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Voronoi Diagram of Points 

• Given an input set of points called “sites” 

• Compute bounded regions called “cells” for 
each site such the site enclosed by each 
cell is the closest site to all points within the 
cell 

• Boundaries between cells called “Voronoi 
edge” are line segments equidistant from 
two sites 

• Intersection of three or more voronoi edges 
creates a “Vornoi vertex” 



Delaunay Triangulation of Points 

• Delaunay triangulation is the dual graph of 

Voronoi diagram 

• Connecting each pair of sites associated 

with a voronoi edge with a line segment 

produces Delaunay triangulation 



Voronoi Diagram Of Line Segments 

• Line segments and points are “sites” 

• Voronoi edge equidistant from point and line 

segments sites is parabolic arc 



Medial Axis of Polygon 

• The Voronoi Diagram of edges of a 

polygon in the interior region of the 

polygon produces the Medial Axis of the 

polygon 



Nearest Neighbor Query 

• Optimally find all pairs of closest points in a point 

set 

• Optimally find which polygons in a polygon set 

enclose which points in a point set 

• Optimally find all pairs of closest polygons in a 

polygon set 

• Optimally find which polygons in one polygon set 

are inside, outside or partially overlapping 

polygons from another polygon set 



One Algorithm to Rule Them All 

• Solution to Voronoi Diagram of Line 
Segments solves also Voronoi Diagram of 
Points, Delaunay Triangulation of Points, 
Medial Axis and Nearest Neighbor 
problems 

• A single implementation of Fortune’s 
sweepline algorithm for Vornoi Diagram of 
Line Segments allows interfaces for 
solving all these problems to be added to 
Boost.Polygon 



Motivation 

• Voronoi diagrams and the related 

problems have applications in many fields 

– Physics 

– Data compression 

– VSLI CAD 

– CAM (Computer Aided machinery) 

– GIS (Geospatial Information Systems) 

– Meshing 



Timeline and History of the Project 

• March 2010 
– Posted computational geometry 

project Idea 

– Andrii and half a dozen other 
students expressed interest 

• April 2010 
– Four strong student proposals 

submitted 

– Andrii selected 

• May 2010 
– Work started 

– Reasearch of Voronoi Diagram 
Problem 

– Design of Implementation 

• June 2010 
– Polygon released in Boost 1.44 

– Voronoi of points initial 
implemention 

– Testing of Voronoi of Points 

• July 2010 - Midterm 

– QT based Voronoi Diagram 
visualizer implemented 

– Voronoi of Points Completed with 
Robust Predicates 

– Voronoi of Segments Started 

– Numerical Robustness Research 

• August 2010 – Final 

– Voronoi of segments initial 
implementation 

• September, October, November 2010 

– Voronoi diagram of line segments 
completed 

– Testing of voronoi of line segments 

– Visualizer updated 

– Refactoring 

– Robustness improvements 

– Performance improvements 

• January 2011 

– Boostcon 2011 application 

 
Currently ~4600 lines of library code 



Fortune’s Algorithm 

• Describes a sweepline algorithm for 

solving Voronoi Diagram of Points 

• Gives the general idea for extending the 

algorithm to line segments 

• O(n log n) complexity 

• Divide an conquer algorithm and 

randomized incremental construction is 

also O(n log n) 



Fortune’s Algorithm 

• Start with vertical sweepline at the left 



Fortune’s Algorithm 

• Sweep until first site is reached 

• Sites are sweepline events where work is done 



Fortune’s Algorithm 

• When a site is reached a parabolic region is opened 
behind the sweep line 

• The parabolic arc is equidistant from the site and the 
sweepline 



Fortune’s Algorithm 

• These parabolic regions form what is called the “beach line” 

• The point where two parabolic arcs join on the beach line describe a 
line segment equidistant from their sites as the sweepline 
progresses 



Fortune’s Algorithm 

• When three parabolic arcs come together this is called a 
“circle event” and a Voronoi vertex is formed 



Fortune’s Algorithm 

• Sweepline proceeds to process all site 
events and circle events 



Fortune’s Algorithm 

• When vornoi vertices on both sides of a vornoi edge have been 
processed that edge is output 

• The edge is associated with the sites on either side as well as the 
voronoi vertices on either end 



Fortune’s Algorithm 

• Insertion of new sites on the beachline is done optimally 
using a std::map for the beachline data structure 



Fortune’s Algorithm 

• The output is a planar graph of site, edge and vertex nodes where 
topological information about the diagram is represented through 
edges 

• Data structure is called a quad-edge 



Fortune’s Algorithm 

• When a site is no longer associated with active arcs of 
the beachline its Vornoi cell has been completed 



Fortune’s Algorithm 

• Once there are no further sites to process 
the algorithm is complete 



Fortune’s Algorithm 

• Voronoi edges on the periphery of the diagram 
extend to infinity 



Fortune’s Algorithm 

• A circle event is the circle inscribed on three sites 

• The event point is the rightmost point of the circle 

• When the sweepline reaches the circle event the three input sites 
associated with it are equidistant from the beachline at a single 
point, the center of the circle 



Fortune’s Algorithm 

• The beachline at this point is updated by removing one 
parabolic arc 

• The algorithm writes out two Voronoi edges and one 
Voronoi vertex 



Fortune’s Algorithm 
• The order of circle events is used to maintain 

a priority queue of circle events yet to be 
processed 

– It is not a fatal error if the predicate used for the 
circle event priority queue is not robust but the 
output topology will be incorrect 

• The order of parabolic arcs on the sweepline 
is maintained by a map 

– It is a fatal error if the predicate used for the 
sweepline data structure is not robust because 
the data structure will throw an exception or 
hang 



Fortune’s Algorithm for Segments 

• Works the same way 

• Each end point of the segment is a site as well as a third site for the body of the 
segment 

– In our case we make two sites for the body, one for each “side” of the line segment 

• The portion of the beachline associated with the body of the line segment is a 
straight line equidistant from the sweep line and the line segment 

• Computing beachline events become complex because the three sites involved 
may be  

– point, point, point 

– point, point, segment 

– point, segment, segment 

– segment, segment, segment 

• And solving for the point equidistant from points and segments is a different 
complex expression involving square roots for each of the four cases 

• Computing the relative ordering of circle events in the progress of the sweepline 
is critically important for correct topology of the output 

– difficult to make numerically robust because you can’t compare the computed point if 
its coordinates contain approximation error 



Numerical Robustness 

• We assume integer input coordinates and 

integer output coordinates 

• We want to bound the error of the output 

coordinates of Vornoi vertices to integer 

rounding error 

• We want the topology of the diagram to be 

correct 

• We want the algorithm to be fast, with minimal 

use of infinite precision arithmetic 

• We need a reliable way to deal with irrational 

values of square roots 



Computing Relative Error 

• For floating point expressions between 

arguments of the same sign the relative error is 

computed as follows 

re(A*B) = re(A) + re(B) 

re(A/B) = re(A) + re(B) 

re(A+B) = max(re(A), re(B)) 

re(A-B) = (re(A)*A-re(B)*B)/(A-B) 

re(sqrt(A)) = re(A) / 2 

• Subtraction may result in catastrophic 

cancellation and arbitrarily large numerical error 



How to use Relative Error 

• Lets say the sign of a cross product (a*d – 

b*c) is our predicate 

• Let re(a*d) be re1 and re(b*c) be re2 

• For a*b and b*c the intervals of error are 

[a*d*(1-re1), a*d*(1+re1)] 

[b*c*(1-re2), b*c*(1+re2)] 

• If these intervals don’t overlap then we 

know that the sign for a*d – b*c is correct 

 



EPS versus ULP 

• Machine epsilon is called EPS and is the maximum error produced 
by most floating point operations 

• ULP (Units in Last Place) is units of precision of the least significant 
bit of a floating point value 

• 0.5 ULP <= 1EPS <= 1 ULP 

• So we can safely use units in last place as a proxy for the epsilon 
interval 

• We can tell if two floating point numbers differ only by a value that 
falls within the ULP error range by unpacking the bits of the IEEE 
floating point standard by converting to unsigned integer portably 
using a memcpy 

• To compute ULP for floating point operations just add one to the 
expressions on the previous slide for each operation 

• ULP of a floating point expression can be computed off line and 
used to place a reasonably tight bound on error that can be used to 
reject the result of a floating point operation as untrustworthy 



Relative Error Floating Point Type 

• Calculates relative error and floating point result 

of arithmetic expressions 

 template <typename _fpt> 
 class robust_fpt { 

 public: 

   typedef _fpt floating_point_type; 

   typedef double relative_error_type; 

   … 

   robust_fpt& operator*=(const robust_fpt &that) { 

     this->re_ += that.re_ + ROUNDING_ERROR; 

     this->fpv_ *= that.fpv_; 

     return *this; 

   } 

   … 

 }; 



Boost.Interval 

• Boost.Interval can be used to compute tighter bounds on relative error 

• Represent a floating point value v as an interval [v, v] and another 
floating point value u as an interval [u, u]  

• Use Boost.Interval to add those intervals with rounding modes: 
[round_down(u+v), round_up(u+v)] 

• round_up and round_down mean manipulating the rounding mode of the 
floating point unit 

• The resulting interval is the relative error interval for u+v 

• The round closest behavior that produces machine epsilon error will 
produce a result that lies in that interval 

• Further interval arithmetic accumlates relative error in a similar manner 

• Comparison of intervals tells us whether the result of comparing the 
floating point calculations might be untrustworthy 

• This produces a tighter error bound than the ULP method 

• The documentation of Boost.Interval doesn’t describe this motivating 
use case (that I could find) 

• We will explore applying Boost.Interval 



Fall Back on Infinite Precision 

• If floating point may be lying 

• Infinite precision is very expensive 

• But if good bounds on error are applied the use 
of infinite precision is very rare 

• The result is an algorithm that runs almost as 
fast as the unreliable floating point algorithm 

• This technique is known as lazy exact arithmetic 

• It is commonly employed to solve numerical 
robustness challenges in computational 
geometry and computing in general 



GMP Integration 

• Use of GMP will be optional for Voronoi 

algorithm 

– same to current Polygon library 

• Will allow for alternative data types 

 



GMP Performance Problem 

• GMP has a C++ wrapper that we use 

• GMP runtime can be dominated by 

allocation/de-allocation time 

• You want to recycle your GMP variables 

• Allocation of temporaries generated by 

complex expressions kills your performance 

• Writing one arithmetic operation per line 

isn’t a satisfying solution 



Current GMP Performance Solution 
• This works to fix the problem 

• I hate it because it has static members and isn’t thread safe 

• How can we solve this problem better? 

 
template <typename mpt, int N> 

class mpt_wrapper { 

public: 

  … 

  mpt_wrapper& operator+(const mpt_wrapper& that) const { 

      temp_[cur_].m_ = this->m_ + that.m_; 

            return temp_[next_cur()]; 

        } 

  … 

private: 

  static int next_cur() { 

    int ret_val = cur_++; 

    if (cur_ == N) 

      cur_ = 0; 

      return ret_val; 

    } 

 

    mpt m_; 

    static int cur_; 

    static mpt_wrapper temp_[N]; 

}; 



Idea For Better Solution 

• I was thinking along these lines 

 
template <typename mpt> 

class mpt_tmp { 

public: 

  … 

  mpt_tmp& operator+(const mpt_wrapper& that) const { 

    return (*this) += that; 

  } 

  … 

private: 

  mutable mpt m_; 

}; 

 

template <typename mpt> 

class mpt_wrapper { 

public: 

  … 

  mpt_tmp& operator+(const mpt_wrapper& that) const { 

    tmp = m_ + that.m_; return tmp; 

  } 

  … 

private: 

  mpt m_; 

  mutable mpt_tmp<mpt> tmp; 

}; 

 



SQRT Woes 

• If we want to compute a – sqrt(b) and a is 

greater than zero and almost equal to 

sqrt(b) then the error will be huge 

• If we have several such sub expressions 

we probably can’t trust even the sign bit of 

the final result  

• We need to avoid catastrophic 

cancellation error 



Refactoring By Conjugates 

• If we want to have robust floating point 
evaluation of the expression: 

  A*sqrt(a) + B*sqrt(b) 

• We need to handle two cases seperately 

• A*B >= 0 
A*sqrt(a) + B*sqrt(b)     

• A*B < 0 
((A*A*a)-(B*B*b))/(A*sqrt(a) – B*sqrt(b)) 

• We multiply numerator and denominator by  
A*sqrt(a) – B*sqrt(b) 

• to prevent cancelation 
 



Refactoring By Conjugates 

• We can cover all cases of positive and negative 
factors of square roots up to four square root 
terms 
A*sqrt(a) + B*sqrt(b) + C*sqrt(c) + D*sqrt(d) 

• without cancelation error by using enough 
conditionals and alternative equivalent 
expressions 

• But five or more cannot be handled 

• We are “lucky” that we only have up to four 
square roots in voronoi diagram of line segments 

• We would be luckier not to have square roots at 
all 



Lazy Exact Computations for 

Voronoi of Points case 

• Sweep-line predicate 
– Lazy-exact 

– Floating point approximation with relative error 
calculation 

– Emulates 65 bit integer arithmetic for exact result 

• Circle-event 
– Lazy-exact to within small bounded relative error 

– Uses refactoring by conjugates floating point 
approximation with relative error calculation 

– Uses wrapped gmp numerical data type for exact 
result with recycled temporaries and minimal relative 
error introduced by sqrt 



Quick Glance at Code 
    // Find parameters of the inscribed circle that is tangent to three 

    // point sites. 

    template <typename T> 

    static bool create_circle_event_ppp(const site_event<T> &site1, 

                                        const site_event<T> &site2, 

                                        const site_event<T> &site3, 

                                        circle_event<T> &c_event) { 

        double dif_x1 = site1.x() - site2.x(); 

        double dif_x2 = site2.x() - site3.x(); 

        double dif_y1 = site1.y() - site2.y(); 

        double dif_y2 = site2.y() - site3.y(); 

        double orientation = robust_cross_product(dif_x1, dif_y1, dif_x2, dif_y2); 

        if (orientation_test(orientation) != RIGHT_ORIENTATION) 

            return false; 

        robust_fpt<T> inv_orientation(0.5 / orientation, 3.0); 

        double sum_x1 = site1.x() + site2.x(); 

        double sum_x2 = site2.x() + site3.x(); 

        double sum_y1 = site1.y() + site2.y(); 

        double sum_y2 = site2.y() + site3.y(); 

        double dif_x3 = site1.x() - site3.x(); 

        double dif_y3 = site1.y() - site3.y(); 

        epsilon_robust_comparator< robust_fpt<T> > c_x, c_y; 

        c_x += robust_fpt<T>(dif_x1 * sum_x1 * dif_y2, 2.0); 

        c_x += robust_fpt<T>(dif_y1 * sum_y1 * dif_y2, 2.0); 

        c_x -= robust_fpt<T>(dif_x2 * sum_x2 * dif_y1, 2.0); 

        c_x -= robust_fpt<T>(dif_y2 * sum_y2 * dif_y1, 2.0); 

        c_y += robust_fpt<T>(dif_x2 * sum_x2 * dif_x1, 2.0); 

        c_y += robust_fpt<T>(dif_y2 * sum_y2 * dif_x1, 2.0); 

        c_y -= robust_fpt<T>(dif_x1 * sum_x1 * dif_x2, 2.0); 

        c_y -= robust_fpt<T>(dif_y1 * sum_y1 * dif_x2, 2.0); 

        epsilon_robust_comparator< robust_fpt<T> > lower_x(c_x); 

        lower_x -= robust_fpt<T>(std::sqrt(sqr_distance(dif_x1, dif_y1) * 

                                           sqr_distance(dif_x2, dif_y2) * 

                                           sqr_distance(dif_x3, dif_y3)), 5.0); 

        c_event = circle_event<double>(c_x.dif().fpv() * inv_orientation.fpv(), 

                                       c_y.dif().fpv() * inv_orientation.fpv(), 

                                       lower_x.dif().fpv() * inv_orientation.fpv()); 

        bool recompute_c_x = c_x.dif().ulp() >= 128; 

        bool recompute_c_y = c_y.dif().ulp() >= 128; 

        bool recompute_lower_x = lower_x.dif().ulp() >= 128; 

        if (recompute_c_x || recompute_c_y || recompute_lower_x) { 

            return create_circle_event_ppp_gmpxx( 

                site1, site2, site3, c_event, recompute_c_x, recompute_c_y, recompute_lower_x); 

        } 

        return true; 

    } 



Error Bounded Output 

• We are computing the values for the circle event and then 
comparing these values in the circle event queue 

• There is no way to compute the exact values because they 
contain square root 

• Our output is correct to within bounded relative error  

• 128 ULP translates into 7 bits in the bottom of double or 2^-45 
at integer scale 

• I’d rather use long double than double and intend to switch 

• If we used long double our relative error would be less than 
machine epsilon for double 

• It may be provable that with a sufficient error bound no miss-
ordering of circle events is possible but the numerical analysis 
is challenging 

• Such proof may be possible for floating point input coordinates 
also 



Segment Predicates 
• The comparison of beach line events with line segment 

sites involved is similar to the points case 

• The floating point expressions for each are complicated 

• Bound error to many orders of magnitude smaller than 
integer grid 

• Currently use infinite precision arithmetic to reduce error 
bound to minimal error introduced by square roots 
operations only 

• We use refactoring by conjugates to minimize the error 
introduced by square roots 

• Each needs to be written in floating point and have ULP 
calculated off line to ensure it is small enough 

• May contain up to four square roots in a single expression 

• Floating point approximate with relative error computation 
also implemented but currently not used 



Example Output 

• Example of diagram of segments with near 

touch 



Example Output 

• Example of diagram of segments 



Example Output 

• Example of 

diagram of 

points 

• Co-circular 

points are 

the worst 

case input 

for Voronoi 

diagram 



Example Output 

• Example 

diagram of 

polygon, 

points and 

segments 



Example Output 

• Co-circular 

line 

segments 

• Note the 

high order 

voronoi 

vertex in the 

center 



Example Output 

• Diagram of 

letters: 

B, O, O, S, T 



Benchmark 

• Voronoi diagram of points compared to 

CGAL 

• 22X faster than CGAL at 1,000,000 points 

CGAL = 3E-06x1.354

Boost = 1E-05x1.0703
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New Boost.Polygon APIs 

• Voronoi diagram of Points 
– Populates a container of polygon concept with voronoi cells given a 

iterator range over point concept 
void voronoi_diagram(container_type& cells, 

 iterator_type begin_points, iterator_type end_points); 

• Delaunay diagram of Points 
– Populates a container of polygon concept with Delaunay triangles given 

an iterator range over point concept 
void delaunay_triangles(container_type& triangles, 

 iterator_type begin_points, iterator_type end_points); 

• Voronoi diagram of Polygon Set 
– Populates a container of polygon concept with voronoi cells given a 

model of polygon set concept or one of its refinements 

– Uses the threshold provided to segment parabolic arcs into line 
segments such that the line segments lie no further than threshold from 
the true curve 

void voronoi_diagram(container_type& cells, const 
polygon_set_type& polygons, const 
coordinate_distance_type& threshold); 



GSOC 2011 

• Input line segments must not be intersecting is a 

pre-condition of Voronoi diagram of line 

segments 

• It is also a post condition of the line segment 

intersection algorithm used in the first stage of 

polygon clipping implemented already in 

Boost.Polygon 

• Vornoi diagram of line segments needs edge 

concepts to implement generic interfaces 



GSOC 2011 

• Implement new generic C++ concepts for 
Line segment 

Directed line segment 

Set of line segments 

Set of directed line segments 

• Directed line segment is a refinement of line segment 

• Line segment is a refinement of set of line segments 

• Set of directed line segments is a refinement of set of line segments 

• Directed line segment is a refinement of set of directed line segments 

• Polygon set is a refinement of set of directed line segments  

• Expose a concept based user interface to line segment intersection 

• Expose a concept based user interface to robust predicates for 
line segment slope comparison  

point on above or below line segment  

whether two line segments intersect 

• The user will be able to pass rectangle concept into a generic interface expecting set 
of line segments concept because rectangle is a refinement of polygon, is a 
refinement of polygon set, is a a refinement of set of directed line segments is a 
refinement of set of line segments 



GSOC 2011 

• New segment concepts in Boost.Polygon will enable new interfaces based on Vornoi Diagram 
of line segments 

• Voronoi diagram of Points 
– Populates a container of line segment concept with voronoi edges given a iterator range over point 

concept 
void voronoi_diagram(container_type& edges, 

 iterator_type begin_points, iterator_type end_points); 

• Voronoi diagram of Segments 
– Populates a container of line segment concept with voronoi edges given a iterator range over line 

segment concept 
void voronoi_diagram(container_type& edges, iterator_type begin_segments,  

 iterator_type end_segments , const coordinate_distance_type& threshold); 

• Voronoi diagram of Segments 
– Populates a container of line segment concept with voronoi edges given a model of set of line 

segments concept 
void voronoi_diagram(container_type& edges, const line_segments_type& sites,  

 const coordinate_distance_type& threshold); 

• Medial Axis of Polygon Set 
– Populates a container of line segment concept with medial axis edges given a model of polygon set 

concept 
void medial_axis(container_type& edges, const polygon_set_type& polygons,  

 const coordinate_distance_type& threshold); 



Q&A 


