光电效应

实验数据处理

トー楠 PB22071444 PHYS1008A 教室:1419 座位号:1

2023年4月24日

目录

1	实验	目的																2
2	实验	原理																2
3	实验	测量数据	处理															2
	3.1	零电流法	测量遏止日	电压				 		 	 			 •				2
		3.1.1 数	(据记录 .					 		 	 			 •				2
		3.1.2 零	电流法数	据处理 .				 		 	 			 •				2
	3.2	补偿法测	量遏止电周	玉				 		 	 	•	• •	 •				3
		3.2.1 数	(据记录 .					 		 	 	•		 •				3
		3.2.2 补	·偿法数据	处理				 		 	 			 •				3
	3.3	光电管的	伏安特性的	曲线测量				 		 	 			 •				5
		3.3.1 第	;一组					 		 	 	•		 •				5
		3.3.2 第	;二组					 		 	 			 •				5
	3.4	光电管的	伏安特性的	曲线				 		 	 	•		 •				6
	3.5	饱和光电	流和光强的	的关系 .				 		 	 	•		 •				7
		3.5.1 通	过控制光	阑孔的大	小控制	制光	强.	 		 	 			 •				7
		3.5.2 数	(据拟合 .					 		 	 	•		 •				7
		3.5.3 通	过控制入	射距离控制	制光	强.		 		 	 			 •				8
		3.5.4 数	(据拟合 .	•••••				 	•	 	 	•		 •	•		•	9
4	致谢	ł																10

4 致谢

10

1 实验目的

了解光电效应的基本规律,并用光电效应的方法测量普朗克常量,并测定光电管的光电特性 曲线。

2 实验原理

在光电效应中,光显示出粒子性质,它的一部分能量被物体表面电子吸收后,电子逸出形成 光电子,若使该过程发生于一闭合回路中,则产生光电流。

3 实验测量数据处理

3.1 零电流法测量遏止电压

3.1.1 数据记录

<u></u>										
波长 λ _i	365.0	404.7	435.8	546.1	577.0					
频率 $\nu_i(\times 10^{14}Hz)$	8.214	7.408	6.879	5.490	5.196					
遏止电压 $U_{0i}(V)$	-1.782	-1.506	-1.170	-0.596	-0.490					

表 1: 零电流法测量遏制电压

3.1.2 零电流法数据处理

记电压为 –U₀ 后作图: 斜率

 $m = 0.0043823 \,\mathrm{V/Thz}$

截距

$$b=-1.7999\,\mathrm{V}$$

线性拟合的相关系数

$$r = \frac{\overline{\nu U} - \overline{\nu} \cdot \overline{U}}{\sqrt{\left(\overline{\nu^2} - \overline{\nu}^2\right) \left(\overline{U^2} - \overline{U}^2\right)}} = 0.9975716$$

斜率标准差

$$s_m = |m| \cdot \sqrt{\left(\frac{1}{r^2} - 1\right)/(n-2)} = 0.00017665 \,\mathrm{V/Thz}$$

截距标准差

$$s_b = s_m \cdot \sqrt{\overline{\nu^2}} = 0.11898 \,\mathrm{V}$$

普朗克常量

$$h = e|m| = 7.0205 \times 10^{-34} J \cdot s$$

第2页,共10页

图 1: 零电流法数据拟合图像

相对误差

$$E = \frac{|h - h_0|}{h_0} = 5.9542\%$$

与 x 轴截距为

$$-b/m = 410.72Thz$$

即为红限.

逸出功

$$A = e|b| = 2.8835 \times 10^{-19} J$$

3.2 补偿法测量遏止电压

3.2.1 数据记录

表 2: 补偿法测量遏制电压

波长 λ _i	365.0	404.7	435.8	546.1	577.0
频率 $\nu_i(\times 10^{14}Hz)$	8.214	7.408	6.879	5.490	5.196
遏止电压 U _{0i} (V)	-1.782	-1.506	-1.172	-0.596	-0.490

3.2.2 补偿法数据处理

记电压为 –U₀ 后作图: 斜率

$m=0.0043831\,\mathrm{V/Thz}$

第3页,共10页

图 2: 补偿法数据拟合图像

截距

$$b = -1.8 \, \text{V}$$

线性拟合的相关系数

$$r = \frac{\overline{\nu U} - \overline{\nu} \cdot \overline{U}}{\sqrt{\left(\overline{\nu^2} - \overline{\nu}^2\right) \left(\overline{U^2} - \overline{U}^2\right)}} = 0.99764186$$

斜率标准差

$$s_m = |m| \cdot \sqrt{\left(\frac{1}{r^2} - 1\right)/(n-2)} = 0.0001741 \,\mathrm{V/Thz}$$

截距标准差

$$s_b = s_m \cdot \sqrt{\overline{\nu^2}} = 0.11726 \,\mathrm{V}$$

普朗克常量

$$h = e|m| = 7.021710^{-34} J \cdot s$$

相对误差

$$E = \frac{|h - h_0|}{h_0} = 5.972\%$$

与 x 轴截距为

$$-b/m = 410.68Thz$$

即为红限.逸出功

$$A = e|b| = 2.883610^{-19}J$$

由此看出零电流法和补偿法所测得的数据相差不大。两组数据的误差相近,相比而言补偿法的相关系数更接近于1,线性程度更高;零电流法测得的普朗克常数与实际值较为接近。

第4页,共10页

中国科学技术大学物理实验数据处理报告

少年班学院 PB22071444 卜一楠 PHYS1008A 2023 年 4 月 24 日

3.3 光电管的伏安特性曲线测量

3.3.1 第一组

 $\lambda = 365mm \qquad \phi = 4mm \qquad L = 400mm$

表 3: 光电管的伏安特性曲线测量:测量范围: $-2V \sim 0V$, step = 0.2V

	10. 10		1.1.1		17. 0.1	10 PA •	<i>_</i> ·	0.,00	°P 0.		
U_k/V	-1.998	-1.800	-1.600	-1.400	-1.200	-1.000	-0.800	-0.600	-0.400	-0.200	0.000
$I/\times 10^{\text{-}13}A$	-17.0	-8.0	33.3	170.2	449	749	1081	1454	1837	2200	2580

表 4: 光电管的伏安特性曲线测量: 测量范围: -1V~30V, step = 2V

U_k/V	-1	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
$I/ \times 10^{-10} A$	0.8	4.7	9.0	11.3	13.6	16.3	19.3	22.3	25.0	26.5	28.5	30.3	32.2	33.8	35.0	36.6	37.8

3.3.2 第二组

$\lambda = 405mm \qquad \phi = 4mm \qquad L = 400mm$

表 5: 光电管的伏安特性曲线测量:测量范围: -2V~0V,step = 0.2V

U_k/V	-1.998	-1.800	-1.600	-1.400	-1.200	-1.000	-0.800	-0.600	-0.400	-0.200	0.000
$I/ \times 10^{-13} A$	-31.0	-27.3	-18.4	0.7	54.0	199	396	624	877	1114	1364

表 6: 光电管的伏安特性曲线测量: 测量范围: -1V~30V, step = 2V

U_k/V	-1	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
$I/ \times 10^{-10} A$	0.3	2.8	5.0	6.5	8.0	9.6	11.1	12.6	13.8	15.0	16.1	17.0	18.0	18.8	19.5	20.2	20.7

中国科学技术大学物理实验数据处理报告 少年班学院 PB22071444 卜一楠 PHYS1008A 2023 年 4 月 24 日

3.4 光电管的伏安特性曲线

读取拐点值:

图 4: 拐点处的伏安特性曲线

第6页,共10页

 $U_1 = -1.15V, U_2 = -1.48V$

则有**:**

$$eU_1 = h\nu_1 - A$$
$$eU_2 = h\nu_1 - A$$

其中, U1、U2 为读取的拐点时的电压值。

于是有:

$$h = \frac{e(U_1 - U_2)}{\nu_1 - \nu_2}$$
$$\nu_1 = 8.216 \times 10^{14} Hz, \nu_2 = 7.410 \times 10^{14} Hz$$

故解得:

$$h = \frac{e(U_1 - U_2)}{\nu_1 - \nu_2} = \frac{1.6 \times 10^{-19} \times 0.33}{8.216 \times 10^{14} - 7.410 \times 10^{14}} = 6.5509 \times 10^{-34} J \cdot s$$

相对误差:

$$E = \frac{|h - h_0|}{h_0} = \frac{6.5509 \times 10^{-34} - 6.6260 \times 10^{-34}}{6.6260 \times 10^{-34}} \times 100\% = 1.1339\%$$

3.5 饱和光电流和光强的关系

3.5.1 通过控制光阑孔的大小控制光强

波长	光阑孔 ϕ/mm	2	4	8	14.35
$435.8\mathrm{mm}$	$I/ imes 10^{-10} A$	8.7	29.9	117.9	350

波长	光阑孔 ϕ/mm	2	4	8	14.35
546.1mm	$I/ \times 10^{-10} A$	1.2	3.9	14.2	42.1

3.5.2 数据拟合

光强正比于光阑直径的平方,应在 origin 中拟合 $I - \Phi^2$ 的图像。

中国科学技术大学物理实验数据处理报告 少年班学院 PB22071444 卜一楠 PHYS1008A 2023 年 4 月 24 日

	A	В
1	方程	y = a + b x
2	绘图	饱和光电流
3	权重	不加权
4	截距	0.07319 ± 0.03227
5	斜率	0.02017 \pm 2.98403E-4
6	残差平方和	0.00459
7	Pearson's r	0.99978
8	R平方(COD)	0.99956
9	调整后R平方	0.99934

图 5: $\lambda = 435.8mm$ 时光阑孔的大小与光强的 关系

由该结果可知拟合表达式为 $I = 0.02017\Phi^2 + 0.07319$,且相关系数与 1 较为接近,表明饱和 光电流与光强成正比。

1	A	В
1	方程	y = a + b*x
2	绘图	饱和光电流
3	权重	不加权
4	截距	0.4446 ± 0.30867
5	斜率	0.16857 ± 0.00285
6	残差平方和	0. 41976
7	Pearson's r	0.99971
8	R平方(COD)	0.99943
9	调整后R平方	0.99914

图 6: $\lambda = 435.8mm$ 时光阑孔的大小与光强的 关系

由该结果可知拟合表达式为 $I = 0.16857\Phi^2 + 0.4446$, 且相关系数与 1 较为接近,表明饱和 光电流与光强成正比。

3.5.3 通过控制入射距离控制光强

波长	入射距离 L/cm	30.00	32.00	34.00	36.00	38.00	40.00
435.8mm	$I/ imes 10^{-10} A$	65.0	54.2	46.2	40.0	34.6	30.6

波长	入射距离 L/cm	30.00	32.00	34.00	36.00	38.00	40.00
546.1mm	$I/ \times 10^{-10} A$	8.1	6.9	5.8	5.0	4.4	3.8

3.5.4 数据拟合

光强反比于入射距离的平方,应在 origin 中拟合 $I - L^{-2}$ 的图像。

	A	В				
1	方程	y = a + b*x				
2	绘图	光电流大小				
3	权重	不加权				
4	截距	-1.42319 ± 0.14315				
5	斜率	$0.\ 70609\ \pm\ 0.\ 01671$				
6	残差平方和	0.01848				
7	Pearson's r	0.99888				
8	R平方(COD)	0.99776				
9	调整后R平方	0.99721				

图 7: $\lambda = 435.8mm$ 时光入射距离与光强的关系

由该结果可知拟合表达式为 $I = 0.70609L^{-2} - 1.42319$,且相关系数与 1 较为接近,表明饱 和光电流与光强成正比。

	A	В				
1	方程	y = a + b*x				
2	绘图	光电流大小				
3	权重	不加权				
4	截距	-0.17761 ± 0.01334				
5	斜率	0.08857 ± 0.00156				
6	残差平方和	1.60469E-4				
7	Pearson's r	0.99938				
8	R平方(COD)	0.99876				
9	调整后R平方	0.99846				

图 8: $\lambda = 546.1mm$ 时光入射距离与光强的关系

由该结果可知拟合表达式为 $I = 0.08857L^{-2} - 0.17761$,且相关系数与 1 较为接近,表明饱和光电流与光强成正比。

光强与光阑直径的平方成正比,与入射距离的平方成反比。故以上分析表明,饱和光电流与 光强在一定范围内大致成正比。

4 致谢

感谢中国科学技术大学物理实验教学中心和王浩然老师的指导!

5 附录

原始实验数据