
Threads and Shared Variables in
C++0x

Hans-J. Boehm

HP Labs

5/19/2011 1

2 19 May 2011

Disclaimers:

• This describes the work of many people.

• Major contributors to work on the memory model and atomic
operations: Sarita Adve, Lawrence Crowl, Paul McKenney,
Clark Nelson, Herb Sutter, …

• The threads API is almost entirely the work of others; I’m
likely to have gotten some small things wrong.

• C++0x is a misnomer. It’s likely to be C++11.

Outline

• Overview

• Threads API

• Basic memory model

• A note on detached threads

• Basic atomic objects

• Performance consequences

– and how to avoid them

5/19/2011 3

What are threads?

• Multiple instruction streams (programs) that
share memory.

• Static variables, and everything they point to,
are shared between them.

• Each thread has its own stack and thread-local
variables.

5/19/2011 4

5 19 May 2011

Why threads?

• A convenient way to process multiple event streams.
• The dominant way to take advantage of multiple

cores for a single application.

5/19/2011 6

Naive threads programming model
(Sequential Consistency)

• Threads behave as though their operations were
simply interleaved. (Sequential consistency)

 Thread 1 Thread 2

 x = 1; y = 2;

 z = 3;

– might be executed as

 x = 1; y = 2; z = 3;

Threads in C++0x

• Threads are finally part of the language! (C1x, too)
• Threads API

– Thread creation, synchronization, …
– Evolved from Boost.Thread.

• Memory model
– What exactly do shared variables mean?

• Not quite the naïve sequential consistency model.

– When does thread a see an update by thread b?
– When is it OK to simultaneously access variables from different

threads?

• Atomic operations
• thread_local variables, parallel constructor execution,

thread-safe function-local statics

 5/19/2011 7

Outline

• Overview

• Threads API

• Basic memory model

• A note on detached threads

• Basic atomic objects

• Performance consequences

– and how to avoid them

5/19/2011 8

9 19 May 2011

Threads API: Thread creation

class thread {
 public:
 class id;
 // movable, not copyable
 template <class F, class ...Args>
 thread(F&& f, Args&&... args);
 bool joinable() const;
 void join();
 void detach();
 id get_id() const;
 …
 static unsigned hardware_concurrency();
 // + native handles, swap(), …
};

10 19 May 2011

Thread creation example:

int fib(int n) {
 if (n <= 1) return n;
 int fib1, fib2;
 thread t([=, &fib1]{fib1 = fib(n-1);});
 fib2 = fib(n–2);
 t.join();
 return fib1 + fib2;
}

Disclaimers:
• Untested code!
• Don’t really do this! It creates too many threads.
• Runs in exponential time. There is a log(n) algorithm.

– Except that it overflows for interesting inputs.

11 19 May 2011

Potential Boost threads gotcha:
Detached threads are hazardous!

• What if parent call to fib throws?
– In Boost, if fib2 computation throws, thread t is detached.

Thread t contiinues to run independentaly.

– Thread t will still write to fib1, which will be long gone.

• In C++0x, destroying a joinable thread calls terminate()!
• Always join!
• More on detach() later …

int fib(int n) {
 if (n <= 1) return n;
 int fib1, fib2;
 thread t([=, &fib1]{fib1 = fib(n-1);});
 fib2 = fib(n–2);
 t.join();
 return fib1 + fib2;
}

12 19 May 2011

A safer way to write parallel fib()

int fib(int n) {
 if (n <= 1) return n;
 int fib2;
 auto fib1 =
 async([=]{return fib(n-1);});
 fib2 = fib(n–2);
 return fib1.get() + fib2;
}

13 19 May 2011

Mutual Exclusion

• Real multi-threaded programs usually need to
access shared data from multiple threads.

• For example, incrementing a counter in
multiple threads:

x = x + 1;
• Unsafe if run from multiple threads:

tmp = x; // 17

x = tmp + 1; // 18

tmp = x; // 17

x = tmp + 1; // 18

14 19 May 2011

Mutual Exclusion (contd)

• Standard solution:

– Limit shared variable access to one thread at a
time, using locks.

– Only one thread can be holding lock at a time.

5/19/2011 15

Mutexes restrict interleavings

 Thread 1 Thread 2
 m.lock(); m.lock();
 r1 = x; r2 = x;
 x = r1+1; x = r2+1;
 m.unlock(); m.unlock();

– can only be executed as

 m.lock(); r1 = x; x = r1+1; m.unlock();
m.lock(); r2 = x; x = r2+1; m.unlock();

or

 m.lock(); r2 = x; x = r2+1; m.unlock();
m.lock(); r1 = x; x = r1+1; m.unlock();

since second m.lock() must follow first m.unlock()

16 19 May 2011

C++0x Mutexes

class mutex {
public: mutex();
~mutex();
mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;
void lock();
bool try_lock(); // may fail even if lock available!
void unlock();
…

};

• Class recursive_mutex is similar:

– allows same thread to acquire mutex mutiple times.

17 19 May 2011

Counter with a mutex

mutex m;

void increment() {

m.lock();

x = x + 1;

m.unlock();

}

• Lock not released if critical section throws.

18 19 May 2011

Lock_guard

template <class Mutex>

class lock_guard {

public:

typedef Mutex mutex_type;

explicit lock_guard(mutex_type& m);

lock_guard(mutex_type& m, adopt_lock_t);

~lock_guard();

lock_guard(lock_guard const&) = delete;

lock_guard& operator=(lock_guard const&) = delete;

private:

mutex_type& pm; // for exposition only

};

19 19 May 2011

Counter with a lock_guard

mutex m;

void increment() {

lock_guard<mutex> _(m);

x = x + 1;

}

• Lock is released in destructor.

• unique_lock<> is a generalization of
lock_guard<>.

20 19 May 2011

Condition variables:
Waiting on shared state to change

class condition_variable {
public: …

void notify_one();
void notify_all();
void wait(unique_lock<mutex>& lock);
template <class Predicate>
 void wait(unique_lock<mutex>& lock, Predicate
pred);

template <class Duration>
 bool timed_wait(unique_lock<mutex>& lock,
 const Duration& rel_time);

};
• class condition_variable_any deals with arbitrary

mutex types.

Outline

• Overview

• Threads API

• Basic memory model

• A note on detached threads

• Basic atomic objects

• Performance consequences

– and how to avoid them

5/19/2011 21

Let’s look back more carefully
at shared variables

• So far threads are executed as though thread
steps were just interleaved.

– Sequential consistency

• But this provides expensive guarantees that
reasonable code can’t take advantage of.

5/19/2011 22

5/19/2011 23

Limits reordering and other
hardware/compiler transformations

• “Dekker’s” example (everything initially zero)
should allow r1 = r2 = 0:
 Thread 1 Thread 2

 x = 1; y = 1;

 r1 = y; r2 = x;

• Compilers like to perform loads early.

• Hardware likes to buffer stores.

5/19/2011 24

Sensitive to memory access granularity

 Thread 1 Thread 2

 x = 300; x = 100;

• If memory is accessed a byte at a time, this may be executed
as:

x_high = 0;

x_high = 1; // x = 256

x_low = 44; // x = 300;

x_low = 100; // x = 356;

And this is at too low a level …

• And taking advantage of sequential consistency
involves reasoning about memory access
interleaving:

– Much too hard.

– Want to reason about larger “atomic” code regions
• which can’t be visibly interleaved.

09/08/2010 25

09/08/2010 26

Real threads programming model
(1)

• Two memory accesses conflict if they
– access the same scalar object*, e.g. variable.

– at least one access is a store.

– E.g. x = 1; and r2 = x; conflict

• Two ordinary memory accesses participate in a data race if
they
– conflict, and

– can occur simultaneously
• i.e. appear as adjacent operations by different threads in interleaving.

• A program is data-race-free (on a particular input) if no
sequentially consistent execution results in a data race.

* or contiguous sequence of bit-fields

09/08/2010 27

Real threads programming model
(2)

• Sequential consistency only for data-race-free
programs!
– Avoid anything else.

• Data races are prevented by
– locks (or atomic sections) to restrict interleaving

– declaring atomic (synchronization) variables
• (wait a few slides…)

• In C++0x, there are ways to explicitly relax the
sequential consistency guarantee.

28 19 May 2011

Dekker’s example, again:

• (everything initially zero):
 Thread 1 Thread 2
 x = 1; y = 1;
 r1 = y; // reads 0 r2 = x; // reads 0

• This has a data race:

– x and y can be simultaneously read and updated.

• Has undefined behavior.
• Unless x and y are declared to have atomic type.

– In which case the compiler has to do what it takes to preclude this
outcome.

29 19 May 2011

Data races  undefined behavior:
Very strange things may happen

• Assume switch
statement compiled
as branch table.

• May assume x is in
range.

• Asynchronous change
to x causes wild
branch.

– Not just wrong value.

unsigned x;

If (x < 3) {

 … // async x change

 switch(x) {

 case 0: …

 case 1: …

 case 2: …

 }

}

5/19/2011 30

A note on data race definition

• Are defined in terms of sequentially consistent
executions.

• If x and y are initially zero, this does not have
a data race:
 Thread 1 Thread 2

 if (x) if (y)

 y = 1; x = 1;

Another note on data race definition

• We define it in terms of scalar accesses, but …

• Container libraries should ensure that
Container accesses don’t race 

No races on memory locations

• This means
– Accesses to hidden shared state (caches, allocation)

must be locked by implementation.

– User must lock for container-level races.

• This is often the correct library thread-safety
condition.

5/19/2011 31

SC for DRF programming model advantages
over SC

• Supports important hardware & compiler optimizations.

• DRF restriction  Synchronization-free code sections appear
to execute atomically, i.e. without visible interleaving.
– If one didn’t:

a = 1;

b = 1;

if (a == 1 && b == 0) {

 …
}

Thread 1 (not atomic): Thread 2(observer):

09/08/2010 32

5/19/2011 33

Basic Implementation model

• Very restricted reordering of memory operations
around synchronization operations:

– Compiler either understands these, or treats them as
opaque, potentially updating any location.

– Synchronization operations include instructions to limit or
prevent hardware reordering (“memory fences”).

• Other reordering is invisible:

– Only racy programs can tell.

Outline

• Overview

• Threads API

• Basic memory model

• A note on detached threads

• Basic atomic objects

• Performance consequences

– and how to avoid them

5/19/2011 34

35 19 May 2011

A note on detached threads:

• C++ static destructors can cause problems:

main thread
static

destructors

Detached thread

library shared variable

exit() Process
disappear

s

• Even standard library is unsafe to use after exit()

− except that threads may return after main() calls exit()

Options for detached threads

• Wait for them to terminate, possibly after
some sort of shutdown request.

– Unfortunately, there is no thread cancellation.

– But then why detach?

• Exit without calling static destructors
(quick_exit())

• Just don’t call detach(). (My personal
favorite.)

5/19/2011 36

Outline

• Overview

• Threads API

• Basic memory model

• A note on detached threads

• Basic atomic objects

• Performance consequences

– and how to avoid them

5/19/2011 37

5/19/2011 38

Synchronization variables

• C++0x: atomic<int>, atomic_int

• C1x: _Atomic(int), _Atomic int, atomic_int

• not C++ volatile!

• Java: volatile, java.util.concurrent.atomic.

• C# : none, though volatile is closest.

• Guarantee indivisibility of operations.

• “Don’t count” in determining whether there is a data race:
– Programs with “races” on synchronization variables are still

sequentially consistent.

– Though there are “escapes” in C++0x.

• Dekker’s algorithm “just works” with synchronization
variables.

39 19 May 2011

C++0x atomics

template< T > struct atomic {
 // Greatly simplified, for now
 constexpr atomic(T) noexcept;
 atomic(const atomic&) = delete;
 atomic& operator =(const atomic&) = delete;
 void store(T) noexcept;
 T load() noexcept;
 T operator =(T) noexcept; // similar to store()
 T operator T () noexcept; // equivalent to load()
 T exchange(T) noexcept;
 bool compare_exchange_weak(T&, T) noexcept;
 bool compare_exchange_strong(T&, T) noexcept;
 bool is_lock_free() const noexcept;
};

C++0x atomics, contd

• Integral, pointer specializations add atomic
increment operators.

• Atomic to atomic assignment intentionally not
supported.

– But it is in C1x!

5/19/2011 40

Outline

• Overview

• Threads API

• Basic memory model

• A note on detached threads

• Basic atomic objects

• Performance consequences

– and how to avoid them

5/19/2011 41

Performance impact of DRF with
sequentially consistent atomics

• Some optimization restrictions (compiler and
hardware).
– But those should have been there all along.
– (and maybe some of them were?)

• Sequentially consistent atomic operations must
– Ensure that these operations appear to be executed in

order  fences on all major current architectures.
• Possible with a fence for every store on (revised) X86.

– Ensure that ordinary memory operations are not visibly
reordered w.r.t. atomic operations.
• Free on X86, sometimes requires more fences

• Fence instructions are typically expensive.

5/19/2011 42

5/19/2011 43
43

New compiler restrictions

• Single thread compilers currently may add
data races: (PLDI 05)

– x.a = 1 in parallel with x.b = 1 may fail to

update x.b.

• Still broken in gcc in subtle cases involving bit-
fields.

struct {char a; char b} x;
tmp = x;

tmp.a = ‘z’;

x = tmp;
x.a = ‘z’;

44 19 May 2011

Some restrictions are a bit more
annoying:

• Compiler may not introduce “speculative” stores:

int count; // global, possibly shared
…
for (p = q; p != 0; p = p -> next)
 if (p -> data > 0) ++count;

int count; // global, possibly shared
…
reg = count;
for (p = q; p != 0; p = p -> next)
 if (p -> data > 0) ++reg;
count = reg; // may spuriously assign to count

Also some hardware restrictions

• Multiprocessors need fast byte stores.

• Should be able to implement sequential
consistency without locks, e.g. by adding
fences.

– You might have thought this was obvious …

– Took years to confirm for X86, PowerPC!

5/19/2011 45

Performance costs

• Compiler restrictions typically minor cost
– Assuming sane optimizations to start with.

• Fence costs for sequentially consistent atomics
are potentially much larger.
– C++0x also allows non-SC atomics.

• and even explicit memory fences.

– Double-edged sword:
• Faster. Especially on some non-X86 architectures.
• Really hard to use correctly.
• We don’t generally know how to hide library uses.
• Initially controversial. Maybe deprecate after hardware

adjusts?

5/19/2011 46

5/19/2011 47

C++0x explicitly ordered (low-level)
atomics

• Pairs of atomic operations cannot form a data race.
• Operations that do not specify
memory_order_seq_cst (the default) are not
guaranteed to execute in a single total order.

• A memory_order_release store still guarantees
memory visibility to memory_order_acquire load
that reads the value.

atomic<bool> flag;

Thread 1:
 data = 42;
 flag.store(true, memory_order_release);

Thread 2:
 if (flag.load(memory_order_acquire)){
 assert (data == 42)

5/19/2011 48

Dekker’s with C++0x low-level atomics

• r1 = r2 = 0 is possible outcome.
• No acquire operations reads release result  no constraints.
• Same as memory_order_relaxed.
• Allows ordinary MOV on X86, much cheaper on PowerPC.

x.store(1,memory_order_release);

r1 = y.load(memory_order_acquire);

y.store(1,memory_order_release);

r2 = x.load(memory_order_acquire);

atomic<int> x, y;

Thread 1:

Thread 2:

5/19/2011 49

Other memory_order options

• A memory_order_relaxed operation also drops
acquire/release visibility requirement.

• But operations on a single variable still behave as though they
were interleaved (cache coherent).

• A memory_order_consume operation behaves like
memory_order_acquire, but only with respect to
subsequent data-dependent operations.

Safe uses for low-level atomics

• Use memory_order_relaxed if no
concurrent access to an atomic is possible.

• Use memory_order_relaxed to atomically
update variables (e.g. increment counters)
that are only read with synchronization.

• Use memory_order_release /
memory_order_acquire, when it’s OK to
ignore the update, at least for some time (?)

5/19/2011 50

C++0x fine-tuned double-checked locking

atomic<bool> x_init;

if (!x_init.load(memory_order_acquire) {

 l.lock();

 if (!x_init.load(memory_order_relaxed) {

 initialize x;

 x_init.store(true, memory_order_release);

 }

 l.unlock();

}

use x;

52 19 May 2011

Summary
• C++0x provides APIs to program at three

levels:
1. Threads + locks + condition variables.

− Traditional threads programming.

2. (1) + atomic operations.
− Allows improved performance, occasionally

simplification.
− Easy (e.g. counters) are straightforward. General

lock-free programming is very hard.

3. (2) + low-level (explicitly ordered) atomics
− You need to understand more of the memory

model (1.10) than I’ve presented here.
− Experts only.
− And the experts usually get it wrong.

Sequentially
consistent
(data-race-free)

Questions?

5/19/2011 53

Backup slides

5/19/2011 54

55

Language spec challenge:

• Some really awful code:

x = 42;

m.lock();

while (m.trylock()==SUCCESS)

 m.unlock();

assert (x == 42);

Thread 1: Thread 2:

• Disclaimer: Example requires
tweaking to be pthreads-
compliant.

Don’t try this at home!!

• Can the assertion fail?

• Many implementations: Yes

• Traditional specs: No. C++0x: Yes

• Trylock() can effectively fail spuriously!

?

09/08/2010 55

56 19 May 2011

Some open source pthread lock
implementations (2006):

unlock()

lock()

unlock()

lock()

unlock()

lock()

[technically
incorrect]

NPTL
{Alpha, PowerPC}

{mutex, spin}

[Correct, slow]
NPTL

Itanium (&X86)
mutex

[Correct]
NPTL

{ Itanium, X86 }
spin

unlock()

[Incorrect]
FreeBSD
Itanium

spin

lock()

57 19 May 2011

But it’s not clear fences are enough!

Thread 1:
x = 1;

x, y initially zero. Fences between every instruction pair!

Thread 2:
y = 1;

Thread 3:
r1 = x; (1)
fence;
r2 = y; (0)

Thread 4:
r3 = y; (1)
fence;
r4 = x; (0)

x set first! y set first!

This was not clearly disallowed by public X86 hardware manuals.
Intel, AMD provided new descriptions (summer 07) that made it possible to
avoid this.
Atomic operations may have to be compiled differently.

