From b3fb2d009e005033b6454836da5f2572d41ee506 Mon Sep 17 00:00:00 2001 From: Peter Jung Date: Tue, 30 May 2023 17:48:45 +0200 Subject: [PATCH] EEVDF Signed-off-by: Peter Jung --- Documentation/admin-guide/cgroup-v2.rst | 10 + include/linux/rbtree_augmented.h | 26 + include/linux/sched.h | 8 +- include/uapi/linux/sched.h | 4 +- include/uapi/linux/sched/types.h | 19 + init/init_task.c | 3 +- kernel/sched/core.c | 65 +- kernel/sched/debug.c | 49 +- kernel/sched/fair.c | 1152 +++++++++++------------ kernel/sched/features.h | 24 +- kernel/sched/sched.h | 22 +- tools/include/uapi/linux/sched.h | 4 +- 12 files changed, 726 insertions(+), 660 deletions(-) diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index f67c0829350b..a39dfda3d032 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -1121,6 +1121,16 @@ All time durations are in microseconds. values similar to the sched_setattr(2). This maximum utilization value is used to clamp the task specific maximum utilization clamp. + cpu.latency.nice + A read-write single value file which exists on non-root + cgroups. The default is "0". + + The nice value is in the range [-20, 19]. + + This interface file allows reading and setting latency using the + same values used by sched_setattr(2). The latency_nice of a group is + used to limit the impact of the latency_nice of a task outside the + group. Memory diff --git a/include/linux/rbtree_augmented.h b/include/linux/rbtree_augmented.h index d1c53e9d8c75..a78e692a9ff5 100644 --- a/include/linux/rbtree_augmented.h +++ b/include/linux/rbtree_augmented.h @@ -60,6 +60,32 @@ rb_insert_augmented_cached(struct rb_node *node, rb_insert_augmented(node, &root->rb_root, augment); } +static __always_inline struct rb_node * +rb_add_augmented_cached(struct rb_node *node, struct rb_root_cached *tree, + bool (*less)(struct rb_node *, const struct rb_node *), + const struct rb_augment_callbacks *augment) +{ + struct rb_node **link = &tree->rb_root.rb_node; + struct rb_node *parent = NULL; + bool leftmost = true; + + while (*link) { + parent = *link; + if (less(node, parent)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = false; + } + } + + rb_link_node(node, parent, link); + augment->propagate(parent, NULL); /* suboptimal */ + rb_insert_augmented_cached(node, tree, leftmost, augment); + + return leftmost ? node : NULL; +} + /* * Template for declaring augmented rbtree callbacks (generic case) * diff --git a/include/linux/sched.h b/include/linux/sched.h index 6d654eb4cabd..3e92c1dde072 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -549,13 +549,18 @@ struct sched_entity { /* For load-balancing: */ struct load_weight load; struct rb_node run_node; + u64 deadline; + u64 min_deadline; + struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; - u64 vruntime; u64 prev_sum_exec_runtime; + u64 vruntime; + s64 vlag; + u64 slice; u64 nr_migrations; @@ -785,6 +790,7 @@ struct task_struct { int static_prio; int normal_prio; unsigned int rt_priority; + int latency_prio; struct sched_entity se; struct sched_rt_entity rt; diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h index 3bac0a8ceab2..b2e932c25be6 100644 --- a/include/uapi/linux/sched.h +++ b/include/uapi/linux/sched.h @@ -132,6 +132,7 @@ struct clone_args { #define SCHED_FLAG_KEEP_PARAMS 0x10 #define SCHED_FLAG_UTIL_CLAMP_MIN 0x20 #define SCHED_FLAG_UTIL_CLAMP_MAX 0x40 +#define SCHED_FLAG_LATENCY_NICE 0x80 #define SCHED_FLAG_KEEP_ALL (SCHED_FLAG_KEEP_POLICY | \ SCHED_FLAG_KEEP_PARAMS) @@ -143,6 +144,7 @@ struct clone_args { SCHED_FLAG_RECLAIM | \ SCHED_FLAG_DL_OVERRUN | \ SCHED_FLAG_KEEP_ALL | \ - SCHED_FLAG_UTIL_CLAMP) + SCHED_FLAG_UTIL_CLAMP | \ + SCHED_FLAG_LATENCY_NICE) #endif /* _UAPI_LINUX_SCHED_H */ diff --git a/include/uapi/linux/sched/types.h b/include/uapi/linux/sched/types.h index f2c4589d4dbf..db1e8199e8c8 100644 --- a/include/uapi/linux/sched/types.h +++ b/include/uapi/linux/sched/types.h @@ -10,6 +10,7 @@ struct sched_param { #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ #define SCHED_ATTR_SIZE_VER1 56 /* add: util_{min,max} */ +#define SCHED_ATTR_SIZE_VER2 60 /* add: latency_nice */ /* * Extended scheduling parameters data structure. @@ -98,6 +99,22 @@ struct sched_param { * scheduled on a CPU with no more capacity than the specified value. * * A task utilization boundary can be reset by setting the attribute to -1. + * + * Latency Tolerance Attributes + * =========================== + * + * A subset of sched_attr attributes allows to specify the relative latency + * requirements of a task with respect to the other tasks running/queued in the + * system. + * + * @ sched_latency_nice task's latency_nice value + * + * The latency_nice of a task can have any value in a range of + * [MIN_LATENCY_NICE..MAX_LATENCY_NICE]. + * + * A task with latency_nice with the value of LATENCY_NICE_MIN can be + * taken for a task requiring a lower latency as opposed to the task with + * higher latency_nice. */ struct sched_attr { __u32 size; @@ -120,6 +137,8 @@ struct sched_attr { __u32 sched_util_min; __u32 sched_util_max; + /* latency requirement hints */ + __s32 sched_latency_nice; }; #endif /* _UAPI_LINUX_SCHED_TYPES_H */ diff --git a/init/init_task.c b/init/init_task.c index ff6c4b9bfe6b..511cbcf3510d 100644 --- a/init/init_task.c +++ b/init/init_task.c @@ -78,6 +78,7 @@ struct task_struct init_task .prio = MAX_PRIO - 20, .static_prio = MAX_PRIO - 20, .normal_prio = MAX_PRIO - 20, + .latency_prio = DEFAULT_PRIO, .policy = SCHED_NORMAL, .cpus_ptr = &init_task.cpus_mask, .user_cpus_ptr = NULL, @@ -89,7 +90,7 @@ struct task_struct init_task .fn = do_no_restart_syscall, }, .se = { - .group_node = LIST_HEAD_INIT(init_task.se.group_node), + .group_node = LIST_HEAD_INIT(init_task.se.group_node), }, .rt = { .run_list = LIST_HEAD_INIT(init_task.rt.run_list), diff --git a/kernel/sched/core.c b/kernel/sched/core.c index c1a88c49642a..1725747676e9 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -1300,6 +1300,12 @@ static void set_load_weight(struct task_struct *p, bool update_load) } } +static inline void set_latency_prio(struct task_struct *p, int prio) +{ + p->latency_prio = prio; + set_latency_fair(&p->se, prio - MAX_RT_PRIO); +} + #ifdef CONFIG_UCLAMP_TASK /* * Serializes updates of utilization clamp values @@ -4449,8 +4455,11 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->se.prev_sum_exec_runtime = 0; p->se.nr_migrations = 0; p->se.vruntime = 0; + p->se.vlag = 0; INIT_LIST_HEAD(&p->se.group_node); + set_latency_prio(p, p->latency_prio); + #ifdef CONFIG_FAIR_GROUP_SCHED p->se.cfs_rq = NULL; #endif @@ -4701,6 +4710,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) p->prio = p->normal_prio = p->static_prio; set_load_weight(p, false); + set_latency_prio(p, NICE_TO_PRIO(0)); /* * We don't need the reset flag anymore after the fork. It has @@ -7453,7 +7463,7 @@ static struct task_struct *find_process_by_pid(pid_t pid) #define SETPARAM_POLICY -1 static void __setscheduler_params(struct task_struct *p, - const struct sched_attr *attr) + const struct sched_attr *attr) { int policy = attr->sched_policy; @@ -7477,6 +7487,13 @@ static void __setscheduler_params(struct task_struct *p, set_load_weight(p, true); } +static void __setscheduler_latency(struct task_struct *p, + const struct sched_attr *attr) +{ + if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) + set_latency_prio(p, NICE_TO_PRIO(attr->sched_latency_nice)); +} + /* * Check the target process has a UID that matches the current process's: */ @@ -7617,6 +7634,13 @@ static int __sched_setscheduler(struct task_struct *p, return retval; } + if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) { + if (attr->sched_latency_nice > MAX_NICE) + return -EINVAL; + if (attr->sched_latency_nice < MIN_NICE) + return -EINVAL; + } + if (pi) cpuset_read_lock(); @@ -7651,6 +7675,9 @@ static int __sched_setscheduler(struct task_struct *p, goto change; if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) goto change; + if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE && + attr->sched_latency_nice != PRIO_TO_NICE(p->latency_prio)) + goto change; p->sched_reset_on_fork = reset_on_fork; retval = 0; @@ -7739,6 +7766,7 @@ static int __sched_setscheduler(struct task_struct *p, __setscheduler_params(p, attr); __setscheduler_prio(p, newprio); } + __setscheduler_latency(p, attr); __setscheduler_uclamp(p, attr); if (queued) { @@ -7949,6 +7977,9 @@ static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *a size < SCHED_ATTR_SIZE_VER1) return -EINVAL; + if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) && + size < SCHED_ATTR_SIZE_VER2) + return -EINVAL; /* * XXX: Do we want to be lenient like existing syscalls; or do we want * to be strict and return an error on out-of-bounds values? @@ -8186,6 +8217,8 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, get_params(p, &kattr); kattr.sched_flags &= SCHED_FLAG_ALL; + kattr.sched_latency_nice = PRIO_TO_NICE(p->latency_prio); + #ifdef CONFIG_UCLAMP_TASK /* * This could race with another potential updater, but this is fine @@ -11122,6 +11155,25 @@ static int cpu_idle_write_s64(struct cgroup_subsys_state *css, { return sched_group_set_idle(css_tg(css), idle); } + +static s64 cpu_latency_nice_read_s64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return PRIO_TO_NICE(css_tg(css)->latency_prio); +} + +static int cpu_latency_nice_write_s64(struct cgroup_subsys_state *css, + struct cftype *cft, s64 nice) +{ + int prio; + + if (nice < MIN_NICE || nice > MAX_NICE) + return -ERANGE; + + prio = NICE_TO_PRIO(nice); + + return sched_group_set_latency(css_tg(css), prio); +} #endif static struct cftype cpu_legacy_files[] = { @@ -11136,6 +11188,11 @@ static struct cftype cpu_legacy_files[] = { .read_s64 = cpu_idle_read_s64, .write_s64 = cpu_idle_write_s64, }, + { + .name = "latency.nice", + .read_s64 = cpu_latency_nice_read_s64, + .write_s64 = cpu_latency_nice_write_s64, + }, #endif #ifdef CONFIG_CFS_BANDWIDTH { @@ -11353,6 +11410,12 @@ static struct cftype cpu_files[] = { .read_s64 = cpu_idle_read_s64, .write_s64 = cpu_idle_write_s64, }, + { + .name = "latency.nice", + .flags = CFTYPE_NOT_ON_ROOT, + .read_s64 = cpu_latency_nice_read_s64, + .write_s64 = cpu_latency_nice_write_s64, + }, #endif #ifdef CONFIG_CFS_BANDWIDTH { diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 18e1500e698d..914d24485da4 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -308,10 +308,7 @@ static __init int sched_init_debug(void) debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); #endif - debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); - debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); - debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); - debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); + debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice); debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); @@ -535,9 +532,13 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) else SEQ_printf(m, " %c", task_state_to_char(p)); - SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", + SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), + entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N', + SPLIT_NS(p->se.deadline), + SPLIT_NS(p->se.slice), + SPLIT_NS(p->se.sum_exec_runtime), (long long)(p->nvcsw + p->nivcsw), p->prio); @@ -580,10 +581,9 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { - s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, - spread, rq0_min_vruntime, spread0; + s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, spread; + struct sched_entity *last, *first; struct rq *rq = cpu_rq(cpu); - struct sched_entity *last; unsigned long flags; #ifdef CONFIG_FAIR_GROUP_SCHED @@ -597,26 +597,25 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) SPLIT_NS(cfs_rq->exec_clock)); raw_spin_rq_lock_irqsave(rq, flags); - if (rb_first_cached(&cfs_rq->tasks_timeline)) - MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; + first = __pick_first_entity(cfs_rq); + if (first) + left_vruntime = first->vruntime; last = __pick_last_entity(cfs_rq); if (last) - max_vruntime = last->vruntime; + right_vruntime = last->vruntime; min_vruntime = cfs_rq->min_vruntime; - rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; raw_spin_rq_unlock_irqrestore(rq, flags); - SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", - SPLIT_NS(MIN_vruntime)); + + SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime", + SPLIT_NS(left_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", SPLIT_NS(min_vruntime)); - SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", - SPLIT_NS(max_vruntime)); - spread = max_vruntime - MIN_vruntime; - SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", - SPLIT_NS(spread)); - spread0 = min_vruntime - rq0_min_vruntime; - SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", - SPLIT_NS(spread0)); + SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime", + SPLIT_NS(avg_vruntime(cfs_rq))); + SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime", + SPLIT_NS(right_vruntime)); + spread = right_vruntime - left_vruntime; + SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", cfs_rq->nr_spread_over); SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); @@ -817,10 +816,7 @@ static void sched_debug_header(struct seq_file *m) SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) - PN(sysctl_sched_latency); - PN(sysctl_sched_min_granularity); - PN(sysctl_sched_idle_min_granularity); - PN(sysctl_sched_wakeup_granularity); + PN(sysctl_sched_base_slice); P(sysctl_sched_child_runs_first); P(sysctl_sched_features); #undef PN @@ -1043,6 +1039,7 @@ void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, #endif P(policy); P(prio); + P(latency_prio); if (task_has_dl_policy(p)) { P(dl.runtime); P(dl.deadline); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index bf803fe5c19b..eb98f2362afa 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -47,6 +47,7 @@ #include #include #include +#include #include @@ -56,26 +57,6 @@ #include "stats.h" #include "autogroup.h" -/* - * Targeted preemption latency for CPU-bound tasks: - * - * NOTE: this latency value is not the same as the concept of - * 'timeslice length' - timeslices in CFS are of variable length - * and have no persistent notion like in traditional, time-slice - * based scheduling concepts. - * - * (to see the precise effective timeslice length of your workload, - * run vmstat and monitor the context-switches (cs) field) - * - * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) - */ -#ifdef CONFIG_CACHY -unsigned int sysctl_sched_latency = 3000000ULL; -static unsigned int normalized_sysctl_sched_latency = 3000000ULL; -#else -unsigned int sysctl_sched_latency = 6000000ULL; -static unsigned int normalized_sysctl_sched_latency = 6000000ULL; -#endif /* * The initial- and re-scaling of tunables is configurable * @@ -94,26 +75,8 @@ unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; * * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) */ -#ifdef CONFIG_CACHY -unsigned int sysctl_sched_min_granularity = 400000ULL; -static unsigned int normalized_sysctl_sched_min_granularity = 400000ULL; -#else -unsigned int sysctl_sched_min_granularity = 750000ULL; -static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; -#endif - -/* - * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. - * Applies only when SCHED_IDLE tasks compete with normal tasks. - * - * (default: 0.75 msec) - */ -unsigned int sysctl_sched_idle_min_granularity = 750000ULL; - -/* - * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity - */ -static unsigned int sched_nr_latency = 8; +unsigned int sysctl_sched_base_slice = 750000ULL; +static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; /* * After fork, child runs first. If set to 0 (default) then @@ -121,23 +84,6 @@ static unsigned int sched_nr_latency = 8; */ unsigned int sysctl_sched_child_runs_first __read_mostly; -/* - * SCHED_OTHER wake-up granularity. - * - * This option delays the preemption effects of decoupled workloads - * and reduces their over-scheduling. Synchronous workloads will still - * have immediate wakeup/sleep latencies. - * - * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) - */ -#ifdef CONFIG_CACHY -unsigned int sysctl_sched_wakeup_granularity = 500000UL; -static unsigned int normalized_sysctl_sched_wakeup_granularity = 500000UL; -#else -unsigned int sysctl_sched_wakeup_granularity = 1000000UL; -static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; -#endif - const_debug unsigned int sysctl_sched_migration_cost = 500000UL; int sched_thermal_decay_shift; @@ -189,12 +135,8 @@ int __weak arch_asym_cpu_priority(int cpu) * * (default: 5 msec, units: microseconds) */ -#ifdef CONFIG_CACHY -static unsigned int sysctl_sched_cfs_bandwidth_slice = 3000UL; -#else static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; #endif -#endif #ifdef CONFIG_NUMA_BALANCING /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ @@ -295,9 +237,7 @@ static void update_sysctl(void) #define SET_SYSCTL(name) \ (sysctl_##name = (factor) * normalized_sysctl_##name) - SET_SYSCTL(sched_min_granularity); - SET_SYSCTL(sched_latency); - SET_SYSCTL(sched_wakeup_granularity); + SET_SYSCTL(sched_base_slice); #undef SET_SYSCTL } @@ -365,6 +305,16 @@ static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight return mul_u64_u32_shr(delta_exec, fact, shift); } +/* + * delta /= w + */ +static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) +{ + if (unlikely(se->load.weight != NICE_0_LOAD)) + delta = __calc_delta(delta, NICE_0_LOAD, &se->load); + + return delta; +} const struct sched_class fair_sched_class; @@ -619,13 +569,200 @@ static inline bool entity_before(const struct sched_entity *a, return (s64)(a->vruntime - b->vruntime) < 0; } +static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + return (s64)(se->vruntime - cfs_rq->min_vruntime); +} + #define __node_2_se(node) \ rb_entry((node), struct sched_entity, run_node) +/* + * Compute virtual time from the per-task service numbers: + * + * Fair schedulers conserve lag: + * + * \Sum lag_i = 0 + * + * Where lag_i is given by: + * + * lag_i = S - s_i = w_i * (V - v_i) + * + * Where S is the ideal service time and V is it's virtual time counterpart. + * Therefore: + * + * \Sum lag_i = 0 + * \Sum w_i * (V - v_i) = 0 + * \Sum w_i * V - w_i * v_i = 0 + * + * From which we can solve an expression for V in v_i (which we have in + * se->vruntime): + * + * \Sum v_i * w_i \Sum v_i * w_i + * V = -------------- = -------------- + * \Sum w_i W + * + * Specifically, this is the weighted average of all entity virtual runtimes. + * + * [[ NOTE: this is only equal to the ideal scheduler under the condition + * that join/leave operations happen at lag_i = 0, otherwise the + * virtual time has non-continguous motion equivalent to: + * + * V +-= lag_i / W + * + * Also see the comment in place_entity() that deals with this. ]] + * + * However, since v_i is u64, and the multiplcation could easily overflow + * transform it into a relative form that uses smaller quantities: + * + * Substitute: v_i == (v_i - v0) + v0 + * + * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i + * V = ---------------------------- = --------------------- + v0 + * W W + * + * Which we track using: + * + * v0 := cfs_rq->min_vruntime + * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime + * \Sum w_i := cfs_rq->avg_load + * + * Since min_vruntime is a monotonic increasing variable that closely tracks + * the per-task service, these deltas: (v_i - v), will be in the order of the + * maximal (virtual) lag induced in the system due to quantisation. + * + * Also, we use scale_load_down() to reduce the size. + * + * As measured, the max (key * weight) value was ~44 bits for a kernel build. + */ +static void +avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + unsigned long weight = scale_load_down(se->load.weight); + s64 key = entity_key(cfs_rq, se); + + cfs_rq->avg_vruntime += key * weight; + cfs_rq->avg_slice += se->slice * weight; + cfs_rq->avg_load += weight; +} + +static void +avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + unsigned long weight = scale_load_down(se->load.weight); + s64 key = entity_key(cfs_rq, se); + + cfs_rq->avg_vruntime -= key * weight; + cfs_rq->avg_slice -= se->slice * weight; + cfs_rq->avg_load -= weight; +} + +static inline +void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) +{ + /* + * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load + */ + cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; +} + +u64 avg_vruntime(struct cfs_rq *cfs_rq) +{ + struct sched_entity *curr = cfs_rq->curr; + s64 avg = cfs_rq->avg_vruntime; + long load = cfs_rq->avg_load; + + if (curr && curr->on_rq) { + unsigned long weight = scale_load_down(curr->load.weight); + + avg += entity_key(cfs_rq, curr) * weight; + load += weight; + } + + if (load) + avg = div_s64(avg, load); + + return cfs_rq->min_vruntime + avg; +} + +/* + * lag_i = S - s_i = w_i * (V - v_i) + * + * However, since V is approximated by the weighted average of all entities it + * is possible -- by addition/removal/reweight to the tree -- to move V around + * and end up with a larger lag than we started with. + * + * Limit this to either double the slice length with a minimum of TICK_NSEC + * since that is the timing granularity. + * + * EEVDF gives the following limit for a steady state system: + * + * -r_max < lag < max(r_max, q) + * + * XXX could add max_slice to the augmented data to track this. + */ +void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + s64 lag, limit; + + SCHED_WARN_ON(!se->on_rq); + lag = avg_vruntime(cfs_rq) - se->vruntime; + + limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); + se->vlag = clamp(lag, -limit, limit); +} + +/* + * Entity is eligible once it received less service than it ought to have, + * eg. lag >= 0. + * + * lag_i = S - s_i = w_i*(V - v_i) + * + * lag_i >= 0 -> V >= v_i + * + * \Sum (v_i - v)*w_i + * V = ------------------ + v + * \Sum w_i + * + * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) + * + * Note: using 'avg_vruntime() > se->vruntime' is inacurate due + * to the loss in precision caused by the division. + */ +int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + struct sched_entity *curr = cfs_rq->curr; + s64 avg = cfs_rq->avg_vruntime; + long load = cfs_rq->avg_load; + + if (curr && curr->on_rq) { + unsigned long weight = scale_load_down(curr->load.weight); + + avg += entity_key(cfs_rq, curr) * weight; + load += weight; + } + + return avg >= entity_key(cfs_rq, se) * load; +} + +static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) +{ + u64 min_vruntime = cfs_rq->min_vruntime; + /* + * open coded max_vruntime() to allow updating avg_vruntime + */ + s64 delta = (s64)(vruntime - min_vruntime); + if (delta > 0) { + avg_vruntime_update(cfs_rq, delta); + min_vruntime = vruntime; + } + return min_vruntime; +} + static void update_min_vruntime(struct cfs_rq *cfs_rq) { + struct sched_entity *se = __pick_first_entity(cfs_rq); struct sched_entity *curr = cfs_rq->curr; - struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); u64 vruntime = cfs_rq->min_vruntime; @@ -636,9 +773,7 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq) curr = NULL; } - if (leftmost) { /* non-empty tree */ - struct sched_entity *se = __node_2_se(leftmost); - + if (se) { if (!curr) vruntime = se->vruntime; else @@ -647,7 +782,7 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq) /* ensure we never gain time by being placed backwards. */ u64_u32_store(cfs_rq->min_vruntime, - max_vruntime(cfs_rq->min_vruntime, vruntime)); + __update_min_vruntime(cfs_rq, vruntime)); } static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) @@ -655,17 +790,51 @@ static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) return entity_before(__node_2_se(a), __node_2_se(b)); } +#define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) + +static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) +{ + if (node) { + struct sched_entity *rse = __node_2_se(node); + if (deadline_gt(min_deadline, se, rse)) + se->min_deadline = rse->min_deadline; + } +} + +/* + * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) + */ +static inline bool min_deadline_update(struct sched_entity *se, bool exit) +{ + u64 old_min_deadline = se->min_deadline; + struct rb_node *node = &se->run_node; + + se->min_deadline = se->deadline; + __update_min_deadline(se, node->rb_right); + __update_min_deadline(se, node->rb_left); + + return se->min_deadline == old_min_deadline; +} + +RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, + run_node, min_deadline, min_deadline_update); + /* * Enqueue an entity into the rb-tree: */ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { - rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); + avg_vruntime_add(cfs_rq, se); + se->min_deadline = se->deadline; + rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, + __entity_less, &min_deadline_cb); } static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { - rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); + rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, + &min_deadline_cb); + avg_vruntime_sub(cfs_rq, se); } struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) @@ -678,14 +847,81 @@ struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) return __node_2_se(left); } -static struct sched_entity *__pick_next_entity(struct sched_entity *se) +/* + * Earliest Eligible Virtual Deadline First + * + * In order to provide latency guarantees for different request sizes + * EEVDF selects the best runnable task from two criteria: + * + * 1) the task must be eligible (must be owed service) + * + * 2) from those tasks that meet 1), we select the one + * with the earliest virtual deadline. + * + * We can do this in O(log n) time due to an augmented RB-tree. The + * tree keeps the entries sorted on service, but also functions as a + * heap based on the deadline by keeping: + * + * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) + * + * Which allows an EDF like search on (sub)trees. + */ +static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) { - struct rb_node *next = rb_next(&se->run_node); + struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; + struct sched_entity *curr = cfs_rq->curr; + struct sched_entity *best = NULL; - if (!next) - return NULL; + if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) + curr = NULL; + + while (node) { + struct sched_entity *se = __node_2_se(node); - return __node_2_se(next); + /* + * If this entity is not eligible, try the left subtree. + */ + if (!entity_eligible(cfs_rq, se)) { + node = node->rb_left; + continue; + } + + /* + * If this entity has an earlier deadline than the previous + * best, take this one. If it also has the earliest deadline + * of its subtree, we're done. + */ + if (!best || deadline_gt(deadline, best, se)) { + best = se; + if (best->deadline == best->min_deadline) + break; + } + + /* + * If the earlest deadline in this subtree is in the fully + * eligible left half of our space, go there. + */ + if (node->rb_left && + __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { + node = node->rb_left; + continue; + } + + node = node->rb_right; + } + + if (!best || (curr && deadline_gt(deadline, best, curr))) + best = curr; + + if (unlikely(!best)) { + struct sched_entity *left = __pick_first_entity(cfs_rq); + if (left) { + pr_err("EEVDF scheduling fail, picking leftmost\n"); + return left; + } + } + + return best; } #ifdef CONFIG_SCHED_DEBUG @@ -707,104 +943,53 @@ int sched_update_scaling(void) { unsigned int factor = get_update_sysctl_factor(); - sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, - sysctl_sched_min_granularity); - #define WRT_SYSCTL(name) \ (normalized_sysctl_##name = sysctl_##name / (factor)) - WRT_SYSCTL(sched_min_granularity); - WRT_SYSCTL(sched_latency); - WRT_SYSCTL(sched_wakeup_granularity); + WRT_SYSCTL(sched_base_slice); #undef WRT_SYSCTL return 0; } #endif -/* - * delta /= w - */ -static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) +void set_latency_fair(struct sched_entity *se, int prio) { - if (unlikely(se->load.weight != NICE_0_LOAD)) - delta = __calc_delta(delta, NICE_0_LOAD, &se->load); + u32 weight = sched_prio_to_weight[prio]; + u64 base = sysctl_sched_base_slice; - return delta; -} - -/* - * The idea is to set a period in which each task runs once. - * - * When there are too many tasks (sched_nr_latency) we have to stretch - * this period because otherwise the slices get too small. - * - * p = (nr <= nl) ? l : l*nr/nl - */ -static u64 __sched_period(unsigned long nr_running) -{ - if (unlikely(nr_running > sched_nr_latency)) - return nr_running * sysctl_sched_min_granularity; - else - return sysctl_sched_latency; + /* + * For EEVDF the virtual time slope is determined by w_i (iow. + * nice) while the request time r_i is determined by + * latency-nice. + * + * Smaller request gets better latency. + */ + se->slice = div_u64(base << SCHED_FIXEDPOINT_SHIFT, weight); } -static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); +static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); /* - * We calculate the wall-time slice from the period by taking a part - * proportional to the weight. - * - * s = p*P[w/rw] + * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i + * this is probably good enough. */ -static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) +static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) { - unsigned int nr_running = cfs_rq->nr_running; - struct sched_entity *init_se = se; - unsigned int min_gran; - u64 slice; - - if (sched_feat(ALT_PERIOD)) - nr_running = rq_of(cfs_rq)->cfs.h_nr_running; - - slice = __sched_period(nr_running + !se->on_rq); - - for_each_sched_entity(se) { - struct load_weight *load; - struct load_weight lw; - struct cfs_rq *qcfs_rq; - - qcfs_rq = cfs_rq_of(se); - load = &qcfs_rq->load; - - if (unlikely(!se->on_rq)) { - lw = qcfs_rq->load; - - update_load_add(&lw, se->load.weight); - load = &lw; - } - slice = __calc_delta(slice, se->load.weight, load); - } + if ((s64)(se->vruntime - se->deadline) < 0) + return; - if (sched_feat(BASE_SLICE)) { - if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) - min_gran = sysctl_sched_idle_min_granularity; - else - min_gran = sysctl_sched_min_granularity; + /* + * EEVDF: vd_i = ve_i + r_i / w_i + */ + se->deadline = se->vruntime + calc_delta_fair(se->slice, se); - slice = max_t(u64, slice, min_gran); + /* + * The task has consumed its request, reschedule. + */ + if (cfs_rq->nr_running > 1) { + resched_curr(rq_of(cfs_rq)); + clear_buddies(cfs_rq, se); } - - return slice; -} - -/* - * We calculate the vruntime slice of a to-be-inserted task. - * - * vs = s/w - */ -static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - return calc_delta_fair(sched_slice(cfs_rq, se), se); } #include "pelt.h" @@ -939,6 +1124,7 @@ static void update_curr(struct cfs_rq *cfs_rq) schedstat_add(cfs_rq->exec_clock, delta_exec); curr->vruntime += calc_delta_fair(delta_exec, curr); + update_deadline(cfs_rq, curr); update_min_vruntime(cfs_rq); if (entity_is_task(curr)) { @@ -3336,16 +3522,36 @@ dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, unsigned long weight) { + unsigned long old_weight = se->load.weight; + if (se->on_rq) { /* commit outstanding execution time */ if (cfs_rq->curr == se) update_curr(cfs_rq); + else + avg_vruntime_sub(cfs_rq, se); update_load_sub(&cfs_rq->load, se->load.weight); } dequeue_load_avg(cfs_rq, se); update_load_set(&se->load, weight); + if (!se->on_rq) { + /* + * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), + * we need to scale se->vlag when w_i changes. + */ + se->vlag = div_s64(se->vlag * old_weight, weight); + } else { + s64 deadline = se->deadline - se->vruntime; + /* + * When the weight changes, the virtual time slope changes and + * we should adjust the relative virtual deadline accordingly. + */ + deadline = div_s64(deadline * old_weight, weight); + se->deadline = se->vruntime + deadline; + } + #ifdef CONFIG_SMP do { u32 divider = get_pelt_divider(&se->avg); @@ -3355,9 +3561,11 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, #endif enqueue_load_avg(cfs_rq, se); - if (se->on_rq) + if (se->on_rq) { update_load_add(&cfs_rq->load, se->load.weight); - + if (cfs_rq->curr != se) + avg_vruntime_add(cfs_rq, se); + } } void reweight_task(struct task_struct *p, int prio) @@ -4653,158 +4861,151 @@ static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} #endif /* CONFIG_SMP */ -static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ -#ifdef CONFIG_SCHED_DEBUG - s64 d = se->vruntime - cfs_rq->min_vruntime; - - if (d < 0) - d = -d; - - if (d > 3*sysctl_sched_latency) - schedstat_inc(cfs_rq->nr_spread_over); -#endif -} - -static inline bool entity_is_long_sleeper(struct sched_entity *se) +static inline bool +entity_has_slept(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { - struct cfs_rq *cfs_rq; - u64 sleep_time; + u64 now; - if (se->exec_start == 0) + if (!(flags & ENQUEUE_WAKEUP)) return false; - cfs_rq = cfs_rq_of(se); - - sleep_time = rq_clock_task(rq_of(cfs_rq)); - - /* Happen while migrating because of clock task divergence */ - if (sleep_time <= se->exec_start) - return false; - - sleep_time -= se->exec_start; - if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD))) + if (flags & ENQUEUE_MIGRATED) return true; - return false; + now = rq_clock_task(rq_of(cfs_rq)); + return (s64)(se->exec_start - now) >= se->slice; } static void -place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) +place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { - u64 vruntime = cfs_rq->min_vruntime; + u64 vslice = calc_delta_fair(se->slice, se); + u64 vruntime = avg_vruntime(cfs_rq); + s64 lag = 0; /* - * The 'current' period is already promised to the current tasks, - * however the extra weight of the new task will slow them down a - * little, place the new task so that it fits in the slot that - * stays open at the end. + * Due to how V is constructed as the weighted average of entities, + * adding tasks with positive lag, or removing tasks with negative lag + * will move 'time' backwards, this can screw around with the lag of + * other tasks. + * + * EEVDF: placement strategy #1 / #2 */ - if (initial && sched_feat(START_DEBIT)) - vruntime += sched_vslice(cfs_rq, se); + if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { + struct sched_entity *curr = cfs_rq->curr; + unsigned long load; - /* sleeps up to a single latency don't count. */ - if (!initial) { - unsigned long thresh; + lag = se->vlag; - if (se_is_idle(se)) - thresh = sysctl_sched_min_granularity; - else - thresh = sysctl_sched_latency; + /* + * For latency sensitive tasks; those that have a shorter than + * average slice and do not fully consume the slice, transition + * to EEVDF placement strategy #2. + */ + if (sched_feat(PLACE_FUDGE) && + (cfs_rq->avg_slice > se->slice * cfs_rq->avg_load) && + entity_has_slept(cfs_rq, se, flags)) { + lag += vslice; + if (lag > 0) + lag = 0; + } /* - * Halve their sleep time's effect, to allow - * for a gentler effect of sleepers: + * If we want to place a task and preserve lag, we have to + * consider the effect of the new entity on the weighted + * average and compensate for this, otherwise lag can quickly + * evaporate. + * + * Lag is defined as: + * + * lag_i = S - s_i = w_i * (V - v_i) + * + * To avoid the 'w_i' term all over the place, we only track + * the virtual lag: + * + * vl_i = V - v_i <=> v_i = V - vl_i + * + * And we take V to be the weighted average of all v: + * + * V = (\Sum w_j*v_j) / W + * + * Where W is: \Sum w_j + * + * Then, the weighted average after adding an entity with lag + * vl_i is given by: + * + * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) + * = (W*V + w_i*(V - vl_i)) / (W + w_i) + * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) + * = (V*(W + w_i) - w_i*l) / (W + w_i) + * = V - w_i*vl_i / (W + w_i) + * + * And the actual lag after adding an entity with vl_i is: + * + * vl'_i = V' - v_i + * = V - w_i*vl_i / (W + w_i) - (V - vl_i) + * = vl_i - w_i*vl_i / (W + w_i) + * + * Which is strictly less than vl_i. So in order to preserve lag + * we should inflate the lag before placement such that the + * effective lag after placement comes out right. + * + * As such, invert the above relation for vl'_i to get the vl_i + * we need to use such that the lag after placement is the lag + * we computed before dequeue. + * + * vl'_i = vl_i - w_i*vl_i / (W + w_i) + * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) + * + * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i + * = W*vl_i + * + * vl_i = (W + w_i)*vl'_i / W */ - if (sched_feat(GENTLE_FAIR_SLEEPERS)) - thresh >>= 1; - - vruntime -= thresh; - } - - /* - * Pull vruntime of the entity being placed to the base level of - * cfs_rq, to prevent boosting it if placed backwards. - * However, min_vruntime can advance much faster than real time, with - * the extreme being when an entity with the minimal weight always runs - * on the cfs_rq. If the waking entity slept for a long time, its - * vruntime difference from min_vruntime may overflow s64 and their - * comparison may get inversed, so ignore the entity's original - * vruntime in that case. - * The maximal vruntime speedup is given by the ratio of normal to - * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES. - * When placing a migrated waking entity, its exec_start has been set - * from a different rq. In order to take into account a possible - * divergence between new and prev rq's clocks task because of irq and - * stolen time, we take an additional margin. - * So, cutting off on the sleep time of - * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days - * should be safe. - */ - if (entity_is_long_sleeper(se)) - se->vruntime = vruntime; - else - se->vruntime = max_vruntime(se->vruntime, vruntime); + load = cfs_rq->avg_load; + if (curr && curr->on_rq) + load += scale_load_down(curr->load.weight); + + lag *= load + scale_load_down(se->load.weight); + if (WARN_ON_ONCE(!load)) + load = 1; + lag = div_s64(lag, load); + } + + se->vruntime = vruntime - lag; + + /* + * When joining the competition; the exisiting tasks will be, + * on average, halfway through their slice, as such start tasks + * off with half a slice to ease into the competition. + */ + if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) + vslice /= 2; + + /* + * EEVDF: vd_i = ve_i + r_i/w_i + */ + se->deadline = se->vruntime + vslice; } static void check_enqueue_throttle(struct cfs_rq *cfs_rq); static inline bool cfs_bandwidth_used(void); -/* - * MIGRATION - * - * dequeue - * update_curr() - * update_min_vruntime() - * vruntime -= min_vruntime - * - * enqueue - * update_curr() - * update_min_vruntime() - * vruntime += min_vruntime - * - * this way the vruntime transition between RQs is done when both - * min_vruntime are up-to-date. - * - * WAKEUP (remote) - * - * ->migrate_task_rq_fair() (p->state == TASK_WAKING) - * vruntime -= min_vruntime - * - * enqueue - * update_curr() - * update_min_vruntime() - * vruntime += min_vruntime - * - * this way we don't have the most up-to-date min_vruntime on the originating - * CPU and an up-to-date min_vruntime on the destination CPU. - */ - static void enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { - bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); bool curr = cfs_rq->curr == se; /* * If we're the current task, we must renormalise before calling * update_curr(). */ - if (renorm && curr) - se->vruntime += cfs_rq->min_vruntime; + if (curr) + place_entity(cfs_rq, se, flags); update_curr(cfs_rq); - /* - * Otherwise, renormalise after, such that we're placed at the current - * moment in time, instead of some random moment in the past. Being - * placed in the past could significantly boost this task to the - * fairness detriment of existing tasks. - */ - if (renorm && !curr) - se->vruntime += cfs_rq->min_vruntime; - /* * When enqueuing a sched_entity, we must: * - Update loads to have both entity and cfs_rq synced with now. @@ -4816,18 +5017,28 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) */ update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); se_update_runnable(se); + /* + * XXX update_load_avg() above will have attached us to the pelt sum; + * but update_cfs_group() here will re-adjust the weight and have to + * undo/redo all that. Seems wasteful. + */ update_cfs_group(se); + + /* + * XXX now that the entity has been re-weighted, and it's lag adjusted, + * we can place the entity. + */ + if (!curr) + place_entity(cfs_rq, se, flags); + account_entity_enqueue(cfs_rq, se); - if (flags & ENQUEUE_WAKEUP) - place_entity(cfs_rq, se, 0); /* Entity has migrated, no longer consider this task hot */ if (flags & ENQUEUE_MIGRATED) se->exec_start = 0; check_schedstat_required(); update_stats_enqueue_fair(cfs_rq, se, flags); - check_spread(cfs_rq, se); if (!curr) __enqueue_entity(cfs_rq, se); se->on_rq = 1; @@ -4839,17 +5050,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) } } -static void __clear_buddies_last(struct sched_entity *se) -{ - for_each_sched_entity(se) { - struct cfs_rq *cfs_rq = cfs_rq_of(se); - if (cfs_rq->last != se) - break; - - cfs_rq->last = NULL; - } -} - static void __clear_buddies_next(struct sched_entity *se) { for_each_sched_entity(se) { @@ -4861,27 +5061,10 @@ static void __clear_buddies_next(struct sched_entity *se) } } -static void __clear_buddies_skip(struct sched_entity *se) -{ - for_each_sched_entity(se) { - struct cfs_rq *cfs_rq = cfs_rq_of(se); - if (cfs_rq->skip != se) - break; - - cfs_rq->skip = NULL; - } -} - static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) { - if (cfs_rq->last == se) - __clear_buddies_last(se); - if (cfs_rq->next == se) __clear_buddies_next(se); - - if (cfs_rq->skip == se) - __clear_buddies_skip(se); } static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); @@ -4915,20 +5098,12 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) clear_buddies(cfs_rq, se); + update_entity_lag(cfs_rq, se); if (se != cfs_rq->curr) __dequeue_entity(cfs_rq, se); se->on_rq = 0; account_entity_dequeue(cfs_rq, se); - /* - * Normalize after update_curr(); which will also have moved - * min_vruntime if @se is the one holding it back. But before doing - * update_min_vruntime() again, which will discount @se's position and - * can move min_vruntime forward still more. - */ - if (!(flags & DEQUEUE_SLEEP)) - se->vruntime -= cfs_rq->min_vruntime; - /* return excess runtime on last dequeue */ return_cfs_rq_runtime(cfs_rq); @@ -4947,52 +5122,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) update_idle_cfs_rq_clock_pelt(cfs_rq); } -/* - * Preempt the current task with a newly woken task if needed: - */ -static void -check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) -{ - unsigned long ideal_runtime, delta_exec; - struct sched_entity *se; - s64 delta; - - /* - * When many tasks blow up the sched_period; it is possible that - * sched_slice() reports unusually large results (when many tasks are - * very light for example). Therefore impose a maximum. - */ - ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency); - - delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; - if (delta_exec > ideal_runtime) { - resched_curr(rq_of(cfs_rq)); - /* - * The current task ran long enough, ensure it doesn't get - * re-elected due to buddy favours. - */ - clear_buddies(cfs_rq, curr); - return; - } - - /* - * Ensure that a task that missed wakeup preemption by a - * narrow margin doesn't have to wait for a full slice. - * This also mitigates buddy induced latencies under load. - */ - if (delta_exec < sysctl_sched_min_granularity) - return; - - se = __pick_first_entity(cfs_rq); - delta = curr->vruntime - se->vruntime; - - if (delta < 0) - return; - - if (delta > ideal_runtime) - resched_curr(rq_of(cfs_rq)); -} - static void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { @@ -5031,9 +5160,6 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) se->prev_sum_exec_runtime = se->sum_exec_runtime; } -static int -wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); - /* * Pick the next process, keeping these things in mind, in this order: * 1) keep things fair between processes/task groups @@ -5044,50 +5170,14 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); static struct sched_entity * pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) { - struct sched_entity *left = __pick_first_entity(cfs_rq); - struct sched_entity *se; - /* - * If curr is set we have to see if its left of the leftmost entity - * still in the tree, provided there was anything in the tree at all. + * Enabling NEXT_BUDDY will affect latency but not fairness. */ - if (!left || (curr && entity_before(curr, left))) - left = curr; - - se = left; /* ideally we run the leftmost entity */ - - /* - * Avoid running the skip buddy, if running something else can - * be done without getting too unfair. - */ - if (cfs_rq->skip && cfs_rq->skip == se) { - struct sched_entity *second; - - if (se == curr) { - second = __pick_first_entity(cfs_rq); - } else { - second = __pick_next_entity(se); - if (!second || (curr && entity_before(curr, second))) - second = curr; - } - - if (second && wakeup_preempt_entity(second, left) < 1) - se = second; - } - - if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { - /* - * Someone really wants this to run. If it's not unfair, run it. - */ - se = cfs_rq->next; - } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { - /* - * Prefer last buddy, try to return the CPU to a preempted task. - */ - se = cfs_rq->last; - } + if (sched_feat(NEXT_BUDDY) && + cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) + return cfs_rq->next; - return se; + return pick_eevdf(cfs_rq); } static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); @@ -5104,8 +5194,6 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) /* throttle cfs_rqs exceeding runtime */ check_cfs_rq_runtime(cfs_rq); - check_spread(cfs_rq, prev); - if (prev->on_rq) { update_stats_wait_start_fair(cfs_rq, prev); /* Put 'current' back into the tree. */ @@ -5146,9 +5234,6 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) return; #endif - - if (cfs_rq->nr_running > 1) - check_preempt_tick(cfs_rq, curr); } @@ -6153,13 +6238,12 @@ static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} static void hrtick_start_fair(struct rq *rq, struct task_struct *p) { struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq = cfs_rq_of(se); SCHED_WARN_ON(task_rq(p) != rq); if (rq->cfs.h_nr_running > 1) { - u64 slice = sched_slice(cfs_rq, se); u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; + u64 slice = se->slice; s64 delta = slice - ran; if (delta < 0) { @@ -6183,8 +6267,7 @@ static void hrtick_update(struct rq *rq) if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) return; - if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) - hrtick_start_fair(rq, curr); + hrtick_start_fair(rq, curr); } #else /* !CONFIG_SCHED_HRTICK */ static inline void @@ -6225,17 +6308,6 @@ static int sched_idle_rq(struct rq *rq) rq->nr_running); } -/* - * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use - * of idle_nr_running, which does not consider idle descendants of normal - * entities. - */ -static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) -{ - return cfs_rq->nr_running && - cfs_rq->nr_running == cfs_rq->idle_nr_running; -} - #ifdef CONFIG_SMP static int sched_idle_cpu(int cpu) { @@ -7684,18 +7756,6 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) { struct sched_entity *se = &p->se; - /* - * As blocked tasks retain absolute vruntime the migration needs to - * deal with this by subtracting the old and adding the new - * min_vruntime -- the latter is done by enqueue_entity() when placing - * the task on the new runqueue. - */ - if (READ_ONCE(p->__state) == TASK_WAKING) { - struct cfs_rq *cfs_rq = cfs_rq_of(se); - - se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); - } - if (!task_on_rq_migrating(p)) { remove_entity_load_avg(se); @@ -7733,66 +7793,6 @@ balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) } #endif /* CONFIG_SMP */ -static unsigned long wakeup_gran(struct sched_entity *se) -{ - unsigned long gran = sysctl_sched_wakeup_granularity; - - /* - * Since its curr running now, convert the gran from real-time - * to virtual-time in his units. - * - * By using 'se' instead of 'curr' we penalize light tasks, so - * they get preempted easier. That is, if 'se' < 'curr' then - * the resulting gran will be larger, therefore penalizing the - * lighter, if otoh 'se' > 'curr' then the resulting gran will - * be smaller, again penalizing the lighter task. - * - * This is especially important for buddies when the leftmost - * task is higher priority than the buddy. - */ - return calc_delta_fair(gran, se); -} - -/* - * Should 'se' preempt 'curr'. - * - * |s1 - * |s2 - * |s3 - * g - * |<--->|c - * - * w(c, s1) = -1 - * w(c, s2) = 0 - * w(c, s3) = 1 - * - */ -static int -wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) -{ - s64 gran, vdiff = curr->vruntime - se->vruntime; - - if (vdiff <= 0) - return -1; - - gran = wakeup_gran(se); - if (vdiff > gran) - return 1; - - return 0; -} - -static void set_last_buddy(struct sched_entity *se) -{ - for_each_sched_entity(se) { - if (SCHED_WARN_ON(!se->on_rq)) - return; - if (se_is_idle(se)) - return; - cfs_rq_of(se)->last = se; - } -} - static void set_next_buddy(struct sched_entity *se) { for_each_sched_entity(se) { @@ -7804,12 +7804,6 @@ static void set_next_buddy(struct sched_entity *se) } } -static void set_skip_buddy(struct sched_entity *se) -{ - for_each_sched_entity(se) - cfs_rq_of(se)->skip = se; -} - /* * Preempt the current task with a newly woken task if needed: */ @@ -7818,7 +7812,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ struct task_struct *curr = rq->curr; struct sched_entity *se = &curr->se, *pse = &p->se; struct cfs_rq *cfs_rq = task_cfs_rq(curr); - int scale = cfs_rq->nr_running >= sched_nr_latency; int next_buddy_marked = 0; int cse_is_idle, pse_is_idle; @@ -7834,7 +7827,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) return; - if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { + if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { set_next_buddy(pse); next_buddy_marked = 1; } @@ -7879,35 +7872,19 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ if (cse_is_idle != pse_is_idle) return; - update_curr(cfs_rq_of(se)); - if (wakeup_preempt_entity(se, pse) == 1) { - /* - * Bias pick_next to pick the sched entity that is - * triggering this preemption. - */ - if (!next_buddy_marked) - set_next_buddy(pse); + cfs_rq = cfs_rq_of(se); + update_curr(cfs_rq); + + /* + * XXX pick_eevdf(cfs_rq) != se ? + */ + if (pick_eevdf(cfs_rq) == pse) goto preempt; - } return; preempt: resched_curr(rq); - /* - * Only set the backward buddy when the current task is still - * on the rq. This can happen when a wakeup gets interleaved - * with schedule on the ->pre_schedule() or idle_balance() - * point, either of which can * drop the rq lock. - * - * Also, during early boot the idle thread is in the fair class, - * for obvious reasons its a bad idea to schedule back to it. - */ - if (unlikely(!se->on_rq || curr == rq->idle)) - return; - - if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) - set_last_buddy(se); } #ifdef CONFIG_SMP @@ -8108,8 +8085,6 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) /* * sched_yield() is very simple - * - * The magic of dealing with the ->skip buddy is in pick_next_entity. */ static void yield_task_fair(struct rq *rq) { @@ -8125,21 +8100,19 @@ static void yield_task_fair(struct rq *rq) clear_buddies(cfs_rq, se); - if (curr->policy != SCHED_BATCH) { - update_rq_clock(rq); - /* - * Update run-time statistics of the 'current'. - */ - update_curr(cfs_rq); - /* - * Tell update_rq_clock() that we've just updated, - * so we don't do microscopic update in schedule() - * and double the fastpath cost. - */ - rq_clock_skip_update(rq); - } + update_rq_clock(rq); + /* + * Update run-time statistics of the 'current'. + */ + update_curr(cfs_rq); + /* + * Tell update_rq_clock() that we've just updated, + * so we don't do microscopic update in schedule() + * and double the fastpath cost. + */ + rq_clock_skip_update(rq); - set_skip_buddy(se); + se->deadline += calc_delta_fair(se->slice, se); } static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) @@ -8382,8 +8355,7 @@ static int task_hot(struct task_struct *p, struct lb_env *env) * Buddy candidates are cache hot: */ if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && - (&p->se == cfs_rq_of(&p->se)->next || - &p->se == cfs_rq_of(&p->se)->last)) + (&p->se == cfs_rq_of(&p->se)->next)) return 1; if (sysctl_sched_migration_cost == -1) @@ -11893,8 +11865,8 @@ static void rq_offline_fair(struct rq *rq) static inline bool __entity_slice_used(struct sched_entity *se, int min_nr_tasks) { - u64 slice = sched_slice(cfs_rq_of(se), se); u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; + u64 slice = se->slice; return (rtime * min_nr_tasks > slice); } @@ -12050,8 +12022,8 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) */ static void task_fork_fair(struct task_struct *p) { - struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se, *curr; + struct cfs_rq *cfs_rq; struct rq *rq = this_rq(); struct rq_flags rf; @@ -12060,22 +12032,9 @@ static void task_fork_fair(struct task_struct *p) cfs_rq = task_cfs_rq(current); curr = cfs_rq->curr; - if (curr) { + if (curr) update_curr(cfs_rq); - se->vruntime = curr->vruntime; - } - place_entity(cfs_rq, se, 1); - - if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { - /* - * Upon rescheduling, sched_class::put_prev_task() will place - * 'current' within the tree based on its new key value. - */ - swap(curr->vruntime, se->vruntime); - resched_curr(rq); - } - - se->vruntime -= cfs_rq->min_vruntime; + place_entity(cfs_rq, se, ENQUEUE_INITIAL); rq_unlock(rq, &rf); } @@ -12104,34 +12063,6 @@ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) check_preempt_curr(rq, p, 0); } -static inline bool vruntime_normalized(struct task_struct *p) -{ - struct sched_entity *se = &p->se; - - /* - * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, - * the dequeue_entity(.flags=0) will already have normalized the - * vruntime. - */ - if (p->on_rq) - return true; - - /* - * When !on_rq, vruntime of the task has usually NOT been normalized. - * But there are some cases where it has already been normalized: - * - * - A forked child which is waiting for being woken up by - * wake_up_new_task(). - * - A task which has been woken up by try_to_wake_up() and - * waiting for actually being woken up by sched_ttwu_pending(). - */ - if (!se->sum_exec_runtime || - (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) - return true; - - return false; -} - #ifdef CONFIG_FAIR_GROUP_SCHED /* * Propagate the changes of the sched_entity across the tg tree to make it @@ -12202,16 +12133,6 @@ static void attach_entity_cfs_rq(struct sched_entity *se) static void detach_task_cfs_rq(struct task_struct *p) { struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq = cfs_rq_of(se); - - if (!vruntime_normalized(p)) { - /* - * Fix up our vruntime so that the current sleep doesn't - * cause 'unlimited' sleep bonus. - */ - place_entity(cfs_rq, se, 0); - se->vruntime -= cfs_rq->min_vruntime; - } detach_entity_cfs_rq(se); } @@ -12219,12 +12140,8 @@ static void detach_task_cfs_rq(struct task_struct *p) static void attach_task_cfs_rq(struct task_struct *p) { struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq = cfs_rq_of(se); attach_entity_cfs_rq(se); - - if (!vruntime_normalized(p)) - se->vruntime += cfs_rq->min_vruntime; } static void switched_from_fair(struct rq *rq, struct task_struct *p) @@ -12335,6 +12252,7 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) goto err; tg->shares = NICE_0_LOAD; + tg->latency_prio = DEFAULT_PRIO; init_cfs_bandwidth(tg_cfs_bandwidth(tg)); @@ -12433,6 +12351,9 @@ void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, } se->my_q = cfs_rq; + + set_latency_fair(se, tg->latency_prio - MAX_RT_PRIO); + /* guarantee group entities always have weight */ update_load_set(&se->load, NICE_0_LOAD); se->parent = parent; @@ -12563,6 +12484,29 @@ int sched_group_set_idle(struct task_group *tg, long idle) return 0; } +int sched_group_set_latency(struct task_group *tg, int prio) +{ + int i; + + if (tg == &root_task_group) + return -EINVAL; + + mutex_lock(&shares_mutex); + + if (tg->latency_prio == prio) { + mutex_unlock(&shares_mutex); + return 0; + } + + tg->latency_prio = prio; + + for_each_possible_cpu(i) + set_latency_fair(tg->se[i], prio - MAX_RT_PRIO); + + mutex_unlock(&shares_mutex); + return 0; +} + #else /* CONFIG_FAIR_GROUP_SCHED */ void free_fair_sched_group(struct task_group *tg) { } @@ -12589,7 +12533,7 @@ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task * idle runqueue: */ if (rq->cfs.load.weight) - rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); + rr_interval = NS_TO_JIFFIES(se->slice); return rr_interval; } diff --git a/kernel/sched/features.h b/kernel/sched/features.h index ee7f23c76bd3..7d65b40299d9 100644 --- a/kernel/sched/features.h +++ b/kernel/sched/features.h @@ -1,16 +1,12 @@ /* SPDX-License-Identifier: GPL-2.0 */ -/* - * Only give sleepers 50% of their service deficit. This allows - * them to run sooner, but does not allow tons of sleepers to - * rip the spread apart. - */ -SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true) /* - * Place new tasks ahead so that they do not starve already running - * tasks + * Using the avg_vruntime, do the right thing and preserve lag across + * sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled. */ -SCHED_FEAT(START_DEBIT, true) +SCHED_FEAT(PLACE_LAG, true) +SCHED_FEAT(PLACE_FUDGE, true) +SCHED_FEAT(PLACE_DEADLINE_INITIAL, true) /* * Prefer to schedule the task we woke last (assuming it failed @@ -19,13 +15,6 @@ SCHED_FEAT(START_DEBIT, true) */ SCHED_FEAT(NEXT_BUDDY, false) -/* - * Prefer to schedule the task that ran last (when we did - * wake-preempt) as that likely will touch the same data, increases - * cache locality. - */ -SCHED_FEAT(LAST_BUDDY, true) - /* * Consider buddies to be cache hot, decreases the likeliness of a * cache buddy being migrated away, increases cache locality. @@ -98,6 +87,3 @@ SCHED_FEAT(UTIL_EST, true) SCHED_FEAT(UTIL_EST_FASTUP, true) SCHED_FEAT(LATENCY_WARN, false) - -SCHED_FEAT(ALT_PERIOD, true) -SCHED_FEAT(BASE_SLICE, true) diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index cbea91a9d764..95044d8402d6 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -372,6 +372,8 @@ struct task_group { /* A positive value indicates that this is a SCHED_IDLE group. */ int idle; + /* latency priority of the group. */ + int latency_prio; #ifdef CONFIG_SMP /* @@ -482,6 +484,8 @@ extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); extern int sched_group_set_idle(struct task_group *tg, long idle); +extern int sched_group_set_latency(struct task_group *tg, int prio); + #ifdef CONFIG_SMP extern void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next); @@ -548,6 +552,10 @@ struct cfs_rq { unsigned int idle_nr_running; /* SCHED_IDLE */ unsigned int idle_h_nr_running; /* SCHED_IDLE */ + s64 avg_vruntime; + u64 avg_slice; + u64 avg_load; + u64 exec_clock; u64 min_vruntime; #ifdef CONFIG_SCHED_CORE @@ -567,8 +575,6 @@ struct cfs_rq { */ struct sched_entity *curr; struct sched_entity *next; - struct sched_entity *last; - struct sched_entity *skip; #ifdef CONFIG_SCHED_DEBUG unsigned int nr_spread_over; @@ -2168,6 +2174,7 @@ extern const u32 sched_prio_to_wmult[40]; #else #define ENQUEUE_MIGRATED 0x00 #endif +#define ENQUEUE_INITIAL 0x80 #define RETRY_TASK ((void *)-1UL) @@ -2472,11 +2479,9 @@ extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); extern const_debug unsigned int sysctl_sched_nr_migrate; extern const_debug unsigned int sysctl_sched_migration_cost; +extern unsigned int sysctl_sched_base_slice; + #ifdef CONFIG_SCHED_DEBUG -extern unsigned int sysctl_sched_latency; -extern unsigned int sysctl_sched_min_granularity; -extern unsigned int sysctl_sched_idle_min_granularity; -extern unsigned int sysctl_sched_wakeup_granularity; extern int sysctl_resched_latency_warn_ms; extern int sysctl_resched_latency_warn_once; @@ -2489,6 +2494,8 @@ extern unsigned int sysctl_numa_balancing_scan_size; extern unsigned int sysctl_numa_balancing_hot_threshold; #endif +extern void set_latency_fair(struct sched_entity *se, int prio); + #ifdef CONFIG_SCHED_HRTICK /* @@ -3320,4 +3327,7 @@ static inline void switch_mm_cid(struct task_struct *prev, struct task_struct *n static inline void switch_mm_cid(struct task_struct *prev, struct task_struct *next) { } #endif +extern u64 avg_vruntime(struct cfs_rq *cfs_rq); +extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); + #endif /* _KERNEL_SCHED_SCHED_H */ diff --git a/tools/include/uapi/linux/sched.h b/tools/include/uapi/linux/sched.h index 3bac0a8ceab2..b2e932c25be6 100644 --- a/tools/include/uapi/linux/sched.h +++ b/tools/include/uapi/linux/sched.h @@ -132,6 +132,7 @@ struct clone_args { #define SCHED_FLAG_KEEP_PARAMS 0x10 #define SCHED_FLAG_UTIL_CLAMP_MIN 0x20 #define SCHED_FLAG_UTIL_CLAMP_MAX 0x40 +#define SCHED_FLAG_LATENCY_NICE 0x80 #define SCHED_FLAG_KEEP_ALL (SCHED_FLAG_KEEP_POLICY | \ SCHED_FLAG_KEEP_PARAMS) @@ -143,6 +144,7 @@ struct clone_args { SCHED_FLAG_RECLAIM | \ SCHED_FLAG_DL_OVERRUN | \ SCHED_FLAG_KEEP_ALL | \ - SCHED_FLAG_UTIL_CLAMP) + SCHED_FLAG_UTIL_CLAMP | \ + SCHED_FLAG_LATENCY_NICE) #endif /* _UAPI_LINUX_SCHED_H */ -- 2.41.0.rc2