{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
This notebook is a demonstration of two types of feature engineering methods:
\n",
"
Now that we've created the functions, let's generate some data. Again, the goal is to generate an X-Y relationship with noise, but where we know the underlying data generating distribution.\n", "
" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "betas = [0, 4, -3.5, 1]\n", "n=200\n", "sig=2.2\n", "sp=20\n", "\n", "x_init = np.random.uniform(0,1,n)\n", "e_init = np.random.normal(0, sig, n)\n", "\n", "dat = genY(x_init, e_init, betas)\n", "dat = makePolyFeat(dat, 6)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we want to see the effect of fitting polynomial curves of different degrees to our noisy data set. Ultimately, we want to illustrate how model specification (and feature engineering) affects the bias-variance tradeoff.\n", "\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def PlotLinDeg(X_train, y_train, X_test, y_test, i, t):\n", " '''\n", " This function builds a regression model on the simulated data\n", " 1. plots the test data\n", " 2. plots the fitted line\n", " 3. Shows sum-square error\n", " '''\n", " regr = linear_model.LinearRegression(fit_intercept=True)\n", " regr.fit(X_train, y_train)\n", " y_hat=regr.predict(X_train)\n", " y_hat_test=regr.predict(X_test)\n", " ss_train=((y_train-y_hat)**2).mean()\n", " ss_test=((y_test-y_hat_test)**2).mean()\n", " #Plot train X vs. Predicted Y_train\n", " plt.subplot(2, 3, i)\n", " plt.plot(X_train['x'], y_train, 'b.')\n", " plt.plot(X_train['x'], y_hat, 'r.')\n", " plt.title('{}\\n Train MSE={}'.format(t,round(ss_train,4)))\n", " #Plot test X vs. Predicted Y_test\n", " plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')\n", " plt.subplot(2,3,i+3)\n", " plt.plot(X_test['x'], y_test, 'b.')\n", " plt.plot(X_test['x'], y_hat_test, 'r.')\n", " plt.title('Test MSE={}'.format(round(ss_test,4)))\n", " plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')\n", " \n", " \n", "def PlotLinBin(X_train, y_train, X_test, y_test, i, t, x, x_t):\n", " '''\n", " This function builds a regression model on the simulated data\n", " 1. plots the test data\n", " 2. plots the fitted line\n", " 3. Shows sum-square error\n", " '''\n", " regr = linear_model.LinearRegression(fit_intercept=True)\n", " regr.fit(X_train, y_train)\n", " y_hat=regr.predict(X_train)\n", " y_hat_test=regr.predict(X_test)\n", " ss_train=((y_train-y_hat)**2).mean()\n", " ss_test=((y_test-y_hat_test)**2).mean()\n", " #Plot train X vs. Predicted Y_train\n", " plt.subplot(2, 3, i)\n", " plt.plot(x, y_train, 'b.')\n", " plt.plot(x, y_hat, 'r.')\n", " plt.title('{}\\n Train MSE={}'.format(t,round(ss_train,4)))\n", " #Plot test X vs. Predicted Y_test\n", " plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')\n", " plt.subplot(2,3,i+3)\n", " plt.plot(x_t, y_test, 'b.')\n", " plt.plot(x_t, y_hat_test, 'r.')\n", " plt.title('Test MSE={}'.format(round(ss_test,4)))\n", " plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAALICAYAAACThQrSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACDOUlEQVR4nO3de5xddX3v//dnZjIRVIqEVAuI1GtBo6iRumuF0VgqVmsqnnN6Shuq1jFWFM5pG0R/benhlAjt6UGLl0TFkuqpx2OAagsVRUfQbKChKAhIRUW5SA1BRBEyZObz++O7N7NnZ9/3d91fz8djHpPM3rP2d93e872ttczdBQAAAAAYz0TWBQAAAACAMqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMZVhZnZ7Wb2kJn9xMzuN7MdZrbRzHJ/XJjZtJl9urEObmYzWZcJQG8Fz5yjzGynmf2o8fUFMzsq63IB6KzIeSNJZra/mX3AzO41sx+b2ZVZlwmDKcQBhkS9xt0fL+kpkt4j6XRJH03ig8xsMvIivyLpdyXdE3m5AJJT1My5W9LrJR0k6WBJn5H0yYjLBxBfUfNGkrYq5M2Rje//LfLykRAaV5AkufuP3f0zkv6LpJPN7DmSZGYrzeyvzez7ZvYfZvYhM9uv+XtmtsnMfmBmd5vZHzRGkZ7eeO3vzOyDZnapmT0o6WVmdoiZbTezXWb2XTN7R8uyJszsnWb2bTPbbWafMrODupR33t3Pc/evSFpIctsAiK+AmXO/u9/u7i7JFHLn6cltIQCxFC1vzOxZkn5T0qy773L3BXe/LsFNhIhoXGEZd79W0p2SXtr40TmSninpaIWKxKGS/kySzOyVkv67pFc0XjuuwyJ/R9JfSnq8pB2SPivp643lrJN0mpn9euO975C0vrGcQyT9SNL7I64egJwpWuaY2f2SHpb0t5LOHmplAWSqQHnzy5K+J+kvGtMCbzSzE0dZZ6SPxhU6uVvSQWZmkt4s6b+5+33u/hOFysRvN973nyV9zN1vcvefSfqLDsv6R3f/qrsvSlojabW7/4/GyNN3JH24ZXlvkfRud7/T3fdIOlPS681sKqkVBZALhckcdz9Q0s9JOkXS9eOtNoAMFCFvDpP0HEk/VmiInSLpQjM7cvzVR9KotKKTQyXdJ2m1pP0lXRcySFKYDtOcV3yIpJ0tv3dHh2W1/uwpkg5p9Pw2TUq6quX1i81sseX1BUlPlHTX0GsBoCgKlTnu/qCZfUjSLjM70t1/2H3VAORMEfLmIUmPSPqf7r5X0pfN7EuSjpd0S5/1Q8ZoXGEZM3uRQvB8RdK9Cif4s929U0XjBwq9K01P7vAeb/n3HZK+6+7P6PLxd0h6o7t/deiCAyikAmfOhELF7FBJNK6AAihQ3twwwHuQU0wLhCTJzA4ws1cr3P3q4+5+Y2OY+8OS/reZ/XzjfYe2zB/+lKQ3mNmRZra/GvOUe7hW0gNmdrqZ7Wdmk2b2nEbYSdKHJP2lmT2l8Vmrzey1Pcq80swe0/jvtJk9xlq6nwDkV9Eyx8x+zcye31jGAZL+RuGaCXqRgZwrWt5IulLS9yWdYWZTZvYSSTOSPjfSBkCqaFzhs2b2E4UelXcrVBje0PL66ZJuk3S1mT0g6QuSniVJ7n6ZpPdJ+lLjPfXG7+zp9EHuviDpNQoXjn5XodfoIwrXL0jSexVub3x5o0xXK1zU2c2tCr1OhyoEzkMKw+4A8quomXOgpH9QuAbi2woXuL/S3R8eeM0BpK2QeePuj0h6raRXKWTOhyVtcPdvDrX2yISFu8oC42tcaPkNSSsbc4QBIDFkDoC0kDcYFCNXGIuZ/ZaZTZvZExRuafpZQgdAUsgcAGkhbzAKGlcY11sk7VKYJrMg6a3ZFgdAyZE5ANJC3mBoTAsEAAAAgAgYuQIAAACACGhclZyZ3WRmM1mXA0A1kDkA0kLeII9oXOWMmR1uZj9t+XIze7Dl/y8dZnnu/mx3nxuxLG5m/2FmUy0/mzKzH5qZt/zs2WZ2uZn9yMzuN7PrzOxVjddmzGyxbZ1+ama1Ect0kJntMrOv9HjPy8zsxkZZdpvZxWZ26KDLMrOjG+vws8b3o1teW2lm/9vM7m6s7wfMbMUo6wLkAZnTt0xjZ46ZnWtmd5jZA2b2PTN7d4f1bt3mH2l57eTG+j1gZnc2ljUloIDIm65l6ZkRHd7/O433PWhml5jZQS2v/Wcz29Gow8x1+N3XmNk3GuXcYWZHtbxGHScCGlc54+7fd/fHNb8aP35ey8+uar43pT+w90s6oeX/r1J4cGarz0r6vKQnSvp5Se+Q9EDL63e3rlPjq67RnKP+D+28WdKvu/uBkg6R9C1JHxxkWWY2LekfJX1c0hMkXSjpHxs/l6R3Slor6TmSninpBZL+v1FWBMgDMqevGJnzUUm/5O4HSPoVSb9jZq9rW0brNv+Dlp/vL+k0SQcrPBNnnaQ/HnFdgEyRN10NkhGSQmNP0hZJv9co088kfaDlLfdJOk/Sezr87jMkfULSRoVn931W0mdatjV1nAhoXBWImf2+mX210atwn6QzzexpZvbFRm/pvWb2CTM7sOV3bjezVzT+faaZfcrMtpnZTywMp6/t87F/L2lDy/83SNrWsvyDJf2ipA+7+3zj66vu3rWXd1SNnqDnSPpYr/e5+3+4+90tP1pQeODnIMuakTQl6Tx33+Pu75Nkkl7eeP01kt7n7ve5+y6FBwy+cbQ1AvKNzImTOe5+q7s/2PL6otoyqceyP+juVzXW8y6FitFLBl0HoCiqnDdDZsRJCreEv9LdfyrpTyW9zswe31jWF9z9U5Lu7vC7vy7pKnf/SuOW8udIOlTScY3XqeNEQOOqeH5Z0ncUek/+UqHiv1mht/RISU+WdGaP3/9NSZ9U6LH4jKTz+3zeJZKONbMDG4H2UoWRnabdCk8u/7iZrTezJw6zMo0h5/u7fN3Q8r5JSe+XdIqkvre4tDD14H5JDyn08p474LKeLekGX34bzRsaP5fC9rbWj5J0mJn9nIByInPGzJzG6+80s59KulPSYyX9n7ZFXGlm95jZRWZ2RI+POlbSTf3XFCikSuZN4739MqLp2ZK+3vyPu39b0rzCSFPfImnfOowpdCJ1e506zpBoXBXP3e7+t+6+190fcvfb3P3zjVGWXZL+Rks9EJ18xd0vdfcFhR6b5/X5vIcVho3/i6TfVgirh5svNhohL5N0u6T/JekHZnZlY+i56ZAOofLYxu//obsf2OXruS3LeIeka9z9ugG2UXPqwYEKU2n+P0nfHHBZj5P047af/VjS4xv/vkzSqWa22sye1FiWFKbuAGVE5gygT+bI3d+jkCMvaGyH1pw5TtIRkn5Jobf5n6zDlCgze4PClJ2/HqRMQAFVNW/6ZUSrfvWUXj4v6TgL14pNS3qXpGkt1WGo40RA46p47mj9j5n9vJl90szuMrMHFK4VOrjH79/T8u+fSXpMpz/ibbYpDJUvGy5vcvc73f0Ud3+apKdIerDtfXd3CJUH25fTjZkdonCC97zAsxN3v09L101NDbCsn0o6oO1nB0j6SePffynpeklfk7RDodfrEUk/HLZsQEGQOUNoz5y219zdr1cY3fqLlp9f2ZhudL+kUxWmIR3ZVqb1CtdQnODu9w5bLqAgKpc3bZ/VMSPa9Kun9Fr+NyWdrDCi9wOFbXmzwmiZRB0nChpXxdM+PWVz42fP9XAh5O9q+ZBuDFdJ+gWFCyd7zjN29zsUptI8p9f7mszsQ7bvXXaaX82pL8c0Pv9mM7tH0nslHdOYQjM5wMdMKUwxOGCAZd0k6blm1roNn9v4uRo9aae4+6Hu/lSFKQPXNXrJgDIic8bLnG6vP63Xaqllm5rZKyV9WNJr3P3GAT4fKKoq5k0nvTLiJrWMyJnZUyWtlPTvg5TJ3T/t7s9x91WS/lyhwfivjdeo40RA46r4Hq/Qi3G/hVv//knsD2gMi79G0m82/v0oM3uCmf2FmT3dzCYsXPz5RklXD7jsjb7vXXaaX83rnC5TmDJzdOPrzxR6Vo7udMKb2evM7FmN8qxWmEZwfaNHud+y5hQuRn+HhVuSntJY7Bcbyz7UzA6x4MUKF5L++SDrCpQEmdOmV+Y0fvaWRrnNzI6R9DZJVzR+99kWHv8waWaPU5h6dJcadyg0s5cr3MTiRHe/duCNCJRD6fOmX0Z08AlJrzGzl1qYfvg/JF3k7j9pLG/SzB6j0ECbMLPHWMvt1M3shY33rFa46+BnGyNa1HEioXFVfH+hMD/3x5L+WdJFSXyIu9/k7p16WeYVKiFfULg16Tck7ZH0+y3vOaRDj82JQ3z2Hne/p/mlsK6PNP4tSbLlz8c4VNK/KAyR36hw153fGmRZ7j4vab3C9ID7FUJ0fePnUuhJ2qEwLeBCSe9098sHXRegBMgcDZ45Db8l6duN1z8u6W8bX1LoLf+/jXX5TmPdXu3ujzRe/1NJPyfp0pZ1uWzQdQEKrvR509ArI5blTaOcGxUaWT9UaID+Ycuyfk9hWuEHFW7Q8ZDCyHfTexXqN7c2vr+55TXqOBFYWyMdAAAAADACRq4AAAAAIIJKNq7MbDbrMsRWtnUq2/pI5Vunsq1Pksq2rcq2PlL51on1qa4ybquyrRPrk3/jrFMlG1eSSncQqHzrVLb1kcq3TmVbnySVbVuVbX2k8q0T61NdZdxWZVsn1if/aFwBAAAAQJYyuaHFwQcf7EcccUTqn9u0a9curV69OrPPT0LZ1qls6yOVb536rc911113r7tnvsJZ541UvX1fRGVbpyquD5kTlG3fS+VbJ9Yn/8ap4/R7anUijjjiCO3cuTOLjwaQEjP7XtZlkMgboCrIHABp6ZU3TAsEAAAAgAhoXAEAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABDSukJl6Xdq8OXwHgKSROQDSQt5U11TWBUA11evSunXS/Lw0PS1dcYVUq2VdKgBlReYASAt5U22MXCETc3MhdBYWwve5uaxLBKDMyBwAaSFvqo3GFTIxMxN6cyYnw/eZmaxLBKDMyBwAaSFvqo1pgchErRaGyefmQugwXA4gSWQOgLSQN9VG4wqZqdUIHADpIXMApIW8qS6mBQIAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAAR0LgCAAAAgAiiNK7M7EAz+7SZfdPMbjGzWozlAkAnZA6AtJA3AIYxFWk575X0L+7+ejOblrR/pOUCQCdkDoC0kDcABjZ248rMDpB0rKTflyR3n5c0P+5yAaATMgdAWsgbAMOKMS3wqZJ2SfqYmV1vZh8xs8e2v8nMZs1sp5nt3LVrV4SPBVBRfTOHvAEQCXUcAEOJ0biakvQCSR909+dLelDSO9vf5O5b3X2tu69dvXp1hI8FUFF9M4e8ARAJdRwAQ4nRuLpT0p3ufk3j/59WCCIASAKZAyAt5A2AoYzduHL3eyTdYWbPavxonaSbx10uAHRC5gBIC3kDYFix7hb4dkmfaNxF5zuS3hBpuQDQCZkDIC3kDYCBRWlcufvXJK2NsSwA6IfMAZAW8gbAMKI8RBgAAAAAqo7GFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEURrXJnZpJldb2b/FGuZANAJeQMgTWQOgEHFHLk6VdItEZcHAN2QNwDSROYAGEiUxpWZHSbpNyR9JMbyAKAb8gZAmsgcAMOINXJ1nqRNkha7vcHMZs1sp5nt3LVrV6SPBVBB54m8AZCe80TmABjQ2I0rM3u1pB+6+3W93ufuW919rbuvXb169bgfC6CCyBsAaSJzAAwrxsjVSyT9ppndLumTkl5uZh+PsFwAaEfeAEgTmQNgKGM3rtz9DHc/zN2PkPTbkr7o7r87dskAoA15AyBNZA6AYfGcKwAAAACIYCrmwtx9TtJczGUCQCfkDYA0kTkABsHIFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXAAAAABABjSsAAAAAiIDGFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFz1Ua9LmzeH7wCQJPIGQJrIHCC+qawLkGf1urRunTQ/L01PS1dcIdVqWZcKQBmRNwDSROYAyWDkqoe5uRA6Cwvh+9xc1iUCUFbkDYA0kTlAMirTuBpl6HtmJvTmTE6G7zMzSZUOQNkMmznkDYBRUccB8qMS0wJHHfqu1cJ75+ZC6DBcDmAQo2QOeQNgFNRxgHypROOq09D3oCFSqxE4AIYzauaQNwCGRR0HyJdKTAtk6BtAmsgcAGkhb4B8qcTIFUPfANJE5gBIC3kD5EslGlcSQ98A0kXmAEgLeQPkRyWmBQIAAABA0mhcAQAAAEAENK4AAAAAIAIaVwAAAAAQAY0rAAAAAIgg142rel3avDl8B4CkkTkA0kLeAOWU21ux1+vSunXhaePT0+EZDtxmFEBSyBwAaSFvgPLK7cjV3FwInYWF8H1uLusSASgzMgdAWsgboLxy27iamQm9OZOT4fvMTNYlAlBmZA6AtJA3QM5EnKeb22mBtVoYJp+bC6HDcDmAJJE5ANJC3gA5Enmebm4bV1JYLwIHQFrIHABpIW+AnOg0T3eMkzO30wIBibsp5Qn7AmXHMZ4f7AtUAcd5TszMaGFqWgs2qYWp8efp5nrkCtXG3ZTyg32BsuMYzw/2BaqA4zw/6qrpDL9CL9Gcvuoz2qyaxtkVjFwht7ibUn6wL1B2HOP5wb5AFXCc58fcnPSVhZrO9jP0lYXa2PuCxhVyi7sp5Qf7AmXHMZ4f7AtUAcd5fsTeF0wLRG5xN6X8YF+g7DjG84N9gSrgOM+P2PvC3D1GuYaydu1a37lzZ+qfCyA9Znadu6/NuhzkDVANZA6AtPTKG6YFAgAAAEAENK4AAAAAIAIaVwAAAAAQAY0rAACAIuNptEBucLdAAACAouJptECuMHIFAABQVDyNFsgVGlcAAABFxdNogVxhWiAAAEBRjfME1Hqdp9gWBfuqMGhcAQAAFFmtNnyFm2u1ioN9VShMCwQAAKgartUqDvZVodC4AlpwN1sAaSJzkBmu1SqOSPuKvEkH0wKBBkbdAaSJzEGmxrlWC+mKsK/Im/TQuAIaOo26EzwAkkLmIHOjXKuFbIy5r8ib9NC4Ahqao+7NXh1mSABIEpkDIC0zM9KvTtb1ksU5fXVyRjMztKySMnbjysyeLGmbpCdJWpS01d3fO+5ygbQxQ6IYyByUBZmTf+QNyqKmuq6wdTLNy21ak7pCEqGThBgjV3sl/ZG7/5uZPV7SdWb2eXe/OcKygVQxQ6IQyByUBpmTe+QNymFuTpN75yVfkPYyLzBJY98t0N1/4O7/1vj3TyTdIunQcZcLAJ2QOQDSQt6gNLg7ZGqiXnNlZkdIer6kazq8NitpVpIOP/zwmB8LoKK6ZQ55AyA26jgoNOYhpybac67M7HGStks6zd0faH/d3be6+1p3X7t69epYHwugonplDnkDIKbU6zg8kKga0t7PtZp0xhk0rBIWZeTKzFYohM4n3P2iGMsEgG7IHABpST1veCBRNbCfS2vskSszM0kflXSLu//N+EVqQc8NgDaJZg4AtMgkbzo9kAjlw34urRgjVy+R9HuSbjSzrzV+9i53v3SspdKiB9BZMpkDAPtKP294AFo1sJ9La+zGlbt/RZJFKMtygzxKul7nwjygYhLLHABok0necOOBamA/l1bUuwVG1a9Fz8gWgNh6ddjQmQMgLTwArRrYz6WU38ZVvxb9ICNbADCoXh02o3Tm0BgDAKBy8tu4knq36Iedq0pFB0AvvTpshu3MGXVknZwCgHIi3ysj342rXoaZq8oUQgD99OqwGbYzZ5SRdXIKAMqJfK+U4jaupMHnqjKFEEA/vTpshr3weJS7QJFTAFBO5HulFLtxNahxbnfJMC5QHb06bIa58HiUu0BxW14AKCfyvVKq0bga9XaXDOMCGNWwd4HitrwAUE7ke6VUo3EljXa7S4ZxAaSJ2/ICQDmR75UxkXUBcq05jDs5yTAuAAAABlOvS5s3h++olOqMXI2CYVwAAAAMg8tKKo3GVT8M46IL7nUCIC3kDVAgBb+shLwZD40rYAR0SgFIC3kDFEyB7w5Yr0tnzNT1kkfmdMaKGW2eq5E3Q6JxBYyg4J1SQDzNLs5Vq6Tdu+nqTAB5AxRMgS8r+da2ui6dX6dpzWt+flqf3naFagUqfx7QuAJGUOBOKSCe5pDKnj3S4qI0MSGtXMnQSmTkDVBABb2s5DjNaVrzmtKCXPM6TnOSirceWaJxVTZMlE1FgTulgHiaQyqLi+H/i4sMrSSAvCkp/l4jh56yYUYLH5vWwvy8Jqan9ZQNM1kXqXBoXJVJ68T8yUnpjW+UNmwgtBNS0E4pIJ7mkErryBVDK4kgb0qGC+mQV7WaJr9Eb844aFyVSevE/IUFacsW6cILCW0AyWgdUhn1mit671FFXEiHPKM3Zyw0rsqk2Yv88MOSe/gitAEkaZw/wvTeo6q4kA4orYmsC4CImr3Ib3lLuKh8cnL40OaJ4gDS0qn3HqiC5t/rs86iUwEoGUauyqbZi7xhw/BTbehFBpCmQXrvmTaIsmLqFVBKNK7KapTQHnQOOJUdADH0uw1ee4fPeefxLC0AQK7RuMKSQXuRqewAiKVXR1Brh8+ePdLb3hauJWVkHQCQUzSusGSQh6lQ2QGQltYOn4mJkDs8SwsAkGM0rrBcv+mEVHYApKX9Vu+nncbd1QAAuUbjCsOJWdnh2i0A/bR2+KxZQ2YAAHKNxhWG11LZuVFrtHv7nFadOKM1wz44tP3OhBIVJwBd1VXTnGqakTRSQtChA2AIRAZGQeMKI6vXpXWn1TQ/X9P0VdIVa4YIn/Y7E27bJl144b63gSfZACjCkyK4GQ+AIfB0GoyKxhVGNuid2ztqvzOh1PlhoiQbAI2ZN+0L2LNHOuWUcL0onTkAOhg7c1BZNK4wskHu3N5V+50JpeUjVzMzwycbFSOgtMbKm/YFmO17Mx6JzhwAjxo7c1BZNK4wskHu3N53Aa2/1GlhgyYb4/dAqUXJm14346GbGkCLsTMHlUXjCmPpd+f2sRY2TLJRMQJKb+y86XfnwWG6qRkpB0ovah0HlUHjCvk2aLIxfg9gGON05jBSDlQDnSgYAY0rlEOs8XuCFKiuQTtzGCkHyo9OFIyIxhXKY9zx+wyDlDYdUCAlGCknc4A+6ESJpmp5Q+MKaMro7oR0jgEFU/Ar3ckcYAAl6ETJgyrmDY0roGmYII2YFnSOAQUU60r3DLp0yRygi/bzscCdKHlRxbyhcQU0ZXR3QjrHgIrKqEuXzAE66HY+lr0lkLAq5g2NKyxTtXmx+8jg7oR0jqHKKp05w3TSRNxQZA6qqudpVMUhlhRUMW9oXOFRVZwXO7LIdyeszcyodgYbG9VS+cwZtJMmgQ1Fhzyqpu9pVMUhlpRULW9oXOFRdNoMKebdCScmpOc/X3rTm6TZ2XhlBHKs8pkzaCdN5TcUML6+p1EVh1iQCBpXeBSdNilrTfqFBenaa8OXRAMLlUDmaLBOmlgbqtJzMFF1A51GVRtiQSJoXOFRdNqkrJn0Dz20/Ofbt9O4QiWQOQOKsaHa50S9/e3S174mnXgieYNKIG+QFhpXWKbInTaF65RtJv2550qXXLL08xNPzKxIQNqKmjmp5824G6p1pHzPnpA7knT55eF73hpYhQt0FEFNddU0J2lGUrGOK06J4qBxhVIo7IXxtZp08cXS1q1hxIpeZCD3Cpk3rXOi3Je/lvRo+bC1wkJuYORegY+rAhe9kmhcoRQKf7337CyNKqAgCpk3rXOi7r9/aeRKSna0fJRaYSE3MFLRbKivWiXt3j3cME6Bj6sCF72SaFyhFLgwfgjMLQDGUti8aZ1a+LSnpTNaPkqtsLAbGIlqNtT37JEWF8NddleuHHwYp8DHVYGLXkk0rlAKXKg6IOYWAGMrRd6kNVo+Sq2wFBsY0TUb6ouL4f+Li8MN4xT4uCpw0SuJxhVKo6gXxqeKuQVAFOTNgEatFbKB0a7ZUG8duRp2GKfAx1WBi145NK6AKhlnbgHTCQGMglohYmhtqI9yzRWQEhpXQJWM2ovMdEIAQNZoqKMAaFwBVTPKHyemEwIAAPQ1kXUBABRAczrh5CS3KgIAAOgiSuPKzF5pZrea2W1m9s4YywSQI83phGedlYspgWQOgLSQNwCGMfa0QDOblPR+Sb8m6U5J/2pmn3H3m8ddNoAcyclcdzIHQFrIGwDDijFydYyk29z9O+4+L+mTkl4bYbkA0AmZAyAt5A2AocRoXB0q6Y6W/9/Z+NkyZjZrZjvNbOeuXbsifCyAiuqbOeQNgEio4wAYSozGlXX4me/zA/et7r7W3deuXr06wseik3pd2rw5fAdKqm/mkDfpIXNQctRxcoS8QRHEuBX7nZKe3PL/wyTdHWG5GBKPIkJFkDk5QeagAsibnCBvUBQxRq7+VdIzzOwXzWxa0m9L+kyE5WJInR5FBJQQmZMTZA4qgLzJCfIGRTH2yJW77zWzUyR9TtKkpAvc/aaxS4ahNR9F1OzV4VFEKCMyJz/IHJQdeZMf5A2KIsa0QLn7pZIujbEsjK75KKK5uRA6DJejrMicfCBzUAXkTT6QNyiKKI0r5EdOHkUEoCLIHABpIW9QBDGuuUIOcUcdAGkicwCkhbxBnjFyVULcUQdAmsgcAGkhb5B3jFyVEHfUAZAmMgdAWsgb5B2NqxJq3lFncpI76gBIHpkDIC3kDfKOaYElxB11AKSJzAGQFvIGeUfjqqS4ow6ANJE5ANJC3iDPmBYIAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAxFXRpz1zQwsAAAAA8VT4ac+MXAEAAACIp8JPe6ZxBQAAACCeCj/tmWmBQIbqdR6ECCAd5A2A1NRquvG8K7R7+5xWnTijNRUKHRpXQEYqPB0ZQMrIGwBpqteldafVND9f0/RV0hVrqpM5TAsEMlLh6cgAUkbeAEhTlTOHxhWQkQpPRwaQMvIGQJqqnDlMCwQyUquFqTlcAwEgaeQNgDRVOXNoXAEZqtWqFTgAskPeAEjTo5mzdat05nbpxBOl2dmsi5U4GlfIDe5kBSAt5A2ANFU2c7Zuld7ylvDvyy8P30vewKJxhVzgTlYA0kLeAEhTpTNn+/Z9/1/yxhU3tEAuVPmuMgDSRd4ASFOlM+fEE3v/v4QYuUIuNO8q0+zVqdJdZQCki7wBkKZKZ05zlGo711wBqaryXWUApIu8AZCmymfO7GwlGlVNhW5cVfbiwJLiTlbIM/KmXMgb5Bl5Uz5kTnUUtnFV6YsDAaSKvAGQFvIGKLbC3tCi0hcHAkgVeQMgLeQNUGyFbVw1Lw6cnKzgxYEZq9elzZvDd6AKyJvskDeoGvImO+QNYijstMDKXxyYEaYroIrIm2yQN6gi8iYb5A1iKWzjSuLiwCx0mq7APkAVkDfpI29QVeRN+sgbxFLYaYHIBtMVAKSFvAGQFvIGsRR65ArpY7oCgLSQNwDSQt4gFhpXGBrTFQCkhbwBkBbyBjEwLRAAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMYVUDH1urR5c/gOAEkjcwCkJQ95w0OEgQqp16V166T5eWl6OjyNngcmAkgKmQMgLXnJG0augAqZmwuhs7AQvs/NZV0iAGVG5gBIS17yhsYVUCEzM6E3Z3IyfJ+ZybpEAMqMzAGQlrzkDdMCgQqp1cIw+dxcCB2m5wBIEpkDIC15yRsaV0DF1GpUcACkh8wBkJY85A3TAgEAAAAgAhpXAAAAAIovB/diZ1ogAAAAgGLLyb3YGbkCAAAAUGw5uRc7jSsAAAAAxZaTe7GPNS3QzP5K0mskzUv6tqQ3uPv9EcoFAPsgcwCkhbwBCiYn92Ifd+Tq85Ke4+7PlfTvks4Yv0gA0BWZAyAt5A1QNLWadMYZmd6PfazGlbtf7u57G/+9WtJh4xcJADojcwCkhbwBMIqY11y9UdJl3V40s1kz22lmO3ft2hXxYwFUVNfMIW8AREYdB8BA+l5zZWZfkPSkDi+9293/sfGed0vaK+kT3Zbj7lslbZWktWvX+kilBVB6MTKHvAEwCOo4AGLr27hy91f0et3MTpb0aknr3J1AATAWMgdAWsgbALGNe7fAV0o6XdJx7v6zOEUCgM7IHABpIW8AjGLca67Ol/R4SZ83s6+Z2YcilAkAuiFzAKSFvAEwtLFGrtz96bEKAgD9kDkA0kLeABhFzLsFAgAAAEBl0bgCcqBelzZvDt8BIGlkDoC0VC1vxpoWCGB89bq0bp00Py9NT0tXXJHpg8UBlByZAyAtVcwbRq6AjM3NhdBZWAjf5+ayLhGAMiNzAKSlinlD4wrI2MxM6M2ZnAzfZ2ayLhGAMiNzAKSlinnDtEAgY7VaGCafmwuhU/bhcgDZInMApKWKeUPjCsiBWq0agQMgH8gcAGmpWt4wLRAAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAARmLun/6FmuyR9L/UPXnKwpHsz/PwklG2dyrY+UvnWqd/6PMXdV6dVmG5ykDdS9fZ9EZVtnaq4PmROULZ9L5VvnVif/Bu5jpNJ4yprZrbT3ddmXY6YyrZOZVsfqXzrVLb1SVLZtlXZ1kcq3zqxPtVVxm1VtnViffJvnHViWiAAAAAAREDjCgAAAAAiqGrjamvWBUhA2dapbOsjlW+dyrY+SSrbtirb+kjlWyfWp7rKuK3Ktk6sT/6NvE6VvOYKAAAAAGKr6sgVAAAAAERV6saVmb3SzG41s9vM7J0dXj/JzG5ofO0ws+dlUc5B9Vuflve9yMwWzOz1aZZvFIOsk5nNmNnXzOwmM/ty2mUcxgDH3M+Z2WfN7OuN9XlDFuUclJldYGY/NLNvdHndzOx9jfW9wcxekHYZ86JseSOVL3PKljcSmUPmlCdzypY3Uvkyh7wZMG/cvZRfkiYlfVvSUyVNS/q6pKPa3vMrkp7Q+PcJkq7JutzjrE/L+74o6VJJr8+63BH20YGSbpZ0eOP/P591ucdcn3dJOqfx79WS7pM0nXXZe6zTsZJeIOkbXV5/laTLJJmkF+f5HMrBvi9M3gy6Ti3vy33mlC1vhlgnMqeEX2XLnLLlzRD7qDCZQ94MnjdlHrk6RtJt7v4dd5+X9ElJr219g7vvcPcfNf57taTDUi7jMPquT8PbJW2X9MM0CzeiQdbpdyRd5O7flyR3z/N6DbI+LunxZmaSHqcQPHvTLebg3P1KhTJ281pJ2zy4WtKBZvYL6ZQuV8qWN1L5MqdseSOROWROeTKnbHkjlS9zyJsB86bMjatDJd3R8v87Gz/r5k0KrdO86rs+ZnaopN+S9KEUyzWOQfbRMyU9wczmzOw6M9uQWumGN8j6nC/pSEl3S7pR0qnuvphO8RIx7HlWVmXLG6l8mVO2vJHIHInMaSp65pQtb6TyZQ55M2DeTCVWnOxZh591vDWimb1MIXh+NdESjWeQ9TlP0unuvhA6DXJvkHWakvRCSesk7SepbmZXu/u/J124EQyyPr8u6WuSXi7paZI+b2ZXufsDCZctKQOfZyVXtryRypc5ZcsbicxpInOCImdO2fJGKl/mkDdB37wpc+PqTklPbvn/YQot6WXM7LmSPiLpBHffnVLZRjHI+qyV9MlG6Bws6VVmttfdL0mlhMMbZJ3ulHSvuz8o6UEzu1LS8yTlMXgGWZ83SHqPh8m8t5nZdyX9kqRr0ylidAOdZxVQtryRypc5ZcsbicyRyJymomdO2fJGKl/mkDeD5k1WF5El/aXQcPyOpF/U0oV3z257z+GSbpP0K1mXN8b6tL3/75T/iz0H2UdHSrqi8d79JX1D0nOyLvsY6/NBSWc2/v1ESXdJOjjrsvdZryPU/WLP39Dyiz2vzbq8Od73hcmbQdep7f25zpyy5c0Q60TmlPCrbJlTtrwZYh8VJnPIm8HzprQjV+6+18xOkfQ5hTucXODuN5nZxsbrH5L0Z5JWSfpAoydkr7uvzarMvQy4PoUyyDq5+y1m9i+SbpC0KOkj7t7xlplZG3AfnSXp78zsRoWT9XR3vzezQvdhZv8gaUbSwWZ2p6Q/l7RCenR9LlW4m85tkn6m0GtVOWXLG6l8mVO2vJHIHJE5pcmcsuWNVL7MIW8GzxtrtMwAAAAAAGMo890CAQAAACA1NK4AAAAAIAIaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAIAIaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjqgDM7KctX4tm9lDL/08aYXlzZvYHPV4/wszczP6t7ecHm9m8md3e8rNfNbMdZvZjM7vPzL5qZi9qvPb7ZrbQVv6fmtkhI5T34Zbfv7XHez/U9ll7zOwnjddWmtlHzex7ZvYTM7vezE5o+/39zewDZnZvY52uHKasQBGRMYNnTOP9TzWzf2rkyL1mdm7La0ea2Rcb5b3NzH6ryzL+vLENXtHhtWkz+6aZ3TnMegBFQN7YEWZ2qZn9yMzuMbPzzWyqy3t/28xubZTnh2Z2oZkd0PJ6e1kWzOxvG6+92Mw+31iPXWb2/8zsF1p+90wze6Tt9586zLqgMxpXBeDuj2t+Sfq+pNe0/OwTCX70Y83sOS3//x1J323+p3GC/5Okv5V0kKRDJf2FpD0tv1NvLX/j6+4RynJKy+8/q9ub3H1j2/b6B0n/r/HylKQ7JB0n6eck/amkT5nZES2L2NpYlyMb3//bCGUFCoWMkTRgxpjZtKTPS/qipCdJOkzSxxuvTUn6x0aZD5I0K+njZvbMtmU8TdLrJf2gy8f8iaQfjrAOQO6RN/qAwvn9C5KOVqiT/GGX935V0kvc/eckPVWhHvM/my+2bcsnSnpIS3WeJyjUaY6Q9BRJP5H0sbbl/9+2dfnOkOuCDmhcFZiZTZjZO83s22a228w+ZWYHNV57jJl9vPHz+83sX83siWb2l5JeKun8Ri/F+T0+4u8lndzy/w2StrX8/5mS5O7/4O4L7v6Qu1/u7jdEXtWRmNljJZ0o6UJJcvcH3f1Md7/d3Rfd/Z8UgvWFjfc/S9JvSpp1912Ndbouq/IDWSNjOvp9SXe7+980MuXhlvL8kqRDJP3vRnm/qFA5+r22ZZwv6XRJ8+0LN7NflPS7kjYntQJAHlUob35R0qca2XGPpH+R9OxOb3T3O9z93pYfLUh6epflvl6h0XZV43cvc/f/5+4PuPvPFHLnJbFWAt3RuCq2d0har9DrcYikH0l6f+O1kxVGZ54saZWkjZIecvd3K5x4zV7aU3os/+OSftvMJs3sSEmPl3RNy+v/LmmhMUx9gpk9YZjCW5hWc3+Xr39qe/tmC9NvvmpmMwN+xImSdknqOLXPzJ6oEKY3NX70y5K+J+kvGp91o5mdOMw6ASVDxuzrxZJuN7PLGu+fM7M1zY/sVAxJj/aWm9l/kjTv7pd2Wf7fSnqXQg80UCVVyZv3Nsqxv5kdKukEhQZWt+X+qpn9WGHk6URJ53V568mStrm7d3n9WC3Vd5peY2Ha4E1m9tYBVhMDoHFVbG+R9G53v9Pd90g6U9LrG1NTHlEIoKc3R2Dc/YEhl3+npFslvUKNk7b1xcbyflWSS/qwpF1m9plGo6XpxW0B8+2W33+1ux/Y5evVLcs4XWE4/FCFIe7PNqbV9NM1aMxshaRPSLrQ3b/Z+PFhCpWgHysE+ymSLmyEMFBFZMy+DpP025Lep5AT/yzpHy1MF/ymQs/xn5jZCjM7XqGiuL8kmdnjJJ0t6bROC7ZwfdaUu1/cc6sB5VSVvPmywkjVA40y7ZR0SbdCu/tXGtMCD5P0V5Jub3+PmR2ukDUXdlqGmT1X0p8pTDlu+pTCJRCrJb1Z0p+Z2X/tVg4MjsZVsT1F0sXNk1zSLQpDxk9UGP7+nKRPmtndZnZuo0ExrG0K02D+qxrXFbRy91vc/ffdvdkwOUTLe1WubguYQRpF7Z9xjbv/xN33uPuFCtNsXtXrd8zsyQpBs63DaxMK22deoQHV9JBCgP9Pd5939y9L+pKk44ctM1ASZMy+HpL0lcaUm3lJf61Q6TvS3R9R6Hn/DUn3SPojhQpM88YUfyHp7939u+0LtTCN+VxJbx+2/EBJlD5vGvWPz0m6SNJjJR2scG3UOf1+193vUhjh+mSHlzco5FKnbHm6pMskneruV7Us72Z3v7vRWN2hMKL2+mHWB53RuCq2OySd0HaiP8bd73L3R9z9L9z9KEm/IunVCiefFHplBrVdoaLwHXf/Xq83NkaA/k4tU2B6aUyrab/TTfPrsl4fpc7Tb1ptkLTD2y7ONDOT9FGFsD6xURlqysW1YkCOkDH7ukE91s/db3D349x9lbv/usKI2LWNl9dJeoeFO4TdozDF6VNmdrqkZyhceH5V47WLJP1C471HDLK+QMFVIW8OUjjvz2905uxWuMlEzw7jFlOSOjXoNqjDqJWZPUXSFySd5e5/32fZg9StMAAaV8X2IUl/2Th5ZGarzey1jX+/zMzWmNmkwtDzIwo9QJL0Hwp/8Pty9wclvVzSPrc5NbNfMrM/MrPDGv9/skJv0NUDLvsE3/euO82vExrLPNDMft3CxaxTFm7TeqxCz08vGxRCsd0HFYbBX+Pu7dc0XKlw56IzGp/1EkkzA3wWUFZkzL4+rjA16BWNdT9N0r0Kvewys+c2lrW/mf2xwh3B/q7xu+sUKmpHN77uVpgK9X5J31CodDVf+wOF7Xi0QqUTKLvS542Hm1N8V9JbG3lzoMIUxa93WqaZnWRmh1vwFEl/KemKtvf8isKU5v/X9vNDFe5q+n53/1CHZb/WzJ7QWPYxCte8/eMg64reaFwV23slfUbS5Rae5XS1wk0ZpHCL4E8rhNAtCnN8P97ye6+38IyF9/X7EHff6e7f7vDSTxqfd42ZPdj4/G8oTIVpqnXowXnREOu4QuG2o7sUKjBvl7Te3W+VwjzjxjIPb/6CmdUU5ia3B81TFCoyR0u6p6U8JzXW8xFJr1XoQfqxwpzrDb50TRZQNWRMW8Y0fv67ChXBHylkxm82pghK4c6AP1C49mqdpF/zcP2I3H23u9/T/FKoHP7I3X/q7nvbXrtP0mLj/81KJFBmVcgbSXqdpFcqZM5tkvaq8diXDnWaoyTtkPRThenKtypcH9XqZEkXuftP2n7+BwqNzj9vLW/L67/d+PyfKEyXPKcxLRpjMu96UxEAAAAAwKAYuQIAAACACHLfuDKz2azLMArKnS7Knb4il72Xoq4X5U4X5U5XUcvdT1HXi3Kni3Kna9xy575xJamQO0aUO22UO31FLnsvRV0vyp0uyp2uopa7n6KuF+VOF+VOV+kbVwAAAACQe5nc0OLggw/2I444YqD37tq1S6tXr062QAmg3Omi3OnrV/brrrvuXnfPfOWGyRupuPuEcqeLcqdrkHIXMXPKvD/yiHKnq8zl7pU3U4mUqo8jjjhCO3fuzOKjAaTEzHo+oDEt5A1QDWQOgLT0yhumBQIAAABABDSuAAAAACACGlcAAAAAEAGNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABFEaV2b238zsJjP7hpn9g5k9JsZyAaATMgdAWsgbAMMYu3FlZodKeoekte7+HEmTkn573OUCyEa9Lm3eHL7nEZkDlAd5AyAtaeXNVMTl7Gdmj0jaX9LdkZYLIEX1urRunTQ/L01PS1dcIdVqWZeqIzIHKDjyBkBa0sybsUeu3P0uSX8t6fuSfiDpx+5+efv7zGzWzHaa2c5du3aN+7EAEjA3F4JnYSF8n5vLukT7GiRzyBsg/8qSNxKZA+RdmnkTY1rgEyS9VtIvSjpE0mPN7Hfb3+fuW919rbuvXb169bgfCyABMzOhR2dyMnyfmcm6RPsaJHPIGyD/ypI3EpkD5F2aeRNjWuArJH3X3XdJkpldJOlXJH08wrIBpKhWC0Plc3MheHI6RYfMAUqAvAGQljTzJkbj6vuSXmxm+0t6SNI6STsjLBdABmq13FZymsgcoCTIGwBpSStvYlxzdY2kT0v6N0k3Npa5ddzlAkAnZA6AtJA3AIYV5W6B7v7nkv48xrIAoB8yB0BayBsAw4jyEGEAAAAAqDoaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAIAIaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAX3U69LmzeE7ACSNzAGQFvImvqmsCwDkWb0urVsnzc9L09PSFVdItVrWpQJQVmQOgLSQN8lg5AroYW4uhM7CQvg+N5d1iQCUGZkDIC3kTTJoXAE9zMyE3pzJyfB9ZibrEgEoMzIHQFrIm2QwLRDooVYLw+RzcyF0GC4HkCQyB0BayJtk0LgC+qjVCBwA6SFzAKSFvImPaYEAAAAAEAGNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABFEaV2Z2oJl92sy+aWa3mBl3zAeQGDIHQFrIGwDDiPUQ4fdK+hd3f72ZTUvaP9JyAaATMgdAWsgbAAMbu3FlZgdIOlbS70uSu89Lmh93uUAa6nVpbk6ameEJ5UVB5qCoyJviIW9QZGRONmKMXD1V0i5JHzOz50m6TtKp7v5g65vMbFbSrCQdfvjhET4WGE+9Lq1bJ83PS9PT0hVXED4F0TdzyBvkDXlTWNRxUEhkTnZiXHM1JekFkj7o7s+X9KCkd7a/yd23uvtad1+7evXqCB8LjGduLoTOwkL4PjeXdYkwoL6ZQ94gb8ibwqKOg0Iic7ITo3F1p6Q73f2axv8/rRBEQK7NzITenMnJ8H1mJusSYUBkDgqHvCks8gaFROZkZ+xpge5+j5ndYWbPcvdbJa2TdPP4RQOSVauFYXLmIxcLmYMiIm+KibxBUZE52Yl1t8C3S/pE4y4635H0hkjLBRJVqxE4BUXmoHDIm8Iib1BIZE42ojSu3P1rktbGWBYA9EPmAEgLeQNgGFEeIgyguOp1afPm8B0AkkTeAEhLVnkTa1oggALiVq0A0kLeAEhLlnnDyBVQYdyqFUBayBsAackyb2hcARXGrVoBpIW8AZCWLPOGaYFAhXGrVgBpIW8ApCXLvKFxBVQct2oFkBbyBkBassobpgUCAAAAQAQ0rgAAAAAgAhpXAAAAABABjauc4MGKANJC3gBIC3mDquGGFjnAgxUBpIW8AZAW8gZVxMhVDvBgRQBpIW8ApIW8QRXRuMoBHqyYDKYiAPsib5JD5gDLkTfJIW/yi2mBOcCDFeNjKgLQGXmTDDIH2Bd5kwzyJt9oXOUED1aMq9NUhE7bt14n9FE95E18g2QOeYMqIm/io46TbzSuEEXeTuDmVIRmr06nqQj0/Awnb/sY1Za347Ff5pA3w8nb/kW15e14pI4TV+z9S+MKY8vjCTzIVIRBe36Qz32M6srj8dgvc8ibweVx/6K68ng8UseJJ4n9S+MKY8vrCdxvKsIgPT8I8rqPUU15PR57ZQ55M7i87l9UU16PR+o4cSSxf2lcYWxFPYGLeKFtVlMTirqPUU5FPB7Jm8EVcf+ivIp6PBYtc8qUN+bu4y9lSGvXrvWdO3em/rlITt7mIycpq3XNemrCsOttZte5+9qky9UPeVNOVckc8mbwzyVzkBTyJvnPLVPeMHKFKPoNT5clmLIMgKynJnDHJ+RJFTKHvEnv84BeyJtklS1vaFzlWBlOVin7HomYsgyAok5NQDGUJW+k8mQOeYMyK0vmkDfjK1ve0LjKqbyfrMOEYtY9EjFlGQBFmz+N4ihT3kjlyRzyBmWV58whb8ibcdG4yqk8n6zDhmKZeiSyDgCmyiAJZcobqTyZQ96grPKaOeQNeRMDjaucyvPJOmwoZn3CxpaXACjLlApkr0x5I5Urc8gblFFeM4e8yUf5i543NK5a5Gln5vlkHSUU83LCDitPx0SrPE+pwGDydGyVLW+kYmZOno6JVuRNOeTp+Mpr5pA32StD3tC4asjjzszryZrXUIwtj8dEU16nVGAweTy2yJts5fGYaCJvii+Px1ceM4e8yV4Z8obGVUMZdmaa8hiKseX5mMjrlAoMJs/HVh6RN9kib4ovz8dX3pA32SpD3kRrXJnZpKSdku5y91fHWm5ayrAzEVeej4mq9K51Q96gbPJ8TFQ9byQyB+WS5+OhDHkTc+TqVEm3SDog4jJTU4adibjyfkxUoXetB/IGpZL3Y6LieSOROSiRvB8PRc+bKI0rMztM0m9I+ktJ/z3GMrNQ9J2J+Dgm8oe8QVlxTOQTmYMy4nhIzkSk5ZwnaZOkxW5vMLNZM9tpZjt37doV6WMBVNB5Im8ApOc8kTkABjR248rMXi3ph+5+Xa/3uftWd1/r7mtXr1497scCqCDyBkCayBwAw4oxcvUSSb9pZrdL+qSkl5vZxyMsFyi0el3avDl8RzTkDdABeZMYMgfogMzpbuxrrtz9DElnSJKZzUj6Y3f/3XGXC+TNMA/cy/MzJIqMvEGVDJo55E1yyBxUBXWceHjOFTCAYYMkz8+QAJB/w2QOeQNgHNRx4op1QwtJkrvPFfH5DxhcVYeBOwVJL81nSExO5u8ZEmVB3pRfVfNGGi5zyJt0kDnlRt5Qx4mFkSsMrMrDwMM+cC/LZ0gMM7QP5FWV80YaLnPIG2A85A11nJhoXA2hCDu0k1jlrvIw8ChBkvQzJDrt16r/gSiTouaNFKfsVc4bafjMIW8wrqJmDnkzvrzVcbrt06JkTmEbV2mHQJY7dJx1jVHu5uevWjVcz0bZ5OmBe932a9X/QCQpzczJ+g9IlplD3izJS+aQN+mjjjP478ao43z/+9JUo0ZM3mSr1z4tSuYUsnGVRQhktUPHXddxy93++eedJ+3eXbyerbLptl+HHdrHYNLOnCz/gGSZOeRNPpE36aKOM/jvx6zjTE5Kb36ztGEDeZOlXvu0KJkT9YYWSeh0geGwF97FkNXFe+Ou67jlbv/83bulM84of/Dk/cLWbvu1ObR/1ln5HS7PuzxkTpYXC2eZOVXNGynfmUPeJCcPeSNRx1lYCF+HH16N47iIeSMVJ3NyPXLVrUcji5ZrVhfvjbuu45a7KL0EMWU9JWsQvfZrXob2iygvmZPlxcJZZk4V80bKf+aQN8nIS95I1HGqlDlFzpvm63kqbye5blx1GxrMKgSy2KEx1nWccmdZyUvCIHO7izKntwgBUzR5ypys9m+WmVO2vJHKkznkTXx5yhuJOk4ZMoe8yYdcN6569SgUfcMPI+t1Hefz83T3oUF7a6rYk4WAzAmyXNdxP5vMQVGQN0HW60odJ+2Sll+uG1dl61HoJk8nZ0x5G3oetLemKscd9lWVfU/mpIPMQS9V2e/kTTrIm/zIdeNKyr5HI6aqPSckb0PPwz6UM+/7oax/sLJWhH0/iKI/J2QUZE5yyJtk5H2/D4q8IW9iKnre5L5xlbS0dmAVnxOSt6HnMvXWlPkPVpllnTcSmZOmsmQOeVNcaWQOeUPexFSGvKl04yrWDhznAsLYJ2eeWvt5PNHz3lszqNbjac8e6cwzw1cZ1q2sYv7B6Hee96rQkDnpKkPmtB9P27blaxujs7TqOORNPsojkTd5UenGVYwelXEvIIx5cubxAZxlONHzqHk87dkjLS5KX/iCdNVVvf949pq2UbTgKqJYPbiDZE6/C+XJHAyj9XiampIuuCAcx/0q7GROttKq45A32Xx2WZUhbyrduIrRoxLjAsJYJ2f7aMYpp4SKd1GHVdFd83g688zQsFpc7H38dfsDWYbh96KI1YM7SOb0q9CQORhG6/H0/e9LH/5w/795ZE720qrjkDeIKbO8idgKq3TjKkaPSp4uIGwti1k4GPtVulFctVpoXF11Vf/jr9sfyDLPh8+bWD24g2ZOGj2qZE51NI+nel268EIypwjSrOOQN4gp9byJ3OtT6caVNH4g5GXObbPB3RwmX7VKOu20/FxoiWQMevx1+wOZtwtyyy5GBYTMQZbInGKhjoMiSy1vIvf6mLuP/MujWrt2re/cuTP1zy2rXsOhWQcistc8Dlat6jw/PanjxMyuc/e18ZY4GvImPjIH3bQeA1K610CQOeVE3qCXKHWcEUaueuVNaUauqnySdWtwc6Fl9tK6DW63zxgkLzhOhlflvJHInLzKY96ccca+y+A4GQ55Q97kVR4zZ+Q6zsknh+8bNnDNlcQFsmlNs2g/wMc9qfL4ByNmmdI4Lvt9Btc3xFf1vJHInJhilYm8KSfyhryJiTrOAB+yYcPY5S5F46rqgZ7GnOhOt0Btne887EmV5jPGBl3Otm3Sxz4m7d0bJyjSOC77fQbXN8RX9byRqps5MfOmOY1lnHVqRd6UE3lT3bxpLoc6TsKZk8CKlKJxVdRAj9mDkOTweL0e7krXfKbS/Ly0fft4x2KMYzlmeK1bJz38sNS8BDHG+ZXGcdnvM/JyMXKZFDVvJDJnnN+PnTfNO54tLsa54xl5U07kTVC1vGmWizpOCpmTwIqUonFVxEAvylB/s5zN0JmYCOU98cTBbgHezbDHcqeQjtXZ0FxOM3TM4pxfaRyXg3xGrz9KeZy2kHdFzBuJzBkmc9LIm4WFsG6Tk3Eyh7wpp1znTY8dSt5Qx4lhnMwZOG9qtTBUuX172PERVqQUjSupeBc2FmWov1nOZui84hWhh6dWk9asGf2kGuak7BTSUni43ORk+Pc4QdEagpOT0hvfGOV6RknpHJfDfkYSU5Kqpmh5I5E5g2ZOmnnTnH7U6Q5XoyBvyimXedNpHl3LgUzeUMeJZZTMGWoKZL2+FE5XXRV2PNMClxSpV6woQ/3t5TzxxLCNb7xx/ArBoCdMe0hv27b0ULmpKenNbx4vKHLdMxhZUlOSqorMia+9IvDUp4a8aW7nTnefG9QgmUPexEPexJVJ3jRrqtLyA7/1RNmzRzrllLBzzaQnPlG/N3OSzpo+h7yhjpOqkaZAcs1Vd0UZgm7K4mAfJZhby9nseWwdPl+5Mvlt3V4plJbOA0k6/PBi9PjmQVJTkqqIzOlt1Ipgs5zNnsetW8mboiJv4skkb+p16WUvC3/0JemCC5Yqnq0nilnYyYuL4X133aXDPnGu/v0k6e+ffU4h6jhZ5Y2UUOY0N8b990tzc6rNz6s2Py99anrpBDzwwNK1tkaaAsk1V90VZQi6VZp/YMcJ5mY5N29eGj6X0uuBbK8USku9OvyRHk6SU5KqhszpbtyKYK0WtufeveRNkZE38WSSN80PbXrkkaUP7tTz+tBDy379sMs/pjN2fU1adaJUm020qOPWcbLKm+bnR8ucel0691zps59dap11cu214fvERGi9HX20tGlT4U/MkaZAJtDzWJrGVVGmvGQlRjA3t3H7hZ9pbOv2SmFSPfBFmuY1iipND0gamdMdeTMY8gaDSi1vWg/K1pNQklasWP7BrSfKmjXSO98pXXnl0uu7dkmXXx6+Nm8Oc+xmk2lkjZs5WeaNFCFzmo2qz3xmqYU4iMVF6fbbw9cll0hbtiS2j9IwcuZE7nk0b46dpWjt2rW+c+fO6Mstyx+qJNYj9jMXVq0qXw9k0aZ55Z2ZXefua7MuR1J5I5Ujc8ibbJA38ZU9cxLPm3pdOu64MEK1YoX05S+Hn3e65qqb00+XLrooDAPdfvu+r2/Zovqa2VxmTmHzpnW/ddGppm/d3lzwBlZaeuaNu4/1JenJkr4k6RZJN0k6td/vvPCFL/SB7NjhfvTR7gcc4H7SSYP9TsHt2OG+337uk5Ph+44dcZd99tlxl1kmZ58dtrsUvp99dvg52200knb6mPnS6WvYzBk4byqIvMlOt7xxZ9uNKonMSbSOkzfPe144IJtf69ePvqwtW5Yvq/E1f8BB/tapLWRODFu2uB9/vPuxx3bc1j45GerOxxzjdz/paP+GjvLrdLRfrWP860ef5D4x4S75YvvvTUyEZaOnXnkTY1rgXkl/5O7/ZmaPl3SdmX3e3W8ea6n1uvTSly7NGf3EJyRJNx77Nu3ePqcnH71KTzuwSF0LS3r1PiU5r7oqF1G3Gqanr9O0C3qXcymZzOmi6KNT5E16xs2b5jLInFypRt5s3Sp9/evLf3b33UMvZqn8s6pt+rb0V3+1dHcBSVMP3Kf36y16hS7T3+zZpLm5Gpkziq1b5W95y6P/3WcUav36ZddQ3d6eKx+QpLfppyf/oR77ra89OrJlUpgq+Na3hh8wgjWabq2uUb8k/aOkX+v1noF6dc4+e59W+COPPcAf1H7+iCZ8UfJFWWiZr1/vvmmT+zHHhH/nuNuiX09xkj3JVTPKtmzv+erVu4zelNDIVftXv8wZpxe56OcjeZOeGHnjTuaMI43MiVbH6SDT8/H44/cd+Rhy9KJj+XfsCPWyAw54dLmLki9I/qD28xu2EDqjuO+Y4x8dcVqUfMHM3Rp14i77rVvezNoWv1FH+SPto1grVvBHoYdeeRP1hhZmdoSk50u6psNrs5JmJenwww/vv7CZmXCrj5a7nex6/FO1+sEbNaVFuSSTh9cvuWT57/7zP0vnny9df710883hhvdvelN4rfkE5oxa4516ips/b/ZUDfPguSL3qCdtlF759p6voty0YNhjoSzHTrfMGTpvuijiHQFbkTfpiZE3UjkzpyzHTtQ6TgeZ5U29Lu2///KfnXTS0PWkjnkzU9PcMRfrPz9zq5527tJIy4Sk/fSQ1nz0NGnNeR1XtCzHTRLqh5yoE3T5oyNOV7/0T/Qrrzyw58bqljfrHjOrj87Pata26vyFt8q8cUOMhYXc/NErXN50a3UN+yXpcZKuk/S6fu8d9ZqrG7bsaBu5autlaZ9r2uv1TZuWPuPss8P/jz8+8Xmm7T07W7aM1lNVxh7n2POlY22jvM/jHnY90zp2lHAv8qCZw8gVedNNzHM75jYqU+akeewkmTmJ1HHaZHKetX7o1FSYATRiPahf3ty2aUtYfnv9bOXKfVa2jJkTO2/eOrXF/0XH+1untsTLmy1bwojVxETY8CnVjfuVr2h5E2XkysxWSNou6RPuflGMZUoKTc7rr3/0v2sk3agrtHv7nJ6++n4d9sn/1fk+/hMT/W9F+dd/LT3taeHZDK2Pcr788jC61bwNaa0WtRnc3lM8ak9V0XvU2yVxnUGs2wDnfR73sMdCGY6dxDKnTdFvJU3edBc7c2IeK2XKnDIcO6XOm9YdNDkZrtUZcWZPv7z51IGzOuOa2XA9z4c+tPSLe/aE24hffHHHYhX1uGmVRN7oylnNzc3q92Yi5k1tNtxWf24uPID43HPDzy+/PHzPYNZXEfNm7MaVmZmkj0q6xd3/Zvwi9bZmtibNNrbU29Yv3SL0gAPCVjzkEOmEE6S3v335w+862b59+aOcmy6/XPr856XHPCY89fC00x59CvnDqw/TQw+5Fp/7fK16z2gPXGv/wznKFJCiTB0ZVFInRN4rKTEMeywU/dhJO3NGPoa2bg0Zc/TR0oEHLm3o5r1+L7tM+vd/lw4+WDrqqKXbHLfeD/iyy/TQ1dfrpwuP1QNvOFVPO2c2vD7ErZHJm86SyJwq5I003PFQ9GOnMHkzqrYddOOqGf3T5tEbdwPlzYYN0gUXLK+jXXJJuI37Oed0Klbhjpt2hcqb5oJ//deX/3z79kwaV0XMm7Gfc2VmvyrpKkk3SmoOF73L3S/t9jtJPnfmUc0KSOs1V9/+dhixkqSVK5caTs2nxrWbnAxdDVdcIS0s7POcAJ9aoYn3n780ujbIMyC6FHWUnqpczCuNhDtkjSfGNVexj6eknjkzbOZEzZtmg2n16vCAzGbDqflglPvvX/or+rWvtRY6HNju4fkvnfJm5Urpfe9blkntmXPXSZt02Kffu/RQz+np5X+lW3eiFHodb71Vetazwp2jbrxRP3nvR3W3H6L50zaFzqoBlSlvJDJnXDGugShC5uS2jhNTY0fcuGpGv3xaLeo50XUf1+vSf/pP0l13Lf1sYkL6ylcefWOZMmfkvGn+zcniXgFbt0otdyRsvwNhmgqXN93mCyb5Ncx85Ohzz9sX2Px/+51ymvNNm5OGO1zjtdh+bdf0dOfbcTU/r3nXnCOPzOSuhkWYx5/n8pVZEvOUldLdAvt9DXv9wx0nbfLdBz3d7zip7brMk07yjtdvDvrVvJtTr9ePP77r9aKLku8+6OnLl2G2/IFszZ04PR2un+h3Herxxy/dZbU5t77xXJRxM6oI53MRylhWZE6Qp2Mw9TtVtj8LqzXPRpCnbdnJ0OVr3z5ZXPe0pXGd3NRUoS+ASztvch08aV/QeNumLf7tpx8fKlXtDbD16x+9icajX40HsHUNhn6VnampUIE59tjQ4Dr2WPeNGxNZ0TJeHIp4kvijWsSKzu7G7W2bX/9x/EnhhGk/14f9mpgIF21PTy9bVutn+cqVS505LQ93bP2646RN4X2dOnRad2KvRtwwX1NTSx1DGzcOnE/kDfohc9I/T/pV7jM5bzdtCnlnNtaHli5zduxwf/rTl+fx8cdnU5bWk1Ua7+HSGUk7b6Leij22NC9Mq9eldX87q/n5WU3fJV3xttYL/GrSxRfLtm7Vg5vfq/n7HwzXXJ10gvSOdyxN0VmxYvkEz9YVWFzc99quvXuX30b+llukK6+UPvxh6TWvWfr5ffctTW0ccVg4Lxf5ob8spkLkZZ5yprZu1ROuDRftmiSX9LirLgsbpd8NcqQw9a/1HJ+clF74wrAxO1xztfsTl+k/rvp37fKDdevkUaq9b0OYpte8mHjVKlmna65arzVtnYrcuhMnJ0OZ9+5dXp5ONwDqZe/e8Fkf+9hSzl1wwfJ7ujenRLYcsORNcWQ19YrMyaCO05iW9quTdV34xjk9ZcPMsg/M5IYa55wTppu1fugIB2WpMqe5sx5+ePnPTzwxm/LMzIS/b02XXBKmDI5QH61K3uS6cZXmxhjoxJyd1WNnZ/XY1p+tWdP94vJ+lZ1uOj27S5KuvXbpM7tUarrhD1kxZHUdSNHvihfF9u2SlhpWkvTTl56g/a+6aPl1mRMT0iteEf7d7ZqrQw7pPje98bOtu2f1p19t3KRL0lm7wx1Rl12lPDur/STtJ2l16+93W27rTpQ6XnOlzZul228fbJtMNf5EtF54/sgjIfMuvHBpu0xMhM6lE06QnvQk/d5PDtBrFz4rl+lSvVr/+fsHSvWZih5Y+ZXldWdkTjZ1nBct1HXpwjo9Zsu8dOG+Oz2Tm7K0fuiIB2Vp6jj1unTmmSFb3UOj5mlPk/7kTzJ7PqtqNekFL1iqg0oj3dyiSnmT68ZVmhtj5BOzVxL1quysXi3t2DFYY6vVRz8aKkitlZrmzTl27+7a4CrqH7K0ezmyvoA2y963qtzprKsTT5RdvvRQxh8dc7x+/nMfX373vgE7MwaRSGWgfSe23Nr40ddnZ5ffmONb3wqNwWc+M9yEo/VnmzaF32sduVqxInxvHdFbXAyvNzqFDtNSA/WohZtlH5K0xcKdEaWw7Fpt5JsAJYW8SbccVc+cLOo4L394TtM+rwnP6RBP60G5Z09oaJx55kB3RS18HUeN1kd7/W7btmgrNHLmvOlNyxtX++8fFjbEQiqVN93mCyb5Nc5DPZOU+sWQzesYjj3W/SlPGey6jvXr970wfWJi6aFvzf+3Pvxt06alz8noZhqjyGI++rifN+gx1O19ZZo3roJd/+Du4ZqnFB+YmPcLsB/Vfs1V80BtZs6o13g1rxkb8pqupFaxrHnT7b1lyhv3gmZOim7YssOvO2ajL6xYmd+d3p4tzfpM3soZQev5d9z0Dr/vmOOXr/fxx0dd73HP99s2bfE7Dz3GF6ZWLNU7u/ytrHreEDxjilo5ai5sy5ZQyVi/fumGF82npncKnqmpfRtm/So7Zv7QwYf5g495gj+86hdy2eBK+85FGzcubbZRPm/Q4Oj3vsJUuPugopOM3Bwf7XnVfsOeQb7Mwu+23qRjctL9qKNCJp10Urioe9OmxFenrHnT7725OZ4iIHN62LEjnGdmoVI8xM1pUj8+duwIDYtmvWbEEzLvx3Yzc16sHf6g9vMFS65BOe4mbWbIu+xs36uW+mbzpkcd3lvlvMn1tMC8aR9OjT5/dNAxy+bYd3Oa0qpVy5/XNTER3ufedRHurpX33hn+87Dkl1wi+6d/CjfUkJYv/6abpGuukV73ukcf8JeGNOdQ1+th5lNzk01ODv95gw5593tf1afKYEnimTOO9gN1w4blD3X/7GfD9QKPe5x07bX7PLNLkqx1imHTwkJ4PuHNNy/97NxzpY98RHrOc5Y/cDmisuZNv/eSNxWxbdvS1N5HHgnf23Z8bvKmVgtTAa+6auQTMldZ2cXMTLi5yBkLZ2ql9mjCF5eu6R1gKuSg6h1mGw67SZsZ8kWf0Z9rUhNalEnh0pZzz102BZ28yfk1V9L4c9JjzWnvdKJmNn+009HZfpOL++8PB3wX1umHzTuDtV6o3qp5Aq1YETbCj34kPfax0qmnJnKhZZpzqOfmli5/M5Pe+MbhP2/QyllWF95mfX1HUZA5I2rPpdaOmNNP1wMf+j+6/wFppfboBzpEfkxNLzhvQ3i99Zqubu67L3T+XHlleP+pp4ZrxI4+WnrggfCeMRpdZc2bYd8bC3kzmNTyprWzostycpU3na5Z37x54A2V66xsqKmuK3xGpvlQJ2teYxWxYSUtbYvFMdpuzQz51/maTrPzdf7CW2XeqCO23T2QOo7yPS1w3PmZMed3dpoykvv5o83rR1qvuXrSk7zT83MWm8O7Gzd2fYhpz6/mZ6xfH75v2dJ17DfrYeEk5wKPe81VUrI4VlXAKTpkTnJ6lr31+tNxnss1Pb2UPY1rTm/btKXyeTPse8eV1XFatMxJLW/aH0Y7ObnPm3OdNyMUJMuyD3yurV+/fL8cc0yUgrZ/fiJ5c8wxy8t+5JE9y5C0vNVxch08486BjzmHvtuOy7qhMJLGE7cfPPQZ+15z1X5N16Bfbe9flHxBE+HC2WZja+NG/8H6jf7WqS3+Ljvbj5vekfp2q8pc4HZpX0/iXryKjjuZk7SByt7IJ1+/PnQOdbtWq8PPF81CJ1Hj9WbH0ZyO9a2TG/22Td07fZJaX/ImnbxxL17mpJY37efRMcfs85Zc503rig5xo4cky95t2QNV8pudSe31rI0bo5Qrlf3Y3mCXUrsRVCd5q+PkOnjy1IvcXF4WIZP65zY/sNkDfNJJ7ocdNlSDa7Hl+6Js2c8XJX9E5vOa9G8etX6pUZfC3cKy+qOftbz16qT5VdSRq+by0s6cXFSmWu3YERpaRx4ZRrY2bgyjUm2Zsij5vCZ90fbt6Fk2Qt+8WLx5I44EM4e8YeSql8xGroa4w1vSBvrM9k7fjO8g2Gu79z3nm7/c3kHUYTRxFKlmzlFHLV+H449P8MN6y1sdJ9fB4z7+yZ67isKQcjMs3yzM+vXhhDr66HD7+KOOChWdlrt9NSsxe1saWd0bXgp3LlqxYuk9zemJW7aEzzvmmPAZEXbkKNuzqI3qTlMD0lyPolV0mqqcObnKm34a056/euwm/6Bt9A9oo8/aFp9fsd8+I1ft2eMTE8unP09NLd2dtTm1OdL0HPImXhn7KWLmpJY3KT9mYhBDnR87dkS5g2AMvRowPdepfR2ao/A9bmk+rFQzZ8BGe9TP7LGMPNVxch88/RS5IuPev/zj9EKkum2aI0/r1z869e+DttEf0nTXnuSeo1+dpv2YhUZc6zVdzWd5JXRSDxpUsbd13kZQRlHEik4/5M3oy05K+7F+w5YdS9lwzDG+MDG5PHOaz2fpl0GTk0uPvxhjhCuJvBl2uTE/N4nfj4XMyZfoedN2oN22aYt/6fizwzmfon7He8f17jT61qzPRN65qdZxRmi0x8iLKJkz5slV2sbVSAd4jgxycIx6AGX9x6657R+t6LROwdm0aXmvcfvI1ahf7Sf3mJUi98HCP4ltnadrf0ZVtorOoOdrXjOnCnnT8XNbc6DZKbNly/Jna/VqYLU+v2tycumZgwkY9LyNvb3LkDfu1cucgfImo1BKLG8a63Pbpi3+kKZ9r8wf0nQmDayhNmvrg+0SeEDwqLKo48TIi7GXEWGleuVN7m/F3kuvW20W4RkHg9wqdNTbA49zG9IYt7NcuitzrfHVZv36pWfibGjcjnnbNumee6TLLgvP4Wi/FbwkV7iNfPP7Mtu3L90Svl6XXvaypds7f/SjoUC7dkmrV0sHHSQ96Ul9b908yC1Fk7jl67i3Mh3093N169Kc67ef8545ec0bafzjsOezU7q9uGbNUub88z8vPfun1eKi3H0paxYWpGuvDV/Svo+g2Lo15NCJJ470eIpBz9vYmZNW3khkzjDGruNkGEqJ5U3jfP7xL79VT23cwnxC8zrof5wmrTlvoIXEreMMoP3BdlNTXe+Fnvb5kUUdJ8at2seu4yR9r/5ura4kv9Lo1clLT1ovSfb2FrUH+tFCNHuXW665+sH6MM3wkfCovWU3ythn5Orss7veUWyfnunmhfLr17s/73nuhx4aRtfaitOt523jxnAH6NjbbNwOx36/n/S+VsV6kfOeOXnMm6TLNVQhmo+SOPbYUJiJcLfThzW1/IYY3S7ebr/+oJkpxx471GjXIOdtEpmTdN4030PmDG7sOk6GoZT0vv7B+o37Xr89Pd33g1LNm+ZJ0fqIG7OudwXMKguzqOPEGFAdq46T8MhVoYPHvfvGzcUf7AEkOWLfa9t0+8wks3jcdT37bPeXTOzwd+psn7Uw17rrNVc7dgw27afX17HHhuU/6Unuj3mM+zOesWyKYesxltDU6UQl/Xe3bBUd9/5/hPKeOVnkTb/XkjoOx1rXxi9fuHGHv2Rih39AG31Oxy5vXLVnTrfbxrc3yI4/PtyBdYSbC5A5vVUpcwbKm4xDKdEZiTt2+MKKlft2ehx2WM9n26VWx2k/WQdoneStg670eTPmAVrqxlUvGU01zrV+WZtUFo8zktbch52W0XMft/ZGt17jNe5X47qLf16/xWdti1+m433WtmQShOMc4732SYxzp4wVnX7InH1lkTnjjqR1y5y5k7b4t58eHky8j07PfRnk60lPChk1wK3hs658xRjd6rRfYp03VcucgbZbmUNpx459HmbbbGy9R5syq+McN73DHzjqmKXZM5OT4bzusB/GquMkLOu8cU+mjpNG3pQ6eLCv1pOl2zWVSZzMo5yk/YJmqJDcsWP5s3Ka03XGaGS1Pz/nR0cfu/x2zsceu3S7+gQugI/xR6LTvo71x6dqFR10lkXmjFop6JU5W7YMcF40H4AcozPnoINChrRMK8xyICLWZ7fv65jrROZU0I4d+8xSaf5N/pKO9VOP2ZFqHefF2uEPaeXy0bSVKzt+WNQ6TgLK8PlZ5Q3BUzHNAyvtZ/GNckD3qyBF6VVpVoZar7lavToscIBrthbbvvf8am1gRUj3pHqVYi2Xig7cs8mcUf+A9jr2hzovWkfNjz56sOs/B8yQ2zaF0bM7Ttq0dE1qCs8uynveuJM5ldXsPNW+z9F8RBP+1qktqdRxjpve4f+i431v+3nb5RqrVOo4YyrbyFlaeUPwVNCOHdk8i2/YkzTmdKKhA6L5C+3XXI0z2tW8AH6QFRugsGlMb5ieHn2eNRUdNGWROaNUCnqdU2PlTWueNK+7GqXBddRR3V87+ujwddhhy27IE0ve88adzKm8TZu8vbNzUfK9kn/12PjnxDJbtvjC5ApfkC3vbO1xk41M6zgFkETmpJU3BE9FZT3cO6h+gTFIoERf19aH5g0zDajZu9yr66S1sO0PTN6xY58H9iUVqM2O95UrR99uVHTQqgyZEzVvWqcqN6+5Ovro3hly5JH9c6b51d7AihAWec4bdzIHvqyBtc/dBBPodHj04G2tA0xMhHrBADX3XNZxciSJzEkjbwr9nCuM5+STw/c+j3rKVL9nSQzyrInojzOYnV3+DJvZ2fAwheYzc5ruu0/63vekxz5WOvXUpd/p9YCG1sIuLEhbtoS4npiQJiflzWfxXH657KMfVe3uu1Xbbz/p4yukZz5T2rQpys6s1UJR9u5N7jEQqI7ms0bOO0/avTvfzzjqlSlR86ZWky6+ePnPZmel00+XLrggPAvnmc8MP3/4YelNbwr/fstbBluRiy6Szjkn/LvX846aO2fVqqWd01iRO2+6X/blOT3mqYdo1ZMfq9o116j2utdJtXMGK8OAyJuIqv4gsXPOkZ72NC2c+t81+fCDklqeifnXfx2esRljuzT/5l9wQXhGnvvSa5OTIewG+Jxc1nFiGOE47PQrQz1PbEC1mvStbXUdND+nL/qM/nW+Fn2blaZxVfU8GUb739nmM3xjLDeP+yDGA+v6akmATnWVZduj15MTm4V9+OGlPmgpPMy08VDl5kOU/dprlz9I+eabw8NQzz8/fPCqVdL114cG3wAPTG6XynYrqLwe63mU1HNM87oPxj5vzjlnqVHUzfbt0tFHS1dfLb/qquUVuwZ73euW/tOt9tXcOXv2hIe2T0yERp2ZfM+8DlVjuXdq6cHt554bGm7PeU7Ilec/f9+8ue8+6d57pYMPDg9sl5bee9ll0q23Ss96lnTCCeF3br5Z7/j+Lr1kcbVutqP0yckN+r2bLpGecZH0utf13x4VMNDxnvcnmaekvmZWf79Xer/e0jyCw7HrHjaiNFJ41OuhUn78Pdv0pEs7NKqkcP6cf36q2z3tv9V96zgjHIetvzI1Jb3hDQl2/NfrOulj6+Q+r3drWq+avEIzM5E/qNuQVpJfsYfMyzwkmoQkLhLM+z5Iaz5ylIv3m2PW09PLFvTIxIp9pjp0nA40NbX0e+1fRxwRpkY0b/ncOuWwS1FG3W4q6RSdvB/reUPeJPs5x03v8A/aRr/Y1vu/6Wj/vg7zcyc3Lf/sbhusdec0v8wevR6s/dqVrlMQI92wo5lvCxNtZRpwOlflMycPd0DIgeZm+ANt8W/rCF9Q45jeb7/lt/1sTr0/6ST3pz+951TaG7bs8Isn1vu8Jve9rsps/At4xpSrOs4Ix2F7FDV3VyLr0/Jhe23Sb9842nnSK29KMXKVyyHRHIvVy9Hak5b3fZDE0HInze3QGGTS4uII26NZ2A0blnUP3bJqRpduvER/5H8t06Im1NKb3DQxET60WYB2t98eep7bmUm/8zvSs58t3X9/+NxDDlFt0ybVzsjRjsyBvB/reUPeJGduTvrKQk1f9prMJFmomkxKOmuupQzdRsubO6fTyNX8vOT+aM+/1CFvHn1h35GzUTSXbYsLy19oneJYQQMf70w3kLS0GT42P6tPTM/qmvPqWrN7bt/wWFiQPvShpV8891zpwx+WnvEMzX/ru5q6f7dMkq2Y0lF7Xc9ZDNPym7NHZBY+KNFhlsHkqo4zwnHYadJOYtneUr7J6Wk9ZUP/8g2rFI2rrIZE8zYdZVC9ZqUNqn3U97zzyHSpc11l5O3RlpZrJNVV08v+cL1eujinZ9tNOvHgL+sxP7eftKJxzdUJJ0innbZUgIaulaJH3+DSJz6x788/85lwHUhzOs/dd4drP1qvOasY8mY45E1yWo/FqalwGi8sdNkmnWpfrTun7Zorm5vT9XP3a/7yOd2tQ7S//Uy/5pd3zhGzZQ2s1qZWz9zpZnIyrEhT6xTHCho4cyKcbEXPG2nfzbCmVpPUsjKttfh2P/qR/NprtaLxX5PkjzyiCfdHj2WX5BOTstk3Z96oSttAdZwRjsPmrzQvY+uaY10MddzG+KPUh3mkHqdhrF271nfu3Bl1md02bOygYEpzsHmz9Kd/Gk6AyUnprLOWOoWKHMoxtN7bYoRLnQZafs/t3Doh+vrr9dMrrtZjv/W1ZW8ZqcLTasuWvg0sM7vO3deO+1HjIm+Kj7zprpk30tLlTzG3ybJjWm037ulwzdXum+/RTVfdp1V+r3bbwXr2Sw/SqoPU95or7dolrV4tHXVUCM1LLgkjVkNcc1X5zNF4AVSZvGm9GcX8/D4vt3ZGuqRFm9Tk1MSjN5TyiUlNfPADle1kzLyO0+H9WRy3PfOm23zBYb4kvVLSrZJuk/TOfu9P6zalSczLT3JKc5GeU5D3ax6ylLdtc/bZ7rO2xW/UUf4NHRme99F8wOkgt5Dv9NV8ZlcPSvD6h2Eyh7zpriiZk7dzKk/ytm2yvOwnqcwpQh3nrVPhOUvjPKW7cnnTLNBJJ7kfeOCjf98W1foQYvPbNm1ZuhY6w+uq8qLwmRPpQOyVN2NPCzSzSUnvl/Rrku6U9K9m9hl3v3ncZY8riXn5SU0JSrPlHaN3PYVR1VwYZVvl7XqQmRlp3WNm9dH52XBsvUdLMyTq9TDP/O67wxsPPFC66Sbp//yfpSkTzeu4Wp14Ymrlb5fXzClS3kjFypyq5I00/LbKY96UacpmXvNGWtr3L1qo6zy9Taa94YU9e0Y6ECqXN+1TZU8/XbroItlBB2nP7Xfrnv2eqgfe9R6tma0tvb9kylLHGfi4TelAjHHN1TGSbnP370iSmX1S0mslZR48SQRFUn/k0zpYYx5XaV1AmbRe0y1G2VZ5q1z0PGZrtX2ftSNJb3vb8uswVq3K0zVXucycIuWNVLzMKUveSHEzp1B5U0y5zBtpad+//OE5Tfji0nTvycmRDoTK503LYxBWSnpK/OJlotJ1nHZzc0sXjI3YCTGIGI2rQyXd0fL/OyX9cvubzGxW0qwkHX744RE+tr+kgiKJP/JpHax563HIWq9wGXVb5bFyMfQx2+kX8jO/vG/mkDf9kTnZiJ05pcibfMt9Hedb22ZkH1spPbInzDQY4zlL5E25UMdps2rV8lsdrlqVSHliNK46XRu/z10y3H2rpK1SuNgzwucOpCghn9bBmrceh6z1CpdxtlVRjruC6ps55E1/ZE42ksicIh13BVSAOk5N2pCz2m4b8iYb1HHa7N69dKnDxET4fwJiNK7ulPTklv8fJunuCMtFAvLY45ClXuHSbVuldac4dEXmFAiZs9ywmdMrV8icVBQjbwpb242LvFmOOk6bmRlp5crkW9/d7nQx6JdCA+07kn5R0rSkr0t6dq/fSetOOkWSt7uvVMkwN47ptp96/TxXd0dKkZK7c9dQmUPedEbmZGfQXOi1jzq9VuW8cU8mc6jjxEHeZIc6Tpsi3C3Q3fea2SmSPqfwYPgL3P2mcZebJ2m01pknnK72fdprW7e+t9t+6vRzqZjPDMl771TZMyet7U/mpKdT3nTb1oPkjbTva9u2SRdeWLy8kfKdObnPmwgbjzpO+Qxax2l/XyXqOKppTjXNSEqquDGmBcrdL5V0aYxl5U37xYDnnRf/IY0S84TTNMwdcjrt/077qdP+K+Ifk6I8RLKsmZNW3khkTlqSyBtp3/0nFS9vpGJkTm7zpl6XXvaypY33pS8NvfGo45TPoOdUp/d1209lqePcuLWuy942py8uzuislbXE8iZK46rMWg+ePXukU04J18HF/iPAPOH0DBMI7e/dvbvzfuq2/4r2x6SIYVkmaeWNROakJYm8kfbdf9Lykasi5I1E5oxl27YQFFL4vm3b0BuPOk75DHpOdXrfGWeUuI5Tr+uXTlmnP9s7r3dqWsfvuUJzczUaV+MaZei7tbVuFg7CxcVk/ggU5XrUPE/hGMQwPWid3tttP7X/vIh/TOhdjCfveSMVI3PIm+7r3f5a0fJGInNicUnX/5u0pz7cvqeOs6+qZE6395W2jjM3p6mFeZkW5JrXyyfmNDOTTKEtXJOVrrVr1/rOnTtT/cxxph40T7RVq6TTTsv39IUktAaNlP8pHIMYJjyLHrTDirW+Znadu6+NVa5RkTfFQt5UK28kMmdkW7dKf/iH8oUF7dG0XjExp38bYaoTmVPdzEk9b7IMuMYfZt8zr72T0/rm+VdozezoZeiVN5UZuRpn6kFra33Nmmr94WuvJJ58cjmmcAzTg1aU3rZYqra+SSBvRkPeVPP8q+I6j61eDy0hdy1OrNCp/rf66mJNkyOcJ2ROdTMn1XMv6wssG0NtNjenFTMzWpPgZ1emcRVr6kHafwSy7sVsryRKyUzhyHo9gZiKmjdStudiWnkjkTkouObJsrioiQnTEyd3a9LHP0+o41DHSUweLrBM6QCvTOOqcHNDlX0jX9q3krhhQ/iKuR3zsJ5ATEXMGyn7czGNvJGyX09gbC0ni01P6z+dN6P9ErqzaFLycB5Sx0lRhS6wrEzjqojy0sjvdueYWPKwngCyPxfTyBsp+/UExtZ2sqyp1fTT+tLzh4pwPOfhPKSOk6Ki9jqOoDKNqyL2HOSlkZ/0KGr7eq5aJW3eXPpzDyVWxLyR8pE5aczaIHNQeG3zzIqYOXnIG4k6TqqaG7teL/VGqEzjqog9B0k08vM477d1Pat6tyKUSxHzRiJzyBwUQoeW1NxcrXCZQ95UNG+y6glI8eDIdeMq5nbISw/JsGL2qOS5Z6u5nps3F7NSinKIlTlFzRuJzCFzkJaR86ZD783MTK2QmUPe5KeMqcmi9zHlgyO3javmdtizR5qclM4/X5qdHX15FZrq2VURetOLXClFsdXr0stetnTsfelLo58f5E1A5gCdjVXH6XDQkjnkTWFksRFSPjhy27iamwuhs7gYvt72tvD8hXG2RRa3Nc6TIpzU/IFAVrZtC5kjhe/btpE34yJzgM7GquN0OWirnjnkTUFksRFSPjhy27iamQm9OYuL4f+Li/nshRhWlvOBhz2esypr1f9AALFkff3BMJmTdTaSOUjT2HWcnB60WZ/H1HEKIu2NkHKDLreNq1otDJO/7W0hdFauzGcvxDDyMB+4/XjuFi5JlzXrSh/QbsMG6YILpEcekVasCP8vsjzkjTRY5pA3qBrqOMmgjoOuUmzQ5bZxJYX5x2vWlOcAzdt84F7hkmRZ8xDAQLtaLRzn5E1yup375A2qiDpOsqjjFEQJW6K5blxJ5Ro+zdt84F7hkmRZ8xbAVVDC7EoEeZOsbuc+eVMu5M3ghsqcnG/YvGUOdZwCiNQSzdupkfvGVVrS2DF5u5CxV7gkWda8BXDZ0YuWT0lnTt7yRup+7pM35UHeJGTMDUsdhzpOLkVoieYxc2hcKd0dE6NnPFZI9guXpHrx8xbAZUcvWv6klTmxzuE0Moe8KQfyJiFjbFjqONRxcitCS7TvqZHBsBaNK6X7x2DcfRw7JLOaBlWm6Vd5Ry9a/qSVOTH+ppQhc8ib9JA3CRljw1LHGf33i/a5hROhJdrz1MhoWIvGldL7YxBjH9MriGHF6EXL23zmoksjc2L9TSFzMIxYvfZkTpsxNix1HOTamC3RnqfGgAdU7LyhcaX0hnBjhAa9ghjFONmVx/nMRZdG5sSqpJA5GNa4vfZkThcjbljqOCiErVul7dulE08Mt9IcQtdTY9UqaWJCcu96QCWRN4VuXBWtZytGaDCXd3RFO17ygp7EJbGOoTSOxViVFDJndGTOaMicYNnxo/wfTNRxslXovNm6VXrLW8K/L788fB+ygbWPel16+9vDwysnJ6Xzzuu4YZLIm8I2rmK2NNO8uDxGaDCXd3j0hI6OnsQg1jFUtLxpLovzZThkzujInOXHz6xt1S/7KZrwhfC04RHuFFikzCFvhlf4vNm+fd//j9u42rYtbBAptJyuv77j25LIm4nxF5GNTi3NPCyrn1pNOuOMgh30JZDmPi6b5h/Ms84qYGBHFOsYIm+qgcwZHZmzdPy8aKGu8/a+TbbwiLS4KO3ZM/TBROaUX+Hz5sQTl/9///1DizEFSeRNYUeuYrY06SUrP/bxeOhJjHcMcSxWA/t5PFXPnObx8/KH5zThi7LmC5OTQx9MHIvlV/h93Byl+uhHwwjTZz8rfe5z47V2nv/8cL4sLoaNsmFD17fGzpvCNq5GHX7uNCeVOb7lV6uF6bbNayXZxxhWrMwhb6rj5JPD9w0b2M8YTjMnvrVtRvaxldIje8KF+eef3/Ngoo5TXYXPm9lZafdu6brrxr8Aql6XTjst3MhiclJ63/tS3SiFbVxJw7c0e81JrXovWdk1z7P5eemqq6Q1a9jfGF6szCFvyq19v/foMAW6CjlRkzYM1jKijlNNpcqb5hDcnkZnwqpVoy2nOU9ycVEyC422FBX2mqtRFH5OKkbGvkcWOO6qif2OqAa8kInjrppKtd+b04ykcJe/t71ttGuvmo20yclM5kmO1bgys78ys2+a2Q1mdrGZHRipXInIeFvnTr0ubd6c2jWDmWLflwOZU1zkDYqGvCm2qmRO6fb7ZZeFESdJ2rtXOvfc4ZeR8V1xzN1H/2Wz4yV90d33mtk5kuTup/f7vbVr1/rOnTtH/txxFPo5ABEV/radI2DfDy7GtjKz69x9bcxyjZI5WeaNxHEnkTdlX9cY8pg5uajjDLlhOO6CqmVOqfb7L/+ydO21S/8/7DDpU5+KumJJ581Y11y5++Ut/71a0uvHWV4amHcctA4j79kjnXlm+Crztinqvk87NPP8R4nMKab2aSvbtpWoItBFkfc7mRNknjcjbJgiH3cxVa2OU+T9vk/evOlNyxtXd90VzoNBg6FPgKWRNzFvaPFGSf834vKQoNZrBhcXpS98IdzoIS9/1PImq16hLCodSTytPCFkTkG03iZ4akq64IJwfOWpIp03ZE6ynzmC9PNm2zbp4YfDHc9yvGHyiDrOcHKVN83bsv/VX0nf/nY4/h96KEwPvPjiERa4fIXSyJu+11yZ2RfM7Bsdvl7b8p53S9or6RM9ljNrZjvNbOeuXbvilD4hVZin25yO+opXhBuyLC7GuRCyjNuuea7+6Z+G72muWxYXqmY9fztG5pA3+dI6/f0NbwjHc6xjuozbj8xJ/jObclvHqdelj30sVCylkZ5v1WvRZTtn2lHHGVwu82Z2NnQuTE4uvfmSS6StW/svcM+epSHLDjs8lbxx97G+JJ0sqS5p/0F/54UvfKHn1Y4d7vvt5z45Gb7v2JF1iZIVc33Luu3OPjuskxS+n3320ms7doT/J7WuWW3TGOslaaePmS+dvobNHPImX8ic/sic0SSROZnVcVoPAjP3jRvHX6aX95zphrzpL9d5c8wxoWDNr2OO6b3ALVuWv3/Llq6fm2TejDUt0MxeKel0Sce5+8/GWVZeFGR6QjQxHy5Y1m3X7cnnaUyfyerhj3mdv122zCnrOdMLmdMfmZMPmebNqlVhyMVdWrky2sOLynrOdEPe9JfrvGm//ur660PBOhWkXpe2bw/PtXIP50+X51slnTfjXnN1vqSVkj5vZpJ0tbtvHLtUGep2kJVZrIOsrNuu28mfVtDmsdKRoVJlTlnPmX7InN7InNzIJm+aT71fWAgVxPPOi7ZDynrO9ELe9JbrvJmdDbdmv+SS8P/Fxc4Fqdell70sFLTZsFq5MrOdNO7dAp8eqyB5kVWvXVZiXsRY5m3X6eQva9DmWdkyp8znTCexL5ou8/Yjc7KXWd40a7WLi6EXvkvv+yjKfM50Qh1nMLnOm02bpM99bqkgq1aFC99ad8I73xmusWpauzZqp8SwxnrO1aiyfu4Mgrze/rZISvVsiciSeM7VKMibfCBv4iBzuitN5nCyRMFmHF9u8qZZkFWrwqju/HwYnXr+86UDD5Quv3z5+zdulD74wUSLlNhzrlBsZZ0/nCamzwCDIW/iIHMqoMxDJCkic8aXm7xpFmTz5qWdurCw/HqsJrNo1yiOisZVheVmyBdA6ZE3wBByU6stLjKnhJo79aGHur/nT/4k83OHxlWF0TkGIC3kDYA0kTkl1Nyp5567dJOLpokJ6Y//WDrnnEyK1orGVcXROQYgLeQNgDSROSVUq0kXXxweKLx9u3T00eG6qxy1oGlcAQAA5EFu7iAA5NzsbPjKIRpXAAAAWeP2dkApTGRdAAAAgMrrdHs7AIVD4woAACBrzTuhTU5yezugwJgWCAAAkDVubweUAo0rAACAPOD2dkDhMS0QAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAgAhpXFVGvS5s3h+8AkCTyBkBayBvkDbdir4B6XVq3LjzwfXo6PEaDO70CSAJ5AyAt5A3yiJGrCpibC8GzsBC+z81lXSIAZUXeAEgLeYM8Km3jimHiJTMzoUdncjJ8n5nJukRAuZA3S8gbYAgjhgeZE5A3yKNSTgtkmHi5Wi1sg7m5EDxV3hZAbOTNcuQNMKB6XTruOOmRR6QVK6Qvf3mgE4bMWULeII9K2bjqNExc9ROuVmMbAEkgb/ZF3gADOPfc0LCSwvdzz5Uuvrjvr5E5y5E3yJtSTgvM0zAxQ/dAuZE3AEZy6629/99FXjKHvAE6K+XIVV6GiRm6B8qPvAEwktWrpVtuWfr/s5410K/lIXPIG6C7UjaupHwMEzN0D1QDeQNgKPW6dM01S/+fnJQ2bRr417POHPIG6K6U0wLzIi9D9wDKj7wBCmRuTtq7N/zbTHrzmwvVOiFvgO5KO3KVB3kYuke11escf1VB3iBr5M0Qmq2T5ry6DRuyLtFQyBtkLc95Q+MqYVkP3aO6mBNfPeQNskLeDKkErRPyBlnJe95EmRZoZn9sZm5mB8dYHoDxxX5yfZ7uDEXmAPlC3oygVpPOOCNftUKgAGLnjRQ3c8YeuTKzJ0v6NUnfH784AGJpn3Uyzpz4PPUSkTlA/pA3ANISM2+k+JkTY+Tqf0vaJMkjLAtAJM1ZJ2edNX5QJNFLNAYyB8gZ8gZAWmLmjRQ/c8YauTKz35R0l7t/3czGKwmA6GLNiY/dSzQqMgfIL/IGQFpiXvMXO3P6Nq7M7AuSntThpXdLepek4wf5IDOblTQrSYcffvgQRQSQtTSvvY6ROeQNUFxFy5vGcsgcoKBiZ465jzbSbWZrJF0h6WeNHx0m6W5Jx7j7Pb1+d+3atb5z586RPhdAMZjZde6+NuLyRsoc8gaohpiZQx0HQC+98mbkaYHufqOkn2/5kNslrXX3e0ddJgB0Q+YASAt5A2BUUW7FDgAAAABVF+0hwu5+RKxlAUA/ZA6AtJA3AAbFyBUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAIAIaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAIAIaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAIAIaVwAAAAAQAY0r5Fa9Lm3eHL4DQJLIGwBpInPKayrrAgCd1OvSunXS/Lw0PS1dcYVUq2VdKgBlRN4ASBOZU26MXCGX5uZC6CwshO9zc1mXCEBZkTcA0kTmlBuNK+TSzEzozZmcDN9nZrIuEYCyIm8ApInMKTemBSKXarUwTD43F0KH4XIASSFvAKSJzCk3GlfIrVqNwAGQDvIGQJrInPIae1qgmb3dzG41s5vM7NwYhQKAbsgcAGkhbwAMa6yRKzN7maTXSnquu+8xs5+PUywA2BeZAyAt5A2AUYw7cvVWSe9x9z2S5O4/HL9IANAVmQMgLeQNgKGN27h6pqSXmtk1ZvZlM3tRtzea2ayZ7TSznbt27RrzYwFU1ECZQ94AiIA6DoCh9Z0WaGZfkPSkDi+9u/H7T5D0YkkvkvQpM3uqu3v7m919q6StkrR27dp9XgcAKU7mkDcABkEdB0BsfRtX7v6Kbq+Z2VslXdQImmvNbFHSwZLotgEwEjIHQFrIGwCxjTst8BJJL5ckM3umpGlJ9465TADo5hKROQDScYnIGwBDGvc5VxdIusDMviFpXtLJnYbLASASMgdAWsgbAEMbq3Hl7vOSfjdSWQCgJzIHQFrIGwCjGPshwgAAAAAAGlcAAAAAEAWNKwAAAACIgMYVAAAAAERA4woAAAAAIqBxBQAAAAAR0LgCAAAAgAhoXAEAAABABDSucqpelzZvDt8BIGlkDoC0kDcos6msC4B91evSunXS/Lw0PS1dcYVUq2VdKgBlReYASAt5g7Jj5CqH5uZC6CwshO9zc1mXCECZkTkA0kLeoOxoXOXQzEzozZmcDN9nZrIuEYAyI3MApIW8QdkxLTCHarUwTD43F0KH4XIASSJzAKSFvEHZ0bjKqVqNwAGQHjIHQFrIG5QZ0wIBAAAAIAIaVwAAAAAQAY0rAAAAAIiAxhUAAAAAREDjCgAAAAAioHEFAAAAABHQuAIAAACACGhcAQAAAEAENK4AAAAAIAIaVwAAAAAQgbl7+h9qtkvS9wZ8+8GS7k2wOEmh3Omi3OnrV/anuPvqtArTzZB5IxV3n1DudFHudA1S7iJmTpn3Rx5R7nSVudxd8yaTxtUwzGynu6/NuhzDotzpotzpK3LZeynqelHudFHudBW13P0Udb0od7ood7rGLTfTAgEAAAAgAhpXAAAAABBBERpXW7MuwIgod7ood/qKXPZeirpelDtdlDtdRS13P0VdL8qdLsqdrrHKnftrrgAAAACgCIowcgUAAAAAuUfjCgAAAAAiyE3jysxeaWa3mtltZvbODq+bmb2v8foNZvaCLMrZboByn9Qo7w1mtsPMnpdFOdv1K3fL+15kZgtm9vo0y9fNIOU2sxkz+5qZ3WRmX067jJ0McJz8nJl91sy+3ij3G7IoZzszu8DMfmhm3+jyei7Py37Im3SRN+kib/KHzEkXmZOuImZOonnj7pl/SZqU9G1JT5U0Lenrko5qe8+rJF0mySS9WNI1BSn3r0h6QuPfJxSl3C3v+6KkSyW9vgjllnSgpJslHd74/88XpNzvknRO49+rJd0naToHZT9W0gskfaPL67k7LyPtj9ytF3mTv3KTN9HLXrq8GWKf5G7dyJz8lZvMiVruxPImLyNXx0i6zd2/4+7zkj4p6bVt73mtpG0eXC3pQDP7hbQL2qZvud19h7v/qPHfqyUdlnIZOxlke0vS2yVtl/TDNAvXwyDl/h1JF7n79yXJ3fNQ9kHK7ZIeb2Ym6XEKwbM33WLuy92vbJSlmzyel/2QN+kib9JF3uQPmZMuMiddhcycJPMmL42rQyXd0fL/Oxs/G/Y9aRu2TG9SaAVnrW+5zexQSb8l6UMplqufQbb3MyU9wczmzOw6M9uQWum6G6Tc50s6UtLdkm6UdKq7L6ZTvLHk8bzsh7xJF3mTLvImf8icdJE56Spr5ox8Tk4lUpzhWYeftd8jfpD3pG3gMpnZyxSC51cTLdFgBin3eZJOd/eF0NGQC4OUe0rSCyWtk7SfpLqZXe3u/5504XoYpNy/Lulrkl4u6WmSPm9mV7n7AwmXbVx5PC/7IW/SRd6ki7zJHzInXWROusqaOSOfk3lpXN0p6ckt/z9MoXU77HvSNlCZzOy5kj4i6QR3351S2XoZpNxrJX2yEToHS3qVme1190tSKWFngx4n97r7g5IeNLMrJT1PUpbBM0i53yDpPR4m+t5mZt+V9EuSrk2niCPL43nZD3mTLvImXeRN/pA56SJz0lXWzBn9nBz04qwkvxQaed+R9Itauhju2W3v+Q0tv7Ds2oKU+3BJt0n6lazLO0y5297/d8rHxZ6DbO8jJV3ReO/+kr4h6TkFKPcHJZ3Z+PcTJd0l6eCst3mjPEeo+wWfuTsvI+2P3K0XeZO/cpM3iZS/VHkzxD7J3bqROfkrN5kTveyJ5E0uRq7cfa+ZnSLpcwp3HbnA3W8ys42N1z+kcDeXVymcxD9TaAVnasBy/5mkVZI+0Ogh2evua7Mqc6Ncg5Q7dwYpt7vfYmb/IukGSYuSPuLuHW+zmZYBt/dZkv7OzG5UOJFPd/d7Myt0g5n9g6QZSQeb2Z2S/lzSCim/52U/5E26yJt0kTf5Q+aki8xJV1EzJ8m8sUbrDAAAAAAwhrzcLRAAAAAACo3GFQAAAABEQOMKAAAAACKgcQUAAAAAEdC4AgAAAIAIaFwBAAAAQAQ0rgAAAAAggv8fijACMhzrYkYAAAAASUVORK5CYII=\n", "text/plain": [ "The above plot is a great illustration of bias-variance tradeoffs. The top row shows an nth-degree model fit to a sparse training set. The bottom row shows this fitted model against the test data (with actuals in blue and predicted in red). We can see multiple things here:
\n",
"