{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from numpy import math\n", "\n", "loansData = pd.read_csv('https://spark-public.s3.amazonaws.com/dataanalysis/loansData.csv')\n", "\n", "#Note, a schema can be found here : https://github.com/herrfz/dataanalysis/blob/master/assignment1/Assignment1.pdf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Amount.Requested', 'Amount.Funded.By.Investors', 'Interest.Rate',\n", " 'Loan.Length', 'Loan.Purpose', 'Debt.To.Income.Ratio', 'State',\n", " 'Home.Ownership', 'Monthly.Income', 'FICO.Range',\n", " 'Open.CREDIT.Lines', 'Revolving.CREDIT.Balance',\n", " 'Inquiries.in.the.Last.6.Months', 'Employment.Length'], dtype=object)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loansData.columns.values" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "81174 6541.67\n", "99592 4583.33\n", "80059 11500.00\n", "15825 3833.33\n", "33182 3195.00\n", "Name: Monthly.Income, dtype: float64" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loansData['Monthly.Income'][0:5] # first five rows of Interest.Rate" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UVHX+B/D3uFBpoiLJADPmKM8jCJbhQ9lSLhqlZOki\nWIJlZdq22mrH1dpf1pbQ9qQ90Om0uJKm2Nmzie0KoinbHlMsE7dAV7QhHmNNxcAURD6/P4i7Eg9j\nCpe5X9+vc+bofZh7v+/B5sN8P/dOJhEREBERdaJXTw+AiIhcH4sFERE5xWJBREROsVgQEZFTLBZE\nROQUiwURETnFYnGFCQsLwyeffNLTw+hRH374IQYPHgwPDw8cOHCgp4cDACgpKUGvXr3Q1NTU7vbl\ny5dj1qxZOo+K6H9YLBRis9nw8ccft1q3Zs0ajB8/Xlv+6quvcOutt3Z6HGdvXEa3ePFipKWloba2\nFhEREW229+rVC2azGefPn9fWnTt3Dt7e3ujVq2v+k7HZbNixY8dF728ymS7pPKr/LEk/LBYKMZlM\nl/ym0p7uul/zwjdhvYkISktLYbfbO91v4MCByM7O1pazs7MxcODALnt9TSbTz3p9ee8s9TQWC8X9\n9M3twt9o9+7di1GjRqF///7w8fHB4sWLAUD75DFgwAB4eHggPz8fIoLnn38eNpsNZrMZycnJ+P77\n77XjvvfeexgyZAiuu+46bb+W8yxfvhzTp0/HrFmz0L9/f2RkZOCzzz7D2LFj4enpCT8/Pzz++OM4\nd+6cdrxevXrh7bffRmBgIPr164f/+7//w9GjRzF27FgMGDAACQkJrfa/UEdjra+vh4eHB86fP4+I\niAgEBgZ2+LrNmjUL7733Xqt8SUlJrd60KysrERcXBy8vLwQGBuLPf/6ztm358uWIj49HcnIy+vXr\nh7CwMOzbt087dmlpKaZMmQIPDw+8/PLL2vPWrVuHIUOGYNCgQVixYkW7P8u77roLb775ZqttI0aM\nQFZWVod5WsyePRuPPfYYJk+ejH79+mHMmDH4+uuvte2FhYWIiYmBl5cXfHx8kJKSAgCor6/HwoUL\nYbFYYLFY8MQTT6ChoQEAkJeXB6vVipdeegne3t7w8/PDpk2bsGXLFgQFBcHLywupqanaOUQEqamp\nCAgIwHXXXYcZM2bg5MmTTsdOPUxIGTabTbZv395q3V/+8he55ZZbWu3z8ccfi4jImDFjZN26dSIi\ncvr0admzZ4+IiJSUlIjJZJLz589rz0tPT5eAgABxOBxSV1cn9957r8yaNUtERAoLC6Vv376ya9cu\naWhokMWLF4u7u7t2nmeeeUbc3d0lKytLRETOnDkj+/btk/z8fDl//ryUlJRIaGiorFy5UjufyWSS\nqVOnSm1trRQWFspVV10lt912mzgcDjl16pTY7XbJyMho93XobKwtxz569GiHr6PJZJKvvvpKzGaz\nnDp1Sk6cOCFms1m++uorMZlM2n7jx4+Xxx57TOrr66WgoEAGDRokO3bs0DJfc801kp2dLU1NTbJ0\n6VIZM2ZMuz8HERGHwyEmk0keeeQROXv2rBw4cECuvvpqOXTokHa8+++/X0REPvjgAxk9erT23IKC\nAvHy8pJz5861ydJy3JafZXJysnh5eclnn30mjY2Nct9990lCQoKIiHz//ffi4+Mjr776qtTX10tt\nba3k5+eLiMgf/vAHGTt2rBw7dkyOHTsm48aNkz/84Q8iIrJz505xc3OTP/7xj9LY2CjvvvuueHl5\nycyZM6Wurk4KCwuld+/eUlJSIiIiK1eulLFjx0pFRYU0NDTI3LlzJTExscOfB7kGFguFDBkyRPr2\n7SsDBgzQHn369JHx48dr+1z4JnXrrbfKM888I8eOHWt1nJ++wYiI3H777fL2229ry//5z3/E3d1d\nGhsb5dlnn5WZM2dq23744Qe56qqrWhWLX/7yl52O/bXXXpN77rlHWzaZTPLpp59qyzfeeKP86U9/\n0pYXLVokCxcubPdYHY21Jc/FFIsjR47IQw89JO+88468/fbb8sgjj8iRI0e0YlFaWiq/+MUvpK6u\nTnve0qVLZfbs2VrmmJgYbVvLG2aLjopFRUWFti4qKko2btyoHa+lWJw5c0Y8PT3lyJEj2mvx2GOP\ntZvlpz/L2bNny8MPP6xt37Jli4SEhIiIyPr16+WGG25o9zj+/v6SnZ2tLW/dulVsNpuINBeL3r17\nS1NTk4g0Fx2TySR79+7V9r/xxhu1XxZCQkJaZa+srGz18yHXxGkohZhMJmRlZeHkyZPaIy0trcP5\n7vT0dBw+fBihoaGIiorCP/7xjw6PXVVVhSFDhmjL119/PRobG1FdXY2qqipYrVZtW+/eveHl5dXq\n+RduB4DDhw9j8uTJ8PX1Rf/+/fHUU0/h+PHjrfYxm82tjvnT5bq6up891otlMpmQlJSEjIwMrF27\ntt0pqIEDB+Laa69tdZ6Kiop2x9+nTx+cPXvWaaPZx8en1XPay3jNNdcgPj4ea9euhYggMzPzZ10p\n1dHrWFZWhmHDhrX7nMrKyjavaWVlpbbs5eWlTZP17t270/N88803uOeee+Dp6QlPT0/Y7Xa4ubn9\nrJ8P6Y/FQnEdFQoACAgIwPr163Hs2DEsWbIE06dPx5kzZ9pt4vr5+aGkpERbLi0thZubG3x8fODr\n64vy8nJt25kzZ9q88f/0mPPmzYPdbseRI0dw6tQpvPDCC112xU5HY73wzetijB8/Ht9++y3++9//\n4uabb25zjhMnTrR6My8tLW1TFDtyuY3y5ORkvP/++9i+fTv69OmD0aNHX9bxgOYCcGH/4kLtvaZ+\nfn6XfJ6cnJxWv9T88MMP8PX1vaTjkT5YLK5g69atw7FjxwAA/fv3h8lkQq9evTBo0CD06tULR48e\n1fZNTEzEa6+9hpKSEtTV1WHZsmVISEhAr169MG3aNHz00UfYvXs3GhoasHz5cqdX79TV1cHDwwN9\n+vTBoUOH8Pbbbzsd74XH7Oz4nY315/roo4+wefPmNusHDx6McePGYenSpaivr8e///1vrF69Gvff\nf/9FHddsNrd6fX+usWPHwmQyYfHixUhKSrro53X2ut11112oqqrCqlWrUF9fj9raWuzduxdA82v6\n/PPP47vvvsN3332H55577pLv+3j00UexbNkylJaWAgCOHTvW7mtMroXFQnGdXU67detWhIWFwcPD\nA0888QQyMzNx9dVXo0+fPnjqqadw8803w9PTE3v37sWDDz6IWbNm4dZbb8WwYcPQp08fvPHGGwCA\n4cOH44033kBCQgL8/Pzg4eEBb29vXH311R2O4eWXX8b69evRr18/PPLII0hISGi1T3tj/un2jnJ1\nNtaOjt3Reex2O0JDQ9vdtmHDBpSUlMDPzw/33nsvnnvuOdx+++0dju/C5aVLl+L555+Hp6cnXn31\nVafjau94SUlJ+PLLL50WKGevW8uyh4cHtm3bho8++gi+vr4ICgpCXl4eAODpp5/GqFGjMGLECIwY\nMQKjRo3C008/3e45nGVZsGAB4uLiMHHiRPTr1w9jx47VihK5sM4aGqWlpRIdHS12u12GDx8uq1at\nEpHmZpvFYpHIyEiJjIyULVu2aM9ZsWKFBAQESHBwsGzdulVb//nnn0tYWJgEBATIb3/72y5uvZAr\nqa2tFTc3N+3qF+oe7733XquLF4i6U6fFoqqqSvbv3y8izW8AQUFBUlRUJMuXL5dXXnmlzf6FhYUS\nEREhDQ0N4nA4xN/fX7tC4qabbtIuw4uNjW11ZQUZ3+bNm+X06dNSV1cnc+fO7fCqGuoap0+fltGj\nR8vatWt7eih0heh0GsrHxweRkZEAgL59+yI0NFS72kPamfvMyspCYmIi3N3dYbPZEBAQgPz8fFRV\nVaG2thZRUVEAmj8+b9q0qas/JFEP2rx5s3bD1tGjR5GZmdnTQ1LW1q1b4e3tDV9fX8ycObOnh0NX\niIvuWZSUlGD//v0YM2YMAOCNN95AREQE5syZg5qaGgDNl9ddeDWI1WpFRUVFm/UWi6XVJYZkfO++\n+y5OnjyJmpoabNu2rdO7o+nyTJo0CXV1dfjwww+77LuqiJy5qH9pdXV1mD59OlatWoW+ffti3rx5\ncDgcKCgogK+vLxYtWtTd4yQioh7k5myHc+fOYdq0abj//vsxdepUAIC3t7e2/aGHHsKUKVMANH9i\nKCsr07aVl5fDarXCYrG0ug6/vLwcFoulzbksFkurG32IiMg5f39/HDlypFvP0eknCxHBnDlzYLfb\nsXDhQm19VVWV9vcPP/wQ4eHhAIC4uDhkZmaioaEBDocDxcXFiIqKgo+PD/r166d9Id3atWu1wnOh\nyspKSHPTXcnHM8880+NjYD7mu9KyXQn5LueenYvV6SeLXbt2Yd26dRgxYgRGjhwJAFixYgU2bNiA\ngoICmEwmDB06FO+88w6A5mvS4+Pjtdv309LStOut09LSMHv2bJw5cwZ33nkn7rjjjm6O5nouvANW\nRcxnXCpnA9TPp4dOi8Utt9zS7lcwxMbGdvicZcuWYdmyZW3W33jjjfjyyy8vYYhERNTTeCmFjmbP\nnt3TQ+hWzGdcKmcD1M+nB5OIuMz/guvn/t/DiIhIn/dOfrLQUcv37KiK+YxL5WyA+vn0wGJBRERO\ncRqKiMjgOA1FREQugcVCR6rPmzKfcamcDVA/nx5YLIiIyCn2LIiIDE6P906nXySot4MHD6KgoEDX\ncw4ZMgTjxo3T9ZxEREbicp8sJk9OwPbt38DdfYgu52xq+h6enl+jrOxgt58rLy8P0dHR3X6ensJ8\nxqVyNkD9fFfkJ4vz5wVnz/4WZ88m6HTGQ+jfv+034BIR0f+43CeL2NgZyM6eCkC/YuHnNxUVFYd0\nOh8RUdfifRZEROQSWCx0pPq13sxnXCpnA9TPpwcWCyIicoo9C/YsiMjg2LMgIiKXwGKhI9XnTZnP\nuFTOBqifTw8sFkRE5BR7FuxZEJHBsWdBREQugcVCR6rPmzKfcamcDVA/nx5YLIiIyCn2LNizICKD\nY8+CiIhcAouFjlSfN2U+41I5G6B+Pj2wWBARkVPsWbBnQUQGx54FERG5BBYLHak+b8p8xqVyNkD9\nfHpgsSAiIqfYs2DPgogMjj0LIiJyCSwWOlJ93pT5jEvlbID6+fTAYkFERE51WizKyspw2223Yfjw\n4QgLC8Prr78OADhx4gRiYmIQFBSEiRMnoqamRntOSkoKAgMDERISgtzcXG39vn37EB4ejsDAQCxY\nsKCb4ri26Ojonh5Ct2I+41I5G6B+Pj10Wizc3d3x2muvobCwEHv27MFbb72FgwcPIjU1FTExMTh8\n+DAmTJiA1NRUAEBRURE2btyIoqIi5OTkYP78+VrTZd68eUhPT0dxcTGKi4uRk5PT/emIiKhLdFos\nfHx8EBkZCQDo27cvQkNDUVFRgc2bNyM5ORkAkJycjE2bNgEAsrKykJiYCHd3d9hsNgQEBCA/Px9V\nVVWora1FVFQUACApKUl7zpVE9XlT5jMulbMB6ufTw0X3LEpKSrB//36MHj0a1dXVMJvNAACz2Yzq\n6moAQGVlJaxWq/Ycq9WKioqKNustFgsqKiq6KgMREXUzt4vZqa6uDtOmTcOqVavg4eHRapvJZILJ\nZOqyAR04kA+gEcAhAAMARAKI/nFr3o9/duVyqXbult8+WuY3u3q5ZV13Hb+nl5nPuMvR0dEuNR7m\n63w5Ly8Pa9asAQDYbDboQpxoaGiQiRMnymuvvaatCw4OlqqqKhERqayslODgYBERSUlJkZSUFG2/\nSZMmyZ49e6SqqkpCQkK09evXr5e5c+e2ORcAiY2dIcAGAUSnx0Hx8wt29jIQEbmsi3grv2ydTkOJ\nCObMmQO73Y6FCxdq6+Pi4pCRkQEAyMjIwNSpU7X1mZmZaGhogMPhQHFxMaKiouDj44N+/fohPz8f\nIoK1a9dqz7mStPxmoCrmMy6VswHq59NDp9NQu3btwrp16zBixAiMHDkSQPOlsb///e8RHx+P9PR0\n2Gw2fPDBBwAAu92O+Ph42O12uLm5IS0tTZuiSktLw+zZs3HmzBnceeeduOOOO7o5GhERdRV+NxS/\nG4qIDI7fDUVERC6BxUJHqs+bMp9xqZwNUD+fHlgsiIjIKfYs2LMgIoNjz4KIiFwCi4WOVJ83ZT7j\nUjkboH4+PbBYEBGRU+xZsGdBRAbHngUREbkEFgsdqT5vynzGpXI2QP18emCxICIip9izYM+CiAyO\nPQsiInIJLBY6Un3elPmMS+VsgPr59MBiQURETrFnwZ4FERkcexZEROQSWCx0pPq8KfMZl8rZAPXz\n6YHFgoiInGLPgj0LIjI49iyIiMglsFjoSPV5U+YzLpWzAern0wOLBREROcWeBXsWRGRw7FkQEZFL\nYLHQkerzpsxnXCpnA9TPpwcWCyIicoo9C/YsiMjg2LMgIiKXwGKhI9XnTZnPuFTOBqifTw8sFkRE\n5BR7FuxZEJHBsWdBREQugcVCR6rPmzKfcamcDVA/nx5YLIiIyCmnxeLBBx+E2WxGeHi4tm758uWw\nWq0YOXIkRo4ciezsbG1bSkoKAgMDERISgtzcXG39vn37EB4ejsDAQCxYsKCLYxhDdHR0Tw+hWzGf\ncamcDVA/nx6cFosHHngAOTk5rdaZTCb87ne/w/79+7F//37ExsYCAIqKirBx40YUFRUhJycH8+fP\n15ou8+bNQ3p6OoqLi1FcXNzmmERE5LqcFovx48fD09Ozzfr2Ou9ZWVlITEyEu7s7bDYbAgICkJ+f\nj6qqKtTW1iIqKgoAkJSUhE2bNnXB8I1F9XlT5jMulbMB6ufTwyX3LN544w1ERERgzpw5qKmpAQBU\nVlbCarVq+1itVlRUVLRZb7FYUFFRcRnDJiIiPV1SsZg3bx4cDgcKCgrg6+uLRYsWdfW4lKT6vCnz\nGZfK2QD18+nB7VKe5O3trf39oYcewpQpUwA0f2IoKyvTtpWXl8NqtcJisaC8vLzVeovF0u6xDxzI\nB9AI4BCAAQAiAUT/uDXvxz+7crlUO3fLR9WWf1hc5jKXueyKy3l5eVizZg0AwGazQRdyERwOh4SF\nhWnLlZWV2t9fffVVSUxMFBGRwsJCiYiIkPr6evn6669l2LBh0tTUJCIiUVFRsmfPHmlqapLY2FjJ\nzs5ucx4AEhs7Q4ANAohOj4Pi5xd8MS/DZdu5c6cu5+kpzGdcKmcTUT/fRb6VXxannywSExPxz3/+\nE9999x0GDx6MZ599Fnl5eSgoKIDJZMLQoUPxzjvvAADsdjvi4+Nht9vh5uaGtLQ0mEwmAEBaWhpm\nz56NM2fO4M4778Qdd9zRnTWQiIi6EL8bit8NRUQGx++GIiIil8BioaOWBpWqmM+4VM4GqJ9PDywW\nRETkFHsW7FkQkcGxZ0FERC6BxUJHqs+bMp9xqZwNUD+fHlgsiIjIKfYs2LMgIoNjz4KIiFwCi4WO\nVJ83ZT7jUjkboH4+PbBYEBGRU+xZsGdBRAbHngUREbkEFgsdqT5vynzGpXI2QP18emCxICIip9iz\nYM+CiAyOPQsiInIJLBY6Un3elPmMS+VsgPr59MBiQURETrFnwZ4FERkcexZEROQSWCx0pPq8KfMZ\nl8rZAPXz6YHFgoiInGLPgj0LIjI49iyIiMglsFjoSPV5U+YzLpWzAern0wOLBREROcWeBXsWRGRw\n7FkQEZFLYLHQkerzpsxnXCpnA9TPpwcWCyIicoo9C/YsiMjg2LMgIiKXwGKhI9XnTZnPuFTOBqif\nTw8sFkRE5BR7FuxZEJHBuUTP4sEHH4TZbEZ4eLi27sSJE4iJiUFQUBAmTpyImpoabVtKSgoCAwMR\nEhKC3Nxcbf2+ffsQHh6OwMBALFiwoItjEBFRd3JaLB544AHk5OS0WpeamoqYmBgcPnwYEyZMQGpq\nKgCgqKgIGzduRFFREXJycjB//nyt2s2bNw/p6ekoLi5GcXFxm2NeCVSfN2U+41I5G6B+Pj04LRbj\nx4+Hp6dnq3WbN29GcnIyACA5ORmbNm0CAGRlZSExMRHu7u6w2WwICAhAfn4+qqqqUFtbi6ioKABA\nUlKS9hwiInJ9l9Tgrq6uhtlsBgCYzWZUV1cDACorK2G1WrX9rFYrKioq2qy3WCyoqKi4nHEbUnR0\ndE8PoVsxn3GpnA1QP58eLvtqKJPJBJPJ1BVjISIiF+V2KU8ym8349ttv4ePjg6qqKnh7ewNo/sRQ\nVlam7VdeXg6r1QqLxYLy8vJW6y0WS7vHPnAgH0AjgEMABgCIBBD949a8H//syuVS7dwt85otv4V0\n9fLKlSsRGRnZbcfv6WXmM+7yhXP6rjAe5nOeZ82aNQAAm80GXchFcDgcEhYWpi0/+eSTkpqaKiIi\nKSkpsmTJEhERKSwslIiICKmvr5evv/5ahg0bJk1NTSIiEhUVJXv27JGmpiaJjY2V7OzsNucBILGx\nMwTYIIDo9Dgofn7BF/MyXLadO3fqcp6ewnzGpXI2EfXzXeRb+eWdw9kOCQkJ4uvrK+7u7mK1WmX1\n6tVy/PhxmTBhggQGBkpMTIycPHlS2/+FF14Qf39/CQ4OlpycHG39559/LmFhYeLv7y+PP/54+4NR\nvFgQEXUHPYoFb8rjTXlEZHAucVMedZ0L501VxHzGpXI2QP18emCxICIipzgNxWkoIjI4TkMREZFL\nYLHQkerzpsxnXCpnA9TPpwcWCyIicoo9C/YsiMjg2LMgIiKXwGKhI9XnTZnPuFTOBqifTw8sFkRE\n5BR7FuxZEJHBsWdBREQugcVCR6rPmzKfcamcDVA/nx5YLIiIyCn2LNizICKDY8+CiIhcAouFjlSf\nN2U+41I5G6B+Pj2wWBARkVPsWbBnQUQGx54FERG5BBYLHak+b8p8xqVyNkD9fHpgsSAiIqfYs2DP\ngogMjj0LIiJyCSwWOlJ93pT5jEvlbID6+fTAYkFERE6xZ8GeBREZHHsWRETkElgsdKT6vCnzGZfK\n2QD18+mBxYKIiJxiz4I9CyIyOPYsiIjIJbBY6Ej1eVPmMy6VswHq59MDiwURETnFngV7FkRkcOxZ\nEBGRS7isYmGz2TBixAiMHDkSUVFRAIATJ04gJiYGQUFBmDhxImpqarT9U1JSEBgYiJCQEOTm5l7e\nyA1I9XlT5jMulbMB6ufTw2UVC5PJhLy8POzfvx979+4FAKSmpiImJgaHDx/GhAkTkJqaCgAoKirC\nxo0bUVRUhJycHMyfPx9NTU2Xn4CIiLrdZU9D/XSebPPmzUhOTgYAJCcnY9OmTQCArKwsJCYmwt3d\nHTabDQEBAVqBuVJER0f39BC6FfMZl8rZAPXz6eGyP1n86le/wqhRo/Duu+8CAKqrq2E2mwEAZrMZ\n1dXVAIDKykpYrVbtuVarFRUVFZdzeiIi0onb5Tx5165d8PX1xbFjxxATE4OQkJBW200mE0wmU4fP\nb2/bgQP5ABoBHAIwAEAkgOgft+b9+GdXLpdq526Z12z5LaSrl1euXInIyMhuO35PLzOfcZcvnNN3\nhfEwn/M8a9asAdDcO9aFdJHly5fLyy+/LMHBwVJVVSUiIpWVlRIcHCwiIikpKZKSkqLtP2nSJNmz\nZ0+rYwCQ2NgZAmwQQHR6HBQ/v+Cuehk6tXPnTl3O01OYz7hUziaifr4ufCvv0CVPQ/3www+ora0F\nAJw+fRq5ubkIDw9HXFwcMjIyAAAZGRmYOnUqACAuLg6ZmZloaGiAw+FAcXGxdgXVlaLlNwRVMZ9x\nqZwNUD+fHi55Gqq6uhr33HMPAKCxsRH33XcfJk6ciFGjRiE+Ph7p6emw2Wz44IMPAAB2ux3x8fGw\n2+1wc3NDWlpap1NURETkOngHt453cOfl5Sn9Gw7zGZfK2QD18/EObiIicgn8ZMHvhiIig+MnCyIi\ncgksFjq68FpvFTGfcamcDVA/nx5YLIiIyCn2LNizICKDY8+CiIhcAouFjlSfN2U+41I5G6B+Pj2w\nWBARkVPsWbBnQUQGx54FERG5BBYLHak+b8p8xqVyNkD9fHpgsSAiIqfYs2DPgogMjj0LIiJyCSwW\nOlJ93pT5jEvlbID6+fTAYkFERE6xZ8GeBREZHHsWRETkElgsdKT6vCnzGZfK2QD18+mBxYKIiJxi\nz4I9CyIyOPYsiIjIJbBY6Ej1eVPmMy6VswHq59MDiwURETnFngV7FkRkcHr0LNy69egGUVXlgMlk\n0vWcHh6e+P77E7qek4joUnEaCoBIAwDR4bFT+3tt7Ul9wulI9XlhlfOpnA1QP58eWCyIiMgp9ixw\nCEAomn/j11P3zzES0ZWB91kQEZFLYLHQVV5PD6BbqT4vrHI+lbMB6ufTA4sFERE5xZ4FexZEZHDs\nWRARkUvQtVjk5OQgJCQEgYGBePHFF/U8tYvI6+kBdCvV54VVzqdyNkD9fHrQrVicP38ev/nNb5CT\nk4OioiJs2LABBw8e1Ov0LqKgpwfQrQoKmM+oVM4GqJ9PD7oVi7179yIgIAA2mw3u7u5ISEhAVlaW\nXqd3ETU9PYBuVVPDfEalcjZA/Xx60K1YVFRUYPDgwdqy1WpFRUWFXqcnIqLLoNsXCV7sF/W5u/dC\n795/grv7+908omZNTbWoq9PlVABKLvi7m65fXqjHFxeWlJR06/F7msr5VM4GqJ9PF6KT3bt3y6RJ\nk7TlFStWSGpqaqt9/P399fg2Pz744IMPpR7+/v7d/h6u230WjY2NCA4Oxscffww/Pz9ERUVhw4YN\nCA0N1eP0RER0GXSbhnJzc8Obb76JSZMm4fz585gzZw4LBRGRQbjUHdxEROSaXOYObqPcsFdWVobb\nbrsNw4cPR1hYGF5//XUAwIkTJxATE4OgoCBMnDix1aV6KSkpCAwMREhICHJzc7X1+/btQ3h4OAID\nA7FgwQJtfX19PWbMmIHAwECMGTMG33zzjX4B0XxPzMiRIzFlyhQAamWrqanB9OnTERoaCrvdjvz8\nfKXypaSkYPjw4QgPD8fMmTNRX19v6HwPPvggzGYzwsPDtXV65cnIyEBQUBCCgoLw3nvv6ZbvySef\nRGhoKCKR9cbvAAAFhUlEQVQiInDvvffi1KlTrpGv27siF6GxsVH8/f3F4XBIQ0ODRERESFFRUU8P\nq11VVVWyf/9+ERGpra2VoKAgKSoqkieffFJefPFFERFJTU2VJUuWiIhIYWGhRERESENDgzgcDvH3\n95empiYREbnpppskPz9fRERiY2MlOztbRETeeustmTdvnoiIZGZmyowZM3TN+Morr8jMmTNlypQp\nIiJKZUtKSpL09HQRETl37pzU1NQok8/hcMjQoUPl7NmzIiISHx8va9asMXS+Tz75RL744gsJCwvT\n1umR5/jx4zJs2DA5efKknDx5Uvu7Hvlyc3Pl/PnzIiKyZMkSl8nnEsXi008/bXWlVEpKiqSkpPTg\niC7e3XffLdu2bZPg4GD59ttvRaS5oAQHB4tI26u+Jk2aJLt375bKykoJCQnR1m/YsEHmzp2r7bNn\nzx4RaX5Du+666/SKI2VlZTJhwgTZsWOHTJ48WUREmWw1NTUydOjQNutVyXf8+HEJCgqSEydOyLlz\n52Ty5MmSm5tr+HwOh6PVm6keedavXy+PPvqo9py5c+fKhg0bdMl3ob/97W9y3333iUjP53OJaSij\n3rBXUlKC/fv3Y/To0aiurobZbAYAmM1mVFdXAwAqKythtVq157Rk++l6i8WiZb7w9XBzc0P//v1x\n4kT33iPR4oknnsBLL72EXr3+909DlWwOhwODBg3CAw88gBtuuAEPP/wwTp8+rUy+gQMHYtGiRbj+\n+uvh5+eHAQMGICYmRpl8Lbo7z/Hjxzs8lt5Wr16NO++8E0DP53OJYqHnzWldpa6uDtOmTcOqVavg\n4eHRapvJZDJkpr///e/w9vbGyJEjO/y6Y6NmA5ov3/7iiy8wf/58fPHFF7j22muRmpraah8j5zt6\n9ChWrlyJkpISVFZWoq6uDuvWrWu1j5HztUe1PBd64YUXcNVVV2HmzJk9PRQALlIsLBYLysrKtOWy\nsrJWVc/VnDt3DtOmTcOsWbMwdepUAM2/4Xz77bcAgKqqKnh7ewNom628vBxWqxUWiwXl5eVt1rc8\np7S0FEDzG9ypU6cwcODAbs/16aefYvPmzRg6dCgSExOxY8cOzJo1S4lsQPNvT1arFTfddBMAYPr0\n6fjiiy/g4+OjRL7PP/8c48aNg5eXF9zc3HDvvfdi9+7dyuRr0d3/Hr28vHr8PWnNmjXYsmUL3n//\nf99k0dP5XKJYjBo1CsXFxSgpKUFDQwM2btyIuLi4nh5Wu0QEc+bMgd1ux8KFC7X1cXFxyMjIANB8\nlUFLEYmLi0NmZiYaGhrgcDhQXFyMqKgo+Pj4oF+/fsjPz4eIYO3atbj77rvbHOuvf/0rJkyYoEu2\nFStWoKysDA6HA5mZmbj99tuxdu1aJbIBgI+PDwYPHozDhw8DALZv347hw4djypQpSuQLCQnBnj17\ncObMGYgItm/fDrvdrky+Fnr8e5w4cSJyc3NRU1ODkydPYtu2bZg0aZIu+XJycvDSSy8hKysL11xz\nTavcPZrv4tsw3WvLli0SFBQk/v7+smLFip4eTof+9a9/iclkkoiICImMjJTIyEjJzs6W48ePy4QJ\nEyQwMFBiYmJaXVnwwgsviL+/vwQHB0tOTo62/vPPP5ewsDDx9/eXxx9/XFt/9uxZ+fWvfy0BAQEy\nevRocTgcekYUEZG8vDztaiiVshUUFMioUaNkxIgRcs8990hNTY1S+V588UWx2+0SFhYmSUlJ0tDQ\nYOh8CQkJ4uvrK+7u7mK1WmX16tW65Vm9erUEBARIQECArFmzRpd86enpEhAQINdff732/tJyNVNP\n5+NNeURE5JRLTEMREZFrY7EgIiKnWCyIiMgpFgsiInKKxYKIiJxisSAiIqdYLIiIyCkWCyIicur/\nAS6yRgLVeDXAAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1062fc4d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "inc = loansData['Monthly.Income']\n", "h = inc.hist()\n", "plt.title('Histogram of Monthly Income')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVHX+B/D3IJhi3EQZhBEnBUXEe6llKqZ422rNDG+r\noJvt5rq7uVb066b1rIK1rbdWny4qlJVpz6ZYaq7KqK2rVG7aipc0UG6SqSgIisDn94cxOQqjM3DO\nmTnzfj0PT525nO/nM2fmw/CeAxpEREBERB7DS+sCiIhIXRz8REQehoOfiMjDcPATEXkYDn4iIg/D\nwU9E5GE4+N1QbGwsdu3apXUZmvr000/Rtm1b+Pn54cCBA6qt+9Zbb2HWrFmqrVcXi8WCtm3b1nt9\nUlISXnrpJRUr0sbBgwfRv39/rctwSxz8LsZsNmP79u02l6WlpWHAgAHW7f/9738YOHCg3f3k5ubC\ny8sLNTU1itSptaeffhrLli1DaWkpunfvftP1Xl5e+OGHHxp1zcrKSsybNw/PPvssgF8e4169etnc\n7qeffkLTpk1x1113Ncq6jvZiMBhgMBgcXudW31BcTbdu3RAYGIjPPvtM61LcDge/i3H2RVsfpX4/\nr7q6WpH93g4RwalTpxATE6Pquhs2bEDnzp3Rpk0bm8srKipw6NAh6/aHH36I9u3ba3ocPeX3MidN\nmoS33npL6zLcDge/G7hxgJjNZuzYsQMAkJWVhbvvvhsBAQEIDQ3F008/DQDWnwgCAwPh5+eHffv2\nQUTw17/+FWazGUajEYmJibh48aJ1v++99x7atWuHVq1aWW9Xu87cuXMxduxYTJ48GQEBAUhPT8dX\nX32Fe++9F0FBQQgLC8Mf//hHXL161bo/Ly8vLF++HFFRUfD398fLL7+MEydO4N5770VgYCDGjx9v\nc/vr1VfrlStX4Ofnh+rqanTv3h1RUVEOPZYXLlzAlClTEBISArPZjHnz5lmHZE1NDWbPno3WrVuj\nffv2ePPNN21+atq8eTMGDRp00z4nT56M9PR06/b777+PKVOm2Azfw4cPIy4uDkFBQYiNjcXGjRut\n1yUlJeEPf/gDHnzwQfj7+6Nfv37Wd/i1x7F79+7w8/PDunXrrPf7+9//DqPRiLCwMKSlpdnUVPuc\niY2NtXlHfPXqVbRq1eq24rG4uDi8/PLLuP/+++Hv74/hw4fj7Nmz1uu//PJL3HfffQgKCkJERIT1\nMbD3GKelpaF///74y1/+gqCgIERGRmLPnj1YtWoVIiIiYDQa8d5771nXuHLlCp5++mm0a9cOoaGh\nePLJJ3H58mXr9YMGDcL27dvrfR5RPYRcitlslm3bttlctmrVKrn//vttbrN9+3YREenXr5+sXr1a\nREQuXboke/fuFRGR3NxcMRgMUl1dbb3fihUrJDIyUnJycqSsrEzGjBkjkydPFhGRQ4cOyZ133in/\n/ve/pbKyUp5++mnx8fGxrjNnzhzx8fGRDRs2iIhIRUWFfPPNN7Jv3z6prq6W3Nxc6dy5syxatMi6\nnsFgkNGjR0tpaakcOnRImjZtKoMHD5acnBy5cOGCxMTESHp6ep2Pg71aa/d94sSJeh/H+q6fPHmy\njB49WsrKyiQ3N1c6duwoK1asEBGR5cuXS0xMjBQUFMj58+dlyJAh4uXlZX0M77nnHvnkk0+s+8rJ\nyRGDwSC5ubnStm1bqampkUOHDkl0dLRs27ZNzGaziIhUVlZKhw4dJCUlRa5evSo7duwQPz8/OXr0\nqIiIJCYmSnBwsHz11VdSVVUlkyZNkvHjx9fbS2Zmpnh7e8ucOXOkqqpKNm3aJL6+vlJSUiIiIklJ\nSfLSSy+JiMhrr70m48aNs953/fr10q1btzofs8zMTDGZTNbtQYMGSWRkpHz//fdSUVEhcXFx8txz\nz4nIteeXn5+frFmzRqqqquTs2bPy7bff3vIxXrVqlXh7e0taWprU1NTIiy++KOHh4TJz5kyprKyU\nrVu3ip+fn1y6dElERJ566in59a9/LefPn5fS0lJ56KGH5P/+7/9s6vb395fvvvuuzp6obhz8LqZd\nu3Zy5513SmBgoPXL19dXBgwYYL3N9YN/4MCBMmfOHDlz5ozNfmqH0vWD/4EHHpDly5dbt48ePSo+\nPj5SVVUlr7zyikycONF6XXl5uTRt2tRm8A8aNMhu7QsXLpRHHnnEum0wGGTPnj3W7d69e8trr71m\n3Z49e7Y89dRTde6rvlpr+3Fm8FdVVUnTpk3l8OHD1sveeustiYuLExGRwYMHy9tvv229btu2bTaP\nYVRUlHzxxRfW62sf46qqKhk6dKh88cUXkpycLPPnz7cZ/Lt27ZLQ0FCbWiZMmCBz584VkWuDf/r0\n6dbrNm3aJNHR0fX2kpmZKc2bN7c5tiEhIbJv3z4RuTb4X3zxRRERKSgokDvvvFNKS0tFROTRRx+V\n119/vc7H7MbBHxcXJ/PmzbNuL1u2TEaMGCEiIvPnz5cxY8bctI9bPcarVq2SqKgo63UHDx4Ug8Eg\nP/74o/Wy4OBgOXDggNTU1EiLFi1set+zZ4/cddddNmuGh4fL7t276+yJ6saox8UYDAZs2LAB58+f\nt34tW7as3sx2xYoVOHbsGDp37ow+ffrg888/r3ffRUVFaNeunXU7IiICVVVVKC4uRlFREUwmk/W6\n5s2bIzg42Ob+118PAMeOHcODDz6INm3aICAgAC+88IJNFAAARqPRZp83bpeVlTlcq7N++uknXL16\n9ab9FhQUWNe8/sPNG/sNCgqyicZqGQwGTJkyBatWrcKaNWswefJkm+NVWFh404em7dq1Q2FhofX+\nt/u41AoODoaX1y8vX19f3zrvExYWhv79++OTTz5BSUkJtmzZgkmTJtnd9/VCQ0PrrCsvLw/t27e/\n6fa3eoyBm58TANC6deub1jlz5gzKy8vRu3dvBAUFISgoCCNHjsRPP/1ks2ZpaSkCAwNvuydixu8W\n6hv6ABAZGYkPP/wQZ86cQXJyMsaOHYuKioo6P1gMCwtDbm6udfvUqVPw9vZGaGgo2rRpg/z8fOt1\nFRUVNw3xG/f55JNPIiYmBsePH8eFCxcwb968RjuLqL5arx8ajmrVqhV8fHxu2m/tgG/Tpg3y8vKs\n113//8C1s0iOHTtW577HjBmDTZs2oUOHDjd9wwgLC0NeXp7NcTx58iTCw8Od7sURiYmJWL16Ndat\nW4f77rvvpg+nnREREYETJ07cdPmtHmNHtGrVCs2bN0d2drb1TVBJSYnNN9+CggJUVlaiU6dOTvXh\nqTj43dzq1atx5swZAEBAQAAMBgO8vLzQunVreHl52bw4J0yYgIULFyI3NxdlZWV4/vnnMX78eHh5\neeHRRx/Fxo0b8Z///AeVlZWYO3fuLc8MKSsrg5+fH3x9fXHkyBEsX778lvVev097+7dX6+26cuUK\nLl++bP0CgISEBLzwwgsoKyvDyZMnsXDhQvzmN7+xXrd48WIUFhaipKQECxYssPlmN2rUKOzcubPO\ntVq0aIHMzEy8++67N13Xt29f+Pr64rXXXsPVq1dhsVjw2WefYfz48bd8HIBr75DrGrL1uXF/jzzy\nCPbv348lS5ZgypQpt70fe7VNnDgR27Ztw7p161BVVYWzZ8/iwIEDaNKkid3H2BFeXl6YPn06nnrq\nKetzvKCgAFu3brXeZufOnRgyZAh8fHwc3r8n4+B3A/ZO8fziiy8QGxsLPz8/zJo1C2vWrMEdd9wB\nX19fvPDCC+jfvz+CgoKQlZWFadOmYfLkyRg4cCDat28PX19fLF26FADQpUsXLF26FOPHj0dYWBj8\n/PwQEhKCO+64o94a/va3v+HDDz+Ev78/nnjiCYwfP97mNnXVfOP19fVlr9b69n2jLl26wNfX1/qV\nnp6OpUuXokWLFmjfvj0GDBiASZMmYerUqQCA6dOnY9iwYejWrRt69+6NX/3qV2jSpIn1m82DDz6I\nI0eOoKioqM46evXqZXPufu11TZs2xcaNG7F582a0bt0aM2fOxPvvv4+OHTvW+zhcvz137lwkJiYi\nKCgIn3zyyS1P+b3x+mbNmmHMmDHIzc3FmDFj7D5m9uq4fr8RERHYtGkT3njjDQQHB6Nnz544ePAg\nANh9jG/V640WLFiAyMhI9OvXDwEBAYiPj7f5qeuDDz7A73//e7s9UR3sfQAwdepUCQkJkdjYWOtl\nZ8+elaFDh0pUVJTEx8fL+fPnrdfNnz9fIiMjpVOnTjYfgn399dcSGxsrkZGR8qc//anRPqAg5ZSW\nloq3t7fk5uZqXYpmNm3aJO3atbO57O233673A2lX9uqrr9qcFaUHBw4ckPvuu0/rMtyS3cG/a9cu\n2b9/v83gf+aZZ2TBggUiIpKamirJyckicu10wO7du0tlZaXk5ORIhw4dpKamRkSunQZXe8bByJEj\nZfPmzYo0Qw2TkZEhly5dkrKyMvnd734nvXr10rokVVVUVMjnn38uV69elfz8fOnbt6/MmjVL67Ia\n7OzZs2I2m3nmC1nZjXoGDBiAoKAgm8syMjKQmJgI4NqHRuvXrwdw7bcaJ0yYAB8fH5jNZkRGRmLf\nvn0oKipCaWkp+vTpAwCYMmWK9T7kWjIyMhAeHo7w8HCcOHECa9as0bokVYkI5s6di5YtW6JXr17o\n0qULXn31Va3LapB33nkHERERGDlyJO6//36tyyEX4e3oHYqLi61nVhiNRuvpdYWFhejXr5/1diaT\nCQUFBfDx8bH5RD88PNzm1C5yHe+88w7eeecdrcvQTPPmzZGVlaV1GY1q+vTpmD59utZlkItp0Ie7\njf13ZYiISHkOv+M3Go04ffo0QkNDUVRUhJCQEADX3slff95zfn4+TCYTwsPDbc4Pz8/Pr/f85fDw\ncOsvtRAR0e3p0KEDjh8/ftu3d/gd/8MPP2z9Y0zp6ekYPXq09fI1a9agsrISOTk5+P7779GnTx+E\nhobC39/f+kfC3n//fet9blRYWAi59oGzLr/mzJmjeQ3sjf2xP/19OfJ7HsAt3vFPmDABO3fuxE8/\n/YS2bdvi1VdfxXPPPYeEhASsWLECZrMZa9euBQDExMQgISEBMTEx8Pb2xrJly6wx0LJly5CUlISK\nigqMGjUKI0aMcKhIvbj+txn1Rs+9AezP3em9P0fZHfwfffRRnZdv27atzsuff/55PP/88zdd3rt3\nb3z33XdOlEdERI2Nv7mroqSkJK1LUIyeewPYn7vTe3+OMoiIy/xTPQaDAS5UDhGRW3B0dvIdv4os\nFovWJShGz70B7M/d6b0/R3HwExF5GEY9RERujlEPERHZxcGvIj3njHruDWB/7k7v/TmKg5+IyMMw\n4ycicnPM+ImIyC4OfhXpOWfUc28A+3N3eu/PURz8REQehhk/EZGbY8ZPRER2cfCrSM85oxq9+fu3\ntP5zn2p9+fu3VK0/LbE/z+LwP71IpJXS0vMA1I0CS0v5b0qT/jDjJ7dx7V90U/v5weckuT5m/ERE\nZBcHv4r0nDPquTeA/bk7vffnKA5+IiIPw4yf3AYzfqK6MeMnIiK7OPhVpOecUc+9AezP3em9P0dx\n8BMReRhm/OQ2mPET1Y0ZPxER2cXBryI954x67g1gf+5O7/05ioOfiMjDMOMnt8GMn6huzPiJiMgu\nDn4V6Tln1HNvAPtzd3rvz1H8e/zkFH//lj//fXwicjfM+MkpWuXtzPiJbsaMn4iI7OLgV5G+c0aL\n1gUoSt/Hjv15Gg5+IiIP43TGn5KSgtWrV8PLywtdu3bFqlWrcOnSJYwbNw4nT56E2WzG2rVrERgY\naL39ypUr0aRJEyxZsgTDhg27uRhm/G6DGT+R63B0djo1+HNzc/HAAw/g8OHDuOOOOzBu3DiMGjUK\nhw4dQqtWrfDss89iwYIFOH/+PFJTU5GdnY2JEyfiq6++QkFBAYYOHYpjx47By8v2Bw4OfvfBwU/k\nOlT5cNff3x8+Pj4oLy9HVVUVysvLERYWhoyMDCQmJgIAEhMTsX79egDAhg0bMGHCBPj4+MBsNiMy\nMhJZWVnOLO3W9J0zWrQuQFH6Pnbsz9M4NfhbtmyJ2bNnIyIiAmFhYQgMDER8fDyKi4thNBoBAEaj\nEcXFxQCAwsJCmEwm6/1NJhMKCgoaoXwiInKUU7/AdeLECSxatAi5ubkICAjAY489htWrV9vcxmAw\n/BwH1K2+65KSkmA2mwEAgYGB6NGjB+Li4gD88l3bXbdrL3OVehrej+Xn/8b9/HX99o3XN8Z27WVK\n7b++7Ws9a/14K7nN/txr22KxIC0tDQCs89IRTmX8H3/8Mf71r3/h3XffBQC8//772Lt3L3bs2IHM\nzEyEhoaiqKgIgwcPxpEjR5CamgoAeO655wAAI0aMwCuvvIK+ffvaFsOM320w4ydyHapk/NHR0di7\ndy8qKiogIti2bRtiYmLw0EMPIT09HQCQnp6O0aNHAwAefvhhrFmzBpWVlcjJycH333+PPn36OLO0\nW6v9jq1PFq0LUJS+jx378zRORT3du3fHlClTcPfdd8PLywu9evXCE088gdLSUiQkJGDFihXW0zkB\nICYmBgkJCYiJiYG3tzeWLVtmNwYiIiLl8G/1kFMY9RC5Dv6tHiIisouDX0X6zhktWhegKH0fO/bn\naTj4iYg8DDN+cgozfiLXwYyfiIjs4uBXkb5zRovWBShK38eO/XkaDn4iIg/DjJ+cwoyfyHUw4yci\nIrs4+FWk75zRonUBitL3sWN/noaDn4jIwzDjJ6cw4ydyHcz4iYjILg5+Fek7Z7RoXYCi9H3s2J+n\n4eAnIvIwzPjJKcz4iVwHM34iIrKLg19F+s4ZLVoXoCh9Hzv252k4+ImIPAwzfnIKM34i18GMn4iI\n7OLgV5G+c0aL1gUoSt/Hjv15Gg5+IiIPw4yfnMKMn8h1MOMnIiK7OPhVpO+c0aJ1AYrS97Fjf56G\ng5+IyMMw4yenMOMnch3M+ImIyC4OfhXpO2e0aF2AovR97Nifp+HgJyLyMMz4ySnM+IlcBzN+IiKy\ni4NfRfrOGS1aF6AofR879udpOPiJiDyM0xl/SUkJHn/8cRw6dAgGgwGrVq1CVFQUxo0bh5MnT8Js\nNmPt2rUIDAwEAKSkpGDlypVo0qQJlixZgmHDht1cDDN+t8GMn8h1qJbx//nPf8aoUaNw+PBhHDx4\nENHR0UhNTUV8fDyOHTuGIUOGIDU1FQCQnZ2Njz/+GNnZ2diyZQtmzJiBmpoaZ5cmIqIGcGrwX7hw\nAbt378a0adMAAN7e3ggICEBGRgYSExMBAImJiVi/fj0AYMOGDZgwYQJ8fHxgNpsRGRmJrKysRmrB\nfeg7Z7RoXYCi9H3s2J+ncWrw5+TkoHXr1pg6dSp69eqF6dOn49KlSyguLobRaAQAGI1GFBcXAwAK\nCwthMpms9zeZTCgoKGiE8omIyFFODf6qqirs378fM2bMwP79+9GiRQtrrFPLYDD8nAPXzd51ehUX\nF6d1CQqK07oARen72LE/T+PtzJ1MJhNMJhPuueceAMDYsWORkpKC0NBQnD59GqGhoSgqKkJISAgA\nIDw8HHl5edb75+fnIzw8vM59JyUlwWw2AwACAwPRo0cP60Gr/XGN266x/Uu8o9Z27WVqr//zlos9\n/tz23G2LxYK0tDQAsM5LRzh9Vs/AgQPx7rvvomPHjpg7dy7Ky8sBAMHBwUhOTkZqaipKSkqQmpqK\n7OxsTJw4EVlZWSgoKMDQoUNx/Pjxm9716/2sHovFct3QdG83n9VjgfLv+rU7q0dPx64u7M+9OTo7\nnXrHDwBLly7FpEmTUFlZiQ4dOmDVqlWorq5GQkICVqxYYT2dEwBiYmKQkJCAmJgYeHt7Y9myZR4Z\n9RARuQL+rR5yCs/jJ3Id/Fs9RERkFwe/imo/nNEni9YFKErfx479eRoOfiIiD8OMn5zCjJ/IdTDj\nJyIiuzj4VaTvnNGidQGK0vexY3+ehoOfiMjDMOMnpzDjJ3IdzPiJiMguDn4V6TtntGhdgKL0fezY\nn6fh4Cci8jDM+MkpzPiJXAczfiIisouDX0X6zhktWhegKH0fO/bnaTj4iYg8DDN+cgozfiLXwYyf\niIjs4uBXkb5zRovWBShK38eO/XkaDn4iIg/DjJ+cwoyfyHUw4yciIrs4+FWk75zRonUBitL3sWN/\nnoaDn4jIwzDjJ6cw4ydyHcz4iYjILg5+Fek7Z7RoXYCi9H3s2J+n4eAnIvIwzPjJKcz4iVwHM34i\nIrKLg19F+s4ZLVoXoCh9Hzv252k4+ImIPAwzfnIKM34i18GMn4iI7OLgV5G+c0aL1gUoSt/Hjv15\nGg5+IiIPw4yfnMKMn8h1qJrxV1dXo2fPnnjooYcAAOfOnUN8fDw6duyIYcOGoaSkxHrblJQUREVF\nITo6Glu3bm3IskRE1AANGvyLFy9GTEzMz+/+gNTUVMTHx+PYsWMYMmQIUlNTAQDZ2dn4+OOPkZ2d\njS1btmDGjBmoqalpePVuRt85o0XrAhSl72PH/jyN04M/Pz8fmzZtwuOPP279ESMjIwOJiYkAgMTE\nRKxfvx4AsGHDBkyYMAE+Pj4wm82IjIxEVlZWI5RPRESOcnrwz5o1C6+//jq8vH7ZRXFxMYxGIwDA\naDSiuLgYAFBYWAiTyWS9nclkQkFBgbNLu624uDitS1BQnNYFKErfx479eRqnBv9nn32GkJAQ9OzZ\ns94PFAwGgzUCqu96IiJSn7czd9qzZw8yMjKwadMmXL58GRcvXsTkyZNhNBpx+vRphIaGoqioCCEh\nIQCA8PBw5OXlWe+fn5+P8PDwOvedlJQEs9kMAAgMDESPHj2s361rczp33V60aJGu+vkl14+DbcZf\n1/WNsV17mVL7r2/bNiN2lce/MbfZn3ttWywWpKWlAYB1XjpEGshisciDDz4oIiLPPPOMpKamiohI\nSkqKJCcni4jIoUOHpHv37nLlyhX54YcfpH379lJTU3PTvhqhHJeWmZmpdQmNBoAAct1X5g3bSnzd\nuKYaX9eek3o6dnVhf+7N0dnZ4PP4d+7ciTfeeAMZGRk4d+4cEhIScOrUKZjNZqxduxaBgYEAgPnz\n52PlypXw9vbG4sWLMXz48Jv2xfP43QfP4ydyHY7OTv4CFzmFg5/IdfCPtLmw63NG/bFoXYCi9H3s\n2J+n4eAnIvIwjHrIKYx6iFwHox4iIrKLg19F+s4ZLVoXoCh9Hzv252k4+ImIPAwzfnIKM34i1+Ho\n7HTqTzYQeQ5v1f+ulJ9fEC5ePKfqmuRZGPWoSN85o0XrAhRShWs/ZWT+/F/lv0pLz6vT2nX0/dzU\nf3+O4uAnIvIwzPjJKZ6U8fNzBXJ1PI+fiIjs4uBXkb5zRovWBSjMonUBitL3c1P//TmKg5+IyMMw\n4yenMONXdk2+DsgRzPiJiMguDn4V6TtntGhdgMIsWhegKH0/N/Xfn6M4+ImIPAwzfnIKM35l1+Tr\ngBzBjJ+IiOzi4FeRvnNGi9YFKMyidQGK0vdzU//9OYqDn4jIwzDjJ6cw41d2Tb4OyBHM+ImIyC4O\nfhXpO2e0aF2AwixaF6AofT839d+fozj4iYg8DDN+nfD3b6nBv9zkGXk7M35ydY7OTg5+nVD/w1bP\nGcIc/OTq+OGuC9N3zmjRugCFWbQuQFH6fm7qvz9HcfATEXkYRj06wahHX2vydUCOYNRDRER2cfCr\nSN85o0XrAhRm0boARen7uan//hzFwU9E5GGY8esEM359rcnXATmCGT8REdnl1ODPy8vD4MGD0aVL\nF8TGxmLJkiUAgHPnziE+Ph4dO3bEsGHDUFJSYr1PSkoKoqKiEB0dja1btzZO9W5G3zmjResCFGbR\nugBF6fu5qf/+HOXU4Pfx8cHChQtx6NAh7N27F//4xz9w+PBhpKamIj4+HseOHcOQIUOQmpoKAMjO\nzsbHH3+M7OxsbNmyBTNmzEBNTU2jNkJERLenUTL+0aNHY+bMmZg5cyZ27twJo9GI06dPIy4uDkeO\nHEFKSgq8vLyQnJwMABgxYgTmzp2Lfv362RbDjN9pzPj1tSZfB+QI1TP+3Nxc/Pe//0Xfvn1RXFwM\no9EIADAajSguLgYAFBYWwmQyWe9jMplQUFDQ0KWJiMgJ3g25c1lZGR599FEsXrwYfn5+NtcZDIaf\n34XWrb7rkpKSYDabAQCBgYHo0aMH4uLiAPyS07nr9qJFixTt55ccWovt2v9Xcr3ay5Taf33bN/6/\nGuup+/y8PgN3ldcL+7PfT1paGgBY56VDxEmVlZUybNgwWbhwofWyTp06SVFRkYiIFBYWSqdOnURE\nJCUlRVJSUqy3Gz58uOzdu/emfTagHLeQmZmp2L4BCCAqft24XqYGa6rZpxr9/bKm2pR8broCvffn\n6HPGqYxfRJCYmIjg4GAsXLjQevmzzz6L4OBgJCcnIzU1FSUlJUhNTUV2djYmTpyIrKwsFBQUYOjQ\noTh+/PhN7/qZ8TuPGb++1uTrgByhyt/j//LLLzFw4EB069bNOrxTUlLQp08fJCQk4NSpUzCbzVi7\ndi0CAwMBAPPnz8fKlSvh7e2NxYsXY/jw4Q0unn7Bwa+vNfk6IEfwH2JxYRaL5bo8vnFpP/gtsM3i\n1VhTDbVrWqB8f7+sqfbrQMnnpivQe3/8zV0iIrKL7/h1Qvt3/FyzMdfk64AcwXf8RERkFwe/ivT9\n90IsWhegMIvWBShK389N/ffnKA5+IiIPw4xfJ5jx62tNvg7IEcz4iYjILg5+Fek7Z7RoXYDCLFoX\noCh9Pzf135+jOPiJiDwMM36dYMavrzX5OiBHMOMnIiK7OPhVpO+c0aJ1AQqzaF2AovT93NR/f47i\n4Cci8jDM+HWCGb++1uTrgBzBjJ+IiOzi4FeRvnNGi9YFKMyidQGK0vdzU//9OYqDn4jIwzDj1wlm\n/Ppak68DcgQzfiIisouDX0X6zhktWhegMIvWBShK389N/ffnKA5+IiIPw4xfJ5jx62tNvg7IEcz4\niYjILg5+Fek7Z7RoXYDCLCqu5Q2DwaDql6+vn4r9qU/frz3HeWtdABHdqApqx0sVFQZV1yNtMePX\nCWb8XLMRWQo5AAAGmUlEQVSha/K1576Y8RMRkV0c/CrSd85o0boAhVm0LoAaQN+vPcdx8BMReRhm\n/DrBjJ9rNnRNvvbcFzN+IiKyi4NfAf7+LVU/D1t7Fq0LUJhF6wKoAZjx2+LgV0Bp6Xlc+1H9xq/M\nei5vjC8iotvDjF8B6uftgPq5sCf06Flr6uG156mY8RMRkV2qDv4tW7YgOjoaUVFRWLBggZpLuwiL\n1gUoyKJ1AQqzaF0ANQAzfluqDf7q6mrMnDkTW7ZsQXZ2Nj766CMcPnxYreVdxLdaF6AgPfcG6L8/\nffv2Wx6/66k2+LOyshAZGQmz2QwfHx+MHz8eGzZsUGt5F1GidQEK0nNvgP7707eSEh6/66n21zkL\nCgrQtm1b67bJZMK+ffsUXXPhwjexePE7iq5xo2bN+AdPyR2pe1qwn18QLl48p9p6ZEu1KaXFueb/\n/e93yM/Pg5fXnaqtWV1dZOfaXLXK0ECu1gUoLFfrAhSm7mnBpaXqzoPc3Fz4+7f8+VRr9bjqNzjV\nBn94eDjy8vKs23l5eTCZTDa36dChgyLfIKqr1T3Y19TXR7oGa6q1npK91bemGmrXVKO/G9dUk7pr\nusYvHiqrtPS8Kn126NDBodurdh5/VVUVOnXqhO3btyMsLAx9+vTBRx99hM6dO6uxPBER/Uy1d/ze\n3t548803MXz4cFRXV+O3v/0thz4RkQZc6jd3iYhIeS7xm7slJSUYO3YsOnfujJiYGOzdu1frkhrN\n0aNH0bNnT+tXQEAAlixZonVZjSolJQVdunRB165dMXHiRFy5ckXrkhrV4sWL0bVrV8TGxmLx4sVa\nl9Ng06ZNg9FoRNeuXa2XnTt3DvHx8ejYsSOGDRvmtqc/1tXbunXr0KVLFzRp0gT79+/XsLqGq6u/\nZ555Bp07d0b37t0xZswYXLhw4dY7EhcwZcoUWbFihYiIXL16VUpKSjSuSBnV1dUSGhoqp06d0rqU\nRpOTkyN33XWXXL58WUREEhISJC0tTeOqGs93330nsbGxUlFRIVVVVTJ06FA5fvy41mU1yK5du2T/\n/v0SGxtrveyZZ56RBQsWiIhIamqqJCcna1Veg9TV2+HDh+Xo0aMSFxcn33zzjYbVNVxd/W3dulWq\nq6tFRCQ5Ofm2jp3m7/gvXLiA3bt3Y9q0aQCufRYQEBCgcVXK2LZtGzp06GDz+wzuzt/fHz4+Pigv\nL0dVVRXKy8sRHh6udVmN5siRI+jbty+aNWuGJk2aYNCgQfjnP/+pdVkNMmDAAAQFBdlclpGRgcTE\nRABAYmIi1q9fr0VpDVZXb9HR0ejYsaNGFTWuuvqLj4+Hl9e1Ud63b1/k5+ffcj+aD/6cnBy0bt0a\nU6dORa9evTB9+nSUl5drXZYi1qxZg4kTJ2pdRqNq2bIlZs+ejYiICISFhSEwMBBDhw7VuqxGExsb\ni927d+PcuXMoLy/H559/flsvLHdTXFwMo9EIADAajSguLta4InLGypUrMWrUqFveTvPBX1VVhf37\n92PGjBnYv38/WrRogdTUVK3LanSVlZXYuHEjHnvsMa1LaVQnTpzAokWLkJubi8LCQpSVleGDDz7Q\nuqxGEx0djeTkZAwbNgwjR45Ez549re+u9Mp1/nEfcsS8efPQtGnT23pzqfkz2GQywWQy4Z577gEA\njB071u0/gKnL5s2b0bt3b7Ru3VrrUhrV119/jfvuuw/BwcHw9vbGmDFjsGfPHq3LalTTpk3D119/\njZ07dyIwMBCdOnXSuqRGZzQacfr0aQBAUVERQkJCNK6IHJGWloZNmzbd9psuzQd/aGgo2rZti2PH\njgG4loN36dJF46oa30cffYQJEyZoXUaji46Oxt69e1FRUQERwbZt2xATE6N1WY3qxx9/BACcOnUK\nn376qe7iOgB4+OGHkZ5+7TeT09PTMXr0aI0rUobo8Oz1LVu24PXXX8eGDRvQrFmz27uTQh8+O+Tb\nb7+Vu+++W7p16yaPPPKI7s7qKSsrk+DgYLl48aLWpShiwYIFEhMTI7GxsTJlyhSprKzUuqRGNWDA\nAImJiZHu3bvLjh07tC6nwcaPHy9t2rQRHx8fMZlMsnLlSjl79qwMGTJEoqKiJD4+Xs6fP691mU65\nsbcVK1bIp59+KiaTSZo1ayZGo1FGjBihdZlOq6u/yMhIiYiIkB49ekiPHj3kySefvOV++AtcREQe\nRvOoh4iI1MXBT0TkYTj4iYg8DAc/EZGH4eAnIvIwHPxERB6Gg5+IyMNw8BMReZj/B5JE+MQbZdZe\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x106318850>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "loansData['Monthly.LogIncome'] = [ math.log(x) for x in inc ]\n", "plt.figure()\n", "h = loansData['Monthly.LogIncome'].hist()\n", "plt.title('Histogram of Log(Monthly Income)')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "count 2499.000000\n", "mean 8.501915\n", "std 0.523019\n", "min 6.377577\n", "25% 8.160518\n", "50% 8.517193\n", "75% 8.824678\n", "max 11.540054\n", "dtype: float64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loansData['Monthly.LogIncome'].describe()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }