{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from numpy import math\n", "%matplotlib inline\n", "\n", "\n", "loansData = pd.read_csv('https://spark-public.s3.amazonaws.com/dataanalysis/loansData.csv')\n", "\n", "#Note, a schema can be found here : https://github.com/herrfz/dataanalysis/blob/master/assignment1/Assignment1.pdf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Amount.Requested', 'Amount.Funded.By.Investors', 'Interest.Rate',\n", " 'Loan.Length', 'Loan.Purpose', 'Debt.To.Income.Ratio', 'State',\n", " 'Home.Ownership', 'Monthly.Income', 'FICO.Range',\n", " 'Open.CREDIT.Lines', 'Revolving.CREDIT.Balance',\n", " 'Inquiries.in.the.Last.6.Months', 'Employment.Length'],\n", " dtype=object)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loansData.columns.values" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "81174 6541.67\n", "99592 4583.33\n", "80059 11500.00\n", "15825 3833.33\n", "33182 3195.00\n", "Name: Monthly.Income, dtype: float64" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loansData['Monthly.Income'][0:5] # first five rows of Interest.Rate" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFvhJREFUeJzt3X20XlVh5/HvTyKgQCUUe1ck1GBN\n28EyKmZBHF2zrsXyktaCa3W5YGgJ6jSdqh3t0GWjdgaq44iz1FFXFU2V4UUFGauVAWYYzHgX41QQ\nqBaIQBMkFEJIVF4jtiO654+zLx6u9+a+v+TZ389az7rn7LPPOXs/++b5Pc8+5z5JKQVJUnuesdgN\nkCQtDgNAkhplAEhSowwASWqUASBJjTIAJKlRBkDjkmxJMrzY7VhMSV6b5L4ke5K8dLHbA5BkVZKS\nZNkE289L8pmFbpcGiwEwwJJsT/LqMWVnJ/na6Hop5UWllJFJjrPXF6MB8AHgLaWUg0sp3xy7sfZ9\nd7//SZ5Zy+bkD2nGG6v50MBYahoMAC26JfBi9HxgyyR1HgZO6a2fUsukfZYB0Lj+O88kxyW5Oclj\nSXYl+VCtdn39+UidJnl5kmck+bMk99Z3wpckeU7vuGfVbd9P8u/HnOe8JF9I8pkkjwFn13N/Pckj\nSXYm+Ysk+/eOV5K8KcnWJI8neU+SX0ryN7W9V/Trj+njuG1NckCSPcB+wN8luXsvT9WlwFm99bOA\nS8ac53lJrkzyUJJtSX6/t+282sZLavu3JFlTt10K/CLw3+vz+/beYc9M8g9JvpfkXRP07+okfzSm\n7NYkr91Lf0brXZTkY/UYjye5Mckv9ba/KMl1tU+7kryzlh+Q5MNJHqiPDyc5oG4bTnJ/krfX53tn\nktOSrEvy9/VY7+yd4xlJNia5u/6+XJHksMnarjlQSvExoA9gO/DqMWVnA18brw7wdeD36vLBwNq6\nvAoowLLefm8AtgEvqHW/CFxatx0N7AFeCexPN8Xyo955zqvrp9G9CXkW8DJgLbCsnu8O4G298xXg\ny8DPAS8C/gnYXM//HODbwPoJnocJ29o79gv38jwW4NeAXcChwPK6/GvdP6Gn6l0PfBw4EHgJ8F3g\n13t9/kdgHV3gvA+4YaKx6j3nf1mfnxfXPv+z3vE+U5dfB9zY2/fFwPeB/cfpy9PGErio1j2uPvef\nBS6v2w4BdgLn1D4dAhxft70buAH4BeC5wN8A76nbhoEngf8APBP4/fpcfK4e40XAD4Gjav231mOt\nBA4APglcttj/flp4LHoDfMzj4HYvKnuAR3qPJ5g4AK4H/hw4fMxxnvaiUcs2A2/qrf8K3Yv6svoP\n/7LetmcD/4+nB8D1k7T9bcCXeusFeEVv/RbgT3vrHwQ+PMGxJmxr79iTBcALgU8BfwD8G7oX5hdS\nAwA4EvgxcEhvv/cBF/X6/JXetqOBH443DmOe85W9sm8Ap/eONxoAB9JNR62u6x8APj5BX542lnQB\n8Kne9nXAnXX5DOCbExznbmBdb/0kYHtdHqZ7gd+vrh9Sz3n8mPE7rS7fAZzQ27aiPz4+5u/hFNDg\nO62UcujoA3jTXuq+Efhl4M4kNyX5rb3UfR5wb2/9XroX/6G67b7RDaWUJ+jeZfbd119J8stJrkry\nYJ0W+k/A4WP22dVb/uE46wfPoK3TcQnd1M/PTP/UczxUSnl8zHmO6K0/2Ft+AjhwCtc/xu7zM30s\npfwj8Hngd5M8g+6F+9JJjjuVcxxJ90I/nvGe0+f11r9fSvlxXf5h/TnReD0f+FKd/nuELhB+zPTH\nR9NkAOgppZStpZQz6D7Wvx/4QpKD6N69jfUA3T/cUb9I97F/F920wcrRDUmeBfz82NONWb8AuJPu\nXezPAe8EMvPeTLmt0/F/6N6dDgFfG7PtAeCwJIeMOc+OKR57tncTXQycCZwAPFFK+fosjwddSL9g\ngm3jPacPzOI8p/TfqJRSDiylTPW50wwZAHpKkt9N8txSyk/oposAfkI3f/sTnv5icBnwx0mOSnIw\n3Tv2z5dSngS+ALwmyb+oF2bPY/IX80OAx4A9SX4V+MO56tckbZ2y0s1PvAb47brc33Yf3Tz4+5Ic\nmOSf032imuq9+ruY+MV2Km37Ot0YfZDpvfvfm6uAFUneVi/6HpLk+LrtMuDPkjw3yeF0034z/buE\nTwDvTfJ8gHrMU2fdek3KAFDfycCWemfMR+jmm39Yp3DeC/zf+jF9LXAh3QvN9cA9dBc4/wiglLKl\nLl9O92lgD7Cb7iLmRP4E+FfA43Tz65+fw35N2NbpKqVsqf0bzxl0c+wPAF8Czi2lfGWKh34f3Qvq\nI0n+ZCZto5uWOoaZvxA/TZ3O+g260HsQ2Aq8qm7+j8DNwK3AbcDf1rKZ+AhwJfC/kjxOd0H4+L3v\normQMW9kpDlX33U/Qje9c89it2dQJTkL2FBKeeVit0X7Bj8BaF4keU2SZ9drCB+ge5e4fXFbNbiS\nPJvuAv+mxW6L9h0GgObLqXRTIQ8Aq+mmk/y4OQ+SnER3nWYX3b320pQ4BSRJjfITgCQ1arG/hGuv\nDj/88LJq1app7/eDH/yAgw46aO4btAS11Fewv4Ospb7C/Pb3lltu+V4p5bmT1VvSAbBq1Spuvvnm\nae83MjLC8PDw3DdoCWqpr2B/B1lLfYX57W+Seyev5RSQJDXLAJCkRhkAktQoA0CSGmUASFKjDABJ\napQBIEmNMgAkqVEGgCQ1akn/JfBsrdp49aKcd/v5v7ko55Wk6fATgCQ1ygCQpEYZAJLUKANAkhpl\nAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaA\nJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1atIASHJkkq8m+XaSLUneWssP\nS3Jdkq315/JaniQfTbItya1Jju0da32tvzXJ+vnrliRpMlP5BPAkcE4p5WhgLfDmJEcDG4HNpZTV\nwOa6DnAKsLo+NgAXQBcYwLnA8cBxwLmjoSFJWniTBkApZWcp5W/r8uPAHcARwKnAxbXaxcBpdflU\n4JLSuQE4NMkK4CTgulLKQ6WUh4HrgJPntDeSpCmb1jWAJKuAlwI3AkOllJ1104PAUF0+Arivt9v9\ntWyicknSIlg21YpJDgb+CnhbKeWxJE9tK6WUJGUuGpRkA93UEUNDQ4yMjEz7GHv27GFkZIRzjnly\nLpo0bTNp80yN9rUV9ndwtdRXWBr9nVIAJHkm3Yv/Z0spX6zFu5KsKKXsrFM8u2v5DuDI3u4ra9kO\nYHhM+cjYc5VSNgGbANasWVOGh4fHVpnUyMgIw8PDnL3x6mnvOxe2nzm8YOca7Wsr7O/gaqmvsDT6\nO5W7gAJ8GrijlPKh3qYrgdE7edYDX+6Vn1XvBloLPFqniq4FTkyyvF78PbGWSZIWwVQ+AbwC+D3g\ntiTfqmXvBM4HrkjyRuBe4HV12zXAOmAb8ATweoBSykNJ3gPcVOu9u5Ty0Jz0QpI0bZMGQCnla0Am\n2HzCOPUL8OYJjnUhcOF0GihJmh/+JbAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSp\nUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhpl\nAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaA\nJDXKAJCkRhkAktQoA0CSGjVpACS5MMnuJLf3ys5LsiPJt+pjXW/bO5JsS3JXkpN65SfXsm1JNs59\nVyRJ0zGVTwAXASePU/5fSikvqY9rAJIcDZwOvKju8/Ek+yXZD/gYcApwNHBGrStJWiTLJqtQSrk+\nyaopHu9U4PJSyj8B9yTZBhxXt20rpXwHIMnlte63p91iSdKcmDQA9uItSc4CbgbOKaU8DBwB3NCr\nc38tA7hvTPnx4x00yQZgA8DQ0BAjIyPTbtiePXsYGRnhnGOenPa+c2EmbZ6p0b62wv4Orpb6Ckuj\nvzMNgAuA9wCl/vwg8Ia5aFApZROwCWDNmjVleHh42scYGRlheHiYszdePRdNmrbtZw4v2LlG+9oK\n+zu4WuorLI3+zigASim7RpeT/CVwVV3dARzZq7qylrGXcknSIpjRbaBJVvRWXwuM3iF0JXB6kgOS\nHAWsBr4B3ASsTnJUkv3pLhRfOfNmS5Jma9JPAEkuA4aBw5PcD5wLDCd5Cd0U0HbgDwBKKVuSXEF3\ncfdJ4M2llB/X47wFuBbYD7iwlLJlznsjSZqyqdwFdMY4xZ/eS/33Au8dp/wa4JpptU6SNG/8S2BJ\napQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRG\nGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQB\nIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRkwZAkguT7E5ye6/s\nsCTXJdlafy6v5Uny0STbktya5NjePutr/a1J1s9PdyRJUzWVTwAXASePKdsIbC6lrAY213WAU4DV\n9bEBuAC6wADOBY4HjgPOHQ0NSdLimDQASinXAw+NKT4VuLguXwyc1iu/pHRuAA5NsgI4CbiulPJQ\nKeVh4Dp+NlQkSQto2Qz3Gyql7KzLDwJDdfkI4L5evftr2UTlPyPJBrpPDwwNDTEyMjLtxu3Zs4eR\nkRHOOebJae87F2bS5pka7Wsr7O/gaqmvsDT6O9MAeEoppSQpc9GYerxNwCaANWvWlOHh4WkfY2Rk\nhOHhYc7eePVcNWtatp85vGDnGu1rK+zv4Gqpr7A0+jvTu4B21akd6s/dtXwHcGSv3spaNlG5JGmR\nzDQArgRG7+RZD3y5V35WvRtoLfBonSq6FjgxyfJ68ffEWiZJWiSTTgEluQwYBg5Pcj/d3TznA1ck\neSNwL/C6Wv0aYB2wDXgCeD1AKeWhJO8Bbqr13l1KGXthWZK0gCYNgFLKGRNsOmGcugV48wTHuRC4\ncFqtkyTNG/8SWJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJ\napQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRG\nGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJatSs\nAiDJ9iS3JflWkptr2WFJrkuytf5cXsuT5KNJtiW5Ncmxc9EBSdLMzMUngFeVUl5SSllT1zcCm0sp\nq4HNdR3gFGB1fWwALpiDc0uSZmg+poBOBS6uyxcDp/XKLymdG4BDk6yYh/NLkqYgpZSZ75zcAzwM\nFOCTpZRNSR4ppRxatwd4uJRyaJKrgPNLKV+r2zYDf1pKuXnMMTfQfUJgaGjoZZdffvm027Vnzx4O\nPvhgbtvx6Iz7NhvHHPGcBTvXaF9bYX8HV0t9hfnt76te9apberMyE1o2y/O8spSyI8kvANclubO/\nsZRSkkwrYUopm4BNAGvWrCnDw8PTbtTIyAjDw8OcvfHqae87F7afObxg5xrtayvs7+Bqqa+wNPo7\nqymgUsqO+nM38CXgOGDX6NRO/bm7Vt8BHNnbfWUtkyQtghkHQJKDkhwyugycCNwOXAmsr9XWA1+u\ny1cCZ9W7gdYCj5ZSds645ZKkWZnNFNAQ8KVump9lwOdKKf8zyU3AFUneCNwLvK7WvwZYB2wDngBe\nP4tzS5JmacYBUEr5DvDiccq/D5wwTnkB3jzT80mS5pZ/CSxJjTIAJKlRBoAkNcoAkKRGGQCS1CgD\nQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAk\nqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjVq22A0YRKs2Xr1g5zrnmCc5u3e+7ef/\n5oKdW9K+zU8AktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhq14AGQ\n5OQkdyXZlmTjQp9fktRZ0ABIsh/wMeAU4GjgjCRHL2QbJEmdhf4yuOOAbaWU7wAkuRw4Ffj2Ardj\nYC3kF9H1+SV00r5noQPgCOC+3vr9wPH9Ckk2ABvq6p4kd83gPIcD35tRC/cx/3aJ9DXvX7BTLYn+\nLqCW+ttSX2F++/v8qVRacl8HXUrZBGyazTGS3FxKWTNHTVrSWuor2N9B1lJfYWn0d6EvAu8Ajuyt\nr6xlkqQFttABcBOwOslRSfYHTgeuXOA2SJJY4CmgUsqTSd4CXAvsB1xYStkyD6ea1RTSPqalvoL9\nHWQt9RWWQH9TSlnsNkiSFoF/CSxJjTIAJKlRAxUA+/LXTCQ5MslXk3w7yZYkb63lhyW5LsnW+nN5\nLU+Sj9a+3prk2N6x1tf6W5Os75W/LMltdZ+PJsnC9/SnkuyX5JtJrqrrRyW5sbbv8/VGAZIcUNe3\n1e2resd4Ry2/K8lJvfIl9buQ5NAkX0hyZ5I7krx8UMc2yR/X3+Hbk1yW5MBBGtskFybZneT2Xtm8\nj+VE55iVUspAPOguKt8NvADYH/g74OjFbtc02r8COLYuHwL8Pd3XZfxnYGMt3wi8vy6vA/4HEGAt\ncGMtPwz4Tv25vC4vr9u+Ueum7nvKIvf53wGfA66q61cAp9flTwB/WJffBHyiLp8OfL4uH13H+QDg\nqDr++y3F3wXgYuBf1+X9gUMHcWzp/tjzHuBZvTE9e5DGFviXwLHA7b2yeR/Lic4xq74s5j+KOR6U\nlwPX9tbfAbxjsds1i/58GfgN4C5gRS1bAdxVlz8JnNGrf1fdfgbwyV75J2vZCuDOXvnT6i1C/1YC\nm4FfB66qv+zfA5aNHU+6u8ZeXpeX1XoZO8aj9Zba7wLwnPqimDHlAze2/PSv/Q+rY3UVcNKgjS2w\niqcHwLyP5UTnmM1jkKaAxvuaiSMWqS2zUj8GvxS4ERgqpeysmx4EhuryRP3dW/n945Qvlg8Dbwd+\nUtd/HniklPJkXe+376k+1e2P1vrTfQ4Wy1HAd4H/Wqe8PpXkIAZwbEspO4APAP8A7KQbq1sY3LEd\ntRBjOdE5ZmyQAmAgJDkY+CvgbaWUx/rbShf9+/x9u0l+C9hdSrllsduyQJbRTRlcUEp5KfADuo/w\nTxmgsV1O9wWPRwHPAw4CTl7URi2whRjLuTrHIAXAPv81E0meSffi/9lSyhdr8a4kK+r2FcDuWj5R\nf/dWvnKc8sXwCuC3k2wHLqebBvoIcGiS0T9O7LfvqT7V7c8Bvs/0n4PFcj9wfynlxrr+BbpAGMSx\nfTVwTynlu6WUHwFfpBvvQR3bUQsxlhOdY8YGKQD26a+ZqFf6Pw3cUUr5UG/TlcDoHQLr6a4NjJaf\nVe8yWAs8Wj8eXgucmGR5fTd2It2c6U7gsSRr67nO6h1rQZVS3lFKWVlKWUU3Tv+7lHIm8FXgd2q1\nsX0dfQ5+p9Yvtfz0eifJUcBqugtoS+p3oZTyIHBfkl+pRSfQfQX6wI0t3dTP2iTPrm0Z7etAjm3P\nQozlROeYuYW+eDLPF2bW0d09czfwrsVuzzTb/kq6j3S3At+qj3V086Gbga3AV4DDav3Q/ec6dwO3\nAWt6x3oDsK0+Xt8rXwPcXvf5C8ZclFykfg/z07uAXkD3j3wb8N+AA2r5gXV9W93+gt7+76r9uYve\nnS9L7XcBeAlwcx3fv6a782Mgxxb4c+DO2p5L6e7kGZixBS6ju77xI7pPd29ciLGc6ByzefhVEJLU\nqEGaApIkTYMBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhr1/wHRt9SIdH98sAAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "inc = loansData['Monthly.Income']\n", "h = inc.hist()\n", "plt.title('Histogram of Monthly Income')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "loansData['Monthly.LogIncome'] = [ math.log(x) for x in inc ]\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFfVJREFUeJzt3X+0XWV95/H3FyLyI5go2Ds0BC4d\nqIJkaeUWsVjnRnAmoDbMLH9gUROLTWf8hZKuZdrlVLu6HHENlOLositTXA3WEimiZIm2MtE7DGNh\nBEVDiJYAiSRCEAxgAJHU7/yxn8STw725J9xz7s59eL/WOiv719n7++x9z+fs8+x9TiIzkSTV64C2\nC5AkDZZBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYN+hoiI9REx2nYdbYqI/xgR90bEjoj4rWnc7kkR\ncUtExHRtc4I6MiKOn2De0oi4cbprmm4R8dyI+EFEvLDtWmYSg34/EBGbIuLMrml7vHAz8yWZOTbJ\neoZLGMwaUKltuxh4b2bOzszvds/cWxBO0V8AF2f50kk5Xr+IiCO7tv/dUsPwVDcYEWMR8a6prqfH\nbQ1qv/VdZj4JfBZY0XYtM4lBr57tB28gxwLrp3ODEXEUsBD4ctese4C3diy3ADh0Gkt7Nvt7YElE\nPLftQmYKg36G6Dzrj4hTS1fCoxGxLSL+six2Q/n34dK98cqIOCAiPhwRmyPigYi4IiLmdKz3HWXe\nQxHxX7u289GIuDoi/i4iHgWWlm3/c0Q8HBH3RcSnIuKgjvVlRLw7Iu6MiJ9FxF9ExL+NiG+Veq/q\nXL6rjePWWj6u7wAOBL4XEXft4757xvsAeC3wncz8eddqPwe8o2N8CXBF13bnlG39pKz/wxFxQJm3\nNCJujIiLI2J7RNwTEWeVeR8Dfhf4VDmOn+pY7Zll3z4cEZ8erzupTL+ka9qaiPhgD/vqo+UYXVGO\n3/qIGOmYPz8iriltemhXbXvbx/GrT5rvjKbrbXtE/OeI+O2I+H5py6e66viDiNhQlv2niDh217zM\n3AJsB06brD0qMtNHyw9gE3Bm17SlwI3jLQP8M/D2MjwbOK0MDwMJzOp43h8AG4HfKMteA3yuzDsJ\n2AG8CjiIpmvkqY7tfLSMn0NzUnAIcArNC2xW2d4G4AMd20vgWuB5wEuAJ4G1ZftzgDuAJRPshwlr\n7Vj38XvZj+POn+I++O/Ap8c7XsAPgRNp3oC20HziSGC4LHdF2ReHl331L8D5Hcf3KeAPy/P/C/Bj\nIMr8MeBd47TvK8Bc4BjgJ8Ci7r8X4NSyrgPK+JHA48DQZPutHPOfA2eXuj4O3FTmHQh8D7gUOAw4\nGHhVD/t4uGzjr8tz/n3ZxpeBXwPmAQ8A/64sv7is60Sav7MPA9/qqnkN8P62X7sz5dF6AT52B8cO\n4OGOx+NMHPQ3AH8OHNm1nl0vqM6gXwu8u2P8RSVgZgF/BlzZMe9Q4BfsGfQ3TFL7B4AvdYwncHrH\n+K3AhzrGLwH+aoJ1TVhrx7qfSdBPZR/8T+CicY7XmSWAPg4sAq4v68tyHA4s6zmp43l/BIyV4aXA\nxq7tJvBvyvgY4wf9qzrGrwJWdKyv8+9lA/DaMvxe4Ku97LdyzP9Xx7yTgCfK8Ctp3lxmjbOOve3j\n4bKNeR3zHwLe0jH+RcoJA/A1yhtiGT+A5vVwbMe0zwN/1vZrd6Y87LrZf5yTmXN3PYB372XZ84Hf\nBH4QEd+OiNfvZdlfBzZ3jG+mefENlXn37pqRmY/TvAA73ds5EhG/GRFfiYj7S3fOf6M5Y+y0rWP4\niXHGZz+DWqdiKvtgO80Z+Xg+B/w+Tche0TXvSOA542x3Xsf4/V3bhYn3zdOeQxN+Ey2/CnhbGX5b\nqbVX3ds4OJrrM/OBzZm5c5zn9HLsev27OBa4rHTpPAz8FAj23HeH05wQqQcG/QyUmXdm5ltpPvZ+\nArg6Ig6jOWvq9mOaF84uxwA7aV5k9wFH75oREYcAR3Rvrmv8M8APgBMy83nAn9K8CPthb7UOar2T\n7YPv07ypPk1mbqa5KHs2TVdFpwdpzmi7t7u1x5qn+rOyfwcsjoiX0nSBdF9MfibuBY6J8S/K9/PY\n3Qv8UeeJT2Yekpnf6ljmRJpuJPXAoJ+BIuJtEfHCzPwlvzqr+SXNx+pf0vST7nIl8MGIOC4iZtOc\ngX+hnJVdDbwhIn6nXCD9KJOH9uHAo8COiHgxTd9yv+yt1l4dFBEHdzwOnGS9k+2D64GXR8TBE2zv\nfOA1mflY58TM/FearpWPRcTh5WLihTQB3Itt7Hkc90k2Fyy/TXMm/8XMfOKZrqvD/6N5Y7woIg4r\n+/f0Mq8fx26Xvwb+JCJeArsvar9p18yImAe8ALhpKo15NjHoZ6ZFwPpyJ8plwLmZ+UT5+P8x4P+W\nj72n0dxz/Dmafv17aC6CvQ8gM9eX4dU0L+AdNBfFntzLtv+YprviZzT911/oY7smrHUfrKfpBtj1\neOfe1jvZPsjMbcA3aC4QPk1m3pWZt0xQy/uAx4C7gRtpbgv8bI/tuAx4Y7nr5JM9PqfbKmAB+9Zt\nM6Hy5vUG4HjgRzQXoN9SZvfj2O3azpdoPqmuLt2DtwNndSzy+8CqbO6pVw92XeGXKGdiD9N0y9zT\ndj1tGG8fRMRJNKF5as6gF0xEvJrmE8SxM6nuvYnm3vnvAa/OzAfarmem8Iz+WS4i3hARh5Y+/ouB\ndTR3lTxrTLYPMvOOzPztmRSWEfEc4ALgb2ZS3ZPJzCcz88WG/L4x6LWY5kLaj4ETaLqBqgmGHlW1\nDyLiRJpPJUcBf9VyOdoP2HUjSZXzjF6SKtf2j1QBcOSRR+bw8HDbZfTNY489xmGHHdZ2GdPCttbJ\nts4Mt95664OZOelPNu8XQT88PMwtt0x0h9rMMzY2xujoaNtlTAvbWifbOjNExObJl7LrRpKqZ9BL\nUuUMekmqnEEvSZUz6CWpcga9JFXOoJekyhn0klQ5g16SKrdffDNWmszwiuta2e6mi17XynalfvKM\nXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+gl\nqXIGvSRVzqCXpMr5e/TaJ92/C798wU6WtvRb8ZJ64xm9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJ\nqlxPQR8RH4yI9RFxe0RcGREHR8RxEXFzRGyMiC9ExEFl2eeW8Y1l/vAgGyBJ2rtJgz4i5gHvB0Yy\n82TgQOBc4BPApZl5PLAdOL885Xxge5l+aVlOktSSXrtuZgGHRMQs4FDgPuA1wNVl/irgnDK8uIxT\n5p8REdGfciVJ+yoyc/KFIi4APgY8AXwduAC4qZy1ExHzga9l5skRcTuwKDO3lHl3Aa/IzAe71rkM\nWAYwNDR0yurVq/vXqpbt2LGD2bNnt13GQKzb+sge40OHwLYnWipmGiyYN2f3cM3HtZttnRkWLlx4\na2aOTLbcpD+BEBHPpzlLPw54GPgHYNFUC8zMlcBKgJGRkRwdHZ3qKvcbY2Nj1NSeTt0/d7B8wU4u\nWVfvL2lsOm9093DNx7Wbba1LL103ZwL3ZOZPMvMp4BrgdGBu6coBOBrYWoa3AvMByvw5wEN9rVqS\n1LNegv5HwGkRcWjpaz8DuAP4JvDGsswS4NoyvKaMU+Z/I3vpH5IkDcSkQZ+ZN9NcVP0OsK48ZyXw\nIeDCiNgIHAFcXp5yOXBEmX4hsGIAdUuSetRT52pmfgT4SNfku4FTx1n258Cbpl6aJKkf/GasJFXO\noJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6\nSaqcQS9JlTPoJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXOoJek\nyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekirXU9BHxNyIuDoi\nfhARGyLilRHxgoi4PiLuLP8+vywbEfHJiNgYEd+PiJcPtgmSpL3p9Yz+MuAfM/PFwEuBDcAKYG1m\nngCsLeMAZwEnlMcy4DN9rViStE8mDfqImAO8GrgcIDN/kZkPA4uBVWWxVcA5ZXgxcEU2bgLmRsRR\nfa9cktSTyMy9LxDxMmAlcAfN2fytwAXA1sycW5YJYHtmzo2IrwAXZeaNZd5a4EOZeUvXepfRnPEz\nNDR0yurVq/vasDbt2LGD2bNnt13GQKzb+sge40OHwLYnWipmGiyYN2f3cM3HtZttnRkWLlx4a2aO\nTLbcrB7WNQt4OfC+zLw5Ii7jV900AGRmRsTe3zG6ZOZKmjcQRkZGcnR0dF+evl8bGxujpvZ0Wrri\nuj3Gly/YySXrevkzmpk2nTe6e7jm49rNttallz76LcCWzLy5jF9NE/zbdnXJlH8fKPO3AvM7nn90\nmSZJasGkQZ+Z9wP3RsSLyqQzaLpx1gBLyrQlwLVleA3wjnL3zWnAI5l5X3/LliT1qtfP3O8DPh8R\nBwF3A++keZO4KiLOBzYDby7LfhU4G9gIPF6WlSS1pKegz8zbgPE6/M8YZ9kE3jPFuiRJfeI3YyWp\ncga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn\n0EtS5Qx6SaqcQS9JlTPoJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9\nJFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUuZ6DPiIOjIjv\nRsRXyvhxEXFzRGyMiC9ExEFl+nPL+MYyf3gwpUuSerEvZ/QXABs6xj8BXJqZxwPbgfPL9POB7WX6\npWU5SVJLegr6iDgaeB3wN2U8gNcAV5dFVgHnlOHFZZwy/4yyvCSpBZGZky8UcTXwceBw4I+BpcBN\n5aydiJgPfC0zT46I24FFmbmlzLsLeEVmPti1zmXAMoChoaFTVq9e3bdGtW3Hjh3Mnj277TIGYt3W\nR/YYHzoEtj3RUjHTYMG8ObuHaz6u3WzrzLBw4cJbM3NksuVmTbZARLweeCAzb42I0X4UB5CZK4GV\nACMjIzk62rdVt25sbIya2tNp6Yrr9hhfvmAnl6yb9M9oxtp03uju4ZqPazfbWpdeXqGnA78XEWcD\nBwPPAy4D5kbErMzcCRwNbC3LbwXmA1siYhYwB3io75VLknoyaR99Zv5JZh6dmcPAucA3MvM84JvA\nG8tiS4Bry/CaMk6Z/43spX9IkjQQU7mP/kPAhRGxETgCuLxMvxw4oky/EFgxtRIlSVOxT52rmTkG\njJXhu4FTx1nm58Cb+lCbJKkP/GasJFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqly9312X+mC44ycf\nli/Y+bSfgBikTRe9btq2pbp5Ri9JlTPoJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEv\nSZUz6CWpcga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXL+V4Iz0PA0/nd2kmY+\nz+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6SaqcQS9JlTPoJalyBr0kVW7SoI+I+RHxzYi4\nIyLWR8QFZfoLIuL6iLiz/Pv8Mj0i4pMRsTEivh8RLx90IyRJE+vljH4nsDwzTwJOA94TEScBK4C1\nmXkCsLaMA5wFnFAey4DP9L1qSVLPJg36zLwvM79Thn8GbADmAYuBVWWxVcA5ZXgxcEU2bgLmRsRR\nfa9cktSTfeqjj4hh4LeAm4GhzLyvzLofGCrD84B7O562pUyTJLWg558pjojZwBeBD2TmoxGxe15m\nZkTkvmw4IpbRdO0wNDTE2NjYvjx9v7Zjx46Btmf5gp0DW/e+Gjpk/6pnkKa7rW2+Jgb9N7w/eTa0\ntaegj4jn0IT85zPzmjJ5W0QclZn3la6ZB8r0rcD8jqcfXabtITNXAisBRkZGcnR09Jm1YD80NjbG\nINuzdD/6PfrlC3Zyybpnx39rMN1t3XTe6LRtq9ug/4b3J8+GtvZy100AlwMbMvMvO2atAZaU4SXA\ntR3T31HuvjkNeKSji0eSNM16OT05HXg7sC4ibivT/hS4CLgqIs4HNgNvLvO+CpwNbAQeB97Z14ol\nSftk0qDPzBuBmGD2GeMsn8B7pliXJKlP/GasJFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mV\nM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6SaqcQS9JlTPoJalyBr0kVc6gl6TKGfSSVDmD\nXpIqZ9BLUuUMekmqnEEvSZWb1XYBksY3vOK6Vra76aLXtbJdDY5n9JJUOYNekipn0EtS5Qx6Saqc\nQS9JlTPoJalyBr0kVc776Kdgovucly/YydKW7oGWpG6e0UtS5Qx6SaqcQS9JlTPoJalyBr0kVW4g\nQR8RiyLihxGxMSJWDGIbkqTe9P32yog4EPg08FpgC/DtiFiTmXf0e1uS+m94xXWt3SLsTyQPxiDu\noz8V2JiZdwNExGpgMTCQoG/rN7sl1aPNHJmON7fIzP6uMOKNwKLMfFcZfzvwisx8b9dyy4BlZfRF\nwA/7Wki7jgQebLuIaWJb62RbZ4ZjM/OFky3U2jdjM3MlsLKt7Q9SRNySmSNt1zEdbGudbGtdBnEx\ndiswv2P86DJNktSCQQT9t4ETIuK4iDgIOBdYM4DtSJJ60Peum8zcGRHvBf4JOBD4bGau7/d29nNV\ndklNwLbWybZWpO8XYyVJ+xe/GStJlTPoJalyBn0fRcSLIuK2jsejEfGBtusahIj4YESsj4jbI+LK\niDi47ZoGJSIuKO1cX+PxjIjPRsQDEXF7x7QXRMT1EXFn+ff5bdbYLxO09U3l2P4yIqq8zdKg76PM\n/GFmviwzXwacAjwOfKnlsvouIuYB7wdGMvNkmovu57Zb1WBExMnAH9J84/ulwOsj4vh2q+q7vwUW\ndU1bAazNzBOAtWW8Bn/L09t6O/CfgBumvZppYtAPzhnAXZm5ue1CBmQWcEhEzAIOBX7ccj2DciJw\nc2Y+npk7gf9NEwrVyMwbgJ92TV4MrCrDq4BzprWoARmvrZm5ITNr+mb+0xj0g3MucGXbRQxCZm4F\nLgZ+BNwHPJKZX2+3qoG5HfjdiDgiIg4FzmbPLwTWaigz7yvD9wNDbRajqTHoB6B8Uez3gH9ou5ZB\nKP21i4HjgF8HDouIt7Vb1WBk5gbgE8DXgX8EbgP+tdWiplk292B7H/YMZtAPxlnAdzJzW9uFDMiZ\nwD2Z+ZPMfAq4BvidlmsamMy8PDNPycxXA9uBf2m7pmmwLSKOAij/PtByPZoCg34w3kql3TbFj4DT\nIuLQiAia6xEbWq5pYCLi18q/x9D0z/99uxVNizXAkjK8BLi2xVo0RX4zts8i4jCaIPyNzHyk7XoG\nJSL+HHgLsBP4LvCuzHyy3aoGIyL+D3AE8BRwYWaubbmkvoqIK4FRmp/r3QZ8BPgycBVwDLAZeHNm\ndl+wnXEmaOtPgf8BvBB4GLgtM/9DWzUOgkEvSZWz60aSKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRV\nzqCXpMr9f1vfB1tQxZkUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "h = loansData['Monthly.LogIncome'].hist()\n", "plt.title('Histogram of Log(Monthly Income)')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "count 2499.000000\n", "mean 8.501915\n", "std 0.523019\n", "min 6.377577\n", "25% 8.160518\n", "50% 8.517193\n", "75% 8.824678\n", "max 11.540054\n", "Name: Monthly.LogIncome, dtype: float64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loansData['Monthly.LogIncome'].describe()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }