\\ Example Calculation by Bradley Klee \\ Definite integral of cardinal sine squared \\ Int_{0..10000*Pi}(sinc(x))^2*dx \\ where sinc(x) = sin(x)/x \\ input: integer for series truncation \\ output: expansion coefficients of (sinc(x))^2 around x=0 {sinc20(mPrec)=my(cv);cv=[1.,0.];for(j=2,mPrec, cv=concat(cv,-[cv[j-1]*4/(2+3*j+j^2)])); cv}; \\ input: integers for series truncation and expansion center \\ output: expansion coefficients of (sinc(x))^2 around x=n*pi {sinc2n(mPrec,nDom)=my(cv); cv=[0.,0.,1/(nDom*Pi)^2,-2/(nDom*Pi)^3]; for(j=4,mPrec,cv=concat(cv,cv[-4..-1] *[4/((j-j^2)*nDom^2*Pi^2), 8/((1-j)*j*nDom*Pi), (j-j^2-4*nDom^2*Pi^2)/((-j+j^2)*nDom^2*Pi^2), -2/(nDom*Pi)]~)); cv}; \\ input: integer for series truncation \\ output: integrated powers of x, evaluated at -Pi {xPiInt(mPrec)=vector(mPrec+1,j,(-Pi)^j/j)~}; \\ input: integers for total domain and series truncation \\ output: Int_{0..n*Pi}(sinc(x))^2*dx, with error estimate \\ comment: this function is not completely optimized! \\ Running sums would be better. {sinc2Int(nDom,mPrec)=my(IntVals,xVals); xVals=xPiInt(mPrec); IntVals=[ sinc20(mPrec)*abs(xVals), -sinc2n(mPrec,1)*xVals]; for(j=1,nDom-1,IntVals=matconcat([IntVals;[ sinc2n(mPrec,j)*abs(xVals), -sinc2n(mPrec,j+1)*xVals]])); vector(nDom,j,1)*IntVals*[1/2,1;1/2,-1]}; \\ input: integer for total domain \\ output: Int_{0..n*Pi}(sinc(x))^2*dx {sinc2IntIdiom(nDom)= intnum(x=0,nDom*Pi,(sin(x)/x)^2)}; \\ input: integer for total domain \\ output: Int_{0..n*Pi}(sinc(x))^2*dx {sinc2IntPiecewiseIdiom(nDom)=my(int);int=0; for(n=0,nDom-1,int+=intnum(x=n*Pi,(n+1)*Pi, (sin(x)/x)^2)); int}; \p 50 Pi/2 sinc2IntIdiom(10000) /* not accurate */ sinc2IntPiecewiseIdiom(10000) out=sinc2Int(10000,75) log(abs(Pi/2-out[1]))