Introduction High Level Programming Models Applications Conclusion

Automatic Hybrid MPI+OpenMP Code Generation

Khaled Hamidouche, Joel Falcou
05/17/2011
LRI, University Paris Sud Xl

Boost'Con 2011

1/42

Disclaimer

There is actually no Boost.Proto
in this presentation

Introduction High Level Programming Models BSP++ Applications Conclusion

The March of Hybrid Parallelism

What'’s up on the HPC planet ?
@ Machines are becoming more and more hybrids
@ HPC Top500 : 80% of clusters of multicores
@ HPC Top10 : multicores + GPGPUs or Cell Processors
@ Most modern desktop computer are small HPC nodes

Boost'Con 2011

3/42

Introduction High Level Programming Models BSP++ Applications

The March of Hybrid Parallelism

What'’s up on the HPC planet ?
@ Machines are becoming more and more hybrids
@ HPC Top500 : 80% of clusters of multicores
@ HPC Top10 : multicores + GPGPUs or Cell Processors
@ Most modern desktop computer are small HPC nodes

So is the free lunch free again ?
o Difficulties scale changed
@ Combining all these new toys become increasingly complex
o Does having more mean it obviously goes faster ?

Conclusion

Boost'Con 2011

3/42

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?

Boost'Con 2011

4742

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?
@ Performance improvement using MPI and OpenMP

Boost'Con 2011

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?
@ Performance improvement using MPI and OpenMP
@ Poor performance adding OpenMP to MPI programs

Boost'Con 2011

4/42

Introduction High Level Programming Models BSP++ Applications

What’s left to do so ?

What happens in the literature ?
@ Performance improvement using MPI and OpenMP
@ Poor performance adding OpenMP to MPI programs

Hybrid programming is a complex problem

@ Architecture: network bandwith, number of cores, type of
accelerators ...

@ Application: Communication computation ratio, problem size

@ Programming model: MPI, MPI+OpenMP, MPI1+CUDA,
OpenMP+CUDA, MPI+OpenMP+CUDA, oh my ...

Conclusion

Boost'Con 2011

4/42

Introduction High Level Programming Models BSP++ Applications Conclusion

Purpose of this talk

Our Objectives
e Find a way to simplify this mess
o Can we find a decent programming model for this ?

Our Work
@ A library for hybrid programming
@ A tool to help in configuration exploration
o All using Boost of course

Boost'Con 2011

5/42

Introduction BSP++ Applications Conclusion
Talk Layout

Q High Level Programming Models

Boost'Con 2011 6/ 42

Introduction BSP++ Applications Conclusion
Programming Tools and Models

Message Passing Interface (MPI)
@ Run multiple process across distributed nodes
@ Process use Message to communicate

@ Provides a set of ready-to-use communications primitives

OpenMP
o Standard language extension for shared memory system
o Parallelism is expressed as parallel sections using #pragma
@ Provides functions for threads handling and synchronization

Boost'Con 2011

7142

Introduction BSP++ Applications Conclusion
Higher Level Models

What do we need
o Architecture asbtraction
o Performances estimation
o Easy to use for the end user

Boost'Con 2011

8/42

Introduction BSP++ Applications Conclusion
Higher Level Models

What do we need

o Architecture asbtraction

o Performances estimation

o Easy to use for the end user
What’s available ?

@ Stream processing

o Parallel Skeletons

o Bulk Synchronous Parallelism

Boost'Con 2011

8/42

Introduction BSP++ Applications Conclusion
Higher Level Models

What do we need

o Architecture asbtraction

o Performances estimation

o Easy to use for the end user
What’s available ?

@ Stream processing

o Parallel Skeletons

o Bulk Synchronous Parallelism

Boost'Con 2011

8/42

Introduction BSP++ Applications Conclusion
Bulk Synchronous Parallelism

Origin

o Proposed by L. Valiant in 1990

@ Present a constrained form of parallelism

o Bridge the gap between machine and programs
Principles

@ A Machine Model

@ A Cost Model

@ A Programming Model

Boost'Con 2011

9/42

Introduction BSP++ Applications Conclusion
BSP Machine Model

Interconnection Network

Definition
@ Multiple Computing units : local memory + processor
@ One all-to-all interconnection network

@ A global barrier mechanism

Boost'Con 2011

10/42

Introduction BSP++ Applications
BSP Programming Model

Definition of a Super-Step
@ An asynchronous computation step
@ A all-to-all communication step

@ A global barrier

Conclusion

Boost'Con 2011

11/42

Introduction BSP++ Applications
BSP Cost Model

Definition
@ W, : computation time on processor i
@ h:amount of bytes to transfer
@ g : network throughput
o L : Time for performing a barrier

Cost of one super-step

Q=maxW,+hxg+1L

Conclusion

Boost'Con 2011

12/42

Introduction BSP++ Applications Conclusion
Existing BSP Library

Oxford BSPLib [Hill:96]
o C based
o Rely on low-level shared memory runtime

o Provides 20+ primitives for communications over different medium

BSML [Gava:09]
@ Functionnal implementation of BSP in Caml
@ Notion of parallel 'vector’
@ Two communications + one synchronization primitives
o

Provides an extended syntax for BSP construct in ML

Boost'Con 2011

13/42

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP Pros and Cons
o Straightforward Seq of Par programming model
@ Hybrid programming support with a black-box approach
o Limited support for task parallelism
@ Barrier costs impact programm structure
Our Plans
o Provide a BSP like library for parallel programming
@ Provide a tool for BSP application description
@ Use BSP cost Model to explore configuration space

Boost'Con 2011

14/42

Introduction High Level Programming Models Applications Conclusion

Talk Layout

© BSP++

Boost'Con 2011 15/ 42

Introduction High Level Programming Models Applications Conclusion

BSML primitives

Distributed Vector

A BSP distributed vector is a vector where each element lives on a different
BSP node

@ «v» : build a vector from value or a function v
@ vs : access to the local vector element
o A parallel vector of type 'a has type par’a

Boost'Con 2011 16/ 42

Introduction High Level Programming Models Applications Conclusion

BSML primitives

The proj function
@ Replicates a parallel vector around all BSP nodes

o Prototype: proj : par 'a— > par (int— >’ a)

Semantic of proj v

V1 Vi | V2 | V3
V, | — |V, |V, |V,

V3 Vi | Vo | V3

Boost'Con 2011

17 /42

Introduction High Level Programming Models Applications Conclusion

BSML primitives

The put function
@ Generic all-to-all communications function
o Prototype: put : par (int — > 'a) — > par (int — > 'a)

Semantic of put vf

Vi1 | Vo2 Vi V34

Voo —> | Vip |V

V31 | Vaz | Va3 Vi | Va3

Boost'Con 2011 18/ 42

Introduction High Level Programming Models Applications Conclusion

A sample BSML Code

BSML Inner Product

let inner_product v =

let local = << Array.fold_left (+.) (Array.map2 (x.) v v) >>
in let gathered = proj local
in Array.fold_left (+.) (Array.make gathered nprocs) ;;

Boost'Con 2011

19/42

Introduction High Level Programming Models Applications Conclusion

A sample BSML Code

BSML Inner Product

let inner_product v =

let local = << Array.fold_left (+.) (Array.map2 (x.) v v) >>
in let gathered = proj local
in Array.fold_left (+.) (Array.make gathered nprocs) ;;

How does it works
o Build a distributed vector from v[i]? in parallel
o Exchange partial results with all nodes
o Perform a final reduction

Boost'Con 2011 19/ 42

Introduction High Level Programming Models Applications Conclusion

From BSML to BSP++

Why looking at BSML
@ Provides a compact and abstract interface
o BSML likes playing with lambda and so do we

The Plan
o Implement BSML interface and abstraction ic C++
o Try to work on the functionnal side to limit errors
o Try to play nice with C++ functionnal idioms

Boost'Con 2011

20/ 42

Introduction High Level Programming Models Applications Conclusion

BSP++ 101

Main Program Structure
o Managed main handles parallel runtime
o Everything in a BSP programm is parallel

Boost'Con 2011 21 /42

Introduction High Level Programming Models

BSP++ 101

Main Program Structure
o Managed main handles parallel runtime
o Everything in a BSP programm is parallel
Example
#include <bsppp/bsppp.hpp>
int bsp_main(int argc, char constx argv[])

{

// Starting from here, everythign is parallel

Applications

Conclusion

Boost'Con 2011

21/42

Introduction High Level Programming Models Applications Conclusion

BSP++ primitives

Parallel vector : par<T>
@ par<T> is a BSP distributed T
o Constructible from values, functions and ranges

Boost'Con 2011 20/ 42

Introduction High Level Programming Models Applications Conclusion

BSP++ primitives

Parallel vector : par<T>
@ par<T>is a BSP distributed T
o Constructible from values, functions and ranges

par<T> Interface

// distributed default construction
par<T> p;

// distributed replication
T v;
par<T> p = v;

// distributed initialization from a Callable Object
T foo(std::size_t pid);
par<T> p = foo;

Boost'Con 2011

22/42

Introduction High Level Programming Models Applications Conclusion

BSP++ primitives

Parallel vector : par<T>
@ par<T> is a BSP distributed T
@ Constructible from values, functions and ranges

par<T> Interface

// Access to local value
par<T> p;

T x = *p;
// Envelope behavior

par< vector<T> > p;
p—>resize(n);

Boost'Con 2011 20/ 42

Introduction High Level Programming Models Applications Conclusion

BSP++ primitives

The proj and put function
o BSML returns function value
@ Let’s return Callable Object embedding the result
o Make them Range for easier interoperability

Boost'Con 2011

23/42

Introduction High Level Programming Models Applications Conclusion

BSP++ primitives

The proj and put function
@ BSML returns function value
o Let’s return Callable Object embedding the result
o Make them Range for easier interoperability
Examples

par< float > r = 1.f / _1;
result_of::proj<float> exch = proj (r);

// Value at machine 1
cout << exch(l) << endl;

// Iterate over value receive from all machines
std::for_each(exch.begin(), exch.end(), ref(cout) << _1);

Boost'Con 2011 23/ 42

Introduction High Level Programming Models Applications Conclusion

BSP++ primitives

The proj and put function
@ BSML returns function value
@ Let’s return Callable Object embedding the result
o Make them Range for easier interoperability

Examples
par< float > r = 1.f / _1;
auto inv = put ([&r] (int dst) { if(dst % 2) return xr; else return -xr; });

// Value at machine 1
cout << (xinv) (1) << endl;

Boost'Con 2011 23/ 42

Introduction High Level Programming Models Applications Conclusion

A sample BSP++ code

BSP++ Inner Product

template<class Range>
typename iterator_value<typename Range::const_iterator>::type
inner_product (Range consté& input)
{
typedef typename
iterator_value<typename Range::const_iterator>::type value_type;

par<Range> v = slice(input);
par< value_type > r;

*r = std::inner_product (v->begin(), v->end(), v->begin(), value_type());

result_of::proj<value_type> exch = proj (r);
*r = std::accumulate (exch.begin(), exch.end());

Boost'Con 2011

24/ 42

Introduction High Level Programming Models Applications Conclusion

Support for Hybrid programming

Hybrid
MPI+OpenMP

_--=""(Initenv (OMP)
Init env (MPI) -
- (copy

Comp Comp
function function
Comm M Comm S
erstep t
Superstept 3 function upersiep

\\ copy back
<. (End env (OMP)

]\ lI
\
\
\
\
\

Sync

End env (MPI)

seq part

Boost'Con 2011 25/ 42

Introduction High Level Programming Models Applications Conclusion

Support for Hybrid programming
BSP++ Hybrid Inner Product

template<class Range>
typename iterator_value<typename Range::const_iterator>::type
inner_product_omp(Range consté& input)
{

typedef typename

iterator_value<typename Range::const_iterator>::type value_type;
BSP_HYB_START (argc, argv)
{

par<Range> v = slice(input);

par< value_type > r;

*r = std::inner_product (v->begin(), v->end(), v->begin(), value_type());
result_of::proj<value_type> exch = proj (r);

*r = std::accumulate (exch.begin(), exch.end());

template<class Range>
typename iterator_value<typename Range::const_iterator>::type
inner_product (Range consté& input)
{
typedef typename
iterator_value<typename Range

onst_iterator>::type value_type;

par<Range> v = slice(input);

par< value_type > r;

*r = inner_product_omp(v);

result_of roj<value_type> exch = proj (r);

*r = std::accumulate (exch.begin(), exch.end());

Introduction High Level Programming Models BSP++

Applications Conclusion

The BSPGen Framework

Parallel Algorithm
XML file

O

Generator
<—

Searcher & Dijkstra
O ’
2 \ ‘

System Profile
Darabase BSP++ Library
Benchmarks & sphinx Clang & LLVM

List of sequentil
function

(2)
2

Analyser

Boost'Con 2011

27/ 42

Introduction High Level Programming Models Applications Conclusion

Analysis and Exploration

Analysis
o Compile each sequential function using LLVM/Clang
o Parse results to find out an estimation of runtime costs
o Estimate communication from offline benchmarks
Configuration exploration
@ Buy a directed graph of the sequence of super-steps
o Compute all combination of node/core configurations
o Weights edge with estimated runtime cost
o

Run a simple Shortest Path algorithm

Boost'Con 2011

28/42

Introduction High Level Programming Models Applications

Analysis and Exploration

Configuration exploration

N

yellitgy

5

\

o

\
b

LA

Conclusion

Boost'Con 2011

29/42

Introduction High Level Programming Models BSP++ Conclusion
Talk Layout

QO Applications

Boost'Con 2011 30/ 42

Introduction High Level Programming Models BSP++ Conclusion
Objectives

Coverage
o Simple kernels
@ Three applications

Test machines
@ a 4x4 cores NUMA machine using AMD processors
@ 256 nodes from the French GRID’5000 infra-structure
@ a 3 Cell processors cluster

Boost'Con 2011

Introduction High Level Programming Models BSP++ Conclusion
Simple Kernels

Chosen Kernels
o Matrix-Vector product (GEMV)
o MapReduce

Boost'Con 2011

32/42

Introduction High Level Programming Models BSP++ Conclusion
Simple Kernels

Results

GMV
MPI vs OMP

comp Mcomm

3,50E+00

3,00E+00 =

2,50E+00 1

¥ 2,006+00 +— ——
E #2
E 1,50e+00 — —

#4

1,00E+00 —NN——
#8

5,00E-01 — —— —— —— ——

0,00E+00 T T T T T T T T T

Boost'Con 2011

33/42

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels

Results

GMV
MPI vs Hybrid

comp Mcomm copy

0,14

0,12

#4

#8
0,08 —

#16

Time(s)

0,06 +— L=

0,02 — —

mpli mpi+omp mpi mpi+omp mpi mpi+omp

Boost'Con 2011

33/42

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels

Results

MAP
MPI vs OMP
comp Mcomm
4,50E-02
4,00E-02 +—=1
3,50E-02 +— ——

3,00E-02 ———1
#2

2,50E-02 —

Time (s)

2,00E-02 ———

1,50€-02 — — — —
1,00e-02 1 T B B
5,00E-03 = — — — — — — — —

0,00E+00 T T T T T T T T T
mpi omp mpli omp mpli omp mpi omp mpi

#8 #16

omp

Boost'Con 2011

33/42

Introduction High Level Programming Models BSP++ Conclusion
Simple Kernels

Results

MAP
MPI vs Hybrid

comp Mcomm copy

0,018
0,016
0,014
0,012

0,01
0,008 I 5

0,006 +— .
0,004

0,002 +— -

0 T T T T T
mpli mpi+omp mpli mpi+omp mpli mpi+omp

#4 #8 #16

Time (s)

Boost'Con 2011

33/42

Introduction High Level Programming Models BSP++ Conclusion
Model Checking

Parallel Approximate Model Checking [Peyronnet:08]
o Complex systems need verification
o Turn system into a set of condition driven states
o Try to solve time-logic predicates over the model
@ Large problem, can be solved approximately (APMC)

Boost'Con 2011

34/42

Introduction

Time per Path (sec)

BSP++

High Level Programming Models

Model Checking

Applications

0.045 T T

0.04

0.035 |-

Fhisg ——
L. . . .] i1100
0.02 o —— Phil150 —
e — - Phil200 =
Phil250
0015 F 4 Phi3o0
Phil350 —e—
| Phidoo -
|] rphi4so -
001 Phil500
g — e Phil550 — ~
| phioo —=
0.005 | - — 4 Phigs0 —
= e Phil700
| Phiizs0
P t ; Philg00 —o—
816 32 84 128 256

Number of cores

Conclusion

Boost'Con 2011

35/42

Introduction High Level Programming Models BSP++ Conclusion
Model Checking

0.025 —— .
rJ“ -—-—IF—**—{—*—*—’*—’
0.02 | |
ﬁ 0.015 - |
=
g
= e
®
E 001 |
[
0.005 | |
o - SN25 ——
SN100
SN225 —#—
SN400 —=—

L
128
Number of cores

Boost'Con 2011

35/42

Introduction High Level Programming Models BSP++ Conclusion
Model Checking

Results
o Great scalability over more than 200 cores
o Parallel APMC allows for larger problem to be verified
o See [Hamidouche PDMC 2010] for more

Boost'Con 2011

35/42

Introduction High Level Programming Models BSP++

Principles
o Compute distance between two DNA sequences
@ Heuristic method : BLAST fast but not accurate
o Direct method : S&W accurate but slow

Conclusion
Swith and Waterman DNA Comparisons

Boost'Con 2011

36/42

Introduction High Level Programming Models BSP++ Conclusion
Swith and Waterman DNA Comparisons

t

<«— Partition 1 ——» p&—— Partition2 ——»
ATTCTCCAGGATGACTAGGGTITACACACATTACGATGAAA
Al 2 3 4 5 6|7
T
[
G 2 3 4 5 6 7
é 3 4 5 6 7 I X rows
s G
4 5 6 7
A
T
H
5 a
A
A Hb
A
[
PO P1 P2 P3 PO P1 P2 P3
<—— Partition 3 ———» | «—— Partiton 4 ——»

Boost'Con 2011 37/ 42

Introduction High Level Programming Models BSP++ Applications Conclusion

Swith and Waterman DNA Comparisons

Results - 1 MBases comparisons

MPI vs OpenMP
EMP @OpeMP

50000
45000
4000
~ 35000
g 2000
> 2500
£ 20000

= 15000
£ -
5000
0 [

#2 #4 # #18
Number of cores

Boost'Con 2011 38/ 42

Introduction High Level Programming Models BSP++ Conclusion
Swith and Waterman DNA Comparisons

Results - 1 MBases comparisons

MPI vs MPI+OMP

EMP @MPHOpeMP

4500
4000

3500
g 20m
@ 2500
L]
2 2000
= 150

1000

)

a [I e T —
#15 #12 #54 #123

Number of cores

Boost'Con 2011 38/ 42

Introduction High Level Programming Models BSP++ Applications

Talk Layout

© Conclusion

Boost'Con 2011 39/ 42

Introduction High Level Programming Models BSP++ Applications

Contributions

BSP++
o Implement BSP in an efficient, C++ way
@ Supports black-box hybridation
@ Show scalability and usability
o Play with it: https://github.com/jfalcou/bsppp

BSPGen
o Ease the configuration exploration of BSP programs
o Interoperability between Boost and clang
o To be extended

Boost'Con 2011

40/ 42

Introduction High Level Programming Models BSP++ Applications

Future Works

New Architectures
o Cell Processor : done with Cell-MPI
o GPGPU: require multistage programming

More BSP with Phoenix 3
@ Functionnal version of BSP
o Allow for automatic merging of super-step
@ Solve the multistage problem
@ Can we force people to write lambda everywhere ?

Boost'Con 2011

41/42

Thanks for your attention

	Introduction
	High Level Programming Models
	BSP++
	Applications
	Conclusion

