
Introduction High Level Programming Models BSP++ Applications Conclusion

Automatic Hybrid MPI+OpenMP Code Generation

Khaled Hamidouche, Joel Falcou

05/17/2011

LRI, University Paris Sud XI

1 / 42
Boost’Con 2011

N

Disclaimer
There is actually no Boost.Proto

in this presentation

Introduction High Level Programming Models BSP++ Applications Conclusion

The March of Hybrid Parallelism

What’s up on the HPC planet ?
Machines are becoming more and more hybrids

HPC Top500 : 80% of clusters of multicores

HPC Top10 : multicores + GPGPUs or Cell Processors

Most modern desktop computer are small HPC nodes

So is the free lunch free again ?
Difficulties scale changed

Combining all these new toys become increasingly complex

Does having more mean it obviously goes faster ?

3 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

The March of Hybrid Parallelism

What’s up on the HPC planet ?
Machines are becoming more and more hybrids

HPC Top500 : 80% of clusters of multicores

HPC Top10 : multicores + GPGPUs or Cell Processors

Most modern desktop computer are small HPC nodes

So is the free lunch free again ?
Difficulties scale changed

Combining all these new toys become increasingly complex

Does having more mean it obviously goes faster ?

3 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?

Performance improvement using MPI and OpenMP

Poor performance adding OpenMP to MPI programs

Hybrid programming is a complex problem
Architecture: network bandwith, number of cores, type of
accelerators ...

Application: Communication computation ratio, problem size ...

Programming model: MPI, MPI+OpenMP, MPI+CUDA,
OpenMP+CUDA, MPI+OpenMP+CUDA, oh my ...

4 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?
Performance improvement using MPI and OpenMP

Poor performance adding OpenMP to MPI programs

Hybrid programming is a complex problem
Architecture: network bandwith, number of cores, type of
accelerators ...

Application: Communication computation ratio, problem size ...

Programming model: MPI, MPI+OpenMP, MPI+CUDA,
OpenMP+CUDA, MPI+OpenMP+CUDA, oh my ...

4 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?
Performance improvement using MPI and OpenMP

Poor performance adding OpenMP to MPI programs

Hybrid programming is a complex problem
Architecture: network bandwith, number of cores, type of
accelerators ...

Application: Communication computation ratio, problem size ...

Programming model: MPI, MPI+OpenMP, MPI+CUDA,
OpenMP+CUDA, MPI+OpenMP+CUDA, oh my ...

4 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

What’s left to do so ?

What happens in the literature ?
Performance improvement using MPI and OpenMP

Poor performance adding OpenMP to MPI programs

Hybrid programming is a complex problem
Architecture: network bandwith, number of cores, type of
accelerators ...

Application: Communication computation ratio, problem size ...

Programming model: MPI, MPI+OpenMP, MPI+CUDA,
OpenMP+CUDA, MPI+OpenMP+CUDA, oh my ...

4 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Purpose of this talk

Our Objectives
Find a way to simplify this mess

Can we find a decent programming model for this ?

Our Work
A library for hybrid programming

A tool to help in configuration exploration

All using Boost of course

5 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Talk Layout

1 Introduction

2 High Level Programming Models

3 BSP++

4 Applications

5 Conclusion

6 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Programming Tools and Models

Message Passing Interface (MPI)
Run multiple process across distributed nodes

Process use Message to communicate

Provides a set of ready-to-use communications primitives

OpenMP
Standard language extension for shared memory system

Parallelism is expressed as parallel sections using #pragma

Provides functions for threads handling and synchronization

7 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Higher Level Models

What do we need
Architecture asbtraction

Performances estimation

Easy to use for the end user

What’s available ?
Stream processing

Parallel Skeletons

Bulk Synchronous Parallelism

8 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Higher Level Models

What do we need
Architecture asbtraction

Performances estimation

Easy to use for the end user

What’s available ?
Stream processing

Parallel Skeletons

Bulk Synchronous Parallelism

8 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Higher Level Models

What do we need
Architecture asbtraction

Performances estimation

Easy to use for the end user

What’s available ?
Stream processing

Parallel Skeletons

Bulk Synchronous Parallelism

8 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Bulk Synchronous Parallelism

Origin
Proposed by L. Valiant in 1990

Present a constrained form of parallelism

Bridge the gap between machine and programs

Principles
A Machine Model

A Cost Model

A Programming Model

9 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP Machine Model

P1P0 P2 Pn-1. . .

Interconnection Network

Definition
Multiple Computing units : local memory + processor

One all-to-all interconnection network

A global barrier mechanism

10 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP Programming Model

P1P0 P2 Pn-1. . .

Definition of a Super-Step
An asynchronous computation step

A all-to-all communication step

A global barrier

11 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP Cost Model

Definition
Wi : computation time on processor i

h : amount of bytes to transfer

g : network throughput

L : Time for performing a barrier

Cost of one super-step

Ω = max Wi + h × g + L

12 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Existing BSP Library

Oxford BSPLib [Hill:96]
C based

Rely on low-level shared memory runtime

Provides 20+ primitives for communications over different medium

BSML [Gava:09]
Functionnal implementation of BSP in Caml

Notion of parallel ’vector’

Two communications + one synchronization primitives

Provides an extended syntax for BSP construct in ML

13 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Why BSP ?

BSP Pros and Cons
Straightforward Seq of Par programming model

Hybrid programming support with a black-box approach

Limited support for task parallelism

Barrier costs impact programm structure

Our Plans
Provide a BSP like library for parallel programming

Provide a tool for BSP application description

Use BSP cost Model to explore configuration space

14 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Talk Layout

1 Introduction

2 High Level Programming Models

3 BSP++

4 Applications

5 Conclusion

15 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSML primitives

Distributed Vector
A BSP distributed vector is a vector where each element lives on a different
BSP node

«v» : build a vector from value or a function v

v : access to the local vector element

A parallel vector of type ′a has type par ′a

16 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSML primitives

The proj function
Replicates a parallel vector around all BSP nodes

Prototype: proj : par ′a− > par (int− >′ a)

Semantic of proj v

v1

v2

v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

P1

P2

P1

17 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSML primitives

The put function
Generic all-to-all communications function

Prototype: put : par (int − > ′a) − > par (int − > ′a)

Semantic of put vf

P1

P2

P1

v11 v12

v22

v31 v32 v33

v11 v31

v12 v22

v32 v33

18 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

A sample BSML Code

BSML Inner Product
let inner_product v =

let local = << Array.fold_left (+.) (Array.map2 (*.) v v) >>
in let gathered = proj local

in Array.fold_left (+.) (Array.make gathered nprocs) ;;

How does it works
Build a distributed vector from v [i]2 in parallel

Exchange partial results with all nodes

Perform a final reduction

19 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

A sample BSML Code

BSML Inner Product
let inner_product v =

let local = << Array.fold_left (+.) (Array.map2 (*.) v v) >>
in let gathered = proj local

in Array.fold_left (+.) (Array.make gathered nprocs) ;;

How does it works
Build a distributed vector from v [i]2 in parallel

Exchange partial results with all nodes

Perform a final reduction

19 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

From BSML to BSP++

Why looking at BSML
Provides a compact and abstract interface

BSML likes playing with lambda and so do we

The Plan
Implement BSML interface and abstraction ic C++

Try to work on the functionnal side to limit errors

Try to play nice with C++ functionnal idioms

20 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ 101

Main Program Structure
Managed main handles parallel runtime

Everything in a BSP programm is parallel

Example
#include <bsppp/bsppp.hpp>

int bsp_main(int argc, char const* argv[])
{

// Starting from here, everythign is parallel

}

21 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ 101

Main Program Structure
Managed main handles parallel runtime

Everything in a BSP programm is parallel

Example
#include <bsppp/bsppp.hpp>

int bsp_main(int argc, char const* argv[])
{

// Starting from here, everythign is parallel

}

21 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ primitives

Parallel vector : par<T>
par<T> is a BSP distributed T

Constructible from values, functions and ranges

par<T> Interface

22 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ primitives

Parallel vector : par<T>
par<T> is a BSP distributed T

Constructible from values, functions and ranges

par<T> Interface
// distributed default construction
par<T> p;

// distributed replication
T v;
par<T> p = v;

// distributed initialization from a Callable Object
T foo(std::size_t pid);
par<T> p = foo;

22 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ primitives

Parallel vector : par<T>
par<T> is a BSP distributed T

Constructible from values, functions and ranges

par<T> Interface
// Access to local value
par<T> p;

T x = *p;

// Envelope behavior
par< vector<T> > p;
p->resize(n);

22 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ primitives

The proj and put function
BSML returns function value

Let’s return Callable Object embedding the result

Make them Range for easier interoperability

Examples

23 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ primitives

The proj and put function
BSML returns function value

Let’s return Callable Object embedding the result

Make them Range for easier interoperability

Examples
par< float > r = 1.f / _1;
result_of::proj<float> exch = proj (r);

// Value at machine 1
cout << exch(1) << endl;

// Iterate over value receive from all machines
std::for_each(exch.begin(), exch.end(), ref(cout) << _1);

23 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

BSP++ primitives

The proj and put function
BSML returns function value

Let’s return Callable Object embedding the result

Make them Range for easier interoperability

Examples
par< float > r = 1.f / _1;

auto inv = put([&r](int dst) { if(dst % 2) return *r; else return -*r; });

// Value at machine 1
cout << (*inv)(1) << endl;

23 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

A sample BSP++ code

BSP++ Inner Product
template<class Range>
typename iterator_value<typename Range::const_iterator>::type
inner_product(Range const& input)
{

typedef typename
iterator_value<typename Range::const_iterator>::type value_type;

par<Range> v = slice(input);
par< value_type > r;

*r = std::inner_product(v->begin(), v->end(), v->begin(), value_type());

result_of::proj<value_type> exch = proj (r);

*r = std::accumulate(exch.begin(), exch.end());
}

24 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Support for Hybrid programming

Init env (OMP)

Comp
function
Comm

function

Sync

End env (OMP)

seq part

Init env (MPI)

Comp
function
Comm

function

Sync

End env (MPI)

seq part

Hybrid
MPI+OpenMP

copy

copy back

Pure MPI

Superstep t Superstep t

25 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Support for Hybrid programming
BSP++ Hybrid Inner Product
template<class Range>
typename iterator_value<typename Range::const_iterator>::type
inner_product_omp(Range const& input)
{

typedef typename
iterator_value<typename Range::const_iterator>::type value_type;

BSP_HYB_START(argc, argv)
{

par<Range> v = slice(input);
par< value_type > r;

*r = std::inner_product(v->begin(), v->end(), v->begin(), value_type());
result_of::proj<value_type> exch = proj (r);

*r = std::accumulate(exch.begin(), exch.end());
}

}

template<class Range>
typename iterator_value<typename Range::const_iterator>::type
inner_product(Range const& input)
{

typedef typename
iterator_value<typename Range::const_iterator>::type value_type;

par<Range> v = slice(input);
par< value_type > r;

*r = inner_product_omp(v);
result_of::proj<value_type> exch = proj (r);

*r = std::accumulate(exch.begin(), exch.end());
}

26 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

The BSPGen Framework

 Generator

Analyser

Clang & LLVM
BSP++ Library

Searcher & Dijkstra

User Interface (Eclipse)
Plug-in

Source
code

Annotation

Perfsuite Sphinx

Runtime analyzer

System profile Application
 signature

Database
Static analyzer

OpenUH

Figure 1. Tool framework

C++ programs, and Enterprise JavaBeans. We are currently
developing a new plug-in to deal with user interaction. Our
framework needs user input to provide the number of MPI
processes, OpenMP threads and loop iterations.

As shown in equation 1, our performance measurement
requires that we obtain the value of tcomm, the latency
of message-passing communication. Existing models typi-
cally assess parameters such as message size, latency, trans-
fer time per byte, gap per message and number of nodes.
However, an approach that does not take the MPI imple-
mentation into account is not sufficiently accurate for our
purposes so that here we intend to use measurements in-
stead. Many benchmarks (e.g. SKaMPI [30], Sphinx [33]
(ar branch of SKaMPI) and Pallas MPI benchmark [14]
have been created to obtain more realistic figures for a given
target system (machine, MPI implementation, compiler and
operating system). We decided to use Sphinx due to its
flexibility, ease of configuration and also its support for
OpenMP and hybrid MPI+OpenMP. Sphinx (and SKaMPI)
is also very accurate: it not only repeats the test based on
the distribution of the results, but also supports high tim-
ing resolution. A disadvantage was that the OpenMP over-
head measurements were not complete and not fully tested.
We have accordingly extended Sphinx to measure the over-
heads of most OpenMP constructs including synchroniza-
tion (master, ordered, set/unset lock) and variable scoping
(such as private, lastprivate and threadprivate).

Perfsuite [19] is open source software and contains a
small set of tools, utilities, and libraries for user-level ap-
plication performance analysis on x86 and ia64 Linux sys-
tems. Perfsuite provides access to accurate, high-resolution
timers, information about architectural features such as de-
tails of the memory hierarchy, and resource usage informa-
tion such as CPU time consumed or the resident set size of
a running application. One of the Perfsuite tools we are in-
terested in is psinv. This tool retrieves hardware informa-

Cost factor Execution time
(cycles) (seconds)

Machine cycles 130000.00 0.050544
Loop Overhead cycles 525252.00 0.204217978
Cache cycles 85799.43 0.033358818
Total 741051.43 0.289514255

Table 1. The estimated execution time of the
loop in matrix-multiply function.

tion such as clock speed, memory size, cache size and cache
line size. In conjunction with array usage analysis from the
compiler, this information is useful to predict cache reuse,
loop cost and false sharing in an application [25].

Our tool works as follows. First, the OpenUH compiler
parses and analyzes a hybrid MPI and OpenMP program.
The compiler then extracts for each computational loop: the
estimated computation time tcomp

serial and list of OpenMP di-
rectives. The compiler also outputs MPI routines including
the type of variable and its message length. Since in most
cases the problem size is undefined during compilation, we
need to manually define the value, then pass it to Sphinx
to measure the estimated communication time tcomm

mpi and
tcomm
hyb for target the runtime library and machine. The com-

putation of emt and emp is then carried out in our Eclipse
plugin.

4. Case study

Due to the space constraint, we consider one simple case
study only, a parallel matrix multiply C = A × B using
Cannon algorithm. The code is an interesting problem for
two reasons. First, the communication is performed out-
side the computation, which simplifies the explanation of
our methodology. Second, matrix multiplication is not eas-
ily identified as parallelizable due to a data dependency in
the innermost loop.

The main loop of the program consists of two functions:
local matrix multiplication and message-passing communi-
cation to rotate the matrix A and B. The matrix rotation is
based on two point-to-point message-passing communica-
tion patterns of MPI Send and MPI Recv, while the ma-
trix multiply computation is parallelized with an OpenMP
parallel for directive.

We conduct our experiment on an HP RX8620 with 16
itanium2 1.5GHz processors with 6MB cache and 32x1GB
DIMMs of RAM, running on Linux kernel 2.6 with Intel
compiler version 9.0 and MPI library from ScaMPI v 1.5.

The result of predicted communication efficiency can be
seen in Table 2. As we can see, our estimated emp is not
very accurate where the error ranges between 12 to 32%.

!"#$%%&'()*+#,+-.%+/0-.+1(-%"(2-'#(23+4#(,%"%($%+#(+!2"233%3+2(&+5'*-"'67-%&+89*-%:*+;14!<58=>?@+

>AB?CDA0?/0AEF>?+G0>H>>+I+0>>?!!"""#

Authorized licensed use limited to: UR Futurs. Downloaded on November 26, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

List of sequentil
function

Parallel Algorithm
XML file

11

2

Darabase
System Profile

Benchmarks & sphinx

2

2

3

3

27 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Analysis and Exploration

Analysis
Compile each sequential function using LLVM/Clang

Parse results to find out an estimation of runtime costs

Estimate communication from offline benchmarks

Configuration exploration
Buy a directed graph of the sequence of super-steps

Compute all combination of node/core configurations

Weights edge with estimated runtime cost

Run a simple Shortest Path algorithm

28 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Analysis and Exploration
Configuration exploration

-1,0,0,0,0

0,1,0,0,0

0

0,2,0,0,0

0

1,1,1,1,0

0.320001

1,1,1,2,0

9e+18

1,1,2,1,00.160016

1,1,1,3,0

9e+18

1,1,3,1,0

0.106693

1,1,1,4,0

9e+18

1,1,2,2,0

9e+18

1,1,4,1,0

0.0800365

1,2,1,1,00.160079

1,2,1,2,0

9e+18

1,2,2,1,0

0.0801612

1,2,1,3,0

9e+18

1,2,3,1,0

0.0535496

1,2,1,4,0

9e+18

1,2,2,2,0

9e+18

1,2,4,1,0

0.0402701

2,1,1,1,0

1.337e-06

2,1,1,2,0

9e+18

2,1,1,3,0

9e+18

2,1,1,4,0

9e+18

9e+18

9e+18

9e+18

9e+18

2,1,2,1,01.603e-05

2,1,2,2,0

9e+18

9e+18

9e+18

9e+18

9e+18

2,1,3,1,02.6294e-05

9e+18

9e+18

9e+18

9e+18

9e+18

9e+18

2,1,4,1,03.62643e-05

3,1,0,0,0

0

0

0

0

0

0

0

0

-2,0,0,0,0

0

2,2,1,1,0

7.86476e-05

2,2,1,2,0

9e+18

2,2,1,3,0

9e+18

2,2,1,4,0

9e+18

9e+18

9e+18

9e+18

9e+18

2,2,2,1,00.000160448

2,2,2,2,0

9e+18

9e+18

9e+18

9e+18

9e+18

2,2,3,1,00.000214489

9e+18

9e+18

9e+18

9e+18

9e+18

9e+18

2,2,4,1,00.000267111

3,2,0,0,0

0

0

0

0

0

0

0

0

0

29 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Talk Layout

1 Introduction

2 High Level Programming Models

3 BSP++

4 Applications

5 Conclusion

30 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Objectives

Coverage
Simple kernels

Three applications

Test machines
a 4x4 cores NUMA machine using AMD processors

256 nodes from the French GRID’5000 infra-structure

a 3 Cell processors cluster

31 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels

Chosen Kernels
Matrix-Vector product (GEMV)

MapReduce

32 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels
Results

33 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels
Results

33 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels
Results

33 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Simple Kernels
Results

33 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Model Checking

Parallel Approximate Model Checking [Peyronnet:08]
Complex systems need verification

Turn system into a set of condition driven states

Try to solve time-logic predicates over the model

Large problem, can be solved approximately (APMC)

34 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Model Checking
Results

35 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Model Checking
Results

35 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Model Checking

Results
Great scalability over more than 200 cores

Parallel APMC allows for larger problem to be verified

See [Hamidouche PDMC 2010] for more

35 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Swith and Waterman DNA Comparisons

Principles
Compute distance between two DNA sequences

Heuristic method : BLAST fast but not accurate

Direct method : S&W accurate but slow

36 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Swith and Waterman DNA Comparisons

7

6

P0 P1 P2 P3 P0 P1 P2 P3
Partition 3 Partition 4

Hb

Ha

1 2 3 4 5 6

2 3 4 5 6

3 54 6

4 5

7

7

7

Partition 1 Partition 2

t

37 / 42
Boost’Con 2011
N

Introduction High Level Programming Models BSP++ Applications Conclusion

Swith and Waterman DNA Comparisons
Results - 1 MBases comparisons

38 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Swith and Waterman DNA Comparisons
Results - 1 MBases comparisons

38 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Talk Layout

1 Introduction

2 High Level Programming Models

3 BSP++

4 Applications

5 Conclusion

39 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Contributions

BSP++
Implement BSP in an efficient, C++ way

Supports black-box hybridation

Show scalability and usability

Play with it: https://github.com/jfalcou/bsppp

BSPGen
Ease the configuration exploration of BSP programs

Interoperability between Boost and clang

To be extended

40 / 42
Boost’Con 2011

N

Introduction High Level Programming Models BSP++ Applications Conclusion

Future Works

New Architectures
Cell Processor : done with Cell-MPI

GPGPU: require multistage programming

More BSP with Phoenix 3
Functionnal version of BSP

Allow for automatic merging of super-step

Solve the multistage problem

Can we force people to write lambda everywhere ?

41 / 42
Boost’Con 2011

N

Thanks for your attention

	Introduction
	High Level Programming Models
	BSP++
	Applications
	Conclusion

