Chiral Differential Operators

Carlo Buccisano

May 11, 2021

Abstract

This is just a personal rewriting of some parts of [\[AM21\]](#page-17-0), with some backgrounds taken from [\[Kle\]](#page-17-1) and [\[Mal17\]](#page-17-2). Every mistake is due to me.

1 Background

Let $X = \text{Spec } A$ be an affine algebraic variety over $\mathbb C$ (we will focus particularly on the case in which X is an algebraic group). Let \mathcal{O}_X be the structure sheaf.

Definition 1.1. A global section $\theta \in \text{End}_{\mathbb{C}}(\mathcal{O}_X)(X)$ is a vector field on X if for each open $U \subset X$, the section $\theta(U) \coloneqq \theta|_U \in \text{Der}_{\mathbb{C}}(\mathcal{O}_X(U), \mathcal{O}_X(U))$, i.e. it satisfies the Leibniz rule. Call $\Theta(X)$ the set of vector fields on X.

The tangent sheaf Θ_X is defined by

$$
U \mapsto \Theta(U)
$$

and one can verify it is a \mathcal{O}_X -module, where one identifies $f \in \mathcal{O}_X$ with $\mu_f \in \text{End}_{\mathbb{C}}(\mathcal{O}_X)$ being the multiplication by f .

Compactly, $\Theta_X = \text{Der}_{\mathbb{C}}(\mathcal{O}_X)$ and one can prove it is a coherent sheaf. In-fact, if

$$
A = \mathbb{C}[x_1,\ldots,x_n]/(f_1,\ldots,f_r),
$$

then it is well known

$$
\operatorname{Der}_{\mathbb{C}}(A, A) \simeq \operatorname{Hom}_A(\Omega^1_{A/\mathbb{C}}, A), \qquad \Omega^1_{A/\mathbb{C}} = \frac{\bigoplus_{i=0}^n A dx_i}{(df_1, \dots, df_r)}
$$

so that we see $Der_{\mathbb{C}}(A)$ is finitely generated as an A-module.

Let's now talk about cotangent sheaf. One local construction of $\Omega^1_{A/\mathbb{C}}$ is given by considering the A-module I/I^2 where I is the kernel of the multiplication map $\mu: A \otimes_{\mathbb{C}} A \to A$, and one can prove it is generated by elements $df = f \otimes 1 - 1 \otimes f \mod I^2$. Globalizing this construction we obtain the following.

Definition 1.2. The *cotangent sheaf* of X is defined by

$$
\Omega^1_X\coloneqq\delta^{-1}(\mathcal{I}/\mathcal{I}^2)
$$

where $\delta: X \to X \times X$ is the diagonal embedding and I is the ideal sheaf of $\delta(X)$ in $X \times X$ (X is affine so automatically separated, i.e. δ is a closed immersion). Sections of Ω^1_X are called *differential forms*.

The cotanget sheaf is an \mathcal{O}_X -module in a natural way and it has a natural derivation $d: \mathcal{O}_X \to \Omega^1_X$ given by $df = f \otimes 1 - 1 \otimes f \mod \delta^{-1}(\mathcal{I}^2)$. Analogue to the affine case, we have

Lemma 1.3. As an \mathcal{O}_X -module, Ω_X^1 is generated by df , for $f \in \mathcal{O}_X$.

And, of course, the same universal property holds.

Proposition 1.4. We have an isomorphism in $\mathcal{O}_X - Mod$:

$$
\mathcal{H}om_{\mathcal{O}_X}(\Omega^1_X, \mathcal{O}_X) \cong \Theta_X.
$$

We have an analogue situation of what happens in a manifold with charts, where we can always choose a local neighborhood trivializing the tangent bundle.

Theorem 1.5. Let X be smooth. For each $x \in X$ there exists an affine open neighborhood $V \ni x$, regular functions $x_i \in \mathcal{O}_X(V)$ and verctor fields $\partial_i \in \Theta_X(V)$ satisfying

$$
[\partial_i, \partial_j] = 0, \quad \partial_i(x_j) = \delta_{i,j}, \qquad \Theta_V = \bigoplus_i \mathcal{O}_V \partial_i.
$$

Moreover one can choose x_1, \ldots, x_n so that they generate the maximal ideal \mathfrak{m}_x of the local ring $\mathcal{O}_{X,x}$.

Proof. By assumption the local ring $\mathcal{O}_{X,x}$ is regular, so there exist $n = \dim X$ functions x_1, \ldots, x_n generating the ideal m_x (use definition of regular local ring and Nakayama's lemma). Then dx_1, \ldots, dx_n is a basis of the free $\mathcal{O}_{X,x}$ -module $\Omega^1_{X,x} \simeq \Omega^1_{\mathcal{O}_{X,x}}$. This is a well-known result: since $\mathcal{O}_{X,x}$ is a finitely generated local C-algebra, whose residue field is $\mathbb C$ (Nullstellensatz), then we have $\mathfrak{m}_x/\mathfrak{m}_x^2 \cong \mathbb C \otimes_{\mathcal{O}_{X,x}} \Omega^1_{X,x}$ and, using again Nakayama, we get what we claimed.

Thus we can find an affine open neighborhood V of x such that $\Omega^1(V)$ is a free $\mathcal{O}_X(V)$ -module with basis dx_1, \ldots, dx_n . If we define $\partial_1, \ldots, \partial_n \in \Theta_X(V)$ as the dual basis, we get $\partial_i(x_i) = \delta_{i,i}$. To obtain the desired commutation relations, write

$$
[\partial_i, \partial_j] = \sum_{i=1}^n g_{i,j}^l \partial_l \in \mathcal{O}_X(V)
$$

and observe that $g_{i,j}^l = [\partial_i, \partial_j] x_l = \partial_i \partial_j x_l - \partial_j \partial_i x_l = 0.$

The set $\{x_i, \partial_i \mid 1 \leq 1 \leq n\}$ over an affine open neighborhood of x, satisfying the above conditions, is called a local coordinate system.

1.1 Differential Operators

Let's now define a sheaf \mathcal{D}_X on X as the sheaf of C-subalgebras of $\mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X)$ generated by \mathcal{O}_X (embedded, as before, as left multiplications) and Θ_X .

Definition 1.6. The sheaf \mathcal{D}_X is called the *sheaf of differential operators* on X. The algebra $\mathcal{D}_X(X)$ is called the algebra of differential operators on X.

Remark. For now we should think only about \mathcal{D}_A for A a commutative C-algebra. We will see later that this definition, for finitely generated C-algebras, behaves well with localization, hence it gives rise to a sheaf.

Observe that, on a trivializing neighborhood U of x , we have

$$
[\partial, f] = \partial(f) \in \mathcal{O}_X(U) \qquad \forall f \in \mathcal{O}_X(U), \, \partial \in \Theta_X(U)
$$

so that we have

$$
\mathcal{D}(U) = \bigoplus_{\alpha \in \mathbb{N}^n} \mathcal{O}_U \partial^{\alpha}, \qquad \partial^{\alpha} \coloneqq \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}.
$$

We have an obvious order filtration, which we can define locally by

$$
F_l \mathcal{D}_U = \sum_{|\alpha| \leq l} \mathcal{O}_U \partial^\alpha
$$

and then glue globally just by requiring all restrictions to trivial neighborhood to be in the corresponding degree. There is, though, a more natural way to define it:

$$
F_k \mathcal{D}_X = \left\{ \theta \in \mathcal{E}nd(\mathcal{O}_X) \mid [f_{k+1}, \ldots, [f_2, [f_1, \theta]] \ldots] = 0 \quad \forall f_1, \ldots, f_{k+1} \in \mathcal{O}_X \right\}.
$$

It is clear that $F_0\mathcal{D}_X = \mathcal{O}_X$ and we have the split short exact sequence

$$
0 \longrightarrow \mathcal{O}_X \longrightarrow F_1 \mathcal{D}_X \longrightarrow \Theta_X \longrightarrow 0
$$

where \mathcal{O}_X is embedded as multiplication, the map $F_1\mathcal{D}_X \to \Theta_X$ is given by $P \mapsto [P, -]$. Here are some basic properties of differential operators.

Proposition 1.7. (i) $F_{\bullet} \mathcal{D}_X$ is an increasing filtration of \mathcal{D}_X such that $\mathcal{D}_X = \bigcup_{l \geq 0} F_l \mathcal{D}_X$ and each $F_l \mathcal{D}_X$ is locally a free \mathcal{O}_X -module.

- (ii) $F_0\mathcal{D}_X = \mathcal{O}_X$ and $F_l\mathcal{D}_X \circ F_m\mathcal{D}_X \subseteq F_{l+m}\mathcal{D}_X$.
- (iii) $[F_l \mathcal{D}_X, F_m \mathcal{D}_X] \subseteq F_{l+m-1} \mathcal{D}_X$.

Observe that a corollary of this proposition is that the graded algebra

$$
\operatorname{gr} \mathcal{D}_X = \bigoplus_{l \geq 0} F_l \mathcal{D}_X / F_{l-1} \mathcal{D}_X
$$

is commutative. Assume now $A = \mathcal{O}_X(X)$ is smooth, in the sense that Ω^1_A is a finitely generated free A-module.

Proposition 1.8. There is a (sheaf of) algebra isomorphism

$$
\operatorname{gr} \mathcal{D}_X \xrightarrow{\sim} \operatorname{Sym} \Theta_X \cong \pi_* \mathcal{O}_{T^*X}
$$

where $\text{Sym} \Theta_A$ is the symmetric algebra on Θ_A . Moreover, it is also a Poisson algebra isomorphism.

Proof. See [\[Mal17,](#page-17-2) p.75].

1.2 Derivations and differential forms on a group

Now we focus on the case $X = G$, for G an affine algebraic group. Its Lie algebra g can be defined in a lot of equivalent ways, for example as the T_eG (tangent space at the identity element). We prefer, though, to define it in another way.

Definition 1.9. The Lie algebra of G is the Lie algebra of *left invariant vector fields* on G , that is,

$$
\mathfrak{g} = \text{Lie}(G) \coloneqq \{ \theta \in \Theta(G) \mid \Delta \circ \theta = (1 \otimes \theta) \circ \Delta \}
$$

where $\Delta: \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ is the comultiplication and $1: \mathcal{O}(G) \to \mathbb{C}$ is the co-unit (recall that any affine algebraic group is a Hopf algebra).

Let's try to unfold this definition: a vector field $\theta \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ is in g if and only if, for every $g \in G$, $[\lambda_g, \theta] = 0$ as endomorphism of $\mathcal{O}(G)$, where λ_g corresponds to the action of g (acting by left multiplication on G) on $\mathcal{O}(G)$, i.e. $\lambda_g(f) = f(g - \epsilon)$. One way to see this is to consider the map $\phi: G \to G$ (so that $\theta = -\circ \phi$) and the multiplication $\mu: G \times G \to G$. The condition on θ translates to

$$
\phi(g_1 \cdot g_2) = g_1 \cdot \phi(g_2)
$$

and, using now $\theta = -\circ \phi$, one obtains that for every $f \in \mathcal{O}(G)$ and $y \in G$ we have

$$
\lambda_g \theta(f)(y) = \theta(f)(gy) = \theta(f(gy)) = \theta \lambda_g(f)(y).
$$

As the above reasoning suggests, the only "important" information is the value at the identity e , as formalized by the following lemma.

Lemma 1.10. We have an isomorphism of Lie algebras

$$
\mathfrak{g} = \text{Lie}(G) \to T_e G \stackrel{\text{def}}{=} \text{Der}_{\mathbb{C}}(\mathcal{O}(G), \mathbb{C}), \qquad \theta \mapsto \epsilon \circ \theta
$$

where $\epsilon \colon \mathcal{O}(G) \to \mathbb{C}$ is the co-unit.

Proof. The map is clearly well-defined. Its inverse is given by $\delta \mapsto (\mathrm{id} \otimes \delta) \circ \Delta$.

We have a dual definition of *right invariant vector fields*, requiring simply the symmetric condition $\Delta \circ \theta = (\theta \otimes 1) \circ \Delta$ for $\theta \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G)).$ As before, this concretely means that θ commutes with all ρ_q for $q \in G$, the contragradient action induced by the right multiplication $(q, x) \mapsto xq$ on G (i.e. $\rho_q(f) = f(- \cdot g)$. The proof is exactly as before, just by observing that this condition translates to $\phi(g_1g_2) = \phi(g_1)g_2$. Also observe that this latter condition does not give us automatically commutativity with λ_q , as well as the former doesn't give commutativity with the ρ_q , so there is a real distinction among left and right invariant vector fields, although they are both determined by just their value at the identity e (indeed, what changes is "how" they are determined). They are canonically isomorphic though, so given $x \in T_e$ G we write x_L (resp. x_R) to mean the corresponding left (resp. right) invariant vector field.

Sometimes using the definition of \mathfrak{g} as derivation of $\mathcal{O}(G)$ at e can be useful, so let's state the following, which is a more concrete reformulation of the above. Let's consider left and right translations

$$
\begin{aligned}\n\lambda_g \colon G \to G, \quad &x \mapsto gx \leadsto \lambda_g^* \colon \mathcal{O}(G) \to \mathcal{O}(G), \quad f \mapsto f \circ \lambda_g(x \mapsto f(gx)), \\
\rho_g \colon G \to G, \quad &x \mapsto xg \leadsto \rho_g^* \colon \mathcal{O}(G) \to \mathcal{O}(G), \quad f \mapsto f \circ \rho_g(x \mapsto f(xg)).\n\end{aligned}
$$

We have

Lemma 1.11. Let $x \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G), \mathbb{C})$ an element of T_eG . Then the corresponding left and right invariant vector fields are given by

$$
x_L(f)(g) = x(\lambda_g^* f) = x(f(g \cdot -)),
$$
 $x_R(f)(g) = x(\rho_x^* f) = x(f(- \cdot g))$

where $f \in \mathcal{O}(G)$, $g \in G$.

We can prove that left invariant and right invariant vector fields commute, as the commutation between λ and ρ suggests.

Lemma 1.12. Given $x, y \in \mathfrak{g}$ we have

$$
[x_L, y_R] = 0 \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G)).
$$

Proof. This is classical in Lie groups. One algebraic way to prove is to use Definition [1.9](#page-2-0) stating that we have

$$
\Delta \circ x_L = (\mathrm{id} \otimes x_L) \circ \Delta, \qquad \Delta \circ y_R = (y_R \otimes \mathrm{id}) \circ \Delta.
$$

Then let's consider

$$
\Delta \circ x_L \circ y_R = (\mathrm{id} \otimes x_L) \circ \Delta \circ y_R = (\mathrm{id} \otimes x_L) \circ (\mathrm{id} \otimes y_R) \circ \Delta = (y_R \otimes x_L) \circ \Delta =
$$

$$
= (y_R \otimes \mathrm{id}) \circ (\mathrm{id} \otimes x_L) \circ \Delta = (y_R \otimes \mathrm{id}) \circ \Delta \circ x_L = \Delta \circ y_R \circ x_L
$$

which basically says $\Delta \circ [x_L, y_R] = 0$. Composing with the map $\epsilon \otimes id: \mathcal{O}(G) \otimes \mathcal{O}(G) \to \mathcal{O}(G)$ and using Hopf algebra axioms we can conclude.

We also have

Lemma 1.13. Given $x, y \in \mathfrak{g}$, and $S: \mathcal{O}(G) \to \mathcal{O}(G)$ the antipode map, we have

$$
x_R\circ S=S\circ x_L.
$$

Proof. Given $f \in \mathcal{O}(G)$, $g \in G$ observe that

$$
x_R(S(f))(g) = x(\rho_g^*S(f)) = x(f \circ \iota \circ \rho_g) = x(f \circ \lambda_{g^{-1}} \circ \iota) = S(x(\lambda_{g^{-1}}^*f)) = (Sx_L(f))(g)
$$

where $\iota: G \to G$ is the inverse map, so that $S = -\circ \iota$.

Recall also that any affine algebraic linear group is smooth (as a scheme) and it has trivial tangent and cotangent bundles, i.e.

$$
TG \cong G \times T_eG \cong G \times \mathfrak{g}, \qquad T^*G \cong G \times \mathfrak{g}^*.
$$

Lemma 1.14. The embedding $\mathfrak{g} \hookrightarrow \text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ given by $x \mapsto x_L$ induces an isomorphism in $\mathcal{O}(G)$ −Mod

$$
\mathcal{O}(G) \otimes_{\mathbb{C}} \mathfrak{g} \xrightarrow{\sim} \mathrm{Der}_{\mathbb{C}}(\mathcal{O}(G)).
$$

Proof. Both sides are free $\mathcal{O}(G)$ -modules of rank equal to dim_C $\mathfrak{g} = \dim G$ since G is smooth.

We have the canonical $\mathcal{O}(G)$ -bilinear pairing

$$
\langle,\rangle\colon \operatorname{Der}_{\mathbb{C}}(\mathcal{O}(G))\times \Omega^1(G)\to \mathcal{O}(G).
$$

Fix a C-basis of g given by (x^1, \ldots, x^d) (corresponding hence to an $\mathcal{O}(G)$ -basis of $\text{Der}_{\mathbb{C}}(\mathcal{O}(G))$) and let $(\omega^1,\ldots,\omega^d)$ be the dual $\mathcal{O}(G)$ -basis of $\Omega^1(G)$. Let's introduce the structure coefficients writing

$$
[x^{i}, x^{j}] = \sum_{p} c_{p}^{i,j} x^{p}
$$
, for $i, j = 1, ..., d$

with $c_p^{i,j} \in \mathbb{C}$. Having embedded $\mathfrak g$ into $\mathrm{Der}_{\mathbb{C}}(\mathcal{O}(G))$ as left-invariant vector fields, we can consider also the dual embedding and write

$$
x_R^i = \sum_p f^{i,p} x^p, \qquad \text{for } i = 1, \dots, d
$$

for some invertible (the x_R^i are also a basis) matrix $(f^{i,p})_{1\leq i,p\leq d}$ with coefficients in $\mathcal{O}(G)$ (observe that by x^i we mean the corresponding left-invariant vector field x^i_L in $\text{Der}_{\mathbb{C}}(\mathcal{O}(G))$.

Lemma 1.15. We have the following identities:

(i) For all $i, j, s = 1, \ldots, d$,

$$
x_L^i f^{j,s} + \sum_p c_s^{i,p} f^{j,p} = 0.
$$

(ii) For all $i, j, s = 1, \ldots, d$,

$$
\sum_p f^{i,p} \cdot x_L^p f^{j,s} = \sum_q c_q^{i,j} f^{q,s}.
$$

Proof. The first identity is equivalent to the commutation relation

$$
[x_L^i, x_R^j] = 0
$$

for all i, j (just substitute the expression of x_R^j and then put to zero every component multiplying the base elements x_s).

To prove the second, let's write the relation

$$
[\boldsymbol{x}_R^i, \boldsymbol{x}_R^j]=[\boldsymbol{x}^i, \boldsymbol{x}^j]_R
$$

which says nothing else than that also $(-)_R$ is a Lie algebra morphism (same reasoning of left one). Using coordinates we have

$$
[x_R^i,x_R^j]=\sum_s[x_R^i,f^{j,s}x^s]=\sum_s(x_R^i f^{j,s})x^s=\sum_{s,p}f^{i,p}(x_L^pf^{j,s})x^s
$$

by the previous commutation relation. Plugging it back, we obtain the searched identities (as usual insulating every component).

Definition 1.16. The Lie algebra $Der_{\mathbb{C}}(\mathcal{O}(G))$ acts on $\Omega^1(G)$ by Lie derivative as follows:

$$
\Omega^1(G) \ni (\mathrm{Lie}\,\theta).\omega \colon \theta_1 \mapsto \theta(\langle \theta_1, \omega \rangle) - \langle [\theta, \theta_1], \omega \rangle,
$$

where $\omega \in \Omega^1(G)$ and $\theta, \theta_1 \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G)).$

Let's now consider the case $\omega = f \partial g \in \Omega^1(G)$, $\tau \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ and try to give more explicit formulas. We have

$$
\langle \tau, f \partial g \rangle = f \tau(g), \qquad (\text{Lie } \tau). (f \partial g) = \tau(f) \partial g + f \partial (\tau(g))
$$

as one can verify with few computations.

Proposition 1.17. We have the following identities:

- (1) (Lie τ). $(f\omega) = \tau(f)\omega + f(\text{Lie }\tau) \cdot \omega$.
- (2) (Lie $f\tau$). $\omega = f$ (Lie τ). $\omega + \langle \tau, \omega \rangle \partial f$.

Proof. Easy computations.

Using the previously introduced $\mathcal{O}(G)$ -basis $\{\omega_1, \ldots, \omega_d\}$ of $\Omega^1(G)$ we can write

$$
(\mathrm{Lie}\,x^i).\omega^j = \sum_s \alpha_s^{i,j} \omega^s
$$

for $\alpha_s^{i,j} \in \mathbb{C}$ coefficients. As it happens in differential geometry, we will sometimes write

$$
(\mathrm{Lie}\,\theta).f = \theta(f)
$$

for $\theta \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ and $f \in \mathcal{O}(G)$ (i.e. the Lie derivative of a function along a vector field is exactly the corresponding directional derivative, seeing the vector field as a differential operator). We have another technical lemma.

Lemma 1.18. The following identities hold:

(i) For all $i, j = 1, \ldots, d$,

$$
(\mathrm{Lie}\,x^i).\omega^j = \sum_s c_j^{s,i} \omega^s.
$$

(ii) For all $i, j = 1, \ldots, d$,

$$
(\mathrm{Lie}\, x_R^i).\omega^j=0.
$$

Proof. For all $i, j, s = 1, \ldots, d$ we have

$$
\alpha_s^{i,j} = \langle x^s, (\mathrm{Lie}\, x^i) . \omega^j \rangle = x_L^i(\langle x^s, \omega^j \rangle) + \langle [x^s, x^i] , \omega^j \rangle = c_j^{s,i}
$$

where we used the fact that ω^i is a $\mathcal{O}(G)$ -dual basis of the x^j 's, and that $x^i_L(\delta_{s,j}) = 0$ being the derivation of a constant. This clearly implies (i).

To prove (ii) let's observe first of all that

$$
\langle x_R^i, \omega^j \rangle = \sum_s \langle f^{i,s} x^s, \omega^j \rangle = f^{j,s} \in \mathcal{O}(G).
$$

To prove $(\text{Lie } x_R^i) \cdot \omega^j = 0$ it suffices to show it is zero against the base of right-invariant vector fields x_R^s . We have

$$
\langle x_R^s, (\text{Lie } x_R^i) . \omega^j \rangle = x_R^i (\langle x_R^s, \omega^j \rangle) + \langle [x^s, x^i]_R, \omega^j \rangle = x_R^i (f^{s,j}) + \sum_p c_p^{s,i} f^{p,j} =
$$

$$
= \sum_k f^{i,k} x_L^k (f^{s,j}) + \sum_p c_p^{s,i} f^{p,j} = \sum_q c_q^{i,s} f^{q,j} + \sum_p c_p^{s,i} f^{p,j} = 0
$$

where we used the second identity of Lemma [1.15](#page-4-0) and the fact that $c_p^{i,j} = -c_p^{j,i}$.

Proposition 1.19. The map

$$
\Omega^1(G) \to \text{Hom}_{\mathbb{C}}(\mathfrak{g}, \mathcal{O}(G)), \qquad dg \mapsto (x \mapsto x_L(g))
$$

is an isomorphism in $\mathcal{O}(G) - Mod$.

Proof. By Frobenius reciprocity, using that $Der_{\mathbb{C}}(\mathcal{O}(G)) \cong \mathcal{O}(G) \otimes_{\mathbb{C}} \mathfrak{g}$, we have

$$
\mathrm{Hom}_{\mathcal{O}(G)}(\mathrm{Der}_{\mathbb{C}}(\mathcal{O}(G)),\mathcal{O}(G))\cong \mathrm{Hom}_{\mathbb{C}}(\mathfrak{g},\mathcal{O}(G))
$$

and thus, as C-vector spaces, we obtain

$$
\Omega^1(G) \cong \text{Hom}_{\mathbb{C}}(\mathfrak{g}, \mathcal{O}(G)).
$$

This holds since $\Omega^1(G)$ is a free $\mathcal{O}(G)$ -module of finite rank, hence its bi-dual is (canonically) isomorphic to itself as an $\mathcal{O}(G)$ -module, and hence also as a C-vector space.

Let's write $\Omega^1(G) \ni \omega = \sum_i f_i dg_i$ with $f_i \in \mathcal{O}(G)$. In this isomorphism, the element ω gets sent to the map $\tilde{\omega}$: $\mathfrak{g} \to \mathcal{O}(G)$ acting

$$
\mathfrak{g} \ni x \mapsto \sum_i f_i \cdot x_L(g_i) \in \mathcal{O}(G).
$$

г

2 Chiral differential operators

2.1 Definitions

Let G be an affine algebraic group, $\mathfrak{g} = \text{Lie}(G)$ its Lie algebra (over \mathbb{C}) and κ be an invariant bilinear form. Let's recall the following.

Definition 2.1. The Kac-Moody affinization of \mathfrak{g} (related to κ) is

$$
\hat{\mathfrak{g}}_\kappa \coloneqq \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C} 1
$$

where the bracket is given by

$$
[xt^n, yt^m] = [x, y]t^{n+m} + n\delta_{n,-m}\kappa(x, y)
$$

and 1 is central.

Let's set

$$
\mathcal{A}_G\coloneqq U(\hat{\mathfrak{g}}_\kappa)\otimes_{\mathbb{C}}\mathcal{O}(\mathscr{L}G)
$$

where $\mathscr{L}G$ is the loop space of G. The algebra structure on \mathcal{A}_G is such that

$$
U(\hat{g}_{\kappa}) \hookrightarrow \mathcal{A}_G, \qquad \mathcal{O}(\mathscr{L}G) \hookrightarrow \mathcal{A}_G
$$

are algebra embeddings (which, from now on, we'll implicitely use to identify for example $x \otimes 1$ with $x \in U(\hat{g}_{\kappa})$ and bracket

$$
[xt^m, f_{(n)}] = (x_L f)_{(m+n)} \qquad x \in \mathfrak{g}, f \in \mathcal{O}(G), n, m \in \mathbb{Z}.
$$

Let's define the subalgebra

$$
\mathcal{A}_{G,+} \coloneqq U(\mathfrak{g}[t] \oplus \mathbb{C}1) \otimes_{\mathbb{C}} \mathcal{O}(\mathscr{L}G)
$$

and consider $\mathcal{O}(\mathcal{J}_{\infty}G)$ as an $\mathcal{A}_{G,+}$ -module. To define this structure it suffices to say that $\mathcal{O}(\mathcal{L}G)$ acts by the natural surjection

$$
\mathcal{O}(\mathscr{L}G) \to \mathcal{O}(\mathscr{J}_{\infty}G), \quad f_{(n)} \mapsto \chi_{\mathbb{Z}_{<0}}(n) \cdot f_{(n)} \quad f \in \mathcal{O}(G),
$$

 $\mathfrak{g}[t] \subset \mathfrak{g}[t]$ acts by left invariant vector fields, (recall that Lie($\mathscr{J}_{\infty}G$) ≅ $\mathfrak{g}[t]$) and finally 1 acts as identity. We are finally ready to define our object of interest.

Definition 2.2. The algebra of global *chiral differential operators* on G is defined by

$$
\mathcal{D}^{\mathrm{ch}}_{G,\kappa}\coloneqq \mathcal{A}_G \otimes_{\mathcal{A}_{G,+}} \mathcal{O}(\mathscr{J}_\infty G).
$$

Let's immediately observe that, as $\hat{f}g$ -module, we have

$$
\mathcal{D}_{G,\kappa}^{\mathrm{ch}}\cong U(\hat{g}_{\kappa})\otimes_{U(\mathfrak{g}[t]\oplus\mathbb{C}^1)}\mathcal{O}(\mathscr{J}_{\infty}G).
$$

Let's define two families of fields on $\mathcal{D}_{G,\kappa}^{\mathrm{ch}}$:

$$
x(z) = \sum_{n \in \mathbb{Z}} (xt^n) z^{-n-1}, \qquad f(z) = \sum_{n \in \mathbb{Z}} f_{(n)} z^{-n-1} \qquad x \in \mathfrak{g}, \ f \in \mathcal{O}(G)
$$

where both xt^n and $f_{(n)}$ are seen in End_C($\mathcal{D}_{G,\kappa}^{ch}$) by left multiplication. Observe that, thanks to the commutation relation defined on \mathcal{A}_G , there can happen that the action of $f_{(n)}$ for $n \geq 0$ is non-trivial.

Proposition 2.3. The two fields above satisfy the following OPEs:

$$
x(z)y(w) \sim \frac{[x, y](w)}{z - w} + \frac{\kappa(x, y)}{(z - w)^2}, \qquad f(z)g(w) \sim 0,
$$

$$
x(z)f(w) \sim \frac{(x_L f)(w)}{z - w}
$$

for any $x, y \in \mathfrak{g}, f, g \in \mathcal{O}(G)$.

Proof. It suffices to check brackets, and then to use the "locality" proposition. For the first case we get

$$
[x(z), y(w)] = \sum_{n,m} [xt^n, yt^m] z^{-n-1} w^{-m-1} \stackrel{\text{def}}{=} \sum_{n,m} [x, y] t^{n+m} z^{-n-1} w^{-m-1} + \sum_n n\kappa(x, y) 1 z^{-n-1} w^{n-1} =
$$

$$
= \sum_k [x, y] t^k w^{-k-1} \cdot \left(\sum_n z^{-n-1} w^n \right) + \kappa(x, y) 1 \cdot \sum_n n w^{n-1} z^{-n-1} =
$$

$$
= [x, y](w) \cdot \delta(z - w) + \kappa(x, y) 1 \cdot \partial_w \delta(z - w)
$$

and thus we conclude. For the second case it is immediate since $O(\mathscr{L}G)$ is abelian. Finally the third case is proven analogously by

$$
[x(z), f(w)] = \sum_{n,m} [x_{(n)}, f_{(m)}] z^{-n-1} w^{-m-1} = \sum_{n,m} (x_L f)_{(n+m)} z^{-n-1} w^{-m-1} =
$$

=
$$
\sum_{k} (x_L f)_{(k)} w^{-k-1} \cdot \left(\sum_{n} z^{-n-1} w^n \right) = (x_L f)(w) \cdot \delta(z - w).
$$

Let (x^1, \ldots, x^n) be an ordered basis of g and let $\mathcal{O}(G)$ be generated by coordinates ξ^1, \ldots, ξ^r . Using PBW theorem we see that we get a "PBW" basis of $\mathcal{D}_{G,\kappa}^{ch}$ by tensoring the respective two bases. Namely we obtain that $\mathcal{D}_{G,\kappa}^{ch}$ is spanned by vectors of the form

$$
x_{(n_1)}^{i_1} \dots x_{(n_r)}^{i_s} \otimes \xi_{(m_1)}^{j_1} \dots \xi_{(m_t)}^{j_t} |0\rangle
$$

where $|0\rangle = \overline{1 \otimes 1}$, $n_i < 0$. We can use Reconstruction Theorem to endow $\mathcal{D}_{G,\kappa}^{ch}$ with a vertex algebra structure: indeed we just declare to associate xt^{-1} to field $x(z)$ for $x \in \mathfrak{g}$ and $f_{(-1)}$ to the field $f(z)$ for $f \in \mathcal{O}(G)$, since we already know they are mutually local and their coefficients span the whole space.

Theorem 2.4. There is a unique vertex algebra structure on $\mathcal{D}_{G,\kappa}^{ch}$ such that the embeddings

$$
\pi_L \colon V^{\kappa}(\mathfrak{g}) \hookrightarrow \mathcal{D}^{\mathrm{ch}}_{G,\kappa}, \qquad u|0\rangle \mapsto u \otimes 1,
$$

$$
j: \mathcal{O}(\mathscr{J}_{\infty}G) \hookrightarrow \mathcal{D}^{\mathrm{ch}}_{G,\kappa}, \qquad f \mapsto 1 \otimes f
$$

are homomorphisms of vertex algebras and

$$
x(z)f(w) \sim \frac{(x_Lf)(w)}{z-w}, \qquad x \in \mathfrak{g}, f \in \mathcal{O}(G).
$$

The vertex algebra $\mathcal{D}_{G,\kappa}^{ch}$ is also $\mathbb{Z}_{\geq 0}$ -graded by setting deg $x_{(n)} = -n$ and deg $f_{(-1-j)} = j$, where $x \in \mathfrak{g}, f \in \mathcal{O}(G), n < 0$ and $j \ge 0$. To declare this it suffices to ask for $x \in \mathfrak{g}$ (embedded through π_L) to have weight 1 and for $f \in \mathcal{O}(G)$ (embedded through j) to have weight 0, since then translation just adds 1 to the weight.

Consider now the subspace of $(\mathcal{D}_{G,\kappa}^{ch})_1$ spanned by vectors $f\partial g$ with $f,g\in\mathcal{O}(G)$ (we are using j again, this is the same as writing $f_{(-1)}g_{(-2)}$, and call it Ω . Recalling that

$$
\mathcal{O}(G) \otimes_{\mathbb{C}} \mathfrak{g} \stackrel{\simeq}{\longrightarrow} \mathrm{Der}_{\mathbb{C}}(\mathcal{O}(G))
$$

we see that

$$
(\mathcal{D}^{\mathrm{ch}}_{G,\kappa})_1 = \Omega \oplus \mathrm{Der}_{\mathbb{C}}(\mathcal{O}(G))
$$

since they represent the only two possible ways for a vector to have weight 1, i.e. being either $xt^{-1} \otimes f_{(-1)}$ (this is the explicit writing, we will just write xf from now on) or $f\partial g$. Recall also that $\Omega^1(G)$, the space of 1-differential forms on G, generated by $d\mathcal{O}(G)$ as $\mathcal{O}(G)$ -module, satisfies

$$
\Omega^1(G) \cong \text{Hom}_{\mathbb{C}}(\mathfrak{g}, \mathcal{O}(G))
$$

by $df \mapsto (x \mapsto x_Lf)$.

Lemma 2.5. The C-linear map

$$
\Gamma \colon \Omega \to \text{Hom}_{\mathcal{O}(G)}(\text{Der}_{\mathbb{C}}(\mathcal{O}(G)), \mathcal{O}(G)), \qquad f \partial g \mapsto (\mathcal{O}(G) \otimes \mathfrak{g} \ni h \otimes x \mapsto (hx)_{(1)}(f \partial g))
$$

is an isomorphism of $\mathbb{C}\text{-vector spaces.}$ Therefore $\Omega \cong \Omega^1(G)$ as $\mathbb{C}\text{-vector spaces.}$

Proof. Observe that $hx \in \mathcal{D}_{G,\kappa}^{ch}$ (it can be re-written in a different order using commutation relation, but here it does not matter), so our first problem is to understand its associated field. Thanks to reconstruction theorem, and to the tautological $hx = h_{(-1)}x_{(-1)} |0\rangle$, we obtain

$$
Y(hx,\zeta) = Y(h,\zeta)Y(x,\zeta)
$$

so that

$$
(hx)_{(1)} = \sum_{n \le -1} h_{(n)}x_{(-n)} + \sum_{n \ge 0} x_{(-n)}h_{(n)}.
$$

Applying this to $f \partial g = f_{(-1)}g_{(-2)}$ we see that all terms in the second series give 0, since $h_{(n)}$ acts by zero having $n \geq 0$ (i.e. $h_{(n)}(1 \otimes *) = 0$). Using

$$
h_{(n)}x_{(-n)}(f\partial g) = h_{(n)} \cdot \left[(x_L f)_{(-1-n)}g_{(-2)} + f_{(-1)}(x_L g)_{(-2-n)} \right]
$$

we see that the only nonzero term comes from $n = -1$, so that

$$
(hx)_{(1)}(f\partial g) = hf(x_Lg).
$$

The map $h \otimes x \mapsto (hx)_{(1)}(f \partial g)$ is thus a clear morphism of $\mathcal{O}(G)$ -modules and so the map Γ is well defined. Observe that by Frobenius reciprocity we have

$$
\text{Hom}_{\mathcal{O}(G)}(\text{Der}_{\mathbb{C}}(\mathcal{O}(G)), \mathcal{O}(G)) \cong \text{Hom}_{\mathbb{C}}(\mathfrak{g}, \mathcal{O}(G))
$$

and, using this correspondence, the map $\Gamma(f \partial g)$ is just given by $\mathfrak{g} \ni x \mapsto f(x_L g)$. This means that it suffices to prove that the map sending ∂g to $(x \mapsto x_L g)$ is an isomorphism of $\mathcal{O}(G)$ -modules. Using Lemma [1.15](#page-4-0) this is the same as saying that $\partial g \mapsto dg \in \Omega^1(G)$ is an isomorphism of $\mathcal{O}(G)$ -modules. Finally, $\partial g = g_{(-2)} |0\rangle$ is a regular function on $\mathscr{J}_1 G \cong TG$ (tangent bundle of G) and it corresponds to dg.

We can now consider the canonical $\mathcal{O}(G)$ -bilinear pairing $\langle , \rangle: \text{Der}_{\mathbb{C}}(\mathcal{O}(G)) \times \Omega \to \mathcal{O}(G)$ and the action of $Der_{\mathbb{C}}(\mathcal{O}(G))$ on Ω by Lie derivative.

Lemma 2.6. Let $x \in \mathfrak{g}$ and $\omega \in \Omega$. Then $x_{(1)}\omega = \langle x, \omega \rangle$ and $x_{(0)}\omega = (\text{Lie } x) \omega$.

Proof. The first identity holds by Lemma [2.5](#page-7-0) (put $\omega = f \partial g$ and then extend by linearity). We can use it to prove the second one; we have

$$
y_{(1)}((\mathrm{Lie} x) \cdot \omega) = x_L(y_{(1)}\omega) - [x, y]_{(1)}\omega = x_{(0)}y_{(1)}\omega - [x, y]_{(1)}\omega
$$

for all $y \in \mathfrak{g}$. Since

$$
y_{(1)}(x_{(0)}\omega) = x_{(0)}y_{(1)}\omega - [x, y]_{(1)}\omega
$$

for all $y \in \mathfrak{g}$, we conclude $x_{(0)}\omega = (\text{Lie }x) \cdot \omega$.

3 Main results

Theorem 3.1. (i) There is a vertex algebra embedding

$$
\pi_R\colon V^{\kappa^*}(\mathfrak{g})\hookrightarrow\mathrm{Com}(V^{\kappa}(\mathfrak{g}),\mathcal{D}^{\mathrm{ch}}_{G,\kappa})\subset\mathcal{D}^{\mathrm{ch}}_{G,\kappa}
$$

such that

$$
[\pi_R(x)_{(m)}, f_{(n)}] = (x_R f)_{(m+n)} \quad \text{for } f \in \mathcal{O}(G), m, n \in \mathbb{Z},
$$

where x_R is the right invariant vector field corresponding to $x \in \mathfrak{g}$.

(ii) There is a vertex algebra isomorphism

$$
\mathcal{D}^{\mathrm{ch}}_{G,\kappa}\cong\mathcal{D}^{\mathrm{ch}}_{G,\kappa^*}
$$

that sends $\mathcal{O}(G) \ni f$ to $S(f) \in \mathcal{O}(G)$, where $S: \mathcal{O}(G) \to \mathcal{O}(G)$ is the antipode.

Proof. For all this proof we will identify $x \in \mathfrak{g}$ (corresponding to $xt^{-1} \in V^{\kappa}(\mathfrak{g})$) with its image in $\mathcal{D}^{\text{ch}}_{G,\kappa}$ through π_L . We will give a formula for the map π_R and we will prove, in order, that the images commute with $V^{\kappa}(\mathfrak{g})$, that it is injective and that it defines a vertex algebra homomorphism.

Let as before (x^1, \ldots, x^d) be a basis of g, with $(\omega^1, \ldots, \omega^d)$ the dual $\mathcal{O}(G)$ -basis of $\Omega \cong \Omega^1(G)$. Then, we obtain that (x^1, \ldots, x^d) is also an $\mathcal{O}(G)$ -basis of $\text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ (identifying $x \in \mathfrak{g}$ with x_L). Thus, the corresponding right-invariant vector fields can be expressed by

$$
\mathcal{D}_{G,\kappa}^{\mathrm{ch}} \ni x_R^i = \sum_p f^{i,p} x^p
$$

where $(f^{i,p})_{1\leq i,p\leq d}$ is an invertible $\mathcal{O}(G)$ -matrix. To define π_R , since it must be a morphism of vertex algebras, it suffices to define it only on the basis $x^i \cong x^i t^{-1}$ of $V^{\kappa^*}(\mathfrak{g})$, so let's set

$$
\pi_R(x^i) \coloneqq x_R^i + \sum_{q,p} \kappa^*(x^p, x^q) f^{i,p} \omega^q \in (\mathcal{D}_{G,\kappa}^{ch})_1 = \text{Der}_{\mathbb{C}}(\mathcal{O}(G)) \oplus \Omega.
$$

To verify it commutes with all elements of $V^{\kappa}(\mathfrak{g})$ it suffices to prove (classical argument using Borcherds identities) that

$$
v_{(n)}\pi_R(s) = 0 \qquad \forall \, v \in V^{\kappa}(\mathfrak{g}), \, s \in V^{\kappa^*}(\mathfrak{g}), \, n \ge 0
$$

and, more specifically, we can just verify this relation for $v = x^i$ and $s = x^j$ for all i, j (i.e. we just check it on generators, thanks to Borcherds identities). So our first step will be to prove

$$
(xi)(n) \piR(xj) = 0
$$
\n
$$
(1)
$$

for all i, j and $n \geq 0$.

Lemma 3.2. We have $(x^{i})_{(n)} \pi_R(x^{j}) = 0$ for all $n \geq 2$.

Proof. One way to convince oneself about this is to use the OPEs in Proposition [2.3](#page-6-0) and Wick's theorem. In this case we can do explicit computation, though, and we will do them to warm us up. First thing first $(x^{i})_{(n)}x_{R}^{j} = \sum_{p} (x^{i})_{(n)}(f^{j,p}x^{p}),$ so let's focus on terms of this type. Observe that by Borcherds 2 (commutators identity) and by the fact that $(x^{i})_{(n)}x^{j} = 0$ for $n \geq 2$ (OPE) we have

$$
(x^{i})_{(n)}(f^{j,p}x^{p}) = [x_{(n)}^{i}, f_{(-1)}^{j,p}]x^{p} = \sum_{j \geq 0} {n \choose j} (x_{(j)}^{i}f^{j,p})_{(n-1-j)}x^{p}
$$

and using the OPE of $x(z)f(z)$ we get

$$
(x^{i})_{(n)}(f^{j,p}x^{p}) = (x^{i}_{(0)}f^{j,p})_{(n-1)}x^{p} = (x^{i}_{L}f^{j,p})_{(n-1)}x^{p}
$$

which is zero for $n \geq 2$.

The second part is just proving $(x^{i})_{(n)}(f^{j,p}\omega^{q}) = 0$ for $n \geq 2$. Recalling that Ω is generated by $f \partial g = f_{(-1)} g_{(-2)}$ and that $x_L g = \langle x, \omega \rangle$ for $x \in \mathfrak{g}$, we obtain, recalling that $\mathfrak{g}[[t]]$ acts by derivation, that

$$
x_{(n)}^{i}(f^{j,p}\omega^{q}) = (x_{L}f)_{(n-1)}\omega^{q} - f^{j,p}\langle x^{i}, \omega^{q}\rangle_{(n-2)} = 0
$$

for $n \geq 2$. Summing these two we obtain the statement.

By the lemma we just need to prove (1) for $n = 0, 1$. For the case $n = 1$ we can write:

$$
(x_R^i)_{(1)}x^j = \sum_p (f_{(-1)}^{i,p}x^p)_{(1)}x^j \stackrel{Boreherd\\ \sim}{}^{\stackrel{\sim}{=}} \sum_p (f_{(-1)}^{i,p}x^p_{(1)}x^j + x^p_{(0)}f_{(0)}^{i,p}x^j) = \tag{2}
$$

$$
\stackrel{OPE}{=} \sum_{p} (f^{i,p} \kappa(x^p, x^j) - x_L^p (x_L^j f^{i,p})). \tag{3}
$$

We used the fact that $f_{(0)}^{i,p}x^j = -x_{(0)}^j f^{i,p}$ (again skew symmetry or do the inverse OPE). Using Lemma [1.15](#page-4-0) twice we obtain

$$
-x_L^p(x_L^j f^{i,p}) = \sum_s x_L^p(c_p^{j,s} f^{i,s}) = -\sum_{s,u} c_s^{p,u} c_p^{j,s} f^{i,u} = \sum_{s,u} c_s^{u,p} c_p^{j,s} f^{i,u}.
$$

Lemma 3.3. The Killing form can be expressed using structure coefficients as

$$
\kappa_{\mathfrak{g}}(x^i, x^j) = \sum_{p,q} c_p^{i,q} c_q^{j,p}
$$

for any i, j .

Proof. Easy computation.

We deduce that (writing explicitely and renaming the three indexes)

$$
-\sum_{p} x_L^p (x_L^j f^{i,p}) = \sum_{u} \kappa_{\mathfrak{g}}(x^u, x^j) f^{i,u}.
$$
 (4)

Recalling the definition of κ^* we get

$$
(x^i_R)_{(1)}x^j=-\sum_p \kappa^*(x^p,x^j)f^{i,p}.
$$

Let's observe the following.

Lemma 3.4. We have $(f\omega)_{(1)}(x) = x_{(1)}(f\omega)$, with obvious notation.

Proof. Observe that

$$
x_{(1)}(f\omega) \stackrel{derivation}{=} (x_L f)_{(0)}\omega + f\langle x,\omega\rangle_{(-1)} = f\langle x,\omega\rangle.
$$

By skew-symmetry, i.e. $Y(f\omega,\zeta)x = e^{\zeta T}Y(x,-\zeta)f\omega$, we have

$$
\sum_{n} (f\omega)_{(n)} x \zeta^{-n-1} = \sum_{h} \zeta^{-h-1} \cdot \sum_{k \ge 0} \frac{(-1)^{-k-h-1}}{k!} T^{k} (x_{(k+h)}(f\omega))
$$

so that

$$
(f\omega)_{(1)}x = \sum_{k\geq 0} \frac{(-1)^{-k-2}}{k!} T^k(x_{(k+1)}(f\omega)) \stackrel{derivation}{=} x_{(1)}(f\omega)
$$

where only $k = 0$ survives.

By Lemma [2.6,](#page-8-0) for any p, q , we have

$$
\left(\sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} \omega^q\right)_{(1)} x^j \stackrel{above}{=} \sum_{p,q} \kappa^*(x^p, x^q) x^j_{(1)}(f^{i,p} \omega^q) =
$$

$$
= \sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} \langle x^j, \omega^q \rangle = \sum_p \kappa^*(x^p, x^j) f^{i,p}
$$

and therefore we can conclude that $\pi_R(x^i)_{(1)}x^j = 0$. Using skew-symmetry (check proof of above lemma) we can also conclude that $x_{(1)}^i(\pi_R(x^j)) = 0$.

Let's now focus on the case $n = 0$, i.e. we want to prove $(x^{i})_{(0)} \pi_R(x^{j}) = 0$ for any i, j. Observe that using Lemma [1.15](#page-4-0) we have

$$
x_{(0)}^i x_R^j = \sum_q x_{(0)}^i (f^{j,q} x^q) = \sum_q x_{(0)}^i f^{j,q}_{(-1)} x^q \stackrel{OPE}{=} \sum_q ((x_L^i f^{j,q})_{(-1)} x^q + f^{j,q}_{(-1)} [x^i, x^q]).
$$

This last sum is equal to zero because

$$
x_L^i f^{j,q} = -\sum_p c_q^{i,p} f^{j,p}, \qquad \sum_q f_{(-1)}^{j,q} [x^i, x^q] = \sum_{q,s} c_s^{i,q} f^{j,q} x^s
$$

and summing we get

$$
\sum_{q} (x_L^i f^{j,q})_{(-1)} x^q = -\sum_{q,p} c_q^{i,p} f^{j,p} x^q
$$

so that we just need to switch indexes. Thus $x_{(0)}^i x_R^j = 0$. On the other hand, using Lemma [1.15](#page-4-0) and Lemma [2.6,](#page-8-0) we have

$$
\sum_{p,q} x^i_{(0)}(\kappa^*(x^p, x^q)f^{j,p}\omega^q) = \sum_{p,q} \kappa^*(x^p, x^q)((x^i_L f^{j,p})\omega^q + f^{j,p}(\text{Lie } x^i).\omega^q).
$$

Writing $x_L^i f^{j,p} = -\sum_s c_p^{i,s} f^{j,s}$ and $(\text{Lie } x^i) \cdot \omega^q = -\sum_s c_q^{i,s} \omega^s$ we obtain that the above term is equal to

$$
-\sum_{p,q,r}\kappa^*(x^p,x^q)c_p^{i,r}f^{j,r}\omega^q+\kappa(x^p,x^q)c_q^{i,r}f^{j,p}\omega^r.
$$

Observing that

$$
\kappa^*([x^i, x^s], x^r) = \sum_k c_k^{i, s} \kappa^*(x^k, x^r)
$$

we can write the first part as

$$
\sum_{p,q,r}\kappa^*(x^p,x^q)c_p^{i,r}f^{j,r}\omega^q=\sum_{q,r}\kappa^*([x^i,x^r],x^q)f^{j,r}\omega^q
$$

whereas the second part is equal to

$$
\sum_{p,q,r}\kappa^*(x^p,x^q)c_q^{i,r}f^{j,p}\omega^r=\sum_{p,r}\kappa^*(x^p,[x^i,x^r])f^{j,p}\omega^r
$$

so that, by the $\mathfrak g$ -invariance of κ^* , their sum is zero. This means that

$$
x_{(0)}^i \left(\sum_{p,q} \kappa^*(x^p, x^q) f^{j,p} \omega^q \right) = 0
$$

and therefore we can conclude that $x_{(0)}^i \pi_R(x^j) = 0$. In conclusion, we proved formula (1), which means that π_R is a map from $V^{\kappa^*}(\mathfrak{g})$ to $\text{Com}(V^{\kappa}(\mathfrak{g}), \mathcal{D}_{G,\kappa}^{\text{ch}})$.

Let's now prove injectivity. This is easy since $(\mathcal{D}_{G,\kappa}^{ch})_1 \cong \text{Der}_{\mathbb{C}}(\mathcal{O}(G)) \oplus \Omega$ and we can consider the projection of $\pi_R(x^i)$ onto $\text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ which is equal to x_R^i . Since the map $\mathfrak{g} \ni x \mapsto x_R \in \text{Der}_{\mathbb{C}}(\mathcal{O}(G))$ is injective, we conclude that also π_R is injective.

We now have to prove that π_R is indeed a vertex algebra homomorphism, which amounts to say that it respects OPE, i.e. that we have

$$
(\pi_R(x))(z)(\pi_R(y))(w) \sim \frac{1}{z-w} \pi_R([x,y])(w) + \frac{\kappa^*(x,y)}{(z-w)^2}
$$

for all $x, y \in \mathfrak{g}$. This basically means that we have to prove

$$
\pi_R(x)_{(n)} \pi_R(y) = 0 \quad \forall n \ge 2,
$$

\n
$$
\pi_R(x)_{(1)} \pi_R(y) = \kappa^*(x, y),
$$

\n
$$
\pi_R(x)_{(0)} \pi_R(y) = \pi_R([x, y])
$$

for all $x, y \in V^{\kappa^*}(\mathfrak{g})$. As usual, we can just assume $x = x^i$ and $y = x^j$ to be in the basis of \mathfrak{g} .

Proposition 3.5. We have $\pi_R(x^i)_{(n)}\pi_R(x^j) = 0$ for every $n \geq 2$.

Proof. Expanding both sides we find terms like $(fx)_{(n)}(gy)$, $(fx)_{(n)}(gy)$ and $(f\omega)_{(n)}(gy)$. Let's focus on the first kind, the other are similar. We can use Reconstruction theorem to obtain the relative fields

$$
Y(fx,\zeta) = Y(f,\zeta)Y(x,\zeta)
$$

and then Wick's theorem to get OPEs. We see that have terms like $\langle f, g \rangle = 0$, $\langle f, y \rangle = -\frac{(y_L f)(w)}{z-w}$ and products of at most two of them, so no denominators with powers bigger than $(z-w)^2$. Thus, for $n \geq 2$ we have zero product of fields.

Let's now compute

$$
\pi_R(x^i)_{(1)}\pi_R(x^j) = \left(x^i_R + \sum_{q,p} \kappa^*(x^p, x^q) f^{i,p} \omega^q\right)_{(1)} \left(x^j_R + \sum_{q,p} \kappa^*(x^p, x^q) f^{j,p} \omega^q\right)
$$

so that we see there are 4 terms. We have

$$
(x_R^i)_{(1)} x_R^j = \sum_{p,s} (f^{i,p} x^p)_{(1)} (f^{j,s} x^s).
$$

Small computation proposition time.

Proposition 3.6. With obvious notation we have

$$
(fx)_{(1)}(gy) = fg\kappa(x,y) - fy_L(x_Lg) - gx_L(y_Lf) - (x_Lf)(y_Lg).
$$

Proof. By Borcherds 1 we have

$$
(fx)_{(1)} = \sum_{l \ge 0} (-1)^l ((-1)^1 f_{(-1-l)} x_{(1+l)} + x_{(-l)} f_{(l)}).
$$

Observe that

$$
x_{(1+l)}(gy) = g_{(-1)}x_{(1+l)}y + [x_{(1+l)}, g_{(-1)}]y = g_{(-1)}x_{(1+l)}y + (x_Lg)_{(l)}y =
$$

= $g \cdot x_{(1+l)}y + y(x_Lg)_{(l)} - (y_Lx_Lg)_{(l-1)}$

so the only surviving l is 0, for which we have $x_{(1)}(gy) = g\kappa(x, y) - y_L(x_Lg)$, using OPEs. Instead we have

$$
f_{(l)}(gy) \stackrel{abelian}{=} g_{(-1)}f_{(l)}y = gyf_{(l)} + g[f_{(l)}, y] =
$$

= $yg_{(-1)}f_{(l)} - (y_Lg)_{(-2)}f_{(l)} - g(y_Lf)_{(l-1)} \stackrel{l \ge 0}{=} -g(y_Lf)_{(l-1)}$

so that also here the only survival is $l = 0$ with $-g(y_L f)$. Hence we have

$$
(fx)_{(1)}(gy) = f \cdot x_{(1)}(gy) + x_{(0)}f_{(0)}(gy) = fg\kappa(x,y) - fy_L(x_Lg) - x_{(0)}(gy_Lf)
$$

and recalling the action of $x_{(0)}$ we conclude.

Using the above computation we can write

$$
(x^i_R)_{(1)} x^j_R = \sum_{p,s} \left(f^{i,p} f^{j,s} \kappa(x^p,x^s) - f^{i,p} x^s_L(x^p_L f^{j,s}) - f^{j,s} x^p_L(x^s_L f^{i,p}) - (x^p_L f^{j,s}) (x^s_L f^{i,p}) \right).
$$

Let's now observe that using Lemma [1.15](#page-4-0)

$$
-f^{i,p}x_L^s(x_L^p f^{j,s}) = \sum_k c_s^{p,k} f^{i,p}(x_L^s f^{j,k}) = -\sum_{l,k} c_s^{p,k} c_k^{s,l} f^{i,p} f^{j,l},
$$

$$
-f^{j,s}x_L^p(x_L^s f^{i,p}) = -\sum_{k,l} c_p^{s,k} c_k^{p,l} f^{j,s} f^{i,l},
$$

$$
-(x_L^p f^{j,s})(x_L^s f^{i,p}) = -\sum_{k,l} c_s^{p,k} c_p^{s,l} f^{j,k} f^{i,l}.
$$

Summing over p and s and summing those three terms above, using the expression of Killing form in coordinates, we obtain

$$
\sum_{a,b}f^{i,a}f^{j,b}\kappa_{\mathfrak{g}}(x^a,x^b)
$$

so reinserting into the initial expression we get

$$
(x_R^i)_{(1)} x_R^j = -\sum_{p,s} \kappa^*(x^p, x^s) f^{i,p} f^{j,s}.
$$

Proposition 3.7. We have

$$
(f^{i,p}\omega^q)_{(1)}x_R^j = f^{j,q}f^{i,p}.
$$

Proof. Expanding x_R^j we see that we just need to study terms like $(f^{i,p}\omega^q)_{(1)}(f^{j,l}x^l)$. We will use the skew-symmetry formula

$$
(f^{i,p} \omega^q)_{(1)} (f^{j,l} x^l) = \sum_{k \geq 0} \frac{(-1)^{-k-2}}{k!} T^k \left((f^{j,l} x^l)_{(k+1)} (f^{i,p} \omega^q) \right)
$$

.

By Borcherds 1 we have

$$
(f^{j,l}_{(-1)}x^l)_{(1+k)}(f^{i,p}\omega^q)=\sum_{t\geq 0}(-1)^t\left((-1)^tf^{j,l}_{(-1-t)}x^l_{(1+k+t)}(f^{i,p}\omega^q)+x^l_{(k-l)}f^{j,l}_{(t)}(f^{i,p}\omega^q)\right).
$$

We have

$$
x_{(1+k+t)}^l(f^{i,p}\omega^q) = (x_L^l f^{i,p})_{(k+t)}\omega^q + f^{i,p}\langle x^l, \omega^q \rangle_{(k+t-1)}
$$

so that the first term dies since $k + t \geq 0$, as well as the second part in Borcherds identity. Then we obtain

$$
(f^{j,l}x^l)_{(k+1)}(f^{i,p}\omega^q) = \sum_{t\geq 0} f^{j,l}_{(-1-t)} f^{i,p} \delta^{l,q}_{(k+t-1)}.
$$

Then the only nonzero term is $t = -k$, so that $t = k = 0$ and we obtain

$$
(f^{j,l}x^l)_{(k+1)}(f^{i,p}\omega^q) = \delta_{l,q} \cdot \delta_{k,0} \cdot f^{j,q}f^{i,p}.
$$

Finally, putting back into the skew symmetry, we get

$$
(f^{i,p}\omega^q)_{(1)}(f^{j,l}x^l) = \delta_{q,l} \cdot f^{j,q}f^{i,p}
$$

and summing over l we conclude $(f^{i,p}\omega^q)_{(1)}x_R^j = f^{j,q}f^{i,p}$

Using the above proposition we obtain

$$
\left(\sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} \omega^q\right)_{(1)} x_R^j = \sum_{p,q} \kappa^*(x^p, x^q) f^{j,q} f^{i,p}.
$$

The remaining part is

$$
(x_R^i)_{(1)} \left(\sum_{u,s} \kappa^*(x^s, x^u) f^{j,s} \omega^u \right) = \sum_{s,u} \kappa^*(x^s, x^u) (x_R^i)_{(1)} (f^{j,s} \omega^u).
$$

Expanding x_R^i we see that we need to study terms like $(f^{i,l}x^l)_{(1)}(f^{j,s}\omega^u)$ and this is the usual reasoning with Borcherds 1. We have

$$
(f^{i,l}x^l)_{(1)}(f^{j,s}\omega^u) = \sum_{t\geq 0} (-1)^t \left((-1)^t f^{i,l}_{(-1-t)} x^l_{(1+t)}(f^{j,s}\omega^u) + x^l_{(-t)} f^{i,l}_{(t)}(f^{j,s}\omega^u) \right),
$$

$$
x^l_{(1+t)}(f^{j,s}\omega^u) \stackrel{derivation}{=} (x^l_L f^{j,s})_{(t)}\omega^u + f^{j,s}\langle x^l, \omega^u \rangle_{(t-1)} \stackrel{t\geq 0}{=} f^{j,s}\delta^{l,u}_{(t-1)}
$$

so that the only surviving term is for $t = 0$ and $l = u$, in which case we obtain $f^{i,u} f^{j,s}$. Summing over l we obtain

$$
(x_R^i)_{(1)} \left(\sum_{u,s} \kappa^*(x^s, x^u) f^{j,s} \omega^u \right) = \sum_{u,s} \kappa^*(x^s, x^u) f^{i,u} f^{j,s}.
$$

Finally the fourth term is zero since $\mathcal{O}(\mathscr{J}_{\infty}G)$ is commutative, i.e. we have

$$
\left(\sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} \omega^q \right)_{(1)} \left(\sum_{u,s} \kappa^*(x^s, x^u) f^{j,s} \omega^u \right) = 0.
$$

Summing over these terms we obtain

$$
\pi_R(x^i)_{(1)}\pi_R(x^j) = \sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} f^{j,q}.
$$

A priori this is an element of $\mathcal{O}(\mathcal{J}_{\infty}G)$, let's prove it is actually a constant. We just need to show it gets annihilated by all left-invariant vector fields, and specifically we just need to test x_L^s for all s. Using identities of Lemma [1.15](#page-4-0) we have

$$
x_L^s \left(\sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} f^{j,q} \right) = \sum_{p,q} \kappa^*(x^p, x^q) \left[(x_L^s f^{i,p}) f^{j,q} + f^{i,p} (x_L^s f^{j,q}) \right] =
$$

\n
$$
= - \sum_{p,q,u} \kappa^*(x^p, x^q) c_p^{s,u} f^{i,u} f^{j,q} - \sum_{p,q,v} \kappa^*(x^p, x^q) c_q^{s,v} f^{j,v} f^{i,p} =
$$

\n
$$
\lim_{x \to a} \sum_{u,q} \kappa^*([x^s, x^u], x^q) f^{i,u} f^{j,q} - \sum_{v,p} \kappa^*(x^p, [x^s, x^v]) f^{j,v} f^{i,p} =
$$

\n
$$
= \sum_{n,m} \left[\kappa^*([x^n, x^s], x^m) - \kappa^*(x^n, [x^s, x^m]) \right] f^{i,n} f^{j,m} = 0
$$

.

where the last equality is due to the invariance of κ^* .

We conclude that $\sum_{p,q} \kappa^*(x^p, x^q) f^{i,p} f^{j,q}$ is constant. Observing that $f^{i,j}(e) = \delta_{i,j}$, where e is the identity of G , we see that we have

$$
\pi_R(x^i)_{(1)}\pi_R(x^j) = \kappa^*(x^i, x^j)
$$

as we wanted.

Let's now compute $\pi_R(x^i)_{(0)}\pi_R(x^j)$ and, as usual, let's start by expanding $\pi_R(x^j)$. Let's recall first a basic lemma of vertex algebras.

Lemma 3.8. Suppose $v_{(n)}w = 0$ for each $n \geq 0$. Then $w_{(n)}v = 0$ for each $n \geq 0$.

Proof. Write

$$
w_{(n)}v = w_{(n)}v_{(-1)} |0\rangle = v_{(-1)}w_{(n)} |0\rangle + [w_{(n)}, v_{(-1)}] |0\rangle \stackrel{n \geq 0}{=} -[v_{(-1)}, w_{(n)}] |0\rangle
$$

and using Borcherds 2

$$
w_{(n)}v = -\sum_{j\geq 0} (-1)^j (v_{(j)}w)_{(n-1-j)} |0\rangle.
$$

This is all equal to zero since $v_{(j)}w = 0$ by assumption.

Let's now focus on terms like $\pi_R(x^i)_{(0)}(f^{j,q}x^q)$. We proved before that $(x^j)_{(n)}\pi_R(x^i)=0$ for all non negative *n* and therefore, using the lemma, we also have $\pi_R(x^i)_{(n)}x^j = 0$. Since in any vertex algebra the element $v_{(0)}$ is a "derivation", we have

$$
\pi_R(x^i)_{(0)}(f_{(-1)}^{j,q}x^q) = (\pi_R(x^i)_{(0)}f^{j,q})_{(-1)}x^q.
$$

Expanding $\pi_R(x^i)$ we need to understand terms like $(f^{i,l}x^l)_{(0)}f^{j,q}$. This is the usual Borcherds trick, for which we obtain $f^{i,l}(x_L^l f^{j,q})$. Hence we have

$$
\pi_R(x^i)_{(0)} f^{j,q} = \sum_l f^{i,l}(x^l_L f^{j,q})
$$

and summing over q we get

$$
\pi_R(x^i)_{(0)} x_R^j = \pi_R(x^i)_{(0)} \left(\sum_q f^{j,q} x^q \right) = \sum_{q,l} f^{i,l} (x_L^l f^{j,q}) x^q = [x_R^i, x_R^j] = [x^i, x^j]_R
$$

where the last equalities come from the proof of Lemma [1.15.](#page-4-0) We now need to study terms like $\pi_R(x^i)_{(0)}(f^{j,s}\omega^u)$, which we can already reduce to $(x^i_R)_{(0)}(f^{j,s}\omega^u)$ by the commutativity of the vertex algebra $\mathcal{O}(\mathscr{J}_{\infty}G)$. As before, using $v_{(0)}$ derivation, we have

$$
(x_R^i)_{(0)}(f^{j,s}\omega^u) = ((x_R^i)_{(0)}f^{j,s})_{(-1)}\omega^u + f^{j,s}(x_R^i)_{(0)}\omega^u
$$

and now let's expand $x_R^i = \sum_l f^{i,l} x^l$. By Borcherds 1 we have

$$
(f^{i,l}x^l)_{(0)} = \sum_{t\geq 0} (-1)^t \left((-1)^t f^{i,l}_{(-1-t)} x^l_{(t)} + x^l_{(-1-t)} f^{i,l}_{(t)} \right)
$$

and observe that

$$
x_{(t)}^l f^{j,s} = (x_L^l f^{j,s})_{(t-1)} = \delta_{t,0} \cdot x_L^l f^{j,s}
$$

so that

$$
(x^i_R)_{(0)}f^{j,s}=\sum_l(f^{i,l}x^l)_{(0)}f^{j,s}=\sum_lf^{i,l}(x^l_Lf^{j,s}).
$$

Observe now, using Lemma [2.6,](#page-8-0) that

$$
x_{(t)}^l \omega^u = \delta_{t,0} \cdot (\text{Lie } x^l) . \omega^u + \delta_{t,1} \cdot \langle x^l, \omega^u \rangle.
$$

Plugging it in Borcherds 1 we get

$$
(x_R^i)_{(0)}\omega^u = \sum_l (f^{i,l}x^l)_{(0)}\omega^u = \sum_l f^{i,l}(\text{Lie }x^l)\cdot \omega^u + \sum_l f^{i,l}_{(-2)}\langle x^l, \omega^u \rangle = \sum_l (\text{Lie }f^{i,l}x^l)\cdot \omega^u =
$$

$$
= (\text{Lie}(\sum_l f^{i,l}x^l))\cdot \omega^u = (\text{Lie }x_R^i)\cdot \omega^u = 0
$$

where the last equality come from Lemma [1.18](#page-4-1) and identities on Lie derivatives in Proposition [1.17.](#page-4-2) Thus, using Lemma [1.15,](#page-4-0) we can write

$$
(x_R^i)_{(0)} \left(\sum_{s,u} \kappa^*(x^s,x^u) f^{j,s} \omega^u \right) = \sum_{s,u} \kappa^*(x^s,x^u) \left[\sum_l f^{i,l} (x_L^l f^{j,s}) \omega^u \right] =
$$

$$
= \sum_{s,u,q} \kappa^*(x^s,x^u) c_q^{i,j} f^{q,s} \omega^u.
$$

Observe that we have

$$
\pi_R([x^i, x^j]) = \sum_q c_q^{i,j} \pi_R(x^q) = \sum_q c_q^{i,j} x_R^q + \sum_q c_q^{i,j} \left(\sum_{s,u} \kappa^*(x^s, x^u) f^{q,s} \omega^u \right).
$$

Adding everything up we see that

$$
\pi_R(x^i)_{(0)}\pi_R(x^j) = \pi_R([x^i, x^j])
$$

so that we have proved that π_R is indeed a vertex algebra morphism.

Action by right invariant vector fields

Let's prove that we have the following OPE

$$
(\pi_R(x)(z))(f(w)) \sim \frac{1}{z-w}(x_Rf)(w)
$$
\n⁽⁵⁾

and, as usual, assume $x = x^i$ is in the fixed basis. It is equivalent to prove that, for $n \geq 0$, we have

$$
\pi_R(x^i)_{(n)}f = \delta_{n,0} \cdot (x^i_R f).
$$

By the commutativity of $\mathcal{O}(\mathscr{J}_{\infty}G)$ we can write

$$
(\pi_R(x^i))_{(n)}f = (x_R^i)_{(n)}f = \sum_l (f^{i,l}x^l)_{(n)}f
$$

and hence we see that we just need to concentrate on terms of this kind. By Borcherds 1 we have

$$
(f_{(-1)}^{i,l}x^{l})_{(n)} = \sum_{j\geq 0} \left((-1)^{j} f_{(-1-j)}^{i,l} x_{(n+j)}^{l} + x_{(n-1-j)}^{l} f_{(j)}^{i,l} \right)
$$

and we observe that

$$
x_{(n+j)}^l f = (x_L^l f)_{(n+j-1)}, \qquad f_{(j)}^{i,l} f = 0.
$$

The first term is also zero whenever $j \geq 1 - n$ and, if $n \geq 1$, this always happens, so we conclude that

$$
n > 0 \implies (\pi_R(x))_{(n)} f = \sum_l (f^{i,l} x^l)_{(n)} f = 0.
$$

For $n = 0$ we obtain instead

$$
(\pi_R(x^i))_{(0)}f = \sum_l (f^{i,l}x^l)_{(0)}f = \sum_l f^{i,l}(x^l_Lf) = (x^i_Rf).
$$

This proves the OPE (5). Observe now that this implies, using Borcherds 2:

$$
[\pi_R(x)_{(m)}, f_{(n)}] = \sum_{j \ge 0} {m \choose j} (\pi_R(x)_{(j)} f)_{(m+n-j)} = (\pi_R(x)_{(0)} f)_{(m+n)} = (x_R f)_{(m+n)}.
$$

Second part

For the second point let's consider the vertex algebra map

$$
\Phi\colon \mathcal{D}^{\mathrm{ch}}_{G,\kappa}\rightarrow \mathcal{D}^{\mathrm{ch}}_{G,\kappa^*}
$$

whose restriction to $\mathcal{O}(G)$ is the antipode S and whose restriction to g is π_R . To verify it is indeed a vertex algebra homomorphism we just need to check the "mixed" OPE

$$
(\Phi(x))(z)(\Phi(f))(w) \sim \frac{1}{z-w}(\Phi(x_L f))(w)
$$

for any $x \in \mathfrak{g}$, $f \in \mathcal{O}(G)$. This is true thanks to Lemma [1.13](#page-3-0) because

$$
\Phi(x_L f) = S(x_L f) = x_R(S(f))
$$

and we know from the first point that

$$
(\pi_R(x))(z)(S(f))(w) \sim \frac{1}{z-w}(x_R(S(f)))(w).
$$

Finally, to show that Φ is an isomorphism we can just consider the map Ψ from $\mathcal{D}^{\text{ch}}_{G,\kappa^*}$ to $\mathcal{D}^{\text{ch}}_{G,\kappa^*}$ = $\mathcal{D}^{\text{ch}}_{G,\kappa}$ induced by antipode on $\mathcal{O}(G)$ and by $\pi_R(x) \mapsto \pi_L(x)$ on $V^{\kappa^*}(\mathfrak{g})$. Similarly, also Ψ is a vertex algebra morphism and one can verify it is inverse to Φ.

Let's do another theorem.

Theorem 3.9. Suppose now that G is connected. The vertex algebras $V^{\kappa}(\mathfrak{g})$ and $V^{\kappa^*}(\mathfrak{g})$ form a *dual* pair in $\mathcal{D}_{G,\kappa}^{\text{ch}},$ i.e.

$$
V^{\kappa}(\mathfrak{g}) = (\mathcal{D}_{G,\kappa}^{\mathrm{ch}})^{\pi_R(\mathfrak{g}[t])} := \{ v \in \mathcal{D}_{G,\kappa}^{\mathrm{ch}} \mid \pi_R(x t^n)_{(m)} v = 0 \,\forall \, m \ge 0, \, x \in \mathfrak{g}, \}, \qquad V^{\kappa^*}(\mathfrak{g}) = (\mathcal{D}_{G,\kappa}^{\mathrm{ch}})^{\pi_L(\mathfrak{g}[t])}.
$$

Proof. By the preceding theorem we already know $V^{\kappa}(\mathfrak{g}) \subseteq (\mathcal{D}_{G,\kappa}^{ch})^{\pi_R(\mathfrak{g}[t])}$ and, using the isomorphism of the second part, $V^{\kappa^*}(\mathfrak{g}) \subseteq (\mathcal{D}^{\mathrm{ch}}_{G,\kappa})^{\pi_L(\mathfrak{g}[\![t]\!])}$, so we just need to prove the inverse inclusions. Observe that, since the image of π_R commutes with elements of $V^{\kappa}(\mathfrak{g})$ (embedded in $\mathcal{D}^{\text{ch}}_{G,\kappa}$), we have

$$
(\mathcal{D}_{G,\kappa}^{\mathrm{ch}})^{\pi_R(\mathfrak{g}[t])} = \left(U(\hat{g}_{\kappa}) \otimes_{U(\mathfrak{g}[t]\oplus \mathbb{C}^1)} \mathcal{O}(\mathscr{J}_{\infty}G)\right)^{\pi_R(\mathfrak{g}[t])} \cong U(\hat{g}_{\kappa}) \otimes_{U(\mathfrak{g}[t]\oplus \mathbb{C}^1)} \mathcal{O}(\mathscr{J}_{\infty}G)^{\pi_R(\mathfrak{g}[t])}.
$$

Since G is connected we have

$$
\mathbb{C}\cong\mathcal{O}(\mathscr{J}_\infty G)^{\mathscr{J}_\infty G}=\mathcal{O}(\mathscr{J}_\infty G)^{\mathfrak{gl} t \mathbb{I}}=\mathcal{O}(\mathscr{J}_\infty G)^{\pi_R(\mathfrak{gl} t \mathbb{I})}
$$

and hence

$$
(\mathcal{D}_{G,\kappa}^{\mathrm{ch}})^{\pi_R(\mathfrak{g}[\![t]\!])} \cong V^{\kappa}(\mathfrak{g}).
$$

The other claim comes for free using the isomorphism $\mathcal{D}_{G,\kappa}^{ch} \cong \mathcal{D}_{G,\kappa^*}^{ch}$.

4 Other facts

Let's recall that for V a vertex algebra we have $R_V = V/F^1V$, where $F^1V = V_{(-2)}V$. If V has a PBW basis $(a^i)_i$, then one has

$$
F^{1}V = \left\{ a_{(-n-2)}^{i} v \mid n \ge 0, i \in I, v \in V \right\}.
$$

Then the associated variety X_V is defined as the reduced scheme of Spec R_V .

Proposition 4.1. We have $X_{\mathcal{D}_{G,\kappa}^{ch}} \cong T^*G$.

Proof. We already mentioned that $\mathcal{D}_{G,\kappa}^{ch}$ has a PBW basis so we just need to prove $R_{\mathcal{D}_{G,\kappa}^{ch}} \cong \mathbb{C}[T^*G]$. We have $T^*G \cong G \times \mathfrak{g}^*$ so

$$
\mathcal{O}(T^*G) \cong \mathcal{O}(G) \otimes \mathcal{O}(\mathfrak{g}^*) \cong \mathcal{O}(G) \otimes \text{Sym}(\mathfrak{g})
$$

where Sym g is the symmetric algebra of g. Observe that given a generic vector

$$
x_{(-n_1-1)}^{i_1} \dots x_{(-n_m-1)}^{i_m} \xi_{(-1-t_1)}^{j_1} \dots \xi_{(-1-t_r)}^{j_r} |0\rangle
$$

if there exists a $n_j > 0$ then we can move, using commutators, $x_{(-n_j-1)-2}^{i_j}$ to the leftmost, so that this last term is in F^1V . Also all the other terms with commutators $[x_{(-n_i-1)}^i, x_{(-n_j-2)}^j] = [x^i, x^j]_{(-n_i-n_j-3)}$ will have "big" negative powers so we will be able to move to the leftmost position and prove they are in F^1V . Like this we see that the only surviving x part has only t^{-1} and commute, since $[xt^{-1}, yt^{-1}] = [x, y]t^{-2} \in$ F^1V ; thus it corresponds to $S(\mathfrak{g})$. More easily, since $\mathcal{O}(\mathscr{J}_{\infty}G)$ is abelian, we can move any $f_{(-1-j)}$ with j > 0 to the leftmost place (before the x's), and then we can use the relation $[x_{(-1)}, f_{(-1-j)}] =$ $(x_L f)_{(-1-(j+1))}$ to continue as before. We obtain that only the nonderived functions survive, i.e. the $\mathcal{O}(G)$ part. Thus we proved

$$
R_{\mathcal{D}_{G,\kappa}^{\mathrm{ch}}}\cong S(\mathfrak{g})\otimes \mathcal{O}(G).
$$

Recall now that given $a, b \in V$ homogeneous we can define

$$
a \circ b = \sum_{i \ge 0} {\Delta_a \choose i} a_{(i-2)}b, a * b = \sum_{i \ge 0} {\Delta_a \choose i} a_{(i-1)}b.
$$

It is then known that $\text{Zhu}(V) = V/V \circ V$ is an associative unital almost-commutative algebra with product ∗.

Proposition 4.2. We have $\text{Zhu}(\mathcal{D}_{G,\kappa}^{ch}) \cong \mathcal{D}(G)$.

Proof. Since $\mathcal{D}_{G,\kappa}^{ch}$ has a PBW basis, we know that $R_{\mathcal{D}_{G,\kappa}^{ch}} \cong \text{gr Zhu}(\mathcal{D}_{G,\kappa}^{ch})$. Since

$$
R_{\mathcal{D}_{G,\kappa}^{\mathrm{ch}}}=S(\mathfrak{g})\otimes \mathcal{O}(G)\cong \operatorname{gr} U(\mathfrak{g})\otimes \mathcal{O}(G)\cong \operatorname{gr}(U(\mathfrak{g})\otimes \mathcal{O}(G))\cong \operatorname{gr} \mathcal{D}(G)
$$

by PBW theorem and the isomorphism $U(\mathfrak{g}) \otimes \mathcal{O}(G) \cong \mathcal{D}(G)$. Let's consider the map of algebras

$$
\mathcal{D}(G)\rightarrow\text{Zhu}(\mathcal{D}^{\text{ch}}_{G,\kappa})=\frac{\mathcal{D}^{\text{ch}}_{G,\kappa}}{\mathcal{D}^{\text{ch}}_{G,\kappa}\circ\mathcal{D}^{\text{ch}}_{G,\kappa}},\quad \mathfrak{g}\ni x\mapsto xt^{-1}+\mathcal{D}^{\text{ch}}_{G,\kappa}\circ\mathcal{D}^{\text{ch}}_{G,\kappa},\quad \mathcal{O}(G)\ni f\mapsto f_{(-1)}+\mathcal{D}^{\text{ch}}_{G,\kappa}\circ\mathcal{D}^{\text{ch}}_{G,\kappa}.
$$

It is easy to verify that we have

$$
xt^{-1} * yt^{-1} - yt^{-1} * xt^{-1} \stackrel{formula}{=} \sum_{j \ge 0} {1-1 \choose j} x_{(j)}y = x_{(0)}y = [x, y]t^{-1}
$$

so that our map is well defined. It clearly respects the filtration so it induces a map on the grading, which is the isomorphism of before, and thus we can conclude.

References

- [AM21] Tomoyuki Arakawa and Anne Moreau. Arc spaces and vertex algebras. 2021. URL: [https://www.](https://www.imo.universite-paris-saclay.fr/~moreau/CEMPI-arc_space-vertex_algebras.pdf) [imo.universite-paris-saclay.fr/~moreau/CEMPI-arc_space-vertex_algebras.pdf](https://www.imo.universite-paris-saclay.fr/~moreau/CEMPI-arc_space-vertex_algebras.pdf).
- [Kle] Alexander Kleshchev. Lectures on Algebraic Groups. url: [https://darkwing.uoregon.edu/](https://darkwing.uoregon.edu/~klesh/teaching/AGLN.pdf) [~klesh/teaching/AGLN.pdf](https://darkwing.uoregon.edu/~klesh/teaching/AGLN.pdf).
- [Mal17] Fyodor Malikov. "An Introduction to Algebras of Chiral Differential Operators". In: Perspectives in Lie Theory. Cham: Springer International Publishing, 2017, pp. 73–124. isbn: 978-3-319- 58971-8. doi: [10.1007/978-3-319-58971-8_2](https://doi.org/10.1007/978-3-319-58971-8_2). url: [https://doi.org/10.1007/978-3-319-](https://doi.org/10.1007/978-3-319-58971-8_2) [58971-8_2](https://doi.org/10.1007/978-3-319-58971-8_2).