
Voronoi Diagram of Line Segments

New Features Added to Boost.Polygon

Google Summer of Code 2010

Experience Report

Outline

• Voronoi Problem Statement

• Motivation

• Timeline and History of the Project

• Explanation of Fortune’s Algorithm

• Numerical Robustness Problems/Solutions

• Output Examples

• Benchmark Results

• Plans For Integration into Polygon

• GSOC 2011 Edge Concepts Project

• Q&A

Voronoi Diagram of Points

• Given an input set of points called “sites”

• Compute bounded regions called “cells” for
each site such the site enclosed by each
cell is the closest site to all points within the
cell

• Boundaries between cells called “Voronoi
edge” are line segments equidistant from
two sites

• Intersection of three or more voronoi edges
creates a “Vornoi vertex”

Delaunay Triangulation of Points

• Delaunay triangulation is the dual graph of

Voronoi diagram

• Connecting each pair of sites associated

with a voronoi edge with a line segment

produces Delaunay triangulation

Voronoi Diagram Of Line Segments

• Line segments and points are “sites”

• Voronoi edge equidistant from point and line

segments sites is parabolic arc

Medial Axis of Polygon

• The Voronoi Diagram of edges of a

polygon in the interior region of the

polygon produces the Medial Axis of the

polygon

Nearest Neighbor Query

• Optimally find all pairs of closest points in a point

set

• Optimally find which polygons in a polygon set

enclose which points in a point set

• Optimally find all pairs of closest polygons in a

polygon set

• Optimally find which polygons in one polygon set

are inside, outside or partially overlapping

polygons from another polygon set

One Algorithm to Rule Them All

• Solution to Voronoi Diagram of Line
Segments solves also Voronoi Diagram of
Points, Delaunay Triangulation of Points,
Medial Axis and Nearest Neighbor
problems

• A single implementation of Fortune’s
sweepline algorithm for Vornoi Diagram of
Line Segments allows interfaces for
solving all these problems to be added to
Boost.Polygon

Motivation

• Voronoi diagrams and the related

problems have applications in many fields

– Physics

– Data compression

– VSLI CAD

– CAM (Computer Aided machinery)

– GIS (Geospatial Information Systems)

– Meshing

Timeline and History of the Project

• March 2010
– Posted computational geometry

project Idea

– Andrii and half a dozen other
students expressed interest

• April 2010
– Four strong student proposals

submitted

– Andrii selected

• May 2010
– Work started

– Reasearch of Voronoi Diagram
Problem

– Design of Implementation

• June 2010
– Polygon released in Boost 1.44

– Voronoi of points initial
implemention

– Testing of Voronoi of Points

• July 2010 - Midterm

– QT based Voronoi Diagram
visualizer implemented

– Voronoi of Points Completed with
Robust Predicates

– Voronoi of Segments Started

– Numerical Robustness Research

• August 2010 – Final

– Voronoi of segments initial
implementation

• September, October, November 2010

– Voronoi diagram of line segments
completed

– Testing of voronoi of line segments

– Visualizer updated

– Refactoring

– Robustness improvements

– Performance improvements

• January 2011

– Boostcon 2011 application

Currently ~4600 lines of library code

Fortune’s Algorithm

• Describes a sweepline algorithm for

solving Voronoi Diagram of Points

• Gives the general idea for extending the

algorithm to line segments

• O(n log n) complexity

• Divide an conquer algorithm and

randomized incremental construction is

also O(n log n)

Fortune’s Algorithm

• Start with vertical sweepline at the left

Fortune’s Algorithm

• Sweep until first site is reached

• Sites are sweepline events where work is done

Fortune’s Algorithm

• When a site is reached a parabolic region is opened
behind the sweep line

• The parabolic arc is equidistant from the site and the
sweepline

Fortune’s Algorithm

• These parabolic regions form what is called the “beach line”

• The point where two parabolic arcs join on the beach line describe a
line segment equidistant from their sites as the sweepline
progresses

Fortune’s Algorithm

• When three parabolic arcs come together this is called a
“circle event” and a Voronoi vertex is formed

Fortune’s Algorithm

• Sweepline proceeds to process all site
events and circle events

Fortune’s Algorithm

• When vornoi vertices on both sides of a vornoi edge have been
processed that edge is output

• The edge is associated with the sites on either side as well as the
voronoi vertices on either end

Fortune’s Algorithm

• Insertion of new sites on the beachline is done optimally
using a std::map for the beachline data structure

Fortune’s Algorithm

• The output is a planar graph of site, edge and vertex nodes where
topological information about the diagram is represented through
edges

• Data structure is called a quad-edge

Fortune’s Algorithm

• When a site is no longer associated with active arcs of
the beachline its Vornoi cell has been completed

Fortune’s Algorithm

• Once there are no further sites to process
the algorithm is complete

Fortune’s Algorithm

• Voronoi edges on the periphery of the diagram
extend to infinity

Fortune’s Algorithm

• A circle event is the circle inscribed on three sites

• The event point is the rightmost point of the circle

• When the sweepline reaches the circle event the three input sites
associated with it are equidistant from the beachline at a single
point, the center of the circle

Fortune’s Algorithm

• The beachline at this point is updated by removing one
parabolic arc

• The algorithm writes out two Voronoi edges and one
Voronoi vertex

Fortune’s Algorithm
• The order of circle events is used to maintain

a priority queue of circle events yet to be
processed

– It is not a fatal error if the predicate used for the
circle event priority queue is not robust but the
output topology will be incorrect

• The order of parabolic arcs on the sweepline
is maintained by a map

– It is a fatal error if the predicate used for the
sweepline data structure is not robust because
the data structure will throw an exception or
hang

Fortune’s Algorithm for Segments

• Works the same way

• Each end point of the segment is a site as well as a third site for the body of the
segment

– In our case we make two sites for the body, one for each “side” of the line segment

• The portion of the beachline associated with the body of the line segment is a
straight line equidistant from the sweep line and the line segment

• Computing beachline events become complex because the three sites involved
may be

– point, point, point

– point, point, segment

– point, segment, segment

– segment, segment, segment

• And solving for the point equidistant from points and segments is a different
complex expression involving square roots for each of the four cases

• Computing the relative ordering of circle events in the progress of the sweepline
is critically important for correct topology of the output

– difficult to make numerically robust because you can’t compare the computed point if
its coordinates contain approximation error

Numerical Robustness

• We assume integer input coordinates and

integer output coordinates

• We want to bound the error of the output

coordinates of Vornoi vertices to integer

rounding error

• We want the topology of the diagram to be

correct

• We want the algorithm to be fast, with minimal

use of infinite precision arithmetic

• We need a reliable way to deal with irrational

values of square roots

Computing Relative Error

• For floating point expressions between

arguments of the same sign the relative error is

computed as follows

re(A*B) = re(A) + re(B)

re(A/B) = re(A) + re(B)

re(A+B) = max(re(A), re(B))

re(A-B) = (re(A)*A-re(B)*B)/(A-B)

re(sqrt(A)) = re(A) / 2

• Subtraction may result in catastrophic

cancellation and arbitrarily large numerical error

How to use Relative Error

• Lets say the sign of a cross product (a*d –

b*c) is our predicate

• Let re(a*d) be re1 and re(b*c) be re2

• For a*b and b*c the intervals of error are

[a*d*(1-re1), a*d*(1+re1)]

[b*c*(1-re2), b*c*(1+re2)]

• If these intervals don’t overlap then we

know that the sign for a*d – b*c is correct

EPS versus ULP

• Machine epsilon is called EPS and is the maximum error produced
by most floating point operations

• ULP (Units in Last Place) is units of precision of the least significant
bit of a floating point value

• 0.5 ULP <= 1EPS <= 1 ULP

• So we can safely use units in last place as a proxy for the epsilon
interval

• We can tell if two floating point numbers differ only by a value that
falls within the ULP error range by unpacking the bits of the IEEE
floating point standard by converting to unsigned integer portably
using a memcpy

• To compute ULP for floating point operations just add one to the
expressions on the previous slide for each operation

• ULP of a floating point expression can be computed off line and
used to place a reasonably tight bound on error that can be used to
reject the result of a floating point operation as untrustworthy

Relative Error Floating Point Type

• Calculates relative error and floating point result

of arithmetic expressions

 template <typename _fpt>
 class robust_fpt {

 public:

 typedef _fpt floating_point_type;

 typedef double relative_error_type;

 …

 robust_fpt& operator*=(const robust_fpt &that) {

 this->re_ += that.re_ + ROUNDING_ERROR;

 this->fpv_ *= that.fpv_;

 return *this;

 }

 …

 };

Boost.Interval

• Boost.Interval can be used to compute tighter bounds on relative error

• Represent a floating point value v as an interval [v, v] and another
floating point value u as an interval [u, u]

• Use Boost.Interval to add those intervals with rounding modes:
[round_down(u+v), round_up(u+v)]

• round_up and round_down mean manipulating the rounding mode of the
floating point unit

• The resulting interval is the relative error interval for u+v

• The round closest behavior that produces machine epsilon error will
produce a result that lies in that interval

• Further interval arithmetic accumlates relative error in a similar manner

• Comparison of intervals tells us whether the result of comparing the
floating point calculations might be untrustworthy

• This produces a tighter error bound than the ULP method

• The documentation of Boost.Interval doesn’t describe this motivating
use case (that I could find)

• We will explore applying Boost.Interval

Fall Back on Infinite Precision

• If floating point may be lying

• Infinite precision is very expensive

• But if good bounds on error are applied the use
of infinite precision is very rare

• The result is an algorithm that runs almost as
fast as the unreliable floating point algorithm

• This technique is known as lazy exact arithmetic

• It is commonly employed to solve numerical
robustness challenges in computational
geometry and computing in general

GMP Integration

• Use of GMP will be optional for Voronoi

algorithm

– same to current Polygon library

• Will allow for alternative data types

GMP Performance Problem

• GMP has a C++ wrapper that we use

• GMP runtime can be dominated by

allocation/de-allocation time

• You want to recycle your GMP variables

• Allocation of temporaries generated by

complex expressions kills your performance

• Writing one arithmetic operation per line

isn’t a satisfying solution

Current GMP Performance Solution
• This works to fix the problem

• I hate it because it has static members and isn’t thread safe

• How can we solve this problem better?

template <typename mpt, int N>

class mpt_wrapper {

public:

 …

 mpt_wrapper& operator+(const mpt_wrapper& that) const {

 temp_[cur_].m_ = this->m_ + that.m_;

 return temp_[next_cur()];

 }

 …

private:

 static int next_cur() {

 int ret_val = cur_++;

 if (cur_ == N)

 cur_ = 0;

 return ret_val;

 }

 mpt m_;

 static int cur_;

 static mpt_wrapper temp_[N];

};

Idea For Better Solution

• I was thinking along these lines

template <typename mpt>

class mpt_tmp {

public:

 …

 mpt_tmp& operator+(const mpt_wrapper& that) const {

 return (*this) += that;

 }

 …

private:

 mutable mpt m_;

};

template <typename mpt>

class mpt_wrapper {

public:

 …

 mpt_tmp& operator+(const mpt_wrapper& that) const {

 tmp = m_ + that.m_; return tmp;

 }

 …

private:

 mpt m_;

 mutable mpt_tmp<mpt> tmp;

};

SQRT Woes

• If we want to compute a – sqrt(b) and a is

greater than zero and almost equal to

sqrt(b) then the error will be huge

• If we have several such sub expressions

we probably can’t trust even the sign bit of

the final result

• We need to avoid catastrophic

cancellation error

Refactoring By Conjugates

• If we want to have robust floating point
evaluation of the expression:

 A*sqrt(a) + B*sqrt(b)

• We need to handle two cases seperately

• A*B >= 0
A*sqrt(a) + B*sqrt(b)

• A*B < 0
((A*A*a)-(B*B*b))/(A*sqrt(a) – B*sqrt(b))

• We multiply numerator and denominator by
A*sqrt(a) – B*sqrt(b)

• to prevent cancelation

Refactoring By Conjugates

• We can cover all cases of positive and negative
factors of square roots up to four square root
terms
A*sqrt(a) + B*sqrt(b) + C*sqrt(c) + D*sqrt(d)

• without cancelation error by using enough
conditionals and alternative equivalent
expressions

• But five or more cannot be handled

• We are “lucky” that we only have up to four
square roots in voronoi diagram of line segments

• We would be luckier not to have square roots at
all

Lazy Exact Computations for

Voronoi of Points case

• Sweep-line predicate
– Lazy-exact

– Floating point approximation with relative error
calculation

– Emulates 65 bit integer arithmetic for exact result

• Circle-event
– Lazy-exact to within small bounded relative error

– Uses refactoring by conjugates floating point
approximation with relative error calculation

– Uses wrapped gmp numerical data type for exact
result with recycled temporaries and minimal relative
error introduced by sqrt

Quick Glance at Code
 // Find parameters of the inscribed circle that is tangent to three

 // point sites.

 template <typename T>

 static bool create_circle_event_ppp(const site_event<T> &site1,

 const site_event<T> &site2,

 const site_event<T> &site3,

 circle_event<T> &c_event) {

 double dif_x1 = site1.x() - site2.x();

 double dif_x2 = site2.x() - site3.x();

 double dif_y1 = site1.y() - site2.y();

 double dif_y2 = site2.y() - site3.y();

 double orientation = robust_cross_product(dif_x1, dif_y1, dif_x2, dif_y2);

 if (orientation_test(orientation) != RIGHT_ORIENTATION)

 return false;

 robust_fpt<T> inv_orientation(0.5 / orientation, 3.0);

 double sum_x1 = site1.x() + site2.x();

 double sum_x2 = site2.x() + site3.x();

 double sum_y1 = site1.y() + site2.y();

 double sum_y2 = site2.y() + site3.y();

 double dif_x3 = site1.x() - site3.x();

 double dif_y3 = site1.y() - site3.y();

 epsilon_robust_comparator< robust_fpt<T> > c_x, c_y;

 c_x += robust_fpt<T>(dif_x1 * sum_x1 * dif_y2, 2.0);

 c_x += robust_fpt<T>(dif_y1 * sum_y1 * dif_y2, 2.0);

 c_x -= robust_fpt<T>(dif_x2 * sum_x2 * dif_y1, 2.0);

 c_x -= robust_fpt<T>(dif_y2 * sum_y2 * dif_y1, 2.0);

 c_y += robust_fpt<T>(dif_x2 * sum_x2 * dif_x1, 2.0);

 c_y += robust_fpt<T>(dif_y2 * sum_y2 * dif_x1, 2.0);

 c_y -= robust_fpt<T>(dif_x1 * sum_x1 * dif_x2, 2.0);

 c_y -= robust_fpt<T>(dif_y1 * sum_y1 * dif_x2, 2.0);

 epsilon_robust_comparator< robust_fpt<T> > lower_x(c_x);

 lower_x -= robust_fpt<T>(std::sqrt(sqr_distance(dif_x1, dif_y1) *

 sqr_distance(dif_x2, dif_y2) *

 sqr_distance(dif_x3, dif_y3)), 5.0);

 c_event = circle_event<double>(c_x.dif().fpv() * inv_orientation.fpv(),

 c_y.dif().fpv() * inv_orientation.fpv(),

 lower_x.dif().fpv() * inv_orientation.fpv());

 bool recompute_c_x = c_x.dif().ulp() >= 128;

 bool recompute_c_y = c_y.dif().ulp() >= 128;

 bool recompute_lower_x = lower_x.dif().ulp() >= 128;

 if (recompute_c_x || recompute_c_y || recompute_lower_x) {

 return create_circle_event_ppp_gmpxx(

 site1, site2, site3, c_event, recompute_c_x, recompute_c_y, recompute_lower_x);

 }

 return true;

 }

Error Bounded Output

• We are computing the values for the circle event and then
comparing these values in the circle event queue

• There is no way to compute the exact values because they
contain square root

• Our output is correct to within bounded relative error

• 128 ULP translates into 7 bits in the bottom of double or 2^-45
at integer scale

• I’d rather use long double than double and intend to switch

• If we used long double our relative error would be less than
machine epsilon for double

• It may be provable that with a sufficient error bound no miss-
ordering of circle events is possible but the numerical analysis
is challenging

• Such proof may be possible for floating point input coordinates
also

Segment Predicates
• The comparison of beach line events with line segment

sites involved is similar to the points case

• The floating point expressions for each are complicated

• Bound error to many orders of magnitude smaller than
integer grid

• Currently use infinite precision arithmetic to reduce error
bound to minimal error introduced by square roots
operations only

• We use refactoring by conjugates to minimize the error
introduced by square roots

• Each needs to be written in floating point and have ULP
calculated off line to ensure it is small enough

• May contain up to four square roots in a single expression

• Floating point approximate with relative error computation
also implemented but currently not used

Example Output

• Example of diagram of segments with near

touch

Example Output

• Example of diagram of segments

Example Output

• Example of

diagram of

points

• Co-circular

points are

the worst

case input

for Voronoi

diagram

Example Output

• Example

diagram of

polygon,

points and

segments

Example Output

• Co-circular

line

segments

• Note the

high order

voronoi

vertex in the

center

Example Output

• Diagram of

letters:

B, O, O, S, T

Benchmark

• Voronoi diagram of points compared to

CGAL

• 22X faster than CGAL at 1,000,000 points

CGAL = 3E-06x1.354

Boost = 1E-05x1.0703

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Input Point Count

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Boost

CGAL

New Boost.Polygon APIs

• Voronoi diagram of Points
– Populates a container of polygon concept with voronoi cells given a

iterator range over point concept
void voronoi_diagram(container_type& cells,

 iterator_type begin_points, iterator_type end_points);

• Delaunay diagram of Points
– Populates a container of polygon concept with Delaunay triangles given

an iterator range over point concept
void delaunay_triangles(container_type& triangles,

 iterator_type begin_points, iterator_type end_points);

• Voronoi diagram of Polygon Set
– Populates a container of polygon concept with voronoi cells given a

model of polygon set concept or one of its refinements

– Uses the threshold provided to segment parabolic arcs into line
segments such that the line segments lie no further than threshold from
the true curve

void voronoi_diagram(container_type& cells, const
polygon_set_type& polygons, const
coordinate_distance_type& threshold);

GSOC 2011

• Input line segments must not be intersecting is a

pre-condition of Voronoi diagram of line

segments

• It is also a post condition of the line segment

intersection algorithm used in the first stage of

polygon clipping implemented already in

Boost.Polygon

• Vornoi diagram of line segments needs edge

concepts to implement generic interfaces

GSOC 2011

• Implement new generic C++ concepts for
Line segment

Directed line segment

Set of line segments

Set of directed line segments

• Directed line segment is a refinement of line segment

• Line segment is a refinement of set of line segments

• Set of directed line segments is a refinement of set of line segments

• Directed line segment is a refinement of set of directed line segments

• Polygon set is a refinement of set of directed line segments

• Expose a concept based user interface to line segment intersection

• Expose a concept based user interface to robust predicates for
line segment slope comparison

point on above or below line segment

whether two line segments intersect

• The user will be able to pass rectangle concept into a generic interface expecting set
of line segments concept because rectangle is a refinement of polygon, is a
refinement of polygon set, is a a refinement of set of directed line segments is a
refinement of set of line segments

GSOC 2011

• New segment concepts in Boost.Polygon will enable new interfaces based on Vornoi Diagram
of line segments

• Voronoi diagram of Points
– Populates a container of line segment concept with voronoi edges given a iterator range over point

concept
void voronoi_diagram(container_type& edges,

 iterator_type begin_points, iterator_type end_points);

• Voronoi diagram of Segments
– Populates a container of line segment concept with voronoi edges given a iterator range over line

segment concept
void voronoi_diagram(container_type& edges, iterator_type begin_segments,

 iterator_type end_segments , const coordinate_distance_type& threshold);

• Voronoi diagram of Segments
– Populates a container of line segment concept with voronoi edges given a model of set of line

segments concept
void voronoi_diagram(container_type& edges, const line_segments_type& sites,

 const coordinate_distance_type& threshold);

• Medial Axis of Polygon Set
– Populates a container of line segment concept with medial axis edges given a model of polygon set

concept
void medial_axis(container_type& edges, const polygon_set_type& polygons,

 const coordinate_distance_type& threshold);

Q&A

