Voronol Diagram of Line Segments

New Features Addedto Boost.Polygon
Google Summer of Code 2010
Experience Report

Outline

Voronoi Problem Statement

Motivation

Timeline and History of the Project
Explanation of Fortune’s/Algorithm
Numerical Robustness-Problems/Solutions
Output Examples

Benchmark Results

Plans For Integration into Polygon

GSOC 2011 Edge Concepts Project

Q&A

Voronol Diagram of Points

Given an input set of points-called “sites”

Compute bounded regions called “cells” for
each site such the site-enclosed by each
cell is the closest site/'to all points within the
cell

Boundaries between. cells called “Voronoi
edge’” are line segments equidistant.from
two'sites

Intersection' of three or more voronol edges
creates a “Vornoi vertex”

Delaunay Triangulation of Points

* Delaunay triangulation is the dual graph of
Voronol diagram

« Connecting each pair of sites associated
with a voronoi edge with a line segment
produces Delaunay triangulation

Voronol Diagram Of Line Segments

* Line segments and points are “sites”

* VVoronol edge equidistant from point and line
segments sites Is parabolic arc

Medial Axis of Polygon

* The Voronol Diagram of edges of a
polygon in the interior region of the

polygon produces the Medial Axis of the
polygon

Nearest Neighbor Query

Optimally find all pairs of closest points ina point
set

Optimally find which polygons in a polygon set
enclose which points in a point-set

Optimally-find all'pairs-of closest polygons in a
polygon set

Optimally find which-polygons/in one-polygon set
are inside, outside or partially overlapping
polygons from another polygon set

One Algorithm to Rule Them All

-Solution to VVaronol Diagram'of Line
Segments solves alsoVoronoi Diagram of
Points, Delaunay Triangulation of Points,
Medial'Axis and Nearest Neighbor
problems

* A single implementation of Fortune’s
sweepline algorithm for Vornoi-Diagram of
Line Segments allows interfaces for
solving all these problems to be added to
Boost.Polygon

Motivation

* VVoronol diagrams and the related
problems have applications in many fields
— Physics
— Data compression
— VSLI CAD
— CAM (Computer Aided machinery)

— GIS (Geospatial Information Systems)
— Meshing

March'2010

— Posted computational geometry

project ldea

— Andrii and half a dozen other
students expressed interest

April 2010

— Four strong-student proposals
submitted

— ~Andrii selected
May 2010
— MWork started

—/ Reasearch of Voronoi Diagram
Problem

— Design of Implementation
June 2010
— Polygon released in Boost 1.44

— Voronoi of points'initial
implemention

—./ Testing of Voronoi of Points

Timeline and History of the Project

July 2010 - Midterm

QT based Voronoi.Diagram
visualizer implemented

Voronoi of Points Completed with
Robust Predicates

Voronoi.of Segments Started
Numerical-Robustness Research

August 2010:— Final

Voeronoi of segments initial
implementation

September, October, November 2010

Voronoi diagram of line segments
completed

Testing of voronei of line segments
Visualizer updated

Refactoring

Robustness improvements
Performance improvements

January 2011

Boostcon 2011 application

Currently ~4600 lines of library code

Fortune’s Algorithm

Describes a sweepline algorithm for
solving Voronoi Diagram of Points

Gives the general idea for extending the
algorithm to line segments
O(n log n) complexity

Divide an conquer algorithm and
randomized incremental construction'is
also O(n log n)

Fortune’s Algorithm

 Start with vertical sweepline at the left

Fortune’s Algorithm

« Sweep until first site Is reached
« Sites are sweepline events where work Is done

Fortune’s Algorithm

>

« When a site is reached a parabolic region is opened
behind the sweep line

 The parabolic arc is equidistant from the site and the
sweepline

Fortune’s Algorithm

« These parabolic regions form what is called the “beach line”

* The point where two parabolic arcs join on the beach line describe a

line segment equidistant from their sites as the sweepline
progresses

Fortune’s Algorithm

* When three parabolic arcs come together this is called a
“circle event” and a Voronoi vertex is formed

Fortune’s Algorithm

« Sweepline proceeds to process all site
events and circle events

Fortune’s Algorithm

When vornoi vertices on both sides of a vornoi edge have been
processed that edge is output

The edge is associated with the sites on either side as well as the
voronoi vertices on either end

Fortune’s Algorithm

 Insertion of new sites on the beachline is done optimally
using a std::map for the beachline data structure

Fortune’s Algorithm

 The output is a planar graph of site, edge and vertex nodes where

todpological iInformation about the diagram is represented through
edges

« Data structure is called a quad-edge

Fortune’s Algorithm

* When a site is no longer associated with active arcs of
the beachline its Vornoi cell has been completed

Fortune’s Algorithm

* Once there are no further sites to process
the algorithm is complete

Fortune’s Algorithm

* Voronol edges on the periphery of the diagram
extend to Infinity

Fortune’s Algorithm

« A circle event is the circle inscribed on three sites
 The event point is the rightmost point of the circle

 When the sweepline reaches the circle event the three input sites

associated with it are equidistant from the beachline at a single
point, the center of the circle

Fortune’s Algorithm

\.

« The beachline at this point is updated by removing one
parabolic arc

 The algorithm writes out two Voronoi edges and one
Voronol vertex

Fortune’s Algorithm

* The order of circle events is used to. maintain
a priority queue of circle events yet tobe
processed
— It Is not a fatal error if the predicate-used-for the

circle event priority gueue is-not robust but'the
output topology will-be incorrect

» The order of parabolic-arcs on the sweepline
IS maintained by-a map

— It'is a fatal error if the predicate used for. the
sweepline data structure is not robust because
the data structure will throw an exception or
hang

Fortune’s Algorithm for Segments

Works the same way
Each end point of the- segment is a site as well-as a third site for the-body of the
segment

— In our case‘we make two, sites for the body, one for each “side” of the line segment

The portion of the beachline associated with the body of the line segment is a
straight line ‘equidistant from the sweep'line and the line segment

Computing/beachline events become complex-because-the three sites;involved
may be

— point, point, point

— point, point,’segment

— /point, segment, segment

— “segment, segment;"Ssegment

And solving for the point equidistant from points and segments-is a different
complex-expression involving square roots for each of the four cases

Computing the relative ordering of circle events in the progress of:the sweepline
IS critically important for correct topology of the output

— /difficult to make numerically robust because you can’'t compare the computed point if
its coordinates contain approximation error

Numerical Robustness

We assume integer input coordinates and
Integer output coordinates

We want to bound the error of the output
coordinates of Vornoli vertices-to integer
rounding error

We want the topology of the diagram to be
correct

We want the algorithm to be fast, with minimal
use of infinite precision arithmetic

We need a reliable way to deal with irrational
values of square roots

Computing Relative Error

 “For floating point expressions between
arguments of the same sign the relative error Is
computed as follows

re(A*B) =ire(A) + re(B)

re(A/B) = re(A) + re(B)

re(A+B) = max(re(A), re(B))

re(A-B) = (re(A)*A-re(B)*B)/(A-B)

re(sqrt(A)) =re(A) / 2

« Subtraction may result in catastrophic
cancellation and arbitrarily large numerical error

How to use Relative Error

Lets say the sign of a cross product (a*d —
b*c) Is our predicate

Let re(a*d) be rel and're(b*c) bere2
Fora*b.and b*c the intervals of error are
[a*d*(1-rel), a*d*(1+rel)]

[b*c*(1-re2), b*c*(1+re2)]

If these intervals don’t overlap then we
know that the sign for a*d — b*c Is correct

EPS versus ULP

Machine epsilan is called EPS and is the maximum error produced
by.most floating point'operations

ULP (Units in Last Place) is units of.precision ofthe least significant
bit of a floating point value

0.5 ULP <=1EPS <=1 ULP

So we canssafely use units in last place as.a proxy.-for the epsilon
interval

We can tell if. two floating point-numbers differ only by a value that
falls/within the-ULP error range by unpacking the bits of the IEEE
floating point standard by converting-to-unsigned integer portably
using a memcpy

To compute ULP for floating point operations just add-one:to the
expressions on the previous slide for each operation

ULP of a floating point expression can be/computed off line and
used to place a reasonably tight bound on error that can be used to
reject the result of a floating point operation as untrustworthy

Relative Error Floating Point Type

« Calculates relative error and floating point result
of arithmetic expressions

template <typename fpt>

class robust fpt ({

public:
typedef fpt floating point type;
typedef double relative error type;

robust fpté& operator*=(const robust fpt &that) {
this->re += that.re + ROUNDING ERROR;
this->fpv *= that.fpv ;
return *this;

}

Boost.Interval

Boost.Interval.can be used to compute tighter bounds on relative-error

Represent a floating point value v as an-interval [v, v] and another
floating point value u as, an interval {u; u]

Use Boost.Interval to add-those intervals with rounding modes:
[round_down(u+v), round_up(u+v)]

round_up and round_down mean manipulating the-rounding mode-of the
floating-point unit

The resulting.interval is‘the relative error interval for u+v

The'round closest behavior that produces machine epsilon error will
produce a result.thatlies in that interval

Further interval arithmetic-accumlates relative error in a_similar manner

Comparison of intervals tells us whether the result of'’comparing the
floating point calculations might be untrustworthy

This produces a tighter error bound than the ULP method

The documentation of Boost.Interval doesn’t describe this motivating
use case (that | could find)

We will explore applying Boost.Interval

Fall Back on Infinite Precision

If floating point may be lying
Infinite precision'is very expensive

But if good bounds on error are applied the use
of infinite precision Is very rare

Theresult is an algorithm that runs almost as
fast as the .unreliable floating point algorithm

This technique is-known as lazy exact arithmetic

It is commonly employed to solve numerical
robustness challenges in computational
geometry and computing in general

GMP Integration

« Use of GMP-will be optional for Voronoi
algorithm

— same to current Polygon-library
« Will-allow for alternative data types

GMP Performance Problem

GMP has.a C++ wrapper that we use

GMP-runtime can-be-dominated by
allocation/de-allocation time

You want to recycle your GMP variables
Allocation. of temporaries generated by

complex expressions Kil
Writing one arithmetic o

S your performance

peration per line

iIsn’t a satisfying solution

Current GMP Performance Solution

* This works to fix the problem
. | hate it because it has static members and isn’t thread safe
* How can we solve this problem better?

template <typename mpt, int N>
class mpt wrapper {
public:

mpt wrapperé& operator+ (const mpt wrapperé& that) const {
temp [cur].m = this->m_ + that.m ;
return temp [next cur()];

}

private:

static int next cur() {
int ret val = cur ++;
if (cur_ == N)
cur = 0y

return ret val;

}

mpt m ;
static int cur ;
static mpt wrapper temp [N];

ldea For Better Solution

« | was thinking along these lines

template <typename mpt>
class mpt tmp {
public:

mpt tmpé& operator+ (const mpt wrapperé& that) const {
return (*this) += that;
}

private:
mutable mpt m ;
bi

template <typename mpt>
class mpt wrapper {
public:

mpt tmpé& operator+ (const mpt wrapperé& that) const {
tmp = m_ + that.m ; return tmp;

}

private:

mpt m ;

mutable mpt tmp<mpt> tmp;
i

SQRT Woes

* |f we want to compute a —sqrt(b) and.a’is
greater than zero and almost equal to
sgrt(b) then the error will be huge

 If we have several such sub expressions
we probably can’t trust even the sign bit of

the final result

* We need to avoid catastrophic
cancellation error

Refactoring By Conjugates

If we wantto have robust floating point
evaluation-of the expression:

A*sgrt(a) + B*sgrt(b)

We need-to handle two cases seperately
A*B >=0

A*sqrt(a) + B*sqrt(b)
A*B <0

((A*A*a)-(B*B*b))/(A*sqrt(a) — B*sqrt(b))

We multiply'numerator and denominator by
A*sqrt(a) — B*sgrt(b)

toprevent cancelation

Refactoring By Conjugates

We'can cover all cases of positive and negative
factors of square roots up.to four square root
terms

A*sqrt(a) + B*sqgrt(b) + C*sqgrt(c)+ D*sqrt(d)

without cancelation error by using enough

conditionals and alternative equivalent
expressions

But five or more cannot be handled

We are “lucky” that we only have up to four
sguare roots in voronoi diagram of line segments

We would be luckier not to have square roots at
all

Lazy Exact Computations for
Voronol of Points case

«-Sweep-line predicate
~ Lazy-exact

— Floating point approximation with relative error
calculation

—-Emulates 65 bit integer arithmetic for exact result

* Circle-event
—iLazy-exact to within small bounded relative error

— Uses refactoring by conjugates floating-point
approximation with relative error calculation

— Uses wrapped gmp numerical data type for exact
result with recycled temporaries and minimal relative
error introduced by sqgrt

Quick Glance at Code

// Find parameters of the inscribed circle that is tangent to three

// point sites.

template <typename T>

static bool create circle event ppp (const site event<T> &sitel,
const site event<T> &site2,
const site event<T> &site3,
circle event<T> &c_event) {

double dif x1 = sitel.x() - site2.x();

double dif x2 = site2.x() - site3.x();

double dif yl = sitel.y() - site2.y();

double dif y2 = site2.y() - site3.y();

double orientation = robust cross product(dif x1, dif yl, dif x2, dif y2);
if (orientation test (orientation) != RIGHT ORIENTATION)

return false;
robust fpt<T> inv orientation (0.5 / orientation, 3.0);

double sum x1 = sitel.x() + site2.x();
double sum x2 = site2.x() + site3.x();
double sum_yl = sitel.y() + site2.y();
double sum_y2 = site2.y() + site3.y();
double dif x3 = sitel.x() - site3.x();

double dif y3 = sitel.y() - site3.y();
epsilon robust comparator< robust fpt<T> > c x, c_y;

c x += robust fpt<T>(dif x1 * sum x1 * dif y2, 2.0);

Cc_x += robust_fpt<T>(dif_yl * sum yl * dif y2, 2.0);

c x -= robust fpt<T>(dif x2 * sum x2 * dif yl, 2.0);

c x -= robust fpt<T>(dif y2 * sum y2 * dif yl, 2.0);

c_ y += robust fpt<T>(dif x2 * sum x2 * dif x1, 2.0);

c_y += robust fpt<T>(dif y2 * sum y2 * dif x1, 2.0);

c y -= robust fpt<T>(dif x1 * sum x1 * dif x2, 2.0);

c y -= robust fpt<T>(dif yl * sum yl * dif x2, 2.0);

epsilon robust comparator< robust fpt<T> > lower x(c Xx);

lower x -= robust fpt<T>(std::sqrt(sqr distance(dif x1, dif yl) *
sqr_distance(dif x2, dif y2) *
sqr _distance(dif x3, dif y3)), 5.0);

c_event = circle event<double>(c x.dif().fpv() * inv orientation.fpv(),
c y.dif () .fpv() * inv orientation.fpv(),
lower x.dif().fpv() * inv orientation.fpv());
bool recompute c x = c x.dif().ulp() >= 128;
bool recompute c y = c_y.dif().ulp() >= 128;
bool recompute lower x = lower x.dif().ulp() >= 128;
if (recompute c x || recompute c_y || recompute lower x) {
return create circle event ppp gmpxx (
sitel, site2, site3, c_event, recompute c_x, recompute c y, recompute lower x);
}

return true;

Error Bounded Output

We are -computing the‘'values far the circle event and then
comparing these values in the circle event.queue

There Is no way to compute the-exact values because they
contain square root

Our_output is correct to within bounded relative error

128 ULP-translates into. 7 bits in the bottom of double or 27-45
at integer scale

I'd rather use long double than double and intend to switch

If we used long double-our relative error would be'less than
machine epsilon-for double

It may be provable that with a sufficient error bound no miss-
ordering of circle events is possible but the numerical analysis
IS challenging

Such proof may be possible for floating point input coordinates
also

Segment Predicates

The comparison of beach'line events with line segment
sites.involved is similar to the points case

The floating point expressions for each. are complicated
Bound error to many orders of magnitude smaller/than
Integer grid

Currently use-infinite precision arithmetic to-reduce error
bound to.minimal error introduced by-square roots
operations _only

We'use refactoring by conjugates to minimize the error
iIntroduced by.square roots

Each needs to be written in floating point-and-have ULP
calculated off line to ensure it is small enough

May/contain up to four square roots in a single expression

Floating point approximate with relative error computation
also implemented but currently not used

Example Output

« Example of diagram of segments with near
touch

Example Output

« Example of diagram of segments

Example

« Example of
diagram of
points

 Co-circular

points are
the worst
case Iinput
for Voronol
diagram

Example Output

 Example
diagram of
polygon,
points and
segments

Exm

 Co-circular
line
segments

 Note the

high order
VOronol

vertex in the
center

Ie utput

Example Output

* Diagram of
letters:

B,O, OS5, T

Benchmark

 VVoronol diagram of points compared to
CGAL

« 22X faster than CGAL 'at 1,000,000 points

1000 -

100 A 7
CGAL = 3E-06x"**

10
he] 1 A
0.1 A
Boost = 1E-05x-7%3

0.01 A

0.001 A

0.0001 - & # Boost
B CGAL

0.00001

1 10 100 1000 10000 100000 1000000

Input Point Count

New Boost.Polygon APIs

«-._Voronoi diagram of Paints

—-Populates a container of polygon concept-with voronoi cells given a
iterator range over point concept

void voronol diagram(container typeé& cells,
iterator type begin points,-iterator type end points);
 ~Delaunay diagram of Points

—~Populates a container'of polygon concept with-Delaunay triangles given
an iterator, range over point.concept

vold delaunay triangles (contalner typeé& triangles,
iterator type begin points, iterdtor type ‘end points);
» Voranoi diagram of Polygon Set

— Populates a container of polygon concept with voronoi-eells given a
model of polygon set concept or one of its refinements

— Uses the threshold provided to segment parabolic arcs into line
segments such that the line segments lie no further.than threshold from
the true curve

volid voronol diliagram(container typeé& cells, const
polygon set type& polygons, const
coordlnate_dlstance_type& threshold) ;

GSOC 2011

* “Input line segments must not be intersecting-is a
pre-condition of Voronoi diagram of line
segments

* Itis also a post condition of the line-segment
Intersection algorithm-used in the first.stage of
polygon clipping implemented already in
Boost.Polygon

« Vornoi diagram of linelsegments needs edge
concepts to implement generic interfaces

GSOC 2011

Implement new generic C++/concepts for

Line‘'segment

Directed line segment

Set of line segments

Set of directed line segments
Directed line segment is a refinement of line segment
Line segment;is a refinement of set of line segments
Set.of directed line segments.is a refinement of set of line segmeénts
Directed line segment is a refinement of sét of directed line segments
Polygon set is a refinement of set of directed line segments
Expose a conceptbased user interface to line segment intersection
Expose a concept based user interface to-robust predicates for

line segment slope comparison

point on above or below line segment

whether'two line segments intersect

The user will be able to pass rectangle|concept into a generic interface expecting set
of line’segments concept because rectangle is a refinement of polygon, is a
refinement of polygon set, is a a refinement of set of directed line segments is.a
refinement of set of line'segments

GSOC 2011

New segment concepts in Boost.Polygon will:enable new interfaces based on Vornoi Biagram
of line segments
Voronel diagram of Paints

— Populates a container of line segment concept with voronoi edges given a iterator range over point
concept

void voronol diagram(contalper typeé& edges,
iterator type-begin points, iterator /type-end points);
Voronoi diagram /of Segments

— Populates-a container of line segment concept with voronoi edges given a iterator range over line
segment concept

void voronol diagram(container typeé& '‘edges, iterator type begin segmeénts,
iterator type end segments , const coordinate/distance type& threshold);

Voronei.diagram of Segments

— Populates a container of-line segment concept with voronoi edges-given a model of Set of line
segments concept

void voronol diagram(container type& edges, const line segments '‘type& sites,
const jcoordinate distance typeé& threshold);

Medial Axis of Polygon Set

— Populates a container of line segment concept with medial axis edges:given a model of ‘polygon set
concept

void medial axis(container typeé& edges, const polygon set type& polygons,
const coordinate distance typeé& threshold);

