

Document id Title Organisation / Author (mvdXML1.2) Date Status

P9-002 ###

mvdXML specification 1.2 Matthias Weise, Andreas Geiger, Sergej Muhic 2021-07-02 Draft

Copyright © buildingSMART International Ltd. 2011-21

mvdXML

Specification of a standardized format to define and exchange

Model View Definitions with Exchange Requirements and Validation Rules

Developed by

Technical Services of buildingSMART International Ltd.

Authors

Chipman, Tim; Liebich, Thomas; Weise, Matthias;

Geiger, Andreas; Muhic, Sergej

Version 1.2 (Draft)

23. 09. 2021

Page no. Authors

2 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Document history

Version Change description Date

1.2

(Draft)

Schema changes (a more detailed change log is provided in the XSD)

▪ update namespace for mvdXML to match with new buildingSMART URL for technical

specifications

▪ update IFC schemaName for available and future IFC releases following the new

schema name pattern

▪ RuleMessages (user defined messages) added to TemplateRule, TemplateRules,

Constraint and Applicability

▪ ModelView: Views added to enable nesting of model views

▪ Precision setting added for comparison of floating-point numbers (globally on

DefaultSettings and locally on Constraints and TemplateRule)

▪ TemplateRule: negation attribute added, TemplateRules: NOT removed from operator

attribute (more consistent use of negation)

▪ TemplateRule/TemplateRules:Applicability added (enable to add conditions to

expressions)

▪ DefaultSettings: new element (default settings for precision and units)

▪ ConceptRoot: Specializations, Specialization added (for controlling reuse and

inheritance)

▪ Applicability: minOccurrence, maxOccurrence attribute added (for checking existence

and conditional statements),

▪ various changes to min/maxOccurs, e.g. to be able to use multiple ConceptTemplates in

a Concept configuration

▪ DefaultSettings added (enable to integrate ifcXML-based unit settings)

▪ use of GenericReference harmonized and extended

A few features from an early draft are still included in this draft, but may not be included in

the final version. This includes TemplateRule.Requirements, TemplateRule.Order and

TemplateRule.Usage added.

Grammar changes

▪ introduce revised version based on adjustments for better compatibility for

ANTLR parser

▪ add negation (NOT) for boolean terms

▪ add parameter SELF

Documentation

▪ add introduction with overview about motivation and changes between

mvdXML 1.1 and 1.2

▪ extended examples sections for explaining new features and changes

▪ fully updated documentation section

2021-07-02

1.1 Add 1 Schema changes

▪ concept.TemplateRules changed from mandatory to optional - It is allowed to have

concepts without further configuration via template rules. In that case it is expected that

the referenced concept template validates to true.

Documentation

▪ documentation updated and improved

2016-07-15

1.1 Final Schema extensions

▪ namespace updated to: http://buildingsmart-tech.org/mvd/XML/1.1

▪ RuleId - new simple type to restrict EntityRule.Reference.@IdPrefix, EntityRule.@RuleId

and AttributeRule.@RuleId

2016-02-15

mailto:EntityRule.@RuleId
mailto:AttributeRule.@RuleId

Page no. Authors

3 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Version Change description Date

▪ EntityRule.Reference.@IdPrefix - changed to RuleId (was normalizedString)

▪ EntityRule.@RuleId - changed to RuleID (was normalizedString)

▪ AttributeRule.@RuleId - changed to RuleID (was normalizedString)

▪ Copyright – changed to normalizedString (was anyURI)

Documentation

▪ examples updated to the latest grammar

▪ documentation updated and improved

1.1 RC Schema extensions

▪ EntityRule.References.Template - new element that allows to reference other templates

as partial templates, it allows to reuse common, smaller ConceptTemplate definitions

▪ EntityRule.References.Template.@ref - reference to the partial template by uuid

▪ EntityRule.References.@IdPrefix - an optional prefix for the RuleId name, used to

prevent ambiguous RuleId, if the same partial template is referenced twice in a concept

template tree

▪ Concept.TemplateRules - new element and tree structure to define a logical tree (with

Boolean operators) to combine several template rules

▪ ConceptRoot.Applicability - new element to check, whether the instance of the

applicableRootEntity is applicable, allows for more conditions (like certain property

values)

▪ ConceptTemplate.@applicableSchema - defined as a list of extensible enumeration of

standard IFC schema identifiers, or any other schema name.

▪ ModelView.@applicableSchema – defined as a single string, being an extensible

enumeration of standard IFC schema identifiers, or any other schema name

▪ TemplateRules – new element that is declared in a recursive way, allowing other

TemplateRules, or individual TemplateRule as child elements. It allows to establish a

Boolean tree, where at each TemplateRules a logical operator is defined,

▪ TemplateRules.@operator – new attribute that defines the logical operator to combine

the logic results of its children,

▪ Requirement.@requirement – enhancement of the enumerators to include

recommended, not-relevant (was “not relevant” and “optional”) and not-recommended.

Schema changes - strict version: removed, transitional version: deprecated

▪ AbstractRule - abstract element and complexType removed, attributes moved to

AttributeRule and EntityRule

▪ ConceptTemplate.Rules - restricted to AttributeRule, was an agreement in V1.0, now

enforced by schema

▪ AttributeRule.@Cardinality - removed: this attribute shall not be used to impose a

restriction on the cardinality, restrictions are all handled by template rules

▪ EntityRule.@Cardinality - removed: this attribute shall not be used to impose a

restriction on the cardinality, restrictions are all handled by template rules

▪ EntityRule.EntityRules - removed: There is no usage for an EntityRule to directly contain

other EntityRules, without an intermediate AttributeRules

▪ ConceptRoot.Requirements - removed: requirements are only valid for concepts, not for

a root concept

▪ Concept.Definition – unified the whole schema to have Definition being always the first

element in a sequence

▪ Concept.Rules - removed: AttributeRules and EntityRules at this level are not legal,

replaces by TemplateRules that only allow TemplateRule, and Boolean logic, the old

Rules structure did not allow for logical combinations of individual rules, other than by

the implied AND combination

2015-08-18

Page no. Authors

4 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Version Change description Date

▪ Concept.SubConcepts - removed/deprecated: the inclusion of SubConcepts has no

functionality so far, in order to reduce complexity it should not be used, concepts should

be flat

▪ Cardinality - simple type removed/deprecated, not used any more in AttributeRule or

EntityRule

▪ ModelView.Definition – unified the whole schema to have Definition being always the

first element in a sequence

1.1 beta First revision of mvdXML with following corrections, changes and clarifications:

Schema extensions:

▪ cardinality attribute of AttributeRule and EntityRule extended to support definition of any

min and max settings

▪ BaseConcept and Override attribute added to Concept

▪ tags attribute added to Definitions

Rule grammar:

▪ mvdXML 1.1 beta provides a grammar for defining constraints to simplify rule parsing

and to enable logical “or” combination of rules

Schema improvements:

▪ new complex type GenericReference (used by ModelView and Concept)

▪ simplified definition of EntityRule and TemplateRule

▪ definition of applicability attribute changed for ExchangeRequirement and Requirement

▪ minOccurs changed from 1 to 0 for ModelView.Roots and mvdXML.Templates

▪ maxOccurs added to several definitions, mainly for clarification

▪ definition and use of applicability (was xs:attribute is now xs:simpleType)

▪ ConceptTemplate.applicableSchema changed to a list of String types

▪ ConceptRoot.applicableRootEntity now mandatory

Improved and extended documentation:

▪ Use of sub-templates and sub-concepts clarified

▪ Several improvements and corrections

2013-11-01

1.0 Final release of mvdXML. Accepted by bSI ITM committee as the official buildingSMART

specification for publishing Model View Definitions

▪ NOTE This release does not yet focus on model validation

2012-05-14

0.9.4 The following changes were made in this draft:

▪ EntityRule.EntityRules added for indicating subtype rules.

2012-05-11

0.9.3 The following changes were made in this draft:

▪ ModelView.BaseView added for indicating add-on views.

▪ ExchangeRequirement.applicability attribute added.

▪ ConceptTemplate.ApplicabileEntities renamed to ApplicableEntity.

2012-05-07

0.9.2 The following changes were made in this draft:

▪ ConceptLeafNode was renamed to Concept, with SubConcepts added.

▪ ApplicableSchema attributes use string instead of enumeration for version flexibility.

▪ Cardinality includes “_asSchema” to indicate default cardinality.

2012-04-20

0.9.1 Combined mvdXML schema proposal incorporating the original mvdXML 0.5 with the

proposed phase 2 extension, several simplifications:

▪ The ConceptNode entity was deleted.

▪ The Concept abstract entity was deleted, since ConceptNode was deleted, where the

only attribute was moved to the subtype ConceptLeafNode.

2012-03-27

Page no. Authors

5 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Version Change description Date

▪ The ConceptRootNode Category attribute was deleted

0.8 Proposal for phase 2 of a formal mvdXML format: Mapping of MVD concepts to IFC

definitions as appendix to mvdXML 0.5

2011-05-20

0.5 First buildingSMART release, no other changes of content 2011-06-19

0.4 Public release, first release after acceptance of mvdXML by buildingSMART ITM group,

following changes have been made:

Incorporation of the formally defined (IFC) schema, that describes the formal subschema

corresponding to the Model View Definition.

Minor changes as result of first prototype developments.

2011-05-05

0.3 Public release, incorporating feedback from buildingSMART MSG

Restructuring of document content, adding MVD history.

Adding general objectives, motivation and relation to MVD methodology.

Minor corrections in XSD Version 0.3 (key/keyref and href for Definition).

2011-03-04

0.2 Restricted release to buildingSMART MSG and TechCom, XSD Version 0.2 2011-02-16

0.1 Internal release, XSD version 0.1 2011-02-07

Page no. Authors

6 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Table of Content

0 Foreword ... 9

1 Overview ... 11

1.1 Purpose .. 11

1.2 Methodology ... 11

1.3 Usage ... 12

2 Schema .. 13

2.1 Quick overview .. 13

2.2 Simple example .. 18

3 Description of mvdXML schema elements and types ... 23

3.1 mvdXML ... 23

3.2 Concept Template .. 23

3.2.1 Attribute Rule ... 24

3.2.2 Entity Rule ... 25

3.2.3 Constraint ... 26

3.3 Model View .. 26

3.3.1 Exchange Requirement ... 27

3.3.2 Concept Root .. 28

3.3.3 Applicability .. 29

3.3.4 Concept ... 29

3.3.5 Requirement ... 30

3.3.6 TemplateRules .. 31

3.3.7 TemplateRule .. 32

3.3.8 RuleMessage ... 34

3.4 Common type and attribute definitions .. 34

3.4.1 Identity .. 34

3.4.2 Definition .. 35

3.4.3 Body .. 35

3.4.4 Link .. 36

3.4.5 GenericReference ... 36

4 Rule Grammar ... 38

5 mvdXML Use Cases .. 44

5.1 MVD Documentation ... 44

5.2 Specification of subset schemas .. 44

5.3 Data Filtering ... 45

5.4 Data Validation .. 45

6 Glossary .. 46

6.1 ER ... 46

6.2 ERM .. 46

6.3 MVD ... 46

7 Examples ... 47

Page no. Authors

7 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

7.1 Example for MVD documentation ... 47

7.2 Examples for MVD validation... 53

7.2.1 Checking IFC Properties on load bearing, external walls .. 54

7.2.2 Checking existance of objects with error messages ... 61

7.2.3 Use of SELF expression for defining exception from list of subtypes ... 61

7.2.4 Combination of ConceptTemplate .. 62

7.2.5 Check existence of a particular information for all material layers .. 63

7.2.6 Adding information about precision and units ... 65

8 XSD Listing ... 67

Page no. Authors

8 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Table of Figures

Figure 1: Basic structure of the mvdXML schema .. 13

Figure 2: main mvdXML elements for ConceptTemplate ... 14

Figure 3: main mvdXML elements for ModelView ... 17

Figure 4: HTML documentation of IFC4 ... 44

Figure 5: Graphical representation of the concept template “Nesting” .. 47

Figure 6: graphical representation of the concept template “port nesting” ... 48

Figure 7: rendering of HTML tables to document the exchange requirements for the different ports 48

Figure 8: graphical representation of the usage of concept “port-nesting” at the root concept

IfcHeatExchanger.. 49

Table of Tables

Table 1: Common element references defined in the element mvdXML. ... 23

Table 2: Common attributes and element references defined in the element ConceptTemplate. 24

Table 3: Common attributes and element references defined in the element AttributeRule. 25

Table 4: Common attributes and element references defined in the element EntityRule. 26

Table 5: Common attributes defined in the element Constraint. .. 26

Table 6: Common attributes and element references defined in the element ModelView. 27

Table 7: Common attributes defined in the element ExchangeRequirement. .. 28

Table 8: Common attributes and element references defined in the element ConceptRoot. 28

Table 9: Common element references defined in the element Concept. .. 30

Table 10: Common element references defined in the element Requirement. .. 31

Table 11: Common attributes defined in the element TemplateRules. ... 32

Table 12: Truth table for operator attribute .. 32

Table 13: Common attributes defined in the element TemplateRule. .. 33

Table 14: Common attributes defined in the attributeGroup identity. ... 35

Table 15: Common element references defined in the element Definition. ... 35

Table 16: Common attributes defined in the element Body. ... 36

Table 17: Common attributes defined in the element Link. .. 36

Table 18: Common attributes defined in the complex type GenericReference. .. 37

Table 19: Description of metric values. .. 43

Table 20: Description of operators. .. 43

Table 21: Description of operators that can be applied to different data types. 43

Page no. Authors

9 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

0 Foreword

This document describes an update of mvdXML 1.1 based on experiences coming from the use of

mvdXML for the IFC documentation, software certification and check of exchange requirements. It is a

minor update with few changes to the schema and the rule grammar. Improvements are addressing the

following points:

• Improve the check of floating-point numbers and measurements by allowing to define precision

settings and to specify the unit of the given value. An example is given in chapter 7.2.6.

• Enable to check existence of objects and not only the data that is attached to objects. This feature

enables to state that a particular instance or object type must be included once or more in the IFC

data set. An example is given in chapter 7.2.2.

• An important design principle of mvdXML is the use of templates describing a particular

fundamental IFC functionality. Such templates are later configured to reflect implementer

agreements or to encode specific model checks. It is an essential part of the IFC documentation

but also of the model checking. So far, the use was limited to the configuration of one template only

so that any new combination of fundamental IFC functionalities was leading to the definition of a

new template. With the new version it is now possible to combine different templates to avoid the

need to create new templates. This enables to remove all “overriding” templates, which were

necessary to check alternatives. It also offers the possibility to further standardize basic IFC

features to be published as configurable ConceptTemplates. An example is given in chapter 7.2.4.

• Enable to add error messages to checking rules. Such error messages are multilingual and will

improve feedback in case of failed model checks. An example is given in chapter 7.2.2.

• Check of exchange requirements are mainly testing that some information exists for a given object

type. For instance, a property called “FireRating” must exist within the set of properties. Such global

existence check does not allow to express existence for each element within a set of objects. Check

of material properties for each layer of a wall is a practical example where such global existence

check will fail. An example for the extended functionality is given in chapter 7.2.5.

Checking rules are partially encoded in a string data type. Since mvdXML 1.1 those definitions have been

formalized by using a grammar to simplify implementation with tools like ANTLR. Changes to the rule

grammar include the following improvements:

• Updated of the definition to be compatible with newer ANTLR parser toolboxes. More information

is given in chapter 4.

• More consistent use of negation by adding the unary operator NOT for boolean terms.

• SELF parameter added that enables to check the type of the selected instance. An example is

given in chapter 7.2.3

This update of mvdXML is not in contrast to the official roadmap and new standards published by

buildingSMART. It is the continuation of work that is necessary to finalize specification work on IFC 4.3 and

to prepare later software certification.

Page no. Authors

10 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Acknowledgement

This work is a collaborate effort from different authors who have been supported by the following projects

and organisations:

• The software certification team from buildingSMART being a main driver for change requests.

• BIM4REN project also dealing with model quality issues, which has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement Nº

820773.

• “Infrastructure Extensions Deployment” project from buildingSMART (part of Infra Room) working

on the new IFC4.3 specification based on mvdXML 1.2 – in collaboration with the IfcRail phase 2

project from the Rail Room.

• Karlsruhe Institute of Technology (KIT) within the projects IBPSA Project1 - an international project

conducted under the umbrella of the International Building Performance Simulation Association

(IBPSA) and the SDaC research project (Smart Design and Construction) funded by the Federal

Ministry of Economics and Technology (BMWi).

• Siemens Real Estate work associated with the Twingine project aiming at assuring the model

quality for CAPEX (capital expenditure) and OPEX (operating expense) use cases.

We kindly thank for supporting and partially funding this work.

Page no. Authors

11 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

1 Overview

A Model View Definition (MVD) describes the subset of a data schema that is required to exchange the

data required in specific data exchange scenarios. An Exchange Requirement (ER) defines the required

population (the data that is provided in an exchange file) of such a sub schema.

The buildingSMART standard mvdXML refers to an electronic format for representing such Model View

Definitions and associated Exchange requirements. The purpose of this document is to describe the

structure and usage of mvdXML.

While a data schema describes available data structures and type information, a model view definition

describes graphs of such data structures to be used in scenarios with particular constraints. While mvdXML

is a generic structure that could be applied to any data schema, the primary intention and documentation

herein describes its use relative to the Industry Foundation Classes (IFC) data schema, the ISO16739

standard.

1.1 Purpose

The mvdXML format serves several purposes:

▪ To define the sub schema for the MVD, based on the base schema of IFC

▪ To support automated validation of IFC data sets for quality assurance and software certification.

▪ To generate documentation for specific model views and the IFC specification itself.

▪ To support software vendors providing filtering of IFC data based on model views.

▪ To limit the scope of IFC to well-defined subsets applicable for specific applications.

NOTE: If mvdXML shall be used for one specific purpose only not all features of this specification might be of

interest. For instance, data filtering and data validation not necessarily require detailed end-user documentation

or any meta-data like status, owner etc. Accordingly, depending on the main use case a subset of mvdXML might

be sufficient to cover required functionality. More details about suggested use cases and evaluation of mvdXML

are discussed in chapter 5.

1.2 Methodology

The underlying methodology of mvdXML is the definition of concept templates and concepts.

▪ A Concept Template is a graph that starts with a root entity and consists of attribute and other entity

definition, all are required to represent a functional unit required to exchange specific data

▪ An example is the concept template “property sets for objects”, that describes the graph, starting at

the applicable supertype IfcObject, and describing the graph down to the assigned IfcPropertySet

and further to the individual properties, such as IfcPropertySingleValue.

▪ The official IFC specification lists within its chapter 4 “fundamental concepts and assumptions” those

concept templates already defined. Developers of Model View Definitions are encouraged to use

these concept templates but may enhance the existing or define new ones.

▪ A Concept is the reference to such a concept template for each entity (as subtypes of the applicable

root entity of the concept template) and describes the constraints and usages within the scope of the

entity.

▪ An example is the definition of all applicable property sets, such as Pset_BeamCommon for the

entity IfcBeam as a particular usage of the concept template “property sets for objects”.

Page no. Authors

12 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

A model view indirectly describes the set of IFC entities within scope based on entities referenced from

each root concept, and entities or types (and subtypes as defined) used within instance graphs. All such

IFC entities maybe combined and published as the IFC schema subset corresponding to the model view.

The IFC schema subset must be a valid schema by itself.

1.3 Usage

While it is still being possible to write an mvdXML based Model View Definition by using any text editor, it

is anticipated that specific software applications are used to read and write mvdXML data sets. Software

for working with mvdXML may include the following.

▪ The IFC Documentation Generator (ifcDoc) is a free tool issued by buildingSMART that reads and

writes mvdXML and provides a graphical user interface for defining all content within mvdXML. It can

be preloaded with a particular IFC release specification and allows access to all parts of the IFC

specification when developing the mvdXML concepts and constraints. This tool may also auto-

generate instantiation diagrams, output HTML documentation for model views, and is also used for

generating the IFC4 documentation.

▪ XML/XSD editors such as Microsoft Visual Studio and Eclipse may edit mvdXML in raw format, just as

any other XSD-based schema.

▪ Testing servers may read mvdXML and use such information to validate submitted IFC files for

conformance.

▪ IFC-based software applications may read mvdXML for automatically filtering and validating data to

conform to the specified constraints. It is also possible for IFC-based software applications to write

mvdXML to enable users to define custom exchange scenarios.

▪ Requirement management tools may support configuration of data exchange requirements that, if

based on existing mvdXML snippets, could be exported as an mvdXML document to be used for

filtering and validating IFC data.

Page no. Authors

13 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

2 Schema

The overall mvdXML Schema is introduced with a quick overview and by a simple example first. The next

chapter 3 is the reference for all XSD elements and types.

2.1 Quick overview

An mvdXML document contains an instance of mvd:mvdXML as the only single valid root element. The

mvdXML element defines three main sub elements:

▪ mvd:DefaultSettings (new since mvdXML 1.2): Global settings about precision and units that apply to

the whole mvdXML file unless overriden by rule specific settings.

▪ mvd:Templates: a list of reusable concept templates, mvd:ConceptTemplate, that define the graph

within the base IFC schema representing the entities and attributes needed to support the functional

unit addressed by the concept

▪ mdv:Views: a list of model view definitions, mvd:ModelView that contains the necessary entities and

associated concepts to define the sub schema of the base schema to support the exchange

requirements.

Figure 1: Basic structure of the mvdXML schema

Page no. Authors

14 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

An mvd:ConceptTemplate defines the graph, starting from an applicable root entity, following attribute and

entity links, down to the individual attributes, which contains all schema information for a particular unit of

functionality – or “concept template”, the term used within the Model View Definition methodology.

Figure 2: main mvdXML elements for ConceptTemplate

EXAMPLE: The attachment of property sets with specific properties to an element is the unit of functionality that

is described by the concept template “Property Sets for Objects”1. The definition of an assembly structure, where

the assembly, such as an elemented wall has building element parts is another example that is described by

“Element Decomposition”2.

Each mvd:ConceptTemplate starts with the applicable entity, the root of this unit of functionality. In most

cases, it is a subtype of IfcObject, being an occurrence of a model element subject to validation.

Then the attribute(s) used for expressing the unit of functionality are declared, then the type of the attribute,

in case of an entity type, it can have own attribute definitions again. All together it defines a tree structure

that describes the portion of the IFC schema needed for this unit of functionality. The ConceptTemplate

element contains:

▪ @applicableSchema, such as IFC2X3 or IFC4,

1 See: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/templates/property-sets-
for-objects.htm

2 See: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/templates/element-
decomposition.htm

Page no. Authors

15 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

▪ @applicableEntity, the root entity of the concept template, often IfcObject, or a subtype, like IfcProduct,

or IfcGroup, IfcProject and other high-level entities, deriving from IfcRoot

▪ NOTE: In case of partial concept templates, which are reused at many concept templates, may have root

entities that do not derive from IfcRoot. An example is the partial concept template of swept solid geometry

with a root element IfcSweptAreaSolid, which is reused in several other concept templates describing element

shape representation

▪ Definitions, a general element to include potentially multilingual documentation and links to figures,

diagrams, examples and other external documents. It is mainly used for the mvdXML purpose of

generating MVD documentation

▪ Rules, a list of attribute definitions, being direct attribute or relationships of the root entity, or attributes

defined at the level of its subtypes, that are part of the concept template tree

▪ NOTE: In many cases, the inverse attribute is used here to navigate to relationship entities

▪ EXAMPLE: a common example of an attribute rule that relate to an attribute that is only defined at a subtype

level is PredefinedType.

▪ SubTemplates, a concept template that extents the definition of the main concept, it is used to group

related concept templates, e.g. all concept templates that relate to element geometry may have a

common parent concept template “Product Geometric Representation”, and then extent to box

geometry, foot print geometry and body geometry.

▪ NOTE: If a template with subtemplates is used in an exchange requirement, then the applicableEntity

decides which template is used for model checking.

▪ EXAMPLE: A template is defined for IfcSimpleProperty with subtemplates for IfcPropertySingleValue and

IfcPropertyEnumeratedValue. It is referenced by a Concept for checking properties. If an instance of

IfcPropertySingleValue is to be checked, then the template with best matching applicableEntity is selected

from the subtemplates.

The tree structure of the Rules section at ConceptTemplate consists of AttributeRules, referring to

EntityRule, referring to AttributeRules, and so on. Each AttributeRule has:

▪ an @AttributeName, the name of the attribute, relationship or inverse relationship in the IFC schema

▪ an @RuleID, if present, it defines an ID which is used in the model view definition to document specific

usage for particular entities, or to validate its values according to exchange requirements,

▪ a Constraints, a list of Constraint on the schema population, if used for this concept template

▪ EXAMPLE: a concept template for swept solid geometry would enforce, that the value of RepresentationType

of entity IfcShapeRepresentation is always “SweptSolid”, independently of its usage in a model view definition

later. This can be encoded as a Constraint. Similarly, the cardinality of sets or lists might be constrained.

▪ NOTE: The Constraints are a way to flexibly enhance the WHERE rules within the EXPRESS definition of IFC,

and to add such rules, when using ifcXML (that cannot include such WHERE rules).

▪ an EntityRules element, containing a list of EntityRule, relating to the underlying type of the attribute

An EntityRule refers to an entity, an enumeration, a derived or simple type (based on the EXPRESS

definition of IFC). Each EntityRule has:

▪ an @EntityName, the name of the underlying type

▪ NOTE: it shall not be a SELECT type, those have to be expanded to the selected types

▪ an @RuleID, see above

▪ a Constraints, see above

▪ an AttributeRules element, containing a list of AttributeRule, relating to the attributes, relationships or

inverse relationships, if the EntityRule represents an entity itself

Page no. Authors

16 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

▪ a Template element, if present, it links to a partial concept template that shall be used to expand the

concept template further.

▪ EXAMPLE: the definition of a property set is used in different concept templates, for property sets on

occurrences and for property sets on types. Hence it can be defined once as a partial concept template that is

referenced from the main concept template through References.

▪ NOTE: The underlying type of the EntityRule, defined by the EntityName attribute, and the applicableEntity of

the referenced template should be the same.

The mvd:ModelView element describes how the concept templates are used in a view and contains:

▪ @applicableSchema, such as IFC2X3 or IFC4,

▪ mvd:BaseView definition if it is an add-on view that only defines restrictions or extensions on top of

another model view definition,

▪ mvd:ExchangeRequirements, a list of mvd:ExchangeRequirement, that stipulate if the template rules

imposed on concepts, declared for each ConceptRoot, have to be fulfilled for the individual exchange

requirements,

▪ mvd:Roots, a list of mvd:ConceptRoot, that defined the concepts applicable to each entity instance in

an IFC data set together with the template rules

▪ Definitions, see above

Page no. Authors

17 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Figure 3: main mvdXML elements for ModelView

Page no. Authors

18 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

An mvd:ConceptRoot references a specific IFC entity, e.g. IfcWall, representing a major and individually

testable model element3 in a MVD. Each concept root contains

▪ mvd:Concepts: a set of concepts, mvd:Concept, which describe template rules for common subsets

of information (e.g. material usage) within the context of the particular concept root.

▪ mvd:Template: Each concept is backed by one or more templates, mvd:ConceptTemplate,

describing a graph of object instances, relationships, and constraints, where the concept may

provide a set of template rules containing the parameters that apply to the referenced rule ID at the

concept template. The mvd:Template provides a link, based on the uuid, to that

mvd:ConceptTemplate

▪ mvd:Requirements: a list of mvd:Requirement, each linking to the mvd:ExchangeRequirement by

uuid, to declare that this Concept is stipulated for this exchange.

▪ mvd:TemplateRules: a tree of mvd:TemplateRule that creates a Boolean logic between individual

template rules (applying and, or, and other Boolean operators). The outermost TemplateRules

element has to validate to true for this concept to pass validation

▪ mvd:Applicability: a list of TemplateRule(s) with a link to the applicable ConceptTemplate(s) via the

Template element. It optionally applies additional constraints on the applicable entity that needs to be

fulfilled by the entity instance before the Concepts are validated.

▪ mvd:Specializations: a set of Specialization settings that enable to apply or override definitions from

other ConceptRoots. This is needed to specify exceptions that are inherited from generic definitions.

But it also enables to reuse existing definitions to another set of applicable entities.

NOTE: All definitions are applied to subtypes by default. This is defined by the IFC inheritance tree and may not

always fit to requirements. The Specialization feature enables to control and adjust inheritance of such definitions.

2.2 Simple example

The following simple example shows the use of mvdXML for validation purposes. It defines a necessary

concept template describing the unit of functionality of how to associate a port to a distribution element in

IFC, and a hypothetical model view definition, that enforces that every sensor within submitted IFC data

complying with the MVD shall have at least one port that submits signals.

Header section:

<?xml version="1.0" encoding="UTF-8"?>

<mvdXML

 name="example MVD for mvdXML documentation – sensor signals"

 uuid="4afb1a8b-0b61-4ff8-9863-c10690fe06f2"

 xmlns="https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-2/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=" https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-

2/mvdXML_V1-2.xsd">

3 The IFC schema differentiates between root entities, all entities derived from IfcRoot, and resource entities, all other
entity definitions. A resource entity shall always be used (referenced) by a root entity. Therefore, entities defined in
an mvd:ConceptRoot should be an IFC root entity.

Page no. Authors

19 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

A single mvdXML element shall be the single root element within an mvdXML file. The name space of the

current mvdXML version shall be https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-24. The

schema location is provided locally.

 <DefaultSettings precision="1e-4">

 <Units>

 <IfcSIUnit UnitType="lengthunit" Prefix="milli" Name="metre" />

 </Units>

 </DefaultSettings>

A DefaultSettings is declared that defines a global relative precision value for comparison of floating-point

values and global units for comparison of measurements. Units are declared using the existing IFC4

functionality based on the ifcXML.xsd schema. In the given example a relative precision of +/- 0.0001 and

the unit for length measurements is defined to be [mm]. This global setting can be adjusted for each check.

 <Templates>

 <ConceptTemplate uuid="bafc93b7-d0e2-42d8-84cf-5da20ee1480a"

 name="Port Assignment" applicableSchema="IFC4"

 applicableEntity="IfcDistributionElement">

 <Definitions>

 <Definition>

 <Body>

<![CDATA[<p>Distribution ports are defined by <i>IfcDistributionPort</i> and attached

by the <i>IfcRelNests</i> relationship. Ports can be distinguished by the

<i>IfcDistributionPort</i> attributes <i>Name</i>, <i>PredefinedType</i>, and

<i>FlowDirection</i>:</p>]]>

 </Body>

 </Definition>

 </Definitions>

A single ConceptTemplate is declared with the name “Port Assignment”, based on the schema definition

of IFC4. The applicable entity, and root entity of the concept template, is IfcDistributionElement. The

definition of the attribute rules starts from that root entity.

 <Rules>

 <AttributeRule AttributeName="IsNestedBy">

 <EntityRules>

 <EntityRule EntityName="IfcRelNests">

 <AttributeRules>

 <AttributeRule AttributeName="RelatedObjects">

 <EntityRules>

 <EntityRule EntityName="IfcDistributionPort">

 <AttributeRules>

 <AttributeRule AttributeName="Name" RuleID="Name"/>

 <AttributeRule AttributeName="PredefinedType" RuleID="Type"/>

 <AttributeRule AttributeName="FlowDirection" RuleID="Flow"/>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

4 NOTE: This namespace is a proposal and still must be approved by buildingSMART. It follows the naming convention
for publishing bS standards. All content related to this draft standard is currently hosted at:
https://github.com/buildingSMART/mvdXML/tree/master/mvdXML1.2

Page no. Authors

20 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 </Templates>

The concept template tree follows the IFC definition for that portion that is required to describe, how a

distribution port is associated to a distribution element. It is defined by a path starting from the applicable

entity.

▪ IfcDistributionElement –IsNestedBy→ IfcRelNests –RelatedObjects→ IfcDistributionPort

At the related IfcDistributionPort, the three necessary attributes Name, PredefinedType and FlowDirection

are declared. Since the instantiation of those attributes shall be checkable, they each have a @RuleID. The

@RuleID attributes shall be unique within the scope of its usage in a ConceptTemplate. The validation

rules at the individual concepts use the @RuleID strings as variable names within the formal grammar.

 <Views>

 <ModelView uuid="72dad5df-6f61-49f2-ba8c-baccf24a6ce5"

 name="Sensor signal view" applicableSchema="IFC4" code="Sensor">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[ModelView for mvdXML 1.2 documentation.]]></Body>

 </Definition>

 </Definitions>

A single Model View Definition MVD is defined within the mvdXML file, it is applicable to the IFC4 schema

and has a name and code. In case of fully defined and published MVD’s, the name is the full name as

published, and the code is the same abbreviation, as used in the IFC HEADER Section.

EXAMPLE: name=”IFC4 Reference View Version 1.2” and code=”IFC4 RV 1.2” see official documentation5

 <ExchangeRequirements>

 <ExchangeRequirement uuid="ae70f764-938b-4cf7-9814-c29a47f56b0e"

 name="Distribution signal" code="ERM1" applicability="export">

 <Definitions>

 <Definition>

 <Body lang="en">

<![CDATA[Simple example for checking sensor elements to always submit signals.]]>

 </Body>

 </Definition>

 </Definitions>

 </ExchangeRequirement>

 </ExchangeRequirements>

For the MVD there is one exchange requirement defined. Each exchange requirement has an own selection

of validation rules, so that data requirements and data completeness can be described specifically for an

exchange.

NOTE: An example for an exchange requirement is the import requirements for a BIM usage or purpose.

 <Roots>

 <ConceptRoot uuid="8b949664-a5df-4bfc-922c-4a486c41d756" name="Sensor"

 applicableRootEntity="IfcSensor">

5 https://standards.buildingsmart.org/MVD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/

Page no. Authors

21 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

 <Definitions>

 <Definition>

 <Body>

<![CDATA[<p>A sensor is a device that measures a physical quantity and converts it

into a signal which can be read by an observer or by an instrument.</p>]]>

 </Body>

 </Definition>

 </Definitions>

The MVD (or the MVD part that shall be validated) consists of a single root concept, i.e. a single IFC model

element (or occurrence object), here IfcSensor.

 <Concepts>

 <Concept uuid="a4fa348c-a025-4a02-abfd-c42fd0901540" name="Port Assignment">

 <Definitions>

 <Definition>

 <Body lang="en">

<![CDATA[Concept to validate that every sensor elements has a port defined that

submits signals.]]>

 </Body>

 </Definition>

 </Definitions>

 <Template ref="bafc93b7-d0e2-42d8-84cf-5da20ee1480a"/>

The ConceptTemplate “Port Assignment”, which is applicable to IfcSensor, since IfcSensor is a subtype of

the @applicableEntity IfcDistributionElement, for which the ConceptTemplate is declared, is assigned as a

Concept with the same name “Port Assignment”.

The assignment is declared using an ID/IDREF pair, based on the uuid for the ConceptTemplate.

NOTE: If using mvdXML for MVD definition and documentation purposes, this statement means that any

implementation of IfcSensor has to support the functionality to assign ports to the sensor in order to comply with

the requirements of that MVD. A certification process for that MVD would impose tests to make sure that ports

are assigned to sensors for import and/or export.

 <Requirements>

 <Requirement exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e"

 requirement="mandatory" applicability="export"/>

 </Requirements>

Reference to the exchange requirement where additional constraints apply to the data provided for the

Concept “Port Assignment”. The link is declared using an ID/IDREF pair, based on the uuid for the

ExchangeRequirement. The logical results created by the TemplateRule(s) are interpreted following the

@requirement attribute.

EXAMPLE: The requirement=”mandatory” stipulates, that the outcome of the single outermost TemplateRule shall

be true, otherwise an error is reported.

 <TemplateRule Parameters="Name[Value]='Output' AND Type[Value]='SIGNAL' AND

 Flow[Value]='SOURCE'" Description="Transmits signal."/>

NOTE: In mvdXML 1.1 the first element by default is TemplateRules. This is no longer necessary if there is a

single TemplateRule definition only. This change simplifies such definitions and also avoids confusion if using a

binary operator like OR. Negation of a single TemplateRule is done in mvdXML 1.1 with the operator NOR, which

since mvdXML 1.2 is defined with the optional negation attribute in the TemplateRule.

Page no. Authors

22 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

A rule, referring to the template definition, hence the name “TemplateRule” is imposed, and an mvdXML

compliant validator would check that each instance of IfcSensor in the IFC file would have an assigned

IfcDistributionPort with the attributes and corresponding values Name=”Output”, Type=”SIGNAL”, and

Flow=”SOURCE”.

NOTE: The parameter syntax of mvdXML 1.0 is using a semicolon between the parameters for defining AND

combination. The use of semicolon is still supported, but it is recommended to use AND instead. The metric

[Value] checks the value of the attribute. It is the default metric, therefore Name=’Output’ is identical to

Name[Value]=’Output’.

 </Concept>

 </Concepts>

 </ConceptRoot>

 </Roots>

 </ModelView>

 </Views>

</mvdXML>

Page no. Authors

23 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

3 Description of mvdXML schema elements and types

This section documents the individual mvdXML element, type and attribute definitions.

3.1 mvdXML

This element comprises the scope of the mvdXML document; it includes zero-to-many mvd:ModelView and

zero-to-many mvd:ConceptTemplate (as a minimum, all concept templates that are referenced in the

included model view(s)).

It is recommended to include all concept templates that are referenced by included model view(s), or else

distribute the mvdXML file along with other mvdXML files containing such templates.

NOTE: A particular usage of mvdXML is to publish concept templates only. In this case, the ModelView element

remains empty.

Element/Attribute Type Description

Identity attributes See section 3.4.1

DefaultSettings DefaultSettings

[0:1]

Global settings about precision and units that apply to the whole mvdXML

file unless overriden by rule specific settings.

HISTORY: added in mvdXML1.2

@Units ifc:IfcUnit

[0:?]

Global unit settings based on the IFC4 specification for comparison of

measurement values. If not defined, comparison of measurement values are

based on SI units.

NOTE: If no unit is defined for data checking, the comparison with the IFC

data is done without unit conversion.

@precision precisionValue

(opt)

Precision setting for comparison of number values. Unless stated to be an

absolute precision, the setting is used as relative precision.

Templates ConceptTemplate

[0:?]

Set of templates, which may be exchanged with or without referencing model

view definitions.

Views ModelView

[0:?]

List of model view definitions, in order of listing in generated documentation.

▪ If empty, the mvdXML file is only used to exchange concept templates

and cannot be used to fulfill other purposes such as data validation

Table 1: Common element references defined in the element mvdXML.

3.2 Concept Template

This element represents the reusable concepts as templates; it has zero-to-many mvd:SubTemplates and

thereby may form a tree of related reusable concept templates. Within the tree it may refer to shared partial

concepts. Each mvd:ConceptTemplate has an applicable schema and may have applicable root entities

(i.e. concept roots to which the mvd:ConceptTemplate applies).

NOTE: For buildingSMART compliant MVD documentation generation, each mvd:ConceptTemplate appears in

Chapter 4 of the resulting HTML based documentation, with descriptive text and diagram generated from rules.

EXAMPLE: Decomposition (the re-usable concept of decomposing elements into parts)

Element/Attribute Type Description

Identity attributes See section 3.4.1

Definitions See section 3.4.2

Page no. Authors

24 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

applicableSchema extensible enum

based on String

Identifies the default schema for which the template applies, such as

IFC2X_FINAL, IFC2X2_FINAL, IFC2X3, IFC4 and newer IFC versions. The

template may be used for model views of other schemas if all enclosed

rules resolve to available attributes and types.

NOTE: In future versions it might be of interest to support more than one

IFC release. This can be supported by using a semicolon as schema name

delimiter.

applicableEntity String

(list, opt)

Indicates the IfcRoot-based entities for which the concept applies.

It is recommended to use a single base class (e.g. IfcElement). This value

provides the context for any attribute rules and is used within MVD tools to

filter the list of available templates for particular entities. For a sub-

template, the applicable entity must be the same type or a subtype of the

outer template. This value may be blank to indicate an abstract template

that cannot be instantiated, containing sub-templates for specific entities.

NOTE: The definition will include all derived entities from the IFC

inheritance tree. If applicableEntity is for instance IfcProduct, then this

ConceptTemplate also applies to all subtypes of IfcProduct.

isPartial Boolean (opt) A flag, indicating whether the concept template is a partial template, which

shall only be used inside another concept template, or not.

Rules AttributeRule

[0:?]

Set of attributes defined at applicableEntity, where each attribute may have

value constraints and/or graphs of object instances defined. If an attribute

is not defined, then the requirements are the same as indicated for the

schema.

NOTE: For each attribute there should be no more than one AttributeRule.

NOTE: It is allowed to define rules for attributes that are defined in a

subtype of applicableEntity. This feature can be used in IFC for instance for

the PredefinedType attribute defined for each subtype of IfcElement.

NOTE: For generating a subset schema it is mandatory to add an

AttributeRule for each optional attribute that shall be included in the subset

schema. Otherwise this attribute will be removed.

SubTemplates ConceptTemplate

[0:?]

Set of sub-templates, having a subset of applicable entities, which further

define a concept template for particular usage. For example, a template for

material usage may have sub-templates for material layer sets, material

profile sets, and material constituent sets.

NOTE: Sub-templates have to repeat rule definitions from super-templates

in case they apply. Further restrictions can be added if necessary. If rules

are not repeated, they do not apply for the sub-templates.

Table 2: Common attributes and element references defined in the element ConceptTemplate.

3.2.1 Attribute Rule

This element represents the specification of an attribute on an entity, with related constraints, and/or entity

rules.

Element/Attribute Type Description

AttributeName String The case-sensitive name of the attribute relative to the enclosing

EntityRule (if exists) or the enclosing applicableEntity of the

ConceptTemplate.

RuleID String (opt) Identifies the rule for referencing at template rules defined within concepts,

where specific parameters are applied for this rule.

NOTE: The same RuleID might be used multiple times within a concept

template definition, but it must be unique within the scope of its usage.

Page no. Authors

25 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

EXAMPLE: If two AttributeRules are defined within different EntityRules, for

instance one for IfcPropertySingleValue and the other one for

IfcPropertyEnumeratedValue, then the same RuleID can be used because

they are used in different scopes.

Description String (opt) Optional description of the rule.

EntityRules EntityRule

[0:?]

An empty list indicates that any type may be used according to the

schema. If one or more entities or types are defined, then instances must

match one of the entries. The list of entries is expanded by each

referencing TemplateRule defined at a Concept, where downstream rules

apply according to the matching entity rule.

EXAMPLE: An attribute rule “Quantities” for IfcElementQuantity could add

entity rules for IfcQuantityLength, IfcQuantityArea, IfcQuantityVolumne etc.

Each entity rule then defines an own scope depending on the referenced

quantity type.

Constraints Constraint

[0:?]

Set of expressions, which all must evaluate to TRUE for the referenced

attribute. This implies a Boolean AND combination.

@precision precisionValue/

Double (opt)

Optional precision setting to be used in the Constraints for comparison of

number values. Unless stated to be an absolute precision, the setting is

used as relative precision. If not defined, precision settings from

DefaultSettings are used.

NOTE: If no precision is defined for data checking, then the precision as

defined in the IFC model is used instead.

HISTORY: added in mvdXML1.2

@relativePrecision Boolean (opt) Must be false if absolute precision is required. If not given or true then it is

used a relative precision.

HISTORY: added in mvdXML1.2

Table 3: Common attributes and element references defined in the element AttributeRule.

3.2.2 Entity Rule

This element represents the specification of an entity (or value type) referenced by an attribute, either as a

scalar reference or a reference from within a collection.

Element/Attribute Type Description

EntityName String The case-sensitive name of the entity (e.g. “IfcBeam”) which must be

assignable to the enclosing AttributeRule (i.e. entity subtype or select

member).

RuleID String (opt) Identifies the rule for referencing at template rules defined within

concepts, where specific parameters are applied for this rule.

NOTE: The same RuleID might be used multiple times within a concept

template definition, but it must be unique within the scope of its usage.

See also description of AttributeRule.@RuleID.

Description String (opt) Optional description of the rule.

Template ConceptTemplate

[0:1]

Optional reference to a partial template. An optional attribute “IdPrefix”

can be given to ensure that RuleIDs of partial templates are unique

within the scope of its usage. This attribute is used as a prefix for all

referenced RuleIDs.

NOTE: This definition was simplified in mvdXML 1.2. Instead of using

References@Template the Template reference is directly defined at

EntityRule. The functionality of GenericReference was extended by

optional IdPrefix setting.

AttributeRules AttributeRule [0:?] Indicates a list of attributes included in the concept template and

potentially constrained on the referenced entity.

Page no. Authors

26 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Constraints Constraint [0:?] Set of expressions, which all must evaluate to True for the referenced

entity. This implies a Boolean AND combination.

@precision precisionValue/

Double (opt)

Optional precision setting to be used in the Constraints for comparison

of number values. Unless stated to be an absolute precision, the setting

is used as relative precision. If not defined, precision settings from

DefaultSettings are used.

NOTE: If no precision is defined for data checking, then the precision as

defined in the IFC model is used instead.

HISTORY: added in mvdXML1.2

@relativePrecision Boolean (opt) Must be false if absolute precision is required. If not given or true then it

is used a relative precision.

HISTORY: added in mvdXML1.2

Table 4: Common attributes and element references defined in the element EntityRule.

3.2.3 Constraint

This element is defined within the elements mvd:EntityRule and mvd:AttributeRule and represents a

restriction on an attribute, which may require the value, type, or collection size to have equality (or other

comparison) to a literal value or referenced value.

Element/Attribute Type Description

Expression String [v1.1] A grammar is used to simplify parsing of expressions and to

introduce new features like AND, OR and XOR. With minor changes the

form “{Metric}{Operator}{Benchmark}” from mvdXML 1.0 is still valid.

The rule grammar is defined in chapter 4. A slighty changed and update

version is provided with mvdXML1.2.

NOTE: One major difference to 1.0 is that it is not possible to use

{Benchmark} only, i.e. to omit {Metric} and {Operator}.

RuleMessage RuleMessage

[0:?]

Optional message that can be given for an Applicability to show success,

error, warning or other informal messages in multiple languages.

HISTORY: added in mvdXML1.2

Table 5: Common attributes defined in the element Constraint.

3.3 Model View

This element represents the description of a Model View Definition (MVD); it is specific to an IFC schema

release and contains zero-to-many mvd:ConceptRoot elements. It also includes the reference to zero-to-

many applicable mvd:ExchangeRequirement elements. Multiple model views from potentially different

schema releases may be contained in the same file.

The set of entities and types regarded to be within scope of a model view is not explicitly defined; rather it

is indirectly determined by constructing a graph of mvd:ConceptRoot elements and following the set of rules

indicating referenced entities within scope. Thus, describing the set of rules automatically determines what

is in or out of scope, preventing the possible mismatch of missing data structures that are required, or

included data structures that are not documented for use.

EXAMPLE: The "CoordinationView_V2.0" is a Model View Definition; it is captured by an mvd:ModelView

element. It has the @name="CoordinationView_V2.0", the @applicableSchema="IFC2X3", and a reference to

the four exchange requirements currently defined for the Coordination View Version 2.0.

HISTORY: Roots changed to optional in mvdXML 1.1 to allow “incomplete” model view definitions with meta-data

only.

Page no. Authors

27 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Element/Attribute Type Description

Identity attributes See section 3.4.1

Definitions See section 3.4.2

applicableSchema String Identifies the schema using the ISO 10303 schema identifier, such as

IFC2X_FINAL, IFC2X2_FINAL, IFC2X3, IFC4 or newer version. Use of

correct names are enforced by an enumeration list for existing IFC releases

and a naming pattern for furture IFC releases.

NOTE: In future versions it might be of interest to support more than one

IFC release. This can be supported by using a semicolon as schema name

delimiter.

BaseView uuid || anyURI

(opt)

Reference to a base model view definition (in case that this model view

represents an add-on model view that extents a base view).

Exchange

Requirements

Exchange

Requirement

[0:?]

List of exchange requirements defined within this model view. They should

appear in logical order.

Roots ConceptRoot

[0:?]

List of root concepts defined within scope of the model view.

Views ModelView

[0:?]

Collection that allows for hierarchical nesting of model views, where the

outer view implicitly contains all content of inner views.

NOTE: No cyclic structure is allowed, it must be a tree structure only.

HISTORY: added in mvdXML1.2

Table 6: Common attributes and element references defined in the element ModelView.

3.3.1 Exchange Requirement

This element is the description of an Exchange Requirement Model (ERM) that is covered by the MVD. An

ERM covers the Exchange Requirements (ER) that are identified for a particular exchange scenario that is

covered by the MVD. ERM's may add additional constraints to the use of concepts and are an important

part of later certification and validation processes.

An ERM can be referenced from an mvd:Concept to impose specific constraints for exchanges that

reference this ERM. An ERM can be specifically declared to be only applicable for import, export or both

scenarios using the attribute applicability.

EXAMPLE: The ERM "Architecture" capturing the ER for exporting an architectural building model is an exchange

requirement model within the CoordinationView_V2.0. It is captured by an mvd:ExchangeRequirement element. It

has the @name="Architecture", and the @applicability="export".

Element/Attribute Type Description

Identity attributes See section 3.4.1

Definitions See section 3.4.2

applicability Enum (opt) Identifies if the ERM is specific for

▪ import

▪ export

▪ both

If such value is provided, then any referencing requirements must match;

for example, if such value indicates export, then referencing requirements

may use export but not import; if such value is not provided, then

referencing requirements may use any value.

NOTE: The differentiation between import and export origins from software

certification and does not have any meaning for data checking

applications.

Page no. Authors

28 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Export means that some application must be able to create a data set that

fulfills defined requirements.

If an exchange requirement is defined for import only, it defines the data

set that must be properly processed by an application.

Table 7: Common attributes defined in the element ExchangeRequirement.

3.3.2 Concept Root

This element represents the root element (other terms are "leaf node class", "variable concept") that

represent the fundamental parts of an MVD that is represented by a collection of supported concepts.

Element/Attribute Type Description

Identity attributes See section 3.4.1

Definitions See section 3.4.2

applicable

RootEntity

String Identifies the class or data type of instance being described or validated,

i.e. the IFC entity (deriving from IfcRoot) for which the concepts apply. The

concepts apply to this IFC entity or its subtypes (respectively instances of

those classes in case of validation).

NOTE that non-rooted entities are described by referencing rules, as such

instances cannot exist on their own where usage is always dependent

upon the referencing IfcRoot-based instance.

Applicability Applicability [0:1] One or more TemplateRule(s), based on one or more ConceptTemplates,

which describe the conditions, under which the concepts apply to the

applicableRootEntity. Those conditions need to validate to true as a

prerequisite for checking the TemplateRules imposed at the concepts.

NOTE the Applicability has been added to mvdXML1.1 in order to better

support data validation. It is used to control the applicability of concepts to

particular configurations of root entities, e.g. to only apply for load bearing

walls, instead of any wall (declared by the applicable IFC entity IfcWall.)

Specializations Specialization

[0:?]

A set of Specialization settings that enable to apply or override definitions

from other ConceptRoots.

HISTORY: added in mvdXML1.2

@Definitions See section 3.4.2

@ConceptRoot ConceptRoot

[0:?]

A Specialization setting enables either to apply or to override definitions

from other ConceptRoots.

@override Boolean (opt) If override is set to true, then all definitions from referenced ConceptRoots

do not apply for objects selected by this ConceptRoot. It enables to

override definitions automatically inherited by the IFC inheritance tree. For

example, definitions for IfcBeam objects can disable definitions inherited

from IfcBuildingElement objects.

If override is set to false, then all definitions from referenced ConceptRoots

should apply for objects selected by this ConceptRoot. It enables to reuse

definitions even if referenced applicability does not match.

Default setting, if not given, is false.

Concepts Concept [0:?] List of concepts for the applicable root entity. The order of elements

indicates the sequence displayed in generated documentation.

Table 8: Common attributes and element references defined in the element ConceptRoot.

Page no. Authors

29 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

3.3.3 Applicability

This element defines those rules, being TemplateRules with a reference to a ConceptTemplate, that need

to be validated before the concepts associated to the ConceptRoot are checked. Since mvdXML1.2

Applicability is also used to define further conditions for the use of TemplateRule and TemplateRules.

Element/Attribute Type Description

Definitions See section 3.4.2

Template TemplateRef

[0:?]

Reference to ConceptTemplate by uuid, where such template may be

defined within the same file (by @ref) or an external file (by @href). If no

ConceptTemplate is defined, then only minOccurrence or maxOccurrence

constraints on existance of instances can be defined.

NOTE Current usage of mvdXML imposes the inclusion off all concept

templates within the same data file. The external reference by @href is

reserved for future usage.

NOTE Cardinality of this reference has changed in mvdXML1.2. It now

enables to use no, one or more than one ConceptTemplate for rule

configuration. No link to a template is needed if existence via

min/maxOccurrence of applicableRootEntity shall be constraint.

TemplateRule(s) TemplateRules |

TemplateRule

[0:1]

Tree structure of rules indicating how template applies to particular entity.

Each TemplateRules element consists of a set of other TemplateRules or

TemplateRule element and a logical operator. Each TemplateRule element

defines the @Parameter that refer to the RuleID of the referenced

Template.

NOTE Added in mvdXML 1.1 to define any logical combination of rules,

allowing for AND, OR, NAND, NOR, XOR, and NXOR logic. Since

mvdXML1.2 the NOT operator at TemplateRules (for the logical

combination of 2 or more TemplateRule(s) has been removed. This unary

operation is now handled in TemplateRule.negation exclusively.

HISTORY: changed in mvdXML1.2

RuleMessage RuleMessage

[0:?]

Optional message that can be given for an Applicability to show success,

error, warning or other informal messages in multiple languages.

HISTORY: added in mvdXML1.2

minOccurrence Integer, >=0

(optional)

Minimum number of occurrences that should fulfill the Applicability settings.

If not given it is allowed to have zero occurrences.

HISTORY: added in mvdXML1.2

maxOccurrence Integer, >=0

(optional)

Maximum number of occurrences that should fulfill the applicability

settings. If not given there is not upper limit. If given, maxOccurrence must

be greater than or equal to minOccurrence.

HISTORY: added in mvdXML1.2

3.3.4 Concept

This element represents a use definition for a particular entity with specific rules to be enforced.

Element/Attribute Type Description

Identity attributes See section 3.4.1

Definitions See section 3.4.2

Page no. Authors

30 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

@baseConcept Concept [0:1] Enables to select a concept definition that shall either be reused or

redefined. This feature depends on the inheritance tree of the underlying

schema. If ConceptRoot.applicableRootEntity is defined for an entity called

IfcProject, then only those concepts can be selected as BaseConcept that

are defined for a super type of IfcProject, i.e. IfcContext, IfcObjectDefinition

or IfcRoot.

@override Boolean (opt) This value must be defined if a BaseConcept is selected.

If Override = false then the Concept is reused without changes.

If true then the Concept from the super type is redefined by this Concept.

Template TemplateRef

[0:?]

Reference to the ConceptTemplate(s) by uuid, where such template may

be defined within the same file (by @ref) or an external file (by @href).

NOTE Current usage of mvdXML imposes the inclusion off all concept

templates within the same data file. The external reference by @href is

reserved for future usage.

Requirements Requirement

[0:?]

Set of requirements which describe applicability of the concept to particular

exchanges for import, export or both.

TemplateRules TemplateRules |

TemplateRule

[0:1]

Tree structure of rules indicating how template applies to particular entity.

Each TemplateRules element consists of a set of other TemplateRules or

TemplateRule element and a logical operator. Each TemplateRule element

defines the @Parameter that refer to the RuleID of the referenced

Template.

NOTE Added in mvdXML 1.1 to define any logical combination of rules,

allowing for AND, OR, NAND, NOR, XOR, and NXOR logic. Since

mvdXML1.2 the NOT operator at TemplateRules (for the logical

combination of 2 or more TemplateRule(s) has been removed. This unary

operation is now handled in TemplateRule.negation exclusively.

HISTORY: changed in mvdXML1.2

Table 9: Common element references defined in the element Concept.

NOTE: The following options are possible for using BaseConcept and Override:

▪ an empty concept with BaseConcept="idref" (Override="false") to indicate that it applies with no change

▪ a non-empty concept with BaseConcept="idref" (Override="false") to indicate that it has additional rules (by

extension)

▪ an empty concept with BaseConcept="idref" and Override="true" to indicate that it does not apply at all

(overridden)

▪ a non-empty concept with BaseConcept="idref" and Override="true" to indicate that it has replacement rules

(by restriction - no inherited rules apply, all are declared new)

3.3.5 Requirement

This element represents a use definition for a particular entity with specific rules to be enforced.

Element/Attribute Type Description

@exchange

Requirement

uuid Identifies the ExchangeRequirement by GUID within the same Model View

Definition.

@requirement Enum

Describes the interpretation of the result of the outermost TemplateRule

specific for one exchange requirements.

▪ mandatory: must be true, otherwise create an error

▪ recommended: should be true, otherwise create a warning

▪ not-relevant: no requirement;

▪ not-recommended: should not be true, otherwise create a warning

Page no. Authors

31 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

▪ excluded: must not be true, otherwise create an error

@applicability Enum (opt) Identifies if the requirement applies to

▪ import

▪ export or

▪ both

NOTE If such value is provided, then it must match, if given, with the

applicability setting of the exchange requirement in which it is used.

Table 10: Common element references defined in the element Requirement.

Note: For a standard existence check, e.g. is the property value provided, it means:

▪ mandatory: error, if no value is provided,

▪ recommended: warning, if no value is provided,

▪ not-relevant – no check,

▪ not-recommended – warning, if a value is provided,

▪ excluded – error, if a value is provided.

Since mvdXML1.2 dedicated error, warning and success messages for checks can be given to better explain the

rule.

3.3.6 TemplateRules

This element establishes the possibility to define a tree of logical expressions. Individual TemplateRule are

grouped under a TemplateRules element and are logically interpreted by the @operator attribute.

NOTE: This improves the previous way to embed the logical operator in the @Parameter string at the

TemplateRule. Due to its tree structure realized by the recursive definition of TemplateRules, the logical operators

can be nested.

Element/Attribute Type Description

Description See section 3.4.2

@operator Enum The logical operator, which is used to combine the nested TemplateRules

and TemplateRule. The Boolean results of the nested rules are combined

by the logical operation according to the Truth table.

The following logical operators are defined:

▪ AND

▪ OR

▪ NAND

▪ NOR

▪ XOR

▪ NXOR

NOTE: Since mvdXML1.2 these operations are always applied to 2 or more

rules. The unary operation NOT was therefore removed and is now

handled with TemplateRule@negation.

HISTORY: changed in mvdXML1.2

TemplateRule(s) TemplateRules |

TemplateRule

[2:?]

Two or more TemplateRule(s) that are combined through the given logical

operator.

HISTORY: changed in mvdXML1.2

Page no. Authors

32 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

RuleMessage RuleMessage

[0:?]

Optional message that can be given for an Applicability to show success,

error, warning or other informal messages in multiple languages.

HISTORY: added in mvdXML1.2

Applicability Applicability

[0:1]

Optional condition for the given rules. If the condition evaluates to true,

then the rule is applied. It can also be defined if the condition is optional

(default) or must be fulfilled (minOccurrence=1). In case of checking a list

of references the minimum and/or maximimum number of occurrences can

be given. If no maxOccurrence is given, the given rules are applied to all

occurrences that fulfill this condition.

NOTE: This feature for instance enables to check the existence of material

properties for each layer of the wall. It also enables to exclude an air layer

from this requirement check. The detailed example is given in 0

HISTORY: added in mvdXML1.2

Table 11: Common attributes defined in the element TemplateRules.

The following truth tables are to be used with the @operator.

A B A AND B A OR B A NAND B A NOR B A XOR B A NXOR B

0 0 0 0 1 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 1

Table 12: Truth table for operator attribute

3.3.7 TemplateRule

This element represents an instantiation of a rule with specified parameters. It allows repetitive definitions

to be efficiently represented, such as lists of applicable ports, materials, units, property sets, etc. The

@RuleID used in the Parameters of the template rule serves as a reference to the @RuleID of an

mvd:AttributeRule or mvd:EntityRule at the referenced mvd:ConceptTemplate to be instantiated.

If the referenced mvd:EntityRule is part of a SET-based attribute, then the instance is required to uniquely

exist once (having unique combination of defined parameters), but without regard for order (as a SET has

no implied order). If the referenced mvd:EntityRule is part of a LIST-based attribute, then the instance is

required to occur at the relative position of the mvd:TemplateRule.

Element/Attribute Type Description

Description See section 3.4.2

Page no. Authors

33 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Parameters String [v1.1] mvdXML introduces a grammar definition for the Parameters string

that is harmonized with the Expression string of mvd:Constraint. With minor

changes the form “{Parameter}={Value};” from mvdXML 1.0 is still valid.

In the new grammar the Parameters string is defined by expression where

each boolean_term requires a parameter. The parameter corresponds to

the RuleID of an AttributeRule or EntityRule at the referenced

ConceptTemplate. The operator of the grammar is now more flexible and

not only supports Equals as in mvdXML 1.0. The Value is also enhanced. It

now supports the use of a parameter, not only a value. This enables to

replace the agreement for the definition of parameter values using a ‘#’

sign. This agreement is no longer supported. Finally, each expression can

be grouped and combined through AND, OR and XOR logic.

NOTE: The differentiation between conditions and constraints as used in

mvdXML 1.0 is no longer available.

Order Integer (opt) Attribute for indicating the order of rule for interleaving with rules from other

concepts, such as used for properties of different types.

STATUS: added in mvdXML1.2, clarification needed

Usage Enum (opt) Currently in clarification if needed

Capturing usage implications, such as for data within a COBie

spreadsheet. Allowed options are:

• required

• optional

• key

• reference

• system

• calculation

STATUS: added in mvdXML1.2, clarification needed

precision precisionValue/

Double (opt)

Optional precision setting to be used in the Constraints for comparison of

number values. Unless stated to be an absolute precision, the setting is

used as relative precision. If not defined, precision settings from

DefaultSettings are used.

NOTE: If no precision is defined for data checking, then the precision as

defined in the IFC model is used instead.

HISTORY: added in mvdXML1.2

relativePrecision Boolean (opt) Must be false if absolute precision is required. If not given or true then it is

used a relative precision.

HISTORY: added in mvdXML1.2

negation Boolean (opt) If true, the result of the logical expression defined by the Parameters must

be negated.

HISTORY: added in mvdXML1.2

Requirements Requirements

[0:1]

STATUS: added in mvdXML1.2, clarification needed

RuleMessage RuleMessage

[0:?]

Optional message that can be given for an Applicability to show success,

error, warning or other informal messages in multiple languages.

HISTORY: added in mvdXML1.2

Applicability Applicability

[0:1]

Optional condition for the given rules. If given, evalution of Applicability

must return true so that this TemplateRule is applicable.

HISTORY: added in mvdXML1.2

Table 13: Common attributes defined in the element TemplateRule.

Page no. Authors

34 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

3.3.8 RuleMessage

The element RuleMessage allows the definition of user specific messages. This mechanism is supported

for TemplateRules, TemplateRule, Applicability and Constraints. Depending on its usage it helps to explain

checking rules on different levels of granularity.

HISTORY: added in mvdXML1.2

Element/Attribute Type Description

@lang language (opt) Optional definition of the language of the message. Default if not given is

“en”.

@state Enum

Describes the interpretation of the element where this message is used.

▪ success

▪ failure

▪ warning

▪ comment

3.4 Common type and attribute definitions

The mvd:Definition, and elements referenced by the element Definition, mvd:Body, and mvd:Link elements

provide the capability to add multi-lingual descriptions at any element with own identity. Such elements are:

▪ mvd:ModelView

▪ mvd:ExchangeRequirement

▪ mvd:ConceptTemplate

▪ mvd:ConceptRoot

▪ mvd:Concept

The information provided by this element is mainly used for documentation purposes, in particular to

generate HTML documentation as used by buildingSMART for the IFC data model.

3.4.1 Identity

Similar to IFC, the mvdXML schema makes a distinction between elements having identity and those that

do not. All elements with identity have the following attributes and sub elements defined. The information

provided in this attribute group is used for management purposes.

NOTE: The mvdXML.xsd does not incorporate an mvd:Identity abstract class, the common attributes are defined

in the attributeGroup name="identity" and the definitions in the element name="Definition".

HISTORY: The attribute ‘status’ has been changed from string to an enumeration that includes the previously

recommended values in mvdXML 1.1.

Attribute Type Description

uuid uuid Universally unique identifier. This is used as a persistent identifier, and must

never change. It is string type with a fixed length of 36 characters, which should

follow a specific pattern.

Page no. Authors

35 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Attribute Type Description

name String Human readable name. This is used as the header of the section and entry

within table of contents when generating documentation. The name is also

reported for a validation against this MVD, if assigned to concepts checked

against the MVD.

code String (opt) Human readable reference value of this element of the MVD definition

version String (opt) Sequential version number of this element of the MVD definition.

status enumeration

base: String

(opt)

The status information of this element of the MVD definition.

It has the following enumerators:

▪ Sample

▪ Proposal

▪ Draft

▪ Candidate

▪ Final

▪ Deprecated

author String (opt) The author(s) of his element of the MVD definition. Authors are separated by

semicolon.

owner String (opt) The legal owner of this element of the MVD definition

NOTE Official Model View Definitions by buildingSMART International shall

have ownership assigned to buildingSMART or another accepted

standardization organization.

copyright String (opt) The copyright under which the work is published.

NOTE: If adopted by buildingSMART International, the copyright shall lie either

with buildingSMART International, or is governed by a well-recognized open

license (e.g. creative commons, open source BSD/ GNU).

Table 14: Common attributes defined in the attributeGroup identity.

3.4.2 Definition

The element mvd:Definition groups definition text and links to additional figures, diagrams, examples, and

other external documents.

Attribute Type Description

Body Body

[0:1]

HTML-formatted description of the concept in the default language.

Links Link

[0:?]

List of additional content, each of which may be in separate languages.

Table 15: Common element references defined in the element Definition.

3.4.3 Body

The element mvd:Body holds the definition text or explanatory remarks. It is qualified by a language tag. It

also holds tags that further classify the nature of the definition or remark.

NOTE: In order to correctly encapsulate the HTML formatted text, the content shall be tagged by <![CDATA[]]>

to preserve the HTML code.

HISTORY: tags attribute available since mvdXML 1.1.

Page no. Authors

36 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Attribute Type Description

lang String (opt) Locale identifier based on RFC 1766 language codes to indicate the default

locale. Examples are ‘en’, ‘de’, ‘en-GB’, ’de-CH’.

tags String [0:?] List of tags that classify the element. All tags are separated through whitespaces

per default. A semicolon must be used if given tags consists of multiple words.

(content) String HTML-formatted content for generating documentation. Content within should be

encapsulated by paragraph tags (“<p>”) and/or list tags (“”). Images should

not be contained within; rather they should be specifically referenced by the Link

element (allowing for automatic figure numbering).

Table 16: Common attributes defined in the element Body.

3.4.4 Link

The element mvd:Link holds all links to additional documentation content.

Attribute Type Description

lang language Locale identifier based on RFC 1766 language codes to indicate the default

locale. Examples are ‘en’, ‘de’, ‘en-GB’, ’de-CH’.

title String (opt) Human readable name. This is used as the header of the link content and entry

within table of contents when generating documentation

category enumeration

base: String

(opt)

Indication about the category of the linked content.

definition: formatted as documented definition in alternate locale

agreement: formatted as NOTE in documentation

diagram: formatted as custom figure in documentation based on href

instantiation: formatted as instance diagram figure based on href

example: formatted as EXAMPLE in documentation based on href

href anyURI URL to referenced content, particularly for diagrams and examples that are

manually generated. This is used to reference any external files such that they

are included when generating documentation.

NOTE: URL’s local to the file system shall be relative.

(content) String HTML-formatted description in specified language.

Table 17: Common attributes defined in the element Link.

3.4.5 GenericReference

The complex type mvd:GenericReference holds reference information to other elements identified by a uuid

or a URI. It also enables to hold additional information for the use of this element, such as an IdPrefix for

RuleIDs, applicableEntityRuleID and baseTemplate.

HISTORY: added in mvdXML1.2

Attribute Type Description

ref uuid Universally unique identifier of the reference element. It is string type with a

fixed length of 36 characters, which should follow a specific pattern.

href anyURI URL to referenced content.

IdPrefix String (opt) An optional attribute “IdPrefix” can be given to ensure that RuleIDs of partial

templates are unique within the scope of its usage. This attribute is used as

a prefix for all referenced RuleIDs.

Page no. Authors

37 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

applicableEntityRuleID String (opt) If the referenced element is a ConceptTemplate this attribute specifies the

RuleID of another ConceptTemplate being specified within the context of its

usage to define the applicableEntity of this ConceptTemplate.

baseTemplate Uuid (opt) Optional ConceptTemplate that defines the RuleID as referenced by

applicableEntityRuleID.

Table 18: Common attributes defined in the complex type GenericReference.

Page no. Authors

38 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

4 Rule Grammar

The grammar for parsing expression strings is defined below.

It is used to specify:

▪ mvd:TemplateRule.Parameters, and

▪ mvd:Constraint.Expression.

Updated grammar using the style from mvdXML 1.1

grammar mvdXMLv1_2;

/*---------------- * PARSER RULES *----------------*/

expression

 : boolean_expression ;

boolean_expression

 : NOT? boolean_term (logical_interconnection NOT? boolean_term)* ;

boolean_term

 : ((parameter (metric)? | metric) operator (value | parameter (metric)?)) |

 (LPAREN boolean_expression RPAREN);

parameter

 : SIMPLEID | 'SELF';

metric

 : '[Value]' | '[Size]' | '[Type]' | '[Unique]' | '[Exists]';

logical_interconnection

 : AND | OR | XOR | NAND | NOR | NXOR ;

operator

 : EQUAL | NOT_EQUAL | GREATER_THAN | GREATER_THAN_OR_EQUAL | LESS_THAN |

 LESS_THAN_OR_EQUAL;

value

 : logical_literal | real_literal | string_literal | regular_expression;

logical_literal

 : FALSE | TRUE | UNKNOWN ;

real_literal

 : (sign)? (DIGIT | INT) ('.')? ((DIGIT | INT))? ('e' (sign)? (DIGIT | INT))? ;

string_literal

 : STRING ;

regular_expression

 : 'reg' STRING ;

sign

 : '+' | '-' ;

/*----------------* LEXER RULES *----------------*/

AND

 : 'AND' | 'and' | '&' | ';' ;

OR

 : 'OR' | 'or' | '|' ;

XOR

 : 'XOR' | 'xor' ;

NAND

 : 'NAND' | 'nand' ;

NOR

 : 'NOR' | 'nor' ;

NXOR

 : 'NXOR' | 'nxor' ;

NOT

 : 'NOT' | 'not' | '!';

EQUAL

 : '=' ;

NOT_EQUAL

 : '!=' ;

GREATER_THAN

 : '>' ;

Page no. Authors

39 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

GREATER_THAN_OR_EQUAL

 : '>=' ;

LESS_THAN

 : '<' ;

LESS_THAN_OR_EQUAL

 : '<=' ;

FALSE

 : 'FALSE' | 'false' ;

TRUE

 : 'TRUE' | 'true' ;

UNKNOWN

 : 'UNKNOWN' | 'unknown' ;

DIGIT

 : '0'..'9' ;

INT

 : '0'..'9'+;

HEX_DIGIT

 : DIGIT | ('a'..'f' | 'A'..'F') ;

LETTER

 : ('a'..'z') | ('A'..'Z') ;

SIMPLEID

 : LETTER (LETTER | DIGIT | '_')* ;

LPAREN

 : '(';

RPAREN

 : ')';

OCTAL_ESC

 : '\\' ('0'..'3') ('0'..'7') ('0'..'7') |

 '\\' ('0'..'7') ('0'..'7') |

 '\\' ('0'..'7') ;

UNICODE_ESC

 : '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT ;

ESC_SEQ

 : '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\') | UNICODE_ESC | OCTAL_ESC ;

STRING

 : '\'' (ESC_SEQ | ~('\\'|'\''))* '\'';

WS

 : (' '|'\t'|'\n'|'\r')+ { $channel = HIDDEN; } ;

Page no. Authors

40 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Modernized grammar for parsing with ANTLR:

grammar mvdXMLv1_2;

/*----------------

* PARSER RULES

----------------/

expression

 : boolean_expression EOF;

boolean_expression

 : boolean_term (logical_interconnection boolean_term)* ;

boolean_term

 : NOT? ((leftside operator rightside) | (LPAREN boolean_expression RPAREN);

leftside

 : parameter_metric | metric;

rightside

 : parameter_metric | value;

parameter_metric

 : parameter (metric)?;

parameter

 : simple_id | SELF;

simple_id

 : letter (letter | ZERO | DIGITNONZERO | '_')* ;

metric

 : VALUE | SIZE | TYPE | UNIQUE | EXISTS;

logical_interconnection

 : AND | OR | XOR | NAND | NOR | NXOR;

operator

 : EQUAL | NOT_EQUAL | GREATER_THAN_OR_EQUAL | GREATER_THAN | LESS_THAN_OR_EQUAL | LESS_THAN;

value

 : logical_literal | real_literal | regular_expression | string_literal;

logical_literal

 : FALSE | TRUE | UNKNOWN ;

real_literal

 : sign? (trailing | int) (DOT decimal_part)? exp? ;

string_literal

 : STRING ;

regular_expression

 : REG STRING ;

int

 : DIGITNONZERO (digit)*;

decimal_part

 : trailing? int?;

exp

 : EXP sign int;

sign

 : PLUS | MINUS ;

digit

 : ZERO | DIGITNONZERO;

trailing

 : ZERO+;

letter

 : EXP | LOWER | UPPER;

/*----------------

* LEXER RULES

----------------/

EQUAL

 : '=' ;

NOT_EQUAL

 : '!=' ;

GREATER_THAN_OR_EQUAL

Page no. Authors

41 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

 : '>=' ;

GREATER_THAN

 : '>' ;

LESS_THAN_OR_EQUAL

 : '<=' ;

LESS_THAN

 : '<' ;

AND

 : 'AND' | 'and' | '&' | ';' ;

OR

 : 'OR' | 'or' | '|' ;

XOR

 : 'XOR' | 'xor' ;

NAND

 : 'NAND' | 'nand' ;

NOR

 : 'NOR' | 'nor' ;

NXOR

 : 'NXOR' | 'nxor' ;

NOT

 : 'NOT' | 'not' | '!';

VALUE

 : '[' ('V'|'v') ('alue'|'ALUE') ']' ;

SIZE

 : '[' ('S'|'s') ('ize'|'IZE') ']' ;

TYPE

 : '[' ('T'|'t') ('ype'|'YPE') ']' ;

UNIQUE

 : '[' ('U'|'u') ('nique'|'NIQUE') ']' ;

EXISTS

 : '[' ('E'|'e') ('xists'|'XISTS') ']' ;

FALSE

 : 'FALSE' | 'false' ;

TRUE

 : 'TRUE' | 'true' ;

UNKNOWN

 : 'UNKNOWN' | 'unknown' ;

REG

 : 'reg';

SELF

 : ('S' | 's') ('ELF' | 'elf') ;

EXP

 : 'e' | 'E';

PLUS

 : '+';

MINUS

 : '-';

DOT

 : '.';

LPAREN

 : '(';

RPAREN

 : ')';

ZERO

 : '0';

DIGITNONZERO

 : '1'..'9';

LOWER

 : 'a'..'z';

UPPER

 : 'A'..'Z';

ESC_SEQ

Page no. Authors

42 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

 : '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\') ;

STRING

 : '\'' (ESC_SEQ | ~('\\'|'\''))* '\'';

WS

 : (' '|'\t'|'\n'|'\r')+ -> skip;

Page no. Authors

43 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

The following tables describe more details about the meaning of keywords.

metric Description

Value Indicates the value of the attribute (value uses syntax according to the attribute type, defined

below).

Size Indicates the size of a collection or STRING (value is an INTEGER).

Type Indicates the type of the value assigned to the attribute (value is a STRING).

Unique Indicates whether value must be unique within the population of instances described within the

Concept Template (BOOLEAN).

Exists Indicates if an attribute or reference must exist (“true”) or not (“false”).

Table 19: Description of metric values.

operator XML Escaped Description

= = Equal.

!= != Not Equal.

> > Greater Than.

>= >= Greater Than Or Equal.

< < Less Than.

<= <= Less Than Or Equal

Table 20: Description of operators.

Benchmark may be either a literal value or a parameter. The syntax of literal values varies according to the

EXPRESS attribute type and follows ifcXML (ISO-10303-28) format:

Type Operators Description

INTEGER =, !=, >, >=, <,

<=

The integer value.

REAL =, !=, >, >=, <,

<=

The real value including decimal point, where equality is exact (no epsilon

offset).

NOTE: If a real value has a unit of measurement, then it is necessary to make

sure that the unit defined in mvdXML for this measurement is the same as the

unit of the data that is checked. If they are different (for example milli-metre vs.

metre), the data needs to be converted first before doing the comparison.

BOOLEAN =, != The boolean value as “true” or “false”.

LOGICAL =, != The logical value as “true”, “false”, or “unknown”.

ENUM =, != The enumeration value by case-insensitive name.

STRING =, !=, >, >=, <,

<=

The string value, which may optionally be enclosed by single quotes (if escaping

required). Comparison operators indicate alphabetical sorting (e.g. “>=” can

indicate “must start with” such as the scope of a classification reference, or

earliest date/time).

String datatypes can be compared with a regular expression. Such regular

expression should be defined according to POSIX (ISO/IEC 9945).

BINARY =, != The binary value encoded as hexadecimal prefixed by “%” and number of

unused bits.

ENTITY =, !=, >, >=, <,

<=

The name of the entity type (e.g. “IfcWall”). Equality means exact type match;

“>” means subtype of; “>=” means same type or subtype; “<” means supertype

of; “<=” means same type or supertype.

Table 21: Description of operators that can be applied to different data types.

Page no. Authors

44 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

5 mvdXML Use Cases

This chapter describes typical use cases of mvdXML. Although the main structure of a Model View

Definition is always the same there are differences regarding mandatory, optional and not relevant data.

This review should enable to focus on features of mvdXML that are needed to support those use cases.

5.1 MVD Documentation

On basis of an mvdXML definition it is possible to generate a set of interlinked HTML files. The IfcDoc tool

from buildingSMART enables to export HTML files using the style of the IFC4 documentation (see Figure

4). The main focus of such documentation is to describe how a subset of IFC must be implemented and

used to fulfil specific requirements. Such kind of information is needed by software developers for proper

interpretation of the IFC specification.

Figure 4: HTML documentation of IFC4

The following parts of mvdXML are of main interest:

mvd:Definition attached to mvd:ModelView, mvd:ExchangeRequirement, mvd:ConceptTemplate,

mvd:ConceptRoot and mvd:Concept for storing definition text and links to additional figures, diagrams,

examples, and other external documents

mvd:ConceptTemplate definitions that enable to generate instance diagrams as shown in Figure 4

NOTE: For documentation purposes it is not necessary to specify an mvd:ConceptTemplate in full detail.

Instead it is sufficient to focus on elements that shall be shown in an instance diagram. This is different to

other use cases, in particular for data filtering and data validation, where all required elements must be

defined.

5.2 Specification of subset schemas

A subset schema includes only those parts of IFC that are relevant for implementation. Such subset

schema, which can be defined in EXPRESS or XML Schema, supports software implementation as it

enables to generate software code for file parsing (ifc or ifcXML), data management and data serialization.

Page no. Authors

45 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

But a subset schema does not include additional constraints that define proper use of the subset schema.

Therefore, the use of mvdXML can be simplified as it is only necessary to select entities and attributes that

shall be part of the subset schema. Also, no documentation or other meta-data is required as it cannot be

exported to EXPRESS or XML Schema.

The ifcDoc tool supports the generation of a partial EXPRESS schema. All non-mandatory definitions that

are not part of the subset schema are removed. If attributes and references of supported entities must be

removed, the non-instantiable type IfcStrippedOptional is used. The following EXPRESS snippet shows the

use of this data type where IfcBuildingSystem.LongName was excluded from the sub schema.

SCHEMA IFC4;

TYPE IfcStrippedOptional = BOOLEAN;

END_TYPE;

..

ENTITY IfcBuildingSystem

 SUBTYPE OF (IfcSystem);

 PredefinedType : OPTIONAL IfcBuildingSystemTypeEnum;

 LongName : OPTIONAL IfcStrippedOptional;

END_ENTITY;

..

END_SCHEMA;

5.3 Data Filtering

Data filtering creates a model subset and is similar to generation of a subset schema. But a data filter is

working on instance level, i.e. with data instead of schema definitions. Many instances can be defined for

a data type, but not all instances must be part of a Model View Definition. Accordingly, data filtering may

require adding further conditions that enable to differentiate instances of the same data type. This is leading

to more complex definitions. For example, a condition is necessary if space properties must be

distinguished from wall properties in an IFC model, because both are defined by IfcPropertySet instances.

5.4 Data Validation

Data validation checks if a data set fulfils all constraints of an exchange requirement. If required data is

missing or wrong, then the check fails. In addition to data filtering, it is therefore necessary to specify

Concept.Requirements, i.e. to differentiate between mandatory and excluded data, and to restrict possible

values of instances by using TemplateRule.Parameters of a Concept and Constraint.Expression of

AttributeRule and EntityRule used by ConceptTemplate. Similar to generation of subset schemas and data

filtering no documentation or other meta-data is required for this use case.

Page no. Authors

46 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

6 Glossary

6.1 ER

ER = Exchange Requirement; defines the data that is needed to fulfil a specific task. If not all mandatory

data is available then the task cannot be carried out. Exchange requirement definitions are independent

from a technical solution.

6.2 ERM

ERM = Exchange Requirement Model; implementation of an Exchange Requirement by an IT

specification.

6.3 MVD

MVD = Model View Definition; defines a subset of an IT specification that is able to store data for a set of

Exchange Requirements.

Page no. Authors

47 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

7 Examples

This section shows a series of small mvdXML example files, used for the different purposes for which the mvdXML standard is developed. Given examples are

currently covering the two main use cases: MVD documentation and Data validation.

7.1 Example for MVD documentation

The following example shows an mvdXML file to be used for documenting a model view definition, it is a direct output of the IFC document generator ifcDoc.

From this mvdXML file, in conjunction with the IFC schema definition, the following output is rendered.

Figure 5: Graphical representation of the concept template “Nesting”

Page no. Authors

48 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

Figure 6: graphical representation of the concept template “port nesting”

Figure 7: rendering of HTML tables to document the exchange requirements for the different ports

Page no. Authors

49 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

Figure 8: graphical representation of the usage of concept “port-nesting” at the root concept IfcHeatExchanger

NOTE: The following example was already part of the mvdXML 1.1 documentation and still valid in mvdXML 1.2. No changes are needed.

<?xml version="1.0"?>

<mvdXML xmlns="https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-2/" uuid="cb830d34-5696-4263-a7e9-2259ea343117" name="example 7.1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-2 https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-

2/mvdXML_V1-2.xsd">

 <Templates>

 <ConceptTemplate uuid="5098cd13-bf4b-473a-a846-a60f69e9b738" name="Object Composition" code="" applicableSchema="IFC4"

 applicableEntity="IfcObjectDefinition">

 <Definitions>

 <Definition>

Page no. Authors

50 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <Body><![CDATA[

<p>Objects may be composed into parts to indicate levels of detail, such as a building having multiple storeys, a framed wall having studs, or a

task having subtasks. Composition may form a hierarchy of multiple levels, where an object must have a single parent, or if a top-level object

then declared within the single project or a project library.</p>

]]></Body>

 </Definition>

 </Definitions>

 <SubTemplates>

 <ConceptTemplate uuid="d1e6b86e-7658-443c-b708-86b7dd8b12f4" name="Nesting" applicableSchema="IFC4" applicableEntity="IfcObjectDefinition">

 <Definitions>

 <Definition>

 <Body><![CDATA[<p>A nesting indicates an external ordered part composition relationship between the hosting structure, referred to as

the "host", and the attached components, referred to as the "hosted elements". The concept of nesting is used in various ways. Examples are:</p>

 Nesting is used on product elements to indicate external connectable parts such as faucets mounted on a sink, or switches within a junction

box. Nesting is used on control objects to indicate specification hierarchies. Nesting is used on process objects to indicate

subordinate processes which may occur in parallel or in series. Nesting is used on resource objects to indicate subordinate resource

allocations which may occur in parallel or in series. <p>Nesting is a bi-directional relationship, the relationship from the hosting

structure to its attached components is called Nesting, and the relationship from the components to their containing structure is called

Hosting.</p>]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule AttributeName="IsNestedBy">

 <EntityRules>

 <EntityRule EntityName="IfcRelNests" />

 </EntityRules>

 </AttributeRule>

 </Rules>

 <SubTemplates>

 <ConceptTemplate uuid="bafc93b7-d0e2-42d8-84cf-5da20ee1480a" name="Port Nesting" code="" applicableSchema="IFC4"

 applicableEntity="IfcDistributionElement">

 <Definitions>

 <Definition>

 <Body><![CDATA[<p>Ports indicate possible connections to other objects according to specified system types, flow direction, and

connection properties. Ports are typically connected between devices via cables, pipes, or ducts.</p> <p>Ports may have placement defined

indicating the position and outward orientation of the port relative to the product or product type. Ports may also have material profile sets

defined indicating the flow area and connection enclosure.</p>]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule RuleID="PredefinedType" AttributeName="PredefinedType" />

Page no. Authors

51 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <AttributeRule AttributeName="IsNestedBy">

 <EntityRules>

 <EntityRule EntityName="IfcRelNests">

 <AttributeRules>

 <AttributeRule AttributeName="RelatedObjects">

 <EntityRules>

 <EntityRule EntityName="IfcDistributionPort">

 <AttributeRules>

 <AttributeRule RuleID="Name" Description="The name of the port." AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel" />

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Flow" Description="The flow direction of the port." AttributeName="FlowDirection">

 <EntityRules>

 <EntityRule EntityName="IfcFlowDirectionEnum" />

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Type" AttributeName="SystemType">

 <EntityRules>

 <EntityRule EntityName="IfcDistributionSystemEnum" />

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ObjectPlacement">

 <EntityRules>

 <EntityRule EntityName="IfcLocalPlacement">

 <AttributeRules>

 <AttributeRule AttributeName="RelativePlacement">

 <EntityRules>

 <EntityRule EntityName="IfcAxis2Placement3D">

 <AttributeRules>

 <AttributeRule AttributeName="Location">

 <EntityRules>

 <EntityRule EntityName="IfcCartesianPoint" />

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Axis">

 <EntityRules>

 <EntityRule EntityName="IfcDirection" />

Page no. Authors

52 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="RefDirection">

 <EntityRules>

 <EntityRule EntityName="IfcDirection" />

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="IsDeclaredBy" />

 <AttributeRule AttributeName="PredefinedType">

 <EntityRules>

 <EntityRule EntityName="IfcDistributionPortTypeEnum" />

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 </SubTemplates>

 </ConceptTemplate>

 </SubTemplates>

 </ConceptTemplate>

 </Templates>

 <Views>

 <ModelView uuid="dae06832-07d3-4b1c-b4a7-ee32e11d0189" name="HVAC Sample Model View" code="HVAC" applicableSchema="IFC4">

 <ExchangeRequirements>

Page no. Authors

53 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <ExchangeRequirement uuid="a5846830-de9a-4195-9339-31169ecb7b0e" name="HVAC Sample Exchange" applicability="both" />

 </ExchangeRequirements>

 <Roots>

 <ConceptRoot uuid="3ca6a49f-81c4-4010-9589-578cab9d4428" name="" applicableRootEntity="IfcHeatExchanger">

 <Concepts>

 <Concept uuid="875138d3-6911-4e35-9369-2d273f731250" name="Port" override="false">

 <Template ref="bafc93b7-d0e2-42d8-84cf-5da20ee1480a" />

 <Requirements>

 <Requirement applicability="both" requirement="mandatory" exchangeRequirement="a5846830-de9a-4195-9339-31169ecb7b0e" />

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRule Description="Inlet of substance to be heated."

 Parameters="Name[Value]='HeatingInlet' AND Flow[Value]='SINK' AND Type[Value]='NOTDEFINED'" />

 <TemplateRule Description="Outlet of substance to be heated."

 Parameters="Name[Value]='HeatingOutlet' AND Flow[Value]='SOURCE' AND Type[Value]='NOTDEFINED'" />

 <TemplateRule Description="Inlet of substance to be cooled."

 Parameters="Name[Value]='CoolingInlet' AND Flow[Value]='SINK' AND Type[Value]='NOTDEFINED'" />

 <TemplateRule Description="Outlet of substance to be cooled."

 Parameters="Name[Value]='CoolingOutlet' AND Flow[Value]='SOURCE' AND Type[Value]='NOTDEFINED'" />

 </TemplateRules>

 </Concept>

 </Concepts>

 </ConceptRoot>

 </Roots>

 </ModelView>

 </Views>

</mvdXML>

7.2 Examples for MVD validation

The following chapter includes various examples for the model checking use case. The first example is an update of an example that was already included in the

mvdXML 1.1 documentation. All other examples have been added to explain new features of mvdXML 1.2.

Page no. Authors

54 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

7.2.1 Checking IFC Properties on load bearing, external walls

The following example shows an mvdXML file to be used to validate the completeness of IFC data in an IFC file. It checks that for every load bearing and external

wall the following is true: a property set “Pset_WallCommon” with the properties “FireRating” and “ThermalTransmittance” are provided, and that the direct optional

attribute “PredefinedType” is given. It is permissible to either assign the properties on the occurrence object or at the type object.

Therefore a ConceptTemplate "Property Sets for Objects and Types" is included, that declares that part of the overall IFC structure, which is used to assign a

property set to an occurrence object, a type object to an occurrence object, and a property set to the type object. Since the definition of property set (and the

referenced definition of the property) is used twice (for occurrence and type object) it is declared as a partial concept template and referenced twice from the main

concept template.

As the stipulated completeness checks for “FireRating”, “ThermalTransmittance” and “PredefinedType” are only applicable to those walls, represented by IfcWall

or its subtypes, that are external and load bearing, a separate applicability check is performed as a precondition, before validating the rules themselves.

Each rule checking for the provision of the properties “FireRating” and “ThermalTransmittance” need to check, whether they are assigned to the occurrence (instance

of IfcWall) or the type (associated instance of IfcWallType). A recursive structure of TemplateRules with a @operator attribute is used to hold the logical

combinations.

NOTE: The following example was already part of the mvdXML 1.1 documentation. Minor adjustements in the configuration part were necessary to be

compatible with mvdXML 1.2. Those changes are further documented in the text. With mvdXML 1.2 this example could have been further simplified by reusing

existing standard templates instead of creating a new template for checking occurrence and type properties. Such simplificiation is shown in later example

provided in 7.2.4.

<?xml version="1.0" encoding="UTF-8"?>

<mvdXML xmlns="https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-2/" uuid="8a70d456-c609-4ef7-b496-b92fd1e12796" name="example 7.2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-2 https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-

2/mvdXML_V1-2.xsd">

 <Templates>

The concept template "Property Sets for Objects and Types" defined the concept template structure about how to associate property sets and type objects with

property sets to an occurrence object.

 <ConceptTemplate uuid="5c252c86-5bff-4372-9a27-b794069f9fbb" name="Property Sets for Objects and Types" applicableSchema="IFC4"

 applicableEntity="IfcObject">

 <Rules>

Page no. Authors

55 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <AttributeRule RuleID="PredefinedType" AttributeName="PredefinedType"/>

 <AttributeRule AttributeName="IsDefinedBy">

 <EntityRules>

 <EntityRule EntityName="IfcRelDefinesByProperties">

 <AttributeRules>

 <AttributeRule AttributeName="RelatingPropertyDefinition">

 <EntityRules>

 <EntityRule EntityName="IfcPropertySet">

 <References IdPrefix="O_">

 <Template ref="7c4c45c5-7ba9-4e19-b473-3e97093b3e0d"/>

 </References>

Here a partial concept template is referenced. In order to prevent a duplication of @RuleID names, which would otherwise occur, when the same partial template

“Property Set” is referenced twice from the same main concept template, a @IdPrefix attribute is added. The TemplateRule Parameters at the Concept need to

use these prefixes to unambiguously address the rule id.

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="IsTypedBy">

 <EntityRules>

 <EntityRule EntityName="IfcRelDefinesByType">

 <AttributeRules>

 <AttributeRule AttributeName="RelatingType">

 <EntityRules>

 <EntityRule EntityName="IfcTypeObject">

 <AttributeRules>

 <AttributeRule AttributeName="HasPropertySets">

 <EntityRules>

 <EntityRule EntityName="IfcPropertySet">

 <References IdPrefix="T_">

 <Template ref="7c4c45c5-7ba9-4e19-b473-3e97093b3e0d"/>

 </References>

Here the partial concept template for property sets is referenced a second time. Therefore a different @IdPrefix is used.

Page no. Authors

56 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

The following concept templates are partial concept templates used to allow for a more modular structure of concept template definitions. It includes the definition

of property sets and the definition of a property with single value, which is referenced from the partial concept template for property sets. Hence partial concept

templates can be nested.

 <ConceptTemplate uuid="6655f6d0-29a8-47b8-8f3d-c9fce9c9a620" name="Single Value" applicableSchema="IFC4"

 applicableEntity="IfcPropertySingleValue" isPartial="true">

 <Rules>

 <AttributeRule RuleID="PName" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="PSingleValue" AttributeName="NominalValue">

 <EntityRules>

 <EntityRule EntityName="IfcValue"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="7c4c45c5-7ba9-4e19-b473-3e97093b3e0d" name="Property Sets" code="" applicableSchema="IFC4"

 applicableEntity="IfcPropertySet" isPartial="true">

Page no. Authors

57 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <Rules>

 <AttributeRule RuleID="PsetName" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="HasProperties">

 <EntityRules>

 <EntityRule EntityName="IfcPropertySingleValue">

 <References>

 <Template ref="6655f6d0-29a8-47b8-8f3d-c9fce9c9a620"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 </Templates>

 <Views>

 <ModelView uuid="72dad5df-6f61-49f2-ba8c-baccf24a6ce5" name="design phase" applicableSchema="IFC4" code="LPH 3">

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[Model progression requirements for design phase]]></Body>

 </Definition>

 </Definitions>

 <ExchangeRequirements>

 <ExchangeRequirement uuid="ae70f764-938b-4cf7-9814-c29a47f56b0e" name="design phase coordination" code="LPH 3a" applicability="export">

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[Model progression requirements for design phase for coordination.]]></Body>

 </Definition>

 </Definitions>

 </ExchangeRequirement>

 </ExchangeRequirements>

Page no. Authors

58 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <Roots>

 <ConceptRoot uuid="0e93f597-f5e1-475b-87a7-eb007993a50d" name="load bearing external walls" applicableRootEntity="IfcWall">

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[...]]></Body>

 </Definition>

 </Definitions>

This concept has a precondition that needs to be met before the template rules are executed. The Applicability imposes that only those instances of IfcWall are

validated, that have the property set “Pset_WallCommon” and the two properties “IsExternal” and “LoadBearing” assigned:

▪ The value of “IsExternal” shall be “true” and the value of “LoadBearing” shall be “true”.

In addition, it checks, whether the properties are provided at the occurrence or at the type, and if both are provided, that the override value from the occurrence is

used for the check.

NOTE: Since mvdXML 1.2 the operator “NOT” in TemplatesRules is no longer supported. The updated example replaces such definitions by the negation attribute

in TemplateRule. Instead of using the negation attribute of TemplateRules, this logic could also be embedded in the logical expression of Parameters by using the

new NOT statement.

 <Applicability>

 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>

 <!-- Applicability: check that IsExternal and LoadBearing property are both set to true (AND) -->

 <TemplateRules operator="and">

 <!-- two alternatives to provide the IsExternal property (as property on occurrence or type) (OR) -->

 <TemplateRules operator="or">

 <!-- check occurrence property -->

 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='IsExternal' AND O_PSingleValue[Value]=TRUE"/>

 <!-- for type properties two criteria must be checked: 1) defined on type and 2) not redefined on occurrence -->

 <TemplateRules operator="and">

 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='IsExternal' AND T_PSingleValue[Value]=TRUE"/>

 <TemplateRule negation=true Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='IsExternal'"/>

 </TemplateRules>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='LoadBearing' AND O_PSingleValue[Value]=TRUE"/>

 <!-- for type properties two criteria must be checked: 1) defined on type and 2) not redefined on occurrence -->

 <TemplateRules operator="and">

 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='LoadBearing' AND T_PSingleValue[Value]=TRUE"/>

Page no. Authors

59 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <TemplateRule negation=true Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='LoadBearing'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Applicability>

At the concepts the validation rules for the required provision of “FireRating”, “ThermalTransmittance” and “PredefinedType” are defined. There are three individual

concepts, each of them is validated separately.

In this example, they all refer to the same concept template "Property Sets for Objects and Types" via the IDREF link "5c252c86-5bff-4372-9a27-b794069f9fbb".

The validation is enforced for the exchange requirement “design phase coordination” via the IDREF link “ae70f764-938b-4cf7-9814-c29a47f56b0e”, the requirement

is set to “mandatory”, meaning, that an error is displayed, if the outermost template rule validates to “false”.

 <Concepts>

 <!-- Test #1: check existence of FireRating property -->

 <Concept uuid="983ddc5d-c0c8-47c9-8491-97add7677139" name="load bearing external walls required to have property 'FireRating'">

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[For all load bearing external walls the property 'FireRating' shall be applied]]></Body>

 </Definition>

 </Definitions>

 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>

 <Requirements>

 <Requirement applicability="export" exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="or">

 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='FireRating' AND O_PSingleValue[Exists]=TRUE"/>

 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='FireRating' AND T_PSingleValue[Exists]=TRUE"/>

 </TemplateRules>

 </Concept>

The first concept checks, that every instance of IfcWall, that passes the Applicability check (meaning that is an external and load bearing wall), has a property of

name “FireRating” within a property set with name “Pset_WallCommon”. Thereby it can either be the property set assigned to the occurrence, or the property set

assigned to the type, or both. The variable “O_PsetName” refers to the @RuleID “PsetName” defined in the partial concept template that has been referenced by

the main concept template “Property Sets for Objects and Types” with the @IdPrefix=”O_” – i.e. to the property set assigned directly to the IfcWall occurrence.

Similarly the variable “T_PsetName” refers to the property set assigned to the associated IfcWallType.

 <!-- Test #2: check existence of ThermalTransmittance property -->

 <Concept uuid="e9941408-82a6-4c00-a397-11087e6c5d1f" name="load bearing external walls required to have property 'ThermalTransmittance'">

Page no. Authors

60 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[For all oad bearing external walls the property 'ThermalTransmittance' shall be applied]]></Body>

 </Definition>

 </Definitions>

 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>

 <Requirements>

 <Requirement applicability="export" exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="or">

 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND

 O_PName[Value]='ThermalTransmittance' AND O_PSingleValue[Exists]=TRUE"/>

 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND

 T_PName[Value]='ThermalTransmittance' AND T_PSingleValue[Exists]=TRUE"/>

 </TemplateRules>

 </Concept>

The second concepts checks the provision of the property “ThermalTransmittance” using the same method.

 <!-- Test #3: check existence of PredefinedType attribute -->

 <Concept uuid="a14ab957-e65d-48c1-84fe-8f99c2630646" name="load bearing external walls required to have attribute PredefinedType">

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[For all oad bearing external walls the property 'PredefinedType' shall be applied]]></Body>

 </Definition>

 </Definitions>

 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>

 <Requirements>

 <Requirement applicability="export" exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e" requirement="mandatory"/>

 </Requirements>

 <TemplateRule Parameters="PredefinedType[Exists]=TRUE"/>

 </Concept>

The third concept checks, whether the direct, optional attribute PredefinedType at ifcWall has a value associated. The metric “[Exists]” checks, that the value of

PredefinedType is not NIL or false (in other words, that a value is provided for the optional attribute).

NOTE: In mvdXML 1.2 a TemplatesRules element must include 2 or more TemplateRule elements. The check of the PredefinedType attribute is thus no longer

encapsulated by a TemplatesRules element.

 </Concepts>

Page no. Authors

61 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 </ConceptRoot>

 </Roots>

 </ModelView>

 </Views>

</mvdXML>

7.2.2 Checking existance of objects with error messages

This example explains two new features introduced with mvdXML 1.2: (1) the ability to check the existence of specific object types and (2) the possibility to include

user-friendly messages in case of success, errors, warnings or other informal purposes.

The example checks that at least one instance of IfcSpace is available. This requirement is expressed by the minOccurrence attribute in the Applicability element,

which also includes the error messages in English and German.

<ConceptRoot uuid="28443da6-000b-40df-9c6f-62553300f55f" name="Test IfcSpace availability" applicableRootEntity="IfcSpace">

 <!-- There must be at least one instance of IfcSpace (minOccurrence) -->

 <Applicability minOccurrence="1">

 <!-- Define error message in English and German if the applicability rule failes -->

 <RuleMessage lang="en" state="failure">At least one room (IfcSpace) is required</RuleMessage>

 <RuleMessage lang="de" state="failure">Mindestens ein Raum (IfcSpace) muss vorhanden sein</RuleMessage>

 </Applicability>

</ConceptRoot>

7.2.3 Use of SELF expression for defining exception from list of subtypes

This example shows an extension of the rule grammar. The keyword SELF is used to check the type of an instance. In the given example it is used to exclude the

subtypes IfcAnnotation and IfcVirtualElement of IfcProduct from the list of applicable entities for checking the existance of the name attribute.

<ConceptRoot uuid="2aa33a62-6f0e-4d03-9f00-ba1796c62f1e" name="Test name of IfcProduct (without IfcAnnotation, IfcVirtualElement)"

applicableRootEntity="IfcProduct">

 <Applicability>

 <Template ref="6d70aadb-bd68-41b3-8b0f-0b56c5c09e86"/>

 <!-- Define exceptions for the selection of instances via SELF statement. Exclude instances of type IfcAnnotation and IfcVirualElement -->

 <TemplateRule Parameters="SELF[Type]!='IfcAnnotation' and SELF[Type]!='IfcVirtualElement'"/>

 </Applicability>

 <Concepts>

 <Concept uuid="5fc09487-885f-4185-98e2-cb3ba2386087" name="Name exists">

 <Template ref="6d70aadb-bd68-41b3-8b0f-0b56c5c09e86"/>

 <TemplateRule Parameters="Name[Exists]=TRUE"/>

Page no. Authors

62 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 </Concept>

 </Concepts>

</ConceptRoot>

7.2.4 Combination of ConceptTemplate

The combination of different ConceptTemplates enables to focus on templates with basic IFC functionality. If model checking needs to test alternative

representations or to combine preconditions linked to different IFC functionalities, then such combination of ConceptTemplates can help to avoid defining new

ConceptTemplates. There are a few examples in the IFC4 and IFC4 RV1.2 specifications showing such combination of basic IFC functionalities, leading to the

need to define new ConceptTemplates. This includes:

• “Property Sets with Override”: combination of “Property Sets for Objects” and “Property Sets for Types” via “Object Typing”

• “Classification for Objects with Override” (in RV only): combination of generic “Classification for Objects” and generic “Classification” via “Object Typing”

• “Material Single for Objects with Override” (in RV only): combination of generic “Material Single” vial “Object Typing”

• “Material Constituent Set with Override” (in RV only): combination of generic “Material Constituent Set” vial “Object Typing”

The principle of combining several ConceptTemplates is shown for the first override specification. Instead of using the new ConceptTemplate “Property Sets with

Override” a combination of “Property Sets for Objects”, “Property Sets for Types” and “Object Typing” can be used in mvdXML 1.2.

<Concept uuid="00000168-1162-1163-0000-000000171167" name="LoadBearing : Property Sets for Objects : Beam_1-04">

 <!-- Reference to one override template "Property Sets for Objects with Override"

 <Template ref="e26040e8-82e2-4f6a-bc63-ac8e6da2d0ae"/> -->

 <!-- Reference to "Property Sets for Objects" -->

 <Template ref="f74255a6-0c0e-4f31-84ad-24981db62461"/>

 <!-- Reference to "Object Typing" -->

 <Template ref="35a2e10e-20df-40f4-ab2f-dacf0a6744f4"/>

 <!-- Reference to "Property Sets for Types", pointing to "Object Typing" as base template and the RuleID where this template shall be used -->

 <Template ref="4be3312a-3199-492e-b204-cac2229a9ade" IdPrefix="Type" applicableEntityRuleID="RelatingType"

 baseTemplate="35a2e10e-20df-40f4-ab2f-dacf0a6744f4"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000168-1162-1163-0000-000000000000" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="or">

 <TemplateRule Parameters="PsetName[Value]='Pset_BeamCommon' AND PropertyName[Value]='LoadBearing' AND Value[Value]=TRUE"/>

 <TemplateRules operator="and">

 <TemplateRule Parameters="TypePsetName[Value]='Pset_BeamCommon' AND TypePropertyName[Value]='LoadBearing' AND TypeValue[Value]=TRUE"/>

Page no. Authors

63 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 <TemplateRule negation="true" Parameters="PsetName[Value]='Pset_BeamCommon' AND PropertyName[Value]='LoadBearing' AND

Value[Exists]=TRUE"/>

 </TemplateRules>

 </TemplateRules>

</Concept>

7.2.5 Check existence of a particular information for all material layers

The following advanced example shows how to check a set of references and the use of an additional condition. Such type of checking rule is for instance needed

if material properties of a multilayered wall must be checked. A set of material properties must be provided for all layers except for the ventilation layer.

The first example defines a check for material layer set usage (exclude ventilation layer).

<Concept uuid="d5fe9c9c-258b-4f1a-b6a1-ec987bb22e4a" name="Check material properties for building elements">

 <!-- link to template "Material Profile Set Usage", extended by link to properties (IfcMaterial(Layer).HasProperties) -->

 <Template ref="39a4420d-ab6f-4dd1-b4ce-a4a85bd2bd13"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="92f50b6b-557f-4e5a-9b27-7034e7b6f3b6" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <!-- optional check for existance of MaterialRelation -->

 <TemplateRule Parameters="MaterialRelation[Size]=1"/>

 <TemplateRules operator="and">

 <!-- MaterialLayerSetUsage must be used (may combine with other alternatives) !-->

 <TemplateRule Parameters="RelatingMaterialLayerSetUsage[Type]='IfcMaterialLayerSetUsage'"/>

 <TemplateRules operator="and">

 <!-- LayerSetName must be given -->

 <TemplateRule Parameters="LayerSetName[Exists]=TRUE"/>

 <!-- 2 or more layers should exist -->

 <TemplateRule Parameters="MaterialLayers[Size]>1"/>

 <TemplateRule operator="and">

 <!-- Conditional statement for execution of template rules; check should be performed only,

if "IsVentilated" of IfcMaterialLayers equals to false, i.e. no material properties are required if material layer

represents an air gap minOccurrence=2 there must be at least two layers that are not an air gap maxOccurrence is not

given, the condition should apply FOR ALL layers that are not an air gap -->

 <Applicability minOccurrence="2">

 <!-- If no template ref is given, use the templates as defined by the Concept

 <Template ref="39a4420d-ab6f-4dd1-b4ce-a4a85bd2bd13"/> -->

 <TemplateRule Parameters="IsVentilated[Value]=FALSE"/>

 </Applicability>

 <!-- If MaterialLayer is not an air gap (controlled by IsVentilated attribute), check that MaterialName exists and .. -->

 <TemplateRule Parameters="MaterialName[Exists]=TRUE"/>

 <!-- .. the following properties are defined and that the values are greater than 0.0

 NOTE: Parameters PropertySetName, SimplePropertyName and NominalValue must be defined in the used template

Page no. Authors

64 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 "Material Constituent Set with Override"! -->

 <TemplateRules operator="and">

 <TemplateRule Parameters="PropertySetName[Value]='Pset_MaterialThermal' and

SimplePropertyName[Value]='ThermalConductivity' and

 NominalValue[Value] > 0.0"/>

 <TemplateRule Parameters="PropertySetName[Value]='Pset_MaterialThermal' and

 SimplePropertyName[Value]='SpecificHeatCapacity' and

 NominalValue[Value] > 0.0"/>

 <TemplateRule Parameters="PropertySetName[Value]='Pset_MaterialCommon' and

 SimplePropertyName[Value]='MassDensity' and

 NominalValue[Value] > 0.0"/>

 </TemplateRules>

 </TemplateRule>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

</Concept>

The second example is like the first example but defines the checking rule for testing material constituent sets instead of material layers. The assumption in that

example is that by agreement the ventilation layer shall be identified by the material category “Air” and will be excluded from the requirement of having a above

requested properties.

<!-- check for multilayered walls defined by material constituents sets (with exception for air gaps based on IfcMaterial.Category = 'Air')-->

<Concept uuid="d5fe9c9c-258b-4f1a-b6a1-ec987bb22e4a" name="Check material properties for layers building elements">

 <!-- link to template "Material Constituent Set with Override" -->

 <Template ref="b31e8fb4-e7b9-48da-bbf4-cfd422f5f6cd"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="92f50b6b-557f-4e5a-9b27-7034e7b6f3b6" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRule Parameters="MaterialRelation[Size]=1"/>

 <TemplateRules operator="and">

 <TemplateRule Parameters="MaterialConstituents[Type]='IfcMaterialConstituent'"/>

 <TemplateRule Parameters="MaterialConstituents[Size]>1'"/>

 <TemplateRules operator="and">

 <Applicability minOccurrence=1>

 <TemplateRule Parameters="MaterialCategory[Value]!='Air'"/>

 </Applicability>

 <TemplateRule Parameters="ConstituentName[Exists]=TRUE"/>

 <TemplateRule Parameters="Material[Exists]=TRUE AND Material[Type]='IfcMaterial'"/>

 <TemplateRule Parameters="MaterialProperties[Size]>2"/>

 <TemplateRule Parameters="MaterialPropertyName[Exists]=TRUE"/>

 <TemplateRules operator="and">

 <TemplateRule Parameters="PropertySetName[Value]='Pset_MaterialThermal' and

Page no. Authors

65 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

 SimplePropertyName[Value]='ThermalConductivity' and

 NominalValue[Value] > 0.0"/>

 <TemplateRule Parameters="PropertySetName[Value]='Pset_MaterialThermal' and

 SimplePropertyName[Value]='SpecificHeatCapacity' and

 NominalValue[Value] > 0.0"/>

 <TemplateRule Parameters="PropertySetName[Value]='Pset_MaterialCommon' and

 SimplePropertyName[Value]='MassDensity' and

 NominalValue[Value] > 0.0"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

</Concept>

7.2.6 Adding information about precision and units

The following example shows the use of precision settings for the comparison of floating-point values, the elevation hight of a building storey.

<ConceptRoot uuid="00000168-1162-1163-0000-000000171183" name="Building Storey_02" applicableRootEntity="IfcBuildingStorey">

 <Applicability>

 <Template ref="c19ec186-9cfd-47fc-a4d4-9fb35008d04a"/>

 <TemplateRule Parameters="ObjectName[Value]='First Floor'"/>

 </Applicability>

 <Concepts>

 <Concept uuid="00000168-1162-1163-0000-000000171185" name="Storey Attributes : Building Storey_02">

 <Template ref="488c9bb2-3102-4b89-bd20-42aa7060ae08"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000168-1162-1163-0000-000000000000" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRule Parameters="Name[Value]='First Floor'"/>

 <!-- Set relative precision to 0.001 for the check of Elevation value

 (given in global length unit defined in the Default Settings) -->

 <TemplateRule Precision="1e-4" RelativePrecision="true" Parameters="Elevation[Value]=3.8"/>

 </TemplateRules>

 </Concept>

 </Concepts>

</ConceptRoot>

The global unit for length measurements can be defined in the DefaultSettings element being a child of the mvdXML element. In this example the length unit as

being relevant for the check of the Elevation attribute is defined to be in metre. The precision defined at global level (1e-6) is redefined to be 1e-4 at the

TemplateRule.

Page no. Authors

66 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

<DefaultSettings precision="1e-6">

 <Units>

 <IfcSIUnit UnitType="lengthunit" Name="metre" />

 </Units>

</DefaultSettings>

Page no. Authors

67 Weise, M.; Geiger A.; Muhic, S; Chipman, T; Liebich, T;

Model Support Group

8 XSD Listing

The XSD can be download from: https://github.com/buildingSMART/mvdXML/tree/master/mvdXML1.2/xsd

