
Generic Conversion and Segmentation for Ranges
A Solution for Unicode

Mathias Gaunard

MetaScale Inc.

Boostcon 2011

1 of 33

Context

� Google Summer of Code 2009

� Available on the Boost Sandbox in SOC/2009

� Doc at http://mathias.gaunard.com/unicode/doc/html

Should it be submitted for review? � Feedback welcome

2 of 33

What's Unicode?

� A character set that uni�es all character sets for all languages
More than 1 million �entries�, or code points (21-bit mapping)

� A set of data attached to each code point
� category info
� possible decompositions
� uppercase/lowercase/case-folded version

� A mechanism to combine code points to create combining

character sequences, and the associated algorithms to deal with
them

� Algorithms to delimit graphemes, words, sentences, possible line
breaks

� Collation algorithms for advanced comparison and sorting

3 of 33

UTF encodings

21-bit code points impractical, various encodings available:

� UTF-8, encode a code point as a variable-sized sequence of 1 to 4
8-bit code units � also has lots of nice properties

� UTF-16, encode a code point as one or two 16-bit code units

� UTF-32, enode a code point as a single 32-bit code unit

Variable-width radically di�erent from legacy character sets.

4 of 33

Combining character sequences

� Any number of combining code points can be appended after a
non-combining code point
Forms a single combining character sequence

� No hard limit on the number of combinations, some exist as
precomposed code points, some do not (e.g. some Navajo
characters)

� The same combining character sequence can have lots of di�erent
representations

� Canonical ordering of combining code points

� Normalization: fully decomposed (NFD), fully decomposed then
recomposed (NFC)

5 of 33

Example

The character can be represented in several ways:

U+1ec7 e with circum�ex and dot below
U+1eb9 U+0302 e with dot below + combining circum�ex
U+0065 U+0323 U+0302 e + combining dot below + combining circum�ex

U+0065 U+0302 U+0323 also canonically equivalent, but not canonically

ordered.

6 of 33

What's a character?

Di�erent approximations:

� Code unit

� Code point

� Combining character sequence

� Grapheme cluster

Grapheme cluster real character for the end-user, but not necessarily
for the programmer.
Some combining character sequences aren't graphemes and some
graphemes aren't combining character sequences � di�erent notions.

7 of 33

How does Unicode translate into a library?

A table of properties for each code point:

� Fairly large data, needs to remove redundancy

� May need to be tailored for particular locales

� A dynamically-linked library with a stable and simple ABI makes
sense

� Database needs to be at least backward-compatible

Low-level interface, not what we want to provide to the user, but still
needs to be there.

8 of 33

Unicode Character Database

Boost.Unicode generates one:

� Spirit Classic parser

� Two-level memory structure, but redundancy removal not done on a
per-property basis

� A function per property that returns that property value for a code
point

� Backward compatible but also forward compatible by using
functions on the caller side that checks whether the property value
is in a known range

� Composition needs pre�x (and possibly su�x) trees, needs to come
up with a better ABI to expose these

9 of 33

What we need

� Conversion/transformation
� UTF decoding/encoding
� Normalization, decomposition,

composition
� Case folding

� Concatenation of normalized
strings (normalization not stable
by concatenation)

� Segmentation, for any UTF-X
range:
� Code points
� Combining character sequences
� Graphemes, words, etc.

� Find closest boundaries from a
random position (related to
segmentation)

� Substring search and match

10 of 33

Operations on text

Yet another huge monolithic in�exible string type with member
functions that do everything, including what you may not want or
need?

No, we want:

� To be able to work with any string type, wherever/however it is
stored

� To control what memory is allocated, when and how � even be able
to avoid allocating freestore memory entirely if possible

� To be able to combine transformations easily and e�ciently

� For conversions to be fast

� It to be as easy to use and unintrusive as possible

11 of 33

The Solution

� Works with any range

� A conversion only needs to be written once and with a very

simple interface to be used in di�erent ways

� Conversions can be combined, applied eagerly or lazily

� Can exploit parallelism

12 of 33

The Range concept

A range is a type from which you can extract a begin and a

past-the-end iterator

� Concept is re�ned just like the Iterator concepts

� Containers are ranges, std::pair<It, It> too

� Terser syntax than iterators, can be used with BOOST_FOREACH or
C++0x range for-loop

� Boost.Range provides the basis of range primitives, as well as pretty
cool range adaptors

13 of 33

Boost.Range adaptors

1 std::vector<int> v = {1, 2, 3, 4};
2 transformed_range<
3 F,
4 filtered_range<
5 P,
6 iterator_range< std::vector<int>::iterator >
7 >
8 > adapted = v | filtered(p) | transformed(f);

Returns a range adapted that will, as you iterate it, iterate through the
elements of the vector v, discard elements that do not satisfy the
predicate p and apply the function f on each element.

14 of 33

Unicode adaptors

Like with DSELs, return type is complex, avoid writing it out.

� Use auto

� Don't name the variable

We're going to try to de�ne a mechanism that allows things like
encoding conversion or even more complicated operations to be
expressed lazily in a similar way.

15 of 33

Converter concept

1 struct Converter
2 {
3 typedef unspecified input_type; // archetype for concept-checking
4 typedef unspecified output_type;
5 typedef mpl_integral_constant max_output; // optional
6 typedef mpl_integral_constant output_alignment; // optional
7

8 template<typename In, typename Out>
9 Out ltr(In& begin, In const& end, Out const& out);

10

11 template<typename In, typename Out>
12 Out rtl(In const& begin, In& end, Out const& out);
13 };

� De�nes a step of a conversion that advances begin or end depending on
whether you iterate left-to-right or right-to-left respectively.

� �Consumes� some elements from the In range and writes some new ones
to Out, writing up to max_output elements in a single step.

16 of 33

How to use a converter

� Eager evaluation:

1 std::string utf8_data = "Hello World";
2

3 std::basic_string<char32> utf32_data;
4 convert(utf8_data, u8_decoder(), std::back_inserter(utf32_data));
5

6 BOOST_FOREACH(char32 cp, utf32_data)
7 std::cout << "Code point " << cp << "\n";

� Lazy evaluation:

1 std::string utf8_data = "Hello World";
2

3 BOOST_FOREACH(char32 cp, adaptors::convert(utf8_data, u8_decoder()))
4 std::cout << "Code point " << cp << "\n";

17 of 33

Two-pass eager evaluation

Don't have to use push_back, can compute the size that you need,
allocate the bu�er, and convert it there.

1 counting_iterator<size_t> it = convert(
2 utf8_data,
3 u8_decoder(),
4 counting_iterator<size_t>(0)
5);
6

7 std::vector<char32> utf32_data(it.base());
8 convert(utf8_data, u8_decoder(), utf32_data.begin());

18 of 33

Segmenter concept

1 struct Segmenter
2 {
3 typedef unspecified input_type; // archetype for concept-checking
4 typedef unspecified tag_type; // optional
5

6 template<typename In>
7 tag_type ltr(In& begin, In const& end);
8

9 template<typename In>
10 tag_type rtl(In const& begin, In& end);
11 };

Like a Converter, but no output and potentially a tag.

19 of 33

How to use a segmenter

1 std::string utf8_data = "Hello World";
2

3 typedef iterator_range<std::string::iterator> sub_range;
4 BOOST_FOREACH(sub_range cp, segment(utf8_data, u8_segmenter()))
5 {
6 std::cout << "Code point ";
7 BOOST_FOREACH(char c, cp)
8 std::cout << (int)c << ", ";
9 std::cout << "\n";

10 }

20 of 33

BoundaryChecker concept

1 struct BoundaryChecker
2 {
3 typedef unspecified input_type; // archetype for concept-checking
4

5 template<typename In>
6 bool operator()(In const& begin, In const& end, In const& pos);
7 }

Returns whether the position pos within the range [begin, end[lies on a
particular boundary.

21 of 33

Building boundary checkers and segmenters

� multi_boundary: builds a BoundaryChecker that tests for a boundary,
applies a converter, then checks for another boundary.

� converter_segmenter: builds a Segmenter from a Converter by
discarding its output

� boundary_segmenter: builds a Segmenter from a BoundaryChecker by
advancing until the boundary

� converted_segmenter: builds a Segmenter that applies a converter
before applying a segmenter � converter must have a max output of
1.

22 of 33

Building converters

� multi_converter: builds a Converter that applies a converter after
another, step output of �rst must combine well with expected input
of second converter

� converted_converter: builds a Converter that applies a converter after
another � �rst converter must have a max output of 1.

� codecvt_in_converter and codecvt_out_converter: builds a Converter

from one direction of a codecvt facet

23 of 33

Converters and segmenters usage

� Can generate a codecvt facet from two converters and two
boundary checkers for transparent conversion on std::fstream �
slow, don't use it unless you love standard iostreams

� Can build an iterator adaptor that applies the converter step by
step � lazy, removes bu�ering and memory allocation problems

� Can evaluate them in a tight loop � fastest

24 of 33

Unicode converters and segmenters

Basic primitives:

� cast_converter

� u8_decoder, u8_encoder, u8_boundary, equivalent u16_* ones

� locale_utf_transcoder, utf_locale_transcoder � built from codecvt
facets

� combining_boundary

� grapheme_boundary

� decomposer and composer

25 of 33

Transcoding

� Convenience UTF transcoding converters:
� utf_decoder � calls the correct one depending on the size of the

elements
� utf_encoder<T> � calls the correct one depending on the size of T
� utf_transcoder<T> � calls utf_decoder then utf_encoder<T>

� Conversion with other character sets:
� latin1_encoder
� locale_decoder, locale_encoder

� Normalization
� normalizer

26 of 33

UTF variants

� u8_segment and u16_segment � UTF segmenters, two possible
implementations

� u8_combining_boundary, u8_grapheme_boundary, etc.

� u8_combining_segment, u8_grapheme_segment, etc.

� u8_normalizer etc.

27 of 33

String search and match

Two solutions:

� Adapt the range as a range of what you want to match on and pass
that to a generic search algorithm

� Tries to match the range as-is but discard matches that do not lie
on the expected boundaries

Second solution is typically faster, but needs some wrappers for the
search algorithms.

28 of 33

String search example

1 std::string input = "foo\xcc\x82foo";
2 std::string search = "foo";
3

4 // Adapted ranges
5 auto match
6 = algorithm::find_first(adaptors::u8_grapheme_segment(input),
7 adaptors::u8_grapheme_segment(search)
8);

29 of 33

String search example with boundary check

Boost.Unicode provides adapters for models of the Boost.StringAlgo
Finder concept in order to �lter matches that do not satisfy a
particular BoundaryChecker.

1 // Boundary check
2 auto finder = make_boundary_finder(algorithm::first_finder(search),
3 u8_grapheme_boundary()
4);
5 iterator_range<std::string::iterator> match
6 = algorithm::find(input, finder);

30 of 33

UTF-8 decoding

1 unsigned char b0 = *(begin++);
2 if((b0 & 0x80) == 0)
3 return char32(b0);
4

5 unsigned char b1 = *(begin++);
6 if((b0 & 0xe0) == 0xc0)
7 return (char32(b1) & 0x3f) | ((char32(b0) & 0x1f) << 6);
8

9 unsigned char b2 = *(begin++);
10 if((b0 & 0xf0) == 0xe0)
11 return (char32(b2) & 0x3f) | ((char32(b1) & 0x3f) << 6)
12 | ((char32(b0) & 0x0f) << 12);
13

14 unsigned char b3 = *(begin++);
15 if((b0 & 0xf8) == 0xf0)
16 return (char32(b3) & 0x3f) | ((char32(b2) & 0x3f) << 6)
17 | ((char32(b1) & 0x3f) << 12) | ((char32(b0) & 0x07) << 18);

31 of 33

Vectorized UTF-8 decoding

Is UTF-8 decoding vectorizable?

� Promotion from uint8 to uint32

� Branching

� Data to consume per step is variable-width and interleaved

Not easy to vectorize, and won't necessarily be fast.

Could have a u8_fast_decoder that outputs 4 code points aligned on a
16 boundary in one step; or less if not enough data.

32 of 33

UTF-8 decoding with SIMD � Teaser

1 return select(is_eqz(b0 & 0x80),
2 b0,
3 select(eq(b0 & 0xe0, 0xc0),
4 (b1 & 0x3f) | (b0 & 0x1f) << 6,
5 select(eq(b0 & 0xf0, 0xe0),
6 (b2 & 0x3f) | ((b1 & 0x3f) << 6)
7 | ((b0 & 0x0f) << 12),
8 (b3 & 0x3f) | ((b2 & 0x3f) << 6)
9 | ((b1 & 0x3f) << 12) | ((b0 & 0x07) << 18)

10)
11)
12)
13 ;

33 of 33

