
How many attempts have there been to finish the library?
What has been tried and didn‘t work?
What‘s the current status?
What are the plans for the future?

BoostCon 2011

Boost.Process: Process management in C++
Boris Schäling, May 2011, www.highscore.de

http://www.highscore.de/

BoostCon 2011 Boost.Process: Process management in C++ 2

#include <boost/process/all.hpp>
#include <string>

using namespace boost::process;

int main()
{
 std::string exe = find_executable_in_path("hostname");
 create_child(exe);
}

Boost.Process: A simple library?

BoostCon 2011 Boost.Process: Process management in C++ 3

Boost.Process: A simple library?

I want cross-
platform code and

no #ifdefs.

I want to use
system specific

features.

I want an
interface as simple

as possible.

I want to be
flexible and extend

the library.

BoostCon 2011 Boost.Process: Process management in C++ 4

Boost.Process: A simple library?

I want cross-
platform code and

no #ifdefs.

Only few concepts exist on all
supported platforms (Windows and

POSIX) which makes the library small
and limited in usefulness

BoostCon 2011 Boost.Process: Process management in C++ 5

Boost.Process: A simple library?

I want to use
system specific

features.

Boost C++ libraries try to be platform-
independent – it‘s not possible to

model all system specific features in a
cross-platform manner

BoostCon 2011 Boost.Process: Process management in C++ 6

Boost.Process: A simple library?

I want an
interface as simple

as possible.

A simple interface requires to make
assumptions which could be very

wrong for some developers or certain
use cases

BoostCon 2011 Boost.Process: Process management in C++ 7

Boost.Process: A simple library?

I want to be
flexible and extend

the library.

As supported platforms (Windows and
POSIX) have lots of different concepts,

it‘s difficult to define an extension
mechanism

BoostCon 2011 Boost.Process: Process management in C++ 8

Boost.Process: Long road to ruin

2006

2007

2008

2009

2010

2011

0.1

0.2

0.3

0.31

0.4

Julio M. Merino Vidal
in the Google Summer
of Code 2006 program

„Summer of forks“ (eg.
from Ilya Sokolov) and my
attempt to merge all forks

Stable code base with extensive
documentation and test cases

(and all forks merged)

Another Google Summer
of Code project to finish

the library

Latest version –
reviewed and

rejected

BoostCon 2011 Boost.Process: Process management in C++ 9

context ctx;
child c = launch(exec, args, ctx);

Boost.Process: Abandoned concepts

posix_context ctx;
posix_child c = posix_launch(exec, args, ctx);

BoostCon 2011 Boost.Process: Process management in C++ 10

Boost.Process: Abandoned concepts

Boost.Process would be three libraries
in one as platform-specific classes

would be rather important given the
limited usefulness of generic classes.

Create generic classes for a minimum
set of cross-platform features and create
platform-specific classes for everything

beyond.

BoostCon 2011 Boost.Process: Process management in C++ 11

context ctx;
ctx.process_name = "hostname";
ctx.work_dir = "C:\\";
ctx.env.insert(std::make_pair("new_variable", "value"));
create_child(exe, args, ctx);

Boost.Process: Abandoned concepts

BoostCon 2011 Boost.Process: Process management in C++ 12

Boost.Process: Abandoned concepts

As settings are very different, context
looks like a bunch of random variables
without any clear design. Furthermore

the context class is not extensible.

Create a context class to collect all
settings required to launch a process
and to configure its runtime context.

BoostCon 2011 Boost.Process: Process management in C++ 13

context ctx;
ctx.streams[stdout_id] = behavior::pipe();
child c = create_child(exe, args, ctx);
pistream is(c.get_handle(stdout_id));
std::cout << is.rdbuf() << std::flush;

Boost.Process: Abandoned concepts

BoostCon 2011 Boost.Process: Process management in C++ 14

Boost.Process: Abandoned concepts

Stream behaviors are a superset of
configuration options and are more

abstract than eg. a boost::path variable
to make a child process write to a file.

Create stream behaviors to define
how streams of child processes

should behave.

BoostCon 2011 Boost.Process: Process management in C++ 15

void setup(STARTUPINFOA &sainfo)
{
}

context ctx;
ctx.setup = &setup;
create_child(exe, args, ctx);

Boost.Process: Abandoned concepts

BoostCon 2011 Boost.Process: Process management in C++ 16

Boost.Process: Abandoned concepts

The context class and create_child() are
still too much hardcoded as if

calling a user function alone was
flexible enough.

Add a function pointer (boost::function)
to a context to call a user function just

before a child process is started.

BoostCon 2011 Boost.Process: Process management in C++ 17

void end_wait(const error_code &ec, int exit_code)
{
}

child c = create_child(exe, args);
status s(ioservice);
s.async_wait(c.get_id(), end_wait);
ioservice.run();

Boost.Process: Abandoned concepts

BoostCon 2011 Boost.Process: Process management in C++ 18

Boost.Process: Abandoned concepts

Waiting asynchronously for child
processes to exit is done differently on

Windows (WaitForMultipleObjects)
and POSIX (signals).

Support asynchronous I/O operations to
communicate with child processes and

to wait for child processes to exit.

BoostCon 2011 Boost.Process: Process management in C++ 19

New ideas: Jeff‘s executor concept

Context is replaced with an executor
whose interface is not a bunch of public
member variables but is initialized with
initializers. Initializers are classes with

pre_create(), post_create() and
failed_create() member functions.

BoostCon 2011 Boost.Process: Process management in C++ 20

New ideas: Jeff‘s executor concept

Executor

Path Initializer

Args Initializer Env Initializer

Stream Initializer

Initializers have their own specific interface (constructors)
Initializers initialize the executor in pre_create()
Initializers can clean up in post_create() and failed_create()
Executor returns a handle on success (no child class needed)

BoostCon 2011 Boost.Process: Process management in C++ 21

New ideas: Platform-specific extensions

Waiting for child processes to
terminate asynchronously will be
supported via platform-specific

Boost.Asio extensions.

Windows extension based on
WaitForMultipleObjects, POSIX

extension on signals (see Boost.Asio
1.5.3 or Trac #2879).

BoostCon 2011 Boost.Process: Process management in C++ 22

New ideas: Better implementations

find_path_for_executable() will
be implemented based on

FileFindFirst() and FileFindNext()
on Windows.

Current implementation based on
SearchPath() finds directories which are

called like executable and doesn‘t
support resuming searching.

BoostCon 2011 Boost.Process: Process management in C++ 23

New ideas: Better implementations

On Windows COMSPEC will be
used instead of a hardcoded path
to cmd.exe. On POSIX users should

know if fork() or execve() failed.

Current implementation is too limited.
Additional flexibility can be provided

without making the library
unnecessarily complicated.

BoostCon 2011 Boost.Process: Process management in C++ 24

New ideas: Even more?

