Generic Conversion and Segmentation for Ranges

Mﬁ?ﬁi‘ﬁne

A®©crit en UTF 8

Mathias Gaunard

MetaScale Inc.

Boostcon 2011

Context

® Google Summer of Code 2009
® Available on the Boost Sandbox in SOC/2009

®m Doc at http://mathias.gaunard.com/unicode/doc/html

Should it be submitted for review? — Feedback welcome

What's Unicode?

A character set that unifies all character sets for all languages
More than 1 million “entries”, or code points (21-bit mapping)

A set of data attached to each code point
O category info

O possible decompositions

O uppercase/lowercase/case-folded version

A mechanism to combine code points to create combining
character sequences, and the associated algorithms to deal with
them

Algorithms to delimit graphemes, words, sentences, possible line
breaks

Collation algorithms for advanced comparison and sorting

3 of 33

UTF encodings

21-bit code points impractical, various encodings available:

m UTF-8, encode a code point as a variable-sized sequence of 1 to 4
8-bit code units — also has lots of nice properties

m UTF-16, encode a code point as one or two 16-bit code units

m UTF-32, enode a code point as a single 32-bit code unit

Variable-width radically different from legacy character sets.

Combining character sequences

® Any number of combining code points can be appended after a
non-combining code point
Forms a single combining character sequence

® No hard limit on the number of combinations, some exist as
precomposed code points, some do not (e.g. some Navajo
characters)

® The same combining character sequence can have lots of different
representations

m Canonical ordering of combining code points

® Normalization: fully decomposed (NFD), fully decomposed then
recomposed (NFC)

5 of 33

Example

The € character can be represented in several ways:

U+1lec? e with circumflex and dot below
U+1eb9 U+0302 e with dot below + combining circumflex
U+0065 U+0323 U+0302 e + combining dot below + combining circumflex

U+0065 U+0302 U+0323 also canonically equivalent, but not canonically
ordered.

What's a character?

Different approximations:

m Code unit

m Code point

m Combining character sequence
m Grapheme cluster

Grapheme cluster real character for the end-user, but not necessarily
for the programmer.

Some combining character sequences aren’t graphemes and some
graphemes aren’t combining character sequences — different notions.

7 of 33

How does Unicode translate into a library?

A table of properties for each code point:

Fairly large data, needs to remove redundancy

May need to be tailored for particular locales

A dynamically-linked library with a stable and simple ABI makes
sense

Database needs to be at least backward-compatible

Low-level interface, not what we want to provide to the user, but still
needs to be there.

Unicode Character Database

Boost.Unicode generates one:

m Spirit Classic parser

® Two-level memory structure, but redundancy removal not done on a
per-property basis

m A function per property that returns that property value for a code
point

m Backward compatible but also forward compatible by using
functions on the caller side that checks whether the property value
is in a known range

m Composition needs prefix (and possibly suffix) trees, needs to come
up with a better ABI to expose these

9 of 33

What we need

m Conversion/transformation m Segmentation, for any UTF-X
O UTF decoding/encoding range:
0 Normalization, decomposition, 0 Code points

composition 0 Combining character sequences

0 Case folding O Graphemes, words, etc.

m Concatenation of normalized ® Find closest boundaries from a
strings (normalization not stable random position (related to
by concatenation) segmentation)

® Substring search and match

10 of 33

Operations on text

Yet another huge monolithic inflexible string type with member

functions that do everything, including what you may not want or
need?

No, we want:

® To be able to work with any string type, wherever/however it is
stored

To control what memory is allocated, when and how — even be able
to avoid allocating freestore memory entirely if possible

To be able to combine transformations easily and efficiently

For conversions to be fast

It to be as easy to use and unintrusive as possible

11 of 33

The Solution

® Works with any range

m A conversion only needs to be written once and with a very
simple interface to be used in different ways

m Conversions can be combined, applied eagerly or lazily

m Can exploit parallelism

12 of 33

The Range concept

A range is a type from which you can extract a begin and a
past-the-end iterator

Concept is refined just like the Iterator concepts

Containers are ranges, std::pair<It, It> too

m Terser syntax than iterators, can be used with BOOST_FOREACH or
C++0x range for-loop

Boost.Range provides the basis of range primitives, as well as pretty
cool range adaptors

13 of 33

W N O 00 B W N =

Boost.Range adaptors

std::vector<int> v = {1, 2, 3, 43};
transformed_range<

F,
filtered_range<

P!

iterator_range< std::vector<int>::iterator >
>

> adapted = v | filtered(p) | transformed(f);

Returns a range adapted that will, as you iterate it, iterate through the
elements of the vector v, discard elements that do not satisfy the
predicate p and apply the function f on each element.

14 of 33

Unicode adaptors

Like with DSELs, return type is complex, avoid writing it out.
m Use auto

® Don't name the variable

We're going to try to define a mechanism that allows things like
encoding conversion or even more complicated operations to be
expressed lazily in a similar way.

15 of 33

Converter concept

1 | struct Converter

2 |{

3 typedef unspecified input_type; // archetype for concept-checking
4 typedef unspecified output_type;

5 typedef mpl_integral_constant max_output; // optional

6 typedef mpl_integral_constant output_alignment; // optional
7

8 template<typename In, typename Out>

[Out 1tr(In& begin, In const& end, Out const& out);

10

11 template<typename In, typename Out>

12 Out rtl(In const& begin, In& end, Out const& out);

13 |}

B Defines a step of a conversion that advances begin or end depending on
whether you iterate left-to-right or right-to-left respectively.

m “Consumes’ some elements from the In range and writes some new ones

to Out, writing up to max_output elements in a single step.
16 of 33

How to use a converter

m Eager evaluation:

std::string utf8_data = "Hello World";

std::basic_string<char32> utf32_data;
convert(utf8_data, u8_decoder(), std::back_inserter(utf32_data));

BOOST_FOREACH(char32 cp, utf32_data)
std::cout << "Code point " << cp << "\n";

N o oA W N

® | azy evaluation:

std::string utf8_data = "Hello World";

BOOST_FOREACH(char32 cp, adaptors::convert(utf8_data, u8_decoder()))
std::cout << "Code point " << cp << "\n";

B W N =

17 of 33

Two-pass eager evaluation

Don’t have to use push_back, can compute the size that you need,
allocate the buffer, and convert it there.

counting_iterator<size_t> it = convert(
utf8_data,
u8_decoder(),
counting_iterator<size_t>(0)

);

std: :vector<char32> utf32_data(it.base());
convert(utf8_data, u8_decoder(), utf32_data.begin());

W N O s W N =

18 of 33

Segmenter concept

1 | struct Segmenter

2 |{

3 typedef unspecified input_type; // archetype for concept-checking
4 typedef unspecified tag_type; // optional
5

6 template<typename In>

7 tag_type 1ltr(In& begin, In const& end);

8

[template<typename In>

10 tag_type rtl(In const& begin, In& end);
1 |}

Like a converter, but no output and potentially a tag.

19 of 33

© W N O O B W N =

-
o

How to use a segmenter

std::string utf8_data = "Hello World”;

typedef iterator_range<std::string::iterator> sub_range;
BOOST_FOREACH(sub_range cp, segment(utf8_data, u8_segmenter()))
{
std::cout << "Code point ";
BOOST_FOREACH(char c, cp)
std::cout << (int)c << ", ";
std::cout << "\n";

20 of 33

BoundaryChecker concept

1 | struct BoundaryChecker

2 |{

3 typedef unspecified input_type; // archetype for concept-checking
a4

5 template<typename In>

6 bool operator()(In const& begin, In const& end, In const& pos);
7|}

Returns whether the position pos within the range [begin, end lies on a
particular boundary.

21 of 33

Building boundary checkers and segmenters

B multi_boundary: builds a BoundaryChecker that tests for a boundary,
applies a converter, then checks for another boundary.

B converter_segmenter: builds a Segmenter from a Converter by
discarding its output

B poundary_segmenter: builds a Segmenter from a BoundaryChecker by
advancing until the boundary

B converted_segmenter: builds a Segmenter that applies a converter

before applying a segmenter — converter must have a max output of
1.

22 of 33

Building converters

B multi_converter: builds a converter that applies a converter after
another, step output of first must combine well with expected input
of second converter

B converted_converter: builds a Converter that applies a converter after
another — first converter must have a max output of 1.

B codecvt_in_converter and codecvt_out_converter: builds a converter
from one direction of a codecvt facet

23 of 33

Converters and segmenters usage

m Can generate a codecvt facet from two converters and two
boundary checkers for transparent conversion on std::fstream —
slow, don’t use it unless you love standard iostreams

® Can build an iterator adaptor that applies the converter step by
step — lazy, removes buffering and memory allocation problems

® Can evaluate them in a tight loop — fastest

24 of 33

Unicode converters and segmenters

Basic primitives:

cast_converter
u8_decoder,u8_encoder,u8_boundary,eqlﬂva|ent ul6_* ones

locale_utf_transcoder, utf_locale_transcoder — built from codecvt
facets

combining_boundary
grapheme_boundary

decomposer a nd composer

25 of 33

Transcoding

m Convenience UTF transcoding converters:

O utf_decoder — calls the correct one depending on the size of the
elements

O utf_encoder<T> — calls the correct one depending on the size of T
O utf_transcoder<T> — calls utf_decoder then utf_encoder<T>

m Conversion with other character sets:

O latinl_encoder
O locale_decoder, locale_encoder

® Normalization

O normalizer

26 of 33

UTF variants

B u8_segment and u16_segment — UTF segmenters, two possible
implementations

B y8_combining_boundary, u8_grapheme_boundary, etc.
B y8_combining_segment, u8_grapheme_segment, etc.

B y8_normalizer etc.

27 of 33

String search and match

Two solutions:
m Adapt the range as a range of what you want to match on and pass

that to a generic search algorithm
m Tries to match the range as-is but discard matches that do not lie

on the expected boundaries
Second solution is typically faster, but needs some wrappers for the

search algorithms.

28 of 33 _

String search example

std::string input = "foo\xcc\x82foo";
std::string search = "foo";

// Adapted ranges
auto match
= algorithm::find_first(adaptors::u8_grapheme_segment(input),
adaptors: :u8_grapheme_segment (search)

);

W N O 00 B W N

29 of 33

String search example with boundary check

Boost.Unicode provides adapters for models of the Boost.StringAlgo
Finder concept in order to filter matches that do not satisfy a
particular BoundaryChecker.

// Boundary check
auto finder = make_boundary_finder(algorithm::first_finder(search),
u8_grapheme_boundary ()
);
iterator_range<std::string::iterator> match
= algorithm::find(input, finder);

o B W N =

30 of 33

UTF-8 decoding

unsigned char b0 = *(begin++);
if((b0 & 0x80) == 0)
return char32(b0);

unsigned char b1l = *(begint+);
if((b0 & 0xe0) == 0xc0)
return (char32(b1) & 0x3f) | ((char32(b0) & 0x1f) << 6);

© 0 N O O B W N -

unsigned char b2 = *(begin++);
if ((b0 & 0xf0) == 0xe0)
return (char32(b2) & 0x3f) | ((char32(b1) & 0x3f) << 6)
| ((char32(b0) & 0x0f) << 12);

e =
& W N = O

unsigned char b3 = *x(begint+);
if((b0 & 0xf8) == 0xf0)
return (char32(b3) & 0x3f) | ((char32(b2) & 0x3f) << 6)
| ((char32(b1) & 0x3f) << 12) | ((char32(b0) & 0x07) << 18);

HoE e
N o o

31 of 33

Vectorized UTF-8 decoding

Is UTF-8 decoding vectorizable?
® Promotion from uint8 to uint32
m Branching

m Data to consume per step is variable-width and interleaved

Not easy to vectorize, and won't necessarily be fast.

Could have a u8_fast_decoder that outputs 4 code points aligned on a
16 boundary in one step; or less if not enough data.

32 of 33

UTF-8 decoding with SIMD — Teaser

1 | return select(is_eqz(b0 & 0x80),

2 b0,

3 select(eq(b0 & 0xe0, 0xc0),

4 (b1 & 0x3f) | (b0 & 0x1f) << 6,

5 select(eq(b0 & 0xf0, 0xe0),

6 (b2 & 0x3f) | ((b1 & 0x3f) << 6)
7 | ((bO & 0x0f) << 12),

8 (b3 & 0x3f) | ((b2 & 0x3f) << 6)
o | ((b1 & 0x3f) << 12) | ((b0 & 0x07) << 18)
10)

11)

12)

13 |;

33 of 33

