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Disclaimers: 

• This describes the work of many people. 

• Major contributors to work on the memory model and atomic 
operations: Sarita Adve, Lawrence Crowl, Paul McKenney,  
Clark Nelson, Herb Sutter, … 

• The threads API is almost entirely the work of others; I’m 
likely to have gotten some small things wrong. 

• C++0x is a misnomer.  It’s likely to be C++11. 
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• Performance consequences 

– and how to avoid them 
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What are threads? 

• Multiple instruction streams (programs) that 
share memory. 

• Static variables, and everything they point to, 
are shared between them. 

• Each thread has its own stack and thread-local 
variables. 
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Why threads? 

• A convenient way to process multiple event streams. 
• The dominant way to take advantage of multiple 

cores for a single application. 
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Naive threads programming model 
(Sequential Consistency) 

• Threads behave as though their operations were 
simply interleaved.  (Sequential consistency) 

 

 Thread 1   Thread 2 

  x = 1;    y = 2; 

  z = 3;    

  

– might be executed as 

 x = 1; y = 2; z = 3; 



Threads in C++0x 

• Threads are finally part of the language! (C1x, too) 
• Threads API 

– Thread creation, synchronization, … 
– Evolved from Boost.Thread. 

• Memory model 
– What exactly do shared variables mean? 

• Not quite the naïve sequential consistency model. 

– When does thread a see an update by thread b? 
– When is it OK to simultaneously access variables from different 

threads? 

• Atomic operations 
• thread_local variables, parallel constructor execution, 

thread-safe function-local statics 
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Threads API: Thread creation 

class thread { 
 public: 
  class id; 
  // movable, not copyable 
  template <class F, class ...Args> 
   thread(F&& f, Args&&... args); 
  bool joinable() const; 
  void join(); 
  void detach(); 
  id get_id() const; 
  … 
  static unsigned hardware_concurrency(); 
  // + native handles, swap(), … 
};  
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Thread creation example: 

int fib(int n) { 
 if (n <= 1) return n; 
 int fib1, fib2; 
 thread t([=, &fib1]{fib1 = fib(n-1);}); 
 fib2 = fib(n–2); 
 t.join(); 
 return fib1 + fib2; 
} 
 
Disclaimers: 
• Untested code! 
• Don’t really do this!  It creates too many threads. 
• Runs in exponential time.  There is a log(n) algorithm. 

– Except that it overflows for interesting inputs. 
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Potential Boost threads gotcha: 
Detached threads are hazardous! 

• What if parent call to fib throws? 
– In Boost, if fib2 computation throws, thread t is detached. 

Thread t contiinues to run independentaly. 

– Thread t will still write to fib1, which will be long gone. 

• In C++0x, destroying a joinable thread calls terminate()! 
• Always join! 
• More on detach() later … 

 

int fib(int n) { 
 if (n <= 1) return n; 
 int fib1, fib2; 
 thread t([=, &fib1]{fib1 = fib(n-1);}); 
 fib2 = fib(n–2); 
 t.join(); 
 return fib1 + fib2; 
} 
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A safer way to write parallel fib() 

int fib(int n) { 
 if (n <= 1) return n; 
 int fib2; 
 auto fib1 = 
  async([=]{return fib(n-1);}); 
 fib2 = fib(n–2); 
 return fib1.get() + fib2; 
} 
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Mutual Exclusion 

• Real multi-threaded programs usually need to 
access shared data from multiple threads. 

• For example, incrementing a counter in 
multiple threads: 

x = x + 1; 
• Unsafe if run from multiple threads: 

tmp = x; // 17 
 
x = tmp + 1; // 18 

tmp = x;  // 17 
 
x = tmp + 1; // 18 
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Mutual Exclusion (contd) 

• Standard solution: 

– Limit shared variable access to one thread at a 
time, using locks. 

– Only one thread can be holding lock at a time. 
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Mutexes restrict interleavings 

 Thread 1   Thread 2 
 m.lock();   m.lock(); 
 r1 = x;    r2 = x; 
 x = r1+1;    x = r2+1; 
 m.unlock();   m.unlock(); 
 

– can only be executed as 

 m.lock(); r1 = x; x = r1+1; m.unlock(); 
m.lock(); r2 = x; x = r2+1; m.unlock(); 

or 

 m.lock(); r2 = x; x = r2+1; m.unlock(); 
m.lock(); r1 = x; x = r1+1; m.unlock();  

since second m.lock() must follow first m.unlock() 
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C++0x Mutexes 

class mutex { 
public: mutex(); 
~mutex(); 
mutex(const mutex&) = delete; 
mutex& operator=(const mutex&) = delete; 
void lock(); 
bool try_lock();  // may fail even if lock available! 
void unlock(); 
… 

};  
 
• Class recursive_mutex is similar: 

– allows same thread to acquire mutex mutiple times. 
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Counter with a mutex 

mutex m; 

 

void increment() { 

m.lock(); 

x = x + 1; 

m.unlock(); 

} 

 

• Lock not released if critical section throws. 
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Lock_guard 

template <class Mutex> 

class lock_guard { 

public: 

typedef Mutex mutex_type;  

explicit lock_guard(mutex_type& m); 

lock_guard(mutex_type& m, adopt_lock_t); 

~lock_guard(); 

lock_guard(lock_guard const&) = delete; 

lock_guard& operator=(lock_guard const&) = delete; 

private: 

mutex_type& pm; // for exposition only 

};  
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Counter with a lock_guard 

mutex m; 

 

void increment() { 

lock_guard<mutex> _(m); 

x = x + 1; 

} 
 

• Lock is released in destructor. 

• unique_lock<> is a generalization of 
lock_guard<>. 
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Condition variables: 
Waiting on shared state to change 

class condition_variable { 
public: … 

void notify_one();  
void notify_all(); 
void wait(unique_lock<mutex>& lock); 
template <class Predicate> 
 void wait(unique_lock<mutex>& lock, Predicate 
pred); 

template <class Duration> 
 bool timed_wait(unique_lock<mutex>& lock, 
                 const Duration& rel_time);  

};  
• class condition_variable_any deals with arbitrary 

mutex types. 
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Let’s look back more carefully 
at shared variables  

• So far threads are executed as though thread 
steps were just interleaved. 

– Sequential consistency 

• But this provides expensive guarantees that 
reasonable code can’t take advantage of. 
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Limits reordering and other 
hardware/compiler transformations 

• “Dekker’s” example (everything initially zero) 
should allow r1 = r2 = 0: 
  Thread 1   Thread 2 

  x = 1;   y = 1; 

  r1 = y;    r2 = x; 

 

• Compilers like to perform loads early. 

• Hardware likes to buffer stores. 
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Sensitive to memory access granularity 

  Thread 1   Thread 2 

  x = 300;   x = 100; 

 

• If memory is accessed a byte at a time, this may be executed 
as: 

x_high = 0; 

x_high = 1;  // x = 256 

x_low =  44; // x = 300; 

x_low = 100; // x = 356; 



And this is at too low a level … 

• And taking advantage of sequential consistency 
involves reasoning about memory access 
interleaving: 

– Much too hard. 

– Want  to reason about larger “atomic” code regions 
• which can’t be visibly interleaved. 
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Real threads programming model 
(1) 

• Two memory accesses conflict if they 
– access the same scalar object*, e.g. variable. 

– at least one access is a store. 

– E.g. x = 1; and r2 = x; conflict 

• Two ordinary memory accesses participate in a data race if 
they 
– conflict, and 

– can occur simultaneously 
• i.e. appear as adjacent operations by different threads in interleaving. 

• A program is data-race-free (on a particular input) if no 
sequentially consistent execution results in a data race. 

 

* or contiguous sequence of bit-fields 
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Real threads programming model 
(2) 

• Sequential consistency only for data-race-free 
programs! 
– Avoid anything else. 

• Data races are prevented by 
– locks (or atomic sections) to restrict interleaving 

– declaring atomic (synchronization) variables 
• (wait a few slides…) 

• In C++0x, there are ways to explicitly relax the 
sequential consistency guarantee. 
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Dekker’s example, again: 

• (everything initially zero): 
  Thread 1   Thread 2 
  x = 1;   y = 1; 
  r1 = y; // reads 0 r2 = x;  // reads 0 
 
• This has a data race: 

– x and y can be simultaneously read and updated. 

• Has undefined behavior. 
• Unless x and y are declared to have atomic type. 

– In which case the compiler has to do what it takes to preclude this 
outcome. 
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Data races  undefined behavior: 
Very strange things may happen 

• Assume switch 
statement compiled 
as branch table. 

• May assume x is in 
range. 

• Asynchronous change 
to x causes wild 
branch. 

– Not just wrong value. 

unsigned x; 

 

If (x < 3) { 

  … // async x change 

  switch(x) { 

    case 0: … 

    case 1: … 

    case 2: … 

  } 

} 
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A note on data race definition 

• Are defined in terms of sequentially consistent 
executions. 

• If x and y are initially zero, this does not have 
a data race: 
   Thread 1   Thread 2 

  if (x)   if (y) 

    y = 1;      x = 1; 

 



Another note on data race definition 

• We define it in terms of scalar accesses, but … 

• Container libraries should ensure that  
Container accesses don’t race  

No races on memory locations 

• This means 
– Accesses to hidden shared state (caches, allocation) 

must be locked by implementation. 

– User must lock for container-level races. 

• This is often the correct library thread-safety 
condition. 
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SC for DRF programming model advantages 
over SC 

• Supports important hardware & compiler optimizations. 

• DRF restriction  Synchronization-free code sections appear 
to execute atomically, i.e. without visible interleaving. 
– If one didn’t: 

a = 1; 
 
 
b = 1; 

  
if (a == 1 && b == 0) { 
 
 
   … 
} 

Thread 1 (not atomic): Thread 2(observer): 
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Basic Implementation model 

• Very restricted reordering of memory operations 
around synchronization operations: 

– Compiler either understands these, or treats them as 
opaque, potentially updating any location. 

– Synchronization operations include instructions to limit or 
prevent hardware reordering (“memory fences”). 

• Other reordering is invisible: 

– Only racy programs can tell. 
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A note on detached threads: 

• C++ static destructors can cause problems: 

main thread 
static 

destructors 

Detached thread 

library shared variable 

exit() Process 
disappear

s 

• Even standard library is unsafe to use after exit() 

− except that threads may return after main() calls exit() 



Options for detached threads 

• Wait for them to terminate, possibly after 
some sort of shutdown request. 

– Unfortunately, there is no thread cancellation. 

– But then why detach? 

• Exit without calling static destructors 
(quick_exit()) 

• Just don’t call detach().  (My personal 
favorite.) 
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Synchronization variables 

• C++0x: atomic<int>, atomic_int 

• C1x: _Atomic(int), _Atomic int, atomic_int 

• not  C++ volatile! 

• Java: volatile, java.util.concurrent.atomic. 

• C# : none, though volatile is closest. 

• Guarantee indivisibility of operations. 

• “Don’t count” in determining whether there is a data race: 
– Programs with “races” on synchronization variables are still 

sequentially consistent. 

– Though there are “escapes” in C++0x. 

• Dekker’s algorithm  “just works” with synchronization 
variables. 
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C++0x atomics 

template< T > struct atomic { 
 // Greatly simplified, for now 
 constexpr atomic( T ) noexcept; 
 atomic( const atomic& ) = delete;  
 atomic& operator =( const atomic& ) = delete; 
 void store( T ) noexcept; 
 T load( ) noexcept; 
 T operator =( T ) noexcept;  // similar to store() 
 T operator T () noexcept; // equivalent to load() 
 T exchange( T ) noexcept; 
 bool compare_exchange_weak( T&, T) noexcept; 
 bool compare_exchange_strong( T&, T) noexcept;  
 bool is_lock_free() const noexcept; 
};  



C++0x atomics, contd 

• Integral, pointer specializations add atomic 
increment operators. 

• Atomic to atomic assignment intentionally not 
supported. 

– But it is in C1x! 
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Performance impact of DRF with 
sequentially consistent atomics 

• Some optimization restrictions (compiler and 
hardware). 
– But those should have been there all along. 
– (and maybe some of them were?) 

• Sequentially consistent atomic operations must 
– Ensure that these operations appear to be executed in 

order  fences on all major current architectures. 
• Possible with a fence for every store on (revised) X86. 

– Ensure that ordinary memory operations are not visibly 
reordered w.r.t. atomic operations. 
• Free on X86, sometimes requires more fences 

• Fence instructions are typically expensive. 
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New compiler restrictions 

• Single thread compilers currently may add 
data races: (PLDI 05) 

 

 

 
– x.a = 1 in parallel with x.b = 1 may fail to 

update x.b. 

• Still broken in gcc in subtle cases involving bit-
fields. 

struct {char a; char b} x; 
tmp = x; 

tmp.a = ‘z’; 

x = tmp; 
x.a = ‘z’; 
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Some restrictions are a bit more 
annoying: 

• Compiler may not introduce “speculative” stores: 

int count; // global, possibly shared 
… 
for (p = q; p != 0; p = p -> next) 
   if (p -> data > 0) ++count; 

int count; // global, possibly shared 
… 
reg = count; 
for (p = q; p != 0; p = p -> next) 
   if (p -> data > 0) ++reg; 
count = reg; // may spuriously assign to count  



Also some hardware restrictions 

• Multiprocessors need fast byte stores. 

• Should be able to implement sequential 
consistency without locks, e.g. by adding 
fences. 

– You might have thought this was obvious … 

– Took years to confirm for X86, PowerPC! 
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Performance costs 

• Compiler restrictions typically minor cost 
– Assuming sane optimizations to start with. 

• Fence costs for sequentially consistent atomics 
are potentially much larger. 
– C++0x also allows non-SC atomics. 

• and even explicit memory fences. 

– Double-edged sword: 
• Faster.  Especially on some non-X86 architectures. 
• Really hard to use correctly. 
• We don’t generally know how to hide library uses. 
• Initially controversial.  Maybe deprecate after hardware 

adjusts? 
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C++0x explicitly ordered (low-level) 
atomics 

• Pairs of atomic operations cannot form a data race. 
• Operations that do not specify 
memory_order_seq_cst (the default) are not 
guaranteed to execute in a single total order. 

• A memory_order_release store still guarantees 
memory visibility to memory_order_acquire load 
that reads the value.  
 

atomic<bool> flag; 
 
Thread 1: 
  data = 42; 
  flag.store(true, memory_order_release); 
 
Thread 2: 
  if (flag.load(memory_order_acquire)){ 
    assert (data == 42) 
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Dekker’s with C++0x low-level atomics 

• r1 = r2 = 0 is possible outcome. 
• No acquire operations reads release result  no constraints. 
• Same as memory_order_relaxed. 
• Allows ordinary MOV on X86, much cheaper on PowerPC. 

x.store(1,memory_order_release); 

r1 = y.load(memory_order_acquire); 

y.store(1,memory_order_release); 

r2 = x.load(memory_order_acquire); 

atomic<int> x, y; 

Thread 1: 

Thread 2: 
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Other memory_order options 

 

• A memory_order_relaxed operation also drops 
acquire/release visibility requirement. 

• But operations on a single variable still behave as though they 
were interleaved (cache coherent). 

• A memory_order_consume operation behaves like 
memory_order_acquire, but only with respect to 
subsequent data-dependent operations. 



Safe uses for low-level atomics 

• Use memory_order_relaxed if no 
concurrent access to an atomic is possible. 

• Use memory_order_relaxed to atomically 
update variables (e.g. increment counters) 
that are only read with synchronization. 

• Use memory_order_release / 
memory_order_acquire, when it’s OK to 
ignore the update, at least for some time (?) 

5/19/2011 50 



C++0x fine-tuned double-checked locking 

atomic<bool> x_init; 

 

if (!x_init.load(memory_order_acquire) { 

   l.lock(); 

   if (!x_init.load(memory_order_relaxed) { 

      initialize x; 

      x_init.store(true, memory_order_release); 

   } 

   l.unlock(); 

} 

use x; 
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Summary 
• C++0x provides APIs to program at three 

levels: 
1. Threads + locks + condition variables. 

− Traditional threads programming. 

2. (1) + atomic operations. 
− Allows improved performance, occasionally 

simplification. 
− Easy  (e.g. counters) are straightforward.  General 

lock-free programming is very hard. 

3. (2) + low-level (explicitly ordered) atomics 
− You need to understand more of the memory 

model (1.10) than I’ve presented here. 
− Experts only. 
− And the experts usually get it wrong. 

Sequentially 
consistent 
(data-race-free) 



Questions? 
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Backup slides 
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Language spec challenge: 

• Some really awful code: 

x = 42; 

m.lock(); 

while (m.trylock()==SUCCESS) 

  m.unlock(); 

assert (x == 42); 

Thread 1: Thread 2: 

• Disclaimer: Example requires 
tweaking to be pthreads-
compliant. 

Don’t try this at home!! 

• Can the assertion fail? 

• Many implementations: Yes 

• Traditional specs: No.  C++0x: Yes 

• Trylock() can effectively fail spuriously! 

? 
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Some open source pthread lock 
implementations (2006): 

unlock() 

lock() 

unlock() 

lock() 

unlock() 

lock() 

[technically 
incorrect] 

NPTL 
{Alpha, PowerPC} 

{mutex, spin} 

[Correct, slow] 
NPTL 

Itanium (&X86) 
mutex 

[Correct] 
NPTL 

{ Itanium, X86 } 
spin 

unlock() 

[Incorrect] 
FreeBSD 
Itanium 

spin 

lock() 
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But it’s not clear fences are enough! 

Thread 1: 
x = 1; 

x, y initially zero.  Fences between every instruction pair! 

Thread 2: 
y = 1; 

Thread 3: 
r1 = x; (1) 
fence; 
r2 = y; (0) 

Thread 4: 
r3 = y; (1) 
fence; 
r4 = x; (0) 

x set first! y set first! 

This was not clearly disallowed by public X86 hardware manuals. 
Intel, AMD provided new descriptions (summer 07) that made it possible to 
avoid this. 
Atomic operations may have to be compiled differently. 


