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Introduction 

 

The following is a manual for using the software we have written for processing Drop-seq sequence data 

into a “digital expression matrix” that will contain integer counts of the number of transcripts for each 

gene, in each cell.  This software pipeline performs many analyses including massive de-multiplexing of 

the data, alignment of reads to a reference genome, and processing of cellular and molecular barcodes. 

 

Drop-seq sequencing libraries produce paired-end reads: read 1 contains both a cell barcode and a 

molecular barcode (also known as a UMI); read 2 is aligned to the reference genome.  This document 

provides step-by-step instructions for using the software we have developed to convert these 

sequencing reads into a digital expression matrix that contains integer counts of the number of 

transcripts for each gene, in each cell. 

 

We may release updates to this manual as we learn from users’ experiences.  If a revision simply 

contains additional hints or advice or detail, then we will update the date on the protocol but not the 

version number.  Whenever we implement a substantive change to the software or protocol, we will 

increment the version number.  

 

We hope this is helpful and that you are soon generating exciting data with Drop-seq. 

 

Introduction V2: 

There are a number of enhancements to the Drop-seq platform that come with version 2.0: new 

methods to clean up the cell barcodes from bead synthesis errors and PCR errors result in less clutter in 

the data when trying to decide which cell barcodes are truly cells.  We’ve also enhanced Digital 

expression to be more flexible in how it interprets gene annotations, allowing the program to extract 

both intronic DGE data as well as the typical coding+utr data.  Read on to find out about new Drop-seq 

program capabilities in-line with the rest of the documentation. 

 

Drop-seq Software and Hardware Requirements 

The Drop-seq software provided is implemented entirely in Java.  This means it will run on a huge 

number of devices that are capable of running Java, from large servers to laptops.  We require 4 

gigabytes of memory for each program to run, which is also sufficient for Picard programs we use as part 

of alignment and analysis.  Disk space will be determined by your data size plus the meta-data and 

aligner index.  50 gigabytes of disk space will be sufficient to store our meta data plus a STAR index. 
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Overview of Alignment 

 

The raw reads from the sequencer must be converted into a Picard-queryname-sorted BAM file for each 

library in the sequencer run.    Since there are many sequencers and pipelines available to do this, we 

leave this step to the user.  For example, we use either Picard IlluminaBasecallsToSam (preceded by 

Picard ExtractIlluminaBarcodes for a library with sample barcodes); or Illumina’s bcl2fastq followed by 

Picard FastqToSam.  Once you have an unmapped, queryname-sorted BAM, you can follow this set of 

steps to align your raw reads and create a BAM file that is suitable to produce digital gene expression 

(DGE) results. 

 

1. Unmapped BAM -> aligned and tagged BAM 

a. Tag cell barcodes 

b. Tag molecular barcodes 

c. Trim 5’ primer sequence 

d. Trim 3’ polyA sequence 

e. SAM -> Fastq 

f. STAR alignment 

g. Sort STAR alignment in queryname order 

h. Merge STAR alignment tagged SAM to recover cell/molecular barcodes 

i. Add gene/exon and other annotation tags 

j. Barcode Repair 

i. Repair substitution errors (DetectBeadSubstitutionErrors) 

ii. Repair indel errors (DetectBeadSynthesisErrors) 

 

A walkthrough of the alignment process 

Let’s walk through these steps to help you build intuition about how reads are manipulated - later parts 

of this document will detail the software and invocations necessary to carry out these operations.  First, 

you’ll take your Drop-seq experiment and put it on a sequencer.  The sequencer will gather data from 

both reads of the read pair.  Read one is a barcoded read, containing the cell and molecular barcodes 

that will later identify this read as coming from a particular transcript on a particular cell.  Read two is 

the biological read, which contains a portion of the sequence of the transcript observed.  

 

First, you’ll make a BAM file out of this data so that these two reads are in the same place.  Then, we’ll 

transfer information from the barcoded read over to the BAM record containing the genome read as a 

set of BAM tags.  The first 12 bases of the barcoded read contain the cell barcode, so we’ll copy those 

bases over to a BAM tag (XC) on the genome read.  Then we’ll take the next 8 bases containing the 

molecular barcode and copy them over as another BAM tag (XM).  Since we’re now extracted all the 

information out of the barcoded read, we discard the read, converting the BAM to single-ended reads. 

http://broadinstitute.github.io/picard/command-line-overview.html#IlluminaBasecallsToSam
http://broadinstitute.github.io/picard/command-line-overview.html#ExtractIlluminaBarcodes
http://support.illumina.com/downloads/bcl2fastq_conversion_software_184.html
http://broadinstitute.github.io/picard/command-line-overview.html#FastqToSam
https://samtools.github.io/hts-specs/SAMv1.pdf
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If a barcoded read has low quality base, both the barcoded read and genome read are purged at this 

point.  This makes life a lot easier for us in the future, as we don’t have to track the barcoded read to 

know the origins of any genome read. 

 

After this, we clean up the genome read with a few processes.  The 5’ adapter is detected and trimmed, 

as are 3’ poly A tails.  We call this final cleaned-up BAM the unaligned BAM. Then, we want to align 

these single-ended genome reads to the genome using STAR.  To do this, we extract the fastq file 

containing single-ended reads from our genome read BAM file and run STAR.  After STAR is done 

aligning reads, we now know where the genome reads align, but we’ve lost track of what cell and 

molecular barcodes these reads have.  This information is recovered by merging the BAM tags from the 

unaligned BAM to the aligned reads from STAR.  We then add additional annotation to the reads that is 

dependent on the genome read, such as any genes or exons that the read overlaps.  Finally, we check for 

bead synthesis errors and repair them if possible. 

 

The next sections will explain the metadata needed to follow this workflow, as well as explain each of 

the programs that have been developed to run these steps.  Some of these programs are developed by 

us, and others take advantage of existing Picard Tools or aligners like STAR. 
 

Metadata 

To follow this set of processes from raw unaligned reads to an aligned BAM, it’s necessary to have a 

number of different metadata files.  These provide information about the sequence of the organism(s) 

you’re running your experiment on, as well as genomic features like genes,transcripts, and exons that 

help extract DGE data from the reads. 

 

We organize our metadata using a set of conventions we suggest you follow, as it makes it easier to 

keep track of what files are used for particular processes.  In the software section, we’ll refer to these 

files using these conventions. 

 

The first convention is that we establish a root name for all of our files that encodes information about 

the organism and the genome build used to derive that metadata.  For example, mm10 is the Dec. 2011 

Mus musculus assembly.  All files for mouse use this as the root name, followed by a “.”, then the type of 

file. 

 

metadata file types: 

 

● fasta: The reference sequence of the organism.  Needed for most aligners. 

● dict: A dictionary file as generated by Picard’s CreateSequenceDictionary.  Needed for Picard 

Tools. 

http://broadinstitute.github.io/picard/
https://github.com/alexdobin/STAR/releases
http://broadinstitute.github.io/picard/command-line-overview.html#CreateSequenceDictionary
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● gtf: The principle file to determine the location of genomic features like genes, transcripts, and 

exons.  Many other metadata files we use derive from this original file.  We download our GTF 

files from ensembl, which has a handy description of the file format here.  Ensembl has a huge 

number of prepared GTF files for a variety of organisms here. 
● refFlat: This file contains a subset of the the same information in the GTF file in a different 

format.  Picard tools like the refFlat format, so we require this as well.  To make life easy, we 

provide a program ConvertToRefFlat that can convert files from GTF format to refFlat for you. 

● genes.intervals: The genes from the GTF file in interval list format.  This file is optional, and 

useful if you want to go back to your BAM later to see what gene(s) a read aligns to. 

● exons.intervals: The exons from the GTF file in interval list format. This file is optional, and useful 

if you want to go back to your BAM and view what exon(s) a read aligns to.  

● rRNA.intervals: The locations of ribosomal RNA in interval list format. This file is optional, but we 

find it useful to later assess how much of a dropseq library aligns to rRNA.  

● reduced.gtf: This file contains a subset of the information in the GTF file, but in a far more 

human readable format.  This file is optional, but can be generated easily by the supplied 

ReduceGTF program that will take a GTF file as input. 

 

On the Drop-Seq website you will find a set of pre-made meta data for human, mouse and 

human/mouse experiments.  

 

Premade Meta Data links @GEO. 

MIXED  MOUSE  HUMAN  

 

MetaData Creation Programs 

A few files and required to generate meta data: a GTF file, and a fastq file.  From these two files we can 

derive various other files needed by the the Drop-seq software.  

 

CreateSequenceDictionary 

The first file needed is the sequence dictionary.  This is a list of the contigs in the fastq file and their 

lengths. 

 

java -jar /path/to/picard/picard.jar CreateSequenceDictionary  

REFERENCE=my.fasta 

OUTPUT= my.dict 

SPECIES=species_name 

 

ConvertToRefFlat 

The next file is the refFlat file, which is generated using the sequence dictionary generated above. 

 

ConvertToRefFlat  

ANNOTATIONS_FILE=my.gtf 

SEQUENCE_DICTIONARY=my.dict 

OUTPUT=my.refFlat 

http://www.ensembl.org/info/website/upload/gff.html
http://www.ensembl.org/info/data/ftp/index.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63269/suppl/GSE63269_hg19_mm10_transgenes_reference_metadata.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63472/suppl/GSE63472_mm10_reference_metadata.tar.gz
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1629193
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ReduceGTF  

The may be useful if you need an easy to parse version of your annotations in a language like R, and is 

also used to generate the other metadata. 

 

ReduceGTF  

SEQUENCE_DICTIONARY=my.dict 

GTF=my.gtf 

OUTPUT=my.reduced.gtf 

 

CreateIntervalsFiles 

As a last step, we create interval files needed for various programs in the Drop-seq pipeline.  This 

program generates a number of interval files for genes, exons, consensus introns, rRNA, and mt.  The 

example below uses the human MT contig name, but if you use a different organism you should set that 

argument appropriately. 

 

CreateIntervalsFiles 

SEQUENCE_DICTIONARY=my.dict 

REDUCED_GTF=my.reduced.gtf 

PREFIX=my 

OUTPUT=/path/to/output/files 

MT_SEQUENCE=MT 

 

MetaData Generation Pipeline 

 

We’ve provided a shell script to generate new meta data sets for single organism data in the 

distribution.  This script is called create_Drop-seq_reference_metadata.sh, and the options for the 

program can be accessed by running with the -h option: 

/path/to/dropseq_tools/create_Drop-seq_reference_metadata.sh -h 

 

Alignment Pipeline Programs 

 

On the Drop-seq website you will find a zipfile containing the programs described below.  The zipfile also 

contains a script Drop-seq_alignment.sh that executes the process described below.  Because of 

differences in computing environments, this script is not guaranteed to work for all users.  However, we 

hope it will serve as an example of how the various programs should be invoked. 

  

TagBamWithReadSequenceExtended 

This Drop-seq program extracts bases from the cell/molecular barcode encoding read 

(BARCODED_READ), and creates a new BAM tag with those bases on the genome read.  By default, we 

use the BAM tag XM for molecular barcodes, and XC for cell barcodes, using the TAG_NAME parameter. 
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This program is run once per barcode extraction to add a tag.  On the first iteration, the cell barcode is 

extracted from bases 1-12.  This is controlled by the BASE_RANGE option.  On the second iteration, the 

molecular barcode is extracted from bases 13-20 of the barcode read.  This program has an option to 

drop a read (DISCARD_READ), which we use after both barcodes have been extracted, which makes the 

output BAM have unpaired reads with additional tags.  

 

Additionally, this program has a BASE_QUALITY option, which is the minimum base quality of all bases of 

the barcode being extracted.  If more than NUM_BASES_BELOW_QUALITY bases falls below this quality, 

the read pair is discarded.  

 

Example Cell Barcode: 

TagBamWithReadSequenceExtended 

INPUT=my_unaligned_data.bam  

OUTPUT=unaligned_tagged_Cell.bam  

SUMMARY=unaligned_tagged_Cellular.bam_summary.txt  

BASE_RANGE=1-12   

BASE_QUALITY=10   

BARCODED_READ=1   

DISCARD_READ=False   

TAG_NAME=XC   

NUM_BASES_BELOW_QUALITY=1 

 

Example Molecular Barcode: 

TagBamWithReadSequenceExtended 

INPUT=unaligned_tagged_Cell.bam  

OUTPUT=unaligned_tagged_CellMolecular.bam  

SUMMARY=unaligned_tagged_Molecular.bam_summary.txt  

BASE_RANGE=13-20   

BASE_QUALITY=10   

BARCODED_READ=1   

DISCARD_READ=True   

TAG_NAME=XM   

NUM_BASES_BELOW_QUALITY=1  

 

FilterBam: 

This Drop-seq program is used to remove reads where the cell or molecular barcode has low quality 

bases.  During the run of TagBamWithReadSequenceExtended, an XQ tag is added to each read to 

represent the number of bases that have quality scores below the BASE_QUALITY threshold. These reads 

are then removed from the BAM. 

 

Example: 

FilterBam 

TAG_REJECT=XQ 

http://en.wikipedia.org/wiki/Phred_quality_score
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INPUT=unaligned_tagged_CellMolecular.bam 

OUTPUT=unaligned_tagged_filtered.bam 

 

TrimStartingSequence 

This Drop-seq program is one of two sequence cleanup programs designed to trim away any extra 

sequence that might have snuck it’s way into the reads.  In this case, we trim the SMART Adapter that 

can occur 5’ of the read.  In our standard run, we look for at least 5 contiguous bases (NUM_BASES) of 

the SMART adapter (SEQUENCE) at the 5’ end of the read with no errors (MISMATCHES) , and hard clip 

those bases off the read. 

 

Example: 

TrimStartingSequence 

INPUT=unaligned_tagged_filtered.bam 

OUTPUT=unaligned_tagged_trimmed_smart.bam  

OUTPUT_SUMMARY=adapter_trimming_report.txt  

SEQUENCE=AAGCAGTGGTATCAACGCAGAGTGAATGGG  

MISMATCHES=0  

NUM_BASES=5  

 

PolyATrimmer 

This Drop-seq program is the second sequence cleanup program designed to trim away trailing polyA 

tails from reads.  It searches for at least 6 (NUM_BASES) contiguous A’s in the read with 0 mismatches 

(MISMATCHES), and hard clips the read to remove these bases and all bases 3’ of the polyA run. 

 

Example: 

PolyATrimmer 

INPUT=unaligned_tagged_trimmed_smart.bam  

OUTPUT=unaligned_mc_tagged_polyA_filtered.bam  

OUTPUT_SUMMARY=polyA_trimming_report.txt  

MISMATCHES=0  

NUM_BASES=6 

USE_NEW_TRIMMER=true 

 

SamToFastq 

Now that your data has had the cell and molecular barcodes extracted, the reads have been cleaned of 

SMARTSeq primer and polyA tails, and the data is now unpaired reads, it’s time to align.  To do this, we 

extract the FASTQ files using Picard’s SamToFastq program.  

 

Example: 

java -Xmx4g -jar /path/to/picard/picard.jar SamToFastq  

INPUT=unaligned_mc_tagged_polyA_filtered.bam 

FASTQ=unaligned_mc_tagged_polyA_filtered.fastq 

 

http://broadinstitute.github.io/picard/command-line-overview.html#SamToFastq
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Alignment - STAR 

We use STAR as our RNA aligner.  The manual for STAR can be found here. There are many potential 

aligners one could use at this stage, and it’s possible to substitute in your lab’s favorite.  We haven’t 

tested other aligners in methodical detail, but all should produce valid BAM files that can be plugged 

into the rest of the process detailed here. 

 

If you’re unsure how to create an indexed reference for STAR, please read the STAR manual. 

Below is a minimal invocation of STAR.  Since STAR contains a huge number of options to tailor 

alignment to a library and trade off sensitivity vs specificity, you can alter the default settings of the 

algorithm to your liking, but we find the defaults work reasonably well for Drop-seq.  Be aware that 

STAR requires roughly 30 gigabytes of memory to align a single human sized genome, and 60 gigabytes  

for our human/mouse reference. 

 

Example: 

/path/to/STAR/STAR   

--genomeDir /path/to/STAR_REFERENCE   

--readFilesIn unaligned_mc_tagged_polyA_filtered.fastq   

--outFileNamePrefix star  

 

SortSam 

This picard program is invoked after alignment, to guarantee that the output from alignment is sorted in 

queryname order.  As a side bonus, the output file is a BAM (compressed) instead of SAM 

(uncompressed.) 

 

Example: 

java -Xmx4g -jar /path/to/picard/picard.jar SortSam  

I=starAligned.out.sam  

O=aligned.sorted.bam  

SO=queryname 

 

MergeBamAlignment 

This Picard program merges the sorted alignment output from STAR (ALIGNED_BAM) with the unaligned 

BAM that had been previously tagged with molecular/cell barcodes (UNMAPPED_BAM).  This recovers 

the BAM tags that were “lost” during alignment.  The REFERENCE_SEQUENCE argument refers to the 

fasta metadata file.  

 

We ignore secondary alignments, as we want only the best alignment from STAR (or another aligner), 

instead of assigning a single sequencing read to multiple locations on the genome. 

 

Example: 

java -Xmx4g -jar /path/to/picard/picard.jar MergeBamAlignment  

REFERENCE_SEQUENCE=my_fasta.fasta  

UNMAPPED_BAM=unaligned_mc_tagged_polyA_filtered.bam 

https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf
http://broadinstitute.github.io/picard/command-line-overview.html#SortSam
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ALIGNED_BAM=aligned.sorted.bam 

OUTPUT=merged.bam  

INCLUDE_SECONDARY_ALIGNMENTS=false  

PAIRED_RUN=false 

 

TagReadWithGeneExon 

This is a Drop-seq program that adds a BAM tag “GE” onto reads when the read overlaps the exon of a 

gene.  This tag contains the name of the gene, as reported in the annotations file. You can use either a 

GTF or a RefFlat annotation file with this program, depending on what annotation data source you find 

most useful. This is used later when we extract digital gene expression (DGE) from the BAM.  

 

Example: 

TagReadWithGeneExon 

I=merged.bam  

O=star_gene_exon_tagged.bam 

ANNOTATIONS_FILE=${refFlat}  

TAG=GE 

 

Updates to TagReadWithGeneExon (V2) 

We have updated and re-written how reads are tagged with functional annotations in V 2.0 of the 

dropseq toolkit.  In V1, reads received two BAM tags when a read overlapped the exon of a gene.  The 

GE tag specified the gene that overlapped the read, while GS specified which strand the gene was on. 

This information allows DigitalExpression and other programs to decide if they want to consider reads 

that are on the same strand as the gene, or run without regard to strand.  

 

A typical read on that overlaps a gene might have the following tags, indicating the read overlapped an 

exon of GENE_A, and was on the positive strand: 

 

H53FWBGXX150403:1:11307:13550:9549 0 1 29658   1 60M * 0 

0 CTGCCTTCCCCTCAAGCTCAGGGCCAAGCTGTCCGCCAACCTCGGCTCCTCCGGGCAGCC

7FFFFFFFFFFFFFFFFFFFF.FFFFFFFFFFFAFFFFFFFFFFA.FFFF<FFFFAAAAA XC:Z:TTGTCATGTCAC 

GE:Z:GENE_A XF:Z:CODING PG:Z:STAR.1 RG:Z:H53FW.1 H:i:4  NM:i:0  XM:Z:GCAAACCT   UQ:i:0 

AS:i:59 GS:Z:+ 

 

This functionality has been retained exactly as it was implemented in a newly distributed program 

TagReadWithGeneExonFunction.  We’ve done this in case other users need to retain backwards 

compatibility with any analysis they may have implemented.  

 

TagReadWithGeneFunction (replacement for TagReadWithGeneExon) 

Our replacement for TagReadWithGeneExon is TagReadWithGeneFunction.  This program provides a 

more flexible and informative set of tags for reads that allow downstream programs to measure not only 

digital expression of reads that overlap exons, but can leverage reads that introns as well.  This program 

provides 3 tags for each read, gn [gene name], gs [gene strand] and gf [gene function].  These tags can 
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have more than one value, and the values are comma separated.  These tags can also co-exist with the 

original tagger (TagReadWithGeneExon) as the tag names are different, so if you use those tags for other 

purposes, you can tag your BAM with both taggers.  

 

 

Example Invocation (The call to TagReadWithGeneFunction is the same as TagReadWithGeneExon) 

TagReadWithGeneFunction 

I=merged.bam  

O=star_gene_exon_tagged.bam 

ANNOTATIONS_FILE=${refFlat}  

 

Below is an example read using the new tagger: 
HFWN3DMXX:1:2133:1949:24283 16      1 879682  255     98M * 0       0 

AATTTCCAAAGACTTGGGGGAGTGAAGGCAGAGCCTGGTGCAGATGGACGAGGTCTGCAGACGGAGGGCAGAGGTGGTGGAAGGGGCCA

GGGGCCTGC      FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

XC:Z:CTACGTCCACATGACT   MD:Z:5T92 XF:Z:CODING PG:Z:STAR.3W RG:Z:HFWN3.1

XG:Z:SAMD11,NOC2L NH:i:1  NM:i:1  XM:Z:GAAGGATAAA UQ:i:37 AS:i:94 gf:Z:CODING,UTR gn:Z:NOC2L,SAMD11 

gs:Z:-,+ 

 

 

The gs, gn, and gf tags all have the same number of values.  They are interpreted as a trio of values that 

describe the gene the read overlaps, the strand the gene is on, and the functional annotation of the 

gene at that position.  In the example above, the read overlaps both NOC2L on the negative strand and 

completely overlaps an exon.  The read also overlaps SAMD11 on the positive strand. The read is on the 

negative strand (from the bitflag on the read of 16), so standard DGE would interpret this as expression 

of NOC2L. 

 

Example 2: 
HFWNNDMXX:2:2220:15085:21292 16      1   1661100 255 2S20M5009N76M   *       0 0 

CCGAGCCACCGCAGCCGGTCTTCTGAAAGTCACCGGGGAGATTTTCCCCATGAGGGCGTACGCCGTGACGCTCTGAAGGTGGAACAGGACT

CCGTCTG      FFFFFFFFFFFFFFFFFFF,FFFFFF:FFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFF:FFF:FFFFFFFFFFFF 

XC:Z:TCAGGATCAGCAGTTT   MD:Z:4T91 XF:Z:CODING 

 PG:Z:STAR.3O RG:Z:HFWNN.2.B  XG:Z:RP1-283E3.8,SLC35E2 NH:i:1  NM:i:1  XM:Z:ACATGCCGCG UQ:i:37 

AS:i:91 gf:Z:CODING,INTRONIC,CODING,INTRONIC    gn:Z:RP1-283E3.8,RP1-283E3.8,SLC35E2,SLC35E2 gs:Z:-,-,-,- 
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This read is a bit more “interesting”, due to the overlapping gene annotations.  Both SLC35E2 and 

RP1-283E.8 appear to share the same exon, though in different splicing contexts.  The read is mapped as 

a split read, where part of the read is gapped and splices to a different location, which is common when 

mapping exon-exon junctions.  The other part of the read appears to splice in the middle of the intron 

for both genes.  DGE will interpret this read as ambiguous, as it can be assigned to either gene.  

 

Example 3: 
HFWNNDMXX:2:2114:15917:25019 0       1 1246881 255 98M     * 0 0 

GCCCGGGTCCCAGCACCCTGGATGCCCGTCTCTGTCCCAGGCGGGATGGGGCACAGTGCAGGACACAGCCATGTACACCAAGAAGAGAGTA

CCAAGTA      F:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

XC:Z:TGCCAAAGTCGCTTTC   MD:Z:98 XF:Z:CODING PG:Z:STAR.15 

RG:Z:HFWNN.2.A  XG:Z:CPSF3L,PUSL1 NH:i:1  NM:i:0  XM:Z:GTATGATTGA UQ:i:0  AS:i:96 

gf:Z:CODING,INTERGENIC,CODING   gn:Z:CPSF3L,CPSF3L,PUSL1 gs:Z:-,-,+ 
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This read maps to two genes, CPSF3L and PUSL1.  The read is on the positive strand, as is PUSL1, so the 

read would be assigned to that gene.  If you were extracting expression on the opposite strand from the 

gene, then the read would be assigned both coding and intergenic (outside the bounds of the gene) 

portions of CPSF3L.  Since the read wasn’t assigned to only CODING+UTR portions of the transcript, 

under the standard functional types fort DGE, the read would be ignored.  Reads must be entirely 

contained within the requested functional types to be counted.  If you wanted to go wild, (and who 

doesn’t?), you could request DGE to extract the antisense transcript and include intergenic regions by 

using STRAND_STRATEGY=ANTISENSE LOCUS_FUNCTION_LIST=INTERGENIC.  That would generate a UMI for this cell 

barcode on the CPSF3L gene.  Hopefully this demonstrates the flexibility of our new approach to tagging 

reads. 

 

DetectBeadSubstitutionErrors - Detecting and repairing substitution errors in cell barcodes 

In previous chemgenes bead lots, we have observed non-random patterns of substitution changes at 

hamming edit distance=1 between pairs of barcodes that appear to be related.  Given many of these cell 

barcodes may in fact be multiple cell barcodes that reside on a single physical bead, it makes sense to 

combine the reads across these barcodes.  However, barcodes can appear to be related to each other at 

hamming distance=1 by chance due to sequencing/PCR errors, or because we sample a significant 

subset of the total available cell barcode space and happen to observe two barcodes that are truly 

independent, but very similar in sequence.  The challenge is to combine related cell barcodes together 

that have arisen from the same bead, while avoiding capricious collapse of other pairs of cell barcodes 

that are related by chance. 

  

Errors that occur at the synthesis level ought to be systemic - the same barcode position and base 

substitution pattern from an intended sequence to a related sequence (for example: position 5 of many 

cell barcodes change from A to C) should be consistent across an entire experiment at some substitution 

rate.  The higher the rate of substitution, the more frequently the related sequence will be observed.  To 

determine where these events take place, we survey the set of cell barcodes with at least 20 transcripts, 

and exhaustively look for pairs of barcodes that are related at hamming distance=1.  For each pair of 

barcodes, we assume the more frequently observed barcode to be the "intended" sequence.  We filter 

pairs of barcodes so that smaller barcodes are unambiguously related to one and only one intended 

sequence. By building up this set of barcodes, we can observe patterns in the substitution events that  

are biased to certain bases and positions in the synthesis reaction. 
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The X axis describes the position of the substitution and the intended base. The color of the stacked 

column indicates the base that is substituted at that position.  

  

There are clear patterns of substitution events that occur in the data above at some positions, as well as 

a lower level of stochastic changes that occur at every position.  By looking for a dominant base change 

(>80% of events) at each position and intended sequence, a subset of all possible base substitution 

events can be selected.  In this case, there are A->C substitution events at bases 1,2,3,4,5,9,12.  We 

select barcodes that contain these specific substitution bases and positions to perform repair at.  We 

remove the smaller neighbors that are related to multiple intended sequences, or do not fit the 

substitution pattern observed above.  These patterns are discovered on an experiment by experiment 

basis as part of the cleanup process. 

 

These results are repeatable across many experiments using the same bead lot, and differ across bead 

lots. 

 

Example: 

DetectBeadSubstitutionErrors 

I=my.bam 

O=my_clean_subtitution.bam 

OUTPUT_REPORT=my_clean.substitution_report.txt 
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DetectBeadSynthesisErrors - Detecting and repairing barcode indel synthesis errors 

In June 2015, we noticed that a recently purchased batch of ChemGenes beads generated a population 

of cell barcodes (about 10-20%) with sequences that shared the first 11 bases, but differed at the last 

base.  These same cell barcodes also had a very high percentage of the base “T” at the last position of 

the UMI.  Based on these observations, we concluded that a percentage of beads in the lot had not 

undergone all twelve split-and-pool bases (perhaps they had stuck to some piece of equipment or 

container, and the been re-introduced after the missing synthesis cycle).  Thus, the 20-bp Read 1 

contained a mixed base at base 12 (in actuality, the first base of the UMI) and a fixed T-base at base 20 

(in actuality, the first base of the polyT segment). 

 

To correct for this, we generated DetectBeadSynthesisErrors, which identifies cell barcodes with 

aberrant “fixed” UMI bases.  If only the last UMI base is fixed as a T, the cell barcode is corrected (the 

last base is trimmed off) and all cell barcodes with identical sequence at the first 11 bases are merged 

together.  If any other UMI base is fixed, the reads with that cell barcode are discarded. 

 

UPDATE 

More recently (Fall 2017), we observed that it was possible to not only discover cell barcodes where the 

UMIs were biased to T at the last base, but in many cases to discover what the original barcode 

sequence was.  During synthesis, these incorporation errors often occur incompletely - a base is missing 

at a certain position, and elsewhere in the experiment, it’s possible to recover the original “intended” 

sequence as another cell barcode where the UMIs do not experience the T bias, and the 2 cell barcodes 

are related by a 1 base pair insertion/deletion event.   The intended sequence has 4 “neighbor” 

barcodes at an indel distance of 1 (and if they have few UMIs, not all 4 neighbors will be detected), and 

those neighbors are all related to each other by a substitution edit distance of 1 at the last base of their 

sequence.. Each of these neighbors also has high T bias at the last base of their UMIs.  By looking at the 

number of UMIs observed by the intended and neighbor sequences, it’s possible to calculate the rate at 

which the base was not incorporated into the sequence.  For example, if the intended sequence is quite 

small, and the neighbors are relatively large, then the base was not incorporated at a high rate. 

 

This allows us to validate which UMI biased cell barcodes should properly be merged into an intended 

sequence, which is a more stringent repair process than what we’d previously employed.  Because of 

this, we’ve removed the requirement to estimate the number of cells in the experiment.  We repair all 

cell barcodes with at least 20 UMis. 

 

Below is an example of a few intended sequence / neighbor barcodes and their relationships.  When this 

software is run, these parameters (and many others) are emitted as a result.  The neighbor sequences  

are colon separated.  
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Example Intended Sequence Neighbor Sequences Deleted 
base 

Deleted base 
position 

Non incorporation 
rate 

1 TGATGCACGAGG TGATCACGAGGA:TGATCACGAGGC:

TGATCACGAGGG:TGATCACGAGGT 

G 5 0.01 

2 CTCCGAACTGCC CTCCGAACGCCA:CTCCGAACGCCC:

CTCCGAACGCCG:CTCCGAACGCCT 

T 9 0.95 

3 CCCTCGTTAGAT CCTCGTTAGATA:CCTCGTTAGATC:

CCTCGTTAGATT 

C 3 0 

4 <NA> CCCGCAGCTTGA:CCCGCAGCTTGC:

CCCGCAGCTTGG:CCCGCAGCTTGT 

<NA> <NA> <NA> 

 

1. An intended sequence where all 4 neighbors are discovered.  Non-incorporation rate is low, so 

the intended cell barcode has many UMIs relative to the neighbor cell barcodes. 

2. An intended sequence where all 4 neighbors are discovered.  Non-incorporation rate is high, so 

the intended cell barcode has few UMIS relative to the neighbor cell barcodes. 

3. Only 3 neighbors are discovered.  Fewer than 4 neighbors being discovered can occur when the 

neighbors have ~ 25 UMIs (the smallest cell barcode we look at is 20), and one of the neighbors 

has fewer UMIs so is not reported.  The missing sequence is CCTCGTTAGATG, as A/C/T are 

found. 

4. 4 related neighbors are found, but the intended sequence is not discovered.  This occurs when 

the base non-incorporation rate is very high , and occurs in almost every copy of the barcode on 

the bead.   Because the intended sequence is not discovered, the other properties can not be 

determined. 

 

Example: 

DetectBeadSynthesisErrors 

I=my_clean_subtitution.bam 

O=my_clean.bam 

REPORT=my_clean.indel_report.txt 

OUTPUT_STATS=my.synthesis_stats.txt 

SUMMARY=my.synthesis_stats.summary.txt 

PRIMER_SEQUENCE=AAGCAGTGGTATCAACGCAGAGTAC 

 

This program reads in the BAM file, and looks at the distribution of bases at each position of all UMIs for 

a cell barcode.  It detects unusual distributions of base frequency, where a base with >=80% frequency 

at any position is detected as an error.  Barcodes with less than 20 total UMIs are ignored.  There are a 

number of different errors that are categorized: 

 

1. SYNTHESIS_MISSING_BASE - 1 or more bases missing from cell barcode, resulting in fixed T’s at 

the end of UMIs.  This counts the maximum number of fixed sequential T’s in the UMIs at the 

end.  This error type is cleaned up by the software for situations where there is a single base 
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missing, and is by far the most common error.  The fix involves inserting an “N” base before the 

last cell barcode base, effectively shifting the reading frame back to where it should be.  This will 

both collapse these beads back together in further analysis, as well as repair the UMIs for these 

bead barcodes.  [Note as of V2, we no longer insert an N into sequences to repair them if 

we’re able to determine the intended sequence.  In those cases we use the intended sequence 

instead.] 

 

2. SINGLE_UMI_ERROR - At each position of the UMIs, the base distribution is highly skewed, i.e. at 

each position, a single base appears in >= 80% of the UMIs for that cell.  There’s no fix for this 

currently.  Cell barcodes with this property are dropped.  These cells have the interesting 

property that the number of genes and transcripts are at a close to 1:1 ratio, as there’s generally 

only 1 UMI for every gene. 

 

3. PRIMER_MATCH - Same as SINGLE_UMI_ERROR, but in addition the UMI perfectly matches one 

of the PCR primers.  These cell barcodes are dropped.  These errors are only detected if a 

PRIMER_SEQUENCE argument is supplied. 

 

4. 4) OTHER - UMIs are extremely skewed towards at least one base (and not T at the last base), 

but not at all 8 positions.  These cell barcodes are dropped. 

 

The file my.synthesis_stats.txt contains a bunch of useful information: 

1. CELL_BARCODE - the 12 base cell barcode 

2. NUM_UMI - the number of total umis observed 

3. FIRST_BIASED_BASE - the first base position where any bias is observed.  -1 for no detected bias 

4. SYNTH_MISSING_BASE - as #3 but specific to runs of T’s at the end of the UMI 

5. ERROR_TYPE - see error type definitions above 

6. For bases 1-8 of the UMI, the observed base counts across all UMIs.  This is a “|” delimited field, 

with counts of the A,C,G,T,N bases. 

 

The file my.synthesis_stats.summary.txt contains a histogram of the SYNTHESIS_MISSING_BASE errors, 

as well as the counts of all other errors, the number of total barcodes evaluated, and the number of 

barcodes ignored. 

 

End of Alignment 

At this point, the alignment is completed, and your raw reads have been changed from paired reads to 

single end reads with the cell and molecular barcodes extracted, cleaned up, aligned, and prepared for 

DGE extraction. 
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Going with the flow - using Unix pipes to simplify alignment  

If you’re on a Unix or OS X operating system, you may be familiar with pipes.  Drop-seq programs extend 

the Picard API, and so like Picard are able to use pipes to redirect output from one program to the next. 
Why is this useful?  It’s a little bit faster, but more importantly it saves a significant amount of disk space 

by not generating a large number of temporary files, as the examples above have.  It also simplifies 

writing pipelines, as there are fewer named files - intermediate data flows through the pipeline without 

being saved.  The tradeoff is that executing several programs in a pipeline requires more RAM and more 

processing power, so if your computer does not have a lot of RAM and lots of processors, this might not 

be useful. 

 

There are some limitations to the amount of pipelining that can be done, because some files must be 

read more than once, and because STAR does not have the ability to write to standard output.  The 

following steps may be pipelined: 

● Pre-alignment tagging and trimming.  The final result of these steps must be saved to be input to 

both SamToFastq and MergeBamAlignment. 

○ TagBamWithReadSequenceExtended (one or more times) 

○ FilterBam 

○ TrimStartingSequence 

○ PolyATrimmer 

● Alignment (STAR does not support output to a pipe): 

○ SamToFastq 

○ STAR 

● Merging and tagging aligned reads: 

○ MergeBamAlignment 

○ TagReadWithGeneFunction 

The bead-repair programs make multiple passes over the input so they can't be pipelined. 

 

 

Overview of DGE extraction 

http://en.wikipedia.org/wiki/Pipeline_%28Unix%29
http://sourceforge.net/p/picard/wiki/Main_Page/#q-can-picard-programs-read-from-stdin-and-write-to-stdout
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To digitally count gene transcripts, a list of UMIs in each gene, within each cell, is assembled, and UMIs 
within edit distance = 1 are merged together.  The total number of unique UMI sequences is counted, 
and this number is reported as the number of transcripts of that gene for a given cell. 
 

Digital Gene Expression 

Extracting Digital Gene Expression (DGE) data from an aligned library is done using the Drop-seq 

program DigitalExpression.  The input to this program is the aligned BAM from the alignment workflow. 

There are two outputs available: the primary is the DGE matrix, with each a row for each gene, and a 

column for each cell.  The secondary analysis is a summary of the DGE matrix on a per-cell level, 

indicating the number of genes and transcripts observed.  

 

Primary Output Example: 

GENE ATCAGGGACAGA    AGGGAAAATTGA    TTGCCTTACGCG    TGGCGAAGAGAT    TACAATTAAGGC 

LOXL4 0 0 0 0 0 

PYROXD2 1 0 1 1 0 

HPS1 23 12 9 8 3 

CNNM1 0 2 1 0 0 

GOT1 22 6 7 9 3 

 

Summary Output Example: 

CELL_BARCODE NUM_GENES    NUM_TRANSCRIPTS 

ATCAGGGACAGA 12128 232831 

AGGGAAAATTGA 12161 185418 

TTGCCTTACGCG 10761 173547 

TGGCGAAGAGAT 10036 108545 

TACAATTAAGGC 9889 99771 

CTAAGTAGCTTT 9244 91563 

 

Long output Example (new for V2): 

CELL GENE UMI_COUNT 

ATCAGGGACAGA HPS1 23 

ATCAGGGACAGA GOT1 22  

ATCAGGGACAGA PYROXD2 1 

AGGGAAAATTGA HPS1 12 

AGGGAAAATTGA GOT1 6 

 

This file is ordered by the list of cell barcodes (input cell barcode file or based on number of reads per 

cell), then the number of UMIs per gene, then alphabetically by gene when they have the same number 

of UMIs.  There are no entries when a cell does not have expression of a gene. 

 

DGE Extraction Options: 

There are a large number of options in the DGE program, as we’ve performed large amounts of 

experimentation with the outputs to this program.  Most of these parameters have default settings, and 
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are the correct setting for a standard Drop-seq experiment.  Outlined below are some of the parameters 

that you might change. 

 

READ_MQ The minimum map quality of a read to be used in the DGE calculation.  For aligners like STAR, 

the default (10) is higher than what’s needed to eliminate all multi-mapping reads.  If you use a different 

aligner, you might want to set a different threshold. 

 

EDIT_DISTANCE.  By default we collapse UMI barcodes with a hamming distance of 1. 

 

RARE_UMI_FILTER_THRESHOLD This is an implementation of the rare UMI filter implemented by Islam, 

et al.  We leave this off by default, and use edit distance collapse instead.  If desired, one can set 

EDIT_DISTANCE=0 and enable this filter instead at some threshold, like 0.01.  

 

Options for selecting sets of cells 

When running DGE, we don’t select every cell barcode observed.  This is because the aligned BAM can 

contain hundreds of thousands of cell barcodes; most reads will be on either STAMPs (beads exposed to 

a cell in droplets) or “empties” (beads that were exposed only to ambient RNA in droplets).  There will 

also be a lot of cell barcodes with just a handful of reads.  Because a huge matrix might be difficult to 

work with, these options limit the number of cell barcodes that are emitted by DGE extraction.  You 

must use one of these options. 

 

MIN_NUM_GENES_PER_CELL.  DigitalExpression runs a single iteration across all data, and selects cells 

that have at least this many genes. 

 

MIN_NUM_TRANSCRIPTS_PER_CELL.  DigitalExpression runs a single iteration across all data, and 

selects cells that have at least this many transcripts.  (Finally bugfixed and working in V2.0.0!) 

 

NUM_CORE_BARCODES.  DigitalExpression counts the number of reads per cell barcode (thresholded by 

READ_MQ), and only includes cells that have at least this number of reads. 

 

CELL_BC_FILE.  Instead of iterating over the BAM and discovering what cell barcodes should be used, 

override this with a specific subset of cell barcodes in a text file.  This file has no header and a single 

column, containing one cell barcode per line.  Since this option doesn’t have to iterate through the BAM 

to select barcodes, DGE extraction is significantly faster when using this option. 

 

Functional annotations and strand selection, NEW for V2.0.0:  

Along with the changes to how reads are tagged with functional annotations, DGE and similar programs 

are now able to extract these enhanced sets of tags.  There are two main parameters to use: 

 

STRAND_STRATEGY:  
The strand strategy decides which reads will be used by analysis based on the strand of the read and the 

strand of the gene.  The SENSE strategy requires the read and annotation to be on the same strand.  The 

http://www.nature.com/nmeth/journal/v11/n2/abs/nmeth.2772.html
http://www.nature.com/nmeth/journal/v11/n2/abs/nmeth.2772.html
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ANTISENSE strategy requires the read and annotation to be on opposite strands.  The BOTH strategy is 

permissive, and allows the read to be on either strand. 

 

LOCUS_FUNCTION_LIST:  
This is a list of functional annotations that should be used to include reads in analysis.  The default is 

include reads in DGE analysis where the read entirely overlaps the CODING and UTR portions of a gene. 

This is slightly more conservative than DGE V1, which allowed reads that only partially overlap an exon 

to be counted.  Changing the list of annotations allows for different sorts of expression data to be 

extracted.  

 

Example: 

In this example, we extract the DGE for the top 100 most commonly occurring cell barcodes in the 

aligned BAM, using CODING+UTR regions on the SENSE strand. 

 

DigitalExpression 

I=out_gene_exon_tagged.bam 

O=out_gene_exon_tagged.dge.txt.gz 

SUMMARY=out_gene_exon_tagged.dge.summary.txt 

NUM_CORE_BARCODES=100 

 

Example INTRONIC+CODING: 

If you want to simply add additional annotations to CODING+UTR, specifying LOCUS_FUNCTION_LIST 

adds to the list.  For example, we add intronic expression, and coding is already specified as the default. 

 

DigitalExpression 

I=out_gene_exon_tagged.bam 

O=out_gene_exon_tagged.dge.txt.gz 

SUMMARY=out_gene_exon_tagged.dge.summary.txt 

NUM_CORE_BARCODES=100 

LOCUS_FUNCTION_LIST=INTRONIC. 

 

Example INTRONIC ONLY: 

There’s a bit of a “gotcha” in how this is specified by to the program (this comes from the Picard’s API 

for command line argument interpretation.)  If you want to specify INTRONIC only expression, you first 

need to clear the list of functional annotations by giving a value of null, then add your additional values: 

 

DigitalExpression 

I=out_gene_exon_tagged.bam 

O=out_gene_exon_tagged.dge.txt.gz 

SUMMARY=out_gene_exon_tagged.dge.summary.txt 

NUM_CORE_BARCODES=100 

LOCUS_FUNCTION_LIST=null LOCUS_FUNCTION_LIST=INTRONIC. 
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Cell Selection 

A key question to answer for your data set is how many cells you want to extract from your BAM.  One 

way to estimate this is to extract the number of reads per cell, then plot the cumulative distribution of 

reads and select the “knee” of the distribution.  

 

We provide a tool to extract the reads per cell barcode in the Drop-seq software called 

BAMTagHistogram.  This extracts the number of reads for any BAM tag in a BAM file, and is a general 

purpose tool you can use for a number of purposes.  For this purpose, we extract the cell tag “XC”: 

 

 

Example: 

BAMTagHistogram 

I=out_gene_exon_tagged.bam 

O=out_cell_readcounts.txt.gz 

TAG=XC 

 

Once we run this program, a little bit of R code can create a cumulative distribution plot.  Here’s an 

example using the 100 cells data from the Drop-seq initial publication (Figures 3C and 3D): 

 

a=read.table("100cells_numReads_perCell_XC_mq_10.txt.gz", header=F, stringsAsFactors=F) 

x=cumsum(a$V1) 

x=x/max(x) 

plot(1:length(x), x, type='l', col="blue", xlab="cell barcodes sorted by number of reads [descending]", 

ylab="cumulative fraction of reads", xlim=c(1,500)) 
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` 

 

In this example, the number of STAMPs are the number of cell barcodes to the left of the inflection 

point; to the right of the inflection point are the empty beads that have only been exposed to ambient 

RNA.  Figure S3A of Macosko et al., 2015 provides additional justification and explanation for how we 

identify the number of cells sequenced. 

 

Mixed-species plots 

 

To create the mixed species plots used in the paper, we suggest the following steps: 

 

1. Align your data to a mixed species reference.  There is metadata at the bottom of one of the 

pages of our GEO submission  

2. Determine how many cells are in your BAM.  See Cell Selection in this document and the 

BAMTagHistogram program.  Put that list of cell barcodes in a file that has a single column of cell 

barcodes, 1 per line. 

3. At this point, if you are using our human/mouse metadata, your BAM has chromosomes that are 

prepended with HUMAN or MOUSE, i.e.: HUMAN_11.  Filter your BAM into 2 organism specific 

BAMs using FilterBam with the argument REF_SOFT_MATCHED_RETAINED=HUMAN or 

REF_SOFT_MATCHED_RETAINED=MOUSE (this is about as fancy as running grep on your BAM.) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63269
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4. Run DigitalExpression on each organism specific BAM with the CELL_BC_FILE argument, using 

the file generated in step #2. 

5. You now have two summary files that have the number of genes/transcripts contained by each 

cell, in an organism specific manner.  Merge them into one file and plot. 

 

Conclusion 

 

With successful execution of our software you have hopefully transformed a pile of hundreds of millions 

of sequence reads into a digital expression matrix that has genome-wide expression measurements 

(digital counts) for each gene in each individual cell.  

 

What to do next?  We expect analysis of massive single-cell expression data to become a lively field.  We 

think very highly of the Seurat package developed by our colleague Rahul Satija.  We used Seurat to 

perform all of the downstream analyses (cell clustering, etc) in the Cell paper.  Seurat is available on 

Rahul’s web site (http://www.satijalab.org/seurat.html), where Rahul will also have protocols for the 

specific analyses in the paper 

 

But what if everything doesn’t go perfectly? 

 

One of the big challenges with releasing a new software toolkit to the world is that people will always do 

things you didn’t anticipate, with data sets you never imagined.  While we feel the Drop-seq software 

produces the computationally correct (at least to our intentions) answers, it’s possible that you will 

discover a bug, or documentation of a particular software parameter will be unclear.  

 

If you find part of this document unclear, let us know and we’ll do our best to update it and add clarity. 

If parameters of our software have unclear documentation, let us know which ones are unclear, and 

we’ll do our best to buff up those descriptions. 

 

If you run into software behavior you think is a bug, then you can help to be part of the solution.  To do 

this, you’ll need to give us the following information 

 

● The program you were running, and the exact command line arguments you supplied to that 

program 

● The console output of the program invocation 

● A small test data set that can replicate the problem you observed 

● The behavior that you think was faulty, and if possible what you expected to see.  This can be 

very useful when a computation produces an answer that doesn’t make sense. 

● We have a public githib repository at https://github.com/broadinstitute/Drop-seq.  If you’re a 

programmer, you can submit pull requests to us to fix bugs or add additional capabilities. 

http://www.satijalab.org/seurat.html
https://github.com/broadinstitute/Drop-seq

