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Introduzione

Questa tesi si compone di due parti: nella prima (capitoli 1-3) si costruiscono i vari campi p-adici
per arrivare a Cp, campo completo e algebricamente chiuso, tentando di emulare il procedimento
classico che da (Q, | |∞) porta a C. Nella seconda parte (capitoli 4-5), invece, si studiano le
funzioni analitiche su Cp, definite come serie di potenze, con particolare attenzione ad alcune
funzioni elementari, come l’esponenziale e il logaritmo, e alle differenze che si presentano nel
caso p-adico rispetto al caso classico. Infine, nel capitolo 5, viene definito il poligono di Newton,
potente strumento per capire subito il raggio di convergenza e l’ordine (p-adico) degli zeri di una
funzione analitica.
Più specificamente, nel capitolo 1, dopo aver introdotto la definizione di norma e quella di
valore assoluto p-adico su Q (e aver mostrato che definisce una norma non-Archimedea), si
dimostra il teorema di Ostrowski, che afferma che ogni norma non banale su Q è equivalente
o al valore assoluto classico o a un valore assoluto p-adico, per qualche primo p. Viene poi
provato che (Q, | |p) non è completo e viene definito, nel modo classico, il suo completamento
(Qp, | |p), analogo di (R, | |∞) nel caso classico. Infine, viene provato un teorema di struttura,
che afferma che ogni elemento di Qp può essere scritto come una serie del tipo

∑+∞
i=m aip

i, con
ai ∈ {0, . . . , p− 1} e m ∈ Z.
Nel capitolo 2 si arriva di nuovo a costruire (Qp, | |p) in un modo, però, totalmente diverso
dal primo e più “algebrico”. Si parte infatti da Zp, insieme contenente tutti gli elementi del tipo∑+∞

i=0 aip
i con ai ∈ {0, . . . , p−1}, equipaggiato con le operazioni di somma con riporto e prodotto

alla Cauchy (con riporto). Si mostra che esso è un dominio integrale (qui si capisce perché p
debba essere primo) e che contiene gli interi (o meglio, che esiste un monomorfismo Z ↪→ Zp).
Dopo un breve excursus su proprietà generiche dei gruppi topologici (dalle quali si ricaverà che
Zp è uno spazio compatto, completo e metrizzabile), viene mostrata un’altra definizione di Zp:
come limite proiettivo degli insiemi Z/pnZ. Infine si mostra che Qp è esattamente il campo delle
frazioni di Zp e si introduce il lemma di Hensel, fondamentale strumento per “rialzare” le radici
di polinomi da Z/pnZ a Zp, quando il polinomio soddisfa opportune ipotesi.
Nel capitolo 3, dopo un breve excursus su generiche proprietà di spazi ultrametrici, si studiano
le estensioni di campi K/Qp di grado finito e si vede come si può estendere il valore assoluto
p-adico a tali campi K. Vengono poi classificate in base al loro indice di ramificazione e al grado
residuo, con particolare attenzione ad estensioni non ramificate e totalmente ramificate. Dopo
aver mostrato una versione analoga del criterio di Eisenstein nel caso p-adico, viene mostrato che
Qp ammette estensioni di qualunque grado finito, da cui si ricava che la sua chiusura algebrica,
Qalg cl
p , ha necessariamente grado infinito su Qp. Infine si mostra che (Qalg cl

p , | |p) non è completo
e si considera il suo completamento Cp, che si mostrerà essere anche algebricamente chiuso. Si
noti che qui il caso p-adico sembra essere più complicato del caso classico: ciò è dovuto al fatto
che Qalg cl

p ha grado infinito su Qp e dunque la completezza si “perde”, mentre nel caso classico
C = Ralg cl ha grado finito (2) su R e dunque rimane completo. Infine viene dimostrato un
teorema di struttura di Cp, che afferma che ogni elemento è prodotto di una potenza frazionaria
(radice di un polinomio del tipo Xa − pb, con a, b ∈ Z), una radice di 1 e un elemento nel disco
aperto di raggio 1 centrato in 1. In realtà, come spiegato alla fine del capitolo 3, i due processi (di
costruzione di campi completi e algebricamente chiusi) possono essere fatti in modo totalmente



iv

analogo: si considera prima Q, poi la sua chiusura algebrica Qalg cl e si completa quest’ultima
rispetto a | |∞ per ottenere C e rispetto a | |p per ottenere Cp. Il problema di questa costruzione
è la notevole difficoltà che si incontra nello studio di Qalg cl.
Nel capitolo 4 viene introdotta la nozione di funzione analitica su Cp, funzione definita come
una serie di potenze (dove esssa converge). Viene provato poi che la stessa formula classica per
trovare il raggio di convergenza di una serie di potenze vale anche nel caso p-adico (sostituendo
chiaramente il valore assoluto p-adico a quello classico). Viene anche introdotta le definizione
di differenziabilità (e stretta differenziabilità) e viene provato che le funzioni analitiche sono
differenziabili nel modo standard (termine a termine). Vengono poi definite le funzioni expp(X)
e logp(1 + X) (usando le serie di MacLaurin note dal caso classico) e viene provato che, a
differenza del caso reale, la funzione esponenziale converge solo su un piccolo disco aperto centrato
in 0 (di raggio rp = p−1/(p−1)). Le proprietà classiche di esponenziale e logaritmo, però, si
conservano anche nel caso p-adico e, restringendo in maniera appropriata dominio e codominio, si
mostra che esponenziale e logaritmo sono funzioni l’una inversa dell’altra. Infine si introducono
due nuove funzioni: il logaritmo di Iwasawa e l’esponenziale di Artin-Hasse. La prima è una
funzione localmente analitica, definita su tutto Cp, che estende il logaritmo precedentemente
definito e ha derivata x 7→ 1/x. L’esponenziale di Artin-Hasse, invece, è ricavato togliendo i
termini “problematici” dall’esponenziale, ottenendo così una più estesa regione di convergenza
(più specificamente viene prima mostrato un modo per scrivere expp(X) come prodotto infinito
di serie di potenze e viene poi notato che sono solo alcuni di questi termini a imporre una
minore regione di convergenza: togliendoli si ottiene l’esponenziale di Artin-Hasse). Nonostante
il nome che potrebbe trarre in inganno, esso non è un’estensione dell’esponenziale: infatti vale
Ep(X) = expp

(
X + Xp

p + Xp2

p2
+ . . .

)
.

Nell’ultimo capitolo viene introdotta la definizione di poligono di Newton prima per i polinomi
e poi per le serie di potenze. Viene poi presentato l’importante teorema che lega gli zeri di un
polinomio al suo poligono di Newton: infatti per ogni segmento di pendenza λ e di lunghezza M
(qui per lunghezza si intende quella della proiezione sull’asse orizzontale) vi sono esattamente M
zeri, contati con molteplicità, di ordine p-adico −λ e tutti gli zeri sono ottenuti in questo modo.
Dopo aver mostrato che il raggio di convergenza di una serie è esattamente il sup delle pendenze
del suo poligono di Newton si mostrano dei lemmi tecnici per arrivare a dimostrare il teorema di
separazione di Weierstrass. Esso ha, tra i suoi corollari, la generalizzazione alle serie di potenze
del teorema precedentemente enunciato solo per i polinomi, ossia per ogni segmento di lunghezza
N < +∞ e di pendenza λ si hanno N zeri della serie di ordine p-adico −λ. L’ultimo risultato
mostrato è che ogni serie di potenze f(X) ∈ 1 +XCpJXK convergente su tutto Cp ha un insieme
di zeri numerabile, sia (rn)n∈N, e vale f(X) =

∏
n∈N

(
1− X

rn

)
. Possiamo pensare a tale risultato

come ad una generalizzazione del teorema fondamentale dell’algebra (esiste una versione di tale
teorema anche su C, ma si ottiene un prodotto con fattori più complicati). Tra le conseguenze di
quest’ultimo vi è ad esempio il fatto che non può esistere, su Cp, un esponenziale come nel caso
classico, ossia ovunque convergente e mai nullo: infatti qualunque serie del genere deve essere
una costante.
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1 Analytic Approach

1.1 Basic concepts

Here we’ll define some basic concepts about norms and metrics.

Definition 1.1. Let X be a non-empty set, a function d : X ×X → R≥0 is a metric if, for every
x, y, z ∈ X, we have:

1. d(x, y) = 0 ⇐⇒ x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

Definition 1.2. Let F be a field, a function ‖ ‖ : F → R≥0 is a field norm1(or an absolute value)
if, for every x, y ∈ F , we have:

1. ‖x‖ = 0 ⇐⇒ x = 0;

2. ‖x · y‖ = ‖x‖ · ‖y‖;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 1.3. Let V be a vector space over the field F , which has its norm ‖ ‖F . A function
‖ ‖ : V → R≥0 is a norm if, for every v, w ∈ V, α ∈ F , we have:

1. ‖v‖ = 0 ⇐⇒ v = 0;

2. ‖α · v‖ = ‖α‖F · ‖v‖;

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Beginning from a (field) norm ‖ ‖ there’s a natural metric defined as d(x, y) = ‖x− y‖.

1.2 Metrics on Q

The metric we normally equip Q with is the euclidean one, which comes from the usual absolute
value | | (denoted also by | |∞).

Definition 1.4. Let p a fixed prime. We can define a function ordp : Z→ N∪{+∞} as follows:

ordp a :=

{
+∞, if a = 0;
na, otherwise;

where na ∈ N is such that pna |a and pna+1 - a. It’s easy to prove that ordp ab = ordp a+ ordp b
(using the usual convention ∞+ n = n+∞ = +∞).

1Although usually the term “field norm” has a different definition in field theory, we choose to use this termi-
nology, to distinguish between norms on fields and norms on vectorial spaces.
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We can extend this function to Q:

ordp
(a
b

)
:=

{
+∞, if ab = 0;
ordp a− ordp b, otherwise;

.

This is of course well defined: ordp
(
ac
bc

)
= ordp ac− ordp bc = ordp a− ordp b = ordp

(
a
b

)
.

Proposition 1.5. ordp : Q→ Z ∪ {+∞} is a discrete valuation.

Proof. We have to prove the following properties:

• ordp x = +∞ ⇐⇒ x = 0;

• ordp xy = ordp x+ ordp y;

• ordp (x+ y) ≥ min{ordp x, ordp y}.

The first two properties are quite easy, to see why the third one is true it’s sufficient to write

x =
a

b
= pordp x · a

′

b′
, y =

c

d
= pordp y · c

′

d′

with a′, b′, c′, d′ coprime with p. Then

x+ y = pmin{ordp x, ordp y} · q (q ∈ Q).

Applying property 2. from Definition 1.2 we obtain

ordp (x+ y) = ordp
(
pmin{ordp x, ordp y} · q

)
≥ min{ordp x, ordp y}.

Using these functions we can define a field norm | |p : Q→ Q as follows:

|x|p =

{
p−ordp x, if x 6= 0;
0, otherwise;

.

Proposition 1.6. | |p is a field norm on Q.

Proof. Property 1. is obvious.
To prove 2., given x, y ∈ Q× we know that ordp xy = ordp x+ ordp y so

|xy|p = p−ordp xy = p−ordp x−ordp y = p−ordp x · p−ordp y = |x|p · |y|p.

To prove 3. let x, y ∈ Q×; ordp (x+ y) ≥ min{ordp x, ordp y} so

|x+ y|p = p−ordp (x+y) ≤ p−min{ordp x, ordp y} = pmax{−ordp x,−ordp y}

= max
{
p−ordp x, p−ordp y

}
= max

{
|x|p, |y|p

}
≤ |x|p + |y|p.

We actually proved a stronger inequality than 3., which is one of the key ingredients of p-adic
analysis.

Definition 1.7. A norm on X is called non-Archimedean if ‖x+ y‖ ≤ max {‖x‖, ‖y‖} holds for
every x, y ∈ X.

If ‖ ‖ is a non-Archimedean norm on X, it’s immediate to see that

‖n · x‖ ≤ ‖x‖ for every n ∈ N, x ∈ X

which explains the name. We have already proved that | |p is a non-Archimedean norm on Q in
Proposition 1.6.
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Proposition 1.8. If ‖ ‖ is a non-Archimedean norm on X then

‖x‖ 6= ‖y‖ =⇒ ‖x+ y‖ = max {‖x‖, ‖y‖} .

Proof. We can assume that ‖x‖ < ‖y‖. Then

‖y‖ = ‖(x+ y)− x‖ ≤ max {‖x+ y‖, ‖x‖} ≤ ‖y‖

but since ‖x‖ < ‖y‖ we must have ‖x+ y‖ = ‖y‖.

Definition 1.9. If (X, d) is a metric space, a sequence (an)n∈N is a Cauchy sequence if ∀ε > 0
∃n0 ∈ N such that n,m > n0 =⇒ d(an, am) < ε.

Definition 1.10. Two metrics d1, d2 on X are equivalent if every Cauchy sequence for d1 is
Cauchy for d2 and vice-versa. Two norms are equivalent if they induce equivalent metrics.

Now we present a technical lemma we’re going to need.

Lemma 1.11. If α ∈ (0, 1] the function on Q defined by x 7→ |x|α is a norm equivalent to | |∞.

Proof. First of all we show | |α is actually a norm; property 1. and 2. are easily verified. To prove
3. we have to show that |x+ y|α ≤ |x|α + |y|α for every x, y ∈ Q×. We can assume 0 < x < y
and, dividing both sides by |y|α, we just need to prove (1 + t)α ≤ 1 + tα for t ∈ [0, 1]. This
easily follows studying the first derivative of [0, 1] 3 t 7→ 1 + tα − (1 + t)α (always non negative
if 0 ≤ α ≤ 1).
The equivalence of the two norms is easy to see if we use the above definition: let (an)n be
Cauchy for | |; fixed ε > 0 we can find n0 ∈ N such that n,m > n0 =⇒ |an − am| < ε

1
α i.e.

|an − am|α < ε ∀n,m > n0 so (an)n is also Cauchy for | |α (and vice-versa).

Generalizing a little bit the previous lemma we can prove that if ‖ ‖1 and ‖ ‖2 are two field
norms on F which satisfy ‖x‖1 = ‖x‖α2 ∀x ∈ F for a fixed α > 0 then they’re equivalent. For
example, instead of defining | |p using p−ordp a, we could have used ρ ∈ (0, 1) in place of 1/p and

we would have obtained an equivalent norm because p−ordp a =
(
ρordp a

)− logρ p.

Definition 1.12. The norm ‖ ‖ such that ‖x‖ = 1− δx0 is called trivial.

Finally we can prove the main theorem of this section.

Theorem 1.13 (Ostrowski). Every non-trivial norm ‖ ‖ on Q is equivalent to | |p for some
prime p ∈ N or for p =∞.

Proof. We distinguish two cases.
Case (1). There exists a positive integer n such that ‖n‖ > 1. Let n0 be the minimum among
those (for every field norm ‖±1‖ = 1 so n0 > 1). Since ‖n0‖ > 1 there exists α = logn0

‖n0‖ > 0
such that ‖n0‖ = nα0 . Now if n ∈ N× then, using base n0, we can write

n = a0 + a1n+ · · ·+ asn
s
0, ai ∈ {0, 1, . . . , n0 − 1}, as 6= 0.

Then, since norms are subadditive and multiplicative

‖n‖ ≤ ‖a0‖+ ‖a1n0‖+ · · ·+ ‖asns0‖ =

= ‖a0‖+ ‖a1‖nα0 + · · ·+ ‖as‖nsα0 .

Being n0 the minimum positive integer with ‖n0‖ > 1 we have ‖ai‖ ≤ 1 so

‖n‖ ≤ 1 + nα0 + · · ·+ nsα0 ≤ nsα0 (1 + n−α0 + · · ·+ n−sα0 ) ≤ nα
[ ∞∑
i=0

n−iα0

]
.
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The last inequality is true because n ≥ ns0. The series at the right side is a geometric one which
converges to a certain C < +∞ (since 0 < 1

n0
< 1). Now we have obtained

‖n‖ ≤ Cnα.

Using nN , for some large N ∈ N, in place of N in the last inequality, and then extracting Nth
roots, leads us to

‖n‖ ≤ N
√
Cnα.

Letting N → +∞ we get ‖n‖ ≤ nα (obviously this is valid for every n ∈ N). To get the other
verse of the inequality, using n written as above, we have ns+1

0 > n ≥ ns0. Using reverse triangular
inequality and the one we obtained above, we get

‖n‖ ≥
∥∥ns+1

0

∥∥− ∥∥ns+1
0 − n

∥∥ ≥ n(s+1)α
0 −

(
ns+1

0 − n
)α
.

Since n > ns0

‖n‖ ≥ n(s+1)α
0 −

(
ns+1

0 − ns0
)α

= n
(s+1)α
0

[
1−

(
1− 1

n0

)α]
≥ C ′nα

with C ′ :=
[
1−

(
1− 1

n0

)α]
that doesn’t depend on n. As before, using nN and taking Nth

roots and letting N → +∞ gives ‖n‖ ≥ nα. So we proved that ‖n‖ = nα for every n ∈ N. Using
property 2. of norms and ‖−1‖ = 1 we get ‖q‖ = |q|α for every q ∈ Q. Now, using Lemma 1.11,
we conclude that ‖ ‖ is equivalent to | |∞.
Case (2). For every n ∈ N, ‖n‖ ≤ 1. Since ‖ ‖ is non-trivial by hypothesis we can find the
minimum N 3 n0 > 1 such that ‖n0‖ < 1. Easily n0 is a prime number: if not, n0 = a · b with
1 < a, b < n0 and 1 > ‖n0‖ = ‖ab‖ = ‖a‖‖b‖ so at least one from ‖a‖ and ‖b‖ must be strictly
less than 1, absurd because a, b < n0 and n0 is the minimum positive integer with this property.
Let p = n0 and we claim that if q is a different prime from p ‖q‖ = 1. If this is not true then
‖q‖ < 1 and we can find some large N ∈ N such that

∥∥pN∥∥, ∥∥qN∥∥ < 1/2. Since pN and qN are
coprime, from Bézout identity there are n,m ∈ Z such that npN +mqN = 1, but this leads to a
contradiction:

1 = ‖1‖ =
∥∥npN +mqN

∥∥ ≤ ‖n‖∥∥pN∥∥+ ‖m‖
∥∥qN∥∥ ≤ ∥∥pN∥∥+

∥∥qN∥∥ < 1

2
+

1

2
< 1.

Now, given n ∈ N we can factorize it in a unique way into prime divisors n = pb11 · · · pbrr . At
most one from the pi-s is equal to p so if, wlog, p1 = p then b1 = ordp n and ‖pi‖ = 1 if i > 1 so

‖n‖ =
∥∥∥pb11 · · · · · pbrr ∥∥∥ = ‖p1‖b1 · · · · · ‖pr‖br = ‖p‖ordp n.

Letting ρ := ‖p‖ ∈ (0, 1) we obtain ‖a‖ = ρordp a for a ∈ N×. Using property 2. of norms we
can show this holds also if a ∈ Q×. We conclude that ‖ ‖ is equivalent to | |p, using the general
version of Lemma 1.11.

The standard topology of Q, induced by the euclidean metric, is very different from the p-adic
topology, induced by the p-adic ultrametric. With the former, Z ⊂ Q is a discrete set while, in
p-adic environment, Z isn’t discrete: 0 is an accumulation point, limn→+∞ p

n = 0. There are also
some interesting algebraic properties, which we haven’t in the standard topology, for example
the one described in the following lemma.

Lemma 1.14. For every r > 0 the set B<r(0) ∩ Z = {x ∈ Z | |x|p < r} is an ideal of the ring
Z, in the p-adic topology.
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Proof. It’s clear that we can only consider the case r = pk with k ∈ Z. If k ≥ 0 the property is
trivial since Z ⊆ B≤1(0) = {x ∈ Q | |x|p ≤ 1}. Let’s consider x, y ∈ Z ∩B<pk(0), i.e. |x|p, |y|p <
pk. We must show that |x− y|p < pk and that for every z ∈ Z we have z · x ∈ B<pk(0) ∩ Z. For
the first property we have

|x− y|p ≤ max
{
|x|p, |−y|p

}
= max

{
|x|p, |y|p

}
< pk

and for the second one, recalling that Z 3 z =⇒ |z|p ≤ 1, we have

|z · x|p = |z|p · |x|p ≤ |x|p < pk.

These non-Archimedean norms | |p have some very strange properties, far from our intuition
(which is based on euclidean norms). We’ll explore them in detail in Section 3.1.

1.3 Construction of Qp

Definition 1.15. A metric space (X, d) is complete if every Cauchy sequence in X converges to
some element in X.

Definition 1.16. If (X, d) is a metric space, (X, d) is its completion if it is a complete metric
space which contains X as a dense subspace and satisfies this universal property: if Y is a
complete metric space and f : X → Y is uniformly continuous then there exists a unique f ′ : X →
Y such that f ′ is uniformly continuous and f ′|X = f .

It’s clear from the definition that the completion of a space is unique up to isometry.

Proposition 1.17. (Q, | |p) is not complete.

Proof. This proof will heavily rely on the definition of Zp proposed in Section 2.1, and on Hensel’s
lemma (Theorem 2.22). Obviously we don’t need any result depending on this statement to build
Zp and prove the Hensel’s lemma (in other words: this proof does not create any logical loop).
We have to show that there exists a Cauchy sequence in (Q, | |p) which has no limit in Q. To do
this, we’ll use a polynomial P (X) ∈ Z[X] ⊂ Zp[X] which has no roots in Q but admits a root
in Z/pZ. We’ll then use Hensel’s lemma to obtain ξ ∈ Zp such that P (ξ) = 0. We’ll then have
a Cauchy sequence in Z ⊂ Q (we can consider truncated sums of ξ) which converges to ξ /∈ Q.
Let’s distinguish four cases.

• p = 2:
Let’s consider the polynomial P (X) = X3−7 ∈ Z[X]: obviously there are no rational roots
of P but x0 = 1 is such that P (x0) ≡ 0 mod 2. We immediately see that P ′(X) = 3X2

so 2 - 3 = P ′(1) and, applying Hensel’s lemma, we infer there is a unique ξ ∈ Z2 such that
P (ξ) = 0.

• p = 3:
Let’s consider the polynomial P (X) = X2−7 ∈ Z[X]: obviously there are no rational roots
of P but x0 = 1 is such that P (x0) ≡ 0 mod 3. We immediately see that P ′(1) = 2 6≡ 0
mod 3 and, applying Hensel’s lemma, we infer there is a unique ξ ∈ Z3 such that P (ξ) = 0.

• p ≡ 1 mod 4:
Let’s consider the polynomial P (X) = X2 − (p + 1) ∈ Z[X]. We observe that P has no
rational roots; writing p+ 1 = 4k+ 2 we immediately see that p+ 1 is not a perfect square,
because 2 | p + 1 but 4 - p + 1. Clearly, p + 1 can’t either be a square of some rational
number: if it were, then we would have

p+ 1 =
(a
b

)2
=⇒ b2 · (p+ 1) = a2
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which is an absurd, since p + 1 is not a perfect square. So P has no roots in Q, but we
easily see that P (1) ≡ 0 mod p and P ′(1) = 2 6≡ 0 mod p. Applying Hensel’s lemma we
find ξ ∈ Zp such that P (ξ) = 0.

• p ≡ 3 mod 4:

Let’s consider
(
p−1

2

)2
≡ 4−1 mod p and let t ∈ {0, . . . , p − 1} such that 4t ≡ 1 mod p.

Obviously 0 6= t is a quadratic residue in Z/pZ; we claim that
√
t /∈ Q. We just need to

show that t is not a perfect square (then we can use the same reasoning of the previous
point). First of all, with a little abuse of notation, we observe that

F2
p =

{
x2

∣∣∣∣ 0 ≤ x ≤ p− 1

2
, x ∈ N

}
.

Since the only perfect squares less than p are exactly
{
x2
∣∣ 0 ≤ x ≤ b√pc, x ∈ N

}
and

p−1
2 ≥

√
p for p ≥ 7, we infer that t cannot be a perfect square.

Now we can consider the polynomial P (X) = X2−t ∈ Z[X]: we know that it has no rational
root but x0 = −2−1 is a root of P in Z/pZ, by construction. Obviously P ′(X) = 2X so
P ′(x0) = 2x0 6≡ 0 mod p. Then we can apply Hensel’s lemma and obtain ξ ∈ Zp such that
P (ξ) = 0.

Actually, if p 6= 2, there is an easier way to prove (Q, | |p) is not complete, using the Cauchy
sequence (ap

n
)n∈N, where a ∈ {1, . . . , p − 2}. The proof can be found at [7, p. 3]. Anyway the

proof we gave is indeed a nice application of the Hensel’s lemma.
The goal of this section is to build Qp, the completion field of (Q, | |p) with p a fixed prime.

The building process is analogue to the construction of R, the completion of (Q, | |∞) and it’s
actually the “standard” way to complete a metric space. This process is actually necessary,
because (Q, | |p) is not complete, so it’s a very unfriendly setting to perform analysis.

Definition 1.18. Let S :=
{

(an)n∈N ⊆ Q
∣∣∣ (an)n∈N Cauchy for | |p

}
. Then

Qp := S/∼

where ∼ is a relation on S: (an)n ∼ (bn)n if |ai − bi|p → 0 as i→ +∞.

Proposition 1.19. Qp is well defined and there’s a natural sum and product on Qp which makes
(Qp,+, ·) a field.

Proof. Qp is well defined, in the sense that ∼ is an equivalence relation on S (easy to verify).
First of all we can immerge Q in S (and then in Qp) sending x to {x}, the constant sequence
(it’s immediate that {x′} ∼ {x} ⇐⇒ x = x′ so this is really an immersion). From now on we’ll
do a little abuse of notation, not to result too pedantic: 0 will denote both {0} (the constant
sequence) and [{0}] (its equivalence class), context will clarify which is the right meaning.
There’s a natural extension of the classical sum and product on Q to Qp, which makes it a field.
Let a, b ∈ Qp, we define a + b := [(an + bn)n] where (an)n, (bn)n are two representatives of a
and b respectively. It is easy to see that this is well defined: the sum of two Cauchy is still a
Cauchy and a+ b doesn’t depend on the choice of the representatives. Similarly the product of
a · b := [(an · bn)n] is well defined: product of two Cauchy is Cauchy and given (a′n)n ∼ (an)n
and (b′n)n ∼ (bn)n we have

0 ≤ lim
i→+∞

∣∣aibi − a′ib′i∣∣p = lim
i→+∞

∣∣ai(bi − b′i) + b′i(ai − a′i)
∣∣
p
≤

≤ lim
i→+∞

|ai|p
∣∣bi − b′i∣∣p + lim

i→+∞

∣∣b′i∣∣p∣∣ai − a′i∣∣p = 0
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where we used that if (an)n is Cauchy then it is bounded in norm. Then the definition doesn’t
depend on the choice of the representatives (the first claim above can be proved in the exact
same way).
It’s easy to see (Qp,+) is a group, because 0 is the neutral element and additive inverses are
defined in the trivial way. To see that also (Q×p , ·) is a group let’s first note that every sequence
(an)n is equivalent to (a′n)n where a′i = pi if ai = 0 and a′i = ai otherwise. Associativity
holds and the neutral element is 1 = [{1}] 6= 0. The only non-trivial property to prove is
the existence of multiplicative inverses: if a 6= 0 then if a = [(an)n] (where (an)n is chosen
without zeros) then 1/a = [(1/an)n]. We have to show that (1/an)n is Cauchy: let N ∈ N
large enough such that ∃ε > 0 and |an|p > ε ∀n > N (see proof of Proposition 1.20) and that
n,m > N =⇒ |an − am|p < ε3; if n,m > N we obtain∣∣∣∣ 1

an
− 1

am

∣∣∣∣
p

=

∣∣∣∣am − ananam

∣∣∣∣
p

=
1

|anam|p
|am − an|p ≤

1

ε2
ε3 = ε.

Using the same exact technique we can prove that 1/a is well defined, i.e. if (an)n and (a′n)n are
both non-zero representatives of a then (1/an)n ∼ (1/a′n)n. Obviously this product is abelian.
It is also easy to prove that distributivity holds, i.e. given a, b, c ∈ Qp a · (b + c) = a · b + a · c
(it’s sufficient to note that a · (b + c) = [(an · (bn + cn))n] = [(an · bn + an · cn)n]). So we have
finally proved that (Qp,+, ·) is a field, containing Q as a subfield (the immersion defined at the
beginning is in-fact a ring morphism between Q and Qp, representing the natural identification
of Q in Qp).

We have then to extend the norm | |p to Qp: if a ∈ Qp then |a|p := limi→+∞|ai|p where (an)n
is any representative of a.

Proposition 1.20. | |p is a norm on Qp.

Proof. First of all we prove that, chosen a representative (an)n of a, ∃ limi→+∞|ai|p. We have
two cases:

1. if a = 0, by definition, limi→+∞|ai|p = 0;

2. if a 6= 0 then (an)n � 0 so ∃ε > 0 and for every N ∈ N there exists iN > N such that
|aiN |p > ε. Since (an)n is Cauchy, choosing N large enough such that |ai − aj |p < ε
∀i, j > N we have that |ai − aiN |p < ε ∀i > N . Using the isosceles triangle principle we
get |ai|p = |aiN |p for every i > N , so trivially the limit exists.

Now we prove that this is well defined, i.e. |a|p doesn’t depend on the choice of the repre-
sentative of a. Let (an)n, (bn)n two representatives of a, then (an)n ∼ (bn)n which means
limi→+∞|ai − bi|p = 0. Now by the reverse triangular inequality

0 ≤ lim
i→+∞

∣∣∣|ai|p − |bi|p∣∣∣ ≤ lim
i→+∞

|ai − bi|p = 0 =⇒ lim
i→+∞

|ai|p = lim
i→+∞

|bi|p.

The property 1. of norms is proved in the case above. Property 2. and 3. immediately follows
from the ones of | |p on Q and basic limit rules.

Proposition 1.21. (Qp, | |p) is complete.

Proof. We have to prove that if (an)n is a Cauchy sequence in Qp for | |p then there exists a ∈ Qp
such that a = limi→+∞ ai. Let an = [(an,m)m∈N] where (an,m)m is a Cauchy sequence in Q. Let
Nj ∈ N such that ∀ n,m > Nj |aj,m − aj,n|p < 1/j. Now, choosing kj > max{Nj , kj−1}, we
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claim that [(an,kn)n] ∈ Qp is the limit of the sequence at the beginning. First of all we prove
that (an,kn)n is a Cauchy sequence in Q:

|an,kn − am,km |p = |an,kn − an,j + an,j − am,j + am,j − am,km |p ≤

≤ max
{
|an,kn − an,j |p, |an,j − am,j |p, |am,j − am,km |p

}
.

Choosing a large enough j ∈ N we obtain |an,kn − an,j |p < 1/n and |am,j − am,km |p < 1/m.
Since (an)n ⊆ Qp is a Cauchy sequence, for every ε > 0 ∃N ∈ N such that n,m > N =⇒
|an − am|p < ε, meaning limj→+∞|an,j − am,j |p < ε. From here we can see that ∃N ′ ∈ N such
that j > N ′ =⇒ |an,j − am,j |p < ε so we can also control the other term above. We proved
that (an,kn)n is a Cauchy sequence.
Now we show that its equivalence class, let it be a ∈ Qp, is actually the limit of (an)n, i.e.

0 = lim
n→+∞

|an − a|p = lim
n→+∞

(
lim

j→+∞

∣∣an,j − aj,kj ∣∣p) .
Fixed ε > 0 we know that ∃N ∈ N such that n,m > N =⇒ |an,kn − am,km |p < ε. Choosing
N 3 n > max{N, 1/ε} we have∣∣an,j − aj,kj ∣∣p ≤ max

{
|an,j − an,kn |p,

∣∣an,kn − aj,kj ∣∣p} .
If j > max{kn, N} then |an,j − an,kn |p < 1/n < ε and

∣∣an,kn − aj,kj ∣∣p < ε so

lim
j→+∞

∣∣an,j − aj,kj ∣∣p ≤ ε.
Thesis easily follows from the fact that ε is arbitrary.

Proposition 1.22. Q is dense in Qp.

Proof. Chosen a = [(an)n] ∈ Qp and ε > 0 we know that ∃N ∈ N such that n > m > N =⇒
|an − am|p < ε. Now, fixed n ∈ N we have that an ∈ Q is identified with a′ = {an} ∈ Qp, the
equivalence class of the constant sequence (an, an, an, . . . ). Now |a− a′|p = limj→+∞|aj − an|p
which is clearly no bigger than ε (we can consider j > N).

Up to now we have proved that (Qp, | |p) is actually the completion of (Q, | |p). Obviously
we’re not going to work using this abstract construction, thanks to the following result.
First we’ll need a technical lemma.

Lemma 1.23. If x ∈ Q and |x|p ≤ 1 then ∀i ∈ N ∃α ∈ Z such that |α− x|p ≤ p−i. The integer
α can be chosen in {0, 1, . . . , pi − 1}.

Proof. Let x = a/b written in lowest terms. The fact that |x|p ≤ 1 means exactly p - b so, since
p is a prime number, pi and b are coprime; thanks to Bézout identity ∃m,n ∈ Z mb + npi = 1.
Letting Z 3 α := am we get

|α− x|p =
∣∣∣am− a

b

∣∣∣
p

=
∣∣∣a
b

∣∣∣
p
|mb− 1|p ≤ |mb− 1|p =

∣∣npi∣∣
p

=
|n|p
pi
≤ 1

pi

since |x|p = |a/b|p ≤ 1 and |n|p ≤ 1 if n ∈ Z. Adding the right multiple of pi to α we can get an
integer between 0 and pi − 1 still satisfying the above inequality.

Theorem 1.24. Every a ∈ Qp with |a|p ≤ 1 has exactly one representative (ai)i∈N such that for
every i ∈ N:
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1. ai ∈ {0, 1, . . . , pi+1 − 1};

2. ai ≡ ai+1 mod pi+1.

Proof. We first prove uniqueness: let (a′i)i a different sequence satisfying 1. and 2. If ai0 6= a′i0
then ai0 6≡ a′i0 mod pi0+1 since they are both between 0 and pi0+1. Now if i ≥ i0 we have

ai ≡ ai0 6≡ a′i0 ≡ a
′
i mod pi0+1 =⇒

∣∣ai − a′i∣∣p > 1

pi0+1
,

meaning (a′i)i � (ai)i.
Now we prove existence. Let (bi)i be any of the representatives of a and let N(j) ∈ N such
that n,m ≥ N(j) =⇒ |bn − bm|p ≤ p−j−1 for every j ∈ N. We can choose the sequence
(N(j))j∈N ⊆ N strictly increasing with j, in particular with N(j) > max{j,N(j − 1)}. We
immediately note that if i ≥ N(0) then |bi|p ≤ 1 because for every j ≥ N(0)

|bi|p ≤ max
{
|bj |p, |bi − bj |p

}
≤ max

{
|bj |p,

1

p

}
and limj→+∞|bj |p = |a|p ≤ 1. Using Lemma 1.23 we can find aj ∈ Z such that 0 ≤ aj < pj+1

and
∣∣aj − bN(j)

∣∣
p
≤ 1/pj+1, because

∣∣bN(j)

∣∣
p
≤ 1. We’ll show that (an)n is the desired sequence.

Obviously it’s Cauchy because

|an − am|p ≤ max
{∣∣an − bN(n)

∣∣
p
,
∣∣bN(n) − bN(m)

∣∣
p
,
∣∣bN(m) − am

∣∣
p

}
and, choosing n,m large enough, we can control all those three terms. Property 1. is already
verified by construction so we have only to prove that aj+1 ≡ aj mod pj+1 and that (an)n ∼
(bn)n. The former follows from

|aj+1 − aj |p ≤ max
{∣∣aj+1 − bN(j+1)

∣∣
p
,
∣∣bN(j+1) − bN(j)

∣∣
p
,
∣∣bN(j) − aj

∣∣
p

}
≤

≤ max

{
1

pj+2
,

1

pj+1
,

1

pj+1

}
≤ 1

pj+1
.

To prove the latter, for every j, if i > N(j) we have

|ai − bi|p ≤ max
{
|ai − aj |p,

∣∣aj − bN(j)

∣∣
p
,
∣∣bN(j) − bi

∣∣
p

}
≤

≤ max

{
1

pj+1
,

1

pj+1
,

1

pj+1

}
=

1

pj+1

because ai ≡ ai+1 ≡ ai+2 ≡ · · · ≡ aj mod pi+1. So limj→+∞|aj − bj |p = 0, i.e. (ai)i ∼ (bi)i.

So we have a “canonical” representative for every a ∈ Qp with |a|p ≤ 1, let it be (an)n. Since
ai ∈ {0, 1, . . . , pi+1 − 1} we can write it using base p, i.e.,

ai = b0 + b1p+ b2p
2 + · · ·+ bip

i

where bi ∈ {0, 1, . . . , p− 1}. Property 2. of Theorem 1.24 tells us exactly that

ai+1 = b0 + b1p+ b2p
2 + · · ·+ bip

i + bi+1p
i+1

i.e. the first i + 1 digits (from b0 to bi) are the same, because |ai+1 − ai|p ≤ 1/pi+1. So we can
write, just as a notation,

a =
+∞∑
i=0

bip
i = b0 + b1p+ b2p

2 + . . .
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the so called p-adic expansion of a. It’s easy to see that |a|p = p−k where k is the minimum
integer such that bk 6= 0 (k = +∞ if a = 0). This notation makes sense only if |a|p ≤ 1 but it
can be used for every element of Qp with a little refinement: let a′ ∈ Qp with |a′|p = pm > 1

(m ∈ N×); then |pma′|p = |pm|p|a′|p = 1 so we can expand it like before

pma′ =
+∞∑
i=0

bip
i

and multiplying both sides by p−m we obtain

a′ = p−m
+∞∑
i=0

bip
i =

+∞∑
i=0

bip
i−m =

b0
pm

+
b1

pm−1
+ · · ·+ bm−1

p
+ bm + bm+1p+ . . .

which can be thought as a p-adic expansion with a finite number of decimal digits. So we have
a unique canonical way to write every element of Qp, which is way more practical than the
abstract description. For example it is now easy to actually perform arithmetic operations: sum,
difference, multiplication and division can be done applying the exact same algorithm that we
use to perform them between integers, except that now we have to proceed with infinite digits
(and actions like “carrying” or “borrowing” work from left to right).

Definition 1.25. Given a, b ∈ Qp and n ∈ N× we say that a ≡ b mod pn if |a− b|p ≤ 1/pn.

It’s easy to check that if a, b ∈ Z this definition is exactly the old-fashioned congruence.

Definition 1.26. Zp :=
{
x ∈ Qp

∣∣∣ |x|p ≤ 1
}

is called the set of p-adic integers.

It’s easy to verify that Zp is a subring of Qp (immediate from properties of | |p). Its invertible
elements are exactly

Z×p =

{
x ∈ Zp

∣∣∣∣ 1

x
∈ Zp

}
= { x ∈ Zp | x 6≡ 0 mod p } =

{
x ∈ Zp

∣∣∣ |x|p = 1
}
.

We can now justify our initial notations, which is actually a “real” equality and not just a way
to write things, thanks to the following lemma.

Lemma 1.27. Let (ci)i ⊆ Qp such that limi→+∞ ci = 0. Then the series

+∞∑
i=0

ci

converges in Qp.

Proof. We need to show that the sequence of partial sums converge, i.e. (Sn)n ⊆ Qp has limit,
where Sn := c0 + c1 + · · · + cn. Since Qp is complete it’s sufficient to prove (Sn)n is Cauchy.
Fixed ε > 0 ∃N ∈ N such that i > N =⇒ |ci|p < ε; so if n,m > N we have

|Sn − Sm|p = |cn+1 + · · ·+ cm|p ≤ max
{
|cn+1|p, . . . , |cm|p

}
< ε

so (Sn)n is Cauchy.

We can use this lemma with ci = bip
i−m, for m ∈ N and bi ∈ {0, 1, . . . , pi − 1}, because

|ci|p = |bi|p
∣∣pi−m∣∣

p
≤ 1 · pm−i → 0 as i→ +∞. We conclude that every p-adic expansion

+∞∑
i=0

bip
i−m
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actually converges to some element in Qp (and, clearly, our notation is coherent). This lemma
is also a much cleaner results on series: they converge if and only if the general term approaches
zero, unlike in (R, | |∞) where there are divergent series like 1 + 1

2 + 1
3 + · · · =

∑+∞
n=1 1/n. There

is a very nice result about p-adic expansions: while the writing of rational numbers using base
10 is not unique (0.99999 . . . = 1), in Qp p-adic expansions are unique, i.e. if two expansions
have different digits they converge to totally different numbers.

Lemma 1.28. Given a = pk
∑+∞

i=0 aip
i ∈ Qp, its p-adic expansion is periodic, i.e. ∃r,N ∈ N

such that ai = ai+r for every i > N , if and only if a ∈ Q.

Proof. To see that every periodic p-adic number is rational we can write

a =

+∞∑
i=−k

aip
i = (a−kp

−k + · · ·+ am−1p
m−1) + pm

+∞∑
i=0

(b0 + b1p+ · · ·+ bn−1p
n−1)pin

with the obvious meaning: Q 3 q := a−kp
−k+· · ·+am−1p

m−1 is the anti-period and (b0, . . . , bn−1)
is the period. It is an easy calculation to verify that if α ∈ N×

+∞∑
i=0

piα =
1

1− pα
.

Using this identity we get

a = q + (b0 + b1p+ · · ·+ bn−1p
n−1) · pm ·

+∞∑
i=0

pin = q + (b0 + b1p+ · · ·+ bn−1p
n−1) · pm

1− pn

which is clearly in Q.
To prove that every q ∈ Q has a periodic p-adic expansion we’ll need a little more work. First
of all let’s note that if a ∈ Qp admits a periodic representation also −a admits one: given

a =
+∞∑
i=−k

aip
i = (a−kp

−k + · · ·+ am−1p
m−1) + pm

+∞∑
i=0

(b0 + b1p+ · · ·+ bn−1p
n−1)pin

we have

−a = (p− a−k)p−k + (p− 1− a−k+1)p−k+1 + · · ·+ (p− 1− am−1)pm−1+

+pm
+∞∑
i=0

[
(p− 1− b0) + (p− 1− b1)p+ · · ·+ (p− 1− bn−1)pn−1

]
pin

i.e. the period is (p− 1− b0, p− 1− b1, . . . , p− 1− bn) (the relation above is true if a admits a
non zero anti-period, but it’s almost the same if it does not).
Now let Q 3 a/b = pk · (t/s) with p - ts. We’ll show that t/s admits a periodic expansion (then
we can conclude immediately). Since p is prime p - ts =⇒ p - s so p and s are coprime and,
thanks to Euler’s theorem, 1−pϕ(s) = αs with α ∈ Z≤0 (where ϕ is the Euler’s totient function).
So we have

t

s
=

αt

1− pϕ(s)
= αt ·

(
1

1− pϕ(s)

)
.

Now it’s sufficient to prove that |αt|/(1−pϕ(s)) is periodic (because sign doesn’t matter). As said
before we know that (1− pϕ(s))−1 =

∑+∞
i=0 p

ϕ(s)i and that |αt| ∈ N has a finite p-adic expansion
(i.e. definitively zero). It’s easy to see that also their product is periodic.

Using this characterization of Q in Qp we can give another proof (a posteriori) of the non-
completeness of (Q, | |p). Obviously, this proof is much easier than the proof of Proposition 1.17,
because it already uses the structure of Qp.
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Proposition 1.29. (Q, | |p) is not complete.

Proof. Using the density of Q in Qp, proved in Proposition 1.22, we just need to find some element
e ∈ Qp \ Q, because then we’ll have a Cauchy sequence in (Q, | |p) which doesn’t converge to
any rational. Thanks to Lemma 1.28 we know that every element of Q corresponds to a periodic
expansion in Qp and vice-versa, so e can be every infinite p-adic expansion which is not periodic,
like for example

e = 1 + p2 + p4 + p8 + · · · =
+∞∑
i=0

p2i .



2 Algebraic Approach

In this chapter we present some different approaches to the construction of Zp and Qp, definitely
with a more algebraic flavour.

2.1 Definition and algebraic properties of Zp

Definition 2.1. A p-adic integer is a formal series
∑

i≥0 aip
i with integral coefficients 0 ≤ ai ≤

p− 1.

The set Zp contains all the so called p-adic integers and is easily identified with∏
i≥0

{0, 1, . . . , p− 1} = {0, 1, . . . , p− 1}N

which is clearly not countable. We have a natural embedding N ↪→ Zp just writing every number
in base p.
We can define addition between two p-adic integer in a component-wise way with a carry system:
given a, b ∈ Zp the first component of the sum is a0 +b0 if it’s less than p, or a0 +b0−p otherwise
and, in this case, we add a carry to the component of p and so on. Here’s a quick example:

1 = 1 · p0 + 0 · p1 + 0 · p2 + . . .

x = (p− 1) · p0 + (p− 1) · p1 + (p− 1) · p2 + · · · =
∑
i≥0

(p− 1)pi

1 + x = 0 · p0 + 0 · p1 + 0 · p2 + · · · = 0

=⇒ −1 =
∑
i≥0

(p− 1)pi.

This sum admits inverse in Zp, given a =
∑

i≥0 aip
i we define b := σ(a) =

∑
i≥0(p−1−ai)pi ∈ Zp

so a+ b+ 1 = 0, i.e. −a = σ(a) + 1. So (Zp,+) is an abelian group (easy to verify) and with an
involution σ : Zp → Zp (σ2 = id).
We can also define a product on Zp, multiplying the two expansions in a Cauchy way (exactly
like the multiplication between polynomials) and using a system of carries to keep the digits in
{0, 1, . . . , p− 1}. This procedure is simply the classical multiplication of natural integers written
in base p, pursued indefinitely. For example

−1 = (p− 1)
∑
i≥0

pi , − (p− 1)
∑
i≥0

pi = 1 ,
∑
i≥0

pi =
1

1− p

which shows that 1− p ∈ Zp is invertible. Not every element of Zp admits inverse, for example
p is not invertible because

p ·
∑
i≥0

aip
i = a0p+ a1p

2 + · · · 6= 1 + 0p+ 0p2 + · · · = 1.

Then Zp equipped with these two operations is a commutative ring. We can now extend N ↪→ Zp
to Z ↪→ Zp, which is a ring injective homomorphism so we immediately deduct that char(Zp) = 0.
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Proposition 2.2. The ring Zp is an integral domain.

Proof. Given a =
∑

i≥0 aip
i 6= 0, b =

∑
i≥0 bip

i 6= 0 we have that ab =
∑

i≥0 cip
i 6= 0: infact if

av, bw are the first non zero coefficients of a and b then p - av, p - bw =⇒ p - avbw which means
that cv+w = avbw 6= 0.

Let us emphasize the importance of p being a prime number: in the last proposition we used
the fact that Z/pZ is a domain and this is obviously false if p isn’t a prime. If we choose to work
with n-adic integers, with n being a composite integer, then, since Z/nZ is not a domain, we
obtain that also Zn is not a domain, i.e. there are divisors of zero, so we can’t even talk about
the quotient field.

Example 2.3. Here’s an example with n = 10, using the definition of Zp given in Theorem 2.17:

u = (un)n ∈ lim
←−
Z/10nZ un := 25n mod 10n,

v = (vn)n ∈ lim
←−
Z/10nZ vn := 52n mod 10n.

It can be proved by induction that

un = 25n ≡ 25n−1
= un−1, vn = 52n ≡ 52n−1

= vn−1 mod 10n−1

so our definitions are coherent. Obviously u, v 6= 0 but it’s easily seen that u · v = 0: infact
un · vn ≡ 0 mod 10n (we recall that products in the projective limit are done component-wise).
More facts about 10-adic integers can be found at [5].

We can define ordp : Zp → N ∪ {∞} as follows

ordp a :=

{
+∞, if a = 0;
v, otherwise;

where v is the minimum integer such that av > 0. It’s easily seen that ordp behaves exactly like
a discrete valuation.
Called Fp = Z/pZ the field with p elements, the map a =

∑
i≥0 aip

i 7→ a0 mod p is a ring homo-
morphism ε : Zp → Fp, which is obviously surjective and with kernel pZp = { a ∈ Zp | a0 = 0 }.
Then Zp/pZp is isomorphic to Fp so pZp is a maximal ideal of Zp.

Proposition 2.4. The group of invertible elements in Zp is Z×p =
{∑

i≥0 aip
i ∈ Zp

∣∣∣ a0 6= 0
}
.

Proof. If a ∈ Zp is invertible also its reduction ε(a) ∈ Fp must be, so we obtain

Z×p ⊆

∑
i≥0

aip
i ∈ Zp

∣∣∣∣∣∣ a0 6= 0

 .

The other inclusion can be proved, but, for brevity, we’ll show it using an equivalent definition
of Zp.

Corollary 2.4.1. Every non-zero p-adic integer a ∈ Zp has a canonical representation a = pvu
where v = ordp a and u ∈ Z×p is a p-adic unit.

Proposition 2.5. The ring Zp is a principal ideal domain whose ideals are {0} and pkZp :=
{x ∈ Zp | ordp x ≥ k } for k ∈ N.

Proof. Let I 6= 0 be a nonzero ideal a Zp. Chosen 0 6= a ∈ I an element of minimal order, we
have a = pku with u ∈ Z×p so pk = a · u−1 ∈ I which implies pkZp = (pk) ⊆ I. Conversely if
b ∈ I then w = ordp b ≥ k so b = pwu′ = pkpw−ku′ ∈ pkZp, which proves I ⊆ pkZp.

Lastly, we note that Zp is a local ring, i.e. a commutative ring with a maximal ideal pZp.
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2.2 Topological properties of Zp
Now we are ready to add a topological structure to the ring of p-adic integers. Since we can
identify every element of Zp with the sequence of its coefficients (an)n∈N ∈ {0, 1, . . . , p−1}N =: Xp

it’s a natural choice to assign to Zp the product topology of Xp, where each factor is a discrete
set.
By Tychonoff theorem we immediately get that Zp is compact and it’s also easy to see that its
connected components are points, i.e. it’s totally disconnected. Since the discrete topology is
metrizable (using the trivial metric) also Zp is metrizable, being product of a countable number
of metric spaces. Given x = (an)n, y = (bn)n ∈ Xp ↔ Zp we can define their distance as

d(x, y) := sup
i≥0

δai,bi
pi

=
1

pordp (x−y)
.

This is exactly the metric induced by the p-adic absolute value | |p introduced above (and satisfies
all of its properties)!

Definition 2.6. A topological group is a group G equipped with a topology such that the map
(x, y) 7→ xy−1 is continuous. A topological ring is a ring A with a topology such that addition
(x, y) 7→ x+ y and multiplication (x, y) 7→ xy are continuous.

Proposition 2.7. Zp is a topological ring.

Proof. First of all we prove that (x, y) 7→ x− y is a continuous map, i.e. (Zp,+) is a topological
group. Using the p-adic metric, given a, b ∈ Zp we have

|x− a|p ≤ p
−n, |y − b|p ≤ p

−n

=⇒ |(x− y)− (a− b)|p ≤ max
{
|x− a|p, |y − b|p

}
≤ p−n

so the map is continuous at every point (a, b) ∈ Zp × Zp. Now we have to prove the continuity
of multiplication. Fixed a, b ∈ Zp if x = a+ h, y = b+ k ∈ Zp we have

|xy − ab|p = |(a+ h)(b+ k)− ab|p = |ak + hb+ hk|p ≤

≤ max
{
|a|p, |b|p

}
·
(
|h|p + |k|p

)
+ |h|p|k|p → 0, as |h|p, |k|p → 0,

proving the continuity of the multiplication at any point. These two conditions are equivalent to
the ones given in the definition of topological ring: infact the map (x, y) 7→ x+y can be obtained
by composing the map (x, y) 7→ (x,−y) (continuous thanks to product topology and continuity
of multiplication) and the map (x, y) 7→ x− y.

Definition 2.8. A completion of a topological metrizable group G is a pair (Ĝ, j) where Ĝ is a
Cauchy-complete group and j : G→ Ĝ is a homomorphism such that

• j(G) is dense in Ĝ;

• j is a homeomorphism G→ j(G);

• any continuous homomorphism f : G→ G′, where G′ is a complete group, can be uniquely
factorized as f = g ◦ j : G→ Ĝ→ G′ with a continuous homomorphism g : Ĝ→ G′.

It’s clear that if G admits a completion Ĝ then every other completion Ĝ′ is isomorphic to
Ĝ (from the definition we have a continuous bijective homomorphism g : Ĝ → Ĝ′). Our aim is
now to prove that Zp is a complete space and (Zp,+) is the completion of (Z,+) equipped with
the p-adic metric. We’ll now show (and prove) some general results on topological groups which
will help us.



2. Algebraic Approach 16

Lemma 2.9. Let G be a topological group. G is metrizable (i.e. there exists a metric which
induces the topology) if and only if G is Hausdorff and first countable (i.e. every point has a
countable fundamental system of neighbourhoods).

Proof. The =⇒ part is trivial. For the converse statement, check [1, Chap. XI].

A metrizable group G always admits a metric d invariant under left translations, i.e. d(x, y) =
d(gx, gy) for every g ∈ G. A metrizable group can always be completed.

Lemma 2.10. If G is a topological group and H is a subgroup of G then the closure H of H is
a subgroup of G.

Proof. Let ϕ : G × G → G be the continuous map (x, y) → xy−1. Since H ≤ G we have
ϕ(H ×H) ⊆ H hence

ϕ(H ×H) = ϕ(H ×H) ⊆ ϕ(H ×H) ⊆ H

which proves H ≤ G.

Proposition 2.11. Let G be a topological group and H ≤ G. If H contains a neighbourhood of
the neutral element of G then H is a clopen of G.

Proof. Let V be such neighbourhood; then ∀h ∈ H, hV is a neighbourhood of h in G which is
fully contained in H. This proves H is open in G. Since maps like x 7→ gx are homeomorphisms
for every g in G, we have that every coset gH of H in G is open. Now G\H =

⋃
g/∈H gH is open,

i.e. H is closed in G.

For example the subgroups pnZp of (Zp,+) are open and closed.

Definition 2.12. A subspace Y of a topological space X is locally closed (in X) when each
point y ∈ Y has an open neighbourhood V in X such that Y ∩ V is closed in V .

It can be proved that Y ⊆ X is locally closed if and only if Y is open in its closure Y .

Theorem 2.13. Let G be a topological group and H a locally closed subgroup. Then H is closed.

Proof. If H is locally closed then it’s open in its closure H. In particular, if e is the neutral
element of G then e ∈ H and ∃V ⊆ H, which is a neighbourhood of e in H. By Lemma 2.10,
H ≤ G so, applying Proposition 2.11 with H ≤ H, we get that H is closed in H, i.e. H = H,
which clearly implies H is closed in G.

If we consider only Hausdorff spaces we immediately get that locally compact subsets are
locally closed, because a compact set is closed in a Hausdorff space. We recall that a topological
group is locally compact exactly when one of its points has a fundamental system of compact
neighbourhoods (then by translation every point admits one).

Corollary 2.13.1. Let H be a locally compact subgroup of a Hausdorff topological group G. Then
H is closed.

Let G be a topological metrizable group which has Ĝ as its completion. If G is locally
compact then it must be closed in its completion (we identify G with its image in Ĝ). But since
G is dense in Ĝ we get Ĝ = G.

Corollary 2.13.2. A locally compact metrizable group is complete.

Now we can prove the following

Proposition 2.14. Zp is a compact, complete metrizable space. More precisely, the topological
group Zp is the completion of Z, equipped with the p-adic metric.
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Proof. We have already proved that Zp is compact and metrizable. To see that it’s complete we
can just apply Corollary 2.13.2, because Zp is locally compact (from general topology we know
that Hausdorff and compact implies that every point has a fundamental system of compact
neighbourhoods).
Let’s consider j : Z ↪→ Zp the natural embedding: it is a continuous homomorphism (Z with the
p-adic metric has the topology induced by Zp) and j(Z) is dense in Zp. Given Zp 3 x =

∑
i≥0 aip

i

if

xn :=
∑

0≤i<n
aip

i ∈ N

then (xn)n ⊆ Z is a Cauchy sequence converging to x. To verify the universal property, given a
continuous homomorphism f : Z→ X, where X is a complete group, we can define f̃ : Zp → X
as follows: given x ∈ Zp and (xn)n ⊆ Z a sequence convergent to x then

f̃(x) := lim
n→+∞

f(xn)

where the limit is taken in X. This is well defined: if (yn)n ⊆ Z is another sequence convergent
to x we have that |xn − yn|p → 0 as n→ +∞ so

lim
n→+∞

(f(xn)− f(yn)) = lim
n→+∞

f(xn − yn) = f

(
lim

n→+∞
(xn − yn)

)
= f(0) = 0

where we exploited the fact that f is continuous and a homomorphism. The fact that f̃ is a
continuous homomorphism is easy to prove.

Corollary 2.14.1. The addition and multiplication of p-adic integers are the only continuous
operations on Zp extending the classic addition and multiplication on Z.

2.3 Zp as a projective limit

We now want to give another definition of Zp, using projective limits.

Definition 2.15. A sequence (En, ϕn)n∈N of sets and maps ϕn : En+1 → En is called a projective
system.
A set E together with maps ψn : E → En such that ψn = ϕn ◦ψn+1 ∀n ∈ N is called a projective
limit of the sequence (En, ϕn)n if the following holds: for each set X and maps fn : X → En
satisfying fn = ϕn ◦ fn+1 ∀n ∈ N there is a unique f : X → E such that fn = ψn ◦ f for every
n ∈ N (universal factorization property).

The maps ϕn : En+1 → En are called transition maps and the whole system, which is often
called inverse system, can be represented by

E0
ϕ0←− E1

ϕ1←− E2
ϕ2←− . . . ϕn←−− En+1 ←− . . .

and denoting E as lim
←−

En, the complete scheme would look like this:

lim
←−

En

. . . En En+1 . . .

X

ψn

ψn+1

ϕn

fn

fn+1

f
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Theorem 2.16. For every projective system (En, ϕn)n∈N there exists a projective limit E =
lim
←−

En ⊂
∏
nEn with maps ψn : E → En given by (restriction of) projections.

Moreover, given (E′, ψ′n) another projective limit of the system, there’s a unique bijection f : E′ →
E such that ψ′n = ψn ◦ f .

Proof. First we prove existence. Let

E := {(xn)n : ϕn(xn+1) = xn ∀n ≥ 0} ⊂
∏
n≥0

En

be the set of coherent sequences (with respect to the transition maps ϕn). If pn :
∏
i≥0Ei → En

is the canonical projection then we have

ϕn(pn+1(x)) = pn(x) ∀x ∈ E.

So, if we define ψn := pn|E : E → En we have ϕn ◦ ψn+1 = ψn. We’ll now show that (E,ψn)
is a projective limit of the system. If (E′, ψ′n) is another set equipped with maps satisfying
ϕn ◦ ψ′n+1 = ψ′n (for every n ≥ 0) then we need to prove that there’s a unique factorization of
ψ′n by ψn. We can define a vector map

(ψ′n) : E′ →
∏
n≥0

En, y 7→ (ψ′n(y))n.

Since ϕn(ψ′n+1(y)) = ψ′n(y), the image of this map is fully contained in E (i.e. (ψ′n(y))n is a
coherent sequence). Thus there’s a unique map f : E′ → E such that ψ′n = ψn ◦ f , and it’s
exactly the map (ψ′n) considered with E as target (uniqueness is easy to see, recalling that ψn is
just the restrictions to E of the canonical projection pn).
Now we have to prove uniqueness. If (E,ψn) and (E′, ψ′n) are both projective limits then, by
the universal factorization property, there’s a unique map f ′ : E → E′ with ψn = ψ′n ◦ f ′. Using
the same f : E′ → E defined before and substituting in ψ′n = ψn ◦ f we obtain

ψ′n = ψn ◦ f = ψ′n ◦ f ′ ◦ f

which means that f ′ ◦ f is a factorization of idE′ (identity map). Since (E′, ψ′n) has also, by
definition of projective limit, the unique factorization property we must have f ′ ◦ f = idE′ .
Similarly we can prove f ◦ f ′ = idE , so f is the searched bijection.

The projective limit can be defined for a lot of structures, like topological spaces, groups or
vector spaces. For example, given (Gn, ϕn)n a projective system of groups and homomorphisms
ϕn : Gn+1 → Gn, the projective limit G = lim

←−
Gn is a group and the projections ψn : G → Gn

are group homomorphisms. Likewise, a projective system of topological spaces and continuous
maps will have a projective limit which is itself a topological space, equipped with continuous
projections.

We can now give another definition of Zp. Let’s consider the ring Z and the decreasing
sequence (pnZ)n of ideals. The inclusion pn+1Z ⊂ pnZ gives us the canonical transition homo-
morphism

ϕn : Z/pn+1Z→ Z/pnZ, x+ pn+1Z 7→ x+ pnZ.

If we consider Z/pnZ as a topological ring (equipped with discrete topology) then we have the
following theorem.

Theorem 2.17. The map Φ: Zp → lim
←−
Z/pnZ which associates to the p-adic integer x =∑

i≥0 aip
i the sequence of its partial sums xn =

∑
i<n aip

i mod pn is an isomorphism of topo-
logical rings.
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Proof. The map is well defined. In-fact, since the transition maps ϕn are given by∑
i≤n

aip
i mod pn+1 7→

∑
i<n

aip
i mod pn

the set of coherent sequences in
∏
Z/pnZ is exactly the set of partial sums of a p-adic expansion.

From the relations

x1 = a0, x2 = a0 + a1p, x3 = a0 + a1p+ a2p
2, . . .

a0 = x1, a1 =
x2 − x1

p
, a2 =

x3 − x2

p2
, . . .

we infer that Φ is bijective. It’s easily proved that it is a ring homomorphism (sum and prod-
uct are done component-wise on lim

←−
Z/pnZ), so Φ is a ring isomorphism. Finally, this map is

continuous since for every n ∈ N, if π :
∏
i Z/piZ→ Z/pnZ is the canonical projection, we have

Zp
Φ−→ lim
←−
Z/pkZ ↪−→

∏
k

Z/pkZ π−→ Z/pnZ,
∑
i≥0

aip
i 7→

∑
i<n

aip
i mod pn

which is continuous (we recall how product topology is defined). Now Φ is a continuous invertible
map between two compact spaces so it’s a homeomorphism.

So we can also think Zp as the projective limit of Z/pnZ, with canonical projection maps.
Let us observe that we can choose any system of representatives S for Z/pZ and write any
p-adic integer as x =

∑
sip

i with si ∈ S. For example, if p is odd we can choose to use
S = {−p−1

2 , . . . , 0, . . . , p−1
2 }. Although we are only working with Zp, where p is a prime number,

this theorem also gives us a factorization of Zn, for each n ∈ N. In-fact, since the projective limit
of a cartesian product is exactly the cartesian product of the projective limits of the factors, if
m = pα1

1 · · · pαrr we have

Z/mnZ = Z/pα1·n
1 Z× · · · × Z/pαr·nr Z

=⇒ Zm = lim
←−

(Z/pα1·n
1 Z× · · · × Z/pαr·nr Z) =

r∏
i=1

lim
←−
Z/pαi·ni Z =

r∏
i=1

Zpαii .

In particular, for the already seen example m = 10, we obtain Z10 = Z2 × Z5.
Lastly, we can give another description of Zp using formal power series ZJXK. We recall that

on ZJXK sum is defined component-wise (obviously here there’s no carry system, unlike in Zp)
and product is done in a Cauchy way (there’s a natural inclusion Z[X] ↪−→ ZJXK).

Theorem 2.18. The map

Φ: ZJXK→ Zp
∑

aiX
i 7→

∑
aip

i

is a ring homomorphism, which defines a canonical isomorphism

ZJXK
(X − p)

∼−→ Zp

where (X − p) is the principal ideal of ZJXK generated by X − p.

Proof. To prove this theorem we exploit the universal factorization property of lim
←−
Z/pnZ, i.e.

Zp. Let’s consider this sequence of maps

Φn : ZJXK→ Z/pnZ,
∑

aiX
i 7→

∑
i<n

aip
i mod pn.
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They’re actually ring homomorphisms; the condition Φn(x+ y) = Φn(x) + Φn(y) is immediate,
to check Φn(x · y) = Φn(x) · Φn(y) we write

Φn

∑
i

aiX
i ·
∑
j

bjX
j

 = Φn

(∑
k

ckX
k

)
=
∑
k<n

ckp
k mod pn =

=
∑
k<2n

ckp
k mod pn =

(∑
i<n

aip
i

)
·

∑
j<n

bjp
j

 mod pn =

= Φn

(∑
i

aiX
i

)
· Φn

∑
j

bjX
j

 .

It’s immediate that these maps are all compatible with the transition homomorphisms

ϕn : Z/pn+1Z→ Z/pnZ, x+ pn+1Z 7→ x+ pnZ

and so we infer there exists a unique homomorphism

Φ: ZJXK→ lim
←−
Z/pnZ = Zp

compatible with the Φn (i.e. such that ψn ◦ Φ = Φn, where ψn : lim
←−
Z/pkZ → Z/pnZ is the

canonical projection). This map is surjective: if x =
∑
aip

i is a p-adic integer then Φ
(∑

aiX
i
)

=
x. Thanks to the first theorem of isomorphism for ring homomorphisms now we just need to
prove ker Φ = (X − p) (then we’ll have ZJXK/ ker Φ = ZJXK/(X − p) ' Im Φ = Zp). In other
words we need to show that if the formal power series

∑
i≥0 aiX

i is such that
∑

i<n aip
i ∈ pnZ

for every n ≥ 1, then it is divisible by X − p. For n = 1 the condition is a0 ≡ 0 mod p so we
find α0 ∈ Z such that a0 = pα0. For n = 2 we get

a0 + a1p = α0p+ a1p ≡ 0 mod p2 =⇒ α0 + a1 ≡ 0 mod p

so we find α1 ∈ Z such that α0 + a1 = pα1 so a1 = pα1 − α0. For a general n ≥ 1 the condition
is

a0 + a1p+ · · ·+ anp
n = pnαn−1 + anp

n ≡ 0 mod pn+1

and it furnishes an integer αn such that αn−1 + an = pαn, which can be written as an =
pαn − αn−1. These relations between the coefficients an and αn are exactly the ones expressed
by ∑

aiX
i = −(X − p) ·

∑
αiX

i

which concludes our proof.

2.4 The field Qp

We have proved that Zp is an integral domain hence we can define the field

Qp = Frac(Zp).

To understand its structure, we recall that any p-adic integer can be written as x = pmu where
u ∈ Z×p . Then, 1/x = p−mu−1, with u−1 ∈ Zp. So we can write

Qp = Zp[1/p] =
⋃
m≥0

p−mZp.
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Since a non-zero element of Qp admits a unique such writing, Q×p =
∐
m∈Z p

mZ×p . Similarly
to Laurent expansions of meromorphic functions around a pole, we can write every non-zero
element of Qp as

x = pm ·
∑
i≥0

aip
i =

∑
i≥m

ai−mp
i, m ∈ Z, a0 6= 0.

We can extend the function ordp to Qp as follows:

ordp x =

{
m, if x = pmu, u ∈ Z×p ;
+∞, otherwise;

.

Given x = a/b with a ∈ Zp, b ∈ Z×p it’s easy to see that ordp x = ordp a − ordp b and, writing
every number as above, we immediately get ordp xy = ordp x + ordp y (this holds also when
xy = 0, with the usual convention m +∞ = ∞ + m = ∞), i.e. ordp : Q×p → Z is a group
homomorphism. Finally we see that ordp (x+y) ≥ min{ordp x, ordp y}, with the equality holding
when ordp x 6= ordp y. These properties tell us exactly that ordp is a discrete valuation on the
field Qp, and that Zp is the ring of valuation of (Qp, ordp ) because x ∈ Zp if and only if ordp x ≥ 0
and ordp 1/x = −ordp x.

We recall that
Z(p) =

{ a
b

∣∣∣ a, b ∈ Z, p - b, b 6= 0
}
.

The relations between Zp and Qp are similar to the ones between Z(p) and Q. In-fact we have

Q =
⋃
m≥0

p−mZ(p), Q× =
∐
p∈Z

pmZ×(p)

where Z×(p) consists of all the fractions with both numerator and denominator prime to p.
We can see that the definition of Qp introduced here represents exactly the same object

described in chapter 1. So we can introduce the p-adic absolute value, and its induced metric,
in the exact same way and all properties proved before will be valid. So Qp is a metric field
equipped with a discrete valuation, which implies that Qp is a topological field (i.e. a topological
ring where the inverse map Q×p → Q×p : x 7→ x−1 is continuous).

Proposition 2.19. The field Qp is a locally compact field of characteristic 0 which induces on
Zp the p-adic topology. It can be identified with the completion of Zp[1/p] or of Q, for the p-adic
metric.

Proof. We have already observed that Zp = B≤1(0) = {x ∈ Qp | |x|p ≤ 1} and, for every k ≥ 0

the ideal pkZp is exactly B≤p−k(0). Since Zp is a compact neighbourhood of 0, the topological
field Qp is locally compact (x+Zp is a compact neighbourhood of x). From Corollary 2.13.2 we
obtain that Qp is complete. We now show that Z[1/p] is dense in Qp; given

x =
+∞∑
i≥v

xip
i (v = ordp x ∈ Z)

we immediately find that the sequence of truncated sums xn =
∑

v≤i<n xip
i is a Cauchy se-

quence in Z[1/p] ⊂ Q which converges to x. Finally, we have already seen that Qp is a field of
characteristic 0, since we have an immersion Z ↪→ Qp.

Here we have proved that Qp is a complete field, a fact we already knew, in a very different
way than before, by just using algebraic properties of topological groups.
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Given a non-zero element Qp 3 x =
∑

i≥m xip
i we can define

[x] :=
∑
i≥0

xip
i ∈ Zp : integral part of x ;

〈x〉 :=
∑
i<0

xip
i ∈ Z[1/p] = {apv | a, v ∈ Z} ⊂ Q : fractional part of x.

Hence we obtain the decomposition Qp = Zp+Z[1/p], which is not canonical, because it depends
on the choice of the representatives of Z/pZ chosen for digits (here we have always chosen to
use S = {0, 1, . . . , p− 1}). This sum is not a direct sum since Zp ∩ Z[1/p] = Z, so there’s not a
unique factorization of any x ∈ Qp. If we consider the map Z → Zp ⊕ Z[1/p] : m 7→ (m,−m)
and the addition homomorphism Zp ⊕Z[1/p]→ Zp +Z[1/p] = Qp : (a, b) 7→ a+ b we obtain the
short exact sequence:

Z ↪→ Zp ⊕ Z[1/p] � Qp

where the image of the first map is exactly the kernel of the second one.

2.5 Hensel’s Lemma

In this section we present the important Hensel’s lemma, a principle which gives us a method to
find roots of polynomials in Zp[X].

Proposition 2.20. Let P (X) ∈ Zp[X]. The following properties are equivalent:

(i) P = 0 admits a solution in Zp;

(ii) for each n ≥ 0, P = 0 admits a solution in Z/pnZ.

Proof. The part (i) =⇒ (ii) is trivial: if x =
∑

i≥0 aip
i ∈ Zp is a root of P then xn =

∑
i<n aip

i

is in Z/pnZ and P (xn) = P (x) mod pn.
To prove the converse, let’s consider the non-empty finite sets

Xn = {x ∈ Z/pnZ | P (x) = 0 mod pn}.

It’s immediate that if x ∈ Xn+1 then x̃ = x mod pn is in Xn, because P (x̃) = P (x) mod pn.
So reduction mod pn furnishes a map ϕn : Xn+1 → Xn. We can consider the projective system
(Xn, ϕn)n∈N: it admits a projective limit X = lim

←−
Xn ⊂ Zp. It’s now clear that if x ∈ X then

P (x) = 0 in Zp. Since the projective limit of non-empty sets is not empty (it immediately follows
from the fact that projective limit of non-empty compact space is non-empty, [6, p. 30]), we can
conclude.

We recall the elementary fact that if A is a commutative ring and P ∈ A[X] then

P (X + h) = P (X) + h · P ′(X) + h2 ·Q(X,h)

where Q is a polynomial in A[X,Y ] (we’ll refer to this as the Taylor expansion of P , for obvious
reasons). We’re now ready to prove this proposition. For brevity, we’ll write v(ζ) := ordp ζ, for
ζ ∈ Qp.

Proposition 2.21. Let P ∈ Zp[X] and x ∈ Zp be such that P (x) ≡ 0 mod pn. If k = v(P ′(x)) <
n/2, then x̂ := x− P (x)/P ′(x) satisfies

(i) P (x̂) ≡ 0 mod pn+1;

(ii) x̂ ≡ x mod pn−k;
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(iii) v(P ′(x̂)) = v(P ′(x)).

Proof. Let’s write P (x) = pny for y ∈ Zp and P ′(x) = pku with u ∈ Z×p . Then

x̂− x = − P (x)

P ′(x)
= −pn−kyu−1 ∈ pn−kZp

which proves (ii). To prove (i) we observe

P (x̂) = P (x+ (x̂− x)) = P (x)− P (x)

P ′(x)
P ′(x) + (x̂− x)2 · t

where t ∈ Zp. Then
P (x̂) = p2(n−k)y2u−2t2 ∈ pn+1Zp ⊆ p2(n−k)Zp

since n − k > n/2. Now it only remains to compute the order of P ′(x̂). Let’s use Taylor
expansion:

P ′(x̂) = P ′(x) + (x̂− x) · s = pku+ pn−kzs = pk(u+ pn−2kzs) = pkw (z, s ∈ Zp).

Since n− 2k > 0 and u is a unit of Zp, we get

w = u+ pn−2kzs ∈ u+ pn−2kZp ⊂ Z×p
which proves v(P ′(x̂)) = k.

We can finally prove the Hensel’s Lemma.

Theorem 2.22 (Hensel’s Lemma). Let P be a polynomial in Zp[X] and x ∈ Zp such that
P (x) ≡ 0 mod pn. If k = v(P ′(x)) < n/2 then there exists a unique root ξ of P in Zp such that
ξ ≡ x mod pn−k and v(P ′(ξ)) = v(P ′(x)).

Proof. Let’s first prove the existence of such ξ. Let x0 = x; we want to find x1 ∈ Zp such that

x1 ≡ x0 mod pn−k, P (x1) ≡ 0 mod pn+1, v(P ′(x1)) = k.

By Proposition 2.21 we can build such an x1, which represents an “improved” root of P . Similarly,
we can find x2 ∈ Zp such that

x2 ≡ x1 mod pn−k+1, P (x2) ≡ 0 mod pn+2, v(P ′(x2)) = k.

Iterating this process we get a coherent sequence (xm)m∈N ⊂ Zp: more specifically, letting
h = n− k, we obtain

xm ≡
h+m∑
i=0

aip
i mod ph+m+1, P (xm) ≡ 0 mod pn+m

xm+1 ≡
h+m∑
i=0

aip
i + ah+m+1p

h+m+1 mod ph+m+2, P (xm+1) ≡ 0 mod pn+m+1

so it’s clear that this sequence has p-adic limit ξ =
∑

i≥0 aip
i satisfying P (ξ) = 0 in Zp, ξ ≡ x

mod pn−k and v(P ′(ξ)) = k.
Now we prove uniqueness. Let ξ and η be two roots of P in Zp satisfying the above constraints.
Then

0 = P (η) = P (ξ) + (η − ξ)P ′(ξ) + (η − ξ)2a (a ∈ Zp)
so, since η − ξ ∈ pn−k+1Zp, we have

0 = (η − ξ)(P ′(ξ) + (η − ξ)a).

Clearly, since v(P ′(ξ)) = k and v((η − ξ)a) ≥ n − k + 1 > k, the term (P ′(ξ) + (η − ξ)a) can’t
vanish so we must have η = ξ.
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The Hensel’s Lemma is a very important tool in p-adic analysis, so we’ll write again a weak
version of it.

Corollary 2.22.1 (Weak Hensel’s Lemma). Let P a polynomial in Zp[X] and a0 ∈ Zp such that
P (a0) ≡ 0 mod p and P ′(a0) 6≡ 0 mod p. Then there is a unique a ∈ Zp such that P (a) = 0
and a ≡ a0 mod p.



3 Construction of Cp

3.1 Ultrametric spaces

In this section we’ll explore some useful properties of ultrametric spaces.

Definition 3.1. An ultrametric space is a metric space (X, d) where

d(x, y) ≤ max {d(x, z), d(z, y)}

for every x, y, z ∈ X.

In these section, to avoid confusion, we’ll use different names for open and closed balls:

• B<r(a) is a stripped ball ;

• B≤r(a) is a dressed ball.

Proposition 3.2. Let (X, d) be an ultrametric space. The following properties hold:

(i) any point of a ball is a center;

(ii) ff two balls have a common point, one is contained in the other;

(iii) the diameter of a ball is less or equal than its radius.

Proof. (i) If b ∈ B<r(a) then d(a, b) < r and we have

x ∈ B<r(a) =⇒ d(x, a) < r =⇒ d(x, b) ≤ max{d(x, a), d(a, b)} < r

=⇒ x ∈ B<r(b)

which implies B<r(a) ⊆ B<r(b). Exchanging the roles of a and b we obtain B<r(a) = B<r(b).
The result for dressed balls is identical.

(ii) If c = B<r(a) ∩ B≤r′(b) then we have B<r(a) = B<r(c) and B≤r′(b) = B≤r′(c), by (i).
Now the result is obvious.

(iii) Direct application of the ultrametric inequality.

Let Sr(a) := {x ∈ X | d(x, a) = r} be the sphere of radius r centered in a.

Proposition 3.3. Let (X, d) be an ultrametric space. The following properties hold:

(i) if d(x, z) > d(z, y) then d(x, y) = d(x, z);

(ii) if x ∈ Sr(a) then B<r(x) ⊂ Sr(a) and Sr(a) =
⋃
x∈Sr(a)B<r(x).

Proof. (i) We have

d(x, y) ≤ max{d(x, z), d(z, y)} = d(x, z)

d(x, z) ≤ max{d(x, y), d(y, z)} ≤ d(x, z)
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so max{d(x, y), d(y, z)} = d(x, z) which implies d(x, y) = d(x, z). This property is well known
as the isosceles triangle principle, i.e. every triangle of an ultrametric space is isosceles, with at
most one short side.

(ii) We need to prove that y ∈ B<r(x) =⇒ d(a, y) = r. By (i), since d(x, y) < d(a, x) = r,
we must have d(y, a) = d(a, x) = r. The second part of the statement is obvious.

We can give a slightly more general version of the isosceles triangle principle. Let x1, . . . , xn ∈
X, xn+1 := x1 and assume d(x1, xn) = max1≤i≤n d(xi, xi+1). Applying the ultrametric inequality
(with a rapid induction) we obtain

d(x1, xn) ≤ max {d(x1, x2), . . . , d(xn−1, xn)} = d(x1, xn)

so there exists i ∈ {1, . . . , n− 1} such that d(xi, xi+1) = d(x1, xn). We have proved that given a
cycle of length n there are always at least two pairs of elements with equal maximal distance.

With the next lemma we’ll understand why it is a better choice to use a different nomenclature
for balls.

Proposition 3.4. Let (X, d) be an ultrametric space. The following properties hold:

(i) the spheres Sr(a) are clopen for every a ∈ X, r > 0;

(ii) the dressed balls are open (and closed);

(iii) the stripped balls are closed (and open);

(iv) if B and B′ are disjoint balls then d(B,B′) = d(x, x′) for every x ∈ B, x′ ∈ B′.

Proof. (i) Since the function x 7→ d(x, a) is continuous, Sr(a) is closed. By Proposition 3.3 Sr(a)
is also open (union of stripped balls, which are trivially open).

(ii) If r > 0 we have B≤r(a) = B<r(a) t Sr(a) so B≤r(a) is open.
(iii) If r > 0 we have B<r(a) = B≤r(a) \ Sr(a) so B<r(a) is closed (intersection of closed

sets).
(iv) Given x, y ∈ B and x′, y′ ∈ B′ we can consider the 4-cycle x, x′, y′, y: there must be two

pairs with equal maximal distance. Since B ∩ B′ = ∅, such distance is c := d(x, x′) = d(y, y′)
and d(B,B′) = infa∈B,b∈B′ d(a, b) = c.

Lemma 3.5. Let (X, d) be an ultrametric space. The following properties hold:

(i) (xn)n∈N ⊆ X is Cauchy if (and only if) d(xn, xn+1)→ 0 as n→ +∞;

(ii) if xn → x 6= a then ∃N ∈ N such that d(xn, a) = d(x, a) for every n ≥ N .

Proof. (i) Fixed ε > 0 if d(xn, xn+1) < ε for n ≥ N then

d(xn, xn+m) ≤ max
0≤i<m

d(xn+i, xn+i+1) < ε

for all n ≥ N and m ≥ 0.
(ii) As soon as d(xn, x) < d(x, a) we have, by the isosceles triangle principle, d(xn, a) =

d(x, a).

There are some more interesting properties if the space is an abelian (additive) group G
equipped with an ultrametric norm, i.e. a function | | : G→ R≥0 satisfying:

• |x| > 0 ⇐⇒ x 6= 0;

• |−x| = |x|;

• |x+ y| ≤ max{|x|, |y|}.
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These groups are called abelian ultrametric groups. Here we can consider finite sums and series
and we will see that there are simpler conditions for them to converge than in classic analysis.

Proposition 3.6. Let G be an abelian ultrametric group. If a1 + a2 + · · ·+ an = 0 then ∃i 6= j
such that |ai| = |aj | = max1≤h≤n|ah|. This property is called competitivity.

Proof. It’s just the group version of the generalized isosceles triangle principle.

Proposition 3.7. Let (an)n∈N a sequence in a complete ultrametric abelian group G. The series∑
n≥0 an converges if and only if limn→+∞ an = 0.
If
∑

n≥0 an converges and s is its sum then

(i) for any bijection σ : N→ N we have s =
∑

n≥0 aσ(n),

(ii) for any partition N =
∐
j Ij we have s =

∑
j

(∑
i∈Ij ai

)
.

Proof. For the first part the only if is trivial. To prove the converse let sn =
∑

0≤i<n ai. Since
G is complete we just need to show (sn)n∈N is Cauchy:

|sn+m − sn| = |an + · · ·+ an+m−1| ≤ max {|an|, . . . , |an+m−1|} → 0

as n,m→ +∞.
The proof of the second part is not so interesting and can be found at [6, p. 75].

This last result is much cleaner than the corresponding one in classical analysis: in an ultra-
metric group if a series converge we are free to exchange and group its terms without changing
the sum, unlike in classical analysis, where there is distinction between absolutely convergent
and conditionally convergent series. Anyway, in both contexts, grouping terms of a divergent
series can produce a convergent one.

From now on we’ll mainly work with ultrametric fields, fields equipped with an ultrametric
norm. Some of these results will be generalizations of facts proved in Chapter 2 with regards to
Zp and Qp.

Lemma 3.8. All balls containing 0 in an ultrametric field K are additive subgroups. The dressed
ball B≤1(0) is a subring of K and the balls B≤r(0) and B<r(0) (with r < 1) are ideals of B≤1(0).

Proof. All these verifications are trivial using the ultrametric inequality.

Let K be an ultrametric field and let

A :=B≤1(0) = {x ∈ K | |x| ≤ 1},
M :=B<1(0) = {x ∈ K | |x| < 1}.

Proposition 3.9. A is a maximal subring of K and M is the unique maximal ideal of A.

Proof. If A′ is a subring of K such that A ( A′, there exists y ∈ A′ with |y| = r > 1, so yn ∈ A′
for every n ∈ N. Hence B≤rn(0) = ynA ⊂ A′ ∀n ∈ N which implies K =

⋃
n≥1 y

nA = A′ since
rn = |y|n → +∞. So A is a maximal subring of K. To see why M is the unique maximal ideal
of A we observe that A = A× tM , so every ideal which strictly contains M is the whole ring A,
because it must contain a unit.

We note that A is a local ring (by the previous proposition) and a valuation ring of K, since
x ∈ A ∨ 1/x ∈ A for every x ∈ K×. An example we have already studied is K = Qp, A = Zp
and M = pZp.

Definition 3.10. Let K be an ultrametric field, A = B≤1(0), M = B<1(0). The quotient
k := A/M is the residue field of K.
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Finally we are ready to prove the representation theorem.

Theorem 3.11. Let K be a complete ultrametric field, A its maximal subring defined by |x| ≤ 1.
If ξ ∈ A with |ξ| < 1 and 0 ∈ S ⊂ A is a set of representatives for the classes A/ξA, then every
x ∈ K× is a sum

x =
∑
i≥m

aiξ
i (m ∈ Z, ai ∈ S, am 6= 0)

with m ≥ 0 precisely when x ∈ A. There’s an isomorphism A ∼= lim
←−

A/ξnA defined by x 7→ (sn)

where sn =
∑

m≤i<n aiξ
i.

Proof. If x ∈ A we can find a unique a0 ∈ S such that x− a0 ∈ ξA, so we can write

x = a0 + ξx1 (x1 ∈ A).

By induction we obtain

x = a0 + a1ξ + a2ξ
2 + · · ·+ ξnxn (ai ∈ S, xn ∈ A).

Using the same notation of the theorem we have x = sn + ξnxn and we immediately note that
(sn)n converges, because it is a Cauchy sequence since |ξnxn| ≤ |ξ|n → 0 as n → +∞. It can
be easily checked that sn → x, so x =

∑
i≥0 aiξ

i. Since for every x ∈ K× there exists k ∈ Z
such that

∣∣ξkx∣∣ ≤ 1 we can repeat this reasoning for x starting at index i = k. It’s now easy to
see that the ring morphism A → lim

←−
A/ξnA is an isomorphism, since it is clearly injective and

surjective (by completeness of K).

If K is not complete we could anyway represent every x ∈ K as x =
∑

i≥m aiξ
i, but we would

only have an injection A ↪→ lim
←−

A/ξnA. Applying this theorem to K = Qp, A = Zp and ξ = p

we obtain exactly how p-adic numbers are represented and the fact that Zp ∼= lim
←−
Zp/pnZp =

lim
←−
Z/pnZ.

3.2 Extension of norms

Let V be a vector space over the field Qp, equipped with a norm. For example V = Qp with
norm ‖x‖ := c|x|p (c > 0) is a Qp-vector space; we immediately note that the set { ‖v‖ | v ∈ V }
can be different from the set of the absolute values of scalars (in this case |Qp|p = pZ ∪ {0}).
From now on, to have a lighter notation, we’ll omit the pedix p in the p-adic absolute value. We
recall that two norms ‖ ‖, ‖ ‖′ on a vector space are equivalent if we can find 0 < c ≤ C < +∞
such that

c‖x‖ ≤ ‖x‖′ ≤ C‖x‖ ∀x ∈ V.

Now we are ready to state and prove the following theorem.

Theorem 3.12. Let V be a finite-dimensional Qp-vector space. Then all norms on V are equiv-
alent.

Proof. Let n = dimV and (ei)1≤i≤n be a basis. It’s clear that there is an isomorphism ϕ : Qnp
∼−→

V sending (xi)1≤i≤n 7→
∑

i xiei. We consider Qnp equipped with the sup-norm ‖x‖∞ := sup|xi|p.
We only need to prove that ϕ is a homeomorphism.
It’s easy to prove that ϕ is continuous:

‖ϕ(x)‖ =
∥∥∥∑xiei

∥∥∥ ≤∑|xi|p‖ei‖ ≤ max‖ei‖ ·
∑
|xi|p ≤ C‖x‖∞
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where C := n ·max‖ei‖ is a fixed constant. We’ll conclude showing that ϕ is an open map (any
continue invertible open map is a homeomorphism). Let B := {x ∈ Qnp | ‖x‖∞ ≤ 1} be the unit
ball in Qnp : we have to show that ϕ(B) contains an open ball of positive radius centered in 0 ∈ V .
We firstly note that B ⊂ Qnp is a compact set: it’s possible to extract a convergent subsequence
from any sequence, exploiting the fact that (Qp, | |p) is a locally compact field. Let’s consider
the unit sphere in Qnp :

S1 :=
{
x ∈ Qnp

∣∣ ‖x‖∞ = 1
}
.

This is a closed subset of B and, since B is compact, S1 is a compact set hence ϕ(S1) is also
compact. Since ϕ is bijective we have 0 /∈ ϕ(S1) so 0 < dist({0}, ϕ(S1)) and, by Weierstrass
theorem, we find a point ϕ(x0) such that

x ∈ S1 =⇒ ‖ϕ(x)‖ ≥ ‖ϕ(x0)‖ = ε > 0.

Let v ∈ V \ {0} and observe that

‖v‖ < ε, λ ∈ Qp, |λ|p ≤ 1 =⇒ ‖λv‖ < ε =⇒ λv /∈ ϕ(S1).

We can write

v =
∑
i

viei = ϕ((vi)i).

Let’s assume without loss of generality that 0 6= |vn|p = max |vi|p = ‖(vi)i‖∞. If λ = 1/vn then
λv = ϕ((vi/vn)i) ∈ ϕ(S1) so it must be |λ|p > 1 which implies

‖(vi)i‖∞ = |vn|p =
1

|λ|p
< 1.

This shows that v = ϕ((vi)i) ∈ ϕ(B). We have just proved that B<ε(0, V ) ⊆ ϕ(B).

This theorem can be generalized: it holds for any finite dimensional F -vector space, where
F is a locally compact field.

Corollary 3.12.1. If V and W are two finite-dimensional Qp-vector spaces and α : V → W is
a linear map, then α is continuous.

This is an analogue to the classic result on real or complex vectorial spaces of finite dimension.
Now let’s consider a finite extension K/Qp and let’s assume there is at least one absolute

value on K extending the p-adic absolute value of Qp. Then we can see K as a Qp-vectorial
space of finite dimension equipped with a norm (every such absolute value on K is actually also
a norm).

Proposition 3.13. There is at most one absolute value on K extending the p-adic one of Qp.

Proof. Let | | and | |′ two such absolute values on K. By Theorem 3.12 they must be equivalent
norms so there exist constants 0 < c ≤ C <∞ such that

c|x| ≤ |x|′ ≤ C|x| (x ∈ K).

Replacing xn with x in the previous inequalities we obtain

c|x|n ≤ |x|′n ≤ C|x|n =⇒ c1/n|x| ≤ |x|′ ≤ C1/n|x|.

Letting n→ +∞ we have c1/n, C1/n → 1 so |x| = |x|′.
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We now know that if K/Qp is a finite extension and K admits an absolute value extending
the p-adic one, there can only be one such absolute value. Anyway, if K/Qp is a generic finite
extension we don’t know if there is an absolute value on K compatible with the p-adic one. The
next theorem will give us an answer (yes, there always is such a field norm) and also a method
to define this (unique) absolute value. First we quickly present two technical lemmas we’ll need.

Definition 3.14. A generalized absolute value on a field K is a group morphism f : K× → R>0

extended by f(0) = 0 which satisfies f(x + y) ≤ C max{f(x), f(y)}, where C > 0 is a fixed
constant. If C = 1, f is a classical ultrametric absolute value.

Lemma 3.15. Let f be a generalized absolute value on a field K. If f is bounded on N (thought
as a subset of K) then f is an ultrametric absolute value.

Proof. See [6, p. 88].

Lemma 3.16. If V is a locally compact normed space over Qp then its dimension is finite. In a
locally compact normed Qp-vector space the compact subsets are the closed bounded subsets.

Proof. See [6, p. 93].

Definition 3.17. Let K/Qp be a finite extension, α ∈ K and `α be the Qp-linear map K → K :
x 7→ αx. We define the “Norm”1 of α on K as

NK/Qp(α) := det `α.

Now we are ready to prove the following. Let’s recall that ‖K‖ = { ‖k‖ | k ∈ K }.

Theorem 3.18. Let K be a field extension of Qp of degree d < ∞. For each x ∈ K let
`x : K → K the Qp-linear map y 7→ xy. Then

f(x) :=
∣∣NK/Qp(x)

∣∣1/d
p

= |det `x|1/dp

defines an absolute value on K that extends the p-adic one. This is the unique such absolute
value.

Proof. First of all it’s clear that if a ∈ Qp then
∣∣NK/Qp(a)

∣∣1/d
p

= |a|p, so the formula correspond
to the p-adic absolute value on Qp. It’s also clear that f(x) = 0 ⇐⇒ x = 0 (every y 7→ xy is
invertible if x 6= 0) and f(x · y) = f(x) · f(y), thanks to the Binet’s formula for det. We only
need to check the ultrametric inequality. Let’s choose any ultrametric norm x 7→ ‖x‖ on K such
that ‖K‖ = |Qp| (for example we could choose the sup-norm). Since K is a Qp-vector space with
dimK = d we know, from Theorem 3.12, that K is homeomorphic to (Qdp, ‖ ‖∞) so it is locally
compact. By Lemma 3.16 we know that the unit sphere S1 = {x ∈ K | ‖x‖ = 1} is compact so
the continuous function f , by Weierstrass theorem, is bounded on S1, namely

0 < ε ≤ f(x) ≤ A < +∞ (‖x‖ = 1).

For x ∈ K× we can find λ ∈ Qp such that ‖x/λ‖ = 1 so ε ≤ f(x/λ) ≤ A. Since f(x/λ) =
f(x)/|λ|p = f(x)/‖x‖ we get

ε‖x‖ ≤ f(x) ≤ A‖x‖
=⇒ ‖x‖ ≤ ε−1f(x), f(x) ≤ A‖x‖ (x ∈ K).

1We’ll write “Norm” to avoid confusion: we’re talking about the field norm in field theory, not about an
absolute value on K.
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If f(x) ≤ 1 we have that ‖x‖ ≤ ε−1 and

f(1 + x) ≤ A‖1 + x‖ ≤ Amax{‖1‖, ‖x‖} ≤
≤ Amax{‖1‖, ε−1} =: C · 1 = C max{f(1), f(x)}.

More generally, if f(y) ≥ f(x) then f(x/y) = f(x)/f(y) ≤ 1 so we can apply our previous
results. Multiplying both sides by f(y) we obtain

f(x+ y) ≤ C max{f(x), f(y)}.

This proves that f is a generalized absolute value on K. Since f is bounded on N ⊂ Qp ⊂ K,
being an extension of the p-adic absolute value, by Lemma 3.15 we obtain that f is an ultrametric
absolute value.

Corollary 3.18.1. Let K/Qp be a finite Galois extension and α ∈ K. Then the norm of α
equals the norm of each of his conjugates, i.e. Galois automorphisms are isometric.

Proof. Let α′ be a conjugate of α and σ a Qp-automorphism such that σ(α) = α′ (from Galois
theory we know it actually exists). Thanks to Theorem 3.18, we know there exists a unique
p-adic norm ‖ ‖ on K. The map ‖ ‖′ : K → R defined by ‖x‖′ := ‖σ(x)‖ is clearly a field norm
on K which extends | |p. Hence ‖ ‖

′ = ‖ ‖ so ‖α‖ = ‖α′‖.

We have proved that for every finite extension K/Qp there’s a unique norm which extends
the p-adic one. We’ll now give a more practical method to calculate this norm.

Proposition 3.19. Let K/Qp be a finite extension of degree d. Then

|α|p = |an|1/np

where α ∈ K and an ∈ Qp is the constant term of the minimal polynomial of α over Qp (which
has degree n).

Proof. First of all, let’s consider the simple case where K = Qp(α) (the smallest field containing
Qp and α), where the minimal polynomial of α on Qp is

λQp(α) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ Qp[X].

If we use {1, α, α2, . . . , αn−1} as a Qp-basis for K then `α has matrix

0 0 0 . . . 0 −an
1 0 0 . . . 0 −an−1

0 1 0 . . . 0 −an−2

0 0 1 . . . 0 −an−3
...

...
...

. . .
...

...
0 0 0 . . . 1 −a1


where we used αn = −a1α

n−1−a2α
n−2−· · ·−an−1α−an. It’s easy to see that det `α = (−1)nan,

expanding using the first row. If xn + a1x
n−1 + · · ·+ an−1x+ an =

∏n
i=1(x− αi), where αi are

the conjugates of α = α1 in Qp, then det `α =
∏n
i=1 αi.

Now let’s consider an arbitrary element β ∈ K. It’s immediate that

NK/Qp(β) =
(
NQp(β)/Qp(β)

)[K:Qp(β)]

because if we consider Qp ≤ Qp(β) ≤ K and we first choose a basis for Qp(β) over Qp and then a
basis for K over Qp(β), we can then take all products of elements of these two basis and obtain a
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basis for K over Qp (this is exactly the idea used to prove [K : Qp] = [K : Qp(β)] · [Qp(β) : Qp]).
In this basis the matrix of `β has form

Aβ 0
0 Aβ

. . .
Aβ


where Aβ is the matrix of the multiplication by β in Qp(β). The determinant of this matrix
is clearly (detAβ)[K:Qp(β)], since there are exactly [K : Qp(β)] blocks. Finally, if α ∈ K has
minimal polynomial λQp(α) = xn + · · ·+ an−1x+ a0 we obtain

|α|p =
∣∣NK/Qp(α)

∣∣1/d
p

=
∣∣NQp(α)/Qp(α)

∣∣[K:Qp(α)]/d

p
=
∣∣NQp(α)/Qp(α)

∣∣1/n
p

= |an|1/np

where we used d = [K : Qp(α)] · n.

3.3 Field extensions of Qp

Definition 3.20. Let K/Qp be a finite extension. The set

A := {α ∈ K | ∃(ai) ⊂ Zp such that αn + a1α
n−1 + · · ·+ an−1α+ an = 0}

is called the integral closure of Zp in K.

It can be shown that if α ∈ A then its minimal polynomial over Qp has the above form, i.e.
coefficients in Zp. Moreover, the integral closure is always a ring. We’ll prove it only in our
special case.

Proposition 3.21. Let K/Qp be a finite extension of degree n and let

A = {x ∈ K | |x|p ≤ 1},
M = {x ∈ K | |x|p < 1}.

Then A is a ring, which is exactly the integral closure of Zp in K. M is the maximal ideal of A
and A/M is a finite extension of Fp of degree at most n.

Proof. Thanks to Theorem 3.18 we know that there exists a p-adic absolute value on K, which
makes it an ultrametric field. Then we can apply Proposition 3.9, which states that A is the
maximal subring of K and M is its maximal ideal.
Now let α ∈ K have degree m over Qp and suppose it is integral over Zp, i.e.

αm + a1α
m−1 + . . . am−1α+ am = 0 (ai ∈ Zp).

If |α|p > 1 then we would have

|α|mp =
∣∣a1α

m−1 + · · ·+ am
∣∣
p
≤ max

1≤i≤m

∣∣aiαm−i∣∣p ≤ max
1≤i≤m

∣∣αm−i∣∣
p

= |α|m−1
p

which is a contradiction. Conversely, let α ∈ K with |α|p ≤ 1. Then, thanks to Corollary 3.18.1,
all the conjugates of α = α1 over Qp have the same norm

|αi|p =
m∏
j=1

|αj |1/mp = |α|p ≤ 1.
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Since all coefficients in λQp(α) ∈ Qp[X] are sums or differences of products of αi (more exactly
they’re the symmetric polynomials evaluated in (αi)) it follows that they also have | |p ≤ 1 so
they’re in Zp. We have proved that A is exactly the integral closure of Zp in K.
To prove that A/M is a finite extension of Fp let’s consider the map

Zp/pZp → A/M : a+ pZp 7→ a+M (a ∈ Zp).

It’s well defined, since if a− b ∈ pZp ⊂M then a− b ∈M so a+M = b+M . It is also injective,
thanks to the fact that M ∩Zp = pZp. Then we have an inclusion Fp ∼= Zp/pZp ↪→ A/M , which
proves that A/M is an extension of Fp. Finally, to prove that [A/M : Fp] ≤ n we just need to
show that any n+ 1 elements a1, a2, . . . , an+1 ∈ A/M are linearly dependent on Fp. Let ai ∈ A
be any element such that ai = ai +M , for i = 1, 2, . . . , n+ 1. By hypothesis n = [K : Qp] so the
elements a1, . . . , an+1 are linearly dependent on Qp, i.e.

a1b1 + a2b2 + · · ·+ an+1bn+1 = 0 (bi ∈ Qp,∃j : bj 6= 0).

We can assume that every coefficient is in Zp ⊂ A but at least one bi is not in pZp (we can
multiply by a suitable power of p). Then the image of this expression in A/M is

a1 · b1 + a2 · b2 + · · ·+ an+1 · bn+1 = 0

where bi is the image of bi in Zp/pZp by the standard projection. Since at least one bi is not in
pZp we have that at least one bi is not 0, so a1, a2, . . . , an+1 are linearly dependent on Fp.

Let’s denote |K×|p :=
{
|x|p

∣∣∣ x ∈ K× } ≤ R>0 and pZ = { pz | z ∈ Z } =
∣∣Q×p ∣∣p. They’re

clearly two multiplicative groups and
∣∣Q×p ∣∣p ≤ |K×|p.

Definition 3.22. Let K/Qp be a finite extension. Using the same notations as above for A and
M , k := A/M is called the residue field of K, f := [k : Fp] = dimQp k is called the residue degree

and e :=
(
|K×|p :

∣∣Q×p ∣∣p) is called the ramification index.

IfK/Qp is an extension of degree n, we can extend toK the function ordp : Qp → R≥0∪{+∞}
defined in Section 2.4: if α ∈ K then

ordp α := − logp|α|p = − logp
∣∣NK/Qp(α)

∣∣1/n
p

= − 1

n
logp

∣∣NK/Qp(α)
∣∣
p

with the usual convention logp 0 = −∞. Clearly this definition agrees with the old one when
α ∈ Qp and has the usual property ordp αβ = ordp α + ordp β. Let’s observe that fixed α ∈ K,
the number ordp α doesn’t depend on the choice of K: for every field J such that α ∈ J and
[J : Qp] < +∞, ordp α is the same. The image of K× under the map ordp is a non-trivial
additive subgroup of (1/n)Z = {x ∈ Q | nx ∈ Z } which contains Z: it must be of the form
(1/e)Z for some positive integer e dividing n. The name e is not randomly chosen: it is exactly
the ramification index of K/Qp.

Proposition 3.23. Let K/Qp be a finite extension of degree n. Then n = e · f .

Proof. Let’s choose π ∈ K such that ordp π = 1/e and a family (si)1≤i≤f in A such that the
images s̃i ∈ k make up a basis of k over Fp. We claim that{

siπ
j
∣∣ 1 ≤ i ≤ f, 0 ≤ j < e

}
is a basis for K over Qp. Let’s first prove independence over Qp. Let’s consider a non-trivial
linear combination ∑

i,j

cijsiπ
j =

∑
j

xjπ
j (cij ∈ Qp)
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where xj =
∑

i cijsi. For every j there’s an index ` = `(j) such that

|c`j |p ≥ |cij |p for all i

so xj/c`j =
∑

i(cij/c`j)si =
∑

i γisi is a non trivial linear combination with coefficients in A and
γ` = 1 (clearly we’re considering only the cases in which c`j 6= 0 and there is at least one such
case by assumption). We can consider this relation in the residue field k. Let γ̃i be the image of
γi in k; since by hypothesis (s̃i)i is a basis for k over Fp we have

0 6=
∑
i

γ̃is̃i ∈ A/M

simply because γ̃` = 1. Hence ∑
i

γisi /∈M =⇒

∣∣∣∣∣∑
i

γisi

∣∣∣∣∣
p

= 1

and |xj |p = |c`j |p ∈
∣∣Q×p ∣∣p is an integer power of p. There is no competition among the absolute

values of the distinct terms xjπj , so, by Proposition 3.6, we obtain∑
i,j

cijsiπ
j =

∑
j

xjπ
j 6= 0

and this proves the linear independence.
Now we have to show that the family (siπ

j)i,j generates the Qp-vector space K. We recall that
every finite extension of Qp is complete, since (Qnp , ‖ ‖∞) is complete for each n ∈ N and all
norms on it are equivalent (see Theorem 3.12). To do this we’ll use the Representation Theorem
3.11 for the complete field K and the element ξ = p ∈ M ⊂ A. In this case A/pA = A/πeA
(which is of course different from A/M = A/πA) is finite with representatives

S =

 ∑
1≤i≤f,0≤j<e

cijsiπ
j

∣∣∣∣∣∣ cij ∈ {0, 1, . . . , p− 1}

 .

Hence every element x ∈ A can be written as a series

x =
∑
h≥0

chp
h (ch ∈ S).

If we write explicit expressions for the coefficients

ch =
∑

1≤i≤f
0≤j<e

cijhsiπ
j ∈ S

we obtain
x =

∑
h≥0

∑
1≤i≤f
0≤j<e

cijhsiπ
jph.

Since limh→+∞ p
h = 0, thanks to Proposition 3.7, this family is summable and we can re-arrange

its terms to obtain

x =
∑

1≤i≤f
0≤j<e

∑
h≥0

cijhp
h

 · siπj
but cij :=

∑
h≥0 cijhp

h ∈ Zp and x =
∑

i,j cijsiπ
j . This proves that the ef elements (siπ

j)

generates K: if x /∈ A there exists ` ∈ N such that p`x ∈ A so can repeat the process above and
then multiply every cij by p−`, obtaining cij ∈ Qp.
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Definition 3.24. Let K/Qp be a finite extension. K/Qp is said to be

• unramified when e = 1, i.e. [K : Qp] = f ;

• totally ramified when f = 1, i.e. [K : Qp] = e.

We’ll now study some properties of finite extensions of Qp, focusing on these two particular
cases. We now need an analogue of the famous Eisenstein’s criterion, but on Zp.

Proposition 3.25. Let f(X) ∈ Zp[X] be a polynomial satisfying

f(X) = Xn + an−1X
n−1 + · · ·+ a0,

a0 ∈ pZp \ p2Zp,
ai ∈ pZp (1 ≤ i ≤ n− 1).

Then f is irreducible in Zp[X] and in Qp[X].

Proof. By Gauss’s lemma we just need to prove that f is irreducible in Zp[X]. Let’s consider a
factorization f = g · h in Zp[X] with

g = blX
l + · · ·+ b0, h = cmX

m + · · ·+ c0.

Hence
l +m = n, blcm = 1, b0c0 = a0.

Since a0 ∈ pZp is not divisible by p2 we can assume without loss of generality that p | c0 and
p - b0. Let’s consider these polynomials in Zp/pZp[X]: by assumption f̃ = Xn so its factorization
f̃ = g̃ · h̃ must also be a product of monomials. Hence g̃ = b0 is a constant and, since blcm = 1,
we obtain m = 0. We have proved that every factorization of f in Zp[X] is trivial, hence f is
irreducible.

This criterion can be easily generalized: if K/Qp is a finite extension of degree n = e · f then
we can replace Zp with A, pZp with πA (where π ∈ K is such that ordp π = 1/e) and p2Zp with
π2A (here A is the maximal subring of K, as in the usual notation).

Definition 3.26. A monic polynomial f(X) ∈ Zp[X] of degree n ≥ 1 satisfying

f(X) ≡ Xn mod p, f(0) 6≡ 0 mod p2.

is called an Eisenstein polynomial.

Proposition 3.27. If K/Qp is a totally ramified finite extension and π ∈ K is such that ordp π =
1/e then π is root of an Eisenstein polynomial

f(X) = Xe + ae−1X
e−1 + · · ·+ a0, ai ∈ Zp

and K = Qp(π). Conversely, if α is a root of an Eisenstein polynomial of degree e then Qp(α)
is totally ramified over Qp and [Qp(α) : Qp] = e.

Proof. For the first implication let’s consider the minimal polynomial of π over Qp

λQp(π) = Xh + bh−1X
h−1 + · · ·+ b1X + b0.

Its degree h must be equal to e: obviously h ≤ e since [Qp(π) : Qp] ≤ [K : Qp] = e; we’ll see
why it cannot be strictly less then e. Let’s observe that its coefficients bi are the symmetric
polynomials evaluated in the conjugates of π, all of which have | |p = |π|p = p−1/e, so |bi|p < 1,
which means bi ∈ pZp. As for b0, we have

|b0|p = |π|hp = p−h/e
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and since b0 ∈ Qp we must have |b0|p ∈ pZ so e|h =⇒ h = e. Then |b0|p = 1/p so b0 ∈ pZp\p2Zp.
We have proved that K = Qp(π) and λQp(π) ∈ Zp[X] is an Eisenstein polynomial.
Conversely, if Zp[X] 3 f(X) = Xe + ae−1X

e−1 + · · ·+ a0 is an Eisenstein polynomial, we know
it is irreducible by Proposition 3.25, so if we adjoin a root α to Qp we obtain an extension of
degree e = deg f . Since, by assumption, ordp a0 = 1 we obtain ordp α = (1/e)ordp a0 = 1/e
hence Qp(α) is totally ramified over Qp.

Proposition 3.28. There is exactly one unramified extension Kunram
f of Qp of degree f and it

can be obtained by adjoining a primitive (pf − 1)th root of 1. If K is an extension of Qp of
degree n, index of ramification e and residue degree f , then K = Kunram

f (π), where π satisfies
an Eisenstein polynomial with coefficients in Kunram

f .

Proof. Let’s first prove that there exists at least one unramified extension of Qp of degree f . Let
α be a generator of the cyclic group F×

pf
and let P (X) = Xf + a1X

f−1 + · · · + af ∈ Fp[X] be
its minimal polynomial. For every i = 1, . . . , f let’s consider ai ∈ Zp which reduces to ai mod
p and let P (X) = Xf + a1X

f−1 + · · · + af ∈ Zp[X]. This polynomial is clearly irreducible in
Zp[X] (otherwise its reduction P (X) could be factorized in Fp[X]) so, by Gauss’s lemma, P (X)

is irreducible in Qp[X]. Let α ∈ Qalg cl
p be a root of P (X) (clearly α /∈ Qp) and let K̃ := Qp(α),

Ã := {x ∈ K̃ | |x|p ≤ 1}, M̃ := {x ∈ K̃ | |x|p < 1}. Then [K̃ : Qp] = f and the coset
α + M̃ ∈ Ã/M̃ is a root of the irreducible polynomial P (X) over Fp. Hence [Ã/M̃ : Fp] = f

which implies K̃ is an unramified extension of Qp of degree f .
Now we prove uniqueness. Let K be as in the statement, let A be the valuation ring of | |p in K
and let M be the maximal ideal of A. Since f is the residue degree of K we have A/M = Fpf .
We’ll now prove that any β ∈ F×

pf
admits a Teichmüller representative, i.e. an ω(β) ∈ A such

that it is a solution of Xpf −X = 0 congruent to β mod M . We’ll focus on the case in which β
is a generator of F×

pf
(so some properties we’ll find will be valid only in this case).

Let α be a generator of F×
pf

and let α0 ∈ A be any element which reduces to αmodM . Finally, let
π ∈ K be any element with ordp π = 1/e; thus M = πA. We claim that there exists A 3 α ≡ α0

mod M such that αpf−1 − 1 = 0 (now we only know that αp
f−1

0 − 1 ≡ 0 mod π). The proof is
an Hensel’s lemma type argument. First of all we write α ≡ α0 + α1π mod π2 and we want to
find α1 ∈ A such that (α0 + α1π)p

f−1 − 1 ≡ 0 mod π2. Using Newton’s binomial and recalling
that we’re operating in a ring of characteristic p, namely A/π2A, we obtain

0 ≡ (α0 + α1π)p
f−1 − 1 ≡ αp

f−1
0 − 1− α1πα

pf−2
0 mod π2.

Since αp
f−1

0 ≡ 1 mod π we can set

α1 ≡
αp

f−1
0 − 1

παp
f−2

0

≡ α0 ·
αp

f−1
0 − 1

π
mod π

and we obtain the desired congruence mod π2, which represents a better approximation of the
solution. Continuing in this way, just as in Hensel’s lemma, we find A 3 α = α0+α1π+α2π

2+. . .
such that αpf−1 = 1. We immediately note that α is a primitive (pf − 1)th root of 1 because
α, α2, . . . , αp

f−1 are all distinct (their reductions mod M α,α2, . . . , αp
f−1 are all distinct by

assumption). We also observe that [Qp(α) : Qp] ≥ f . In-fact, let G(X) := λQp(α) be the
minimal polynomial of α on Qp and consider 0 6= G(X) ∈ Fp[X], its reduction mod p (recall
that |α|p = 1 so G(X) ∈ Zp[X]); by assumption α + M = α so G(α) = 0 =⇒ G(α) = 0. By
hypothesis the minimal polynomial of α in Fp is P (X) so

P (X) | G(X) =⇒ degG(X) ≥ degP (X) = f =⇒ degG(X) ≥ f
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so [Qp(α) : Qp] = degG(X) ≥ f . We can apply this discussion to any K̃ unramified extension of
Qp of degree f (for example the one we have built at the beginning). Hence, Qp(α) ⊆ K̃, where
K̃ 3 α is a primitive (pf − 1)th root of 1. We have

f = [K̃ : Qp] ≥ [Qp(α) : Qp] ≥ f

so K̃ = Qp(α). This implies that the unramified extension of degree f is unique, let’s call it
Kunram
f .

Now let K/Qp be a generic finite extension of degree n = ef , as in the statement. Let E(X) be
the minimal polynomial of π over Kunram

f ≤ K. Let {πj}j be the conjugates of π over Kunram
f

(in a suitable extension of K). Then

E(X) =
∏
j

(X − πj) = Xd + bd−1X
d−1 + . . . b1X + b0.

Let d = degE(X) and c = b0 be the constant term of E(X). Every bi is a symmetric polynomial
evaluated in the conjugates of π: by the ultrametric inequality, since |πj |p = |π|p = p−1/e, we
obtain |bi|p < 1 for every i = 1, . . . , d − 1. Since bi ∈ Kunram

f we have ordp bi ∈ Z so it must be
ordp bi ≥ 1, i.e. p divides bi. Instead, the constant term has order ordp c = d · ordp π = d/e ∈ Z;
we recall that d = [Kunram

f (π) : Kunram
f ] ≤ [K : Kunram

f ] = e so the only possibility is that
d = e and ordp c = 1, i.e. p divides c but p2 does not. This proves that E(X) is an Eisenstein
polynomial over Kunram

f and K = Kunram
f (π).

We have an important “structural” corollary of this proposition.

Corollary 3.28.1. If K is a finite extension of Qp of degree n = ef and π ∈ K is chosen so
that ordp π = 1/e, then every α ∈ K can be written in one and only one way as

+∞∑
i=m

aiπ
i

where m = e · ordp α and every ai satisfies a
pf

i = ai (the ai are called Teichmüller digits).

Proof. Let A be the maximal subring of K and M be its maximal ideal; π ∈ K is such that
|π|p = p−1/e < 1 so M = πA and we already know, by definition, that A/πA = Fpf . Let’s

choose pf representatives 0 = a1, a2, . . . , apf ∈ A for A/πA such that ap
f

i = ai (we can apply an
Hensel’s lemma type argument). We can then apply Theorem 3.11 and conclude.

Let’s observe that we could apply this corollary to Qp itself but we would not obtain the same
representation in power series we used: in-fact we would obtain the so called representation with
Teichmüller digits where every ai is 0 or a (p − 1)th root of unity (in Zp). This is the more
convenient way to write elements of Zp and Qp: using these digits we have closed formulas for
addition and multiplication, which are very hard to find if one uses digits in {0, . . . , p− 1} ⊂ Z,
due to the problem of carrying. We’ll not study these formulas, we’ll only try to describe very
briefly how to derive the Teichmüller representation beginning with the old one. First, for every
ζ ∈ Fp we have to find a solution of Xp −X = 0 in Zp which is equivalent to ζ mod p: we can
always find such a solution thanks to Hensel’s lemma. We have defined the Teichmüller character
ω : F×p → Z×p (clearly a group morphism), which we can extend sending 0 to 0 to define a section
of the canonical projection π : Zp � Zp/pZp ≡ Fp. Now, given x ∈ Zp such that

x = x0 + x1p
1 + x2p

2 + . . . (xi ∈ {0, . . . , p− 1})

we consider, with a little abuse of notation, ω(x0) ∈ Zp; since, by definition, ω(x0) ≡ x0 mod p
we have x− ω(x0) ≡ 0 mod p so

x− ω(x0) = x′1p+ x′2p
2 + x′3p

3 + . . . (x′i ∈ {0, . . . , p− 1}).
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Then we can consider ω(x′1) ∈ Zp and obtain x− ω(x0)− ω(x′1)p ≡ 0 mod p2 and iterating this
process we get the Teichmüller digits of x.

Getting back to the study of algebraic extensions of Qp, we can conclude that the finite
unramified extensions of Qp are precisely the extensions obtained by adjoining roots of 1 of order
not divisible by p: in-fact if m and p are coprime then there exists f ∈ Z such that pf −1 = mm′

with m′ ∈ Z (for example we can choose f equal to the order of p in (Z/mZ)×); adjoining to Qp
a primitive (pf − 1)th root of 1, let it be α, we obtain that αm′ is a primitive m-th root of 1.

3.4 The algebraic closure of Qp and its completion Cp
Definition 3.29. The union of all the finite unramified extensions of Qp is Qunram

p and it’s called
the maximal unramified extension of Qp.

Obviously Qunram
p is well defined: given Kf and Kf ′ , two unramified extensions of Qp of

degree f and f ′ respectively, there exists a (unique) unramified extension Kff ′ which contains
both of them (because (pff

′ − 1) is divided by (pf
′ − 1) and (pf − 1)). There’s an obvious

extension of the p-adic absolute value to Qunram
p so we can define its valuation ring

Zunram
p := {x ∈ Qunram

p | |x|p ≤ 1}.

It admits a unique maximal ideal pZunram
p = {x ∈ Qunram

p | |x|p < 1}. It is easily seen that
the residue field Zunram

p /pZunram
p is Fp, the algebraic closure of Fp. Every x ∈ Fp has a unique

Teichmüller representative x ∈ Zunram
p such that x has image x in Fp and x is a root of 1

(more precisely if x ∈ Fpf , then xp
f

= x). For this reason Zunram
p is often called the “lifting to

characteristic 0 of Fp”.

Proposition 3.30. The field Qp is not algebraically closed.

Proof. Using the p-adic Heisenstein’s criterion (Proposition 3.25) we can find irreducible poly-
nomials in Qp[X] of any degree, for example Xn − p.

Although this fact was already obvious, from the proof we infer that an algebraic closure of
Qp can’t have finite degree over Qp.

Definition 3.31. The algebraic closure of Qp is called Qalg cl
p .

Clearly, there’s a unique extension of the p-adic absolute value to Qalg cl
p , since we can extend

it to every finite extension of Qp, so Qalg cl
p is an ultrametric field. We’ll see that it is not complete.

We now state and prove two technical lemmas we’ll need in the next theorems.

Lemma 3.32. Let K/Qp be a finite extension and g(X) = Xn+ bn−1X
n−1 + · · ·+ b0 ∈ K[X]. If

C0 = maxi|bi|p then there exists a constant C1, which depends only on C0, such that every root
β of g(X) satisfies |β|p < C1.

Proof. We claim that C1 = 1 + max0≤i<nC
1/i
0 is a suitable constant. Let β be a root of g(X),

i.e.
βn + bn−1β

n−1 + · · ·+ b1β + b0 = 0.

By the competitivity of the absolute value, Proposition 3.6, we know that there are two distinct
terms in this sum which attain maximum absolute value. We can distinguish two cases:

• |βn|p ≤ |b0|p: then |β|p ≤ C
1/n
0 < C1.

• |βn|p ≤
∣∣biβi∣∣p for some 1 ≤ i < n: then |β|p ≤ C

1/(n−i)
0 < C1.
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So we can conclude that the chosen C1 satisfies the request.

Let’s now generalize the notion of congruence mod pn: if K/Qp is a finite extension and
α, β ∈ K, the writing α ≡ β mod pn means |α− β|p ≤ p−n. It’s immediately seen that this is
exactly our old definition of congruence when K = Qp.

Lemma 3.33. Let ξ be algebraic of degree n over Qp. Then there exists an integer N such that
ξ does not satisfy any congruence

an−1ξ
n−1 + an−2ξ

n−2 + · · ·+ a1ξ + a0 ≡ 0 mod pN

where the ai are in Zp and there is at least one coefficient in Z×p .

Proof. Let’s consider the space Znp \ (pZp)n ⊂ Znp : it is compact since it’s a closed subset of the
compact space Znp (pZp is open in Zp and, by definition of product topology, also (pZp)n is open
in Znp ). Let’s consider the sets

Xm :=
{ (

a
(m)
n−1, . . . , a

(m)
0

)
∈ Znp \ (pZp)n

∣∣∣ a(m)
n−1ξ

n−1 + · · ·+ a
(m)
0 ≡ 0 mod pm

}
for every m ∈ N. We claim that Xm is compact. To prove it, we can just show that Xm is closed.
Let’s consider the function

g : Znp \ (pZp)n → R≥0, g(x0, . . . , xn−1) :=
∣∣xn−1ξ

n−1 + · · ·+ x0

∣∣
p
.

Clearly it is a continuous function and it’s easily seen that Xm = g−1
(
[0, p−(m+1)]

)
so Xm is

closed. Now, let’s suppose the thesis is false, which means exactly that Xm 6= ∅ for every m ∈ N.
Obviously Xm+1 ⊆ Xm so we have a decreasing sequence of non-empty compact sets and we can
consider

X :=
⋂
m∈N

Xm.

This intersection is not empty: it is well known that a decreasing intersection of non-empty
compact sets is non-empty (in this case we can choose a sequence (ai)i with ai ∈ Xi and by a
diagonal argument we can extract a convergent subsequence with limit inX). Let (bn−1, . . . , b0) ∈
X, then

bn−1ξ
n−1 + bn−2ξ

n−2 + · · ·+ b1ξ + b0 ≡ 0 mod pm ∀m ∈ N
=⇒ bn−1ξ

n−1 + bn−2ξ
n−2 + · · ·+ b1ξ + b0 = 0.

That’s a contradiction, since ξ has degree n over Qp.

We now present two useful propositions.

Proposition 3.34 (Krasner’s Lemma). Let a, b ∈ Qalg cl
p and assume that for every conjugate ai

of a (i.e. for every root of λQp(a)) the following holds

|b− a|p < |ai − a|p.

Then Qp(a) ⊆ Qp(b).

Proof. Let K = Qp(b) and suppose that a /∈ K. So [K(a) : K] > 1 and, since a has exactly
[K(a) : K] conjugates over K (K is a field of characteristic 0 so irreducible polynomials can’t
have multiple roots), it follows that there is at least one ai /∈ K. Then we have an isomorphism
σ : K(a) → K(ai) which keeps K fixed and sends a to ai. By Corollary 3.18.1 we know that
|σ(x)|p = |x|p for every x ∈ K(a). In particular

|b− ai|p = |σ(b)− σ(ai)|p = |b− a|p
=⇒ |ai − a|p ≤ max

{
|ai − b|p, |b− a|p

}
= |b− a|p < |ai − a|p

which is clearly a contradiction.
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Let’s observe that the Krasner’s lemma can be easily generalized to any finite extension K of
Qp: we just need to consider the conjugates of a over K and we the result becomes K(a) ⊆ K(b).

From now on, unless otherwise specified, given a normed field (K, ‖ ‖) we’ll equip the ring
K[X] with the sup-norm, i.e. given f =

∑
aiX

i and g =
∑
bjX

j we define

‖f − g‖ := max
i
‖ai − bi‖.

Proposition 3.35. Let K be a finite extension of Qp and f(X) ∈ K[X] have degree n and
distinct roots

f(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0.

Then for every ε > 0 there exists δ > 0 such that if K[X] 3 g(X) =
∑
biX

i has degree n and
|f − g|p < δ, then for every root αi of f(X) there is precisely one root βi of g(X) such that
|αi − βi|p < ε.

Proof. Let’s fix an ε > 0. For every root β of g(X) we have

|f(β)|p = |f(β)− g(β)|p =

∣∣∣∣∣
n∑
i=0

(ai − bi)βi
∣∣∣∣∣
p

≤ max
i

{
|ai − bi|p, |β|

i
p

}
≤

≤ |f − g|p ·max
{

1, |β|np
}
< δCn1

where δ will be chosen later and C1 is a suitable constant which dominates the norm of all the
roots of g(X). We can find such a constant which only depends on f(X): in-fact for every i we
have

|bi|p ≤ max
{
|bi − ai|p, |ai|p

}
≤ max

{
δ, |ai|p

}
≤ max

i
|ai|p

if we choose a small enough δ. Then maxi |bi|p ≤ maxi |ai|p and, recalling Lemma 3.32, we
conclude that we can set C1 = C, where C is the constant we obtain applying the lemma to
f(X). Let’s define

C2 := min
1≤i<j≤n

|αi − αj |p.

Since by assumption the αi are distinct, C2 > 0. We immediately see that there can be at most
one αi satisfying |β − αi|p < C2: in-fact if it held for another αj 6= αi we’d have |αi − αj |p < C2

by the ultrametric inequality. Since

Cn1 δ > |f(β)|p = |an|p
∏
|β − αi|p

it’s clear that if δ is sufficiently small there exists an αi such that |β − αi|p < C2. For that αi
we have

|β − αi|p <
Cn1 δ

|an|p
∏
j 6=i|β − αj |p

≤ Cn1 δ

|an|pC
n−1
2

and it’s clear that we can make |β − αi|p less than ε choosing a sufficiently small δ.

Finally we prove the already mentioned non-completeness of Qalg cl
p .

Theorem 3.36. Qalg cl
p is not complete.

Proof. We must show a Cauchy sequence (ai)i∈N ⊆ Qalg cl
p which doesn’t converge in Qalg cl

p . Let
bi ∈ Qalg cl

p be a primitive (pi! − 1)th root of 1. If j > i then (pi! − 1) | (pj! − 1) so bp
j!−1
i = 1.

Thus if j > i, bi is a power of bj so Qp(bi) ⊂ Qp(bj). Let

ai :=
i∑

j=0

bjp
Nj
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where 0 = N0 < N1 < N2 < . . . is an increasing sequence of integers we’ll choose later. We
immediately note that the bj , for j = 0, . . . , i, are the Teichmüller digits of the p-adic expansion
of ai in the unramified extension Qp(bi), since bp

i!

j = bj . It’s clear that the sequence (ai)i is
Cauchy:

|ai+1 − ai|p =
∣∣bi+1p

Ni+1
∣∣
p

= 1 ·
∣∣pNi+1

∣∣
p
→ 0 as i→ +∞.

We choose the integers Ni by induction. We have already set N0 = 0 and suppose that we have
defined Nj for j ≤ i, so that we have ai =

∑i
j=0 bjp

Nj . Let K = Qp(bi): K is a Galois unramified
extension of Qp of degree i! and Qp(ai) = K. In-fact, if Qp(ai) ( K there would be a non trivial
Qp-automorphism of K which leaves ai fixed, let it be σ. By assumption σ(bi) 6= bi and

σ(ai) =
i∑

j=0

σ(bj)p
Nj (σ(bj)

pi! = σ(bj) ∀j = 0, . . . , i).

We see that σ(ai) can’t be equal to ai because it has a different p-adic expansion (see Corol-
lary 3.28.1) so it must be K = Qp(ai) and ai is algebraic over Qp of degree i!. Thanks to
Lemma 3.33 we can find Ni+1 > Ni such that ai does not satisfy any congruence

αna
n
i + αn−1a

n−1
i + · · ·+ α1ai + α0 ≡ 0 mod pNi+1

for n < i! and αj ∈ Zp not all divisible by p. We have now completely determined our sequence
(ai)i. Now, suppose that a ∈ Qalg cl

p is the limit of (ai)i. By definition, a is algebraic over Qp so
it satisfies a polynomial equation in Qp

βna
n + βn−1a

n−1 + · · ·+ β1a+ β0 = 0

and, multiplying by a suitable power of p, we can assume that βi ∈ Zp and that there is at least
a coefficient in Z×p . Let’s choose i such that i! > n. We have

|aj − ai|p ≤
∣∣pNi+1

∣∣
p
∀ j > i =⇒ |a− ai|p = lim

j→+∞
|aj − ai|p ≤

∣∣pNi+1
∣∣
p

so a ≡ ai mod pNi+1 . This implies

βna
n
i + βn−1a

n−1
i + · · ·+ β1ai + β0 ≡ 0 mod pNi+1

which is a contradiction. Then (ai)i cannot have limit in Qalg cl
p and this proves the theorem.

We can then complete Qalg cl
p exactly in the same way we completed (Q, | |p) in Section 1.3

(this is the standard way to complete a metric space).

Definition 3.37. The completion of Qalg cl
p is called Cp.

We can extend the p-adic absolute value to this new field Cp just as we extended it from Q
to Qp: given x ∈ Cp, we choose a representative Cauchy sequence (xi)i in Qalg cl

p (recall that Cp
is the set of equivalence classes of Cauchy sequences), and we define

|x|p := lim
i→+∞

|xi|p.

It can be proved that |x|p is well defined and that the limit exists: if x 6= 0 then from a sufficiently
large i all norms |xi|p are equal. We can also extend ordp to Cp:

ordp x := − logp|x|p.

Let A = {x ∈ Cp | |x|p ≤ 1} be the valuation ring of Cp and M = {x ∈ Cp | |x|p < 1} its
maximal ideal.
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Definition 3.38. Let r = a/b ∈ Q with a ∈ Z, b ∈ N× and P (X) = Xb − pa ∈ Qp[X]. Any root
of P (X) in Qalg cl

p is called a fractional power of p to r and can be denoted by pr.

Using fractional powers we can immediately prove an interesting result.

Proposition 3.39. For any q ∈ Q there exists x ∈ Qalg cl
p with ordp x = q.

Proof. Let’s write q = a/b with a ∈ Z, b ∈ N× and let Qalg cl
p 3 x = pq be any fractional power.

We claim that ordp x = q, i.e. |x|p = p−q. In-fact, by definition of fractional power, we have
xb = pa, which implies |x|p = p−a/b.

With the next proposition we’ll dig deeper into the structure of Cp, to understand how its
elements can be represented (working with equivalence classes of Cauchy sequences is not very
practical).

Proposition 3.40. Any non-zero element of Cp is a product of a fractional power of p, a root
of unity and an element in the open unit disc about 1 (in Cp).

Proof. Let’s first consider the case of x ∈ A×, i.e. |x|p = 1. Since Qalg cl
p is dense in Cp we

can find an algebraic x′ such that |x− x′|p < 1, i.e. x − x′ ∈ M . By the isosceles triangle
principle we obtain |x′|p = 1 so it follows that x′ is integral over Zp (see Proposition 3.21),
i.e. it satisfies a monic polynomial in Zp[X]. Reducing this polynomial mod p we find that
x+M = x′+M is algebraic over Zp/pZp = Fp so it lies in some Fpf . We can consider ω(x), the
Teichmüller representative of x+M ∈ Fpf , which is a (pf − 1)th root of 1 (i.e. it is an element
of Kunram

f ⊂ Qalg cl
p which is a solution of Xpf −X = 0 and is congruent to x + M mod p, see

proof of Proposition 3.28). If we set 〈x〉 := x/ω(x), then 〈x〉 ∈ 1 +M . We have proved that any
element of A× is the product of a root of unity ω(x) and an element 〈x〉 which is in the open
unit disc about 1.
Finally, any x ∈ Cp can be written as a product of a fractional power of p and an element of
absolute value 1. Namely, if ordp x = r = a/b (observe that ordp (C×p ) ⊂ Q) and pr ∈ Qalg cl

p is
any root of Xb − pa, then |pr|p = |p|a/bp (pr is a root of p−aXb − 1 = 0) so

|x/pr|p = |x|p ·
1

|pr|p
= |p|a/bp · |p|−a/bp = 1

and, called x1 := x/pr ∈ A×, we know that x1 is a product of a root of 1 and an element in
1 +M = B<1(1,Cp).

Obviously, by construction, Cp is a complete field which contains Qalg cl
p . It is then an

immediate question if Cp is still algebraically closed and we’ll see in the next theorem that it is.

Theorem 3.41. Cp is algebraically closed.

Proof. Let’s consider a generic monic polynomial in Cp[X]:

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0.

We just need to show that f admits a root in Cp. For each i = 0, 1, . . . , n− 1, let (ai,j)j∈N be a
sequence of elements in Qalg cl

p which converges to ai. Let’s consider the sequence (gj(X))j∈N ⊂
Qalg cl
p [X] defined by

gj(X) := Xn + an−1,jX
n−1 + · · ·+ a1,jX + a0,j .

Let {ri,j}ni=1 ⊂ Q
alg cl
p be the roots of gj(X). We claim that we can find a sequence (ij)j∈N ⊂ N

such that the sequence (rij ,j)j is Cauchy.
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Let’s proceed by induction and suppose we have rih,h and we want to find rih+1,h+1. Let δh :=
|gh − gh+1|p = maxi|ai,h − ai,h+1|p, which clearly approaches 0 as j → +∞, and let Ah :=

max{1, |rih,h|
n
p}. Now, thanks to Lemma 3.32, we can find Cj , a constant depending only on

maxi|ai,j |p, which dominates the norm of each root of gj(X) and such that Aj ≤ Cj . Since (ai,j)j

is a convergent sequence in Qalg cl
p , it is bounded in norm for every i = 0, . . . , n − 1 so we can

find a uniform constant C such that Cj ≤ C for every j ∈ N. Then we have

n∏
i=1

|rih,h − ri,h+1|p = |gh+1(rih,h)|p = |gh+1(rih,h)− gh(rih,h)|p ≤ δhC

hence there is at least one i such that |rih,h − ri,h+1|p ≤
n
√
δhC. Let ih+1 be such i. Since δj → 0

as j → +∞, it is clear that (rij ,j)j is Cauchy in Qalg cl
p . Since Cp is complete, this sequence

converges and if we define
r := lim

j→+∞
rij ,j ∈ Cp

we then have

f(r) = f

(
lim

j→+∞
rij ,j

)
= lim

j→+∞
f(rij ,j) = lim

j→+∞
lim

m→+∞
gm(rij ,j)

where we used that f is continuous and that gj
‖ ‖∞−−−→ f (which implies punctual convergence).

More precisely, since this double limit exists, we can consider the section m = j to obtain

lim
j→+∞

lim
m→+∞

gm(rij ,j) = lim
j→+∞

gj(rij ,j) = 0

so we can conclude f(r) = 0 and r ∈ Cp is a root of f .

Finally, after all this effort, we have built Cp: the smallest field which contains Q and is both
algebraically closed and complete with respect to | |p (we recall that completion and algebraic
closure are unique processes up to isomorphism). Let’s observe some basic properties of this
field:

1. |Cp|p =
∣∣∣Qalg cl

p

∣∣∣
p

= pQ ∪ {0};

2. card(Cp) = card(R);

3. Cp is a field isomorphic to C, although not in a canonical way.

While property 1. is evident, the other properties aren’t so obvious and we’ll have faith in them,
i.e. we won’t prove them.

Actually, we could have built Cp in an apparently shorter way:

C

Q Qalg cl

Cp

alg cl

| |∞

| |p

namely by first embedding Q in Qalg cl, its algebraic closure (clearly it does not depend on the
chosen norm), and then completing Qalg cl with respect to the euclidean norm (we obtain C) and
to the p-adic norm (we obtain Cp). We could have chosen to follow this way, which highlights
the similarity between C and Cp, without even needing the intermediate field Qp. The problem
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is that the algebraic closure of Q is a very complicate field. Instead, the road we decided to
follow is this longer one:

R C

Q

Qp Qalg cl
p Cp

alg cl

| |∞

| |p
alg cl | |p

Here we can see that the “euclidean case” seems simpler and that’s because C, the algebraic
closure of R, has a finite degree over R (namely [C : R] = 2) so it’s still complete, while
[Qalg cl

p : Qp] = +∞ and completeness is lost: we have to complete again and we obtain Cp. The
following general theorem holds.

Theorem 3.42. Let (K, ‖ ‖) be an algebraically closed non-Archimedean normed field. Then the
completion of K is algebraically closed.

Proof. See [3, p. 2].



4 p-adic power series

4.1 Elementary functions

In many of the following reasonings we’ll use the next proposition, which will give us the pos-
sibility to manipulate formal power series, knowing their behaviour in some neighbourhood of
0.

Proposition 4.1. Let f(X1, . . . , Xn) ∈ CJX1, . . . , XnK be a power series and let ε > 0 such that
f is absolutely convergent on [−ε, ε]n and f(x1, . . . , xn) = 0 for every xi ∈ [−ε, ε]. Then f ≡ 0,
i.e. all terms of f vanishes.

Proof. We prove the proposition by induction on n.

• n = 1: let

f(X) =
+∞∑
i=0

aiX
i.

Obviously f(0) = a0 = 0 so we can write f(X) = X · (a1 + a2X + . . . ) =: X · f1(X). Now
f1(X) ∈ CJXK vanishes for every x ∈ [−ε, ε] \ {0}. It is well known from complex analysis
that a formal power series in C defines a holomorphic function where it converges (so, in
particular, it’s continuous). We then obtain that f1 is continuous so f1(0) = 0, i.e. a1 = 0.
Then we can write f(X) = X2 · (a2 + a3X + . . . ) =: X2 · f2(X), where f2(x) = 0 for every
x ∈ [−ε, ε] \ {0}. Iterating this process we obtain an = 0 for each n ∈ N so f ≡ 0.

• n > 1: let’s assume that the thesis holds for every i < n and let’s prove it for n. For
brevity, let Y = (X1, . . . , Xn−1). Since f is absolutely convergent we can write

f(Y,Xn) =
+∞∑
i=0

gi(Y )Xi
n, gi(Y ) ∈ CJY K.

For xn = 0 we have f(y, 0) = g0(y) = 0 for y ∈ [−ε, ε]n−1. Then, by induction, g0 ≡ 0 so

f(Y,Xn) = Xn · (g1(Y ) + g2(Y )Xn + . . . ) =: Xn · f1(Y,Xn)

and by hypothesis f1(y, xn) = 0 for every y ∈ [−ε, ε]n−1, xn ∈ [−ε, ε] \ {0}. Clearly,
fixed y ∈ [−ε, ε]n−1, the function X 7→ f1(y,X) is a continuous function so f1(y, 0) =
limx→0 f1(y, x) = 0. We have obtained 0 ≡ f1(Y, 0) = g1(Y ) so, by inductive hypothesis,
g1(Y ) ≡ 0 and we can write

f(Y,Xn) = X2
n · (g2(Y ) + g3(Y )Xn + . . . ) =: X2

n · f2(Y,Xn)

where f2(y, xn) = 0 if y ∈ [−ε, ε]n−1, xn ∈ [−ε, ε] \ {0}. Iterating this process we obtain
gn(Y ) ≡ 0 for every n ∈ N, i.e. f ≡ 0.
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Another important lemma about p-adic power series is the Dwork’s lemma. It expresses
an important phenomenon in p-adic analysis: if we know F (Xp)/(F (X)p) then we also know
something about F . This ratio represents how far off F is from commuting with the p-power
map, which is a very important map also in different contexts (e.g. Frobenius morphism for
characteristic p fields).

Lemma 4.2 (Dwork’s lemma). Let F (X) ∈ 1 + XQpJXK. Then F (X) ∈ 1 + XZpJXK if and
only if F (Xp)

F (X)p ∈ 1 + pXZpJXK.

Proof. If F (X) ∈ 1+XZpJXK then, since (a+b)p ≡ ap+bp mod p and ap ≡ a mod p if a ∈ Zp,
we have

F (X)p = F (Xp) + pG(X) ∃G(X) ∈ XZpJXK.

Then
F (Xp)

F (X)p
= 1− p · G(X)

F (X)p
∈ 1 + pXZpJXK,

because F (X)p ∈ 1 +XZpJXK so it can be inverted.
For the other implication let F (X) =

∑
aiX

i; by hypothesis we know that ∃G(X) =
∑
biX

i

such that G(X) ∈ 1 + pXZpJXK and

F (Xp) = F (X)p ·G(X)

We’ll prove by induction that ai ∈ Zp. By assumption F (X) ∈ 1 + XQpJXK so a0 = 1. Let’s
now suppose that ai ∈ Zp for every i < n. Looking at the coefficients of Xn on both sides of the
above equation we obtain

coefficient of Xn in

(
n∑
i=0

aiX
i

)p
·

(
1 +

n∑
i=1

biX
i

)
=

{
an/p, if p divides n;
0, otherwise;

.

Expanding the expression for the coefficient of Xn on the left and subtracting an/p (recall that
apn/p ≡ an/p mod p) we notice that the resulting expression consists of pan added to some terms
in pZp so we can conclude that pan ∈ pZp, i.e. an ∈ Zp. (To see why this is true it can be
convenient to recall the formula (x1 + · · ·+ xn)m =

∑
i1+···+in=m

(
m

i1,...,in

)
xi11 . . . x

in
n ).

We’ll also prove here a technical lemma, which we will use to study the p-adic logarithm.

Lemma 4.3. Let a be a primitive m-th root of 1 in Qalg cl
p . Then

(i) if m = pn for some n ∈ N then |a− 1|p = p−1/ϕ(pn);

(ii) otherwise, |a− 1|p = 1.

Proof. Let Φn(X) ∈ Zp[X] be the n-th cyclotomic polynomial.
(i) To prove this case we’ll do an induction on n. The case n = 0 is trivial, since a = 1. If n = 1
then a is a primitive p-th root of 1, i.e. ap = 1, a 6= 1, so Φp(a) = 0. By Eisenstein criterion
(Proposition 3.25) it is easy to prove that Φp(X) is irreducible over Qp. We consider then

f(X) := Φp(X + 1) =
(X + 1)p − 1

X
= Xp−1 +

(
p

p− 1

)
Xp−2 + · · ·+

(
p

2

)
X + p.

Clearly f(X) ∈ Qp[X] is irreducible and f(a−1) = 0 so, recalling how we extended | |p to Q
alg cl
p ,

we have
|a− 1|p = |p|1/(p−1)

p = p−1/(p−1)

which concludes the proof of the case n = 1. Now, suppose we know the thesis holds for
m = pi, i < n and let’s prove it also holds for m = pn. If we consider the extension K = Qp(a)



47 4.1. Elementary functions

with the usual notation (A is the maximal subring andM is its maximal ideal), it is easy to note
that |a|p = 1 and

ap
n

= 1 =⇒ ap
n ≡ 1 mod M

and since A/M is a finite field of characteristic p we obtain

a ≡ 1 mod M

which means exactly a = 1 + b for some b ∈ K, |b|p < 1. We recall the easy facts

deg Φpn(X) = ϕ(pn) = pn − pn−1, Φpn(X) = Φp

(
Xpn−1

)
which imply Φpn(1) = Φp(1) = p. Since a is a primitive pn-th root of 1, every other primitive
pn-th root of 1 is aj , with p - j, so

Φpn(X) =
∏

1≤j<pn,p-j

(X − aj).

Evaluating at X = 1 we obtain

|p|p =
∏

1≤j<pn,p-j

∣∣1− aj∣∣
p
.

Using the fact a ≡ 1 mod M we can see that

1− aj

1− a
= 1 + a+ · · ·+ aj−1 ≡ j mod M

and if p - j we obtain ∣∣∣∣1− aj1− a

∣∣∣∣
p

= 1

so
∣∣1− aj∣∣

p
= |1− a|p, which implies |1− a|p = |p|1/ϕ(pn)

p .
(ii) First of all let’s consider the basic case p - m. Then, a− 1 is a root of the polynomial

f(X) = Φm(X + 1) = Xm−1 + · · ·+m = g1(X) · · · gr(X)

where gi(X) ∈ Qp[X] is an irreducible factor of f , and we can assume that every gi(X) is monic
and has coefficients in Zp. By hypothesis |m|p = 1 and if bi is the constant term of gi(X) we
have

|b1b2 · · · br|p = |m|p = 1, bi ∈ Zp =⇒ |bi|p = 1 ∀ i = 1, . . . , r.

Since f(a − 1) = 0 there is at least one gi(X) such that gi(a − 1) = 0 so λQp(a − 1) = gi(X).
Then

|a− 1|deg gi(X)
p = |bi|p = 1 =⇒ |a− 1|p = 1.

Now let m = pnq with p - q (clearly q ∈ N>1) and suppose the thesis holds for every m ∈ N such
that m is not a power of p and pn - m. Then, if a is a primitive m-th root of 1, ap is a primitive
(pn−1q)-th root of 1 and, by inductive hypothesis, we know

|a− 1|p ·
∣∣ap−1 + ap−2 + · · ·+ a+ 1

∣∣
p

= |ap − 1|p = 1.

Since |a|p = 1 we have

|a− 1|p ≤ 1,
∣∣ap−1 + · · ·+ 1

∣∣
p
≤ 1

=⇒ |a− 1|p = 1

which proves the statement.
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We recall that in an ultrametric space, like (Cp, | |p), a sequence is Cauchy if and only if the
difference between adjacent terms tends to 0, and if the space is also complete, an infinite series
converges if and only if its general term tends to 0 (see Lemma 3.5 and Proposition 3.7). Now
we are ready to define analytic functions on Cp and prove some of their basic properties.

Definition 4.4. A function f is an analytic function if

f(X) =

+∞∑
n=0

anX
n, an ∈ Cp.

We can define f(x) for every x ∈ Cp such that the series converges, i.e. |anxn|p → 0 as n→ +∞.

Like in complex analysis, given an analytic function f , we can define its radius of convergence.
Surprisingly we have the exact same formula as in classic analysis.

Proposition 4.5. Let f(X) =
∑+∞

n=0 anX
n be an analytic function. We can define its radius of

convergence as

r :=
1

lim sup|an|1/np

,

with the usual meaning: f converges if |x|p < r and diverges if |x|p > r.

Proof. We recall the definition of lim sup: 1/r is the least real number such that for any C > 1/r

there are only finitely many |an|1/np > C.
Let’s first consider the case |x|p < r: we can write |x|p = (1− ε)r for some ε > 0. We have

|anxn|p =
(
r|an|1/np

)n
· (1− ε)n

and, if n is big enough, by definition of r we have

|an|1/np ≤ 1

r − 1
2εr

.

Then

lim
n→+∞

|anxn|p ≤ lim
n→+∞

(
(1− ε)r

(1− 1
2ε)r

)n
= lim

n→+∞

(
1− ε

1− 1
2ε

)n
= 0,

which gives us the desired convergence.
Let’s now prove that if |x|p > r (and r < +∞) the series diverges. Let’s choose an element
|x|p > r and an ε > 0 such that |x|p ≥ (1 + ε)r. By definition of lim sup we can find a
subsequence (ank)k such that |ank |

1/nk
p ≥ 1/(r + 1

2εr). Then

lim
k→+∞

|ankx
nk |p ≥ lim

k→+∞

(
1 + ε

1 + 1
2ε

)nk
= +∞,

which implies that f cannot converge.
Finally, if r = +∞, i.e. limn→+∞|an|1/np = 0, chosen an element x ∈ C×p (x = 0 is trivial) we
have that, if n is big enough, |an|p ≤ 1/(2n|x|np ) so

lim
n→+∞

|anxn|p ≤ lim
n→+∞

2−n = 0

and f converges everywhere.
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This proposition tells us nothing about the case |x|p = r. In classical analysis there isn’t a
simple answer: for example the well known function

log(1 +X) =
+∞∑
n=1

(−1)n+1X
n

n

has radius of convergence r = 1 on C. When |x| = 1 this series can diverge (for example if
x = −1 we obtain the divergent series −

∑
1/n) or converge (if x = 1 we obtain

∑
(−1)n+1/n,

which converges by Leibniz criterion). This happens because, over R, there are conditionally
convergent series that aren’t absolutely convergent. In p-adic analysis this cannot happen because
convergence only depends on |x|p: a given analytic function behaves exactly in the same way for
every |x|p = r. We will study more deeply this formal series in Cp when we’ll talk about p-adic
logarithm.
Let’s prove two basic facts about analytic functions. For brevity we’ll adopt the notationDa(r) :=
B≤r(a) and Da(r

−) := B<r(a), where we consider the balls in Cp. We’ll also omit the subscript
a if a = 0, for example D(r) = D0(r) = B≤r(0).

Proposition 4.6. Every f(X) ∈ ZpJXK converges in D(1−).

Proof. Let f(X) =
∑+∞

n=0 anX
n ∈ ZpJXK and let x ∈ D(1−). Then

|x|p < 1, |an|p ≤ 1 ∀n ∈ N
=⇒ lim

n→+∞
|anxn|p ≤ lim

n→+∞
|x|np = 0.

Proposition 4.7. Every f(X) =
∑+∞

n=0 anX
n ∈ CpJXK which converges in a disc D = D(r), or

D(r−), is continuous on D.

Proof. Let’s first prove continuity in 0. Let x ∈ D such that |x|p < δ < r (δ > 0 will be chosen
later); then, by continuity of absolute value, we have

|f(x)− f(0)|p =

∣∣∣∣∣
+∞∑
n=1

anx
n

∣∣∣∣∣
p

≤ max
n∈N×

|anxn|p ≤ max
n∈N×

(
|an|p · δ

n
)
.

Clearly, since f converges on D, we must have 1/r′ > lim sup|an|1/np where δ < r′ < r so, for a
large enough N , |an|p < r′−n if n > N . Let’s introduce

C(δ) := max
1≤n≤N

(
|an|p · δ

n
)

;

it’s obvious that C(δ)→ 0+ as δ → 0+. Instead, if n > N , we have

|an|p · δ
n ≤

(
δ

r′

)n
≤
(
δ

r′

)N
,

since δ/r′ < 1. Then

|f(x)− f(0)|p ≤ max

{
C(δ),

(
δ

r′

)N}
and we can make the right member as small as we want by choosing smaller δ. This proves
continuity in 0.
Let’s now prove continuity in 0 6= x ∈ D and consider y ∈ D such that |x− y|p < δ, where
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δ < |x|p will be chosen later, as before. Then, by the isosceles triangle principle, |x|p = |y|p. We
have

|f(x)− f(y)|p =

∣∣∣∣∣
+∞∑
n=1

(anx
n − anyn)

∣∣∣∣∣
p

≤ max
n∈N×

(
|an|p · |x

n − yn|p
)
≤

≤ max
n∈N×

(
|an|p ·

∣∣(x− y)(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1)
∣∣
p

)
but

∣∣xn−1 + xn−2y + · · ·+ xyn−2 + yn−1
∣∣
p
≤ max1≤i≤n

∣∣xn−iyi−1
∣∣
p

= |x|n−1
p hence

|f(x)− f(y)|p ≤ max
n∈N×

(
|x− y|p · |an|p|x|

n−1
p

)
<

δ

|x|p
· max
n∈N×

(
|an|p · |x|

n
p

)
.

We know that limn→+∞|an|p|x|
n
p = 0 so as δ → 0+ we have |f(x)− f(y)|p → 0, which proves

the statement.

Definition 4.8. The (partial) function logp(1 +X) : Cp → Cp defined by

logp(1 + x) :=
+∞∑
n=1

(−1)n+1x
n

n

is the p-adic logarithm.

Proposition 4.9. The function logp(1 +X) converges on D(1−) and diverges elsewhere.

Proof. It’s immediate to verify that the series converges if |x|p < 1 and diverges if |x|p ≥ 1.
In-fact |an|p = pordp n so limn→+∞|an|1/np = limn→+∞ p

(ordp n)/n = 1 and we obtain the desired
radius of convergence. Lastly, if |x|p = 1, we have |anxn|p = pordp n ≥ 1 so the series diverges.

From now on, unless otherwise specified, we’ll use logp meaning the p-adic logarithm we
have just defined. Let’s now prove the basic property of logarithms, which also holds in p-adic
environment.

Proposition 4.10. The logarithm of a product is the sum of the logarithms. More precisely, if
x, y ∈ D(1−) then logp [(1 + x)(1 + y)] = logp(1 + x) + logp(1 + y).

Proof. First of all let’s observe that x, y ∈ D(1−) =⇒ x+ y + xy ∈ D(1−), so we can compute
the logarithms. By definition

logp [(1 + x)(1 + y)] =
+∞∑
n=1

(−1)n+1 (x+ y + xy)n

n
.

If we work in R with the usual metric we already know that log [(1 + x)(1 + y)] = log(1 + x) +
log(1 + y) and, using the Taylor expansion of log, we have

+∞∑
n=1

(−1)n+1x
n

n
+

+∞∑
n=1

(−1)n+1 y
n

n
=

+∞∑
n=1

(−1)n+1 (x+ y + xy)n

n

for every x, y ∈
[
−1

2 ,
1
2

]
. Thanks to Proposition 4.1 we infer that this relation also holds in

the ring of formal power series in two variables QJX,Y K. Then, using the fact that if a series
converges in Cp its terms can be rearranged in any order without changing the sum, we can write

logp [(1 + x)(1 + y)] =
+∞∑
n=1

(−1)n+1 (x+ y + xy)n

n
=

=

+∞∑
n=1

(−1)n+1x
n

n
+

+∞∑
n=1

(−1)n+1 y
n

n
= logp(1 + x) + logp(1 + y)

which concludes the proof.
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Corollary 4.10.1. If 1 + x ∈ Cp is a root of 1 and |x|p < 1, then logp(1 + x) = 0. In particular
if 1 + x is a pm-th root of 1 then logp(1 + x) = 0.

Proof. Let’s first observe that we can actually compute the logarithm of 1+x since by hypothesis
|x|p < 1 (if 1 + x is a pm-th root of 1 then automatically |x|p < 1 by Lemma 4.3). Now we have

k · logp(1 + x) = logp

[
(1 + x)k

]
= logp(1) = 0,

which concludes the proof.

We have obtained a function, defined on a particular disc of Cp, using the Taylor expansion
of the classical log(1+X). Now we would like to define the exponential function, beginning from
the classical exp(x) =

∑+∞
n=0 x

n/n!, and study its relation with the logarithm.

Definition 4.11. The (partial) function expp(X) : Cp → Cp defined by

expp(x) :=
+∞∑
n=0

xn

n!

is the p-adic exponential.

Looking at this series we immediately see that, unlike in the classical case where the n! in
the denominator makes sure the series converges for every x ∈ C, there can be some problems.
In-fact if n! is divisible by a high power of p, its reciprocal will have a big absolute value. More
precisely, we can compute exactly |1/n!|p = pordp (n!).

Lemma 4.12. Given n ∈ N,
ordp(n!) =

n− Sn
p− 1

where Sn is the sum of digits in n to base p.

Proof. Let’s write n in base p:

n = a0 + a1p+ · · ·+ arp
r, ai ∈ {0, . . . , p− 1}, ar 6= 0.

Then Sn = a0 + a1 + · · ·+ an. By definition, ordp (n!) is the maximum t such that pt | (n!). We
can use this little formula to compute it:

ordp (n!) =

+∞∑
k=1

[
n

pk

]
=

r∑
k=1

[
n

pk

]
where [x] is the integer part of x ∈ R, i.e. the only integer such that [x] ≤ x < [x] + 1. Using
the representation of n in base p we have that

[
n/pk

]
= 0 if k > r and, otherwise,[

n

pk

]
=
n− a0 − · · · − ak−1p

k−1

pk

so if we add them together we obtain

r∑
k=1

[
n

pk

]
=

r∑
k=1

n−
∑k−1

j=0 ajp
j

pk
.

With a little bit of computation, recalling that 1 + p+ · · ·+ pk−1 = pk−1
p−1 , we obtain the desired

formula.
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Proposition 4.13. The function expp(X) converges on D(r−p ) and diverges elsewhere, where
rp := p−1/(p−1).

Proof. Using Lemma 4.12 we obtain

|1/n!|p = p
n−Sn
p−1

and, recalling the formula for the radius of convergence r = 1/(lim sup|an|1/np ), we can write

ordp r = −ordp
(

lim sup p−(ordp an)/n
)

= −ordp
(
p− lim inf(ordp an)/n

)
= lim inf

(
ordp an
n

)
so, in our case where an = 1/n!, we obtain

ordp r = lim inf

(
− n− Sn
n(p− 1)

)
.

We can use the easy upper bound Sn ≤ (p− 1) · ordp n to prove

lim
n→+∞

Sn − n
n(p− 1)

= − 1

p− 1

so the exponential series
∑+∞

n=0 x
n/n converges if |x|p < p−1/(p−1) = rp and diverges if |x|p >

p−1/(p−1) = rp. If |x|p = rp, i.e. ordp x = 1/(p− 1), we have

ordp (anx
n) = −n− Sn

p− 1
+

n

p− 1
=

Sn
p− 1

and, choosing n = pm so Sn = 1, we have
∣∣apmxpm∣∣p = p−1/(p−1) > 0; we have found a

subsequence of (|anxn|p)n which does not converge to zero so we conclude that if |x|p = rp the
exponential series diverges.

We immediately note thatD(r−p ) ( D(1−), i.e. expp converges in a smaller disc than logp. We
now prove that, like in the classical case, the p-adic exponential transforms sums into products.

Proposition 4.14. If x, y ∈ D(r−p ) then expp(x+ y) = expp(x) · expp(y).

Proof. Let’s first observe that x, y ∈ D(r−p ) =⇒ x+ y ∈ D(r−p ) so we can compute expp(x+ y).
The rest of the proof is completely analogue to the proof of Proposition 4.10, using the fact that
exp(x + y) = exp(x) · exp(y) if x, y ∈ R (which then can be translated to a relation between
power series by Proposition 4.1).

Finally we have all the tools we need to prove the relation between p-adic exponential and
logarithm.

Proposition 4.15. The functions logp, defined by x 7→ logp(1 + (x − 1)), and expp give mu-
tually inverse isomorphisms between the multiplicative group (D1(r−p ), ·) and the additive group
(D(r−p ),+).

Proof. First of all let’s observe that expp : D(r−p )→ D1(r−p ) and logp : D1(r−p )→ D(r−p ) so that
the proposition actually makes sense. To prove that expp(x) ∈ 1 +D(r−p ) ⊂ 1 +D(1−) let’s note
that

x ∈ D(r−p ) =⇒ ordp
(
xn

n!

)
= n · ordp (x)− ordp (n!) >

n

p− 1
− n− Sn

p− 1
=

Sn
p− 1

≥ 1

p− 1
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so we have

ordp (expp(x)− 1) = ordp

(
+∞∑
n=1

xn

n!

)
≥ min

n≥1

{
ordp

(
xn

n!

)}
>

1

p− 1

=⇒ expp(x) ∈ 1 +D(r−p ).

Instead, to prove that logp(1 + x) ∈ D(r−p ) if x ∈ D(r−p ) let’s observe that

ordp
(
xn

n

)
− 1

p− 1
>

n

p− 1
− ordp (n)− 1

p− 1
=
n− 1

p− 1
− ordp (n) =: f(n).

We claim that f has its minima at n = 1 and n = p, where it’s zero. To see why this is true
let’s first observe that we can just consider the case where n = pk for k ∈ N since if n′ = pkm
with p - m we have f(n′) ≥ f(n). It is then an easy calculation to verify that f(pk+1) ≥ f(pk)
for k ∈ N. Thus we have

ordp (logp(1 + x)) = ordp

(
+∞∑
n=1

(−1)n+1x
n

n

)
≥ min

n>0

{
ordp

(
xn

n

)}
>

1

p− 1

which means precisely logp(1 + x) ∈ D(r−p ).
We have already proved in some previous propositions that expp : (D(r−p ),+)→ (D1(r−p ), ·) and
logp : (D1(r−p ), ·)→ (D(r−p ),+) are group morphisms so now we have only to prove that they are
mutually inverse.
To see that logp ◦ expp : D(r−p )→ D(r−p ) is the identity function we compute

logp(expp(x)) =
+∞∑
n=1

(−1)n+1 (expp(x)− 1)n

n
=

+∞∑
n=1

(−1)n+1

(∑+∞
m=1

xm

m!

)n
n

.

Since if x ∈ R we have log(exp(x)) = x we infer, by Proposition 4.1, that the following formal
identity holds in QJXK:

+∞∑
n=1

(−1)n+1

(∑+∞
m=1

Xm

m!

)n
n

= X

which implies logp(expp(x)) = x for x ∈ D(r−p ). The same exact reasoning can be also used to
prove expp(logp(1 + x)) = 1 + x for x ∈ D(r−p ).

This proposition implies, in particular, that logp is injective on D1(r−p ). It is easy to see that
this is the biggest disc where this is true: in-fact if ζ ∈ Cp is a primitive p-th root of 1 then, by
Lemma 4.3, |ζ − 1|p = p−1/(p−1) = rp and logp(ζ) = 0 = logp(1).

Definition 4.16. The (partial) functions sinp : Cp → Cp and cosp : Cp → Cp defined by

sinp(x) :=

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

cosp(x) :=

+∞∑
n=0

(−1)n
x2n

(2n)!

are the p-adic sine and the p-adic cosine.

It’s easy to prove that sinp and cosp are defined on D(r−p ).
Another important function in classical analysis is the binomial expansion

Ba(x) =

+∞∑
n=0

(
a

k

)
xn
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where x, a ∈ C and we used the generalized binomial coefficient defined by:(
a

k

)
:=

{
1, if k = 0

a(a−1)...(a−k+1)
k! , otherwise

.

This is exactly the MacLaurin series of f(x) = (1 + x)a. Using ratio test it can be proved that
for any a ∈ C this series converges if |x| < 1 and, unless a ∈ N, diverges if |x| > 1. Its behaviour
when |x| = 1 is a little more complicated and depends on the value of a. We’ll now try to define
an analogue function in the p-adic environment.

Definition 4.17. Fixed a ∈ Cp, the (partial) function Ba,p(X) : Cp → Cp defined by

Ba,p(X) :=

+∞∑
n=0

(
a

n

)
Xn = 1 +

+∞∑
n=1

a(a− 1) . . . (a− n+ 1)

n!
Xn

is the p-adic binomial expansion

We’ll now try to study where it converges (it will be more complicated than the previous
functions, since this is actually the first series with coefficient in Cp, and not in Q).

Proposition 4.18. If |a|p > 1 then the region of convergence of Ba,p(X) is D((rp/|a|p)−).
Instead, if |a|p ≤ 1 the binomial expansion surely converges on D(r−p ) (although the region of
convergence can be bigger). Finally, if a ∈ Zp then Ba,p(X) ∈ ZpJXK so it surely converges on
D(1−).

Proof. Let’s suppose |a|p > 1. Then, by the isosceles triangle principle, if i ∈ Z then |a− i|p =
|a|p and we obtain that the n-th term of the series has norm |ax|np/|n!|p. Thus, with a little
computation, we obtain that the radius of convergence is r = p−1/(p−1)/|a|p = rp/|a|p. Similarly
to the exponential case it’s easy to prove that the region of convergence if D((rp/|a|p)−).
If |a|p ≤ 1 it is more difficult to find the exact region of convergence; anyway if i ∈ Z we have
|a− i|p ≤ max{|a|p, |i|p} ≤ 1 so

∣∣(a
n

)
xn
∣∣
p
≤ |xn/n!|p. Then Ba,p(X) surely converges on D(r−p ).

To prove that if a ∈ Zp then Ba,p(X) ∈ ZpJXK we just need to show that
(
a
n

)
∈ Zp for every

n ∈ N (we already know
(
a
n

)
∈ Qp). Let’s fix n and choose a0 ∈ Z such that a0 > n and

ordp (a − a0) > N , where N will be chosen later (to choose a0 we can just truncate the p-adic
expansion of a ∈ Zp at some index greater than N). Now

(
a0
n

)
∈ Z ⊂ Zp and it suffices to show

that
∣∣(a0
n

)
−
(
a
n

)∣∣
p
≤ 1 for a suitable N (then we can conclude using the ultrametric inequality).

This easily follows from the continuity of the polynomial X(X − 1) . . . (X − n+ 1) (special case
of Proposition 4.7). Then Ba,p(X) ∈ ZpJXK if a ∈ Zp so, by Proposition 4.6, it converges in
D(1−).

We can now prove the main property of the binomial expansion, and justify the shorthand
Ba,p(X) = (1 +X)a, at least for a ∈ Q.

Proposition 4.19. If a ∈ Q× and x ∈ Cp is in the region of convergence of Ba,p(X), then
[Ba,p(x)]1/a = 1 + x.

Proof. Let’s first consider a = 1/m with m ∈ Z×. The idea behind the proof is the usual one: if
x ∈ R and |x| < 1 we have B1/m(x) = (1+x)1/m so B1/m(x)m = 1+x which, by Proposition 4.1,
gives us the formal identity between the two power series in QJXK (observe that m < 0 doesn’t
create problems since B1/m(X) is an invertible element of QJXK) that we then translate into an
equality between p-adic analytic functions (observe the trivial fact a ∈ Q =⇒ Ba,p(X) ∈ QJXK).
We must pay attention only to the last step, i.e. we can substitute only x in the region of
convergence of B1/m,p(X) so, for example, if p | m we can use x ∈ D((rp|m|p)−) and if p - m we
can choose x ∈ D(r−p ). We have proved that B1/m,p(x)m = 1 + x for every x where B1/m,p(X)
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converges.
Now let a = n/m with n,m ∈ Z×. It is easy to prove, using the same technique as before, that
Bn/m,p(X) = B1/m,p(X)n. Then we can write

Bn/m,p(X)m/n = B1/m,p(X)m = 1 +X,

which proves the thesis.

We can use the p-adic binomial expansion to study an interesting example of how the same
convergent series in (Q, | |) and in (Qp, | |p) can have different sums.

Example 4.20. Let’s consider the following power series:

B1/2

(
7

9

)
=

+∞∑
n=0

(
1/2

n

)(
7

9

)n
∈ QJXK,

B1/2,7

(
7

9

)
=

+∞∑
n=0

(
1/2

n

)(
7

9

)n
∈ Q7JXK.

They are exactly the same power series but they converge to different numbers, both of which
are of course square roots of 16

9 (clearly its square roots are the same both in Q and in Q7). In
the first case, working in (Q, | |), we have

B1/2

(
7

9

)
=

(
1 +

7

9

)1/2

=
4

3
> 0.

Instead, in the second case, we have

B1/2,7

(
7

9

)
=

(
1 +

7

9

)1/2

= −4

3
< 0.

In-fact, ord7

(
7
9

)
= 1 so for n ≥ 1 we have∣∣∣∣1/2(1/2− 1) . . . (1/2− n+ 1)

n!
·
(

7

9

)n∣∣∣∣
7

≤ 7−n

|n!|7
= 7

−5n−Sn
6 < 1

so it must be B1/2,7

(
7
9

)
≡ 1 mod 7. Now it’s easy to see that −4

3 ≡ 1 mod 7 and 4
3 ≡ −1

mod 7. We conclude that necessarily B1/2,7

(
7
9

)
= −4

3 .

This example also warns us about the danger of using the notation Ba,p(X) = (1 + X)a,
which comes certainly handy sometimes but we have to remember that it can yield different
results than the ones we would expect on R.

4.2 The Iwasawa logarithm and Artin-Hasse exponential

Definition 4.21. Let X ⊆ Cp be a set with no isolated points. A function f : X → Cp is
differentiable at a ∈ X if

∃ lim
X3x→a

f(x)− f(a)

x− a
=: f ′(a) ∈ Cp.

Equivalently, f is differentiable at a ∈ X if

f(x) = f(a) + (x− a)f ′(a) + (x− a)ϕ(x), lim
X3x→a

ϕ(x) = 0.

We also introduce a stronger notion of differentiability for p-adic functions, which will give
us some analogue theorems to the classical case.
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Definition 4.22. Let X ⊆ Cp be a set with no isolated points. A function f : X → Cp is strictly
differentiable at a ∈ X (and we write f ∈ S1(a)) if the difference quotients

Φf(x, y) :=
f(x)− f(y)

x− y

tends to Cp 3 ` = f ′(a) as X × X \ ∆X 3 (x, y) → (a, a). Here we used the notation ∆X =
{(x, x) : x ∈ X} ⊂ X ×X. We say f ∈ S1(X) if f ∈ S1(a) for every a ∈ X.

In the classical case this definition is not very useful: in-fact if I ⊂ R is an open interval and
f ∈ C1(I,R) then f is strictly differentiable at every point of I. In the next example we’ll see
this is not the case in p-adic analysis.

Example 4.23. Let’s consider the sequence of disjoint open balls (Bn)n≥1 defined by

Bn := {x ∈ Zp : |x− pn|p <
∣∣p2n

∣∣
p
} ⊆ {x ∈ Zp : |x|p = |pn|p}

and let f : Zp → Cp defined by

f(x) :=

{
p2n, if x ∈ Bn;
0, otherwise;

.

The function f is constant on each open ball Bn, hence f is locally constant outside the origin.
Then f is differentiable at every Zp 3 x 6= 0 and f ′(x) = 0. At the origin

lim
Zp3x→0

f(x)− f(0)

x
= lim
Zp3x→0

f(x)

x
= 0

so f ′(0) = 0 (to see why it is true, let x = upn, u ∈ Z×p ; then f(x) = p2n and so f(x)
x = u−1pn).

Then f ′ : Zp → Cp is identically 0 so it is obviously continuous (i.e. f ∈ C1) but f is not strictly
differentiable at 0. In-fact, let’s consider Φf(x, y) where x = xn = pn and y = yn = pn − p2n:

Φf(xn, yn) =
f(xn)− f(yn)

xn − yn
=
p2n − 0

p2n
= 1

so, if we consider this particular path (xn, yn)→ (0, 0) as n→ +∞ we obtain

0 = f ′(0) 6= lim
n→+∞

Φf(xn, yn) = 1,

which implies f is not strictly differentiable at 0 (we have used that |yn|p = |pn|p and yn /∈ Bn).

We’ll now prove a proposition which we’re very familiar with in classical analysis.

Proposition 4.24. If f : X → Cp is strictly differentiable at a ∈ X and f ′(a) 6= 0, then there is
a neighbourhood V of a ∈ X in which f is injective.

Proof. Since f ∈ S1(a) and |f ′(a)|p > 0 we can find a neighbourhood V of a such that∣∣Φf(x, y)− f ′(a)
∣∣
p
<
∣∣f ′(a)

∣∣
p

for (x, y) ∈ V × V \∆V .

Then, by the isosceles triangle principle, we must have |Φf(x, y)|p = |f ′(a)|p which means exactly

|f(x)− f(y)|p =
∣∣f ′(a)

∣∣
p
|x− y|p for (x, y) ∈ V × V .

Let’s now focus on analytic functions; they are, like in the classical case, everywhere strictly
differentiable any number of times (i.e. they’re in

⋂
k>0 S

k). We’ll only prove it for k = 1.
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Theorem 4.25. Let f(X) =
∑

n≥0 anX
n be an analytic function which converges on D =

D(r−). Then f ∈ S1(D) and f ′ is given by

f ′(X) =
+∞∑
n=1

nanX
n−1.

Proof. It’s immediate to note that the radius of convergence of f ′ is greater or equal to r, the
radius of convergence of f , since |n|p ≤ 1 for every n ∈ N. First of all let’s fix x ∈ D and prove
that

lim
h→0

∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣
p

= 0.

We can re-write this limit as

lim
h→0

∣∣∣∣∣
+∞∑
n=2

an ·
(

(x+ h)n − xn

h
− nxn−1

)∣∣∣∣∣
p

= 0;

and using the binomial theorem on (x+ h)n we can then write

lim
h→0

∣∣∣∣∣
+∞∑
n=2

an ·

(
n−2∑
i=0

(
n

i

)
xihn−1−i

)∣∣∣∣∣
p

= 0.

Let’s now distinguish two cases: x = 0 and x 6= 0.
If x = 0 then we must prove limh→0

∣∣∑+∞
n=2 an · hn−1

∣∣
p

= 0, which easily follows from

lim
h→0

∣∣∣∣∣
+∞∑
n=2

an · hn−1

∣∣∣∣∣
p

≤ lim
h→0

(
|h|p ·max

n≥2

{∣∣anhn−2
∣∣
p

})
= 0,

where we considered 0 < |h|p < r and exploited the fact that limn→+∞
∣∣anhn−2

∣∣
p

= 0 so the
maximum in the limit above is bounded.
Now, assuming x 6= 0 and 0 < |h|p < |x|p, it’s easy to see that∣∣∣∣∣

n−2∑
i=0

(
n

i

)
xihn−1−i

∣∣∣∣∣
p

≤ |h|n−1
p · max

0≤i≤n−2

{∣∣xih−i∣∣
p

}
≤ |h|n−1

p ·

(
|x|p
|h|p

)n−2

= |h|p · |x|
n−2
p .

Then we have ∣∣∣∣∣
+∞∑
n=2

an ·

(
n−2∑
i=0

(
n

i

)
xihn−1−i

)∣∣∣∣∣
p

≤ |h|p ·max
n≥2

{∣∣anxn−2
∣∣
p

}
,

and since limn→+∞
∣∣anxn−2

∣∣
p

= 0 the maximum above is bounded so

lim
h→0

∣∣∣∣∣
+∞∑
n=2

an ·

(
n−2∑
i=0

(
n

i

)
xihn−1−i

)∣∣∣∣∣
p

≤ lim
h→0

(
|h|p ·max

n≥2

{∣∣anxn−2
∣∣
p

})
= 0.

We have proved that f is differentiable everywhere and f ′ is its derivative.
We won’t prove here that f is actually strictly differentiable: a proof of this statement for a
particular case (where r ≥ 1, i.e. limn→+∞|an|p = 0) can be found at [6, p. 239].

Example 4.26. We can now prove one well known result of classical analysis: the derivative
of ex is ex. More precisely, if x ∈ D(r−p ) then d

dx expp(x) = expp(x). It easily follows applying
Theorem 4.25:

d

dx
expp(x) =

d

dx

(
+∞∑
n=0

xn

n!

)
=

+∞∑
n=1

xn−1

(n− 1)!
= expp(x).
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Definition 4.27. Let f : Cp → Cp be a (partial) function. If for every x in its domain there
exists a neighbourhood where f is a power series, we say that f is locally analytic.

We present now two p-adic locally analytic functions: the Iwasawa logarithm and the Artin-
Hasse exponential.

Proposition 4.28. There exists a unique function Logp : C×p → Cp such that:

(1) Logp agrees with logp in D1(1−), i.e.,

Logp(x) =

+∞∑
n=1

(−1)n+1 (x− 1)n

n
for |x− 1|p < 1;

(2) Logp(xy) = Logp(x) + Logp(y) for all x, y ∈ C×p ;

(3) Logp(p) = 0.

Proof. We recall from Proposition 3.40 that any non-zero x ∈ Cp can be written as x =
prω(x1)〈x1〉, where pr is a root of the equation Xb − pa = 0 where r = a

b = ordp (x), ω(x1)
is a root of 1 and |〈x1〉 − 1|p < 1. If such an extension of the logarithm exists, then, by (2) and
(3), it must be

Logp(x) = Logp(p
r) + Logp(ω(x1)) + Logp(〈x1〉) = 0 + 0 + Logp(〈x1〉) = logp(〈x1〉),

since 〈x1〉 ∈ D1(1−). Then there is at most one extension of the logarithm and it is the one
defined by

Logp(x) := logp(〈x1〉).

First of all we have to show that this is well defined: in-fact we could have chosen another root
of Xb − pa = 0 and we would have obtained a different factorization of the same element. Let’s
suppose that

x = pr · ω(x1) · 〈x1〉 =
pr

ζ
· ω
(
x1ζ
)
·
〈
x1ζ
〉
,

where ζ ∈ Cp is a b-th root of unity and ζ = ζ + M ∈ A/M (we recall that A = D(1),M =
D(1−) in Cp). We have to prove then that logp(〈x1〉) = logp(

〈
x1ζ
〉
). Let’s first recall how the

Teichmüller representatives are defined: if Fp is the algebraic closure of Fp then ω : Fp → Zunram
p

is a section of the projection π : Zunram
p � Zunram

p /pZunram
p = Fp such that ω(x)p

f−1 = 1 if
x ∈ F×

pf
and ω(0) = 0 (it is immediate that since ω can be defined on every finite field of

characteristic p, see the proof of Proposition 3.28, it can be extended to Fp). It’s easy to see that
ω : Fp

× →
(
Zunram
p

)× is a group morphism, i.e. ω(xy) = ω(x) · ω(y): in-fact if x, y ∈ Fpf then
ω(xy) is defined as the only element of Zunram

p such that ω(xy)p
f

= ω(xy) and π(ω(xy)) = xy
and it’s clear that ω(x) ·ω(y) satisfies both these conditions. We also recall from Proposition 3.40
that we can find a big enough f ∈ N such that

Fpf 3 x1 =
x

pr
+M,

Fpf 3 x1ζ =
xζ

pr
+M =

(
x

pr
+M

)
· (ζ +M).

Explained all the notations, we can finally write

ω
(
x1ζ
)

= ω(x1) · ω
(
ζ
)

=⇒
〈
x1ζ
〉

=
xζ

pr · ω
(
x1ζ
) = 〈x1〉 ·

ζ

ω
(
ζ
) .
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Now, since ζb = 1, we have ζb = 1 so ω
(
ζ
)b

= 1, since ω is a group morphism and ω(1) = 1.
Finally, (

ζ

ω
(
ζ
))b =

ζb

ω
(
ζ
)b = 1

so ξ := ζ

ω(ζ)
is a root of 1. Let’s prove that |ξ − 1|p < 1; let’s suppose by contradiction that

ξ = 1 + ∆ with |∆|p ≥ 1 and let’s write 〈x1〉 = 1 + δ with |δ|p < 1. We know by hypothesis that
〈x1ζ〉 ∈ D1(1−) so we must have

|(1 + δ) · (1 + ∆)− 1|p = |δ + ∆ · (1 + δ)|p < 1

but since |δ|p < 1 and |1 + δ|p = 1, we have |∆ · (1 + δ)|p = |∆|p ≥ 1 so

|δ + ∆ · (1 + δ)|p = max
{
|δ|p, |∆ · (1 + δ)|p

}
= |∆|p ≥ 1,

which is absurd (here we have used several times the isosceles triangle principle). We have proved
that ξ is a root of 1 with |ξ − 1|p < 1 so we can compute logp(ξ) = 0. Then

logp
(〈
x1ζ
〉)

= logp(〈x1〉) + logp(ξ) = logp(〈x1〉)

and the function Logp is well defined.
Properties (1) and (3) are now obvious from the definition: if x ∈ D1(1−) then we can choose
x = 〈x〉 so Logp(x) = logp(x) and p = p1 · 1 · 1 so Logp(p) = logp(1) = 0. To prove (2) let
x = prω(x1)〈x1〉, y = psω(y1)〈y1〉 and z = xy = pr+sω(z1)〈z1〉. Now pr+s isn’t necessarily
the same fractional power as prps (it can differ by a root of unit), but we can choose to use
exactly prps, since the value of Logp doesn’t depend on the choice of the fractional power. In
this case we’ll have z1 = z

prps +M = x1y1 so ω(z1) = ω(x1) · ω(y1) and 〈z1〉 = 〈x1〉 · 〈y1〉. Then
Logp(xy) = Logp(x) + Logp(y).

Proposition 4.29. Logp is locally analytic on C×p with derivative C×p 3 x 7→ 1
x .

Proof. Let’s fix a point x0 ∈ C×p and let r := |x0|p. For every x ∈ Dx0(r−) (the largest disc

about x0 which doesn’t contain 0) we have
∣∣∣ xx0 − 1

∣∣∣
p
< 1 and so

Logp(x) = Logp

(
x0 ·

(
1 +

x

x0
− 1

))
= Logp(x0) +

+∞∑
n=1

(−1)n+1 · (x− x0)n

n · xn0
.

We have just proved that, in a neighbourhood of x0, Logp can be represented by a convergent
power series in x− x0. Since this reasoning can be done for any x0 ∈ C×p we can conclude that
Logp is locally analytic.
Let’s consider x ∈ Dx0(r−) as above: using the locally analyticity of Logp and Theorem 4.25 we
obtain:

d

dx
Logp(x) =

+∞∑
n=1

(−1)n+1 · (x− x0)n−1

xn0
= x−1

0 ·
+∞∑
n=0

(
1− x

x0

)n
=

x−1
0

(x/x0)
=

1

x
.

We have found a locally analytic function defined on C×p which extends logp and has the
same basic properties.

It is now natural to try to build a homomorphism f : Cp → C×p extending the exponential,
which is only defined in D(r−p ). If there exists such an extension then, fixed x ∈ C×p and n ∈ N
such that pnx ∈ D(r−p ), then

f(x)p
n

= f(pnx) = expp(p
nx)

so f(x) must be a pn-th root of expp(p
nx). As stated in the next proposition, this extension can

actually be done in a coherent way.
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Proposition 4.30. There exists a continuous homomorphism Exp: Cp → D1(1−) extending
expp.

Proof. The idea behind the proof exploits the fact that, since (D1(1−), ·) is a divisible group,
there is an extension property for homomorphisms defined over subgroups. For the whole proof
see [6, p. 259].

Unlike the Iwasawa logarithm, the extensions Exp of the exponential are not defined in a
canonic way so they’re not very useful. Anyway it is easy to prove that, chosen such an extension
Exp, logp ◦Exp = idCp . In-fact:

pn ·
(
logp ◦Exp(x)

)
= logp

(
Exp(x)p

n)
= logp (Exp (pnx)) = logp

(
expp (pnx)

)
= pnx.

We’ll now describe a slightly different exponential function which converges in D(1−): the
Artin-Hasse exponential. Before defining it we’ll need to study some basic properties of the well
known Möbius function.

Definition 4.31. Let µ : N× → N be defined by

µ(n) :=

{
0, if n is divisible by a perfect square greater than 1;
(−1)k, if n is a product of k distinct prime factors;

.

This is the Möbius function.

Proposition 4.32. Let n ∈ N×, then

∑
d|n

µ(d) =

{
1, if n = 1;
0, otherwise;

.

In particular, if p is a prime,

∑
d|n, p-d

µ(d) =

{
1, if n is a power of p;
0, otherwise;

.

Proof. The case n = 1 is trivial (µ(1) = 1). Let n = pa11 . . . pass with s ≥ 1 and pi prime for every
i = 1, . . . , s. Then, by an easy combinatoric argument, we have∑

d|n

µ(d) =
∑

εi=0∨1

µ(pε11 . . . pεss ) =
∑

εi=0∨1

(−1)
∑
εi = (1− 1)s = 0.

The second statement is just a particular case of the first one applied to n · p−ordp (n) in place of
n.

Proposition 4.33. In QJXK the following holds:

exp(X) =
+∞∏
n=1

B−µ(n)/n(−Xn).

Proof. First of all let’s observe that the infinite product of series actually makes sense: in-fact
B−µ(n)/n, p(−Xn) = 1 + µ(n)

n Xn+o(Xn) so the n-th factor has no power of X less than the n-th,
so only a finite number of series is involved to determine the coefficient of any power of X. To
prove that the identity holds we’ll use Proposition 4.1; let x ∈ R with |x| < 1, then we know
that

B−µ(n)/n(−xn) = (1− xn)−
µ(n)
n .
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Taking the (classical) log of the right side we obtain

log

(
+∞∏
n=1

(1− xn)−
µ(n)
n

)
= −

+∞∑
n=1

µ(n)

n
· log(1−xn) =

+∞∑
n=1

µ(n)

n
·

+∞∑
m=1

xnm

m
=

+∞∑
j=1

xj
j
·
∑
n|j

µ(n)


where in the last step we set j = nm and we rearranged the terms of the series since it is
absolutely convergent. To see why this is true, let’s consider

+∞∑
n=1

∣∣∣∣µ(n)

n

∣∣∣∣ · |log(1− xn)| ≤
+∞∑
n=1

|log(1− xn)|
n

.

Since |log(1− xn)| ∼ −|x|n as n→ +∞, we can just study the convergence of the series

+∞∑
n=1

|x|n

n
,

which converges since it is dominated by the convergent geometric series
∑+∞

n=1|x|
n (we’re using

|x| < 1). Now that we have justified why we can rearrange terms, using Proposition 4.32, we
obtain

log

(
+∞∏
n=1

(1− xn)−
µ(n)
n

)
=

+∞∑
j=1

xj
j
·
∑
n|j

µ(n)

 = x = log(exp(x))

=⇒ exp(x) =
+∞∏
n=1

(1− xn)−
µ(n)
n

which, translated back to formal power series, concludes the proof.

We have just proved that

expp(X) =

+∞∏
n=1

B−µ(n)/n, p(−Xn)

(recall that B−µ(n)/n, p(X) = B−µ(n)/n(X) and expp(X) = exp(X), as elements of QJXK). With
this new expression of expp(X) we can understand where convergence “problems” arise. In-fact
if p | n and n is square-free (so µ(n) 6= 0) then |µ(n)/n|p = |n|−1

p ≥ p so B−µ(n)/n, p(−Xn)

converges only if |x|np ∈ D((rp|n|p)−) (see Proposition 4.18). If n = p we have convergence
precisely when

|x|p <
(
p−1/(p−1) · p−1

) 1
p

= p−1/(p−1) = rp.

Instead, if p - n, we have no problems, since −µ(n)
n ∈ Zp and, by Proposition 4.18, we have

B−µ(n)/n, p(−Xn) ∈ ZpJXK so x ∈ D(1−) guarantees convergence. This motivates the following
definition.

Definition 4.34. The (partial) function Ep(X) : Cp → Cp defined by

Ep(X) :=

+∞∏
n=1
p-n

B−µ(n)/n, p(−Xn) =

+∞∏
n=1
p-n

(1−Xn)−
µ(n)
n

is called the Artin-Hasse exponential.

We observe again that B−µ(n)/n, p(−Xn) ∈ 1 +XnQJXK so the infinite product makes sense.
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Proposition 4.35. In QJXK the following holds:

Ep(X) = expp

(
+∞∑
i=0

Xpi

pi

)
.

Proof. As usual let’s consider x ∈ R with |x| < 1: then

Ep(x) :=
+∞∏
n=1
p-n

(1− xn)−
µ(n)
n

and taking logarithm we obtain

log (Ep(x)) = −
∑
n=1
p-n

µ(n)

n

(
+∞∑
m=1

xmn

m

)
=

+∞∑
j=1

xj
j
·
∑
n|j, p-n

µ(n)

 ,

where in the last step we set j = nm and we rearranged the terms of the series (we can do it,
the proof is analogue to the one given in Proposition 4.33). Using Proposition 4.32 we obtain
the following relation (in R):

log (Ep(x)) =
+∞∑
m=0

xp
m

pm
=⇒ Ep(x) = exp

(
+∞∑
m=0

xp
m

pm

)
.

We can conclude immediately applying Proposition 4.1 (recall that expp and exp are exactly the
same formal series in QJXK).

At this point it is very easy to prove that Ep(X) converges on D(1−) (much better than the
smaller disc of convergence of expp(X)).

Proposition 4.36. The Artin-Hasse exponential Ep(X) converges on D(1−).

Proof. We recall the definition of Ep:

Ep(X) :=
+∞∏
n=1
p-n

B−µ(n)/n, p(−Xn).

Now if p - n we have already proved that B−µ(n)/n, p(−Xn) ∈ 1 + Xn(Zp ∩ Q)JXK so the whole
series Ep(X) has coefficients in Zp ∩Q. Then we conclude using Proposition 4.6.

We could have proved directly that expp

(∑+∞
n=0

xp
n

pn

)
∈ ZpJXK using the Dwork’s lemma.

In-fact we already know that Ep(X) ∈ 1 +XQpJXK and we can compute

Ep(X
p) = expp

(
+∞∑
n=0

Xpn+1

pn

)
,

Ep(X)p = expp

(
+∞∑
n=0

Xpn

pn−1

)
= expp

(
pX +

+∞∑
n=0

Xpn+1

pn

)
,

where we used expp(Y )p = expp(pY ) (this formal identity can be easily verified using Proposi-

tion 4.1). Since expp(X)

expp(Y ) = expp(X − Y ) (also easy to prove) we have

Ep(X
p)

Ep(X)p
=

expp

(∑+∞
n=0

Xpn+1

pn

)
expp

(
pX +

∑+∞
n=0

Xpn+1

pn

) = expp(−pX) ∈ 1 + pXZpJXK

and we can conclude that Ep(X) ∈ 1 +XZpJXK thanks to Lemma 4.2.
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We’ll now introduce a very useful tool to study radius of convergence and zeroes of an analytic
function: the Newton polygon. We’ll first introduce it for polynomials and then try to generalize
our results to power series.

5.1 Newton polygons for polynomials

Definition 5.1. Let f(X) = 1 +
∑n

i=1 aiX
i ∈ 1 + XCp[X] be a polynomial and consider the

following set of points in R2:

Γ := {(0, 0)} ∪ {(i, ordp ai) | ai 6= 0, i ∈ {1, . . . , n}} .

The Newton polygon of f(X) is the inferior convex hull of these points, i.e. the highest convex
polygonal line joining (0, 0) with (n, ordp an) which passes on or below all the points in Γ.

A nice way to think at the Newton polygon is the following: we begin with a vertical line
through (0, 0) and we rotate it about (0, 0) counter-clockwise until we hit some point of Γ; then
we consider the segment joining (0, 0) with the last point we hit (P ) as the first segment of the
Newton polygon and we continue to rotate the line counter-clockwise about P and repeat the
procedure.

Example 5.2. In Fig. 5.1 it is shown the Newton polygon for f(X) = 1+X2+ 1
3X

3+3X4+54X5

in Q3[X].

Let’s introduce some basic terms we’ll adopt from now on.

Definition 5.3. The vertices of the Newton polygon are the points
(
ij , ordp aij

)
where the slope

changes, the segments of the Newton polygon are the segments joining one vertex to the next
one; if a segment joins (i,m) to (i′,m′) its slope is m′−m

i′−i and its length is i′ − i, i.e. the length
of its projection onto the horizontal axis.

We have defined the Newton polygon only for a polynomial with constant term 1, but this
doesn’t cause loss of generality because the main use of the Newton polygon is to characterize

Figure 5.1: Newton polygon of f(X) ∈ Q3[X]
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zeroes (and radius of convergence) of f(X). Given a generic g(X) ∈ Cp[X] we can write:

g(X) = bkX
k + · · ·+ bnX

n = bk ·Xk ·
(

1 +
bk+1

bk
X + · · ·+ bn

bk
Xn−k

)
=: bk ·Xk · f(X)

and we can study f(X), which satisfies our initial hypothesis. Before proving our main result
about the Newton polygon for polynomials, let’s recall what symmetric polynomials are.

Definition 5.4. Let K be a commutative ring with unit, X := (X1, . . . , Xn) and let P (X) ∈
K[X] be a polynomial in n variables. We say that P (X) is symmetric if for every σ ∈ Sn we
have P (Xσ(1), . . . , Xσ(n)) = P (X1, . . . , Xn), where Sn is the symmetric group of n elements.
The symmetric polynomials {ei(X) : i ∈ {0, 1, . . . , n}} defined by

e0(X) = 1,

ek(X) =
∑

1≤i1<···<ik≤n
Xi1Xi2 . . . Xik

are the elementary symmetric polynomials.

It is well known that the symmetric polynomials in n variables form a subring K[X]Sn and
if P (X) is symmetric then there exists Q(Y ) ∈ K[Y ] such that P (X) = Q(e1(X), . . . , en(X)),
i.e. the elementary symmetric polynomials “generate” all symmetric polynomials. It is easy to
prove that if f(X) ∈ K[X] is a monic polynomial of degree n (here we add the hypothesis that
K is an integral domain, i.e. there are no divisors of zero) and all its roots are α1, . . . , αn then

f(X) =

n∏
j=1

(X − αj) =

n∑
j=0

(−1)n−j · en−j(α1, . . . , αn) ·Xj ,

which is a precise relation between the coefficients of f and its roots. Finally we recall that if
f(X) = 1+

∑n
i=1 aiX

i ∈ K[X] has degree n (here K is a field) and α1, . . . , αn are all of its roots,
we can write

f(X) =
n∏
j=1

(
1− X

αj

)
=

n∑
j=0

(−1)j · ej
(

1

α1
, . . . ,

1

αn

)
·Xj ;

in-fact f(0) = 1 and we can divide by 1 = (−1)nanα1 . . . αn both sides of f(X) = an(X −
α1) . . . (X − αn).
We are ready to state and prove the following.

Theorem 5.5. Let f(X) = 1 +
∑n

i=1 aiX
i ∈ 1 + XCp[X] be a polynomial of degree n, let

α1, . . . , αn ∈ Cp be all of its roots and λi := ordp (1/αi). If λ is a slope of the Newton polygon
of f with length l, it follows that precisely l of the λi are equal to λ. Vice-versa, if γ is a p-adic
order of a reciprocal root then there is a segment of the Newton polygon with slope γ.

Proof. The last statement is trivial if we prove the first one: in-fact the total length of the
Newton polygon is n so we have already considered all the roots (counting multiplicity).
Let’s suppose the αi arranged so that λ1 ≤ λ2 ≤ · · · ≤ λn. Let’s suppose that λ1 = λ2 = · · · =
λr < λr+1. We then claim that the first segment of the Newton polygon is the one joining (0, 0)
to (r, rλ1). We know that ai = (−1)i · ei (1/α1, . . . , 1/αn) and, recalling how the i-th elementary
symmetric polynomial is defined (sum of all possible products of i different variables) and that
ordp (x+ y) ≥ min{ordp (x), ordp (y)}, we obtain

ordp (ai) ≥ iλ1,

which means that the point (i, ordp (ai)) is on or above the line joining (0, 0) to (r, rλ1). Let’s
now consider ar: only one of the products of r of the 1/αi has p-adic order rλ1 and it is exactly
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1/(α1 . . . αr), while all the other products have bigger p-adic order since they must include at
least one 1/αi with i > r. Then, by the isosceles triangle principle, ordp (ar) = rλ1. Finally,
let’s consider ai with i > r: for the same reasoning as before we have ordp (ai) > iλ1.
All these considerations means exactly that the first segment of the Newton polygon is the one
joining (0, 0) and (r, rλ1) = (r, λ1 + · · ·+ λr). Now, if we have λs < λs+1 = · · · = λs+t < λs+t+1

the line joining (s, λ1 + · · · + λs) to (s + t, λ1 + · · · + λs + tλs+1) is a segment of the Newton
polygon. The proof is very similar: if s ≤ i then ordp (ai) ≥ λ1 + · · · + λs + (i − s)λs+1, since
this is the minimum p-adic order in ei (1/α1, . . . , 1/αn), reached for example by 1/(α1 . . . αi),
ordp (as+t) = λ1 + · · · + λs + tλs+1 by the isosceles triangle principle and if i > s + t then
ordp (ai) > λ1 + · · ·+λs+(i−s)λs+1 since we have to choose at least one 1/αj with j > s+t.

This theorem, in other words, says that the slopes of the Newton polygon of f(X) are counting
with multiplicity the p-adic orders of the reciprocal roots of f(X). The aim of the rest of this
chapter will be to extend this result to formal power series, but we’ll need to do a little more
work before.

5.2 Newton polygons for power series

The definition of the Newton polygon for f(X) ∈ 1 + XCpJXK is the same of Definition 5.1: it
is the inferior convex hull of all the points in Γ (which, this time, will be infinite). Sometimes
we’ll denote the Newton polygon of f(X) by N(f). From now on we’ll only consider proper
power series, i.e. we’ll exclude the case in which f(X) is a polynomial. We can distinguish three
different kinds on Newton polygon.

(1) We get infinitely many segments of finite length, for example the Newton polygon f(X) =
1 +

∑+∞
i=1 p

i2Xi shown in Fig. 5.2a.

(2) At some point the line we’re rotating simultaneously hits infinite points. In this case the
Newton polygon has only a finite number of segments, the last one being infinitely long.
An example is f(X) = 1 +

∑+∞
i=1 X

i, whose Newton polygon is simply the horizontal axis.

(3) At some point the line we’re rotating has not hit any point yet but it cannot rotate any
farther without passing above some points. If this happens, we let the last segment of the
Newton polygon have slope equal to the least upper bound of all possible slopes for which
the line passes below all the points. A simple example is given by f(X) = 1 +

∑+∞
i=1 pX

i,
whose Newton polygon is the horizontal axis as shown in Fig. 5.2b.

There is a degenerate case of type (3): the vertical line through (0, 0) cannot be rotated at
all without crossing above some points (i, ordp ai). An example of this possibility is given by
f(X) =

∑+∞
i=0

Xi

pi2
, whose Newton polygon is shown in Fig. 5.2c. We’ll exclude this case from our

study since, as we’ll prove in the next proposition, all such series have zero radius of convergence.

Proposition 5.6. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 + XCpJXK be a power series whose Newton

polygon is a degenerate case of type (3), i.e.

∀m ∈ R ∃im ∈ N : ordp aim < m · im.

Then the radius of convergence of f is 0.

Proof. We just need to prove that lim sup |an|1/np = +∞. Let’s define a subsequence of the
coefficients (ank)k≥1 by induction. We set n1 = i−1 so that (n1, ordp an1) lies below the line
y = −x. Let’s now consider the lines `1, joining (0, 0) to (n1, ordp an1), and `2, with equation
y = −2x: by hypothesis there must be an infinite number of points (i, ordp ai) lying below
both of these two lines. Then there is at least one such point (j, ordp aj) with j > n1 and we
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(a) Newton polygon of type 1 (b) Newton polygon of type 3

(c) Degenerate Newton polygon (d) Newton polygon of f(X)

Figure 5.2: Various Newton polygons

set n2 := j > n1. We can iterate this procedure (every time we choose nk > nk−1 such that
(nk, ordp ank) lies below both y = −kx and the line joining (0, 0) to (nk−1, ordp ank−1

)). We have
obtained an increasing sequence (nk)k≥1 ⊆ N such that

ordp ank < −k · nk =⇒ |ank |
1/nk
p > pk.

Using this subsequence we can conclude.

From now on we’ll always consider analytic functions with a non-trivial disc of convergence.
Before proving general properties of the Newton polygon of analytic functions, let’s consider a
concrete example.

Example 5.7. Let’s consider the function f defined by

f(X) =
+∞∑
n=0

Xn

n+ 1
=

1

X
·

+∞∑
n=0

Xn+1

n+ 1
= − 1

X
· logp(1−X).

Looking at the right member it’s immediate to see that f converges in D(1−). If we denote `i the
segment joining

(
pi − 1,−i

)
to
(
pi+1 − 1,−i− 1

)
then it’s easy to see that the Newton polygon

of f is the polygonal line
⋃
i∈N `i shown in Fig. 5.2d for p = 3. Assuming that the power series

analogue of Theorem 5.5 holds, then, by looking at the Newton polygon of f , we would expect
to find exactly pi+1 − pi roots having p-adic order 1/

(
pi+1 − pi

)
for every i ∈ N and no other

roots.
Let’s prove this claim: let’s fix j ∈ N and consider x = 1− ζ, where ζ ∈ Cp is a primitive pj+1-th
root of 1. Then we know by Lemma 4.3 that ordp x = 1/

(
pj+1 − pj

)
and that logp(1 − x) = 0

by Corollary 4.10.1 so f(x) = 0. Since there are exactly pi+1 − pi primitive roots of 1, we have
found all the predicted roots. Let’s now prove that there are no other roots of f , i.e. any root is
of the form 1− ξ where ξ is a primitive pk-th root of 1. Let x ∈ D(1−) be a root of f and let

xj := 1− (1− x)p
j
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for any j ∈ N. Using Newton’s binomial expansion we get

|xj |p =
∣∣∣1− (1− x)p

j
∣∣∣
p

=

∣∣∣∣∣∣
pj∑
i=1

(
pj

i

)
(−x)i

∣∣∣∣∣∣
p

≤ |x|p < 1,

which implies xj ∈ D(1−) for every j. We claim that for any M > 0 we can find jm ∈ N such
that |xjm |p < M . Fixed M > 0 we just need to find a j such that

max
1≤i≤pj

∣∣∣∣(pji
)
xi
∣∣∣∣
p

< M.

Since |x|p < 1 we can find N ∈ N such that if n > N then
∣∣∣(pjn )xn∣∣∣p < M . Now we just need to

find a j such that

max
1≤i≤N

∣∣∣∣(pji
)
xi
∣∣∣∣
p

< M.

Writing m := max1≤i≤N (1/|i!|p) > 0 we have that∣∣∣∣(pji
)∣∣∣∣

p

≤
∣∣∣∣pji!
∣∣∣∣
p

≤
∣∣pj∣∣

p
·m

and we can conclude, since
∣∣pj∣∣

p
→ 0 as j → +∞. Now let’s consider j ∈ N such that xj ∈ D(r−p );

thanks to Proposition 4.15 we have

1− xj = expp(logp(1− xj)) = expp
(
pj · logp(1− x)

)
= expp(0) = 1

hence (1 − x)p
j

= 1 so that x = 1 − ζ where ζ is a pj-th root of 1 and it’s one of the roots we
already considered.
We have proved that, for this particular f(X), the power series analogue of Theorem 5.5 holds.

Let’s now prove a simple but interesting result which explains how we can find the radius of
convergence of a series just by looking at its Newton polygon.

Proposition 5.8. Let f(X) = 1+
∑+∞

i=1 aiX
i ∈ 1+XCpJXK and let b be the least upper bound of

all slopes of the Newton polygon of f . Then the radius of convergence of f(X) is pb (if b = +∞
then f converges everywhere).

Proof. Let’s fix x ∈ Cp with |x|p < pb, i.e. −b′ := ordp x > −b. Then ordp (aix
i) = ordp ai − ib′

but, since b′ < b, it’s clear that sufficiently far out all the points (i, ordp ai) will lie arbitrarily far
above (i, b′i), see Fig. 5.3. This means exactly limi→+∞ ordp (aix

i) = +∞, i.e. f(X) converges
at x. Let’s now consider the case |x|p > pb, i.e. −b′ := ordp x < −b. Since b′ > b we find an
infinite number of i ∈ N such that ordp (aix

i) = ordp ai − ib′ < 0 which implies that f(X) does
not converge at x. We can then conclude that the radius of convergence of f is exactly pb.

Obviously this proposition doesn’t tell us anything about the convergence of f(X) at the
radius of convergence, i.e. if |x|p = pb.

Proposition 5.9. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 + XCpJXK be an analytic power series with

radius of convergence r = pb, where b is the least upper bound of the slopes of the Newton polygon.
Then f(X) converges on D(r) if and only if N(f) is of type (3) (see the beginning of Section 5.2)
and limi→+∞ di = +∞, where di is the distance between (i, ordp ai) and the last line of N(f).
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Figure 5.3: Case |x|p < pb

(a) Newton polygon with an asymp-
tote

(b) Newton polygon with convergence
at border

Figure 5.4: Two other types of Newton polygons

Proof. If b /∈ Q there’s nothing to prove since no element of Cp can have order b; from now on
we’ll assume b ∈ Q. First of all we prove that if the Newton polygon of f is of type (1) or (2)
then f(X) does not converge if |x|p = pb.
Let’s first consider a Newton polygon of type (1) and let Λ be the set of all its slopes. Then
b = sup Λ and if b = +∞ there’s nothing to prove. If b < +∞ then there exists y0 ∈ R such that
` : y = y0 + bx is an “asymptote” of the Newton polygon, see Fig. 5.4a (the slopes are increasing
and their sup/lim is b). Then we can consider the vertices of the Newton polygon, indexed
by (ij)j∈N. It is clear that the distance dj between

(
ij , ordp aij

)
and ` tends to 0 and so does(

ordp aij − ijb
)
, which is equal to dj/ cos(arctan b) (if b = 0 then it is equal to dj). If |x|p = pb

then ordp x = −b so ordp (aix
i) = ordp ai − ib. We then conclude that ordp (aix

i) 6→ +∞ when
i → +∞, i.e. f does not converge at x. Instead if f has a Newton polygon of type (2) then b
is its final slope and, by definition, there are infinite points on this final segment. This means
that if we call the final line ` : y0 + bx then we can find an increasing subsequence (ij)j∈N ⊆ N
such that ordp aij = y0 + ijb so ordp

(
aijx

ij
)

= y0 6→ +∞ and we can conclude that there’s no
convergence in x.
Let’s now suppose that N(f) is of type (3) and x ∈ Cp with |x|p = pb. Then f(X) converges in
x if and only if limi→+∞ ordp

(
aix

i
)

= +∞; as before, with a little trigonometry, we have

ordp
(
aix

i
)

= ordp ai − ib =

{
di, if b = 0;

di
cos(arctan b) , otherwise;

and we can conclude (by hypothesis limi→+∞ di = +∞). An example is f(X) = 1+
∑+∞

i=1 2iX2i ∈
1 +XC2JXK, whose Newton polygon is shown in Fig. 5.4b.

Let’s introduce a useful trick we’ll often use in the next proofs.
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(a) Newton polygon of f1(X) (b) Newton polygon of g1(X)

(c) Newton polygon of f(X) (d) Newton polygon of g(X)

Figure 5.5: Example of Lemma 5.11

Lemma 5.10. Let c ∈ C×p with ordp c = λ, f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 + XCpJXK and

g(X) := f (X/c). Then the Newton polygon of g is obtained subtracting the line y = λx to the
Newton polygon of f .

Proof. If we write g(X) = 1 +
∑+∞

i=1 biX
i then it’s immediate that bi = ai/

(
ci
)
so ordp bi =

ordp ai − iλ and we can conclude.

We’ll now prove four technical lemmas we’ll then use to prove our final result.

Lemma 5.11. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 +XCpJXK and suppose that λ1 is the first slope

of its Newton polygon. Let c ∈ Cp with ordp c = λ ≤ λ1 and assume that f(X) converges on the
closed disc D(pλ) (this automatically happens if λ < λ1 or if the Newton polygon has more than
one segment). Let

g(X) = (1− cX)f(X) ∈ 1 +XCpJXK.

Then N(g) is obtained by joining (0, 0) to (1, λ) and then translating N(f) by ~v = (1, λ) (1 to
the right and λ upwards). If N(f) has last slope λf and f(X) converges on D(pλf ) then g(X)
also converges on D(pλf ). Conversely, if g(X) converges on D(pλf ) then so does f(X).

Proof. A graphic interpretation of the lemma can be found at Fig. 5.5. We can consider only
the special case c = 1, λ = 0. In-fact, let’s suppose the lemma holds for this case and let f(X)
and g(X) as in the statement. Then f1(X) := f

(
X
c

)
and g1(X) := (1 − X)f1(X) satisfy our

hypothesis (with the parameters c = 1, λ = 0, λ1 = λ1 − λ, by Lemma 5.10). Thus, since we’re
assuming the lemma to be true if c = 1, we know the shape of the Newton polygon of g1(X) (and
the convergence of g1(X) on D(pλf−λ) when f converges on D(pλ)). Now, g(X) = g1(cX) so,
using again Lemma 5.10, we obtain the desired information about the Newton polygon of g(X)
(and the desired convergence, which is immediate). So we can just prove the lemma when c = 1.
If g(X) = 1+

∑+∞
i=1 biX

i then, since by definition g(X) = (1−X)f(X), we have bi+1 = ai+1−ai
for i ≥ 0 (clearly a0 = 1). Then

ordp bi+1 ≥ min {ordp ai+1, ordp ai} (?)
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and the equality holds when ordp ai+1 6= ordp ai. It is easy to see that both (i, ordp ai) and
(i, ordp ai+1) lie on or above the Newton polygon of f(X) and so does (i, ordp bi+1), by (?). If
(i, ordp ai) is a vertex then necessarily ordp ai+1 > ordp ai so ordp bi+1 = ordp ai. This means
exactly that the Newton polygon of g(X) has the shape described in the lemma, as far as the last
vertex of f(X). If N(f) is of type (1) we can conclude here: there is no last vertex and no last
slope. It remains only to show that when N(f) has last slope λf then also N(g) does and if f(X)
converges on D(pλf ) then so does g(X). We already know ordp bi+1 ≥ min {ordp ai+1, ordp ai} so
g(X) converges wherever f(X) does; then if λg is the least upper bound of the slopes of N(g) we
have λg ≥ λf (by Proposition 5.8). We must only rule out the case λg > λf . If it were the case,
then, for some large i, the point (i+1, ordp ai) would lie belowN(g) so we’d have ordp bj > ordp ai
for every j ≥ i + 1 (this holds in this particular case where λ = 0 since 0 ≤ λ1 ≤ λf < λg).
Using j = i + 1 we obtain ordp ai+1 = ordp ai because ai+1 = bi+1 + ai. Then, using j = i + 2,
we obtain ordp ai+2 = ordp ai+1 = ordp ai and so on for every j. This means ordp aj = ordp ai
for every j ≥ i and contradicts the assumed convergence of f(X) on D(1) ⊆ D(pλf ). Then we
must have λg = λf and N(g) is exactly of the predicted shape. This implies in particular that if
f(X) converges on D(pλf ) then so does g(X) (see Proposition 5.9). The converse assertion, i.e.
convergence of g(X) implies convergence of f(X), can be proved in an analogue way.

Lemma 5.12. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 +XCpJXK have Newton polygon with first slope

λ1. Let’s assume that f(X) converges on D
(
pλ1
)
and that the line ` : y = λ1x actually passes

through a point (i, ordp ai) with i ≥ 1 (both of these conditions are automatically satisfied if N(f)
has more than one slope). Then there exists an x ∈ Cp for which ordp x = −λ1 and f(x) = 0.

Proof. Let’s first consider the case λ1 = 0 and then reduce the general case to this one. If
λ1 = 0 we have ordp ai ≥ 0 for every i ∈ N and limi→+∞ ordp ai = +∞ since f(X) converges on
D(1). Let N := max {i ∈ N× : ordp ai = 0} and let fn(X) := 1 +

∑n
i=1 aiX

i ∈ 1 +XCp[X]. By
Theorem 5.5, if n ≥ N then the polynomial fn(X) has precisely N roots with p-adic order 0, let
them be xn,1, . . . , xn,N (it’s immediate that N(fn) has a first segment with slope 0 and length
N). Let’s define a sequence: xN := xN,1 and, for n ≥ N , xn+1 := xn+1,i where i is such that
|xn+1,i − xn|p is minimal. We claim that (xn)n≥N ⊆ Cp is Cauchy and its limit x is the desired
root of f . If Sn denotes the set containing the roots of fn(X), counted with multiplicity, for
n ≥ N we have

|fn+1(xn)− fn(xn)|p = |fn+1(xn)|p =
∏

α∈Sn+1

∣∣∣1− xn
α

∣∣∣
p

where we used fn(xn) = 0 and fn+1(X) =
∏
α∈Sn+1

(
1− X

α

)
. It’s clear that if α ∈ Sn+1 then

ordp α ≤ 0: in-fact we cannot have ordp α > 0 and fn+1(α) = 0 by the isosceles triangle principle
(recall that ordp ai ≥ 0). Now if α ∈ Sn+1 has ordp α < 0 then

∣∣1− xn
α

∣∣
p

= 1, since |xn|p = 1.
Then we can write

|fn+1(xn)− fn(xn)|p =

N∏
i=1

∣∣∣∣1− xn
xn+1,i

∣∣∣∣
p

=

N∏
i=1

|xn+1,i − xn|p ≥ |xn+1 − xn|Np ,

by the choice of xn+1. We have obtained

|xn+1 − xn|Np ≤ |fn+1(xn)− fn(xn)|p =
∣∣an+1x

n+1
n

∣∣
p

= |an+1|p

so limn→+∞|xn+1 − xn|Np = 0 (by hypothesis limn→+∞|an+1|p = 0) and we have proved that
(xn)n≥N is Cauchy (see Lemma 3.5). Since Cp is complete there exists x := limn→+∞ xn and, by
continuity of | |p, we have |x|p = 1. It’s clear that for any y ∈ D(1) we have limn→+∞ fn(y) =
f(y) (the p-adic absolute value of the difference tends to zero) so we have f(x) = limn→+∞ fn(x).
Now,

|fn(x)|p = |fn(x)− fn(xn)|p = |x− xn|p ·

∣∣∣∣∣
n∑
i=1

ai
xi − xin
x− xn

∣∣∣∣∣
p

≤ |x− xn|p
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because |ai|p ≤ 1 and
∣∣∣xi−xinx−xn

∣∣∣
p

=
∣∣xi−1 + xi−2xn + · · ·+ xi−1

n

∣∣
p
≤ 1. Hence we can conclude that

f(x) = limn→+∞ fn(x) = 0 and we have proved the lemma if λ1 = 0.
The general case follows easily. Let π ∈ Cp be any number with ordp π = λ1. Clearly such a π
exists: for example, if (i, ordp ai) lies on y = λ1x and i ≥ 1 (such a point exists by assumption)
then π can be any i-th root of ai (recall that Cp is algebraically closed). Now let g(X) := f (X/π);
it’s clear by Lemma 5.10 that g(X) satisfies the conditions of the lemma with λ1 = 0. Then we
already know that there exists x0 with ordp x0 = 0 such that g(x0) = 0. Then if x = x0/π we
have ordp x = −λ1 and f(x) = f (x0/π) = g(x0) = 0.

Lemma 5.13. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 + XCpJXK and let α ∈ Cp such that f(α) = 0.

Let g(X) be obtained by dividing f(X) by 1− X
α . Then g(X) converges on D(|α|p).

Proof. First of all, let’s observe that α 6= 0 and that dividing f(X) by 1− X
α is the same thing

of multiplying f(X) by the geometric series
∑+∞

i=0

(
X
α

)i. Let’s write g(X) = 1 +
∑+∞

i=1 biX
i and

let fn(X) := 1 +
∑n

i=1 aiX
i be the n-th partial sum of f(X). By an easy computation we infer

that

bi =
i∑

j=0

aj
αj

where we set a0 = 1. Then it’s easy to see that

biα
i = fi(α)

hence
∣∣biαi∣∣p = |fi(α)|p → 0 as i→ +∞, since f(α) = 0 and f(x) = limn→+∞ fn(x) wherever f

converges. This means exactly that g(X) converges on D(|α|p).

Lemma 5.14. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 +XCpJXK such that λ is the first slope of N(f)

and f converges on some disc D. If α ∈ D is a root of f , i.e. f(α) = 0, then ordp α ≤ −λ. If λ
is the only slope of N(f) and no point of N(f) lies on y = λx, then ordp α < −λ.

Proof. Let’s suppose that α ∈ D is such that ordp α = −λ′ > −λ. We have

ordp (aiα
i) = ordp ai − iλ′ > ordp ai − iλ ≥ 0,

where we used that all the points (i, ordp ai) lie on or above the line y = λx (by definition of
Newton polygon). Then we have ordp 1 = 0 and ordp (aiα

i) > 0 for i ≥ 1 and so α cannot be a
root of f . The last statement can be proved with an analogue reasoning.

Finally we are ready to prove the main theorem of this section which will imply, as a corollary,
the power series analogue of Theorem 5.5.

Theorem 5.15 (p-adic Weierstrass Preparation Theorem). Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 +

XCpJXK converge on D(pλ). Let N be the total horizontal length of all segments in N(f) having
slope less or equal to λ if this length is finite (i.e. if N(f) hasn’t an infinitely long last segment
of slope λ). On the other hand, if the Newton polygon of f has last slope λ, then let N be the
greatest index i such that (i, ordp ai) lies on that final segment (there must be such a final index
since f converges on D(pλ)). Then there exists a polynomial h(X) ∈ 1 + XCp[X] of degree N
and a power series g(X) = 1 +

∑+∞
i=1 biX

i, which converges and is non-zero on D(pλ), such that

h(X) = f(X) · g(X).

The polynomial h(X) is uniquely determined by these properties and N(h) coincides with N(f)
up to x = N .
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Proof. We use induction on N . Let’s first consider the basic case N = 0, where the first slope of
N(f) is greater or equal to λ. In this case it’s evident that we can assume λ ∈ Q without loss of
generality. We have to show that g(X) = 1/f(X) converges and is non-zero on D(pλ) (recall that
any power series with a non-zero constant term is invertible). We can only consider the special
case λ = 0. In-fact, let f(X) ∈ 1 + XCpJXK converge on D(pλ): we can choose c ∈ Cp with
ordp c = λ using Proposition 3.39 (we assumed λ ∈ Q) and then define f̃(X) := f

(
X
c

)
. Now, f̃

converges on D(1) and if λ = 0 then N = 0, i.e. the first slope of its Newton polygon is greater or
equal to 0 by Lemma 5.10. So, assuming the theorem holds when N = λ = 0 we infer that there
exists g̃(X) ∈ 1 +XCpJXK which converges and is non-zero on D(1) such that 1 = f̃(X) · g̃(X).
Using cX in place of X we obtain 1 = f(X) · g̃(cX) and it’s immediate that g(X) := g̃(cX) has
all the desired properties. So we can only consider the special case λ = 0. Thus, we can suppose
ordp ai > 0 for every i ∈ N and limi→+∞ ordp ai = +∞ (we have convergence on D(1)). It’s easy
to obtain the following equality for the coefficients of g(X) = 1/f(X):

bi = −

 i∑
j=1

bi−jaj

 ,

where we set b0 = 1. From an easy induction on i it follows that ordp bi > 0 for i ≥ 1. This
implies that the first slope of N(g) is greater than 0 (or it’s equal to 0 but with no points on it)
and, by Lemma 5.14, we know that g doesn’t have roots on D(1). Now it remains only to show
that g(X) actually converges on D(1), i.e. that limi→+∞ ordp bi = +∞. Let’s fix M > 0: we can
find m ∈ N such that i > m implies ordp ai > M . Now if

ε := min
1≤j≤m

ordp aj > 0

we claim that i > nm implies ordp bi > min{M,nε}, from which it easily follows ordp bi → +∞
as i → +∞. We’ll prove this claim by induction on n. We have already proved the case n = 0.
Now, let’s suppose n ≥ 1 and that the claim holds for n− 1; if i > nm we have

bi = −
(
bi−1ai + · · ·+ bi−mam + bi−(m+1)am+1 + · · ·+ a1

)
.

The terms bi−jaj with j > m have p-adic order greater than M , while if j ≥ m we have
ordp (bi−jaj) ≥ ordp bi−j + ε and, since i− j > (n− 1)m, by inductive hypothesis we obtain

ordp (bi−jaj) ≥ ordp bi−j + ε > min{M, (n− 1)ε}+ ε.

This proves our claim, hence the theorem when N = 0 (the statement about the Newton polygon
here is trivial since h(X) = 1).
Now let’s consider the general case with N ≥ 1 and suppose that the theorem holds for N − 1.
Let λ1 ≤ λ be the first slope of N(f); if it is the only slope then, since N ≥ 1, there’s at least one
point on y = λ1x. We can then use Lemma 5.12 to find α such that f(α) = 0 and ordp α = −λ1.
Let’s define

f1(X) :=
f(X)

1− X
α

= f(X) ·
+∞∑
j=0

(
X

α

)j
∈ 1 +XCpJXK.

By Lemma 5.13, f1 converges on D(pλ1). Setting c := 1
α we have f(X) = (1− cX) · f1(X). Let

λ′1 be the first slope of N(f1); it must necessarily be λ′1 ≥ λ1. In-fact λ′1 < λ1 implies that N(f1)
has more than one slope and that, by Lemma 5.12, f1 has a root with p-adic order −λ′1 and so
does f , but this is impossible by Lemma 5.14 since −λ′1 > −λ1. We can now apply Lemma 5.11,
with parameters f = f1, g = f, λ = λ1, λ1 = λ′1 and we get that N(f1) is obtained translating
N(f)\ `((0, 0), (1, λ1)) by ~v = (−1,−λ1), where `(P,Q) is the segment joining P to Q. We claim
that f1 converges on D(pλ): if λ isn’t the final slope of N(f) then it’s trivially true, otherwise
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Lemma 5.11 tells us that when N(f) has last slope λ and f converges on D(pλ) then so does f1.
Thus, f1 satisfies all the conditions of the theorem with N−1 instead of N (recall that, to obtain
N(f1), we removed a segment with slope λ1 ≤ λ and with length 1 from N(f)). By inductive
hypothesis we can find h1(X) ∈ 1 +XCp[X] of degree N − 1 and a series g(X) ∈ 1 +XCpJXK,
convergent and non-zero on D(pλ), such that

h1(X) = f1(X) · g(X).

Multiplying both sides by (1− cX) and setting h(X) := (1− cX)h1(X) we obtain

h(X) = f(X) · g(X),

where h and g have the desired properties. Let’s also observe that N(h1) coincides with N(f1)
up to x = N −1 and that, since h(X) = (1− cX)h1(X), N(h) is obtained joining (0, 0) to (1, λ1)
and then translating N(h1). Then it’s clear that N(h) will coincide with N(f) up to x = N .
Now we have only to prove the uniqueness of h(X) (we have only proved its existence). Let’s
suppose that h̃(X) ∈ 1 +XCp[X] is another polynomial of degree N such that

h̃(X) = f(X) · g1(X),

where g1(X) ∈ 1 +XCpJXK converges and is non-zero on D(pλ). We have

h̃(X) · g(X) = f(X) · g(X) · g1(X) = h(X) · g1(X). (∗)

To prove uniqueness it suffices to show that (∗) implies that h and h1 have the same roots with
the same multiplicities (they both have constant term 1). The case N = 1 is trivial. Let’s now
consider N > 1. The polynomial h(X) is the one we built before so we already know that N(h)
coincides with N(f) up to x = N . Using Theorem 5.5, this means that every root of h(X) is
in D(pλ) (by assumption all the slopes of N(h) are less or equal to λ). Let α ∈ Cp be a root of
h(X). Since α ∈ D(pλ) we can compute g(α) and g1(α) and, by hypothesis, they’re not zero. So
α must also be a root of h̃(X). Let’s define

k̃(X) :=
h̃(X)

1− X
α

, k(X) :=
h(X)

1− X
α

;

they’re two polynomials in 1 +XCp[X] of degree N − 1 satisfying k̃(X) · g(X) = k(X) · g1(X).
We can repeat this process with every other root of h(X) and, at the end, both polynomials will
be 1 so we have proved uniqueness.

This is a very powerful theorem, with a lot of interesting corollaries.

Corollary 5.15.1. If a segment of the Newton polygon of f(X) ∈ 1 +XCpJXK has finite length
N and slope λ, then there are exactly N values of x (counting multiplicity) for which f(x) = 0
and ordp x = −λ.

Proof. It is an immediate application of Theorem 5.15 and Theorem 5.5.

Example 5.16. We can use the Newton polygon to study the exact region of convergence of
Ep(X), the Artin-Hasse exponential (see Definition 4.34). We already know, by Proposition 4.35
and Proposition 4.35, that

Ep(X) = expp

(
+∞∑
i=0

Xpi

pi

)
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Figure 5.6: Newton polygon of f(X) for p = 2

and that Ep(X) converges on D(1−). We’ll show that this is the exact region of convergence, i.e.
that Ep(X) doesn’t converge if |x|p = 1. Let’s define

f(X) =
+∞∑
i=0

Xpi−1

pi
∈ 1 +XCpJXK,

so that Ep(X) = expp(X ·f(X)). Now, Ep(X) converges at x ∈ Cp if and only if x·f(x) ∈ D(r−p ).
We’ll show that f(X) doesn’t even converge if |x|p = 1. Writing f(X) = 1 +

∑+∞
n=1 aiX

i, it’s
immediate that

(i, ordp ai) =

{(
pk − 1,−k

)
, if ∃k ∈ N such that i = pk − 1;

(i, 0), otherwise;
.

If `i is the segment joining
(
pi − 1,−i

)
to
(
pi+1 − 1,−i− 1

)
then we have N(f) =

⋃
i∈N `i (see

Fig. 5.6 for p = 2). It is clearly a type (1) polygon (infinite number of finite segments). The
segment `i has slope λi = − 1

pi(p−1)
< 0 and we have limi→+∞ λi = 0. This proves that 0 is the

least upper bound of all slopes of N(f) so, using Proposition 5.8, we can conclude: the radius of
convergence of f is 1 = p0 and we cannot have convergence “at the border”, since we would need
a type (3) polygon.

Finally, we’ll show a nice application of Theorem 5.15, which will imply the non-existence of
a non-constant power series which converges on Cp and is never zero. This means exactly that we
cannot have an exponential with the same properties of the classical one: in-fact in the classical
case, if h(X) is a convergent power series, then eh(X) is everywhere convergent and non-zero.
We’ll first need a technical lemma.

Lemma 5.17. Let f(X) be a power series which converges on D(pλ). If f(X) has an infinite
number of zeroes on D(pλ) then f(X) is identically zero.

Proof. If f(X) = 0 there’s nothing to prove, otherwise we can assume, by contradiction, f(X) ∈
1 + XCpJXK (we can write f(X) = adX

d · g(X), where d is such that ad is the first non-zero
coefficient and study g(X) ∈ 1 +XCpJXK). We can then apply Theorem 5.15, using λ, to obtain
N ∈ N, h(X) ∈ 1 +XCp[X], a polynomial of degree N , and g(X) ∈ 1 +XCpJXK, a power series
convergent and non-zero on D(pλ), such that

h(X) = f(X) · g(X).

By hypothesis, f(X) has infinite zeroes in D(pλ) and, since g(X) is never zero on D(pλ), h(X)
must have infinite zeroes on D(pλ). But h(X) is a non-zero polynomial of degree N so it cannot
have infinite zeroes, and this is a contradiction. Thus the only possible case is f(X) = 0.
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Proposition 5.18. Let f(X) = 1 +
∑+∞

i=1 aiX
i ∈ 1 + XCpJXK be an everywhere convergent

power series. For every λ, let hλ(X) be the polynomial obtained applying Theorem 5.15. Then
hλ → f as λ→ +∞ (i.e., each coefficient of hλ converges to the corresponding coefficient of f).
In particular, if f is not a polynomial, then its zeroes are (rn)n≥1 (i.e. they’re countable infinite)
and

f(X) =
+∞∏
i=1

(
1− X

ri

)
.

Proof. If f(X) is a polynomial, then the statement is trivial. From now on we’ll consider f(X)
to be a proper power series. It’s clear that such an f must have a type (1) Newton polygon.
Let (λn)n≥1 be the slopes of N(f) (clearly we consider them in order, i.e. such that λ1 <
λ2 < · · · < λn < . . . ). Since f(X) converges everywhere, by Proposition 5.8 we must have
limn→+∞ λn = +∞. It is also clear that f has a countable infinite set of zeroes (there’s clearly
no contradiction here, because the zeroes are in Cp): in-fact, applying Corollary 5.15.1, we obtain
that for any segment of N(f) we have a finite number of zeroes (and clearly the segments of the
Newton polygon are countable infinite). Let it be (rn)n≥1, where they’re listed in such a way
that the first “cluster” corresponds to slope λ1, the second to slope λ2 and so on. Applying
Theorem 5.15 with λ = λn we obtain a polynomial 1 +XCp[X] 3 hn(X) := hλn(X) and a power
series gn(X) ∈ 1 +XCpJXK, convergent and non-zero on D(pλn), such that

hn(X) = f(X) · gn(X).

Let’s introduce some terminology:

hn(X) = 1 +

dn∑
i=1

an,iX
i, gn(X) = 1 +

+∞∑
i=1

bn,iX
i,

where we set dn := deg hn(X). By Theorem 5.15 we know that dn is the total horizontal length
of segments of N(f) with slope less or equal to λn and this also means that

hn(X) =

dn∏
j=1

(
1− X

rj

)
. (∗)

First of all, let’s prove that the sequences (an,m)n≥1 are all Cauchy uniformly in m, i.e. we’ll find
an upper bound which doesn’t depend on m. Let k ∈ N be such that λ1 < · · · < λk < 0 ≤ λk+1,
i.e. the first k slopes ofN(f) are negative. Let’s consider r1, . . . , rdk , all the roots of f (they’re not
necessarily distinct) corresponding to the negative slopes of N(f). Then |1/ri|p = pordp ri > 1,
for every 1 ≤ 1 ≤ dk. Instead, for any other root rm with m > dk we have |1/rm|p ≤ 1, since
it corresponds to a non-negative slope. Let’s set M := |1/r1|p · · · |1/rdk |p (if all slopes are non-
negative we simply set M = 1). Recalling the relations between coefficients and reciprocal of
roots (using elementary symmetric polynomials), for n ≥ k, by (∗), we have

an,m = (−1)m · em
(

1

r1
, . . . ,

1

rdk
,

1

rdk+1
, . . . ,

1

rdn

)
.

Since for any j > dk we have |1/rj |p ≤ 1, it’s easy to see that

|an,m|p ≤ |1/(r1 · · · rdk)|p = M,

for any m ∈ N and n ≥ k. We have found a common upper bound for all the coefficients of all
the polynomials hn(X) with n ≥ k. Now we have

hn+1(X) = hn(X) ·
dn+1∏

j=dn+1

(
1− X

rj

)
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so we obtain

an+1,m = an,m +

m∑
j=1

(−1)j · an,m−j · ej
(

1

rdn+1
, . . . ,

1

rdn+1

)
,

where we set an,0 = 1. Since limn→+∞ dn = +∞ (by construction) we can choose a large enough
n such that λn+1 > 0. Then, |1/rj |p = pordp rj = p−λn+1 < 1 for any dn + 1 ≤ j ≤ dn+1. Now
it’s easy to see that

∀ j ∈ N,
∣∣∣∣ej ( 1

rdn+1
, . . . ,

1

rdn+1

)∣∣∣∣
p

≤
∣∣∣∣ 1

rdn+1

∣∣∣∣
p

= p−λn+1

=⇒ |an+1,m − an,m|p = max
1≤j≤m

∣∣∣∣an,m−j · ej ( 1

rdn+1
, . . . ,

1

rdn+1

)∣∣∣∣
p

≤M · p−λn+1 .

Since limn→+∞ p
−λn+1 = 0, (an,m)n≥1 is Cauchy (see Lemma 3.5). Let’s observe that our bounds

don’t depend on m, i.e. |an+1,m − an,m|p ≤M · p
−λn+1 for any m ∈ N and n ≥ k. Since (λn)n≥1

is non-decreasing, for m > n ≥ k we obtain

|am,i − an,i|p ≤ max
n≤j<m

|aj+1,i − aj,i|p ≤ max
n≤j<m

Mp−λj+1 = Mp−λn+1 .

Now, we know that gn(X) converges and is non-zero on D(pλn); this means exactly that, if
γn is the first slope of N(gn), then γn > λn. In-fact, γn ≤ λn would imply, by Corollary 5.15.1,
the existence of α ∈ Cp such that |α|p = pγn ≤ pλn such that g(α) = 0 and this cannot be the
case. From a geometrical point of view, this means that every point (i, ordp bn,i) lies on or above
the line y = γn · x, i.e.

ordp bn,i ≥ i · γn.

We have already proved that limn→+∞ λn = +∞ so limn→+∞ γn = +∞ and this implies
limn→+∞ ordp bn,i = +∞, i.e. limn→+∞ bn,i = 0 for every i ≥ 1. Let’s now come back to
the relation hn(X) = f(X) · gn(X) and let’s consider the single coefficients; we obtain

an,1 = bn,1 + a1;

an,2 = bn,2 + a1bn,1 + a2;

...

an,m = bn,m +
m−1∑
j=1

ajbn,m−j + am.

Then, for any m ≥ 1, we have limn→+∞ an,m = am. Let’s fix x ∈ D(1) and ε > 0 and consider

|f(x)− hn(x)|p =

∣∣∣∣∣
+∞∑
i=1

(ai − an,i)xi
∣∣∣∣∣
p

≤ max

{
max

1≤i≤dn
|ai − an,i|p, max

i>dn
|ai|p

}

where we set an,i = 0 if i > dn. We already know limn→+∞ dn = +∞ and we know that
limi→+∞|ai|p = 0 since f converges everywhere (see Proposition 3.7). Let’s choose n ∈ N such
that i > dn implies |ai|p < ε. Now we have only to give an upper bound on the first term, but
this is easy thanks to the bounds we proved before:

|ai − an,i|p = lim
m→+∞

|am,i − an,i|p ≤ lim
m→+∞

Mp−λn+1 = Mp−λn+1

=⇒ max
1≤i≤dn

|ai − an,i|p ≤M · p
−λn+1
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and we can assume that n ∈ N is big enough such that M · p−λn+1 < ε and i > dn implies
|ai|p < ε. Since ε is chosen arbitrarily, we conclude that if x ∈ D(1) then

f(x) = lim
n→+∞

hn(x) = lim
n→+∞

dn∏
j=1

(
1− x

rj

)
=

+∞∏
j=1

(
1− x

rj

)
.

Let’s define `(X) :=
∏+∞
j=1

(
1− X

rj

)
. It can be proved that `(X) ∈ 1 + XCpJXK exploiting the

fact that limn→+∞|1/rn|p = 0 and that its coefficient of Xm is simply the sum of the series of all
possible products of m of the −1/ri’s (which converges). Now, `(X) converges on D(1) because
`(x) = f(x) for any x ∈ D(1). We can conclude that, in CpJXK, we have

f(X) = `(X) =
+∞∏
j=1

(
1− X

rj

)

since g(X) := f(X) − `(X) is a power series convergent on D(1) with infinite zeroes and, by
Lemma 5.17, it must be g(X) = 0.

This proposition resembles a lot the Weierstrass factorization theorem of complex analysis,
although the p-adic result is much more clean: there are no exponential factor in the product.
One immediate implication is that any power series which converges everywhere and is never
zero must be a constant: here is why we cannot have an exponential similar to the classic one,
which converges everywhere, is never zero but isn’t constant. Finally we can think as power
series which converges everywhere simply as “polynomials with infinite zeroes”, which can be
factorized in the same exact way we factorize polynomials.
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