKHkqoQyJucyqsq\ng+ZOuWk6wxzxY51UxGWj5X1xHhCVNIscFuui8hkzxuclAlW9SK+o/1Sd0Wi4o84KisZkRqfI2c/q\nuIIe8PQGuje5jDgzzvc8I1GnzZTjUFFX6Y36M/xnw8f6qqzSJepIL0IbfxXZI8+vHo9VsiKdeBzU\n9R5Vom6GZowBZXo7Flm9Vhm7x3Pk/iz/bsUoAlQFe1FORUlFmYQUX8cEGPMxI1NOBesoHXvG29rD\nx1LV+p63wOzTyx2ocemhAKUn3/f6W11X5RVUjKgyMXtzscqnp4PXV6uMNSqn5lmVf6lsNiLg5Pai\nm9pOUp3uoQSMqnzQhI/CYnTG+yzTi3zMg9GDdx3banmBKNJGyCNyeNEErEzcyPg9nRTv3v3RyL6j\nzIro3AtGs7yzZWcTc1PCVd0evIuiSS+pdNPuGxQbufr0EmAok42Z/0GjaptyZihDZew9Z8NtVcbI\n2XrWw+vfXqTKRPERo94VDXcYc0ZuhZYb5STJtlThQhS5PSgSGQyW52Om3gsvVPIvko9GjTzxKTGu\nn4nCCn5Ha3qFDiJZo1E0Gp/oM0tqXDM6zjqK1UY+2n6u7/Hz5sLVUBZq9spl13U4sT0IqsqhsSI/\ntc7nLTdeIjB/9c8cWI9oi8PTSTkvr/8inlF/qmSmVzZDWYOI+ieqn3UKvf3mSxnVqKM8TIdoAnkd\nnZlsKupG/NSE92RFRqzqcz2cgKpea/5pOe6fXtuwnCcrOjPAfRIZRGXyMMLiPuvx65XxnDbX9/hG\ncrPtrCKKzP1MvV0ytlFvEPk7b1NFfJXRZSI+fu9Fzl5kVBO7F4E8p6S+e/3gRWkvSkU69bYaFa8Z\nY1JtmpnkI8aY5TNK3tw5Wo+MvCUMo0GIJkwWHfTOvjMfz0jRQDHZxvLZoDFXwMbk1Y/ebafKY4be\n6x/ml9m56KGJSuSr0gxfz8mtQioVHbK8LxGBq4gnreMoHMpEV66roDAbrTKASFc0RLzmbcn1SL3M\nAtsTIZpMv3BfRHy4fsbAo6hUjaKe7lUDGJ2klYz2rBM6yvBX9d2q8vco0+HZ6OJFLe90WoWHdy3a\nF+c6qpyXROt99wzecx4s/1ois9KlwqPnICoOqOqsmFaf+ItopI9m+XQZZPa1ldDsdW/yRobg6YX3\nVLTmZ9hRvtWzSK/gvvHgeqwjZ+c9nRWqiCayuqfaqRxG5MwiXkqPS9yPnHpE1f3sXU50p+ztOkfR\ntRflPA/cOzQTTQT7F8rGp7U4Q876qIMnqo3eVhX/5q0fXkZERtqjqH+9vqtQT6+e46hGrREde8nN\nI2mFzMxcWNa2LCMV7aK9TE9pNErjEb1M0a6p8+zGk0+5IU8vUuM91eF4PbNNyM7G65dsX6n7Ub/i\n/cghVA0yup7NJWRlVRzAqLMYoUvKWSp7RQTo3Y8GsgdfvejBUbZnsCwrU7/3+ieUwU6JdY3a2lr9\nxQweT8/YZydNdeyqddS96jyrUoX/SPtHZGbLbKGs4nhstbX47S6VyWiT14vsWd2VHNv+YgcSRWZe\nKnhOA/sjg4Yi3T0detFt51tglU49farraCUHP6v1VlPGOY0inUNIRaOqN+aIqh4c6RkiR0u1xaXW\n21be01W1x9siQ8NFR+DpoPok007vntJffV9JXgKvV2+FPlUkUCm7OqLyPMocAOvJytjc0jmgmEX/\nMCHbAFWv12BVTxm94tEbeM9gMbGmXgGt9Mw4D3XN6yd1rdLnSsfofqZslkbrR31o96Ml3S69PFk9\nh56RuTXSz8Cf3lact2/NRtGbeCOTjg010x5GHqgj8+o5mGrbRtqXcQ6st6dHVYee/NWT9ihZuxzb\nViPu6eJNxpFooShaQ47CFdYx4zSySMF+R/vRSr7aHcjqoyITXs9E6My62GtrVH6UVvHNILHq9dE5\nPEur+AxT1qB6dbwJa+RtPVUiCPNiQ/PWRj1koCDxTMTqwToP4XiysB5/r+gzQh4Sw2szh1Qq/ejx\nqPDK6lZxIpl5VdEhq2fUj11ZGCU8pnwt04BonaqU9gxXyfV0jaKl0tvjp9qTMdiecXr9U9mHzzrO\nrBGMRL0M3111qs5gRPZIMBrVocKb74f2mFFu9bFCLzJ491iPbKT1eHmQOOuwenU9Y4muZU70eeQ5\nGKVTtD2pHJ26Pxu5qlF8N+yd0Tcqk0UuWarwWIkeSgyz0U9F4Z6n9ZJ+WEZFV947V3UiXSK5Gf2j\nvqjUjeSPDHh1e6inn/pdaXPVMfR0yN6r0Ar0MOJwSnJ73nO0ozITpjfgPImjk269p8A82Wo7zSs7\nChUz24BcPpPz8PTje6NRaVWdyAmvltMrHzmblU5hpr0j/NMVVjWk11me0Yx0dC8zzefZKwc+GGGw\nvsrYEB4rnj0D9uply456/QjZZPjMGvIIRSiG0VimfaNydxjwUoQw4uVHPLiCwIonN1A5gghKVwfR\n04vrsjOJkEqmrRmINmpwvfs9x9ijHcbh8ayiS1VvxxyvoovZsrvQ2FBlzxAiTzMLxzKd4z2Tjrqa\ncfb0iqJ7JZL2JvmqCJGB8SORI+I760giuat59vjPRO5R49zSzqyXzULynqwZiG4UZb2Vg+l1ZgTp\njU9GV25bll+2T3o0UheXGL2n/HryvN+9sbQyq42Iy89GzBV1MvVn+sEds4xnn426eK2XQMpGwCr0\nVXwUX77We748IzO6zw7BcxqR/tkInTUq1Q/ZdlWRWlQ24yBGqfrkoBc4LoEytlLG0LxJ26ujvkfl\nqrr2eEVldsgdcQZZXap6Zwy0ut7NyvQos4RifqPPM+DvEZQwWrYyltl7y51CJppW7s1OpOyjlMrx\n8Gm0yCF5Xn1G90jvXl9FlEU0Ed/eu/mZ32j7j4haEWrIGnp1zEf7xkNtVd0e0Kpzyl50yJxmy8rJ\nyLPvCtYa4RZXxdF4PLPwM9I1kpulCMqjY1ttXKMwexQ59ebgNVAPaYwiCY/PxWl0EHsvccDfFdjs\nrYlHovRM1M2cwa9A62wkqDjgmUk0i3qOhNJ8L8trJsr3ymbLVBF0au00q1Svbva5aRW5ogdkFJ9y\nBxHZf16JtpNmnYfXJz2UYmVWG0sF6lb5j6Ckir4racYR2PURA17Wlhl43bvfg+Lq+qihVJDASFT3\n/m95JCura5Zvr0zWqLj9UUJ1VK9sndGoPIOsVkFoj6/iPSJziX4rYc8ITywfHR+djcKegWf0s4mD\n/6TB45HNAkeyM6frZtrj6eTJ8spWHduIbr/OdLgziBhFkXAWznvXq8YV8a1GXTQ0pUdvmeHJvCZD\niHReqWcWxlag/UoHiHVH5v8ojb6gpUzZyT8C7zJeP3r4YySiIF/8NMLf3v8xj4wef/fOwke6ct9G\nJ9ay10bRVfX+Snhf5dEzDG88R2SN6riKZyUAblMmO8Gqk2lVA1S0Vfwrp/i8DvYiS+UNMtl295YT\nvXo7KMN7Vn5lPFS5rC6eAx8Zs8p9DlCH0owBe2V7CGHWy0ZR2ZPRqxvplzk7Hl2L+PWcCl/PGv9K\nmFsplxmbDO/eAzVZZ9CTF9Xb+QjyKl6y4g7okFF61mt65RgO74po2VdORTxGdPOc0w5E1LtekTkS\nsaJovvr1Z6OUmWer5sFW2K5ox5571TBH3m6D1zMTtxJZo/qzaGX0/ipCeNmLziudDstfRbPvE9hJ\nlTk0pOdMBK3yUf9dNYqEMx7Pg3MVGRlIqK73Tqf14Dz+XvHwSXayZJ45z0b+GQidpUhGBWF55Ucc\n9orl0RKHU4XsmXJZOdnyvXeqjXREZltjBpKPvjWlxwN57T7FmOFRRTsV/teCCKpL0FEZhyOIEc8b\nRWa+NmP0lXJZeRn+0XPeszC+N9F7kyDbP7ydOEqe7pljwtlgscP4V/KcdRqVeTArc5hGB6sCmRRM\nHo262aRcdgmRbUumXKaPVjjGyhNtKyJfNGarZKwkpXuVx+jW2FKIvopmvF9kPFUDX6HP6rK9epm2\n7EA7q6J45cGeCmJZqSe/eyBTZ4eBjTjs5f2hBuFSkGgU4lchYmu5PWoPmqulyYgxK9lZiM5t6ckY\njUwjsrL3qkc+K/NjxxyepVV8t+hX8UaZKJ3hW4XCnkFWefD1qJ3ZSZqBrKNG2ONbef9dxC+i6ks8\nqvyz9XtOe4VOuxFjhV/aVmYi5Qyt8MBZdFAxdi4/YxxHrK/KAx7wiO730E4Glq+izCvFR5YJ1fvV\ncqtpWG41oniduaKTkXoPd2RhbzQxKvpl23TUBMhmzleMRaVeZh5kXziS+Z0tU6EMEsvKWmVfWXll\n6nnzXt1Zz9hr5Ch/ht7RwHGGeuZBA3REqx9YmJkQKydOldcI6trtoC8Vqa+GdgxizwjxOkfsaqS6\naaf/kRZNlFkIzE5CtW8EOq5yDkrXnk49fatJtZXHTUd0nzXomb6aoYzeS+XvaExlgDMJoKyTydSf\ngcfevR5CWAXZrI0VqDwqq8e78l2NzehybKTMzvqrKNSj6jFLzIv1qp51JIpzPZ4s+BorLoMG4k08\nNFhVP6ujKrMCSnp1M8gmo0vG2DIIJuMEKjxXUg9BXgu5+l0aZvTq8jW+riCj5/UZUvd4j1DGGKqw\ntHpv9EGXTNnMP3gYlbFyLvYc1DU4j5Uk5+9sdJipP/LQScZhjO7l9uBfNDkqr6ke0cGrW7lfLder\nH8HpKOpd5E0pRaqOgYfeVqCwq6aqt0bI69WJYLFXx8ri++dYlmfICqZ7cH02ShuPyhp9lHp9V3FM\nRtGbe3vXovujqCFCbCM8VlLWiWx1Dt6kHzXcqEy1bDQBlb5e5PEmwU07r9HZ0JWsGQTQ4+HVi8pk\n+nE2mlaQzChPvJ51FrvRTAW9rkJMK3hto9Fo1qufgUyRAdu150/1llovSnnRvkKZHIKnS9ahjFDF\noFbKGHV+szruMMRLQ/RD5FaiTnRdwWCvPsLyiF9UH2UiT/VfVT2dGN5HE3r0ZRCK3+6BvYaosmO5\nck3yLiZrR2d4E5cNjO+PZsI5aitDtnIViG918DoaMNaN1v6Z/lE8KnWxPpZdPflW8as6lUyfjCDL\na6LZ5Vy6Yo/ZjCK9+xhV7TcbYw/Keom022cPI7Z9j/bIMannyYucWtTubMSfmZAzCamMs/bqVq5n\ndBmpN8PrGpDNo6Vqh3nGhXxUVt2ucx1ee7MhejCc9ejJYV1mvfS1QcsdE9/bUcn0Y7Z/rxpWT/CY\nlrXaA/e2kLyIymUNomO0VcaqojHL5G04XALwm0mUE1DLj6gPPD0uSb3IfQT03yHnWmkUDQ31z9Gd\nmjUAleTKvD1V7ZurVwjxBGboreC9F9GxftQub+0+E82zUc9DRYpfdTKp8hGqyfL39MuUHZnXI+My\nQ6ujfbdfqwJ3RCuMrPYbjQshNxuphwS8qKuMlKE/O4meI2C9vLarvqi++SVzqGjGeVQp2v1YgQZX\nG/cOAx7dURmhpfqvnii9gWcDQaPGMiprzgaqorXV+fSTh1A9cg4qQdc7SOMlAkfgWGbC9+qtujcq\nb5SyBq6uZZzAaD9UkqYeqhnVYdqZVTpVUfQMctTpbJgeH7tu22b2qdbP9l1ts7Gs22cn48fIzrz5\nUxnmTWvvXt72y2GbZgbS49eFb0k5vcnqESKjqtxRp5aVs9oZqfk6w6va/soYDinkXR+dpGhkUWOx\nU2+fnQ3y5a1eT/MfOgirb4aNfyYL66ntPtQdeff6znNmnnFloxPzmfb+BZrhMTJ3drSt16+98l65\nXvJ5hIbqZhUeFhDw4U9eKyuDsnsYfc3YjQcaM2fmW2vt5e3p+pvPHsrq7eN7cJ6/R9txkQGPRNss\n9ZzpKjk9yqCa1TJHeUb2sctBbaGVHr06cRTc9JwARkwF0+3v5W179+rFw2hra3SO0hbFDcZbuU8/\nuQ/9cbuNE3jqIA4/eTUacat9HqEBLuPdUzxH9Y3aHTnDqt5euZWBK3JMl6CR8S0xqpbNQFH7tIQZ\n7mEjNLY/ftKMIzI6AzNa3n57eXv6fPPZ+d7L2/O6nR3LTTs7EeOLho3r+2gQRvq1hwiwL1T93rWe\n/J7cEWcwimpWUE/WMiNaQIfLzAjkjDlDX8XLmyQ2ac2geF2N6/Obdj8KY/S1e8zTIrgZPUJ9rMt/\npgPqqXYKEAVEzk6t40Yi0UjEq9QbpRk0MIMmZumiUDuglSjFZTAymTxjV3wZqpsxm6HafYusZtRo\ntGjUt8/au7svzpHYDNy+v/lMG7n9ZrhvTsHksiGzE1AOr9KPvfIrlgCzCOMa9DqCKgY2M9aKVmX4\nhygDC7NrL1UPITQaNRqewW+M9lb31Yv7a240VKv36Sf3edg9hOJs7Liu5zwA9wOv3bmNqg5/97at\nVhhbdkLuNmxFvW3bmck/unyZpaOcV0rOzBoumrg44T0ZaFTGT8FmMy77tIiNBs9ba3bNIvLd6/vQ\n3tbn5iTM8M1hMNrAHILazkN04PUd90u0vo/6frSMGo+sc+7d98Z7RbSfqb+CX2X5c4n2HoaGshMH\nJzgaCEdzK4NlX704GeLdF2djx2Qaru1fvTgbsBk6J/tsjY+yMVuP8tmQOUOPDkX1R2s6W88Gn41a\n2Ym2GlJmdVBls8ZypFFFPI9GNde2dEkNEHYWR2lcf9+0cxRFQ0UjMp64V45RGLfXMNGG8B//EKob\nr7svHi4NWjsjjtb8h184kvOkrhjlisjK10Yg71HGlUUKq+RlZO6gqswtOla8rbqv6rIx2D11ogwj\nLcJxjqQWga0OH5Kx++Y0zGhf3p6ScOYcvvr8DNntHjsQPOLKx2Y9w+dMP9dR0D3Tv9kxicpUDHcG\nBayCrbPwNeIzinhGnJ/Xt6sMeZtDqNxnWIrXPIiOEdfgOsNlM0Q0TDMqjOYG6zGSW4TG9TkaM2fj\nEeZzIo4dFDo0dgrcZmz37v73JlfkoLNyewY1a0hqmTMzuSuGP8s/05dbDH5HB/EEV8atymNk4who\n9dFIOeJaVLajrWbYL29P9yyCYzQ3I7VyFvnxgA06GnQ4uI5nQ/f6xyI8tr0CrSsTe8RIs7yUc470\nnZHl8aygmVEds/qvMM4RxHEIRdDEmxS8bm3tIaxFXuYAMKllhohQGyP8qxf3I7wZJWbOzTHcfXHO\nD1hE/+rz09+rF+c9dkzyYbKOt+G4XxCqY3uxzarPKv2doYh/5HBUe7L6VSdsj/cKYx11POr3UQZ3\nmGFnDbpXnu97Rs17063dP8La2vmhFNzzxu0xW2NzJLZyZsh27/nTk9HbUVh0JNZOM3ZzJAjxX704\n6cXZd55kjFZU/6jDNqPwLjMpeyhE3RtFFt58iZYss8ap+Fd4Hh5Bj9ABYXRWcCYStKZfpaQSUoo3\nr8vNSHFtjWtsy5jzdXMAZqw37eFhGovoyB9PwiEyQZTASUBMHKr2KePNGnTF0CsQd4aqus5A5h5P\nzgGp3xH/VbTCoSyD7VUINcJXRbbWzhHQrqu1uhkrRnpbZ+M2liXqbp+dDsKYMT9/ejZwg+sWkd98\ndvr76vOzsdr63tbxeEwWs/1qLW88cAsO24jRnvtiRZ9n6s6ihJW6VOtUnBbOJQwSVX1mHOWso756\nUg2JEkwMa+06rp/xkIytrdEJ8JrdrlsiDrfYzNjfvj5HbIPlZvhWzxwKHqf19uDZ4LEvEBF4J+Vm\n+7wSFTIOvYoIsuVXkHIC6Fzttznuu9encecj00rvnc53lK7SOXiRJFKWj64y5ELIbhHXDK21kyOx\nyIuGzMZtWXhbk7PRIiw3fmbc/N0M3+TbJxozoxRsL/cVIxzVlyOoqhJZjoK1PT2qdXC+mGN/89lp\nnN9+eTJ025mxpZ0t0TJOL7OknW1PT48ptD3qKTKRwVsboSEjDy7P2W1cT6NxWpTHBN3bN/cHHLfW\nLFrzOp4P3ZiDwKQcPsOOCEK9rAKjODos7EMvGmZh/WwUjeB9pc6szBni3RUbm6+/bO++/ur+59sv\nTwHAojuPz0rdeXyr9WdkI33UWms/b+3JiACrZ59RQ26ftXc/fdraLz4+3f/Fx639ybPTPTT+X3zc\n2k+fnr7/ybPWXv2ytT/9pLW7z1v7/g9P5b//g9b+3X89/f7+D1v7rd89Xf8/v2jtV/+rtd/87dPf\nt29b+94/be2j32zte/+std/98anst29b+/u/bu1X//PE55/88xP/3/1xaz/449b+1X868fuX/7G1\nf/i71t6+au0v/uis793n53b9xR+19ns/bk/+w387/X71y9Z+/w/PffKnn5x0wn788c/O/YV93xsH\n1b88Bpn6/FvV/XlrT6JJldXVkxvVrxrE7bP2zvr4d37U2m/93mm8/8W/ba09ae3Jk9aefHT63j56\n//s3Wvvm7jQfvv/D0zj99GlOptK90leZsarIrujSpVFvh1EN71s0R5iL93Dd3Np5j9si61efn9fN\n5r0Nhhtcw4TcqxenCI+ZdoPxuO63pYEl5zAvgEdpcZmhnrbDNt608/qeEYtCNUirYbSKMF653vUZ\nmKnqz+pj4/P2zSl6f3PX3n3zlv6+Pn1adLc5opZR+Dsz/zPIaAYprUZB08x7UJ7LKniPZ8kxEWdl\nDXYZ9Hr7+mzABs/xaTVzBnh6zhwMOgOE9W9fPzxuiyfgMCmHe+mt3X8qLeoHTAh523Az5PHx9pWr\nS4cRig5IReQ5Gft+98V7I//yvZF/ffr79pv3f9+2d99+fTb6r+/eQ/k354BS1ekoWgH7Q8ajyvSg\nG2fXVQKO106YqMPvFoEtQpuR2+k3zKLbmvvl7dmQrZyhhrdvzvz4YRg8Ysv75qgPtptfd+XlJ7if\nehMuMyF7WeXIqVSid0+PiGbqW/ssafr1V++j+Vsw8m/f/31z/vvm6/eG/tU5l2PGrnTKROtZGuVX\nrpeFFRmvx/dxwqEhMPRiQ8AHVBCi47aaGerzp2fjRRiP++gG7cyoDboZbL97fYba+LALR308UmtO\nwBAFH5hBR8X9qD4zY1MZ3GuYkDP6RzzRed59IYwcDR0MHiH82y/PidydEX3WWWSWL+XK1XrVNRlP\nfnVWnNe3Br3RkMwTmwMxGI+Z8bvXZ6dg0f3ui3MUv2nn+3iYBpcHGLH5JB1GfEQbNmkQwjOSsU+G\n+VWotjsaZNauM+vPinx2njY2b7+EtTlHc4rqaOj81t9da+HZvt6qUNYLKSjamo5i2JlqAHkfmre9\nLJqawSH8NgM2o8WknjmKN5+dorol7PD+TTsn7fAsvDkcPvKKD9twchFhPN5nJ8DtXznQ0cQ9ckLP\nohVvzlgfvrx9b+hm7JWI/vrhfnrV0Vbau4u2yMwMHMMgZdRelMenxPggjZUxg8J9cDwUY6faeM2O\n2XIzZnMMZvhWDhN+pqMdtsC8Ai4p8LrXZo70dh/bmO3v7HhEvxXiqNAREzuSYXPg7ZfnbPu3Kqp/\n8z4hh4b+5j5qu4SRGh0ie7cQ5YlxPa4eIkGjsBc58jvh8BFShNaYiLP6d1+co76dmsOEGx55xcw9\nIgd0DvjdZLems+5qDRhFW45iGWifNfgjJ/PM2jSDRnD+3L0+Jdkss44JuHuw/e6cjMMDUeOt9HVe\nhdBm9PsIGfQOSYwog79/3toTm+w/+bg9+cnH7ckP/vh0EOUnH7cnf/Wz04GVv/3L1v78x2ce/+a/\nnD7/+2+fvv/tX54OpvzZ7enAytvXp0Msv/Oj1v79n53K/s6PWnvyvdP3v//r0+fb/3c6VNM+Ol17\n9eJ0/W/+/HRo5h/+rrWv/m9rH33vLPPt6zO/7/9Be/I//qC1T/93a3/1s9OBmle/Oh2I+f0/PJV7\n9Uu9dYWHOn7y8bmff/r0XE5FU+9ATOWgDNdR9WahKhM6OZtX6Kyyent64nU7iPWv/3Nr7dvT37tv\nT/fevTv9tXcPv7d2KvfkN07jZgdmZh2iGqsVSzKvL1J0lGfnrDvDe17n4l46RkuM9BjZ7RyzrbXw\nrDo+eWYQG9ffmL2/++Kc4bc1viXt1LPteGCG26Mieq9vFNSv9LMqHx3IqdLRsDazZLE/S8TagZmv\n78ShmfeR3Nbzb9+MP9V2BF0dlPciQjYZhwaN63CE8lZO7aHbGvurz0+Dh+t1M2IzWitr22u8B3/3\n+gz5zZGY00Aoj3kEfBimtfsPrKBz86C45wS4H0fHh/s+A4lXUwWuj8y950/vb4H+Y3Lu7mz4uHdu\n++c438ZaNkYzfT279EkziWCIl9jB9SlHPFyPt3Z+issMDZ8N5yfN8Ck2frEEb49ZxDZjtocb0LBv\nn50z78gP9bC9dTZsRCT2G7fiGM14MLEHIVet+7Budi2900mMTmDrb8yhfPX5+wdYvjwb/d3r+yck\nL2Xkqynd9z0vmoFQ6ne0NrFPS2Chg7Ao2No5seVtsdl1PA/P5fDRVDNafKEkwneMvnaCDiO3XecT\ncbjv39uqiaBiz4mOQPpLkNo67NWptC1yQnjQyZAeIjJP7owNjNTbMY4uz10Qwpug2KG4DcWRDyMg\nvwAS97DtPkZ0g+QYgXlfHY/OoiHjmXd88AW35bg8toWPvGL7FcpZMQ49WilnZMkwUn5ET+xj3Jnx\n8ilRQOrpd0SZHXWXUAaKqj1mK4ORDo2d98vx2Kmtu/ndcAbJMarfW6e/PhuqXbPvdjDGjkYiasDo\njUsQ05+RCt5XUV4tda4tas8sFSJkk5VX1Qd/8yGlaIk0S5WlTpXXxeaDUgT/OBHnZZfxGhsFG5EN\nGL4c0qI4PnDCybevPj8vA/CUHD7hhsdf+SUSBgUxb6BeWGFtwd+IBuw3Oz3u216m/KhBVyhklM9R\ndaM+q8DzlRF+lHYsF/ZWJh7c4QraItTC5Ildb+28FkPjtN9mtGaUnKizumjECOuNl22v4cEadELm\nEFo7JYNwzc4Hg6zN6BQyfVvt+xHjzOjglVmVzFJ8erxH0EW13graDeeXUgQnPCX5RJgqhyeTLGIz\nXzMqdZrOjPim3Td823IxQ8f9eITjZtzmVBC+G0+E7rju8/b9PWQSGYznAKMxyNDuqOMtS7isdypw\nl35KRoQoe7rsgPnefNjSJz1Bq4TyhOezxTYRMKGF0RuPyaKhWSRF2I4GbGtyfNMLQn4zVI7eKJO3\nyNDwOcK39nA3oWfgXl/P9v0R8H8l2suW3d2unc7nosuCzISs8ODrKlrxJ67DsZ7af8cMPEZu3u4y\nI8akmxm+feL/YjNH0tr59USGEuxaaw//UyqjEtxPx7YrKK/6yutblFmFg1H5Ufg9GgFXI5PdqGWk\nTrbvs+N4cWifXWPiZLd7aBBRXbXeRWSAp9twnW5RFo3eHAMvAfAwBWbhbasO99hxGYF5A6XbSJ95\ndbyIvxMKr0YZo/KrUX8V/x3trTrp7bQalmFUtt/ees4My9bcVh4z4hg9cY9bvQkGs+mMAm6a/7YY\ndASYkOM9dHzHHLddRfGMl+4Z8IgRjJTP8skYTbbdF49gRDPGuXOchvpp9QTgKK6us/GjEfO5cYbE\nxgOjML49FjP1WN+M3xAArufRYfCSAhN6dt104Gy6XUen1eszLlOF1NdmHCMULfF2yZmh3rMKV0dH\nQDQ2AhXZlRPARBxCeMxyozG3dn+LDvfQmY8l4OxToQSUaTqqfXB1P1qTM89s342UG10uzPJZ1a5Z\n8tDRSvmXaMtVUnYSRlCXM958ZJYz5a2dX0llho2OQZ2R9/jjNYVAsC3qWrY/RvtyBAGscCBHTLyd\n0X1Ul0vyLemwaqKNeEhlyKq+2pfGcgz70Qhxj9wM207KYfTmAzmcI0CUoKIwRm4rw20cNYgq0hod\n0xlDOsr4lCNbLfsaHInRIbpUJ2Y2cVCBg7zGx3UwR3I84IJRurX7+9p2DdfXrZ3/D7tK9vERVlyf\ns/Ox7wzt0VnN9iOXzzoDb+lU0SFTJ1t/BaLo3atSD4mtRDDXhFJcWrnO4VNTZjCYzEL4jQdlrD7e\nb+3+G2RxrY0RF6M977+jPl4+AdEGnwHgstxXoxN39STL3L+WiTiCFlcilapj3AbFV1PV2yrIOiKP\nJxlGUqUXnkFXUB4TdRyB8bCLd4TV8gIMzTEvwG2OzgusGFQvGZg5l5C9vzJ6ZeQj9fINs0uUEZm7\nKIuGj9ClqwBD0+yk8urzPU7QKTl4Wg4NEh944XPqDMvVFh7qxrooJ8f6R+3nyeXBxYhHRl6m/mOj\nEVQyslSY7afH3s+Sqh2k1rL2ycaN61/OgPN/TGH5DL85CvNeNxs3yuXyaKy2j59tP9MKGJgtHy0t\nvPtY5hITeET2JfV99DTaaRlIxmVU1EPYjdGZ4Ts7BIbU9mlbb63dX99H8tkpMUSP2uhdG6l/hEPZ\nAZWzPD3UcymofWmqoL5hhpUyVa8bTTKOxnhdrb3Z2LE81uMHUvg+Xuc30ka6e1tB3vIk6pdMuYjf\nyP76yL1MnZl2RHOkwmeGdji8HfWW0UoFolNm+EI/FUXRCNkJGG9+lxtH+8iYFLrw6mBegNuh+I9O\n3BHY6n1fFR16jrrKz6vbW06sokzQ+WCp6um9yRT9RvjLUVllrqPTaq1pR6GgN9739OQDM71zzrsm\n5UxUXT1Rs9F6lyOo0AiSWiWz0u+PzpFUG8cDgQblwU8vukZGqwzdM35V3tND/c5C79VRtMpnZZ2K\nY6/qscNJXtKwsn1T5XM1FEGyngH2vvOWmcfvpvUdCKMN1h+RBZdZ0S/V+yMyekhmhn+V1+4JW+Gf\ncUir25d1RGm5uzo08lA9hXtRN6oXbdNFdTFbjsYfwe5M36ljsb3ofjScvHZarefK/rtEH17lLsMK\nOOhFUyS+rp799g7AKB5ZqB3pXSm3MpK2th9R7KLH4nw8erT6rzLUmQ64afp1TMpIFSxnHRRCsP3y\naI3N8hTkj9CHupbtm2qUrzidFWOs7kXOq9JHo3ocUf9o/iMB6BAaGWxe73JZ74mwnpyMjnzd5KmH\nVUaoB9d7SwxVPqtTVHYVHDxqAh7pDK6JDmvLUR3METkqk+GTfdWPQgN8X/3O6pEpG/GIfo/w2F1/\nBZq71ih2VC7l4rSiIb1oitcyMFlFds6EZ6Bl73pPj0ydleWisjvGKdN3M/xH6qnv2WAwInsF9RDc\nMt0uucaJBqG6bh2Nbhy9qzqt1CHDc8Wy4RojTQa57VjvXmNfjNLVwfoVcBzLenBbGXFFvxFvm508\nK5dAKyNWJkL26l6z8exwlNfc3u2UWd/2ro+WU+SdPR+RnW3bikm1ovwMLN49iStJwEsb1BHyq07k\nIn1SUVKVnYXyWC5ah1eifK9cL+pX9R+hoxxKpQ9W6zMjY8uatyDzUvwu7Rj/UYlLeauMM+EyR59G\nOhIN7Oazm/81TOhL63Bp+SHtMHQVrXuGnS3nyYnKjkDqiO9VQrnNtCsH4V17FPD50nRko2dlRUk3\nJWM0qmcdzbVQdSmyMrFYpWvru19L+pAGYbWxzkaR1bRi/TvDp8JzJgdybbmSit5Xa09HJ6WydGkd\nZl7FPFp2lN9jWad/Rx8IVdbJu2V696LrvXuXoNVLh9V8ZqL0d+tqQY+10UfBtR3bM0dAsVXLiRmj\niXhcaz7nsdrDVdARnTciY+e22cj6a9TYvqN1NBtAVu20jOhUop2QaRddiyEctZRYgVJ2Jo+8OjvQ\n0WpeR9JV9MFVvrImQaNec7aOisaPdQL2KNu2mfZHMq4BiV2aluv5WBreWk7X2bXrNdIuHa+97Su2\n9x5TAjVDj1HnMl3qQMaH6DyOohE4/+ueXLtYm64Fpq5IauzM5s9uE0br3aP6fzdk38HvyJxEls81\n2MsHSdc2+Y6g0a2vEd47JvO1IKVr0GMpz8eUNT+680cj2SX6dIXMI9qyG4Ed7Wh282GeU3yvIVKp\nf7jIVJ0E1aOnvw572NEOxWz/M48PqT8/hDZ88DSbqb3GQR7RaeTM/Wg+IVNuFNVd43g8Ktp1uGEX\njcC86H+uVWWt2OqpUE+Ha1mvPja5K/vwQ9u6O5Q+lKTaEYc+Zifazh2Io+lIHVflN7L/j+AidIlI\ncvVZzgHeKyLLh5L1vgRFy5dr4pnh8f8BTSUyRJ0CqNgAAAAASUVORK5CYII=\n", "text/plain": [ "\n", "array([[ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " ..., \n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [4278190219, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.interpolate(agg, cmap=[\"darkred\", \"yellow\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also choose how the data values should map into colors: 'linear', 'log', or 'eq_hist':" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AAAzrElEQVR4nO19y7VlOY7diWgjeiob\n5IQcaDc067Sil/zRoD2QFZppJBMqelB5qpgI7A9A8NzzIhNrvfXuJUEABPHZ5MvPdf1Ff9Ff9OvT\nf1zXD5cv413HlSzFm82vfK6tUaYjx7G9qrurj/HHOTXuyncIrdvxzWnatW0n5iZkVs7VpqkDc+S4\nATuhPyY5KlpIlpOoq1xVxFw91cSq7EtRVU6nsDxZIHYbxs66t8gvdXVnbsKp69pKsq2f4/oTXc6R\nN+Ffl2eyUFbtflNnny4un9jbZOFuGxA/s6TcCeBK50cwvQPVla3OlWUCNu7q2IGJT9MRmHpQ3qT8\nT/ueUrXDs/tyJXGVHmTP7n3LlRH5Tt+JOxC/Mp7xVArMmxPsL2oQS4TKwU/cnzPo7sivzqlrAevK\n7l27k5iT15Qn4O5Xg9Sduad4d9ZYghzY7nZzV6ejB/GyhFLJ6aKMis2O7bvErli7Mk/Q04m8c808\nqbOyJo3d6oGrbrPbjR0ZWZdkCamuDh2o3UUl6ori+NOx11lXtbPDc2LtJ2W/Wfc4uYFV5e9A3Pt3\nBa5XdWdyM/kKobD5Twe+U/AnIOtE7HRoUs6On06sG6EnYEo1wZHcrHOjBMySNcphfMh+psvdC5Lr\nBpiDcir6u3af1LG79itRtzG0/VNRyIKzE2i7AeF06ky3WofsY987cNxN0lPdZoo68TAVB1W9XVm7\nco+d0W63QbImIVkl8BG0dmxg3Tzr3MgeFwEwnmoHRvtyfNGR68h6Y2F5K72yiJ12IEMDDvxnwZ19\nZom7E8wK8Tg2dHV3qFMQq/KyuZPx9JWSvUpbe9vtIIjHCRjVjSIfS9rq1UElu4L7zLZsT+xK4dqs\nyEkm58rQ1d1FJRUdbPytiGO3ADp5s2tjWZBr1E4HQ0m5jq28KmkVmmCFhu1JJRUrAK4PEO0e/s65\nKZm/atdVZ/kRqgRQN9hc/arTqUSLPA4yQPLVXGYPWsP2jGgyMBQSmiwWu7wT+1YF+1cmucculFPd\nbf3MEk/9RF62Hs0he5B8l0/5aaJoVoN0IrDfkhhvsePtJM+80mEy+LtTQZ3uWIG+budltjrJrvbM\nEAXafyegq+jgVBfdsSkb7/hlFyk97ZuPFLCuM53v7FDZejavkhYlPCoKal4hjJ0gYUiEyZsKlA5a\nqNijzrSj+w10wpZKc7CEsd9KoVsV3e4Xv6NEYgmK9qeSXu0JJTeS76xn+th+3PXRxo5Oh28sIInc\nr57Ylca3Sz/J7SpCXS2bV3pYorlJVfmu7HQKSiYHfWdFUxWenUCfDCJ13h15E3Y9Kf9NhQbRMRur\ngeigA5agiKdrg0pCBwkoW5wEcbt8dVzNZXafIoVGfqUC0kUwR6kCJZmMasdUtrAu4nRvloSZLrYf\nVhicjo/sRvZUxpgvmC1P0LQN3YLGYnNH5y49fkYsAFcelRyRr9KBsnVOd89kqALDdDE73aKCZDhJ\nWOlyu/OnaLo7f+V9TMoas0clJkrAuFZ14ozHSUKnk7uykJ1ZAqO1mZ+cJO52XqTfQQfuelbwTnfA\nPxsK+Ti5B8uQAEsO1ClR11adVHXlLJGVfrYfd0/MH04RQX5xfId42TzirxalbkFwurhb1CZtceh0\nEazK3NbFkoYl0fpZdV82zjbDOjhLMFZkMp1oH5UihXyp5pmvEZ0I2ozPKUgVOzo2fVr+03Za+txK\npio760pKv5sgzDaVeKjjqYRS48oeJIMVF2Sr8iGbd+RU1ncLzi4xv+/IU2NP04QNP8lwE9L9zpLN\n0cMSNdNZTRiUbI4cVlBQkXOKi0vVQvupxFCF55PJpJrRGxJ9nNSmVHdHSVTRrQJSdX2m312rOn+c\nY4VByWN6HR5WAFmxivvpkFPAThM7P7WmMleJ49cXh4oDVPA4SVKxx9HvduZog0pElciZjMxWlKQV\n+5CdzEfqd0aubJe6we/orSSns/eMTxUSV+4TpGz4djP99vtnJOS36/p2C/stWbfOKXlRZpStjI46\nKo5G9mY8q62Z/sweZBeTmc1l/maEeKM91fNhY44cZINa8xZC9lb38fp9sw6N+FClU10urkEIQnVw\n9B3NRR1MprKlo191C8SD/Ir8l/myS6rbsfGduan1bM0UEqnKmzgXmzoBVeVX3+NallTZeKdAoELl\nJr2T8MpXTsFDflNno2zYSRxkt0PVWJrim6RP6GSU2fM9DjB4weBn9nmFn2sgx/EV1iE5aEPr+pV3\nleVeB9De4njUd39fP6987IqR7WG1uWIH2j8qYNn+syKsbFn3jfaXza37RPOIj9mC7OiOMYrxW11b\nGXcp9UG3W7COmsllwaY6JNKH+DsdnMl398kCsXqobB+Ib4e6MjrrOuhiB5FMk4t+ds9qck/fkcDY\nLbIOsnZM9GCBgjN2PvT4hCp07GCZ7mwOPTAhVLD+znTE+bVDr/tHqCWuW+cy5JChofhAltma2TsR\neJ0Hpqq9mZ7ocweRTSWOG3MZSqv4a/Lx7rsLx9exLCGzsft7DNBM9roedddVJkuKyIv2F/WxwEeH\nmO0t489QQ7ZfZw/Z634liLO/cnRe4V3KkMlqy8qzjjHfqGbgjiFb1Ziy6Q202v09TqA/g2QJkx1c\nPDAVhKozr3OxyKjOkCU10pHNI9vW5ECFD9mUJX9WNFCRQOiBnU+m2ym+lTE2Hv2IklAV2mx8mroF\nwqEnrxfX9Ue76d9JM1IwKesWq1L0PTMuC/isyscxZAMjJoPxrWNZp2W60O/MF3H/yJ9V2unUVVls\nnjWZaTunZJ6w6ZTcP3T0THh2F4odRt1xs85XuX8pVMBgs1tFmQx0/UC8ce+rDGXDqiubiwVh5UVd\nH+1vtc/xDZIVfYDIQW1Rp7OWrevaE+UpdDZJqlgiexilj3EsCR2jssDPeFVgrkEfqz2CWCzB13n3\nkLIihaD8+hMLg1sglH8ynlhAVZFTPFFv5Xo1Qdm1zA3saoGv2MTmuwnIZGXj1fi96XtWiVdnxcRT\n0B3JYUHP7kWqo68bX5Msys2QCNKN9pbZ7xSyVf/qD7a/TEf0fYZ84mdVcJnvEe12QrUmfmZoiCEV\nR7fiqVz91t87hOJoRza852V3pizZM8eywMwcx+6bTGek7Erg8rpz0Wa0z1WOsp/5JOpQciJvJmua\nHNiOUMcJna49letAh/f0PreJQYfsu4Lg8XPsYHEs8jk/yB7Fy+xl9mc+Yfty5LC9OP6fomonnNbv\nyD2lc0ofQ2indWdr0z/lqM6e8WVGqW4eu053Q7FzVuUhXnXfdxAB6tYZ+sl033OVLpF1/6hjsuOt\nslksPUFP6/zEHjv6f/oHZtBDU1yYPZZ0kj/qWO866P7I7uDqwUjZF8c7B+l0O5SAcczpahEJoPeQ\nbP+o87A9Z2sy2UgX2u8EQmHFOTuXXfRSea+YpkpspvdAJPS6dDeqdmbU/VhHQ+uR/Gxd1Sb0O7PB\nfb9A9il+hrIyHmQL8iF6W8jILQynOn23EJ+4n79R9y3DqkYMurMAvMcRP+KrbCRLPMQX96T4Xcju\n2uDuBdl9247GJ+C9Q08n6qcKg8t7spBN0fcMhiGoXYHSaC2CrE6SMvmZzatt6/WC6VPQP+OJMpEM\n5j83MOKe4l4UPL5/o71k/M4+nPVu4XT0VQuqgzwcvQ6fU7hOwvls/Kc7+nX97PzsLpgFG7onZmtR\nILKCsN4FbxlZ9cxsconxO7KQPxHvWoDi/pSdTJdTsFChyM4p+tQpKN1EiXI6SRH3hJrCFFVkVgp7\nlZDc79EhajFzGEvg9XN0PEru6BAXHlXHnb3FcYRkYqJksD6D2G6wI/9lvmcdf9WZyUI8sdBmxQBd\nw1Bn7iTeTmdGTUjFLpv7BFSvFMLSHS3eA68LP9wwuVnHz+6LGV8kJCeTixBFVcc6vvoi8iJfMR1Z\nscnWub5V/kS8K39c2w1qNz7u+dUm1ZWVLMfmnb1NyXDWd3SUDWKHlVU4NaYoC8xMRkc20+PyKBSA\nUIjrq3UdKlioyDIfuV3XKQIZdYqE4ptIxClZ3fUVv3XkofV2hVZJ7Xa1CjnJh9agQEdjzE6WXNU9\nMdmZrtsmhZjcLr3yq86v1u0k7Q51ZDp7mrHOtyXTe+o6UKrSGZ+Cos6cgo+Rr9t9FR+D9xVi3dK9\nInRhNPOrCqKdbuN0YVZ8KrC+avcuqX1f135STlwvmC3tuxYS6CaHCkL2XY1ntqFkrti8Q2oPLBGd\n5FVIJrPpVLdddT7VLRlCiTxqrKsbjU0k8S7B/zhkHL8/38bcTo0/99z6c8u4P2cHsvJHexz7VlmZ\nzXF+tT+TvePwdU/ZbyQ/88/q02wtkpPpRPpuPesc841CJStPB2KrwosK5v2bFcmKLcoutkd1Rhmd\nLIjfo4IYYMgIlKhOksYuFH+QsfEQ45yCspn8mBSqCscCltkUfZjtDfklS3a0XzTnJCkrkgrxqIDM\nYqGC9Hb2vhLaa0dWds6nrwvoe8evf+joKlGuy0uoyL8eHgvkDAVEvSjo4qG6XcGRGceqUF8lJfue\n7c8tiMg30SaGfBAvs5ntA/Fne3CRHZPBOvwusS6/Sy4Sc4vNT90rJjHqbOg+uBqQ3SURzzTtHu5a\nmFSHy/jVnmPhQ77KzoX5lUHnKBcV7Ar8RvHB+NG+Ojpc/WqvVVK+QWfMcmvHHqVbPlhk3+/P1QPO\nghg5TCUnSwjEH/fj8Dp7c2xj+3YQBbJxpSyoJoIHFTonWR3Yv2urk3T/7X9c1//7P9f1P///+YdB\nRFOJ3KH0v+uOYPA9j+BklBXn3ABhEBIlgYKz65wD6ytJ7hQpVDyjD9gVZb32ZPoySJedZ1ynoHeE\nv+tVLPNHZrcDRR2ZyrcZ37fv1/Vv//u6/vW/6ziIvq/EgdOcdmV0ef+R6DGZb8PWQ2V3A3WQMUhZ\nwrKNRfuYjvh5LVTTd7X1uwq8+J2tX/2kZKDERQUi05fZhRJCFR6mB9mvkIGzh/v7vebf/3Z9+1//\ncl3/9z85WoqNLMphe2O2VagiQ12p1u/ynsYEIPjM1q1FowK9IznwOwt4twtVC4FzLUHdKIPxqmsj\nf6pAYQnjnKVKOKUbxZqKuYnrx0nYrOSf0u/KlQnO4HXWCbI7YlxbSWpUGCqylAx3XaYrk10tWuua\nmxi8jzahc2NyVYJVioei00n2SWLn9Cb6w5/XMiOzO14W9Ag6sc4RrwhxLOrMNrBCVnW1qNyh0L4j\nH7Mrk8+uF/de1iRzkpztaZW76nILBDu/neuPe+1wdSAo7vAyaF6NGcdWx7YJH68E70wMRt68brA4\nHY9B3yeoixjcApJB7VtuBTlEGSjhK9exjFCBqa5j8jI7u/Yp3luXu6/d/Vaoem3p6LTvFE43c5NF\nwftq8rhrXB07RaayNkve+/N1YeTEiuu63p1DOtAaRk7iuNcKV2dl7Zvh9XXtF2RE6av7deHkzCjC\nlxWi3jIyeOQEbdTBigayk8FPpcehCIfjelats3ll28oXfYsKZ3YmmZ3xOrVbQFHxYucUrzJxz0yv\n24WjLLXH6hWC8Wf7uknFSsbv2PaPRGfB5iRVlthZ0DjGI5n37yyx0Ho3AGJwKSicwb+oB0Fwtr9M\n18oTdcXkZOuZ/YrXCSYnLiqyOkHv8qGzQmtdu514Q4VOye3M3ZTeVRT8cuERgoLRwAmY3IXMVV2u\nzZ1OuMpVELsLP7trO3fZzv2S7bPqAweNViizZ1L+Cbpt/r5+uSfvII1dfQ3eLIhRJ0dwbRc+V6CX\nozfqXz+jOybq9LFDI1jM9EVd2T7QtQhB3gx5Ib84KKNLCD47Vx40h64sSq9rb3bWb07y6/qnn2hl\nXRnjHOvSqPLF+S48Qhvqrs3WM2jb1YUQiOpgzC4lExFDZ04nReuQja6PkM5VbgddKPmfSthJ3ezs\n4X/uOTvErGPH32vFXDsG6lSZoZl+9d0lVIXjvmK3Q3YquVFmDK5V1zrX6abI18x2VHCZfKZjN8mj\nL26ZmT7X7ow+2YlPISWGYOxDYZWfVXzGE41xNsJQhFpT7cSsq0X56O6W+WGVjfbD9CoEEL8z+6Ju\nZp/TAdU5V2PMsdmV4cw79DQCmNAnoftKCm6rgESHhSozCzInsZ3xTC+yCUFpVkhYQjtyUbFUMu95\nBeerQVTpRpWkQwXNgeldyF7dz7qeNT7Hjp01aB2TZd/pVkGou0U5Ln8WkC7ErHZMlqhxDwqqZrLW\nfTsyIrlIp4MgVHCwQowKzW6yI57ppFF7q8h5opvv6onrv/92/fEfilh/r4EWgy4G8P2zzt3fs/E4\ndhvmOHi1ObP9HssSRe0j48n2hGxE/kO64p7jXhjv6hdUdDL5WbFCclYetO/MD9GOOO6szexlvOxs\nsphD9ik5ji3rWHamaq3TFBhFO+EdDSmtQjHUbdYxZmhno6yzuWsUL7LN2R+D0wiRMF865+PMKZuy\nOabHtU3Jcvc13W2r8rq2PIES4N0HJa0bEDcxiMl4Mjlu0ih4rXS4iczsYAm7rmPFz1mr/OAWA9XN\n4jonCRntrp8gFs+ZXY6tk4VnsnDIIGAHknWYTA7rlFVYiKDlak9X9s46VQBZEXGKYTbG9r3qjXZk\n9rMCgGxXhcilblIx/i66cXkrSfhEUVOyvzOomXWM9Sfjiw5Qm1x171a/W05ml0Oqk6OxLBGij1ab\nVt64ZuVbdcbPWWFx/Bd1RHvYHqP+yMdigtnB9LqU2YNsqchWfnFsrZwPol1/0UqNFDG4E5Wzbp7p\nylCCm7DZmm5Xd/TEsdX+bO6ed4uROgfFj6B8tpZ1RKfjdrpWpZNPw+ZTdnZpEvJnMr9H4WvnXhex\nihnHY7XLOthqTKavWiBikjuVOBtHdjLE4fgGdVKkf+Vb1692OJ2CwXh3DwzNRNmdblm5jmRUKWiO\nPId3uoFUEEJH5vcMuq3BFA8BGeRWIXaAMZhVgVjH14RYDwHxKRsqcBOtiRBbQW20Z9ZtM/nZvlRg\nqjnml8q5V65FFSS36jmB4iJVkJmS88Qamqiqqqpui64CqIKzZETyJw61CvUr+3NsZnA642HjmZ64\nv8x2Bzqyq50idW1Qciu6T8LqJ6hyxXIp/Q9POF1XwbUYOOsPuu+snYNBZdVhVrt3DkhdN7IxlvzR\nd8ivq59cKJsVENXhnX3F9VV/ZgUl2ujKRHHmwnynITyBBJSu6SKbKu+uV5CXJUfkYfKyQGFysj2y\nJEX6kZ7qXLQhs8vxJ/MJ4nPnkI1VHR29O/LYmVf0nUp2d+8T+Rg/pzBvZcrGkeAM9mbwEY07XSqu\njRtjhPaS2eXIW21WMhxbHZ9Eu5HP4liU7+7P0ZX9VrZHuxydFdsZ74Qc5Y/r6r1hVSnmgTxj1BUY\nr+p6Ua5ag7oc+85sYj9IlurOyGZmH7MXzce1yA5kO5Lp7FnZVOGZWDNB7Ex2bMpisyvvhG9+kokO\nWgVXxs+CXyWgw6v0ZTozeXEM8So9USfbQ8bL5CHfs6BSZ1QlpxBV5U0kFytO1UI1lWRKzq6e9no3\ngSuKK10SyUSJoXhZ4lWKhluAkM5MLprL/ObKdn2B1lTHd5LJ5Z1OBrY/dQ6O/A4fiqWK/Aqv/HeU\nmcDqn81WHnS3y/7Upe7NaA2yCe3HIfUKHvVle8p8EfVEn6CxuAbpjeNIP5Kt5tW6iqxdno4tmczr\nmvuHV6LsibeGtvKdtU6Hrsyhzoy+x9/ueqfbM1nZOOvoyAfZ7/gZ+Q3Zw2Q5XbyKANScM4/43C69\nS7t5MGnLLqX2VOECgxtoTiVfxo8COkssR79K+kwPk61sr/iOFY8oJ+Nn80wf0q/IWaeKeGXunp9O\nqO7+43ok74TNo+QEucPndIl1HeuKGV8l4dEah48Vibg/N3mrhWrHn7vB5iYE8w9b7xYFZcenkqpb\nKB+zgQUQ60pKuEqojE+NowRBvCw5maw47vJke0N64zzji3tieuIcIrYfR56TcExWN1ErRcstHpV5\nZ90pHcdIHWL2ma2L66uB5QZkN6mcDqR43CLIfiN+psNNAIeP8ajkqQZ5JxldOV1CsfO0HY6+EYFO\nl1LGVDoek48SHSUrk8fWI7sZP9PHik5mL/Jfxq98eyroduRWipzbOLo2uLJPJ29FZ3W8zai6Z6f7\noMRTxYbZweRW9un8zvbu+kUlrjuG9pz5zPUpmusmYDdIK3p2i9BTiT/luyn+8mK3u6ggzILflYHG\nKknA+NwkcopB9pvZOkmd4GFn4OqrJPwEr7u+I2dXV4V3265Kwjgdio2j4GWJgOxa55BMNoa6fTVZ\nnQKC7GSBXC2aTpFydGSyn57vFpRHO98mdXUft1l1V5akLNBYcVGJoDq/2y2ZHKULdWakM9unIrdA\nVGSyNZXzrep0CoxjY0f3FE3odHw4trdqpZzoRirpMjko8bMkdDu10qsSWtmKfOj4CslVRXE6Idm4\nU1AruioFoFssOvRJPaO6J6srmne6dzbOuiBKaLaeJbsqNEqHkwA7nZj5Adnt6naoenbVNdlc1SdV\nqsjv7L+j0+U5Qq7hKrHYOqbH6aqufchmldTZHrNigbpwp9tVbHBlnAoiVjQn9XcL18l9Kz1dpPMI\nZd2oGlBZ4rMgZYmYfVYy3cKR7YElrlscVNGb6P5PBbCra8Kerm6Hd3oPTgxXdTk5NxoDTiAiY5zK\npox1Eh/xIT1sPkvgOK6S1C0ezL6q79i6zEY27/C61F2v/MF89kQxYnHnfD5hE6WqcDcx788osOM8\n09UJOneN03E73be6t87+nOKg5Loyqvqng/YpXacK29EkVragYOx0C6ao2rFUB85sZ4nlIoWoW8lk\nXd61x5HPfODyor0y/i5NyXX3XxnfaWw79IlELxlQSVI3KCv6M74swFHnzXSr7sAKoGM305fJdopT\nVoAYvzuniKEYZEtHJuOrFm+l07GtUkTc2J5GHsyPUpd7mCyxmNx1LQpclrioe6L5zsE4gegkrGML\n8o/iYTrdtUj3J7tYt2hUE7+iu9OMujZUZMd5mo87wbNjVORTXZfNoSRh/N1DcdZW5LNiV7Eps9Et\nnq7Oqc5V7eKTnbBqj6vfiYmedTU7JvW1BLrdD6EHpttZm3VXhhoymzM+pNexn/mispbp3+mqJ4Kz\nWqyVHY6tO2fj0kQz7BSckl4VWLtOrKxnXWgdY7YrGRl/tZt1/eQmUbV4KLu6XWlqTaWA7+pR/KzY\nTBaFnf125NsLpjainIWCvuNoZ42TyGgfyl6mi8lUNsR1Lm+36jNk48jZTeQOsaKMGkIFLbl6TyTw\nKELoVPlOBXcTWB2OCqbqIbqJ4QSNkunOM33ou7K/qr8ru7LOOavdotXhd9ZU0cUu7yk01lqMEkF1\nt4rsaodBNkRb3a5f6e5KDuOZ6hBOIep0DiZ3t5AwvdMylfydzt1NziP7rHbHnarT6fBKjiNfOdPp\nzm5BUWuyOdcnijprs4KH5pQ+9L1bjF27Xf7djjmxxlm/4wd4Zl34xPgqHdzpipmdlaKC5GRynbGq\nTjbPkp7Nx/WVc6wWLiYzyqv4y7W3OrejE/GhxvEJlHGUnERTHcHtrEp/1VYlq1KYJvR2ioFrS9Vu\nJ0GnA7tSpCcKbJSz418ks8pbOUt3brwoVJzqzO0GkrvprPCoMTR3ytHVIsXkVNZ3dU0UgSe6Ftu3\nm+hVH3V9o1Cfa1uPCfAr2Jn9dvUy2Ur+mpgKfVQOBMl0E4jZyvS6hApY1DOdXF001kVOKgbfQOpc\np87iNXvuHqKTUG6yIplMl2P7btdldrLfbM06XtGR2bUTRLuoZ6cB7fBWCu9Ol1e8Lk+5yE7Ag93A\nqEAhN2md4sB0KR5m927xqBSgbN/TybKLCiaSoIPAqnYq2ikE9/jJJlI2bDf5FcRSSdhNlAoS6HT1\nqaq92z0YT6VorraoM+vY5a7pduUJZDVdEHabDZM3YtQO7w7s68BT165MTtXZbG23QHb3E5Nyt9Oy\ndapwVgtbx7Y/Mz1eDJigbnLu6KsmF+Otdt010dBcxqt0vikRmM2TdrowtgLtJwvgurYT/7s6p+TZ\niuJctnnXEU7VZwHQ6SiVLowgbCWxkS0O5Iz6OjB1Al1V56vjJ21yUMi0vSeSsVJEnKI5ZowbYLsH\n1yU3KVU3Y4UhW1MtYGyMra12sJOB4cie6nzOeWR8ri2V5tYtlMzGj6C9nQRGvMqJu1W2k2hqrQoa\nxcvGmDxVVCrrHBkV6hQY52wc2ZX1TvfrdPxu/O/yts/MhZ9xfKKKd+Gqo+uWfbpSqi7v6O7YhorT\nCUSkxk8FfVyTJXBV3sk4UPKn4uDxrn8CsnUhacfBTpKi9ZUCuVtsjlX5ph2xgCIfTNv1pLwT9leo\nEkMtO3c6aFVOVpUVTO7YlsllENiRWwlwpcuB8+pzhdxgmYS9O7JcYjqqfsv4OwV7Z0+jaLQK2R0+\nV4/Lf6LyVrp21y5nrGJjnDuBqDp2oLFdKPoWROAUqJNF6hh1Ki/rzHHs1L2qC5krCVPp2K5NKtBV\nEFT8M534DspZ+dxmcSL5J2XuFo1KHOzqbFP3sKoJtY4xqMzG4toKNHd1OPtx508hgUqRneh87Mym\ndEySW7BcGZ11jycyox0HsOSpJviEPdO8ap2zlxNoZ6qLVxK3glim7azKO5FgnYI97o/MGZ+CRN3u\nU4WI95gznzk8jjOE0T3QSqI7Ok5A9eq8Ct6O7Oo1wKEnkMIb5EihTjJ3DrVaaFhSdGTEcbZPV5/T\n+abhYdzTyW5W6Zq7AeoUkWr3PI3oppOyfLY7nXKHJiqwiw4qAZ516a4tpzpCpmMHhblIAI13fdYl\nVRhde6YK0hPnPKq32lGQMyeczOxyUUIFWlfsc/f0VAC45zZxFpV1u3GwgwZdGxU5SMzVNZVfrr4y\nqWqu1u5WRrXJrvxKAZnonJmsU5BOjblrJ+2Y4EcowpFTTdhPderX0IlDVEmYjatiw8ZVoOxCYIUk\n3CKJbK/a5tiqZFft3YHGne5XtX03oXd8tUOO3aP6T2ymiwB2YKlbLHbgMZpThzYF2RwEdhIesiLI\nPqMiuX7u2j0B63fWTxG1Y7czTFbBamXtdPG4jgVLBtNV4CHezKZqEE5eF7JxdSaOLU6yOR3eKQIV\nmZPkFMs3ELTv0zBDrY1jKoCygEEJrmR3yEmGKiytzp3Q1ZFXXT8Zi6pAvaF4TFIav7vd4en11XuJ\n0z2UPW5x6Nrj2KB0OPNVPrWeFVvW9b5CAlXPAKG3CRT2aqpWa+UQBYvZmhh0zmG4+rKA7nROBQdP\ndLguCpgeY/PdfXfPY0J3V+7U3ktGuF0GGdTteIzX7ahZYqO13eTO5Gbzyt6Obx19aO1UN5+Sx2RU\nEMFpNKPOaUJHtv61SKDbzdR6BzKpZM66O5PvFIQKITSQ2anWKv6qXSeKgtLRLX67Np5IxKmzmLDp\no0rcLu0GnZOw1Y4aC4EDYStFpOsnVSBO0Bu6ynSheZu+j+k64QyWIAxydoM7S1YnqTMdKmEzWYzP\n9c/uWmT7dPBNyasWFWffFds+VcgYdc+9LFQJ2zHEmXcSFMl1k5slqoMgXJtU8LnBuROQ3bVqXztF\nrGNLZ92OrDcgmy9LO6iAdd8sYVSRQJ2YJbajH9my45NPBPppGZlM5btOAflUwj7pZ8b3zRXwm8nr\nrFPjt8ErT1zDNrXKyOaYTiYz07uOZ/a6vuv6eJIyG9B+T+v7tC+eIHbmLEeuq+Gfp+FIFaai7hr5\n1u8ZFFdyUYd2EUQFyqLfjj/YOOtayAeZPLUPtAaNMb8quc5YNt6J68657NB0t5d+rSqsOqJyqAhm\ns8RykjGTncnK5plsZ0z5YsqfKLmqcqqEEn1HB/MhGp+Mxyo97e8JObawatVna1hSZjwsQZ1CgLqw\nWxyyvbDiwKqtmss+K2K83bmuvi65CZ6NVQpsRbeai/Mojrt6totZxakOn9vVUFJGXtXN1znE1/lh\nNkQ7Hb5MHvOjQ9me3TXOvCrScd1EAu0WjinfKh1TMlGDUWvc+dEHtuuqPxJkxqoHLrTuXrvrfPWY\np+SrBxa0r7g/92HyHlvte/ohcEdGJ3ZO7E35VfGz3KiMd21l9P1eFIVUFf92Xd+qB7WuXX+jjt+1\nLbOVfc9suz9nB5/xsAq98iD9q0+YX1cZ0Y8ouKJdrDBlnzPqFvhbf/YXFabT1af+iqBkqqaGYgXJ\ncPgdqq79XhWigqID29jmWdBm4x3I0wl2tRdWTJA+tdfIF7t+tCGDlndSqU7FuluVsiuNo5clmasz\nfu7siZ1dFUFO/9nQyanr+j3RnY6hSEHFNSizw0QOy4K5GnAuxKuuR1cMJM9JdmabE7xxvHOVyTrs\nKgudE5pzkAbbB+JRe1BrUKFkNmT8T/zNv+qPOD52R894sntmdg9dN4Jg7ARkjzZMXgPYHjP969qb\nj0H4SLv3Pvd+OUVd+VNQt0un/dKlamyk0F0Jr97XENREHTGDelGW43wG/aYKB+twqw1xr879zn07\n6CSD0z0RuT7cTdLs/eFpqkB9dIVS61xy/ZnNlRI9SzInyFHQr3LdTVQSdSqZEbGOiq4b2f3OeQdg\n8HLq6qX41TlOQ1p1R0dF1qXKWvamcRN7l9kprEi+olUPDZDKHRIlNYKx7E5/OkF3KStM1Uedm1xo\nj6hylVLzzlWqKvf+zK5tHZqG1B15levPJ/a7rjkKh9zAqVwJpu/sq9xT/OsadI3J+KrQ1w20yYSr\n2JDxXpf3SPlkUjGZbtGc1rsr57hBTnDfVEkgB2qeoNhxnc7uvEusdKKzVh76OnomA9xFCm9MqJM6\nd2yEd/Ts/sOSSt1JUQJk9xrnwS3a94nHGgeBxO+r3ffn9SeuW/2B3kM6e1dFNTt7dZauLMe2bP3q\nnypqyORU1ji87hzKjWo8VfTCREdJyIRmjw/xcNSdvduhn+rszsGy/a3fs4RWxbRjb/YQhNBVtoco\nwy0SCJpXEykW/lgsmZwsJhW6YaiNyUdzcb9ozRRKzeR83xGKIGHsTtlhxMBWh/+Jjr1DWVBlAYvW\nqW7gQvpMfpY8Uf/6nRXhbHyVnc1lPkEyWVKwfayy1t8uVd8w3GKQyXISvFIcM11bycPu5auirHus\nBxXnsw4U1+3YndGUXIZaoh6190g7dzQmX12B4n7cezpqBEiWko3sq9jV8SGyc+c8dvR3yPo7euce\ngjoZq2irTFTVTzl3MslvedmdMktyxLN+RhC8si8FM1Gxy5IEoTS0Tsl1EtWByeua7PsEPFYoYpom\nmtBPiR6T7FaU8aHgQM5k0E9BPCXnDcTgtmMzC/idoFLF0UUU6r7rwNeMPztrJ/4yPQzi7sL4DlV0\nsT3tFqif/jVV986j7h3M2Ow76urRvq9GaI8r/GMBr7ps1YZb9/qb6akQu09HfYyfrane3bP1DL1k\n5BZpRxbjV/5jPIqOQQ91P4vj63cEc0/ZepKye/g6N6lL3cOzNxMFl51O3+GfIHSdqcZLZrdCQU/d\nz6d0lv5Z9wlClSweWIRgaoNPOx3pd64bsaPEvcZx5wq0ylW8q63oOqXeVZjMzllMFvJud2Xo6/5d\nKXwVG6L8jlw2136JXNepznBd/G+TWdf7yl2cEYKWqKus3zNSd1mHKujLne/o3KGpWOlcQxXvLdfJ\nl0ndK8n/8MSqII7FLsbu1NVHkq+U5JXHswxCqzXr2vX3uqZzhqyQqEJb6WjonqzWbt+hv4GfjqyF\nKo+DGf9Ogevm6ih0V9XKCcpK0ryFdh5i2BUFBUg3cOLjn7JRBbQLM5G9qvBk8BnZiXzw7ds/f67l\nd8bN9qv26iBQh6cLzaOeODYKU5w16AHlNvArdfKMsiBmj2PqqrJb5FCyZefArhU7NmQ2dR7uEBqK\n8q7r+mNS30Pfr+vH367r+vE744/rDx5/+jGxQruwn/5LLddV2zDrVPfn2FWcql2145N07y0+eMWf\nmzfrdu6DVqXCo04ex93u27EjyoyPku66aFcqY0nyb9///nP9+Of4t5Vv2QeySV1HJ8iJ/+q14abW\nA4z7SIQ6xr0WPT79ipQ9xqDf2XrkT0f3iYevXZQ3YRO7m0eo/u37df34vYP/+HFd19/+zvojdPWb\nTjSWbM8T5+jI+MO/1KKYVVVRnSFWzKybVx6XvhKpZFYPlOpe3kVDnQevtUi7d/bYJTuFYv0Mg3uF\n6ktX//EjsNx8H24tlVhQb1+MvnceXJzOHz+vgc7uoirA30rqgTEmR/TLuv8M+nf1I3+vuvXuvIdB\nhswUWmHfs3Fo94/wMUq6k/++p4NHuayQVWjnvaX72Mpslf8Dh0xJFnzZvTLrAjGomW6X5yma6Ixd\nvUo+mmeFPBYXJkeRSkJVCBUvikn0nvFTkt+f/3b9/UHuHkt2GwstsptRd91OHDGd7ftCh1b5f4b7\n+Pr9uvJkcKA8es9AVyDnnn/6rJFex06Hj8bS+uB239MX+vEjJPtCEz5RZ9L1/c6Z/eFfaqm8gDJj\n0PcVusdK/BUgehdCZe8X7isu6iydjsP8vdvRI617Xs+9eiVDdtL1y2Pb9XtS38n9Y+3owu5VX4XQ\n+5R7RXHlVtY//i/Ps4CfKDSfJGS/071R116/O8S658RZP4kEHH00Xn5f9e3b3xP9/n1dV7rqE2hH\n0ZQt6WPcqqRiULam8pC0c897A8XEZHfgrONlKEc9cMUx5bfYWR2ZSr5LbjxVOj9FNuuf0y6d5E8/\nAO8+slZ0pI9xzobZ4098UY7j6p5egbZvoCyxGX92v4x7ZskYZTg6bx3rT1yL0ECmG9mk9Csbs4Kn\ndEm08iP8JHZ9oovv6HNh/M3302E7DznOPIKjcQ79Xg19a4I7lO3vuvjDGPuuUM+bCBU0tcbhi/Lj\nWLXoOH498Yh2osBkMrfvJO4mEMz8ykm8EttLVrzuzyzhJ2lST3V9l79jJ0JIkWIT2i0wp3im1tr/\nmiqi6ktgFuTsbvpVKO47u7IgfjQ/WQSjf6vrJ1AWeseJ5CQ5egu6Y8e5AsTC5/rFscu5VlWuJ/F7\n9Qy3/jVVZEgMUnRoyBnTQZ7pO0Xd94d1rcP7FBK6zyKzzZURE9dZqxKF2RPtZUmM3iuQ3oxUAnbj\njiHBik3X1YBFu8mC7u7ZhtzKv2PPJLn2sPcJtOY0XHbWMHg7de1g9+7KGof36Qe403Ce0fbDguM4\n54WU3ZfcB5avRsxX7BHrRBLvEDpflbRPJF2mg8FrVXQn7WT2TOuiwXPiIBRsRUn91RIdde17LvIz\nX596PDsRtE/J+BS6mKDphz+H/nFHXwMxu5dVDyC7v8cHkyg3rp0M9g6x+xb6fX9e9xKT/PZF9Mmq\nR11l3IetSOzO1y2kqgM6tmT2sDXZvbuSQA45D2qMsreqW67r+2hD94zGEse9R2WwTh3QV4LuyM6p\nzsOK4EkoPI0yuvq79/Fd+Sf2++Sdffv/vXaTa0zsdkov6/JvIVT5Y+XOurhTpTudr9IdHYryWLdT\n5xv9wOyL5145/w4vWpOhKkRs3+tv9xx3dN509MEBdXF0d72pOsa66FMoIIPnKDgU8ok81fP4xDVn\nmjJ08qmu+qScU5T+TxZ37yY3sXvs/Z1VN2VH9546QcjeWHzcaszuztXzYAWue9fclbODWjrd3NHD\ninGVpnKmQhU9H6lA7j1IPUhV6GR3j7IzpHHq/pet7SCA28aOvqqMHTrZ3bu2fFKuy/vT/021Y5T6\nHAm9JGav1WuXRFU/q/7xu/tApgihkqxAIfjZuXOjezBCFtX7d/QTWq/usKcJJfl0EZ98l6pSZW+u\nDfKfdVfwMyaZU9ljcmcvxeiOuv7OglIlBLsidA4u69yrXOSP3Qe4TF6GKpRsdG1QxcJ5E3HXu1ec\nm3eiuLm61t9xbkpft7hWaPQRYhfK7NyZ3Ac8Z12cj/ZkkBzJRcnuQNDuXIWUnMnznSLXjuza1NlD\nhtgqV7ATULxKo8qjM7v3tuxQUBKrRxAnkd1O6Kxfx9e9rPZNJg4qInEsrnGT25HXsXkq8Ls+fKKI\nTtpU4cnI+jt6NckrBkXYwu63jj4Ekdmhrvt03gHY+ignfkbQHl051FjnzqyuEdk1YTLwK7IUr1OY\n3etEprO61rVD6d3heZSqDop3njUB1h82l/1ktijZGT/iYXoq+8/8URmvyok8rNBk8yvPbgJ0qKP7\nk/Z+eeo6zanCqss5ic6KQpTL1ij9mY6ODyrB6KCAjg2d8a6eiky03z9r4rqob0tghadadVmQsa7q\nJmq3KLjdX+2dFRvmF4dP6XXWOvy7RWV3HyeQzRPynl43RpMGsERBCeUkLeOLc2hPTjd39sFk7fpK\n8bPPU91BFeqqPLQW6XkqoTtn9uWoWulRMKlkYN07k806biZbFQVmpyoMGb/jqwrtdNXpQHW79alC\nUKEOkprSWfH7lysk1c05Cc/Wse6KEj5+VwWC2Z99rxQFNo/WTATFTuFw5tT3ih0niuQnE8v1TVXO\na4hBskq3Zl1cJbRTQFixYL+n/FKd7+hQSGZHflXW6YCtyHcK0vT+3EJk6z3lUFahlMGq67J1KFiz\nZEZrnSLgdlFVgNgaJXOXXlv9A03bOem/T/jwlec2AQedyqm608qDkp916o7dFb7JTjoh41PB9Mog\nLtCXtX8qUXccwLpq/Iy6cRXeI7nRJrZXB2pVkYE7Xyk6E2eczbHiVfFR144n1j8tv9OAHqHOYbNA\nQfDc0ePYGMdR0WDyurpWnWqNew1gaxy7qvRUAD5ZDN5Ej+3lKQez+3Hk2ZWD+N2OnI0zW7t+6Xbt\n3TU76yfR3NsStttAvhydvEs6nQ1B8Mivfis7nD1Ug3Gaj/GeOCfHdzvyO+sYAjyhe4JUnI/Z9sk7\nDjuE6r21290yWF6xadIGR+bEteGNncZBbtN2n5D5SXodrJ+A4ysvgttZElfs61RbN3gmr0CTHcvp\nkGrtm5PnRKF8836Pk3O/VeNdPmftDtR29zZp7w7/Diw+HcSTBe80PaG/WkQ+4pOKkei+PVUM1J3d\nTXTFp7p+1f4OPVVQKj6YtmdHx5E7b0Hnp+R9ujD+w4hPVSunmHwanj2JBk7LOS3/DQH9aRs+rZ/S\niUTPurVKbJcP6WG8HUjN5L4Syh2mU28QaOxLwOdP05Ob3tXFHt0yHRPQEenvyD1F1avIJ+/Zb/Pd\nn5J+pUOYTtbdLjJNU0Vswu6Ob5540D0hu2L3a/Pp6Ucplz5tw9QL+RPd8avc0/+iX4Qq9+TTOtEc\nG1dzn6Dpq8O0nJ0u/de9OqGvuumn4NqJP888AcWmrhM7ScNkvPU956vmwyvoCee97W+NnftXN9n+\nojnabSBTf2np2FSik5DpFL0lEZ4qHBMo5anCiOye9NVbzr9Kr/DBr+a804GddeOv6kNF7t529u/+\n2XOavsqZjdv5VTZ+XZ6tu3fXN9IpG9++94k/732lB1SHvqLNZfrUP5DxKxaPp6gD5//sj2sf29Nb\nYOrEo8bJ1/zdPxOy++5T/j8N2U/Ie/JNwpXzhnz5JeltwfcEdf/01ZF9IpjfgpTeYMeozK/0av60\n87ud7BM+ndD5xF5OI7CnC81pOVHmltw3dCpnE9UgqAbEn+Fv2OxVe9f/Ucav5M9fYQ+/PO2+1L7x\nkJ96be6+Jzh83T288Ty+FJ36hxtOUQfmdf9O68Da0z5TNrzlvvrV9E768Ff7092j9Ks8qj3xD33s\nBtrJv0A8TU/aOPW+8Wq/fqKTvP6VsyF7orP8Kq/en6Au2ntapiPjvwA8hWUVV15TgAAAAABJRU5E\nrkJggg==\n", "text/plain": [ "\n", "array([[ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " ..., \n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [4278190219, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.interpolate(agg,cmap=[\"darkred\", \"yellow\"],how='linear')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AABULUlEQVR4nO29MWxeSZImGKRIUexi\nsdRaCtVzmp3jYuoGNOYgp4wBboEdYIA177wzGw2UUY5cYo01zzu6cmQIKDTWWHuBcw44YHG3xhoC\nDoWdA3SLngVvpgvbtcWtllSsplikxDNSX+f3ByMyI/Pl+/mrugMg+P/vZUZG5suI+CIyX/4if6Q/\n0h/px09HIlfRclZZvl7jVStr3edyUVk1zwifiOytbfe2Vyqv79WuR/lHyKs3ZWzmpqmyTZlzI3i2\nPNcwjXpgET7RCTui/Sf7i0ruGS2P1+O9uqKiXMQgeu1EH2rp+jKfYbS8NX49bUyhqQ5jSr1V4R9u\nwHtgmseIQeW6JeXxvkPpuP4cXi7Cr8WoTC0z0lCWnrdVfpU8+2j0ER2LkTTScHcLoD/z5OiBG9EH\nU4P+lnw9UL0mK/Ody2NpY9XTxhSYuGyaBabOyG8k/5se+yK1evhSvBxVXN0mf2+FxhGKGI1aW3PH\nxD0Qv+W6VabFwKyygv2ROqikCC0PvgXqWmUf76V4GUbgyX5c8Vrv1cICvhdVUI2KehRzZJiyjJh2\nVePm1jbn6vNUJzWJrIlbm8xRbx5tM9KOJiTnSp63ppwlRZzL444gnbcYyXMOWrYij8iTzNFmSx1z\n7h6JnVX2iD2l1eBUbxzhYcXHJYWEYltl0f9oCNAiY/R6SflKKCLCs1SvVc6eMnPUvUneq9z2cIpO\nrNK90pKVLl9LdvGyFsqW4G9Jft2Whub8XfP0eNT6510bRVGlnRJStRj4Ofj2tNvLZ8o4zVFvCC0D\nppSUrIWvViR4ag9ueysELIfmUeoT1/WMQAsxr5YJ1hJ2RNpvpRGh2Nx13yfqdQzd49PSYGlyRicQ\nl+NNL63kQVbLOPB977oV7tQgcQRRREKiqd7kppWjZz7Uxm6kLCN4TeU72zPqYVxTkBrf1jZbJr4H\nrSMyaGWzjEEp1o0oZKRMZA29xl/3w7vfyzfCaxUNy6rSShqxuQfQQwOl6yLX4a4lr/W5pLhzxK4W\nzK+hgta2eyiqzNF2o2Mz53x6n5S9lSb1baoH8cpEJoz+rtfAdbmS0kbbBHlwnOH6472cxS8pce0+\n+qXLePmAEV64Jq9VZspEKoVGo6j3GdTqz01TDWBLqDiJWhhFhZriwazEFRTyyf71+BcKVVue09dK\nEL0FKbDMmj8bE6ts9OG33q+RZZSm8p3bENw0lcK8G6OWCdQ72UpUmszeclnEG7Hye/J6UN96I03f\nY9lr/Lz2SzRyYtSQ0EhjMbXsiH7XDPaPmap97IVyNe/Gn0uKxx6ZvRx7aRH/BRqG2fqerqORgJWM\n03JbG2yi4xR55bX3ukcjJvaqKMaqyLHqVH3mLR5Ge7ua8kb56v+ltXCuz2ve3CYrJq49PfChtX5/\nXdeFASpBV31fG5Fa/3smdCs6mMuLTpGJqYaS5mrXuzfn2NyIAesdTEvx9P2Slyrxs+7rpJh1Xyu5\nVn7t5fWk0kbj6UEyBDrGB0+vjy3vdkfGrQVptVAPWrDqef2tIaGetleB5pAlMj7hdj0vWlOySEOW\nxfKgq9eedd1SwNqEs7y8huO6jicnt1HiH6lfas/qT4+niaChFn5WuWETssD3fVds61nO1adrfHu3\nOVoQ2btfa0fDZQ2d9WdLyZmHlVH35EQ9q6zVx6jBK01WK+lo9UfXbX1WIyeRZVyn8hsh1zL5r5Kh\n8Wg2GVstbmmieDGZp+yo0/rmmRWzW7KxAbGU0NpLX/L2Uz13z/XaPUvuuaiGRkYc17QqBqQXwcxK\n0UlW49HqMS0+VlbdKq+VS7+1hmvayzOPElyPLudFPb4nt3Wv9ZrV94gsy6DRMvQaNG8co84pLmEb\nLf0ZsZcqedySBbZ41Ly3rq/r8f/Sq6eahwXn9bo3K0hJJi23ZbS0p/d4RJSwBSVNvT8XjYb373M/\nRvIaJk/N03oKqOvWPLGIH8c/2fcPi/A8uTYEltGxltQsWM28NN/aG3Xell3d/17P64UpPdDfM9ol\nFDG3B/xDQyE3Tq1Q1Nuggnu4VtpyqtenNQ9LySPQ+UjkCkouYisjb86peWZtwLy2a+NRkt1DDbpv\n0TLcz9J9i3epj7V6rWUiXjxq1EbKEqG5jWArz8ltWR7R+y5yHe5qT147w60WTmjZtDHR0NxCA9pz\n637qNlDeW6fn+lZbljGxFLZ1rD2aK2NvKV1t3Frk6JHppvkvW85Qe1FLVrPs3sSsta9jZ1xDfQ+6\nax6ektQy37Xsu172i8hjGRJLVmuDTYt35jolRZ6azY543rknt253VHuRvMxN0AgZrvGITISaFdEP\nXmeCzYaddtjbcdxeMi5Hcn0fvLdTTSsT19flmQeHFpaclrEqjRWHE1FqNbReqNRLrY7B43GTylRz\nRqug6MOp1inPg+J/C3TzeHtQVfP0YDGX5UQe7uv8gedpuXxNjpJHrvGrbZjRsukyFlKpjdUcil5a\nXZiTetBjyx6GSB1df+WNQ83yet+1B8U1r9OlOLvURume9tqQyfPkVvbcKsuxt4bFJQW0ZOX/GrZb\nimLJx/eiyKr236Io7yj1hgyRdj1ZSmWjTi1qSKJ8l0EhGVoGoOR1aieveDw1b89r6h1qzAvlnuzL\n1S8/Xfz+9OD6YQ6swCWYr+VhRdQyW3KVDF8JOVjjXRvPmkK0TMyIcrXI1lpnVajFoPTwWRmyPDeu\n6++eNwJZXkp7zZIhYf6WN7fuW3U9o6SRgVVPf+Y6v/z0uuEoldeyWePLBq/0jLxn4n0emaDrUYbe\ne6Pql+r0KuVUo9Bi2CdTZABbYhervP5eMiSWkuijoR7vZa+tDROXtQ6ysJTa8tr6vl4SZIOl70XW\nrq029Fh4Y8SfeyfbFMXx5I5QtHzrnFsmrZq3HiZPzfvyQ4ESPT2wPbfntS0lgTIxL8szljyypbxa\nFm1QtEHQfdTfvYnvGbRSYq0G7z2y+l5DERbfSB2mUt6hJGuNry43wqD0jOvcMvXwGdaYNWlbNnpw\neb5vTXC9Q80KA3D4A65bCgxe4IdYXSsw2tfxu6eouq6Vzdefo+Osr+uxspQmmuSsUS+Pnno9ij/K\nWIygKPqxjGaLnEP7FG08MvjwtvjMimYpuE6QeR5at6U9o4bkVnyseTM6KI0Ly6GRhL6v29b3S/0q\nGcqSl9Vyl8IEXa9kmEv1R1JpXvUqVMu1kbRMY9NK64cia9t7+UJkAHH9UGRNl/3sebq2vSfy6ljk\n82NZO5T0hzJnJ7n8q+NU//GeXJ2dJJ6P9+QKMlke6/PjxIuvQ5azk0V5H51kGcFPRGRzJ33/7HmW\nS/Pc3hO5d5D+P96TK/QN7W3vpf+HImvaYByJXEEm1Afv3f0sB/qrx5mfCY8zvjN/lhvjWSJ+FpqX\nR5Eypbosp/XcrGssp9UH63PrNU/W2rWaTKtALPe6SFYOfpiP9xYfLE9alNUPDhMaPPGgtPLs7qfP\nKCOSFJInNyvsocja7v4iGoCCiYhcnCZPBqXk/qBNtHV2ko0Q2rt3kNthGWAkHp2kenz98Z5cPTrJ\n/fv2+fVyR5INFgzLocjaq+Ns7I4k8eE+8TUea/3wcJ3HQt+zFEi3xXVEkXXNS4zVlFL/12VK6HJZ\n3rLXQERo2R7flbsXvpWSPRHoqqG115aX6fZk0DkAb0lOy8rtWAdBohwy/Swry1xqy1pqZN4lBfMS\nfz00cvLVeI2G4lNpKs+5FHfq0qdF6/zFsgA6hobl5Qn66CR5B3hqDce0tdaeBOVRXysL/i5O0zV4\nSXhnwH6W+VBkbXMnD9ru/qK3Z8+9u7+ICC5OUzzOaONQZA0eHPUuXyd+aE/3HShidz97UEYz/H97\nLyMqz0NrJIH29HhbSqMnJSMjqZDm4SlijVfpvtXfaN1SvV55ND+L71xQXYebUXlKtC5SzhB/fpwb\nZWXCZ+4sx9scw+K+hsZP9hO0hVK8Ol7sCJQLf+ANxRPJkBj8edJDHijvZ8/zfR7MjTup7bOTxO/s\nJPfv8+OkXJZigf/nxylGZ9SAck/2kxwYY5aJlUOHLhgf/Tx0DkLLxjx1yMR10P+S92S+/N+ikZNe\nG7oW1GL1fZRMpfsaqU2hUvgSeRYWret4kJloWOslbnQiCpORJxPq6kTc5s51A8AycOaeeYukyfv5\ncYqLGWl8fpyNDJSW42mggHsHqcy3zzPPjTuLfQBauHewCLN390XuP1xMAuqEIGTe3svt4zqPDUIE\nNlpsqLy8CWSD0dBhDNflZ8yfe2LSqZ6wVkd/thCOVY6/lxJ5pfqaonysce4lD91MNqaWxdRxIF8r\nbQ4pxVo6foYX5Da9Ol88tON6/MHYWMtretMLeOEev36q43BrN11tp59eYtNjYa35W3G8N3bWOHhw\nfY54z5OtVqYXdra2GelzrwFqKTundx9CnoAexLceoHVqjKcsUCiuw8pgJbX4V1ig5PgPRdb1GRmw\n4WDZtdJopf3i4fW1f+6zHgNtMFDHUk6U4/GzDK43/qOo1RPONRlLfGdVgAHtec9qGW1bdX+f3OEb\nOj5iKM8w0oIpGnJpPpw4AyxiaLu9l6Ao4LSG9CI5Caf5MH9c291P8bmObZk3klzgu72XEm3ITxxJ\ngvmcQGNId+9gUV7wA2/0C4Rru/uLbbBskWfgEcpYz5KXGiM8SmV0+ZLcyyJvXs5FN9HHnvbXvfic\nv1sWxVrn9Rrl+qjHMS/Hr1iLRlymE4BIxKEMFIjXn1mpWMmtWA+Z+c2dnJm/fJ3qAdZzHL+5k9fd\nQZev03+0yzkL5AIgP8uCGBx91wkzPXbeuGrUwQZUG149Pl4YUpo8lreyxtaLNb3QZARCiSQZRWLj\na9UrGeRI/ZHUYmSuPYhS0kMnlXSGU3tmkcXlo7OTpExa+ZgfstQ66cQPEDxEFr0nCJ4Z97WMXGZz\nZ3HzDO/OY899KCmz/tnz/N8aE3wXSfAbfWGjhj7tPBD5xZf2zjDmjfJaHmtsUN9Canq8dXv6u5d8\nZbI8uaYn+ylBynVGecEeXi11RnvsZbcNHlUmeiJpCKm9slb+UnmrHO+sY3jO0Bn3AX0xkTgsQHnw\n4UnPa9HaAEHhWZF3Hoh88+UiLNc799A/KLdIDgO+fb5oSEDcP+bD96IZ2EhYZZWfW1FG8LopwxAt\nWwp3V4XWLRhmQW0R22rzGncJuvHyAyY31tEZxovYMThgO/OHl7g4TXKjHqA2YD7gORJi2OQCPrv7\neX37s+eyBiiOzS3nLxfHQsPfLx5mmAwPDvl17C6S989ziBKdGFyWoS5vNuIlTCYN78HPa8uDnC2K\nUuMXWb6qhYMtsrQoYMszaalnrS6NIo/vureOasUlbAS0B9ZLU5qHtbEDEP7b5+n/04PsifCfN9Q8\n2U/3ocDgCcXjffj3DnL2HjCfITp7b5Gk1FAQLn92kstyf7Dmvb0ncvrV4tiJJBTA12A8RFJ/dx4s\nrv1zjgOxtPXA+Jnws4PMEQW2DAXz1SGALmstH2rZajJY8nh8epRC90l73FZ+Le3ViDd8jSaP77oe\nEHz23p7SA8aZaCteFlncosoT+uxkcdMJvx2GMo9OZO3eQYbpfB/3QBoBIAZnTw+DcHaSlA078rQn\n5rGAEUBfRPJbeZs7iygFivDNl9n7HkkOLbAd9vSrmGeFHHp9Xz+TRycpbOBnZykKPx+rbY0uNFpD\nWzqO53a0IdHt6f71KF5NUWpv/1l7QUpGyyKd14hJPo6aDGHLIHse2spglvhqFICy+l1qPblx4MSR\nXD8oUiMKi69VR6MV/GnZvniYPuO/dVCFlpf7gfJcX+8p8N6z1/KWNmLwM/Ggs57YHpS01vCneMPo\n/GAZvfL6eUXbHVGuRFM3yURk6JGz2QqxN/EgEcejuMYeWSez9Oup1ho5vDOvO6Mct4elLU7E7e6L\nfP0s87USY9yOlgPr5CiDeFivDjw9SP3i5J63R4HX7Vl2vX2Y63ESkWXWSTUrdEJ5tO0tQ/Uk/yzy\n5InUKe3RuMls/Yj6tURpK19LB6364axrKc7Rk4qzzxaM4w0mIF4y44y6Zb2QPMN/Xqfm7D9n8MHv\ni4cJVnMyTE9KLxt+7yBn48G/tBEH7XIWHteZt95EpMeOFdzLrHvPoxQSeOVKc8KSpcZ/NKzt4Vmq\nM4eMEVmsducKB5qsNMjyCKX1cSg2PCEUmNe6S56DvSPa1ktpWA+3FAbyiWRjgmQaluegWE/2UzJO\n75ZjwpKZxZO9OI8N+MNgaEPHY6bzEdaYlyaKNmLgrQ2Kbr/FS0fvaSMaaXuqVxtNtX6LTFfKXocb\nlaVLuBJDnky8IQXfvY0ylkfa3U9vk/FxT3qzjF639iaypcDsHUVScu70q6zAbDg+/jTBf62k6KNI\nNnTWtls2PIxEGCHgvrXuXxs3KznGbevnJDKPgui5sSxvWUIoukztWm/b3rURSjyV1tGA17D+/Hgv\nLwFxMoSXunD/0YmswTPt7i9mcKHInM1lvjju6dvn2UuJZKOBzPir45S51+vUWuaNO9f3BCDhBkXF\nMtnZicjPn13ffiuSt7uKZMPy6jgbH5HsjQ8lrQqgj7i+cSev9YMP7uu98jymvN2X+2G94ovrpYnj\nhWIYMy+xVEoGRbx3iXqTa3oeWWWnxuS63VIf9TOKtDGnQXStXg2KeVsydT2eLI9O0vZR7CXXJ7aA\nvF1kDF31aTH69BW27uCHHW4iSW5sZRVZ3KZ5JHJ1/2HangokAD7WEiA+c1vcZ84V3H+YZdBy67hb\nI4/aM0EfSpM7EjuP8so3DcfnineXQaUkW8+4Lnh0rqTXYkGYJN7LEdZEx9+RJMViCA2YDN5AAjo2\nRv0vHqY6vDaOzTT4j80tvIlGJO1ww7UjSQbH8lyHImtvzheXuyATl9cvt4hkGL+5c32/vUhWcpGM\nSngvAsuCTTV4DnzAhGUg+aAK9myMDixUoJdH9cQpeX6R8i/tRHloskKQSD3No+Thp1LJy0+lKBKL\nGrCqhah5Ea9j8Jh6WYqTY9r76OUvxMw6s60z2fq1Vr1H/Mm+XG19lPercxtIoOnYGqjFiukh8/2H\nyXjAcPHLLvCwvJLAL8BYSIhjdh5H6xnhnkY32jDUMvO12JJ5WtTjqb1+9bQxJf6dghpqY+M945Ju\njXrF1mq7mrCwvuNzDxRjhYcyidjnr/Mro5s7KbbFCyJQmPsPkzHQb7eJLC7XsXfTb5eJZCXntXoY\nKhAnF7XR4vPU2QCyQWMjpEMf8LcMCrdfyppHM/OtZCmn/l4LA0A1p9EbIni8RUT+zf8sV//D/yLy\n2/9X5JP/8eYg/Ihn0UsLp8By/I3v+j9DIb7uQRhAXYbTSDohBNAeGzD8s+f5DHQ+3JEh+jdf5n3y\naAfJMWx/1S/NaBQhkurc/SR95mOcObRA4o1DgnsHqT94l317L8sGviJpEgLWY88+xgCJM1Z8lhFJ\nS+/lIctYcnJKP0c9DhYq0wZdw8USmmOy4LNVRsvqkZUg9IwHPn+0L3LvL0R++hd2glnX8+ZKjWpl\no8hjVHtMv1d0fug8ofihlmIDrxPYxIKJrd8A47hRJD1IeEwQPCkUAG1xnuCz59cV4eI0Z7cR//IL\nMeAN+v43i6fBiqTvyOqjPO9+u3ydQwPeJyCSD7LAuLLXZy+OON3LquN0XE9RYfg8xWVF4uv6eG5d\nt2YIPL6lcM4rp5+t1Z6If/iiNR/xjP/Z/ypr/9e/FPk//4WPlkTyipI2mDXj4MnQQy08aiEVf6/G\naR4Dhs/RhnWWmaEzQ2vOpjNZB0pgeYyVCLEuQ29uW8f+Om5HvK3fI0eYwIdV4LMF160dbtZKAsP4\nUiijYb232uA9A9Tj8bbuefctOVrIki8i+6jwY07YXOM/V/tRvlUF9xh5sbuO27Ti6ngZ0Jr3pouU\nz4PjPehY7sI9JMismFnHw5o4ISeyqES8FAfjwpt5mDf6B0XHkhofbqHX0LViR5I4pdiWDYHFtxYX\nj47xbyo2nZtKz2mVaGF5zRKSJ7B+37xUF/V4omHJSXstht2A44hbGT7iXDcoJJanWIbTr66/bIJ7\nTw8WwwRe1oIBAnRntHIkybvjhZlHJ6nct8/LJ+ZCqc9fZi//6CSFEhyXc3IQG48OJSECwEnwtRTV\nap/7p8eIn48Hpz1YzmVaYkSPh5bPC09a+NXqltpobb8UzrbKy9dHjDGTGzOxBy1ZfH0eGO7pE04t\nfgy7MfF0UsrbFy6yuIeeD5UQub6EJiKy9dH15Tr2qL/8VK6+fpbv6T5otKEhOmTH1l3Irb295QUs\nD6rHQ59BZ20O4udnPS97JK+ThyJq9aJvnpWcS498tbJoK9qvqf1todawpQc5uIW9t6O8xI2O2XX8\nCp6s6HonF/aT64nLcBoEWM1t4DVPa+85x9S8YQeygnDMMysZGwxWaE1a8XnPvFXHMgB6B6CFnEqe\n2IPr3Ka+57Xh1SlRRHE8JZ8SLkTrrjK8FplukD0ys+4i/uGNTJwl5pj6UBJE5SOYjmTxlBmRrBSA\nsfCmv/x00Tu9Os6QHstx4Ielrcd7aacbYLXI4htq4LVxZ/EEmbOTfJQV+Ok+YdmM99nzrjiMDU6R\nQbafT66xUMTjPbn6+NNcH8bAyiNY+9b5F2ZwzdpWjGdS86hchuu0wEdd3svdeGGiLhuF0i0GQoei\nJb7R+7pcqbzVL1DJs3vlu+C9tYZeGmxv+2Mp5uJ7+lQW/oM8j/fyTxRrvnzqCnjpE1P4V0+OJPHi\nH0Xk+0/2c1vcLt/XP6vMP/Gk+2z1Sfeby/GZ8B4fbssq20qRU1Ei/KPKEuFljSW+R09xsdqJymC1\n0arsq0RmrOJZxp5DB0QW432Gw9YpJ4i7uZz2ht4hDXg4evlLZBHGw/N6ZRFf84437TG4PywTy+a9\nsstbba2VCBF7ec2C9K3UW7cnlu2JL0v9jMxRJus3AqaQJY8VKq0SQebf/2yyhnDak7OS47vFlAeD\noZ8++ZIhKhMy0jz59e60ewd5txv/2omOgc9OktLyu+E4GpoVmyEyduBxWMI72ETyzj2EKJevEy/+\nZViWB+UQZiD7rvspshiaoF+47o23fk5cj8tCFlzTvxVXQm6j41rLs2KeRNr0jA5/xwGetXaj8mpe\neK4tfJZNkLnolbkgk1Z6zVgPit4Yg/vsVUWuZ7Dh7fjFE5C1yeVI8m+k6TV5Xnu/fJ1jdcsDayvN\nnrl0xBVn3fVhGLqeRjw8rtY4o1/eWXK8UhHxMoy6al7X8qRePe6PxStK2rMz3x50oUm/lnxTCbqR\nbZd01j3u2XqI+OOtpkgSYT+2jrk5OSWSHuDu/mJbF6dJMfC2Fw6pwPIUJ+NAkIGz7FBiKOvu/uLr\nothg8/lx3hYLtMD7z7Frz1JmbEcVSXWxzZWtO2/WwTUouZWUQj6Ad/tpRMBGCaQNmfb+pRgVZCVz\nIgkhnUG36vZMYj3HwNNqLyq3RXpJeJk0F1KykpzX5kA0kWJdYxiPZBInrHR9zQsTnY0JEl8anuKe\ndR2Jssd7+Vhm5o9yfGy05mXBYUv+0t5yrm8l3XS2V/dXjw2PbRRqe2Ov5dOk71njUZorLfKV6tbk\n6uERuR+hETyW3V4RunvbUbkce3H9+ifHtPBo1sGHaMtK0lmvbjJEtfaOs8flV0/1+XIgbJ3FDx6i\nHZGMEtgj4y05QGnrPDoeH5HF35RD+wy3dZ/0dQsu64Sihvdcj2XRY9/iVVq8UW0ziYVwuI3SkplX\nNyK/Rh3R/nD9SMjTI8+UekVeUUuJsvyf65e8YK08Jix7NMub//LTxR8/YN5Ye9dyMB+uoz2yLoO6\neqlO17XWsvUSWclLcrvWkhkvH1oy6j5b/z3P7j0br4xeSh3hYSNyRakHEbS2vSxvPrUdXX+d40Qu\nYE1Ozn7jHuJTK47i7LtIjs9RFhtdkGXmLCnHudgf//NnOd7FiyacjEIfYHF/+eniq6F4V/zeQeYP\n78xyQv5Xx8lbQk4uw7veRPLvrD/eS/viPYXE50PJB0daXhplGc2gLCMGWHGNtnQdLq/L4ZrFh8vw\nWJbI85I9Sl9yRJacHl8vzrfka832W7LwtZKh9a57OZAoaTmrSxRcqQeK8eChPkN9bGMFxNavrbJB\nsd50wzX9OqqGWPpYJ5QFAYJbe9dFrq+pYzy4fc6sIxTg8dSw3Hog+jp/5xDBgpAl6FZ6dnoVRfPg\ncKQFrvfCa1AJJusyvW1E2u8p31J3tNwhstZheWcY7nkWjHeclayzVwZeUSfL+J6Gutp7oh1OCDIf\n/btnR5J3t2kUw7LwDjorIajbsCC8NWa6rh4Xa5yYpx7T0rP0PITXhual+fR6nKn1R5A3f3BNl29F\nJCPhd3Q3oNdu1SPgmuURjuT64QcQylsP1gk08La8uoi9Xv7FQ7nit9B0wktkMQGHa8yXX5ThU2MY\nEWhZ9dlwXBce19qJZXkmb82eefDhFxoJcL+1rN7zjHpGJkZhpXVt/t5KpXnXy6Onry1lW7x3BJlM\npRrvIsTyHqhH2iCwIdBQXm9xRRuY3Jwx58MYSzEky4B7OssN4u+eIu3up1db8RPIR5J/HgrltSKw\n0RK5fgIM2tNbib2QyXoGpc+lCVh6nlMmYK3tmiLPDV2X2dZcNFVu8/1nb7ulpWylZAs/fO11Sier\noK6lIDAOjABAvATGfLRcbEREsuIi1tYxP4g9sLeMhjjayjeIlH8cUe+o854Df7eWJbktHuMWL1fb\nW+950KneMuJBI/yiXna0nL00hzEy8zI6tijFhFYdMLY+63jMipERz6IN/YYYynBsznEyt6m/80Ya\nXPdifV1f99mK060xYJktnloG3T6u641H3pjWYsqepbEojYxFe3h6YzM3tcTNN03rmGxsQUpLEboc\nPh+Jn9WFV8QyFe9bx7ZTLEmBL94wO5T0XvuhpG2reHnkSPL+biy/YZkOaODsJIUCr44Xj5gGDxDk\n5q25KIc997jG76RjCy0r8c6DdB/IB2fK8VLioaQlMvRdb0jCuOLd+lL8idyAflb6+Xj785ln6Z6V\n2LPaqfGP1ud+1chDFpG6vaTne297PfV66riQkhnqOLrUIEPIUnJKl9XJPJHrv57CP58MPrWHasXi\nIounzuiTWDlMKYUbXqhjhRo8JrXfR7PG1wuRPAPAYQ+HTpEXRUrwuSRviWphQ41vS9tzwuplUEuI\nFaXfnzBTsk7WPTTIJ5+wUjzeW3w7CH/Y5CKyWBaTEhtY8BonZ8bxGbx29xchKZ+jLrL4ogn/XhuX\nAfF1nCYDz4t+wotjhx6/6sown38lFv3E/VfH+bVgS3kZ0nvIyjptRhs93kBkPUfdPo/r9dHx69TI\nMig6/Ivy9IxPCclYskTknYtKoS9otJE1G++tX4J2rOh8Xcfb1jZPDd90XKzjbM0H5ZiPloNzBl7c\nrmNy5m/d02u0vKbOfFkWnXvwxtNa822NcyPP3No/0cPH4jlFLq+8ZURa6vfKEKUaXz3eI9pZaNOb\nVKXJpgXkOBGTW9fXCm8pDZPmqZWL24cycfvWppuSIbKSfHjTzUrgWZNM9+mLh3lsrL54Y8LGpjTu\nVl+8/nn3I1RSiB7ZUb5UzpuPvfKO5FMbj8gGnBFUSnqbVINtVlnrAVtW1VJoPShHYmeYS/y0TJbH\n1UrLr69aD0S/yFIyTJYsViZ+ivKxN/UUS/MsPUvrnlWn1xvOUWcElZ7JFJlKxn6qjCPoGk/vQdcm\nF4gnZAlu68mo31LTXltft+BkSfFFFpGBNkaar4UidB+8gfQ8NPhbnr1k+bXh09a71Hd9TddvoRav\nG6EpysBtWqiqRa5Ryu7x7Lk/lX+1YskDtDbseTnLS1pUgsZWW2xcLEgPJbOMCtexZKwpr8j111Kt\n+J7b5nte7sB6LjUUYMmp73vjbV23yltQsUQtE7M2F1v51GTwxmqUspbKWfOslX9T2ahH4MnteTe9\nAcTiZQ2uVjh+IYQVQiMAlsM78cXzfJqHRg/ede4r8gIlT1tCHiWDV5qALRO3pPyeTBbv2v1ezz5H\nmRHeueaMpvKOlh2+KWdKp7RyW/dL3qSWVDqSRYXSSm799xJg3KZWZiTOtGJolGD1VxtCLU+LUnM5\nna3XcnjjW/NUES/eo9RzecM5lDnSbgsNV8qJZPalFS6UPLcHRUoKw+X1NlMdN/O9iKfUSsuGAEZE\ny+J5T6s9C36XYnoLHZTa6vWipedT+h8l67lGZJxqKEYreW//dX2PnzcXVoaiULNWLhrX8cT2IKhV\njpWV+Vlxvl5y0yGC5g++3kGVnsHzJo9laFoMlSWrN55WMtMrG6GoQpTGp1Q/ahRq6803pVS9hnJp\nMpQmkDfQkclmed0SP2vCe22VlNiqr+vxBPR+yED/HJM3PrW+cTmvrdKeAT0mJYVomTwaYekxq/Gr\nlfGMtq7v8S21G+1nK6KI3I/Um6uN2aj2EPVnvUxV4mspXcTj8+ea56x5Rmti1zyQZ5Ssz944eF7a\n81IlmWpLjRavKcrk/d6e9dnjXfoe4RHl00ve3Fm2HJH2hjAsPYTShImiA/16Kvha7VuKbhkLTrbp\n9rVCc65AK5NXXyfsLN5aRmTovfHR/CIrFzU00eL5WmkKX8/IjUIqLTJEed+EB25FPGEZe+FQxLvq\nuhYU1kprKUBJVlZEvuYtydXI+xGKkgEpLbV5lt/qaynu965Z7XoTutWLerK3KkDvJG3JaE81QstS\n/FFjN6r8AkUGPOpdPK/l7U5r4eFdK62L6zpWOS+JVvvsKbxnPHT7q+KZLVlaeNQMRIsBajVWmkbv\n+CtRzxhN5VNlEFnXthqNXvcmb0kRPLn4nuWt+WQZ5qm9qQf3wUPX0zLq7Lwns4UqShPZumf10zIY\nJWNW4mXJcRP3S0a9RK3r2XMZ0Tnbnl3mkneteTnPAtc2zZQmwtOD6+vgpQy5lsfaeGL10Vuq0t/1\n0o8OI0pKWqPS+Hpj10I1uWqGo9Vr9chYS24uk0a0GZkLw/oWZWR5u9Japic0KyV4WAku3MM1az87\neOpdbszT89R8zxpwvh5ZJtTGxhuX6FhZ90vjyvdLBqFVIUvXo7mEaFstBqDXWPTQTbYztO0RHqB2\nv/Qga/DV8x7ay9YUVrcVqe/lDKw2tFHSspb6KtJ+MIPH01P2qZOm9dm11rHutc6zVmrh39P/njaj\nZWahqOC8bVWkfLpLy2TE5PU8e1R2qx0sf2kDUvLMOlTwjAaPRwQNlWT3ZKh5tzlPgbVkqsnTGkdb\n7fD/1nqjKWKcepHOUsjyRq3WWHtU68WRmiJqb2ktcVnxNsp7slr98ZbIWHHZEHgyWGMS6ad3z5Lf\n+jySvARerd4IeVqRQEvZ0R5Vz6PIBrBaWxGdGzoHLGbWGnP0wXgKXCvv1bOU3uJRe/CewnJijY+V\n8sYmajysa944WddaxtySsXQ/UjZKvfVLY4j7pZBuLrm8tmoGPdLmrJ5+CvypLcV569ZaKWoTr2fS\naUWN9EcjD5ZR86oZmNa+9fQvYhy03J4crTLU2h89aZfV1lyGbVYlrsniTcYeb2FRKYbshStaxojR\niCIFfC+tR1vtW6sDUXksz8TXIx46Ehd7fS2V76VRfCNIrPV67xyeSqP4dFNUoWp1vAkL8paeWjyI\n5qUVzYuNasjAgsRTPFYN1nkIx2uL6+nPLfL0kIfE+NqUTSot4+jxaOEVla3FiETmVYsMUTlL41ht\ni72Ex1Rfi3SgFKdaQnuKa7XryVrylpbcHj+rPxGFrSmnNz4t6/BRwxlVgh6vF+E7V51WY9DTdo8z\n6pWhhbe+X9THiHCjtxV6nsG7p+WIelqPlweJowarVtdTltK1yI4+jzwDY8lUWp60DJ11f6rnavXi\nc8PeKfKWykSRS5RaeIxED00Mo97P8sI1S+sl/biM5V312rlVpyRLqd2I/KWxaKlbar/ngbcuD9Xk\ns7639LnVMNRkiN5roRHoocfgNLVbs569AxWZMLUHridxaadb7S0wr21rOc0r2wsVI8uAunwk5+HJ\np+/1eqVRdUpGeHQ7tfIlYzPSKEzpbw//cIVRHakNlqc0PQNdy0zr/ewtGz40wtDyWsrG8NjiWVNg\nr160bK/VLyGbCJ+pitxDJRSj0Vikf73tzqHAQxFCj5XvseAWBLZ46g5ahqAEpVsfoieXrquNSQmp\nRPoagWi9Cle7XzOMNZpDOTyerejSqjfHHG9FF1PLzoXGuip7ilCyNFPhWGRwvHfSWVYoZ02ukndv\n8aS1ST7KQ0RgfI/nKPGdakhK7Y7mWeM/xXP3Kucs/Yxa2Sgkr7U1BaKDSllvy8DUBrME6cEnIqvu\nW5RfdExq1FOXQ4zaW3619rzvtWeJMqOVSJef6jFH1InUnzIO7jOLWPapXpev1RJIUQ/YCn0tPhZf\nfa32fnmkzdJ9bRA8o1GSP+qho0pljUO0X61IrVQ2YiB6qfXNQc9x3ATKmJUiiuZN2lod63OpXKus\nNV6lMnO022MMorK0yh1R0NZ4N9qmR5EQSvPrfZ+Bv/eghN6yLc8yem+4UYh405Z7UydS9FVKy/Do\n3Wglg+RZ9Smyl+SujVWJooimxLd2Nr/m19v/ZXitEmqIKnrrM+8dGw+1tcp2jUbtU/a8Q2Q3W7Sd\nSHv4bMFaEC9xtRgaj2cUfpZkLbUbpRKUZ8M2Wrl6YXYvcqrNwVWgGtLoRRIenxun3odYO8SBv7fA\nZi8m7vHSU7xuZA9+C7SOeoIWAzxlEk1FPcuE0vpelNcUL18rGy3TiqBDsdNUoWp1o+9NW56r9IKM\nxad5gBThl1dKy0lTjYc3JjWUgjKjlaUF6rby70FJLfKOpCmGANd7FHhYX6bA69r9GhS3rvcqSgsS\n6PHq3u+Wl9qKyhrlWysTVSrd/1JCtVeuaJ1erzwFWY2C0B5fi3dPm0PkGwl7enhy+dL20ale2FPw\niHyYOPwjDR6PaBa41HZkd92U/ngyeW15ZVsNW49sf8i0dGNQYlTyhFPhvHe9VblKfFu9LiuaJUct\nzPDaXCVFKMk8Us4ojG2B9iMNINftmf+91HtASzNFJ38PvItY/dLLHz0ehfnyfxB/937HvKT0/L22\nF74kqx7b0o616LVedNV6fyS8b+VRUwzvefa01SvjKJ4tDnA2YaITrHUyjeqA5W0t/i27+LwB9jxL\nywky0X7XwolavTkowntq+y3PwyoXlcUz4D3PrOW+dlBLpSkK7JWtIYSpVrbklb02anVL8kX2jpeu\nlfjVjIq+HlX+kTC3pVzk2UR4116oiRqDWnulenO+gjyKl1lxDugQEXqq1fTKaTg8l0eLHjlV4tEj\nm2ec5kBEtestbfZ4rJI3H338WS9F5tmoeTArbLdojjX3VsXsOd2Gr0cmbotnLdWfilZ6748ihpc1\n7zzS6Oj2R9HU8wTmpJY51CXnFA/aysf6ddWSJ5xi8Tw419JGBBJa12u702pwnr+PePkkOlki75xH\nPf8UCB2lUhstCMsr32OwR4RHQwxOK2SPlIu2Ey1fO1OtZyAiyxpTIHnvqSk1Hsxr7l2MER6taKeF\n/6oggtYQtLeNpSOIHstb8sz62hSlbykXbS/Cv/Se91QYX5votUkQHR+9nNhLnuyRbcJRZzGH8o/k\nOdVotMyDqW12U+/DaoFMFkzu9brRpFw0hIj2JVIuMkYjDGPLG20jPF/pmY1qYyRZsrfy6F0aGwrR\nR9EU61dSnlYFHyHP6LK1epG+zIF2Rnnxlhd7WhDLSDn12QOROnMoWI/BHj4e1kO4KUjUC/FbIaJI\nbI3ag+ZWaNKjzFbbUYiu+1Jro9cz9bQVvde65bNlfswxh6fSKL6zyNdijSJeOsK3FQp7CtnKQ18v\n9TM6SSOQtVcJa3xbzr8r8StR6yEerfyj9WtGe4RMcyPGFn5hXZniKafQCAscRQctyq7LT1GOZcRX\nzQ+8wKN0v4Z2IrB8FEWOFO8JE1rvt5YbTd3ttnoUbzBHDDJT7eWOKOwtTYwW+aJ9WtYEiGbORzyL\nlnqReRA9cCTyPVqmhSJILNrWKP2KttdMNWteqzvVMtY62ctfQ+/Sg9MZ6ikvGrAhGv3CwpQJMXLi\ntPLqQV1zG+ib8tQrQ3M8xJoS8nXtsVs91ZGk30grTZSpEFgbCat/PdBxlHGwZK3JVJO3Nak2crtp\nj+xTFXrKWE2hiNxD25+jMy0POJIAihqZSP0p8Ni7V0MIoyAb+tgClXvbqvFu+Ww9m95wrKfMnPVH\nUVGOVovZxLyxXqtl7fHiup6eLHyMlS7DCuJNPFZYq35URqvMCCjp1Y0gm4gsEWWLIJiIEWjhOZJq\nCHJVyJXvpmFGra6+pq9bkNGz+hpS13j3UEQZWmFp673eF10iZSM/8NDbxsi5WDNQq2A8RpI5f6d6\nhyn1e146iRiM3rXcGvwrTY6WY6p7ZPDqttxvLVerX4LTJa93IyelNFLrM/DQ2wgUttLUaq0Z8np1\nSrDYq4OyfP6cbstTZAume3B9qpcGj5YYvZdqY9dimEClk3tr10r3e1FDCbH18BhJUSMyq3HwJn2v\n4pbKtJYtTUBLXs/zeJPgSHKMrhXdamsKAqjx8OqVykTGcao3bUEyvTz5etRYzI1mWtDrKMQ0gtds\n1OvNavUjkKmkwLj2eM9eUqt5Kc/bt1Akh+DJEjUoPdSiUCPb6DV+U2WcQxFvGqIvpd0Wr1O6bsFg\nrz7D8hK/Un1uk3lav6rqyaThfWlC9x4GYfGb+8GugleZI1xZpfZurK05BsObuFrB9P3eTLj22pYi\no1wLxEcdvs4KzHVLsX9kfCweLXW5PpcdPflG8Ws1KpEx6UGWq0RTw7lwxRqzKYLU7rNXxXetjDUo\n6yXSnuxf99j4XFoj56Se117JqJX6HfX4UybklIRUxFh7dVuuR2TpqTeF1yogm/eWWgfMUy7mY2XV\ncV3X0bG3VkQPhms5au1oWaZa6VWDlnNMfG9FJTKO0fFdaVg9gUep3FqUwWGwbKTe4z25enRy/TrK\nQ2Cuq+sciVxt74ls7ohcnIqcnYhs76X/zEMkX9/eE9Htos3He3KFMkzgj3ooB4KMuq/cl8jY9Y7x\nSLJk0JNnpIyl9m56LJZBpWfu3esen2XDkWgMZSW5IqenWuvm1hFC2mtr6G3Be8+jc/1I3GwhiNJY\nlMpEvZ6Hiix+tX54dbxrWq4o/1J4VrveM697nssUGu3tq+Pa2mDrQLQ8VK2I/J3XuC14rTtqfdfX\n2ShwW9pI1AyBlsvruzUWrSe/RDYVLTMUKK1+9LbRA9VHzsdWWtbx2iP5hJm1Wv1SHa0grNRcxsqa\nawW1vDXqPD1YrG8dZqEVWl+vbaTxEoHRvls8S2NXqzfqXm97vRRVcOtaxAj0jkNL0tRDNb0yTDZm\nLYNqUekd5NKga8X0+OA6ls3wX8NyLm8ts+m2nuwn5WfPrnnr/5ZiHolcffGwXo77NOVBevyq8C3Y\nTm2yesTIqLXdXqMWbWe0MbLm6xRerf1veYbDEmxg2pokQD0kwZBMs9rihBw8/qtjkfsPRb75MpVB\nAkwn1cB7dz/V2d1P1y5OU8KN6fPjlJzjepzo0wk53APvWoLFSizqxB1fQ790eWscmY/3rDy5auXm\n4tEzd+boW21ca+W9tmrJ54hsU+uuo5Jm0trwocha64PiumcnKbO9vWcvY2mv8uo4KenuflLy+w8z\nbyje5k7+A12cpva2Pkrf736SFPvVceL56ji3zzLpbD73FWWg5KU1d5TnPlmTC9dq48o8uI7FV8Q+\nd69kmKzPFvUaeLSvFabWZrS92ipCjWfNqel5bPHVRr1WPkKtdddbmdQmRU/co5XAWr46FFljhYXy\nfX6clOz0q3Tt8Z5c7TwQ+fjTbAxeHSdl397LZb75Mt37z/8+oYNDkbXdfZF7B5n/vYN0D/I83pMr\nIIHHewk1ADmA/5Gk8lreiOUvKahVTnt9PZ4WjH90kpSq5qlK3q2V9Nxg3oy8dLslJYu2qT/39Kn0\n7Kzxj/IaQdGQe73WeLQTNajIk9J6mDxgULbd/aRQejChTFA6KOLZSfo7/SopN3vijTtJGVEGE+z+\nw6Tw/+qv5OriVOTb5yI7D9K9b59nLw1egP3s7Y9Erj4/TorNhuDV8fUx0uMRGVvLiHqTl8MWeMpW\nBbU8LPPy4l/vXglpWEZd98/iFelDrY5nKEsyWOWXsebfOh76+rAYnenJfpr4HJMy9LVicM/DIL55\neiBX3z5PisRx9dZHOT4XSUbi8nVWyIvTdP3sJN377HmOkZGBx2TbeSBy/jJ9Rj2+z4TNOp8f5400\n+M79wnVs6vG8qRXHRQxn9Hqt3Ig4vaW9lnr4vAyFstq/iXZr1Do3TOheY17zEJj8IPZ81kS3Jp1I\nhs1fPExKfu8g8WbIDiUH7D47SUqFsiJJIf/xX6f/8HgwHCIpTreUHPH9vYOMAADXdx4kY/JkP6/v\nw4Nv7+Vk4aOTFP/rMdDjaCVrSjDT8349Hq/V40fCtF65rPqt+Z+R1AL1S7mu3rCHiXM+reH15MHz\nYjlrIkWTSnzt3kGC0Ezw1IDgOw8SXIfn3NxJSnfvIH/mrL5IhueI7W9tZR5I1EHxwYthP7z3k/0E\n+RFK8HZZjWisMYDh0XX0ZzzkFq8fuV9qs5XXHN7PW6HAZ2tbc5Raw6dRfVsWSuB2hjy00uBb8Fyk\nHNM/PUiKAeVAfAyCogGe4//2nsjXzxbhPUN3XlLbeZDQwJ/9TfoPaH9rS+TNeSqHmH7rI5H1zdQO\n4PeT/RSDo68cG4M4F8AwX48df9ehTsvY95ZhpFULpVr54nMpbOuh0crSw68l/LmJ/oYUfQRFJw57\nPpGsINt7i94cZR6d5LK7+yJvL0Tu/FTk5XGq8/YiKSvgPmL77b1sAN5eJAVnRd3dF9m4k2L8jTu5\nbcgCY4P2tSKLLMJ3kWxQvInOiAB91Egg6rWiE22kwrXIYJUViSUpl6lUJZ7LRjWj+M0ukDWp4P3Y\nSyNRhod//2HyosiEw3OLLE58fuWUM+vw7qxw5y8zD3h30NZHGaqD1wc/Ezn528XQ4PPjlMRD1l3D\ncu3ZOUGHMqXxssaM69XKR+97mzhKtCzliiKFVVSoOducIqObjDuS8jFNmnRyyZrYVp1DSevX8J64\ndvqVyM+fyRp7dPas2Gq5cSfdQ5KOl9pQfnMnGY2NO8mAbO8lxf7gZ+na9p7I7Q/T54076d7W3YQQ\nNncSOtjdz7E7eKNPvJ4O+WAIIN/2Xh4jrMFb+/J5zHg8vDHsffhAMd5969nXnmWUV428BFhPcs6a\nky1JxJay0XuebtTa6ukzyFV0azA9j23dtzySFwdirdoyLtt7WckAjz/+NP3f3MlLab/8NG2UEcnK\nC4Xb+ij9Zyh+/lLk+9+kmByo4dZWuv/mXOTFrxKfV8epDazPw4Nfvs7r/diFh3CC+6fhPgzCoxNZ\nY4+K8Sntne7NXFuJUUZXurzug+Zh1bN4eNC8VZFQX8tktaXJmpOWIfH6V+tr6ZlYhrFkmEuGtIUs\nPutTmFpC4yHwpEcbPIn1Di1vuyiWy37xpaxdnC5ubwVB4eCVL1+LrG+ka1D+D/9U5E/+Kinxra3s\nzb/5MpVHOfDd3kvXoZgwNDsPrq/PW4RxYWXGEhsnKnU9PuDC4ltSIq+slstSHi03f/eMMNrQ15m3\ndc9SPo9nSSlK/WBe/D9KrTmMqDGweEUUvMU4Wm1NiklKcTk3pGNzvbEE8SLus3LAg+LFlUPJG11A\nvDQmkpXz7UXy3DAQyNSfnSRUsHEnGYTvf5PyA188lKs357k+DMblWYL+SPJxsu7+w8VlOAu16Bd2\neKlMe9a5Ej0l/h4qs9ptidM9R+DxqvH25GuRq2cMPTmXFdePaCe0YaYnDvEgEzaQiGSFgmLDW/MB\njps7qR7i5Md7cvXZc1m7tZUUDnB7cyfH1xenSUHPX2ZPfGsrI4F7B9nzvzxO9x7vydWdn6bY/Nvn\nGUmcv0gG5utnSdlvbWWjce8gGRiECoeSsui7+4teiWE6X9MeCZ+9H3q0IHjLs/MmC2T3YKqlJJan\n9NCBhwb4PrY6e32oxeVeXA+ywiqPV41qKGI01cKHCF1TdAx61Mp78Axl+LqGo0iqYSIABmMn2aFk\no8CbYZ7sy9X6Zrp++lX6v3FncQ18404q/+Y8Kfub85xJv3yd/tAWvPjJ36bYHDvhEJvff5j+vn6W\njMfXz3Lsjn3vXz/LCoqdeTBkejw9uI9xsNbbp0yqmkfgxFxUmazJHoGvVnk4AC2z1W6tLVznZKm+\nxygrQlPHfmpZy8C20rXXVA8lZa9bIFQ0hrF2OOFFEPDAA8Ckx3bVtxdZ2V8dJxj9wc9S2dOvktIB\nvl++Flm7lfhu7qTrW3czFP9oP9W7OE1x+9bdxdj/7aXIV/8u8d/ee2cktvMLMMiyw5jgzTWR/KYc\njw33Ect6DP94TC2vWPKGEfK8nX7uo5JA3nXPIbTUicbuvOUY93b385uKtVUHq82pZWrla+NXKlOj\n2aCH5UVKL+Djs05WYX39i4dyBe+9uy9yeyfF1iLJk5+/TIqH76df5bXzD/80Ke/by6SYt7bSBpsf\nTkXu3BP53ddZlvXNZAyQzHt7mf6/+FVey4e3B/EaPG/B3d1fzEUcSYL1fK99ZH2qxeFWzqQGlyOe\nvqf8CLLCGcwf3rl495P0OvKf/Y3I1RuR179d3DJtIZoaClpWfD6qzaaXWqbS2YlvydjbIUbnOr/4\nMnvGsxORf/i32UuL5HX0rbvp+95fJqX96V+k8pdnyTjA2769TN9/eJWUFH9vL5JSf/frzPvyLHt8\nZOdFcj7gzXlqH5OG33wTWYSRSNhhn7zI4pjwSzKW57W+63GslWUYbd3neLkWG1s8eybjVDSheX3w\ns5RwvftJcgCf/E/p3tvL9Lz2/jKHWBhvz3NCNg7BIoavR+5avZ58mciETCTXK9XXr6jC4urtneCh\ny2MLK7Lb8Nq8xIa96Ld3UnING1t2/kTk9Yv0cNc3UmLt1laC4esb6fqLX+WXWt6cX1+62/ooef/v\nf5PX4e8/TB7h7ieZJ16OEclr+yDe1YeEHbw5TxzLq/B37xngc6+1t57f3B5ttEfEVuLfb5B697z3\n/jI/243tZLSv3iY09/aH5N15x2Q0DI3Krp9vTV9Gts1UPXiCG9DXdILF80Ai6UHAKyLxxoc04D+U\nH6e5YGMKkmkieT0bO9k2ttP1l8fvMu6b6e+HU5Hbu+mh37n7Lq7eTgr+3a+T8u48yBMBk+TDP038\nsLHmB9qGK5ITfiLp+i++lLW7n6Tvl6+TccCY3DtYfLedk236oUW9hKXcPc+wZEhqMXuLR7PajRiv\nqFeEkoskRPfT/05k+x+l/Mvt3fR5578R2fwghWqbH6Rrl6/TfNi4k5OnkTZbkoNW+SkGrldXh0J3\ny1pxhhmxN+7rN8vgyQGRtz5Kf1hOA339LG2OYe97cZqSZ7Dmt98tqb3+Nin2707StbeXqT6WxERy\nvLa+ka599+uk7F8/y8k/7MbjXXmI258eyNWLX+UTaZBLQN+wbo8knlYCTkBqxefssKfU0Ymjk38l\n8pSxpMBeWU/emuGx4LPVxufHKbmGROrFaVL42zsiP9nLzmDzgzT+d+6lubH7Z+kaEril/FGtr5Fk\nZqRMLzTX7ehrQ2FKpI7300oa3uPNNX7fHHR2kg6SeP3b9P38ZYrF/7//Pb9qCs+N5BigHNriU2hY\nmZCIe3uZvMHrb69n0mGgOCmHF2p+/iyvhfOpMt44oJx+QQY0Fd56yhY9iXaEDJpKG6RKZCUU+fO/\n/mu5uv3hu52PfyKytSuydiuhu7W1pNTnL0Quz1Mu5odXaQ5dniXj/osv22VaFk2F/cWXWkTaHrJn\n7fkzHjBvYIBH53V2QOWzk7RhBQOPpayTv00KDgNw+bvkNVnJRVJZKO/2nsgP3yXPv/WRyH/7z7OS\nb9x5t5PuxbuYfyMpOXgg8QaFvvtJVnJGJjgXHsnBQ0krBvCk6DvKohzqI5mlvblFkTPF+WUafg5o\nU1+Pel+m1sQTI7uWZS4rzEHi8F/9lVy9/m1+genWZlLyW1simz9Jc+LNDyK37iQ0eGtLRNZT+as3\n6f4XD/2lN0vGkQnEGr9SiBaRY0HRa4kdhjHWJGNhNOTkHzXY3V888hhZaH2+OrKiH3+a6iGDeveT\nrHx6DfsnH+fk29lJTrghLl/fTJZdROS7v8+Ju/WNdG/ngch/+t+SEgO239pK97Au/8HPMjrAIRY4\nOBLXnh4kz3Ak6cRZjAkMG/6XyDsmGN8jXocTnZaisGHRdWtZaOueRyXFmZKYQs7nxa9S0nR9Q+SD\nj0U2fpKXStfW30H3n4hsbCXvLlciWx++u/eTNK/OX+a5HQmPepBu6docmXzQektDPDn0JNWeQU9C\nnnC8tgwlxbonK4KIeuPsRfr/4lfp2ulXSeneXqQNLps7Ir/9jykGuzzLnvb+w/RdJG+NvfPTDOO/\nfpYg3NlJsu4ff5pjfiynAYa/Ok5yiORM7ZvzVI7fsceuOo7LAc89KK/Hk//XJl5v4iw6efQ8sWLX\nmgxTlFu3w/MHR4bduZcU9+1leo63bqc/wTURuXqbyqxviMiayJvXIi/+LiVm8TxrBngkRTx0DV1H\nxnK9J+HixQmcVMI19uQlCMmZaCgG9rlDYS9fJ6+M7DiUf30zKeeHf5p2vV3+Linz3l8mBUcbeInl\n7WWCb4Dz+PGHjTtpff4n7/j/cJo3wiBfgHDi2+c5+4/Mu+4T5MR2Xv2zUlhdAFxE/3l8IwkclLOu\nl5JvLfGeZ2gsr98yZ6zyJXktefAq8tWbdwb+exFZT9/f/CDvNFxE3mYvf3WV7q/fTigQzxa8o0k4\nj6x6U8e6p03QLOugrNR6p5s1GXRSBe9t4y0xwGjeyYQ4F8c/YYnsg5+9WyO9yMtuIjlmx1tneAkG\nJ9KIJCOxdit9v/3h4hnv5y/zLrd//NcpR8DHON87SJne8xdZXn0gJPdZv9GG+/qAych4R59H6Tvk\n7Dl5JiLfCCq18fRArm5tidz987SUdut2SqZuvoPwIunZvnktcnGWDMLla5Gzb9Iz++7X+c3E0s9q\nzU1zjWPTZJpKzN/6bTMoDpQLRzlDKfCq6s6DxTPhcAYcNrzwaS+I17Hp5upNuvf2MsVm3/19bheJ\nPJEUHtz9JGfuRRYz79bBldiw8dnzxbPg0Gd9oKQeEz1W+MweRhvFmhJ7478MxSzJFG2/ND7cF8yf\nu38u8tE/yQlV7KNYW8/P/uL7tJHq8nfJ43/3D3lD1IgxiRjWnnamPLOFl1qiMLEmjPf9UJICIF7F\n2ieSc1jGOv1q8UcZoLh//3+kz3iJ5f7D9HCg5Ft3M/zauptfYf3u1+n/+cu0qWbtVrqGPe5IuJ2/\nfPfu+cbiO+3g9/Nnsvb1s+uJt4vTnNS7fG3H27ypg7O6nLSsJTgj10vkJdcgI/+fSnq7KEKIWrxZ\nkpnl4+swtj/9i6TMP3wn8rv/kuLxi9OE8C5O0/XzV+kPz+L8RUJvOGREhzo942E9KyuEauXdkpfR\ntLSX53ntlH91FNZYH8ogktfSAWexVRVG4P7D7Nn/7G/yjjUoNpbWRJICY5vq1t3kqRHbiSQl395L\nmyz+4d+mXVUbd1KS7vaHaZKgnHWQJM6I4/5wv0TyL9iUxkakbQusJut5Mv+pz3qZSCDSHk/23f2k\n7Lc20zPe/Eky6rc/fLe0djs9x6u3ycivb6Z5cfL/pPrejsWbpFGymMk4bqRFIKsOv5wC0r9JZp3o\nih9bxDLazoMEiXFE8+5+9uwP/mnKnEKp7//3SfmwE+773+Sls+299P32zuLBkNt7yXtfvk5GQyS/\nAPHVv3t3uOQ2vbZ6J2/JFUm8sW330Ul6QYfhOWA7jxM+Y+OMXubi75a3jyZ89DJdLUFnXS/xj1J0\nPrV4fkY2F6dp78P3X6f5cPZf07w7f/luT/uL7PHfXr5L1P7X5ET4p7KXGdLUykQTmLU2zA0zkUH2\nGmL4z4kd9t7e5IUBwMRHZv2bL5OSPT1IL7kgVt55kB4SEm2vf5s+f/Mfctb87UXe7HL+MhmDV8fJ\n0m/dTf+xoeb2h2kyvPi7tDf+8vViOPCf/302Jre2shyfPZe185f5zbXHexmmY/kHiASnz2ivzUdC\n4zp/t5YzrYRaiWA4tEFh4xOBh3MaCchQK6tDQp1E/P43Cb6/vUje+4eX6fm/+E8i/+X/fvf571Iu\nBsndZe+Gm2JQojAe5czMq1WhNevLySLNVyeSnh6k46E4646MOv/skUhWLmTMkfDCTykBvuutqW8v\n8pLaD6dp7Rznxp2d5BgdcBtG5/7DtPzy2/+Ys/v4PXaEAsiyi+R97eDB/eQx0m+wRZM3eoJ7z2MV\niJUn6qFbwpVSkg8/n423GnEeAZKrnz33FaVXB1rknMqztb3JMUlLllffZ6UWyb9vJnL9d9SgWPoV\nUo7XRZLn//43Kfv65jw9WLxKeueneX+8SD6UAptboMh8+MTl62QksNUWy3JY+kP5nz/LfcHqAPeT\nk2+l3xKbS3lHttNav7d8j5xAjfwLvPiFXZHr+RQRe1Vjan9GlRlVN/yaqketmcBDybvhkH0HVMP6\n9qOTvCX24jR5dnjbrY/yIZBQvgf/NCfHzl+8O+Lp+wyzRZIyQslvf5jK3/3znGSDwuOHHt5epiTf\n7Z3MG6gBB0d++zwpNGJvoBBseb13cD3ByHvM9ZhxBr4UR/dQKeMeIe3xemSLZvYjSu5lsA8l71X/\n7HmaV3wWIf/IhzZ8vSsBnhyerBE+Vr0paG7Sa6qeIJik+vVL3iSihUXdi9NcH/D51XE+jPH8ZVKw\n9c28Ow4xOjY8IKv++rfZK2/cSbvXzl8m5d64k8rjZ58uX+ez5KDI23tpOQ5yINsOeH/vIP/yC+Jv\n/r10Pm4K962VBRB7en4ZJTL2c9GRxPd+e6QVN1K3piglebSRgOMQuZ7r8PIVXrsW1RSw15Hq59+K\nivh7MyyaCi292N2Ctk/2008uQalgjQGfP3ueYzE+DAK75IAIAN+27iZYzy/B4BVYnC/Hy22A5lhe\ng1FAnM4Kf/k6KfkvP02eXR8nJbJo4BCjR2Fq69iP/m013If8I9qzyOJT490yNssKlWptTynTQ5MT\nC5GBs35iWJdDPIVJ//Gn+d1uVgbrd8ovTtMuNryYgPV1kcXfLd+6u3h0lPV76HhjTiRvh0TcDUPA\nSTiRxffTed2fvQfvoANZY+UZwJLHitDc8T8+e8lHkE7Qza10VhsleF0zuiPlLMkzuq3i5JnjQejD\nFXjzDO4/OknvcCOhhZNgH++lJTdsk+WTV/GyyQc/e5ddvchtoNzdP188HwzGAagBEJy9NxAEe2g+\n5RWKzxtkIK9eTSh5xNJYz5U8m2PSLotHdCyXJU8rX5Fxib8I/T5G54mIGLkngeMlXMCTD1cQWTzy\n+EiSIj/Zz+9wiyQvCQMAJeWsNhQPb7OdnSTlw1ZaHBgBOL658+7vg1R/50FSepG0Oeb0q2QoPnue\nEoI45YbDikNJv5SKt9Y4BwHlxuESWsnxS7CccCslNbV3F1l8KzDyXEp8Nc9WqnnAiCyWPKU6VvKs\nRYEiFEmolUgnVCOy12Tozc0Ms1bRGBP/GcLxb5GV6lrZaxCOhMJba5dnOU7/+lnysnjVFJ53dz//\nhjq8Nt/H/mfsgMMuOxgbDiPwFh3/xjvLZm197YXgIuV9Cb28a+2ORBm97ffG41P5z9HfZcbsk397\nDRQVRiMHkcUlDyYcyySST2zB1th7B3nHmkg+DebNeVJGvORycZo3sCBDLpJRAA5thBy3tpJB+PZ5\n/tnks5O0fx4/pYxsO+LxQ0k74r59nn6+mTPsh5JRiOXFI1a6x/O1eMcI1bLcFl+PP/oc6bc2bC2T\nvqesV8dCVR6V+s3/o89xSpugWRMOnhe3ruuXQJDAE1n8xRORrJj6PHgkyODZf/Fl/oUXZOrh1UE7\nDzICEMnxPG+K4aOeESIgoYfy2CutfylWJCMWGJfWzHZrRnvZ3nYO8pJoN+FVI+S9sLQqZP7I4tTY\nBKStpJ6srOSHsng8FRRiey99xgsjiJdFsgLB68MLf/0sb6bBujfWytmrY2kNR1Otb6bkGrLnfKiE\nSIb2Zyf5BRsgCfRPL5lx8lG/zAOq/ahl6ew4i0peoDfWnMpnCmrp8eaRdrQxmcJX55qm8IpSSzs3\nYoGicRAriX4gOuONJS3OiHOmHFsiwW/nQUrUIXbnJTWRvIZu8YcB4BUDRiDsfTRMHx3/WXV7EABk\n7GmvlccUmtO798pyk3yjZa/9mmqPULXPmrxMoo7feXus9noXpwmaAw1A+T4/zr/hhj3NOw+S1+fw\n4PaHqR72zvMpMSDeW4+EHLbmAmlAZlh0HF6A46st+Dkl26y/W3VbjlAGD21II1ngyPXRhLkQzVr3\n0si8VCu19C0qQ3Wvey1poiFWxLJr5bYyxdoY4GdwDyW/680KBYV8vJc869ZHyUs/PZArnPeGY55E\n8uEUfDDEZ88Tb35Tjk8G5V+FgUfHe+RHsng+Hp9tZ43H1AScxU/D/wh898KGWhLIuqfrROtHEnNc\n1kIr0aRVC5WMXovMU9oRGWNQhm4qmAplrNcaOXGGhJrecANPjoQc7jNc57fO9EGT/AN9/GMK+mw3\nThayoeIQQ5+e4xm/CATtvddCNT4jn+8oisphhU09fbDyVi0h2BxQfBZqsbYii5s5piR/tNWH97F+\nblgk/dIGyrGnwk8RPz3I9/EffHAP5XkpDGWf7MsV2uCfdsY5ePivPSZ/5u8jPIL2yDxWXp1WNDHS\ne0XaZ6pt4umVq1Svd+PQVIr0ZTRqaSZWTp4Y0Unl1df39Fq01Q4UG8qJB/f0ICnq04N0Hfd4vZ6N\ngN59xrJpWSwjp+Uv9d/7AYfaNet662S48ckzkVoMV3Relur20vs+zia1DpD2TCXl5p9ZZi9/JEmR\ncd1SOm7H8sL4znJYyqy9OcslktBFS/81RZW6l48uUzIWnkdvVZqR1NP2Tcr73lPvoEUgmS5jeT2G\n3eydNXzXBkFDavx/vJeMhUhCANrbW+1ro6QheqmP3rWe+sswKHNA5ShPD/XcFNS+aWpBfd0MW8q0\nWt3SJNPemK9bsbdWdi7P9ThGt+7zdRgCbTAs2b3TW73wpDQukXIlfq0KMeqZWnWm9KM0R1r4TKE5\nDN4c9YbRSAG8xJJI8q58zYP2nCzj+vDUHhTXPC3ZLFmtOpwX0P2w+PdO3B7Y6n0e5R1qhrqVn1e3\nFk6MoojT+dFSq6X3JlPpO8Nf7ZWtzLWG5iKL8bNlKCzozfc9OTkrj+/eeFj8SmPVQlO86uiJGvXW\ncxmCFupBUqPabBn3986QtHZOPwhWKA9+et61pLSWonvKb5X35LC+R6H3aC/aymdknRbD3irHHEby\nJhUrOjatfFaGSpCspoC1z3rJzON3JHUDotGGlp+RhS4zYlxa7/e0UUMyU/i38pp7wrbwjxik0f2L\nGqJwu3MNaMlC1QSued1SvdIyXakuZ8tZ+UuwOzJ2OjGoZbLqLBtOrjqNlnPk+N3EGK7kKsMIOOh5\nUyZ9Xa+HcxlP+UueukfulnIjPanI/IhiLnpfjI9H7638oxR1ygAcSc6ie+14S2cRqI/6lnEoGQUL\n8pfQh3UtOjatXr7F6Ix4xta9kvFqGaNeOZZRf9n8exzQUqjnYet4V5e14HmknYiM+jraYyMw1WiV\nrtdCDKt8VKZS2VFwcFkTcJnGYJVoaX1Z1gBrj1wqE+FTWwKz2o16ZOt6Sdbecen12lPrTKk/As2t\nqhdbVi7lxmlER2relK9FYLLl2XUmPAIta9drckTqjCxXKjvHc4qM3RT+PfWsz1Fn0NP2CKohuGGy\n3WSMU3oIrXFrr3fT3rtVppEyRHiOCBtW0dNEkNsc8e4qjkUvrRysHwHHuawHty0lbpGvx9pGJ8/I\nEGikx4p4yFrdVVaeOQzlKvd3dorEt7XrveUs8vae97Qd7duISTWi/BRYPPckbkkC3rRCLaP9ViNy\nI2PSIqRVdiqU53KlOLzFy9fK1bx+q/w9tCyD0jIGo+WZ0sYsMW9DmzfF76YN4++FuClrFTEmusyy\ndyMtEw3MzWdu/qswoW9ahptuv0hzKLrlrWuKHS3ntVMq2wOpS3xXEsrNTHPlILxr7wV8vmlaZqen\ntlVKullt9Hr1qKFZFWoNRUYmFltp1cbuD5J+TA9htLJO9SKjaUT8O4VPC88pOZBVy5W0yL2y+rTs\npFSUblqGKUcx95bt5fe+xOl/pB8JtcTJc7fp3Stdr927CRodOozmM8VL/zGuNuh97fSy4NocyzPL\ngGKjwokpSlPisar5nPdVH1aCljF4PW3MuWzWE3/1KtsfaRxNdSCjVlp6ZGqiOSHTXLQqirCsUGIE\nSpkzeeTVmQMdjea1TFqJMVjJI2sC1Gs1p9axvPH7OgFrFO3blP6X2lgFJHbTNFzO96XjIjFZp8au\nq0hzybjqfR+xvPc+JVAj9D7K3Ew3tSHjx2g8lkU9cP4PPbl2Y31aFZg6IqkxZzZ/6jJhKd5d1vjP\nDdnn4LfMnESUzyroy4+SVm3yLYN6l756eM8xmVcFKa2CHEN5vk9Z82UPfq8nu4kxHdHmMvoyNwJb\ntqGZm4/mOYnvKngq6wcXNbVOgtatp38Ia9ilFYqp4695/JjG88fQhx89Tc3UruJD7pGpZ899bz4h\nUq4X1a3i83ivaK7NDXNRD8wr/eZaa1sjlnpaqCbDqsSr71u7I8fwx7Z0t1T6sSTVlrHpY+pEm3MF\nYtm0TBlH5Teiv0dwI3QTnmTls5wdvEd4lh9L1vsmqBS+rBLPCI//H9UF1+hI2RpZAAAAAElFTkSu\nQmCC\n", "text/plain": [ "\n", "array([[ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " ..., \n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [4278190219, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.interpolate(agg,cmap=[\"darkred\", \"yellow\"],how='log')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:161: DeprecationWarning: `interpolate` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AABC+ElEQVR4nO19PY9lSXJd9nApSlxQ\nJGWIu4LWWMig5IgSQGeFhex15NGTQYuO/PXGbK8sOXJo0aDHH9A/YMEGBAHC0CFolSXu9hjD1mi6\ne6Z6ZlrG6+A7depEZER+3PeqdwIovPfuzYyI/IiIk5F5b7X2HX1H39GHTzetvcuWU2Xxeo9Xr6y6\nj+WyujLPDJ+M7lXZo/Ki8nyvdz3LP0NevZm+2U2zus3MuRU8K+OaplUDluGTnbAr5N8+u2/kntPy\neD1/2jdUK5dxiJ6c7KBG148cw2x51X8jMmZoNmDM1LsW/mkB3oAxjxWdinUj4/F+m9Fh/R1RLsOv\n4lRmy6x0lNF4q/LXFNlXo49sX6yklY57WAH+jpNjBG5kB6YH/ZV+I1C9pyvy3RWx2FmNyJiBiUfT\nFpi6kd9K/pfu+5CqET5aL2cNl2Xi7yo0zlDGafRk7V4Tj0D8ynVVpuJgrtnAvqMBigyhMvAVqKvK\nPn96Wi+bE7h9lje86r3esgDvZQ2UUdGIYa5cphyxpr3WdXNV5q42zwapKVITtzeZs9E8KzMjh8mS\nc1Hk7RlnZIi7Iu4K4rzFSp476GhDXpEn2SGzUkfO3Zums8oeYaRUAmejcYaHWh9HBmmGrcpa+7NL\ngIqO2euR8UUoIsMzqlfVc6TMjrqX5H3NspdTdmJF96ItKy7fS3bhtpaVjeBvpD/LYmiOv5mnx6PX\nPu/aKsoa7cySquLgd/AdkTvKZ6afdtRbQkfAlMjIKnzZkCxSe3Db2yFAPZhH1Cas6zmBCiGvygSr\nLDsy8qu0Yim2u+5jotHAMNw/FYHR5MxOICyHh16q5EFW5RzwvnddLXd6kDiDKDJLotlocmnjGJkP\nvb5bqcsKXrN8t43RCOOegfT4VmVWJr4HrTM6sLEpZxCtdTMGmSmT2UPv8ed2ePdH+WZ4XaNjuVa6\nSie2uwM9NBBdb+0h3FX6qu+R4e5YuyqY30MFVdkjlDXmrNxs3+ycT4/J2Ks01bbZCOKVyUwY/s17\n4FwuMtqsTCMPjiNcf/70nMWPjLh339rFZbx8wIoo3NNXlZmZSNHSaBWNjkGv/m6adYCVpeIUVRhl\nlZqJYCpxZQZ5++zh+tcMqrc9x9ciiF5BCqgz80dnospmB796v0fKKc3y3e0ILk3RMu9iVJlAo5Mt\nomgye9tlmWiExu/p60F99UQa30Pde/w8+RGtnBg9JLTSWcyWXdHunsP+kKnbxlEo14tu+D0yPIzI\nGOUwSrfmP0CDMJvvcR1GAioZx3qrAzbZfso88jp63aMVE/taDONa9Lh26o55JcJwtOsZb5Yvf0Z7\n4Vgf97xRJhqmXfv0Ex9a8/PrXNccUARd+T47kV77RyZ0FR3siqIzOiH1UNIuud69nX1zEQc22pnK\n8Ph+FKUifuo+J8XUfTZyNn6O8jyp2Gl8+snJEfAa33h6baw8253ptwrSqtAIWlD1vPb2kNCI7Gug\nHbpk+ict14uiPSPLCFIey4Ounjx1XRlgb8KpKM9wnOt4eqKMiH+mfiRPtWck0mTQUIWfKrdsQgZ8\nH7thq7Hc1aYHfEePOSqI7N3vyWG4zNCZvysjRx4qo+7pafVUWdXGrMOLJqtKOqr2cN3qWK2cRMq5\nzvJbodeR/K/J0Xi0Tceqx40mircm84zd6lSfPFNrdqUbOhBlhOosfRTtZyP3yPXePaX3LuqhkRWv\na7oWBzKKYLZSdpL1eFQjpuKjsuqqPBsXP7Vm1zjKI48Irme387IR39Nb3ateU23P6HIErdZh1KF5\n/ZgNTnkNa3T4GGGUiiJu5IEVj1705vpcDz+jR0+Zh4LzvO+NBhLpxHorp8WR3uORMcIKSpq9v4tW\nw/vH3I6VvJbp04u0ngFy3V4kbs1fx98+818W4UVydgTK6agtNQWrkRfz7T1R5x3Z5faPRl5vmTIC\n/T2nHaGI3RHw1w2FXJyqUNQ7oGL37Fp05JT3p5mHMvIMdL5p7Z0ZeWvaGPFwTi8yswPzZPf6I9Ld\nQw3ctmwZbGd0X/GO2tirVy2TieJZp7ZSlwztdoJVntOyVET0frf2EO5yJO+9w623nGDd2JkwNFdo\ngCM3t5NlWHlvnx7rK1nKmSiDrfa1R7sy9sroev1W0WNEp0vzP1rPlLysJ+t5dm9i9uTz2tmuWX0P\nujMPz0h6me9e9p23/TL6KEeidFUHbCrRGetEhjybzc5E3t2Tm+WukpfJy1yCVujwgEdmIvS8CA88\nZ4KlYEcORjtct0fO5aY9PAfvnVRjY8L6XB554NJC6amcVdRXuJzIUtXRekulUaoGBo/HJY2pF4yu\nwdCXU69RXgS1zwp083h7UJV5erAYy2Iiz+5z/sCLtFi+p0cUkXv8egdmWDcuo5BKr692GHq0u7CT\nRtBj5QxDpg7Xv3rn0PO83m+OoHbNa3S0zo5kRPc4aptOXiRX2XNVFtfeDIsjA1S64ifDdmUoSj+8\nl0VWvU9FWd5ZGl0yZOR6ukRls0Et60iyfI+glA6VDoiiTu/NKx5P5u1FTT6hhrys3O2z9u7Vi/u/\nP/3k4csc0IAjmM/6oCGyzkqvyPFFyEH1d68/ewZRmZgZ46roVq1zLVRxKCN8roZU5Lbr/NuLRkYq\nSnHUjBwJ8lfRXN1XdT2nxMhA1ePvWOfVi4eOIyrPuqn+RYcXjZE3Jt73lQm6EWMYvbeqflRn1Chn\nnULFsU9TpgMraxdVnn9HjkQZCb8a6vnTc9Rmx4Rl1YsslFGrqM33eUsQHRbfy+xdKxncF14f4ffR\nyTZjOJ7eGcqWr865I+naovUyfXrRFwfFjOjTT3Tk9qK2MhIzJuSlImMUkZXxsi7sUNghcBv5tzfx\nPYcWJdZ68N4j1fYeilB8M3WQorxDpGuPL5db4VBG+nW3TiN8lglTk7Zy0APL4301wfmEmloG2Msf\n7LoyYONl/GytzgZs8nn97hkq11XZfP6e7We+zn2ljCab5OzRKI+ReiOGv8pZrKAs+lFOs6Ln0jZl\nhWc636KtfUdDUwbOCTIvQrMsjowMydX6mHkjOoj6BfVgJMH3WTbfj9oVOcooyrLe0TKB60WOOaq/\nkqJ5NWpQlWsr6UhnM0S97SP87jkGvh7tsaNRskHadxWpPXneehnLMj+VwVcOydb+nEDkfsNyig8v\nATj6K6cRjZnnPCrGcZSRR46vx/9o47mEg9hFD/RWA+5NNG+NixOaefKkj/55AcvgRJrSy3hiQo6N\nRkVz44VRnfXnJ97YEFUkVn2iXl5RieCeU4qivWdUPd4eP+4jr2xPXkaXSP5jpatpw+hARckeHjzv\nt4cA8HcUub1IyuV7yTiLuPZbvQjSypljQV3ZIDxZaqsReXv9jJ+qP6u0cvJlnErm3lFRdZbnLsOd\n3focIl5Dt/bQiFTZKNJhPZz46pl33BP3Ij4bFP+HFrtma2x0EnYPEYFBdm4TtwMTfdxv2Fb1PjzV\n/owhqH7nMspouHxlMnljpsqsoBnntdr4rg1RTOlTzRB7A+FFK3WPo6UX+VhP5slZ8NZ0ck7pgpHZ\nyqolQi/f0Nr9RJ3aXmQDVTx5HNTjuz0HodAS8/ZyMqp/+F50fReNGP4qHbN8VD+vljnVpl4U8SYY\n1vPWsSxDGTNvk/GgYuaeJ3W0Zae27tj4UW+7jlEf9WKYfvusvXt5+1AXtW2XWc+rh3HYaNlAVcKS\nf3tjm6GZ+iORx3NY2TojPFaV2UnL5KtJEUVjb42oJqdSmI0KZXp10KhUtDaj5S0ulfE2Xpwo42Si\nlWcDYq+tfkeOUTk1doBqjJgP6+X1M/NaTVljGTH+EZmZNo86oErZndF9CUUZd6WEGkAPdipj4YjG\nUUnBe/wvLGbk9mmGzPUx842OA3VXqAH1f3n7cO8f28x9wA7D6ijjRITD78zj/vX6fQVVo9yuyRjx\nPTrKVuVFSGO3bFm3tz73BjTaYlFRiQ1JRR2O9By10UAUH+Rv16I8gErwmXyG0bxPjm1lfY0ft4uv\necnL7Bh45DkAFf17PLLU0/soOjpjfYk2bpPfixweDOX7+Bv3vLmMWot68LSX8FPrVTRKcwSYeUe0\nwCjDyiAfhv7oFPC30oP1YYfh1eH28hhFRu0l5tRvRaMGHc0j5bRnyJNh3zm/k+U1otslEM9wxd7k\nU5FZwW/1Ygj8rl4ZpWA+R2MV8VUugcuwkUbGw0sE1ScelGd9nj+9n8xTzpLLK0Pw8iUKqXF/e9dQ\nRm8yqUjOpLYoo/IV2m14q430aNlpHt4aUU3gXhTn8qqcB885SprBt3Z/Pcvl2WCwTcoBffrJ/Yht\nBol8vGSa6YJGz9tuWC9KynnR2DMsz/g9momeRxvqpRxDFamMyDiMlJIrOr+HDlo7H2jBrStvDc7R\nmye2QhV2H+G5lcNIznvdfODGQxnG6+Wt1heNGJ0HL1u4byJDV/2ITo8dh1c+4svlRylrAEc4m2sy\nvmyeZITSfNVk4GiD5b3kE/NQa+zIGFQZhoAMtdEJcCRlB4LX+Sk7BcdZf4b8fN9QADo15Ik7A2r9\n3hs01Ze9eh5/5qXQgRoTT9Yqgx6Roe4fEXGvyZFI8gZZwb8o+nMkU9c42vCEV3xbu//8OeuC++c4\n4dGI0YlgNEVjjHR99eKhEzBSkVQ5NePNywzs66h/vfyI0sVzuEr/GVL81f0ej55jGDGiXjvV8rHq\nUC5t3KX+qSjrRWhvje7x8WC4itjGy4wVz5fzBFZrb+Sr6uBvNla8b07BPtXWmGeMaOBYn52T95w9\n6xtNYuVw+Z7n3Lxx4rqe7B5l5wfq6JVXgSMjd0W5iGYdadY5zsgoK+J1vvKW6gUTbFTe+tyusXGp\niW/JNLxnEZlhu0IYSg88wWdtUet2fm8dD7pylKw7OiyupxyJMkDPeaFsHp8oolUjXaRPpo5nLCsn\n+Cyv0fo9R1Dlm0ZRo95OGQn+ZkPA+3jABB0BGpmCxFgWP9G4UVfFDzPonpF4ToBzCArms7Pw3n6j\nIqrXdwoxKWegxqM3nqpcVM9bZkT8o3IjNMIz0xdHUdQ3kdNdrkCPvIitIjEatjrm2lt7cnTET+SP\n73Jng0HZnIDDcvadZSDieP70YXuQp9c37DCUg8D29vrcGy/lxDyHoup6Y967n+GZlT0b1VZTr90r\n5I8G3B26pBjiZMJkGEdK5uNNeHUKDR1ExB9JGTDq/PzpeZvs1YuHjsPgPxspOg2G7dwmhUSsbXif\no3Wm35CPciDeOPZHu0Ys86homUEynmNcJdu7tsKIl1DFy3rrOy+hY+XUCxdU5LJ7ah2vvt+0s4Fa\nXQWx1euiOBLjb24fG6nSSSUo+eWTnn5KNx4DFdW9sly+R6ru6Fp5JrJk6lZ4r+Kl9DrKiW0hjg7e\n/WiNi+XRgFo7b5UxZGejVoaOMtjITBa3Afnx3jYaISf6bNtPPSWn2sqysM3YHtRBLUe47zKRAREB\n96lXthfpV0TlGR6rIu2M07kkRU5luF/V4EdJF45EatJGcrAsRkguqyCrPSaKMjniemtrlfDjKG5k\nDokhPzst1Bd54rLD6iqnxu3D/uOz8Go54I0fkhon7z7z9MYQSSGzyMAqUXSkXoXnLK+jovwSvtEA\n9wYrmrhqWwoNguuzgfLRUqyLddS74FBXe9mEkuGtrVt7mPjDtqPTYcPHCIuORSEO5Mn5iMiLs3NQ\n5dmolWPpzYXeBBuJ1NWI1EMfWbmjdT1+Gb0qtlVZavV0U/xloej3CBxSBt+avxY0A+YIyQaD63Pk\nz0aGfO07Ox6O7F7iTTktZUTs0NiJcFnPofD9XuTm/q6MkyJlnFljVQFAlZnRtTcfv/6yvfv229Pf\nCP9VtCval4kjWRQB1KT2eKmo5q3xW3t4IoyjE0dfi4YsB7PbSi7zePPZ/bfB4kk8NjjMwiMvRgnY\nNnQSrIsyfHYWqq9wvHrj6o3RaLSrGuhs9G4tf5gGf3/ztr179+5k6D0HpeZaT+eRsit4DMnLel11\nLXvPSzZx1llFQl7LK2NBGYgUlLNglICRme/hEgL1w7+Xt+ctOeSvnCY/EOM5M8/wVR+zc1RjyOSt\nrZV8r5yiEcPvReWRSY39+c3X7d3bL2N5GSdyNVG5Qw/0HBlEnJQ9B4H1OGGnEnE88RUiUAaLeuAD\nLKyvWvsr3uo5cqvHDoGNQx3E4baxThjZvaUMTzjuz2zEjJx5byxVDiRLERpZbeQ7eMzw3yV/OKpn\nGSmopDyfMigrY7/5bDrDXuaF9ZgXZuUVD8+JcEKOjYhl8WEe1QemBz/Iot6JF/Wv6mv1yWUivr3o\nX0UHET2WKDhCjyraZ72R8r7ZCamMyKvPj55ifbWN5kVHNjx2KPip6vB9tZ3myUMHgsdtuT/ZMagc\ngtenqo2sX69M5ppXJjuxe3KUQ67ok5ERXc/M4dWUdbBb5HMUjGAaTkZ1LzOxFfRlw/HOheM9XvMy\nOsB1tILPZkz43LlqA6MNhuiICvgfQXiTORpY7g/ereB6PH5qvLI0OuErybKZSVypO+JIZttboUjW\nirEMSUUSb7AwouJvb41qv3kv3QyNefMRVU54WR2L2OrsOerECTt7+g1fcMFRn9fmyvGw4SMCUXW4\nX7Ef7bfq/yiCe3A94wCUXrMOoidHlRmZyNm6uyL0KlrV390Kkcfjexx9mSdHQDV5OHuOBs/lvQMl\nvAfORmbX1PpYRXZs7007OwGUqyI2thnrs87oQF69eOgIOWrzd47wXk4jompEzJbl8qPIwMpW6mfb\nrfp3lYPIjMFKB1rR7R55kNBj3Dv+qOqqCOY5A4y6yrGojLmHHDCJx/9Y0e7jPjrKxfvsUPBfPHGb\nvSju9TPnARQflKXKVikDP1c4j4oj8rLx2Hcj+mR16CVIq3KvhiIvbJTdxlFOQiXBsDxHSpUsU9FL\nnbJjqM4wvleW1/5qcqB+fFiH24z8jS+3D/mqSVaJPpmxWVWvGmkqBhYFmEw7eOk4SzNO51J0T+do\nXcdlcOL26ihhbLhYTxkVGgg6A/7vJ8qgrCwbnF3no7K8fvcO5fAEwoMzXhuxrDsQoh97USkap54c\nbkemjqdL9h63q2K8s/c9uRm66ig9Q57RtqaPyEaT04uMnBXHshgpeSuNIz7q4+3Js4Grf5Ok0AZe\nR0Sg2s7JP77G/eoZqepnXELgGKF+dq0CxTNRVxljz0F5vLKkEF+PZ0VW71jxUbQacbj8sh7di1A2\nIF40Y0NkuIzGqJJqOIlV0gmNCM+mW6ILI7b3WCnywPYoufiHiED1kxe9lIFz4k2V8foe+6lnEDOR\ntGfIK4w8nKx0f5WRHG3oR8p7IGsEFqEh2DV8yAPLRBOC17fsEHhwPfiPhmen0ZC/lWOHoIy4N6Gj\ns+VYXyXdlGPA9nLfYN9WDCujH5NyFtmIyveqhp818FEemfsZ+qAcA0ZcFUV5MuOEVGtYq+tl6b0k\nHUeyyOB5ScEIgSE1tk/9v3R0Ciibs/G8tlfGwX3JcFu11/tkntYuhvdRJOYyWfIcoaLeEsJzCpmo\nXUEkXj2UleUR6TWKYKp1huTPNjITBXvlFVxW0dz21/mpMLun2sPGbWXUwyjsaPhIqqqLyMDKqCVC\n1AfoeLj/OMfAsrjN6jM7Ob25gG316no0Wma10fTaVuFT1WuEZuW49RXEVBOc73nZd08GThZOsjEP\nZQRYDs/Es1HetIcHbzARx7yxPchDrcN5Lx2dj4rabOz2yQ/KcDu9fs5EQkWRQ+5FyMiRq7Kj1yNH\nleXXo9X8vLqe863I3eZYVLSxeyNQTE1WnNBopJydx/qYNVeZdBW18dMzRNTFO7uOUZz7A+Wj8eP/\nlOM2cL+o/le/FZLpGWhm7Ni5qPs9J6LkZHXzqGcgK2Rk5I+Ur9Q9CiXcIxU50SjtnjdJ+cAL38fB\n8zLJnJlHR4FGzllnluNl79WBFe+fPaIufNhGRV2UoSC86jOuy/2i+gl5cp9GY+lNKk8G82I+s1H1\nIpP8PXnzx65x+YyuKx1PJch69dKKcTTme+wEVFlvGwh5q6iO5dGw1f8jNz7oKFq7f5gF+fK2GycD\nla7MQzmQqA+V8XJf8UM6HhJQDkldV3ooihwAj2mEOkZo1Kii8iNtrZStGPQRTi3F21PaG1Dvr7WH\nE8Jb+3NEtToIgzmaqsnO10yH3no5yoCjYeM2HerF7VVLEQ8JeZG2167eWEX3e+OpZ0aOerJ7hrzT\nAI6WtYum9VaRwSunjI3LqImKvHGyeyiBjUg5B3QEnBxjPqwX1+W1tkrWcQRWyKS1+0/SqT5SEBH1\nYmfg9Y/qEy7LfVyJcr16XgSdjZZe/QzfikHv0nOUdjgjOYeUp1dlIoU8+M6TQK2R1f9Ys9+8T6yM\nDWXyb86cR2t9rq8MmXmoPkCdFU/lPNgx4RKkZ1i9yTiyNZalVYhglKfXN7upsm6+OPWSMNlOyxi9\nynyjDmxUCvryetvuezzxNBn/F1SOhNE63uSzMfJRWS+pp7b/VP8rA+5NZA89RGNUMQ7ljKo0EvHV\n4aodckZolXMZqTfVtghGZ7K+CnJGySkuy99NJhqIOlfu6cG683c2dDZCtcWmoHCm37hPWGdvTLwy\n0XXuT2xTL6Gmviu5nr4RZdrZqz8adGbpKISQkbdUFxVNvE+Vpebr+McQXfHwDpJw5Obo7h3AYcPF\nNbTJ9v7JA0fem3Y+iIPQmvXia/xd9TW2l/WPjNgbH9WOaMwzzqdKnpPy9M7y8fiN8OiV2dUfFb5L\ndJhlgpO3F/nxOq+3lTEwfFNGEPGxctFjiewg1LqdDZAdFd+LnBfyVQbcM1Avoaf6na9l7il9vDrV\nudNb11b5RQ7xGgy7wpf7e4WcezK9SZX1tpw08qIJG7wyGiQFcxkF2HczJpSvDt1Ejkgl+fD/v6lE\nGvPgNtl75lU51S52Hr1+V23x2ufdz1BkECO6W/monDcfR/VdyafXH8oZZ2VWKEKHkqoQyJucyqsq\ng+ZOuWk6wxzxY51UxGWj5X1xHhCVNIscFuui8hkzxuclAlW9SK+o/1Sd0Wi4o84KisZkRqfI2c/q\nuIIe8PQGuje5jDgzzvc8I1GnzZTjUFFX6Y36M/xnw8f6qqzSJepIL0IbfxXZI8+vHo9VsiKdeBzU\n9R5Vom6GZowBZXo7Flm9Vhm7x3Pk/iz/bsUoAlQFe1FORUlFmYQUX8cEGPMxI1NOBesoHXvG29rD\nx1LV+p63wOzTyx2ocemhAKUn3/f6W11X5RVUjKgyMXtzscqnp4PXV6uMNSqn5lmVf6lsNiLg5Pai\nm9pOUp3uoQSMqnzQhI/CYnTG+yzTi3zMg9GDdx3banmBKNJGyCNyeNEErEzcyPg9nRTv3v3RyL6j\nzIro3AtGs7yzZWcTc1PCVd0evIuiSS+pdNPuGxQbufr0EmAok42Z/0GjaptyZihDZew9Z8NtVcbI\n2XrWw+vfXqTKRPERo94VDXcYc0ZuhZYb5STJtlThQhS5PSgSGQyW52Om3gsvVPIvko9GjTzxKTGu\nn4nCCn5Ha3qFDiJZo1E0Gp/oM0tqXDM6zjqK1UY+2n6u7/Hz5sLVUBZq9spl13U4sT0IqsqhsSI/\ntc7nLTdeIjB/9c8cWI9oi8PTSTkvr/8inlF/qmSmVzZDWYOI+ieqn3UKvf3mSxnVqKM8TIdoAnkd\nnZlsKupG/NSE92RFRqzqcz2cgKpea/5pOe6fXtuwnCcrOjPAfRIZRGXyMMLiPuvx65XxnDbX9/hG\ncrPtrCKKzP1MvV0ytlFvEPk7b1NFfJXRZSI+fu9Fzl5kVBO7F4E8p6S+e/3gRWkvSkU69bYaFa8Z\nY1JtmpnkI8aY5TNK3tw5Wo+MvCUMo0GIJkwWHfTOvjMfz0jRQDHZxvLZoDFXwMbk1Y/ebafKY4be\n6x/ml9m56KGJSuSr0gxfz8mtQioVHbK8LxGBq4gnreMoHMpEV66roDAbrTKASFc0RLzmbcn1SL3M\nAtsTIZpMv3BfRHy4fsbAo6hUjaKe7lUDGJ2klYz2rBM6yvBX9d2q8vco0+HZ6OJFLe90WoWHdy3a\nF+c6qpyXROt99wzecx4s/1ois9KlwqPnICoOqOqsmFaf+ItopI9m+XQZZPa1ldDsdW/yRobg6YX3\nVLTmZ9hRvtWzSK/gvvHgeqwjZ+c9nRWqiCayuqfaqRxG5MwiXkqPS9yPnHpE1f3sXU50p+ztOkfR\ntRflPA/cOzQTTQT7F8rGp7U4Q876qIMnqo3eVhX/5q0fXkZERtqjqH+9vqtQT6+e46hGrREde8nN\nI2mFzMxcWNa2LCMV7aK9TE9pNErjEb1M0a6p8+zGk0+5IU8vUuM91eF4PbNNyM7G65dsX6n7Ub/i\n/cghVA0yup7NJWRlVRzAqLMYoUvKWSp7RQTo3Y8GsgdfvejBUbZnsCwrU7/3+ieUwU6JdY3a2lr9\nxQweT8/YZydNdeyqddS96jyrUoX/SPtHZGbLbKGs4nhstbX47S6VyWiT14vsWd2VHNv+YgcSRWZe\nKnhOA/sjg4Yi3T0detFt51tglU49farraCUHP6v1VlPGOY0inUNIRaOqN+aIqh4c6RkiR0u1xaXW\n21be01W1x9siQ8NFR+DpoPok007vntJffV9JXgKvV2+FPlUkUCm7OqLyPMocAOvJytjc0jmgmEX/\nMCHbAFWv12BVTxm94tEbeM9gMbGmXgGt9Mw4D3XN6yd1rdLnSsfofqZslkbrR31o96Ml3S69PFk9\nh56RuTXSz8Cf3lact2/NRtGbeCOTjg010x5GHqgj8+o5mGrbRtqXcQ6st6dHVYee/NWT9ihZuxzb\nViPu6eJNxpFooShaQ47CFdYx4zSySMF+R/vRSr7aHcjqoyITXs9E6My62GtrVH6UVvHNILHq9dE5\nPEur+AxT1qB6dbwJa+RtPVUiCPNiQ/PWRj1koCDxTMTqwToP4XiysB5/r+gzQh4Sw2szh1Qq/ejx\nqPDK6lZxIpl5VdEhq2fUj11ZGCU8pnwt04BonaqU9gxXyfV0jaKl0tvjp9qTMdiecXr9U9mHzzrO\nrBGMRL0M3111qs5gRPZIMBrVocKb74f2mFFu9bFCLzJ491iPbKT1eHmQOOuwenU9Y4muZU70eeQ5\nGKVTtD2pHJ26Pxu5qlF8N+yd0Tcqk0UuWarwWIkeSgyz0U9F4Z6n9ZJ+WEZFV947V3UiXSK5Gf2j\nvqjUjeSPDHh1e6inn/pdaXPVMfR0yN6r0Ar0MOJwSnJ73nO0ozITpjfgPImjk269p8A82Wo7zSs7\nChUz24BcPpPz8PTje6NRaVWdyAmvltMrHzmblU5hpr0j/NMVVjWk11me0Yx0dC8zzefZKwc+GGGw\nvsrYEB4rnj0D9uply456/QjZZPjMGvIIRSiG0VimfaNydxjwUoQw4uVHPLiCwIonN1A5gghKVwfR\n04vrsjOJkEqmrRmINmpwvfs9x9ijHcbh8ayiS1VvxxyvoovZsrvQ2FBlzxAiTzMLxzKd4z2Tjrqa\ncfb0iqJ7JZL2JvmqCJGB8SORI+I760giuat59vjPRO5R49zSzqyXzULynqwZiG4UZb2Vg+l1ZgTp\njU9GV25bll+2T3o0UheXGL2n/HryvN+9sbQyq42Iy89GzBV1MvVn+sEds4xnn426eK2XQMpGwCr0\nVXwUX77We748IzO6zw7BcxqR/tkInTUq1Q/ZdlWRWlQ24yBGqfrkoBc4LoEytlLG0LxJ26ujvkfl\nqrr2eEVldsgdcQZZXap6Zwy0ut7NyvQos4RifqPPM+DvEZQwWrYyltl7y51CJppW7s1OpOyjlMrx\n8Gm0yCF5Xn1G90jvXl9FlEU0Ed/eu/mZ32j7j4haEWrIGnp1zEf7xkNtVd0e0Kpzyl50yJxmy8rJ\nyLPvCtYa4RZXxdF4PLPwM9I1kpulCMqjY1ttXKMwexQ59ebgNVAPaYwiCY/PxWl0EHsvccDfFdjs\nrYlHovRM1M2cwa9A62wkqDjgmUk0i3qOhNJ8L8trJsr3ymbLVBF0au00q1Svbva5aRW5ogdkFJ9y\nBxHZf16JtpNmnYfXJz2UYmVWG0sF6lb5j6Ckir4racYR2PURA17Wlhl43bvfg+Lq+qihVJDASFT3\n/m95JCura5Zvr0zWqLj9UUJ1VK9sndGoPIOsVkFoj6/iPSJziX4rYc8ITywfHR+djcKegWf0s4mD\n/6TB45HNAkeyM6frZtrj6eTJ8spWHduIbr/OdLgziBhFkXAWznvXq8YV8a1GXTQ0pUdvmeHJvCZD\niHReqWcWxlag/UoHiHVH5v8ojb6gpUzZyT8C7zJeP3r4YySiIF/8NMLf3v8xj4wef/fOwke6ct9G\nJ9ay10bRVfX+Snhf5dEzDG88R2SN6riKZyUAblMmO8Gqk2lVA1S0Vfwrp/i8DvYiS+UNMtl295YT\nvXo7KMN7Vn5lPFS5rC6eAx8Zs8p9DlCH0owBe2V7CGHWy0ZR2ZPRqxvplzk7Hl2L+PWcCl/PGv9K\nmFsplxmbDO/eAzVZZ9CTF9Xb+QjyKl6y4g7okFF61mt65RgO74po2VdORTxGdPOc0w5E1LtekTkS\nsaJovvr1Z6OUmWer5sFW2K5ox5571TBH3m6D1zMTtxJZo/qzaGX0/ipCeNmLziudDstfRbPvE9hJ\nlTk0pOdMBK3yUf9dNYqEMx7Pg3MVGRlIqK73Tqf14Dz+XvHwSXayZJ45z0b+GQidpUhGBWF55Ucc\n9orl0RKHU4XsmXJZOdnyvXeqjXREZltjBpKPvjWlxwN57T7FmOFRRTsV/teCCKpL0FEZhyOIEc8b\nRWa+NmP0lXJZeRn+0XPeszC+N9F7kyDbP7ydOEqe7pljwtlgscP4V/KcdRqVeTArc5hGB6sCmRRM\nHo262aRcdgmRbUumXKaPVjjGyhNtKyJfNGarZKwkpXuVx+jW2FKIvopmvF9kPFUDX6HP6rK9epm2\n7EA7q6J45cGeCmJZqSe/eyBTZ4eBjTjs5f2hBuFSkGgU4lchYmu5PWoPmqulyYgxK9lZiM5t6ckY\njUwjsrL3qkc+K/NjxxyepVV8t+hX8UaZKJ3hW4XCnkFWefD1qJ3ZSZqBrKNG2ONbef9dxC+i6ks8\nqvyz9XtOe4VOuxFjhV/aVmYi5Qyt8MBZdFAxdi4/YxxHrK/KAx7wiO730E4Glq+izCvFR5YJ1fvV\ncqtpWG41oniduaKTkXoPd2RhbzQxKvpl23TUBMhmzleMRaVeZh5kXziS+Z0tU6EMEsvKWmVfWXll\n6nnzXt1Zz9hr5Ch/ht7RwHGGeuZBA3REqx9YmJkQKydOldcI6trtoC8Vqa+GdgxizwjxOkfsaqS6\naaf/kRZNlFkIzE5CtW8EOq5yDkrXnk49fatJtZXHTUd0nzXomb6aoYzeS+XvaExlgDMJoKyTydSf\ngcfevR5CWAXZrI0VqDwqq8e78l2NzehybKTMzvqrKNSj6jFLzIv1qp51JIpzPZ4s+BorLoMG4k08\nNFhVP6ujKrMCSnp1M8gmo0vG2DIIJuMEKjxXUg9BXgu5+l0aZvTq8jW+riCj5/UZUvd4j1DGGKqw\ntHpv9EGXTNnMP3gYlbFyLvYc1DU4j5Uk5+9sdJipP/LQScZhjO7l9uBfNDkqr6ke0cGrW7lfLder\nH8HpKOpd5E0pRaqOgYfeVqCwq6aqt0bI69WJYLFXx8ri++dYlmfICqZ7cH02ShuPyhp9lHp9V3FM\nRtGbe3vXovujqCFCbCM8VlLWiWx1Dt6kHzXcqEy1bDQBlb5e5PEmwU07r9HZ0JWsGQTQ4+HVi8pk\n+nE2mlaQzChPvJ51FrvRTAW9rkJMK3hto9Fo1qufgUyRAdu150/1llovSnnRvkKZHIKnS9ahjFDF\noFbKGHV+szruMMRLQ/RD5FaiTnRdwWCvPsLyiF9UH2UiT/VfVT2dGN5HE3r0ZRCK3+6BvYaosmO5\nck3yLiZrR2d4E5cNjO+PZsI5aitDtnIViG918DoaMNaN1v6Z/lE8KnWxPpZdPflW8as6lUyfjCDL\na6LZ5Vy6Yo/ZjCK9+xhV7TcbYw/Keom022cPI7Z9j/bIMannyYucWtTubMSfmZAzCamMs/bqVq5n\ndBmpN8PrGpDNo6Vqh3nGhXxUVt2ucx1ee7MhejCc9ejJYV1mvfS1QcsdE9/bUcn0Y7Z/rxpWT/CY\nlrXaA/e2kLyIymUNomO0VcaqojHL5G04XALwm0mUE1DLj6gPPD0uSb3IfQT03yHnWmkUDQ31z9Gd\nmjUAleTKvD1V7ZurVwjxBGboreC9F9GxftQub+0+E82zUc9DRYpfdTKp8hGqyfL39MuUHZnXI+My\nQ6ujfbdfqwJ3RCuMrPYbjQshNxuphwS8qKuMlKE/O4meI2C9vLarvqi++SVzqGjGeVQp2v1YgQZX\nG/cOAx7dURmhpfqvnii9gWcDQaPGMiprzgaqorXV+fSTh1A9cg4qQdc7SOMlAkfgWGbC9+qtujcq\nb5SyBq6uZZzAaD9UkqYeqhnVYdqZVTpVUfQMctTpbJgeH7tu22b2qdbP9l1ts7Gs22cn48fIzrz5\nUxnmTWvvXt72y2GbZgbS49eFb0k5vcnqESKjqtxRp5aVs9oZqfk6w6va/soYDinkXR+dpGhkUWOx\nU2+fnQ3y5a1eT/MfOgirb4aNfyYL66ntPtQdeff6znNmnnFloxPzmfb+BZrhMTJ3drSt16+98l65\nXvJ5hIbqZhUeFhDw4U9eKyuDsnsYfc3YjQcaM2fmW2vt5e3p+pvPHsrq7eN7cJ6/R9txkQGPRNss\n9ZzpKjk9yqCa1TJHeUb2sctBbaGVHr06cRTc9JwARkwF0+3v5W179+rFw2hra3SO0hbFDcZbuU8/\nuQ/9cbuNE3jqIA4/eTUacat9HqEBLuPdUzxH9Y3aHTnDqt5euZWBK3JMl6CR8S0xqpbNQFH7tIQZ\n7mEjNLY/ftKMIzI6AzNa3n57eXv6fPPZ+d7L2/O6nR3LTTs7EeOLho3r+2gQRvq1hwiwL1T93rWe\n/J7cEWcwimpWUE/WMiNaQIfLzAjkjDlDX8XLmyQ2ac2geF2N6/Obdj8KY/S1e8zTIrgZPUJ9rMt/\npgPqqXYKEAVEzk6t40Yi0UjEq9QbpRk0MIMmZumiUDuglSjFZTAymTxjV3wZqpsxm6HafYusZtRo\ntGjUt8/au7svzpHYDNy+v/lMG7n9ZrhvTsHksiGzE1AOr9KPvfIrlgCzCOMa9DqCKgY2M9aKVmX4\nhygDC7NrL1UPITQaNRqewW+M9lb31Yv7a240VKv36Sf3edg9hOJs7Liu5zwA9wOv3bmNqg5/97at\nVhhbdkLuNmxFvW3bmck/unyZpaOcV0rOzBoumrg44T0ZaFTGT8FmMy77tIiNBs9ba3bNIvLd6/vQ\n3tbn5iTM8M1hMNrAHILazkN04PUd90u0vo/6frSMGo+sc+7d98Z7RbSfqb+CX2X5c4n2HoaGshMH\nJzgaCEdzK4NlX704GeLdF2djx2Qaru1fvTgbsBk6J/tsjY+yMVuP8tmQOUOPDkX1R2s6W88Gn41a\n2Ym2GlJmdVBls8ZypFFFPI9GNde2dEkNEHYWR2lcf9+0cxRFQ0UjMp64V45RGLfXMNGG8B//EKob\nr7svHi4NWjsjjtb8h184kvOkrhjlisjK10Yg71HGlUUKq+RlZO6gqswtOla8rbqv6rIx2D11ogwj\nLcJxjqQWga0OH5Kx++Y0zGhf3p6ScOYcvvr8DNntHjsQPOLKx2Y9w+dMP9dR0D3Tv9kxicpUDHcG\nBayCrbPwNeIzinhGnJ/Xt6sMeZtDqNxnWIrXPIiOEdfgOsNlM0Q0TDMqjOYG6zGSW4TG9TkaM2fj\nEeZzIo4dFDo0dgrcZmz37v73JlfkoLNyewY1a0hqmTMzuSuGP8s/05dbDH5HB/EEV8atymNk4who\n9dFIOeJaVLajrWbYL29P9yyCYzQ3I7VyFvnxgA06GnQ4uI5nQ/f6xyI8tr0CrSsTe8RIs7yUc470\nnZHl8aygmVEds/qvMM4RxHEIRdDEmxS8bm3tIaxFXuYAMKllhohQGyP8qxf3I7wZJWbOzTHcfXHO\nD1hE/+rz09+rF+c9dkzyYbKOt+G4XxCqY3uxzarPKv2doYh/5HBUe7L6VSdsj/cKYx11POr3UQZ3\nmGFnDbpXnu97Rs17063dP8La2vmhFNzzxu0xW2NzJLZyZsh27/nTk9HbUVh0JNZOM3ZzJAjxX704\n6cXZd55kjFZU/6jDNqPwLjMpeyhE3RtFFt58iZYss8ap+Fd4Hh5Bj9ABYXRWcCYStKZfpaQSUoo3\nr8vNSHFtjWtsy5jzdXMAZqw37eFhGovoyB9PwiEyQZTASUBMHKr2KePNGnTF0CsQd4aqus5A5h5P\nzgGp3xH/VbTCoSyD7VUINcJXRbbWzhHQrqu1uhkrRnpbZ+M2liXqbp+dDsKYMT9/ejZwg+sWkd98\ndvr76vOzsdr63tbxeEwWs/1qLW88cAsO24jRnvtiRZ9n6s6ihJW6VOtUnBbOJQwSVX1mHOWso756\nUg2JEkwMa+06rp/xkIytrdEJ8JrdrlsiDrfYzNjfvj5HbIPlZvhWzxwKHqf19uDZ4LEvEBF4J+Vm\n+7wSFTIOvYoIsuVXkHIC6Fzttznuu9encecj00rvnc53lK7SOXiRJFKWj64y5ELIbhHXDK21kyOx\nyIuGzMZtWXhbk7PRIiw3fmbc/N0M3+TbJxozoxRsL/cVIxzVlyOoqhJZjoK1PT2qdXC+mGN/89lp\nnN9+eTJ025mxpZ0t0TJOL7OknW1PT48ptD3qKTKRwVsboSEjDy7P2W1cT6NxWpTHBN3bN/cHHLfW\nLFrzOp4P3ZiDwKQcPsOOCEK9rAKjODos7EMvGmZh/WwUjeB9pc6szBni3RUbm6+/bO++/ur+59sv\nTwHAojuPz0rdeXyr9WdkI33UWms/b+3JiACrZ59RQ26ftXc/fdraLz4+3f/Fx639ybPTPTT+X3zc\n2k+fnr7/ybPWXv2ytT/9pLW7z1v7/g9P5b//g9b+3X89/f7+D1v7rd89Xf8/v2jtV/+rtd/87dPf\nt29b+94/be2j32zte/+std/98anst29b+/u/bu1X//PE55/88xP/3/1xaz/449b+1X868fuX/7G1\nf/i71t6+au0v/uis793n53b9xR+19ns/bk/+w387/X71y9Z+/w/PffKnn5x0wn788c/O/YV93xsH\n1b88Bpn6/FvV/XlrT6JJldXVkxvVrxrE7bP2zvr4d37U2m/93mm8/8W/ba09ae3Jk9aefHT63j56\n//s3Wvvm7jQfvv/D0zj99GlOptK90leZsarIrujSpVFvh1EN71s0R5iL93Dd3Np5j9si61efn9fN\n5r0Nhhtcw4TcqxenCI+ZdoPxuO63pYEl5zAvgEdpcZmhnrbDNt608/qeEYtCNUirYbSKMF653vUZ\nmKnqz+pj4/P2zSl6f3PX3n3zlv6+Pn1adLc5opZR+Dsz/zPIaAYprUZB08x7UJ7LKniPZ8kxEWdl\nDXYZ9Hr7+mzABs/xaTVzBnh6zhwMOgOE9W9fPzxuiyfgMCmHe+mt3X8qLeoHTAh523Az5PHx9pWr\nS4cRig5IReQ5Gft+98V7I//yvZF/ffr79pv3f9+2d99+fTb6r+/eQ/k354BS1ekoWgH7Q8ajyvSg\nG2fXVQKO106YqMPvFoEtQpuR2+k3zKLbmvvl7dmQrZyhhrdvzvz4YRg8Ysv75qgPtptfd+XlJ7if\nehMuMyF7WeXIqVSid0+PiGbqW/ssafr1V++j+Vsw8m/f/31z/vvm6/eG/tU5l2PGrnTKROtZGuVX\nrpeFFRmvx/dxwqEhMPRiQ8AHVBCi47aaGerzp2fjRRiP++gG7cyoDboZbL97fYba+LALR308UmtO\nwBAFH5hBR8X9qD4zY1MZ3GuYkDP6RzzRed59IYwcDR0MHiH82y/PidydEX3WWWSWL+XK1XrVNRlP\nfnVWnNe3Br3RkMwTmwMxGI+Z8bvXZ6dg0f3ui3MUv2nn+3iYBpcHGLH5JB1GfEQbNmkQwjOSsU+G\n+VWotjsaZNauM+vPinx2njY2b7+EtTlHc4rqaOj81t9da+HZvt6qUNYLKSjamo5i2JlqAHkfmre9\nLJqawSH8NgM2o8WknjmKN5+dorol7PD+TTsn7fAsvDkcPvKKD9twchFhPN5nJ8DtXznQ0cQ9ckLP\nohVvzlgfvrx9b+hm7JWI/vrhfnrV0Vbau4u2yMwMHMMgZdRelMenxPggjZUxg8J9cDwUY6faeM2O\n2XIzZnMMZvhWDhN+pqMdtsC8Ai4p8LrXZo70dh/bmO3v7HhEvxXiqNAREzuSYXPg7ZfnbPu3Kqp/\n8z4hh4b+5j5qu4SRGh0ie7cQ5YlxPa4eIkGjsBc58jvh8BFShNaYiLP6d1+co76dmsOEGx55xcw9\nIgd0DvjdZLems+5qDRhFW45iGWifNfgjJ/PM2jSDRnD+3L0+Jdkss44JuHuw/e6cjMMDUeOt9HVe\nhdBm9PsIGfQOSYwog79/3toTm+w/+bg9+cnH7ckP/vh0EOUnH7cnf/Wz04GVv/3L1v78x2ce/+a/\nnD7/+2+fvv/tX54OpvzZ7enAytvXp0Msv/Oj1v79n53K/s6PWnvyvdP3v//r0+fb/3c6VNM+Ol17\n9eJ0/W/+/HRo5h/+rrWv/m9rH33vLPPt6zO/7/9Be/I//qC1T/93a3/1s9OBmle/Oh2I+f0/PJV7\n9Uu9dYWHOn7y8bmff/r0XE5FU+9ATOWgDNdR9WahKhM6OZtX6Kyyent64nU7iPWv/3Nr7dvT37tv\nT/fevTv9tXcPv7d2KvfkN07jZgdmZh2iGqsVSzKvL1J0lGfnrDvDe17n4l46RkuM9BjZ7RyzrbXw\nrDo+eWYQG9ffmL2/++Kc4bc1viXt1LPteGCG26Mieq9vFNSv9LMqHx3IqdLRsDazZLE/S8TagZmv\n78ShmfeR3Nbzb9+MP9V2BF0dlPciQjYZhwaN63CE8lZO7aHbGvurz0+Dh+t1M2IzWitr22u8B3/3\n+gz5zZGY00Aoj3kEfBimtfsPrKBz86C45wS4H0fHh/s+A4lXUwWuj8y950/vb4H+Y3Lu7mz4uHdu\n++c438ZaNkYzfT279EkziWCIl9jB9SlHPFyPt3Z+issMDZ8N5yfN8Ck2frEEb49ZxDZjtocb0LBv\nn50z78gP9bC9dTZsRCT2G7fiGM14MLEHIVet+7Budi2900mMTmDrb8yhfPX5+wdYvjwb/d3r+yck\nL2Xkqynd9z0vmoFQ6ne0NrFPS2Chg7Ao2No5seVtsdl1PA/P5fDRVDNafKEkwneMvnaCDiO3XecT\ncbjv39uqiaBiz4mOQPpLkNo67NWptC1yQnjQyZAeIjJP7owNjNTbMY4uz10Qwpug2KG4DcWRDyMg\nvwAS97DtPkZ0g+QYgXlfHY/OoiHjmXd88AW35bg8toWPvGL7FcpZMQ49WilnZMkwUn5ET+xj3Jnx\n8ilRQOrpd0SZHXWXUAaKqj1mK4ORDo2d98vx2Kmtu/ndcAbJMarfW6e/PhuqXbPvdjDGjkYiasDo\njUsQ05+RCt5XUV4tda4tas8sFSJkk5VX1Qd/8yGlaIk0S5WlTpXXxeaDUgT/OBHnZZfxGhsFG5EN\nGL4c0qI4PnDCybevPj8vA/CUHD7hhsdf+SUSBgUxb6BeWGFtwd+IBuw3Oz3u216m/KhBVyhklM9R\ndaM+q8DzlRF+lHYsF/ZWJh7c4QraItTC5Ildb+28FkPjtN9mtGaUnKizumjECOuNl22v4cEadELm\nEFo7JYNwzc4Hg6zN6BQyfVvt+xHjzOjglVmVzFJ8erxH0EW13graDeeXUgQnPCX5RJgqhyeTLGIz\nXzMqdZrOjPim3Td823IxQ8f9eITjZtzmVBC+G0+E7rju8/b9PWQSGYznAKMxyNDuqOMtS7isdypw\nl35KRoQoe7rsgPnefNjSJz1Bq4TyhOezxTYRMKGF0RuPyaKhWSRF2I4GbGtyfNMLQn4zVI7eKJO3\nyNDwOcK39nA3oWfgXl/P9v0R8H8l2suW3d2unc7nosuCzISs8ODrKlrxJ67DsZ7af8cMPEZu3u4y\nI8akmxm+feL/YjNH0tr59USGEuxaaw//UyqjEtxPx7YrKK/6yutblFmFg1H5Ufg9GgFXI5PdqGWk\nTrbvs+N4cWifXWPiZLd7aBBRXbXeRWSAp9twnW5RFo3eHAMvAfAwBWbhbasO99hxGYF5A6XbSJ95\ndbyIvxMKr0YZo/KrUX8V/x3trTrp7bQalmFUtt/ees4My9bcVh4z4hg9cY9bvQkGs+mMAm6a/7YY\ndASYkOM9dHzHHLddRfGMl+4Z8IgRjJTP8skYTbbdF49gRDPGuXOchvpp9QTgKK6us/GjEfO5cYbE\nxgOjML49FjP1WN+M3xAArufRYfCSAhN6dt104Gy6XUen1eszLlOF1NdmHCMULfF2yZmh3rMKV0dH\nQDQ2AhXZlRPARBxCeMxyozG3dn+LDvfQmY8l4OxToQSUaTqqfXB1P1qTM89s342UG10uzPJZ1a5Z\n8tDRSvmXaMtVUnYSRlCXM958ZJYz5a2dX0llho2OQZ2R9/jjNYVAsC3qWrY/RvtyBAGscCBHTLyd\n0X1Ul0vyLemwaqKNeEhlyKq+2pfGcgz70Qhxj9wM207KYfTmAzmcI0CUoKIwRm4rw20cNYgq0hod\n0xlDOsr4lCNbLfsaHInRIbpUJ2Y2cVCBg7zGx3UwR3I84IJRurX7+9p2DdfXrZ3/D7tK9vERVlyf\ns/Ox7wzt0VnN9iOXzzoDb+lU0SFTJ1t/BaLo3atSD4mtRDDXhFJcWrnO4VNTZjCYzEL4jQdlrD7e\nb+3+G2RxrY0RF6M977+jPl4+AdEGnwHgstxXoxN39STL3L+WiTiCFlcilapj3AbFV1PV2yrIOiKP\nJxlGUqUXnkFXUB4TdRyB8bCLd4TV8gIMzTEvwG2OzgusGFQvGZg5l5C9vzJ6ZeQj9fINs0uUEZm7\nKIuGj9ClqwBD0+yk8urzPU7QKTl4Wg4NEh944XPqDMvVFh7qxrooJ8f6R+3nyeXBxYhHRl6m/mOj\nEVQyslSY7afH3s+Sqh2k1rL2ycaN61/OgPN/TGH5DL85CvNeNxs3yuXyaKy2j59tP9MKGJgtHy0t\nvPtY5hITeET2JfV99DTaaRlIxmVU1EPYjdGZ4Ts7BIbU9mlbb63dX99H8tkpMUSP2uhdG6l/hEPZ\nAZWzPD3UcymofWmqoL5hhpUyVa8bTTKOxnhdrb3Z2LE81uMHUvg+Xuc30ka6e1tB3vIk6pdMuYjf\nyP76yL1MnZl2RHOkwmeGdji8HfWW0UoFolNm+EI/FUXRCNkJGG9+lxtH+8iYFLrw6mBegNuh+I9O\n3BHY6n1fFR16jrrKz6vbW06sokzQ+WCp6um9yRT9RvjLUVllrqPTaq1pR6GgN9739OQDM71zzrsm\n5UxUXT1Rs9F6lyOo0AiSWiWz0u+PzpFUG8cDgQblwU8vukZGqwzdM35V3tND/c5C79VRtMpnZZ2K\nY6/qscNJXtKwsn1T5XM1FEGyngH2vvOWmcfvpvUdCKMN1h+RBZdZ0S/V+yMyekhmhn+V1+4JW+Gf\ncUir25d1RGm5uzo08lA9hXtRN6oXbdNFdTFbjsYfwe5M36ljsb3ofjScvHZarefK/rtEH17lLsMK\nOOhFUyS+rp799g7AKB5ZqB3pXSm3MpK2th9R7KLH4nw8erT6rzLUmQ64afp1TMpIFSxnHRRCsP3y\naI3N8hTkj9CHupbtm2qUrzidFWOs7kXOq9JHo3ocUf9o/iMB6BAaGWxe73JZ74mwnpyMjnzd5KmH\nVUaoB9d7SwxVPqtTVHYVHDxqAh7pDK6JDmvLUR3METkqk+GTfdWPQgN8X/3O6pEpG/GIfo/w2F1/\nBZq71ih2VC7l4rSiIb1oitcyMFlFds6EZ6Bl73pPj0ydleWisjvGKdN3M/xH6qnv2WAwInsF9RDc\nMt0uucaJBqG6bh2Nbhy9qzqt1CHDc8Wy4RojTQa57VjvXmNfjNLVwfoVcBzLenBbGXFFvxFvm508\nK5dAKyNWJkL26l6z8exwlNfc3u2UWd/2ro+WU+SdPR+RnW3bikm1ovwMLN49iStJwEsb1BHyq07k\nIn1SUVKVnYXyWC5ah1eifK9cL+pX9R+hoxxKpQ9W6zMjY8uatyDzUvwu7Rj/UYlLeauMM+EyR59G\nOhIN7Oazm/81TOhL63Bp+SHtMHQVrXuGnS3nyYnKjkDqiO9VQrnNtCsH4V17FPD50nRko2dlRUk3\nJWM0qmcdzbVQdSmyMrFYpWvru19L+pAGYbWxzkaR1bRi/TvDp8JzJgdybbmSit5Xa09HJ6WydGkd\nZl7FPFp2lN9jWad/Rx8IVdbJu2V696LrvXuXoNVLh9V8ZqL0d+tqQY+10UfBtR3bM0dAsVXLiRmj\niXhcaz7nsdrDVdARnTciY+e22cj6a9TYvqN1NBtAVu20jOhUop2QaRddiyEctZRYgVJ2Jo+8OjvQ\n0WpeR9JV9MFVvrImQaNec7aOisaPdQL2KNu2mfZHMq4BiV2aluv5WBreWk7X2bXrNdIuHa+97Su2\n9x5TAjVDj1HnMl3qQMaH6DyOohE4/+ueXLtYm64Fpq5IauzM5s9uE0br3aP6fzdk38HvyJxEls81\n2MsHSdc2+Y6g0a2vEd47JvO1IKVr0GMpz8eUNT+680cj2SX6dIXMI9qyG4Ed7Wh282GeU3yvIVKp\nf7jIVJ0E1aOnvw572NEOxWz/M48PqT8/hDZ88DSbqb3GQR7RaeTM/Wg+IVNuFNVd43g8Ktp1uGEX\njcC86H+uVWWt2OqpUE+Ha1mvPja5K/vwQ9u6O5Q+lKTaEYc+Zifazh2Io+lIHVflN7L/j+AidIlI\ncvVZzgHeKyLLh5L1vgRFy5dr4pnh8f8BTSUyRJ0CqNgAAAAASUVORK5CYII=\n", "text/plain": [ "\n", "array([[ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " ..., \n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [4278190219, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.interpolate(agg,cmap=[\"darkred\", \"yellow\"],how='eq_hist')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how little of the color range is being used for the linear case, because the high end (yellow) is used only for the single pixel with the highest density, whereas a linear mapping results in all the rest having values near the low end of the colormap. The log mapping has similar issues, though less severe because it maps a wide range of data values into a smaller range for plotting. The `eq_hist` (default) setting correctly conveys the differences in density between the various distributions, by equalizing the histogram of pixel values such that every pixel color is used equally often.\n", "\n", "\n", "If you have a categorical aggregate (from `count_cat`), you can now colorize the results:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:237: DeprecationWarning: `colorize` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AABO50lEQVR4nO19O68syZFekst9aJcg\nCC5ojDeGjNZ1adC9v2GA8QUsIEsaaCEJelBa9QJ09AvqF/Qa8yfGKJfmNQpyxjk0CBxgdVdX8+Is\nU8bJzPoiMiIz8lHVfYdzgMTp7sqMfMXji8hH/cB7777/+/7v+7/v9t8P3T/84GLK+Q8/uPz9D/4+\nzwu/i89Z3lSfVK/0HPNZ28ppWujUaPfU3VmfNs5iufA9K9NK3/Cnleuld8bfaNt6ytfKtNDkebv7\n471P6equF/zemyx0sjw3dyH/RxKncXMreXZzF3NfX/Ivhjoun330eon0pf6W6ry6a15OGwvl91od\ns+fQ1NYXWvn4TeS31v701nt0e4+kX50kNpnihGU04PNQ41H4pTaWBOPmllR3LF/q5wwFo9CzjoEp\nX6WdM5gl0tAEtJD/NMHtHcsBITeNxew+zBrTvoKSUO//F7NlsuTRaClWU2qfOFgDgp2sL/a5pU/G\nlBCC72fcFka5t6Dy+me355Et8tFtGyPQauEFphWFUykn1onfaxa7R/B4P6xKS0E43XWXfi9A+Rm/\nS3laFMwjC9gfS5pLsCAIZDJqjG93JTRIv6Tkvfv0lx+vVsErMo2mjEoKgFp+k4CiJS+2qbMfrYJx\nhk/7qH7zkWN79PhgmbFOS4xbYWZR4Fss3qCV8967N5+8WmNbVAWkQWYZZZTrnmRxZyREUHcL3D0I\n7d76HsGlsCgbIuhXd32JFtsrSJYyMgzJYxRaMcpspEHKxrZoCuVF+azeB0vJB2mPlttcgJY2Gstl\nQcMaHS6klkClVK6xnTMYdEbZe9J+5LpLqa+glbHK+fUlK5ZfU0QgIEsU/pQXo+6cZjkesGR1cPgt\nwXUUIiV2YYpH3Iv5DBZ+BmSV8s10M86gMzMAekQbpXR+5Q1C1gzpmaJIllqD29oKAbXui5hPbj8q\nGupj9wUCF2hTlUYG2RS01SCUXUtKZ0X6H9V6zk6tylHKMz6wlSCUVMbsKlCBW01lCm0Rf6sFyvRy\nueUvjYsFURTchyIaaGCAewuHwrRFfjgqgn8UrVG6R8xRP+FasIp/Vsq31pd9t0bCS74xLbtodEq+\ntJin1pdCHhJ5bxwryQ+fwYg9luURFcujpiOVWD+xA33KRL8kxFp7gqBmcLn2uaRIan0tPC9G1nkg\nsSOweUYEuBc61vKdtdb+Pgn7UX2TH4xaWy2PxaqyPG8+ebUWy5WEtqYU8t9lOI5w/eYWXJ4rjkfB\nrUn9kgKPE4N1lv0LRYEbUOiIJI4SttoS5aMijlEFWFs9uY9Fr1gqq/9ZzCMFrqJff3MriQtgIE5Z\nntOEjbdVE6RaQIy0mdMHZSLl7V5/H0RhghLIlys7aX5Xra4Upb9HX22M0mYV+ztRXp9fmJDoFl3K\nU4f8MtTfFYL+DNteo9czXhPdJEmw8LeZFnA07wyB0Oh+VxWL1vf64GjWV0qtPnHJagK8Tf5s/G3P\nuwhWJsHsLLqPlnzvD0ECguXP3IHPPnq9qPmUccM2W5ixONY9rtWosjg6JtPBvN+n8jiVBb0lAMSt\nXWsATaub/dci0BKUvL7s3KNLeyj0O51NobFD/v07L7sSpaD3OT2/OsMORHAHRlZCrHmOsqKt9AqK\njrgGLeMyUu89xuZoBdbPMFI+CW7z5yUIW0IPstVcSb1yIG/x3H/3bDMNWHkhAMfX27cg6IuAANSL\nJxr2DuQXXVgQwySL28xwUqzC62vj5Pfb2H77R7LuR7RlpiulWtFM2/T4mJpfK+VjlkaNqusCKAp7\nJuTQDibUS1ZGayfUQaw6o28pX6xPmkhhvK3MYLYgRqXRYpF6/XXLqsE9Uo9gS0G5s1YjqruSCsyQ\nQ2RI2bVKlbPrzPem0Jk3XhJyhNxSRL3gVrz55NXKBRbjAqJCqU28pOR2+lnQEZVpQdG1zdVMwQhj\nMos5j7bGR1nYI9t8ZBunMID4uZS/FqhiAixqdVQg7SfPlqwuqW3hO1nLZ/A/ix8IgpmE2HpRR4mp\nrIqmhUFLc3IwEzLrPXxd06MokKNWJ3qTzDw9k16wmD76tOF7xRUgUfUC3L0weotQZl+Plg+w6HDd\nupxntPgiHcO4W4JCEY0IKOruFujM4F5PcG00aPdo46OljMnUnVnSM+20mXZijHaw7KtL/zXhk2jI\ncH7BfuKRVrE/Uh1ScI8JO+9bEZFIqQUlVZ7fC27Ohvfvcz+OGpOWZGccLcINkFSMkpcgab48FwVo\nJZZYr5f44eJlilTpbFkfOZ1QFq3jZx+9Xgg9PiZ8nCxCTBWDefKy9Xtt3iwQH/KgciqiCANKeN8j\n6fdYYjw66Q+N8E9cq85p5BBZYky+Pg35RF84CDFxBRQr//mvPtzgey6MN7eCL523m48JFRK5bqV8\nIVKfyot5dCWcnteY6tNfftx03JdH7I9ex7ZYcSl6fXRbjuzzaLKMUx9xySIiccaQeFUTt5aBxiqW\nBYErBKfk3W+sPPufoQFUHGI/8zr23Xc8/pC3P6sr5uNKLfmNgrUXx8foh7dcF9bCkC1LRqMR+0cJ\ntD1aOy316X6u9ptmOaXfDUyY3QLzUo7C8VK9Mb9k+Vh5ErTD+vlgCUoofja2J1ckQlujwuPCHAXa\nzDAcBeWMMRTNtljes+BpK7Iw0DNvST4zzfbnd+arFaz5gEzASaDL6AbEPMy/XrxXjqvmUD4JJdv5\nJrkJuF6+l+f5qRKJz/PYgqasSmMVYwY9k2dQtAk9zWReYQ5bYe+ZiqE4hh1tf1+TbY01/y0XYsxv\nhJOZoOr15UtyArQNv6/MCme3vIp71Cm01s+E01Q+2UbrLysBjY6Qhy0ninCeI5QjYGlxdeHAJFl1\ng59u331oKMPLP7pyKFtZ9owzj3BmurQDrXzBolRnBTUQSxqYGfa3y1tNc0GUhHVhtMuRbg015HkS\nVM+umA55sug+xDak+Ic6R6x+C+St+n5WBb6Xn3K5ZIvVLeW1Bu2simS2GzGSam2wTaDV6vAlOANN\nwpg5FKeBO4yWy0If8zyz75u/scscqA+tw3zWHlQUYrRfsK6a4qveJtOIjsTJZlDeypgW4eoJ2D2C\nULSkFoXSQ+esZGugvF6sQ3ZtA0r4zpaO9JteJKGJdFBQOLRHiyyXlZUSCGZ21RNHA4JS8jf3zOqn\nSgHy4/eatUBfu8hENQQEn1uj8KX5L6yImNFDq1CMli+V6RXKUaVwpAvQNDmZIFuZQYl0x5S5AFBW\nWT9fPYXTS7TaRIhfnuH22xVoSEE2bp3VaD5RFFxhwTNVUUrMwBRACwOpwm5kthHBQQY9ytK1+Mst\n9c9I97bWlvZ0EVKCWdTH3T+v/hY2rEiWm9Hglo/fKJPRkmCuLLzRP86FV4LfqFBQYDVlx3bWiYKn\nIKNscwxOWCkwWJonGEu+b0H09RW6NeQhMFkWoBtRMlq+GQplRsR9dpt66FiSzjCSEOvCrAsNz0+F\nSYLWaHXpMt1OawOruV8Awdrw5pNXK0Dw6KsTAYb6uf8uCmp4M2se1Ct9lsajNqm54srW3L0vn02Y\nwXRHlOsR/FnKYkayoh8pptHSzpl9sgd8LFblBltNdz83h8U0CJafVtvziYhBiPbzu+VyfzqnHX/f\n1P4yxZEhiVy55a+AEvrBVy/wdxN015SpNDYS44BlHw3QjabeaLY1In50+8+kP5JiA+sHJWqwjzG0\naGlyyKwFuPJrnjRaL59lf5nm5ZY/j+DLVnTj21yJotrriDGCLBofDsWkfnz6y4/59dPZJR7W++XE\ndhvKnCnkPLDYIoRnC889FMQZfcmFeGcK7Tol0ccl1hSZShYe/eUFeR08kCYdJY00NyJoshKRIv1b\n1u89/5b1h7Y1P1TDlFlQFNnlFeLynMBYUr4kMJIC5O2oMEMpkCcpAy0wZhKIQnskJdAb5HvEdM8+\nmCehmIf7j7lwy9YHv2u77Oh33XLn21LzGABfL2fCEAUHjsjyDTic3iYqttDedLxVqEs4C18V0Ot+\nNTU9UmqZtxOYb1Zk/yyrOkrzKMG1rjC0pGoGcqyRb+sMn+F5HtACBhYtGBXU/Mw73aVGLP7VwQ4z\npA9vaAEhXcHHvrAy65tPXsXni7+5BWIN+u6/HWWI0XRQfPl9eBJCqFg7PgdSnRkDSr/5xtNsAppQ\n88xh9O715NnC92iIorc98qRrk6ZZafZciZQTRoXlKtnCKshBeHECjYK//M7Xy0m5DHns0fgEsUUf\nmveVKrJEg5WV74C/5Udv+TwkJcvREvSBK4jMMvI5YZ+LQqvwwT385llLVz11t+SbYY2PiFeUC3Mo\nrDGB4seKjJMnfnMrj0pj5F49zgr05bPntP6IAjb8PQjNxsrs0Xmg+eaTV+tvf/3Bk9AWEg9I0B/q\nIVoZxgEj5hkkx76F5xBY5MpS387bkia4BL3LSa0C1kvjXqsNPWM5knKB3idZvuVFeqZZ+rLA70KF\ndSplmFBxgUWhlZbXEuMTAd2fJUUi3OyS7aYTEFD+vawYszX/TAHyyZLpyPENyDu81dWSDAqhNco/\nwvwWq3rUerYlaDmrny1J/FFjjsJVURIT0sDZ/lk+EYbHS3MrJcH7/S0su5DH/09Yd7R8YbNLrjho\nH3LUgHD55p78zeVxi9hn3YVYWR3SEiAGAleBvq44JzBDC3NJcYDZyRq8OyONug4zlidHytb9c8VC\nq5ZCgt9Yth4dXzBoBsG2xVPrnNNB+uG37NjqjQTtsgBfUhx5YHHzXEB3mjTIt9Mj/WI3z16EOspj\nJ82PNgcSg9zYRZcGGk0MxcrcA/IeEbG2CNK9krV+G8Ga5dBgKH9Ov0fBycoo7zIX4al4Kyrf3KK1\nZ4ft8X9ci1+jYPocZay4+w+USVJKGL0HxSG3I/yHfQhcYZAyoiXlqMMnwRMj+VpgTvpe5IdWZtcU\nkD8H2kuwuhW99LTtwGU4M93iBGbPFOZTmHNh68i4I02y6vGzdGWUFmnn58mTQsgudoA2RihPNrLI\nvj1HC9xFSH2OjCpF3L2nF2QCfSnukCMdT6PrOMHa65uVV0ar8YA4T1zYLGvjhjwrL3MPZu8pc9Ry\n3Vl1J+hey6jdI86Wd+TTbLL1kgUQ65PgOYXOu9LwnvqzLH8mfDGfp1YPIP4WLTY8f2KKLF8hCH0Q\n3ukeYT05Py/0jwuhaI1VwaJjbQ5GdTFTI6wfZeZ7KYYZkf9HSbJP3uAH9jwnG0mCMAjbX7nVJ9ab\nQVgZ8u7PEZ4TuM1+37fb+rCOjc9p/1Kdv/mbXzyJ7QUh/uyj1wkFALSXBTa0xWJNYxnczafNIVdK\nw3PcKAAavTPg8CMJ39VdbXGSGWMekj65JV8S8jMBLZ01l6LM3MJtpLF5Hr5LLdFkQTsMkKW715kf\njPnpKTvmokhXUjNFkV8LtaOA3dIDTU9XBuR175KgSWNZK6fRLyCx677tFnlgKSGCWRs+euqQnp9h\ncR9JkUgph+PcgpY6wyFnLMd9SWl5bC//RMoLzOZ5FJzWt7E6uN8eBXIDWkuqO29T1tbf/a+fP2dK\nICTRkiqBw9Se8Jm4P3wM8vGV4yOQYCcdoYcCM3NdvebPW2F5TTF0WvxiP6/sFVRaOx5piW9kfNrg\nmWahNR9dp7N4L7y8QbLYkdZupeOrk8hpMPEoKaebnyCTlspQWPH5E6yjU3ShIIH4nEXvU3mys03o\n/5tPXq0SuikKq6BwJcZgUW7NjZBWNLqZuyV6zQVPUiIlAdXqnZGvQmNIkR4VsxhriGaB5Gg3f7mC\nJFT6GvlNucU1r2/z+xnyqACeeX7pRppk8fJ2bKwtq/JCiRQA9PxeOz5eetvVd9hJV05JfjdbYst8\ndjFSryAFgvJamE1rj4G3NGG5d7R+RnkD0hiKPeg+ulVDK0LNLA71SSW3AAWHppUJGb9gkeSN/6/u\nGoNbm+fIApRHVBIhcMbfkFqOHey/bwL9i9BGXFrMDtiQvIxO+E7GrvjCCWg3c71UiE8Y4lbZoKMx\naoVvmgN/BwvZI0HwWuzBglJaU1mYtcQsdmRo9RJCuKsNfVoBbkvwkVpHYYnL39wW/GhZYHYauG12\nJdtNaZlURwzgsWDflpQHo8nHhiimfUySouNCf3XX/MUYwphr80UCjp5Z5PB7b7CsR1gy+K3wWAus\nF3lkolC09nsS5B92L0pt6WtYyVqAsH320euF3I8uQ3JqWRhE9nRzyuXNJ69WpiB0+pDYKTIeLIuC\nGpfJnj19CcTF7/CfoxGM2u9ohFv7vQ1paY/ssPMskg9tF94+mytToBN/KwnWYQLCFMlZ1rKIUApt\nOUpIe8bgyLEqTziHtN7nloULmUZHvlRCvMiQWCVQGqJA39zlt7/+4In5rxLE3qA9JDIPm2V2y5z3\nb2X/eTt48C7WsQljsTHmzLekCgFO9Ry5FAzlc1VLrCzZl9/KkAVhMzG71S2YIDwtQtizqvAoSZ1w\ntRPcr+RMIjFbTC8MtHkKj7n/TYXmBrvMsA6GHFJdtI2E3m9//QFZ22bCTwJ9cJQ1KYFkgYWJBgi+\n+LzP2J8n0i5ot7SDrxj8zOckj2tojF2x9FOsMtQxGmTqSUf5u2ekklLpmRvOKHUr4QVLBExrWfph\nm2xWzliEJoOsv/31B08ZxM0tbrYpBtwIjLhT/5rWHxUSh/zoNmysvUhz9RxF3PLAIofeOH78DL60\nUoDzUVDOacuvND9X4YBHI/zNkFlJwMyCx3jvTF/YSussKz9KNyeSW+TyZHGGBSZMx033fDQ4BuWZ\nYEdhpFtLcxgdy2wZDdqH1eN+daoEZN/a7wIi7HqLdT2hIuA+N1MkVDHxsb3tPntiIAUpCbGMPDaB\n9eXt1hUDq8cC00eEw8LAxTzG+p3zU/3z2thIyremFK6TjthKddcHTvrOmcqSJIH3freSef4owMlC\niq91isqAto9Ew0V/1pPgF7XEe14t8EaUTbrQgqEPf8v2oCeFobxTTlMo6Xklcp1F5qdYGAHKW4UV\n4XPNHRzx60tlnfNfO+f/4Jz/wwxB6k33dCE0Ycz9Z3yOz/hniZZs1WQf37M1eBQCWje/UGLL6sHt\nr3K9nMZbv59JR0VDBC5uwklLZZTWkl12Af0KZVahLWQ8GEJas3GFZH3Zg2pRJMVhUORVl6GD0Q3B\nM1OAkFgz5791zvsg7EUFFZSGHPSc0L+ZNFry0oktWeoSM1if5VBS2h2WbZhhQnvxnuwxz5fK9t+5\nwuL14PvYpBNtWxC4J+EixpWlp7SWH+hLF0NCWXQfNGXGlZ0I55PyaLSMpbfYJmVTEIhRBiyhhBlC\nhAIbhP3rUn0WJfK+BPZ4O8vBNindWBTcCuW5NX/5n72xRVhGyxGBLLAoDNHKUt895A/Rd2m5jgba\nmDBCufyIKx2L1ft8dyCrU0M38rKWDOvVpbjKPOjK/FZeGrsOHLFUFEYWCGzix4G6jxSss+pvi7qX\nClktPGMgEpnXfdDF316CUMxi5htEKK34f4u0oHwMkMluh65ESECOL9mRpTUeVee093zr1V2jgkiX\nW3z+qw8jUsgVlzS+0ljTMZbnrUDXEKmf5uO/L1ZwtG+P3E+ZkZRJN7wXXfPTecBLPju9548CxC0g\nnhtfM+uPZbDenf7mc2WRvRSRfU51MGGnAbK8LN2AI/nZueIjUf+0C1AbU6mPvH21PAXGrTK3BUEY\n6kEY3btc1eJelOq493IZH4dZ9cvMgYJds+jS7jaAr5hXWKaSoC8RVPYaJZ62VFdupS/JMoMfTQT7\nBaYmxcPOned9yH1qulceUAGx2ji2GmNxAZbHA4+tShdC6NDbKpRK/gaBMwfLRpe3WvK2KpLR/s7q\nS2t8REuliZZPR3FmYBaVQdL8FBa3YEg77ifPafMtqtmGm/B9Y4K9+Ft2S+vKNuzE6Pr2+a8+3PA1\nSKgwsC7hmK0m+CsL8KGCuZDxwjolYeNl8vm6pLYJz7RluZJl7RHGmivA65HKdgbeTGUfGV73tK/d\nR5csisBs7Jm6RAbPZaHY89AbV16eP8PnxBT8mmW0dEkQ9+crs4AXf6N3xrO25b4yQvZ8TX3DNqCl\njcImWnSoN52VD/WRW3Pj+MEzPrlxuU489FKb/AYLP8J8I1BYiYw3Wb8SzWvDMlqrC1Fr50yBttCS\nGEDeL64xiQ7dVcXBhY+UyYUYrW6uWOSIuYYcoiCh4KKCwCU3Wm9kDPS3d7TwJI6dB2HnY4IICMeF\nb6vl4xZ+45Z7xFJZrpdq8t0HhADyitH4ICQmuDyCGqQ6RuIF906i8Bbgl20ZR1IS1IrlEDUwMtn9\nJkBe8v2lbL7Lbt8/v7Az4wivU16wijEv9/0l/xn7s8XTXpkwQrsBxvP9+JyuvLwmzFVr6mZCpc7Z\n/mXJypaQgkJrnSl0I0rnXim22Xkva/TMp2OWV/MFRYYQBESwcPlve/58nZy//eQG6/s0P8+XluaK\nF0fc4OoqOTqevr/55NWaaGl9xLLa2EjjWBhPKfhG3IZKPZ/+8uO1KDwGhdIr6JJlHYXPLajjKF/4\nUZP+UBNa7zOhV4V0z08sY+bP3oTbXihc51tV80DZ3p4tewb5A2JYPVcAsV8cbfjdMgfBkg7j8Dal\n/l7DBpPstlhhjLXXI4G7oS21kSW+ltcqWayuJIxauRGfnJVbNLoazUb/f+0pNzvNRhwavVqwjT6T\nLdS+yy1+Z8yP6+9RsMH6ZptVUJjY4Y886HQjB0c2FuV+ZhZ7E/qzw2noD+5qK0bZEQXwccrRiS7g\nlMauWNhvOPY4rlGhFOdTaouB2VC4W+B0b/TcGsiaJSRnC/qZ9RHo3jLZ0m9oQSAynt8oE8tKDCso\nCHa6jFosGf4jFH9iCoJbfXHZq6DQuNKj6/98XLBuHD9ucSkaWIV66dhaFTOrk/9esopceK0WlT9r\nFfwZkeoZ8H60jtlpRn36QwZ9WaScX5jALVLmw0JZ7ZICLUjH/eNL9uwG/jm0EU6RcbeAvI45lM3f\nl45Kgda9hJtycM8+jfgLVlu8DkvoUyagikIBmuk2XGkZLrP0vJ8tTIPjXclrPVXHmZkItdK+1sCc\nlldSZJbyPYFGS3tGypVolX1xbWI0SK9ZGCU/+urhP1pJyZrHnWu46WV/hvT3+uglFSGPchSWK5qV\nuA57XqmdWC65CEnISmO2C3i+ZHaDF0WikuLjHOiLSkJRFJKwicyy025+K2pvntlCo/Wtte6zrPlo\nPbx8+iAIDvcRkzWWoKnGPJjIG0s8eYmhrCRACJR99ltqAxfKG32VUrR4nh1N9YBagBZxB8hxU5/8\ndx6UI7fJQAxC9dnTixf3eomLwSybuOwkzJHOIByJIQ3FuhYFxWBtW3/nFrPmZswUohHhKimMWkzh\nDMUiE9astCTU2sSjheFKId/csmZXQ+fMmZbF4DP+llltMlC37AURNBgY8nifvUCRB+3oeND6k/D/\n5m9+gS9RlOG6ZmEl64990JinIOQlGC29AYbxxGKFt9pNtSMWuli2oqBGUiu9We7EEak86ftg5uee\ndSbdMqbGDlFGlyPJEJjiUXfccMMYVApwIQJJdPAGmEiPCCbQgY00KMh0c8xuobGt/HJIfczi2Eqf\npe95Py+kvWzeLMrgqr1/jfMFZ84SgjAw99mBrazPHmJEUv8qv5XyzITfvH3WcjGJVlhiRLEiEDCJ\nwbLvuZVExsbbU3MrCJY3uzgC69lTCsDBxhikS5bdhBceStBbu1aK+uvKGIrCm48VOaSTKUQBfnMf\nXptwq2WUhAHbya17MdjXyZgj1rRWfoa1bRHoM5RajXY+yRpshO8ivOfwPOTnCAHKEosKZTZ/YxFz\nFDJsF7NmTHFIMF1SIDKkDnXGd7XFZ+Q+OOwv/CcvhPA5NNbO9eO4osUs+uT8c03Q2fOWiHMTI1cg\n9UzL1yIE90QQs/rQkyTBliHCTYlUS4zEGDX+Z3B3EeuSlAYTSIDT8T8NjuV0uFLiZbmvvbE66Q47\nTzfRMAZfGdy/sP7Jx39v5M664jwQAdWQgRc34pgtuvpWGI0WKvIB5h0JlPVY2dnt7E1HKCNE4fLE\nSQzqc4tQYuJsUwh0gEXb962pWDc7chrq3q5wUUQsm0Wmc0VBdrBhUC570SMvn6OaldPAMQBrHYV2\nI5PHXREU0hyek12CbKzJmNaEkV8EOZNRZ/qiPTSbXJSJqcVvvnfSAz0Cs7QMNgo6Y/6FC5AU2Ar5\npSAg9bfjcy6UqED2ejZOA9uZ7cTD9u71E5SQrnDe6xSDeh6RAz7PA2/kuej/su/kXvnSPJXgdKFs\nigFI5exC0WPxxXfzza5npD/qeHbSOaoMTrR4go1HrDlzCP66ukOOMFWel+/1XjIBkfaVU3pye+TP\ndKML9PHqrvzq51SeQ9rSKT7lSG5+KEabIC3Pzcm+NeQTl+GklQmJebQ2cTdlEnNa4gQtsYQjYfUZ\naVYgEVOZ2E32tTFPtsQFVpowVEgI0SXIHbZ1brEtuFWVW24hmi5vwKHwf/E3so8+1r3Fz9lbVDz1\nyWEjTn6U9UYO2WibZ2Rl5RWX4JYF5PRlMwr/cwRRE6QBYbYwphixNzBwyXefqQCO9sd7ffHxYJyB\nCapJ8jPz53JgCiyqcqsrP7+dQ10e4RaEnfiorB3Zm1U4XOd0sU/YD/qMn9jbsjHhEwhjUfG95YBe\nC3MY5jwqlBJsb2XAml/bQY8ITqsgnRFos9IFBT7k+0tjQCdd8wUrTEG2tgJszZiVC7wkNLR+QpP4\nqzLU5/elU/itDXauXFDoN5/HFkSrm/Xtll76QJSM4F5IyEl9PzkZd6kv0sQb51JNGl35f7ZvX2PI\nUr4RP3gW/C0hidJ48H4dqDzkQ0wsn8wMlkkXBDYKN4eUmaAj46AgChHmrF26UqCxBGqdk9Cmd6Rj\nGUonD5rJsFiGuVI8Q2lvJtzyWOPuLdGN4mNTnEth/KS+9FrDI8pMEghVaYy0SUIUZwbmrDSzySYM\nAf+rvhRA1eydXsqGFBb0kqwb3+SSgl+1/dnMQqetsOKNqZKrwJSZese9ZtVlhZNZ9uIlj8LxWLEu\nI8P0QsJiuQ6EMCIMjBcXTWBbFdUsIeuNNcyiryUKq3smssb8L99l4dJp6tBYqouiAQnSL3CvmySM\n6vJZSXiv+/bQDdvDd76JG2jC/3SPPBs3cV4kdMGZABSlgDbEMddcBAWeljfSDDCmNTDXWqclkNci\n9DOCfwzmN6Op1rw2QQ2/BUYSN4qEPNJykggvybNc4NYYeY8dievV8OphAtWzXXu8Pq0d0OY04Ox3\nkQbEBYqWVlIifEylydH6os2PMrakT6ysBPF7mfwoGN+TZ4Z1HkUdo32CvFM25cwZHC7c8nMV8leD\nSi9WckOhkZbAmMWVA2ChTqKwgpCHfe2Z5c0O7Ej9BcUhne2vjIHoJnnPzqxDyvqvCKxmKSxWvEeo\nj7KGRwjzSPuUsg+1Uw77IgtWLXG/lpfnlkr2MeXtny+fyXFQ6QbV7GomqX28wzeyiQVpbllbFOsp\nBrqYUontU1BPJvTiIRfIW7X6+jyJMJsrgV7IHPOXVgcU+D+kKGYL+ajLoCkhLZZwj9TUAdUqVQRN\nVQgCHYDOmZVGgWUw+5JdnOgFYbs5acfblvUVhZGeptMDbbx/GsyWVhhqyoRbegnOC4kfvJnl+5qt\n9l6vbalJ6EspTqBZ0HsJVa+iPKMN2cSozCUxUIXZxM0rQt6KZdb2gutCLJXnlpZacFIu9jkoj3y3\nHG1HsW8ZSri5NVMqsQ00n35/W0kgGpCZch5B3gMhpVK/fR5oagmS1Zh5JCA2y70olTuqjt7UNVBp\ncmVml3e0CXQloasylub36pZTFk6gIfi7ZQukKSXhc7bUWGqLL8DgUptKAT8hoSCX5qcgiOJNvlYm\ntgj8vYJwWv9b3I2jhbiHfp1gCarDVk01D82f5c2Op/oC42qwmSkLsj+e1w+f1eOqe31U+YTy0t12\nhDEERXJ92Xe+iZN1Y8FCHANp3G65i9Ni/e/FbLysJUYw6j9b2t+jVM5IrYin1EZdOEtJ8ylL1pWX\nZdBbtPDcalfaCu0gwbH0jjFuvev9lF9CUVYgpaU2EQUoL6TQ/X7tNxgHEsMwMndTkKykYCYyLzw3\nR7RHldBZgn+0T4/5mxtXvZQfmCD7raAAsFFZlF0SKIGGSSHQE2XpmXRRhqRoxHeo8XqEz6LF98Ri\nZZF3VKBHWZRmukJbWmjULHSLAuqF/JC3abXgrHFuUrjGJAuEtCauMK+YR/Nf4b/oFpQsl68oGTz9\nRn9fs/5wyxkQBMJ3Bq3lFyTC4MdLLchFFNJY3tjx0dLkKWhG8rHjdzxpJviZ2fhZ/fV7PBf6aLLq\nLdbf0r4j04zAnyW1N65sXVUrV/L3r3g9lFaX0pbPf/XhRt6p/vJ78dYW0la2D5+0U1YI2hIbh/VZ\nUDIIXqaMWiLIvQGiHuYRv9M57T6hZYXIQjkxuPlIPvTMMZ9VTxshYXNLIUqs+9a3fLfZNby0XkAJ\neMR0FesMAhsYEYNruGYuX9agbell/rx4GEbu21Ial56gGY6LpjB5wLCkEGbASI4g8LfWQBfvZ6/i\nOzLds55pgt5LrFpGs/gWXzovI1sPbmXlOvV1/xuNYIvuSOX6J1Qw8Zl40UUNofi2FxNm48B+z5Ta\nBKbp8aFHA3+jrsEoH9cUV0+A8ayAX0xtBQoMyoRnQUYv3e5Shdis40Go8pNqDW2XhOOzj14vuLsu\nCn8JscAmE3q5JVcaN0e38UKdQ4wICrBm3YSjw4dYqOie1NrT6kdrY9IqDEdZ5lYIfrarYe8AEwC1\njM2irkwQtL3xuU+9l5fWuBeJprZpBRQHaXMWgRf8cKIIoL1KQFBEE5LCyX6rQPoTGFgM4Jn5Zqzu\nIRh7pkUV4if1DWDGvpaUppUHbIMuMGo6Ry0FrrSyUoN4uRINXfBzoRdoFAcd6F3dlQjsdV/6Sm9W\n1d62oo6FsL7OFYoJsjKlUMtTYh7rXB8Nja3luNKJ6KGpfxPapdWlCV2LQj5KYVcZo9YYwxFTcrBC\nZKJSMIoxW9NAYCDNOrjQDu3UHO97yU+29E206NZ5KKEHSC0nzEaCYUeijLPqOkqxnQ3Xsc5kScRB\nrFljS6pcvCDkl+G8TFtc6jJbOcViJYvudXhPxuhGD4JEBRGfVyGoEguI7bBAUItfLI7Dgb76LDo9\nELz0e4dfP+Wc+Sw6Pck0KeLgaIJTCJBl9701MoWIJBAG3/JrnHh7VXgvuQUV5VR1BZT6RAVgUapQ\nRlI+oz6ppawGU1uZ2GqNS0iu1Ydv5bMWJaKV6UVL1naWxhG/15iUrpFq0BTKFJO8D7x4gEUSXKle\nMYAWPpfcC02BVV8ySPtQHuxaHCMkVmfXPW6tDCo967F6FrpHlWlVBj119xijkTHoaQPOG89rbpx1\nKSiliuCLlpUrDYGGZrE161iw4OLhFsukNN0IaxkXDCr2BsOE8eDKOf4GgdSSAiwqmlHL1WrFj4a9\nI+0t5ZkdR2ihUbfoR1Vei7CDhRR3v2k0vSdBvyJsh89Xd6U30yhKp9QWfotLse+1sdHG1KA0tThC\nL4NdG5eHWvjDoixaFEcNao88G+lnT/4ehWOpV2Q0SXt2M7F0J1ylfDbhOTxWd7pdhVNgSQgr1hSs\nfxk2FyxtaZzEFx8WJifdi1ehp7Uve2Zzr9qZ3lhGcgl6LZQlX49yqLkto8I800dvoZdNVnNDNCGt\nCHY20ILVNTOVdv10SPy9aU1HbVksIeufcjJO2qQTy6aLKDrHuJa3V+srkLnJsh7N2NZ+xbZceZyp\n0r/eeo8Q4JkIocv3aNKstaBYTFrASvDbi7C+5BrobSzvBfD5cc4StL065XXKSNsKx5X2jPiUTZdv\nNNLu5aOCwLahS6HcETzeii5G8/bGCGKqN6DRmmQDrfmurQhCC9AV2hdpp7elauXoibcyIgFFI1h3\nuyWtKKQj/UauRHosR4nu9aDrje+BDo52NXrRV2vKiSpLRSa/ssFK1SB6j0UilpQtsZXoI6SW+mRt\nK/7XkIISc6DlOiezpyy+EooLaAlRSPVp3yuWynQoZ7Svs33v3jKW8iPjoM2fzV9pCLao+RX/WBKS\nWhuqfnwhT0mxSYoBrLfNr68pBAGRENoc6ShKAb9ndPXou0moWn3ZTIEPMquxztHTb00nB6U+tvaz\ns51T6PdVWAj4iHevxc+lqDf/XMrX0FYTNCoohKaBLgikmWZhebAlat7rEintbvJ3m3hJfm67Vx7o\n1QS3xBNdc92Yv8cFaEUgpfx9k9W4JlxrjKoc7IMoQeRiEEeC19ElEAeMQfijfKuaUJktWSU2YqFL\n3vRqmM/e/h9tFUt1aJbaSsMqjKNKoadtmJz37bveVN9NsQ6m3WxSqsDqzFWQEISCJHCNukXRiFC5\nVM6w/Djqm0vtk5gMLd9s4eqF2b1QXxOiM5RGYzun9r117GM6p9OtsBv9+Zpy0IRcGwy2PIe/t1jA\n4iAbb74RmUDy0YXvmLJVAKBVcSHEcrMEZxT1nAml+TMrrRErb23ziDWPz5qYuvtOd2vigakC7aQQ\nhMBZLYBl8mNta/BbqleHxO3Mnlt701oy34gjIo8JTDViiWYIQYsimomWmubQ0IfZrkIpdQ9213Nl\nSUnKX7JgpjorSEC05ArMVwZ8M49JayR+gLlUt6qQj0F7cTdZqf6ZAt9rlZU5ao6st/ajt329Lktv\nW4YHOEuVyHMxhbJiEMgQeW4RBBSwBu28pPaxssJEmqLAvb5tVFCSwuplCLWc4AKUFEqL1f4+DcxL\nQ95plRZhxiCcV3/PGax7/3hVeUnBNy5s0I5Mm8vtzescGasDGGyGJeqpp6Utpbyjroa13zNhNvLR\nLHrlDJV1bbHzRl/VpPVfTpTpL4hopI10vRdfBJG+o9XmEy3Vx8dAvenGMF6cOXkMwMpULb5sK5O2\nQu8ZisHQpqJgaO7KzPYegVhalIimNOc1SGPEkU0wrctxPQNXgLyZknHUfdDoSHVxmN38JpeGfrVa\nsCPhdIs7NVoHF2SLELcaoKuwUtFjzVueQ/+6dwMeMoG9PoUE9UesksoI2lIaq1sqm2C41CZWVjjx\nluUtWZmSS1BTKgKDmoR/JsztmfsajLdYdWt5q8vQ2o4WgeyVldbnbQKCqQDRp2hxLoy17bMVWrxu\ndm/7IRZNu8G1RXn1tE1SGNZ5aaFv+b2RkZstVsmat9I7ig8synMWH2j5pncqpkPe5tGy59t795nT\n/eSMpvC7iXEb98lrULGbyXo29ByQEF7WrPNMpXNUP0tK4oj2j/TVwm+HDGbN77HQicEwzfr10KwN\nhvfeecfW1Y11WCCh9Lu2q423oQTLOS2p7SNzrPzW/V71kmsxynul8pb2tKLRmrt1VJ9a65sy6eLv\nrdteWzqKu+GcjhwszCgmV7ikYs9THpvyen/XrSmYam9escDWGVapFY62MmiPjzy7HyPlZlj/GTQO\n6Vj2u8Hf1qxoNQ346d394emj/T65mmUu0db8zVK7akzQIFDrbMFnn1Wla0ErI7+3tnuU5qjSaOED\n6/OhSbVU2ALfWgcifdai6BWre3XslUdGX96stGqp0b9uQVgtDHFVDrf0tNlSb1ROswV2tpUvtb2D\nRtfSWI9LIKXDBqS5TOshlMIR1JQEQZ/Zh6kM6QpLfn5XaLP7MsuKWyy29H2mITC0s/omnCPGx0Kz\n1WK3tqtIcIo20YTNdjpMH5CCEKvtdYLCCIlYdgUJqNCcIwpFaE3CWji/3gDDq/vsZ/h91rqszzit\nHrja6gYY+3g4UjiazhSiJq3sFAaOqRTw6tkZJu1Nt/RRWVsvCunNXXhQUB38gsBa/e7WCQe69vvv\njAwklDFfOzXK6BYl0mo9j0Z0s5VGya/HZBqYoxrpvS8L1sTBu7rrxQrlY16kW4ru19pylEXomfCR\ncdQUECIECyyf2OfiZZfW9sxSSGfMc2+9TRNqqcjyuXdwsp1mRpSQ9ce6GabSPnOfOmIFnRNuipzP\nmIuWckY+qF65ZP1uzdPaR+u49SrM3vGbDt1LfufMzqn5amvXVoHiENwp10tJdOMae6DR/JZZge7V\nXTPoP5pGkMVMy9RKq6WNEoqw0GkV2HtZ6pnp8SaRC6t20su53Wd2LoPaRZr4u3Or6Hsj7YFxYZ+z\nyLRFARZg6bBykNpaa5Ohva1BtWnbTXvaPirQp7u7De2Oz6ZWODXVls4gEWuoCKZVyZi0vUH4B5jN\nfHy11w+vKYlZddVot3yWBJjn6233DFg/Y2xmji1PzRpzWicLUXYzzWDJ1WeFNkva8OquLxZea49z\nl9IuONIeB294VfrVzIQTTtsVFJno32uCplmTGf6yVlel/acJW8lleKSE7TttsBLtnp1VktBKQv6R\nyyEj5sFYAvye+cclBdLR55ol6pk467Nrw3JXKy9c3bX6gofZ/RmtR1XwB7fhzCQpoXHrMCAQ2nlt\n06SV6sVDKbX2wXO1P5K/zvIVg2m8jhJDFVyWHl9+JF+tfAlOl6zejNjC0alV+LkC0f7fK50+UN77\nYvS86KMiLLbA/Ju7eOeWq3uJakdh5HVJyiOWSb+X4LewM848VmwJsMVHH50bCzNb/V7Juvf4zML4\ndqEG1oehfeazk1WJzKw//1Fg6Jo/YprQli2rFr+b52FCioohs9QabHfu8sa9WmMZIujaGGluhdAm\nqc81VNTixxv95dG3kPI6pkb++e8NiuZQNNPik89CTDNoxTRMYKiTUnCpNWqOQiWtd9M8S0hrSVHA\nb1lgDurqufaoGEMoWdrSbzMYa0R4euuowf7p/DapXyWf/14QvVbvKZWU8mT+qbbEJe2CAwgv5rMg\nAKgvWfFA1wJh0epzJMHrslg/i8C1CMKMOX1U5p1N6+z6zqyL/jC4PmzOj0Ih1euEd7DdnCnwB4K6\nSvUkulFJ0CUxFeKnMvh73B33UicqDJqvHDjUFGD1jHjlWYYeZjPfLHqtSsUyJi1tu5ciG+1jS3r5\n0HN5wsh97fVI+PKZI8dGl0wYa74xCiX9fSVCTmnmZaBNGWRn9WnWuMp8DhTGQQw5EpAq9auHIUf8\n5N7+99J6BGQzI92n4tYlORAuggKYTy4Gz1AAd4Gmvje3vNE61/x+/gwsvSTcRUY5AE0dTesIxr8q\nd9dbxtGqdB4NVs+iUcp3aGMLE1JeQhL8dCWQtXjn1qu7Lt69nAkXhPplN5vLz4ynfH6H30lh0MAd\nCvgi+eJqoMmo1B7BWtQs9xnQ/4z4w6OkXjTUBd1PH1SL3/rynAS51Eh3CWLvNBZON9IktPmyWw7v\nRYsOQbxyHAHrhrbPCmaWrNZV2CHXC8ktzKe5LC30LYHJQn+b+Zq392jZmG3tS+P68qHzLjJzQy1W\nDZfAwveru6a95R7WuIm1rgXTpOCaJMBUMaC/ToN3O62X7/yuu1pAT97j33TzS+m9bS1zMzGYJp7K\nG6mjB6rPgLgjY3DieLdb9BFiXZFNTehzAVmz/FwA5SAajabD82B1N1Y+v8xC8supcihupJF21Enu\niFqnMsZd4z3x2RlMbKFpsfQWJTAwRuagaW+8oafNpXxdgyql4p1pjInZsyUtnQnwHBTE4r13b9yr\n1e/Rc5IffXRpmU1UAC/PN2bZKW1uceWo/OU37hdPLL8owCWlNwo5R2BxC7OWhKAkCFbGHlUcI0LS\nUocVhRlpNfW/ZQ6nDGD6vTWajuWCkJUUBNuuuoJAPhGLyeH4nlBBxPLLG/dqjSkhiY+ycrjEx1HD\nEvpRvspp98lFZSb1XfN/S4zSCptn+4qjTD6zvlEUVGqb1XXQlMHomLXkb2rwLKZAOty64eETxQJz\nYSbCHmkwYV4xqh7KP4Vnb7GuILBLjNSHZ3m9jAkS/TixQvCu6CLAGPRY24Zx11/lPLGe5vk3PptV\n70iZwfGf3idLmla5aXKE5SgCqXm+/P+qCF9aEgv/n37nfv5MlMO+UWYjQk+DfBHGL+H/BooEFcuS\nFNKuONJGnNi3T93Hq9j/hmh7z5hzKN/KcBqKGPXfFX91aamjx5LPNFxnuASj7ZF+rxNrgePlpSW0\niLKGDL9/7j7cwvcVBOnChG7f+JIH4SjsfsmzeborLj5/Cv/fwrOnz92HG2kr0E9KZKe7C3a8g07Z\nKWdlaGnsOPNqTMej8qPMaa13BgQ/0pprdbcqw3sI9midh1QYLZkEa0XLHT9LiiIIehS84EdHy7om\nyL6nZIUh7+Kdu4ACicojWm0U+vWNe7WyTTN6IG8fl/SdQfQF2pHGgI+jtJmnxxL1+q5HM+8IGhhB\nE/dq9z3bJT3rIt4Jn2Rhx+8CVL+66+W37oMnJqgX772LljXA/zUogyicu1C/CP4X3rkI56OAX7xz\n2/92//Kt3312VA4ro8uRwCUF8ECQP3Ovl+QO0P7wtfg5/l1HEJTT7bHws2D2rHadkVoEbHaMQwvq\nWdIhHRc7XGNGLTi1CySF7EFoPnOvl6AIFvh9hbLPSfBz6/0EzxKNQA8F/wJlL8lKv7Rx9QGmJ8uN\n7ffCLjs2NuottjSmIS5bzRC2Wf7sQcEz1Q0JiqCb+Xvdlwl9OkV5YT3zB4G/h4wH4Kjfq1koFCq6\nvRQFjfrtK1js1VPIzKPwySJ7576E51Hgt2DFn/3uHjxHgQ5t5Gvt0pJe+i0LzOH4OHqc9lp4M6lY\nfpCxlCDZcGCMw+6ZFm62sPTQa3F/7tFfk6BPSRYfHPOBgHzmXi8kIIZ5aN7nIIhfRGEPFnnzEe5T\nRbBBHi6oq/9XycdPdacddbBNlkXulxSIywOCadlPstZv3KvVf5TW4YlAxA1AVqtlZbTZkLKXISVl\nYo09HClUJZpno5pZ9I5vkARF8yj5izXdn128c09v3KtnEDgqRDtNXCtHK/wsCBzSWFl6Yt+3oDww\nMh/h+sYUDkUpYNWz/fmWCbQqSCMzKO5Vz1VYpwiXFSnMqm92+4+qc6SNbYNp8bOVvJnFyoWV18U3\nzXAYHtextwSLaTQ+rZszax6F9unZ/exthOj/6H76zu9+/JN/WW5DoX9BDqEeQAr8QAwRfCHSf2Fr\n/jT+0DjRrT64tezMwNIs2DoKX0t0ehFPj/LTxnaWshmOundNoh5hz6PwOkRHixvhOgr1JQpi8Ms3\n79xzUijUmsc1crTkm3duAcgfYTqiCVxyi7+lWEKMB1zZfniMV5AlOxgPMob4bML415iqBok162lh\ncK3cqCBJfv+IkLQI/ih9y1geIfDTBygJ60cuD8hJm0ioT0vXqffnKPQopMTifu4+fOed24LQvY2C\nHQT43bP72Vvv3Ba+v2WCHCPt0fLHepKiCXRR4WAMYSU75bDfkD5zrzcyflzQ93yywDM/vjY/vSig\nRgsFbDakt9JsQTO9bbS2f4Zw9iAOa5rSsCxxGArMSdaYc+ud3wIDu9Ug/8YSLq9FmI4WfoEoeqT3\n7J1751/88Aivo0V/F5TGc1AIT2/cq+ffuF/E5ytAd7oMh/3ax2LBTUNs6+xLXsPll6NKuQQla897\nhKKVYWu0ZwjrKPzH72f59TPqGaoI/W6SjL58QahX8vnl2W5hX75HAcM177Q8Fqz3yvLhBpgoyPHZ\nEoQ+boVFRRKtdozwR0WCEP85tItH37nQU7QijA9utkljL8U8GuauIgim97NZ/V2pnAHOdx1ttbb1\n9WvKa+5a4dHB+men0TaIQni1rOMWAm9a47LLG2XILqKB37mfPwdLiFYb18Q3+I8Rc/77W+/cGnbV\n8Z1y0Yd+FxLSj8txaf08oAVECSkIKOym22G6ZPn38ZBjGp0TX7OEM5nZGnyy1NkbBIsC/Pr1fjeB\nu7rL69evl/jMXd3FXdtiIbPHpHeceudJLFwkVrPWWl6+tLQz+34GXBB8WMNG3zhC5mh9cXNMVABf\nguWNh1ZW79y7/+N+ErfDRsF/GwQ7Cmv079/6ffPM27gDD9ok+fLRX8cluBVWBnZrv/f5UMiu/XZU\nEGhmP3raCAK9BKG+hM+ru+7nE6xWfURR9ii5I9JxxGVIrweYOKzdf0f/OW2SCcKKPvrqc589/v4u\nCO1zENq4webZO/cVWOwIy996596FJbe3wQ3AaD8JCAYFgEt6+249HAvnLmFjzf5s8pi3WAVrwKs1\n6HUv3xUtdRDqKOBvw+cvf/K3P/nig3/zwRMIfrpbAAW/F1Gc2d+WdFzDBEFXffq9DAoKhb3782cQ\npN0Pf3keLTcX5M079wSW/Mnvgbi0Xv7GvVrZvvlnoLelusJnyLul+vd24Dl36p6E/mZBSf9y8o//\nPmJ5a0KtWPzTX2vcFUlmFhkE+xKE+zn8/8Jd3dc//g8//vKn//6n79zVbeG3xV3du1cfv1pL1h3G\n0Lw1uRe9HBWQ7G4UKVcW3gUZFvz0tNUVaWRHWvdgGK6RR/8X18Kf/b4NNlrnr6Il9/tyWoT80cpz\nP55vuolKA4NyT965JS7Xxe8BLUSFgPfUcbhOg20o0FLwrjQPzhUj5r1MebRFm20Rg7AuQYiff/bv\nfvY2fP76T//bn37jru5rd3Xx/9fu6r4Kwv4E1n+6EEuByNlzZUlzK5AsEFg3YSdYttst/meBN76c\nFq1yCrC9ca+emZ8el8+isH8Fwv0cLTgohRiJX+E/307LT7K9BeGNQv9i6eN40BttxECj+JsXNLgS\nxOu1MkcKcymAZK3XWn+E4ADTvwmC/E1Iv2cp/v42pC0k+2Ei41jNCKTNaMtcQReYMDK3sHYeBXsh\nQrQ/2/3ml99QsC9BGKNQRyGLMPytd+6Lf3I/xoBchPEYaY8KI9KJ0D4KO7YRhZ4H4DDCTpbPQMif\nPfY3PGcoJxvj2vvYepigxUfvZVwLymhRALUoe/i8Brj+FQj4t+7qvv3h//jht/Gzu7rf/+hXP/om\nwvlQZuX0sN7egNxM5Xqoj95FvAA3hbVz7oenSPvVXePrlDAQFwXnC1AGaxDiCwTbouWOAh2VQdzT\nzo+3PocltwTr/6/7q6gYpD30PCi3vXGvnqFfe5xBHiO8vjq5MxG+V+MZxqQJHPfDJYY+KrAW6w70\nzYpMUzJROH/ytz/5Igj51yDk/wzpD+H/t2DdI4x/irTcSUtvrfPI+92SuoS1VkaFnPg9j67nAbjc\nt8VAXfr8qft4DRHyaKGjkEf4HoX3nd997ujDp3yw1/0roPf8uftwI4E351bYkEMOzySXA/oddtSR\nJcMgyOIrmmBcigxnsfZMqMTIe0EZmK33DCbuSXEjTPDJn/7sv/4ZwnUU8D+4q/vnH/zdD/4Zhf1H\nv/rRN3/5n/7yq1hea1NPHOOscbCUayqADFnVxJxJAc7CmjJXCCtY9AsI0LN37gLBLwyCrX4/fbaA\n8CKMX0AwcUlt8/t6e4TtX/odakdIjrvhEB08w/PY5liGwnk2BsX/hsnsibzfkyFH2l+iGSxwjLZ/\nwSA7F/Qk8D/8uwTlY4DuCwdLcjPHq9TnGfNoE/ReeCgFhAwR4uwzbCoRGJ/7txsIdAxyxeWviAAi\njMfbXb8EpfDW75tm3kHZ+Dxtpgl5MFiH1jsK8uL3gzL4JlZUWuiaSId9qPvi26HakdZAyqdB/SPa\nKNUTv7urWz781x9uQUhjZP337uq+DdabC/kfmFX/xr1E3jdQGocEzY4KmlqSXSArFaO/hc+Vba8X\nL1kxDGZFwX35nS97RWuKUXg8pPLOO7cyQcXIeozCfwFKIN1K4ymkj+vll3ARBt/yiodtSHCRwHj6\nPG2jza7dEpbURgVkxBLMYugW6F/gryjc6J/HaPvTX/znv4hLZ99Ei56E/X9mAh/99BihJ+vp8f/R\nCvTocU/j1E24ZL1xmU2yYPGzvty0fO4+3N64VyucHd/9c+/R2pPDLGCRo68eEyoDjJbHaHq05lHw\nY7494BfaGBQI39iDLgX+Ti0eRNqveDPuPiZ7HxsYZ0SQWCS+C7aewdhFRn6xyE9uD8RFHz2z6I4G\n5KKgR6te3Dxzzz6OpHMnizL1QmAtFRw8RIJLXF/C8w0EDNfVE7SOW1hBaL8Mwhyt/lexPIvWx400\nGLlH5IDKAdfkcZfcSjb/hN9Sf6QxYWPFBDBXGsKcWQX+TIsz4pta0Ej0q4OQfumu7htYTuMR95ji\nEts3IVq/zRJwi2KdNY7WNJ8BpAg7/b4KzI+HWqg1pAEu/LzCBY/paGpYItu8c2/DOnoMwi3hWTzw\nssL5ctwXH615POoa87xlbZQCdqiseD/IchsENlHoy68nssRTOmMuo8s3Ar3sHW8zluuk8vFk2l/9\nx7+Ku90QvqPAp3V0t2+a+SqkuOmm+a2m1nbzMT5zteI8zQ4R5zfu1QqMztfRcb18C5YMg2Bo6dGy\nf+np8VLcqx4FNtJIu+M8XYuP0fcY4Y8+flx647fM4Pn27B3t3KKTlzpAwjhGxmSNgqtYzyx2cgZz\nzRKQ2nOIvq8guLgj7lv2//fu6r7+8//y51//9b/96yjkzafaHqH/1jStEiK4+ExaUpKCcdTqJT88\nvjTR7zvkOMzHLatfeOfe/T/3LyIkx51ueJgl5o3La3wNPiKBuLkmWm8C5SF+sHnnntga+sr6u+9/\nx9/DOGlKAMa32W/XhOIeAboW2q2WPwpmsMjPbj/M8rW7uq//5L//ye+Z4KMlf+vCchq/nOLoNGsV\nwpKvn0gJoktLSfF3wfLBd3yOEXZcQ9/gGS6hxe9v4UKIKLxpeSwE0i4A62P0HQU7LtE9s/X3C7t3\n7lkQ7B2R7N9xKS65LhlDszEsQsjJkXmNRot/fSZi4FY3CikI+uqu7p3bD7HE9GXwx+Mptlju4XbD\nzRw3krElclt9zgVYe/byf2Pf+fLaCtZdWmKLv+N+eJ7vydNLJ6KVjsKN8H3fkbfvoFtBwOPvuA12\n8fsW1p2G1N/Yp9rYCd9n+bonMV/TK5Fb8nmfCzv+Fqz7UxD6L4Jgx6Orm1RuVAZ6yh0xjxLN4cqK\nZYWlJZJe8qSA1efuw7gJBm+MWZlg8SOkKJAReq/euS8h6h4Fma+rR9gfBRMt9Vu2rRYtMoHsfr8v\nboG25C6KEy+/lC36gZN/ZhBoJH9PO4PARisdN8Fs7urWsE6OVjxtjol+/qz+zMozq+x5DKUINymP\nVvzlOwo7Xy/HbafR7yZHV/0OydGqJz/9n9yPvwTBxqOp77xzL3fU/SydcUfUgMuCF/YZLfnmPXvJ\nYh51R7+92QKelUaWiHqiza0IkgspPnf70lu6mALLzRznFlfnyDHnaW6ngJmDBc8vlcB8ctkFyktC\nlJa2wOpHK453uvPg27tQz+pdeolDtNhREeBdchhsu0BQMMUNmOKhh1no90X4vo+JZMl5EHMS8/TM\nsRQInCEAR5XVLHO04CXL3YN8HiGAWSt32mSlpPnuPBjn0xHOKETvPPXHo1+PG2g2v8Pv7Xfu589w\n//rm80Adrn/jOjoKdFQW0fLjEh+u7UchxttpFx9iC9mrk0N+q5XrgL9T360WnxcCcVOCWcrqQpF2\nT4Sefz4jHQ3ni/0ebawaNYYEFyLqVipayfg8+r2YfxcqspsODrckfx6udVpAQPnVUQjHo3BHpfIu\nbLBBvxuhOwb8FvjtAkgDYxLpe0Ir0hgL0fZqsG4Sk40wMLazEsUX75A/qn1SHdKYSu0/ehxL7Zld\nV5HoERMhXSfFlEV6QQPAd7TeuE0WBS1aUoTtTyzfl2DJCeQHQeXWG5UJP5SCgo/HazfvyQsWZRRj\nHevBIF3BCh/qmx5Jo4IupvTrSOVztlsgEh0JBGGQiTzjUWjMQwVh98NpuXz9nUbg0XKjlY35ox+e\nds6FtfQV1tQ3yB836OBmmy395vM3pSY3gbYzj0vwYJ40htrv+2fzbjerwu6F370WsIfHzrK2s9ra\nMPameezt47zBqFmdXKjpHm++uUYuu2RCQgN1uLst+u14RxwK/QLPFri8Mlr1DWjGrbVvfUQguRuR\n4gbwPMJ0cddb16QJykGCnLOZfmYEeKT+nmj/DPpH9PdMn336gKkJmDNF5GuQlsLkDSzqBQQRfeCF\nbUuVboLZ/B6dTyggfI++ODlAw47KbnDSbY8lhDLg169Z3yUrXoDz0vgXXaxGiH8UxLUIjcU6jViw\no9KIcPYoq9E6Y6oK5YxBAUbUrlLKD4FQId4j1BIk3mkkKwxXLj9Fiw0ReEQGiADQn0eFcfEuHUVF\nVBAPueCyWfZSBn7rTCtzt94E+2jCMcI7Ih8dVM8gnflv3pmYqh0/hGmoRZMte24FeSAOITxGuXdh\nfimPwTbcVLPAhY+R5rN37ilYZVQIm6cBOeKHq8EzGk9QfXKkYbFyIww8yy+ebZXOUk4aOnq0wOTs\neg5vjJgKS0vsuw51WcQbhH1l39H6b54K9oWts+OS2Vagj7/lCAT7Iv1mHY/OyW4Nqs2IAp8Fs4+0\n7jPG/my61rzDDWZLY+0ashaJD0lYlpOgOwodCiGukW/eucs/up/GnXJovTfv0j57RAF74G2nv2Rt\nzVcEsnPmWkTdNE4NEzy6ajI7Ij4zSYrs6ODjPdOMttQzuba9wKa8OoQtWzwUtJ0Ot+S4wWW30i/5\nN1KO0oovVHiG6DsP9pEtrMw/J29c4e+Yy/reEICzjrvV7eLLdD0w30jbVH4GougZM+t4aq7L7GDm\nkcplWiOnNJQuudHA24sfmywt+Mt4JjxGyBcQNLTMKXrO3pCC1p6uv0N7hBdA5tF07Xhq7pZUJ/cM\npm5BBo9i5VqUAheiGUilVTEetSTYkqYPbPivH16xJAm+c1jMn3vv4Kw4D5qRSyyC0riwQzYbyy9t\nYcV76riiuHjup788S8oiKSfez4EkWeTA4Kqf3gr7Z/vfjYw/bZ+7tVxrjOPMcent7/RGJqYwWCzv\nvbY7TvXb4XVGebk9P+6WQ4Hc4LVLfJ86f5f5QhQBbxuPpIc84gsTCwKdLT0WJtRqMWZHxB899aCS\nHldhdJzuOc6nDL7Rb8992fifR993weVLbBdcMlOEjsNvHi1fs3Zw5QOR/LS2ju3yAV2MTLCiHI4Q\n4pp/r1n0e0bAe+p+pIj92WnagDen0pbXl+fSbSzSHXS4RIbXTRH4Hv1rsumF0QW//8n7tHedWnuh\nfq6UMojeMHaZ+9NQfmakfIa/aS3XYF21N8C+1/e99aYW1Dc8SSlZ4Kkllfx6JlTkneuOvZxx/x0t\nOI0dUAi+MYG9ELr0d3ojLfQz66sk8CX3pDKGI9HpVoGYHQzsgcGzIt6zrfgRCu/I9o93ekJACTqz\nZPTC93RSLP7G/HYihFLADjbJKFC8vLElt+akDJmIl4Mvus8t9bFxHFuZXROy2hJSD0PORgNS2Zo7\nMZEn1b68Ty7A1M6rzzQBYt+ZMOCOthRZ1iLXSUmAj83851xRSNA7/K8IJt8wU97nrAjyPYI7WdB0\nEiNZrfVRiuCIts5sU8+4zxyPwwe1tXNcKEjZuN+8Vk4KpuF3/kyLqtfya+2QJkuy/JMmd5bQzvTx\npWfWmII1gDi7r/e00DPiLaVyd+lUtYOChVWFUviMiiH8X9jvmUXXFEhqDxV4+R3n+MwQjCsmo88+\ne+yPWk66t089Qt+ikGb3z6qIrPUeNqAlDVWE9/x5ycLKeZfsN6Sj1On3KD36+3TNnpc1+NXSttha\nYO1sOPno6VECaRKde4xhzyrD8Q3rCdbVBFIuw4Nl+dnvkCez7OE5seqlwNwoA1X89UnWeghR3EsJ\nvC/K531rfz3TBEEd1nzOXT51H+cBL0kBlAJt2ueXNi4keMcnToLvweqrfdWQAKdvGONWK98S8DnK\nNy8pr1nR/nsENO9Jv4YGtXRYB8WOapZa/120sPylB5mwVKL7WdKeB7/+M/d6SVdWW+h1THwpKlsS\nhpaJrwjXrHvZT7FoZyqDR0q9fTm2ogGBMEe4LUIcl90a663FEsh3Qzt6tbE29rMt8RHlR9Ecln80\ngT0rljIjHdrRIRpy8CzbgprBZMmy4xZXrLOEAmq/19oxaexmR4dnzdMBMYVh5Sd9tiiaey+rHT22\n3k+Iuo/63qMC1pRfanvJl7e0SVstaJ1ohc4MK87LPpKlsfQrjtER/u4jjsURY3haReZ8GmRmedJ/\nDrWZ8JPfrMpAWpPnzzR6xmW3mdH8mRbLYiFrZR9ZeI5QlI/c35hOHdBhaDnm88t7zzugtsl3H2SA\nHl94Fi0sd0JU2hwEvLdAnVF/qxKxtul+jVSWmUaVQaZ1JUjc4FNX8wltblFyR4z7UWVLczOrf0fU\ncYTPe+SczKKHZQ7vcKkRdwuSKEJb8Y1PPfN8Jho4ffzfs3a+D22o1f/Qg9M1eIK1Lkb2vc1qi78Z\n4HoLqimVsfq/92a4R+cTC9o6Cj7fM50+KVPTiM+O5UsBQAr9p75t9FGDV62uyAz4P6ut3yc5ncow\n73Oqxg4alc6oFXmUuTqi3T1jM2XF5w5j2NLukbafzjwPIfyjSGB8XLqvYj5yLO8xXw/BD38E6e4N\nsCaVCY8U2oIP3rU6cGcF09qXGXN0Rrt6FNQfm4J5rzt9Flwj5ScJ60lr1FPciRGhKdE4k+/uiZQe\nIZ1W0T02GxjLHLds1rAZRxOIRw3YfZfTqAGxKL7WOkfnf3pH78WQjyIIZwV7ZqCUI4NHlnbPHKtH\nmf97trtEq1bwvbwYv1drjpbJ8lr27b+nyaooRvpfquNI3nxf5qylnd+pjnvv20+9zaL5Hk36I9A9\nqn2zlfmj99/a5rs36oxOnkFvNPD1x5x64Pwfe3CttU9TK36EAZ0R1Dgymq/FNXrq5J/PGv+jIfsR\n9M6MSbTM+xnz5f130KKfMWkpveeQfjSib4HNU5c27zHHD9SOEZqnDdQRnTh78Hst2T3GdEadZ/Tl\naAR2tqI5mg6naaV7WqM6OrHMZoJSpLbE1I8wHgeOs7pCMTr+nMZ3aTzftz7cvQGPMEmPAMtm98lY\npnnPfW88wZKvF9U94nw8WjJP1PswmKY25jfb6O9ca6xrxlLPaH/PmLP3yb0bredI6P99MO7kCb8j\n4x6+6WOU0Y5cgbjDeJ/Wxlnxjau72t5HUEnv1YCerR2PZIyO+MKUyPjR5d8HgR/ty0gfj6BpofH/\nAaMcgJdxvf1IAAAAAElFTkSuQmCC\n", "text/plain": [ "\n", "array([[ 16777215, 16777215, 16777215, ..., 16777215, 16777215,\n", " 16777215],\n", " [ 16777215, 16777215, 16777215, ..., 16777215, 16777215,\n", " 16777215],\n", " [ 16777215, 16777215, 16777215, ..., 16777215, 16777215,\n", " 16777215],\n", " ..., \n", " [ 16777215, 16777215, 16777215, ..., 16777215, 16777215,\n", " 16777215],\n", " [671131135, 16777215, 16777215, ..., 16777215, 16777215,\n", " 16777215],\n", " [ 16777215, 16777215, 16777215, ..., 16777215, 16777215,\n", " 16777215]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "color_key = dict(d1='blue', d2='green', d3='red', d4='orange', d5='purple')\n", "aggc = canvas.points(df, 'x', 'y', ds.count_cat('cat'))\n", "tf.colorize(aggc, color_key)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here the color of each pixel is computed as a weighted average of the colors for those datapoints falling into this pixel." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you have trouble seeing the dots, you can increase their size by \"spreading\" them in the final image:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:237: DeprecationWarning: `colorize` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AAEAAElEQVR4nMz9e3Qc13kniv72rme/\n30ADaABsAiDBt0RSL9J0KMVS4pCx7jiJM6ISr5nEc3J9NHOcdcZOZt25GbYya+6ZxJlZ41nXx2fi\nzGSOE0rXx8mckU3Fc0RZYiKTkmyKEkWKBEGAAIEG0AAa3Y1+13PfP6qqUWg2QFBUMufTolBdtWvv\nXVX729/7+wg7g1EAIM9jDBsAO4PRcy89nQaAi68encogM9bhPABMAYBzvb0PAGnXqSn3uBtcTzvt\n3LDZXDuMiXv142rXse97Xd/iHLY0XgaZUddxe/vWc5DnMeacP/fS0+mLrx5tvfv77X8rsNF9H7e/\nvwt40Ll9nPvvdc/99Nne9kGeh/84E7gHpDPIbNrPxJWh1OJst/3r4pgLyQ8DyNkX7kLMrYB7kdvw\n5wBkAE0AvwcgNXl1e1KpS7kMfnXTZ7X7Og0gAIYKCF5sH8NBuIuvPnHaH64EJI+CnQdvfRPAlINk\nF84eSRcWYqkMDtmImlk3TgaZ0c8891oaAOrlC7j46tGpIycupNmpjtNK23PodD6VQSZ94exrOHry\n4sd6f858XMf3XAtHTlyw5nSq48byLdfxlz/uGA8IrTXZNrcH3ug+Kfjb7p+HvXCOnLAW2EYNRw/f\neAEAdhy8Wcn8SzznvhbtWUkN7ZtA98AiFme6U90Di9aEX824WrmPtwRpACn7nwNZ2BtAJ2Rr3cfw\nxYU73QEAiPfmg4JgCCDwwdpINhrLgU/iJafsObaQvF71Ju35d4TCQiwFAI2aDGy8ybnfRac2Sbuv\nzfrYFOwFlwbwAoBKBpmSG0E7QLq4FE4pdTl54ewRZPDMf3fK7kKadk7uLo5yi3Dadfzix53X/YD9\nDMfsn1k84LrksfbA6Y0aWYiUnbV/ht1I9vSpc1MAUoeevJwF8MLcRK8PAHKzyZcATDm7PSwK90Pr\nIX7dRXUvusfOAXirbXhncbeQhJ3BZ13XpwALoQBg+97Jwz3bFgOUMp+qiDVdE0RC7IcVjBwAqE0x\n2ah7LEr0KsZw749eAUGJPI+xDDKjE1f+7JgvVE32bFvMsTM4DQYEIpXDjOFm+7zrZR8unz+0DsE3\nY//7hueyv/rT741d7n3o9M3LIwEAmBnb9s2Lrx6d+sxzr2WPnrzYavvi85l178AZ8/L5Q9nPnf/B\nWAaZ0Qysb+Ug30ZI2IYcna5vNOepvuE5Z3P52PBJsqnuudl9AWuEA9hkw22bk/POSgDC92i7pflu\nws638MR1Kes+9yAbaIt1f/rUualnXj239Y6Ya5cjeMM57Buar4HA1zc8j8JCLB3tWXFeboqdceTJ\ntYexESc1fGAyCyDrkmM/C+vD7AWQt8d8FkAFQAAE3wSzqA47g9L1d4uXAUBXeQCoqIoIAPjJ//Xo\nfxx5eDwuymok3lNIAri065Gxtc3k1Xs+aWsHZ2fw2ffe/H5KbYoA/DlgMWs/f2nfkWuvk+fxZXsT\nPAabukZ7VnDkxIUsgOwzr577YacBMsiMZc5nXGcuolHzgBP0e07O2UifPnVu6sXnM63n2mjxbLIg\nnbYpWJttBUCpbZ4dKeXrLz/jHE+1tQOAb3Sa9ydF9beCYC5kd2DqY4xf2myMTwAeGJk3A36ryiXy\nPL4MdJSBgbWdxw8C5pyzqT0mrgylFqa7k7evDaWjPSupIycuAEBHUaGt/6zr7xSAp9ZPCj7ncG4y\nlQWA/UevnALQ1z+STQBY/uidXY9PfjhUAYBjz15wEGEdAjjvoBMFdEEaQMrrryeZSRw9QgpAj/2v\n6pp7i2IcevJysvVsp9YUn+2ihzPem58//q3LsYfCSsN8guOMqWZDRnEpnAIshHJR9PSRExcQ7VlJ\nFRZiWfecXUiewt3U615iStbu57m1d5Lp9M3R9p7aFXRbZpM3oWibwiab2Ybcxz2ubzTOVnULafv8\nfSnaNrg+BrjXZWajdXnP/jPIjPGbNe4ELorrPvdDmwL/yD6Vw5rWHA4FLCzEUr5wJVlcCmPowCSc\nhWpdB3D3R15HKUBa5yv2uZr9O/D0qXPWEUMO1gInAAgYVQVRr3kDNREAZm/1fl1tSs1yISh//4//\n3tcyNnU6fSaDcy+1xAywU8D1d3cdKy5HsgBgI1hy1yOt9/yW/XxnYFFvB/nbWcSk/W8dOKKGBRdb\nnSpNMawoYsAXrkztefzGH144ewQ3frqntUBP4y6xqdN7cyALF/WyP36qb3gmqasCXtv3tNuK8iAy\nvXP8INRoHRK62Xd7oT8QpdvK/Vt8lo4bZQeuYavQ4o4+LhJvcO0Y1jb5Mf6//cIzLwOAJKulJ//L\n+c2ULsgg861TXztjKQjYrasg+A6wjgrH7b85m2oBAOYmUw71Tn/mudeyHl8z1ZueS4aiqxg+MAnY\ncrl9T0v+tjeV1oOwM3jxwtkj6e7+xRSAY8MHJn1gqAHwtTYBgpKuUYFyJmUm9QqyFjdNEizkosL7\n5x96SvI2ejjeWDB0Kg7tm0iJ3sapA5+6ki4tB9XRwzfGl+a6XnHGm5tMZR2uwy0bw0JkN0K7YerC\n2SOtH0dPXsy5rrU05hfOWicsbbyldT968iL+5r/We3hOZ7Wyv3bh7BG8/vIzzn0tRDz30tPpvqFs\nqrgcaZ8XgDV2HgAccYydweif/+uJY9VVX1KSNMgeNedwCu0UyM1tvPj8Wr9u6r0RG++0cy/6TRbj\nJ8Gqtm8Qf5fa/Hb4pJW6nxjcP0UnpmQdIOA67TxgHhZlc7OL6adPncPTp87hxeczU6+//Ax+4R/+\n4AVB1HzhRBEAXnLa2RvDOnbzzc8f/9ZaV+db8t6Nn+xG7/b5miCpOw2deho1TyY33YPiUvR2T3qe\nNaqe92Rv0/vpZ/+mKIg6rv90V1dpOQwQBk4w0Kh5156Jggdh6N+R3ds/0hr6m8WlcGrXIx+l4n3L\nSQCXsIbYxwAU7ee9BCB7/d1dqbnJVPrIyR+/sH3vJADgj//5l7/qmLkcCt7dv5gaPjCJetnXEl2O\nnLiQjiSKKQDwhepnCguxbLtY075onU2oE6K7KD0yr1oL/8JZy3znD9VyodgqZF8z6yD6kRMX0q9h\nzU8CHZD0HuzjXSxrJyTrtDlshRW2oVN/D0wB7wccjsj+2Umh1+Ji78WFuN6Tc2pDs/THnHPLQgXc\nA9Hv8YIc9hlYv6u3OndTdQA4fSYDAJi9lYKmCg7b7bywF8BQAZAEwR/CUt6NXnxVCatNqeT0l8Ez\n+MxzrwEuasoYBTOorCoiJI/SozYFUin6R3hBC5kmFQA0CGHgBT2wPJf4MNZTeGn7nqlTxz534dS1\nt/ek4z0rxNB5DQwCCPZaneKLj/38u/AFq4/zgu4Bww0QvGTP95Y9dItaE8qSotw8VS4E07WyD5JH\nvXbkxIX0i89npj7z3GvpuYm+1N4nrrXehaP8zKxphAEAtvVi6ulT575yZ2wgTKkZWJrreuX0k+tY\nsbvgwtkj6Qws6n/h7GvOhpJ1zKaRRDElP3YdK/PR5Nt/9alL9nfa0OLyp7//D08DQAaD9zKvtW9I\n94NU95LjNxQn/jYo9xb7WacJ/6TG3Ijtv9/n3Kg//uf/6rXnOt2wwYDfWJzt/v4mzhhTjqLJ0lAf\nTF1/t4HiciTr3PP++YdOp/fe3mlovBLrKbyFu19YDcCUrVF/KhCpHOa4kg8A2BnsJc9njmVetljH\ny+cPvfU//3//6HQpHw5IcjNRL/sgyirivSsaAHgDDX32Vt/q8P6puV2PjL0D4BqsD5UC4AUg733i\noykAb8CizL8LoM9GePCCniQEAgM4e26OvP3LAJpgWAbBNyeuDKUqJV9cNzgvAMR78wjHy+gfyeLi\nq0cRSRRTtVVvslH3tLPxYxlkxtgppAE8a5+fhaWpDg+OzgAMFaUhYWG6Owkg2bNt8dLTp87Zzjjn\nkHne+T4tFj/1+svPZD/z3GvZ4QOTLQozN5nKeoM1lJYj7m9qsfWnLHHAOW9tqIOlDb7xunvt400V\nS23P3LrfXox/ZJ+qAOi0Flvcwlbg75rKt/flgjQ+Hvt+T4ezjwP8/T6wW/PrVlZ96uWLDoK3NL5e\nfz1Zr3pzr7/8zJRzHQBmbg7crJYClSMn3nabXiogKAGWvZr9OSoAsO+Ja5dAMGK38QCODJmBPc6L\ngUg1DQBd/XnApvSzNwe+lOhbQSBSbedapgBAaQignCmbBvVKHs1SHjJUXe0CfUPzXlhcj1mvypif\n7MvZ9vMmgAaIxdWoTTHVM5jL18t+3Lw8ei2SKCTCx66+Ys9lCgBSw3O53Y/dcFPklEsWnoK10AFY\nm+HwgYknACAQqU5JnmaS4/W4ofP5e30ftDnNeIM1AEg3a3KqWZOh1GW3YnAMcHQhjmn13BaGsKDT\n2mk71369E4FwnrvUof+Pq+DacH4PAhmXJnwT+EQo/YNApoM14l6s+0a7dhoAJK+SxBadDwBrQb35\n+XBJlJV15+zD1m5uI4CjA2ghABhkl329fdwpwHJeyS9Ek/0777yjNKR8z7bFHDpovZdmu85K3mZc\nqcv5/h1zSQBpW6H3OoB+AK/AksVvAije+Onua82anN0eqt7VV6PuQaPuyWVv9f/J5NXht57/nT87\nBiA7cWUoBWAdRwMgPXFlKJUamfmSofPP+gINgOCbsE10Tp+5ma4pAAhEqi+NXdqdBQBvsIaebYsb\n2sTdSHH5/KEpy2nGovQup50NWc+2/r7snHMtnHa5uqMiznXsdmzaUCFnQ/hecu1G49wDtmzy+r8j\ndJqze1PNbKw3WaekvAvRNwqIcHd02n55pXw4Vy/77rrPHmTKMUUdevIyTsPRpq8p1FxyJTLrgzHS\nAL45e6v3607b/pH5rzma9YXp7mRt1Q+bugJr8noABD5CmJfjjUFB0hw+1a0gTAPA0lx3rrAQuwQA\n/TvmAIYvAtgJgm0Ark5cGUKke6UoeZRBf6iB3vT8P6bUDK3kol2MkfrqSrBQyMX/AED66MmLWcCi\not0Di2nbXJhSmyKOnLiQdjga+z2lK6verylNqYeZxARpveM/eP/8Q1/0BmuBWtm3U5SVrGFwNQBo\nmQ5d/vOdoB3ZXQjquChngfX+C502cBvGrKClC+6gpS2D3e9h1++NtOObupRuhpwbUWzX+WOu5p0s\nAw6SPJD57n7v3SqnsYXnczbadnb/LiUm/yAP6CiOnN+bRH65nTdaVMD2qEoDwI+fO5K23WHvArUp\nNZ0HApDSVR6Ls91ZzHZne7YtOvI8ADwEgjlVkWQB5HEC6GD4pZnxvoamiEa5EHrj4eMfvAHg1KEn\nL3vB0A2Ca2DwgaAGi3rPAvi+2hRT9bIvrzalvD/UQM+23E5do/Hqqo9UV/2ksBhVp65tT4Viq7hw\n9kj26MmLjrY7feHskezElaFUbqY7aXvGAa+uOckodQ90VRAoZQBDn72BpQydJkVJ2RWMrYYi3cVI\no+qZBvCW2wsxg0xHxNiEjZ4CMPVr/+zP7zK5PQj8g9/7T605/ed/+RsvboAsOWwObm+8ls33Qefm\ngi1zm38b0M5CuzaXDZ18HkRUccFd3Npd0WsXzr6Wdivb7idE80HCObfvnXyh5VNnsbJTlVKwKckK\neFHvB7OVNgTfXJrrRr3sw/Z9k4ftcw7cAvBhz7ZcHsBvgUEDQDRV5FRF4jRVcMSBGtxg3e+3f4UB\nix0PxVefooQBDF5Y+gEOACGEcZJH6dt35MMvGQatJ1L5mm0xCIDgleRgLunx1+Ojh8fQm87lgJZX\nXBoAwomSWlv11QRRo+hqafDfqhSDzwYiFR0ANFUwmnVPw56fNW/mEmOwqWjVERxRIoNf/yzu1ri3\nBw8BWDPV2RS9tUAHR2dKAHBnbCC8wXBuqnIXwrVxH3f5I3xC8nVrA2nb/D5ucMv/3WCq7T26YZ3I\nchfr/vrLzzhOGmBn7tqRRgHA5Zu+YTy5y6zmnHOofxo2S3X6TCZ77qWn11hJAtSrsm9lPna42ZC/\nEYiUkZtOqg//zJWGrpOHlIYULyxFd3Slcuqh45ev5heiyYXp7sdCsTK8gUYFaLnE/rLaFBKMEVMQ\nNU5tSA1CmeAL1R4CkLAp+VS96omu5kN7JW9TjnaXvjt7q+d4cSlWlTzKC4eevPwKLM183e7ze3du\npOP5hcjjAAZ3PHzLU1wK90ke7RahLOFyx82qTTGpNsW8L1iNw73Ibd/80YPjV0HwFoBwveIJvP/X\nDwNAWteEb/YNz78wf7vnUaUuEV3lPBfOHkkfPXmxYr+fktsZxg7I2RBc4lAatijhKE9dsKFZy/1t\nj5y4kF6c6U5NXh3eKpVsme8+Kdm4Hfk36vc+qOPH8Xn/JGDD97KV+bS32eAe9+a5HtGdj9k9sLhZ\nyGr6xk92oyc9/4Iv0AD7c7xgU+AU1pReOaxfQBuGVzr25NPbLIrITOrlBCNOFdNLCNOYSRK6xvGE\nUMJMSnRVgMkIahVPQFMEr6qIeP+vH/7DoycufvFvXjm6LdqT39W7bRH5+XiZmUQRZBWeQE3z+Oue\nQNjWwBPEAJhv/sVxkpvuvTa0/1bi+C/9TV5TJfiCtaMAMQFsg0X5dwHgwHByaP/kWZD0jmrJ79FU\nQQhEK8Tra4z4Qo05WHxBFZZu4jCAkwAAhqHrP9n1Sr3i+Z303qk0GKnGegpvOQEw7//1w2nAinJ7\n+tS5qXMvPf3Ni68edd5n1vYZeBFw/BLOrVFuV0CO46MAoGVya4Nso+5J1cs+DO2bSE1eHXZfWxf9\nZsO6xWPPDZNXh51NwLatzwAbI9SmijAXK9tJQeiIBoEMMl/F3a7FW5Ft71IWuqCjV2Db/RtZE+5H\nYdgRKTMbxBD8bW08btZ9jJ0C3nvzYAqAE3jS2pUt26rFml8+fyj75BfecFheh5K5tdFZl1wZAMEr\nWLNBdwo7HYVly07mpnviICzfqMqEMYCB0Oqqv0aIyZXyEegqD8PgmpSyR3VN4ChltF72AQSBWjlA\nfCGLK1fqUpBQRnWNJ5xgaobOa95Asw4osmFAAiN9tbKP8wVrn64UgnUwPLWyECPeQB0EoGAQQXAZ\nQAiA86z/RNeEoNKQyfjlnWCAFO0qwB+u1gd3OlG8+CMQvAuLE6gBqCxMJ5+llKWVuhyWPEpLs+44\nAAEtt9X07sc++p1Y7zJWFmK4ePbYH9rKzpbrrA2t364AmXsGhbh0KlOuENfWgsys15LfBe0Rjhtl\nuMmsJZsIw6Vsc53H6TOZb5x76en04syEwyW0U9fSZnPZIuLdRbFdz3pPUWer8AmJGZ36XCff3+e4\n6zZP3rVIpgAcO/TkZcyO9yWbNTnrLIbPPPda+sfPIX30ZGbqxecz7oXkg8XeprBe8TLlkpvdcBIM\nywAq5Ncsc5orrHMvgLw3WM1fOvdoLhAr/4UgqHkG+rOLd7oZ5Zh31yNjN2G7ni7OdP2GKKsAA54+\ndS4FwF9b9Qt50qUvZ7tu9Wyb7wtFy6lEX17M3uoXNEXUF6Z6VgMPT5w3dH4X5UzuZ/7eXxPTpHWO\nMoAgPTAyOxXtKfQRwiiAGCyZf6f7AXYeHAcA3Ly8wywth1CveINKQ0oPjs5OAUi4nrMbgAbLEQeE\nmvyNS6PVcHw1H+spfJ+dwSh5HmOnz2S+AgBgCANW7AAAhBOlGmCZ1CauDDmi0l0eiBlkRi+cfS3t\neMK1v3D7GzpxBsDdXnDrNoahfRNW0ox/Zs0P6KxvccYF0Iqus6HTQne0wmFsHYHD9t8AgLQzLwAt\nruK/F3xM6t5+TzuH8kk/03rz2p/+/j88nehbCpz8zVe/ag+ISjG42YTH2Bl8CwwAg3d+OvlOaSmy\nzlZ8/i+Pf+XQU5eeoJzB+4KNCQDP2oq2PgDLbV2mczOJ/xcv6IKu8nVeMNRte6awmg+JtbLvz2K9\nhTN7Hr+Bhenu5EouHOcFPRKKVdE9sOQFoANgAPaCYfiX/8lfqLDSPtUmP0qnot0lQRB1svPQeB0M\n8yC4AQDj7++c7+7PhUVZ5b3BeoSAcUpDYLWqh9dnuz5kDNHk4EK3oXO/LMk6QHAF1gYzAsAAQHce\nHF+98tY+WikG86ZJhGZNIpQzZFHWmwAAgmuwfABe9Pibp3lB/4DjDf+hpy57APwOGHLsDF4EEK6u\n+gKUmpi/3ZvqHZoj3kAduipg1yMfpSKJIiRPM2nH4gOWY9F30AaLs93Z4QOTU206E5x76UKL2rri\nxtd9T/ficLIDucHJDWjL6MDWtdmlDZRF4Qtnj6SLS+FU98BidvLqcCeKtc668Gv/7M/XWXcelCJv\nhqB/R3K7+1t8IrqCzUSWTg4zU65os82gAoKErvKQvEqyXvat+/jzUz3XZG/T5wvOvgS0EkboNqUP\nOBQNADRV0JhBw6oqCh5vk6eErUS6C8LAzkqcF/X47Hhf/oO/Pph76Gcuwx+uRAAMAngbligRBvCr\nACQwlEBAQOAb2jM1BwLYG0wWBB8CABj27338o9BSNsHUplSaHe/X+obnegCwWHcBoXjFWyt7mwA1\nTINv1ir8aKPmiYFBi/cW7ZgzFD+8sHeouBR7ghe0uOxp1gpLkSt2cotbAH4WzOIEFu50/1FXaumV\n/h0zX5I8GsAw6Gw4DhDC/CAMalPEhe8f+4OLrx5NAcD2PZPJucnUJQDZ/h1zvbAceQKAO4Yeo47y\n1PqbWfeRXNS25aXnhvVsf2aqU5uNoD3hhAOZzr7xaVgci7PpOOcdytOR3d8I7sHKbiabPwh01NZv\nRcbfBDrqCjrJ9+1wP5sDX1iMorAYrZz8zVeduPLRp0+dm3r61Lm1xfSyPeDLd91fr5X9lt/pyOxh\nuMwZ9bKvQjnDB+BrAPpBYIAhPzve967kbcbLK+Fj7MwkAExVisGyKKlhSs1wV/8yuvqXRTCoAB5f\nno+FmEl/QngDS3PduUoxmIt0lffa46d1jYByLACAoxSyjdi7APiqJS/PAJNSFvEFGpYG3bKXz3Wl\nlnsAaJWSPzh5dYgBYJFEEaF45exqPnQy3FXkCDW3w6QUYLyuC5o95i0AaNY8QxyvV7yBmqdZl1ca\nFR8aFV8x3lPIwYpRf8puHwAAZlJHe98EQGyT2TEA3xl7bzQVjpeSkldJRntWWi9X9KiwXVgdqDha\n+gyeGc0gM/Yznz//lVI+FOYF/ZDHVx8fGxlxklOmAGT3PnHNiWfvSDVOu+Lbgfsyi96TCrVR3a0i\nXqkjEj+/1l8GuMtmn7nbbNZxHm3KtU1l4LZ71yH5/VLgTrqCDpzOJwV3zY//p9/8Ny/Ceoj0hVNP\nnL55OR8A4CyWVuM3P3/8W6FYKWz9+uBFEHwFDNh1eGy3zUoehqVsO3X88+cteZ3gJTB8BRaCKbCC\nSjB1fdvx3FTf/rde+fRTv3HzT58Dxg6zM3gZDM+AgQJYBsEcgKih8zANGjx4/P2TvekF2DL+u7B0\nAo8D1ABMw9DpPBUNAQSLAEJgWFqa69oFgMV78hIIdsBSshWbTTHMcYZP1zjfwMhMY3j/7VlY8rUG\nhsd60wu37Tkkxj8Y7hZElZmM1sCWd4JYCOwL1qCpAk85U0705QND+ycHAZQvvvr4lwq52PLOQ+Pb\nRh669Va5EAyMvzeKWM8KkX2Kw9I78weAqUNPXm45DgEtP3Uszlj+AoCl5XZr6QGLGl98VQmLshIw\nDSfupgXZC2ePYG6iD3hACrfeF/7ecC/K6kK2rfThhq0+xyfJCt9TyXkffTnHH2tu9+pjs37Xse68\noAdsKrwO2Bm8df3dxSHJq0i1svdtWJQobFOlnQACxeVgolnznI0kSpB9SgCWou4YCPwAKADUKh68\n/VdHcoSyJi+o25KDC2n2ezhrm+ccZxafqggBtSkMSt4mSw4s5gGMgmAVgOxS8iUByEvZrmw4Xuxb\nXQkJ8Z6VmKZxsiDqdVh6crr2EAjYOWe4D986cH5g551PAUCkq8SBIQkCEYBZKfkr9arnsORRPKKs\n8Byn31ldCWI1H1ke2HHnIUFgPgDY8/h1A2t++D+GJcN/rl7xhSWvMvz9b3/uta+W/s2XM3jesVS8\ndfpMxnHJPAY7Scf1d3fhe//+V9/6zHOtFM1px0nl3EtPr/sO5//y+FdK+VAYAI6cuPAd55vFe1bQ\nqMkk0lV0mqYAIGLF+2dv/HSP2ysLwHpz3IvPZz7nHGdcOd7aqB/s5BjrbOztsBFl3cLC/PIaxf7Y\n8vcD2+03G/s+FG9uFvxe4sQn6muwEfDtMeONqrfG2chuB5BMwY4aa4dmTfLzoiYA2FsuBCP5+UQX\nL+hE9inXYGnjAWARDNdAMJufT4Qf+/l3nzr/F092S15e0xRZsNukABwFAdU1QpcXoqauCoj3rDQE\nsfFBdVU+TAjxc7whyV61CQtJjgPojXXnDRPkztS17Y1GzbPKC1rTG2jc1BTh1rbRO/8z5RhME0HG\nQBgDKIUUiFSOTt/YJmmKuLjn8Y8gedRu0wRnmtSra/z2m+/tnIt2F4Yj3Su6aXB9tVX/rVrZBwKq\ng7lIJ4GmaRT5ucQtUVbisWRJq5YCMA1q9G2fO8z+Kb51Z+w/hf/zv/yNFx1Hl1tXtp/yB62sFz3p\nxXckj7r35Je+7/Q4BVjRawAwMDod2Hnw1isAkuwUUj95rdYvykpFbUql4790fgpA+tFnfuqYLt+d\nvLodt68OXcrPJ3D05MWpuclU2q1rSe+d/HPX5/u1ey0O1yI9BiCbvdV/eC17zsXNFmZLm7wFlti9\nyDuy3uiQ6yBju9xugcp1vO6WgTOdbdr3xapvkWKv8yv4BLmOu8ZtP88Dbg+on37VNaF17OTux25M\nwkJ4R/77zvJc/HC8d+WkIKmDmiKSatFP3v7hE1O7H7nxyvCBySQAVFc9T4mitoMxaoKhUqt4cfTZ\nv5F7BnO8L9iYA3AUwA7TID4Q1gCjpFHxAQDRNd4Ew15NkfzL8/ESoebtkf1TfwJrYTfB4GUgJgUb\nBDCmNUUYOtfHCyYMjYvWq94L/mDtoUbN45VkVWCMmFTQsevwWAkEUVihqQBDRG2KFABdnOmSOd4A\nCHhdFXVVkbC6Eq4BQLMuX/OHan4AHjDsatakfgbw5ZXQr4fjpTlN5XHiN39QgklqgqRPw4opD5w+\nkzkNyxrg01XRW8rzsiSrmBnvPV6vyFAawv5IYvWN6+/uOrY8l0jqGt/DCUbV0Klv4soQfKEqACQZ\nQwIMfjv6zzHPJDdaBI7d+83PH//WmziO+dt6v67zsxu1d8GWXETbF5P928mAm0MbYuL+2OB1yq4t\nUMYHhU7P/HGo7Ubx5A88Z/d7cDY6bDF9lWNHB3keY3cVQliD30Mb4gNWBNjSXPefjB4a+1Kz7umO\ndJUETjCJHb2VA5DVNeE3BcEwASCRWtbkkh+SR+Hz8/Fb+Xmgb2hOAlg/Y5QQwiq3roxIhs7lAGAp\nm5gi1ByZvDbEZE8TriSSOVhmuuVyIRShnIHhA7c8Xf35KwAO2G18H17YW9u2ewqlpSgh1NQBgr6h\nrEEJwgDMctGXNnVOFWXVrBQDCscbpCu1hNHD4+/YfQwDMPY8dj0EwDP5Ybq/EqgJvKjPJvoKU9nJ\nviQAD4gpAsCt90e+LnmVZCkfzh168vJpMOgAeBB8ACuv3TZmEk+z7uOrJT+TfU1I3iY43miGE0Xc\nvro9uboSHPH4Gz3QqGKalBWXIkkb0TGwc+ZsbdWfGz4w6c59n5wZ7zsJAIuziTqAS+5ouQwy31rJ\nfXgMAGRf0zB0vuF8b9cSWqcld8nOafc3H7u069LYpV1TANIZPONG3FQGGbers/vv/cC9kMHZ3FKw\nuIWPMcQaZNZr+u8yWX4SsBGVvcc9DyzPo20D4B0PNnYGpTW3xrt8nZ0P7mjVk4AVfmr/Prv38Y9y\nN346muzZtoDScvBLt65sryd6833ZiX70Dc1xjJFSrey7OfHBMDzBuiM/2kBYcTFarpQC/8Efqp6M\n9ebrgqSMzIxtOwhG5VCsRERJ9VVX/V1Ycy54CwSnu/qWnwABD4ZRWHb6QK3sqQiyGpI8TcCkNBQr\nLflCdQJAMw3KU8GcA4NHV4UuAJ6bl3cs7n70Rh8ASB5tmz2ps2D4bViBLLsBSLomiM26h0po9oKB\naE0RPekFiQHJSGI1oms8ysXgG8n+3ClXgM4c1gJmtN2P3VjK3ekOzU8lB8uFEAcAakNaLi5HL81N\n9qWKS5F4T3r+XUHSiqXlcN6V9gkHj7/XkvFt55gUgFylEKzXyv4az5twLCZ4PjP6+C9cPH3zvZXD\nAEswky77o9W/3mpGIfc6cP46cr0dn+C0cXMVW0HuFqKijSXe4qK+r6IG7dfbkC3sOnae9Zir7f0o\nILeiYPzbkMM32hzX29FrFU8AAHzBRqm9pYu6r4URWnHbSRBsA8M0gJxdwCG765GxJADc+Oko1IaV\nQ3Lv4x9ZjiME34l2F6f6R7Lr6pUl+vJLHG/wXf3Lt7r6l1ErexvMpAQgutqUzPnbvYqqCKLkUWqR\nrqIAlz/29Xd3vbF97+0eQk2PJGujAKJgEIqLETmUKBlqUzJmxvshykqYz+ml5OASqiW/7vE3uqsl\n3+Ltj7bfoZRBaQqDq/mwDoB29S8DwM+BYdW2wxuwkJ2CgKiKREyTcgCMXY+OrdhUWweg9w3P1/ow\nn4PlWBMAAykXfXxpOTzHTFofHJ19DwxPJAcW+dV8iAvHV9ViPoxod/HdetWbGjowiRvv7r4WipWT\nSkNErLeQO3LighOPnn7vzYNYmE4mJY9yslb2LNtJK17RFNHL8Yajpjw2eXV7cmjfRE5X+QDHmUL2\nVn+1UfXOKQ35O8Br91w5G1EhJ8GlbZv/on06ALRcnFsuthv02R6muWXIrJmjNqXqG8jprgSjdxWU\nCLjajbk4kxcysJSUmU1y5rWLJH/bSrUOG9eWxuMZo+tObBCNlrWVMNn9Rz9EIFKtqQqf1BQhbJpU\nDYRrbrZnRFMEj6YKDUPnVVhIfggMSQA1W8M+BgBHTrz9ItZ/9MMzNwd+BAD9O2Yf2/XI2E4wCONX\nhgOaIkJtipqr7e90DSzuatYlmAZd5PhKlVCzm1JGaxU/5wvX6MCO2QrlDcYY05nJ+bz+Rn5usk9o\n1GRe9tUHRw5MAsRcFCSVi8TLHAgYGCQQpECQhmXzFkBQBgPdeXC8AMt0t2wHxiiwWHMAEGBZGrJg\n0EGwBALP7M2BW55AI8pxRh8ANOoSX694MPLwOMcYEbbT6SaIlWF2drwv6XmykRvcNf2YL9CogODX\nwfDewnR3IHur/91mTRrheQ2EmrL1saw4g4d+5spZAJcWprsPL0x3J1WFHwl3FyB5m4l9R69Ml5Yi\nkaW5xI/mJgYOZ9oSQLgWTCd5u/WbncHo9Xd3tZRsN366p+S63clxf1dQSubetdvWwb3m4ULsTqm2\n75KP7fvDsBC60jZP9/pz7nWIms++bzM7PLBJcouPC/e7WWwwv3V98Dcv73wFAA49ebm95pkDKQBZ\n2ddMAQDlTCvlESMwTQKsmei+DuvlePZ/6up3AVwjz+PbAMDO4FtYY5OmnE3k+ru7UqKsujPFxHc9\nMubkRXv3o3d2+QLRsrdS9C8Ojs4M2iTrawD+DABMjYei8zoBupfnEouheKnH421ix8PjIBYVlm++\nv8PX3b9ITIMSVeV8zbqkK01pSdf44NC+KQDYBgYZBCoY6nYeuDAsn7oCLDPdNAg8gF1bjeCA2uR1\nQlgvgLwgGT/BWmZYgGAaViRbv6HzMV3lJYNaynpmUp0ZXLRR9bBmXYIgacVgpNZatJJXSRLKfCDw\ngcELgiSllhzQ1b9UXC0EEekqFU2DWxebfv3dXanluQS8gToYWLFnWy7n9dfP7npkLPfWK0f3ruad\n129p0DO25rfTB++kOLtw9kjatsk7DjhhV/u78rhnrHplgJ0iqm2I/17hoXeN3aaPANa4khrWqP26\nTex+uZJPSOZ+IODtiKaOcOHsETz6zLtfAyNq3/Y5ce5239fH3hs9c+jJy5i6vm0HABgGV95tpYzy\nwaFqDPtB8Dl2BgdbnREcAoDx94e/X1v1v+cN1gKh+KoPAERRGwFwy17YjptpnHLMqykCgtFyPd5T\ncAqRJQD8VnXVm4gkVwjAVEJMdXEmGZ0d7ze7BxYpz+vwh+sA4N358DgAsHLRD7UhkfTuKeIP1ZOw\nSkfxsJI8arC4jUUwEFXl4xxvcKZBegTRLAEYtWVuGQRNMMQqhaBOqLloMnol3lMIAvhnABgYeBAs\nABDAsLL/U1dZuehrSrLmUxqCt5QPL85N9PpTw3MyxxuEgPDX3x1AcTmSrZd92WjPSiocLxFKGDje\n4Bs1j7e4HBoce28n4n3LCEaqf+gL1r/liD92QQvkZrqT9aoXs+MDufTe25cefdqqLAMA8d6V/J0b\n6Vz3wEISQDLakz/lD9Vqb/qPz96raIcb+obnsgDwhd/+Hs699PR3ACshRWZNE9xaxP5wJQwAhs4F\nGlVve1ebZTrdVIvsYq/XJZSwj1v3t21kDuXuKFJk1mv0nU33FWxN5+DOs+DWhjv9b8na8LctAvDu\nwe+uB/YMHn36JyoAJAcXkRxcBIBTYKjtfPjWuJMJxp6gZv/zwNKKp2Ht+odhJVxUAbxVr/i+oOv8\nIU0VBADTukYfMiTqqVcln9enfGDfa5vmvIMejYMgqYATKMrgB4F/OZsgnKDXOF6vxJLFrkRfPtiz\nbZE41M8GCmKh9MpCHMxyoOH9oWkTDASACUC0e44AKIFgbG6yN8BxZlgQNfRsW1wEgWQ71DjFK+Im\no6BgIaUuXwGwHxZiUxBQWEpBs9nkV0RRHzI03qg2RW3svV2ZoycvIhRb/d2JK8PbZG+DrxQDt5SG\nlJybtKhl31AWY5d2/mhg5wyKS5ErhaUYCDER7S7WPF519lMvX/whXrYWhlNF5eDx98AJWrwrtYie\nbbmc7WnXAkHUIMoKorKSU5sS/KHaOr/aDdjldRTsdcv9eQroWLXG8dduIdM//aaV8soOYcUG0Anh\n2/3mW2GvNvJ+ub3NZuDq916I026rv2seG7T/7w4dNpa7zq8rstipgCJjpGkfNgG8VcoHfwcMjPKG\nGIysWy9WIkeG3wHBPjCEQfCzAALVVe+XJI/CAIxQajJd5blmTS71PT5PamUPBEljSkMy6zWC6Y/S\niHQX0LNtMS/7mh5e1EzGiAGGSQCyYZI4pYyoiggRkAFwlWJQ5zidB4Ee7SpxIFbKJ1gUVgMB0run\noSo8D2qaJiMcpcxJRVuF5foKEPxfAAZ1TRB5oeEHMSkIRlWFq/OCIQBglMIyFfbmmcUJFG+B4bMA\nOBCAWfsMYQxEbcgQxZqhNCST48zAjofHvw4AY++NfqOwEMv2DWVTtbLvVL3qORnpXoHsVd4hlOVr\nZR/e/qsjucHdt09qCpV5Ad28qDfc38mdtPHy+UPZg8ffQ7SrBCec1ZGny6XAs5Qavp2Hb3j9ofpZ\npS7lSsthywpA1pcCPnLiQpqdspaIK0IsveuRj1JqU4I7IUlbiimHCr6ANW/BFy+cPZJu1mTnmrsG\nnHvYThS4E4Ttdu1s8z0p3z1k7Lvm0j7fDv25+2iZGDeZ0116kU3Y+Q0TYjwIrLOju87b5ZEywJoH\n1TFYDyUwRgPMZBQMX7T93NdMLKQlx07DytLCAQhrimgAIJQ3F4KxMs8YAQC2MN1jGjo3CwChWLkv\nmix8TfI0vADeaFY9HkPiTcKZFARdAART5wh4AyMP3QKloGAwTZN4CGVgFpXWAJimSQQwUMaIQDmT\nEALUK17wokZrimBGuso8GGr2phCyn/GzAH44cmDyDoDfACACQKPiXfQGq4NKXeZFr0J5joFSpsJy\nnHnMpvZVABIzCTNNCk3lm9mJvubw/tuL0e4iRFnrgbVZNg7/yeVvA8CPnzvyWQZa01QRsZ4VKHVL\nxza0/zYAJHvT81ic6YIn0NQNnfMYGtf/mvL0Zy+ctTZYyukvfOpzfw0AMA3+m4uz3XCKNjjVZU1G\nKjyvQQ/UoWtirrAQy3qDtT8AgKMnLk7ZBbHc2vR7Uip39VnX6Wx7Gyephhva7rnLN2MDCAPrSoC1\nU1s3633fTi6dNqBNkHwjW3h2ozYOl5RZS+xxL6sEsLl4c9/Aw9YaOtlKnOM2aH2M6+/uedsfru7z\n+Br+UKwSwNpOFi8uB35N9qgyoQyaKjR9gXoIYKy0HCGcoOuhaFnY+/hHvD1uAEByeP9tEwDAMLeU\nTRwEAMPgGwCC/nBVMw2qCpImwTJhkcWZbvCihmC0DG+gqYNAmLvdozMGTZQVNdazAkGAT1d5Zppg\nK4sRI9mf5zneZD/+/qeJP1QxPYEae+znLgGWXsHyiye4A6AMK/Bmr32eA2DWqz5F9jdFTROIaOpQ\nNGJ6vKoOS673g6FoU0eWX4ir+blYRVPFuZ5t8xBl7c/s5/tVALKqCPJrJ45/1iqT9N1UYSnqT/Tm\nPZSweii2imrJj9TILErLEZgmRTRZgDdQg6HzWJrtRrRnJeXxNnD05EV8eMEK4jM0vvLw8Q+mPnp3\n97c/enc3ZG/DA8vJCQAQ7S5WeEn1ebwKVvPBw5FEMbc8l0j+4Nu/mMrgUMs/wuNzmLd1MNU3PIe5\nib6UK+TVvfBakXEZrPnMPwC4nXCcc+3WmdaxWy53zaNTvvOtcg73Cw7SuuX7/25s/UbPxr/1ytFT\nADBxZcdT7MyfOnHA7btsCkBydrwv2ZVaeqN3+3zAG2gAFpvmOG5EmE5ppeivgRBvuRCkfUNzJiGm\nmhqeUwBchSUHA1bseBSWzMxAkADg7UotS7a8LAP4NCEghEJJ9OV5AHMAql0DSwle0GWAAQx1AIF6\n2U8BRg2DUwlWZDAY2Yk+1mzITJQV6FoJHK+SE79x1hrNkqOpPZYJJ2qdrQuayQEILs9FhGC0NAqT\n4PIbhzF6eAy8oMHjXRZhVXIdBkEIDB4Q0HjPshBN5qmh8XOSR8PMeN/JOzcGBhnj9EC4Mped7OsS\nZO2lfUc/UBemkz/d8fCtKscbHgDeSz86FJm/3ZdnYCe7+5fq+flYXVPEP+ndPv8spWYr2KhRt0IP\nmjUPfMGqz45NOMbxesQ0aVNpSnjm1XM/tJv/EABeO/H0ZwFLB1BcjmRnxgaTtz8aSsLlQnv5/KHs\n587/wM1eWscvZ9xrYTOFUruHnVsbn7Zl+MNYy7Pv2Nxbiqy2Lu9yS23rc0vQ6Z6tIvsmLHYnReB9\nzWmz8/fbX4d+1s2br9lhkByvJx2HiKMnLn6xdQdpJQHIipL2O6KkoVryeb2Bxjuwqokenry6HX3D\nMwdqVb+fAIwxMLUpasykhHAmB4aynaXlOBh22RpvaseomwA0VRF8IEzhOF3mOGgA5NFDN22JFzys\nZBPhmZv9NQA1XeOXRg+Nfw0Mr+w8NE7yc3HqC1eDjHHEZIYxODq9yvG4DYY+AF1g0MvFgFlb9Ta6\nU8sRjjctOm6xhTosJeK4ncklAYImANHQeDCTYnE2Yex+/CM9FC3zvKSqhgFBaUigvLEiCLqHcpAI\nAzFNaho6p9VWfQuSpzRq6NyAokgiGGEgLMDxRoMSkyeE0WhPIZHoW67LPkVemE5CkpWgrnPx1eUI\nTJOrSZJa+f63/x/ZXY989AoAfOG3v5ft35HF7Hjf4ZvvjcRDsdJkMFZ2qtFkCWEipSYIYWJbRZup\nc07NWhcwsDiszbeYGp7F4M7ZLDu1lhDEtVjctuIvZmzTmRuxN0MIB4b2TaSqqz74Q7VO6aDcFDGL\nNQLiwGZU8u8kAmwLY9xrHlue5yf9LPxH7+zLAQAv6D2RxKVOTgiAPUFd5yGIqhcUMpwSyQynApFy\nVFeF/uRAbpVQs3nz8i5Qas7NjvfLOw+Nn7fbApaMqsGiqyqA2zZC9TVqsheAKfsaCsfppo3c1L6P\ngaELAD+8/3YVwIewouMysFM7xXvzBABRFMFkKqkCAMfbFjmCAhiCuakeUZQVUVMFcIJigkG1ZfSS\nrhHJ0PmEqgijHG+AAKbsU8hqIQzZpyIYLbNwYrUMBn21EORlbzOua0JcICQKwdQZMzVCQQq5WJFQ\ns7g8H0sLkhpbmu3mFyZTJBArwxesc5SCEALRG6gzQ+N2M2AFDHLPttwdpSGVvcE6dE3wqA3Rb+pc\nBTbrPPbTXS+c/Y8nsO/o1R2ypzlXKXFYynZ/qGt83I6cw86Dt76OuxEEwLpSyq3EkAQ4zCwWJx+M\nVHLucssdwJFBSxtcv5eCLNVsiEld5+KwY/Fd1MsdoJNz5um697Cr/3tGfXW63oEaP5Btu/3+Twox\nMy4vvnYO6UHASTyB9948eMxR4Ox+7EYJAGbG+5999789/m0A+JX/6XvX+rbPpwB4qmUPPzPed1IQ\ndPSkF2HoPAyd95qmDo5jvj2PXf8QwDuwqHAEQGQpGyuG4mWPIGqOL14eBOdhbQK/lbvTIwFgXf2L\nhiSv/ghW2qRuWHK05GKpg2AYUZoC36x54AtXKMcx5yopr4QI5QyB43SfKFcO2H7whq4Tfmj/OCgF\noxSaZS/nNEE0PIbOdRk6RzSVjxo6T5lJsZoPGsltSxg+MAECBkqxAGARBJi5ORAWZTUuSgoJRGp8\nvWoozKAL8b6VP+vqX84B2FspBI6rTYl4/A36S//4L0GowTxelQNBfWa8T16Y6hnr6l/cXl4JTRl6\nedfKQqIuyc2d8d6VswC+V696c4eevPzWuZd+DoWFWMo0qS8QLY9QXveBwNusy7eqJR8EIZyXPGou\nlixlActxRpRVAEg5EYTX392V+t6//9W37MUz9ubnz38LAOZu9/RPfGA5TDk28nawU4Bj12PXU4WF\nWPb9v364v1H1rnPWYWcw+uf/2kre2J733c2K7npkzOIYT15sLy3lRmpHnGhxI+jsBXcXfALIu9Fm\nkIYl/z9Q6aYHhfb52Oc2FQEc4M//5fGvAEAoVgo/feqco/T4BgC8+98e3+tqG7Y16onZ8UHUK96G\nIKnVnvRipWdbLrCUTQw0qt5lZpKEqgj1RN/Sr3r9yiKAJgjeqRRDeZ43GOHMjzjekD2+podyxj/g\nODAwiDsfHreUcgQrsDKwTMKyT6dh2eDDpkEAMFqveiCIOg9iBnSV5xnHYOi0TqiZDScKA4JocrAU\nfgwA0XXwmioSQdRgGjAYM2umScuNqhckUPUtz8e4wnwcka4SrVa8ACPgRZXO3OxHom/ZpNSEP1SP\nApgGwPYduXYTwHbAFkIsr7kBAL9764PhvCAp7M7YNkI5kwt3Fc1q2YNQtNxQFQ6ibGiNik/ieLPb\nG2jIXn+jpipCs1IKbJM8TcEbqD01ODr70js/fOwr517+zG8dOfljLN5J/oeVhRjJ3uonAztmSc9g\nDoFIpbY8l9gvyCoKS2EAeOnC2SPZuYk+3PjpniwAPP87lh5weS5+6sCn338KAN6MHy/BZsUljzIN\nm1I79vn1FXFbGX9bLq7FpfArTv9ucOq6bZah1ckx50TWtYFbXu+k1OpUWHMj+KQ01m7T2VbCdU/D\n5ng66Su2OGZ4kzHuO0bAAV5pimEAWF0Jl9qSUKRFWYm42q7CjsLSFMHDcQY4zmCwIrvQlVr2gEGt\nVz1k4sOhWqR7RQdQsClxHozEDYOTmMGDmboEn+IlgBc272jL6kTXiFwpBkZMkxZjydJ+MIRgSdNE\nUwUTAHSN12urgebCdI8/NTILQVJNpeZpgDIlkigKcBAQzhEl+bkE40WNUWIY4a5VDyEsrDYk0+tv\n8I2qj/lCdQSiFXT1LyE3k4RpELO7P0dlr6LCcpSRABwCw6V8LvJUOL5KAQbK2dEClgjAGxoXpRwP\nQVJvbNs9lehK5Tld44mhCyKhZlNTiTjy0Lh6+6Pti7rGrY6/PzIpedSjSkMMKHURHG8K//lf/uZb\ne5/48CsA5HBXEeHuQnLf0Q89g6N3uHB8dbmUDxbee/OgLxQr7QpGy16ON8tg+FL/yMw74UTh+M5D\nN5tggDdYe8fQOEdsugsCkWoFGy/gTZNKtoPD9j/z6rmOseObLfRMm0+7C5z7OxV46ETB77JpZzbQ\nsrvHvAeldkSKdjfYjjbxTwBedP9oe5cfG3hRVAOcoPtlrxJoOcxYoauBZ//R96dhFV/ArSvbT4mS\nxmI9+b79R6/OwcoD9xKAf2H3VQbBdyeuDP9Ksy5DVyUdpJ6DZUa7NLR/8jCAVTB4lrKJGBgiDISC\nMABQQVACg1gr+8uGwaO0FLkWS5YWQCCaprUhTH20jYCRWq3imz705OXh7oElxzGGQ6QaAhC0NxbL\nnm4p+4TJq8OUmUSpVbx6d3/OV1iMEMmjkkTKwoGhvVPMMAih1lxQL3uZ0pBuNGueHTsPjTt6Ag4M\n0mohcKi4FDGYCcYJhgEQPdq16vj7c4QySVcFRLpKfbGeAqGcbsxcS1PD4FcoNediyTyC0YoMRrYr\ndblg6Fxk1yNjqz99/ZAfAPSGIJ780vePzYwNiKZBVWt+txGKr0JVhUUQzP7ktUffbdY8T1HK+Gh3\nUeY4gwfAa4r0TqRrtQkAhDA5Px89rjbFJseb0XB81b2Q3wKAd/7qSHskVyfI2my2zYLvWXdxi/X2\nHI27A5shf8foNzd02khc957Gms39m/d5f6e5tGoWbIEquyPhHljW7kDFP7bSkdc14ZvBeDnl+Lyf\n/8vjX9l35MN9HK+L4Xh53GlYKQTTokdlvmDd5w82ll0yswzYCRYA7P/U1TcB/CwsB5J9AL4L62XF\nAQAE/q7Usg+AaWu9dVhJG+MAoDZkQdP4nR5/ox9WpVEZAGGMYNvuKU32alNgGAZBEu7yimSNVbe5\nBA7Aqqry/vTeCVJf9fGllTAf61mhvGCAFwwwBkos2l+b+GBEHhy9I4Awlt43YYii+SYYdtiusoRZ\nZjieEObXVQFKwwM0GXgrPLQCi+IbOw+NEzCsgMB7+1qaxHvzpHf7AgtGKwEAXUuzXZ5KMegzDEpD\ngfpKyhJphVhyxWAggq7ysj9U/XeDO+7MEWomY8niOQCPgaDlGUcIuRTuKv5sMFqeSw4ueoPRSg0M\nGNo/mQfQsN8DqqveOmO0VikKlzv7tJ+/64yraIe7pnsL2ikh1iPwJym/um3jP9zg2kbchqNDeCB7\ndmbNrz4Fy67fkfK79BDuDE2O5ap0P7qDDpzCPdNybdJXa1w+3rv8RW+wFoC1+6VFWQmDMMnQecWO\n5MoCQKPmQaUU0OM9ebKSi27jBF1anOl+dufBW/8eLv90ANAU3gdAA2EQRMPRouZtU5cEK7STgMGw\nA0o0WKWbEE3mvZrKP0wI9FrFUxNkRSnk4k5UBJ8cWOoFYFWYYOsQHfY55/9mvSrJlDKZUkBRJFYt\n+U2ON0CIlThRlFUIogEA3p0Hx42b7+8wARBRUvn0nunfgmUCbICBUxUBgqhhYboHlGOsUgiWdj06\n9jaszLUB2zZfgRX4EgDg2b53yrAj4qja4GVd5/uC0VVTkBSSSC1TWD7xjwP437bvnR5ZysZOGjpn\nRLqKPo5jqiDpquu7nbHfcc6OT/8DexF8CWtprL8HuzLM7Hjf4bnJ/secm534/1I+FFCbUuXK3zz8\n4kYL58iJC2lX9tl7Lq6JK0MpX6ia/PFzQ7ai7S5/+Xt6wHVQhN1rWODuxf8VWMQFAN7aAmJsJXhk\nK7L536Zpr6PYcr/j86sr4dLqSrg0+m9u/dBhw26+N3rJTkD4DdgfSPYq04auV2duDt6sV3yza6mf\nW+aQOGwzGgMRARBi5WYHLE8zBxkNWGYz0/ZGL8FCXAYGGBpPTJOjlBi8aVACRsRE7zLjeAY7yYMF\nDAazJXDGiEE5BgAKrBhtBgaUlsMoLkaZKCu49cFOMxAtFxdnk9quwzci5WJQIoTR5MCSY9MnOx8e\np/acYJoQATBTJyIvMJTzIRbtKWDHw7cAgOga5weQME1CAQYb0QPMJBSEiZSCEGtDkwCAMQJmUlat\nyEogajKO00RY3Axmb/WhayD3aKUY9Ogab4biZYFyeo/thNPjPPLElaEcACzOdjuBJVkAddtxB+de\nfjrtDdZQWIildj127anU8AwkWav178i2WHRK2F5e0NUDn37/tK2YAwA8+V/Of/nNzx//Vin/fphy\nesA0+I5sb5uf/dSFs0dQWIghuW1hw0WWseLZAXQOctmARd2Mrd6MUr8FS6H1DTcFbpOjv2L/DWfs\nevNbRNRNlXyusYD1svY9o9c6QWYT56C2d3bPflvpnh1N65ETb38HwBR5HmPsl9YyzNilhBgY8JNz\nj/RrqgBd4x2KfxjAcVgJG+VCLlrJz0djy/MJPhQtn9r7xLWoKOsAQ7wlQ1tMtm6bv6btM9tyM0k/\nL2oEYOrCVN+1oX2TT3j8DXB8i7gFbLacVUtevbgUaQLAwI45y7PNcr4BqKk3ql5v/45ZUGoaIw/d\nngKAa2/vijWqotLdnxd8oTq12fc17qAV/EbAGIimik1eUGgilRcAQFM5qIoApS4h2r0qmyYljDFm\nGtRkIKahCkT2NwhjDMSW7hkDmx5Lk9JyCKbBsXhvvjDy0EQKlkznUxUJzOTQPzKTLy7FtfJKSCWE\n+bsHlipgYHdu9gPAqcJSGI2K743ySggXzh7Jev31L6b33k6BgYUT5fHUyOxhUVZRr8gndVWwUmPJ\n2gf2gkhJHqWH8obMMfAef317IFJuGDpXra368OPnjny2XuZ3haKrVUFWfYQo+MG3f/FYxoouXrew\n3QEtr7/8TApAcvTwDaRGOuad/PMMMo3/8M/nPb/1r/7417ZQp82BLQWVuMSIrVLUNDbQbHcY576Q\nqX1+rj6m2n5vhYX/RLkF3pHdbKSeAtbYtfN/efwroVgp7A3WAjsP2nkVCBDtLrwCAPlc7Nlywfe/\n8oLu8foVEQS3QNBMDi421aYQ11SRJ9TwmmsacICBs3TocJRci7bXXFFp8F+slT0mIR6AEfPQU5dZ\ny6nF0s1zsFCRgYHO304BgB+sxSUYAEi94qXeQJ1PDc8BMHWlKRUXprpXe9KLdY+/2esJNImmCWAM\nIKQVcbYObr0/gv6dMwxWwIvjj88WZ5IEAHhB45UGL83eGmgQamA5220M7pzxKU2RxJIFyN4miKg7\n/ZORA+PQFIEZBq17A8qiLcYAAON4Y8Q0OMIY0boHFlVY/gOirWuYatblGgAUl6K+6Y/S8dydXhw8\n/h68I3bxF8JEAD5R0uKyp7nf0Pi+SFfJR6mxmuhbceTV7KGnLv/BT1575AVd5f2coHvUphhlJoGu\n8RA9a1LCaj5cu/T6oxst7LuUQwByY5d2Zf/+pe/+0Knm40LGBjaArWiU71O+/XL7PR3m7mywlQ3a\nuMdtxQFs0OYuzf3fETvvwJaVc3xbaGoaQMpOBjl1/i8ts1v7TZKnmQQAntN9psFpFj+t6FgroOiv\nrgb0Rs1DmIm6afANQGdwcIrBYAwGpWgC2L08FxnVNEGLxMvSyEMTABjleUZtd9kaLLmewuIEWhHn\nOx4a1wmFCGadt0+bi7Pd6O5fZIbOgTHQ5blEKBCuHAKg65rANyo+NnNjG9l39CooZ0IUNYAyUMpQ\nr1ru7vG+JcZxhilIGgfHQ4+gnhqes4o7MpBmQ+qOJIpCpRSgoqeh37y8wxQkrTZ/u1d67OffBaxE\nHGz88g4STpRAKCOSpxkVZTXK8YwjFh9hbNt15xasDDUj9jOcNHRCGGCqDbm2MNU3G4qVwqH4Krz+\nRh5A7vL5QxC9ClYLoZveQO2JnvR8Xyhe2BbvLS6tFkL88nxitbwSfLvrd99+jp3B6MSVoWMA0L9j\n5l2rXl4zXlyMguPNa5ffPAhvsI7iUuRMpKuUvfT6o46jTModmupeXC64l+nLA6CxsmDpYiNdpfbK\noesCUtrXWifI3ENr3kHed6/xLCx91FbH61TSecvQgbqfhlXzvQJgQz3J/fTb1n/H6y3W3bahOy/9\nMACIshIGLEUcgFeuv7sLAHDt7b2IdJWyvKD9ZrPuCQii5gWpNQHsAMM4CM7sfvTGXlgy+yUwfBEM\nAQCLhm6lVCLU7AaYFwxUqXuYpgryrbku9A9nQXldD0SqlFIEYYkDBLD/ETBDozqljBoG1xQEXdB1\nqnO8SRkDKAGzZW2Wn4+T7K0+RggTa9QkzAS346Fxo1Lyc7yowTQp43iDzIwPINazAl+oiuKiVQ5p\nYTpJtu+9bUS6ShxzgsyBVRDkVIXvJcTgC0sBb3Z8G5foX6Lb90zR/HxN53i9UC35+9WmBMmjEAKm\nDx+YED56Zy+TPE1wvG5I3qYIGOAF04RVGPKXwSzHIvv9q7rKGyajyvT1ba88+V/Of9v1IVslhClh\n3+nqW0r5w5WjzKAJVZEMAHd2P3rjDizt+4t4yfq2r53YngasoJa5yVQ22rOSuvHubux67DoiXSVH\nwz4Fq1IMAOBPf/8fPpWdSGFg5x2wf2FFkL309ede0DXOpylSDWglHlnHTtvP4CDhr2WQGfvx5498\n9sLZI2lvsNapbaeF7Fw7hrXNxFm8aVe7TRd8e/v7hK1STCcoZ9NGmfUptu7ZdivtttoHD9ckF6a/\nddj2mz4OhseO/MLbFSeoZeLK0LFrb1s6tb7huezRkxfx0Tu7pmZuDtSGD0zshaU574LFcvqW5mIf\nllfCuZ70/Au+QGMnAA8I5u7c2PaOqgj5of0TX+M43Q8C1Cp+HgAb2DFryN6Gyot6VVP4VUnWQyAI\n2GY4y6mGoLmyEM8DAOXMeKI3b9QrXkH2NXWON3hQZqvToMd784I3WCWyRwGxbOQcY6ArC3EiiCoI\nGGSPivTuaTj3pIbmOAD6+OUdXKPq1X3BuihKCkyTgudNHsDNRtXTwwt6Nd5bDC1ne6g/WINpcOjZ\ntlDzBRtlWL3ZiSnw3Xf+2+N/HwA1dEq7+pcFQxOIqXOgXBPlQlCnnBGi1Iz5Qw3HueXSymI8AQCE\nsiQ7g5cBlMAyYdglk99782CrRpuqiKZh0ACv6aywGNof7Vq9Zb/v9Gsnnk5ffPXoVG568nDXYO6p\n1ULQG+9dvv3w8Q++46r5tmX5c2G6t2LoFI2qD1ifjdXpx/m7VVl8o3YOciZx/zniT7uO3UqxKfd1\nG+kchfO6FNSd2HL3AG2bSUdHmr9NuBdX0w7raq/VVv252qo/F0uW9qNNhpE8zWTYzsWeGs4+ZVFo\nMuIL1UAIC64psaysqLomuAsutGBo3+TjAOq1qkwEUWcAsPPhcd1GZnN5Ls7PjA/8Xv/wzJe6Unkr\nnLXlyQ6qKbwcTa7EOc7UKMdkAM35271c98AS5w3UCSerjqcdDwCz4wOsu3+RFBYj6EnnQIiJ9J5p\nEw47bs3bBIFum/vqYJCe+sKbJgD16sU9cu/2eUqpgXCi3MVMPF3IxQRO0BCKrZJdj9xQJj8cEiSP\nojJGjaG9t7tBYNhzbtwZ6+9PDi6AUAZJUpEangcA6DqFaVDO0LkuntdVYsnZvw5AJc9j70yGXNNU\nwSd5G7/RrEl3ZJ9yGIDnzlj/MULNOX+osnzoyctftT/yawvTyZ/VVB5KQ+ZAVrvBwIPhhWjPyisA\npkSPCl+wBrUpopCLBcbf33nY66+nTJOc4nijBgAnf/PVNU07wxdFWdkHAISwaXtBHZZ9jYCm8r5G\n1bcuvVAHWMeiu8okwy7+ALvPu1h/exEftqbB4gTEybriRrgUgGQGmY454l2wjvpvwkUkXccfF1lP\nZzpE9rlho/P2tXvK95sh+GabzDpEX5ztzgLA8IHJHIjls+so5l47sftSadnSmEa7C7tB4Nvz+PU5\nAADDB7ZZywtgEAwjzKBo1D3XAOIHWtr2SLXs8QJAfi5BB0ZnGQBCKOMBmGBgid48En35L2GtjngC\ngOQozIrLEUS6CsQwCKUcAxjEkYcmYOicwfEGAQFv6AQgACUMOx4eJwAQTqzCnisxDDBqoblJCAwA\nPywuBcuirP2CIKtenjN4SsEAeJKDOUooAwhzlHbctt3T0BRBnr2VYpoqTMq+ppjefacPDEHDIByh\nzAAASqErDamvf8dsURC1IC+YkvOu74wNGBw1aX4+Dl+orsvehie95066WRPplf9x57V6pZkwTbIK\nYgogzKM0hW5CTWqahDBDWNFV3mebqqY+89xr31mc7R7hOEN+6NPv9+gaBTMpb5okIYjKsS/89v8v\nefmvH4rXyn6iNYU+jje6q6ten6YIL63kYmRg552EPa0UgLdsMe5zn/tH37/K8UZg/nbvK/b1Sy/8\n4f/6vQtnj6TdiIv1dvKp02cyToHItJ080ul7M8rsmK4capwE8BIByWEtIs9pcy8KVmqbWwsy601W\n4Xv00xEybdp4lyhS2vAm6/q9vOXu1/loXVzAlmT0DDJjrjro6zyRLIXdOVx/dxeKy5EsoSwAwNus\nizKApmlw8Fr1x28CkGsVz0C4q7ifE7Q+X7D+dV3lep2+dFXsopyBatlPV/OhCsfpnmC0yjMrmwsH\ngBGGA/bG8JDS4CcIYRKlGKG8QQBGwYgMApgGTMOg3OTVYSQHFgUACMdXWa3sY5ygs2ZNZtHuEgWz\nCLehU1DOxMzYIIkmCzohpu7xN2cF0bjTqHlRXJTnEv1LI8SrEEoNCoAl+lZ0AFx+Pk4YqwFg1LIE\nMpIanjMkWa3NTyd/ZJr4HwgB1RQBhJqUUIAX9LBpcD7GCKcqkskLDZgGGKGApoiMygrbcXAcwUjV\n4S6IySgRZXW7rvF8KR9aBiOxSiE0PbzvNuEltVQtBUKUshhjJDR6+MYLF189+tVIopiKJIr/Id63\ntPfW+zvyXanlk82GKHt8TTk5mCt2pVZy9ao3V1iI/bfVQvAF06A+xojX46/t5fhQlBAmGQZtOovH\ntnmH21fV2f944oXlua5KMFZKHjlx4Q8BuBNctBbWZ84e+aw3WEN3/6KD3BsliHQjSTulraGNK3Dm\nZ//dMKItc3ecfEs8tcd7se2Wqba/zr2bmv+20KYThO37nAKm7j5SAJIMLO5saJv0v27O9+BW1rLA\nbsFneWpuMoUdB29+sbgYgT9Yqy/Ndr2zPJdA39Dc50rLoag3UN3j8SuaaVJqmgRKUxIMHf/a9hTj\nNJVnuTtJKsqKGYyumh5/hfCCaQKAaVBmO54YnKVXbwAo1SvemDfQ6LpzMwVCmQnA7OrLmwB4pSkw\nShkZeegWCGEgto1+YbqXiZJCVnIxhOMfgDGAciaqZR+8vgYqxQBp1GReUwU6uGt6IByrfo7jTJRW\nwuFQvCwxk0KIVJmm0TovmCFdo2asJ8+BwSQUdOqjbeAFlQDg+obmDwmivp+ZVAQ1SbUUhC9cYdSi\n/2Tk4XGe45gGQNM1srq6Egr7gnW2fc9t02aZDcMgOscz3jSB2fF+GQwiAYyjJ9755ffPP3TaF6oe\nun0tbUpetUGpcWvP4zcAwDs32etzqrQCwHK2C7K/cXIpG5dX82FwvH5F9KgRjjf2Hnry8n4w1H76\n+uG9haXotK7yyzsP3rz26DM/yTsa+IkrQ4AV3joF4MV/+4+/is8891oasJx03nvjkQoAdA+ItWCk\n2loYG1GS4lIkWbQi6wAAux75KAUAX/jt760LU22jkI7pq5Jxub66qLDDsk5lLEectbGfv3vRtlHw\nzaAjUt2DnXb78E9txpZvBm0ImiMuh8/N5tL2exRrCUKyaOMI1rHu9wJXYgIfAK+mSFhZiOX7huag\nqYKpqYKk5qVGpRT0aCrPUcpShi6QwmLYEGWNFZbCbPjABABmmowYWkM0DR01Ptgwb17egZ5tCyKA\nYqRrVYRlmhrQNZHVyhSx5ErdG6qKlBCeWbnTUS6ESL3iRU96HpZrKwOA5s6D498GwxfTe+5IAOjt\na9sEEJDSchi+QA3NugeN5TAzDc7s7l+kiFW7uweWpO7+JWDNmZY0anJQkrRmbqZbSo3MgRJGwYD0\nnmlWXfUy2dsgACghkMorQRDOYPHePG6+vwPlfJCNPjJmSt4mI0TnmEkE0+BlQ+OFaslnEs7gaqu+\nRrR71SeI6riqEF9uOrk6sHOmB2Cm/SxYXQnvo7zRFYyWuR0HJ7IA3oAVS4BId4Gk91jOBJoqJBsV\nDyJdRTnem5fivXksznQFG1XfncU7PddiyVIXACQHc9duvjf6CgCoTRGrhVCusBC7ZFPcqc8891p6\n+MDk2mJ6+e5EkJJHrbTWwqtr6+PIiQvp1/B0eupad2ry6nB29PANeP115/JbfcNzm2m/nbX11U4X\nXZT/rmtOZqQfP4eW6+7FV4+2I247VX9ghxh7Lu7sO5taEzLIfDmzXsZ2g/t37n7m4RpzQ3dZN6Kv\nE+47pX4GcBoMh2GVKZq2gyji0WQhNnFlWDQNylHeMIb2Tn304x8cgTdQ38EYCcR78zwvMFLKhzEz\n3m9QzlhqVr2B5GDOxwDTh8Y7gXDlDU3l43dupPN7n7j6lORRH6KUyYm+PGEMMA0i6prAFVaCLNpd\nJKZBtURvHgwQ8vMx+MNVEDAm+1QewK+BwAvLNt2XGs6KgmRZ++0gFkx9tI0wgIbiFcoYBAB37aNK\n3QtBqHK1coBWCkF4/A1IlmMJWcp2oTe9AF7QEO9pRYISANh5cNyAZYXgdI0jhk6ZrvHK+Ps7lnc8\nfGuQ40wKaiB3p8fUVYGFYpWm2hT1Uj7ibda9IJQRQdLUoT1Tp0VZuTo4esfPTBKpFP3pwmLkKVFW\nfyTKSnzsp7vyOw/dPKWpQq1ncNH33vmDLwVj5cc1RWxSzhhUm3JakNQeXRWvuZ/LiR3f/diNdnt2\n+vWXn5nSFPErAI69+XkAwFuugJgXAaRnbg5Ovfh8phOFQ7RnJcUYSwLA2KVdjny9VUg7VD/SVcri\n1QcLkslsoBl3j+dqu9lYaaxVjG0loLTPJ7FFxGwbpx1JgQe02W8GbkRvvYjXTqylFG6LYArASj7x\nEBg8AE4O7Z98B8Dl3Y+OMTCkQax+RFmriR5138x4ivlDFdozuGz2j8wQ24u2SxQZA0MTVtmjD9Wm\nHKcciwRjq8cpNYdhO8kwBkNTBCxlY+Va2R8sF0IAQERJI6K0Ck3hmS9UJWpTYLyg12HVTjNgxc9/\nA8DpuclUKNazAgDwhyugBAvp3dNJEBjlgp+KEgHlmOO51zIgxHvzlBCQ3Y/caJ2zvem0/uHZKcqb\ncUpZgFnvkQBgtvjQ0jcszcV1jppYycW4aHeh/87YIPzBKjRNgD/QkEWPIsZ6ipFbV4b8sq+pJgcX\nDV+gXhNlzWzUpCdEWcHk1aEp2dPkRY8yBQCaIuZqq/7c3GQKwwcmQa0STgcPPXk5sTjT5fvo7b3/\nKdxVeD7RuwKON+rdA0tvkefxbWdBfea519K2r3xrc3co9NOnzuHN7x3vB4HfNImma0I4s2Zm6sgG\nOwuTnQLee/NgCgDC3YXkECZytsMNACvxRAaZMcd7rv3+DDLoG55DYSGWsu3t98zo4k4r7YgZNjiK\nKgcRO8n794R7sP4dZfsHHWMzFr1TG6cdNquPjvXKjSwAjB6+8QIvaqCE+QD8oX19CgDqFQ9EWdEZ\nWJ8gMIDh52AXAqisej3zt/uu1cu+ymP/+0+fs2uu/aw9hq40ZJ4xAsnb5BgzQGxN/eqK/5cC0dJf\nGjp/yx+q9ZsmZ6pNmLJX08oFf352fMAvyiokj0J2P/YRFSUV1Mr1Xl6eTwSXZroJCCPheMmT3nOH\nwKqqaoLgX4Ihvm33NBgjMA0CpSES06Qhr79JCUAtjy0C2duAKOkMBIqpE9kwOIAwiIIhgACawoMX\nDOgaB1HSDdOk202VqmDQGMgHgqgPEWqGyXoBi8STBZ7jDSb7mkowUhFsn37k5+J6reydCMZWR3SN\nivGelcaVt/abi3eS2ujhm2a8Jx8wDRroHZrTSovRf1VcDv9zXtBHKGXwh6vJetWbi3SVsoFIpQYA\nukbATA7R5IqmNqVLIw9N/CwYqXr9jZ0AvjL9ewPhn77+YcBqywE2i/zi85mvDOy8EzYNGhh95MY3\nreu8n+MNgZkUbujE6maQadXsI89njrEzl/F//LtfOeYPV/Yyk8AbrK1DsHvIvC2IJIqpIycugJ2C\nu5gEsIlZqaVMBpDB0VFskFzStYE8CIK2a7wfyP21AxvePpYDH2vOvF0lFd39ixg+MOkUUvSpTSnH\nC3orxbBtcvnq+3/9cHr3o9d/1xeoDuswwAtMadbFRUJMLEz1Jk2DS4iy4pv6fw/erpWXYqKsyoJg\nNEAgfPTOXjJ6+AZlJrWkdCvirAnCvJJH/UUwVQ3FKn2ayku8qPMM4NSm3D2073aNMVIAEFyc6aaJ\nvmVI3ibjOFOqFgPwBuusu38R4cSqRZOtKLcSAB0E0JoCVhYj4Hjdio3VeNHja4IQIL1neo2EWyha\nX55PSABItKtoudEzYGm2G7B93lNDc0vlQqifEHjBAJORoVrZ40kOLEL2KYS4UH36+jbS1b/EKGd4\nARBmwgCgJlL5JX9NIoKolVVFnJ6f6ukVJB2mQfHeG4de+5nPn/9MIRdjIIw06h6E46Up2dfwmowg\n2lWMq00Jh568jMWZLh8hpjcYNTnKmSKBxT5Xi34PY5R5Aw1mf9OAx9dIcLwhi7LSvP7urmPF5UgW\nQHjm5mAJAAZ2zqBvKJuqrXp/NDeR+tHtj4aAtfJad2l52RmM/n9+Q/UAgKaIDWedZLAHB4+/h3Ci\n1L7e3MixruRxxnFSedlCatnXTAOW/G1T7HVKOGBLCuQsAExgCIvoTgPAUVx05r9lpGynlpm1OPGN\n2HbHDLihi24Hqr1ZaectQ6cNMYPMWEdlXN/QfA0WoiTRZsaQfc3UB3/z0JV9Rz/0eAP1Bi80GTOp\nFxRQ6rKuKmLD0LmaL1RHaSmyAgB9w/P/Cxi+9tjP/cR78/KObgDo7l8kNmLKat0jMpOqmsbfCcUq\n3Mx4f/e23VN+QkDsnO6BctHrr60GOFURsTyXQCK1TASxLu08NE7tSDjT9kajsCqsJGClnqZT17dB\n13n0bFvA/GQf8wWrnNKQIHutqkwtvLRcbcLJgSUTVkYZmAwwDap1pZaIKGuWTz1BKtGXJw6br6l8\nkDFQXjBM0yTgOMZgeeFh5OFbME3COI6Zy3NxnVKzvjgbn08O5qS5iX4WTRZfM3Ra7Opfekxtiryq\nCIwXvf7ickThBB2Umjj05OW913+ya5falDgAUOrSAi/qAJBTFbFGqYn33ny4mr01MFdcitT+n//L\nf8gCWK5XZb+mcqRZ84QBIBCpNDjeAMex5bnJVLbNhx0AMDeZyhKCrI3kqaF9EwCQcrPgsOXVC2df\nA6zEI3fB5fOHHNt3qzabDeuQw7EavAbLJwCwN5FT1nVH0bYRXDh7JF1YiDmFKNzmOhs5mQJLsYs4\n8ngfD+Mf45u7N+vzbwm2bCPvsPE8sOcd7yTsO3LigkPRT9nxzWEQvAErljxv5wnHoScvY/LDIawu\nR96pl70Y2JnNz9/uiwuSgnCimO/fMZcDgDtjAwcob4QJmAjg38IqQkh2HhxnYFYFFIfy2imddAA1\nVeH71KYomAYPyhmwyS3VVYF5/DWjq3+J2IhEsRbuChsBnWIMxPa0g67yTgw5CAGiiVIDgKCpPJgd\nCEPWenH6sYAAE++PgBc1jTGiDu2dEnWdCBzPhNYbtLgBvlmTsTjbTQgxEele0SSPBmYSSqkJw6AG\nYHKheInneD1SXArzSkOSg7HySt/2+Z0gQPZWH5/ozaO4HNHvXA9emb2ZKnX1L2F439TjAH5p96M3\npKXZ+PhSthsL0713PL7mta7USjYQKe+knCEM7JzxFBdjtXrFt86jUWnIN9/54RPf6RvKpnrTC06J\n6kv/x7/7lRQA7Hrkoze+8Nvfay+ZbZnUZrrb14t7Y0gVFmIY2jf5Xa+/nrMRG8AakrlY/bWSXRZs\nJC+3NOPkeQdhW445U7DjyDPWfy1TVr3qXefVtp5awsohCCBvJTFiGZxGBi/ehXiZtaATwCJ031jr\n5y4Ec3LP38W2b/BsW4GwM482Vv5+zX53Ae+wYLA+xl4AXhDU7AXsZktau7KjbYedaGJo/6Sj1XW8\nqj47ODrzPwD4XVhZVLpBoMBKGcXDCicFLOSO2kq5RRDMztwcqPbvmI1ynAE7mQQDA6lX/IQXNE4U\njabkbfKEMkYIKHG8yp2UVE5kuY3uq/kwmBVthkQqb9r+59rsRCooiip4QUNy2/K6UFVio71DkTWV\nyoxR2Wpjda5rFDxv4s2/eBLeYA2yr4EDn7pKcncSYCYVmjUJuZkkmElNUVIbke4iDJ0KvmCd11TB\n36x5KaxCEWEwNFLDcxoIzNTwXMkbqOf9oUpE8jaDdmguAPCmwYW7BhablUIwP7TvdhbA1PtvHryZ\nSC0/+t4bh8RAuPro8lziJ7Y49k3H1ARYlNpNMd/6+3OXeofm4AvWZNg55Nzfum8oi76hLCY/HEaj\nJrfXZUsBSF4+fyiHNUUX7L43dNpw2maQ+aHTzhu0lL63Pxw67GqzjoK5+gzD5fXmUsR1cp6xEXZt\nD3fgCC6sEyHscb6Fteq/l1zNOwasZO5Ob+W+1kmzvlEb5/eX7/HutgSu97XOGYdfS+0LAMgrDQGG\nzoMxBHzBxl2mkevv7sK2PVNPUWp4ZY/mFFUcAVBEB0M9AOddWyyenaMNlmOEg5I3ACyvLESPMUYC\nxcUwKS6Fjf6ReScFtJAanmM2SpeVhpjgBZ2BmIxwMABXsQc3mjMg3pcHnMg3gGoqDVDOJOnd05Yo\nba0BgzHCO7brdjANjpaLfviDdXN2fJAOH5hAIRdDrKeAT3/+b8BzBgzTdm6v+eALNqnJgP4ds0yp\nSywQrn8w8eH2/asrQew8OE6G90+agqRz9mYq27MwwYDKqjdQLvh/S2nyK+F4+Xw4XnkIViZclhxc\nbILgL7r68jlYlUsRTpSOUc4UHn3mJ2TXI2NL77158JWzf/K5dXI0YGV2OXLiQjras5I6/STSF141\nZWa2vOFgr4HU5NXtyUBkNV5cCucjXSWHUjuI9xWsFTx8BZvYbZ3xsUYtP9uhyWnbldbpL4k2c1xm\nvQKw4xjtSNQGd2P6JwyZDkrKDted40/SdHaXb8BG0JLRJ64MwReqInur/6yqiJdef/mZqdNnMsD6\niKT03GQKg7vuEBOog2iAZauO292k2BmMOgq+g8ffYx6fchOWCc2SixgEELwG4JdsGViorfoeNgwK\nEGb2DC4Qj7/hyLmO3NyyboEhMne7lwEg8Z48gtEqZxrQdY1r8ILhoxyo69MasCj9HQBhMPg0RZIF\nSaWUGA79Bwj46RuDTBBVEkmU4AvVAQbk5+OIJguYvpGGKKsQJYOOPDwOSoHufif03hqrsBiFP1RF\nz7YF5vEq6q0Pt0uJvjxhJuGVhnAkObDADYxOGTzHoOscZ5pghIAQS8zgAahgWNFVMeAP1XUQs9Cb\nzl0DcA0Ep7DG+QAAGnUxQRipdw/ON+K9BR2Etb7lkRMX0qOP3Hjh9AgqAErkeXwZODfmiF+z432H\ng9EKNEWQKTWbLz6fwekzmSnYVE7XBNTKPtTKPjdL3L6At2TzvU+WNnePPjvGb3egjq1w0Ax+/48z\n+Bf/CK2qP0R7Bq+75+E+LgF4PbPehXbDybYpvh4Y7mcT2MIGtw5a5rWpj7ZnL756tJWo39UmDQAX\nX33itMfXgC9cTgLwMJM62UZzWEP0JGyniyMnLqQNg6+BKD4Asm3fprbs/PMAAIKGrvJ87k5SYwBr\nVr1mIFL2CqLGUiPzFAyOIqUJ1ko+wW3fM81ME4QxwhgDTJMSMCKbJgh1LEIWAtfsY9UOuvGUiwEa\njJShaxw8XpUx27Cf3j1tErvwoqFTahhUj/XkOUpgDO2b5PLzcSKIOphJAWqattIPjIHpGlcWJeUH\nHp8CAD8HQOR5UyothZnJCDFNInC8CZFpaDY4VshF1XCiJHh8TY3jGLXFGg4EXUvZLoEZRCiXwoEP\n/sa/GwC27Z4uh+Plm/bmlQOQhEnBAG9XKg9eMK/aT/zlQ09edr6Z3/4XcBAcLhaXo+Y3rryzt+U8\nA1ib/cx4PwDkCSEO+9riDuyFFQAsd9Yv/Pb3pk5jrVab0869wBxl2+JMd8op7tCBRfW5fzgyajul\n3AgRNqCYLvn69ztpsdsrr7rl8b/VbDEb9Zu5W2O+TnN+H/3f1bbl6x7tWTl28kvfT3n99eSuR8Zw\n8dUnvnjz8khA9jZ9g6OzLwFWtplQrARfsP6Gff/XAPwWLPbTeVGp3/pX/9vXQZjIcUYMwAQAGCZp\n+aMTglVYpirv0mw3qRSDkiQ31cHd0ywUrVjpmhnMRl0A5UxDVUQ1EGoQWAo9CoAxRohpUGIawO2r\nQ6YoK7R/R5YAhiMQaCsLITMQqXo5wdjJUQggQFdqCQB0Apgmg8BsFxfDoBzPW6a0iSvDOgDWNbBo\nRhKrxuKdJHSN55brMon3LZv+YF0HIFqbAiHllSAEUf17AObA4G3URc/g6B2s5GJEU3kYOo+VhTCS\ng4ustBxGaTls1lb9amokW/H4GyYzaIXjTQEM3M6D4w0AH05dH+yrlPz9AMhytqsRjpe3Lc/FwfH6\n17yBWrGQi9YJZV5d4747sDOL2fG+fKUYPHbt7b144hcuJrv6lzySR3PSOLll2LfGLu1Ot5+35N1f\nBwD8yv/03WO7H7vhOL9MYc1c1EKGTu6smQ2is4pL4ZQoK61FaLPxKVjuvPfynLtrod8nAm5EbZ1o\nr04s96bmMRecdh2/uFGjzeZ4D7n8rlj9j7v5tNg9J687AIDhhUCkspMQxpp1eRwATJP2MBMBRRGB\ntbBBAUAMltz27MJ0NwC8292/2Ec5ZmVjtZJR/CelIf1zQdIopSY4ygArOypNDc8Z3QO5OY4zugiB\nCIuVbQIgpsFTQnSBmcSRwR3NOCaujECUFAiiBrvIAjVNWwluObnxjaov4A3WOcqbjDm2MAYYBsfp\nGtVNXWAruSjleANqU0C4qwjKGfCHy4W+oZwPDCIY+NTInJqd6OMBoLgUoZQaFUHSvIJoorgYEwHC\n62ASLMWjl5mUqIqAaHfB2twoQ1df3gDQqBQD/7Vek4sDO2cer676oSkC5ib73tnz+I3PgmDAfr60\n2hTVZs1jKRYooKm8aOhUUJoe8LyOcFex5gs0AGLVc2eMxJWG8MuB6Gpz4U6yrjTkPxk+MJkFkFrK\nxvYKohZp1j23erYt4plXz/3QLWK5FtAxAHjvR4eTkx8OO9rs+2FLw+0nnj51bur6u7sct9Z05tUM\nYBV3jBOQPNYQ3V0ZZp2NfQvQ2rjucV9HB5oHgJJz8AlRfPcGfM/53Q/S87aW3LnB0nxabC4Igdis\nWyHUHn/jjMffQGEhZilnGF6AheSw74GuCVDqUg79S04SSIChB8DJD986UPL46xwAHDh29T8C+Cdg\nrfv7rFgvS77WFF7QVE5fmY9rgqzwvKATM1gHsx1WOIrizoPjEQCwKTwFA9FVHrydkBEAqZV9XKS7\nBMAgjh1seT4OpSGCFwy896NHzf1Hr1BdpfCF6tAUCRyvo7bqb4DBCwLNNOEBg9w3NAcCQFUEU1O5\nMKwcr2YilTd0jdQ5nsnMhAgCUsjFUMqHwHEGI5yhDuyc1b1+ZQ6AyAvGp/zBunr5zYNhf6gSCXcV\n4Q9V99wZ6/9pOF4MAgSSR53aefAWwCAC4MslH1RFSDTrMgydK5UZbQii+kSzLuH2te37uwdy2VrZ\nK3G8KfKiLjUq3vrUcjQ78oeTP2RnMJqf60IgUk4qDTkHLLYcTeplX3s+uCyAdkeXdcjhLKjMy7jL\nldWGALC2CF98Htj1yEeIdJWy7gywNpK3ZPIN2NbWuO4+cTeldbdvt6fDdc2tc3BT4+84B22ybzt7\nv1XqvCHLvQkX4f491TaP9CaUf0sKufW+7hbyVgCk9x259jaAHtjaUK+/jnrVm4v2rFi7jYVMjkmr\npdVUmyKUhjTu8TUPtJAdgCBpY7JXiWgaJy9lY/FoV6nEi0YYAEpLETOaLHDMZCAcQ73qMSk1Ee1Z\nzsteLUWoaZuYnMTMzIBVECIM2z4PANPX00jtmIXkUcBRhuGHbrHp62lwnKEWFqPijoPjJD/XBY4z\nSHJbTv7F3/xBS0efneyDkyornCgOOApAQ+cIx1vWQAZg6qM0tQo/qGbX4LxJCUh11Rf2h+qEUmYy\nBsR680pPeoGfur5NFySV6BrPAYoIBnQPLIIQs0tVeMnja3CRrpJBqImlmW6vP1SNWnXbmWXisag1\npq+nsTybSHCiIV97e+/5rv7F/d2pJVDe1E2DkpVcvBlL5rE0m1SjXaWC0pByP/P5c1NOZNncZCrb\nN5RFcTmSdSLTHDjw6fdbC/7K3zz8HaDl7HJfYC/E76BDggmnUmuzJgMOMbGQ/K0NFudp2KmwATiV\n3cdgLeoX7N+zma1na/mh/bcV701AnHDYEu5GuK+4jp0x7kKoDcZ3m+62QpU7iiTua24uZbP2m4GD\n6NYOQ+CrlT2g1Jy6fP7Qd46evOhMOLfr8NizsF6M2wSi2X+XAXy1fyTr9PUnsCqIDMIycw0eevLy\nnaVsrLdRkyuGSU6trgRvx5LFFAgaiVTeN3MzdVuQlW1dqTzRFEnkeF2nBk0WK34dBFy94iUcb4Dn\nNSM5uFQCwU9A8CycABIGyzHGZu5NEyQ/l0AwWiEcp4vbds9gdjyFWDIPTtCdjDOEmYDJwPqG5ohD\nteHkqAPY4kwS3QOLYAzgON3Yvu8WE0TGgwGqyvEgJmlUvVDqHvCiRhdnkrqh8YX5qR4myspcIFIO\nRbsKYmnZ30U5E75QXerqXybF5QgZ2jdJAIByJrn+7p5GpRSAx9+gqeGsKHvUNAjeBgBCcDgYqwiU\nM/gdD43nQYBgrIzqqh8AUFv113lBr4fjqy/Z7HprgVmKsnMt+e71l59xglqmnj51bur8X64Vcch0\nsA1nkBkd2jdxDLZ3nDuirMNCm3L9bVFkxykLawhwF5Jn1ruB7oNVudbrrLfMmtupo7gLu5RmDvVz\nKw4vwfbayyDzy/ZY2bXPi6H2Z70HrJOXM23ONZttOluF+2X/26h+p+ut78O/+fnj33r/vFV15eHj\nH+RMg4PakHxg7PDCdDd6ti3mwPAsiF2HjKAweXVbxjRpvW/7guENNNwkIo21Hfts6yzBUwBqlVJw\ntFL0BcKJVS8frIdAUAAwB0D2BurLDKxvdSXYDEZKkuTVbwLYBVScQoqwA1UIgGEAwy5HGWYyGIRY\nyjpCgIWpXrO4HMauw2OEUpOAAbKvaUa6CpTjzZaDjBXswhFCWiy/fd6auY38+it//Kxy9HNvqaFY\nOQzoDATmxJURc8fDt8R4bwGUmliYTvK96XnT0Lmsx18fXMp2ybKvCU0VVUPjDBBTln0qOKpj58Pj\n6vJc3NA04SOe1+AL1c8c+NSVQwAk3kqJNQVbWbXvyLXA7HgKoqT6wolVlJbDpFb2XzV0vro00/WK\n2pQweXU4e+DT738xO9FfKuVDYavkEkYz62zpF9IXXz069frLz0zN3+77dqMme2LJlQFe1H/kXhju\ne4AMzr309EYU/i72GmtsZ+taG2sO2NaZzFpCSQfCrmPHw+8S1m8cBFZdv48LWXv8b9pz29Dx5X6h\n04bTqQ3uMyfdPcSFLfXV7uv+4r/9x1/F0L6JY4O7pvbWKz5LWUIwC2AbAAkMfaZhcdLX3t57+dFn\nfvqKfe+v2H/jABxPuSwsTW0CANUUkXoDDYS7SgiEqvFKySuIkrq/suqj5YJ/J+UgCKJmyB6FA/Rd\nbfPTADRh7dJrLqhWcQdDbUg1UVbDxEpUQ94/f5D0pOfQqHog+xrgedOM9+Rb7q2aIkCQNKzkYpi/\n3Yvh/ROQ/Q1LUcgsRNdVQSNU5zRFLDz5hdc5j69Z5XhDgpXptkEATdf48O1r22m15Ee56Ed3aon2\nDs3vNnReEmVF1FQBvKD7VnIxInsaXDBas1WCaCZSecV+nsLcZOqp1XzoTiBSSYE3SpWiPz0/1fNs\n7k4Sx55962dSI1mRELButlQDwR9MXt1+WKlLuXhP/kuGQeo7D9+o1cp+EGIeFiRFOPDp909f+ZuH\nO2qCj5y4kK6s+j2UmMH8fGxp+vrQd7CGcOkMMrhw1qL6TopmB1wypmN3d28C7V5k65I62ojtKHLb\n5fBO4CC7Q0BysGrQddp43H2NAWtFKV3gPOPXATxrz22dF579txN13tQ5qL2PrUDmEzTftcv+7f3x\noqyE7bztAAA7sV92cPTOXlhIm4K1006DIAEAqiL1MZPo3kB9Lxh8IDgAK/47AoY7AB4HwVkAzzZq\nUj8hJqPU1PqGs6uUMxKGxkFV+UBpOYxE37KgNGT4IxUWjpchSoZTjYVaqnKbmya262zL5w0EBKZh\nAIZBsVoIBP3hKpW9CihlOPmbNkOx5jxDmnUJVogrw9xkH3q2LSDSVUCiL+9uxwyDYPr6NmaalES6\nCoznTb+mcdTjU0yAcAAzAUi7Hh0Tb3+0jRBiYu8T10Cpaco+hQIgsWRRu3TuYGlptlslBN08byz3\n75jtlTyqk6XiPwLAnbH+pyJdhW2Esv1zt/sWZG9jacdDE3O5O127DI1L6BpXNw0KyjHLJd+a49Ti\nbOJ3eEGHx9fcXi35jUbVA10T4fXXDUoYE2UlcOTEhbQTHAJYseZ2zvbUK3/8OZlwpsA0HthEpiws\nxFKuAJXN2m5FNr2XzOrI+E754RLWNoScfW6dE4+zibR3lEHmWPu5DaB9g9gI1lFp++9zWxzDPa8t\ny9WfJPBHTrz9ohMhdOHskZbsBhdVvnD2yHe6+xdTdkDEY3seu367VvYEKDV95ZJvl9dX8xgGD17Q\nvaoiDImSJnI8ugCEGaMAQBljWJpNzImyFijkoubQ/klPbTWAWE8BjYoPCuchwXAdsKqbEgaslUwy\niUkoM0BgNGp8jRBKCDGZJOvE0HkfGGHx3rxgGrbuz0Ha9c6PZGUhjkTfMgSqWuGpVlvNDmRpwop6\nMxoVL9fVv1RfmkvMffTOXikYLXtqZa/06DOXoGt8QZS0mC1C8Nt3TxuwShpXANwyTRxiplVccubW\nYLBe9uqhWNnjCdTF7K2+ZV+oWgYAmPRkT3rxrK5xXsZoguMNjyirQdPkNBCMl5ajTQDdYBQAERlj\nPCNAsyr9jMevwB+q1QBg2+5pZeynozov6vLcRGoxnCg2ZV9zuV71QhA1TFwZOjZ8YNLxZZ+6cPZI\nOt6zvLc3Pf/dSsmPt/7r8XWOMbCjzV5/+Zms7Z6aZGB7gZam3AGHOk+5fiddx+ugk3IMnbOsdIL2\noJhO0OIQNkJ+FzTRmeJ3hI0UYA9Khbc49icy3mY5456FFeTCot35pXrF8w7HaxEA705e3Y7JD7fj\n0FOXf5Yx4vX6m6Jh8BwvmJxp8iKg8bDqh2m3r6YBS1Nuchzb0ZPOeQEwjjMrQ/snCoSw/oHROzzH\nmcTla24qDYHd+OluKnsbpijpq0P7b98GAF2TBlfzoZIoKbGu/pXK7K1+UVOE6va9txPZiRREUUXY\ncWO1RnZ09UgNzzEAxDRhMqfuOQNHLLOeTCxvt7cXZ7sOcoJeE0V1JDm4yImSwmI9+booaf8ZwPFG\nXeiSZI2z/FdBYSmIBAB9xcXIDVFWEqZJb3/+f/w/EwAKU9cHt60sxIQaGM8M6pe8CpjFnTxVKYQQ\n7S6hf2SWhROrMA1Cm3XhoUTf8pwgafXe7fPgBUOrlT09hDNRKQaqHr+C8kpoJ4B4bjrpm7w6bGgq\nJ8heJSrKTZWA/qCyEnwDQEpThb3OS7UVdSgXQvncdE9uaP8Ejpy4AADuENR2FrWVrLB7YAGB2KoV\nAqbzqcmrw24Wep25a/ihm3/k/Pi1D17+djsiu2PJ7ZrsDkeQBPAugJxdox3nXno6e/HVo26uwoF2\nUeFeHIOzAf1eZi2w5pg9Zu5eG4SLPW7Z+l0U/u9sA9hkrA11AzyAtOxrpgoLsezFV49Oferli44i\npgJLLmaNqrc+P92bF0U1n94zA7UpwuNvxN974+CPYj2F0fx8nAKAL1hjhDA+kVrmOF41wbDoC9XA\ni5Zyvn9oHiAoeUfmMHl1+3+6fXXoUiBS/lZPej4peRQhFC+ZHp/aBCDMT/Vx8d5lwom63ju4tAJg\nDwDM3+7zGAaJeH08bdZXuaG9UxOl5cAIzxssvXuaODnhTCcchgGEcwxw0MDAgxHq5GnXFEEVJE1k\nDCrHgQfgGdo7dQMEXZpKOY43KQCDUizC4nK+aGoCZ/AGGChEUXebGGOmwfdoKqPMJCGlIUwwkxK1\nKXqXswktmlyB2pAMv1bnYRW6iD70M1emwDCkabxs6IQqTclYzYc+uHph/yuf/Qev/nNNEeXiUthb\nWg5TUVJgMhr68MLeP5K8CgOw3JNekI+cuNDkeIOu5GIGwFhhMRJYXQkh3F1IaioX8QZrDrJn62Uf\nXn/1mUsA0Ds8l3LKL9mI3lr0zqIZ2jeB6qoP+fn4r+sapzKDiuGu0p/lppMt64trsbcWli9Yr+ga\nt86m3glc8eaOvN9C6MJCrN1xZLN0UJ0Ug3CN75bzsx3uybraOve1I4x7M7pvE2R7nxu9lwdl7zs9\nAw8A/lDlWUrMyuf+0X/F6eN4EcCxelXuESXVywCte2AJfUPzv8HxOiolr6Cp3BvxvmXEuguPd6Xy\nOqzQkzKA98GwzWabRRB8RWlIX2/UPE1e0NKmSQIAI5RCu311+6/3DmW/Inua/rf/6ogWiq2S/Z/6\nkPUNzatgULfvni6DoAuAXit7UrK3KQPM2PnwuDlzq68Zjq/6DJ33g+mjmirxzbpmS+Js2etXXpu8\nuv1UV/8y8QXqINRgsJBRBIArP96H/pEs84VqqBYDfLSnYLnXWg7kVhA2A0Or8DHhDB2DHMeeNQzi\nu/bOXmzbba2l7tQygeUjLwEQE6llZpowAZClbEIWRU2uFAOlULwcE0TdCHeVctt3T5NaRd5RKXlH\nKoVAqje92HjvjYeN/h1ZvrgUIYme/F7CGZOFXHS1XvE2axWv3xeqlkFNvTAXnysuR2HolACAaXBg\njHC6KpBmXaYEYLyg+7sHFrPRnhUsTCfRqHohiGp8drzv8Ojh6/AGa5ecXIATV4ZSvlA1ueuRj1K2\n9r6FCBlkxtg/s5Dxr//y+K/zgilKHhU923I5UVSTskddZ3Jza9c9/gZwj4qlQAuZ1wED20tA8qWV\nUPwH3/5F5/RbmfXUs6PG3724O4Aj53dCpq16zd2llGtXhLX173YA6jS/zRxeNnS8uV9Yx7orihiY\nuDJ0LNK9sre0FLsC4EppJXTt0JOXs2D4cwAo5YPE62++BQBd/fkoGJZhsa5vAMjZlDMLgtT1d3el\nIt2F79ZW/TnGyD9XmqJMiCnIXo3IvkY/5QwumlzhfumFv+QJZ1JD43RV4WVR0p3QsIqm0Hp+Idqd\nGlqgACjA0Kj6/I2qj4iSYqZ33+ETvXliWPUWsDjTDa8vdyDaXWh4/XUPA2OaxplaUySyRyGUNxGO\nl9GoyaxRk9E/Mk9hm+gAmJrGpQBolDP529eGGMdrxDQoetMLxB+uH9U1QX/kMz+hDCActRC6pQew\nVYS6xnOUMq5cCOyMJFan03umVmLJogCgAruYYm462c9ATMaIAUBfmk2y5bluZmicsvfx61MgyOs6\nTyqlANFUgVLKwszboM26HNc1Lq/U5Q8uvf7oK/VVP5LbFpKPPH0JuibEVUXI+8xabvcvXnAWYvbm\n5ZEXeIH4cjPd6BnMOXEKADA1d7v3hUC44ot0r3h5wXyH8DqYzsMJQPnT3/+Hp3WNTzKgd3EmmV+c\nSVa/8O5ffPu1E09/tntgcd1ievPzx79Vyr8fBoB3/urId1yX7kJKJxDGzgyz/hrINQC4fXUYWOMw\n0sC6DaUVMPP0qXNu9h/YWKnWjqRT6KxUBNb83d1Its6EuMEYnTaijdq5zZCt59vKfZud68QR8OR5\n/PDNz/d9DgAkT+OJciHgEz2NHk7QfwIAyf6clXGGIAgGTVNEQihbU4xYpjfAsnf+MazsrV4AH4Vi\nq/XiYvSl4nIk6w9VYZqUElACpkFTRD4YqVK1KUERdZZfiGqGwRmSrJLkwEI3L0JZmotxskeRaqsB\nYfx9vy55m9zg6B028tA4CEAYs4olEQI28eEwESXF0HVeBwFMg/OUCwEQytCsyWqj4hP6huYgcgq2\nWUUViWkSxhgIMyEwgDGTMqUumYSyJqEmHd5/S75zc1DoSi3BNDkegG/udi+SA4sAYUSUVJPjTEYI\nOGZlzQEzYWbHU8QfrtJYd0GM9ZT67Q+YBCDZSr9rC9N9TQBgjOgjB25rn/vSD5qwCiMSMOw6+DPv\ne2++N/pmtKvw+OjhsZDX1wwV8yE9d6ensjjT/QEzuFeGHx7b649UsJjtygOAIDcfF+QmVuYTtwEc\nBIA7YwPh6RvpSiheglKTfKoiIZIopgBMkecx9n9+OlqplPx7gtFVTyBUQ3IwdzZ7qz87aSEZZm4O\nlnzB8uMcp1ej/SuLS7M9mQwyo97ga+juX0wNH5jMslPrI9hc4EYit119tP0c7mbRHbiXEq7T/esg\nsz4u3hn7NCytftj+7XjKuU2Sboq6FRk8tcHxPT3k2ufb9o6+mLlHTTfXvR3naSeeOP8NAPir//3n\n+0Oxkq9cCK7ufXzMiTPvn7mZ2pscXNSbdbmR6MsXEqn8JdeDhD+8sG+f5Gn2p/dOhUVBt9lg9AG4\nFUuunIp0F2qRRIkHsMKLWgQAnvrCm6p9v3jz8g6q6xzH87ogexSAEAbGjFrJLyzc7tFSI3PwBaoQ\nZJ3YenioKg+tKZreQIMRjmk7Hx53MrEkAHQnelfM5bk4WZrtwtCBCd90IYRmXUat4tEC0QpHCCPM\noBS8AVWRwPM60VSBLM11mTyvI9pdkBpVj9E/cofjOAZKQcFAt++ZNic+3L4SiFQClDMQ7S6KTING\nOcZpimiCMVYpBVFdDUDyNFmsp1SGFQ+/C4ACoA6GZz/1ixfGAOwCwQQYUgB+CIKnYeXM9/RuX9jT\nu31hAAxRAGUAJDfd0wxGK3ykq5iQvc0kIYAvVAEnaCdnxnvlcj7czQnGnUbNg0rRHwaAZl0KAKis\nzMfhC9VquTvJS0dPXmxVSgnHV0ul5ZBOQPRGzYOHj1/J7XpkbOqZV885nmrH/OFaj6FxyrZdd7qW\nZnsA4NjrLz+Dg8ffg12L/tiPn+tOE6KEw/HVkv0dOvpxty3i9kXqlvUdrX5HuTyzcV65TWuQbQIV\nWB5u7vk5fgDtY28kQ2c3ON4MNtsEnGulzTrYikzvTveMuJX7vGYafA0WhT4MgKiKiGZdVpayiYog\naoVKyffzkkeJhGLVfgBNjjciusov2zHnDLZLqi9csfsm2koudouBRTnOqCb6lrp4AaRelSRB1JWh\nfbc4XmDs5uUdsi/YABgljBkeVRFJMFoJlleCJJYsspuXdzDK6ejqy2NhOgmAGISw8Z2Hxpsg6AND\n0ImKg5VYEqoiMkPjMbDjjun1K8bE1e0VQdQjlJpk7nYKoqSisBgF5UzI3ob5/2fu36PjuM4DX/RX\n1dXvB7rReDSIBsgmQBIQQYniQw/QtCVaZCKLtuY4ySSiPLqTxD65vrz3eNaN7cmdu+awOXPm3MT2\n3FmeNYrPnDiTOYopTsaJE8qUnRElmTYNmrIoShRJESQBNgk2iMazG+j3q+r+UVWN6kI3AMqZs+7H\nxdWN6l1779q1v/29v29w7433UePnN1195yFP5KGYgKAobm9BkWU1Kq5SkoJ3PtpUkiui0rZhLukO\npB1L8wHsjoKlWhXFoSevIFrUkNxSUWqNXYv0tXbOF9q7F86OX9n0hL99MWy1l6w+f7aiLb01l3WE\nHM6CVQ/sQUBUZCyiBaGqxuTM+duT//Hc330y0d0XD/Vum6Bn6+TcTDzYNjfZTqVoo5C3SVJZRrJW\nvAXNN6JctLkv/Gj4q8D+Z37nv4VQC3DUkOmnP+CSy5sdzKQ8imiRs8PPXThnos7nHn3q/S6nJz8F\nwBs1RxlAlbFt9lIofqsnFN5y75Wf/uCp2LETUZ76jbNATaOub0i9X6MCzgjr0iDrsMz+Gyu1NixV\nZIQ1WWrj+KyfGq9HSbgC1nkQ+dc5h6YgYVjsxw69q/oRKzWtaxg4cfavD7xocxZ3WG2lQPETlxWv\nP6Pnc3Po+uzFOb9w4+LA7EOPf4SiCJSK1rGPLgwxsHd0k8VScXpbF7cUsk6HzVEUFUVwgsLCVFD0\nty9WHe68AgrbHr0JAnIpLwmlkq2y5ZFbkjGRxLZdN5WpO52CZC8LGwfv4HSXrMCAHqOOmgmW5Tug\nWLDJFmvVIiCDQLV/x+2ad9y2XTdRo+WsWO0lgl3zCrAbNU201Lt1QlBkgUzKg9tbqFZKVotoKSs9\n2+7IG0Ule/tqv1tBILfkEbbuvJkTLUpLIWsTcxknNkdZsTvKpbujG+eLeTu5tHsBZeFhuWrpFkXF\nA6QQoJCzuYDpq7/YvmnH8FW7KMqCYJErav05xaUoSrlcst6WK5bZSknCai8P5TKujR+OPLzUElzc\nll30UCzYH5IVMdvePVvZOBD/LhA/8c0XjvbvGN8OcOxE9Cvf++MvXMou55Cr25SPHXrnrfbu2cRD\nj1+PCy8y+pPPP/UdgCsj8/sXpoNXWoKLC919k1e8gUzqb//0N9Ayw+JwF+LnX9/HU7/xdsjdkm6r\nlKQ9ACOnh82FP8ygK6d0DbtZ413nGrtOCm00tTXVwGsQRnXOaVZvzcxZYGwbrU+LtcKzztRXk+nW\ntVmLw2no4bjGPd8x6Bi+LGEwZ9RAIIShYNsX/9V3/+TW5b5ve1rSvvlE0GmR5EBVLQLwDgLJ7Y9/\ndHXufusRbyCjVMoS6aSH29ciiqwIW2LXImMub85ZyNuZHOtyOD35zY//2rtWiyUnZNMeSkVbOZ9x\nWvwdqZnOnulOySpn4rfDLW1dc5JsrwiiRVb90ATEctGiFPM2BEGuSraSnm5ZQos0FyAH5DQ5tx0o\nbX7ojrX2VGAplS1uq7Va97hbdt6SBQE0y4EP1ZnCe+ejCHZnAYDQptmF+Hh3e1vXnCLLoiSKsm/j\nwB1BtChVm728mF1y/8zdkv2NiVs9QmfvjABlAbDLVUuHIoufmrrb9dMNffGd1YrUMnOvwybZyqIv\nEFvKLHo2ioI8LVnLbRM3wymbo2SxSpW0Rap6rY6SV65aM3JVDFwZeTja2jUfzi56Ermsg5bWJQo5\nhyMYmi+E+yez1Yrluuaffw4g0JHE37GgHsLzvue37flov9OTs4mC8E2TSYt7N3sTpYI9birRxI59\nV8799AdPffuv/t0Lhk0URfmj5TbnX98XmZ7oTCwlvaRmSgn+TwYTkpjdahsh+bopta70a9LHMe17\najW52YD8/91s6+vhCiQtNNWNwKuAsbi9UUMZKeQcJUGQ83Znqdzdd9+YNTR+/MVo7Hf+8MTz2SX3\nLbcvy41L27YUco5NkrVS9vjTGYeroBSy9if9bUuUi1ZrpSwhyyLbHr1ZLZUkZer2BqGQdbTOTQXT\nod7Z1zdvv3MAhSBqrhnr4rwv52td8iSnW8kuegV5w4IFKiBU9QywqolLjSG/pc3LksvZA3ZH0SKo\niC9Uq4IiVy0WxVJFEJc972RFQBQUoVoWPBZJ0dvz8CeuqEeMmvHGs/mhO2Ug/+H5IY/NXirbnUUH\nyJ7ERNdsa2fS27P1nqVctAlWWxm5KlQAy7ZdN1ML0/6WStn6pIDoG9h9I49ACYUFoE2pioJiweL2\n5RWbvZy32srWtq6FsmStVLX670K1Kuquq3EgvDTv4/6dEOWStZDPOreK0rwrl3btcvty74PK0o4c\nWUy3bZjXowttrV0LAKW+7XfiBnY6HiX6Y+WPaqmmGml+I9uf/PAowN9an09f/tmjx3U/eH1/dPdP\n0q3Z6Mev9MfePHmIT5w8P1rbhsvBMrVSwdQjWiOk+552Tx74UoPfG4HRzp3Q7m8UkbfO7lYdp+am\n+zF1Ak05mAbtfmXPPAlII7Adhee178eByNjlvnByJhDqf3js6w53Hn9w8U466T2VnA3Et6hldSMf\nvTMY9gaW9uz/R2f3hPsn2wVR7nZ5Cvmb7+N0e3N+BETJWvUtzrf8om3DXKa77371/Z892pZd9CjF\nnJ3O3tlyKW8TEBRRELDKZUlAYRvQpgWrCIBYLtk8smwRfvnGEzz8icvM3w8qGwcnysDl2cn2PmSh\n4g0utdjspWy1KvpRKNjsFUmuWCwoooigqE61ikWMXY3QtSmBaKkycaOXjp6ZiqIIgtubLaeT3oJo\nrRRRlErbhqRHFBW96koRyBQLNj/gkKRqpW3D/CLIDgXBapspezdEptL3bvRWJWsVASyCoOQVGbei\nCP5qRRIFFFe5aBUka9Wqudw6ALE9PKcAxWDXwjuoEVXh6+8OhHq3TRy2O4seUZTtqAUjw8C53U9f\n4t7N7lAwNNf29l89c1pW+G2bvWRrD89au/vuvzW4dzTyk88/9RWnO8XVXwzdkKzVl52e3Dc9/kwX\nAAov9e0Ye9vfuRACUH6XmDHTjHLifE05q6aXemrAG8ikbbaSN530hvp2jO1/8+ShuI7IURjQw1DV\njXem0T4zchBmn/EIy9zjuVWo6Gr2ZlhGlDW13Q+CIE0gxjp8BB6kP8N6NFWsRdfINmtqW8dl6Hb0\nMiqSp7TTPja491rY5cu2bRy40yrZJHq2xnVqHzvz6sGIy5cls+g+EuhYwOYotC4t+LBYqnaXu1Bx\nebMWyVpBEBWhVLCJcsXSHuxakOzOov/gC28gy4IsoGQKeenexM3eyNKCL+105602Zz4zP+3f6fQU\nLFp9NUUQoG3DHIIAn/3iD2vlk0pFCRRlR7BrzmpR66YLxbzVWyzYHA5XsQzMpGYCLWlrpSgIivXO\n9YjgcOfY8vA4Lp/qHmu1l1lIBIuCqLiyS26b1VayVfL2imQrlzR5GEFAqcqCVa4KnsSdziqCYnd4\nclWFatv0RJewNN8iISh+i1R9ctuum4KsCKIiI9++utlucxTn/O2LnrauOSsCVk01oKbKUrgOBDU/\neYCXPxwZOtq7dWJrz9a7Lrc3f2v8St+fO9z5QGrWh681HfpPx7/E7gPvHi0WbO5S3t56+1rff9i6\na5SOnpmSN7BkHdw72gaEXd5sz93RjduqFdE5O9lxNLz13l8d+K23D+gvXXem0WFhKhjOZVyhYGiu\nbeSHT84FOlIJtVzT+TURYjWkMWmv9fDQ/dpvxqZ1tnIN2Y2+6A0DZpps/Ljp0zyXpnNu0qZZ0Mtx\nvd1qyNmsf1PfayFtI3PkA4GkUfBjhuCPGsRv9cw9+qn3C7ZKaeWPGlgsVVdnOLWha2MCVBGg2Lvt\nXsrhKthES9XucJWWgBvAjYkbPc9K1nLF5izi9WcEFGHz1kdvWSVrVSkVrMLivC9QzDksDldRKJck\nxWqriKIoK4KAnvJZD1XJTY5vmOvaNNVBGcXiqAIoydkW0Wqr2MplSQx2LFrD/ZPXEchXKzzqb0sJ\nFmtFsEhyoVy0OhAUecvOW0K1YpEka1VA7Vy+dPaRitVecebTbmXD5qmqpyX7wdKCd8hqq9jSix5R\nFBWhXJIEu6PE4lygAorY0poWXN58AIXpCTVu3Fsq2NwWqeqplCVbpSqKIGBVM9Vk0bLNJmd8HxRy\nzlsAXRunXxIEtikI4VLBVi5YK1sqZfFDhzuXZLaFdNKXABBEeatcFayFvNUJUC1L3+7amMAbWApp\n+QPiALIsWhUESZFFN4BctagHtUBKd3vVQc8os3n7OJs1Rdvou4NHoxz63NDwh/vtjtI5Qax6CznH\nq1qSxwexLcOyieyo4Zq5aASoOd90Nr8WfRZtnBMe6g+AWh+YCkp8HMRehXNYcX09HEKTQ8loctST\nbnwaeE/73ig6blVrRLNDRzevvYLGGg4/pyYnGHryKvmcM7G00HJ6cc6f8Lcv1Z2Qb548FHviM+cT\n+Yx7j78j5ZdlEC3IwOTY5b6NS0lfwe3Nllo7F14LbZoKWO3lDYKgWCtlqwUozhccdy1StdsXWGqR\npKqSzzrEu6Mbleyixy6ICnZHUfB3pOjsmcbpyctWe7koCIpNUSiJIqJclfyKIlplGVHNCYfQtmEB\nQZRRK6HSjapUUyplmzA/HVRagouK1VZJxce6W622ci7QmawCFo8vqyalFMHty9ttjmIVwNOSrQI7\nxz/sl3ytaTwtWcXtywoWqWJxefMU8/YKCJW2DXOSljbLVSnaytWyJPRsjVec3ow9frNHdLgKgiDK\nitVazRdytjFBVJwouHJpD9WK2JZedAda2hZDqKWoBUHAXi5Z22fiHb+RmAh9MH03dCrQkYoDpGYD\nJaAkCvgf+eT7B7z+JS9wKp30JbyBpRDAY4fePfWzv/0UoY1TbslWYffT75G4EzqlpZHSU3qfA509\nV8HfnmJyPEwu7YnHx3pqrKnNUfSn5loIdKTi51/fZ64Prgd46HLmMdQMMQBXUCmffk+aZdk2Qj3i\nf5XGTjXwYA4n5vj4FZ5v65XRm82h0QFhorovad9T0eUKLLW1WmPYEs3t5nVWgmjjwoz7aeCmK4Hq\n7xzonB9KTgc5eORM/NDrZ0aPPV7roLZYeiJJLa55P/DKtQuDoY3bJsLViiRVq7Jy7Z3tDou1Mp1L\nuxZKBVt2PhGkmLcn2zbM+nq2xl/T+ryFenLpfIQlcafL3hpaqHT0zGR7t8YvAzsUBa+iUJGrlpkb\n7237802Ddw4LouxwuEqhvh2330UhjWrr7wWsNy9tUzp7pxWLtVyxBdMWVE8zJsc3yAhYJm70ii5P\ntl0Q5EzvtvgfAQfGPtx8SA7PlkSxKnj9ObbtvqkGnChU9fl5Axk6wjOIlmrV15opVMoUALGzNzFj\nkeRFyVrp1O6R+h8en0YtQXU9l7U/XMg5rZK1IghqXbiZc3/3qej2J6/8ej7tDBTzNl+lIjE/1Z7c\nNHCvt+/h8Q9c3vy26YkO63wi2FLM2712Z2lrZOj28z/6i8++DET+hy//7R2XN59emA54Ri8O4PGn\nmRwPx1u75sOCqDB+ZfMem71I77a7pzTE5PZVNWuSVltPD1zRN87AMy+8EZkc6w473IX4pbO7jYjh\nb7Lh9H2xVoBHqgHl0Q8Qo5yrO6o07GSV38wurA1Z2wYIu6KdTsEbjLMaBTUeGhEgrPnpd6FmwUmZ\n2q9W9MKvfdobzO3j6hRqzykBseu/fCg8NHw5UMzbhqAWQlhjiz56ZzCcnA3EoxyKjJyuuT4CkF3y\nZEsFu1KtWBBFmULWsblakbA7C73VijTi8mafUGSRXNrtAC6jmq92z021ThQL1v5AexLJUlW27bpZ\nRCBZLkrlj94ZPDGwZ/SPKxVLWhBke3rB+4GnJbN7/OqmFkUWi70DEy5FFrcB+NuWbgAuFELt3bNV\nQVBKdmfpNgLbUN1Sxc1Dd8qyDLcu9yvFot0iVwU36gbt6n/49hgKGxGoACH0dJFq7nk74Nz66E0U\nBaVasZSBDIhVUKRK2VpM3G0/XczZEw89fh3g/67dkwIuLM76B/p23JYAxeYoK4B7x/CVb5aK0lup\nuRafL7D0sM1ZKpVLqcXR9wa+e3+sm9au+fijn3r/aHIm8FTPlrhNQQi7fdmbn/3S3329WrFkF+d9\nuLz5VyZGeze7PLnN5aItr+UPiAH7P/jZw0NWmx2nu5A4eORMTItKi4y+O3hUe272Pz/yKpoLbBQa\nsnpoMujV8w9/ZWm+xQ+kf/d//ovYodfP1DadHtnWt+O2Mcx1NThu2Ff7WXY7Beo39Cpyr45cxwzX\ndDuzjvRGzqCZDL0iO46ZXV+v7G2AEBAAnKxMd1U7YJqIEzVb+QOKGmZo6EkoHX8xSnf/RGjDdDBp\naKhPLAzE8zlnWNOsmk/CsJ5K6sr5oW2Lcz7rwnRrwOnJL3j8mey+5y58dXqi48cCOC3WigUV0ZcA\nXzHnoFIRkStSRRYUnf2uKILS2tk7faxUsNoW5/2LgkWOlwu2pZ6tcXLvbS1KtkLh3s3euXLBdtFi\nrXj9bVffQWEnAkvt4TkHcB+FeS3YpgMQK2UkEAVfaxqLVEGRRQHYjUKrFiHnQmEBleqCSsnvoya9\nzNy93jsg2SoU87bFvh13Ltz6YOvc2JXIb2aSXvZ9buSfe1oySVSF5kQuY98OsDjrf6IrMv3ViZvd\nX9ywefIRRcEqCARCGxOzCMzdHd3I3FTw0wJixeXNBj7xufPxhakguSU33/y//vOX/19//m9CkrUS\nUbPhbHBbLLJL/V8F2LPzU5cvaHO9Cqob6Oah8dDU3c6Nbm9+KTXfMjRyejgOxD5x8vyPv+V/8qV7\nN3tpDc27De+YRz75/rFK2eJ1erNu4BuGd6u/61r99OMvRr8SXf79NZujSKujmDh45IzxAKjJldHV\n0yTHga82YX1XUFFDO9aARu6wdU4vWh9hlvMbwrI5rnahETKtIlLEgLAW4XSOZeo90GDuxgIR+lxg\n2XGo6fgm0Nn1hvZ641yl4edGIoqi4HQXrho6qENolycX6tsxtn/Loze+GO6Pd0rWqoLCBQTVuwg4\nsGP4ahEF6+1rm+yKIvoVRc3W2dk7U0Etj1xBLcQYAJCroi+T8lZKBVvK4S6Ue/rvJ1HILc4GOot5\na8juKgi+4KJdFOXJ1Jz3wNREm5TLOIKFnD9XKtht/rbFJ13enAOFnlLZ0oYiVC0W2WKR5JsaTa5o\n2m13pWRndrJNmbixseryZfKB9pTqzqkWjLAAjkpVaBcQlGrFMifZyi2igB2FPQgs5LOugFSqJOWq\n6ADmBveMPn7j0rZNXRun3cHQguj25h2oSra/WEgEQ4Ig22RZcABfVGSxG0WUQNbryNmARNuGee7d\nClMuWkmnvAKGE79vx1gYcFSrlrQoVkrdffdf7e67/6L2OvS8X3q2lzioOdpzaTflgn2p6iwns4vu\nudjVzWEg/NpTn91/90axK5d2k5wNZOCN2PEXo/z8hTeeLZdSXqutkvb6c/d++oOn1rJt+42/d/dP\nAuoho7uhrrY5TaxxzY/8V6RgXuqVXI3Ma2aTXl3ySg3Msn1Y1zusMj+zUq7JFOugkQJRH79uzaNN\nKt+sF4zzkwDcviyqOQVYeUoxuHeU+K0etj/x0azdWWi12qqKwdVUdx6wI1DavP1OAoGrmvwMcAMt\n1xzq5pwD6NkaBwXpzmjP9nzaRWrO1+pvW7rU3j23N5d22ARRJjXnLyUTwe8iKP9Bksqiv23RspSU\nsTtKhZ4tEw6HO6/SXllUAFGbUjvQr0n/EgL5yViXrZh3iB29iarHl5W7ItN+4CAAClZZgXzG6ViY\n9isWi9LWEZ4t2xwVEJDzWat/00NjSj7jKrV2LBVQOAxst1hkW2bRKyiyqK+DCByeudfRI4gyVmvV\n1bNl6npm0UupaK8IJbnqdBfTwF8C8cG9o/HRiwNTahZasQTsP3jkTPyjdwbDyRk/f/e//aNvb9l5\n499Y7RUL8D8PPfnR/4gmE98d7TkAUMg5stt23boIRMJb7u2x2kptgY5k0u4qINnKZJdcQ8BcLuPi\n8V+78FZ4yz2yi57E+2d3Hnvkk++jJ4YwQCMZ95Xocl70kxiUaYY0zrX7V6NGBsRtFB7abB4xc79a\nPyvcQs0IvArbrvdr/jtCc0RcFcxI2WjcVXQN6x3j4zjjECU6KuklcybHVz6bHjSgnAC0xddSKkvo\nMpZCWqOgVl21lss4PHLVwuVzj0T2HT5/ClV2OYDC44bu3cBu0SKLFqkqo1Zc9QPWK+cfBhCSM35r\n24a5b4sW2Votu7G7ihRyDotkrTgqFcldKloRLYpl4mbvtNVWUmRFzPZtv3MBlWUHmJq60/lXoiBv\n8fqXfPOJ1q7QxuluWaZT86EXAOSqKMzc6xCKBbsgWarI8nxFk9XlSslaQRBIJ1umnO4iokV2We1l\n5bO//8OC5sgCqsmvBBDcMJcWxKq3XLCTXXJu2f74R2OoyscPDc8eBugdmPhmMW89kk+7sndHe45s\nHLj3jXzOSXf/ZDzQngwrKGSXPHYUqpr/+DkgspAIPuQJLIWKebveV3xw72gCSPRui8fHLveFn/vd\n15+/fWVz++Yd47nE3a4Pb1/tmwNI3OmivXfaW8rb3JWyhbnJzrfDW+5d/OkPnqrNi+aZXHQZuwZP\nfOb8sXxGZTL0AhBrQEMXVQNS6gjXSFTUU0Tr8vVqLq61fhtNQrtuDgfVoalmvAEV1+/3o4W9GsSF\nGHDMgNx1uoS1EHetQ+FBEF8SXmT0jefCtYdcjgiKDkQ1RY3wYnRUOXEGNM8tranuSecFPAjcAaYQ\neOXu9U17QGUnNY87N7AFgQ/QlS8qxZezi14Z4OalbVc9LZm3tzx6a/fuAxetkiT7b33YlwWCiTsh\nuf+RMYBSMDQ//u6bj3VO3OhtAYWuyP10sHO2RZRkSnmHhMoxlEsFa7uiCL57t8IHUjOBt7v74lsK\nWefTclV0oggWtQ6qap9fmG5V0gstQv/OMUUQq4LDVUqj1mz/1OTtHlc+47CVS9aHvYG06PJlZxRZ\nLCLJ46gy/JPaeigAmZSvWilJiiwLFWCyb8edt9AzmygcQY3VH0BgevfTl0rXLgzOtrQuuQVRdgEs\nzvlCc5PtFPO2kM1erlarFklRBOI3e8JvnjwUe+aFNxAEBZujiMVS1ZWKoG18rVjiwO/8P1/9mt1V\ndG3YPMXMZPuHibsdbaMXB+cAnvjM+bS7JUulbEuPXhy8OHpx0BhkAo3DQs3OLzUvN1NoagTg5y8M\nR2JXx8LxsfCRYt6RjRK9hypT1g4T40ZVTjBw5lU1kcQair2j2n7aBFzgH6h4ggnWLAfdALymz4Zg\n1ElEm+sv9LYP9FyrcC9I0QZJBEBN9q+VutUK3kUBuDvac8RmL7l8waVuty//gdbPCe1Tt9GSyzgO\nR7aP/16pJLXabJW0Ru09hrHTwGxX5D6ipWrNpjztWiJDG4pQQoBqWWqpVkVra2eykll0T7l9uddS\ncy04PbnfTie9stubFbKLnpLNWqFcFD2VstWTuNv+T0IbZ79590bPEZu9vEUQGBx68pqrUrZcyKY9\n9vitsLJ5KIbTU6giYAGEYGheaOuakwt5x89FQVHmE/4PJanykrc149u684YSH+8WSgW7OHGzR2zf\nMP9OtSIme7fFVRlZ4ZOAjEAV+O72xz/ivbd3vWi1lzJy1bKzxsUIvAzsLBUlSbJW7FVZtFqtMoWc\nU3B5c4+Ui3YZ+ObGgYm/6n94bCi96A60b5j7r3eub8IiKVdBzcce2pjY07fjtp4lJg5qtJh2CESU\nE+eBKPNTraXOjQnBYpGtLcGlufR8C2j50i78aPh4/84b33L7cvTvvHHU7culs0sub6g3QbGgWndK\nBXtao9Ax0waKA7G+HWPhzt7piN2V75K0ICEja7owFdyfXXINyQobaGxmCjfa6Fp9thWZYAx9u1EP\ny+Xc/k2gkYy/hty/lmZ8NTjF8gG4KvsfNSkIH2CMdYN57hKgbxL6VR/2GhTytpDhzxiocmGpaGVh\nuvXW9ieu62y53u4YCgzuHT04caOblrZFJ4pQQlXEXUVbjLHLfeHxq30HWtpSN5CFoeCGOcntzW7M\n5+yOaxceOlUu2ub2HryYGNhzQ00toMD1iwNv59NCm9VepGtTYtpmL6fsroLNF1j6ZT7nOixa1HLJ\n5ZK1hMKBYs4ZsVhkf2tnMr9h8xTAXDrpzdtdBWupaMXpLmQR8CoK4nwiqJQKtnQ66XurtXPhgGQt\nP1EuSTbNEU8oF20oCqK/PSV3993XrRNtAAhc1/6uuWzuPnDpBBDPLjn/Mr3o3iuKssXty78MyLIs\nVkBwoIhlkK27D1x6C7XyTCqftXdN32s/4G9PtqaTvrOCIl4tF+3xx545/1JH94wXoFS0vTN1pzOU\nXfQkpu91su+58y9tHhr3/t6x71Iq2t5Bo7hXzj98riWY8rt8WW/XpkQiNd3KNMQf+eT7LwG4vdlt\nsiJe9Lct3gOVKrcEU/581sncVDBUytvcLGuljfvim0AhNedzfOGPvvebwJ/ovvLGDZzLuEIuT34u\nOasUWT21cq1gxMEjZ2Ijp4e5/u52aIAIGrInUKmmMf97Q639esCAEEbNeJ0yrkn7tUDXuj9w7vfV\nYI2Dqik0Tffs8mXp6J5pA3A4Swgv8mNgdORI20stwZTb7ioOJmd9XwQoZJ2nuzZNJ4CHEEgBcmbR\nh7c1I+QyjkWboxxDTeELwPS9zjiAzVb6VKUs2QVBplKWltq75ikH0w8Xco4ECo9r2dicCMxqMqiK\nXApC16ZEEYUOBB5B4d741UjEai8rxbw9UipI3YN7r7ksapp3fZO1lYu2m5K16phPBLHaS91W1bfX\n4fFnEATZ429P/kE25a3kMu6rckWUHO5SWa5axMVZ//1S0TrtDaRz8fGuzzlcBavFUiXQsfQ3wHen\n7nSGluZ9bUsLLaHwlnt0bZq+CIQrZUmoViw+uSpIwN853AVLOumrFPO22PnT+765/x/9LNS1aTpR\nKYsCCB5FFqzt3bO4vNlgSyDzsCyLfZPj4ZcRoGdrPK05ASc+/PnQULlkbSvmbSEEvNlFjxtBJpPy\ntKGJCU/9xtlvY0CWPd+9NArwk7anPpeaa/Gvd4PoYKCIScAp2ap6HQBz0xjA6MVB/e8EjWXeEMuZ\nWXnz5KFwA+WeDkbHFKMtvpGcvp4AkZqbqxFWQZxm/u5GWC1DbSNYtyurqU3Duax1AEj6xWOHly+q\nct4hBvdeu+oLpAl0pOJcUX8bfu4Xr6Au8hfn7rfmykWra2G6tc3mKLYFQ6ku1FPW8tDe61MITKBw\nS9PQP66xr/RumziauBMaEkXF7u9IlsJ998VSSarM3Q9usIhKp8Nd2AKAwiQCF1guJqGyywI/0T5/\nDTUZP+H++HWA2LXNDysIHhAEBKWwMN1iu3phqCPYufAbvrbUvDewZK8UbYtTsa7x9vBM993rkRZF\nEQSrvSR3b54sd/bOVBBqqa6XRt/b6vzol9v/zcbB2ND2J65fnbgZ/pZSFVEEWdTnk0u7Sc75aQku\nHrbayjntkHpn+l5nupS32TOLHmFw76iYS1uy7d1z8yOnh78y9OTVcKUkcevy5iOyLMxJ1rI9Od02\nJQgIlZLNM7h3tB1o79kaR1tTDwJTQHziVm+opXWxrSW4uAXwdEWmACUzFROvjl3u4/ovHwrnMq49\nOz95qc0XXJrr2jRd29TFwnl/pWzxLi74blz7xcOvRJc16makqKOoxt8lW9kxP9VG7Orm8JsnD+ni\nWlOEM2xAo5yfYNkcpnvYmfvR56BX+UWjkKtp09fS/K/mgVfnKNYMmoxtLnW8qiLQILasS0RooCNZ\nb3tV675aY73c7b7D52O8rmb5vHFpsgdg265bs9klT7qQs3uvXRi6aneWCIZSf69N5JQmk59DDZjx\nopq99gCJni3xdM+WeCl+q1tRFKE6PdGRXpgNTDjdeceGyNQ2pyevVCqCKFmVDFo+d5btxvr3BAq/\nATgQUBRFmNF+E3IZV9nlyUkWS3mumHe0ZBc9uDz5st1Z6CwXbJZyyRpcmA5OtQTTQs/Wifm71ze1\ntHYmhVza4/O1Zt8AjqNwCLAHO5PS7k9fDLl9GRJ3279WKthcioJitZeLoBYzKBVs5NNunK4i1YpU\nc+zdunPs1JXzQ79+5fzDwcE9oy1yVZSqFdGZW3LjcBe4+ouhRN8jY8zfD3YGu+Ysisz8noOX3kJh\nU7lksQuCYl2c9/16Me8Yl6xlbn2w7e/3HT5P16ZEwt+WwunJAZwbfW+A09/9nDFIJDKw57pR7KrB\nhR8NG81SDetuRw3JFLW/BwA96+r/qijKntRsIFFS5fmI6b7VQG8bYjlazbhpaxFqBqSJsFxBtWlo\nqBF5WB/73sizzgg1d9VmB4M+7mp/a9fWzW6v8QwNLRbrAQnqXF5B4SXlBCmIIryo1oZWDjOgnGDg\n/OtFv2bS4aN3Bk99/9//9jkg8swLb2B3FnR5bgiNAmu+8WYIqTnjiy2hTfdnJavywfEXoy8/8Znz\n/9zXugQoxZ4tk7IgyqJkLRbRXAnvjvYcKOQcWYBtu269rD3oOU1U2P/hzx/u8AaWnBsH75Zc7sIE\nguqc89Evt2+olCV3csa/BGQQBEcxb7f0bp34oFqx9LR1pbNTjvInbl/pw+3Luhyu/O581vmt9g1z\n8wDt3bM97eHZfwJYYx9tLHf2TmcAvP7sTWBu6k4nolT+f2zaPm4JhpIt5ZKUXpgOyAuJ1lP9D48f\n2PHk1dSGyGTq5vtbT+fSLtIp92HJWv16bsnJ0JNXX5260yUoCJVi3lFxuvOLqCmzrxbzDiyWarui\niIFKSUpWy5Y5gPfP7nwpk3J7Myk33ZvvnwLOFbKOCCybuuanWkPXLw58mMs4Ai5PYS685R402Nj9\nO2/UgkrGPtimr2kdmBRHAIT7JxPulpyeaMJI/dbyJINlxK47mDAp4Ez3JVCJRDGqpkhaTRutP1Oa\nJrXRNORNaX/6V+mr1n6tNh8TaiJEgzGaaf4bRuatNUcjRVdfstA846SedNAiVT1WWy50+Iuv7V+Y\nCsY/cfL8jzWErmN5tAPklbHLfeH28PT+SllqC4ZScyOv7f+TfZ87988B7t9uH/rMP/3hdyRbRWnr\nmr+WTbvcd29sLDjdeV/kobt/DWwB5krFOiVrDCCz6P6Moghuh6sgBLvmFKu9XJi7H6z2bpm8o9n3\nA5/+x2/rVOACWn33qTuhVlkWfTZ7eQioiqLsFASlDIiyLLZUypb2mcn2HwNs2JT4DaAdBeSqaEnc\nDaVtjqLk9WcvAG25tHtuad4vOVwFpVy0UypIiCLOQEfyeQQeAzLVqmT50X8+nAh0zH+xpS21uTU0\nX80uua8Xsq74+df3nQBeBDK92+6mH33q8jng3C9eH45s3jG+x+nJtWWXPHNXRnYkrr+7PbznmV96\n81kHAGf/+tMrzGH+tsVUpWzxxm8JVydGIyFAN5/V3qu+Kf7W93w6u+RqaA5qQFkike23wxM3e0L5\nnDPx5slDL2l99qCZXaMNtOgmMCaHqKUqY23qdBz1oPoU8HyU6BCGrDOmudYCZdbocwXonMwqYkGt\n3YOy3k360A/QiGHcpiITy+vUMHjH3L/xbylKdGDk9BsRYPWEfgrHHjv4Lqgx52+Nf9jXlpy1HhAt\nlexPPv/U5+Dsa1pLncUOob3M6XudcXdL5lalJBEMpdqcnmz0+i8HqFYtufn77XT3x7sla4Vs2uVP\nL/j+v6Wi7eJDh8+jpblqB3pG333o4XzGVfQGlnxTse6vtART/kBnch4FZ3v3rKVUsAuCqDiAanrR\n9ZTTVbCIFsUiWhQR1ca9f+pO57nsoudVrVhkG6p3nHXbrpvi6HvbKh09M+VqRaqUS1bu325/wuYo\nOdq65t2ipeoQBEXo7ruXc7gq7xqfMzXnT+TS7ipgQVCEStHmVMC6NN+ytbNnxipalGpHeLYKnHN6\nCkdSs61Vi0VGtMjZI187GZue6Az7OxfeAjj8uz/6/rKTkhozPna5Lzz2wRZdEx0SRLndYqliscg5\nw9uJAIiC3OXyZr3SvLfH3z4/lJxtRUCopeWm3qEDf9vZ1Br7pU5enb7XGbc7S/GCdtAEOuefqZYt\nSmQo9tLlnz36tt7exOrW+ZkDRs12o3Zm85rOPjeaq5mVrTvQVgOdK1hFdDH+/bE03R/jnkZikPGa\nrk950CnUzGvon43YIo0FTxncXhMuXwZvwI5oUShkXLAyw4dudku8efJQ7Lf+p78Ke/zpISDgaclS\nKtpmrbZyenHOH+7uj6OxqvzoPx++CMT2HT6vy7oOFDZml9zi3P12gCVRkv3Fos2ryIJTEBQhNeun\nd+s9xe4ulERRVtJJlUiVilLW4So7gQoKFlFU3KWCjVKhNdG1aRogLcu0ANW+HWP3Phx5+JdAspB1\nzHX0Th9wuPKOuUSr6PFlBVGUEaUqUPGwHJmUaGldZPvjV24LguKwOyp2BFKFnC20NN+yoVKxiDZL\n5T7A4S++tv/MiUPChv74tCyLC1/4oxMvq85K0xE928v7Z3ce+8nn/Sl1zc9+GVTnF+1lh/3t822Z\npOeCvz01JwjCRW0OkcG918KBjlS8u2/yxEOPX4//zX/4H37d4SqiVT+Na4UUX4GaM0oEiD39g7O1\ndx3l0WZUrEZxF6aCK0oRW6xVQSu/ZIZGiGv8TT9Azpnk8ZoDkE45NUT7NqpYaIY63/Y12PoHBrPo\n0gDJGir/VjscmlDpRuNCg/X7OIfNqso4E/gNWWjO3b7aF8kseh4C8PrTfu16DPjK3Rs9n3e6c1a5\nKs6VS9bSb/5P//Ulu6vg7N0WPwUERIvsBMhnnfzOH/6Xi9/5oy+3VsoWMZPypHY/88s9dntZ7yuN\n6hobTE632hUFu81R9AZDc4ckqep0uPNvd22cdiPgmroTcrRY5E4B7t671du5efttlyDKeq11AahW\nyhJXf6HulUDnAl2bpkflqjhQrVg8paJ1c6BzvreYdS5mUt4/nb3XKbhbMhtcvqw9Od2qOFzFHMhj\nfTvuXAO4dXnzgXzGlbU7SltzabfN5ii6rbZqSbQomVsfbKlkUp6yglB85BOXE3NTbXu7Nt3//zz7\nfzm9YHNU/jKXcSXeP7vzpZ983v+5luCs/9GnPngF4P2zOxutew0pgqHk1aEnrwHw0OPXGdh7/SjA\nxGhP++0r/acFQW6zOUoEOpNzuSUPaKY2f8f8Nw39fU1zdkE5UucJuUKpZNzUUaKj0bO1vyPA8W27\nbxjlfn0zHtH+u4DTpt900BMzECX6Z40euhFEtawzBuTT9UIJ1uHN9qtSZlNfK7gTXdZeBwveTIHZ\nCOkf1GzXECTzCzWCPrlnXngjAudf+eidwbDNUWL6Xmckt+SuaXCPnajdHwH85aJVAFe5UrGUrFKl\ny+4sdFltekJS9j/8iSvMTQa3zsQ7vjl2uY/Dv/faRwDFvCOhx7mjsv2qKU/gxX/6L//CmU27cHtz\nO1KzLR7JVrWUi9LOfNZ+K5dxXujalHgiNeudrpStOYez8G9GfviJeHdfPNzdH/9jq70kKrIod/fd\n/4YecRW/1ROK3+p5q5C1T9jchUdaOxb6qxUJWRG8yRn/gUBnMiMr4u1w/+QggNNdXELduIeTsz7K\nJevGpQVfJdg155erFkWWxXI27VDKJclqc5TKvuDSYrVqyQii4hZQJAFFbO1aoKf/PgAX/ttj3mLB\nxuJCi1d/kTOTHQB+u7Po1RWkZ14dAYiff31f7At/9L3auxk5PRwJbZxyA3gCaWzOEvOJtrmR0/t1\nJVdto7V2JgsAC9MBBxDr7J1Gi2FfC75i+P5lUMNaQdUFPP2Dsy80YH0T1JdR0s1oq4JBPq7JoQaE\nMSPLmlr1NZB6zSwzDzIWy+ZBXWw5hmoSdQPfeICxjAeInj4rbPitKddg6m+lHb3ZDzoMPzcS0Wp1\nYXcVQzZ7kdSc72s2e2Vp+PDPOfjCm19gWbES0h6QUsFWrVYsKFYRQUAsFW1l4GK5KP02gmIr5O3Y\nXcWQ05Nrq5QkyiXbXKlg0/vQQV/gP7l/u/vXJ2728PivX3i4bcO8YLVVyGUdKIoYKRXs2XzW3jmf\naItpY9PaNR+eHA/HyyUp5mlNO6pli61StIXfPHkoDsR2PfVeGCC0aYpiwdErigJ2T15RFAG3P7NF\nEKtSLu3k3TceyymKUNl14N2WdMr7z9u7FhyL8z65mHUgoJSDnUk5Nedb9AWF+alYJ6HeGW9LMBkv\n5Ny/nE8Ez8lVy/PlstVZLluxWstBNETILrp3WqRKRROHIh+9Mxievdfx9viV/vgzL7zByOnhSGfP\ndDg540dPI2WEhalgeMsjt1wA+YwrN3pxMKG/Lz0RhU6tfzP3UB7ApnJKFLKO8HLm1+UEkMaa5QD/\n9mjaX61YvPmMK60rnX7S9lTK2GaVjZejubNMqsG1uv6iqqJKp5R6TjW/1uwV7bevo4YHp6NEjYfO\nesxQK3QHTaBZkYe6sRSUNi0WPcJKf/dGyrNG8zIeQP+grrGS8eU2KZSnQzw156eQsYcUNSuqwyLJ\n7e+f3XnM5ct6NZMXwKn+h2+rphqFb6G+HHs+64h99M5geOPgXWz2EgJYZ+NtbS3tqQAKPpu9Sj7n\nTKCWgtIhAoTv3ewO+TvmqZRFbLbyPdEiBwGS0623ZFnMStYyZnB5ciG6QJbFSG7JXa1WLJZZ1SMv\nZmBDIwN7rofC/RNvubzZt7o2TSd+9nefeFGS5E2iQDDYuZCdutNpdbrzd4AWRRFsCgjlgl0MdC5U\nM4seOT7enVUU4VagI/lhpWR/JDUboFK2LLSGFm61tC6STnre6RuKuYGsFsijb/xJuSrm7L6MCwjb\nXcVQIW8DYGEqSGvXfBxUX4Z9h8/HDr1+ZvSYIRvMpbO7uXuz5wKAP7h0FS3fn5b4sY4KzcY7rgLo\nHnFaMkiNSh4yIGfUXMesKRQLNr+B6hiRYUWEmxk+phztZxmBdJ/0Wh0CM/VvMu5qykBjP/rv60W2\nuICg+wYYdQbZJu0/TtDMA4Px4JU+emdw/+xke2hpviURZXdNxlDZ9TfQXBzPARSyDhYSQQp5ezlb\nFQtBQ8pgDerNPQJbgTIK0v3b3RcEUQn97Z9+/ttauuFwe3gu5A0sYpGqyWAoZUx8ET7z6sF4d188\nbHOUKBVsiWLekbh5aYC5qfa/B9h3+Hy4u+9+CDgMzE6Ob4il5gKvlkuWIZ8/g9VWTux++tK5868/\n+YbHn/Yuzra4W7vmaxFXmrgR+94ffyG8kGjD5iiHujZNUylLbymK8Ac2Z0nIZZzu+FhvKZd2C/2P\n3FbyaTf5TE7JZVyyvOjNO1yFTD7tnBelquvW+1uesjnKC57Aok+uWixTd0K/Z3eUXptL9AYCHUmX\nXLVkXd58CoiNXe4Le1oyVMuSYLNX8rcubz6ykGh1dfYmcpNjvd/Q8rZFtj/54fP5jNM9O9meiPLo\ncepZwLjVWhkCSCe9R4ADd65vCr17Zs/bgY5kwhy3AGBzFL3Dz9WClWJ62WGA86/vW9H+D1/+t8fP\nvHowYvxNV+CZlVT/HUBH5rB2oNTSTkWXTVOeJvcayzyZOY71Op3o2v660karzNU455dN1wG+Zfj+\nVePNpgOo7hqrVHh5kMNCSs74Q7mMsy2XcTVsoEVGGRcn3rdj7JudvdNxlzf30uK8P7U4709t23Ur\nhi6bKLVCEHqeaGsu7XiqVLIWujZPdrR2JC+4fFlvas5/KnGnE5ujTHI6Sf8j4ysUD9P3OuO5Jbeu\nLQ4DPPLJ9196/+xOWkPzoY0D9y6MX9n0hNVexunOHquUvJOped/D/uDSq2gvtZB14vQUsk6Xqh3+\n+QvDz8Kyj/bifAuL8y2JvQcvxkO90xRy9kmLteJTZJG9B3+ZtlorH5RL0vcX5/yfnrnXOQWQnAl4\nHa6Cp5CzBaz2Sk4QZGyOctbdkslWq1JhJt5hc3nyAUGQffduhW+UC/ZzDz1+/dzxF6MM7r2Gt3Xp\ngsuTn4sM3WYh0XrA05LNzSfkrPH5ne4CckUtEjv83EjkzKtqrozzr+9jcO+1sLd1CZcnPzd2eUsW\n8Cqy4Lp9tY/wlnvxLd8Yr20CrfAELm+epz7/0xpbrxyBM68erL1b3fVZh0+cPD8aZTlktAFrrFOv\no1E1wyus9DJbzRUW03UjUhrtzHtYjg4z7g/dHcssHjTK1lKzXmDwemswjdqzaYjnp94HwSxPm+Po\ndTAfIsYMuA3hQRC3kcLP2I/5d2lyPJxYSnqZHOtNwHJc8PiHm79eLtp11uNUd/9ECGDjtnsXgbjL\nl6UjPPP29L3OuEb1ddkkjUBKM8npiiG/t3XpCcAnioo/n3FhcxTdu5++dGR6ooNSwZadmew4xfLG\nCYe33AvNT7UeXkr6Zrs2JtLDz428gqqUwt+e8sqK4BYtlVYgUKlYNgNVRRbcokWeFy2yw1jDPdA5\n75arlmy1rBoZdJ3DvZvdIZujmABqcnA+5yS35NwoiEqulLeTnPH/jcuXo1K0JT77pR/+ib6o3/vj\nL+zvf/TGUM+W1MZc2tU1M9mem51sxxtIY7WXHd5AurQ035JcWvBRrUh09s6EgP2Hv/ga8/dbQxM3\ne+cczlJCslXiVlv5cbkqDvkC6fKnPn/2K1oSiJ5c2jVkfIlaCCegsvSTY93cvb7p+emJrm2AderO\nhtjUnQ2MXhwkyqGaI4emNI3seuq9sBaIUutTixjTZeE6RF5DiaTbrQEOaJ+paL1yt9bvejdxs0OA\nlchpdL6pjUU9sq07tXODsY2Hh3+NuelQx0k04CA+dnWXRgo7E9SsM9H6NFmxKNFR6fq72+PGyR2D\nAZcvy8y9UDa75EkDhLfcPeJpSbtcvlzu4JEz34cVNanN4Ndk/2/rcv/l/5v/KkA+4/KVijbv4pxf\nKOatzkpZyokW2e3y5IwyTnxw72jovbd35W2OZflbtFSO9u+8gcVS2ZnPuMYyqZYCTJ1LJtoOSbZS\nJZ9xKS5vPuny5pyDe0eZutMZKhVt3tyS2yWISrZcUmXgYGj+CArYnUVXoCMVdfmy7Dt8PjZ2uW9/\nS+siLk/2rsubywGUi7ar0/c642+ePBT77Jd+iK6T2PzwLXdLa/rtatUyt/NTly8CnHn1IPP32+nu\ni4f3PXeBc6f2DVks1VtWWxkt+i7k8uTwP5wiNRtIBDpS8dySm4NHzrx864P+7wDWQs7xjMefvlit\niMSuRa5uiEyduv7u9nPPvPBGJDnjr1vk7v7JeHbJk9baex/91AcvG5I27H/tqc/ub+2aj+eWRjj/\n+r7wpbO7QxsHYl+L3wov3T32iw1w7xTAmycPfRtqvuy89/aurxfzzizqxqzzjdc+jUkVY6xBqRrA\napTPbH+PoyY5eUi7bnRrNbPMteumA8fYfjUOo9GeNuocVpPb63wADNf0g+iVJvc9CKznANahzjVZ\nYm2FQyrYtUCgY6H2MnUW75kX3mBhKhgeu9yHRtm/qud+N3fy8L4rV1A3xJ2P3hk85Q0shRD4re6+\n+3kg0913H1SHiMD4lU3bXL6sQ66KQeADi7XiPXjkDB+ODJFO+dJ2V+GWx5d7dXDvaAiIWx2lilyx\nVJzuwtLuA5cu62NmFz0JyVrx5LNOKmWrJ9Sb4JkX3oh4g0ssLXhchZx9R3ffvf+jWrEUgf9R0/qz\nMNOaT87ICcla8c5NBZ8HeOST76eFF3lh5IgTi7VCe/csNnv5gM1eck3FOg8rCBcURZlLzQYSQPyh\nx6/j8uUJhhbq1kFD+Hj/H9/+MSzHGegJHwAUWfCKWga8wcc/orN3OpJbcnP93e01//Dl2meHXnJ5\ns11OT94Z2X47jMb16LAwFQzrij30TDdrgCwLW1Cj92qeEw0QJ2a4XidzmqCRjRkaUD/tN32Dhlhm\nwVdQQoNcq2vn96ApchtQPKOJrhGSrzh4TGJEM7t37ZrWRl/fmOlzRd+NKPQ6qLbR1PZjVrrrxht8\nj4FmXtNPcuWImtIXlVVJA8ejREf/3nPoZCHnTEO9g0X0JKNvPHfw2di1zRh/q4HCMc2jzs9yNZi4\nlp8unk769HzoemaOxOK8Z38m5aVUsBeqsvhBW2j+lLslEwLChayTasWyo5B1emYmQs8/9Pj1UwCh\n3ulbAMkZ/5b3zz7yBMCjT13+buza5nhr1/wJFGXI618KFPO2oUB7ErlqyVYrEoHOJFZ7GRD8c/db\nv14uW3D7smzcdjfTsyUOAi+ff/3JlwDSKa/6IpT/1mWxVJXMotdVzNtngWygPYlkrc65fVmKOScu\nnyrx7H76Uk1W1DmBxN0QkrX6cpRDzwIxrTIpQ09cu6qtWXppwfdKpWw5CmwvZO07RUvlA7kqvWx8\n+XoN89Tc+1hE+YQ3uDSUnAmEIttvA8SnJzprr2FhKhjWRS+XN4eiLHs+6e9Se/8RgA9//nClXHRk\naVBMwAymFFANN7YGxnxvOtQywRqgWQimV2trFgNipu8r7O+slGEb6RqMVNhsszbb9psholkBaD5A\nHoQi14HhMDE/R0MzoVnMkKJER/UX/NE7g/tZtlWmTDKeBm/UviknGHjvJ/NhgIWpYFzvvFZWt34/\n6RDu7lPXdPzDfmyOEkC4/5Fx7t3sDlXKFjKLHqeSEheyS+50tSzFN6uIzmOH3j117tQnDxRzdm8x\n71BNVQpHuzff3wIgilXGPuzXfcDjB4+cid24tOWo053fmV50uez2yr3Fed8T7/z9Y7OJiVD2sYPv\nLjpceSRbBYCO8GzW17qE25cHdWPtsTuLXQ53od9qL1c+87s//BaK8FZraIFc2s1Cyfr7Dlceu7Og\nzCfaT2WX3CFBqoYsUuVrH707sKTIYn7o33+0XznBQLFo8xZnbSzOtQyNf9j/bbdvyZpd8l148+Sh\n45qO46sAwhcYjXJo4JFPvp+WrJVyaOOU4A2keXjfVXi98Sa4dHZ3fGDP9VBo4xR2Z2Gouy+Oy5eN\nf+Lk+R9r72T/5u3j+NtTic9+6YefE15ktM6IqW2MkdMqh6YowlWWlUf6RqpDLn1vHIMBg5yvI7O5\nbJMZVounrkNOrZ+GJrtV+tcpfM3OjsY6m5ClUWroRuOYteKNstKa+6n73kSUaAYRwzwb6SWa3WMc\nqy7wRooSHRi7/JdhTeO9AhqcGnV2V41qAcSMLOPI6eHI7qff65Jl0evy5t0fjgwdBaiWpfTc/fZX\nQLUFt3bN07v17h4gkVn0Mnc/mAR+4vLlr+bTLjUbqiLomVNCvtbFJ22OooTqkHFcO0xuAfzgO7+R\nLWSd6a5N970wAhAp5u1YLNWyL5Au2WzVhVzGlbVIyr3uzVPMxDte3vnJ94/ancWhufvt3aWC/T25\naoFlmTOx+8ClP0knPd+ZHN8gzSeCO+O3et+5f3vDgULOwZadNyWbo/RBMJRMR/6Xe3/2xnMHn3V5\ncnvkqtBZKUtBRRaKoHI6f/8ZfxpAFBVJspclRIvk9GS9+Yy7of+C1Vb22p1FWyblxeVVzy7lBAOq\n2BQdKBbO+0H1UIsS/XH0YjTW2rkQSc607pGs5dBCIlijflGiEX97ClA5i0ta3NejT31wvNHYTz53\n/uXVsr1o+2K9WmIjAoUbXNM/G7HM3zEgx7f1tiaEqbtP++1bqMFQ3ah7w1gGyozIOjdpnM9aOecb\nheY2Eg0iDdrRoJ2ZAtfNcw2W3riWjQ5lQGPdp+91xvsfGY9pLPVxvUMzW9bg9DIOVBMBRt8dPApQ\nyNmckiS/tXlonIXp4OM2eyntdOfR7Nl09k6F3jx56OIzv/Pf6Nk6GQdCGzZPzQH07bits73GYJmh\n4edGYgCzk53mh8ke/caf1mKqdWWhZC0/2d036bVYqvjbl7rHr/a9Z3MU/QDZRQ+CwLZSwY7dWeyY\nibd7FxKt6Uef+uAdll054wDBrvlKtWKRJm9vOJBJubfIsqXS0raEvy3lEUQF5QTPwhnu3exmccEn\ny7IFRRYkfb0u/Ehd10/+o7PfsjtKj9odVMv2Cl//j9/kWC3bbu0FRS6++dgp4NQzL7wRf+zQu5hB\n57IMG1w3lzE90RnWlKw1pLh0dvc5AJureMDtUzkkY+EFqMvTvhrlqHP3FF7Uxz+kU9HDQC6q5nZ7\nhXoKbZZR/0G9vwx964jdSWOnlUbPaTRVGVn1Wr8POI8VVH4N5DbPY81MMqZDcVWfBgn1BfOJk+dH\nlRNnqJXUfVENXzWadEydxYzUQDnBs/q9x1+M3gP8/o4Fd5vmVFMtWzz5stOTnAlk5IqFwcc+Yuuu\nG/TtuA1qJFZscK/a3djlPt1FM2IKnZ1LJ30Ri1SVJGs5DLyG5pwwcnoYi7VyFCDQniS0MfEOgCyz\nJFmrVe3+t/a9+osvq3Z01VxVrVisCIokV0VnpSQNVatSCXhbX+Qzrx7E6c3dWZgOKA5XAU9LNnsn\n3pEvFux8749furp5+/g7dlchEdke21Mq2i7e/rCPlvbU5bYNs/2iqFT+6b/8T8f+87/+veP65u7Z\neu/UrgMXF1qCmSRwVT+QFqaC4Si7zfZp3jx5KNYgL9sKiBIdOK7WcqnbqPq70jfF3xvs5AvTgW9G\nhsYLALGrfbcM3dXZwo+diGqHUZTjL0aN0YnmemUJ1Bx9WeqrpsYMn3Vda59eVDv5ejmFhnKpAVLa\nfz3FdB030QDhGnEbq0HD5A8PAmZO2fBTzdoQbZ7miwbXjTqAAVO75VRS0SZx6UNPqjqiQEdKd1pp\neDqNXe4LA7hbMiGPFs22NO9P+AKZizOTneGp2IYTNlf+SLloozU0fwR4tZB1tGVS3vD51/fRgJrE\nAO0Aqi1IAlG56vGn20WpmtMW5RyoIbZPfOa8fpJ7RbHaBuD25WqagnTS44/y1YGFqffCrV3z8aEn\nryKIylXRUnXHx7pbBFGRRKVaW5Mbl7Y8L1oqzE0G++en2j/o7E3QGlpI7/zUBxdn4h1c/tmjx/3t\nqf2tXfNxu7Mw1Bpa2GOxltvG3t924slnLzy/YDCHRYkODO69tn96oiPkC6aSkLkKMP7h5q8DFPNO\n+naMvQqQWXSHpie6Lg7uvRb+x//s+7XNcPzFKFGN+usHR5Tos7ueei+cz16r+QLoASvHX6wFiBDV\nKolc+BFe1IOMTQ+N/7YgYgZdLq9RlGW/+Lr3o4MuT+7R/L2dqGWjctRTJbOySI8x9xv6qkMgNHbd\nxEnqjlk6rMgiEzV5sJlY/dpaGNqucDjRPnV2WM8IW8tJb3r+ZodTQ1xpBKYx9WtraeHr7jc/pxFW\nDVN98+Sh2PBzI7qjRhhg+LkRpic6w2/0qq6R+gSu//IhXC3pI95A2nXgt966rYVe1hbQ5cntufn+\nllaAhUQwOx3IxN2+XGjT4F1KBTudvdOR6YnOcGfv9GoJ/OOLc/601VbWc4jFl60AKgJUSpK3UpLc\n7RuSAPiCS39+9RdDF/cdPh87/mIUIHLp7G60Z4nnc85TANlFlyBZq1OSteLVihOiKLgrFQlZrUzD\n7GRH+rNvv27YWKfQQzd3P/PLub6h2+TTbgp5W6hYsHlaO1KZ9vBsSnsJzxZzjlBqzr9lNt6RXJr3\n0//IeDxxtysLkM+42f3ML0Nub64NoG/HbVy+rFF+DA8/NxKHxu6qQE0k0qvfwopkD6DKqxcB3L7c\nb4uSjMVSdXj8acpFa6iYd0C9DHp09F01o2tHeOYUyxyDmWtICAgJ4O8bzU2HZtTJAHplE53Kx82I\nZNzQWn864qfMSG6Yo/GZ/Ib2A5gONgOY19lostq/SjvzfOsQ1kzNTUjcSOZezWoQM1xr2B60ssn6\nHzpVVW20UUA1uekn+vV3t8cOHjkTee8nu8BQqQNUze/2Jz/MSlLV5ehMes2/D+4dTSwteAv5rCtb\nzNvTnzh5/sdvPHeQqTuhox7/klu0VLL+zoV3WrvmGX5uJG4sz2uECz8aPq764dcWqXY6//qP3tAj\nmL61YfPkwwAPPX7tG2+ePBTTkmsYX3h4z6ffPeJw53G6i9kb72/JAN5yydI+f79jz9J8S0KUqlnJ\nVklP3e6JZJfcON35rp+/MPys5pJbd1rf2tWXcLdkQv725JzNUbr458e+9H3j7wD+9lQik/KRmgtc\nfPPkodixE1Eskryc+kgWHpesZffSgteVXfReLWQdTN3pDGmptBm/srlpPrTu/sn47qcvobXbUylJ\nob4dY+HolWUk8fjT/mpF9G6ITIXHr/THW4JLXzt45Ezs9J8/963WzgWKeVt2eqLrZYANffe+aXeW\nCjMTHT3xsZ63AeJjPUaKa7aJm2FNahZVa5Q9a/j7x1Gin2PtPG6pNX5vBCvSbmnjGCMv46h7ZC0F\nXIyVSrzV5O9GSrn1UvswzQs+NrJuNBRnpE99/uxX9D+MGUd0MPs/j13uCy/O+UKgKt8UtcQCZ14d\nQbKWkWwVClkn9252hyZuboxYrJWjdnsp3RqaD22I3D+dTvoS3//3v30uyvCAy/cGFmuF1s5kAuDR\np36iG31iesUY80MfOxGNobGxb548hNuX6RFEJe1w573KN1Tl4fs/3Uk27cRmL7taOxf2HP7ia+GF\nqWBcR87+nTeOVqviztR8i9dRsFHMF6aXFlqwOws3k9OBXHrRo0d4vQzUgj9c3sye+K3ePd7AYtvg\n3mtXAx2pOK+rDkIfvaNmrknOBuL6gWlcn+MvEtM5CUGQw1rWl1gm5a2ZjqYnQkdR5dtsd/9k/M2T\nh2KtXfORrk3TMSBid5bq8qFpL3SUs+rFnzP87MJUMFyVxS3TdzuTFmsFlhVKr/nbUkcBinn788BX\nXb5sIwVODMDftpQEsEhylWXEasRJrLCdm6hZ04qgpoMibkIOPdKvETV7zTB2hAaFHNZAIKMOYkXW\nHENfeh8rHFxMbHKjdYmwnKgSlgNdjL/rrHozpF9TX7AGR1KDdWWYMU7gmXvDEbuzFAfY91tnaxPR\n5MKvoi5c/KN3BsNvnjwU++Q/OovssrA435KdvttVZ7198+Sh2BOfOZ+2O0opUDmHzp7pMBDOZZzP\n251FYDnr69jlvvD0vc7ayTX83Ehk9OKAx+nJ61FMkYNHznDzgy3YHSUByA/uHU2MXe5j/HJfeHDv\ntbAnkH5eURjKp11eRRbEcsGmSJJsy6Q8SLZye6VqoWtTIgHEDAk10ANKjJCc8Yejmm4jt+SOA2zd\ndeOlYydq+c10k5Bxc8S6+ycjNy9te+kv/tXv6j+/AjCfCJKa86e1GHAG917bn1tyx/UIMrcv4xVE\nJe3xp/066i07zrT43zypFjkc2HP9VkfPTBvQVilZ90xPdNXmLMuiLvZ8682Th9Iap6MfIPdq7aqC\nE2DD5sn7Swst316PnGkEA2L4WT6YGrGw5vtW5HJbY2x9363mpmq2ZxtZXx059EMlEm0cfmue54rk\njqZ5GzmAtKFvo65hNSVgzDBGXRvTQfosTRSNxjWsIbrNUdT90xvadfUNNTvZ4r/8s0ePAzTQBtco\nxOR4eMXpoiuJDr1+prbYF340fDyqmfK+8Qdf+1Zo45S7XLRn9x56x3x7xO4shALtScY/7Gdw77Vw\nS/vC0PN/8LeXe7fF5+6O9hy4cWnLUYer4D76jT99G7Wqy9zUnc5QciaA011ItHbNx622MsW8HZen\nINy+2jcPINkqV1HAbi+dcjhL8d1PX0Jjg/VNE9PmHEMLDplPtP3PAJseGvdZ7cVLvQOzWe1ASukT\nro8HqCV4iCxMBcNyVfSKlhrbDsCjn3r/5YNHzvDeT3aFF6aCFLIOJm70Hi0VbG4g8eRz51/ed/h8\nbOT0cCR6Un+JZwGQrJXdbt/SE3JVtI5eHLzV3T/xdqA92dbePdPmacmGx6/0x+NjPc2CKowUTjWR\nXnzoC+ZGJhYRGpip1kDKpiys/rtBHm9mgzbL201hHSxtIw28eZ769YYIRHOquyLPm4EL0J8hZG6r\njxNddgkGQ2rsJhzLipBcM0g6u66cYGA5iulQgxP3LFBz0FA7fLH+1NVSPhuQed+AzVl6WVEE1bPL\nNFntgTUnnCiKIrhlWXRVKxbXwnRw1htYclttZd0OGhu9+BDJGX/4+rvb2fXUe/Rsic/p8utCIpgA\nKBWt7vmEvw0gGEpd/N//31+uKU52PfVeuHNjAouleqeQddy5e6P3rUrJyuDe68gICKIScrgLdQtv\nXhNgNHo2OopWmnnTQ5lCesGXtVqraSCWTnr8+r2aMjOir6/wovqytXjzAwBuX8b75HPnjZaOZvZQ\n78JUMGzSgNeBKMmCKMkVsiSGP/OLxNKCtw0gnWyJ/5Mr3/sxoHvKGdlKo5Yd4IssZ4d5xfDOoDGL\nuBrrCZobtfZ7LT2SacMa5cy1Is50RWCzdarFkbOcrMLMNtfAvBdX6ffjQG1cw/PF0NZas1Jc1X5f\nr0kRmnjfrQZ6KqmBkdNvREwBEA1ByyzSTHNqNA2AZqMH1mMLjrg8eSGT8m7NpV3yxI1eS9+O8X+5\n++n39cWPHDxyJvzRO4NoFULILnoSMB0HYjOTHTri0NY1P2fqOw6qJ94zL7zxcvxWzx6nO9vW0T3T\nVsg5mJ7ovOp0Fxjce3aF1lXPkIuqDU71PXzr+fitQqBUsEmKIlTtzhJ2V9FdLNoYOT0cefPkoeMs\na4GP0ThqKaJdD2/bdYOFqWAYzS9BOQG7n74U+4t/9bvHJm5sBNiGpiXXnV6GnxuJ9O0Y259ZdId+\n+oOnXnvmhTdwe+mx2SuPVisigPfqL4YYevLqVYAnnv1lTHefNVAWcyCKkcJkUTmTmJ6oAgiPX+k3\ntgVATzQJwOsrZdkGz75eeFBnmgc2ZWnfzXv5QbK/NOIIjFYO86FRx47rWXp58GddMZ723Swa1X6r\nse5reUU9/YOzXzaeujRguUZOv2GmTOHu/onQxm010W+1B4oN7Bn9k5nJtm/aXQVgOW4cg718cjzM\n4OMfhYFaogpVYVijdFlBeOMiQNemaXO4YuTNk4dinb1TewJD83PBrvm2+ang3PTdrpCiiIxd7qvr\nE+CN50aebe2aD5879YlQtawVkRAUwe4sVmRZzKZm/f/uxnuDoCKjbuPVa6b/wuXL0tkzHZ6607lH\nOTF9EaIxzb4dAUK5jAuXJ5eA+pxtEzc2prSvb0ZV7XTtt4NHzsTOvHoQJjrRUIxK2fqyvy2lI2O8\nu3+Shx6/HoM1U4QZIYHq8JJG00gn7oRCxaIVh7OU0Nro2uY4QGfv9KqEwQSNzFANxYEGG7iOBY+a\nnLcatO0xDfUP4eXWzFW30eHWjALrfzdzItJBV5L7UUWrhllz1gtmZVzthFI3XRRYuVH6doyFgXBn\n77QxJDJiQEwd4r5AGpcvq2eq0U6a2oZeERzxN//h80hSteBrXeqNfbTpa7GPNqHI4s3Dv//6OajJ\n+bUDYOT0MJpVoJZqqN5MWDvdBgB+5w9PfCu76HZb7aUt+azzlkWqZm9f63v5M7/7w6NWezkNpL7/\n739r6I3DSSfAwRfO/Muxy31IkiyUC2KXogj2XU+9NyVZK1jt5dcu//yRNgUlIOgF4P1pSgVrK4A3\nkH4yt+R+RQ1/9SRg2ii3hzt7pygXrQlHZyGuh/eOnB6OaBS+ByDQOb/tF7/22Gm7/e/Sjz71wfHj\nL6p53YweiwtTwXA+68DmKIJGId48eUjnpjCs94qT3nBd/2rMIhv2t6cS+ayDQEcqrh0iMQzx6AeP\nnFmWH19vbMttgCjNKp6uRk3N/uVmBZuu3fejckunmt1vPPhZRtwfN5jvgyJVw+SOzag+q6SJMoAx\nsMhoM2/Ud00Eiy7rOoB1ZIFtALEaq6aBhvjkc846L6rh50bQItV0Bw7jb6rsquUWX3Z8efg3Af7w\nT7/5rXOn9g8BJO51pDVnlxjAsRNRow1ThzRr21djrR0pwv3x7MTNnopDKWazKYW+HWNhp7vgLuTs\npJOqAr+Qs/cAnP7z544O7Bk99fyv/e1bt6/2kU553rI7SwQ6FtrmptrmrNZKW6B9IQm0BUPJcOJu\nyOv2ZRcAtjx6M5ac8YcFQR6S7BWSM4EQisLeQxcezyy63cHOhaxclV4+eORMjNdVfcDCVDCcy7hC\naPLdjievHJUsFbdmKgNqB9kyspxtGMXVKDJrBTTaNMZreiJJFZn26dcTaNTFSASi6oFSo3irIbgB\nHtT91Aw6cvWwHHEXVlCGAAzssQ4rwmQ1aDRf8zz1aDii9TH45rVfjZqveZBov/tNl4+wnMnnOI2h\n6fqty7xmntTPfcORybHumjugzr7tfvoSP/yzz9au62mHzQkGdUjO+I0UGYDBvdf2BzpScUFQPKmZ\nAACarGpevBgsV5lBU/qYZS7D3/uBeLlsac9nXPlCxmVdXGgBVPazs2cm61SjxLwWa8UJoCiCNHOv\nk/fe3ssg1xJJAkMbH4kF5u4Hk+lFz9x7bz52EU08cXpzbS3BpdCup987lZrzp+WquEdR2CLLwpH5\nRNvbejrmzdvHQ52bptz+tkVagovuYsFRCy558ySwLCfvARKVsuQBlNSsf+jPj/2+nmCwkceYMWGD\n/qkfiCuo2SobrLZWGPytjfcYqFYjiKyjjZmS12LBow3CMw3iV82Xu8lc9gBWAAFBD0yKR1VHHONh\nqCvDhgzZWxs+i4lC6+3MVNa4t4+xzF0eb7TOjfpv0E5H5nUpBw3P19Ce3hTRNQqqTabW2ShAbsld\n86uOEv2x7twycno4cuns7pChmxio7LbZ083ly6LX8DKClt6Yeze739qweZKl+ZbE8HMjcU0hxPiV\n/rgxi82xE1ETValfMJ1zmJ7oZPxKf+ytkwdPu/zpww5XYa69e9admgm8nZr1h//0nx89pbuYfv7L\nfxszJOAAiHcziZMCjwx+GMr2ehL6IYGa9irucBfCoJoVD71+5oWffP6pq1N3OpzAlpuXBt/WG9uc\nJTy+rACQnGnl/OufMC9BjVoCFLLOE8WCIz7+4ZaX4mM1sbNOgRM1yKza5g0b8oyHtOttGnVbTS5s\n2L8RmlEjMwuufUYatW0CqzmXGJHdPBd9c59CTTnlRg1R/U3UKj8JVGvDivuF5YQJ8WhjPcAaU244\nx1SDOcLq674awuuyvIB2gKyxlnWuzzo8EEVvBsts9yGAcHjL3SMOdyF79m+e2tXI2w7qKHFDSCd9\niXs3exm/0h8ffm6Ewcc/AmDw8Y/Cx57GaKpoCD9BtfvbppcG7DvLrxaL1hBXVDdUm6uQc3py5NMu\nghsWEoIgxIFYLXIPIsPPjbympUWOA7zJIVU3kCBBAj77pR+eW5gKRkA9+PYdPn8O9NDP6EClfM7j\ncBX1/nRFXWT04iAuT+5Ea9d8PHGnaw/12m4wOG5AXQ72FCZ2zux5B6CZa+KGTYyC0tZsnVZB1nWD\nAUmOoiJalnoZ2RysYqQ8+jtcM0tqE9B1NvoYujlWNxGmGrRv1Ifx8ysa4vkxhG0Duov1fn3MJkiX\n0u9ptKZrcUbmPrV2f2L4e6BB/yt8741jPwii106dg0eWo6IaZT2xOUroXm1mCtDoRddttpOMvpF+\n5iIKvpa2pLVvx9j/6vJl4y2ti7X+9Som0/c62Xf4fMw8hnEuQd9CdtvTt+JA/L03H+PS2d3xPc/8\nMmtzlLMuT465+22hWtLFF4md4WCk+6l42OIvhwYf/yjR2TvNodfP6KxfXHNjjX3u7A9H9YqnI6eH\nIwYOCGB/JuWdLhetOVGqGlM4h4HQpbO7E0Csf+eNo/07b7A072ufudel5zvTx4rpYsz0ROf+8Sv9\n38ak9f25bziiK/c+9fmznwPVQ87tzb2ipZIKj1/p14NNaLTeTaChssxw3zHAG1Xjvs3yop7RBRo4\nhNBYJtfdWNOogSY/NrR/EOWYno+gzv20EbXWvpvlch38aKGuDcarY6UNfevjfnsd82zGAa0GdVYu\nrQ/jXFa1fqwH0Y1sTATU8MdVKMG5cN/k86B6260xad0tUO9nFCA1G8j725NUK5Kjs3c6/ubJQ7Fn\nXlBTWPVuvbsn0J6kVLAxe7L9pbMnn0o9wvv+yzxat+Hmad2vINhLtyTr3Ol2o9kvdvHNx74a1bzx\nRk4PR7r7J7n+7vYYwADXj9omSm4WZVe+zf3d1q75sJ6AQ7cwDDMSUQBOE+HwCjY13Nk7Fbo72nMh\nGEpeHb/Sf8508h5ARYZdbl8uDZDPONtp4O2lV2k58+pBDDZsHvnk+8d+0vZUqlKu9kjWah2b6/Tk\nmbjRexSgXJJAs5c3oBIfS7NsYk/NsqrR826FCKeNGdbEC7MY8TLNXTjruLcGxKNufqja7IZa9Caw\nqvJsFTCaf9cyHa7qTttsAHMfa8ynqS/Bg7LujVLoGCECMDvZfirQkYo//dzZWHbRoztcEL0SxVgd\nRHMrrd338xfUnOM/+I6qDDOCIVCkds3mKXptUhFbpeitFTLW4CoPnwP83IPhJfWe4edGdKVgJEqU\n4y82VnSUbtuygf5UNpkNxjt7psMGk5iqc0Bj8U8So8hXwnNx//CWc6Hzt/a/DSDZynhaslc1cxdq\nxNuIrifQKZ5fLzfsb0/NTo71AhA1RHPpnnCaKa32kitli1qgcbbFff3d7WGAJz5z3q/HDOhgtVVY\nD0SJnkONIXcAX+PBNjssEwPjYWtkJb8SJepHCz3VxQuWqWBNfIlqCkbTBjfOdcXGNx6k0Y+XCMJs\noagpdo1ssuH31bwY16WMNEODQ834aVSm/tjQt7mtWRSrfV83okdXOik0gjAQd7oLtcIALl8Wm6NY\ns8M2KRgQBrXmGBD7/Jf/9gv1tvsztbaFrKPmvVcWreCky13NOYc/NVKn2feQ9lcR62Q+PTurBpHN\nO259HUC0yNlNg3df5jCxnqPxNClSjMH/Pvbl2DMvvEGgPRned/h8/OCRMxx/McoI6vz3PXceHPg3\nhieYWWrPoqWf6gzPJvQ5Xn93O1Cz/8eOvxjdBeD05HpEQXkZ4NovHja7XsaAiCafw7JtOwbgDWTS\nAA53oSaI6zED0fr47DpoQtmOAX2oGV+ntHYNN8uyQ0/023ruukbjaGBkJQ+wXF0UVKQOsSy+ncOw\naY2Hv/7cjUQJExjbm7mXUfM142/R1dM5mxG3kbZdn1+zNTmKqkRLRZeDdtZzGEWo54DMc1yPFQRY\nBdGbTKSZJrYuNvnS2d3xz539oZ77fbXDIQLEuvsnQg5nKeELLobMvuX65vreH4/tH7/SH790djfD\nz43Q2jUf7vlnE+OSrcJUrIuFRH1m4j/k375S++PI+ijUyOnhCM/yypsnD2kUigE9+YbuZQY1xVwE\nHzxafN/rsufTHb7ZWgFFYxHDBvBtgE2DsRrFO0aU7/EF1apAzSmlbp0G914Lg1pR5vzr+3TKuSLE\nMlqvNGrkxVhrZ3hnH0spazxYokT1Q1WXk83yt66kg/rSyo0CVFYo66INZNoHFDm+0+T6igwzDeZB\nozZrjW9A/s8Zrq0QmZpxLxrEzSbARn2sBXUvuMlp1JAtaDYp7VNlsxmJ5E66CZCKH+LMj+EM0Rfh\njefcEVAdbcav9Md8gXQi0JGKlwr2+Nm/OVDbIFGiy6mjVQgDIcudcshlzVGu2CmHbHPzU0EEof4Z\nxvjLcD/jNacOBQZyuOljbP84qia9o2c2kU56vA5XcetS0vN1AN9c+u1hRlAAweA38MM/++x+zZEl\noT/nwlQw/H5o5zvIkPN6LgKxYUaYRvMNR5PPTzIaPakWrhzcey0c6EjFXb5svPZcr0Mn0/HWHfPh\nzt5pnXOoUfnBvdfCVnt5CCA54ye6nEvM+O70TWP0EDNqjI3vMxwlqh8SXuAt7XszR4yGEF0OHNkD\n3EALx2xAfU9hYtUN5r+Edt3o8rl8SK8cs9a3ia2urVdUFX/MbL1f6yLVrM8GYPTCXI9Z8kEOn1Wz\n2VLPHTSNNV8v0j+ow0yz0whMB0KU6IBLywG/j/MoeqZTGNVZaF2GHXryKlohh1oaqT7Gwp1ME1IS\ne0CtWKKZuuK97ffC/VvHoQXYxMW+HbdjBq33/sG915hOdoT6t43HeZ2YcoIBXiVykDOcef1gfJz+\nGKgZaUANwU3NtfhLRSlkmZGhV9kzMjFc4yrePHmI7v6JUCHnaOvbMZYYv6Lef+nsbp78zM9D1VHx\nsMuSP/AI7ycOcub4f+W3GmYeCbQnwzP3OoYURQm9efLQRd1FV4GBJP6wJV8OJe6EQprTkfHQDLd2\nLswBSLZKnHfr34HpPfip38z6hjqmXf80cBOVwr5KAyVYs3e9Dp/53WjBP9QnZTR410UBYkKTpP/a\nHNfDgdWx6oa+YZnT0QslmjXqxrFq0ARpau9Bp9B62+hK+b0hROtj7NflAGPs13QgGMHoABSPrpLE\noha9pv2te0RBA/bR8L2hLfJBWClQEfwf/7Pv89E7gzXXWf2QsFEkiT+cGvcngNjupy/FTn9X5YCm\nz3bSf1YtC3x8pWICgMlAOMERYsLrjP789PCzm++M7wFoZT5Bk43kaclm3fNZ3OVs2xRdv97H2NUo\nUfq5cVRaKrdbyyUHUAsrjBIl3D8ZvjuqOrJUsHhHGI4UcYTsFBJauzrzTWvnwlx792zdHAQYjbKd\nZ/a+EfFPpRpq3/XEFirHUx8JaNhAYVQKXfP7b/asGhgRcFXKYNqk5nd9A5Vqv0h99tcVCREMn3Vy\nsZk7acStmEA3n7kbUUaWZVv9+ivmNubnNkO0Xn6vO7QbtF0vO/1xRYAVf2vPvZ/GZsw6MFN0vaHx\nBRnZxKZaRkOb2vU3OdSg3flRXYM+uPdaODkbiKAoIYT6SXYzqbrV9qt50N4/u/PYI598H4A3f3bo\n+D5tsw8zEjnPPiOLRXf/ZFwLsIm88dzBSPxW656yaG1z27Nze5+7GF9AdXSJvh4lSnRUj8x75oU3\nIgultnBx1s4k3aClNLZTpN03OwvwqT86d86oiErOBuItC+nbAF4yaM+ss/exYZatDA89fv3cmVfD\nES1//gpoUDRBRcKT9YrJJvBNVCpd1r6fa9JOQD0E0tF6e3VTZVYziC7nfDM7/ehQi0logFBGc9mK\ndFNGjtFIOU39pFGfWV9Q3ZRZp6n+FaEmbmjPaj7kjMrDhuZiEzT1IWkEzQ6iByWqD+QwYx4kSnRg\ncO+18FLSG3I4SwlDdJPxkzfV5P7aC18u5/vzflXxNjkeTuh27CiHBlg+JGKfOHl+lJMw8hkntnKx\nTos+wnAkiRrF1ccYWtBm/BMnz//YEPIZ0f3MXeQSfJFwK/N6FzEFBs5/5sljqeQF7+xke/ryzx59\nexfvJeyUQ3YKCQdj4SALWMcqaQ+ZHbzIV5Rt+M/0j7xSLluOzk62p/0HFlOmMN7aS3yD+vrjcEZj\n188MHIOBMxyMyAgvwXnslFJP09iTcB1QAGyoNelD+vsyHNS6/P0aq1N5c1KIB4ET1Hu7Galh3ZjG\nvg0Ewr/OsSOAR/sfMGuldWgQ0LIarBA9tevm5JF181+FrV4BZk7lVwXDoVZzR2/W1hy9thorY35R\nA0CkmHM0Oskbgd6uxgIZY+CjREcVbeMDnGdf7NiJKAdff/IkgLwo6gofhhmJsJdwKJkIhUoJ+ibG\nyeEcyuMMpQgkjIO2zsyH+xijjDVxid3nPvv0DyP8hLBrLhf6A/63v6YLWyCdDGZs7g9Lij0NxB3P\nFQiRiLdOzIe5AsCp3Vw6x7LCqCGYWb0oUXQ9xU22vRQl+pL223FQzXQJQntaSHVZqGbs1NvBDetc\n699wTTehpTTKmjfcprvcrgpN3nUIbXNH1X9GlruRvbqmYdee36jd/jb1QTWN2NbvsIxMVxrMT/8t\nTj2ncUKfr+b5p2/2Z9ECgoCL0WVPQ1jl4IGmPiJrHRSriSAPrB1fLxj6XpeibgVF11/oege0OUvq\np6pYa8iKaA+/gpVq9vCtO+bDhx9/LQwgWSveSllKu9PZi5/4xciyVrgfUmN+ihPWIwA+Fl0bmDpd\nxI6CWqMMQOESBRwRWDZd7X76UozTRFCDIGwAQc+CYC1WvH2MhZMzfgIdqfju3ktxrsAYfeERhiMP\n86HfSwaqeA/6znBeeDJdKthTpukbbeIRzRQHy77qXiAyspwoAxmLE2CO4DM6okTrM6bWbLmGNavj\nbqLLWvSm7B7LbONRlmV4fU31ee7BxIav0t96NnBDnY+hTz/LCP4K9XZrfR1D2jVdm66LasZ5Gg8U\nI+Ib2X5jnzoYx2iG1DHWqYMycSor1u1B8avZmIa+a9aM1bghKbqOjJerDaixxavKG+aTzphJZRkh\n1UCVbuJhm6MErfV9LLb5UwKGtlOEdyuXQuPSJpeMmJulPVfBllggGH+I66qLagPQizjs4r3wM5zx\nSdYy/RNjU3cjG090nk18bQs3v2afKZXa++e+xhjhjxhknH7yOMK9T054vWSYyndy8eRj4UvsfgUD\nNwJE3uO1sIB8BK1qsdIhvrpwJRh/n0d78rhAcxox6C8SwHe1NXzJONfosigQ7tsxRmfvNG9wMHJe\njS/wgNkfcHm9m7wDfVN7qHdX/R6qVxzAX7Fss9XlTaO93si+NmJ3/drPKTOHQ/0hCCupqtETrBZ2\nazDFGdsZdRBG77rafqQxNDMV1ylIjVyusZHxnWDKtvP/T2CYJ0DMSNEfKNWOGXnXMSjPvFCziTez\nScYmCePqz9LJdBiIP1Z692VONmh7Vv1I0ZovYk94OjM7Ht525QAAP+OVEYYjnUyHp+mM53DDc9A3\nMbYfoHDFFlqkJfE3/OY3PRPpAwCBuwvP9zGOANbqXQvc1Wq5E+YSuxnk2rqUO7u5FL9HOFu0Wt0A\nSTkYcpGNbyJ26jrbz2Ew/aDFfOvP3qTLGIDNUQwbssqcQ41mWuFMYqIojdhoIxXUkdHM9q8G+jz1\nw6EAfMHwu9l23+y59Gd5pUEbfY4J4KKAsF7FWgJNIafNobbZTXu1UQLKeLQJNV4DH1YL6f0HZdeb\n9G3WFegx/XUKP4nlBX+gUylKdGCQa/sB3SHmgR7q/bM7jy0lvd6//WRrWk0fXZtoXQYVpT4N0gDA\nGH+5v5/xENC2m0sngHPs0+TnBPuBlzYz7q0gvRMgyT7OxzlCTK80qvfnZyEkInsBZmlnLxcRUAQn\nhdpcWnfMh4d7R+Kbr4yHelQLFxWsLNJCH2PhcfpjP+Gp77xPyu8i693GrZd7iKezDtVdP1dyt7nJ\nhrO4agoyDYwWjjjAsRPLdcCPgV40ESDm1OLdU7N+HQnMjimN2Hsz6GP+Cc05MOOm1edrjj4D8KEm\nebCxrHep2XWjK2uV6WY8XbfgpUHATbRezNORaFWTlHZPQ1/vdRCjRn3XUcMG1xtm7zGIFpEmn//d\nkN+wF2CleIJEczPMmqCbwPZRV/F09dNQlY3JLzpJZlp19jFyXM2Zrjt11MmoOnUe5BpP8ovnXWTb\nAWYIXrjFtvibHOJY/QtNVTxWr71cOFyUi46b5b7gwh+1VsRyRWmRFu60YHl1ho7nQUDGMuQhc9VK\nxXOHTd/0shSSqDBH8EgWTzaQT7I7e+kUXvjozcFTSdSUWF/ge7ERhiORF25Hcq+5BlOCPzOT6Uhv\n41YMOH5+7BOR8+yL9TG2v5PpuLDy5NczrJJZdO+ZnugK/9m//NKRjvA0FqmaPfz7r3/ViMh6lRdU\nBdPH3SxGM+R+Awdnlu/NG8V4qDxruK67tP7rKNF/gRoYo1N3Iyu9wlZPvehgHBuW1+p7qMkq6+bY\n4L5G7LUOxwzfH8Tzr5lyboW8Hl1Fh2GGVbivuusPwFE0gzpxusa6G6nnMAef1WzTOjRzlGCBYHiE\nZS8yU3uA0RoSGlnwz6gflbLFi2FRPaiVWBUYEGBUdSY5xG/xV2E/yZCI7K5iAcilaZl7k0OqrfoH\nqg95Go+/gLOnRVhst1sKlAQrC+VWKXfPI0hUchbkrJVyfJ4gTnJbq4iKlyUUeEtB+RdLeEnSWs7i\ntgH4CosSGd6hRBuQCKAmwPyIwTAoIW6BRak6EWrycgTgIGfCBzkTA+IGxVudnFrIOsIb5HgoKQQa\nJoYwvOyaCYXmSi2dM4iwrB3/ttZGR9LvsJwd9VSjMRuNYRpLf1ffRFVmAuxF9bZ7ENDFhoEGiKKP\n72BZPDDOQf8+2uyacZwGY69HsWb0iDPL5atZNH5VG/6KoJ41uLQ6iDZR9kkflzqoL2lFHm/zpmsK\nw8IvXuEPiH3vj79Qk1md5LwO8o2aR5L4Q26ydHM/i0ZJStgYZiQS5p6eqYULPPmKn4WjweA83bP3\nuyuidb6AE4my304p6CS/cRN3h+doE5L454rYy0Hm2cZNRKplGaGUxouTQg9ANS7pTzKXR2XHQySO\nAJSxkMH7diViOS1sEi5eeH049musCOKJaYq3mjkMzT1Umi8NdYrTuGw5kgSYvN0r3L/dDZB+7+29\nxj5q69lgc6/mzdgIdEqq31OXp8245sZnMHw3jrVL+65/5vWNZkbe6LJjTU0mNyCQUUlnRBLdL6Ah\nmA7C9Ty73nZV5FmF5TdnyjH2aV6jugQXTe77B4H1UP+PFbVkgkYbou7U08M6AT7B+R9DrUprpJC3\nhYBE344xvsD3Tt1PhIaqs5Y59R7VF3yYEQKkdE3wV0cYjuzk/aMRxg8PMvo4oNdvCrUyj4DsLt6x\nkcJ/K4/r7SALeFk63MFcJ2o+MeEFTs6+x677S/gyVsqeBVpxkm23UXa0MYsFWZAR8w4K8hh9CYAC\njrjmkZe9w8Z2D9nuuYttbORuduLapot9jO1/lz2hAMlEP+O19RlmhAs89qSMtYS6cb8NMHmle87H\nEgFSiUFG45P0XqRxJZTa+jagLg8KKYBoE4/HBiy2fl2/ZtSy6z+fiq4soNhoczd0uTWAEVn2AH+J\npmBb15M1GBsw5sRv5NlpnqP+bL8KcuregI3EiqaHi36PBus6uAz7YdV7aohuVHrpkWYGqFER/aEN\nE27q9663f9PQTuH8wBkORn7674p7EnTRIcy0OSglBh0fQQEqVon3efTwDQYej3Loc1GiX27dMR8W\nFhVVCTWhhok+zIdpEVmPb04A8bv0HNnCjU0est0iVAvYC9N0fJjBMxfmHhlcrQ4KNgHFZkFhN5fy\n4/RdtlLkPl1tJew3O5gNdzBddpFvAWEWKL3L3vhmxo9uNlizOp3TpEueioIYyVbdQDVqo3DhfXY9\nYaE6O8oAh3n9HBA+yJn4RXZTUhG9hiTD/CIM8BDX45qOQn9hRjv3K03enVF7Xic3Rk0upYbN8Brr\nY1sbQoPN/23z9V8RjGxvggdMfWXYn82UX80Ub7AKV2Bkh9eB9Cs8Qx8EzIdgg4PiY8nuUs2m/SoR\nXl/dXKODKSlh3SRr2VnrtcZGiLQyH566GGKUwcQg1xKdTMd391+CJZCmq1/M43jIxyJWyoklPCe9\nyUshSrhwcgHY/4/5LyERuUtBUFAR4hzAIi1ZP4tWGVEQkYUsLrGKFKgiME/wwkds35rDXdnNRamb\n+0XAbqO4sYplyUPusSJ2v4jiFRAy87RNpPD/dZyei1u58ZKIMiSitKJmFv3Fnc2b3pm90/ZpsSAP\nSFQ8Noq+AAstSYK1jJAjDEfamB1aoiXkITO9gOO2ca00Xl6T6f/bsRm1nBuXeVTPUe/Xmjei8A+C\nCMdYdrD5qvEH4yY2gdmmXfNMiy57rIWARBPKZd5DDYlFAwq2mn4AfkUNthGR1kLaZr83GLeORTc8\n0/9ZsOZ6/Mqs+zoXu7YZj8F+F7mQm1wbcLGbSVVrf1KN4lKYeqmIY6uVipgHLFT3ICAhYJ23+Slh\nD3WQaHOTe4tltu4rN+n/dB5newmr5NacK2Qs9iLSY1XE4iK+yxk8okTVVlEf2w9M99Rzv3cBxwzB\nsw5ygQ4KbYOM6hSmBVVmbAW8g+Jo2+Agb31w4xGnO50dzOO0dzHt/9C5827VImGtltzZvGdPGSvT\nhOhg9vQCbc1s1GGJireDmXSJhp52QC2JBNF6t84HhrUO8gZspHEeOjRyZPlVwXgg6QkszOxpQ224\nqU1TWIXV/dicToMxVuOAH7Sv9b6rVcdaRnQtpFNtuNJ2bexAp+argZYpZsVJc5rndE2ttmGXx4nC\nQI4/8e7k8uISPmmajhvAtsw9lx/g59OffHg7114tI23xkHlKorLpLE9L27ghVLBavKTL87RmfCx9\nJFGlnblNkrsURIYFObDhM8UfCVbKCFBF9Sr7a6BtivanAiy2Wah2l7AJVcQ+K4pgpWQBZG2KRYAK\nIlncOxev+BbcZNnJ5dMVxE4nOQcIlaeGzn53nD4AZt5tH0rinwOYpkvXMdRAPdhUF9sKkqekeuOm\noiZ5V1ufiOnvphunwf0p1k5B3GhDRYA9ek74KFGjD33CkDji48AKBy3tb10ca5hwkY/n9dYU/qGQ\n+0Hh47DgqxxSa4KkJ2wwDmb6vmJTrJaAwJTjvQ4UGHgVH1ZK7jK2rG5CM7Z5n0df7mXiaCsLbOIO\nMuKN+2xwSVS8KQIRK+UDl9n19jO80QOVTQKIAlDAoYjI1jKSJ49zo50ygKtitdmQKWeqPmWqKC+G\nmLaKyDkgcZMtbRuYDBRxbFhAVHykhXlaM1WsAQEFB0URNawzp30WytiU+3RN2in4FETu0T0noGCn\niERZ2q1cCs3nW0m5AgkHhbmN3LsI8Cw/fglghnYvRGPP8EZkH+djZzgYKajepydamY/rykojmN6B\n2YFjVWjCUteUeSa2O8Jy9hmd1VnhmWZiuSMsa+6NirY685ABmjqcmCBE/aauiyFg5ToYTcBrIVEj\n5xqzaPDf28mlzgT9cTowvf/aupreKQCSuQbaA3S+roWopUbWYIoNaQd5CjhrDhMKDJxhJDLA9aMS\nZUSUnVmckw5fYWNiY8f1d8f3WGy5ss1DurOV+U9vYPJtGYsLBEsWjzjKQKGMlPaxJAFUlhmVQvvm\nOZEyqfl40JfO+ippfNMBkrECjrerWLYoiI/kcLcoiKJMljxupZ1Zi4scdgqi1o8HzXFjCd+Cgthd\nwdqieAUUr5B8P7krJuVLLj8px7aLN9p6iM8JCPEhrvIQ1/W5pPDjFysyw58aiej58Ae4fjRBJ++x\na/sldl/QFZANljIG8KnPn/3KT3gKgJ9qvgOG92FEIB1Rm230hllw1gsGKnyMZcXgN1j2kDM6zNTm\nvwbonoHN7NBNHbPWM9cHuedBINognn61cT8uxxGt92MAk+ixWj8NZfR1TqqZ51DdfQrL5rVOpsNa\n0sYwpqCEg5wJoyLUFNCax+G0iiXPRLXHdTB4ZlrKVZw2SnbAu5tL/wKYAeKf5YcAi6hUdwtqNlMX\nGmKi5q2odHG/6iHTBQgLBDdYKbVWEXtKSESI4aBYFaDo48b1azwUtlFUHOTbe7h/H9Ukl1OfYYZO\nZnKAHwfT49Y+vJZ01kHBFSBJGs+vuchO9XLn8W3cOqWvUwZ3j1itekqK1XjuISK7NzDFdQpWD2ky\nhqA006EKqPXpzWmdG0Bold8ihjZ18dUG8UD/bb1yq0v7fBBHkRX9R+tt8Ho1FFjbvh8xta2jlk2Q\ne7XYDnN/NWiG1IZrDccytVlxj3kdosvytjl99Xp8JlY8m6SnX9YL/Zk6XVegi17+COBpzn65/mGj\nEd2bbJrO+LQa1qW7rX5F2YafWTZT5QaLDAGbAGUR/5S3b7GnxZvOt1iS3XfuRSqAx0qp6iLXI6rI\nZ0V1nvFkcFLFIolUURDTEhVsFAMSUMQaSNBZiFCwgyy0MwewoYM5bwGbRaKCgqAIKAC7tvNRVZu8\ngrrphVla3SAsAlK7nrjCTaFv0/jVvuHxvz9/8vETeexiFcHlJmcXkK3z+McBgqTmfsHwy9274+Fx\n+mn11RJf6A5AOChWFASvttbml9vU7GNY6zCaggzAFKNtpDI6m9uI0hpZZLMFphkHlwJmte/PR4l+\nBVVp+R71zjH6XFe4kJrG0cfSwXwYNWqzHm5h1faG+Rjnudq+90eJntS+7+DBXcnrDq/oSqeltWTx\nRu+jppjT79fZeElNi7R6HTQdTC+j9mBFbH47avYXBQZMDsWxSe1wdNVco1VI4/Fby+WQJBQ3S1W2\nlLDYZcSClWo2RKJQfk+avsumEw7yz7cxt1Wk6tUUaRKqX7WAqg33lrFRwjZvoYKVsldBkNAqayoI\nliqSU0GQBEQFqoL2m5jGB4CMILQzaxUAQUBAQQZ01r06xhaxgsQWbrWgchAW7nCBOxyZpoNWki0y\nolzFKiZprUhUhBJ2PetJopX5cP6sk2s8dKSIMxHmnncf5786Rt8p9a3dfsdJPnGJ3XFd3PmemrFW\nX644ELvwo+Ea8tRC+NSXWqPiWmaVEFrxwCabtabU+lXY2ehyOilYzuNWokFppSb31+kMWBnE0oir\naOTgYzxQahr6qElfoPfXiKo2mF7D6q4aGPMBnIOaGGW2x+uWBHP5qjUtBE2gqa5iNZBMCxEzPbC5\nE+MC117i369xUGg+31oSxNp4kUVaunzyotMilS0gV6sZi7WEvX0WXy6HKyFjOWWnNARCu4IYStAh\nCCj0ck+2U9LtOgJgmWCjsoQvsIQn2cGsvIUxq6qQq5LGJ7Yxo+SxV/2ki6ispgjQxhwKoCBqKZ5B\nEREFBREBGY22z9FhLWKnhF0I8bZUwkKCUMDPkiuPfWMRhyAjimHuCUv4rBLVVhHlgIyQBV52kg+r\nk1VwkvU61cCc/SVsfJ/fPteHGkLbydSeJP7ECMN0Mh03IHrMsIlrpzWNZdqGcnF0OT2zF9V8tQIB\nTP0aoWmWGMO1FYEqTcDsz22cv/HaCs+/JkhqPgjMc6wzUepUrtnkTOtgDKYZZRmh96Mmw4T6zLJm\ncSRFE39709/m9W6kMFzt/dTN37xGEo1Px7qO14ILDL+yi/fCOVwhTR43bBoVFBhQve+itcyt3+WL\nlx+/c4HHeae9lZRrgWBpCZ98m8jiAKPtfdwCCACn44QfAaoyAnZKadBIsdo3G7gvdDAlzdDZFuGO\n6CFTs/C2skAVwSJRpYrgUlFaReoYmyhiR0Ykwh0EZBy7ijAJpBBVyRw+yw9LqOKCpYTFUcROGctv\nyEAVi20bo8o0HSQJlH/Kp6af4qedNkrby1grQMxOcQ9AC0uuKmI2jY8x+rjKUG0dO5mOQ2ctKnAN\nCJs+E6jJ/nUE2UODlFBrQRMKa0S+1SjIinrgDVh/IzWqZXJFTT1tDE9dYUZrJEasA8ya+0b9rQtM\nRDGOGu5rDCb62N5wPLhCtLaWZq6tEQ6v6jBjdIvVzGBN7ZcOCizSQq5mBl3RT43y7OaXoRStiXH6\n5+bo4CZbf76Fm8kEXY8UcAz7WeoCulGVaxIQ28ZNy3J3TKNSZX3+QpA5qliEFAHhPl30cg89rnyc\nPqyUCDIPCKiHgIrsEe6goGrql/DjJkO1bMHiq4IPhFFUXFbt6RYFxAIu7hNiCZ99kdaqBVmMIygW\nFPGyuNMSViZ3omABvApCGiCFPwGwldHTXjIIyFuSBELdTF78bb4/qmvoznBQrwRDlOiowpkB7bo5\nWUKIZXa9Zt/e/uSHRwGKeTtjH2x7WVtz8711mVP1sZq8W6MGHdTw1rrD3NiuyW/NQK/ektXmoXvb\nraWtX2//TRGv0YHWBFnMB445Vn7VOUVX6kf07w+iea+7z0TZ1wUSK0+52gSOGRB9vZDF9c0I44X/\ng39CjL4vPMH5YzeIeR0U3Bu59yEw18dtcup7TPQwEXKRSyqIgd1ceus+oW0KYr6dmS5UDbqQwzbg\noCQCggCKAv3isvzMTbYqHUzLcXrEAUaFFC0UcCAiY6Mkb+WWqNTabsFGSQkyL/jIcIdNAHQxVWPj\n+aDukXTGoAzYFeA+XaTws5mYaKMk+FikjE20UsIu5QWLIBculJ4UbEpJKmNt8ZO8OMD1gpv8hfuE\nxi+xizRebjKYAGI/wfads9oghzjzZb3WXJTowIhmbzfMx6xVTmBgTeWKRT9p6xUiLG+6KNEvGa41\nCxVdKxzzQaCZ7TzRoK1+Ta/HFonW2/U/9pyaUb1VoBG3awxffaCsrg+C3Gv005SzMXEdtd/WHaZq\nPgGN7KBKedSOz/DMH5Sx5XM4AkCkguRN0rpdomTN42wd4ObZQUbnAHZz6dx77NpfxpYo4tgPUMEq\nyYgoiDZFRWpRwUIFCQUBCxUBlKpgQPSt3FTKWIQhrgoA7cxTRQRkFK2dLn9v4RbiMvKyiTt1z6kg\ncJ8NqPb8KgEWBBFFUsAtQWWeoNjBjNDBDAFV9BJyODnPPvZwEXdbDlcq7x60f1TxFLLV+4QyAjgV\nBDcwBEL7Ir4LQLKPMb7A9zir2cVXAz2ttQESAMOMxPXqrseJ4m7JZgHcvty9L3xwspmrrDncspZp\nNarqXswIYWR7dbNXeLVNHl2p62kkcx43fF/hhIMqfhjn/MAJGteAmOnzgcGAA6vln/84czPDMe3+\nFMt6glWzBBl/W5V1F+pe+ErqbnwYvU7Zf1GzOjoVRBtAFYsng9tqwyqVsBdQK53UNtpuLukJ9gDa\nern374HvA3+dxzEgI7BAEBGZNB5CJPCQkZY9UwEQ03gIsFjD4Al6CTKPgwIWytxXCzLgJ4lHF7wb\nwB02skArvUzQQhoQkVGEKqJFoiK2M19RNG1+FQsiMm/xDPv4OTIi6ftu5RoPFWUshU6uVn2kvQqC\npKiHi2MDUwxw8yqoIsUFHvtWFWGbBaVoo3hFF5fOaIUfcrg5rpqsPq1N8T1U7W0MiLjIMsKwTvVj\nF998rJaeaRVW0WyXDhnaDRjbGzey1sQstxuR1GxKWxXMm9Twt37/11m20V9kpQhyTPtMRRs7Ga0H\nmrHcdQdPdFkB9it5y63yTla7ZzS6XJN+vVBnGn9Qh5lGJ2BNA3zsRJQf/cFSAqCSsSS0goMn7rLp\nxRZSTjtF5hkdCi4rIfV+4sAtVCr1r1AjrNwZPJSRsFMgjws3uUwBh9tLWpkjKIJCCj89xMnhwU4Z\nOyWsVFZQ6jCTDVfjNpvZyF0smno9wh0ihnsn6cZPEgFZUKjUOAEFmKCHDUzxGX4EKMiISoKQ0MKS\nE7DNE6xIVKoxNlo2MsECfnsrqVktRzxO8vsL2NszeBaKWPNpvG//Ob//LX2MAa6/vI/zsfPsM7+f\nUYA3OFjzUaD56V5nTzXer33frz6P0qbZ3vX2zcxKy0u6DM3G1WV7PZjHbNVZa7Pr8ns62jg/u262\n+pWg2X43rNd67qlz0jE1f1Cbf6Ox/NqfqdXWzDDnmnUGaIzoq3XAOrNlBEhykDO8xy78pN6aJdjW\nyz1yuOeCpBpplQ+gOsu0VhEtIAtB5oQKkgJyRaQy2aYeEPYqorWVBW6xBQ8ZKkhs4D4WFM1Utsyq\nY/qu/61DH7cxwjQdtDOHqHEM3YYDQgFkRO6yEVCUbqYEB0VlmjYhRYBOZoQe7uEjLaOyHLYbbKWI\nQ7hLb7mIY/Zx3n1Z7y+H42u46bVVioIilNJyQRgSqbZXsOZs5Lcs4fn6X/KFCKp+oBXVazBlnO8k\n4TjA9/ntGtfVYCPUfKCbQMLoYLMGrCabGs1+a23oFco7M/JEid7T/vRH6+PM9UPGnLb6Yyu81jFX\nWN3qsJoW/GMNajrYjmvXPtYz/UphqoYXHgEiI6eH8UuLxoUP71Z9UBMlbFSQ2uwUt6AitQvVrfRD\n4B+jvjQbKk6KIFDAyjj9goesRaLcoe3xyl16JSslItwR7FqmIR25dbjDJo11L2KltO5gyhAzxOmm\ni6kasuuwQBsKCB3MYqOIVQ2cqYJgiRBTLFQFizoLAbAqwFZu8hOeZomWYhG1hrvuEtzBNBtC9zN3\ns71SUvFPTha65xbxU8aGkxxO8izSIvlJ3qkgXfwq//YF43wOciZmyN7TSDFT5zxi+P2Yodkrhu8r\nOLX1QHSlPP6rgJEDMVYhNfatixonokT/7OMMYkJEY8LLpjLvPwQYKO6DhrCu4MzWgLo5r4bodR03\nMLXVJh4lWquFfpAzxw33h4H4GH3hDhJtAFUsyQriJ0GRJJQyGhUH9JDQmTH6uyxUBDtFOknQwYKA\neghYgOpm7ihVRERkwYjcoFLkNubpZYIEXeQp00oSm4qUtTYWKnjI4qC4fPNmECYhXJqsnRo32cIm\n7mChSpvqOivcYAs2ykKQOXxkxGsMCbu4JIhUFR+ZCrXDClEBPslPkZCvA9xi89c3cG/LPO3eInZ7\nyWdXHPZiaYsyTmh6lhK203F6LkqUj+ZxMKNNpdatQQAAQbhJREFUTUHwmjfG8Y9JKTQwenY1Mi2Z\n5W2jTK5/muV3DG1GWZlT8IGpnGFsowONrplflQNpwnGuKmevdY+h3Qp/dOMzrfLcZo35euT/dR80\nzcb9VSm6WWYyQo3FKmEjSfCqnULIQrUNCLLMTae077L2/T9u4+axUbYKPdzT7d2CYa4SQBovPpaQ\nEbFQ5Zc8xi4u0cFMrWOd7Taz7Z019DHB7ZVs/lbVaaeOY+hnTPWgU/8UnuInKFAt4BByOLBRREIp\n3ibilBEVKyVaWehwkG8TUGwyEgUcioI4N/V+aLKN2QtVpLk+bj8OMMjoQyxngokAjDDMmys9EI1m\nq3PmDRKtj3YyIoWO5J4G7fV+9U1oHCNu+L0RdaltyOjKHOdGpNXbNkIe83yMDiox6ssEG9s00uqv\nRyHYaI0acjPRNVx6myG06VBr5nGoc1wN40vW8ywmqFfGPSD7UAPzS9NMPBFgP3s5gkSWPPABL+dx\nEmT+yCJeVwUJH+lFEbkiLWd8VZPJqDJoG5Af4GYV1Z9dQauPZoQZOnCR4xz7EVDYxg0ElIYsupnq\nAywQIIuHbiZJ48VLGjOr3gymNPObjyVcFAR1VMFSxcoSXsVOodDOwn8SUL4kolQDpKxl7FmJak8R\nh9DFFBk8ZSd5awFHex7HxgIuutRqsOl5Wndc4eGvgBokpK73oQG9BPMbHDSWiq7LDqtDdNlsFsJk\na2f1VM+NIGT4brSS6DI2NJCzWSUKbA1YS2xIGOa0Wluj2NKM+q+mKFtP3DysM/jLBEaXZliOvzea\nFBtyTB8HZ5tp3UcxySpCY01i7SUKWrYUIIwDFxYE1Cwu4d1cIodDyODutpFtK+BQnOR0+bxVm4c9\nh21DFvev+VnCSnUWNQe5hQagU9pP8zagInOMTYSJY6XCHG14yGCnWPOCA1WL3s4sAVIESQLgZ5GE\nxvJbqNYdDDrlvslWOplGpFqnoAOYYCN+kvyEA4jIsp3i/LP8/dwSLVeslLs/YrtHpNrdQ5xN3EVA\nZhN38xUsd95j941C0MGMu2Nu28KtvsbV1FTQg4IM3ofrcWrR2Vyz04px4++PLhdIMGZqhXpfbyMY\nER5WsqB1SKL196zpuvH3Ztyh0ZTXDKlXK7bQqD8zkphTaTfqO0K9KGJk51e8gyZ9NRrf7AxlTvJh\n5oJWhWbjrsm6N+P5gXA3EyGAL/KfjN2GqGoJ0ANMYdhQRewVKwKj9ObamQGEbDfxLR7yFaCliiRW\nkHxF7BYruTCaTE4TZDfCBL30EGeCHiLcIcgcAqo83sEMSQL4WUSijJpOqp7OhwzsfCMOwEoJD5ma\nGc4IEe5wky0cUA8di5/FDcDv7eTya8ATV9neaafIGP02UKwSVbGDaYuPJZzkk95AZs7ilBPs4OXx\n1yP/eobOVjuF55fw/TRKdOAZ3ojkGCFAMpwkEDc6z6zzVDdTZKP8fRKVldf9zWtgQHad0hj7adQv\n1B8S+uGyP1pfDwzqOYxjLJvKmikH9XuNdvyGiGZCxvBE98QXi/ZiTrbI2W23tn11ZHgkUpOComsi\n6a9SjGHN99MAMRsd3uvlLJqOW+cZp8DAv+UPj1URvXnc5rA6jO2+xxgdyx6MEU22HVXgIudJTNEZ\nuk3fRVBLNv2CJzMylnI707SwiIBiFWCoitQCzAO5OL0WEdm3RKCyjZs5VM18QTGx7o3Y841MANBH\nrIaoMTbRxjxxeuhmEgG5ToY3y+M6TNBLmHiNlb/BVnK42aBp4nXPOd0MJ7DMYQCirCrheitYvmSn\nqkhUsFBRAszHRZSOLqasAggBUrkO5q6ylzhjhLnDHhHZ10LqvoKYz+B9ZZiRSIBkOIc7Pkk4bqqg\n0xQMbGHYkMQxQWO7uFtb6xCNWdxGY5qRrM5ua/jNHHyDoX2j62s9X924RnFBR+ALP7rwrUAyAIAz\n53xnpmOmu2qpSrJFLrz22df2J0KJIyzb519oNIih7zWtD82QeRUiuerzmdo20xc8kKgtRev4/ygK\ngldz11wBBs17pJPpuJmF1ScK/7/m3jRIjus+8Pxl1tlV1d3VF7qALhyFBogGCFKUAEsUINgyRWDE\nCc1wwrOy1vJIO54dx6yWMas9ZH+Y/YDCRx8TG4wNWjExWq+XGtmj0cTO0HasZIASKdNo0RYJUSRI\nNo5G4agGqtFX9VFdd+V+yHxVr7JeZmV1N2j9EYiqrnz53suX738fj8wKw2fkBJc+SuvAWz7q2VGW\nfjTHxBdjFA7n2B0YZH03UDrKTIWWxTpUR9c1Gv2m+Kx1cGFpXk3QgBWG6GfNykaDAcnVmmWCPdx3\n7AtaREP0fcR22pDDc9tBM9BDUK+PkzMMDKJs7Bsi3zDQGiGqt4AfAQn+rMmpsmVCX5I7WSGejLCR\niFDInmY6c45LnjafBXIySjPxJW0zYGESgH4UsecuIqgdOgxr1qccOJNTtbVgHemYJus3+TntxyTL\nhj9z05tcOlXz16JLI0uHAe4+dXfv6NLoUN1XD5VDZe3KiSv/B2ahz3etm6dIe88ckxBMaShzQVIv\n7VWwI649L6J7cyLnJReblWPeMQmLq08V6WOYpeQyI1mAftYtI4MWKBDLTTD3vd3M/8+YG0zDLFbg\nw3zhFeC7d9j320my/lUGuc8eJpmljyK6hKQqjjxs6d52MDCRdJERRlgGB+OdaKuCMgFCVMlwgP3c\nRZMMeKKvOSYYIo+GoUHVV8NXB4NNIoE6ei1AJTRGfgT4CuYZZk2Y4vrv0LR5fDBlntumZV/lXOYz\n1sk1KNbdgKlLnE0BTHNacIWsOa+2pxSbTxh9XqZdl1VZyEEtCczY2orAnJTUXuyTNsu4tNkzblzV\n4Z7mc6SF5T/NFPCHQPTevntPD6wOaIZm+HK7c4mGv6GVg2VzERpEMKWXX0anDvx432/t+1Eym3wZ\nYPr0dCadTneML8MWOfV2wG6n6Bn52xBdg5k0sWaBf5eHyCiMczKkrEAZMUkOMnvNRyM6xx7KhJln\n8q3dzGeAI+bQxDBjyIX967eqBIOgaaMs0SzfRCcSiuCYGOtdEXeNfkZYMu3kiut2mLMkgIeMMcAa\nGVIc5mZbmKwd7jNBEFM4ibCpvctTaBjak/xcC1MizCYV/EMGWnyF+O8kWPgDIPs9vvhvDjL7BMBN\nVm5C5p9lOJic5ZDId95KvYAszhZq2SIuNs956frLeAfl5nOSCOS525/JgxSRuXzqcmvjTzOD+WzH\ngfC1qWshuXF+ON/yhRoamqHRoKEBfq2mjTVo/Pry4PIJTdP+QPEcYpwX0qTl03Mckc1GkHr2NjSJ\nF0rJSNlnt33RwdHdNo+mED+eldIobcifxSws8AxAkUisjn4oxgYjLP3OMT58+z2ODxrw40FWo/u5\nd6ABey3k0zQwjnBdx1KlZURco58YG03O7oZ0MsxZEW92JFfBKoMMskofm1QIMG7p9o9bVV3FfKwy\nUvipNX/9FH9HA40KwUodPfA5flQEfD/gHxQGyQ8+zvuEqATr6KV1BthggArBpE59yAC/hmGAEQbO\nnOCtxDjzSt1ccPF5xpN/wSpFwgy1hxeLe9yMOUksLpFuJU/sla6pqrz0zNHcENvLPfa/z1rSC8Cx\nLx57I1PIHC1GisNygIMd+tf6iWxGWBtYoxQuYVgKIaDVArW9pb7ScRR55tanQHL59F+VBd8OAnmb\nsQke71OBTLB709G9NPL4YlIGZoGEy5Yb6DTTjwHBDSLjP+UTlQjFsEZj7WNcDQCfD1KJAftr+ItA\nsI4PP3WtgYaOEQPQLJysELS4JFZWWQvs71WFxGv0s4e5JpLb9frbHCBImTirhCkSZxWg6YKzwzy7\nGGCNXSygY1C3vPi6FW9/iwMY6PouHmoxNmJg1D7PX72Hqf7kZ0ntLxC9E6UQD1JJaBjoNIIahg40\nGviC1zh8fJGRoRXiuVNcxgDe5s/PCHUIyKwQT5YIJmY5kaMZNHPJPt02ZE23W8VVsI65oT2lhtr1\n1nTLz2v3/9qj7Nw4kytCXDp3Sdz7Hw7cOvCEZmh+F7ML0Y0ouqGzsGuBht5oboJ99/ZRCVTYjG6G\nVgdW/+X4g/FJoO1sekV3bevigh8qi323Kj1O0OF6cwClT99rZJzSqKBqJ/TyaU5nTjOtAWEDgjEK\nvgY+XUOrN9D9mHqSD0CnEQNqt5isB6iUNoj1PcY1LSSFrd5nDxOWj9wL2BHZThw6H/C2p34FBK1M\nOWHUe8AexplHo4YGRCk0fNRrfuq+On4NjICP2q9gRgD2TZJ5cJFnvzvG/G+WiHwhSJkneffbAJPc\nesvUzRtpnTrj5IZ/hTe+Ac203l5dLDKCubm6SLeKPSaxbcq0wkgmi5kSyGKm03ybiTY2/btDB1Ui\nUhqhlwNovoZP0wwNQzcYWh5idXCVht7AX/VTC9QoxKw6HILKWxvk9oHbzd/78/1BQzeil09dTjHd\n4TNXeqBsz2wXu+Uovhwto6TqGb0UsXAsvtFN3XEtPCE9aIcI1+rYRHxr3VIRNhNgHnWMaelN5EiM\nBKgRZp0glVoNfR7Yd4Tr/bQKSPiOcL1Yxaff4qDWwEeDGrplMHNDxGs8Rh0fu3lAXFmHrxNuc4C9\n3Gv6xe2Ewf63HewGP2GJn7cOSvRT0wZZC80ySZgSAaqNJPfBLI1cBeb2ced/8VGP+mk0BslXIhQ3\nfdQil/k0BSIsM4xOfTNITUmlTJvK482/FaKu3aAm4AVaZZxektqLsFUBCUzCYO97O5ZgYQNIWOOT\nNrPUXuxyXxORBFy8fDE1fXo6fPvg7XUMTH+aASvDrXdTC9acDTA2CFVDPuDw+4+//7uc4x+T7pxT\nj+K28KZAS2zvpV6+GFM2dnrJMOwAJUc3pOIHlm7omYuYhxDEEiXCXObUy6eZTjbwTcTJVzSMsTKh\ndzaJPgXLq5gcXadVujmcY7wi+aS7gsr9BbBBlFhnNaUmuBEO+77wQgQaaGzSR5QNomw2dOAaj9V8\n1H17yfp06jrQqBCI101X4ViZoL9KyNdAb/Sx6QtZgTxzJHO/wo+/fI/keIhKdYnRGcn+MQNmLf3X\nAHi9GSargPOog2Gi0mcS0wLv5vrqSLxQXJORoE3HtW3qvPUp4u2jmLnWom/RXqnTy+Cr+V44fO3w\n7QfjDw4XY0XqPiuYSQ6QMEBrmJxe/O2r+aj760Q3oi1Ob8Di6CJoDIdKIWLrMXlOHZF3dinDgZNm\nPLSRn9FRpelynzyGkoD4VTfQOaHmwH/Dqefe5NNfBdigP59ur+yRWWcgGWXjy5PcIMpmDrhwhBvP\nALzH8ZOLjH66ji8SobgZZeNtnUYkSGVKN1+4sUF/uELQWGJYG3oqT/j9EtTBkMLQnQxpc1J6ab+E\n5N24M9B0uQlRvGAWulC2lfeRgBscbjrrHuO6DgZHuB7IM2jcZt+ahhGa5PabNzh8eIQlBlgdjLFp\nDJOtgbbZz1p1nkSbu26Cuau7mV+/QPrFNJ8Veu9MmvRUmek4QIiup7bIwTDCl/6MdU3o4QnbPU4b\nzZO46QFR49J38aIcuZzDOKnB1cFoPp6P+Bo+f6QQYX1ArZ4ZvhaSA9T9JkFoInk7hIDDdV89iVXV\n1oNIreT08m8q9UOxLlsx0nlSq/2Ce6sUkLNcypzjUsekwhTlFEfSpKdu8u0zAEX6sGqZ2xGl/wmu\nXnuNX3ksQU7HNDodXiV+Y5ilPt08VMF3kFmjRmAlQW5YfwdoGuMCzVRTGXFf41f5GD9niBUr+q07\nqBC/jq+ZCbfKIAOsASbx0GgQZ5U+imgY5K2AHB/1Joc/wnWuc5i93KNMiAgl6sAd9mtBSrEQZQM4\n6qMeneXg6iSzhQTzM2sMDDXQl2v4dk+Yov23PuTxN57j+8+U6OtfNxPMXH2nSh3WhLxYe9qDYcTr\nlo89shuYkMaUo96aPt105wmvqjkIEG27iegdoECIFJDM7c4dDlQDu/x1v7Y8uEygEqAatOw6KnHd\nRqF9NR/BSpBwKUw+ngcNDM1geHl4zlf3LSh62A54tnPJ62h79m4Vex2hQ3S3MqSam8pOCJYZSRro\nIr1RkNDUazzzZQCdRuHX+e46QIXgE6/z2a8/xZWTcdauAWNFIsF3+PhmhELlMW6sNdBZYXh9Fwsh\nwHebgz4/NcZ4yICU4VEghp9V7Blmv8prrDJIlUDTKm/NuwkiUs6viFMXIMe6x1lt3m+PgjNwDsgx\n01cNSbzXtKN8YFTxV6OUKkB8imt+zHWv3GHvoTCb/iilwQEKq5ic9/gX+HPe5NMvSyWkOvynb3Lq\nAojN8FmlaIuJVPbCj1j3TdHS995Q6PcyN3Lovn1OFqhEeVcfsG1cFdFq3v/+0fcJVUJEN6KJ7J4s\nwWpQXx5extCNFpLb9SvxXfhuDQ1DM6j76xT9RYrRYqtNHePB7gd9aGZIbXq641mUf3t4BlewEdhe\noEmM0y1vh7MfXVx0slvIE/ki3wXgGB9mv2FrF6AcfZNPvzTPePJx3js5yMqzD9llxFl7BUj8Q74P\nZioqwOdp0dj7QOAI12MlAgNBqlrdcleBiVx5BumjSIAKNznMJLPoFrd1AztirtHfFhargjX66Zfq\nv8tg2zdNV1uGFBPcJ8YGYHCTSXaxYPioUUVf8dEY0cDfQAtU8fsLxMIVgtUQCyWghElUj+3lXnUX\nD6enOf1Sx+AoX6RXbqGynIuKringq7TOUVfq/TZRNmX7dIIOkV8xn26QAAiXwxiakSvECrnVodXi\n8PIwgVqASrDS3lqlX1m/GyIqw0YQtJpG/1o/ayNrw8D/6XFeXsHRUi797aanOxaxtD5dB/drNuOC\noo54B4g6Zcf4ULTL3GciB9BHod/Kq3aDp+cZ2T/AWr+BPhihXMQ8BSUMhAw0GujU8bdxaRmhuxns\n3BDVzQ+v2drkrGo0C+ziCNfRrCQWGUQhi2N82Lx2jcPs4x4NfLUYhdki4V0alYCOoTfQGwa6XiJk\nbNLXWGH46ifNWnIvAuO7WNA2CUcnuZm0jmRKTHA3McB60qCtsowsfWVwp+r2c8jkbDBXcOFmXTeZ\nffMqxNFu9wrIAeTjeZZGlrIAvrrvrbnkHMBkqBiiHLaqBQkkVyG7/LfR+jyQOWASCwNtbWRtky1a\ntxXPazeWdSsh1aany/p8l/tcQU5qSQG8yjle7TxVVX6QGTvqWG1/w2idyMIlzmYPc/MaQIzCOubC\nfR0zE22kRKQYoxCgxd2bhxouMcYGUYJU2MMDAlTx2UR2N0s40MGxu7W3g7guIuLGWAZglX7LXVZr\nEhFVws1BZqkQNNaIrccoRDeIxX3UjGWGqisMr7/Dx4MjLOl9FJef4wdgctM4EGigFdcYjBSIHMcs\nj53bZ6YEK32wAia5mRxvEdkZB+4rQPakCPF+d5dl6QrWmN/ELOgIrTBaWXIAB8OTA7fPWP9TJ66c\nEJcz5y6du/Bfn/+v53/+sZ/vL4fLnR4kER2lAtsGuJ26LTaG4a/6+eTffZLT094yBRXQfDYJ8cWz\nCwLbrIu/FcRVEBDXPvx0F7s6QHMXDzMA57g0Y7THT38V2F3GH9YxAnnikQHWNJ9phAPT1aZBqzRz\nAwzN+VW5gghh9QJztmKQbu41QUAk7w232c8oS0TZwCoOyS0mCVLVqvj6YH5jlEUfQJy8UeLB1Smu\nPdCp91cJPJZn4DFA81P/O4DXeOaVh4wdD1LaP8JD4qxdTTInG9PskEmTnvkuXzyjOOjh69bnXlo+\ncye3j6sb1Un33MpG9QhyYM73VSpDpBBJDKwOrK0Org43dXDZneYAwsXWv9bPRmzDjGf0wejC6Nv7\n7u37VrSgTOB8pOAgyu8IyFSwezSSA4i2N/n2mUPMCpFnhlZwxKeBnwC6gaZXCBgaRi5GQQtQ20OL\nyTaRHWCdqDFAQYnoosDjMCv4MFhhiBo+6+86PlsE3SIjVuEJ8/f3eILHuIafmrLm+zJDxMkjZ8rZ\n3LNNkH3yos1hbtIAo0yoCOxuWGRkk+j625z44SBruSlmfrOOT6vj3+2jptfwD4cp/+QKJ7IAE9xd\n3MVCrkDsmb/laQCO8aFw+Uxh44oeDmcUkVnyAYr26wJ2CnnFGHLKbIfxT4BN9JXvb+tTEKhYIaZN\nzk7OXTtybVi4y5ruNFDrZUbLxdbmkmvQiG5EJ7w9lhpUEopNtRHrLnIMwMNaKySdrj53GYf9dOoE\nsiiv7MSwVYQVtcwqUn0IA/4M84B4MCPB+oHyHEnfKoM+A204z+CDMZYeYvpSE5g+3yZil4joEcro\n1JFPQIV2Kzm0DG7ivcYotIkCYyzJKhlP8F5bfzKsMNRmwBO13u+wj31SNB20Dnho4KPPHLPhp6Hf\n4HAjaLrUBlPc8d1ln1Y1j5WKPcl7XykS/vYHHPvhGgOf66M4GGHDV8O/pKG9Yh18wV7ussYg6wz0\nZ9m7LtbbgClxkouVkjoF8Ko5JeudTSuerBNs77stxNKB2Dcj1BzEbKUhT97sHpDcKZlmxvoyBUxd\nvng5NT4//p1SsPQvq8FqBQi6yn+CCmsQLAWJbcRYG1yj5quhGZoRLodLQ6tDb1w5YR6wcWn60o4Q\nu7QtrsD6bbvd2tUDeawO8IuG6fba1j1xdyEuRthI0Kol1k+rymgGsyBhdJJMBNPoJiCJqbf3YZaN\nEq9KWyXOMMuOXFUFRcKEbXXiegU70RB6uv0ElzEW2MMcOmZZ6CT3AHQfJazMuwZWnn2K28YCo4aB\ntqlTn4ix8S92keMWk398mGujPhoEKZaOMZMFeJtPsMzIW2FKLDFCH5v9RSKkST/3XT48WSFIiFIO\n9yi0JtIpOGXPoOBObm2/Kf3Z5ubDmYOlgJNSRRxHzg+kLp27BJB96mdP3QoXw8OVYGXS3kiv6zR8\nln1H2jiVcIXl8HLz76kPpgqhcmh9z/09/f/klX/iKkb3oqp0uU9JNLcyjmo8GfxpZyqqzM6R4TKn\nUmnO0cfbDLOUBU0WB2NgYsZNJv80ykZimOVIiKqo7KoBu7AObaiiUSKiRSii0dBM8fcGGqYYPcBq\nh0FOBfMk2MddNCuLDFrvd41+dIuWqMJj7aTBHLflf1+26s4tMNqsUiP6fowb1NEMHUOmQ4Jw1QFt\nhEWtgRbSMLQFEoUNBoMrxPmA4y9+grexkLyDm32cn70EIB/NFCefG2Yp+yW+19WKne40aonf7fd6\niczy7MprTrV1j6dQag1tUZrjVJf5ZOKr8fwn3vnEq3995q/3NfRGQOqIht/aMwadflETCnpNX3uw\n+0E2WA72Hb96/JUu0+ta8XUndevtgDw/Vax714D7lkvOrN1j6ZQZIPUq53iWi4wz/52oyeEJUUoY\naKNLjLy5h9xnrW6CwB1Mzt8AXbvLPm2SWa1CwIhR0MT7GGalGXUWpNw0eKlAcF2nFvawVvW7hzpa\nk7OLa1UCLBNnzEpNtcMyI8YIS5osTTxk2KgT+FmI4uAiu7Q6/vxe7h0aZqk0ykJwzjR0J4KUnsEq\n6XSZUy8tM8IVTvAsFxHuTgvRUzPmccvWmk9vyxgm3evmo52yEYuU9PuMrR879GPWrTtucWk3a7PQ\nXV09DOl0motnLwIwfXqa1z/7uoi2u/Ib3/mN5y+fvvzU3f1393QR/wrA/zpxdyKx6+Gu0fH5cfqK\nfY6NvYCD2tsrYbT3pSLI9rZKFUoGgegZusQaO0ykaRA4T5q3+UQywubJWQ6yj7tfqBDcDFPmIeN/\nGqT03wQpUySwp4/qktTVa0D0AXs+ViY8uE4/eeIazBsRNjW/xcXtfnMHG0sTVFZ34Rt3IgJmxdgF\nNAw2GGCAtTbJYFwqLKmCMZqMSGwxvUI4rFM7VscXMtANnYYxw9TiOPO5JeL1cXJfANjDA0GB1pNk\nvxqk3P+PuBddYuz3rWecwUQQz37o7YI1znlaFVov9HCvUBmeA5IWl+52soq9eiw4cNBzl86ZxO/S\ntJyumh3KD/H8nz9/80/++Z8MFiKFfMPf2A3oB24fIDuRpe6rY/iMGq2DHxlZGlkM1AO5WrDGrd23\nsodmDzm6r+yqi4d34SbBdJOgmqK9V5CJgkyIez0fvdmZfaLnbccqlwlt1tELOgYnuJK9wcFlgBrB\nEaiWMZMH3gTTibyPe5/fx72vAUac1UYVv6HTCHfTyZ1ARnI5fkLABlE2iFnIa16RDXzz7GJgaA3W\nMDVtbyq/bn02XYYFoujUI32UtENcr/qg/JCxfuDpKsFAkb6ZBnq4SKRYx08/G3nakz6aKhJ409tk\n/Tht5pd7uaebDtqPqWerctjbxrPd59kXLfUTp0VUzktNOmrLpUlPXbx80TRMnp7O/NELf/SNsxfP\npp5+82lOT5/OpNPprwPP307dDgF+DHKY0X9/CmTHF8bRNC174soJT/P0iC8qtdcew+7EPHdqDm3Q\n65FMdgoj/Z1u1onbJJJLkCsYaOsbxJ55k0/9QZjipJ/6fI4E/cy+bt1/FXMjXMKM89aA1TzxoRUG\njb1kCVFW+tJFnbh+1ps4eJsD7OdOV0OcqANnt8zLEGWT6koADYPbHCDFrWYSixvYJY2D3DKqBAhR\nBnRfA8M3ygJA4z57GnWqCzX80Rmmfl9Uzf000y8Ms7yuU+dH7E0uMyzcUhm7xb3LdABPSNwNhA+q\nrXa71PdeTJvMRlpxFBMt28B5Wok2Lyo2dty6nnfioPZnSJOesnN3UX3m9PRp0un0i8CLF89eTM0e\nnD3pr/gPR4qRlcG1wUSwGsxOn55+wyoGKUsRygIP3dbR7TcXScBuIFW+0y2+tyb4bYOS7qREAtoM\ndpKYJU8wA3CSKzPAvwf4Tzz3RpyVvv3cWY9axx4tMPzZMZZ/DvybRUaqcVbGoLHmN/GkPMaivk7M\nOjVF01TsVOjiDSkqLcXt5okrK8TZJIqfKuM8xE+d2xxgH3c9ZbnJySyHPeTHq0iLAcYsk6wSr4cp\n1YZYLvVR+ushVn7JQFtJMM+/43/4BpZF+ijvJwH+P/7hKx/yeBbITHLzzAZRrHDYDDQr8CIyC93A\nrmLZfhff3VS231D0Y4cY4KjgSnsq7zLVFK0cdbldxz2KubSey0TaDjh36Vzm4tmLjCyN5MRvSyNL\n9mb2IhFdYQsIKJ9nt6Uw226gmpPM0QV3Fg9oD6qwf3aAOML3b6AZL/89QKceBiNg4AsbGBTpKwEr\nQLWOL9Aq5d4QlngOcAfAMGAV0x3ns+bbhqM3OdRMboHWscfjzDPMcpvhzh7YYge540VGiLGBRoOg\nFO6qul+oBQYad9jPKIsNA/QAFSPB/foU11cwn8PIMT6VZ9CnQTxB7sZ50qlLnM1OczozwRy3mDw5\nyMroBHcT+7nHPOPEKOSC1qmvlzmVus6RrwKk2Q+Kc7Nl8TltOwbJRd/7uvRd5Qfv8AVbkAJ+aLnE\nriquObmPVIj6EjZbke1ZVFywGT8vEQDlHhWcX753+tL0DDa10w5ptZHNFZwIrAM0JQknRmvvr1cC\n06vobn8JM9AKoNkkyjSnM89ysfkifp3vnTHgOSD5Lk/86wDVYoSN/dblMQ1DX2HIaKBXxnlYFXNa\nYqSqUy+aiSwGdDmDTQZVpJsXkC3wcnnp6xxmFw/poyiSbAwDrc26/iFH8VEjxR0CVNfus2fQACNA\n1V9nI+QzvQx/nGD+GUCvogeLhJgj2aTsr2JuxKO8nxxgva12/mVOpYbIp8KUkpv09Zfoa6YIQ5NA\nO20ox1pjXsDO/W2bMGOumQbt+6PDaOiAtCrp0Gl8YSPwwg2b62FDCicEUakbcl/NuXYZt1doc3nK\n40hM1zOBcQIhuquSHzp8ntt4yCSQeJL33nnA+I0xHv6rGtqEH2N1FwvzwIQ1lyImQpTGWBQnrPqt\n36yYpqZHVLcPorLEq8DANMb1UaRIn2vJKYOW6C4Gr+HT5q1ozjgrxNhkkDX8VC1JYG1wF/NVnYam\n06hb84pjVnY5DNQ08IMRiVA4fpZLnOVSRjORo01tkM9AP8r7SR/VhFUPQCB6EkBIANChu29rg3iA\nNiRw4rpSG8GZRPmqLFYCjtypm3iOLbfeBpluhMML2BhaU8oVz+ei7jjp3rKkLE6d6fZuZBXCUZXw\nooa55qNrPbpyREWatHRfGp67ybeZIPtMH2V0jL0WGvrBqGEi+WAVf6hE6OFNDl/8OO8cBvYBA2Iq\nhmQ4l4xzdcxz24axSScyd7aL6QY0kbufAjc5yApDPMFVy2imBgNYZBQfNRI8aAbwGJhShAEsMEqV\ngGbgK5cJL8fYiPuoh3XKQQ2exsw7/93X+FwWYJil5B5ywu4xhRWLAGQ+w/TMf+FnfybGH2Ph5XHm\n2ce97xxi9g3r/YiIxgS0ohQtcHOZOnLbHmGr7iOB5CpuJpBcfhbXgwa3woR6EMldETJNWj4u6rfF\nPTZi4XZ/T5b8rUAbcqRJT122xO7TTGfSHvUMrUsgwDzj2d3cLwDrNfyJMuGbOo0hP6VBaw6FByRK\nNfxLQcoJTAT30RLXBWJrNnebDxPJdWiFpapOS5XhjnSyi9lJg91WOiy0EwnRp48aPhqUCbHbOs5J\nhgaUlxgJ9ZuVbvFhGLA2cIPJwi7mI0HKaOZJNDUgcZZLYnO8sMhwtEqgQPu55R3rbRGApjFUbneU\nGU4znbnMKT6UKsPK0AvRVt2z1Y3WbVwPY9hj8L0YIb24rzos3g73OXoAFOA1QMZTvXynMXt9l150\ndM+L6wSvci7zJO+uA/kJ7ieA72ByoGOYmW1s0B/2mckrEenWGhZTXmRU81FrRNgMhqViFEi6u9DN\nc1bJ5TEW8dHgNgcA8+jjYZZJcZs6rRPJDliHMUIn9xd9zpIiSJlB8k1OnuEAu3lAA80IU/aNsVQD\nNjENjX8MfKFKcL+BT2vgM3TqdWAReEsQRwPWi0RwgjireelPR3fPZ5j+vvnbORHgAmAvACTf2zT6\nSFKB6+ZTcUBJXBfWZNcqrvZr9uu2Z7XryR32iEegMzuCjUM7IVo391g35LbbLtzaezbO+e0TFgah\nzzA9k/ZujeS8RHlkvVLoUmnLTWMZ5sCk0sewFuYYH/7I1v2ngKcAqvgGh1kKaBh+vTOvpUMdt2e2\n2Us7myL2GIL7yrXkFhnBR50Im8gExQxmWRbDGVa/tQXGKgbU1hnIj/MwDtwFDmAiWegYH67X0dbq\n+JY26CuVCb2+wkjSYHZKIQk1RVnx4n6V178mjJ1VAqL8tlv55TwtRE/RW7qpW7/dYMdSXB02rSAo\ngpA1I/W2IXU4IWVP/aXNgxo67t0J2AmJCjpF97aOzpNGnNCZVrtI2kC41yxw2yhiU7ys+A1aROAd\nIHqb/QSpHvZTYYL5AUyfrdIKT/cEN8AMZ51jAj9VRlnCTx0DGKXDtwooQ3A1wD/Cgk+HSoXAcA3C\nVQJ7AlTDmAkuug71VQbnS4Rfv8Fji4e5PhqkfFxMFLiw15JMbVy2w+jTsoGk7dMT3BRMo584Ukn0\nJfptC4/EdKntpVX3XbZkd3ALD5s4oWpn3zcuInQ34iJ87VHoKPrXdZ/2gChN+4BKerDmr8zG6xUZ\nFVKSJyLrJtaroFf3mh2aiH2ZUywzYo8sUoHTQzwvfX8F8+zwLwOpBv7EGmH/IKu6ATTQ0Wg0NNAl\njDasE7U0V3aPGQcPsIf72FNgb3OAJFmreIUhfhaILfqs1tECmGekGUFq5RzjtTirYR/VAaj7aaod\nBmXCFImyTowikcUwpcNA4gOOnvkeX3Iq4dvcuCgQW3yRXrj47YK9jQvErc8C7eePC2gem2SDDm+M\nbQ6PCsS44oSXbmqGnfFsReRvk1Rs/coSmJLz9siRe3Lj9UJUusa626y49rbNF/4q58Qkvwzk9nGH\n3+L/fvm8tbgOBrvm74ZZagpahwqcxOKaR7heuUUqIIowls0DF3U5bdUAzcAMm/FhuBrj+ihaFWgM\nDDNKRwe4zmOsMshuckKcNzBdfqU6+jBWrzp1/132s4cHllRRixaJ6EUiBCkbZcIbJcIz+7lzZIh8\nbTe5kTvsffKX+fEBgAEKD4EbIcqJU63TcBxBsXai/fk06a9aa/aKtW4pzLV0SkRxc9PIlWtStHzW\n3c5R88xhbIjSzZqtiqFvlsOySQa9qBqOqabWmHHM9XsJbwcb7gQovQrbIBpt4MrRNdvZXi4gRJ0E\nEIlQ2B2gYtxj4mSZcG6ecWB6RvRJC7mnDKmgJK1iFZ8Hhmgd1cRr/KrxT/nPGmjcYx+7mG8MsiaC\nVhoNdO0+e7QhlrU7HCBAlQPcbh76YI0HwBx7GGaZBj4GWNVFhtyUdLSTAVTx1WsENvoo3ZnlUL+B\nEQCMSWaNg9wWir0PKB/hetiSKKjhJ0jtLzHPWYuCeQBFA1+1jr8ChVvAW3fYd3KFePK/5TsvnMd0\ngmuKqDRwFZuFPp5Nm3XVnpN+yys2hIwQF3BGfLld22bfAdHYzlU93edATLoZpFQuupPSb6p78tZ/\nlfFTSAW9uruUxEVSB+ARSkTbEt1tkxRQBPoa6KwxMLpJlGVG2nRFBbxgfUaBH2JWhl0B/hIzyCTy\n3/PHk+tEDZ360F7u1gJU0DFEXmh0gdFYiJLuo84xPmh2bCnsbXp7PxvcsSzxAwwYKe5otKrQ1gFf\nDb1eIlQpEMn3UYof4Xo9xy6/KQnoPqzDdzUwauiBAA2qBGoGNObZFYhR+J8iFCMG+msAc+xlmLyw\n7uWBTIgKE8yxhwdt+qYozQUd8extmzptxo63nZpjg3haoesLSLeir0SF1o5xrM+E9akK0fxILeCS\n1AEtPVmea7Md7XEgsoQC3mPN7ZKCqwvO6XeP+vQjW8euiO5BD4J2A8Lv7ePuyQibufc5jpWc0QYG\nqNIRBeSA0btMPG02yI8PUMgAtbvsr20QLfmpLRzgTmCEZX8VfVinoY/xkCVG2o5tsoJljDp6Rcfw\nPWTMP8oSoyzKueMA1K1cccCnATd4TNcwwiFKh2FxHaglePgesB9T/x4sEg5qGNVN+jZGyc9nOJiq\nEAz6qQT7KPs3iFWuc+QlgABVRlm2n5QCwJO8C8A6sXiab0zdZP53NRoiXE8ZAWbd/6K09impz65u\nNakPIYnlxPW0S+ili2ThCG4iZ5drcsisvTSVrCoWMBlCRxqrA+RwDtZRhuk+avCC3N3EeLe19ILo\nXfWCU1zmLJfA0rnTpO3+T/Fpvz+vmcUO79Geg724zsBmkDINfFXMF1l7nA9EbOj7Ffyfq+LTDPAJ\nZl3HT4kQQSpkOIiB1ghQKdXx5YNUGGBtvEygEQCC1DPAHsy8eP8DElqCnPCRG8MsG/2sV0KUQjUr\nM8tarBEsOjJPou6nCmihMoXSQW6trxMbLBMK1PCj0wgmyX4V4E/4FxdgWuQFpD7kP57cJJJbZiTb\nz8YFgDf5dAogSKWg02hyeekdCC4kI6A95NO+9oJLOOWMZ22fAtx0062ImJJx0Rs4IFock5MLKaOA\naYvIO/Rhj+7scGG6jO/EpXvWleV5dJFud2Q8O2xLdBci5jBLSZwNCF370eBradLfPMFP+wfJf/kM\nl39UIFYoEGOB8bf2cP9TYzzs12kc66P8NvC3c+x5PEAlUCOYCFCtDbAWWGbEGGRNA3iMGwZWWPsM\nRwYb1PpyJPQY6/oQ+XKQzSBmTbsU4CsQ0zborw+wpmsYtRoBv4FuWHY63eyqMY5Z0dYA9IPc3gCW\nigRX3+Vjf7mfO1+YZ9fIOA8pEyLG6nqCh/l1YnFrLaawROUg1dFNyFlrl7TWESBjVXzNK5aqWbIL\nb8UW5ZNR4tI7kSWxZlvbdznj7fu2+5rtFVzGSWd2DWHtAilsxTisbDkhluXt81MgRM9isUt/svvt\nI1FZtgs9I7r88GfbObeyEopMDM5b7TRoBoEYIAJH4nV80Tq+CPDMJ/lps772bfaN5YmjgVYnf0in\nMdXAH9okuArGeoG+2hx7omMshWv4iFCnhlbXgCr+vimuhWglwdSAi5jpsJuYfmTjCNcNzA3zg4eM\nrERZH1onduMaRz4XonwgRJnD3LwKnKNVf74BBEEfC1P60jd54cVf4z9//SJnx8KU6x/j3eUB1uM6\njd1f4M/PLDPS5Jpxqfy0gBNcyVq5/F5FUPm9KMU6Gwh9XtZtO45lsonvHWPYibeNcKjOEpdtASeR\nUqBlsVPieCrEkVW8MxaS54BvqERXJ3Bq4zCmvAZbRmZpTDmwxqta7HTds50AtqmjS2CJ7Oc6LkQo\nsMxIsoGeuMwp13PdVhmkQPOEDK2KHjDQ/Qa6r0YgWCGoBSkFfTSKk9x6A3jl7/il5yv4T0bYLOzn\nTkjHMACtTqAGhrHI6HKSB+O0AmyKYJ2JbMIKZjRbCPgrYH+VECX6VhbYlTvBld+jZSwEUwrYi4no\nK8DmKvHKKEulU1zOPsHV0g0e0xpo/Cm/+d6zXHw5QPnz/RQSSwwnLnPqLSzkepVzmWe5mDrELGDG\nIqQ517HZpe8yojWNSmlbCKsLooiNqxLL7QEnju9JgZyqIA+3TK8mYVGIsR3WaZmwOBEhN3CROqDF\n6XsRj3uVSAQojX/2sbtIRo7g9gzbEt0dfOOeQUTSWQTiQpjSmQPcOl4m8HSIakRDq9bR/SVCN4ZY\nnrzLvsAAq3pdion5JD995f/hvxsbZil8kNt9MdYKBvrmPSbGg1QMDWMCqNXRS8DaQ8b+aDfzo5iJ\nMzEgl2N02EArVwg/uZ9775boo0JgcZWBxAPGE0HKsyPkBQf5fWtoAzNy70DCOnp8Nw9eAG78Gv/v\nAPDDX+Kn8SxJ9pJd3M18zkDje3ypbZO8yrnMZyzXo0DyU1xOCW7vssaeq5M4cOI20TzdKlCRtLXr\nBeT49DOo9fKch37aiI6DGK5SHbzuR69qhFCT2ghS2ubm65FINMd34eqyZORIiHoZtxnr3gPVcBM3\nOsSwV1v6Xs78+xxpmLogPcQpLqfOcinzgVW84TYH3hxgbfE+E7kyoTN+qgOT3EqMsRBdZqS6SeTn\n4zx86SaTSYBz/OAvLeTlLhOhEuHVvcxV+8wzySeAu0sMUyL8uuV3F5VQhoCBMuGDGkZUpz4FHJ1k\ndh4ohdgMVwhQIvRzC9HBRG4BIkhFPMsfyutRInxigTEClBMLjBVWGIoe4trzNy1LPOpNllohnrzM\nKVTSj53ai3tU70Nxb1MySLcf2LFdUB0coZpTU1y3i6Y2YiRHiG3bEOUCjhVdxHguRE9Gxm5n1tkl\nMi/WfHuWooDz6VZJrhc99ANsPwTWFQQCi1JJ3drPkcxaaapE2OQEV7LQPBvpr6a49jFg2X5fgOoz\n1teRNeJzQTPENIypQ5fNe/SjfupPbxDhJpPfGmN+aJANgLUNBmoajYCOoVfwh4LUlgFtg4FwhE3q\n6GASqjeAT9CKnGrCZU6lPs7PqOOjn40KwCiLlTir+QB1NugnQG19iJV+68ilZg04+4vvoyTCiT3F\nPNOZDeZWldUJVJ4S+++qsb301/xb5oqK/jqMfVsY1wuoKtnuBBHperiDChwklp7BbUxXRDdsZ6x5\nGcyQqpSCiQA5Em0GGPvEhJhqEQUAZjjGXuYywOJ1Jv9piXB1N7n+MZZENEwmw0EAnuBdYbgbGGZ5\nzk/Nt8bAch8lgH8HsIuHEYCHjHKPfUQorFiIvtjP+i+PsOgPUtHrZvWWCFCMk0ejUVpiVBCbFCYV\nPY8Z3HMek8Pfe5VzL77KOREy+fKzXETDiAcpx8Xz+qn1+6lFh1lOmtGCpERByCHyTWIoDln8x/yF\nEwewI42d68XpDkIsFTp+Jq2wrndDSAUnlw1zTuGyHW2kfuxx/I7cbxvcXt6DrhKtS79tXgoV93ea\nX7e5Oqy5vBZ7sZJ6vD6357ruvYCoUnqZU6llRpJBKkxyk3HmOcul5kGB51vhrxkQBwheEi/6BUz/\n+t45kpsAQ6xqSwyd9FEPzDP+h2e59NJlTjHKQrCGjp/G8h4efAv43zGJmIh/zWEa4TaqBKMARSLN\niJm/5ZOZBPO7fNTwU9v4JG+lAfLEP7/C0NMG/PN3eKKuYyw+ydU/sG4rWH3as6iacIqfXBDPBfA3\nnHruIJkkwD/jP7xxAbNs1C0mT66YuGnP4OsQ1eUXnm6VVpbrrTttWBUCis8XgPU06XwPEoDTGDsa\nxtmF0DgSE0XbDn3fowjtNq8dx50ukMLM+JTLUXmCnkT3HiloapMoqwwyy6HcJDe9DiM4TQw4ChgF\nYtTxVa7wiQdjLLwXY72/j80ocDJBjgrB26Bt+CmKPv4vqb9R4F9hIn1hgvu/M8F9kIxZDxn/1F7u\nbfSx6RtgPQ+cnOUgM0wRoEqAaiNOHsxY9wQtsT1gfe+3UnqZ5rQqEnDqEmdTNcon3+YkETZz3+Er\nzeviHDVbZZgOKzYgG7bsriwZ7NGGqnt6Fo17QTDFeF3PXbNzRQXh2Kq1e8dBhQsKIuIpeeejAK17\nkxY4UUDVxhCbG8xihXJhCsHRL3MqNc58cp7x7GmmM+J3TA71r63my8DvYWVkvcfxIwZc81GPjvHw\n3VtMEqZEkOrVY3wIndboNPBYmUC4jn/lIud+/HM+fuFZLgpXn4oDJWc5mLjP7tEqwafzxA8NsFbT\naCx8jtdepH3Tpu4xcXKdgVyQCoeYfUM8o30tLL1c/KwyTKk2tdNGF0hkf157rTJ73yoftqtOr0Bw\nL5zUs5vIRcTthujd5tFGaNKKgpJbFf+3o97Y2iilNUVbT8cjO0HPVncb2H2vbSAfNJBW3BymlFxl\nkE2iTcSwkP0M5plsQ5giSgYro+gJrt6zAm5++z6J4/u4Sx3f4l7mRMKCHRk2gYYZ5daCZUaSN5lM\nRtlI7GYeTPE+YV0erRBcjFC8ukzkB7/Gf7EjnSBKzwFJH/XRFeIEqeIWKzDOfFZCdLAKRnyCt5PD\nLGVPM52Rq/PQucllDtHmYtqmGLplcd3Wz1ZFWbfAlCSQkOrGNxE23b5WTuB26opMLP/euW43cFvf\nbkSgV9HdUb+xD+RkvBPtLnMxFTaNZU0QnO8eHyT81BZ3M38VeMNCKgFxi+snikTxURsKUB26T2K0\nj82hJcY4xGwW4AOOJg8yG2ng+8ktDh5fY+AnQcpu2V458XmUGT7gKBNkla4u2VD5gD1X50gyznwi\nSfYkkDSgjXjRzEK7xEXOPgcIy3s3f7gsancYMtPuQSvQzsldywy7EAu5DyeE6ChDtV09VhLlUxra\nthFym8RQaUCU1r8ng9tHDVt2r9n1Kds1lf7SsVAnuJK9yWSyRNi6bva3zkBuhaHsbublghUvSvcD\n5CaZbXLhWQ5Sx7c4z3j2ELMZgDkTR741xPLzx3lf+M6/8VOe5gonssMsntzXIjYC4Zp67xzJLLSO\nKx5nPglgWcw5zTRA9gRXWLZOdsmbRrWs28GIQtK5xFlsHF6AzOG8BMa0Wao9tPcCbvq1ym/e8wBp\n9aGKTpCQvnfoxA7g5BGQoU2NcQEvxK4nsBNCO950I0y9EK5tWd1tFEwOwJAjijpeyCkup6wDBTPf\n4SsZTDfTmct8OmFgcJXjuQ95XIoYaytDLbppQ4A8cUqEEsuMJP+Cf5QcZinro3oyZNaSjxYJ0UDn\nAXvOyIbBvcy9BaBZ6aASp06J6joT3E1sEn2rQpAVhtrG/YCjSYAIhawgXDeZTC4zItbBUawSNeA6\nVtWZgKrelScDG63gEMeN5XKv4zgKEXgrkHfijhJD2VKlFxsyyATx+zwiq3mP6+oFuvrnFYS3bQ47\nGTDjlcplIhRSAiGRNsccydwQ+eyHPK4MJBH3a1KVmhZc6ZAanuUik9zKAMfWiQFQIUic5QQ2EPdK\nbKXpgtrF/DdnOfipWQ4yz+5mrvdpppkjyQTZJgJYhEvMQQkeYhLsG9INVLqn+D5jv+4GNsKtMoJ1\nhJ1K4JUzyvOMW3/mvc7RoR/xvdvY2+HEzTWwi+gSceop/XQHoSsheCSRcSqxXp7As5xKbRIRyJYF\nMhPMMceETLXbNppchtpp3FNcTs0zntwgmhhmOTnECh9wNLnC0Mvi9JMv8t0zu8nlImwmDLScdT17\nlPfPDJEXonpG7vMB4/ipUya8niYtPAMpIDnMEnMks9OczlhjqFwqHfqzUzCSjbjZCZ4qwEQ1Fg7t\neoEdM/a5wAXRv1MDSWIAtY7eS4ZZR1s3cVn1d5f5bUukV3BlMUfX9k7XZdgxRO+FsllIm2y/V35J\nl9o4iqovFaKIyLpxyEYocIwPM5c42yy+mCY9c77VxRkg+yFTJzMcJMrG8RXiCGSHVkGNl/gfCwVi\nR4pEymnS34S0sBdkT3DFkjAuiZduRw7lc4iEnmVGkmlOOD5nN7Bxl56Q0WXjQnvlmrb2inE8EZVu\n83O5P4PaLjBF55nmjn16QYidgJ3m6tvdF/AIY93dKKGK4yvgkbg7BFEwbKL1MMuLfmrZ00w39WbL\n0p/6B/zVKz/ms89nibRFwd1kMjnPePOY6EseKrqCuTbLvN0hvezQRuyZkzsgoJfDCtukrl7EaKfr\nij7auLBirs06cN0YjL0vt/n1CLJNyrP47nW97FKDE+d3g0eZ1NJVTHK7eStUrN2NJeDSDGaZK6Bd\nEgAyR5khy14qhLKv80xGoRpk5hnHqvoijcNMmq9MAYhjou3GNRWipK1ywlc4IcoJy6AKT5XXwtWQ\ntk1O0qGT76RYqgKP+6HbuB3r5aGtPAdXpPG6Tz8qaWGrsKOIbhOTdizmWbUhLpBuIpjB9FZy4yWj\nniAEaoJgqRoXsBAx3Yoxb9O9VS418Sli+/8t6/ENM4J2HffIuEcKijGVVV9QSAgum9uVKHgkRM35\nWP07Rr8p1s7VyyGPIea+02L2Lyr4PSzKVuFRRxqlpJNh3OK2t/V8li6dAVNnB1JSiqmFqEJi6ayw\n4wL9WBtOgTjbOiLX6qtXa7RYyxTtJ5IkMV1zTiqYo6HQwzUVYbC/yw4rt8P8PasDbtx3q/tlK+/L\n6z3pbQYewaPV0V3FzEcwnqcxbBbureRtewInq/r/xr+9cKHFqYC2c9NAkUKJGlF2eh1VFu1exOKt\nwHY9A48CPOnxTvvNbR9u5R4v171AB6J77VTV7lEhtBMVv8KJDMAV02q9o7qkpuDSIqINHI+Y6tqf\n2WebncArKA12W+QkHcYdNy5nu89pXCcpRA60keevRCipD8/cTswrbRnCuq3JLwphURHyHehL+Xxu\nkXHNkjU7ze12ApwoIjb9SyZC0obwuolsIl/XtjKxSYmouTRfUum4KhF2x6DXzazgPm4GQFkK8aJm\nuEkLTvPpIEbStZ4ksV8UxN5J6JWpehHd470iiGJSH8VCZ6SjjBzdXO2FF7tvEtGnnKTidT5zHqI2\nZaR3uAZqt5Lc7lFJUo9c5domxCWCoPT5dwPFM6pUJzdCaO/PTQp2uuZKLHtce+UaqER3wWnybr2p\nBv/72gxi3L/hVEqKrtsJET4lnSbbzeDXxn3Ou4jnW0GgHUbgLRl3pL0B3qWQroYyNyLmAHHrU2Qi\nOqofv8jEahuMs8OQaXs3HeDI0YVI5OUluIlZHyUsM5K06sQpKXCa9FSEgmvOuO15MxPMqZqp1qVt\nwe2pqbZ77K4gT2vn8i6aenDa/PfI1l+aQ8+FJHocp029sUmVIiXBK7FJYbrrhHvUE/dMtydqbXlN\nVeuxA2vUkyFzpw5w+IUAUVTRhL9ouyYQSsS8u8XMy+AUYy+feOolGu4RQ1eipSB8KqLjSTwV98ki\nogMR2pa/WjVHG+yEG9Lt/maCUroH9fVRSBFepR6n8fy2Rn8vYs5WxnW4xw3hvKZzymMoDX5OCKHg\nPE4vyB6UsqPgAUF66cP+LI80EMoGyhxwp/fi1j9bS6HdqRz0HQ29lQirMIp2JXgqju6YR+42MDsY\nO5y2wkStPy902QTQEvGcuBZIxyqlSf97p3YKpG0aepBetuRq8wyq5+hl7bq8D0+b3wZuOeZOhzjK\nabjiHSjVJKvvZsCNdF+va5ft8uzdYKucv2dJyWs/HyUjhUd8gMMvGIhY9X6Z69q4lJcNmEqT5gIf\n/ctyApeN57bBv44zMU3RquiStf2urDqjGEcZBKQAwVhUKoQXF1yTIKW75+5vFXoiFI9iX2y3T7vo\nLlsuU9L3HRtQBTtBbT1Q2XyM9XgdHx/nZ6lpTmckyaEtwcRBRJUtux1Sj338LVD9nsCBa3e8s3QP\n2VQ2yFmf9vDU5uGObE+c7dhvquvSd6f1VBZ/VLTzOqcdU6Xc9sB290evUrSbe63XsXcM0i7+7V4W\nyHb9a4ZUglqCfof2jzQ8M/0Iw2+xJarIBEmCuDS+/ZooOuGWeqk8t8zGjVVr+PciBe0k4fWw71SG\nzq3Yod6Qvp9xa9sNdlx0f1ScTLV4tmuexO/2EtRpaIn0ysoldiSxcaEtgTXfuPVn3qWN6ncnPV9F\nnBPSd/t9F3AAqb82PdzDs28lYEW0e+RcrUfoln+wlf3tFMa8bZzp1oebH/0XQv/sAbpyYHtkW5r0\n11QI1W1DuyGbW5udBI8Iv52CjZ7H/SjgoxpXRTS3Mbajd8XGPHZMXXCC/x+PsvSm8E/gBgAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "\n", "array([[ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " [ 0, 0, 0, ..., 0, 0,\n", " 0],\n", " ..., \n", " [1224779263, 1224779263, 1229278138, ..., 0, 0,\n", " 0],\n", " [ 671131135, 671131135, 679477376, ..., 0, 0,\n", " 0],\n", " [ 671131135, 671131135, 0, ..., 0, 0,\n", " 0]], dtype=uint32)\n", "Coordinates:\n", " * y_axis (y_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ...\n", " * x_axis (x_axis) float64 -4.0 -3.968 -3.936 -3.904 -3.871 -3.839 -3.807 ..." ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.spread(tf.colorize(aggc, color_key))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`tf.spread` uses a fixed (though configurable) spreading size, while a similar command `tf.dynspread` will spread different amounts depending on density of plots in this particular view.\n", "\n", "\n", "# Embedding\n", "\n", "The images produced by datashader can be used with any plotting or display program, but we provide specific support for datashader in Bokeh that allows fully interactive zooming and panning to explore even extremely large datasets.\n", "We just need to wrap the above commands into a callback function, then add it to a Bokeh figure:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " Loading BokehJS ...\n", "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "\n", "(function(global) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " var force = \"1\";\n", "\n", " if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force !== \"\") {\n", " window._bokeh_onload_callbacks = [];\n", " window._bokeh_is_loading = undefined;\n", " }\n", "\n", "\n", " \n", " if (typeof (window._bokeh_timeout) === \"undefined\" || force !== \"\") {\n", " window._bokeh_timeout = Date.now() + 5000;\n", " window._bokeh_failed_load = false;\n", " }\n", "\n", " var NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"

\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"

\\n\"+\n", " \"
    \\n\"+\n", " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", " \"
\\n\"+\n", " \"\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded() {\n", " if (window.Bokeh !== undefined) {\n", " Bokeh.$(\"#588b1224-3fa2-44e2-9b29-1230d847f22a\").text(\"BokehJS successfully loaded.\");\n", " } else if (Date.now() < window._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", " function run_callbacks() {\n", " window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n", " delete window._bokeh_onload_callbacks\n", " console.info(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(js_urls, callback) {\n", " window._bokeh_onload_callbacks.push(callback);\n", " if (window._bokeh_is_loading > 0) {\n", " console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " window._bokeh_is_loading = js_urls.length;\n", " for (var i = 0; i < js_urls.length; i++) {\n", " var url = js_urls[i];\n", " var s = document.createElement('script');\n", " s.src = url;\n", " s.async = false;\n", " s.onreadystatechange = s.onload = function() {\n", " window._bokeh_is_loading--;\n", " if (window._bokeh_is_loading === 0) {\n", " console.log(\"Bokeh: all BokehJS libraries loaded\");\n", " run_callbacks()\n", " }\n", " };\n", " s.onerror = function() {\n", " console.warn(\"failed to load library \" + url);\n", " };\n", " console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.getElementsByTagName(\"head\")[0].appendChild(s);\n", " }\n", " };var element = document.getElementById(\"588b1224-3fa2-44e2-9b29-1230d847f22a\");\n", " if (element == null) {\n", " console.log(\"Bokeh: ERROR: autoload.js configured with elementid '588b1224-3fa2-44e2-9b29-1230d847f22a' but no matching script tag was found. \")\n", " return false;\n", " }\n", "\n", " var js_urls = ['https://cdn.pydata.org/bokeh/dev/bokeh-0.12.2rc3.min.js', 'https://cdn.pydata.org/bokeh/dev/bokeh-widgets-0.12.2rc3.min.js', 'https://cdn.pydata.org/bokeh/dev/bokeh-compiler-0.12.2rc3.min.js'];\n", "\n", " var inline_js = [\n", " function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", " \n", " function(Bokeh) {\n", " \n", " Bokeh.$(\"#588b1224-3fa2-44e2-9b29-1230d847f22a\").text(\"BokehJS is loading...\");\n", " },\n", " function(Bokeh) {\n", " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/dev/bokeh-0.12.2rc3.min.css\");\n", " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/dev/bokeh-0.12.2rc3.min.css\");\n", " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/dev/bokeh-widgets-0.12.2rc3.min.css\");\n", " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/dev/bokeh-widgets-0.12.2rc3.min.css\");\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " \n", " if ((window.Bokeh !== undefined) || (force === \"1\")) {\n", " for (var i = 0; i < inline_js.length; i++) {\n", " inline_js[i](window.Bokeh);\n", " }if (force === \"1\") {\n", " display_loaded();\n", " }} else if (Date.now() < window._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!window._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " window._bokeh_failed_load = true;\n", " } else if (!force) {\n", " var cell = $(\"#588b1224-3fa2-44e2-9b29-1230d847f22a\").parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", "\n", " }\n", "\n", " if (window._bokeh_is_loading === 0) {\n", " console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(js_urls, function() {\n", " console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(this));" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/bryan/anaconda/envs/bk122/lib/python3.5/site-packages/datashader/transfer_functions.py:237: DeprecationWarning: `colorize` is deprecated; use `shade` instead\n", " warnings.warn(w)\n" ] }, { "data": { "text/html": [ "\n", "\n", "
\n", "
\n", "
\n", "" ], "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import bokeh.plotting as bp\n", "from datashader.bokeh_ext import InteractiveImage\n", "\n", "bp.output_notebook()\n", "p = bp.figure(tools='pan,wheel_zoom,reset', x_range=(-5,5), y_range=(-5,5))\n", "\n", "def image_callback(x_range, y_range, w, h):\n", " cvs = ds.Canvas(plot_width=w, plot_height=h, x_range=x_range, y_range=y_range)\n", " agg = cvs.points(df, 'x', 'y', ds.count_cat('cat'))\n", " img = tf.colorize(agg, color_key)\n", " return tf.dynspread(img, threshold=0.25)\n", "\n", "InteractiveImage(p, image_callback)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can now see the axis values (not visible in the bare images). If you enable wheel zoom, you should be able to zoom into any area of the plot, at which point a new datashader image will be rendered using the callback and shown in the plot. E.g. if you zoom into the blue dot, you can see that it does contain 10,000 points, they are just so close together that they show up as only a single tiny blue spot here. Such exploration is crucial for understanding datasets with rich structure across different scales, as in most real-world data.\n", "\n", "You can now easily overlay any other Bokeh data onto the same plot, or put map tiles in the background for geographic data in Web Mercator format (see tutorial 10).\n", "\n", "Datashader works similarly for line plots (e.g. time series and trajectories), allowing you to use *all* the data points without needing to subsample them, even for millions or billions of points, and faithfully overlaying tens or thousands or millions of individual curves without overplotting or oversaturation problems. It can also use raster data (such as satellite weather data), re-rasterizing it to a requested grid that can then be analyzed or colorized, and combined with other non-raster data. For instance, if you have elevation data in raster form, and income data as individual points, you can easily make a plot of all pixels where the average income is above a certain threshold and elevation is below a certain value, a visualization that would be very difficult to express using a traditional workflow.\n", "\n", "Hopefully it's now clear how you can use datashader to work with your large datasets. For more information, see the [extensive notebooks](https://anaconda.org/jbednar/notebooks) online for datashader, which include examples of many different real-world datasets." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }