{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# An Introduction to Bias-Variance\n", "\n", "## Introduction\n", "\n", "
This notebook gives a foundational overview of the Bias-Variance tradeoff, one of the most important topics related to predictive modeling for Data Science. The Bias-Variance Tradeoff in short is a framework for understanding where error comes from in a supervised learning model. There is a famous quote attributed to statistician George Box that goes:
\n",
"\n",
"
Both \"bias\" and \"variance\" are common terms in statistics, and their general meaning isn't that far from how they are used in statistical learning theory. If you recall in statistics, the bias of an estimator is defined as the difference between the expected value of an estimator and the true value of the quantity being estimated. The \"bias\" and \"variance\" of a predictive model follow the same idea since a \"model\" is really just some function that estimates the expected value of an outcome $Y$ conditional on some $X=x$, (i.e., $f(x)=E[Y|X=x]$).\n",
"\n",
"
\n",
"\n",
"So to get closer to an intuitive explanation, let's start by looking at some simulated data. The following plots show a polymonial scatter created with the following data generating process:
\n",
"\n",
"
The points above follow some sort of trend, but given the level of noise, it is hard to trace exactly what that trend is. Imagine you didn't know the data generating function and that someone gave you a piece of string and asked you to lay the string out so that it best captures the trend you see in the data. The string, once laid out, is your mental model of how this data was generated. Although a piece of string is infinitely flexible, imagine that you are required in advance to specify exactly how many times your piece of string is allowed to bend. If your only task was to draw a trend line that was as close to as many points above as possible, you'd likely choose the infinitely flexible option. Your game master here reveals though that there is another set of points hidden from you, and the real task is to have your string be as close to the hidden points as possible (which we'll assume will at least come from the same data generating process). With this revelation, you'd have to ask yourself whether you prefer a string with fewer flex points, that sits near a safe average of any cluster of points, or the infinitely flexible string that can possibly go through all points. This is the choice that every modeler has to make, and understanding both bias and variance will help guide us towards making better modeling choices.\n", "\n", "
\n", "\n", "#### Deeper Look at Bias\n", "\n", "Your choice will likely depend on how confident you are that the points you see really represent the world of such points. Your confidence in that department is likely proportional to the number of points you can see here. Even if you had an infinite number of points, the string with fewer flex points might never be able to trace the true trend in the data. We'll illustrate this with the following chart, using a straight line (string with zero flexibility) as our model.\n", "
" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAFpCAYAAAC79jb6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8XUXd/z/nJrnZ06Zt2tx0pWwt\nFCi0tCAKIiIWgVKwBYGCiiyt+liUB4oLCPyex4IIRX3AoqiAqFBsEUVABJGlRWgV2dpSaJu0aZKm\n2be7JJnfHzfTzJ3MnDPn3HNv7k2/79crryRnmf3M+X7mOzPHYoyBIAiCIAiCIAhipBEY7gQQBEEQ\nBEEQBEGkAhI7BEEQBEEQBEGMSEjsEARBEARBEAQxIiGxQxAEQRAEQRDEiITEDkEQBEEQBEEQIxIS\nOwRBEARBEARBjEhI7BAEQRAEQRAEMSIhsUMQBEEQBEEQxIiExA5BEARBEARBECMSEjsEQRAEQRAE\nQYxIck0vtCzrlwDOAbCPMTZr4NgPAZwLIArgIwBfYoy1WpY1DcAWANsGbn+dMXatUxzjxo1j06ZN\nc5N+giAIgiAIgiAOMjZv3ryfMVbhdJ3FGDMK0LKsUwF0AnhYEDufAfAiY6zXsqw7AIAxduOA2Pkz\nv86UuXPnsk2bNrm5hSAIgiAIgiCIgwzLsjYzxuY6XWc8jY0x9jKAZunYXxljvQP/vg5gkqtUEgRB\nEARBEARBpAg/1+x8GcAzwv+HWJb1b8uy/mFZ1id8jIcgCIIgCIIgCMIR4zU7dliW9R0AvQAeHThU\nB2AKY6zJsqw5AJ60LOtoxli74t6rAVwNAFOmTPEjOQRBEARBEARBEMl7dizL+iLiGxdcygYWADHG\nIoyxpoG/NyO+ecERqvsZYw8wxuYyxuZWVDiuMSIIgiAIgiAIgjAiKbFjWdZnAdwA4DzGWLdwvMKy\nrJyBv6cDOBzAjmTiIgiCIAiCIAiCcIObrad/B+CTAMZZlrUHwC0AbgKQD+B5y7KAwS2mTwVwm2VZ\nMQD9AK5ljDUrAyYIgiAIgiAIgkgBxmKHMfYFxeEHNdf+AcAfvCaKIAiCIAiCIAgiWfzcjY0gCIIg\nCIIgCCJjILFDEARBEARBEMSIhMQOQRAEQRAEQRAjEhI7BEEQBEEQBEGMSEjsEARBEARBEMRBTE3N\ncKcgdZDYIQiCIAiCIIiDlJoaYOnSkSt4SOwQBEEQBEEQxEHKlCnAI4/Ef49ESOwQBEEQBEEQRBbi\nlzdmpAodgMQOQRAEQRAEQWQdI336mV+Q2CEIgiAIgiCIYcataBnp08/8gsQOQRAEQRAEQQwjXr00\nJHScIbFDEARBEARBDDsH83Qs8tKkDhI7BEEQBEEQxLBC609I6KQKEjsEQRAEQRDEsEKeDSJVkNgh\nCIIgCIIghh0SOkQqILFDEARBEASRQRzMU7kIwm9I7BAEQRAEQWQItHaFIPyFxA5BEARBEESGQGtX\niEwkm8U3iR2CIAiCIIgMgoQOMZzIwibbvY0kdgiCIAiCIAjiIEMlXlTCJtu9jSR2CIIgCIIgiIOG\nbPVQ+InOW6MTNtkqdAASOwRBEARBEMRBQrZPyfILLmp050YSJHYIgiAIgiCIg4JsnpKVCoEmC7+R\nKAJJ7BAEQRAEQRAHDdkqdFLhkRKF30j1epHYIQiCIAiCIIgMxs4j5UWccGGjimOkQWKHIAiCIAiC\nIDIcndDx4o2xE08jzbtDYocgCIIgCIIgspBk1iCp7hHDGymCh8QOQRAEQRAEQWQpfq9B4kJnpHh4\nSOwQBEEQBEEQBHGAbN61TobEDkEQBEEQBDHiGAleieFkJAgdwKXYsSzrl5Zl7bMs613h2BjLsp63\nLGv7wO/ygeOWZVk/tizrQ8uy3rYs6wS/E08QBEEQBEEQMiNlGlZNTfJ5yPYySBa3np1fA/isdGwl\ngBcYY4cDeGHgfwBYAODwgZ+rAdzvPZkEQRwsHOydMkEQBJE8I2EaVk0NsHgxsGSJ93ejn6IvW9/P\nrsQOY+xlAM3S4YUAHhr4+yEA5wvHH2ZxXgcw2rKsUDKJJQhiZDNSRuIIgiCI4SebhQ4QT//atcDj\nj3vPi1+iL5vfz36s2ZnAGKsb+LsewISBvycC2C1ct2fgGEEQhJKRMBJHEARBEH4xZYrZO9FOhPjx\nTs3m97OvGxQwxhgA5uYey7Kutixrk2VZmxobG/1MDkEQWUg2dqQEQRAEMVyky+uSre9nP8ROA5+e\nNvB738DxWgCThesmDRxLgDH2AGNsLmNsbkVFhQ/JIQiCIAiCIIiDgylTgFWrvIuRbJya5gY/xM5T\nAK4Y+PsKAH8Ujl8+sCvbSQDahOluBEEQBEEQxEHMSDeyUw0vv5oaYOVKb+Vp5xUaKfXjduvp3wHY\nCOBIy7L2WJZ1JYBVAM60LGs7gE8P/A8AfwGwA8CHAH4OYLlvqSYIgiAIgiCylmxe8J4JiOWXzHoa\n3b0jqX6s+DKbzGDu3Lls06ZNw50MgiAIgiAIIsVwQ53wRirKTwwz0+vHsqzNjLG5Ttf5ukEBQRAE\nQRAEQZiQCkM6nZ6I4fZ62JWfLm12aZa9OWL4w53XZCCxQxAEQRAEQWQ9yUy9cnuPU1zDKQ50aXNK\ns9OUto0bU5PeVENihyAIgiAIgsh6vK5dMRFJ8jkel9fwUomuHEzKR3WO7/bmdROE4YbEDkEQxAgg\nG19ABGEHtWnCC34s0nfjEVEdz4QPcOri9pqmk08e/jx5hcQOQRBEljPco4gE4TfUpjODg6n8RaEj\ntz0vnpJUbByQSsTwa2rU8WWj0AFI7BAEQWQ9mTCKSBB+Qm16+Mk0wZmudNgJG931JiSTfr/rws5z\nVVMDLF4MLFmSOXWfLCR2CIIgRgBkFBIjDWrTyZOMsZpJgjPdwisVXplk0m9aFyoRY5IWMfwpU4C1\na4HHH1dvVJCNkNghCIIgCIIYYfghEDJB6ACZJby8YLfLmQ7VOiA75PrW1b+J54qLHnlqWyZ5+txA\nYocgCIIgCGKEke0CQSbd+XAjREzQbeds4n3RraGRwxfrO9n1RPJ209ncnkjsEARBEARBjEBUhmk2\njsynGzdCxCtOYoSfq6mJr59ZvDhR/OjCFM8nU/+q7aazUegAJHYIgiAIgiAOCrJ5KpIdbvLjJBgA\n+2lnfno4TL53M2VKfP3M2rWD4kcUPjJuPUZ2ZPN20yIkdgiCIAiCIA4CUjEVabiFkxsBJ07NcrrH\nbtpZuo1/voaGY1lDrxG9L6YeI5Nyy3ahAwAWY2y403CAuXPnsk2bNg13MgiCIAgiaxkOY4w4OJDb\nFjeYh3v0302b59d6eU5U+U9nvnVp5/WwalXcG+M2PL+uSzeWZW1mjM11uo48OwRBEAQxQhip05SI\n4cfNxzbTjZv4xelhycSTzmeNb1Cg8yyp1teYIO+4pos72/sU8uwQBEEQxAgiU0dhieyH2lYiXjxK\nbsMQvWeAvVfKzvOju97EM5ep9U6eHYIgCII4CMlEo4QYGQxH2/Lbo+BHeG53J9N5R0y8JtxrI377\nZskS9T2qtTh2cZh65rK9TyGxQxAEcZCQzdMQ0gGVD0FkFn5PofIjPC9h2H3I08SrIk9Ps5uU5eZ7\nO/y8GJcq/myHxA5BEMRBwEiYd51KqHwIIpFMeBZMxUAy4bnNp9t1Sk5eIPnbOE7xTZkyuA21CP/4\npyouNx8RFdMxUvpFEjsEQRAHAZmykDhTyaTyyXbDgnAm0+s4k4xck/Usdt+csQvPaz6Tnb7m9jon\n8bJxI7BgwaDgsYvPVFTpjmUjJHYIghixZMKLOpPI9hdWqsmEb49kkpFJpIZsqGO/jNxU59EunXbr\nZEzuT3X6xPTYfcTUhJNPBp55Jv7b6aOi8gdJD4bv7JDYIQhiRJINBgUxMkmm7Y2UkVRCT7bUsR9C\nx68+WCdY7HYJk8tZ3r5ZvC6VmHqm7D5iKh6Tr+Hw7+s4tS/+QVK5PJxEUjZDYocgiBHJcBkU2f5S\nIJIn2bZHbXbkk+lCxxSnXcT88g6pdhfbuNFsJzPRkAeS86D4gby2RldG/BzHaZc1kzxMmQI8/jhQ\nWzu0POy8S9k+cEhihyCIEctwGI3Z/lIg/MHLl9n9xiRMarOEV0y3TU4W3e5iJ59sNkXMTuSI16Tj\nGZDX1gD69PP0iGnT7bJm6qHhrFyZuJ21XVqyxRNpB31UlCAIwiO6qQfZ/FLIRrK9zLlx4qdB4SbM\nbC8/YviQ247fbcmP8MQwdM8Fv8ZtfF7St3EjMHGimUhbtSr+/8SJzs+znE+7d9NIeebpo6LEiIVG\nIIlMQDd6NhJeINnESPBMpGLk1E2Y1GbTh9/tdLjbvR87m+nwKzyT3cVk74hTupzSZxcGFy5OHrEV\nK4Drrov/Bpyn39l5aGTPj5dnfrjbWjKQ2CGyipFg2BAjg5Hg2h8JuKmHTO43UtGOqG0Okgl1n6li\nwC/83sFNFZ4feTXd0ECXNnFDAac1LvzHSzyrVwP33DP4TR2ntTTr1+vDEtf/OO1QpxNvmdTW3ELT\n2IisY6S4XwmCSB+pmCpGZAeZVPeZOM3LJNx0vXft6mq46tFLWXBRsHgxEI0C9903uFuaXdi6c7pp\naUD8+Pr18bjWrgUWLUq8Ri6zjRsH0yKmc+3a+MYFK1fqy3+4nx8ZmsZGjFgy7WEjCCLzIU/cULJ1\nlNYtmVT3fqchVULHbtevVGKyO1m6hY6Xraq5J2blyvj/K1aovSkmHxJVXSduvADEBY4sdHgY8o5u\nK1cmbmSweXN8O+rNmxM3LtClJxshzw5BEARBHGTQBgapI93llQovjF9hil4EN/FlEsmscRE3GdB5\ndgB3z6DbzRTkZ128b+NGYNky4JZb4tPmVq0yq69MgTw7BEGMSA6W0WiCSCWmo+Qm3zIhBkmnF0S1\nzXAqFvWr/jdBtc2yCqc0D3fbk/PulB9ObW38GZs4MdGbIufHqb5Uu8mJgsck/fKW1Zz6emDHDqCy\ncjCtI5GkxY5lWUdalvWW8NNuWdYKy7K+b1lWrXD8bD8STBCEe5J5WaT7RePU6ZPhdXBCde4/um+O\niH/bTWshhuL3In2786rvx9gtmjcJ109OPhl45hlnT4E81UrE7Q5ppse9Yirg+HW1tYn5W7Ikvj7G\nbhMGnm6VmBXDcjMQIXvp+M/q1cBDDw3W0ZIlI7SvZYz59gMgB0A9gKkAvg/gejf3z5kzhxEE4S/V\n1Yydemr8dzrv9YJJfOlKy3DFl0lkSt7T3Q5HAn4971Tm6ce0vZvWDQ9vw4bMeo7kdqZLm0k5zJs3\n9Lrqasbmz/c3v9XV8XLUnRNRXVddbZaf+fMH86TK17x58WvkOEzCPuooxmbPHhr2hg3qcsxkAGxi\nBvrC72lsZwD4iDFW7XO4BEF4JJmRxnQvCDWJb7gXp6quGYlkkhctkxaYZwNe605VzlTmiQz3In35\nOjfhnXyy3oOSbngb5R4Sp40JnLAs9XG/lqWLXhbVVK+amqFeEZVHS7WFtOqaxx8f3B1NNaVw7dr4\nNWIccpmq2mptLbBzZ3yHOB4Wv3bFirinZyQ+836LnYsB/E74/2uWZb1tWdYvLcsq9zkugiAMSabz\nSnfHl0nfS3EyOjJJEPhNpgmMTElHJmG3i1MyAxzZRrqeP9X6mFSRyl3bMqHPmjIlPj2Sr2Xhx7yG\n9fjjelHgx5RC1ZRBGT+F1ZQpcWGyYMHg93PkOlPld9WquGjhU9zk6XYTJwKTJgG/+MXQ+y2L1uw4\nYllWEMB5ANYOHLofwKEAZgOoA/AjzX1XW5a1ybKsTY2NjX4lhyCIEUq6BYaTlymTBIHfjNR8pZp0\nLU432bZ2pDNc2yIP10CHH/FlSp/FPU1+pEVekyIfd1NuKlHB06lLq52wchs3b1cnnwz86ldxb4u4\nPkfX9vj/XLSsWgUsX54ozmtrgb171em/5x792p6sx2Sum8kPgIUA/qo5Nw3Au05h0JodgiBMSOca\nouG4d7jJprRnWlrTub4oVXF4WTeRjjT4ca2fDEeZJNO2Doa1b7p1Z6b51l3rZn2USXh2YeritltL\nJ67z4et4NmxgrLQ0/ltct8XX69ils7o6ft3s2YNhZmK7geGaHT/Fzu8BfEn4PyT8fR2A3zuFQWKH\nIIhMIZs2dvAT1UsvVfEke2+mlnOmpccOE+MsEzcqOVhJtkxMDf5sxq1YdxI2olBwitdUKJmGKSJf\nK/7PNxuw2yTBqU+Xn3kuctatG9wQIdPaRlrFDoBiAE0ARgnHHgHwDoC3ATwlih/dD4kdYrjItAeY\nyAwOds9OqoxOP4VkNpfzcOPWOEsnqY7Pj/BHYtvz85lPZ/m4ETPiMdP8mu5kZyckVELEtKw3bGBs\n1KhErw3/322dufEoiaIsE9t72j07fvyQ2CGGAxpFJAg9mezZ8TPMgxU3I8vJ4lf9+OHdSLbPT8V7\nIx3l48Wz4/WeZAY03F5vN1WMn9MJnGRFguoa2Uty3HGJnhEvgzXr1iX+z59dWUg5CS6Vh8apDDMV\nU7Hj925sBJF1jPRF5iMVL4smU7XQMhsWcHpNY6qeC793CHRatOuWbKjTZOEfDR2uDRW8PsPJfmSS\n71qVbBv0873h14YHduGYxiEvUjfZfl++xmQnS7uwnD7aKadX92FOXtfAYBrl63WbG6jisUNMu1we\nBQWDGwCI5WXafjZujG9UIG9tLe4Ux9Og+jAov662Nr5r3ObNQ/NmsvV31vaLJoooXT/k2SGIzCJT\nR3S8jBr6PRKb6etGRPxKYybnkTH/RpezoU79wssovh9xpXLk3256XjIf10y15yVV4ZuM+rsJT3XO\nz77Yj4+fquraqRzctEnVehkxXKfnat069dQ2p7zozot/6z4Myo+tW5c4Jc4kHXZeoeEENI2NIIhk\nSNbg87tD9MMo82vqlNdpEMNJstOVslUAZGr7zUTSXcfpElaq48MlgIejjFMxyJNs2CbGdbJhinWt\nSzc/Lhr+TojrZTZsUC/e52GrwuO7pM2cqd4ZTU67nD4/yo5PiePiaP58ezHFxZZOSA0XJHYIgkia\nZAxFv1+ww2loq+LPpA7fiXR6drKtXNIVT7YIxVQOImRD/u3w6/lJxXNkF7ZTvHb3yMdU/eBwiFb5\nvJ03yC7dp5466OkQBYAT8nbOctjz5w9u26wSXaJQkuPjeVmzJtE7xbeNltf+uHn+xHyLYWzYoBZs\n8t+Z9gyT2CEOGjLt4Us3mWpojLSR8eGOP1nSkX4+SpjORe9eGUlejOHEtByzRfClSuy5yb/bshKN\nbjcGv3xcNGhNF6unsl5VaVOd5/mWF/DL19r9vW6dtymOOg+OfLy6eqj4kdMi5mnNmrgA+8EPBsUI\nF0eil4d/W0clRlQCjF+rilcOx+3W2MMBiR1ixKMaoTjYGGmGhg67dGdrnkYifOTRbqqD6ShyOqC2\n4w+ZOuDiFi/9pFsR4yZcN5iMvNs9k6rRftP0pdqzYyK+nESKzquhCsttPZn0eVxsmIgHHs6aNfHp\nbkcdNejRke9XiVQujOR8cg+Uk/Djf+vWO2USJHaIEY3TiM/BhGn+M32ERofTyymbRVw6SKfnwul7\nDKr68qMOqf7dkUnllQ7x6+Y94UW0uBEGfuJnuCoPhdvnOJm4/bxGN61M59VQxeGmvZisd/Fqq4gC\nxeR+cQ2RvM5HnhKnq0c5zZn8niWxQ4x4MvHBy1QyubNK9kWXiXnKFNItJNzUpZ+GUqa0bb+NT7/J\nNMOFG4qiUeV3+mRD14/w3HpAUvGRTtF49SNceQqX05Q42WNg+nFaXT786uP54n++8F+sJ6c4eDrE\nKW1i/Cb58fK/mHY/UHl7xGN2O9TpjmdCf6GCxA6RFWTqAzQSycSyziTDa6SSiUIiFQZtKq51mwa/\nduhLRbknO8KcCqqrB9cgmIy8JxNPKoSoaT2lQmQx5s8WzWL4/LedkFK1c9W1Jl4DOW5VXF6eBe61\nsCsfXd74TmuqzQFM0uF0nWojAH5c3A7aLXblqROsqmOqdPH87N27l5166qmsrq7OWyJTAIkdIuMh\nQ5dgbHgMXsKcVIqDdIfpps/xkj7VyKlX/BBNujAzCdOR90zF77Zkd63OQPcLN14QkzSoBJRpPauu\nN41XvF81rVbeOlp1Xk6/SXwq4SeLkNmz9dtNJyN0ZI+c27B0IlQMa9myZSwQCLBly5Z5S2gKILFD\nZAXZ+HIjMg8Szu4YieXk5yh7Mu3JblTcbXqypV2bjhynM/50xOV3W7LzDurC8XOwyOtuZHbHVaLD\nS9g6j5KpAFEJGj7l7aijvJerSsjp0lhd7bxbpZOXS3dMXIPDp+G5bRu65zg/v4ABGPJTUFDgLoIU\nQGKHSBuZ/iLOBoa7DIc7fj8YCXlIB05GQjrK0e3IsZtw/cLUqNUZpqZxuF2vkGntXJUH2WBOZZq9\nCEKvbU82ak1FrVuPhByXXTipmA6abPuVj8trRLzWl1zWpgMKdtetW6feDlr0lOjSqlr7IrcRVZp1\ndWpXnvKHS8Vj4tQ4uQ51Zadj7969bN68walq1dWMzZ+/ly1ceAkrKipiAFhRURG79NJLM2I6G4kd\nIi1ky8hjJmBnXKZjLn2q4s/2uk82/dmYf5O2kMq4VV8cT2cadOnSHbeb9+9lNNwkXrdp8SN8L9fL\n98giIF1tyuSYKn2qc6ZiyOs3WXRrWXRxpWJgwK9wdELOTuB5KS+VgHbydKnK26mtiNfJnh+7dq66\nV/UNHH7Mbjc0FSrRJQqq444bel78/pC4HshO+CxatIwBAXbZZcsS4rj22muZZQVYQUFBRk1lI7FD\npI1sNPbSjdNL1O1IYSrjT7XxlUl4Tb/TCzeVpDqudAheJ2E9HELHdOcp+R55fr/qumTSlUx4btun\nXwve7QxQL/d7id+uPlX5dCMsvBruup2uxO+0qMouFUJaZbgn+0zq8ug1faZrdvhvnQfJtL9WnV+3\nLi52VBsL6MIW+wbVxg1yOvkxXXsUw1OVwbx5Q6fi8Xv4h1b5b91GCLqpaoFAAauuZuyssxaxUGg5\ne+aZt9jy5cvZokWL1IWYZkjsEESGYdL5+7m7jkn8yRol8j1ejIBk8dswM7lenqKRjviTEaSpxMmw\nTDde49SNmtqNvDrFlayh6sd0Q7cGr5N4SzVOZe4mHLuw3Rj7ssHp1ROuEzN8KpIuHX63H7dl7KYt\nqp4b0zTYheuUNtXCfF28duUrn+PeHafpbqo25SRS+O/ZsxkrLo7/FtuBvBW4bsdC/m0dubzFLbRF\n4fPUU4m7qlVXM3b00XvZ6NGXsGAwPlXNsorY+edfyt58c3Cq2nD1CXaQ2CEIAzLx4U2nSPB7vncy\n87KTjTMVYTudSzZ+U3GrM9KcSGc9OMWdjnbtV35V5Z2M2PRLgKnS5xU7gzcZoeVFANgdS0U/5fa4\nn23BZOqVU5p0YZscEz9S6SZMu/JRfcPIpC15zasuHP7baQMANxsdcKGhS291dXybatXGA7JI0W3S\nwK/TrQHiv8Ufp2dXFn/iVDZxVzUe3nHHMVZefi0DAiwvr4ABAbZo0TK2Y1cv+6j1I/b0R0+zH236\nEXvgPw/oC3cYILFDHCATDfpMYDgNweHErxdMusM2idPPME3bRjKGrGraot1L14vhnMp6MBFp/Heq\ny9Ov+1XheBWb/F7d+iS/0peKMLwILbd9qun1qXrG3aTTzXG7c2526XPzzJhcK35w0ykdJsKM/+/U\nvsVzujUufnjzePilpfbbdKsEhC7ddhsGVFfHRURODmPTpiWKPnFHNH4d33ba6YOt4m9VOpzars47\nGwyqp6rl58enqn1mwUJ29peWsllfuIfN/86Z7IQfzmWzfn4im/XrWWzWr2ex2Q8dz1a8uEIf8TBA\nYodgjKXPoM9W0iF00uV58POl6AfZ2uZ0LxuTe7zGJf5v9xIURwiHG7cCIJXtM5Pbs2gYZTJu0mf3\nbLhtC16EhGnYOvi0H3H6mJswTa7XGclup4+ZxmtaXrIHwQ5TYeMmbu5dUBnwYnh2a5js0ltdrV6s\nr4pP3kBAF57quFgO69YlXsvzKa6TmT8/vq6Gp80pH6opc3I+7AYc3nhjcKoav27v3sFd1QIFATZ6\n1hg2+fzPsGuevI5d8McL2OyHZh8QNnMfns8WPXY5m/3NH7BfvL6e/f29rezEk6IZ14+R2CEOkGmN\n0w1+pn24ysGPF5TqPnmObiaNnKdLVJkY2m6NOJUx4nZRazI4tRev31BIBbz83UxXUxkhboSlKrx0\nT5dzi99pSlZsqMLzMm3NtO2bPE9unjm7eEzWgYiLx487zt4zoWpfyXijvOYznf0MY4OGuohu1y83\nOK2p4ce5EJXXkenKQPakqMJ36nvkc8msmZPTLE8ftLt/wwb9h0fFdNtNZeNT1S67bBn7+FmN7A//\nepnd+Y8H2OHfOo0dfscRB0TNrF/PYqf9/jR2xVPXsNteXM1OuvxZ9vMnqtm8+X0HBtZ27epnO//V\nwJbOeYPteOqf9hlPMyR2iKzHz849Xca3G3SjZF7uNTH6k4XHYTpK7acI0d1vMjLnx4J+k7yko23J\nL06TtKUD022G5VFJsQ6T8VY5GaI6gyDVeDWUnMLUrY1Lpp/T3ePkBTB5NmQjVDV1UzeS7RY3fRMf\ncTeZ0iXi5ds6bo65CdNPePh8apYoeHgd2RnhXuNUDXiIdeQ0mME9KWvWJIaR7LPgJIZUfztdy9Mr\nijhZAJqWs3zfifP6WcnEElY2t4yNv3A8m3rdVHbk6iMThM1xPzmeffzOT7Jbn72VnbfiYlYx7dx4\nej7Rz3a91ch2PL2JtTzxB7b9lrvZtq98g21dcD7715EnsPePnMHeP3IG27F4iX2i0gyJHWJE4Hen\nOtxpkMNNZnqLiYHj5ygg75ydRkHdhOeH4EmVqHJrhKRzeqAf33cRw0s2PXbGiG40VfwInp/fqVH9\nL4uDZA1403SZTmXSxa9r33aGlp95EssrGZzKXmwPXtPqJU1OedO1XVPvkVyPJmtgvOBG4OmQ60UU\nDmIYfr+TuWEvTluTy8luh0BRoMmDJsm2eV2dyRsJuFmzxMPknij5Gzj8Gqe0v/xalJ244FV2wtL5\n7Hsvfo9dvP4KNmvNSQdEzdE4KtdPAAAgAElEQVQPHs0Ou/0wNvXaqewzN32GPfLSs+zjn2pjG59r\nZlec9C/25g/Xs+23rmbbrr6O7Vh0AXv/+LkHBM37R85g7x81i334mbPYP8+7it0z+/vsjf9ZzV66\new179Td/cl+oKYTEDpEW0vFSShWmL4hUGrF+GJq6cPxOu8n3RNwuTh5O7AxKL2Xnd36cytnrFsGq\nF2+y+XTTJnh5+zGSb5p+VTxe27GpUeMUh10Yp54aNzadPJemuKnnVBjjclh2bSidAwded+1yU452\nW1WrBJfbfIsDUKZ9hoy4RbF4farrgKdZTruYTnFgx27rZz71y4+ZB27qTNWXOYUl/3b62GdXtIs9\n8/a/2W+3/Jbd/NrNbOETi9msXxx/QNgc8+Cx7JKnL2E3/PV2tmbjWnbl1y9is0uL2AVjx7Kvj6tg\na08+le248PPs/RNOTBA07x55FNvyyTPZR1++km399k3srTtXsY0/uZs9+YO72PXn3cp+fNVX2f9e\ncCG7a8nnDvx8e+GKYX93i5DYIVKK6QiXSTjpuEcVRrrWuPiJqaHqZNB5idfkRZ8t5Sm+sHQGpR8G\npteySsbgdkpTMrseuTX4GBs65c7p/mTEm5trvNSN0zPn1+YKfLSXL3x2k0Y38aiuceMlTtWzrGuf\nfqbBpL6S7ROcRAZj+g9hmoRdXR3vv2bOdPZW6s7r2pppH2Ey0GD3vMhlI6+9Eb0sqimHquucUAkU\nnRCR71PlyURk2vV9GzYM1sPqNc3stdrX2IPvPMj++6X/ZuesO4cd8+tjDgibU353Cjvkhuls+oWV\n7KS549jCyWPY8rFj2R2hEHts2iHsjRnzEwTNe0fOYM8fdgz798VXsA1f+xZ7/fZb2J9uvp3994Jb\n2Jr/+ia7/+rLEsTMXUs+x+5deiF74L+Ws/V33sYe/d817G+P/pH9+Tevs0+fsou98o8e5wJOIyR2\niJThxeBxCieV99iFlY57/Arf1FBNlZBzehm7NaZSWZZu8m73Mk4mfr7bk9c6SlX79EvEmXpU5HJw\nyrPTyKzbPOqeG7/XtpimTbzOLh2qBeLi/akaedcZgG7K0K90yf2Fl3q0M0Td9n9e8NJeTa7nz5SJ\nZ0cXNi8/LnR0YkIn2Jw+sMrD1AkLebMVcRczVX9hN43aTuTp0iW3b6ctocVyNh2MktPP7921q5/t\n7djL7vvrC2zSkv9js773NTbvwTMS1tec88in2PX3XsyWXXgc+94pX2MPzP4vtunMi9nGIxMFzTtH\nHMlePm42e+Pii9hLy77O/v7dlezpW25ij33nW+ynV32F3bl4YYKY+dFF57L7rvkSe+zWm9jDt65m\nz/7y9+z9V19itdu2sK7WFtbf359QNpm0C6gMiR0iZfhpqPplbKTKcPbLQDKNyy8D2K3wcIMfAivZ\nuN2KQrd4FeLy/3bPit/Gk9/t063hZHedaVjV1c67EDnlUbcmRBdnqpHTIechnWLYBN1UJtMyTEU7\ndJMGkz7bbRq9XJ9KqqsTBYQbI1RXXtXV+p3p5AX1/HqntS38OlWd8Glp8i5lTmtl5F1IxXMy4lbX\nbspBFb5c5qp+rbpa3f/09vWyV97/iM3/4p/ZzS/cxT7/+JXslN+dwmb9ehab88DR7Jw7ZrEbbz6d\nPXLj+ezJiz7P3r7wHLb15JMTBc2Mmez1j5/OHj7xYvaDOdeyu84+m11/6jx202dPY7ef/5kh3pmf\nfvli9uA3V7Drzl3Ffnfnr9h/nn+GvfH8v1lL3V7WG4sdKB/+3SW758bpGRxOSOwQKSHVBr8uTqfz\nqUiTKtx0vMT8uMbvsEyud1tOXuI2XZSve/nrXmLJps/UqEq2/Ti1db8ElNd0mwgbxtRGE783Gc+O\n2Ebs4ksHsrAR8+ZkoHtJpx/iVDYO/WpPyeCmf3fTZ/tdvnZpSAW8HZnGpzPEVWHyv0XsBhGcnntV\ne6+uHvQkqbzguj5JtVbGTtToprbp0svzqdrin8clpkcUafPmMTbvY2H22xffYY9ve5zd8Nfb2CV/\nvoR97Jdz2Nl3Hs2uXHkUu/naY9j/nfsx9uLZn2D/OWluwnSzfx19NHvmhE+yv31+MVs1/wT23Y+f\nyL796Y+z7597xhAxc8fiz7GbPreQ/fir17FLP34xu+rc89iGP7/GGnZ+xMJdXcbvunXr9OWmKrN0\n239OkNghUka6hY6J0eX3yzUV4fqBmxeb30axm7pQXWcap+mXr03TKR9XzQm3Mz7t4nFKt5zmZD0O\npmLCDU5l4KbNmSyoVxkmfj5zqnqRP2Tox3QMpzzK03t0U3BkQeTV4+n0vJuGayJ0vAoyp/C8nhev\nSff7yeR4KtIktxuna8WpSF7fH7r+ShYh8m87kcR/O5WlLDR4nvjfummfuvhV/QAPk+/sJocp9yXv\nfdjG3qh7g9369ENs/k03sMtXL2BXfnsW+/a1R7GfLJnJ1p4xi71+4rEHBM1/Zs5krx93LPv76Z9k\nz118IXvii5ezO85eyv5n4Vns7i+clyBmfrj4HHb7589hXzvjFHbRiceyBccexb72hcXsP6+9zLa+\nvZ/t2tmXkH9dP+JUD/PnD/12kl1/kWk2EYkdIusx6TRTEadX4zddmKbFD8NHF6apmBJfKiZx6gzh\nZKeUieHLc4/ll7/4ErUL381HXVWGmN1L2M6oSKbeUnVevM6NQe02fK+IdezXdt1O9aRqw3YGmepv\nt2ly879TWLp+0O0zbZLOZNcYun02TI04OwGlq2fVdU7fAnOL2Jbd3MMFg+nghWn6xH5V1Tac+nOn\nehU3khF3juN5MvkwrCrNqgEJno/Zswc9T/39/ayhq4H946O/sTt+/j9s1R1fYDd98SR278Uz2WOf\nmclePnFgd7MZM9ibx8xi/5hzPHv69NPYg6cvYr9degn7xRWXsDsvvGDoRgCXL2HfX3w+u/xjc9h3\nLr+Yvfi7p9m5p25i727aw159OcpCoWuZZQWYZRUwywqwZcuWJbQnLvJ07xe5rFX9szwIowsrUyGx\nQ2Q8TsZkKkWHU9wmaXETplv8CMtNHr2Ea/qitetEVahGlv2sd7ljl70RTsaJeJ/J9Cgnw1i+1+96\nS0YkmaZDN6prGpbXj+u6icPP6YROYTgZV6nGjzq36wfFH6f7TNJlUpZy/G7iVaVBtb2x/Bxyw1e3\njkW1k5rOW+B2WpBdPk3EptO9JnHqBJ2dwazq7+1EodOzKR4Xv00jlrvTh2F17yBR/PHfr/6jh+14\n+xX21AN3sTVf/xK799xPsSc+ewx7ad4M9s6RM9i/jz6avXb8cez5+XPZ2k9+gv3mgrPZg5dcyO5f\n+nn2o4vOSdwI4AsL2YPfuIqt/X/fZY/c/hP23K/XsgtOf4W99dp2NqqkhAEY8pOfX3Ag3WedtYgt\nX76cPfPMW2z58uVs0aJFCf0l//jr4YebtQNdO1c9Y7r6yTRI7BAZjckDlKqHy8vD69SRuDGm3ITl\ntgx084n9wvRF63S/iXD0Y9TY5BpVOZuE47Rzj2l4frZH0+uTuV/Ot7h1rZe2YSIu/SATXtbJpsGN\nke+m/N3GbydavPbrdsa5GK+TQDAJ061IkdunPJ1JfBZU7wE36134/+I6Fl2fpQpPVW6qe3XiTh4M\nkstKNTjEy08nOJz6SrtykvPEPRm6vMvH5HfWhg2MffITUbZzw072wWMvsO+deif7y5VfZH+/8HT2\n2snHsbeOGphqduIJ7OlT5rPfnflx9otFZ7KfLDmH/fDz5wzxztx/zVL2q/++nj39k7vYq489wt75\n+/Os5r23WVvjPrZrZy9jjLGnntrLRo06lb35Zt2BdO3du5edeeYlrKCgiAFgRUVF7NJLL2V1dXXK\nfOjKbM0a/acTVEJG9C7btcvhWOfohbSLHQC7ALwD4C0eOYAxAJ4HsH3gd7ldGCR2Di5S8TI2vccv\noaNbm2I6FUn8rdrpxY1Hya/FxXK4uuNeDehkrvNDNPjZnkzq2CRsN2lK1kPgJX06w5D/z7+2rmsb\nJnEcLPhZb7pjyYTp5l7V/17D0g0WqcJTeRJVYdiVl0mZ2fV1PA3ygnb5uM545OdEI1wWFnbCxCSv\ndtgZ0fKzLoerKj/dJgFyHcnn7ESnXP7r1jlPWWOMC5oYe/3Jatbx8svsw3sfYbtvvYVtXHQR2/TJ\nj7E3jj2GvXLCbPbcySey9ad9jD181qnsp4vOYHcvWaCYavZ59vNvfJV967zb2aM/eID97dGn2Eeb\n32D7d1ezaLhHW/ZifsaPX5YwDY1fw6epFRQUsEAg8bxcPrpyE8tHPM/X4oiC2UTk98b62N//2s2O\nmd7Knv5tA3vrbzXs1Se2s/X3vst++/82s7899L6+4IeB4RI746RjdwJYOfD3SgB32IVBYie1ZKNB\noXsgTe7xI79OYbk9Lp6TO3rd4mW7MOX0uZ1aZnfezcvTqZ7SUReqeJxeEiZpc3qxeEmHXXpM0uLH\nblm6e502iJDvcyO+TMvFK14MvHTH72VtiV3bMzGOTOJIBp2IcIpDZ0TrPC1iXPL0I9XULDdpUaVH\nd42YV3kdiZxG+R7G4se5h4ILJW6Y8pF3k7VApvlye40sxOyeefGcqs50081UbVrVlsX6nT8/vpaG\n13V/by+L7N7DOl59lTU9+ij7YOX/sq1Lr2Z/PfZM9tqc49nf5s9hf/rESeyxMz7BHjz7dHbvBZ9h\ndy0+O1HQXHQO+8k1l7MbF97EHrntx+zLCx5jT/3qJbZ3+1bW1dbK+vv7HctO7h95evPzC2ynqp12\nWnya2ltvxaepnXXWoiHlqqt7VZ2oruFlNX9+P9u+NcreebODVb+7n733ai17/tEd7E8/28L+/NO3\n2MM3/5M9eP3L7KfXvCD9/I397BtPs3u+8Ri7+4ZfsGd+u1ZfEMNApoidbQBCA3+HAGyzC4PETurw\nUwCkGy8j2X7mM5VlZmp0JzNlysTgt0ub2IF7SWOybc+NMJHTo5trL6fNab53MtMDncSSWyNFTIvd\ndq0m4lSuY93orOoeL3mQDT6vIskkfJPzfoovuT7s1ii4yY/dc6W7z+Q6v9EJFdFYVV0rixiVka0S\nDzxsMY5k2pJKxDiVsVjnJv0uz1txcfxHnAY3e3bimhSn78Po4rMbcDLt98X8qDw78+bFvblOfZuY\nnurqQUGnahO6tPT39bGdb+5lnRs3sg//7/fsg+/cwd6/4lr29PGfYy+dNI/95WPz2BOnn8IeOes0\n9rNzP83u/vxQ78ydS89ld6+4lN13y7fY2p/+H7v0rGfYmy+8xVob6llfb29Cvk2eN1V/zKeq/elP\ndQfCeOONveySSxKnqp1/fnyqmq7s5GfD5H36hyf62KQJPez5P7ayDzc3sLdeqGGv/WE7W//jd9nN\nl21mP79+A7vnK38fKmSu/Su792t/ZI/876Ps7m//jP3xd3ey3/zxNnbf899lt//tO+zrz9/CFv/5\nLnb6Hx5ksx/9Azv0l8+xuQ8/YV9pacZU7Fjxa5PHsqydAFoGlOsaxtgDlmW1MsZGD5y3ALTw/1XM\nnTuXbdq0yZf0HEzU1ABTpvh3nd/3+oFT/MOdvlRSUwMsXQqsWgWcfLLZtY88Ei8P3b1u2gy/f+JE\n53t04XqtPzd5l+9bvBiIRoE//nEwbLl8AGDjRmDlysRjcjiWBTz++GCZum1r/B5V/E6I6QMG7wfi\naVu7dmjY4nW6eDZujJdpTQ1w3nlAQUE8j7W1+rK2y7uYR/Ea8X8xTq9t2mvc8v+6Z8UkHt25xYuB\n1avj/y9YADzzTPy5cRuPGCZHzJ9c13ZpctPenMrP5D5Ve12xIl4ujzwSb1/ieVV8NTVD2+H69YNh\nqMrRJK1O5SGW95Ilg8+8ad5V/4vHeZi1tUB9PTBnzmDaFy6M91Ucnn9Vm121KrHP4sdXrAC+9KXB\ndqfqz5z6YR4+r7MVK+L93z33DKZnwQKgujoev5gHVd/Kw+H3AvHzYjthjKGqYB+iu6pR/+9dKGrf\nhfadO9C2dw/aWprRbQHdwTz05OeiO5iHSF5uQrr7rH50F/aipzSIkgljUFE5GVMmH4mZ048HY4dh\n+uGFCdfzfkiVd1275OU7Z85gv1tbC5x1FvDQQ8BXv7oc9fVrUFl5DV5//b4DYVx22TL89rcPID8/\niEgkimuvvQb33XffgXA5ctnxc1+6ohc//lEEZYURdLVG0NkSQf2eCKze+P/tTRGEO6OwrMT85ASj\nKBvfhbyyToyq6EAkrx09ZT2oZzHU9ADdRfloiJRhf3gsWiOj0BkuRiQShBXpgxXugxXuxehoO0JW\nCyqtZkywWhCymhDJL8ON37tX34jSjGVZmxljcx2v81HsTGSM1VqWNR7x9TlfB/CUKG4sy2phjJVL\n910N4GoAmDJlypzq6mpf0pNNJCtC3BpPqY7D6wszXenzM16vRq8f53TXb9w4+KLbuDF+TGfMm2An\nBuwwLR85fPk+ft6L4AHMys2p7FXhmJ5XXe/mWlkUyMaP/HLkZSinSWfoA3EjjBszXnAywkTDl+fF\njTC2KzPZCJbTJBsQdn2TygiyC09GbMuise4mHjE+QC9g5fNuhaDqvBy+icHvVM5i+Dy9ds+yOMAg\nGtiqtuPlXWPXvmShZvf8yOc4uvrg+Vq7Nv7/kiVAJDIocD77WeDZZwfPcVEkP088Xbq8r18fN8jd\nCGpVXngagKHp2LgR+MpXgGBw6GCS+PeSJUBHB1BaCjz2GENVYSNi1dXY8mI1JuBD7N26E11NdWhv\naUE0GBc03fm5COfloT8waL0zMMTy+tBeGENLaS86CoGSsRWYNHUaxo46BqccOxuFXUfgqi8WJgzM\nqd5duveZ3GfK5bJ+PbB0aR2mTr0YlvUY/vKXSgDAtGmFYCw8pFwLCgqwbVsPZs++AIFACHfffTVW\nrnwAxx5bh2efXYf+fobtW6JY+c0IVl4fQf3uCMaXDwia1ghaGyOIdkUQi/RJIfejsDyMsoouFJZ3\noKCsHd057WjMCaO7uBcN/QE0xIrQEC1HU3gM2iJl6AwXIRbJjYuYSB/ywhFM6B0UMfz3xEAzQoEW\nVPS3YILVjAIrmhAzg4VNzadhwvV/TKutZUfaxY4U+fcBdAK4CsAnGWN1lmWFALzEGDtSd9/B6Nnx\nw1B3epn5gVtPgJdRzHSkz8/43ObL7h4vglI1qikaCl/+MnDDDfpRPje4LV+3I8/ciNG9iLwKrlTD\nX+iMJXpY0i2CVaJCNj51BqnsPTCN2y4tOsPeqR6d0in/rq2NjzLfeSdw9dX6NOnCdopbFYZbUaH6\nX/TI6cJSPT9ynZm2N7u8yf2I6FFwSqddHr20Zw4fpLnuuqEeVVUbchJ+TukRhbpKiNk9X3IfAOjb\ni+jZrK0Fli0Dnnpq0EPw3HPxvnrx4nhaVq9OFHgmwtak3+XXyiLGrsxUeVmxIrF9MMbQ19SEaHU1\nenbsxO5/f4DOul3obm5AV3cbugMDgiaYi97cnIT4AjkB9BUE0Focw97iDrQVx9BZ2Iu+0ny0NB2O\ns+fPxLxpMzEqMgOTiw7BIdNyhzybtbXxNEWjwH33Da1P3qZXrgQWLRpabmJZy22/pgY44YTlaG5e\ng4qKa/Dmm/dh82bg9tvrMGXK9XjuuScRDncjECjCooWL8YPbbkVhbine2hTB+scjuODcKFr2hZEf\niAua7vYoZPPbyulD2YQu5Jd1Yve+Dhx9fBswuh31/VHs6OhF76gc1MVKsS88Dk2RcrSHS9EVKURf\nJAdWuA8I96E00oFKFhcwlRj4bTUjlNOCqkALJqAF5awVASRGznLyYZWFgNIq7I+GEC0IoerIicDA\nsdrOEC5fXon/94Og50GxVJBWsWNZVjGAAGOsY+Dv5wHcBuAMAE2MsVWWZa0EMIYxdoMunINR7ADu\nR4Z1YWSKd8PLaFuqSUUavIwiJmsEqK7XGSwrV8Y7frFTTyYvurgBvfEIuBt5thv19dqu/BYf/Dyg\nNjxNnkM3RrgOO4+YyXMpxi17ZFTp8lqOTt4V1T1yGkRDVPz9yCPA5s3AbbcljjDrwnQTty79bq9T\n5V8cNdelR+f94UamOLXSBF3eZTHKp+UsWqR+vk3K0K/pgLIxzcPm/ZrYx+im2joNMjkJflWaVfUv\n3qvq+1RtWRRzqkEBt9OPTUVwTU182lx+ftx7ZjcYJj87jDH0tbQgsmsXdr2+FaxpO9pqd6NtfyM6\nujoHBE0uwnm5EOdWBSwLwbwi7O8uglWVi639EViHNmJPXgM6CnsRy2OwOsdj1oQZOHrcDMw/ZCZm\njJmBiSUTsXu3daCMeFrF50gUbZs3x8tNFp5ivoPBoSKel/ldd9Xha1+7GLHYY3jyyUpMmQIUFhYi\nHA7DsgIoLRyN0UXjMKp4HEYXh3DlFXdgx7Z/oLmhCaNLKjCqaCwKg8VSKTIEi2Po7OvC1CPbMaqi\nA305LXinphNjZ0bQktePulge6iPlaIxUoDkyGh3hEnRHCtEXtmBF+hAIxzAu0orQgHjhHplKqwUT\nc+K/J7BmFKFnSB3G8sqRV16FnrwQXngzhE+cXYVRk6uA0iqgLIQ97VWYdPgYwLJQU5M4rVk10JRJ\npFvsTAewfuDfXAC/ZYz9j2VZYwE8DmAKgGoASxhjzbpwDmax44dQSXdDzNTRdhmTEV0/0m9iAMkv\nTMB93Lr5xqbGrRtjQHWf+CK+7rpEr4bTvV7SpwvTxIh2ElCmYXPEEWfVSK5JHkzS7mSoAN6mntmV\nudM5r32U23rWlYVskIoj/XxUXCeS7erTZDqZ3XPtZAjo8g84rxHQiSdu2Mv3yeGrztsJ7ZqauKes\npGSwbXtZ1yTGq+rz7AQkN0jF9StieGL/I04ZtHsXiR4VVd51aTJBrv+NGwdFjJhu1bV2z4Gubdq1\nM94nyOvEVNdyQam7tq+1FR+9sg2/uuN9nD77I+x4by8qxjShK9KNnhwL3cFc9AcCCeEW5uahrHQU\nysZPQM6EcnRUBLE3vw3vhfdiS/QDdPQL5l/LVMydPAPvvTQDN315Jg4tnYGP3hmLVasSpzBy1q8H\nrrgCmD497g0DEj1gK1YAlZXOIlH33o1F+7D9/Qh+ueYOvPLiRnzylM/hc2ctQFdrBC37OlBXsx95\nViFyAokeKSvA0Ju7B4HCJlRMDqClawvaeuoxfc40fNQZRaCCoaGvEHXhcdgfGYeW8Gh0RErQE85H\nfwSwwn0oCPegsq8ZlWg+4ImptFoQCjSjKtCCSqsFY1kLcpE4pY1ZOejJrUTRhCp054bwl1eqcMYF\nVfiwoQonfioElIawu60Kk6cPrllS9Wf8eROfv/vus59tkSkM6zQ2rxysYgfITMVsh86IzLR8mBgi\nfglN3QJD+SUtLi53Ozq7cWPiwmc3aeYvOJUwcTI+7dZdcExH7uUwvY5M2xlt4nndmg67eMT8cLhR\nPX06cP/9g8aml/ZjWt524o2PeotpdRp9Np2W5DbNbq/RrQVxOudVtKjSJT5LboSwLLxMvF+6NmVi\n/Ov+1q0v4WUYDg+OzvLzKnEjp0vVb4lCwc26Jp2g2LxZP42IT+PiC8BVXixVv273NxcBKu+l235L\nJz65J/222+JrcZ591t0giK4cgcQ0qp5hXmei10K8T5WGmhqgsqQZ2/7+Nrp2bkXn3p2IdtSjva0V\nXdEwunICiElTzXJhoS9ciMqqchSPDeGZDYdg6bcOQ3BaL2qsfdjWsR1bm7diW/M2dPd2x++xctHb\ncBhymmZg8akzsGDOTBR1HYkrvlCckE6xLIFB0SL2s5deGl/bJL9TV6wA7rgjPgDFN0PgVFczXPWl\nGG78ZnyRf2FeBHurI8hl8bUxXQM/ke7eIfUQ7m1GNFCNY04cj+r6f2F/+7vIK+4EygPIn1SJ9oIx\naLHKUB8Zj/3hsWiLjEJnuAg9kXywMIMV7kV5pB0hJoqYZkxAC0KBuJgJWc0oY51D4u7qLUZwbBXy\nxoTQmTMRJZUhoKwKjZEQ+oqrUHl4FTa+U4EFZ+ccsAcAZ+EvtwN5sCj+vDA8/lAv0B3FHbdEcfVl\nUUyfEEVfRww5pXkoPW2yOuBhgMQOkXKcRjz9CDPZ9LmZUpRs3HajhoB6oTnHTbzcle9FLJjuMKS6\nVzZ+xHNeRkhNRtVVcZh04LIRYurZsTMyuKEnisyamvjLRRaefnkz7K5VeQec1u041b/OKNfhJDh1\n9/BRZZWH0k6QmYzQ6q5X/b9+vX6ap13/BgxtJ3YDHvK6Lqe45HO6NVjcGNTFy9umWO9i+zFdA6Ka\nPuilLfPnRSUyZfHGy9jOi6V7zmTBJW4MYFf+TmLVTpRyj05HR/z4M8/YP3tO7xtVnLpw5HcNP8cY\nQ2fdXjS98zaq/7UN/3yhBodMbERXdzu6+6PoyQkkTDWzGENRIAeFwWKMqRiHvFET8cSLh+Gr3z8K\nM+ZORl/QwitbP0Bz3hZsrtmK59/eipzxH6IPcaFQmFuIGWNmYMaYGRiPmTi0ZAamFB+KSy4KKtfJ\n2NWnPF1TtVlDVSjujRlVFEH1hxGEO6LIQ6KI6WyNgPUn2rn9jKE3UIeJh+WgrKIHCLYjWNKAnbX/\nQhPrRG95KSIl49DIQqiPTDiw0L8rXIRIJAiE+5EXiWJ8pAkhDHpiJgz8rgrEf49HC/IxdJF/c6QC\n+RUhBEZVob47hN/+qQoLLqrC5KNC+Pp3JqK2I4Qf/rhsiGcFGNqXiPaA7n3Hy5X19uPNl2O4/0dR\n3HpDFGMKouhrj6LuoyjGFUbR1xFFf0cMve1RWAptYAUDyD90NMZdcbS+4aYZEjvEsJCMYPDLyyKm\nwzQ9fnp4ZIODh6va0lc0Jux2qHKKS/zf1FD2Orrv5MEyHSG1m8JjYuiajsK6ERlifpwEHDeiotHE\nOeCyISqPwrvxWJgglr8shNwKLp1RbmdU6naK08WhKw83bZOXvZ1n1M7L4GTs64ShUxuUjTXZePf6\nbDtNXVXVt1g/qrUvJkt1bWUAACAASURBVGWtaluqKWFuMZ2iZSfMnJ4pXfmp4uDiW7dLl2lftX59\nfCqVuN2yHAc3YOU60eHUFmKRMLa8sQudH70HNH+I1to9aGlsQnekE139fegLJO5JnN/XD0SCGD2q\nFDV149EcnYKLlh+B4sNmobiiClYgB0uXAj95sAkfdWzF7Wu24KSFW1HdswU1HYMjdKPyxqD9wxnI\naZqBRafMxF8fmYHf/HQKpk0NDHk+5e3G5XIU8woAkyczhDtj+HBrBOGO+E8wEMG+PRGgN4KWfRHs\nr4sgP3eoNya3gKFsfDeKx3YiUNCOD3a1IbewFYcf3YTOwh40ox+10SDqopXYF65Ac2QM2sKl6I4U\nIhrOBSIMpeEOVPY2HVjkP8GKe2AqA3GPTKXVjDGsbcgi/z4rH9GCEKyyKrz6dhWOmh/CY89U4bLl\nIVQcEl8fg5JK1OwNAoh74gDg5psHhaD8zIlr1OTzQFzQ7v6wD+iOHvgpD8bQ1xlFf3sUXY1R7Pkg\nikljorDCQ8sLAALFecgpDSJQFkTYysOfXgzinCVBjJsaxP7uIK6/JYi77gtiyqE5yvuHExI7GU4y\nL4pUMJzpcWvEmoRnuqjYdDTd5Bq7eO1cy6IrXp5uZVo2qnnsOmPGzQi8KgxVZ+x1rjuQeL/J/OBk\n5xDbGVAq4068R5cHfo+YRr6uhxtRdoLWizgRrzEx4k3DkkV5TU3inG7x+ObNiTtGmaRT3HlPNAZV\nnhJTQ1x1TjTM5ePy/zoD2M2UP7m9uF0rJobjZZ2M0zoYUSTIu5wB+n5J51Gy27nMrcg2rW8xvbo1\na6q6FAecVHly2jBCJTiAodsxc4+VfI7fw8uM7xgmrpPQ5b2/vw+dTU1o2V2Dnf98Hy8+uRNHT69D\nuLsZHeEeRCSDO6evH/lRhtKCAowuH41R4ycgUH4IfvHkTHz3vmNw6KzyhH6LMYacMbV45YOtuPs3\nW3DMGVuxo2MrmqL7DlwzsWTiAY/NzDHxjQPGF43H7t2Wtg9QDYIBwMUX9aMwN4KV34pg2qRB70tj\nbQT/fjOCory4p6a/b6htWlzeh9LxnSgq7wDy21E6phU5BS2IWU2o6w2jtodhf6AUdZEQGsMVaI6U\noz1cgp5wwcDWy72oiLSgsr8JIWmRfyjQjEo0YQJaUGIN3Uq6PTYaBeMnoq8ohL7iEPqKJqK3OIQ7\n7qvCWYurcOTcKkw6vPyAp4x7XMR2KpY7EG8veXnxNUhyO2D9DP2dMfz7tSge/lkU1y+LYnQw7n3p\nbIgivy+Gvo5o3AvT2z8kvSxgIbcsiN78IHqsICqmBZFTkofW3iAqpgTR2B3ExMODCJTkYXdtQPuO\n53nJpB3YREjsZDDJjuT6nRZg+NKTqrKwe+F5NdJNjQ4vI+Dii1DcbcZkepjsSQDMRq7tXuqyUSMb\nB/LHLJOpO1WcTmsCvBiR4v0qMWjiLXAbl4iTENFNVTKpP7v/3TzjKiOfLwzmO3Tx67gXiC8QNp26\naCfsuTGqEu28DO3S7tR2dfe5FYdO/Qs/xvE6qGInxrwK44UL4/UmLvIWR+DFNRKqPksUkrrd0uQ1\nfSZ9l8l0U/F6MW67AQx+nypPurJzGlg66yzg0EMTR+T5OfnjmWJ48tbTJ58cX1Ny5RUduOt/GtDZ\nsBuB5m1o2V2N9n0NaG1rQ09fNFHOMIbCaC+KmIXSwiIE8sZg2+4qzDvzUMw+6yi0lxyFi79YPEQI\nbtwInDi/FzvbduI3f92KpzdtwREf34pd3VvREY3PvQtYOZg+6pAEYXPkmCMxKn+UY31UVTFMGNuL\nD7dGUFowKGLE6WRdrRGEO2NDwsnNA0rHhxEs60TBqA6UjWtDr9WKLdubkV/WhMLJUTQFAtgdHof6\ncCUaI+PQGh6FjkgpesL56I0EUBAOozLSiBD4dLLBqWVVA96YCrQOWeTfyyygpBK55ZOA0vi6mJa+\nEO7+xUTUdYbw1ZUhfON7Idxxd9GB9WSiN3/z5sEPuaoGb8Q+7brrABbtw4SyKG65PopH1kRx5cUx\njM6Le2T+/VoUs6ZHkReNAuEYLIV53p+Xi7q2PFQdHkTRuCBySoNo7wsCxUHcflcevrcqCBQFsfSq\nXKxaZSk3EXKyLUxtj0yAxE6Gk6yB6FcadO75dKfDxIjxOx4TA8qvtOhGfUVhw7Ezxu2ML8DdvHBV\neajm9qtGx93OP1eVgep6L7tjucGpzuWtTVX5dxuf/IzppgHZGbCq9mNinIviheMkkuQ2sHgxcOWV\nwKOP6o15OVxVHjiqbXVloSN/OFInQsU6Unk07bZvltu0apqpLj+6zVnEchAFoTzF0W6XLF096wYF\nxHhN+lLZI8Lv5996mTw5briJ39sBzNeAqbzMYrmo8gkM9RKaDMjoykN3n8prqRNgOu84D6e+3uxj\ntjU1wBVLo/jeDftw/+p6fOH8WuS2f4j/vLYboYpGdIc7EetPNMCDvX0ojMaQFw1gVGkJSkZXYPwh\nkzDmsMMweubRaMqbjsuvLVGKRJ6+G7/Tg+/eux2twa14s2YLnv/PVuRM2I5ofwQAkIcCzBx3BCYF\nZ2B66QyccthMHDb6MBTkFgwpu77efnS1RbBjW/TAtLI8Ky5emuojCHeE0d4cRW6gf8i9RaMYSsZ3\noXhMJ6z8dpSObUVnuAVbtjfhkKOb0VPYi9poEHsiE9EQji/0b42UoTNcgnAkiL6whfJIG0KxJsUi\n/0FRMxpDF/l3RIE9bf2o7ehHbbuFMy64AU+//A88+9or2BfOxY79UZx5/lfw8CM/G/L8cg/oPfcM\n9YSK6zRraoDaPQzzjutFf0fc89LXEUXT7iisriiKrBha9kRREogi1haFFe0bks4+BrDCIHY2BNES\nCaIlGkR7bx4uvDzuhQmUBZFTEsTe1iAWfyEwZIqk6r0qPh9ivsR2KuZHNQDA79MNumQCJHYIIzKx\n8YokM2XJZPTb64J9t+kAhhoE8jQnpx2dTOJx8xFA2agFEu+32whB7ghVhpDOANBN6XMyMsTr3I6U\nq8K3Ow/Ey+fGG4eO2tmlRRcv4H6ht126VYa1rp7E7Whlj5yTaBLbiRifLm129c7vV6WdixnVdA/d\nC1s0cnUiSZU/Pt3oV78a/FaLatG8nci1m+Ll5N3Rrb8B1OtSVB+UVG3/vnp1olHGw9UZOar/16+P\nh8n7JNEDJ9eZnZhUCRIROS98IfqNNw4KHjf9vt0aMP63LJjt2j/Pq6rceZmIbY7196OztRlt+xrQ\n1lCP6q216G/Zhba6WrS3NKM7kvjtk0B/P4qivSiMxlCMAIqKRmFX3Xjs65mKff0z0JR3OO54eAqs\nkrIh5aUq445YGzqLtmLjR1vxyHNbUHnsVuzp3ol+xMVHWbAMhxTNxOyqGZgxdgYiNTOx8NSpqN2d\ngyUX9qIoL4If/iCC4mBcwHy0NYqSggiaG8IId0QQ7YlBmi2HQI6FsvFRFI/rRNHoDrBgfFpZjDUD\nOfsRyWlFQ28f9kRHozZchYZIhbDQvxjhSBCBnl5MiDYh1Nc0ZJF/5cAamQloQYFikX9vQQXqOnrx\n7x37UD55Jk495yI0xaqwP1qAXzz2EB754wtoaI1/5PPTn16E2tq7cPvtlViy5AKcd14IV111Na64\n4gHEYnV4+ul1ag/Izn5UlUexd3sUFUXxaWMte6J48ekoPjU/7o3ZXxPDuKIorP6htnS4L4CcsiA+\nqgviyOODKJ0wKFyawkFUTs9DTlkQtU15mDLVchxAkgcr3A586QbDdANJso2QiR4eEjvEAdIpaPyM\nSzeC6uZeu2lrbsSBHLbp9U6dCeBd4OgMQFPjWxzxV3kfxC96uzFynYwIecGlHK44mq9aKG9isOvK\nwmTkW45fHOG2E2dOqAxAN+3IKW5deLJhbGoMm6ZTZ5DzsPgoqN3UMvlZ4FNF8vMHhRY/L6dRHmXV\neT1E+Hbk8rdaRKHjtC21ruzk+GTBpxJ/OkGoWuMkCw2+fgRIXBhv0j5V14jh6nZ20m18oIIP7Ki2\nwhZHz2WPqtPzayfaTEU2x+6dwMN95aUu3LKyASV59fj61fXYV70X+dEatDXUo6O9FX39/YMBMoaC\nWO+goLFyUFRcjnGTQsgZcwgmzTkCLQXTMGX+VNS2jUpIn9yexd+MMTR0N2Br81a8vmML6vq24t3G\nrdgX3nsg6vLcCTiuciZCgRl44Vcz8N0vT0NhpASFedEDU8r4tLLOlgj6YkK6B+iOWRgT6sb+zk4g\nvx0nnNSGkvIWRPubEevbh/r2dkRHMeyJhrA3HEJDePzA+phSdEWKEA3nojDcg6poY/zbMRgUMfGF\n/vG/x2LoIv/+QD5QFkI0vwqdVgh/ebUM7+9+Dld96wYUVx2Nr387hGdePQJdPUPX1RQUFKCnpwfL\nli3DAw88gGAwiEgkimuvvQZLl96HiROBhQsZ7r+3D3NmRlH34eCC/t3boigNRFHQH/fMxFqjsCLq\nBf2sMA/BUUG09+XhtbeCmHdaEE88E/fIXPed+DQyFAeBvBxlW3YS53bYfUyahyOvsXR6TwJ6IaR6\nFjIJEjsEgNSocbsRd1MDLNm4vNzrVRyI16leoib3ml6rilOXDi/rS3TpN+kwndJnZ4iImHjr5FEl\nu+Pc4NUZZMl4ZEwEXKqfKz+uNxUuYrl5We8ibzogtlHAXOTJI5z8uzF8nYnoJZRFifhdJSDx44m6\nkXGeNhEv0xdN2okoZOzWjq1ePThVSvYIcuF6zz3AsmXxMg4GB8+Jgsep/nTT1Ti6vh4w28pcnLIr\nfl9HFEH336/+6Kf8jIvT4kyEHKAfNOHp4gMAE6ti2PZ2I276Zj1WLGtATm896nbWI9qyGy379iEW\nTTSuc3v7UBTtRVE0hqIBD03ZmHEYPXEiGqKHYvVjh+DqW6bizCumobZ9NC6/3DqQdru1aTxf/awf\nl32tGtfcvBWNgS3Y0rQF25q3oSXcgmBfAYojozE1cAQOyz8Co8OTUJk3DqylGNvfZQiNiyDSHR3q\njcm1UDKmH6UV8UX+Pf1t6Ai3YVdtM06Y24Sy8n1o7e3EnmgB9kQmoS5SicZwBVoio9AeLkV3uBB9\nYQtjo61xj8zAIv+Q1XTAKxMKtGACa0GJlejNAoDeYDlyRodglU0EykJo66/CA78P4YqvV6GuM4Tv\n3jkR//fL8gNejqVLgbFjl+PJJ9fg2muvwX333YeaGiAvrw7XX389nnzySXR3d6OoqAgXLLoAd976\nA4wtGI3bVt6MyWOqMPeoU7Hj3XeQF7NQFpiDwydF0d8ZRY4oTAeI9lvIGxVEfnkQkZwgnns1vhNZ\nSzQPHX1BrLxtcEG/lRM44OXjG02I8Omruu31VevhvAycqdANVHodUM00cSNDYmcY8dNA9yNcvw0y\nN3POTaaJmRrJyeJV+Mn3qYwVkzC8xGnXIapGtU1G6QH3aTY1kr16OVRxmG5PqxuF14mqZNqByqB3\nE4ZuAXMqv1LtVtjZbS1sN4CgG+zgOIlEu3KVdxATr1Xt6iZ6dhYujBskJSX6D+qaepDtBL7dMZOw\nxON8E4GCgsQpK+IzfN55cZHARQ+AgZHr+N+qgQoxzvXrEz/EyMsXGPyYp/xtFNM8qK5R7VYmfkBS\nnjInClo+zU3lAXKKm8c5eTLD9vdaURKsj081+6AeXS0NeOPlekwbvxc9nS0Q7aEAYyiI9qIoEhsQ\nNL0oZAGMGl+B/LFT8Mwbh+BTl07FzDOmIjh1KnLGjoUlfLNG/oYT76+XL497LHleACDWH0W4dDte\n27YVW2o+Qk9fHRobW5EXLkRxdBRKY+UY1x9CaawcuT0FQCwwJK85+QGMCYWRU9KJ0RM6ECxpRS9a\nsfXDZhw+Yz/yCxrQFOvGnthY7A5PSljo3x4uQTiSj0C4DxMi4rQyYUqZ1YLKQHyRf560yJ9ZuWAl\nE2CNqkJPbgi9RRNRNjGE7fVVOHxOfNE/SkNAXuGQ+mloqMP111+Mxx57DNFoJYB4vRYWFiIcDqMg\nNx8TSsaiongMxpeMRdWoCbjrtjvwynMvoWVPIyaUjMO4onKMKy5HwBpaLh2xXJSMz4t7W4qC+Ms/\ngjjlzCCmzwoiUBrEOzuCmPPxPOxpzFVOJQPUg2mLF8fb7Zw56uestnaoJ108L7/3TAekdOGIJPMt\nvkwXNzIkdoaJZDwpdvemY2TZTTpNBBnvEJw+5pbMrh9uOwiv17kxalT3esmXbptUuXy5ESBPORGn\niKimMekMUVVaTKaKmYgtEfk7JLKQ0wllO0PZrt7cijfdS4QbT25eJrw++VoRbmSK0wjdTNf02vZ0\ndWTyDKrCUolv1aJ9k/vstu0V8+ZmwAVIXGfhZg2OHBZvk07z5e0wNWzkZ1NVr+JaKmCoOLDzZgCD\nbXHOnMF7uAfsvPOA7u64Z0n8snqyg23r18fjk9u7btMKINEzJ+ZTlZZouCe+bmZg7cy2t+vx0l/r\nMXtGA6Lt9ejrTVz7UdAPFPaEUSgImiJYKCqfgLHTpyI6dhqsqqm49edTURObioeeqsDUqYNbC8s7\naOryXVMD9EZ7ce2VEcRibbjsK9XoiTVgy5Y2jC6KISeSg+LYKBRFyxBAosFuBYDicgsFo7swekIn\n8ke1IVjUiihrQVFpE8LR/Qj37kNzbwx7+6qwJzwJDRG+0H8UOsIliPTkoSTSjcrYfoRY0wEBMwGJ\n08pUi/xjgWLsaa9CQ3cVZn2sCiWVITT3VWHM1KoDu5ehuAII5Azp0/n7Py+vDhdfHBc0lZWV8W/D\nfNCLby2LYtb0H+HdNzbi3E+djdPnnY3XX4zipGNjsLq7EW7uQkEgOLSiA0BrtBM9VhRjJ4/Hf7Zv\nw7+2NeKqFZfGF/SXxncp29saBHIDCfXAkQU4b+Mmm4rwAQk+zVb1PjX5lpLc94pl5vSsmXxnyq1w\nMvGWZpoYIrEzjCTTIEyFBP8/kxaMqUZIVcaO6j5TI1QXn5+j4m6EpWmdyKOypuLC5Fp+zfr1wK23\nDk714VN/7r9/0FAQxSc/z+fRm4gWOS9OU8VU9SO2CfljaWIcfORadsXr2pLJhzvFEX/RMBfL0cnL\n4tazw0Xp6tXx/+22ptXdbyJgTNqeW9HqJPrFsO2MBDGv/D5xLQ830gG10asbBRWR64XHafLMmZbz\neeclPi+mYYvhqaakmWy37DT1VOc1FMMRR5vF6Wv8WeRT5vggSX394CYObt41qnVcgH2/puoj5UGP\n/r4+bHunEcW5DWhtqEd746Cwad1Xj572toQwc2GhsJehqKcHRT0RFHJBwyyMDlWCVUzDk/+civ3B\nqVj8X9Mw++yp2Bsej8svt5QDR6rps9etYCjMi+LeH0VQkh/Bnp0R9HRE8PxfIjhqRidi4U50t/Yj\nKIkYAIjmdCOS34qSig5UhCIoKoqhuKQHJaNaEendj5y8RoSj+9AQy0NNZApqw1Woj4xHc3gMWsOj\n0BUuGphW1obK6P4Da2LERf78WzIFSNzymcFCLH8c8sqr0BOciKLxIaAshKZYFb6zKoSbfxT/pszk\nw8qG7FKp8+B+8fJ+rPpeFLOPiKF+RxQ/Xx3F1ZdG8daGF9FYXY9Z02ciVBYCemLKBf2dkW7s727B\nEcfPRCQniDfffw1//+c/0BRuQ11bI05bcDq+t+r7CBTlYfcey/H9LLcr1ftI5YGT26euvxHLRNyS\nWt7Awg7xfbhqVdzzJ6+3EWdw8GOqdy+/NplNneS8i+cyyd7kkNgZZtKhgN28aO3C8PJA6O4xGSH1\nEzciwku44v+qDt6Nt413iPKOQCaj0ybpXbgQ2LYNeOGFRINet5hRHomyy5OqHADnjlX2uMijy3bi\nRDeVR0wvj0NcAK97uYiL0pcvB7ZvB55/fnCXMp2HLFk2bozHx7/LIJe/qfA1ETDiC1gXnsmIn5dp\nEE5Ggjz1TPSQceymbqrOc9avH9w1T1WfXgZaVGUpimSTgRwZHibH7vlRPatOXjfVJhTyeZ3XRxbO\ncnymfZJqtNxErNbUxBfgX3ZxO0ry6vHd6xuQ21eP2p0N6OuqR1tjA9ob94EJ6y0sWCjKyUFhpA+F\nnZ0o6gnHBU2kF0UM2B+bhMnzpmLUjPhUsw+7pqLiuCn44jcr8fBv4uKD77oobiPN32O/+mUfxpTE\nF/RXfxRBQU7878a9Ebz9rwgmV0YQ6YqCSYY7s/rRHWxFrHQP+kv3AsX7UFTSjVElfSjI7UOsK4Kp\nEzvR29+MvbGx2B2ejL2REPaFx6MpUo72cBm6woUIhqMYH205MK1sAloSdi0LBZoxFu2KRf5BsNIQ\nGnom4v3dVZh3RghlE6vQGK3C+7ursOzGEIonTMAfnox7TeT6SWinjOHqL/XhgXuiGF8SX/OyvyaG\nspwo+jui6GqMYs8HUUwcHUYg2g+ZftaPpu5WNHY1Y19nE/Z1NaGxqx2XXfM1PPGX3+GF15/F7qY6\n7OvsxsdPX4CHHroLO3dW4rrrgNGjL8D48SG8997VOProB9DZWYfVq9cN2aZebENyfuw2+XD7Dufn\n5PVj4jMj/2/6HufXix7bzZuB226Lv6sOP3yoCJL7B3lXS7t4dPaAG695JkBiJ42YGMapiDPZOOxG\nXpOJNxUPhFOYqSpzO2OIHwPcd2hOI99e4Ea1PFdft9Wt2/rTGUJifkyeA3mqA7+f3yOGByQu5pWn\nI8nrAEw+Rjpx4uDcefEL5iJ2XgO5jHTtQhyZFufnc0w3mFC9RHUvV5V3RWcY63ZEE6eUmawHM0G1\nrko3+q9KkyiYVJ6fpUuBSy8Frr566H12ng4xXr4hh1wGqrn64nbxqrDleDgqESamU2xTqi2/TYww\n3dQZXTuyw6lt687Zbe6w48Mwvn71Ptx8YwPy+uvR3liPul0N2PJWPcaWNKBX2qY5PzcvvptZOIqC\ntnYUdnXHP6oZiaEAFnImTMJ/9k3FCedMxdhZUxCcOhXBqdNQF6uElZOT0HZ4nVZVMVSUx/Dh1vg3\nY4ryIthbHUEOG9ytrKM5glh46G5ceQU5yCkJo767AaOn7UG0sAaRvN0IFjWjML8bxXkRjA4y5MLC\nntgk7A5PQl0khMbwODSH4zuWRcJBlEU6MT7ajBAb9L6ErGZMQHzL5UqrGSUYuuNYNO//s3fm4XJU\nZf7/VC/Vy+3uu+9ZgLAkoiCgAuJvUBAJ6gCJDkYgsimR6DhBoqIojAsanSBxxgkQQEYQJC4JARfG\nbVwnIgZUxESWhCw3d1+7+96u6qV+f1TO7dPnnqrumyDCPLzPw8NNV9WpU6dOnfN+3/f9vm8D2UAX\nO/Z18arTOinGu/nyHZ0su7KLRa/rglQXewYbwTA8jQerVsFJJzgwledT19h89uM2ZG2+e7fN4tNt\nnnzEJhXO0xy1aU3YBIozQQwhAyfm8mDGbJOd/b/l57/7FYtOeiWL33EpH/6UyWM7xjjm+E/wy99s\nmk4k8Ja3LOG669bymtd0TGdNC4dNbNvNmnbtteunvSRifZbBl/iGVIAqDGSyUUkGJrpCxrr57PXt\niXPlb7i72zvculYepm7fBPdZnn3WLebc4VKZfCMoZAOk3z4oJ0/QhZELebGBGi95Gey8QOK1Ub8Q\nCLhWK221a+HQLbh/S9EpZ14LxPM5/rUsVn6Key3iBRz8zp/twqkbu4NJHOFXSLRWj55O4ZKfXZe9\nS77unHMgmazsR62eHS+LnBCvZ5Cz2/iF5qjWRDVuHSo3GrF5V5svch0SlX8lMpR5gcVawtbEPeQ6\nE7UUlJytcUHwNXRrlhcg13kWdO+plhBG3foht3n22a5iIbx/oPfs+NUdUu8LlQBUiA7cqM8qCNBy\noU2/sQK9Z8xrXs7Wa6PeQ8cnvOAC2Hh/kcbECOMDfQf4M33ToWbjA31kx0Yr2g0GgyTMKNE8JKwc\n5sgY8UzGBTR2nlAgiNndTXj+PMz5h5FNzcfonk+gez7zT+rECIUq3mdXR5Gnt1t86lqLD3+o7I3J\njln07bUoWa43plSs1H0MA+KpEIlWi7qmDLGGCWxjBCO5jxx7mSr2USiMUB/JUSTC3tw89lpz6Mu1\nM2i1MJprJJ1LUMwZtFjjdOSH3bTLAsRIYWVtxkySf8kIUqhrpxjt4hePdTFW6ubUt3Qy/5Vd9E91\n0pPpYvE/dXLbnbGKObF5M7zznbBggTt/u9uKXHOVzbUfsmmts2kybYqZPMUJ1wuTH7eJFm1K2Zm1\ncwCMaIhSNAx1JpOGyc9/Z3LOO0xa5pk8vT/NZR/8GLff+xVau7u44F0Gv/tdDMeZCcoikSj/8z9T\n3H13OQ20bdusWOFmVQNYvHim52bTpk0z1jEBYkRCAPmYPP+EIUKMiwA3csFanQFHt2avW1c2HIj7\nyd+BWDd0xgWvtO2qyEY43TethppW87jUaoz2Gj8hL8ZwNS95Gey8gOK10bxQ934+vDOzAQd/Ky9K\ntXv6KQZ+/z7Y+6kcD9ADCbGA1uJC9rtftZCwg30u3YJWjQTppXzpkk34Ldhqm6pVTLUCyxY89Vmr\nEc2rgdNqG4vfsXPPnQkq/L4dvw1FbLx+XjFdv9RNWscj0F1fixI7be09Sf+dCfECsjpQqwMJAujJ\nCkItoMyrL9Xeg/jdD7yp3ghZUZltSK7aX/He1LHTiQpiRD8uugjuvbfMa5ILoop76rys4jlr4T9V\nC+WRz+npgRNeleGvf+ojFigDmr7d/TzzZB+p6ABOUfKIGAaJeB11wTDxQolYJkt4YJh4Ok3cLmAW\nihiBAOHubkrt8/nJk/M5+9L5tJ/ghp6Fu7owwmEcx+HXP89z46ctwlhEghYrLrMIOW7NmNEBi6Fe\ni0hI442JBKlrNCA6ye6+CY49cYIdz44RjI5y8uuHMKNDWPk+8vYAY4U69uTms8/qpi/XzlCumdFc\nPdmpOFHLptUeo6NYSfIXBTA7jBEaNST/QqiOUrKT0Xw3jz/dxalnd1I/p4tBq4vrvtjJlau7eM0/\nuCR/GegKxX75ERO4ywAAIABJREFUcocvfbpA0HJDycjaNEZsihMukNn3V5vJIZumqE1dqDjj/o4B\nxYjJ7kGTUcvkpH8w2T8e5mvfNFl2hcnrzzLpnzCZe4zJ7//Qzwc/uIwtW9xkAvI8WLlyJbfeWpkG\nur+/l+uuW81vflNOA71kyRLWrl1LR0cHS5cupbOzkyuvvJKbbqoENNV0F/Htrlzpplj/6EcriwF7\nrRcirPWuu1yviJxIQnjadTxS9fvRnSvfS4RAqpwfv71EfdaD9QDN5rdaRDXcvhSADrwMdv4u8rdM\nH6uKToGdrXfmUPo4Ww+D33leRRt1bakWWa/7HUyNDK/7ykq6qliqpGC/dJNefRXt6KrA13JtrfdQ\nFZZq94GZYwz+ilG1cRfvW/VUqBY1Ob5a7nstgKrWeakCErWopFfYWi2/efVXVYLVzVT0Rxa/Ma2W\nLKEWMACVVlCv+e2lOOuAiJe3W4hamVv33Kqo868WIq4KsFVLrd970ilBats60K/yPrz4crVYgnW/\nb97s/tur2J/6ndfieVa/hWIhzwfeO8C/frwP03HBTO9zfWRH+hnY24cZyFZcH4nFSMYSGLkg6b15\njqhLE9w/SJM1RixfIOAAhkG4qwtz/nysZtcz0/bq+Qyb85lzfCeTUw6ZMYvdz1jEQha9eywCJdcj\nM9xnUZiyKWnCqWKpMMnmAsFEhr88M8Epp4+RahojEB5hPDNE38AgXd39FIrjDNnN00T/fquN4akm\nRq167CmTeitLW36EjpLEiVE8MjqSvx1rIZDqItTQhZF0w8hIdfH9X3Vyw01dRFo6+eamFDAzKYtT\nKPHoL2xu/bLNv340T1PELWj57BM2zz3pApoju/KQtTE0upphBggmTfKmyf/+0eS4U0y6j3bDym68\n2eR9/2Ly8c+FGc6GcTC4/vrytevWlYG0AParVsH737+SgYHbuPjiFdxzj+uBEWmgVdEV8VS9N9WK\nDsvGLHltEftEJgPhsGtsEoaiVavcjJY6bpqY8xddBK961cx9Va27Ja8Bana9at+/mrBEPqY7Xw0z\n9ju/mugMkn46QzUjzWyNMy8WeRns/J3kUEFErfeoRlquNrkP5d61WoprCWmS41K94mlnG3rhZymu\n9RnU84XoAKZsAQZ/r4nXgq/ySdSq4tWeQd00qsXte4WiePXR697qfVWrs66vcj+EiPcpwhXkeOJa\nlPVqogM5YuO54go365tII6rjrOjaqBba5QUg5O9T8ETUzGTymFQjpdcSTleNCK8qYbrnqZYqXP5N\nfh6VHKyOQS3WXS/QLfrsZwSRRQVZ4j195jN68q9q6Kj2XnQgWYhXogV5/P0Ap/zv2RhUhLdUVrTm\nzinx1JOjJML97NzugpgfbunjlUf207+nj1ho2D35gARDYZL1DSQiUUKWQThtM/KXMY6J9FM3NkJY\nJA0wDIzWDmIL5mM3z8foPIyB8Dzu2NLJVR9rpC5eome3xQ8ftDj1NS5fZmC/RTSUn/EMhVKA+pYQ\nocQkf346zSmnT2DWjdHaOYpxAMjEYgNYdj9WIU+/1c4eay77c10M5FoZzjUzPpXEyDk05Sdot0fo\nmCb4lwFNhzFCizGT5F8ImOTrOgg1dDOe78ZscUn+pDp5Yk83n7m5k2tu6OCU08IV1zmOw95ninz0\ngzbvvdDm6DmuJyYVytO/02bXn22OPcL9zbBmeqEAxvNhYs0mxUiYaJPLi7nrWyaXfsD9u/NIN7Vy\nIBL03Pfl/wuiu2XBc88B9HL44cv46U/LtW2OOiqGbc8ENJFIlF27ds4o4ql6bxKJTq655ko2bNjA\ns8/28vDDm3yTVchzdds2uOSSciFMmZfz6U9XZuWUi9Gq3vYLLnCf8frr3e9LjbSQwZDOsy6HDIu9\nwMtgIbfnlxRGfVYhz4eOpltH1Xevcgz91gzwL4j6YpSXwc6LQP6WwMdPgfRTZGfbpnq8Vu+RblHQ\n8URki3o1y4T8t5dFVr2mmvW1Wt+rKbWi715pb2vpk3yNIGZalqt8O07lgq7rk6owquROrz6A90Lt\nB6b8xlLOeFYt1thrbMXY6azf1SpCV+snVP4tNtn2drj77pnhdPJ7VgGk7n3WOj/FPYSCq1rfq4F6\n3b29soeJ9vy+FS8wVA1U+3FHZJC1alU5W5oO8AAsXgwPP+z+7ff9CZHnmpzAolp9DPX9rFw5M4uh\nOv5yWmw/xUcXeqnz2nl5fXRzXj2v1nBpa3KSX/2kj9u/2sf7lveTGXFBjT3Rx9jAACWl5kws1URD\nQz2hkklTyCGWncLoHaHw9H5a7CEM6VyjpYNcy2EkX3Ekhbb52A0dDNlNbPlRnDf+QxEnbzE2mMPK\n2hTzpRl9C0XDNLQ7hBMZovVp6tvGyDNGon6UXH6I5/YM0tk1AAwyVQiz3+pib24uvVYHg7lWRnJN\npKfqiFs5mu1x2gvlVMu1kPyzoTqmou2kWudhNs5jvNTFhvs7efuFZZI/MZfkL97t3DkOpUyeYtr1\nvjz9B5ufPGhzzuk2bfEDvJi0m6HM0TyzEzQIpUwKpgtYfrLV5HVvNPn298Nc/s8mHUccADCJMHt7\nAhUecK9EFX57gSjWedNNG/nABzqmvRk9PfBv/7aSLVtuY8UKNyHA8uWwdm0vN964mh//+IGKZAJ9\nfWvZuLGDL3xhpvfm2mvXz5iXqtGmFsJ8Ou3++4c/LIMO4WGoFnYmj4ts6FOPqfsAeBtl5eN+e5no\nf7WkMLp39rcomaHOATnSRB0Pv3YOJX31Cy0vg52/s8wGGBzqfbwspF5Kt1c7tRSz8lLsql0D1QuM\nzlZ0lvNqQEU9R9dXnaJTjRBcTSGpdT7IC63s4dEpiHI7cq0A1Xokt62S5dNpN0Tgllv8s41V41TI\nf/uF76jX1QqqenpcAvmCBeWMWdU8K7L4hXuJSvJeBUx7elxAVFc3E0B6gXhxDLw3PrVA5cHMUdG+\nbtNVr/Hqh5dnpVr//cZaDQMR88Lre9i82Z2b69eXw2pq4ZmonDpdEg2/ZxD3lj076jXiu9Hx8fze\nm3gnaky/17Xq717ARhwvFgqkh4dc4v9g34FaM/1MDLj/z6UnKto1Y3Hi9W00NSWpC4TI9RfoCmUw\n9g0R798Hg0OAy1kvhGIUOw6n2H0kmeQ8rGQ7RkMDOeKMZ4MM7Le13phAMECiMUQ4ZfHMngyvecME\nDS3jBKOjWIVhIvEh0tlBpqb6iUTSpPMJenJd7LW66ct1MJhrYzTXiD0VosHK0JIfp71U9sQIr4wX\nyT9PgMFghKFQmFw8SaC+k1jjAhrbjqWt/Xh+9ru5LHpdF04oNj3/5nQUKaVt/rjV5v47bf75vXmM\nrE1dwAUuU8M2Y/ttGiJ5DI26lM6HSLSFIW4Sb3UBSzBpMmqbfPrfTG74ogl1JnOPDGIYxoy1z89A\nIxJl6EIb77nHLdZ5/vllfo24tqcH3vGOlfT13cZFF63g6afXc/PNcMYZ+nC0SCRKLqcPRxOAZvHi\npSxY4HJvhPdmampTBagR/dq2rVw8ttqep3IxdaDEa68QteKEQdBrv5avEe2Jf/u9C91x9Xq5j36J\nenSecLkt3bgcrGdFZ+SarU5aq37395aXwc6LQA5lknh9XOo5fhbgasfVtmrJ0KW2XY3EW4s1Zbbj\npPuQwTtLk5/XyKt90Xc1laXfuX4W2YN5TrUd8cy6MBc1W5juXPUdb90K730v5PPQ1FQZ3qOzUM+m\n8CFUV9a9+CzqhiAAmvBCibb9PAte34GuX/I1um/onHNg+3a49VbX++AFIHVzzg9IyNcd7DegAiZZ\nagGR6r3lNqqlxtaNlQClIhzFa/3RvScB2GWeCnjXjNKFjKmKTrUsgfK9hNXbqw6NbkyrhXt6xfR7\nidzm3LkOT28fJxHq4/e/6aetvjK7WXp4sKLmTCAYItXaSn1LG4FSnMd+HeCkI2z6/zjB69r7MQf2\nYYwNYpsprEgDltmA3dhNoWUO+WQrllnPlBNjygpQKMzUC8xYmGRLgGRLFiJpGtrHCcfHCJgjjKeH\n2dMzyBELBigWBygUi4za9fTkuujJddNntTMw2cZ4LkUw59CYT7v8GBFWhhxWNkqjMZPkPxWIMGwm\n6AvAvkCOgWCQgVCQgUIjieajOeLI45jXeRJTe47ly9d3cc+GEp31rhemOGGz60mbB+6zOaLd5tVH\n2ySDeQJTNo41k9BfdCCQMDEbXOAyZZikOsOMF0xa55kEUibBhMn+MZN/endA651VreqyUaJaEhv5\nO7zggl4cxwU0tt1RsXauXLmS2267rQKURKMxLGsmoAkEojzwwE4uu2w16fQD2PYkgUCcc88tp4JW\nAU1vr38yAXWvEc+tCwP2ek6vdbeWNOrqGNeyZunWa11CEp3RQaxpq1aVEx/U6nVV9xk/3UyXqv9g\nZDZGNK/rXwij/aHIy2DnJSzyRyO7sWtROLyO1zJpq4EhrwUHZgeyVCBXKyBT25bvq1to5I2llsJ9\nunvJhPnZipdF2gv8+AEnr4xw4jq5RojO6q+759atLl8lEnEt6mqxNXVsawlxEvf3sszLz6TLrCbP\nKdGOzE/QgWx5TOSx8OqblzdId1yc8/DDLtCpNg5ycctqwLPWtKJeY6hTpsWcV8MqdPdXN33xmwiB\nFFILyJffi1f9Iq9x1s1P4W0RfD45/l6Xrc/vuf2SRKhZmnI59z5e86dWwKg+u9c62NmWc8HLoEjN\n3E/vbjfcbGq0n7yitNY1NJJqa6e+pQ3yUdrjUBjI0WKP4vQMkekbY3Iij2U2uIAmUk+uro2JYAt5\nMwUREyoC0iAQMojUmTS0FwjGMzR2TlAwxkg1j5HLj/Dn7UPE6waYO6+fUmkUq2AybDXSY7lApj/X\nwcBkC5O5OHW2G1bWVhitAC+yR0Yl+ZcwmIo0kQl14qRaGCiZZBqLPFXM8Hh2iF3GJAOhINlAgMPr\nDmNR4Hie+9lCViyeT5fTQZ1lkgi4oGZq2GZkr01TNK8l9E8WgjjRMNv3mLziNSaxZpP6LpOxvEnb\nYW4IWTBl0jMcZt78ynHy8lir67P4hsBdV9WwLtmAJuZGb28vy5YtY+PGMqAR91m+fCX33XfbNOl/\n61Z/D82uXTu56qrKcLQlS5awatVa2to6OPHEqxgedmvbFAo2F120gqeeWj+d5txrHZK5XzrvqTzP\nVaPDbPYVca+rr3bDub286XI6d3lPUwn26p7ntZ+oRUe9+Ioi9HnBgvK+qT6nTrz0Iq9xqFYg+vmU\n2ep+LyZ5Gez8jeSFmhTVFNyDEa/+HSrAmC2I0LUpZDahdNWsFioIkPterf/iuHqNrh+19FOnoOsW\nU7+QOD9Pkd/fXgq62JRloFPr+6y2UclKpJfCed557t8qMVy2ouk2SCE6HoXq5dK9E/AH37pn95r/\nar9Eylg5pFD3DLXGeav3V8/ZvNm1MKp8MZWLpXt/Ok+uLrmF17tX57MYG6/5pxs79bhMphXWU9Vr\npc4PuV+ykuUHNrzei3y+3G41HpwK5ASQv/vrRRrrhnnqiT7W3tjHe97Vj5PrY2BvH/t39RMNjlW0\nFY5EiTd2sOO5dv7fma10NkawhwuMPmOx94+TLOzO4tg5pnIGllk/DWisSCPFYARV7EKQVGuYPQNT\nYKY57YxxGlrHCUZGIDhMyRhiKjfA5GQfoVCObCHOcK6RfQcKYfZNdTKca6IwFaTeytJcmKC9WM5U\nVo3knzdM+gptRNu7SLZ2E2mYw1ipi+TcdnqMEjsKE/xxso8/PLeL4aF+moNhmgr1NBcaOMyYR2ig\nk2Obm2hy4oQnAzhTM70wGBCoC7t8l6RJLmCS6ggTSLppltsPN6eP7esPAu7as369f4px3TsWCTH8\n0pOLeSh/Rw891Mv11y/jhz8sJwQQc+Wee2DNGtdDc+GFbga0rVvhTW/y99BcccVqJiYewLImiUTi\nJBJLePjhcrHO227bgGGYOI49nSoa4I1vXEpzcyfPPXclhx22gWy2l/7+TYBL7PcKuZQNsDqDgt94\n6K4Vx6rtH37rrW5dEt+ejj+k24vUlPPVPNF79riAR153deL1bF5lE9QIlFqMYLO5t9+5szE4v9jk\nZbDzPEo1BC7OOVjFX3e/Q/HCeJ3jZR2uFWDAoYeg6fonL4bVsgz59UV3npxmcjb8nVqAkN9xPwIy\n6C07atppr/+r9xft6frot3ipG4YXwd1vfIV4bViCJOmVVlf1AqjATx4P+ferr3b5RolEZay3OK+W\nLGpy32up0aP2Uc6YJ+aZzLHSzRG5HV1suVfKa52ivnUrnHUWHHVUpVdv1aqyJ0TNPKZ7f+r7lsdF\nXR90c1Lct9rYeYnclvDEgvf78Cv+qhoT/JQwv76osnWrW+dDTRbiOA65TJq//qmfWKCPsf4+nn6i\nnz9v62NuWz92ZoBSsaygG4EAyeZWovXt/PbxDt52fjPN8RCki5TGSuRGbCbHbbJZyDkRrEg9tpkC\nI1DRHwOHiOkQSzk8O2DxmtMnaWgbJxwbwwgPQ2CYSWuQYnGAYnGQkuMwbiUZslrYl+umN9dJf66D\n8al6wrkC9bbLjxFFMDuMUZfkb4zSboySNKZmjEk2lGIy1onZ1EWkcQ6R+i6MVBccSL/s1HWyd28C\nK5PGLj1H/0APEyOj5MayBLIO9YUETYV6mgopIo45c9BDBk7MJNJoYgVdUv/9D5mcvdTktnvCXPZB\nkxNe73pjjGBgxuW6vU1XKkAoutWs6CrAUfli4XDZOyPXp9mzB048cSXDw7exZMkKNm1aP92mV8iZ\nYURZsGAnhx++mp/+9AFKpZkemk984iq++U3XQ5PP29NACZiubXPyyVdy7bUbOO44NzuavCbJIWA9\nPe789gu59NpP/PYp+Ry1LEM1oFMtxFm3vovr5cyG4G3k0IE1rxpsoi3hAa42VrVySnXGIz+jjJeo\nBqHZcHPEGB0KwPp7yctg53mSWlBvtY/8YCbPwVp6VcXBj4chzhdWrlqymv2tUH8t7auKFVRflHVp\nJmvpB9Rew0S3+MtWQPWaWkPCapl38njoFnEvZVGnZIsK8rJXQq4WDzOVy6uv9ifFi2u8OExywgQ1\n7ltVLOTNSAUb8vVi437wQT3QEv2SU2yqiSB0Im9Kcv2HW26pVBq8NnT1eVXPii5Na7Wwu3PPhRtu\nKBcDVcdl3jzYsKFclFIHDuTaCl7hXWIOeMWk+wFqL5CvExWwiGvUNtVjum+umtFAfTdea0XBttnx\np34+ubqfD63oI1AQIWdu2Jk9NVnRv1gyRTDeQfvcVmLJZkJmA9mRMNt+ZXD8QgMrW8SyDXJOVOuN\nCZUsYsEp6homqWudIpCyqJ+bJ5TKksuPEIkPUii4KZcLhTT5YohRq4HBXDP7rG56p7oZzLWRzUap\ny9s02hO0FsbKmcqksLI2Y4wQpYr7FwiSibZQSHRSjHXzi9/N4ax/7KZxXhf9uS6KZjttnU0Up4Ju\n9rEJm2LazUQ23p/FyWVwMgXCuSABJWQOYCpkYcdKlKJhnnw6yamnN9LUHWHUNvnCV0w+/lmTOUeH\nMWIh9u51r5eNYTffXKmY+80TlaMoc0nUIrdy+KbX/Hz00XKGs9e8pqNiDZ43rzLcDKrXp+nt7a1I\n6RyJxHnnO5dw/PFr+exnOzjzzKvYsmUDkUhlwoDlyyEW0/Nr5OcXz+1lQJHDtL0MMOo1s1G+1e9T\nJcvrkvjUkmHVL/RY10c1aYqfcdGr//LfQvz2Vj+dwe/ZdManWgy7XqF9fuJnkHupyMtg53mUgwUe\nXtdXm/AH2yd1EdDF5Ouu8SuM5WVxOJg+1/IMfudWAzlqn9UCgtXah5lExFo4BrpjftWIvRY0Xdug\nTwOpW4h1AFe3GOuIj3v2uL8nk2UFQoRiCDAgL6TqWHnNZ11/vPquPquaklw3brqiieeeC8884/4m\nF87TAUwh1bybus1+27ZyFjc5eYJXWyp41GUn3Ly5DFx099261f1dTsqhvhu53W3b4J3vhBtvhAsv\nrBxrnRdI9EXOdKj2T/e73Ff1eW++udxHOURN1McRontmL7CnW5PkeHy1b3Kf1OudUol3v3OEpro+\n3veefkynj/9+sI8TXtFPbqyPzOhIRRvBsEmsvo1UUwtmvIl8sZE//DHFvA6TpqRJNh1gyjIwAoGK\n6wyniGlNEC6MEAiPkWjJ0J+1OOLVNo3zbWwzh5kYx84PYFn9lEp5pgoxRq16BnIt7MvNoS/XzdBU\nM04uQNKapCmfpq1UO8k/F4gxEW3HqO+iEO0mlJxL65wunGQnJbONEi0UCymKmSKljM1Yjw2TNpFi\nHmv0QG2Y/MxQsqJRYiyYYTg0ymhogpHQODnTYf9IHQuObObYV3RzWPeRtLd2sa8v6Lknea2t4n2q\n6wXUlmpfiFemQJGR0Z2r5YQAIsOZEDUhwPLl8Mgjeu9MNBpl585K/kw0GieVWsKdd67l7W932xYZ\n0MJhE8uyWbJkBcPD61m1Cm67TQ9oqnmidPNcPKt8jrp+1uJ5qKYPCBFtCb6jvJ5DuUCoF79U90zq\ne5N/9xLVA+5lfNON32xAwPOVVEDXB6hdh6kJhHbnwUqDlaZ3d4bOpgzY6QO/ZcDOTB8v/+3+no4c\nSfLd6w79AZ8neRnsPM9Sy0dYazt+C8qhug+9rBF+/fX7SPyymflZYmqxYMz2eWvpp3yerFj6bYJy\nX3QLsNy+DtyI87yOVQvxEWBTTqQAZS+BWuBLXQTl+5977sxQG7+xUvsiRC7uKYd5gHd2NNGGvKnp\nAHc1BVYFm17jJsZWF/Ig+iCqzcsVs3Xi9w3rQpjkPqsFG2tJfSqLPE912f8Ej+baa11i7BFHzOyL\nEHneCaAh0mZDmaegKhjyO/MKO5Tr2shcLNUrJM9THWdOJHG46y5XwRwZmZkNUKfUyM+qU4zEe7rh\nhplE61w2M53JbPdf+zHsPvr39GNNuN6ZUlEq7mgYmPFG6uqbCUebCITqsa0UAaOO3GScvB3FMCo9\nFsHCFBFrlKjTT9TsIxIbwmyyiLblCbYUKMZtgvVT5I0J8sVRSo5B2k4wajXQn2tlf24u+zJdpO16\nTKtAysrSnB+nA4XkzwGSvzGT5J8ONTKV6CAf62I8P4eNm7tZ8u4ujn9dK0VaKJaaGdwfYfO9NkvP\ndkHMzj+72cmMXN5NQabIVDFItClMOlDiid4MqaNH2F3oYXfwWfbTz0hogrFwmlSihb4/L+Tckxex\n+MRFJCYXsvLy+hmFUtU1QWdEqMUwKB/z+j79lNjVq3tZu9YNOdu1q6NivouEAOedVw458/LQVCu4\nadsdnHLKVfT1uemc83mb885zwYwYk8WLl9LW1smFF17JJZds4IQTetmwYZNnQUthRJDJ+177s9c+\npBpeatUZqhms1HXwiSdgxQpobXXXLWH4EGFgwgNdi8HYz/Ba7fl10SvVdCW/vd1LaslaWg2Qa/sw\n14GCVQYeFQDEA6RMnyeuSVOcylDIpokELe9OyhKKQiQJZgIiCXKkePDR4znlhi8ckp76fMrLYOd5\nlGoTvRaw47dJC6klXv9QZTYgo5ZzvcKTagF0s3kuucijjvuhktJ1FqZqFkNxrl/2Jlm5r9X64wfS\nZOu3mtFHzj6la1NXdK6WtKY6URd+uT6IrKDI99BtWueeCzt3zkyDrSqlapy81ybqVeOoVi+fnITB\nK41ptXERnqIf/9h/sxTgTzcnRD/FxhuJVPJ9ZK+MHFYifstk4I47oK9PT4zVfVsyX00O7VPHTJ7f\nOnANZavlXXeVw8RUr5JOOfPycok5sHlzud864ncttaq2boXO9jxXLB8gUOinNdnHGaf1015fznKW\ny1Z6OUJmHDPeRMhsBCNFIZ+gWEjgkMIIJDGM0IEzHSJODiM7Qiq0h0hoP2Z0kHBslFAii9FcIthS\nopQqYIcnIZgnXwoxlksxajXQl2tj/9R89mc7yOdNYjmbRjtNS3GMdsak+jHDtBujWpJ/DpOJSCu5\neCeRlm7yoW5aO7uYyLRz193NXLS8mZHheua2OJTSeUb22iQCNrkRm1ChgCoOEDxA6LfDJnWtbgay\n8YLJf/yXwfkr+xlJ7uLPuR1sG3qS5zJPYZVcRT8cMCn1H8Wbj1vIa+ctYmHzQo5uPJpYKOZpcZe/\nE9X7pho5BDjSrXlqLbHly91CmB/84DLy+Y088EBHxbq8dq0bcqZyaLZuraxBs2fPetas8c5wJjw0\nXoCmo6PDtz7NG9+4lO3bO2lru5ITTthAJtPLunWbPAGCbFRbtcr19Iqxkg1h8ljVYnRU/66Fq1tN\n1G9SLQb6rW+5/dqwAT73Ode7LItX32oBXOI3eWy8dBCvPdjPIFmLvuKrwzgO5KemQUfv7jRf+HSG\nlZenWXi4C1JG+9M8+O0MS96aJhVJS8DEBSmFyTTZ0TQpM43hzPyWtRKug0iCfCBBuC4JkSSTpSTx\n+gTpfAInnCDVkpRATBIiCTCT03/vHUxyyfsS/Nfd4dk9899BXgY7z7P4fYC1hMDoCv55eRfkBdsr\n49Gh9H02k7VWIFfrB3EwH4oMZkAPruR0w37WQ6hclP0UU7m/wrqupgGvZWwPBix7JQuQ+6/WB9Fl\nlKlFdHNYDcPThaOJPqqhEGpGLHkjlgmkl1wCc+eWq2ar46GmcVb7LKSaRU7IbOtIiTZE6FitYSMq\nIJZrP4A7V6+/vjIETlc0VvagXXWVWw8pHPYmxqpzV00SoUv+obPY6sZUtFetrpHX96PeT/637P0R\nQFqdV3PnOvzyp2MkzT5iRh+7n+oDq59n/+JmNktFh0ECCQ5BwpFGguF6HCdJqZTECNRjBBowAimM\nQJRQCGJmkWhgDLO0l2hgN8HSXkLmMIG6DIHEJKX6AsWmAE6iAAGYKkQYzTUwatXTm+tkb2YeY3YL\nTi5AwpqiIZ+mtTRGpzE8TfIXPJmEMVORHiXFZLwNp6GTDHP47bZOJifaOfucNh7+URPnnduEY8WI\nk2dyOA/7DAUTAAAgAElEQVSTNvkxGzNQmtGWEzQoRkz+vNPk6BNMYk0m9Z1hAimTkZxL8O8+yqRn\nJMy8wwNM2BP8cvtfGQltZ8fIDraPbGfn+C5KjhumlgwnOabpGBY2LaSNRZx21EIOrz+c3n16BQhq\nS+qi8qoA+vtd0DI2tpFYrGM6/Te4xP83v3kZO3Zs5Dvf6ai4Vs5iduON6yvm/j33zD7kbPXq1Wza\n9AC53CSmGeetb13CLbeUAY2a4UwAGpEQQFdwsxZlWy3C2dPjGjbUEFN5jOUoBPG3ru5cNQ6M17/9\nzpXFq66YbMR5+GG4807vMhryOu0XBixENTaK37z67GWYnBEhMafE3l1Z5ra6XpK+3RN0NKreFPfv\n9HCGX/80zemnpIkH01jpDBHcc0q5DIF8GpyZ36kqDgbGAc+J7EWZLKaINyRI2wmSLe7vI5Mpbr0r\nwfs+kKC1W4AT99jewQTvuSLB1+8JasMTa03Sohu/F7O8DHZeIBFAptYMYtU+Pt3iI5QtPzK47n5e\n3oda+zgbma1lxo8IqeNqCIVITakrRA1jU5VzqPSW+MUxyxuOmmZTPl+nKNZClqw2dqBvRybUqmR9\nldg+W++FV20av7lZjR8kRN505do6IsRMF+YmFmavJA+gD/nSgQvdnPOyEqoARcwVr0w5on31OVUP\nh9wPkZ5ahNd5hWWo5Go18YDaB10iAnk++Xksn6/CdX7rjdcxcf3Op6d4/2X9vOddfTz8YD/vfFsv\n6cFechN9bgHNol3RnhFMACmMYD1GoJ5AwP2/EaonUtdEqiFIMDhCKtYL+X2MDe2lvXk/gWA/xLKU\n6ksUGx2cOJQcg4xdx6jVwEiugd6pbnpzcxhJ1xOxC9QXJmkqTNDmjFaQ/NuNUdoZJWRUKjV5goyG\nmum12wm3dtPQ3oEZaScWasNwWikWm8jn6skOBzDzNvaYjTOZJzCTz48RC1GKmjz5XJhjX2NCnUlD\nl0kwZTI0afKxz5i8+wqTV78uyLz5xgxDjuM4vPPSQeyGHfzjFdv53u920HLsdvpzPdP3aI21srBp\nIQubFtJaWsSXP76Q79wxh/nzNR3SvH/Zy6LjuoBbS+atb11GNLqRL3+5o0JBjsVW8qMf3UZr6wpu\nvXX99De0bh0I4v9ZZ61gwwYXXHiFlZlmFMNAC2h0IWeBQJw3v3kJX/96JaABF9C0ta3g0UcrAc0/\n/uOVPPSQHtCovBS/dVg1/IhCvGodFy+jl8ovVTOQqb/57cle6Z7FOX4AxI/PKvrhZ6yVPcSCH6oa\nFHt63MydlgWplLLvzClqQ7awMjzzlzRHznV/Gx/KUB+pDPey0mkiZLDTafLZDPFQBoMadGIjAJEk\nhWCSUDyJRYI/bE/wqpMSlMwU3/9xgtPOSDLnCBfADKWTfPHmBJeuSPClryT5wpeTdM0/AHDCdaDw\n+6qto366hBhzXa27lwqAmY28DHZeQDnYCVTLgqgquX5kcJ1Ft9YJriqJs/kwVIDgVexRfIBXXAH7\n9s2shbJnTzkM6utfnxnrLSozy6E0fuBAiBe/xU+xh8rwIa+woWqKrdeCpeb2F9Xi1exY6hjKIrdZ\nLVZYfUb53+Ld+xVPVRfLWuuxqH3XFaTzWsy9PAlyAgqVyyS/Ayg/lxruJ4dt6TKNqe9R7Y/X9yKu\n8QpJhUolR4RuHYzlVe7D5Ze7ysDnPue2XWtbtabc9hKdIuR1r1KxyF+fGCQe6GO4Zz9De3sY6+tj\nYqifyfEh8jmVUG9OAxnxX9BsINHYCtEmuhZYOM4wYWMfT2/fx7yuHqam+mhqG4G6KYqpEoShUAow\nbtUzajUwnGugNzuHvqlObCtG1LJJ5SdpKYxNAxeRqcyL5J8NxBmPtJCLd5A3O9n+VAcLj27jyd+3\ncNqpzZihBrKjdYTzJfLjekI/AQgm3NovwQP/ZZwwjXPKXpiuo0yCCRMjHJgxrup8WrnSDY28f2OJ\n3qm9/H7PdkbDO9hfcD02IzkpycLoPN5w9EJOmruIkR0LeeiOhdx7e8v0HO7v7+XMM5exbt1GLr+8\nErSoxS/leb9mzUpuvfW2ipoucj8FuV/mrBxzjDdoKRSgVPIGLVddtZr//m/XCxMIxHnDG5Zg22v5\nxCcc7rxzZlKA73/fTdn8hS/oAQ3AqlVLSSQ6efzxK5kzZwOO46Zs9hLZq3HeeW4R3LVr9UYHnVFt\nzRrXg/OZz1R6Nz/2scpEJbr7QnXjjRDdGgszDUuf+YzegHTOOe4+6Bdt4CXaNaToEuR7dqX55Ecy\nXHphhkVHpGmrTzPcm6E5kWFsIE12JM0jv8wQNdLEghkS4QyLFkyQCEn8lPyk9r4zJBCeEbI1VUpQ\nMpP8z28SLDwuyZHHJhmdTNDYnmAonWLtfyS4+mMJ2ucmKrwoe3pjFUVn5XUQZhriZIOi1/uYDaip\nJrUaV/8vyAsGdgzDmAvcDbTjxhFscBznK4Zh/CvwPmDwwKmfcBznB35tvRTBzqFOSJ0bVrcwyser\ntXOw1tpqino1S798b78QMZUPorbjZx1Ts0F5JSHwGluvvuv6KqxJ6uIvH4eZlna/BAZCwRSgTSji\nIlzh8svdjVIo87qwOZ0XRn029V3pspapsdbVvF1r1rjjIRfjk0GZLgzTzxPiJ7paO+q8EDJvXuW8\nkO+nS52tgiGxQXllvfN6PtnLqPsG/cbCryihbiz8jBziuTZscENFqhUqVQGKF4iuJSRSrpU0d65D\nZnSM/l17eeZP+yll9zO4r5+9OwdIRocpWGNQkeY44PJjDgAZM9ZErL6ZSCpFsiNEc7eNmRgnGBig\nZO8hl93PyOggdc0TODGXYGsVTEatBkZz9QxPNrE/283AZCuGHSKet2gsZGgtuUBm2iPjQ/IfopF0\ntBU73o6Z7CQUbodcC9u3NXH8sU0ES/VY42GMqTyUZu6dhhmYLmAZTJpMYrLxeyYXXGbSdpgbYvbx\nz4W5895whbKkvh95vsgAQ3BPli+Hr309T6/1CP/y+dXkG89iwev30GP/lali9sDoBjGG4cxXncmJ\nc06kMb+Q6MQxfGJ1gv/4D9cLY9sbWb++0svS3LySBx64jXB4Bfffv75C6RaA5cILXa7LqlXwjnfE\ncBw9KDn55KmaQse++123OKbsaXn0URe0PPRQuc7MW97ihpXt2tXBeeddxeCgG1YGbljZ8uXrufpq\nOPJItwaN4NCIMDfXi1ROCHDffRsYGHATAnith14GIpj5ncvhZLq1UfUuqwY8VWnWfXcirHvBAu99\nQDePdL+rIoeRyuvAWWc5HHW4RVtDhrtumaCrOcOfH89w9+0ZPvovE7QkM4z2Z2iMe2Xxkkj0VhqK\ntRHkc8UowZgLNJyw6zWJJl2PSDqfJNlUCULKQCYBZoLH/pLkxFNS7r9D5TTv6p6oW/vFeToQovNm\n6fZcXbIWL73pUJNTqX2E6n3/vyAvJNjpBDodx3nMMIwksA04H7gAyDiOs7bWtl6sYEensIrfD3Xi\nqJNd/ns2yNwLiDxf1gFVcawlXMtP2arm+RDneYFBIX58KT/PgN+i5qUkizYFET+fh717K2vT6NrS\neYDULHfy4qtT8OVnEvwlnZVNx/NSPYPqxqvrg258enoq7w2VacvFOOnmgl8hSK93JDw3q1bBpz9d\nThKghm2cc477zLLHT7QjvzsvBUX+TT1flyhC/V0HzL28G6qypIIN3bidfbae26S2rSN/67y78nni\nmCiUJ3MlZKOJ4zhYkwXGB9IM7u5haF8Pvc/1seOPA5jGIHWRYYr5MXAqQ80w4gSC9QTMRrJ2I3OP\nrqNlbphEq4Fj5vnttjHecPowTqkPSj3YhSFKho3jQDYfPwBkGhhKN7M/20U6lyKUD1BXyNFUSNPm\nVJL8O4xRmpkgYFTua5YRZijUSn+hlWCqA0JN7N83zivmn0zSaaOQa2BqLEmwEv8ceAZwomHyYZNS\nzOGHv/g1Z513Jt1HN057ZQTA6R8Z4Pzzl/Gf/+nWYRHjfeqpbo2WM89cxrx5G/nBDzoq3qUKaGSA\nu3LlSm7/+u1c8IELeOtlb2XHyA7+1LeDPdlnKBwgLRuFAAubjuP4Tpdfk5xayM+/8+/cfuvt03Vf\n5PXhnntcL0xrazlMyzRj5PP6ApemqQ8NM4woixbt5KijvD0p/f29XHfdan7zG29yv8yFaWpawe23\nr2fdOpg79yruu69cZ0YGLYaxlHnzOnnzm8uFM2+4YROrVrmA5thjvVM212KI0WX41K2vur1YzqQp\np4GXw9XUPUVdC/yMjX6Fk6fFcdi7c5K5bWUvSP/eNO0NGYb2Z2hJSgT5t2VImRNkR12uyTN/yXDM\nYRnMUppiLo1hZwg4uo9DIwcI8pUE+CTZQoK6xgQTVpL7vpvkXctdDwqRJAPjCUrhJNfekOSfVye4\n4cYEn/xMkq65M/lh4vlny02Vr/XKclprW9V0GB0gUqMn/Ayy6n28/u11jo4jrjv//4KX5+8WxmYY\nxhbgq8Bp/B8AO/LE0cXXP1+Txa8Y1cEArOfbYqCzBqtKoRoGpSpxXs9TzQqtPketi4RXyJSXEqw+\nj7pQCI/Ml74EX/ua650C/5hocZ3qkahlPLxSAHtt2F7j6af0r1njX4DT61nkMZaBgI4UK84T3jx1\nPL0SEMjtiRALkT5UeHIuugg++lH3HBG+pQNt1eaM1zyU+XLyXNq82c2KVqt3RtzDC/gKL57MJ5Pv\npXKbdG2K9NS6opqqMUVOvdva2sYz22327rTY8J9TLDv/Wf73pw+waMExGPlRpiaGsXMjlArj4GQr\nO2CEKdFAMVhP5xExEi3wzP4/c8xxxzL/aAMjNEpmcoDBwX6SyQEMo0SxFGDcTrlE/6kGBtOt9GXb\nydtRInmHRGGK5uLENIipSvI3EgzQghVvJ1jXQSDUimM1E8/Xk91XojG+gFIhAUqBy1zBJhewaTus\nEyto8pOtJq97o8lPtn6L7/3sAf7f2adz3eevJ1Bn8tvfGZxzDpxxhuv1uOgit1q9+m0tX76Sb3zj\nNpqbV/DYY+unx/uee8phXuJaWVauLIeAvf/Dn+Xya3ewJ/dOovPCROdHMdtMjAOEnkK6iLXXYnJX\nltyeHFO7p7D7bXBcb4ph4JlVrFQC2555LByOUizu5LTTVvPoo25oWDQaZ/HiJVx33Vq6u50Z9WLe\n8Y4lrFpVGRomQIlI27xnj2sQ+ctfrqJQqCyOuXz5ek49tZILc/vtG9iypZdjjtnEHXfAv/2be+zk\nk6/kJz/ZwPe+18sf/lAZVqaul148FT/jmc7TqTNAyver5lGRM6kJ/qcIi9atTWvWwAdWltjyHZcg\nv/+5NIF8mo7GDIM9Gf7z5jQfWpGmqS5T4SXpeS7N/l0ZjjvG5Z8UJtOECge8KbMgyBdCCUJxF6Dk\nnATR+hTZfIIf/SLBGW9NUt+SgEhq2mvSP56kfW4Z0OwdTDD3iAQEgp5jIsZQ9XLojEF++2m1xAtC\nvAzUfvXhdO1VW9drMTR7Za71M5DVEi3hpQeI5/eSQwGMLyb5u4AdwzAOA34JvBL4MHApMAH8HrjG\ncZxRv+tfjGAHvD07z2f7fmS0WoqDerUnpNaP1U/8UmPrYlQF50UUqpzNB1vNolENEEJlzRmdwidn\njdGFi6njtmdPOUxBJYMK8VNGu7v146TWxpEBtiDp+vF+vMRr4xDPJsLwzj67zJHy2gSq1eaRw9yu\nv34m30p4gD72MRckQJmzNBuekAwuBOdFrf8iGyf8eDNqMgevzUUGhGLc5Ersch9VC70sjz5aJnDL\nfAcBPq6/fhm3376RtrbK68LhXs4/X0/87u3tnfYkXHJJR8W31tvby8UXvodb/v0O0iNJ6kyLzKhF\nz65Rtj/+KybHhmhImARKkzjFcZzSOE5pgspQM4jW15FojRNpiNDQGaJn6Cn6x54l0djMCSc1Y9v9\nwDgAdjHMqFXvApnJZgazbQxNNkEuRCxfIFXK0lIcn0Hyb2OMsFHJbckTZDjUxECpntFSnFKwk1L+\nCCKFJrpjDUQmGyg5TUCk4jonEmL/aJgMu9j+3BN0LJjD2UveyqhtcslV57FvtJeBzDATVpmPE41G\ncRy99yIajQJ6AGEYUV772in++EfvUC2/dkPNIQIdAaLzo0TnRYnNjxFuDE+fE8qGGX96jMzODE6/\nwymHv4nB577CdZ+AO+8sc1YikTjnnOOGeDmOMyNN8lvesoQrrljL5z7n0NFRBi3Cy7Jq1Vr27u3g\nu991PSmm6Ra4vPjiMqiT68XIx8BNr7x1aye33+6Ckh/8oJfHHts0/d1+/ONlT8tNN21gzx4XtOgM\nHaLAp1zcWIR6CdAPM73KKudO/dbB2xgkG22qhZbPaKNUnFF48dc/m+DhLRkufXeaB76VoS6U5tyz\n0wQLGToaM0yOuRm8xDWFqQyGlcYoZGd4JXXiGAGMSBKLJDt7ErTPTdLUkWCymOAXv03xhjMTJJtl\n74oLUp58JsFXbk3yr18QBPkkhOPs2ReoGn5dTap5HeRxU8HlbJIo+YEV8S7lkgheAKOW5zqUvglR\nAY+uNh1UjziRz/U7pxaR+1oLX/TFLC842DEMIwH8ArjRcZxNhmG0A0O4PJ7P4oa6Xa657krgSoB5\n8+adtHv37uelPy+EPJ8TwguJ6zwUtfRBZ9X1Oq9WT5GflUG3OAp3sUq21J3rp3RWGy8dkBHkczX8\nSFwjb4C6kACYuSCr/CC5735uY1kZV0n1orqzroaLeh9Zqlm35Oxdqhfh6qvdrDYCdOkKSqr8EtUD\n4xWG5xdit22b+26KRQgGZz6z+n51Soea2EH0U/Z+CPHaENzQsF7mzl1GKrWRjRs7Kt59OFxJwoay\nMnTttW7WqUsvXcZPf1oJPkS6W9l6L4/TKaeUa3vIlv2tW2H9etcj0Na2ggceWF9Rw+ioo9xsVCKF\nLsCcOQ6T4zY3fOIz/OxHv+LMfziPzOj5nP56i2gwy0jvAOnRHoxi5gCIcYGMUxoHx42XNwIOoXgB\nI1agFMnjRCxKZpZgLEckkSfVCI1NAUwz4IaVFeKM5eoZmWqgf6KRgUwLOauecCFAXSFPYzFDG2O0\nc8AjY7gemQZD8QYBaSPGoNHIsNFAulRP0WkkVGoh5XTSVOokUmymRD0QACBfLDA0OcJAZpjB7DhD\nUyP0TQwc+PcI/dlhBjMjTBSzWIW8FlwEAlF++9udrFunz8YlQIJIPRwIxDn3XD2AEF6P555by/r1\nHRx2WG/FcRl87N3rcPNXruH7W39AoMMgsSBB53HdBDsNMgUXcDklB6vXIt+T5+iGo/nwhR9mbvRU\nzvp/19LXV+kRefWr13PvveUQLyhzVkQqZLnui2XZtLauoKtrPevXw913V9aEEQkD1qyBc85ZyuRk\nJ3fccSVbtrgE/U2bXE/KG9+4lKee6mTNmiv5yEfc4pcyeV+tg6MaKNTv1isjp6wQijVg27bKZB4y\nQFHXJLUtde3aswcufU+eL346TVdLmu6WDE9sy3D37Wk+uipNIJ+huS7N2GCGhmhlccbcRIbdT0/Q\n3ZzBSmdorEsTKNRGkHcCYSasBHWNbgavMllepB1OsW8gwZwFSUayCb56e4p/ujjBouMT9I4m+edr\nElx7fZIPfzxBOhdjyxajYi+rVYn3AiXyPiDvZzBTYdcBylrrYoljcruz0aX8wIH8LKohSr7PbEDM\nbJL/iP1VhASrhk0ZiKnhxrWMhw6kHKweWu0eLxWPzwsKdgzDCAPfA/7bcZwva44fBnzPcZxX+rXz\nYvXs6ORQJoTXYlMtc5dXH9TaHn73q2Z98RPVQqZLA60+hwjRse3KOjgy50IXWlTN4q+CC51nR00w\nAJUhP16FENVMXTprlK5P6jPI4yG8EDpLjZqlxe99yAu9GD9dSmGxqMpFJKvNF7+FVAWHcoIFtbaD\n38YgwsKE+FmVxLNecEEvluV6Pa65pqPCeiu8Hra9EeioCI0QXpabbqq8DmDp0spwJPm+ooK64Dqo\nfbruOheYXHxxubZHJBLThgeBy3fQHfOy+puhKC313TQmmombKRrqWmioa6G+roWGulYa4s0koyYG\nmWmPTKk0jlMco1QcA2eSoFkkXFcgXJcnFM9TitgQtWid08JkfoB4cpJkvRsWVXIMxq0kY1YDQ5ON\n9I41MpRtwrHriBUhVbRoKk3QxugBbswIHQcATURH8g/UMxRoZNxoxol0ULBbiToNxIotJK0mwsVm\nHOLuBWGDwclRnhvYS9/EIP3ZcRKtXVz4vnMZnAxy2z3r+Pb3v8twtg+MGE1NS/iv/1pLe7vD4sWr\nGRsrk9eXLFnCGWesZcMG13shvB6CQ3LnnWt5+9vLHJFIpAwEBG/l4ouv4t57y+DCD0DIx4Byu3UR\njLYAra88izPe9Woe37+DUtNfcIKux6xklyj213PuyYtZkFjIr777IPd/9X7CRnga0Ih5t3jxUhYs\nKHNPnnzS9YjcdRfcc085xOuRRypTIa9aVQ4Nu/zyDcyb14vjbOLb3y4fE16WH/ygl4ce2jS9Joga\nL8KDreMjqt+5V4iOuk6p6eRVQ5MKTsohuw7vudBiy7cz3LIuTXdzmv69GYx8mrZUmuG+DPd/PcPF\n70xTHyvXRZkaSzM2kKGzSakyX9B9qzOlFIgSiFYWXhydTPDYk0mOWJSkucvlmnzjW0nefalbsPFL\nX0nxnvcleOWJiQqvCqFI1bXdbw9UFWo1EuFQ9BGvzJIwcz+X137ZwHjRRbVloasGNmoFa7Uo6+A9\nRofq2fF6Flk3ku8P3p4dPx1KFTWS4W8BTF727OhvZABfB0Ycx1kl/d7pOE7vgb+vBk52HGeZX1sv\nJbADBwccdBPZ7+OtFlcpgwld1rBq9/Y6D2Z6L9TQL9t2053qcuLLi7SOc6BLuSysfdU+YHkh9jou\npxxWSYHgAoz16yurUOueWb7HwS4AXoqAaFvm4OhSWauLtezC98qi5ge+dM8mH5dFtZ7Kz+RVxNTL\nKyWHeO3a1THtBTr11JnARG5v6dKVbN7sgouVK9dX3E/ODnXjjWVviTgmeBAiS9Mf/qAPN4pEouTz\n+lS30WiUqakpz9oeIhXuJZeUSdiC07Bs2VpOOsnlO3zvew9SFzFpqZ9DV9vbWPnei4kE8/xgy1bq\nzCzJWBMNdS3EzDocx8IpTuCUxnBKE+TzgxQKIwQDGcxomnA8Nw1mwnUFjKhFIO7Q2BYiGJnEOMC0\nzxdDjFn1jOQa6E+3M5jpIJuLUJoKUFcq0lCcork0URFW5knyJ8xAsImRQBPpQDNFo4Ww0U6o2Ews\n30TSaiJUaqLkBBieHCMXMDjy+CMYmTL59g9+xq7+nzJijdM7PsCZ//gWPvvlLxCIBGeAj46OFfz2\nt2WAcdttZS+EDE6XLLmKLVvKwOSss9zrvvQlePzxSu/FhReWr1u8eCmPP97J17/uZuN68MFefvjD\nTdP8kUSik2uuqSwOuWZNmT8iAMRxx/Wycctd7BjZwY6RHfznd24jHSsSbp/COVCrw7CSHN2wiJ7H\nn6Ln8XZWvfsynvnd99n5bN90BrBYrBLQPPts2WPiZcTRZQHUgRD5W/Vaz1RLufDAfvKT8PnP60sE\n1EK+7tnnMKdjirmtaR5/JMMJr5jgycczfOPODNf8c4aJwQm+dmuGee0Zli11CfJYGUYHMjTG0tiZ\nDMP707Q1HBxBPh9I8PQet8bJK090w7wEcX5s6kB2r3CSUjjBF9clWP2JJB3zyt6WBx5OcvNXwr5J\nPnTej9l6KXTGNK+92gtsqvf1Axlev4tnUNvRJclRPTuyAl4t3Nlrb1MNcuqeLcTLIKc+g3w/9dlq\nfUfVjJi6jGzqc8rjVitHphqQ8zIUv5RAyvMlLyTYeQPwK+AJysHenwDeDbwaN4ztOWCFAD9e8lIH\nO34LFOgnZDXLgV9cpRDVWiAviDrPSzWvgfAK3HLLTO+GuvHK94QyCFK9OF71S6B8HLzDoOR71sLv\n0aXQlI+LzVmEeukKtlbbcNQ2/X5TwY0IJRNpnL0WZJXPo6uhVA0geo2PLuxOtvLdfLPrGXMcdy74\nvRPx+0MP9XLRRctYsMBNaasCExHideON6yueTYAWOVTLqwZHJOJyKLyyQwHaVLiGEeWRR3Zy440z\nOQtr17rhRuvWldPgCsCydu1abLuDcLhXy4W45Za1TGZb+fy/XsuvfvZTGhId1McbeN2Jp3Pa615P\ndsxiz7N9hIgQPEDedZwiTimN40yQLwyQyezDMIaJ1I2RbLCJ1LlgxjwAZoIxm1BdnmiihBFw38lU\nIXrAG9NA71gDY1YbQacJZ8ohkpuksZSl1RlzvTGMTPNjdCT/kUCSoWAzY8EmcoFWMFowSi2YBRfI\npKwmgoEUI7lxhibz7B7qYHhyO8O5QVZ+5BKIh7nx5uto6E7wprdezO133s4vflHmbbzxjTOzY61b\n5x5bvHgpf/pTJ1/7mlus8ckne/n5z11lXz0msmrt2QOvfvVS3v52F5jcdJNLXl+zZhP33utm6jr2\nWBeY3HffBjKZ8nVQDkndts1V6mWukyqbN8PN6xzW3d7PRMytW/P4vh3sntrB/uz+6fNaIu0ckVjI\nCd0LCQwu4r6vLOTDV3SxdKmh/VZ0v6lGJR23UA1N1a0Xsoi1TvDZvvWtmQWT4YDX1SnxoauyjPam\nueUrGb56U5rVH8rw/14rpRK2M4wPpKmPul6SydEJntiW4dWLBEHe9ajEg2mCgRLVpFxBPjkNRnKl\nBNH6JJlCkkRj4gDfJMmPf5nk7UsT/Nc3E1x4mVucMW8kuOmrSboPP+BJkQjywpMscyjUcfUCAeq+\npdvH1PepSrXEQzLAFDwlLz1B9FvNBqf2QU3DL/fdK2mL1/zzC8/WjZXXHuF1XOxfakiyysFUw67l\n55ejNXTFpMU5fs/t91x+RlcvMKO+k1p1uVrED7geqpfnpQiWXi4q+jcWdVHwspbv2eN6EYQHRD0u\nzk7eebwAACAASURBVPFbSKotproFTFRlPuKISmW5lucRC+/NN8/cEHX9kj9k0LvYZSVfByrEcVHH\nRWed9PJgyJwm0Zau7oqu/6rVSGdpUv+vJn8AvRvbKzzu2mtdl7+oiSLuq95LpB0Wqa11sdle4Woq\nANWBGt3zir/7+3tZvXoZH/nIRj71qQ4cpxxnLDgtqhdm61Z4xztcXsr557vZmLZuhTPO8C4cGAh4\nE78fecTlVwgOhewt+dSnHObPL4MWwb3Yt28ta9Y43H9/JSh5wxuW8JvfrOWeezr4wAeumuZBWFal\nt0CEKoXDJvm8zYorV7Dsn9Zx0xqLT37M4pv33MVTT26nIdFGQ7yJw+ceRZ3ZTNEuVPTfcRwse4xE\nysGMpHl29+9pbhujuS1PodiPGc9hSp6ZcF2BUNQl6Jccg7SdYNRqYDDTxFC2hUm7FTttYOYdko5N\nU8ENKyvXjxmhjTFCRqVymSfIYLCRoWAzE6EW7EAL0Eqg1IxZaCZpN5FyGokkUwQbYgQTYbKYNHSZ\nBFNuOuUnnjU5/0KT7zwYpHuOMR2y8rWvlQ0KuoyV8nxU56D6Pcvnqhu2zAWR56/83cuhPXJWQdX6\nLitdDz8Mq1e7ab0/97lysovzzi+xe2I3O0Z28NMntvPjP+0gOm8Hkwfy6xgYzE/NJzG5kF9vWsiH\nli1i8QkL+eAVTRUKmBpm6rVn+Blv5L91KYp7euDUk12C/Lb/TfP+yzN88MoMv//1BHXhDO9dnuG7\n96VJRtK8+Q1p/vT7DKefmuEvj6eJBtK8elGGiON6UfLZNHWhmUVUtWIEK4ozWiQohRPE6t2wrbSd\n4Jk9CU44xSXID2VStHQlKlIRYybYO5hk+eVx7r4nULMBULfG+RkSRYIRmUMhxK/IsVeoni77ok7x\nVBOZeBnOdMWy5eNyP9VaYyoY2bwZLrvMzRh65ZXe+5javtdvXp4NVcR5qnFON3ZyyLOchVL+Rqol\nAPIyvAqZbcIjv+eq9bxqYKYW7s9s+3Kwz+XV/kuJqyPkZbDzAoiXtUVnKVcta8/HZPL6wOSN0C+9\noi4mGCpDErwWQ3XT9rNqqH31s/7o3LN+C4lKTJetPGo2Lp3oPnAvACkr9bKCJwMWdQFX49HltMk6\nMqc6j9QUy3IGMNGm6n2T21m1qjKzkbhOZPESmcHUMdB5WsT1cniY4CxEo/rwsEAgyoYNO3nooXJx\nQEHu7utby7//u1NBGJeJ31u2VFY7BxeYPPXUemwbDjvsKh58sMyhuOiiFTz99HpuvtklYcu1O0Qo\n26mnut6CtrZOlr3rfXz4n+8jFppk/Vc+STRoc/83vkN9XQtz2g9juG+ckBMlYAQrnslxHEKxAOOZ\nPiZzezHMJo5e2EuRPpINA5ScYZzAOKGYPQ1mAiF3nS2UggfCyuoZmOhgIN1GwKmDXJCwZZMoZGku\njdN+gB/TfiCsrNGYqYSmjRgDoWZGgs2kg60UAi1AC8FiM1G7gbidpIk6CEeIt8cJtTcSakvxbK/J\noteU68MYocAMMC/S5grlqpaMVvI3oCqJovCoDH7Uuk/ielXhlMMd1W8X9CnT5T7KYThyKvPLLoMv\nfMmm8ahnWHfvDo54/XYe2bmDhqP+is2Ue0ExjDN4JOHRhbz33IUsSCzi81cfwxc/F+faa8vKrFc4\niVoEWcil78lz9+1p5rRm6H0uTWdThoF9bgX56cKL0xm+0mRHMzz22wyvPS5N1EiTz2YYG8gQD6ap\nC9dGkM+XwpTCSSLJBLbhhnFFUm79k//53yQnnpqkrjHB6GSSw452gczWx5OkWhIce2KSx59McMF7\nknzjWwlOPi3mLnLSu5DXaK/EALVYyGtRsL0UP52SC25f7rhjZiIavyQ0XmFKKgjQeX1EOw8/7IKO\nas/lV29M3s+qhUMLQ5ooTO0VEi3fQwf4Doa87/etiuM6j4yqD+h4LXJ/a33vz6fCXkt71XjGs+UL\n+V3v9duhysuenRdIXmpgR4guhlUWeYH0I7nrrvE75rV41vIRqJuR6i2QC2r6ASp1kffrs66vunPk\n++qyvanPIFvEVEtYLR+uqsjpnknn2VHBpAro5PFROTk64FZhrdVYFIUC6jUual8feqiX5cuX8Y1v\nbOS44zoq+iKT7EVq2Xnz8OSl+KXfFZyVq65azcMPV4aAnXHGWj784Q7e9KZKfoUAUfPmVXpTLMtm\nyZIVrFvnHpNrcIgwpnXrNtHTA297WzmMSYRGfeQjm7j2WodI6CJeecxhnPa6JTz2yC/IZQq87S3n\nkR2zGB2wGOq1iIQKM54lFAmSaIhQ12ASbyhgOz088ug+6lL7eeWr+nCMQQKhUZxAmlAsRyhWnNb5\npgoRF8hMNjGUbWdovJlQwcSwDUzLotHJ0OKMT4eTdTJMuzGmJfkPBhsYDDYzGmpmMthCMdCCUWol\nlE8RzUZIjAdpKBiE40GC9VFCbSmyda20n9TFn/ra6DwizLz5hnY+6zZN+XvZvNn1Cjc3w/CwN9Dw\nWuvU+Sl7H9U1Rp7DXsql4NfpQmBEiMv115czPqrro2i3qSPDL3f8lcf27SCX2s62fTvos5+dLswZ\nD8WptxfymrkLaSosZPNti7j4nAW8bbGbCnpel+XWNdnl1j8Z7nUryL93+QRHz89UgJTMcBoj73pS\njj0yQ9RIM9jj1kwJFmonyBOKgpkgH0ywsyfJ/KOSRFNJhtIJoim3QGPX4ZUV5LfvTLHo+AR/3JHg\nPe9LcMc9KV57WoKtj0Y8OQN+Wc505+nmgTD0iP1N5QrVEhLktXd5eWxqmZdiPlebxzrw49UnnQFM\nVuTPPRduuMEF1PIe66fw6vouK/6y+BkTq+1b6u86b0w1pVcYEVRwU2s5BK97iPnnFWLtpW8cqtfE\nT2rRp3SgUXeO3xyvpR+1gL9Dae+lKC+DnRdIZjtxa5lgYoOXM0up96ulinOtlgjVUwOV1lLwJtbp\nvCCq1UnUpqmWLtFvM/DacHTpS2XQVMtY+yWM8ONgeYWHqYBMDdcR/dJtSLqFXvbCdHR0KOdXZiqT\n54PsgVm/fj2bN8M73hHT8lkikSi53BS9vb0zigeKaujd3fr6HX19a9m4sYN/+ZereOAB19OSz9vT\n9926FT796UoStuBewMyigjLXQ31X3Z0lsuMWz/7VYs1nLd5/hUUubREoWWTH3P/SIzZOqTTjGeMp\nk7qGCIFIiK2P5QjGx/mHMwZoad1LZrKX53b3MXfeEEZwHMJZgmE3rMxxIJNPMJJrYCjTzMhkK1NT\n9RhTQf4/e28e50hd5/8/K0nlTl/pdNLTM93D3YOgIMglwq43qzJeeICutzjoV8ELEAVBBVwBhXVB\nR8ETXdQFr8XfeuGKgMKCN9MwMDPdM32nO507laM+vz+qq/NJdVUlPTMg7s778ehH0qlPfa761Ofz\nfr1Pb00QrlfoaeQZYGnZwd/Zyb+Mn1lfnHlfnKwvTtmbQNAPjR7UUoBQzkNsoUZXNoOnUUSEAgST\nUbSuPvqOGmR7eZhj/2mEqXKCkRFlZY3J75WVYbMzqbSuUZNJNdeOmevEmgjWiXGV67SandkJKtwO\nbjtGUrbHt/bdNFEKBJr+LB/5ZJqP37SNF77+z8zzV8Yr25koNV1Gez0RDlP7OczTQ/aBCK/a5Odw\nf4P77y4S9BTo8udJ9Rm+J+v686iNAuidOcjrvgiZYpSuRBSNGNE+A4gU61EifSYwMaJ6ff5LMd71\nviiJoSh/3t7F0c+MSuGIY+Bt5tyRg4LI5lHm3NoxkrLpm50Pp1lW3v/l/DXtGFM7YOukJTDJ7gyx\naqflcnb7cLvAKNY+WqPKOZHTOO36bddPeR4++1njd6eIataUAHbjkc1DTRNvq5m4W9/trlufiQxu\n3YQY1udx/vlw+eWdmcmvhdwEo3amhPDEm1+5AVM3fqDT+p5schMY/L3RAbCzH6jTBbm/F65VHWz3\nosm0VhWu24ZuNYHqJDS00yZqJhXdvRuuuaYZlhKcpSBOkp9ODkCZsWsHBtvNh7VNOwZR9hHoJISy\nk2Olmbvlgx80/GAGBlItbVlBi0xypDIzGtnGjfaAxuMJcvXVO/jIRz6Ix/N9qtVWk7LbbjNyxjzr\nWVuYn2/6tJj+N9AafteqoXnlK1+Jogzyjne8kze9ycjDsXXr7StjdVPhj48L3v6WOp/9F409OzWG\nBzUKS00Ak5nTmJvSCPpWM5x13UN3PEB3f4BIr0K4N09NydGXzFDQ0tx37ySxrikOPXQWPIsITx7F\nI1buzWrdZMrdzOf7WSz2US9HUCoe/HWdblGiV8+RUpbaOvlnPDFmfHHSvn7yvn40Tz944ij1bgLV\nIKHFOl175oktzCIqWUQlC6KM6O0hctgw/pER/CMjPFbcyNkfGOHrPx7g5FOUVWtdZiplvwCrCY11\nvbkxknZhTO32HVmraTUNM3+3mi+tiXQdakUmdxj5T6jmmd2dJzNToL+rQH/UMOvKzhfw1AtE1Tx/\nmUkzoWbYVi+wQy2zTWmQ9jZNrIZqdTZVq4xWq2zSqoxWayQaDcwSAoVSPYovEsMTjFIhRrkR5ZGd\nMUYOj9GbkhM0Gk7087kYiaEoM5kYH/5YlPd9OMZxJzcd5DvRZph7iDWZpd3+Z5evBpo+SVZfKWuQ\nA9Nsz+m5WNuy01h3GvzE6Wyxmw85L8lNN7lrH9udFVYNojzP7SwPnEgWHsDq88hpXuyCBNiBBTMd\ngZumykz+/IIXGPVZI5vu7bhk4YRdomy3598u+lon7a71Huun1YdtrfXurTbIyudYzXD/Xmgt0eGe\nynQA7OwjrUVj0+5Fc8uTY3dQyBoL64tljbxlkszIuCH2duNy2lis47EzgbOOSWbyrap1uwPEqZ/W\nMdn1zazT6uxo3ttOBd1O2mkXzcXUeplzAa0AUDYHPOMMgGmgmYxSHsfVVzd9ZExA4+QH086k7NBD\nd3DooU3tjKKEV/KTvPSlKV784i381381AYsMlACe/vRXcuaZgzz/+UbywFrNyO1hAppodJCzz26N\njmWdOzkJ59e+qlMpaHSHq4w/pvHlmzRevbmpjSlkKhSzVRq11dqYUEwl0hMg2uMnna9y9/15XvSy\nLKNHZShqi9zz2zTHHDOJ3z9FrZ5G0ExgqdX9ZLQeFoq9zOfi5IrdKGUVb81DqFGnW5ToF1kp5LKz\nk/+ct48ZtZ9FX5y82k9DHUB4Blic72GoO0wkrzC4NEdgz+PUdj+Gnp2FmuH3oagq6rABZip9I/Qf\nNcJSaIT1J4wwpSX55zd5VjF2ZhJF839YvdZNnxcr2HbaB2RJsR2z5CZRNUkOk26Cm49c1ODTnzDA\nyVB/nj8/WODoww1QsjBdQKkV6AvnV2WZR8uh5Q0HeaoF9EoBT60A2J9JNWCnqjIW8POwGuBhf5Dt\nQS8FjwFbPAIOIsiR/i5G/X1s0JP8/kdDvPkN/ehqjE9/NsYHL4ki/EaI4cl0lKGDjAzy9/3OswIm\nzFD+pumcm68h2IfWl5+FG3CU/SucAIYJWq3MqLVfMqiQ14TMHO6ND6P5O+wdU2TdS+2AtpnXx8lH\npl395visWg9ZQ2kNWON2bsnnsDU5M6xOMG3tj/x+grtmyiSndXLmmQYQNP3e7OawHZ/iJtA76yyj\nL265W+zAmpspthNf00lfnczKrdrpzZs7S7fhJGhw8y8ySQiBLgxh3NAGgRDQ0AUTuwXrhozrE7sF\ng+uaZXUhjD9d+i5WXzfrcruuC0FDb37Xl+9Z1ZbUnlzW+L95n/V6JiPo6pbq0uV6zT4JGnqzrg19\nYd7+nIOdJ+1JpgNgZz+Qk2bB7sV3MxGxe6mc1NhODvpgvNyPP94MzQyrD0TrdzdAs5bxW8nOBK6T\ntpzsuE1y0h7JkqR2ZnOy1MeuXrlvch/cDnc7ECi3BasBoAnoJicNqZzXex653Bd5xSuamhK33C3H\nHLODVGq1SdnNNxtJFeUQyooSZvPmV3DJJdfwnvekOPTQLXz7261+MGabci6Ra6/dytzc9ErOD6sz\nrB0TZjLM3/mOIJWot2hgiksahaUq6WmNRqVCbkGjWq6t4l+9Pg+RHj++UJB4yoeuFrjr3hwve2WW\ncn2R//n9As99fhqfOkulPI1WnUWIKmC0XayFDbOyfJyFfB9aMYJH8+GvC8J6lR5hhF2W88f0KEWs\nlFdCzPj6mVPjZNR+imqCuj+JGk6BN8VDDyQ4dr2Pk/rnCc7tJvvo4+y8dycbfOMoFckxXFXxr1+/\nAmg864ZJHjtCWt3IyHEpFK+3hQlyCh0MreHbzf+tUfvM0MHWRIDWd0G+p2XdDtVanOBnJgpc+fE8\n7357Hm+9wKEbms7xZrnSUoFH/pTnaYfmUWoFPLU81XyBkK/zDPKKlJyxguH0/vRnGckY7/xlFy96\nWZTuRJSyGuTRRomxaoaHMvM8Vp1kZ2UPteVcKwFPkI3Rw3lGapQBxQgcMBI5lMMOCq60Z92znXxR\n7CTGVt8Ta9Qo877JyaYZnRyAwWzXLGfHHNtJ1O2eldXx3y2U8ebNxvd2TKAbtRP+OGly3M4Lpzpl\n4Z1TcmQnCwCTZJNvuR3z7E2loK9v9bOzWiFYg9xs2WKY85maN2gV1pkBcHSJYdWFYGIC3vDPgquu\nEnz843DTF4zrVoZ4z6Tx/f3vF3zmGuO3D18ouOoqSKYMJvePf4L3/D/BDdcL4glIDDQZUrOumVlB\nf6KVOZavz80L/u3fBO86D/r6lttf7nN6AbZ+SfDWtzWZ4u4ewWKGZSZ4uV69lXnOZCEWEzSk69kc\n/OedgkZDcNrpMJAU5PJw112C004XhMJQKAhCYUFDZsR1lusRLCzC/Q8IjjseupfbL5XB7xeUKwLV\nb9xXqcD2xwQbNhj1yqDCZNqrNZidE/T3g8fbZNqFENQbRt8iEQFKK0Ax+6I/dVjjJ5U8Cng9Coqi\n4FHAoyh4FAVl+fdjN/Twlbec8Lfu5godADv7kUzpirnxOYWdlBlc+ZrVAdAqGbFKV0xHdDv757VI\ncTs96NwON6cIR06f4AwEnSL0wGopTaeaHTuJoXnIbdgA0ah9VDbrvXb9tjt87Q5ImXk56SQjLPOH\nPmQEBRgednf637FjR4sfjDW3y1VXGWZjPp+fer3K5s3nMjV1I5oGk5NbSKcNQFOtNgHNxISRJd0K\naMxEhU7PWZYQrx/S2b6tSnfYBDBNMLMwY/zfqGjUq6u1McHIsjamN0C4t0GoJ08wlsUXWsLjXwTv\nAnV9jnx+lnR6llhsHhMN6UIhq3WxWO5jId/PYr4bvRjAVzPMymJ6mV5RIKkYYZcN07KMvZO/p4cZ\ntZ85tZ8lfz9acABCKXyRQUq1IfoS6+mL9ZPQqwyrU9QmJkj/aZx7/2OcEzeMw/Q4elECSF4f/vVD\nFLuGueuRjbz0HSMkjxnBv3EEdXAQxedrAYPm+2w1P7PL/2SV5MvJbk0H/Y9drHHBu/N848t5Pnu1\nATaUWoGBrhwLM0ayxje/zvjtlz/Jc+oJebb/1XCQn53Is3Hdsu/JGjLImw7yZg6UiogR7DL+L1Sj\n3H5njDPPitGTiLJQjC1nkI/xgYtjJIejTC7EmEob39/45sCqfXPzZvjm97Lkw9u47/ExZvRtjC2O\nsSu3C10Ya6vL38VB4U08cvco73nNKKcevomNXRvxSuZiTntsJ34ebr53Vm2JLI03gQU0w+VbJc4m\nvfoswWc/Cxd/RHDzLYLJSfjYpYKPXy44/niY2CNYt05w/wPwyU8Jrr/BYI513SibGhQ89HvBNdfA\n1Z8WJFOrJbXTM4KLPwLve58g3m8wxtMzgkTCuD47ZzCB8f5WyW1j+fv8vMHk9fatlhA3hGBhwbje\n3WP8vpiBb31b8NrXGvXc9l3Bq14FsS7RUq8uBNksRKPGb7mc8dv/918Go/n85xvlwuFWaXWhAL+5\nR3DyKYJgsNmXUknwPw8Z+8XGgwR//avgGcdCNGa0W66A6jfGmsuDTzXG4lNbGeJq1WCCyxWDyY7H\nBQKBVgWfT7CUE4TDrNQZCBr3gzH3Dd3o//9F8noMRlhRFLwSU9xoQLmkAAo93eDzKQgd/D6DedZ1\n8KDg97cy0vU6BAPG91IRYrHmdUWBWlUhFFSMz5Dxu1aBcFhZrsPsk1He/K1cVohF5bqa30tFha6u\nZtlCXuEHP1BQgBe8QGF4Q7Psnt1w538qNBoKb34TxPssYMCcDxS8HpavGd/NdhXLvJntejzyNbn/\n0hx7WudjpSwst208B0WBmWmF9euNvng8zbqmJmHLuxS+tFVhwwYT0Kxuy43Wwlc+WXQA7OxHkm2r\n2znx2UmZnMCEneRPVpt3kuPG6bdOpWxOgMEct3y4y1JpOw2LaUbmlhjNKaCAndS1ndRQZkTsGBvT\nxMcpJLg5XjvtnBlUwe4+VTUCBhSLt3HnnamWOuLx8/j+97+Iqp7Lr35lhDqenjaSUZr5YgKBMN3d\nhobmpS9N8YY3bOFb3zLCKwuxWgujKIP89Kfv5NRTt1IuT/P1rxug5Z3vbDr9X3HFVoRompQ5gcWT\nThJUKw2KGQO4TOzQmJ3UuPuXGs8+QUPXjN9L+eoqbYzHq+ALBYj0BPjjwyr/8MIK/UNZKnqWn92V\n4SWbF4l0palVZykUZmnoMzQazZDJ1YZKRutmsTTAYjFBIReFkhe1Kgg2anSJEn0i1+Lkn1CyWKmC\nn2lfnBm1n7Q/TtafoBpM4e0aRI2tI9K3gXj/etbFuxiMBpmf9DDUtUR1fNz42zVOZts4j989zsbA\nOBTz0iA9KMkhwoeMrPjQ+DeOkFZHeMuF6/jaNw2HcbfIO+Y6v+ACwUc+VObMFxoZ5FN9eR77a547\n7zAyyPdHcyvZ4oWWp7BYMPKcaHkWZ/Jk5wqs6y+g5fJ0BQt4OnSQr3vCLJWjhPsi1H1RPOEoS+UI\n4XiUQi2CvyvCkhYl2BNhYi5KcjhCzRfhoW0RBkYiPLQtzC3finDBxWEOOUJ1NJlILwj+7d/g3C2C\nnt4m87ywIOjqgcVFo+y3/x1e/GJBNCYo6mm0wA52pHdSUncwVdiJEkqv9D3kiRMVG4mxkR1/HOGU\nZ4zQF+0H4OFtcPjhTWlyviC49z447HDBAw8Inn2qoKfX6EOxZPQ3EFxm6HVBuSzQMaTE5nhMCXEq\nJYh1N802dAHVqiF9VzwGcPB6oVprAoxMVhCJGt893mWzlIagrAl8KggMKff/RYZYZjgVDCY1GDAY\ns3JJIRwGn1fBg8FwKUqTIfZ4oKYpqKrBzPn9BiNXr0PAb1yvVw0GMxCAUkGhu6vJFD/8V4Wjj4Zw\nSLEwl61SakVRqJTg3nsUjj9OIRKBn/9cIZdVeMlLIBY12v3pT+E5pyrEovCTOxVe+lKF3h7I54y6\nvvtdeN1rFfp6jQedzyn09a5mrpeWjM+v3KLw6lfBoYfKTCbLzLGFyV3u60Ja4ZrPKFx4IQwmm/Uq\nisL8HAwOSsyzojA3qzA4aDC0M9Nw0YUKn/mMwvqhJsM8M63wrnON71/eajD3U5PN5/HOdyjccrPC\nyHAro21liO14D7AXBlsFAU7mbXY8ilN6j7VQO2bd3Lvt2rGG0H8q0lotbfZn3X8rOgB29hM5Sfmd\nyjrF6TevtzMBkFXknUTOcVrQbg6ldqGL7fpr7ZfVFMNuU7P2yU4L42ZS1gmwcxqHtU+dapys92ze\nDLXaNKr6On7yE8O/RiYzYEAicS4PPHBjW+1NuVzmDW/Ywq23GnlfwHD6n5oycsKcccYrKRYH+fSn\n38k992zlrruaPjJmfx98EC6/QrDjcbjzJ4ITTlytum/UBaVcUwMzNVFFy2v49Cpzk1XmdlfpjVTR\n66u1MYrqJdzrxx9VUbsE/q48amwJTV/igd8v4g8uEImkiYTmOXjjPD5PGgUjZK8QUKqHyFR6WSgN\nspCLo+WC+KsK/lqdsK7RJQokWCJFxtXJf9ETY8bXz7Taz7y/n2wgQc6bYKo0gOgaQPQkqKndhPAQ\n1qGQg0h02f54vMBBTBNNT9O1ME3XwgzR+Rmi87PE6k3QJVDIdcdJd6dY6E6SSyRZ6B4g3ZMkE+vF\nq9QJNEp4KkVivjJBvURIlPBVjc+op4S/XiailAiJMiFRIizKhESZCMZnmDJhUV7l/2NHulAoEqRA\niKIIUiBIQYQoEmr9Loz/iyJEQbpm3lckRJEgOp62bT7xpOPxp/EEp/AGp/AEpvAEp/Asm7wJoSCq\n/ejaOtCG0LV1VPPrCXgjaJrBeHpQ8PkMRquqKSwuKvTHIRI2mMJGw2DA/CpoFYVoxGAC6zXYuUPh\n0EMNRjsUNJjgRx9VOHIUQqFWCercHPzpDwonn6QQjzcZ4kpZ4Z7fwPHHKwwMmNJg+PV/Kzz3H41+\nlUoKd9+t8JJ/wmC4gWJBoadHoZAzGMOenlapr8djMNQmQ5xdUujrg+yS0W6zD02G2euBxQWFRML4\nfXFB4V9vgPPfp5AcUFhIw7XXKrz1rQq33AwXX2SM74qPK1xxhXH9+usV/vmNCv/+bYVzzoZv3QpX\nXmm0+YH3K3zkYqOPxz2zyQxv2QJbv2hIimemFN7+NoVbboHh4Vbmes8eeOtbFL72VeM3M1KgSVbz\nMqsQTRaSmZr5Qw5pFRx2cp6atBZmzNo3sLeesBNgyn5CJtkJQqya206Yduv43HLxWM3eOw1a5HY2\nWn9fK69hV59dfi1zHk1Bst38uAmOO6W1zosdL7KWiGt/K3oitS8HNDv7iZ6KYAfcQYp1c3TSRtgx\n2GuJ5GJHdpGRxLLUcdeEYP361Qyx0OF3DwiOO06wew+8+z1Nk4k9ewSpwdWObaYkd3JakEw2f5ue\nFlzxCbjko4aphNV0YW5WcM11cP4FTZOIvvhqx7d02vj+5ZvhLW8V9PQYZXbsEPzwR3D2OcZ103xC\nLDvbZZYEsa5mXUtLcMf3DUnqP/yj4O7fCF74QlMCLDjxJEgkjLL5AqCUuOuuu0E5lVOeHSQU/NSS\nHQAAIABJREFUgkLRKFsu/5FqfZyRkY0c+bSj0IXg57/4Bbq+LNlSFFA8oCh4vF6eccyx7Nq1m2zO\n0ER4vF66untIDCTRhZe5uSmEolKtxVDVAg1dR4g+enuh3hDkC4JozBhfqbQskcaY91pdEPAIwg2F\nmK4QFQpRffX3iDAYRJkaCAqKoOAx/jR/EcIZPOEMamiJYChDOJilO7hETyBLb3CJmL9puqULhVw1\nxlwxwVwhSaHQg1JS8Ws6oXqNiF6mR+SX/WKMJJhuTv7Tqglk4qTVfuaVODN6H7vrveypd1PVvCiV\nBmgNFMEKMwWGlDLa0BjMpxkqzpPMpUkszTNcmWewME9Ma/ZbAKVIhGIsTC4Qgl6Vit9HKKEQ7G4Q\n8WoE6iV81Qo9gTIRSoT0EkEqeBwc5Fvn1YPmCVPxhCkTpqaGqXgilESY8bkwPesiVD1hqp4whKPM\n58MokTBVbxQ1FiFTCRPoiZIphQn3hlA8Xgo5hf/4D3jNWQaz2dfbyvDmluCWWxTe8fYmQ5xZhP64\nIeU2GeLrrlX48IcUBhJNifHCgkJyANLzBpP6qU8pnLcFrr1G4cMfgqOPVnj4r8anzMR6lKYphCwh\n3jC0DBY8ChN7NN79sR2I+KOc/qpHmKk/wuPZ7VQaBphVPSobwodydHKUpDLKsw/ZxCP3HM4Xboi0\n7HGmI7ZTaF05pLUsFHLTFNs5gZtlnBhJO+bWWr9JVv8qu8Aybhp26CyVgHyPk3DJSeAjtyFru+V8\nYObcW7X1dgIut/nYG0beTtBlFya7nTbeLsmzW7vW35yemdPZLedMk/2OOrHI6ETD0Am/IPumytet\n4d+d2u/USqRdlMZ2a9yJJ7LOpxxdcG8jpbn1zY0nc+qzW/0H6G9PB8DOPtLHf/hXClq9hbkuFI3v\nv7tf8LSjjO/33CtQPIJnnWA49JllW22eDea9oglUtelEaNoGy2VNp7reXsPGuFYXZDIG44ti/AVD\n4PEI6g3zHoHXZ5R5Cj3OJ40UBUPdT5Mp9noAFPSGIfUNhxRKJcP8wK8aTNzi4gL5XJZYNEaiP4nf\nrzD28MPoegMAoTeMnVcIFEVw3DOfyY7Hd5LJpNHrdTwehYFEgpGRw+npDvCnP/6FqclxFAX0RoOD\nD9rIptFn8rvfKZxyssEw3nWXgmgY9sHRKPzTi6EnoFPNCGJeHZ+m08jrhISOp9JAFHX0YoOAsvrB\nCp9CXfWhRLw8tkeh4c9zzIlLdMWz+IJLqP5FGo1FVGWegC+N0kjjUbSV+2sNn5EEszzEQjFFtRBG\nKSn4KnWC9TKxZbMyOVqZk5P/tK+fGbWfGX8/mUA/5a5B9Ng6Kv4h7vzlEC94UZLD+gPc8HGVm67y\nsXFdA2+tyOxEgaH+AvN7Cgz2FlCqBcgvUtszSXb7DOrSPNWZJarzObT5MnqpNRGoL6zjj9bwR+v4\nY3X8sQb+WB01Wsfjbe2nrqjktBjRvigaXTy+J8qGQ6P0DkQp1GPc+YvYioM8/ijbJ7o47KjoSsLG\nqUXD/+T4U6KgGhnkO5UWWhnRTg5ZJ0muTFaBR6fSR7OezZuN/DROkaWs9xTreQrhMcYWjb9ti9vY\nubRzJTFnRI1wRO8RrPdvoq82yu1f3MQ3PnswB29UbeuT58QtwpWVTJMSs+9rYcCt0mZrGG2T4XKa\nQ+v9Jp15JuzY4ZwywNo3u8AT4LyerFYGbgywFTBa6zZJZjLt5t5tvZrX5SiYTgmT94baMd3WkNKd\nWCnYza0bI+/UF7tw1k6WBPsS4thOmyRrleyiojr5xtqFI3cy1V4rILQjp9DGneyPnYB9u2udCpSd\n6rOC5gPA5qlPB8DOPtIZ199NrlxbkYw2GjA7ozC0zrAdnptRWDdoqO8HBxXifbI0dLVUdMXGlmak\nC6+iUKlAJNJ0NvN6FEol6Io27y8Wmo5spaLCPb9ReM5z4Dd3G7bFxYLC8Hp7xzeW6zRtfz2Kwvg4\n/OgHCptfDt/7rsKWc43+fPlLhlQ5Hlf4wk3w7vMUBpbNJhYWDEmx16OQnoerrzbsfZ92pML8PFx9\nlcILng/XXWfY/l5yMTz96U1zkb/8WeH66+GC8xUGUwoXfhiuuUZh/TqFmRlYvywp9ioKU1MK73k3\nXHapwgknGI51Cobt8P33w4c+qHDdtfCRjyh88xvKygZ/3nmtQQ5+9KNpXvGK17F162289a2plUPH\nyeTM7w/yve/t4Oabm1HO5MSZ112X4lWv2sLMjJGDplqtcvbZ5zIxcSNXXw0ve9kr+ad/MoICbN26\nlV075rn1q19lx6NG4sugV2Nmt/E9t6jR0DSqhSq6NeyLohDt8eMLBehLBhA+ncT6HBVh5I7xqIvk\nS2l+c88c4fAMhxwyi8eTBpralHI9SKbST7Y0xEw6gdrwo5QFvqpGuF4mtmxW1pGTvy/OjL+f6UCC\nbLCfaS1BRhvg8KP60GtR7vqezpuel+PY+BKJ6iK9oWYkr3K2wMN/KBDz5zloKI+nVsBby6NrVaoF\nL9W8b/nPS7VgfG9UWlGKNyRQuz1oqp+e4TC+/hj1WA/E+/nlb3t4ySuidA8YDvTpfIz+dbEVh3rD\nub6LibkowwcFVkm63UKZWxlDpzwenUppnaT3dqYbdgyLWVY2+wH7XDudHtJuDOJ8aZ5ti9v47Y4x\ndhTGuO/xbehde1bK9/jjPC0xyqa+TYz2GZ/rY+v53W89jhJaK+Mn549xSpDpNp/WSIHW5ydL3+1M\nkzZvhu3b4Wc/cw8z3U4TYY4FnBlbee2df74RErlddDizvDVqp5uUXV6nJrXTaLkx5E7jddIk7Q2j\nalenHTAx25HXjR1Q6xS0dNova3knMPXgg0ZwIVkIccYZ8JWv2Cc17UQT4cbAOyWKtYtGKj9jM8Kg\n9f3sBPx1+hzbBRVayx5qV2en89duXdq1A08M0DmgGdr/dADs7GcyGRKnyGR7W+daX3zrhu8mMXKq\nR94IZftiqy21HeNgHoxmWE753pNPNtTnqZSzg59dkkO3Q8nKdJpmI2ZuzY0bjWABtdpt6HqqJTHd\n1Vc3k3FedNGNK/Wo6jRbtrQCmlNPfQWTk9ewa1eKYHALi4uGf40Q1ZX7h4fhxS9+JYccPMib3/h2\n/v0b3yO/WOYNr/sAAY/G7B4N6oa/TDat0ajWV41LDXqJ9hhO/pEelXBvhWBXjrmlJXr7F/nBnYso\nnjSnnTbLYmaWVGoaXW/6m+hCIV+NslQeZHZhkGq1m0beS6BRx1+rEm0U6CZv+McsO/nHyeGxaIYq\n+Jn2xplW+5kJ9DMb6CendlFTQ3h9KmGvIFovMliZY31lD4OFcfq1dEe+1rovglCjKP4o1VKIYkal\nmvNASaeaqVFNl6lnyy33KF0xgsOD+Desx79xBP9Bh7AQOZw3XXwwVU+khZm54w4jQeJXvtKa38Tp\nMDTvs64ru/XlJtWWg4c4BdIwyfpuyqDCSZLYDhhY67JjWu2o3R6lC509+T3c/eg20h5DWzO2MMZC\nZWGlTELdwIbAKH/+xSie+VE+8d5NXP3RhGN+GDvAIAM42fTGZLpkYOIEUJyAjVlXOzt/61zccQdc\ncYVz2Gh5TE5RGK2aGidmy5rsVR63HeBxykXWCTCB5nqVpdR2QMrN8dvtjFpLKGq7d9Ou706Mtjkf\npr+H3fdOndfXArqcxmWS/NsZZ8AjjxhzfdxxzWtWs3S38bbzm3UTyjiBXjmKrAw+2iX2dtsbOyGn\neuwiynbqVG/lITrRMnWi4Xky6KnSj/9tdADs7EcyNwZNa9pmw94t2E42UZMBkO3T7TaNThwD5Xpg\ndd4fs24ZANltrLIkzfycmWnNAO0EYpy+W7OCu0llzHpN6amZ9+Kww87j1lu/yMtffi6f+5wBSJyS\ncQYCQSqVMhMTcNJJrRqac889lze+8Ub0eoMrr3gbRx42wughL2H8sfvQig3+8dQXSCGYqwiLNkZR\nINzlJ9ITwBMI8Ov7PJxwWp7hQ7Pc/qMlXvbyRdZtWKDWmEPTZtC0WTRtDiGa2pS67mWp3MNSaT35\nUgItH0GUwFetEaxXiIkCPeTaO/krMWZ8JpBJMBuIk/OFqeFDETohXSNVX2S4PstQdY6UlqbXC4o/\nuqINqYgov/1DF886JUqkr6klWSx10ZdqmnbpSpDaQpHqTIbqdJrFsWn0qd3M/3GcODPIdpXevr6V\nCGePFYe5/rsjXPjZEY572QjeaNR2DZtkPdzPOAPOPnv1epPXlLxOnIKGyO10ItW3k6xbGRarpkXu\ntxlW3sq82mUC31tBihuTWdNr7FjaYQCaxTG2LWzjkcwjFGuGeaJP8XFwz8ErmprRvlGyjx3BFZfE\nVvm+mMk05fltJwCyJiWV7zFzrpjPUTbFcpP0WzVwboIiOzMw617baaAWuV+mpsZqOuYEkmSNip2P\nkhMzas0BZJ1bKyNoDSlv+uaYdZjzZQfOndahE/Mtj9ea980cq5uZm5NAwBybqbn/3OdWrw23T7s1\nYBfYxglA2D1HO3A1MdGaDNhuruzG7LTXuPXbrg67uuT5tMvt56RVNOfcKSlqu/5ay5jkZCLmtsbc\nzITthBNOY9lbYZBb+X25d2/bP0Ct1CnYWXZof2r8HXfcceKpSvfeK8QJJxifJ55ofB8f7+w+k8bH\nhTjttNb7zO/ytdtvF6K727jXes/4eOt3maz/3367ELGY8SmXecYzWsvee69R7phjmm2a361tm5/3\n3tvaR/PvtNPaj1n+/YtfbN5jbcv8//77p0Qsdpr40Y+mV37z+4MCww+95S8YDIr7758S8fjZIhAI\nC0CEw2FxzjnniF2P7Rbzu3Ni55/mxTtedYm47F3/Kr772d+Iq8+9VVz5ltvEtW/7b/H5c3+x6u+m\n9/xKfPPS+8Qd1z0kvv+vfxHnn/17cdcd/y1+89Mfit/e/TUx9tdrxcN/+oC47zfniLt/9Xxx1y+O\nET//xcEtfz/+r1Hxze8/R/zbN14jrr5pi/jUNe8Tn/rk+8RnLtsiPv/RN4mvX/IqcedHnyce+tgz\nxeSlG0Xt0h4hLutq+ate1it2X3GIeODKE8QPr/knsfVf3yQ+ufUC8aEvf1S878ufEOd+/irxoZuv\nFdd/6xrxw9v/Rfzlp9eKpV/fIPTffUnM/+LfxdyvfyzefPp/i9ef/qB49T9uFw/cNS1OPzkvjj2m\nYft8nvEM47nomiYqO3aIx79zl/j4cV8Vj37wcjH+lreK7c99nnh405Hi4SNGV/7GTjhRjJ35GvHl\noz4ktn/q82LpRz8WpT/9WdSz2VXP3roure2b75jTupbXq7zu5HfUvO7UjkzmO37iie7l7N4H65qV\n3wHzmtnvI4+0v8f63a7/cn1Ov5t1FKtF8fvZ34sL//1b4riLLxWbv3eWOPbrx4qjvnqUOOqrR4ln\nffNZ4pz/PEdc+LNPiBPe/j3x87/8RWh1zXaerP+b76v8/tu9507zZ1efuZ+YZax7rPW7PFfW3+z6\nbj6XE09sXStOe/Ja+u60nt32+ttvtx+nXK+13RNPNNa9037q9k7J54G8xu3OmE7OKbt2reeA9bnK\n8233PJ2eh7zW7MZm17bTerT2xa6s3ftrfppz126tr+WdaEfWPcXp+bdrS36/7MYs71/W99GuT+3a\ndONf1nJPu7LW52Xdn9zWwlqekfX57+vz3Z9r5P8qAf8jOsAXijig2emYZAkFtFedyva6pjS3nQTJ\nKuWU27JKRZ2kanL9L36x4cQrx4a3k6JMThrfTfOKN73J0P5YTVTkcZtaFllaZKrsO0lwKkv6THO0\nH/ygGerZvO+NbzyPb37zi7zhDedy3nk3MjQEr3nNNH7/B7nnnu/joUZ/z3qGkq/gU5e9k2Q8xLe+\n9p+kp6fojSXoCsXpiw3gUSwe6wqEo14iMQWfTxAOavQl0ujM0tU9Q6E8TzCcZnJ2ifi6InWvhubV\n0D36ShVCQKEWJZsfIJtPUS72IEpePFUdf10johfoWTYrSy6blfUqBayUV0LMLJuVTfsTzAQTzPt7\nyCphykqUGjFi4S6GwmG8pR6+/40kX7gmRU84ZitxlufPKpm0rqkLLoDbvl1n0DO5kodm4nfjjN01\nziDjDDAFy0EbADyxWDMHzXIemsXACOd9coQv3trTVpJp7YOdiYs5Hqd8U/fdZ2gWTfMQOyd0s367\nPrhpV50S91rvaSchtpY1taGy6Z1d+2Y9mzcb60s2FzXLyOacJ58MmUqG23+zDSU1xoO7x5iobGM8\nN24ENgGCoodj1jW1NaPxUZSlEbyKt+2+ZJ0nu+dlPpN2tvRO9zrNe7s91k6SbV0nVpMxOxNcO78H\nu2djlw9MbseqVTE1SNZ+3XGH/R4rt2unxTd9Qtz2U2uETrm+c84xzgSwN8u2jtuqPbNb46ZZqewz\nJo/XyaTTyf/C7n3oxGTbzbrAWs5qKummvbVrq1NJ/P6Q2pvrTrYs2Ru/F6c9S74mP49OAit00ias\nfQ7WMm9O2nY5AINJdnv4WgJqmHuv1Sx0X+iAtmff6IAZ2xNAbqpkp3IPPmiYNzhF97BuBvILKJvg\nyKYxsllCO2fCO+5YbV5hbduuDrsD6swzm0yCSXZmIeecAzff7MzQWftgAppvfeuLnHvuudx4441M\nTMARR4TwCj/dkX56Iv30x/pJdPUz0JXk1JNexviOaQKqj4C/Z1W9ClVUJUtvuAzaNCozrBvMEQpN\n4/XP4glkEUENLeBB8/vRAgpVf2sCwLruIV/pJZtfRzY/QK0QAk3BV60RapSJijy95Fac/JPKkq2T\n/5ynhxkzWlmgn+lQgnm1h7wIUaj5KZRD9IVCbIiobIiE6VG6ueWGBPlsim9/rxfF42kxSYHVphQm\nuQHpDUMNalNTVHeNNxNsju+i9PgEYnYS6k0fo7ISQRkcIXLYCD1HjrSAm8l876o8GvJ6cgPVph25\nNcytnV27WZ+dOc9aQLW1j2528nb/y+veDth0Ag5kMCbPUbu+mmSWF0IwXZzm+/dt4wu3j+FJjtF1\n2DYy9dmVsoORwRYztPEHNnH+25L85CdKy1zZJQG29t38bk2ya/ds7Zhzk9yc7J18Be3mw+2aU6Qt\nq2+MFXDL4aPbAVqntWDtnyzIsQZOMa9v2dIMItCOqd66FY4+2j5ohfWeBx9sBR8myaZgb3sbfPjD\n7evq1GfDDHVsZQbdqBOztnY+RdbyaxFutANDe+MPu7/IWv/Wra1n6t6273afXbjqdve0a+vJ8lGx\n9tEuUt/eBkZo19b+pidz3v430AGw8wRRp9JG6yEIzhux9UA1y7aTkLXrj93GLR9K7Q4y6xg2bzYk\nyXY29yaZdvyFAnz5S4KTjy/zP/fmue7qApd8cCdf/NcLufziD1AtqIS8Ja779A0E1V7CoTh+fz8+\nNY7i60f3xGl4+mmI1SFrQ54sEU+aqHeRsGeBcGiGYGgONbyIN5RDhGuUPD4qAT8iApqvhvC3ghCt\noZItJMnmhyjle2mUfaAJ1JpGuFGimzx9ZFec/BNKdlU/KviZ8fYx7TMilU0HEkyHEyx6Y+T0EKWq\nj2pFIVKpMuD1MBwL0KfEOHqkl4GBJF0DKbKVAV5/tmobJlaeWxO0WvNIWAGraDQYVGeoju9i9g8T\nRHMSsNmzB2rSPATDBA5aBjHDwytaGv/ICA88GueiixVHB/R2zszg7HPw9rcbTJY5hk6YHmsdVo2p\nG1nXcTsNgps0vxNgY47JDGawFpAjt93QG+zK7VoJGDC2OMZYZoysZqxFBQ8p/0YWto3yD0du4muf\nGeXb14/yglNXg3+3ML3t9rMzzoDdu+FrX1vtR+jUdzuAJ7clty9rvZwAVScMgFuf3JifBx901rbZ\nrQ1zHO36JIN1WRskC4Ve/OL247rjjiaASKXaM+FnnWXMu5VxNffmiy4y5tnOL9Q6b2sVIJjjtQPQ\nJsnnWDuhRTtg0m7twtoZR7f9QB6vU2CJ/cFMW4UDZ5wB//Iv8M53rr0uOzDutqdafY7cfGbatQ1P\nHsP+RACbTtvb32N8sufOqQ9/D2DrANh5kmlfNlbYfy+p22ZrHpo33tg0ZTDbXumL0BlOFZncWeDC\n8wtc86kcqd4C85MF/u26PO99V56+cJ49Owus718OMVw1wgxr+QKTOwv0dtcpFFQaSpCy3ktBj1Ns\nxCnqfRQafRT1OGV9NUPmoUqARYLeLN1Rne4ujfncw2SKjyCCWRpqnlBvkk1PH6SmFNDIofsyCKVp\nYiUEFKsRcvn1ZAsptEIYUfbirdbxNypE9CI9IidFK1skIuWeMSmjRJn29q9EK5sKDjATTpDxxsjX\nAxQ1H5RrxIp5YuUCAx4v2R1BTj+ui40HJelJpijrKbbvTvH2c6MrzL0bM2+3huTfTOCxYb1OfXZ2\nxeSsOj5OdmwcfXKc6sRuVKordSvB4Cog4x8ZYc43wmvPTfDd7ykta0Amp5wjboemPBa7pI92ATKc\nkkM6kclIm5GY2jlay4zY5s2tUnYr02/3rnXqvC0zQRdc4Bz+1460hsbd27ZzyQ3b+IezxthTHePR\nzKMriTn9Hj+H9R62orHprY3yyfcdzje/GnIcu928yVpjO4bYOkbz+bztbU1Gq1NBiZ3W18np2xqi\n186UqJ1gx21N2gURsL5bdjlJrMDYbn7aMeF2ZWTTLzPQi1sdspAK3OfBSRNqRjC01mP3bOzq2Jf5\nlwV2soWCnbmRnTma/N3prHQCx9b5ss5hJwJDt8iiToB8bwG63e9OEd2c7rGubWgfxcxNu74WoYPT\nXDyRjPPfqr1OtY57W//fSrvzt25/LXQA7DyBZCcV6VR6205aaVe3nc9Cy2G7vgHVApM78lz8gQIf\nem+eZE+ege4CC9N54tFm3pMHf1tgbiJP2FfgmE15pnflOWRDAaVWoJItEPYVVoUpNkkXHop6L8VG\nnFy9n5J3kJKSoqjHKTb6KNS6KFSjNPTV2phabYmytkCxnCZXnKfYmKXhT3PhZe/iv+66jfFdD5JM\n+IjHvaxbHyHaU6euLFnaV8iV4uTyG8jn4zSKfkRFwVuvEWqUiOoF+siSVDIklUUGWMKn6K39wMus\np68ZrSyYYCqUYDaUIK92U6gHKJZALRTpKmaJFbJEiznUrMLhqShdvQNE+pIMH5aiO5miWE9x+FF9\n7NnjbXn2VoYJVkvOnEAOwIYNgvHfz/Gpd49z0Zt2ISbHCWTGqY0bgEZoTYCmBAL4hzegjoyg9Y6g\nDI1w8Q0byUVHuOxzA5x8ymqTM9Ok5cYbnTPWm32Ux2W9ZjWvkw8ap/fCGn2snSTYyizJdZpSc9Mv\nw858R+6PnFvCbNsuPKvsL9epJssKnmSSo37lqjkeWXyEbQvbmok5sztpCAO0x9QYR/QdYQCb+Ca0\n3aO8/LSDUD2t79XeSOPN/pnaGhN0Wu/fvLlp1mXH2JnP0BqZzO5TbtfaXzl6lax9sQKlduOR16ET\nc3r++c7manbMsJ3PpXndGsVNvredtkeeQ/NZWP1dnPzBrGDdSnb+R3b9dWMO7QQQ7cq7AT/rfNj5\ndlnnRc55JOdskvcqaz2daCDMd76d/4vdnILz+pbrXwtA7NRMcK11ySDH9FGzahftxtCOP3G71+n6\nWhjnfQEpTzTAcWrviWrXTYDwZNDfos29oQNg5wki64vbzgQHVh/i3/gGDA/VQMszuTPPUH8BtFYt\nCVqBpfkCP/6PHEEKnPG8Ap5anpCnQCGTJzNTINmTp1EqEPKVOuq78KhkKzGC3VE8wRj+aJSyHiPU\nHWXPYi+/+l0/B23qIZ7qYn4pwv0PhTj4UD/1updsDrSyAMty8fgUIt2Bldwxv33o1/z+4Z9ywrMP\n4nnPfzY9XfOUihM89tj/oIsFwt11gjENj781B02t4SNXGGIpN0il0E2j7MNT1VHrGqFGiW49S3wZ\nyKSURXqU4qrx5Qkx7Y0zo/Yz7e9nOphgOjTAbDjBQqOXbCVCXdNJNBaJLM0RLeaIFbJ0FbJ0iwbR\nngH6h1L0JJN0JVL0JFPsnEry6rMH0OpBbr21NdSuHQPudhjKkjOAN75B8OmL5/nSFeOc9/Jxukvj\nBDMTFB8bR0xPIMrNXDSKqsLgMJFDR0irI2w8uamp8SWTKB5Py3p7wQvguuvg1lvtDyvZwd0plG0n\nZPoeKEozLKzV8RfcJcdOtuJmX+0OcdmJVmZE3HLT2Enw5UAg5v0XXAC5HHR1tQ+p7CZBFULwhnPn\ned+VY9z96DZ+fP8Yw8dvI12bXLm/z5/gaYlRRvtGSeibOPWIUdZH16Moysr4rLlpnBgPq6TRWlYm\nawJMq3O7rH2T27HOpRzC2M7xWy5vJ0k2NXNWc8ROGCVrn9uNu51WxK6v1vDa5r1Wp3y5z25r0ATn\nMiCRw1Db5SGThSZ2eZ7Muu1Cnlvns91vJtntaWaf5KAPZgJNq4R7bxk1uzmQ33FZk7tW8yo3oYcb\niDDBkby/7S+Jt93+uNb77cZvTbrqtGY6McN0E3TZnS17a52yFkHBvtLfCyMPf19alr8FHQA7+4Fa\nXgghoK4ZGpSdeYbieWZ3F7j2qgKvflmOE55RWAEoPcFlwFItkJnJs+0PBZ6xKU/El6dRNjLI01ht\nOmVHujeIUKPoapRdUzGSw138ZXuUw4+KEuiOccd/RqmIGGedE2OxGOUb34nywpfGOGRTjJlMlI9c\nHkENhLj8kyqVkqCS1/ArGnOTGqKmsTSvUSloNKqNVW2rQR+xvgDeYIDfPRTgRS8VDKzLUauN85M7\nb0NVn8npp+fwqrPMLjxMIKbhDZdQPM01JQSUq5FlbUwSLR+kXgJvvUGgXqOLPD0iR7+yRArDP8bO\nyT+tdBu+MaaTfzDBdHiA6UCCktqPEoyhlHSiuUUi2VnUmSmihQzRYo5IqYiiKBSqAwwdnGT48BTZ\ncpLb70xy5lkpbvlmisuv7OLiixVHpgpWRxoyv8tSUCuTIISgsbCw7DczQfrP4wQzhukAfQruAAAg\nAElEQVSZtmscyk2gKrwqnsH1/H5mhOPPHCF+1DDZ0AgfuHYjH/p0ivPf7+Wii1rNUZzWrSmZl/tq\nlbLL5MQwdMJAvOY1cOGFTYa1nQmS3D83Bs2uD3YSaCcn+3b1ON0r+9vYgQG7du65V+eCy3fTiG/j\nua8bY04ZY0d+G0u1xZUyA+owh/eM8uBPNvGOzaN8/tJRQnp/Sw4gp+hQpsme3F8nabsVgNlJc+3M\nbTqJxGRtA1Y/GydzGLt5c0tCbPfc5GdkB6r2VSpsgoZ2keLMPtjlUXIyNzK1qWaEPauk3fSJtGtH\n1nS4Ma1OZnd7OxfW9QJNfyMzwIE1R9TeMmdOAom90Sg51e0UJKPd+OUcUO2AXKfrcF8l952Cg3Zg\nzu5au/3O7t79oelw0xbtL4b/yQRV+4uein16qtABsLOPVP7SK5l6ZIaRVB5fw9C0oNfa3wjovjCe\nYGwl8WK2EqN7wPg+sxQlNRwDv5GocaEQ5fovxHjP+6MMrI8xvRhlcGOMPfNRdDUGHtVxc69W6mx/\nWKOS15jerfGj2zWOeZrGxA6NwzdqpGc0wv7qKm2M4lEoaH4G1gUYezzAac9VCUXKDAxkKJfSRKNp\ndJGmWp+l2pijpqSpehbQfa3aFF0oFIoJsoX1FPN91Ape6sU6vnqVsF6hRykRJ8fAsjYmoeRWzVUF\nlRlP3DAr8/czHRwwgExkgIXwAPXIAIqvm1i9hn8xy/wfF+grT7OuMUFkaY5QpbQSQE1rdDN4UIrE\nesNnpuFLEelLkq+muPyqfq662rtKomqnhYD2zL/JLH/uc3DB+YLbvpRBnxrnpkvHef3p4ww0DH+a\nyq4JKEmhpn0+/ENDqCPD+Ec2rvjQ/HVxhPM/Nch11/s477zVQAWa2hAzwp9dRChrP83vTpGyrH4T\nspan0wNGnkc7hsBK5txZEyw6lW0Htsx56uReO9DnBKTMa9Z1UmvUeDz7+IoZ2tjiWEtiTq/iozF3\nCMrcKL7FTXzyvaOcNnoEUX+0pW4rcytLnO0YDbuxujEYbtnG24Fap7lzWjvWtWYH2tzqtAtF7dSf\niYlmcsy1+Hm5rUdZU2UFwJ2+B27O9nIbQ0OrQ6VbfdmsfbNLRruvzHK7ubAGdLC2tdb3thOm2609\np3LtzGCd2m8Hotv5uNiti07XylqZd6d9rpPw0Gslp3fSWqbdXOxv6hTUrhVoWn/fGyB0AIz87egA\n2NlX+u5bKOWrhHtj5KtRYvFmBvkvfCXKO94dJTFkAJo/bIvysU/GuPHmKMIXZXij17ZK2STF7mA3\nX7SrrhR85MNVVEWjO6zx3i2GNqa4pFFYan7WKqu1MdWGj3B3gN5EgGDUTyoJoWAWrbJAtZZm5655\nRo+cR2vMofjT1DwL1NUMwtsK5GoNH/ncEPnSEFqpC73so5TJE6xrRKnQpxToV3KklAxJJUNUqazq\nyyIxZr1xptU4U4EE08EEM6EE05EkM54BvL3r8Ktd7Lq/xkkbi6xXM1R3zrP050kOCYxDekqOBI3P\nHyDcmyTSlyTSlyIST7Hx8CSlRpJoPIUvEHJkpmSTCzeNgyw9h9by439Z4tJ3jnPZ28fRp8b51bfH\nec4hRmAAivlmox4P6tAQenKE//rTCJNihAX/CJd8foSR49cZJmm0HmDmoW3mlTEjJtn1VQYL1j46\nkZV5l0EJNE01wDknkxuzYDLqbloWN6Dh1F/50LVG1HIjJ0bEzoxIviYDyLPOggsuLHHDtx/hJW/Z\nhtZtAJvHlh6jtiz4CHpDjEr+NaN9owTyh3L2a/187nPO0mBzzq1MtfmbOTdODJlbEIa9ZYg7kcxb\n67My7U712JWzq9M6HrMeWRMI9sCg0/qcxiy/D+366PQM2plvynW3q9OkrVvhgx9sHW8nknc36gQk\n70/n63bPoBPHfvn9lYGIW6jrta7/ToB6JwB+Xxhuu3J2Wui1ACtY2zNst+/b7a1rbWMttNY9f1/6\nslYg9GQAvQPkTAfAzn4g+cCSJWt2B53s0GutQ/7tnrsbPO3wVuBSlABMdkGjWqii663PRfEoBCJ+\nuvsDRLv8+ISX++7TCIcWOeWUBXaMpznyqHmqjXmKtXm8oQVEaJFGwEabosXIZIcpa0ka5RB6ScFX\nq6FWS0QbOXr0LP3LSTCdnPznlF4jCabfiFRmmJUZQCbj72dR86JlCigLz+TMkyqs8+YJZxcJpGcp\njU0wOzZJb3AWvdH03VEUD9F4nGB3ioENSXoGUtS8SQ45MkX3QIpwdw+KorQw++2YM3B2lLfb1MYf\nzqFPjtNXMUzNMg+PIybHUWbGaWSl8NOKwjzrSB47QveooZ1RR0bwD4/gXz+E4vevtGEyaNYQzqZz\n/A9/2Mp4yDbx7aJlOY3DaQ5kh19rhDWT7NYwtGdIrM7R1j463W+2aee7YOZ3MYMPfOUr7aMSyWOW\nJexgaAQUxUi0a2UcXvbaRS6/aYwF7zYe2jPGr8fGoHcclgN29AZ6VxJyburbRLc2ykXvGuabX/e6\nMtHQXK/tfEvc5swck53AxJpw2K5uN7J7Pp0yF+32RnPM7bQ31rHIY37Ri+Caa5qmU+DumyVrK920\ntnvDpHQitDK1vp2GbXcis65CAb785abvipvkvZ0GQ94LnPz13MDQ3pBVsNMJ6Gwn5JHXRydrwQ1s\nufXNqc5O3o/9ARLdQHgnERj31tTX/L+dD06nwpG9pbXOOexf8NHJWbu/3pMDtHY6AHb2kWQpz8yM\nke364INXJ0M0y555puC736rRE22CmKlxjZ/+p8YJx2o0NOM3rVRf1ZY/6CXS7ae7O0B32Ec4CMFA\njmp9ke3b0xy+KY2uzJPX5vFFFmgEFqkFMghfq9+PLhTK5RTZwgYqpT6EpkJFR6loeIoF4p4cfWQY\nWA677OTkP2NGKwsMGBqZsOEfMxNKkKaL3fN59IU0tdkZDukZxp95Lq8+dYnRrgXUuSmyu6ap5mfI\nzc1SKRZa6g9GonQnU6jRFIMbkywUUmz9WpKqJ8W7z0/wyler9gEdLButDC7bSUytv41vK6BPjvP5\nS3ax5eUThJeauWgamUzzJkVBSaR4eGmEo184Qt+RzaAA6oYN7JnxO25w8iFlMth2iQWdIqF1Krl1\n23zNObGTWMpMoBsD4sacux14nfhtmPVfcIHh8yODGTmy1t5odpxMuMDwo5qtTPLA+Bh6wjBF+9PM\nGEv1uZX710XWMcAoT0uMckhsE885YpRkOLkSOMA6x07zv2LqeEFrtLd2c+80x06AQh6fPN52a8Op\nLbvf7e4z13ClApddZu+072SmZgdK3MCcvAbcyOynHHFO9nmScybtjY9Lu/vM/cl0aHcSAKy1PTma\nnFtIbOu8WtecbE7XqQnYvpAT6IDONAbtzC87NTuyuxeMOTCjvbUDj3bvgNPeubd+S3Zjt7Zp14ZT\nP0xy64dVWNJufG79durfvtBa35v9BbJg38dwAAg9sXQA7OwHMhmmr97SYPwxje6IRiSgMbmzikoT\n1GTTFQpLVbweq3MMhCIq8d4AXREfPnyM/aXGs05cJBRJI5inzgI1MU/Vu0Ddv0g9uETdvwSeVm1K\nveEnXxxmNr0Or4iiaD6o1PFXS0TqeboaWfpEhiQZZyd/upfNyvpXzMqmwwmmIklmQgmK/hQhf4Tc\nzjGm/vpntKk9eJeW6K0dxpXveSnJRo0bPvU5jj4syMFDCeZ270YVDST+D4/XR05LcujTUiRHUgg1\nycYjjDDN3QNJAuHISln54P3znw2p7UUXwZVXNhMYOh0uslmLNQrQG98IX99aJKlPUB0fZ+6P4yuA\nprxjHJYWWubGl0rZ5qKZUYYZOTSw5s3eekjJyVjtxtJO2ilLutuFWwX7/Dh2/ZMj9dgBeJlhc2Ps\nzDHJ/XVKUGcdu6zdsgIwu3s6IVkzdsyxderdO7ln+xhzStPHJl81zA4VPGwIH8TkH0Z5/tGbOOt0\nIzJadrbbMbqYdQ7d/DPs/K+sZTox7+qE6bOuAbB3Zjcj8dlpop3m0hoCWB6z7ENmx4S7gSswhAE7\ndjTNtOzCJ9tRO5B45pkGADO1TjJ4P/98+yhr7ervhIEzx2XOi1WL2o6cxnXHHXD55fYCN2vb0AR3\nb31ra1TGtWgy9qaf7YRNbkxku3vtft+b/cIJFDr5oDlph/anVsMJ7IGzqZ51P9kb/yFrxMf9yZh3\nshaeikCgHdDcm3qeiuP830AHwM4+0p03/YlcukxuUaNWXq2NCQa89HX56Yr6UBUvO8YUnnlMgWB0\nAUGacn2eSmMBX2SBejBDLZChHsygq6u1KdVqN/nSCHumksSCQUQZinMaiWCRaCNHd32J/mUQk1Cy\nq+6voDKjxJldzh0zFUwwHUowFU4yHUkwExigGoiT3RPl2BGVu79/M9WZKfT0HI25WXyZNN3lAoPR\nEFv/9Qa+d+ttpCd3EI9G6A0HUb2tPkjBrj7i61J0J5J0J1PUvUYggMOPThHt7eO3v/M45suA1Rs5\nNCP83HwzZDLQ22ts7qYZ02pNGnz84jLfuX6C979+nI2Bcarju6iOj1PZMY5YTLf0WelLEDp4BHXj\nCDOM8LWfjXD2BzZyyec3cMs3nX19OlWdWyXr5jhlYGaO083m18osmiY8hxwCl17qHO7Wjol2O7jk\nCF9WsxCzXmvmdyvdcUeTmbNLHuokybfT7qw1opZduXK9zO2/3s4N/z7GQSdtY1t6DD2+HZY1oAFv\ngMN6DmM0PkpgaRPfvn6U7950GEFviDPPNCJkWU3bTPBmB3jsQh+bpodWzY4bAHDKjWLn02NlbMw6\nrHWbAMIUGsjklLvLOrd276+sKTA1A0K0T1DaLh+PdQ3si+mMOUYnIC8HEnB6R9zmuB14s4LktTCQ\nbmO35odx2kdlUGNnQujGVHfaTyfNc6dgcG+Ally+k6Sea6nP/B/sTUftInE+EQy7Eziw+vKt5d5O\ntDRPRKADO2oHHp9KtBYwvzf1HKD9QwfAzj7Sr699ELUh8AkPk7vqrB/OUKqkiQ+kqXvSNAKL1JcB\nTD1g/AlvKygSuoJWG6JQHaaU72F6l0oy1sCrlYnU8kRqWXr1DAMY0coiyupw1Bmiy0kwDW3MVHCg\nBcjMBRJ4A73kJwKccoTKIb0qgwE//rzKF69WGYl+gh985Xq2vOmfOeO55/Gtr8zwshc8zkP3/Zxy\ndoF4JEgk4G9ps1IHoaoMH3YY23fvYXqxyCWXf4yugSS5SpKDDmmWNyXFTk79Tr4isNrvRpY6gnFQ\nv/yMCrdcNcFzDl1OqDk+Tu6Rceb/NEGc2ZZ+e/v78Y+MUOsf4du/MgIDLPqHef9nhhk6JGK76btJ\nkddyAMjMrSwtlhlLk9wYPjuNiJNmR27bzRHarq9WRs5uQ3Ybv6y9AeP52oEmsz3rXDuBMxkcOB3e\nAOe8LcuHrxlj0Wck5RxbGGNndic6OgCKFuOwnlGOjI/iSW/ieUePcsroQfg8PketjLXv7Zgr+T4T\nrJs+JW6O5NYx2yWKNN8rN0Di5PQvaxbkvE52604epx2z57QuTCBhjSxmN4ewOqCGk8bMbu7lObNj\nQtsFC7DThjqFcHZjfuU5tHvfnAQebm1Y23IDAU5rVNbU2bXptGdY19pa/Dra+QzZ9UO+V/bzcmMG\nrQIHmUnu5BmuhZzeDasG1mzf6b3bGxDUrqwTEFsLPVW0DE9lzU47cPhUmcMD1KQDYGcf6f7vvJ6q\nf5Z6IEPDn19xUjap0QhSbmykXB2inI2w5zEPQ70awWqRsJajq7FEn55hQMk4O/nTy5y3jxm1nz0B\nA8RMhwaYjiaYCiVJB+L0hKLEUdn+Oz9qXuVtL1c5MuVnXUBlMKCS9Kt4FXhsW46oOsPSnOEr87lP\nX0VPMEBfJExPOITH07Q183i9lBsK47MzLBQqLBaLHHfKsznnrZdwxDNSzC1EURRl1SHjdgCD8wYm\nlzHLydKq9akqtd27Db+ZXU3/mer4OLWZGRRpjXp7e1cAjTI0gmdohA9cO8JiYIRvfC+6CjCZ5CYt\ntTMz6XRTkw9jO+mf7KgsM0N2UYWGh1cnHu1UQtmJZNyu39A+maEb02tK9zXNMNWzq0eOMqcohn+O\nrK2TAfF55xn3mnV9/euCBW2WXGiM3+7Yxnf+e4zeI8aYq0yt9GMgPMCmPiMSWr9u+NfUF9YxMqKs\nJK48+GD4+c/d12inzLXb/e0YS3nuZCdxGeDJc2cHSKwg0U2DZtU2bNnSDIghl+80Gal5jxWg2YEv\nJ1Btfl9rLg87UGYGrmgX4bIdsHd7Z+z8GdrV7+Rr5rQP2YGNTs35zPw9sg+j9fm2C87SDqC4rUO3\nNu3qu+MOwwd2wwYj6IKbSZ65f64ltL05J2vRVMjnkRNAdWPS2wn93NrttOzejMuuvb83Jv3J6rPd\n3rm3PkxPNfp77HOn9JQBO4qivBi4HvACXxZCXO1U9qkEdn788y0UCl4a5QCioKPnKoRqecLVrGRW\nZu/kXyDIrBJn1tfHjJpgTzDBVGiAqfAAMxED1CypveiLQXw5ldOPVhnwqhyR8LMuqOLJqBw74ifh\n9+Fdjj72+tdWuOKSWTYOzpKdmyE7Z3wuTO4hPbkHn0dp6UMw1kU6X+TxyUnms3lyWp2jjz+eD370\nUuYyo5y5+SxOP32QRx99J8ceu5W5uWnK5dtbTHLcsi/D2gDBm99Q5ZarJ4lXmxqa7JgR6UzMT4Pe\nBIOe7u4Vv5lyzwiJpzd9abxdXavqtmoDOjnc5fvlcnagxWlM4CzRN8s4me/Ikm47JtEtVK9JTskm\nreNtJzmVtQydMnROc2gn5bYbqx2Tvn6Dzg9+Pc4nt47xsrdv4+H0GJO1MXI1I2iEgsK60AhHJ0dJ\neUY5+eBNjMZH6Qv22Q9umbZuNcwjrZoTO7DndKhZ52B/SPesTJRT+G47QNJOA2D3jCYnW0M2uzGs\nnfTdpHbgy40JtmMaZd8tO1M+61rsRHPRyfvkxNS3s913i0Bn3Rva7UPymF70IgOky+DU7r7JySaI\nBWcTNdlUttOQ0nammlZm0M7vrN1aMk1g3Uyz5OdvUrv1Y/bZKWeR2/vtpknthMxn0Skg62RtOZV/\nMhnXvyWj/GSPuZ0Q7O+R/lbr5smiTsEOQogn7A8D4DwOHAz4gT8CRzqVP+6448RThRYuHRLisq6W\nv8al3WL2smHx58uPET/71PPEN655nbjy8+8V/+/mT4pX3bZVPPtHd4iDf3qP2PDL/7+9Mw+Pokj/\n+LcIRxaQXcBjMQE5ghAiEAgIrJgVERB1kahE5BAvFARdZBdFRRYPBERFXRb1hwfhlksOBQRkQZAj\nBmGVJEiATEJCBAS5QyDk/f0x6UlPp+/puZL38zx5MtNdXfVWTXXV+9Zbxx6KXpJOvbftp6fTXTTm\nx3xq+fdjlJLxO6VsPU9/uesSZbtKKCeHKCfHnd6VK8V0+thRyt37P/pp4ze0deFs+ur9t2jeuH/Q\njKED6e3ku73+pg28j2b942l6deAD1LddHI19ZCAdSNtBx3Oy6VJhIRERDRs2jKpUqULVq0cSUIWS\nkoZTTg7RzTcTbdvmTldKX/qck0OUmOi+L4WVy6lEft116DIVuVx0dvNmOpEymwpee51yHn+Csu7o\nQemxcZTRomXZX/uOtO9vD9Cstv+grNc/oFMrVtCFPXuo+PffPXFKssi/q6WvvC7Ph9YzaixbRnTV\nVe7/ymeVn6X727a5Py9bZlw+atel56XfQx6//JqarH/8Y9nvpFVGOTlEnTppy6GWN7X7OTnq5aIX\np55MRcVF9O3edFq6fym9sf0NGvT1IOo4tyPdNOsmumnWTRSfEk9t3+5Hz33zCk3/fh79ePRHOn/p\nvOd5o/LRkkX+vLK+m4lH+dlMWZiVUf7eaaVtpT6r3Ze/92q/pZW49N5PvXqvd69t27J3cNs277ZK\nGbdWWUjvlLIdUb5jenk0anf0wkppGbUNRnFp1QV5+JtvJoqPd/8ZyWumvsvjkPcVWs/JZbWK2XZE\n67teHY6PV29TtfoWs/IYyXrzzcbtrfIZq2nYxU6bpdePBopgpl1RqMhlCCCNzNgjZgLZ/QPQBcA3\nsu8vAnhRK3woGTtv//vvNO7D5+nx2W9T76VzqN3qbyhqww/U6L976PqFGdRoZhY9muqiF348Qp/n\nHadvjp+in8+cp9+KLlNJSUm5RtTlKqGszDNUcGA/rZy1hXYuX0zL3vk3LX5jHH3yzBP07kP3ehkz\n7zz4N/q/EY/RF6++SHNfn0SP976Dtn+1nPJ/yaRf0n8nISIJQLm/GjUiPekmJSXR008/TWvW7KH7\n7nuakpKSbCm/8gavpLiYinJz6ex3W+jEnLlU8MZEyhk6lDJv70U/t7jJy6DZ1z6BDiXdR3sGP0dj\not6jH6Z+Sed3/Uiu/52gxFu9jT15enJF1Khz0muItZQhvQ6yVSt95VhC3pGqdfRmlEg9BVdNBuVz\nkkKoJ6fUAdvtVOVp/fGP5o06ed7OFp2ltF/TaG7GXHp5y8t0/4r7KT4l3mPY3Dz3Znp49cP05o43\nadn+ZZR5IpMuFV/yxKmWplKhVaatV2+U8trtCLZts6bYGGEnHr13wEi51XvP1eQxazQYGUFG7+yy\nZWVKo5aBrfb7y5VNpYxWZNDKl9mwctmsKr1W2jLpulb7oRde655k3Ei/s7x+68WpVZ52jCC1+M3c\nU7bPRsaMPxRAK7+5k2maCSP9pmaMF2UbGggZGcYOoWLsPAD31DXp+2AA07XCh5Kx8/qBfJp88AjN\nzj9O6387TRv2X6CTly6Ty1VSbrRLepEPHSiiE/mH6dDuNNq99iv67+xPaMFrE+mVpGdo2qB+5bwz\nEx94iD56ZhStmjaZvpv3Of1v/Rpy/W83/f5rARVfvkxE7rgbNBhOQlSh4cOHe67Fxx+he+8dQDVr\n1iQAFBlZk/r2HUidOxcYduxGDfK2rcVUdDiPzm7dSifnz6df35xEvzw8jA7c2Zsybmrt7aFp254O\n9k2iX4aOoqx/vUu/L1lK59PS6PLx41RSUuJJT6mw6qavMZIoyS3v3O00olrKgaQkaSlw8ueVngG9\nMjerkGrFoXV/27Yy746anPL49fKjdk9NWdUqN3l5HL9wnLbkbaGZP82kIUtGU5v37/IYNTfNuokS\nFybSU+ueomlp02juD2vIddpF2a4rmrIsW0YUEaFu8GjlSzm66g9jxP0Oeo+oK8OZVXx8VcKMDA4j\nBUdZ15TX5FhRltTisVImVowutef08uGLoWPnNzUKq1XWavfNtO9aee7USXvwQ7ovN4j0jAXls0rU\n2ier6LWdRuF8ee/Nth1W21Yr8ZgJp1c3lN+t5Mmqh8ooPj2vNcP4QtgYOwCeBJAGIK1Ro0Z+LRS7\nSC+rK/sKnTlxnNYu3kt7N22g1TPn0eIp79CC8c/Tf4Y+TFP73eNlzLw7IIk+e24YzfvXBFr+/oc0\n6I4vadXsbfS/7YfowC/nDUenIyPVvTeRkZGUk1M2Ta1GDe9pakqUnc22bUR/vfUKZf9whM5t304n\nFyykXydPodzhT9PP3e6m3Te28TJoMtvG08G/9aHDI5+hrPFv09iOi+nQqlTK/vEoJd5aojoVS56P\ntm3LGk4rnZY0jUXeSLdtS1Srlvu/mpJv1KDrKcNKw0JPibRqYCgbequdklZ+9KbI6Ck9dka25Xkv\nKSmhHftyqX3/ddTumfep/+Lh1O2Lbl6GTa8lvejJr0fRlM0f0ebDm+no+aMeA1hNFvmf2TyqoZza\np5UftfxpKWZqU6OUdVC6LpWRGYVBWZ/sKOdaYfQMBqNnifQ9AHrvl9Y1s4qrGcy+70b3lPeNZJQb\nBFaxIqPSUJC/G2Y8FnryG8lhxYDSkkGeDyOMytJsHE4p0vJ30uwggVxWq9OnzQwgaP0u8niV980O\nTGil55RXTt6XO+kJN5MuU/EJFWMnLKexlZSU0P6d39O62Utp/SczaO748fTxiKdo2sC+XsbM1H73\n0H+GDqFZY1+gNf+ZRms+mU/fLdtIeZnptO/nE5SY6D1VS5oWIDcOpHupqUcoMTGRfvihwNOhpqYe\noQEDBlCNGmXem4EDB9IPPxQQkfc0tT/96WmqWzfJ6wUvKSmh7V//Sg+13kkHPvyCfn3rLfrl0RG0\nLvYeSr+prbeHpnVbOnjPPZQ7YgT9OOotOvnFF3Ro5U7qc8uv5HKVn5Yn/5yTQ/Txx/qjiUpPmLxM\n1OKUP6s0RuTz4ZVeICkt5eilmsx6HXtOjv4IqBZa0yfkI6pGHaLZEUo7RotaeRs9e/nKZfrl5C+0\n4sAK+vvyyRQ/6RHqNLeLx6hpM6st9V3el1787kVK2ZtCqQWpdLrotJeMeh2nVN6dOpUZxlaUJDWl\nTOl9M5rKl5Pj9tJcdZW+ASO/pmXAK+urkcxqhpQco/tyGbXKwip6dUt5T/lOKvOt9m45gVml1Ewc\nZt436Z5e26L3nFVFT2uKqpF8vhiUWnVML11f0jQzHdVO3dfDKC6isgEWozjV2gStQT+9gSej9tHs\ntEh53uy++3ryWo1D3u8FygCR3lF/GlaByAdjjlAxdqoCOASgiWyDgjit8KFi7BAR/fvRAe6NAAYl\n07ikZ2nB6xNp5X8+pY0Lvqad36S5p6sdvFSuIVJTztWULqViIE1Va9BguJeyPnDgMALcmwxUqVKF\nBg0a7pVGSUkJZf94lAYnpFLa5MV09O236fAzz9LBPvdSRpt23h6am1pTZo+7aV7c07T/5Sl04D8L\naWjn7bR9VT799dYrpjsc5X1JSVy2rHwY5TV5fB9/rL0hgDy89F/u8SEqb/BI5as219xompiyA5Ty\nZUWp0etg5OlIa2D04pEwM7poFjPTSn45dIH2HNtDM7YtpIQX/0VJSx+k9rPbewybDnM60P3LBtBr\n216jRb8sovU//0y3divUlcPqPHGz8+21FF2139TIMJE+W/FmmHk3zMhsRpFUejPpkSIAACAASURB\nVH7U5NS6ZqQsamGkVEt/8fFl3lbpfdeagumEEiWXzU6+tOKyE16rbVH77c2unbP6rivTk/82RnIp\n49EyVo2mSmnd01srZtRemp1aqZaumTS14pdv/mIUp/Ld1PuNfblup36bfcZoswpfMKpz/sKf6TrV\nhjHOEBLGjlsO3AVgf+mubC/rhQ0lY+e3vFzKyjzr1Wko5zvrKchanYzyutZUNWmjgV69kmjwoOG0\nZ9Mmen3AABr3l240pc00+mXoKDrYN4n2tWvv7aG5qTVldu9NuU8No/0vTqID/55HqTO3UtHhPHId\nKtaUx2xnofwuKYhqa5iWLSOqUkV9vY5kkKhtCKAng1Jh11LmlP/NdLpyo0vZcZlt4MzkQ8sLphaX\nndE5vXjlv8Wpi6do+5Ht9PnPn9Pzm5+n3ov60E2ftfEYNp3n/oUeX/s4vfLtVOr0yCraknGAiq8U\nl0tHz4CQvvuqUKopEVq/rZpyZqR4G+VBbzMCrWtGU06M4pU/I7+v5z1UXlOub/PFA6L8Li87M54d\ns22NGVmsGM/+Rtmeao0qm23jrHop1PolaZc2efsqhTPjZdUbQNB7h5TTqNTWFJo1vp1oR/TS1MqP\nJLsZfBlMsCKz1WfN4sS6qspIINoVxhwhY+xY+QslY4eovLKppTjI/+S72SjDSlPVCgoKPGkcOeKe\nqlazZk2qGxFBnf70J5rc60469MZE+uXJ52hN3H2U3jbB26BpdRMd6NmLcoYOpYI3JtKBD+bS2e+2\nUPaOXHIdulxOBmWj7ktDKs+PtGuS2ranUjrNm2t3LnY6L0mpUsqjp3BqKWHKeNWmKinj8xWpczG7\nDsXKtDMpnPK3LSkpoYJzBfTFro3U8dkZ9MRXz1CPxT281tfctqA7jdwwkiZumk4bcjZQ/tl8crlK\nysmhTMeMoWFnionympZBYMbYNTMqrSezlH5srLX1Q2aUceX7oxVOz9Mlb3vkMkvbOOvVabP50DPc\n9K4Z1QOzBoCZa3ICsUZAr76Y+e314rMqh1q5yrfSJypvkFqRT/6+6/2GyntmNxYxwok+S++er5so\n+AMr8dptb4nY0GHCGzZ2HEKuBOut7VBOk1HrEIYPH05/iqhKEwYMoFMrVlDW6x9Q3uh/0H87dKQd\nMc29DZrYVpR1Rw9KvecJ+k/863Tgvdl0dvNmKnK5qOTSJa945fItW1a2ZauacSHPl5aCKM+bFpIX\nZNmy8gu15WUmn69rprPUQ2t6gZ4yqFzga2a0XX5dyyiz22HLZTITXv7bmnmu+Eoxbc04SF8f/Jre\n+eEdeuKbJ+gv87p6jJrWs1rTPcvuoadXj6GOIz6l5bu/p5+yThpO89Ma/TRTnr4YanpxKA0uJ5Ry\nre/btrlHydXW9OilY4SeoqWnRMqv63mn5AM1vuCEgqqnQJuNw4xcdtoaM2WtJ5dVxVRtYMWuMaiH\n1E6bGfAxStfKOVtSHE5O9zEru9azWteD4d1w0kDSq4v+MsQYJlRgY8dBjBQuead65MgR6tW1K+1a\n+F86tXIVHfv3dHo7KpoWNLqBtikMmr03tqDMxO70ZdsEmtSkO60d8Sb1bZhM/W65i7rdWlROydVq\n7KX0pfAff+ztPVDrQKURZaUxJ8WltUWpmuESH69u1CjT1jIYrUzp0jvnRTm6ZbT2w8gAkk8FMVoD\npIxfS7GzqhTpGRZFxUW097e9tOSXJfT69tdp4NcDvQ7mbDe7Hd27pB8lvDie/vP9fNp9dLfnYE61\nstDKi1wWs0qeXj0wyrMyDr1n7SiH0m9rVRGQGw9Gv69VhdCMAa8Xhx7btrnX1Jg10pxWxPQw42kw\nY+hpPWOmPikNRrW1HGrxG70zelhZl2bHYFO77ouRYsYwVUvDn0q9lee0phVK8Vltp3zBaSNQijMQ\n6TiJ2fcn1OQPBxkrE2zsOIhaZ+HKOEuH1u+lZ9p9Ra+3mUH7R7xA2Q/2p7Q4xTk0LWMpMzGRvmzT\nkcZfF0WP1K1HPevWp2fvu49+2JbjFbdaByv/rzYtQ3lduvfxx94GiBKl10W6JjdilM+pTY1Tk91o\npNbMNa1n1WSS7ulNZ1KmpabUqKUnlZOaMqoWXsvI0npGC2V+zhSdoa/2pNKc9Dn097Uv0X0r7vM6\nmLPTvE708OqHadLOSfTJji9p34l9dCD7kuV0zchjVaEzO3VGK12nyckxnjqm96yREmpVgTdbX8yU\nvda7rmXsqL03gVaQfEnLqIyNDArpmjKM3rtsxmjyVXYJs0aw07+bnXZazXhwGrvvrFZfaOZ39QeB\ner/8nY7d+PUM6mD9JmYIBxkrG2zsOMCVc+fo0MYMGnXzGtr10kf0SdsXad99Ayij0y3eBk2LlrSx\nWQx93rAhTbjuz/RY3XrUvXZtiqlenepE/oGI3LuqCVF2Js6gQcPLdQ5G0zX0DBfltDQ1z43ZuOSj\n3kpjQu4tUlOSpGl0Vjt8M+GVCrdy+oEZZdGOu9+Kcm80QmgmrmPnj9Hmw5tpyuaP6bn/Pkd3LrnT\na31N6xl/pSErn6LXNr5Ha7PXUs7pHM/BnEYGly/YyVMgR0zNYlb5UXvOjIFsZ2qWGUXSaA2KXqer\nN53NF6PcLP76/e0Yf8r7RmWmp/j7s+y06psvbYvV9O08E4qL3vUGKZThrMRZmfFVyTdrUIdaOYeD\njJUJNnZ8oKSkhLLu6FHOoMnsciu5Bg6iA8+NpgltEyjniy+ocN8vdOXCBTpy5Ajde+8AEqLsTJy+\nfQdS584FtGwZUd26STR48NO0Z88eGjz4aUpKSvIyOvQUJL3RvJwc95qZ+Hj1ba+JyntkJKVJS/GR\nn6JtZucziW3bymRRyqHVQMjPHTLTiCg7La0yk0/pk8ejZeiYUVD1rm3b5l7P0bateWX0SskVyjmd\nQ2uz19J7u96jp9Y/RX9d+Fcvw+bOJXfSc/99jj7+38e0+fBmOnb+WLkyUO7uZsWAtBLOTJ7M3gs2\nasqPL1Oq7ISxYuyoPWM17WApob7UA7PGp5k4tAwTu3U3EPXbrJJuNU4zYXzZKtvMRh5W678vmG0T\nzRqvodq2BVqeUMs/U/lgY8dHjr47jY5/+BGdXrOGDm3MoB5dz3mUhOHDh1OVKlVo+PDhXorDsGFu\n740QkSRE2f1OndTPbLEyx1+5AYBcQZcf2qlES7nXmzOuVOK15FBLS25ESd/la3qU4fWm2ul1uGaU\nkEmTiCIi1I0BZd71NgFQC68Vh5Zcl65con0n9tEnO76kSTsn0cOrH6ZO8zp5jJq2KW0paUUSvbTl\nJZqdPptSC1LpTNEZw3wuW1aWRz382WnrKe5W4nXKkLCCsk4EyhMlL3enFCczzwdrtN1OnTBrcJiJ\nQ9ne+duwdfq3dOp302rL1MKZ8dCbbRuV6fij/luR0Uw4o+f0+i2r8jlBqBpgDONP2NhxmG3biKpU\nUT8Tp3p195k4SUlJ9PTTT9OaNXvo6afd3hsi/UbRrIIi92RIO0IZGUp6BpWagmp2io4VBUGKTymD\nGSNP3uGaHXFT3tfbpEH52ayHyUj285fO0+6ju2l+5nwa//146reyH7Wb3c5j2HSc25EGfj2QXt/+\nOi3+ZTHtPb6XLhZfLBeP2aloRgeUKhV5vbzZwUhxMVNfzNQts+VhNz+S/E6suTKbntm4rb7rwUSr\n3Owotk4Yy0oD1uh98EUGefx2DSmrSrfVNJRTmq0MKNm9ppaO/LO/jXCr9U3rfTMy6uzU70B77SoC\nXF6MBBs7PnLkSNmZOFInnZp6hHr0GEBA2VS1xMSBXufmmEHekCoXv6s1rsoRZ72pUkrUFvBrNbB6\nip6afGpGjFoelXmxsoWpmrxOdBBacRkpuMrwJwtP0vf539OnP39KYzaNoXuW3UOtZ7X2GDZdF3Sl\nQSueoHd+eIe+Pvg1HTx10OtgTq38WlXItOIyuyZMLw61z2rhlEqttP252qYWSvmUcajFbaY8fFE0\npfdRbYqnnTrnREeqzLueERYKHbfWu6q3uYk/0jVz3Zd4jZ6xasyohdH7roVyZ0619lqZttk1lmbk\n1ntW71DeUDHUiazVJbPGn1F6dp/1FTvpBft3cqq+hFq9Y+zBxo6PSFPVBg0a7rUNszRVrUYN91S1\nBg2GW1JIlcqf2rbNZhRuvfiVaaktTtbrdJRbXWuFVW6CYKTgEHmf+2AmD1rXfDV0zHTacvlLSkoo\n/2w+bcjZQGNXTqeRG0ZS90XdvdbX9Fjcg5759hmasXsGbczZSAXnCsjlKrFk2MlPOXdKWVZ+tqPo\nGXUMyrCxse7pdfLznrR2E1SLQ/qujNdqno3kVLuvd89sWnY7Uq3yUPvttJRaszL6CyNjTM9480X5\n0vstzMah9t2qUm91HZFTCpfk9Ze2yle291p1yUq5+SK3UXxW8Hed9qUu+ZJmIJVvu7+hLzI61Y87\nVUZs6IQ/bOzYJDJSfapajRreU9X27HFPVfvrX5MsKbPK/0rFypcOQWmsEKmfo6MWt1pa8fHuP7kn\nSR5ebftqtXiUyo3RtCsnFCAj9OI85CqmLRkHqNMjq+i5FVPp8bWPU5e5t5QZNp+1od6L+tDzm5+n\nz3/+nLYf2U6/F/5uKy3lfbMKrBX0DAqrz1oJq1xHZMZgUVOmnJ7iome8WSl/tfdNed/MNWV8Zso8\nJ8fbMLYSpxlZ/I2W8WbVc+CEgqiWrt04jeq4v38H5c6cWukY1Qujuq2Mz+59uwMCVr114aLUBntg\nwl/PSM8pB1PZs8L4Chs7Njly5AgNGDCAatYsm6p27bUD6Ycfyk9V0+qw1ZA2EpAbOHqL86W4rJxV\nIoVXxiv9Vxo88sZGGe+2be4RQvlW0modoNkRMKUMavKpPWunYzMTRrp3sfgi/Xz8Z1r0yyJ6bdtr\ndP+yAXTTJx08hk372e0paemDlPDiv+jN1Qtpz7E99MuhC8aJm5TD7voQK8ZKIIxHM+lafd6s0mUX\ntTI3Y0DIsWKYOqFAKsPafQ+CqWgYve/Sf7PyOVE37LQvanHIZdZaK2RnoMGuDFbjVw4y+GL0+Xt9\nndn0glnXQ2n77VDAaEdXhrEKGzs+MGzYMKpSpQpFRkZ6prLJUVPCtDoHuWEjTfmSphgot12WPyfd\nv/lm7UX2WvKoTS1Tyiif2qY2shkfX3YQoTwOM+tt1OJTk1dSKo1GnvU6Nr0yUYY5XXSaUgtS6b2t\nKdR+3It09+K+1Dalrcew6TKvCz2y5hH6+/LJ1OmxFbQ5/Re6dOWSp5zMbsWqVxZq98ycfWI2TrU4\ngtWh+DoCKP12VtaR+SqfWQPCTvpqebFq3DhJsAwds14UM793KBlt8mvSNt/K9tKXQQpf5LISxqmB\nkWBscW7nni9h9Vi2rGwzIaYMNnAYJ2FjxweUU9WkXdWI1Ee+5IaJ3jxpuZIvPS+Fk1+XK8F6I//S\nn7SttfSntoOZWpxKL5DS2FLbdlpvKpxaJ6lMVy671k5ryufUkJeT8vmSkhI6ev4ofbRuM03Z/BG1\nHT+Kui/s5bW+JnF+Nxq+fji9v+t9WudaR7lncqmkpKSc/PLvVg5LlaO3nbHW7+rrOgw7SqTZ+3Yw\nmj6pJoNVo9YIM0qy0waVWnpGir7W+xTuUz6UawftGnx6u3oFCjO/h6/bmPsrX760DU6kEco4JbdU\nT1u1Cr8yYJhwgo0dP6JUWJTX5KjNn5auKQ8BVX6Xp6dMW1rsrRw90pNNbqyoGRxaGyUoDTBlWeh5\naKR027Z1e4rkZ94YdQJmplFku66Q67SL1mSvoWlp0+ipdU9R4sJEL8Om9Xt30bCvR9PU72ZS54e2\n0J6s46pxGSm+djoteblZ8Yg5lbZeGmo4sWubWpzywyztGii+hjGazqdnfFjdJEENMx48vfriT+XU\n3yg9Hb7UM7uDDk4TDiP2Vox3MwNMTqQd6ui9Z1YNc3+WQbiWL8M4CRs7fkSp/OgZOvKd3JRGg9UR\nSrV0pXSk+8r1NdKaG7k3SW1ahXxNkfy6VppymfTOwpF7wVq1cv8pRzzNrmG4VHyJMk9k0rL9y+jN\nHW+WO5gzPiWe7l9xP7285WWamzGXUjak0dmis6oGoDJ+NQPPqbnFVkZ47RgoVjEydKwqO3ryaf3G\nweiojQxN6b9WPuQDAlbTM/Mbqr17enI7XS/8hVo7Jf9uNz6t74HATtn7K6xeHGY8o3K0jFAnNk0J\n9XqqhdUBq0DLxIQP4foOhDJs7DiAUaOWk1O2Y5nWFDb57jhyr4o8fqc6QaUypvTkaMWhbDjNGgRq\n9/UUEbkXSm6MyUf9Jc5fOk8/Hv2R5mXMo1e2vqJ6MOegrwfRG9vfoKX7l9K3e9OpqLioXJ7khp+e\nMWYn32ZwakGmnees1iu9zSeMyiAQRpoZ7JaTmboive9mjVYrG0NohbdT7lbu+4qZ9M28e3bTCabB\nZ+f9slt37KQphbf6G+j1D760X/6eOudPzLTfga6LTu/ayfiXcBmcCjfY2PERsyOxkpFjtCGA8rMT\nirSaPHZH0OXyqE0TMWrspbLQOziOSF2ZnrPkBH2f9z198tMn9M9N/yx3MOetC26lod8MpXfS3qHZ\nqavplnsO0SFXsVc8Rp22FQNNK392FA2lEWlFAfYFpeFrRn4j48Zpg8sf8TmxqFtP2TOq32ZlNSOD\nr1Pn/NG5WjGA1Z4xc10tnBMbVPjyeziBld/Sl8EDK3XRrDxqG9lYjc+XPDlBRUkjmOkxvsG/l/Ow\nseMAagqQssMyqyTJrykbeOmaLy+CZKRoTbMxM3on/VebXme2k9Uqs8REIperhPLO5tEG1wb694//\nphEbRtBfF9zutb6m5+Ke9Oy3z9KMPTPov7n/pYJzBV4bB6jJrnVNL69GI/lqcVidNqD2m9opVzvI\njVY9Q9RpY8QsZtekKOUJ1jQSPWPfX7+jE/H52q4o4wqUsa6Wtto1tetaa6OsepKcWKfliwxacRh9\nd3I9nDJOfww2BMoICcaoOiu3DONf2NhxELmiGx9ftsOKGcVRLYyaUSBXRq00kMp4zChjckVY675R\nPuTX1J47lH2Z/tIniz7fuZLeSn2LBix/jP4y/y8eo6ZNShu698t7aeSaF2jCV7MoIWkH7T1wyla+\ntWRQy5va81ZGN81OxTAb1knFxygdNa9fIBUAZX2THy5rxejU+x4snFQunUhX6932V3pOYUUBVzPg\nlZth2IlbHj6Uy89M22b1Wb3wToYLBsEwdILRvjJMZYKNHYeROr5Wrdy7iqmdn2Ck3OoZNZIyqmV4\nqM2XttLZqRlXyrN25DIZjZjKDcBbuxXSvG9/opuHfkFj1r1KD331EHWYU3YwZ8KcBOq/qj/9c90E\nunnoF/TNT/+jC5cveMVhxdCTP6f8rramwsgbY9e4lMevVhd8GWE2c9/uSLXZdIwUaSso07fj2TGK\n0y7hOrKs95vaXSfmr7Bm47Mit1Z74fSibbv1PRD4c7AkUIRDWYV6moE2rBgmVGBjx0/IR8jVPBvK\nUUZ5IyQ9q2XUqK3nkQ4Vveoq753M5PIovxs1evI1RtIGAfJd29R2ZpNGTNdvOUU7juygWXtn0TNr\nxlLf5X2pjeJgzkfXPkpTUqfQygMraf/J/XT5ymVNebXO3jFCzcDYtq38IW5G5eHrCKeWYWPHiLAq\nkx3jwEpYOwvLreTbiY7ZCUMnnNcM+NMgdSqsVRn8GX8gCGfZA02gyqoy/CYVOW8Mo4VZY0e4w4YG\nHTp0oLS0tGCL4SE3F2jUqOy//DpQdm/wYGDOHCA/Hxg7Fpg8Gfj1V+DRR4E1a4CoKHf45GTg4kUg\nMhJYtKgsDont24EuXbzTSE4Gpk1zx/faa0D16sDixepyqcmnzMv27UDv3mVySdckGSUe6Ef4aM5R\nHDy3D1NTMhHfcx/2n9qHE8VHPGGu/cO1aFm/JVrWa4mrS2JR+3xL3HNrFIQQpsp3+3Z3ec2ZU5af\nfv3K8qeHMo/y/EllqMy7UVzy+LTCSb+1WtkayWsUxpfw/kCvfmldVysfvWe0wgQy/6FQ1qGClbLw\nd7mF8+/iD9nDuTz0CFTbWFHLj9EnWP0KExiEELuIqINhQDMWUaD+QsmzI40EqU1XUzs7R+4pkR/4\nqYxTa/tOpWdHvoObMi15GLXdzZRxqU0hkpPtukK33HOIZqeupnfS3qGh3wylW+Z5H8x597K76R+b\n/kEzf5pJW/O20m8XfvNKt23b8l4VM+Vrdfc4tfyYGbUzuif9ZlamvFnxBtmdW28nbKAxKhOzv4/V\nTSO00quoVKa8OkVFKbPK4JkwQziXQyhPh6yo2O1XmPABPI3Nd9TOqdEyOJRrSLSUPr1pWmpKo/IZ\neZpa21rLZVBOjSsqLqL039Jp6f6l9Mb2N2jQ14Oo49yOZQdzzo6nB1Y+QOO2jqO5GXNp9f920a23\nnzNlhGgZLlrPWp1br5YfZVpGz+mFsXJugdWGU01eswdUhnIjbVY2rfdB63u4l4se/p5i5kR6oRS/\nXSraOSR281FR8i8Rjvmx8/6Ga/sWatgZoGTCBzZ2HEJSgqVRf2Xjo3UQp1ZcyrNPzMogR2mEKb0k\nUvhzl87R1/9Lo39/P5de3vIy3b/ifoqfHe8xbG6eezMNXj2YJu6YSMv2L6ONezPoUvGlcun6opxp\nKRx2G3JfvDe+xm8nrJ5ha3Z9klo8/siPXezUE6c68nDrvPQMdjPP+pKeE/FZid/s806hVGqsbhUf\nKjhdJpVFYQ71PIbiQAXDhDts7DiApJB06uSepiX36Ej37YzWaD1rRVlXbiLwv6zfaGveVpr63Uxq\n/6/R1POLu7ymoXWdl0hPrXuKpqVNozXZa8h12kVXSq54xW80NcxqPo2U4EB16v5SqIziNlJs1Yxm\nM1jZ1jqQi+/tvguVDfkARSCNUeU1p9K3Y7j5Q4ZgnQHkJP6oF+FYDlYI9PvEMEzowMaOjygVVaUR\nIN9Vzc6ou+QxIjI+nVp+r6SkhA6fOUzz09ZT/MgP6NFVT9PtX3gfzNl9YS8atXEUfbTnI9p8eDP9\nuP9ouYM51WTVy4eVzsRfHY+ecq9nUBiNpFvxkthZK2QUTu9sEC0Z1MI6sZ2zL1RURcNf+Qp2eTmV\nvi/vezCV+lB9NypqffMHvnhKGYYJf9jYcQAtpVE6z+Wqq4zP29E6a0W+iYGk6Cob68tXLtP+k/tp\n5YGVNG7DFHp07aPUZX4X2cGcbanv8r409rux9N6WWZRakEqni07ryq9lwJg1YpRxGIV1Cq2RW7VN\nJNSeVTNU7IwIahmERs8b3bfi2dEysMN12k4o47ThHggvZzAIN/kD6UEJhbVDFdnzEQp5CgUZGKYy\nwsaOg2iNmGttSCD32GgZMvJnli0junD5Au05toe+2PcFTdg2gfqv6k8JcxK8DuZ86KuH6NVtr9IX\n+76gn479RIWXCz1xaRkCcoVeuZGCXA67Xptgj46q5UnrWbnMyh31fJXL34qEGS8bd7j+wd8eEDZU\ng4PThk6o/7bcPviHimxIMkyoY9bYEe6woUGonbMDlJ0dMnly+fNbpPtA2fki0mcpvHSGjfz8kfSD\np3HwbCZOVt2HXXmZ2Jy5D6KeCyUoAQDUqV4HsfVi3efXUAvMnBiLue83RpPGVb3Sle8dD5TfP/7L\nL4GkJO/w0tk2o0aV3QPUz6fRKxMJrXNV9J51cp97rbwrwyjlNPtcKJw5oiV/oM8LcCrNynzWgVbe\nlWdOWX0+lLFyXlM45k/C6rlUgSZU5AgkgcpzZSxbhgkFAnLODoCpAPYB+AnAlwD+VHq9MYBCAHtK\n/z4yE1+oena0vBjyER35yJ3kbXC5SqjgXAFtzNlIkzbNoGe+fYa6Lejhtb7mtgXdqfUrI2nipum0\nIWcD/fBLPpWUlOiuRVHz2ijD6K0DkU+dU8ZnVAZ6+TbCKB2r89qteqSsEOzRulDz2vg63c9uPOGE\nEx5Co/vhVnZGHg8zHkvGdypj2VbGPDNMZQOB8OwIIXoC2EhExUKIKaXG0wtCiMYAviKim6zEF4qe\nHaDMC5CcDCxa5D2Cs327+/8LL17BpA9zcLrGPuw7uQ+7j2TCdWEfThWdAgAICNxQ5wY0iozF9uUt\nMaJfS9zXNRZnj9VFv37A4sXueCSvkOR9ee+98qO9ublAfn6ZJ0ZvtFjLWyN5nMx4CtS8W0qPlq8e\nELMj28qwgHYefBltM+P58RdqnpxQwGx5GslvFE84jpIaeYCdTMdq2QS7PCuLZyfUqYxlWxnzzDCV\niYB4duR/AJIAzKMyz85eq3GEomdHWt+xbVvZGo+i4iL6dm86TVmzhOL/8Tq1mTyQ2qeUHczZbnY7\n6reyH43/fjzNz5xPa37aTbfefl7TQ6S29kdrLYpT602sjnrpnZdjJU2tz2bntauFVfPy+DKqF4wR\nwVDz5ChlsOMZs5tmuI7G+mshui/xhXN5MgzDMIweCPSaHSHEKgBfENHcUs9OOoD9AM4AGEdEW4zi\nCEXPzr5D5zBo9D70fXIffovIxOGifTh46hCuUDEAILJKLTS7qgXir4/FNdQSXZvHotqZpmjauJpX\nPHqjm3Jvjta6DOXn/Hy3Z0buFbLq1bA66iWF15LLTD7l65rsrEFRelyU8Trp2QnU/Hu7npxArRMC\nfPc0hcr6J3/jjzVpgSx7Jnzg35VhmMqOY54dABsA7FX5u1cW5mW41+xIxlMNAPVLPycAOAygjkb8\nTwJIA5DWqFGjQBiChlwpuUL/3PRP6r20t/fBnPP/Sk+tf4re2/Uezf1hLS3flOM5mFO545kdj4fW\n6L6W10I6WFSZpj9Hc/XWC1lZk+OkxyVQo9b+LtdQkUWehtpnO/GEyo5U4Qh7ZexTUcuOPXYMwzAB\n9OwIIR4B8BSA7kR0QSPMJgD/JCJdt00oeXaeWv8UalWrhZb1WqJlvZaoUxiL+ObXeO6reRTUPB9S\nWKteFmX88jU68vC+pGkXu54dX+TRymegCXb6ckJJFiOsrMliGCcI1bVvzeM1kQAAIABJREFUSuy+\nx+H0/jMMw/gDs54dXzcouBPAuwD+SkTHZdevAXCSiK4IIZoC2AKgNRGd1IsvlIwdLdS2fDZajG3U\n4WpNxZJvjEDknq5mVuEPhWlDcgPFF6UjXJQWp6ioSkxFzRdjjnDeLt1f+KNtC/U8MwzDOIVZY6eK\nj+lMB3AVgPVCiD1CiI9KrycC+EkIsQfAEgDDjAydcEDqmHJzyzqURo3c620kpV4KJ9GokXFHJoUB\nyuKXrjdq5N4BTjJ0tm/3DmMkp1Ieo7B64awgj9dMGejF48vzgcJq+ejFY+b3CEdC+fdj/Euw6nWo\n1zmn27aK3H44DZcRw1Qe+FBRA9SmaQHqh4hK20VPmVJ+i2q76Snvmd3eVs2rAljfolqebiAX0Jv1\nmoWCMuP06Gyo5IthnITrdWAIdDmH4+9a2WYLMExFJSDT2Jwm1IwdvQZR7n2RGvvt24HnngMuXgRW\nrjS3lsbIuNE7h8Lss9KZOmp5MdvoB3JanBkDLdQ6q3Ds8ANFRS+bipA/f+ehIpQRU55Qa4eNuHz5\nMvLy8nDx4kUUFwNVqwZbIoZhzBAZGYno6GhUq+a903HAz9lx4i8Uz9lZtkz9ut7OYEa7qBntXqa1\n05mZ9JX3lJ+18mIXK3L5Eq/dMExwqeg7sVWEXbH8nYeKUEbhTqB2bQx1Dh06RMePH6eSkpJgi8Iw\njElKSkro+PHjdOjQoXL3EOhzdpwg1Dw727cDvXsDa9aoT/Oyu8ua0Xe1Xd60vDJmPDtOjqoq47Uq\nF1P58NdObKFSz0JFDl9wKg+BPJ+KMUe4eV/8SWZmJlq2bAkhRLBFYRjGAkSEffv2ITY21ut6oDYo\nqNB06eI2dKKi1O+b6TiUYbS+y6fFSZ2SdM/OIlZ5WH8uflWTy+5aJaZi0qWLvfVeRvdDZSF2RVAg\nnTJ0tH6TcC+jUKhndgmHDV4CCRs6DBN++PresrFjAmUH7nTHp1QS1DoltbU7gwe7R8214rSSvhnk\nnaaUvhOEkuLK+Aerho5RfWAFLvSoqL+JWn0MVltlN92K9pswjB6XL1/GkCFD0Lp1a8TGxmLSpEme\ne2vXrkWLFi0QExODyZMnB1HK0OfEiRPo1q0bateujZEjR3quX7hwAXfffTdatmyJuLg4jB071nMv\nNzcX3bp1Q7t27dCmTRusXr3ac2/SpEmIiYlBixYt8M033wQ0L0FfpyP/C7U1O2rrDfTWIFiZu6y2\n1sXos5Jt29Tnwmtd15LD7nx6J9fVhOq871CVS044yGiVipgnJnxRtsnBWIPEa598JyMjI9giMAFg\n3rx59OCDDxIR0fnz5+mGG26g7OxsKi4upqZNm9LBgwepqKiI2rRpQ+np6UGWNnQ5d+4cbdmyhT78\n8EMaMWKE5/r58+dp48aNRERUVFREXbt2pdWrVxMR0dChQ2nGjBlERJSenk433HCD53ObNm3o4sWL\ndOjQIWratCkVFxdbkkft/YXJNTvs2dFBGqmUr9eRztUZO9bbq2LFO6EWVrkORjrLRy1O6XuXLmVn\n/MjvjR1b/rpRHu2M/JlZr2S2TJyc+laZzrwxqiNG10IVJ6deBpJwKmPGPMppwU5uMy//byRDRfSc\nVSbGjx+P9957z/P95Zdfxvvvvx9EiUIbl8uF2NhYDB06FHFxcejZsycKCwsNnxNC4Pz58yguLkZh\nYSGqV6+OOnXqIDU1FTExMWjatCmqV6+O/v37Y8WKFQHISXCxW461atVC165dERkZ6XW9Zs2a6Nat\nGwCgevXqaN++PfLy8gC4y/7MmTMAgNOnT+P6668HAKxYsQL9+/dHjRo10KRJE8TExCA1NdXJbOrC\nGy8aoLbIXzIyJKNCMobMdkR6nZbynt5W0UD5hd++ru9xEl87ZzNnDtndStsM4aBcqMmoVgaVcZFy\noPPsr/R4cX9w0Ct3J9c4SX2JmXrD9SA4OPUOPvbYY7jvvvswatQolJSUYOHChQFV+Hxhy6L9+O3w\nOUfjvLphbdyafKNumKysLCxYsAAzZ85EcnIyli5dioKCAsybN69c2MTERHzwwQd44IEHsGLFCjRo\n0AAXLlzAtGnTUK9ePeTn56Nhw4ae8NHR0di5c6ejedJj//7XcfZcpqNxXlU7Fjfe+IphODvlaIZT\np05h1apV+Pvf/w4AmDBhAnr27Il///vfOH/+PDZs2AAAyM/PR+fOnT3PRUdHIz8/31QaTsCeHROo\njZ7LDZ7t282tX1Hz5KghrYlRC6fcwMCpDQLMYnXk2hdDR8+ropd3J5XNcFAuzJRBOBhuThPoPPsj\nvXDwLlZEjMrdid9DPnOgsr2b4YST72Djxo1Rv3597N69G+vWrUO7du1Qv3593yOuwDRp0gTx8fEA\ngISEBLhcLowZMwZ79uwp9ycp6KmpqYiIiMCRI0eQnZ2Nd955B4cOHQpmNoKOnXI0ori4GA899BCe\nffZZNG3aFACwYMECPPLII8jLy8Pq1asxePBglJSU+C1fZmHPjgm0lBh5J2XmUE6zo77yET+1La99\n3WnN7iiVMg/+HHE2U6b+GnWtCCPpZja5qAwEOs9Op1cZjdRQQK/cnfYey/8zoYfT7+ATTzyBWbNm\n4ddff8Vjjz3mTKQBwMgD4y9q1Kjh+RwREYHCwkJMnTpV1yMxf/583HnnnahWrRquvfZa3HLLLUhL\nS0PDhg1x+PBhT/i8vDxEaW236wfMeGD8hZ1yNOLJJ59E8+bNMWrUKM+1Tz/9FGvXrgUAdOnSBRcv\nXsRvv/2GqKiooJY9e3ZMYqRYm5l+YGUdjeQ18ufOb3a8NMrd2Pw54hwMBcDXfPnj92IqN6wIBwe9\nNp8N0MqFk791UlIS1q5dix9++AG9evVyLuJKhJFHolGjRti4cSMA4Pz589ixYwdatmyJjh07Iisr\nC9nZ2bh06RIWLlyIPn36BDMrQcUXz864ceNw+vRprzVogLvsv/32WwDuc60uXryIa665Bn369MHC\nhQtRVFSE7OxsZGVl4eabb/ZLvtRgYydASBsHmFVe/TW1QeqoAXvbqfqyNigc8CVfThuAPIWp4sC/\nYcWiorV7TOCoXr06unXrhuTkZERERARbnArJiBEjcO7cOcTFxaFjx4549NFH0aZNG1StWhXTp09H\nr169EBsbi+TkZMTFxQVb3JCmcePGGD16NGbNmoXo6GhkZGQgLy8PEydOREZGBtq3b4/4+Hh88skn\nAIB33nkHM2fORNu2bfHQQw9h1qxZEEIgLi4OycnJaNWqFe6880785z//CWj9F+6d20KDDh06UFpa\nWrDF8CBfN2M0tcnM1KdATY8ym448nD8XcyvTCZSiEIzpaE6nabRJAytdoU9l3ByCYUKRzMzMciew\nB5qSkhK0b98eixcvRvPmzYMqC8OEE2rvrxBiFxF1MHqWPTsa5OYC/foBycllGxDoLVY1MwIfyB2h\nzExT83UBu9VttgPpqQiWV8Qfnjg1jOpkKBJOsjpJRfWCMgxjjYyMDMTExKB79+5s6DBMAGHPjg5a\nnh21EXWznp/t28s2HfDXyLwktz9Hk61uuBAszw4QWkqmE54aow0sQhH2bjAME2xCwbPDMIw92LPj\nJ6TtnaXPgLbHwMxObF9+CfTu7TZ4/OF5kCv3/h5NthK/r7vH+UIoeT/0fnOrB7AqD7sNddi7wUiE\nyvvIMAzDVA7Y2LGB2q5qeh24pOglJQFr1riVVLPKn9kTttWUZX8rlqGuuIaagq0nj1VZQyVPVghH\nmRln4U03GIZhmEDDxo4FcnPda3hGjSq/i1lysrHBA3iPxmud4SD/PHiw9voMpWGjpyxXVuUi1BRs\nO+cGMUxFIdQGIBiGYZiKDxs7FmjUCFi0CFi8uHxn7cTSJ+Wop3y6klJBsOLJqUyjqb7msTKUEcME\nEzZ0GIZhmEDCxo5F5Ot45NcWL7YXn5F3RuvQUqtrZuRhK6pC78SBoEYeNIZhGIYJNC6XC3/4wx8Q\nHx+P+Ph4DBs2LNgihSwnTpxAt27dULt2bYwcOdLr3qVLl/Dkk0/ixhtvRMuWLbF06VIAQFFRER58\n8EHExMSgU6dOcLlcQZA8tFi/fj0SEhLQunVrJCQkeA5qBYDbbrsNLVq08NTHY8eOee4tWrQIrVq1\nQlxcHAYMGOC5npKSgubNm6N58+ZISUkJaF6qBjS1Ckx+vvvQUCtTNNR21bIy6mknbEXeFcvXKTJq\nz1fk8mIYhmHCh2bNmmHPnj3BFiPkiYyMxOuvv469e/di7969XvcmTpyIa6+9Fvv370dJSQlOnjwJ\nAPj0009Rt25dHDhwAAsXLsQLL7yAL774IhjihwxXX301Vq1aheuvvx579+5Fr169kJ+f77k/b948\ndOjgvRFaVlYWJk2ahO+//x5169b1GEEnT57Eq6++irS0NAghkJCQgD59+qBu3boByQt7dnxAvnnA\n2LHeGxeYPedm8mT3s054D6zs5OUvxT3YXhBf8+WLB40JH4JdTxmGqZy4XC7ExsZi6NChiIuLQ8+e\nPVFYWBhssUISu2VVq1YtdO3aFZGRkeXuffbZZ3jxxRcBAFWqVMHVV18NAFixYgWGDBkCAHjggQfw\n7bffIpSOZvEFu+XYrl07XH/99QCAuLg4FBYWoqioSPeZmTNnYsSIER4j5tprrwUAfPPNN+jRowfq\n1auHunXrokePHli7dq2POTMPe3ZsohzxV04TS052r+NRW98jR74ex5czaKQ0Fy0yjsOfhk5F9IJU\npLwwFbeeMgxjnldXpSPjyBlH42x1fR38629xhuGysrKwYMECzJw5E8nJyVi6dCkKCgowb968cmET\nExPxwQcfAACys7PRrl071KlTB2+88QZuvfVWR+XX47+z/g/Hcg45Gue1NzRFt0ee1A1jt6zUOHXq\nFADglVdewaZNm9CsWTNMnz4d1113HfLz89GwYUMAQNWqVfHHP/4RJ06c8BhDTvBKVh72nnPWsL2p\n9h/wevNow3C+luPSpUvRvn171KhRw3Pt0UcfRUREBO6//36MGzcOQgjs378fAHDLLbfgypUrmDBh\nAu68806v8gWA6OhoLy+Rv2FjxwDJAFEaIkoDR3lv0aLy17WQ4vdVAQv2IAR7QZhwgOspwzDBpEmT\nJoiPjwcAJCQkwOVyYdy4cRgzZozmMw0aNEBubi7q16+PXbt2oW/fvkhPT0edOnUCJXZQsFNWWhQX\nFyMvLw9/+ctf8O677+Ldd9/FP//5T8yZM8dpsUMOX8oxPT0dL7zwAtatW+e5Nm/ePERFReHs2bO4\n//77MWfOHDz88MMoLi5GVlYWNm3ahLy8PCQmJuLnn3/2W77MwsaODvI1NWrrcaxuI6znuXFivYmR\nFykQBDt9PXzxnDEVC64HDFO5MeOB8Rfy0fGIiAgUFhZi6tSpuqPsNWrU8DyXkJCAZs2aYf/+/eXW\nTPgLIw+Mv7BTVlrUr18fNWvWxH333QcA6NevHz799FMAQFRUFA4fPozo6GgUFxfj9OnTqF+/vqN5\nMeOB8Rd2yzEvLw9JSUmYPXs2mjVr5gkTFRUFALjqqqswYMAApKam4uGHH0Z0dDQ6deqEatWqoUmT\nJrjxxhuRlZWFqKgobNq0yfN8Xl4ebrvtNv9kVgU2dnSQGyC+jgSb8dw4vd6kMqM0bHjqEsMwDBOq\njBkzRneU/fjx46hXrx4iIiJw6NAhZGVloWnTpgGUMHQwKisthBD429/+hk2bNuH222/Ht99+i1at\nWgEA+vTpg5SUFHTp0gVLlizB7bffDiGE06KHFEbleOrUKdx9992YPHkybrnlFs/14uJinDp1Cldf\nfTUuX76Mr776CnfccQcAoG/fvliwYAEeffRR/Pbbb9i/fz+aNm2KZs2a4aWXXsLvv/8OAFi3bh0m\nTZrk3wzKYGPHAK2tn+3E429Fmz0XbtQMG566xDAMw4Qr3333HcaPH49q1aqhSpUq+Oijj1CvXr1g\nixWyNG7cGGfOnMGlS5ewfPlyrFu3Dq1atcKUKVMwePBgjBo1Ctdccw0+//xzAMDjjz+OwYMHIyYm\nBvXq1cPChQuDnIPgM336dBw4cACvvfYaXnvtNQBuI6VWrVro1asXLl++jCtXruCOO+7A0KFDAQC9\nevXylHVERASmTp3q8ZC98sor6NixIwBg/PjxAa2/IpR2m+jQoQOlpaUFW4yA4aRxwp4Lb9jw8x9c\ntgzDhCOZmZmIjY0NthgMw9hA7f0VQuwiIsO5nLz1dJDw9QBMJey58IbLwT84XW8ZhmEYhmH8CRs7\nfkRPIfSHcVIRFHxWokMbNqoZhmEYhgknfDJ2hBAThBD5Qog9pX93ye69KIQ4IIT4RQjRy3dRwwsz\nI+B6CqPTSn84GBHsNQgP2NBhGIZhGCZccMKzM42I4kv/VgOAEKIVgP4A4gDcCWCGECLCgbTCBl9G\nwJ1W+sPFiGCvAcMwDMMwDOMk/prGdi+AhURURETZAA4AuNlPaYUsWmftmHnOSaU/nIyIcJCRYRiG\nYRiGCQ+cMHZGCiF+EkJ8JoSoW3otCsBhWZi80muVGiseFrseISfjCzbK/IS6Z4phGIZhGIYJLQyN\nHSHEBiHEXpW/ewF8CKAZgHgABQDesSqAEOJJIUSaECLt+PHjljMQTvjTw+LPqWrBMDKU+QmXqXgM\nwzAM4zQnTpxAt27dULt2bYwcOdLr3q5du9C6dWvExMTg2WefRSgdKRIMUlNTER8fj/j4eLRt2xZf\nfvklAODw4cPo1q0bWrVqhbi4OLz//vueZ06ePIkePXqgefPm6NGjh+fwy8qMy+XCH/7wB09ZDhs2\nzHPv5ZdfRsOGDVG7dm2vZ9599120atUKbdq0Qffu3ZGTk+O5l5KSgubNm6N58+ZISUkJWD4AAETk\nyB+AxgD2ln5+EcCLsnvfAOhiFEdCQgJVRnJy/BuPL/Hn5BAlJjono9W09b4zDMMwjFkyMjKCLYJt\nzp07R1u2bKEPP/yQRowY4XWvY8eOtH37diopKaE777yTVq9eHSQpQ4Pz58/T5cuXiYjoyJEjdM01\n19Dly5fpyJEjtGvXLiIiOnPmDDVv3pzS09OJiGjMmDE0adIkIiKaNGkSPf/888ERPoTIzs6muLg4\n1Xvbt2+nI0eOUK1atbyub9y4kc6fP09ERDNmzKDk5GQiIjpx4gQ1adKETpw4QSdPnqQmTZrQyZMn\nLcmj9v4CSCMTNoqvu7E1kH1NArC39PNKAP2FEDWEEE0ANAeQ6ktaFRUnPRZaa4R8iT+Y632UaYbj\nVDyGYRiGkXC5XIiNjcXQoUMRFxeHnj17orCwUDN8UZH7f61atdC1a1dERkZ63S8oKMCZM2fQuXNn\nCCHw8MMPY/ny5f7MQsCwWlYSNWvWRNWqVQEAFy9ehBACANCgQQO0b98eAHDVVVchNjYW+fn5AIAV\nK1ZgyJAhAIAhQ4ZUmDIE7JejHp07d0aDBg3KXe/WrRtq1qzpCZOXlwcA+Oabb9CjRw/Uq1cPdevW\nRY8ePbB27VqfZLBCVR+ff0sIEQ+AALgAPAUARJQuhFgEIANAMYARRHTFx7TCGq1T5/1tTDgRPxsZ\nDMMwTIVizVjg15+djfPPrYHekw2DZWVlYcGCBZg5cyaSk5OxdOlSFBQUYN68eV7hiIA2bRLxyScf\noEYN9bjy8/MRHR3t+R4dHe1R4J3k1KqDuHTkvKNxVr++Fv70t2a6YcyWFQAkJibigw8+AADs3LkT\njz32GHJycjBnzhyP8SPhcrmwe/dudOrUCQBw9OhRj/L+5z//GUePHnUii168uiodGUfOOBpnq+vr\n4F9/izMMZ7ccs7Oz0a5dO9SpUwdvvPEGbr31VtOyffrpp+jduzcAdz1t2LCh556/6qkWPhk7RDRY\n595EABN9ib+iIHlXtIwOfxsTdjc7YCOHYRiGYZylSZMmiI+PBwAkJCTA5XJh3LhxGDNmTLmwRUXQ\nNHQqA1bKSk6nTp2Qnp6OzMxMDBkyBL179/Z4xc6dO4f7778f7733HurUqVPuWSGExxtUUbBTjg0a\nNEBubi7q16+PXbt2oW/fvkhPT1ctMyVz585FWloaNm/e7FgefMFXzw5jgnDa+hkwNs4YhmEYJqwx\n4YHxFzVk1ktERAQKCwsxdepUw1F2NaKiojxThQAgLy8PUVHOb35r5IHxF76WVWxsLGrXro29e/ei\nQ4cOuHz5Mu6//34MHDgQ9913nyfcddddh4KCAjRo0AAFBQW49tprHc+LGQ+Mv7BTjjVq1PA8l5CQ\ngGbNmmH//v3o0KGDblobNmzAxIkTsXnzZs/zUVFR2LRpkydMXl4ebrvtNt8zZhI2dgJEOBkN4Wac\nMQzDMEw4M2bMGENvhRoNGjRAnTp1sGPHDnTq1AmzZ8/GM8884wcJQwejssrOzkbDhg1RtWpV5OTk\nYN++fWjcuDGICI8//jhiY2MxevRor2f69OmDlJQUjB07FikpKbj33nv9nY2gY1SOx48fR7169RAR\nEYFDhw4hKysLTZs21Y1z9+7deOqpp7B27Vovg7FXr1546aWXPLvcrVu3DpMmTXImIyZgY4dRhQ0d\nhmEYhgkdGjdujDNnzuDSpUtYvnw51q1bh1atWmHGjBl45JFHUFhYiN69e3vWSVRWtm7dismTJ6Na\ntWqoUqUKZsyYgauvvhpbt27FnDlz0Lp1a8+UrjfffBN33XUXxo4di+TkZHz66ae44YYbsGjRoiDn\nIvh89913GD9+vKccP/roI9SrVw8A8Pzzz2P+/Pm4cOECoqOj8cQTT2DChAkYM2YMzp07h379+gEA\nGjVqhJUrV6JevXp45ZVX0LFjRwDA+PHjPXEFAkEhtB97hw4dKC0tLdhiMAzDMAxTwcjMzERsbGyw\nxWAYxgZq768QYhcR6c+rg4lDRRlj1LZ15sMvGYZhGIZhGCa4sLHjI2rn2Dh5dg7DMAzDMAzDMPZg\nY8dH1Bbz8wJ/hmEYhmEYhgk+bOw4QDDOzgkE7JliGIZhGIZhwhk2dkKMUDEweCoewzAMwzAME+6w\nsRNChJKBwVPxGIZhGIZhmHCHjZ0QItQMjFCRg2EYhmEqM+vXr0dCQgJat26NhIQEbNy40XNv165d\naN26NWJiYvDss88ilI4UCRY//fQTunTpgri4OLRu3RoXL170ut+nTx/cdNNNnu8nT55Ejx490Lx5\nc/To0cNz+GVl5sSJE+jWrRtq166NkSNHet3TqnNjxoxBy5Yt0aZNGyQlJeHUqVNez+Xm5qJ27dp4\n++23PdfWrl2LFi1aICYmBpMnT/ZLXtjYCTHYwGAYhmEYRs7VV1+NVatW4eeff0ZKSgoGDx7suTd8\n+HDMnDkTWVlZyMrKwtq1a4MoafApLi7GoEGD8NFHHyE9PR2bNm1CtWrVPPeXLVuG2rVrez0zefJk\ndO/eHVlZWejevbvflO5wIjIyEq+//rqXYSKhVed69OiBvXv34qeffsKNN96ISZMmeT03evRor0Nv\nr1y5ghEjRmDNmjXIyMjAggULkJGR4Xhe2NhhGIZhGIYJAC6XC7GxsRg6dCji4uLQs2dPFBYWGj7X\nrl07XH/99QCAuLg4FBYWoqioCAUFBThz5gw6d+4MIQQefvhhLF++3N/ZCAh2y2rdunVo06YN2rZt\nCwCoX78+IiIiAADnzp3Du+++i3Hjxnk9s2LFCgwZMgQAMGTIkApThoD9cqxVqxa6du2KyMhIr+t6\nda5nz56oWrUqAKBz587Iy8vzPLd8+XI0adIEcXFxnmupqamIiYlB06ZNUb16dfTv3x8rVqxwItte\nVHU8RoZhGIZhmBBmSuoU7Du5z9E4W9ZriRdufsEwXFZWFhYsWICZM2ciOTkZS5cuRUFBAebNm1cu\nbGJiIj744AOva0uXLkX79u1Ro0YN5OfnIzo62nMvOjoa+fn5vmdGwZo1a/Drr786Guef//xnr1F+\nNeyU1f79+yGEQK9evXD8+HH0798fzz//PADglVdewT/+8Q/UrFnT69mjR4+iQYMGHrmOHj3qUC5l\nrBkL/Pqzs3H+uTXQ29gL5Wudk2O2zn322Wd48MEHAbiNzClTpmD9+vVenqL8/Hw0bNjQK66dO3ca\n5scqbOwwDMMwDMMEiCZNmiA+Ph4AkJCQAJfLhXHjxmHMmDGGz6anp+OFF17AunXr/C1mSGCnrIqL\ni7F161b88MMPqFmzJrp3746EhATUr18fBw8exLRp0+ByuTSfF0JACOF0VoKKL3XODhMnTkTVqlUx\ncOBAAMCECRPw3HPPlZs+GCjY2GEYhmEYplJhxgPjL2rUqOH5HBERgcLCQkydOtVwlD0vLw9JSUmY\nPXs2mjVrBgCIiorymiqUl5eHqKgox2U28sD4CztlFR0djcTERFx99dUAgLvuugs//vgjateujbS0\nNDRu3BjFxcU4duwYbrvtNmzatAnXXXcdCgoK0KBBAxQUFODaa691PjMmPDD+wm6dU8Oozs2aNQtf\nffUVvv32W4/RuHPnTixZsgTPP/88Tp06hSpVqiAyMhIJCQk4fPiwZlxOwcYOwzAMwzBMEBkzZozu\nKPupU6dw9913Y/Lkybjllls81xs0aIA6depgx44d6NSpE2bPno1nnnkmECIHDaOy6tWrF9566y1c\nuHAB1atXx+bNm/Hcc8/h7rvvxvDhwwG417Hcc8892LRpEwD37mwpKSkYO3YsUlJScO+99wYiK0HF\nqBy10Ktza9euxVtvvYXNmzd7TRXcsmWL5/OECRM8O7wVFxcjKysL2dnZiIqKwsKFCzF//nzfM6eA\nNyhgGIZhGIYJYaZPn44DBw7gtddeQ3x8POLj43Hs2DEAwIwZM/DEE08gJiYGzZo1C5oXJlSoW7cu\nRo8ejY4dOyI+Ph7t27fH3XffrfvM2LFjsX79ejRv3hwbNmzA2LFjAyRtaNO4cWOMHj0as2bNQnR0\ntGenNK06N3LkSJw9exY9evRAfHw8hg0bpht/1apVMX36dPTq1QtFJmdmAAAJSUlEQVSxsbFITk72\n2sDAKUQo7cfeoUMHSktLC7YYYU1uLm9fzTAMwzBKMjMzERsbG2wxGIaxgdr7K4TYRUQdjJ5lz04F\nIjcXGDzY/Z9hGIZhGIZhKjts7FQgGjUC5sxhzw7DMAzDMAzDAGzs+J1Ae1nY0GEYhmEYhmEYN2zs\n+BGeVsYwDMMwDMMwwYONHT/C08oYhmEYhmEYJniwseNn2NBhGIZhGIZhmODAxg7DMAzDMEwYkJub\ni9q1a+Ptt9/2XFu7di1atGiBmJgYTJ48OYjSMUxowsYOwzAMwzBMGDB69GivQ0OvXLmCESNGYM2a\nNcjIyMCCBQs8Bz8yDOOGjR2GYRiGYZgA4HK5EBsbi6FDhyIuLg49e/ZEYWGhqWeXL1+OJk2aeJ0w\nn5qaipiYGDRt2hTVq1dH//79sWLFCn+JzzBhSdVgC8C4yc3l9T0MwzAMEwh+ffNNFGXuczTOGrEt\n8eeXXjIMl5WVhQULFmDmzJlITk7G0qVLUVBQgHnz5pULm5iYiA8++ADnzp3DlClTsH79eq8pbPn5\n+WjYsKHne3R0NHbu3OlMhhimgsDGTgggbVHNO7cxDMMwTMWmSZMmiI+PBwAkJCTA5XJh3LhxGDNm\njOYzEyZMwHPPPYfatWsHSkyGqTD4ZOwIIb4A0KL0658AnCKieCFEYwCZAH4pvbeDiIb5klZFhreo\nZhiGYZjAYcYD4y9q1Kjh+RwREYHCwkJMnTpV17Ozc+dOLFmyBM8//zxOnTqFKlWqIDIyEgkJCTh8\n+LAnfF5eHqKiogKSD4YJF3wydojoQemzEOIdAKdltw8SUbwv8Vcm2NBhGIZhmMrJmDFjdD07W7Zs\n8XyeMGECateujZEjR6K4uBhZWVnIzs5GVFQUFi5ciPnz5wdCZIYJGxyZxiaEEACSAdzuRHwMwzAM\nwzCMPlWrVsX06dPRq1cvXLlyBY899pjXBgYMwwCCiHyPRIhEAO8SUYfS740BpAPYD+AMgHFEtEUz\nglI6dOhAaWlpPsvDMAzDMAwjJzMzE7GxscEWg2EYG6i9v0KIXZLtoYehZ0cIsQHAn1VuvUxE0v6G\nDwFYILtXAKAREZ0QQiQAWC6EiCOiMyrxPwngSQBoxHO5GIZhGIZhGIZxCENjh4ju0LsvhKgK4D4A\nCbJnigAUlX7eJYQ4COBGAOXcNkT0fwD+D3B7dqwIzzAMwzAMwzAMo4UTh4reAWAfEeVJF4QQ1wgh\nIko/NwXQHMAhB9JiGIZhGIZhGIYxhRMbFPSH9xQ2AEgE8JoQ4jKAEgDDiOikA2kxDMMwDMPYgojg\n3lOJYZhwwdf9BXw2dojoEZVrSwEs9TVuhmEYhmEYJ4iMjMSJEydQv359NngYJkwgIpw4cQKRkZG2\n43Bk62mGYRiGYZhQJjo6Gnl5eTh+/HiwRWEYxgKRkZGIjo62/TwbOwzDMAzDVHiqVauGJk2aBFsM\nhmECjBMbFDAMwzAMwzAMw4QcbOwwDMMwDMMwDFMhYWOHYRiGYRiGYZgKifB1OzcnEUIcB5ATbDlk\nXA3gt2ALwYQdXG8YO3C9YezA9YaxA9cbxg6hVm9uIKJrjAKFlLETaggh0oioQ7DlYMILrjeMHbje\nMHbgesPYgesNY4dwrTc8jY1hGIZhGIZhmAoJGzsMwzAMwzAMw1RI2NjR5/+CLQATlnC9YezA9Yax\nA9cbxg5cbxg7hGW94TU7DMMwDMMwDMNUSNizwzAMwzAMwzBMhYSNHRWEEHcKIX4RQhwQQowNtjxM\naCKEaCiE+K8QIkMIkS6E+Hvp9XpCiPVCiKzS/3WDLSsTegghIoQQu4UQX5V+byKE2Fna7nwhhKge\nbBmZ0EII8SchxBIhxD4hRKYQogu3N4wRQojnSvuovUKIBUKISG5vGDWEEJ8JIY4JIfbKrqm2McLN\nB6V16CchRPvgSa4PGzsKhBARAP4DoDeAVgAeEkK0Cq5UTIhSDOAfRNQKQGcAI0rrylgA3xJRcwDf\nln5nGCV/B5Ap+z4FwDQiigHwO4DHgyIVE8q8D2AtEbUE0Bbu+sPtDaOJECIKwLMAOhDRTQAiAPQH\ntzeMOrMA3Km4ptXG9AbQvPTvSQAfBkhGy7CxU56bARwgokNEdAnAQgD3BlkmJgQhogIi+rH081m4\nFY8ouOtLSmmwFAB9gyMhE6oIIaIB3A3gk9LvAsDtAJaUBuF6w3ghhPgjgEQAnwIAEV0iolPg9oYx\npiqAPwghqgKoCaAA3N4wKhDRdwBOKi5rtTH3AphNbnYA+JMQokFgJLUGGzvliQJwWPY9r/Qaw2gi\nhGgMoB2AnQCuI6KC0lu/ArguSGIxoct7AJ4HUFL6vT6AU0RUXPqd2x1GSRMAxwF8Xjr98RMhRC1w\ne8PoQET5AN4GkAu3kXMawC5we8OYR6uNCRt9mY0dhvERIURtAEsBjCKiM/J75N7ukLc8ZDwIIe4B\ncIyIdgVbFiasqAqgPYAPiagdgPNQTFnj9oZRUrq+4l64jeXrAdRC+WlKDGOKcG1j2NgpTz6AhrLv\n0aXXGKYcQohqcBs684hoWenlo5Irt/T/sWDJx4QktwDoI4RwwT1N9na412L8qXSaCcDtDlOePAB5\nRLSz9PsSuI0fbm8YPe4AkE1Ex4noMoBlcLdB3N4wZtFqY8JGX2Zjpzw/AGheulNJdbgX8q0MskxM\nCFK6zuJTAJlE9K7s1koAQ0o/DwGwItCyMaELEb1IRNFE1Bju9mUjEQ0E8F8AD5QG43rDeEFEvwI4\nLIRoUXqpO4AMcHvD6JMLoLMQomZpnyXVG25vGLNotTErATxcuitbZwCnZdPdQgo+VFQFIcRdcM+p\njwDwGRFNDLJITAgihOgKYAuAn1G29uIluNftLALQCEAOgGQiUi74YxgIIW4D8E8iukcI0RRuT089\nALsBDCKiomDKx4QWQoh4uDe1qA7gEIBH4R605PaG0UQI8SqAB+HeQXQ3gCfgXlvB7Q3jhRBiAYDb\nAFwN4CiAfwFYDpU2ptR4ng73tMgLAB4lorRgyG0EGzsMwzAMwzAMw1RIeBobwzAMwzAMwzAVEjZ2\nGIZhGIZhGIapkLCxwzAMwzAMwzBMhYSNHYZhGIZhGIZhKiRs7DAMwzAMwzAMUyFhY4dhGIZhGIZh\nmAoJGzsMwzAMwzAMw1RI2NhhGIZhGIZhGKZC8v+ubNhYrjdHTwAAAABJRU5ErkJggg==\n", "text/plain": [ "The blue dots represent the data we are trying to model. Each line is a linear model fit to a different data set from the data generating model (same as above), but with increasingly more points. You can see that most of the lines cluster together, and that the line fit with the most points is right in the middle there. The starred, black-curve running through the middle is the true mean of the distribution (i.e., $E[Y|X]$ if you were to have infinitely many data points to model). We can see that even the linear model fit on the most data is far away from this true mean at various points. If we extended the simulation and modeled with infinitely large data sets, nothing would change this fact: a linear model will never truly fit the curvature of the data. This is an example of model bias. Because this is a regression problem, we can even quantify this bias:
\n",
"\n",
"A linear model will take the form:
\n",
"
\n",
"\n",
"Core machine learning theory focuses a lot of attention on how flexible a particular type of model can be. The best algorithms (in terms of accuracy) are usually the ones that can fit any arbitrary function that may represent the classification or regression task. Of course, with great power comes great responsibility. When we seek to reduce bias by using more sophisticated modeling algorithms, we have to be mindful that a lot of algorithms are really good at fitting the noise in our data. With smaller data sets, the models have a harder time distinguising inherent noise from signal. Variance in this context is thus intimately linked to the size of the data set.
\n",
"\n",
"An important concept for understanding model variance is to define the variance of 'what' over 'what.' Remember again that a model is our best estimate of $E[Y|X]$, and we use a given training set $j$ to learn this estimate. Every training set though is just some sample over a larger, hypothetical distribution $D$ (that in practice we generally never know). Now imagine a set of parallel worlds, each having some different (but similar) dataset $j$ sampled from $D$. Now further imagine that we estimate a different $E^j[Y|X]$ over $D$ in each world, using some algorithm with a fixed structure. Because of the random permutations and differences of the different training sets, we should expect each $E^j[Y|X]$ to be slightly different than the next. Exactly how different is the appropriate question here. More flexible models will likely produce more varied estimates, and this variation will increase as sample sizes decrease. So in short, the variance we refer to here is $Var(E^j[Y|X])$, over possible different permutations of the data set.
\n",
"\n",
"The following illustrates this idea using the simulation example from above. In this case we compare a biased (linear) model to a zero-bias model with different sized training sets. We simulate the parallel world concept and plot the results of the model trained on each 'world.'\n",
"
This chart paints several trends around the idea of model variance. First though, let's arm ourselves by actually defining model variance. For a particular value of $X=x$:
\n",
"\n",
"
This plot should confirm several of our expectations. First, when the complexity of our models increase (measured by the degree of the polynomial), model variance increases. Also, variance decreases as we increase the sample size. Beyond that, note the shape of the curves in the top plot above (for any model degree). We can see that doubling the data (each tick on the x-axis represents a doubling) cuts the variance in half. For instance, with $d = 4$ (our one unbiased model family), going from $2^{10}$ to $2^{11}$ records drops the variance around 50%. The bottom chart shows both the sample size and model on the log2 scale. We can see that relationship on the log-log scale is nearly perfectly linear. Every unit increase in log2 scale decreases the log2 of the variance by a constant amount, such that: $log_2(\\hat{\\sigma_m}^2) = -log_2(N) + c$. With a little algebra we get to $\\hat{\\sigma_m}^2 \\propto N^{-1}$. Here we have shown empirically what is well known analytically - that model variance reduces at the rate of $O(N^{-1})$. For reasons that we'll discuss later, investing in more and more data to reduce the variance doesn't always pay off (in terms of reducing error to balance out the additional data cost).\n", "
\n", "\n", "## Model Error, Bias and Variance\n", "\n", "So at this point we should have a solid foundation as to what exactly we mean by a model's bias and variance. And most importantly, we should now be able to understand the drivers of model bias and variance. Understanding such drivers gives the modeler an element of control over the two phenomena. But why do we need to control such things? After all, our modeling goal is generally not to hit some target level of bias or variance. Rather, we want to reduce the prediction error of our model. It turns out, bias and variance are intimately connected to model error, such that the total model error is often explicitly determined by the amount of bias or variance. Thus, controlling bias and variance in essence helps us control the error.\n", "
\n", "\n", "### Bias-Variance Decomposition for Least-Squares Error\n", "\n", "\n",
"The most famous and convenient representation of this relationship is done using least-squares error. For problems in which MSE (least squares) is our error function, we can express the MSE explicitly in terms of model bias, model variance and the underlying noise in our target data (which is often called the 'irreducible error', for reasons discussed later on). In this section we'll derive this famous decomposition.
\n",
"\n",
"Important Concepts Defined
\n",
"\n",
"First, let's assume our data comes in pairs $(X, Y)$, and our general estimation goal is to learn a function $f(X)$ such that $f(x) = E[Y|X=x]$. Because our data is finite, we never know the true $E[Y|X=x]$, but we can estimate $f_j(x) = \\hat{Y}_x = E_j[Y|X=x]$ over some fixed, finite sample $j$. Our MSE at a give value of $X=x$, with known $Y=y$ is defined as:\n",
"\n",
"
Understanding the bias-variance decomposition isn't just a theoretical exercise. Quite the opposite, it is the most fundamental principal that governs model generalizability and its lessons are directly applicable to empirical problems. Here are some key takeaways that we can highlight based on the above analysis that can be directly applied to our work.
\n",
"\n",
"More data should not hurt, and is likely better:
\n",
"This is probably an obvious statement based on everything we hear about \"Big Data,\" but now we have a framework to understand why. Having more data examples reduces model estimation variance at the rate of $O(N^{-1})$, which all else being fixed (remember, more data doesn't change the bias or irreducible error given a fixed model family), reduces the total error. An important caveat is that the value of this variance reduction might not be proportional to the costs associated with increased data. This is a very problem specific trade-off that should at least always be considered (remember, data costs can be in actual economic currency or CPUs). Also, having more data doesn't guarantee measurable results. There are always diminishing returns, so the improvement will depend on where you are on the sample size vs performance curve.\n",
"\n",
"Model complexity is your friend, but it can stab you in the back if you are not careful:
\n",
"The bias part of the error decomposition is purely a function of your model specification and is independent of the data (specifically, the number of examples, not features, in your data). One can often get better results by using more complex (flexible) modeling algorithms. Example ways to add model complexity are: adding new features to the dataset, using less regularization in linear models, adding non-linear kernel functions to SVMs, using Neural Networks or Decision Tree based methods over linear methods.
\n",
"\n",
"The major caveat is worthy of its own paragraph here. Given a finite data set, adding more complexity will almost always increase the estimation variance of your model. As discussed above, more flexible models will confuse more noise (the $\\epsilon$ part of $Y=f^*+\\epsilon$) for signal. Thus, we have to be very careful here. Adding more data given a fixed model family might waste time, money or CPUs, but it should't make your model worse. Adding more complexity can really hurt you if not done carefully. So this begs the questions:
\n",
"\n",
"How much model complexity should I use?\n",
"\n",
"
\n",
"In most observed phenomena, you can never get perfect predictions. Also, you shouldn't really compare models across different problems
\n",
"\n",
"These are two different statements, but they're both related to that $\\sigma^2$ term, which again we call the irreducible error. The first statement should be obvious if we assume $\\sigma>0$. Almost all systems we attempt to model, especially systems that capture human dynamics, are burdened with noise. With an infinite sample size we can potentially test every possible function and arrive at both zero variance and zero bias. Even then, the quantum mechanical nature of the universe, and the fact that there is always likely some unmeasured variable (whose effect can be folded into $\\epsilon$), means that $Y$ will always have some unexplainable variance. No model and modeler will ever get beyond that point (for those interested, this error is often called the 'Bayes Error').
\n",
"\n",
"The second statement above is related to the fact that every $Y^p$ will have an associated $\\epsilon^p$. A model predicting $E[Y^1|X=x]$ may have both lower bias and variance than a model predicting $E[Y^2|X=x]$, but if $Var[\\epsilon^1]>Var[\\epsilon^2]$, the model on $Y^1$ can still have a worse error than the one for $Y^2$. Generally this isn't a problem, so long as the appropriate comparisons are made. Specifically, the qualitative assessment of a model should be relative to a baseine derived from the same problem (i.e., predicting the same $Y^p$). And in some circumstances, a model that does 5% better than random on some problem may be worth a lot more money than a model that is nearly perfect (think about predicting stocks vs. predicting sunset).
\n",
"\n",
"Corrollary to the above paragraph is the following rule: don't judge a model just because its error is too close to random. Again, every model should be judged using appropriate baselines that are specific to the problem at hand. Accuracy might be far from 100%, but the model can still be good (and this relates back to how much irreducible error is in the underlying system).\n",
"
At this point you should (hopefully) understand the following at both an intuitive level and foundational theoretical level:\n", "\n", "