
Chiral Differential Operators

Carlo Buccisano

May 11, 2021

Abstract

This is just a personal rewriting of some parts of [AM21], with some backgrounds taken from [Kle]
and [Mal17]. Every mistake is due to me.

1 Background
Let X = SpecA be an affine algebraic variety over C (we will focus particularly on the case in which X
is an algebraic group). Let OX be the structure sheaf.

Definition 1.1. A global section θ ∈ EndC(OX)(X) is a vector field on X if for each open U ⊂ X, the
section θ(U) := θ

∣∣
U
∈ DerC(OX(U),OX(U)), i.e. it satisfies the Leibniz rule. Call Θ(X) the set of vector

fields on X.
The tangent sheaf ΘX is defined by

U 7→ Θ(U)

and one can verify it is a OX -module, where one identifies f ∈ OX with µf ∈ EndC(OX) being the
multiplication by f .

Compactly, ΘX = DerC(OX) and one can prove it is a coherent sheaf. In-fact, if

A = C[x1, . . . , xn]/(f1, . . . , fr),

then it is well known

DerC(A,A) ' HomA(Ω1
A/C, A), Ω1

A/C =

⊕n
i=0Adxi

(df1, . . . , dfr)

so that we see DerC(A) is finitely generated as an A-module.
Let’s now talk about cotangent sheaf. One local construction of Ω1

A/C is given by considering the
A-module I/I2 where I is the kernel of the multiplication map µ : A⊗C A→ A, and one can prove it is
generated by elements df = f ⊗ 1− 1⊗ f mod I2. Globalizing this construction we obtain the following.

Definition 1.2. The cotangent sheaf of X is defined by

Ω1
X := δ−1(I/I2)

where δ : X → X ×X is the diagonal embedding and I is the ideal sheaf of δ(X) in X ×X (X is affine
so automatically separated, i.e. δ is a closed immersion). Sections of Ω1

X are called differential forms.

The cotanget sheaf is an OX -module in a natural way and it has a natural derivation d : OX → Ω1
X

given by df = f ⊗ 1− 1⊗ f mod δ−1(I2). Analogue to the affine case, we have

Lemma 1.3. As an OX -module, Ω1
X is generated by df , for f ∈ OX .

And, of course, the same universal property holds.

Proposition 1.4. We have an isomorphism in OX −Mod:

HomOX (Ω1
X ,OX) ∼= ΘX .

We have an analogue situation of what happens in a manifold with charts, where we can always choose
a local neighborhood trivializing the tangent bundle.
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Theorem 1.5. Let X be smooth. For each x ∈ X there exists an affine open neighborhood V 3 x,
regular functions xi ∈ OX(V ) and verctor fields ∂i ∈ ΘX(V ) satisfying

[∂i, ∂j ] = 0, ∂i(xj) = δi,j , ΘV =
⊕
i

OV ∂i.

Moreover one can choose x1, . . . , xn so that they generate the maximal ideal mx of the local ring OX,x.

Proof. By assumption the local ring OX,x is regular, so there exist n = dimX functions x1, . . . , xn
generating the ideal mx (use definition of regular local ring and Nakayama’s lemma). Then dx1, . . . , dxn
is a basis of the free OX,x-module Ω1

X,x ' Ω1
OX,x . This is a well-known result: since OX,x is a finitely

generated local C-algebra, whose residue field is C (Nullstellensatz), then we have mx/m2
x
∼= C⊗OX,x Ω1

X,x

and, using again Nakayama, we get what we claimed.
Thus we can find an affine open neighborhood V of x such that Ω1(V ) is a free OX(V )-module with

basis dx1, . . . , dxn. If we define ∂1, . . . , ∂n ∈ ΘX(V ) as the dual basis, we get ∂i(xj) = δi,j . To obtain the
desired commutation relations, write

[∂i, ∂j ] =

n∑
i=1

gli,j∂l ∈ OX(V )

and observe that gli,j = [∂i, ∂j ]xl = ∂i∂jxl − ∂j∂ixl = 0. �

The set {xi, ∂i | 1 ≤ 1 ≤ n} over an affine open neighborhood of x, satisfying the above conditions, is
called a local coordinate system.

1.1 Differential Operators
Let’s now define a sheafDX onX as the sheaf of C-subalgebras of EndC(OX) generated byOX (embedded,
as before, as left multiplications) and ΘX .

Definition 1.6. The sheaf DX is called the sheaf of differential operators on X. The algebra DX(X) is
called the algebra of differential operators on X.

Remark. For now we should think only about DA for A a commutative C-algebra. We will see later
that this definition, for finitely generated C-algebras, behaves well with localization, hence it gives rise
to a sheaf.

Observe that, on a trivializing neighborhood U of x, we have

[∂, f ] = ∂(f) ∈ OX(U) ∀ f ∈ OX(U), ∂ ∈ ΘX(U)

so that we have
D(U) =

⊕
α∈Nn

OU∂α, ∂α := ∂α1
1 . . . ∂αnn .

We have an obvious order filtration, which we can define locally by

FlDU =
∑
|α|≤l

OU∂α

and then glue globally just by requiring all restrictions to trivial neighborhood to be in the corresponding
degree. There is, though, a more natural way to define it:

FkDX = {θ ∈ End(OX) | [fk+1, . . . , [f2, [f1, θ]] . . . ] = 0 ∀ f1, . . . , fk+1 ∈ OX} .

It is clear that F0DX = OX and we have the split short exact sequence

0 OX F1DX ΘX 0

where OX is embedded as multiplication, the map F1DX → ΘX is given by P 7→ [P,−]. Here are some
basic properties of differential operators.

Proposition 1.7. (i) F•DX is an increasing filtration of DX such that DX =
⋃
l≥0 FlDX and each

FlDX is locally a free OX -module.
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(ii) F0DX = OX and FlDX ◦ FmDX ⊆ Fl+mDX .

(iii) [FlDX , FmDX ] ⊆ Fl+m−1DX .

Observe that a corollary of this proposition is that the graded algebra

grDX =
⊕
l≥0

FlDX/Fl−1DX

is commutative. Assume now A = OX(X) is smooth, in the sense that Ω1
A is a finitely generated free

A-module.

Proposition 1.8. There is a (sheaf of) algebra isomorphism

grDX
∼→ Sym ΘX

∼= π∗OT∗X

where Sym ΘA is the symmetric algebra on ΘA. Moreover, it is also a Poisson algebra isomorphism.

Proof. See [Mal17, p.75]. �

1.2 Derivations and differential forms on a group
Now we focus on the case X = G, for G an affine algebraic group. Its Lie algebra g can be defined in a lot
of equivalent ways, for example as the TeG (tangent space at the identity element). We prefer, though,
to define it in another way.

Definition 1.9. The Lie algebra of G is the Lie algebra of left invariant vector fields on G, that is,

g = Lie(G) := {θ ∈ Θ(G) | ∆ ◦ θ = (1⊗ θ) ◦∆}

where ∆: O(G)→ O(G)⊗O(G) is the comultiplication and 1: O(G)→ C is the co-unit (recall that any
affine algebraic group is a Hopf algebra).

Let’s try to unfold this definition: a vector field θ ∈ DerC(O(G)) is in g if and only if, for every
g ∈ G, [λg, θ] = 0 as endomorphism of O(G), where λg corresponds to the action of g (acting by left
multiplication on G) on O(G), i.e. λg(f) = f(g ·−). One way to see this is to consider the map φ : G→ G
(so that θ = − ◦ φ) and the multiplication µ : G×G→ G. The condition on θ translates to

φ(g1 · g2) = g1 · φ(g2)

and, using now θ = − ◦ φ, one obtains that for every f ∈ O(G) and y ∈ G we have

λgθ(f)(y) = θ(f)(gy) = θ(f(gy)) = θλg(f)(y).

As the above reasoning suggests, the only “important” information is the value at the identity e, as
formalized by the following lemma.

Lemma 1.10. We have an isomorphism of Lie algebras

g = Lie(G)→ TeG
def
= DerC(O(G),C), θ 7→ ε ◦ θ

where ε : O(G)→ C is the co-unit.

Proof. The map is clearly well-defined. Its inverse is given by δ 7→ (id⊗δ) ◦∆. �

We have a dual definition of right invariant vector fields, requiring simply the symmetric condition
∆ ◦ θ = (θ ⊗ 1) ◦ ∆ for θ ∈ DerC(O(G)). As before, this concretely means that θ commutes with
all ρg for g ∈ G, the contragradient action induced by the right multiplication (g, x) 7→ xg on G (i.e.
ρg(f) = f(− · g)). The proof is exactly as before, just by observing that this condition translates to
φ(g1g2) = φ(g1)g2. Also observe that this latter condition does not give us automatically commutativity
with λg, as well as the former doesn’t give commutativity with the ρg, so there is a real distinction among
left and right invariant vector fields, although they are both determined by just their value at the identity
e (indeed, what changes is “how” they are determined). They are canonically isomorphic though, so given
x ∈ TeG we write xL (resp. xR) to mean the corresponding left (resp. right) invariant vector field.
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Sometimes using the definition of g as derivation of O(G) at e can be useful, so let’s state the following,
which is a more concrete reformulation of the above. Let’s consider left and right translations

λg : G→ G, x 7→ gx λ∗g : O(G)→ O(G), f 7→ f ◦ λg(x 7→ f(gx)),

ρg : G→ G, x 7→ xg  ρ∗g : O(G)→ O(G), f 7→ f ◦ ρg(x 7→ f(xg)).

We have

Lemma 1.11. Let x ∈ DerC(O(G),C) an element of TeG. Then the corresponding left and right invariant
vector fields are given by

xL(f)(g) = x(λ∗gf) = x(f(g · −)), xR(f)(g) = x(ρ∗xf) = x(f(− · g))

where f ∈ O(G), g ∈ G.

We can prove that left invariant and right invariant vector fields commute, as the commutation
between λ and ρ suggests.

Lemma 1.12. Given x, y ∈ g we have

[xL, yR] = 0 ∈ DerC(O(G)).

Proof. This is classical in Lie groups. One algebraic way to prove is to use Definition 1.9 stating that we
have

∆ ◦ xL = (id⊗xL) ◦∆, ∆ ◦ yR = (yR ⊗ id) ◦∆.

Then let’s consider

∆ ◦ xL ◦ yR = (id⊗xL) ◦∆ ◦ yR = (id⊗xL) ◦ (id⊗yR) ◦∆ = (yR ⊗ xL) ◦∆ =

= (yR ⊗ id) ◦ (id⊗xL) ◦∆ = (yR ⊗ id) ◦∆ ◦ xL = ∆ ◦ yR ◦ xL

which basically says ∆ ◦ [xL, yR] = 0. Composing with the map ε⊗ id : O(G)⊗O(G)→ O(G) and using
Hopf algebra axioms we can conclude. �

We also have

Lemma 1.13. Given x, y ∈ g, and S : O(G)→ O(G) the antipode map, we have

xR ◦ S = S ◦ xL.

Proof. Given f ∈ O(G), g ∈ G observe that

xR(S(f))(g) = x(ρ∗gS(f)) = x(f ◦ ι ◦ ρg) = x(f ◦ λg−1 ◦ ι) = S(x(λ∗g−1f)) = (SxL(f))(g)

where ι : G→ G is the inverse map, so that S = − ◦ ι. �

Recall also that any affine algebraic linear group is smooth (as a scheme) and it has trivial tangent
and cotangent bundles, i.e.

TG ∼= G× TeG ∼= G× g, T ∗G ∼= G× g∗.

Lemma 1.14. The embedding g ↪→ DerC(O(G)) given by x 7→ xL induces an isomorphism inO(G)−Mod

O(G)⊗C g
∼−→ DerC(O(G)).

Proof. Both sides are free O(G)-modules of rank equal to dimC g = dimG since G is smooth. �

We have the canonical O(G)-bilinear pairing

〈, 〉 : DerC(O(G))× Ω1(G)→ O(G).

Fix a C-basis of g given by (x1, . . . , xd) (corresponding hence to an O(G)-basis of DerC(O(G))) and let
(ω1, . . . , ωd) be the dual O(G)-basis of Ω1(G). Let’s introduce the structure coefficients writing

[xi, xj ] =
∑
p

ci,jp x
p, for i, j = 1, . . . , d
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with ci,jp ∈ C. Having embedded g into DerC(O(G)) as left-invariant vector fields, we can consider also
the dual embedding and write

xiR =
∑
p

f i,pxp, for i = 1, . . . , d

for some invertible (the xiR are also a basis) matrix (f i,p)1≤i,p≤d with coefficients in O(G) (observe that
by xi we mean the corresponding left-invariant vector field xiL in DerC(O(G))).

Lemma 1.15. We have the following identities:

(i) For all i, j, s = 1, . . . , d,
xiLf

j,s +
∑
p

ci,ps f j,p = 0.

(ii) For all i, j, s = 1, . . . , d, ∑
p

f i,p · xpLf
j,s =

∑
q

ci,jq f
q,s.

Proof. The first identity is equivalent to the commutation relation

[xiL, x
j
R] = 0

for all i, j (just substitute the expression of xjR and then put to zero every component multiplying the
base elements xs).

To prove the second, let’s write the relation

[xiR, x
j
R] = [xi, xj ]R

which says nothing else than that also (−)R is a Lie algebra morphism (same reasoning of left one). Using
coordinates we have

[xiR, x
j
R] =

∑
s

[xiR, f
j,sxs] =

∑
s

(xiRf
j,s)xs =

∑
s,p

f i,p(xpLf
j,s)xs

by the previous commutation relation. Plugging it back, we obtain the searched identities (as usual
insulating every component). �

Definition 1.16. The Lie algebra DerC(O(G)) acts on Ω1(G) by Lie derivative as follows:

Ω1(G) 3 (Lie θ).ω : θ1 7→ θ(〈θ1, ω〉)− 〈[θ, θ1], ω〉,

where ω ∈ Ω1(G) and θ, θ1 ∈ DerC(O(G)).

Let’s now consider the case ω = f∂g ∈ Ω1(G), τ ∈ DerC(O(G)) and try to give more explicit formulas.
We have

〈τ, f∂g〉 = fτ(g), (Lie τ).(f∂g) = τ(f)∂g + f∂(τ(g))

as one can verify with few computations.

Proposition 1.17. We have the following identities:

(1) (Lie τ).(fω) = τ(f)ω + f(Lie τ).ω.

(2) (Lie fτ).ω = f(Lie τ).ω + 〈τ, ω〉∂f .

Proof. Easy computations. �

Using the previously introduced O(G)-basis {ω1, . . . , ωd} of Ω1(G) we can write

(Liexi).ωj =
∑
s

αi,js ω
s

for αi,js ∈ C coefficients. As it happens in differential geometry, we will sometimes write

(Lie θ).f = θ(f)

for θ ∈ DerC(O(G)) and f ∈ O(G) (i.e. the Lie derivative of a function along a vector field is exactly the
corresponding directional derivative, seeing the vector field as a differential operator). We have another
technical lemma.
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Lemma 1.18. The following identities hold:

(i) For all i, j = 1, . . . , d,
(Liexi).ωj =

∑
s

cs,ij ωs.

(ii) For all i, j = 1, . . . , d,
(LiexiR).ωj = 0.

Proof. For all i, j, s = 1, . . . , d we have

αi,js = 〈xs, (Liexi).ωj〉 = xiL(〈xs, ωj〉) + 〈[xs, xi], ωj〉 = cs,ij

where we used the fact that ωi is a O(G)-dual basis of the xj ’s, and that xiL(δs,j) = 0 being the derivation
of a constant. This clearly implies (i).

To prove (ii) let’s observe first of all that

〈xiR, ωj〉 =
∑
s

〈f i,sxs, ωj〉 = f j,s ∈ O(G).

To prove (LiexiR).ωj = 0 it suffices to show it is zero against the base of right-invariant vector fields xsR.
We have

〈xsR, (LiexiR).ωj〉 = xiR(〈xsR, ωj〉) + 〈[xs, xi]R, ωj〉 = xiR(fs,j) +
∑
p

cs,ip fp,j =

=
∑
k

f i,kxkL(fs,j) +
∑
p

cs,ip fp,j =
∑
q

ci,sq fq,j +
∑
p

cs,ip fp,j = 0

where we used the second identity of Lemma 1.15 and the fact that ci,jp = −cj,ip . �

Proposition 1.19. The map

Ω1(G)→ HomC(g,O(G)), dg 7→ (x 7→ xL(g))

is an isomorphism in O(G)−Mod.

Proof. By Frobenius reciprocity, using that DerC(O(G)) ∼= O(G)⊗C g, we have

HomO(G)(DerC(O(G)),O(G)) ∼= HomC(g,O(G))

and thus, as C-vector spaces, we obtain

Ω1(G) ∼= HomC(g,O(G)).

This holds since Ω1(G) is a free O(G)-module of finite rank, hence its bi-dual is (canonically) isomorphic
to itself as an O(G)-module, and hence also as a C-vector space.

Let’s write Ω1(G) 3 ω =
∑
i fidgi with fi ∈ O(G). In this isomorphism, the element ω gets sent to

the map ω̃ : g→ O(G) acting
g 3 x 7→

∑
i

fi · xL(gi) ∈ O(G).

�

2 Chiral differential operators

2.1 Definitions
Let G be an affine algebraic group, g = Lie(G) its Lie algebra (over C) and κ be an invariant bilinear
form. Let’s recall the following.
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Definition 2.1. The Kac-Moody affinization of g (related to κ) is

ĝκ := g[t, t−1]⊕ C1

where the bracket is given by

[xtn, ytm] = [x, y]tn+m + nδn,−mκ(x, y)1

and 1 is central.

Let’s set
AG := U(ĝκ)⊗C O(LG)

where LG is the loop space of G. The algebra structure on AG is such that

U(ĝκ) ↪→ AG, O(LG) ↪→ AG

are algebra embeddings (which, from now on, we’ll implicitely use to identify for example x ⊗ 1 with
x ∈ U(ĝκ)) and bracket

[xtm, f(n)] = (xLf)(m+n) x ∈ g, f ∈ O(G), n,m ∈ Z.

Let’s define the subalgebra
AG,+ := U(g[t]⊕ C1)⊗C O(LG)

and consider O(J∞G) as an AG,+-module. To define this structure it suffices to say that O(LG) acts
by the natural surjection

O(LG)→ O(J∞G), f(n) 7→ χZ<0(n) · f(n) f ∈ O(G),

g[t] ⊂ gJtK acts by left invariant vector fields, (recall that Lie(J∞G) ∼= gJtK) and finally 1 acts as identity.
We are finally ready to define our object of interest.

Definition 2.2. The algebra of global chiral differential operators on G is defined by

Dch
G,κ := AG ⊗AG,+ O(J∞G).

Let’s immediately observe that, as f̂g-module, we have

Dch
G,κ
∼= U(ĝκ)⊗U(g[t]⊕C1) O(J∞G).

Let’s define two families of fields on Dch
G,κ:

x(z) =
∑
n∈Z

(xtn)z−n−1, f(z) =
∑
n∈Z

f(n)z
−n−1 x ∈ g, f ∈ O(G)

where both xtn and f(n) are seen in EndC(Dch
G,κ) by left multiplication. Observe that, thanks to the

commutation relation defined on AG, there can happen that the action of f(n) for n ≥ 0 is non-trivial.

Proposition 2.3. The two fields above satisfy the following OPEs:

x(z)y(w) ∼ [x, y](w)

z − w
+

κ(x, y)

(z − w)2
, f(z)g(w) ∼ 0,

x(z)f(w) ∼ (xLf)(w)

z − w

for any x, y ∈ g, f, g ∈ O(G).

Proof. It suffices to check brackets, and then to use the “locality” proposition. For the first case we get

[x(z), y(w)] =
∑
n,m

[xtn, ytm]z−n−1w−m−1
def
=
∑
n,m

[x, y]tn+mz−n−1w−m−1 +
∑
n

nκ(x, y)1z−n−1wn−1 =

=
∑
k

[x, y]tkw−k−1 ·

(∑
n

z−n−1wn

)
+ κ(x, y)1 ·

∑
n

nwn−1z−n−1 =

= [x, y](w) · δ(z − w) + κ(x, y)1 · ∂wδ(z − w)
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and thus we conclude. For the second case it is immediate since O(LG) is abelian. Finally the third
case is proven analogously by

[x(z), f(w)] =
∑
n,m

[x(n), f(m)]z
−n−1w−m−1 =

∑
n,m

(xLf)(n+m)z
−n−1w−m−1 =

=
∑
k

(xLf)(k)w
−k−1 ·

(∑
n

z−n−1wn

)
= (xLf)(w) · δ(z − w). �

Let (x1, . . . , xn) be an ordered basis of g and let O(G) be generated by coordinates ξ1, . . . , ξr. Using
PBW theorem we see that we get a “PBW” basis of Dch

G,κ by tensoring the respective two bases. Namely
we obtain that Dch

G,κ is spanned by vectors of the form

xi1(n1)
. . . xis(nr) ⊗ ξ

j1
(m1)

. . . ξjt(mt) |0〉

where |0〉 = 1⊗ 1, ni < 0. We can use Reconstruction Theorem to endow Dch
G,κ with a vertex algebra

structure: indeed we just declare to associate xt−1 to field x(z) for x ∈ g and f(−1) to the field f(z) for
f ∈ O(G), since we already know they are mutually local and their coefficients span the whole space.

Theorem 2.4. There is a unique vertex algebra structure on Dch
G,κ such that the embeddings

πL : V κ(g) ↪→ Dch
G,κ, u |0〉 7→ u⊗ 1,

j : O(J∞G) ↪→ Dch
G,κ, f 7→ 1⊗ f

are homomorphisms of vertex algebras and

x(z)f(w) ∼ (xLf)(w)

z − w
, x ∈ g, f ∈ O(G).

The vertex algebra Dch
G,κ is also Z≥0-graded by setting deg x(n) = −n and deg f(−1−j) = j, where

x ∈ g, f ∈ O(G), n < 0 and j ≥ 0. To declare this it suffices to ask for x ∈ g (embedded through πL) to
have weight 1 and for f ∈ O(G) (embedded through j) to have weight 0, since then translation just adds
1 to the weight.

Consider now the subspace of (Dch
G,κ)1 spanned by vectors f∂g with f, g ∈ O(G) (we are using j again,

this is the same as writing f(−1)g(−2)), and call it Ω. Recalling that

O(G)⊗C g
'−→ DerC(O(G))

we see that
(Dch

G,κ)1 = Ω⊕DerC(O(G))

since they represent the only two possible ways for a vector to have weight 1, i.e. being either xt−1⊗f(−1)
(this is the explicit writing, we will just write xf from now on) or f∂g. Recall also that Ω1(G), the space
of 1-differential forms on G, generated by dO(G) as O(G)-module, satisfies

Ω1(G) ∼= HomC(g,O(G))

by df 7→ (x 7→ xLf).

Lemma 2.5. The C-linear map

Γ: Ω→ HomO(G)(DerC(O(G)),O(G)), f∂g 7→
(
O(G)⊗ g 3 h⊗ x 7→ (hx)(1)(f∂g)

)
is an isomorphism of C-vector spaces. Therefore Ω ∼= Ω1(G) as C-vector spaces.

Proof. Observe that hx ∈ Dch
G,κ (it can be re-written in a different order using commutation relation,

but here it does not matter), so our first problem is to understand its associated field. Thanks to
reconstruction theorem, and to the tautological hx = h(−1)x(−1) |0〉, we obtain

Y (hx, ζ) = :Y (h, ζ)Y (x, ζ):

so that
(hx)(1) =

∑
n≤−1

h(n)x(−n) +
∑
n≥0

x(−n)h(n).
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Applying this to f∂g = f(−1)g(−2) we see that all terms in the second series give 0, since h(n) acts by
zero having n ≥ 0 (i.e. h(n)(1⊗ ∗) = 0). Using

h(n)x(−n)(f∂g) = h(n) ·
[
(xLf)(−1−n)g(−2) + f(−1)(xLg)(−2−n)

]
we see that the only nonzero term comes from n = −1, so that

(hx)(1)(f∂g) = hf(xLg).

The map h ⊗ x 7→ (hx)(1)(f∂g) is thus a clear morphism of O(G)-modules and so the map Γ is well
defined. Observe that by Frobenius reciprocity we have

HomO(G)(DerC(O(G)),O(G)) ∼= HomC(g,O(G))

and, using this correspondence, the map Γ(f∂g) is just given by g 3 x 7→ f(xLg). This means that
it suffices to prove that the map sending ∂g to (x 7→ xLg) is an isomorphism of O(G)-modules. Using
Lemma 1.15 this is the same as saying that ∂g 7→ dg ∈ Ω1(G) is an isomorphism of O(G)-modules.
Finally, ∂g = g(−2) |0〉 is a regular function on J1G ∼= TG (tangent bundle of G) and it corresponds to
dg. �

We can now consider the canonical O(G)-bilinear pairing 〈, 〉 : DerC(O(G)) × Ω → O(G) and the
action of DerC(O(G)) on Ω by Lie derivative.

Lemma 2.6. Let x ∈ g and ω ∈ Ω. Then x(1)ω = 〈x, ω〉 and x(0)ω = (Liex).ω.

Proof. The first identity holds by Lemma 2.5 (put ω = f∂g and then extend by linearity). We can use it
to prove the second one; we have

y(1)((Liex).ω) = xL(y(1)ω)− [x, y](1)ω = x(0)y(1)ω − [x, y](1)ω

for all y ∈ g. Since
y(1)(x(0)ω) = x(0)y(1)ω − [x, y](1)ω

for all y ∈ g, we conclude x(0)ω = (Liex).ω. �

3 Main results
Theorem 3.1. (i) There is a vertex algebra embedding

πR : V κ
∗
(g) ↪→ Com(V κ(g),Dch

G,κ) ⊂ Dch
G,κ

such that
[πR(x)(m), f(n)] = (xRf)(m+n) for f ∈ O(G), m,n ∈ Z,

where xR is the right invariant vector field corresponding to x ∈ g.

(ii) There is a vertex algebra isomorphism

Dch
G,κ
∼= Dch

G,κ∗

that sends O(G) 3 f to S(f) ∈ O(G), where S : O(G)→ O(G) is the antipode.

Proof. For all this proof we will identify x ∈ g (corresponding to xt−1 ∈ V κ(g)) with its image in Dch
G,κ

through πL. We will give a formula for the map πR and we will prove, in order, that the images commute
with V κ(g), that it is injective and that it defines a vertex algebra homomorphism.

Let as before (x1, . . . , xd) be a basis of g, with (ω1, . . . , ωd) the dual O(G)-basis of Ω ∼= Ω1(G). Then,
we obtain that (x1, . . . , xd) is also an O(G)-basis of DerC(O(G)) (identifying x ∈ g with xL). Thus, the
corresponding right-invariant vector fields can be expressed by

Dch
G,κ 3 xiR =

∑
p

f i,pxp
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where (f i,p)1≤i,p≤d is an invertible O(G)-matrix. To define πR, since it must be a morphism of vertex
algebras, it suffices to define it only on the basis xi ∼= xit−1 of V κ

∗
(g), so let’s set

πR(xi) := xiR +
∑
q,p

κ∗(xp, xq)f i,pωq ∈ (Dch
G,κ)1 = DerC(O(G))⊕ Ω.

To verify it commutes with all elements of V κ(g) it suffices to prove (classical argument using Borcherds
identities) that

v(n)πR(s) = 0 ∀ v ∈ V κ(g), s ∈ V κ
∗
(g), n ≥ 0

and, more specifically, we can just verify this relation for v = xi and s = xj for all i, j (i.e. we just check
it on generators, thanks to Borcherds identities). So our first step will be to prove

(xi)(n)πR(xj) = 0 (1)

for all i, j and n ≥ 0.

Lemma 3.2. We have (xi)(n)πR(xj) = 0 for all n ≥ 2.

Proof. One way to convince oneself about this is to use the OPEs in Proposition 2.3 and Wick’s theorem.
In this case we can do explicit computation, though, and we will do them to warm us up. First thing
first (xi)(n)x

j
R =

∑
p(x

i)(n)(f
j,pxp), so let’s focus on terms of this type. Observe that by Borcherds 2

(commutators identity) and by the fact that (xi)(n)x
j = 0 for n ≥ 2 (OPE) we have

(xi)(n)(f
j,pxp) = [xi(n), f

j,p
(−1)]x

p =
∑
j≥0

(
n

j

)
(xi(j)f

j,p)(n−1−j)x
p

and using the OPE of x(z)f(z) we get

(xi)(n)(f
j,pxp) = (xi(0)f

j,p)(n−1)x
p = (xiLf

j,p)(n−1)x
p

which is zero for n ≥ 2.
The second part is just proving (xi)(n)(f

j,pωq) = 0 for n ≥ 2. Recalling that Ω is generated by
f∂g = f(−1)g(−2) and that xLg = 〈x, ω〉 for x ∈ g, we obtain, recalling that gJtK acts by derivation, that

xi(n)(f
j,pωq) = (xLf)(n−1)ω

q − f j,p〈xi, ωq〉(n−2) = 0

for n ≥ 2. Summing these two we obtain the statement. �

By the lemma we just need to prove (1) for n = 0, 1. For the case n = 1 we can write:

(xiR)(1)x
j =

∑
p

(f i,p(−1)x
p)(1)x

j Borcherds1=
∑
p

(f i,p(−1)x
p
(1)x

j + xp(0)f
i,p
(0)x

j) = (2)

OPE
=

∑
p

(f i,pκ(xp, xj)− xpL(xjLf
i,p)). (3)

We used the fact that f i,p(0)x
j = −xj(0)f

i,p (again skew symmetry or do the inverse OPE). Using Lemma 1.15
twice we obtain

−xpL(xjLf
i,p) =

∑
s

xpL(cj,sp f i,s) = −
∑
s,u

cp,us cj,sp f i,u =
∑
s,u

cu,ps cj,sp f i,u.

Lemma 3.3. The Killing form can be expressed using structure coefficients as

κg(xi, xj) =
∑
p,q

ci,qp cj,pq

for any i, j.

Proof. Easy computation. �
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We deduce that (writing explicitely and renaming the three indexes)

−
∑
p

xpL(xjLf
i,p) =

∑
u

κg(xu, xj)f i,u. (4)

Recalling the definition of κ∗ we get

(xiR)(1)x
j = −

∑
p

κ∗(xp, xj)f i,p.

Let’s observe the following.

Lemma 3.4. We have (fω)(1)(x) = x(1)(fω), with obvious notation.

Proof. Observe that
x(1)(fω)

derivation
= (xLf)(0)ω + f〈x, ω〉(−1) = f〈x, ω〉.

By skew-symmetry, i.e. Y (fω, ζ)x = eζTY (x,−ζ)fω, we have

∑
n

(fω)(n)xζ
−n−1 =

∑
h

ζ−h−1 ·
∑
k≥0

(−1)−k−h−1

k!
T k(x(k+h)(fω))

so that

(fω)(1)x =
∑
k≥0

(−1)−k−2

k!
T k(x(k+1)(fω))

derivation
= x(1)(fω)

where only k = 0 survives. �

By Lemma 2.6, for any p, q, we have(∑
p,q

κ∗(xp, xq)f i,pωq

)
(1)

xj
above

=
∑
p,q

κ∗(xp, xq)xj(1)(f
i,pωq) =

=
∑
p,q

κ∗(xp, xq)f i,p〈xj , ωq〉 =
∑
p

κ∗(xp, xj)f i,p

and therefore we can conclude that πR(xi)(1)x
j = 0. Using skew-symmetry (check proof of above lemma)

we can also conclude that xi(1)(πR(xj)) = 0.
Let’s now focus on the case n = 0, i.e. we want to prove (xi)(0)πR(xj) = 0 for any i, j. Observe that

using Lemma 1.15 we have

xi(0)x
j
R =

∑
q

xi(0)(f
j,qxq) =

∑
q

xi(0)f
j,q
(−1)x

q OPE=
∑
q

((xiLf
j,q)(−1)x

q + f j,q(−1)[x
i, xq]).

This last sum is equal to zero because

xiLf
j,q = −

∑
p

ci,pq f j,p,
∑
q

f j,q(−1)[x
i, xq] =

∑
q,s

ci,qs f j,qxs

and summing we get ∑
q

(xiLf
j,q)(−1)x

q = −
∑
q,p

ci,pq f j,pxq

so that we just need to switch indexes. Thus xi(0)x
j
R = 0. On the other hand, using Lemma 1.15 and

Lemma 2.6, we have∑
p,q

xi(0)(κ
∗(xp, xq)f j,pωq) =

∑
p,q

κ∗(xp, xq)((xiLf
j,p)ωq + f j,p(Liexi).ωq).

Writing xiLf
j,p = −

∑
s c
i,s
p f j,s and (Liexi).ωq = −

∑
s c
i,s
q ωs we obtain that the above term is equal to

−
∑
p,q,r

κ∗(xp, xq)ci,rp f j,rωq + κ(xp, xq)ci,rq f j,pωr.
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Observing that
κ∗([xi, xs], xr) =

∑
k

ci,sk κ∗(xk, xr)

we can write the first part as∑
p,q,r

κ∗(xp, xq)ci,rp f j,rωq =
∑
q,r

κ∗([xi, xr], xq)f j,rωq

whereas the second part is equal to∑
p,q,r

κ∗(xp, xq)ci,rq f j,pωr =
∑
p,r

κ∗(xp, [xi, xr])f j,pωr

so that, by the g-invariance of κ∗, their sum is zero. This means that

xi(0)

(∑
p,q

κ∗(xp, xq)f j,pωq

)
= 0

and therefore we can conclude that xi(0)πR(xj) = 0. In conclusion, we proved formula (1), which means
that πR is a map from V κ

∗
(g) to Com(V κ(g),Dch

G,κ).
Let’s now prove injectivity. This is easy since (Dch

G,κ)1 ∼= DerC(O(G)) ⊕ Ω and we can consider the
projection of πR(xi) onto DerC(O(G)) which is equal to xiR. Since the map g 3 x 7→ xR ∈ DerC(O(G))
is injective, we conclude that also πR is injective.

We now have to prove that πR is indeed a vertex algebra homomorphism, which amounts to say that
it respects OPE, i.e. that we have

(πR(x))(z)(πR(y))(w) ∼ 1

z − w
πR([x, y])(w) +

κ∗(x, y)

(z − w)2

for all x, y ∈ g. This basically means that we have to prove

πR(x)(n)πR(y) = 0 ∀n ≥ 2,

πR(x)(1)πR(y) = κ∗(x, y),

πR(x)(0)πR(y) = πR([x, y])

for all x, y ∈ V κ∗(g). As usual, we can just assume x = xi and y = xj to be in the basis of g.

Proposition 3.5. We have πR(xi)(n)πR(xj) = 0 for every n ≥ 2.

Proof. Expanding both sides we find terms like (fx)(n)(gy), (fx)(n)(gω) and (fω)(n)(gy). Let’s focus on
the first kind, the other are similar. We can use Reconstruction theorem to obtain the relative fields

Y (fx, ζ) =:Y (f, ζ)Y (x, ζ):

and then Wick’s theorem to get OPEs. We see that have terms like 〈f, g〉 = 0, 〈f, y〉 = − (yLf)(w)
z−w and

products of at most two of them, so no denominators with powers bigger than (z −w)2. Thus, for n ≥ 2
we have zero product of fields. �

Let’s now compute

πR(xi)(1)πR(xj) =

(
xiR +

∑
q,p

κ∗(xp, xq)f i,pωq

)
(1)

(
xjR +

∑
q,p

κ∗(xp, xq)f j,pωq

)

so that we see there are 4 terms. We have

(xiR)(1)x
j
R =

∑
p,s

(f i,pxp)(1)(f
j,sxs).

Small computation proposition time.
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Proposition 3.6. With obvious notation we have

(fx)(1)(gy) = fgκ(x, y)− fyL(xLg)− gxL(yLf)− (xLf)(yLg).

Proof. By Borcherds 1 we have

(fx)(1) =
∑
l≥0

(−1)l((−1)1f(−1−l)x(1+l) + x(−l)f(l)).

Observe that

x(1+l)(gy) = g(−1)x(1+l)y + [x(1+l), g(−1)]y = g(−1)x(1+l)y + (xLg)(l)y =

= g · x(1+l)y + y(xLg)(l) − (yLxLg)(l−1)

so the only surviving l is 0, for which we have x(1)(gy) = gκ(x, y) − yL(xLg), using OPEs. Instead we
have

f(l)(gy)
abelian

= g(−1)f(l)y = gyf(l) + g[f(l), y] =

= yg(−1)f(l) − (yLg)(−2)f(l) − g(yLf)(l−1)
l≥0
= −g(yLf)(l−1)

so that also here the only survival is l = 0 with −g(yLf). Hence we have

(fx)(1)(gy) = f · x(1)(gy) + x(0)f(0)(gy) = fgκ(x, y)− fyL(xLg)− x(0)(gyLf)

and recalling the action of x(0) we conclude. �

Using the above computation we can write

(xiR)(1)x
j
R =

∑
p,s

(
f i,pf j,sκ(xp, xs)− f i,pxsL(xpLf

j,s)− f j,sxpL(xsLf
i,p)− (xpLf

j,s)(xsLf
i,p)
)
.

Let’s now observe that using Lemma 1.15

−f i,pxsL(xpLf
j,s) =

∑
k

cp,ks f i,p(xsLf
j,k) = −

∑
l,k

cp,ks cs,lk f
i,pf j,l,

−f j,sxpL(xsLf
i,p) = −

∑
k,l

cs,kp cp,lk f j,sf i,l,

−(xpLf
j,s)(xsLf

i,p) = −
∑
k,l

cp,ks cs,lp f
j,kf i,l.

Summing over p and s and summing those three terms above, using the expression of Killing form in
coordinates, we obtain ∑

a,b

f i,af j,bκg(xa, xb)

so reinserting into the initial expression we get

(xiR)(1)x
j
R = −

∑
p,s

κ∗(xp, xs)f i,pf j,s.

Proposition 3.7. We have
(f i,pωq)(1)x

j
R = f j,qf i,p.

Proof. Expanding xjR we see that we just need to study terms like (f i,pωq)(1)(f
j,lxl). We will use the

skew-symmetry formula

(f i,pωq)(1)(f
j,lxl) =

∑
k≥0

(−1)−k−2

k!
T k
(
(f j,lxl)(k+1)(f

i,pωq)
)
.

By Borcherds 1 we have

(f j,l(−1)x
l)(1+k)(f

i,pωq) =
∑
t≥0

(−1)t
(

(−1)tf j,l(−1−t)x
l
(1+k+t)(f

i,pωq) + xl(k−l)f
j,l
(t)(f

i,pωq)
)
.
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We have
xl(1+k+t)(f

i,pωq) = (xlLf
i,p)(k+t)ω

q + f i,p〈xl, ωq〉(k+t−1)
so that the first term dies since k + t ≥ 0, as well as the second part in Borcherds identity. Then we
obtain

(f j,lxl)(k+1)(f
i,pωq) =

∑
t≥0

f j,l(−1−t)f
i,pδl,q(k+t−1).

Then the only nonzero term is t = −k, so that t = k = 0 and we obtain

(f j,lxl)(k+1)(f
i,pωq) = δl,q · δk,0 · f j,qf i,p.

Finally, putting back into the skew symmetry, we get

(f i,pωq)(1)(f
j,lxl) = δq,l · f j,qf i,p

and summing over l we conclude (f i,pωq)(1)x
j
R = f j,qf i,p. �

Using the above proposition we obtain(∑
p,q

κ∗(xp, xq)f i,pωq

)
(1)

xjR =
∑
p,q

κ∗(xp, xq)f j,qf i,p.

The remaining part is

(xiR)(1)

(∑
u,s

κ∗(xs, xu)f j,sωu

)
=
∑
s,u

κ∗(xs, xu)(xiR)(1)(f
j,sωu).

Expanding xiR we see that we need to study terms like (f i,lxl)(1)(f
j,sωu) and this is the usual reasoning

with Borcherds 1. We have

(f i,lxl)(1)(f
j,sωu) =

∑
t≥0

(−1)t
(

(−1)tf i,l(−1−t)x
l
(1+t)(f

j,sωu) + xl(−t)f
i,l
(t)(f

j,sωu)
)
,

xl(1+t)(f
j,sωu)

derivation
= (xlLf

j,s)(t)ω
u + f j,s〈xl, ωu〉(t−1)

t≥0
= f j,sδl,u(t−1)

so that the only surviving term is for t = 0 and l = u, in which case we obtain f i,uf j,s. Summing over l
we obtain

(xiR)(1)

(∑
u,s

κ∗(xs, xu)f j,sωu

)
=
∑
u,s

κ∗(xs, xu)f i,uf j,s.

Finally the fourth term is zero since O(J∞G) is commutative, i.e. we have(∑
p,q

κ∗(xp, xq)f i,pωq

)
(1)

(∑
u,s

κ∗(xs, xu)f j,sωu

)
= 0.

Summing over these terms we obtain

πR(xi)(1)πR(xj) =
∑
p,q

κ∗(xp, xq)f i,pf j,q.

A priori this is an element of O(J∞G), let’s prove it is actually a constant. We just need to show it
gets annihilated by all left-invariant vector fields, and specifically we just need to test xsL for all s. Using
identities of Lemma 1.15 we have

xsL

(∑
p,q

κ∗(xp, xq)f i,pf j,q

)
=
∑
p,q

κ∗(xp, xq)
[
(xsLf

i,p)f j,q + f i,p(xsLf
j,q)
]

=

= −
∑
p,q,u

κ∗(xp, xq)cs,up f i,uf j,q −
∑
p,q,v

κ∗(xp, xq)cs,vq f j,vf i,p =

linearity
= −

∑
u,q

κ∗([xs, xu], xq)f i,uf j,q −
∑
v,p

κ∗(xp, [xs, xv])f j,vf i,p =

=
∑
n,m

[κ∗([xn, xs], xm)− κ∗(xn, [xs, xm])] f i,nf j,m = 0
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where the last equality is due to the invariance of κ∗.
We conclude that

∑
p,q κ

∗(xp, xq)f i,pf j,q is constant. Observing that f i,j(e) = δi,j , where e is the
identity of G, we see that we have

πR(xi)(1)πR(xj) = κ∗(xi, xj)

as we wanted.
Let’s now compute πR(xi)(0)πR(xj) and, as usual, let’s start by expanding πR(xj). Let’s recall first a

basic lemma of vertex algebras.

Lemma 3.8. Suppose v(n)w = 0 for each n ≥ 0. Then w(n)v = 0 for each n ≥ 0.

Proof. Write

w(n)v = w(n)v(−1) |0〉 = v(−1)w(n) |0〉+ [w(n), v(−1)] |0〉
n≥0
= −[v(−1), w(n)] |0〉

and using Borcherds 2
w(n)v = −

∑
j≥0

(−1)j(v(j)w)(n−1−j) |0〉 .

This is all equal to zero since v(j)w = 0 by assumption. �

Let’s now focus on terms like πR(xi)(0)(f
j,qxq). We proved before that (xj)(n)πR(xi) = 0 for all non

negative n and therefore, using the lemma, we also have πR(xi)(n)x
j = 0. Since in any vertex algebra

the element v(0) is a “derivation”, we have

πR(xi)(0)(f
j,q
(−1)x

q) = (πR(xi)(0)f
j,q)(−1)x

q.

Expanding πR(xi) we need to understand terms like (f i,lxl)(0)f
j,q. This is the usual Borcherds trick, for

which we obtain f i,l(xlLf
j,q). Hence we have

πR(xi)(0)f
j,q =

∑
l

f i,l(xlLf
j,q)

and summing over q we get

πR(xi)(0)x
j
R = πR(xi)(0)

(∑
q

f j,qxq

)
=
∑
q,l

f i,l(xlLf
j,q)xq = [xiR, x

j
R] = [xi, xj ]R

where the last equalities come from the proof of Lemma 1.15. We now need to study terms like
πR(xi)(0)(f

j,sωu), which we can already reduce to (xiR)(0)(f
j,sωu) by the commutativity of the vertex

algebra O(J∞G). As before, using v(0) derivation, we have

(xiR)(0)(f
j,sωu) = ((xiR)(0)f

j,s)(−1)ω
u + f j,s(xiR)(0)ω

u

and now let’s expand xiR =
∑
l f

i,lxl. By Borcherds 1 we have

(f i,lxl)(0) =
∑
t≥0

(−1)t
(

(−1)tf i,l(−1−t)x
l
(t) + xl(−1−t)f

i,l
(t)

)
and observe that

xl(t)f
j,s = (xlLf

j,s)(t−1) = δt,0 · xlLf j,s

so that
(xiR)(0)f

j,s =
∑
l

(f i,lxl)(0)f
j,s =

∑
l

f i,l(xlLf
j,s).

Observe now, using Lemma 2.6, that

xl(t)ω
u = δt,0 · (Liexl).ωu + δt,1 · 〈xl, ωu〉.
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Plugging it in Borcherds 1 we get

(xiR)(0)ω
u =

∑
l

(f i,lxl)(0)ω
u =

∑
l

f i,l(Liexl).ωu +
∑
l

f i,l(−2)〈x
l, ωu〉 =

∑
l

(Lie f i,lxl).ωu =

= (Lie(
∑
l

f i,lxl)).ωu = (LiexiR).ωu = 0

where the last equality come from Lemma 1.18 and identities on Lie derivatives in Proposition 1.17.
Thus, using Lemma 1.15, we can write

(xiR)(0)

(∑
s,u

κ∗(xs, xu)f j,sωu

)
=
∑
s,u

κ∗(xs, xu)

[∑
l

f i,l(xlLf
j,s)ωu

]
=

=
∑
s,u,q

κ∗(xs, xu)ci,jq f
q,sωu.

Observe that we have

πR([xi, xj ]) =
∑
q

ci,jq πR(xq) =
∑
q

ci,jq x
q
R +

∑
q

ci,jq

(∑
s,u

κ∗(xs, xu)fq,sωu

)
.

Adding everything up we see that

πR(xi)(0)πR(xj) = πR([xi, xj ])

so that we have proved that πR is indeed a vertex algebra morphism.
Action by right invariant vector fields

Let’s prove that we have the following OPE

(πR(x)(z))(f(w)) ∼ 1

z − w
(xRf)(w) (5)

and, as usual, assume x = xi is in the fixed basis. It is equivalent to prove that, for n ≥ 0, we have

πR(xi)(n)f = δn,0 · (xiRf).

By the commutativity of O(J∞G) we can write

(πR(xi))(n)f = (xiR)(n)f =
∑
l

(f i,lxl)(n)f

and hence we see that we just need to concentrate on terms of this kind. By Borcherds 1 we have

(f i,l(−1)x
l)(n) =

∑
j≥0

(
(−1)jf i,l(−1−j)x

l
(n+j) + xl(n−1−j)f

i,l
(j)

)
and we observe that

xl(n+j)f = (xlLf)(n+j−1), f i,l(j)f = 0.

The first term is also zero whenever j ≥ 1− n and, if n ≥ 1, this always happens, so we conclude that

n > 0 =⇒ (πR(x))(n)f =
∑
l

(f i,lxl)(n)f = 0.

For n = 0 we obtain instead

(πR(xi))(0)f =
∑
l

(f i,lxl)(0)f =
∑
l

f i,l(xlLf) = (xiRf).

This proves the OPE (5). Observe now that this implies, using Borcherds 2:

[πR(x)(m), f(n)] =
∑
j≥0

(
m

j

)
(πR(x)(j)f)(m+n−j) = (πR(x)(0)f)(m+n) = (xRf)(m+n).
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Second part
For the second point let’s consider the vertex algebra map

Φ: Dch
G,κ → Dch

G,κ∗

whose restriction to O(G) is the antipode S and whose restriction to g is πR. To verify it is indeed a
vertex algebra homomorphism we just need to check the “mixed” OPE

(Φ(x))(z)(Φ(f))(w) ∼ 1

z − w
(Φ(xLf))(w)

for any x ∈ g, f ∈ O(G). This is true thanks to Lemma 1.13 because

Φ(xLf) = S(xLf) = xR(S(f))

and we know from the first point that

(πR(x))(z)(S(f))(w) ∼ 1

z − w
(xR(S(f)))(w).

Finally, to show that Φ is an isomorphism we can just consider the map Ψ from Dch
G,κ∗ to Dch

G,(κ∗)∗ = Dch
G,κ

induced by antipode on O(G) and by πR(x) 7→ πL(x) on V κ
∗
(g). Similarly, also Ψ is a vertex algebra

morphism and one can verify it is inverse to Φ. �

Let’s do another theorem.

Theorem 3.9. Suppose now that G is connected. The vertex algebras V κ(g) and V κ
∗
(g) form a dual

pair in Dch
G,κ, i.e.

V κ(g) = (Dch
G,κ)πR(gJtK) := {v ∈ Dch

G,κ | πR(xtn)(m)v = 0∀m ≥ 0, x ∈ g, }, V κ
∗
(g) = (Dch

G,κ)πL(gJtK).

Proof. By the preceding theorem we already know V κ(g) ⊆ (Dch
G,κ)πR(gJtK) and, using the isomorphism of

the second part, V κ
∗
(g) ⊆ (Dch

G,κ)πL(gJtK), so we just need to prove the inverse inclusions. Observe that,
since the image of πR commutes with elements of V κ(g) (embedded in Dch

G,κ), we have

(Dch
G,κ)πR(gJtK) =

(
U(ĝκ)⊗U(g[t]⊕C1) O(J∞G)

)πR(gJtK) ∼= U(ĝκ)⊗U(g[t]⊕C1) O(J∞G)πR(gJtK).

Since G is connected we have

C ∼= O(J∞G)J∞G = O(J∞G)gJtK = O(J∞G)πR(gJtK)

and hence
(Dch

G,κ)πR(gJtK) ∼= V κ(g).

The other claim comes for free using the isomorphism Dch
G,κ
∼= Dch

G,κ∗ . �

4 Other facts
Let’s recall that for V a vertex algebra we have RV = V/F 1V , where F 1V = V(−2)V . If V has a PBW
basis (ai)i, then one has

F 1V =
{
ai(−n−2)v | n ≥ 0, i ∈ I, v ∈ V

}
.

Then the associated variety XV is defined as the reduced scheme of SpecRV .

Proposition 4.1. We have XDch
G,κ

∼= T ∗G.

Proof. We already mentioned that Dch
G,κ has a PBW basis so we just need to prove RDch

G,κ

∼= C[T ∗G]. We
have T ∗G ∼= G× g∗ so

O(T ∗G) ∼= O(G)⊗O(g∗) ∼= O(G)⊗ Sym(g)

where Sym g is the symmetric algebra of g. Observe that given a generic vector

xi1(−n1−1) . . . x
im
(−nm−1)ξ

j1
(−1−t1) . . . ξ

jr
(−1−tr) |0〉
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if there exists a nj > 0 then we can move, using commutators, xij(−(nj−1)−2) to the leftmost, so that this last

term is in F 1V . Also all the other terms with commutators [xi(−ni−1), x
j
(−nj−2)] = [xi, xj ](−ni−nj−3) will

have “big” negative powers so we will be able to move to the leftmost position and prove they are in F 1V .
Like this we see that the only surviving x part has only t−1 and commute, since [xt−1, yt−1] = [x, y]t−2 ∈
F 1V ; thus it corresponds to S(g). More easily, since O(J∞G) is abelian, we can move any f(−1−j)
with j > 0 to the leftmost place (before the x’s), and then we can use the relation [x(−1), f(−1−j)] =
(xLf)(−1−(j+1)) to continue as before. We obtain that only the nonderived functions survive, i.e. the
O(G) part. Thus we proved

RDch
G,κ

∼= S(g)⊗O(G). �

Recall now that given a, b ∈ V homogeneous we can define

a ◦ b =
∑
i≥0

(
∆a

i

)
a(i−2)b, a ∗ b =

∑
i≥0

(
∆a

i

)
a(i−1)b.

It is then known that Zhu(V ) = V/V ◦ V is an associative unital almost-commutative algebra with
product ∗.

Proposition 4.2. We have Zhu(Dch
G,κ) ∼= D(G).

Proof. Since Dch
G,κ has a PBW basis, we know that RDch

G,κ

∼= gr Zhu(Dch
G,κ). Since

RDch
G,κ

= S(g)⊗O(G) ∼= grU(g)⊗O(G) ∼= gr(U(g)⊗O(G)) ∼= grD(G)

by PBW theorem and the isomorphism U(g)⊗O(G) ∼= D(G). Let’s consider the map of algebras

D(G)→ Zhu(Dch
G,κ) =

Dch
G,κ

Dch
G,κ ◦ Dch

G,κ

, g 3 x 7→ xt−1 +Dch
G,κ ◦ Dch

G,κ, O(G) 3 f 7→ f(−1) +Dch
G,κ ◦ Dch

G,κ.

It is easy to verify that we have

xt−1 ∗ yt−1 − yt−1 ∗ xt−1 formula=
∑
j≥0

(
1− 1

j

)
x(j)y = x(0)y = [x, y]t−1

so that our map is well defined. It clearly respects the filtration so it induces a map on the grading, which
is the isomorphism of before, and thus we can conclude. �
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