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Abstract

We will first give a brief introduction on Grothendieck pretopologies, topologies and how they’re
related. We will then generalize the concept of sheaves, normally used on topological spaces, to a
category endowed with a (pre)topology and we’ll state an analogous result about the sheafification
functor. Finally we’ll introduce the concept of canonical topology and we will state a few examples,
focusing on the category of open subsets of a topological space.

1 Main definitions

1.1 Pretopologies
The idea behind Grothendieck (pre)topologies is to extend the (pre)topology notion to general categories,
to generalize sheaves, for example. The open coverings of an object will be some particular maps to such
object, and intersection becomes fibered product (indeed in Set for A,B ⊂ C then A ∩ B = A ×C B).
Let’s give now the definitions.

Definition 1.1. Let C be a category. A Grothendieck pretopology P on C is given by the datum, for each
U ∈ C, of a collection of morphisms U = {Ui → U}i∈I (I is an index set, which can vary depending on
U), called coverings of U and satisfying the following axioms.

PG1 If V → U is an isomorphism, then {V → U} is a covering.

PG2 If U = {Ui → U} is a U -covering, and V → U is a morphism in C, then the fibered products
{Ui ×U V } exist in C and the family of maps U ×U V := {Ui ×U V → V } is a V -covering.

PG3 If U = {Ui → U} is a covering and, for each i, Vi = {Vi,j → Ui} is an Ui-covering, then U ◦ V :=
{Vi,j → Ui → U} is a covering for U .

Let’s observe that the axioms imply that if U and V are U -coverings then U ×U V = {Ui×U Vj → U}
is an U -covering. A category C endowed with a Grothendieck pretopology P is called a site. Let’s now
introduce a definition of equivalence between Grothendieck pretopologies.

Definition 1.2. Let C be a category and U = {Ui → U} a set of arrows. Define a refinement of U to be
a set of arrows V = {Vj → U} such that for each j there exists an i such that the map Vj → U factorizes
through Ui → U .

We verify easily that the relation “to be a refinement of” on U -coverings of C is a pre-order: it is
reflexive (U is trivially a refinement of itself) and it is clearly transitive.

Definition 1.3. Given a category C and two Grothendieck pretopologies P1,P2 on it, we write P1 � P2

(and we say P1 is subordinate to P2) if any covering in P1 has a refinement which is also a covering in
P2. If P1 � P2 and P2 � P1 then we say that they are equivalent and we write P1 ≡ P2.

This equivalence defines a reflexive and transitive relation between pretopologies, because “to be a
refinement of” has such properties. It is also a symmetric relation so that it is really an equivalence
relation.

Definition 1.4. A pretopology P on C is saturated if any set of arrows U = {Ui → U} having a refinement
in P is itself in P. We write P the collection of the set of arrows having a refinement in P and we call P
the saturation on P.

Here we list some basic properties.
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Proposition 1.5. Let P be a pretopology on C. The following hold:

1. the saturation P is a saturated pretopology;

2. P ⊆ P;

3. P ≡ P;

4. P is saturated if and only if P = P;

5. given a pretopology P ′ on C then P ′ � P iff P ′ � P (same with ≡);

6. a pretopology on C is equivalent to only one saturated pretopology.

The proof should not be too difficult.

1.2 Sieves and topologies
To introduce the notion of a Grothendieck topology (clearly related to the definition of pretopology, we’ll
see how later) we first need to define some other objects.

Definition 1.6. Given an object U ∈ C we define a sieve S on U to be a subfunctor of hU =
HomC(•, U) : Cop → Set.

More concretely we can think that to each W ∈ C, S(W ) is a collection of arrows W → U and such
that for each f : V →W we have V →W → U ∈ S(V ) (by functoriality).

Given a U -cover U in C we can define the sieve hU ⊆ hU setting hU (W ) to be the set of arrowsW → U
factorizing through W → Ui → U for some Ui → U in U . Here we can understand why the name sieve
was chosen: we just select the particular arrows “passing through” some holes (U).

Observe also that given V ⊆ U two U -coverings, then hV ⊆ hU ⊆ hU . We know that, given two
U -coverings U ,V, their fibered product U ×U V = {Ui ×U Vj → U} is again a covering; by the universal
property any arrow W → U factorizing through Ui ×U Vj → U also factorizes through Ui → U and
Vj → U , so that hU×UV = hU ∩ hV ⊂ hU .

Proposition 1.7. Given two U -coverings U and V, V is a refinement of U iff hV ⊆ hU .

We are now ready to define Grothendieck topologies.

Definition 1.8. Let C be a category. A Grothendieck topology T on C is the datum of a collection
{SCovU}U∈Ob(C), where for each U ∈ C SCovU is a family of sieves on U , called covering sieves on U ,
satisfying the following axioms.

GT1 hU ∈ SCovU .

GT2 If S1 ⊆ S2 are two sieves on U and S1 ∈ SCovU then S2 ∈ SCovU .

GT3 Given f : V → U in C and S ∈ SCovU , then S ×U V := S ×hU hV (it is the fibered product in
Cˆ:= Funct(Cop,Set), we will implicitely use the Yoneda identification U 7→ hU ) is a covering sieve
of V . We observe that (S ×U V )(W ) = {α : W → V | f ◦ α ∈ S(W )} by means of

S ×U V S

V ∼= hV U ∼= hU
f◦

GT4 If S1, S2 are sieves on U , S2 ∈ SCovU and for any V → U ∈ S2(V ) S1 ×U V ∈ SCovV , then S1 is
also a covering sieve on U .

These axioms are redundant, in particular the axiom GT2 descends from GT3 and GT4.

Lemma 1.9. Let C be a category endowed with a Grothendieck topology T . Given S ∈ SCovU and
f : V → U ∈ S(V ), then S ×U V = hV .
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Proof. By GT3 we already know that S×U V ⊆ hV is a sieve on V so we just need to prove idV ∈ S×U V
(and then we conclude using the “absorbing” property of sieves mentioned above because each g : W → V
is equal to idV ◦g). We have (S ×U V )(V ) = {α : V → V | f ◦ α = φ ∈ S(V )}, i.e. the following diagram
is commutative

V

V U

φ
α

f

We see that, from this, it is clear that idV ∈ (S ×U V )(V ), and thus S ×U V = hV . �

Proposition 1.10. The axiom GT2 descends from GT3 and GT4.

Proof. Let R,S be two sieves on U such that S ⊆ R and S ∈ SCovU ; let’s prove that also R ∈ SCovU .
For each f : V → U ∈ S(V ), by the axiom GT3, we know that S×U V ∈ SCovV and, by the Lemma 1.9,
hV = S ×U V ⊆ R×U V ⊆ hV so that R×U V = hV ∈ SCovV by GT1. By GT4 we can then conclude
that also R ∈ SCovU . �

Let’s now prove another useful lemma.

Lemma 1.11. Let U be a covering of U in C and f : V → U a morphism. If ∃U ×U V ∈ C, then
hU ×U V = hU×UV .

Proof. Using the definition of fibered product in C ,̂ as explained in GT3, we obtain (hU ×U V )(W ) =
{α : W → V | f ◦ α = φ ∈ hU (W )} so that φ factorizes through some βi : Ui → U ∈ U as drawn here

W Ui

V U

g

α
φ

βi

f

and hence, by the universal property of pullbacks, we obtain

W

V ×U Ui Ui

V U

α

g

βi

f

so that α factorizes through V ×U Ui → V ∈ U ×U V and hence hU ×U V ⊆ hU×UV . The converse is also
evident from the preceeding diagrams, so we conclude hU×UV = hU ×U V . �

1.3 Relations between topologies and pretopologies
Let’s now investigate, after having given the basic definition of Grothendieck pretopologies and topologies,
the relations between them.

Theorem 1.12. Let C be a category endowed with a Grothendieck pretopology P. Define

SCovU := {S ⊆ hU | ∃ U U -covering in P such that hU ⊆ S}

for each U ∈ C. This defines a Grothendieck topology TP . In particular, equivalent pretopologies as in
Definition 1.3, define the same Grothendieck topology.

Proof. Let’s first prove that TP is a well defined Grothendieck topology, i.e. it respects the four axioms.

GT1 Consider U = {φ : V → U} with φ an isomorphism. By PG1, U is a U -covering in P, to which we
can associate hU ⊆ hU . Observe that for any α : W → U we have
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W

V U V

α α

φ φ−1

so that α factorizes through U . This proves hU = hU ∈ SCovU , by definition.

GT2 Consider S1 ⊆ S2 two sieves on U and such that S1 ∈ SCovU . Then, for some U ∈ P, we have
hU ⊆ S1 ⊆ S2 ⊆ hU and hence also S2 ∈ SCovU .

GT3 Consider f : V → U in C and let S be a covering sieve on U ; by definition ∃U = {Ui → U} ∈ P such
that hU ⊆ S. By PG2 we know that U ×U V ∈ P is a V -covering; let’s prove that hU×UV ⊆ S×U V
(so that S×U V ∈ SCovV ). By Lemma 1.11 we have hU×UV = hU ×U V ⊆ S×U V (fibered product
mantains subobject relations) and thus we conclude.

GT4 Consider S1, S2 two sieves on U and such that S2 ∈ SCovU , so that hU ⊆ S for some U = {Ui
βi→

U} ∈ P. Suppose also that for any f : V → U ∈ S2(V ) we know that S1 ×U V ∈ SCovV , i.e.
hV ⊆ S1 ×U V for some V -covering V. In particular let’s focus on maps βi : Ui → U ∈ hU (Ui) and
call the respective coverings (obtained reasoning in the above mentioned way) Vi = {Vi,j

γi,j→ Ui}.
We can consider now U ◦ V = {Vi,j → Ui → U}i,j , which is a U -covering in P by PG3. Let’s
prove that hU◦V ⊆ S1, so that we may conclude S1 ∈ SCovU . By assumption, S1 ×U Ui ∈ SCovUi .
Let’s consider any α ∈ hVi(W ) ⊆ (S1 ×U Ui)(W ): we know, from the definition of S1 ×U Ui, that
α : W → Ui is such that βi ◦ α = φ ∈ S1(W ), i.e. we have the following commutative diagram

Vi,j W

Ui U

γi,j

β

α
φ

βi

from which we see that any map ψ : W → U factorizing through U ◦ V gives rise to some δ : W →
Ui ∈ hVi(W ) ⊆ (S1 ×U Ui)(W ) and hence, by the same reasoning, βi ◦ δ = φ ∈ S1(W ), i.e.
hU◦V ⊆ S1.

This suffices to prove that TP is a Grothendieck topology. Let’s now show that if P1 ≡ P2 then they
give rise to the same topology. Indeed if P1 � P2 then any U -covering U ∈ P1 has a refinement V ∈ P2,
which means hV ⊆ hU . This easily implies that for S ∈ SCovU (T1) we have hV ⊆ hU ⊆ S so that also
S ∈ SCovU (T2), i.e. T1 ⊆ T2. Using also that P2 � P1 we obtain the desired equality T1 = T2. �

This theorem gives us a map from pretopologies on C (modulo equivalence) to topologies. With some
nice conditions on C, this map can be, in some sense, inverted.

Theorem 1.13. Let C be a category with fibered products. To each Grothendieck topology T we can
associate a saturated Grothendieck pretopology PT .

Proof. The definition is pretty immediate: a U -cover for PT is a collection of arrows U = {Ui → U} such
that hU ∈ SCovU . Let’s now prove that this defines a Grothendieck pretopology, i.e. that it satisfies the
three axioms.

PG1 By axiom GT1 we have hU ∈ SCovU ; consider Uφ = {φ : V
∼→ U} for any isomorphism and observe

that hUφ = hU ∈ SCovU , so that Uφ is a U -cover in PT .

PG2 Consider U = {Ui
βi→ U} a U -cover in PT , so that hU ∈ SCovU , and f : V → U in C. By axiom

GT3 we have hU ×U V ∈ SCovV and, by Lemma 1.11, hU ×U V = hU×UV , proving that U ×U V
is a V -covering in PT .

PG3 Consider the U -covering U = {Ui
βi→ U} and the Ui-covering Vi = {Vi,j

βi,j→ Ui} in PT . Consider the
sieves S1 = hU◦V and S2 = hU ∈ SCovU . We just need to prove that S1 ∈ SCovU . To do this, we
useGT4, and so we need to prove that for any f : V → U ∈ S2(V ) we have S1×UV ∈ SCovV . From
Lemma 1.9 we can write S1×U V = hU◦V×U V = h(U◦V)×UV . By assumption on f ∈ S2(V ) we know
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that there exists i such that f factorizes as V → Ui
βi→ U ; by axiom PG2 we know that Vi ×Ui V

(using the first arrow above) is a V -covering in PT . We will now prove that Vi×Ui V ⊆ (U ◦V)×U V
and this indeed suffices to conclude: in-fact, from this, it descends that hVi×UiV ⊆ hU◦V ×U V and,
since hVi×UiV ∈ SCovV , we conclude that also hU◦V ×U V ∈ SCovV by axiom GT2. So let’s now
prove that Vi ×Ui V ⊆ (U ◦ V)×U V . The first set contains, varying j, these arrows

V ×Ui Vi,j Vi,j

V Ui

U

∈Vi×UiV βi,j

f
βi

while (U ◦ V)×U V is defined, varying h and k, by

V ×U Vh,k Vh,k Uh

V U

Ui

∈(U◦V)×UV ∈(U◦V)

βh,k

βh
f

βi

and for h = i, k = j we see that Vi ×Ui V ⊆ (U ◦ V)×U V .

Let’s finally prove that PT is saturated: if U has a refinement V in PT then hV ⊆ hU and hV ∈ SCovU
by definition; using GT2 we also have hU ∈ SCovU , which proves U ∈ PT . �

Let’s observe that, in the proof of Theorem 1.12 in GT1, we only used that φ has a section (i.e. that
φ is a retraction). In general any retraction π : V � U forms a covering for any saturated Grothendieck
pretopology becuase h{π : V�U} = hU .

Let’s try to summarize the correspondence between Grothendieck topologies and pretopologies (we’ll
feel free to assume, when needed, that C has fibered products).

Proposition 1.14. We have defined the following two maps

{Grothendieck topologies on C} ←→ {Grothendieck pretopologies on C}
Sieves S in SCovU 7−→ U -coverings U s.t. hU ∈ SCovU

Sieves S′ s.t. hU ⊆ S′ ←− [ U -coverings U

From a pretopology, applying the two maps, we have P 7→ TP 7→ P (it is the saturation of P). Instead,
from a topology, applying the two maps, we have T 7→ PT 7→ T . In particular, in this last case, each
sieve S′ is hU for some U = {Ui → U} ∈ PT .

Proof. We’ll just prove the last assertion. Let S′ ∈ SCovU in TPT and define U = {V f→ U | f ∈
S′(V ), ∀V ∈ C}. Observe that U ∈ PT : this pretopology is saturated and, by assumption, hV ⊆ S′ for
some U -covering V; the set {V → U ∈ hV(V ) | ∀V ∈ C} ⊆ U is in PT (V is a subset of it, so it is a
refinement of it) and hence also U ∈ PT (it is saturated). We will prove that S′ = hU . To prove S′ ⊆ hU
observe that g ∈ S′(W ) factorizes as

W

W U

idW
g

g

so that g ∈ hU (W ). Conversely, consider g′ ∈ hU (W ′) which can then be written as
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W ′

V U

g

f∈S′(V )

and, using the absorbing property of sieves, we may conclude that g′ ∈ S′(W ′). �

The main use of this last proposition is the useful fact that to know a certain Grothendieck topology
one needs only to know the coverings of the associated saturated pretopology.

2 Sheaves on Grothendieck topologies
Using the concept of Grothendieck topologies we will be able to generalize the definition of sheaves on a
topological space. Let’s recall that a functor P : Op(X)op → Set is called a presheaf of sets on X ∈ Top
(the category Op(X) is just the poset of open sets of X). If P satisfies certain conditions (separability
and a glueing condition) then it is called a sheaf of sets on X. For brevity we’ll assume the reader to be
familiar with classical sheaves on topological spaces and we’ll immediately dive in the general cases.

Definition 2.1. Let C be a site. A presheaf (of sets) on C is a functor F : Cop → Set. We say that F is
a sheaf if it respects the following conditions:

S0 if C has an initial object ∅C (so that it is a terminal object in Cop) then F (∅C) = {pt} (this property
is redundant, i.e. it can be proved using the other axioms; it can also be stated, more elegantly,
that F preserves terminal object);

S1 given a covering {Ui
αi→ U} and two sections s, t ∈ F (U), if s

∣∣
Ui

= t
∣∣
Ui

for each i (here the restriction
we consider is F (αi)), then s = t;

S2 given a covering {Ui → U} and a family {si ∈ F (Ui)} satisfying si
∣∣
Ui×UUj

= sj
∣∣
Ui×UUj

for each
i, j, then there exists a (unique) section s ∈ F (U) such that s

∣∣
Ui

= si for each i.

Definition 2.2. Call Psh(C) := Funct(Cop,Set) the category of presheaves of sets on C and Sh(C) the
category of sheaves on C (morphism are natural transformations so it is a full subcategory of Psh(C)).
The category of sheaves on a site is often called topos.

We can also give an alternative, and maybe more immediate, definition of sheaf; given a covering
U = {Ui → U} and a presheaf F ∈ Psh(C) define F (U) as equalizer (similar universal property as
kernels) as follows

F (U)
∏
i F (Ui)

∏
i,j F (Ui ×U Uj)

where the two last arrows p1, p2 are defined, respectively, by F (Ui ×U Uj → Ui) and F (Ui ×U Uj → Uj).
This definition means that the diagram above is commutative and for any f : X ∈ C →

∏
i F (Ui) such

that p1 ◦ f = p2 ◦ f there exists a unique factorization of f through F (U). We can then define, using the
covering maps Ui → U , a map F (U) → F (U) (a priori it is a map F (U) →

∏
i F (Ui) but we see that,

composed with p1 and p2, we obtain the same map).

Proposition 2.3. A functor F : Cop → Set is a sheaf (for the Grothendieck pretopology P) if and only
if, for every covering U , the induced map F (U)→ F (U) is an isomorphism.

Let’s now prove a theorem which can seem a generalization of the Yoneda lemma for sites.

Theorem 2.4. Let C be a site and F ∈ Psh(C), and fix a U -covering U = {Ui → U}. Then there exists a
canonical bijection (in Set) R : HomC (̂hU , F ) ∼= F (U). In particular we have this commutative diagram

HomC (̂hU , F ) F (U)

HomC (̂hU , F ) F (U)

Y oneda

R
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where the above arrow is the Yoneda isomorphism (the others, except for R, are natural maps induced
by hU ⊆ hU and F (U)→ F (Ui)).

Proof. Let Φ: hU → F a natural transformation (i.e. an element of HomC (̂hU , F )) and, for each i, let’s
consider the map Ui → U ∈ U which clearly belongs to hU (Ui). Define R(Φ) := (Φ(Ui → U))i ∈

∏
i F (Ui)

(actually we mean (Φ(Ui)(Ui → U)) but it is clear anyway). To prove that R(Φ) ∈ F (U) we can
consider for each i, j the restrictions Φ(Ui → U)

∣∣
Ui×UUj

and Φ(Uj → U)
∣∣
Ui×UUj

and observe that they
both coincide with Φ(Ui ×U Uj → U), so that R(Φ) actually is in F (U). Indeed we can just consider the
commutative diagram (we draw for i then we have the same replacing i with j):

hU (Ui) F (Ui)

hU (Ui ×U Uj) F (Ui ×U Uj)

Φ(Ui)

(Ui×UUj→Ui)◦ F (Ui×UUj→Ui)

Φ(Ui×UUj)

We have defined hence a map R : HomC (̂hU , F )→ F (U), let’s now prove it is a bijection. For injectivity
we can consider two natural transformations Φ,Ψ: hU → F such that R(Φ) = R(Ψ). Given T → U ∈
hU (T ) we can find a factorization T

f→ Ui → U and, since they are both natural transformations, we
have

Φ(T → U) = F (f)(Φ(Ui → U)) = F (f)(Ψ(Ui → U)) = Ψ(T → U)

and this proves Φ = Ψ, i.e. that R is injective. For surjectivity consider (χi)i ∈ F (U): we want to define
a natural transformation hU → F whose R is (χi)i. As before, consider T → U ∈ hU (T ) which we can
factorize as T f→ Ui → U ; we can then consider the element F (f)(χi) ∈ F (T ) and we observe that this
element does not depend on the chosen factorization. Infact chosen another factorization T g→ Uj → U
then we can factorize T through Ui ×U Uj and, appying F to this pullback diagram, we obtain

F (T )

F (Ui ×U Uj) F (Uj)

F (Ui) F (U)

F (g)

F (f)

from which we see F (f)(χi) = F (g)(χj) (use that χi and χj coincide when mapped to F (Ui ×U Uj) by
assumption). Thus we have defined a map hU (T ) → F (T ) for each T and it is clear that it is natural,
i.e. it is a natural transformation Φ: hU → F and R(Φ) = (χi)i (choose, as a factorization of Ui → U ,
the trivial one), so that R is also surjective. �

Corollary 2.4.1. Let C be a site; a presheaf F ∈ Psh(C) is a sheaf if and only if for each covering
U = {Ui → U} the induced map HomC (̂hU , F )→ HomC (̂hU , F ) is bijective.

We have seen the definitions of sheaves on C all related to the Grothendieck pretopology, let’s now
try to translate them in topological terms.

Definition 2.5. A presheaf F ∈ Psh(C) is a separated presheaf (i.e. satisfying S1) in the Grothendieck
topology T if for every U ∈ C and S ∈ SCovU the induced map HomC (̂hU , F )→ HomC (̂S, F ) is injective;
F is a sheaf if and only if such map is also bijective.

Let’s now show that this new definition is coherent with the old ones. We’ll need a little lemma before.

Lemma 2.6. If F is a separated presheaf for the pretopology PT (associated to the Grothendieck
topology T ), hU ⊆ S ⊆ hU , then HomC (̂S, F )→ HomC (̂hU , F ) is injective.

Proof. Let’s consider two natural transformations Φ,Ψ: S → F having the same image in HomC (̂hU , F )
and fix T → U ∈ S(T ). Let U = {Ui → U} and consider the fibered products T ×U Ui, with pi
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being the projections on T . The map T ×U Ui → U is an element of hU (T ×U Ui) since it factorizes as
T ×U Ui

pi→ Ui → U . We have

F (pi)Φ(T → U) = Φ(T ×U Ui → U) = Ψ(T ×U Ui → U) = F (pi)Ψ(T → U)

and, since {pi : T ×U Ui → T}i is a T -covering by PG2 and F is separated, we can conclude Φ(T →
U) = Ψ(T → U), i.e. Φ = Ψ and hence the map is injective. �

Proposition 2.7. A functor F : Cop → Set is a sheaf for the topology T if and only if F is a sheaf for
the associated pretopology PT .

Proof. Suppose F is a sheaf for the topology T ; by definition HomC (̂hU , F ) ∼= HomC (̂S, F ) for each sieve
S ∈ SCovU . Considering the sieves of the form hU ∈ SCovU we can then conclude using Corollary 2.4.1.
Suppose instead F is a sheaf for the pretopology PT , fix a covering sieve S ∈ SCovU and choose a
U -covering U in PT such that hU ⊆ S ⊆ hU . We can consider the composition HomC (̂hU , F ) →
HomC (̂S, F )→ HomC (̂hU , F ) which is a bijection (by functoriality) for Corollary 2.4.1. Using Lemma 2.6
we know that HomC (̂S, F ) → HomC (̂hU , F ) is injective and, by what we said above, it must also be
surjective, so that it is bijective and hence F is a sheaf also for the topology T . �

We can finally give a condition for the equivalence of Grothendieck pretopologies using sheaves.

Proposition 2.8. Given two Grothendieck pretopologies P1,P2 on C, if P1 � P2 then every sheaf for
P2 is also a sheaf for P1. In particular, equivalent pretopologies have the same sheaves.

We see hence that, for sheaves, what really matters is the topology, not the pretopology. We
know, from standard theory of sheaves on topological spaces, that the full embedding ι : Sh(Op(X)) ↪→
Psh(Op(X)) has a left adjoint a : Psh(Op(X))→ Sh(Op(X)), the so-called “sheafification” functor. A
similar functor also exists in the general contest, but we will only state the theorem without proving it
(it would require a bit of work).

Theorem 2.9. Let C be a category endowed with a Grothendieck topology T ; there exists a canonical
functor

F : Psh(C)→ Sh(C), F 7→ (F+)+

sending every presheaf F to a sheaf (F+)+ and such that, for any φ : F → G morphism of presheaves
with G being a sheaf, there exists a unique morphism of sheaves ψ : F(F ) → G making the following
diagram commutative

F F(F )

G

FF

φ
∃ !ψ

The idea is that given a presheaf F we can build a separated presheaf F+ and, repeating again the
construction, we obtain (F+)+ which will be a sheaf. The functor + : Psh(C)→ Psh(C) is defined setting

F+ : Cop → Set, U 7→ lim−→
S∈SCovU

HomC (̂S, F )

so that an element of F+(U) is an equivalence class of natural transformations, where two natural
transformations τ : S → F and ρ : R → F , with S,R ∈ SCovU , are equivalent if ∃T ⊆ S ∩ R in Cˆsuch
that T ∈ SCovU and τ

∣∣
T

= ρ
∣∣
T
.

3 The canonical topology
The point of view here will be a little different than before: we know the sheaf condition for F on a
certain topology T , now we want to find a topology such that a certain family of presheaves is actually
a family of sheaves and, in particular, we want to find the finest topology among these.

Definition 3.1. Let T1, T2 be two Grothendieck topologies on a category C. We say that T1 is finer than
T2 if for every U ∈ C we have SCovU (T2) ⊆ SCovU (T1).
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Let’s now state and prove a fundamental fact.

Proposition 3.2. Let C be a category, F = {Fi : Cop → Set}i∈I a family of presheaves such that, if
∃ ∅C ∈ C (initial object of C), Fi(∅C) = {pt} for each i ∈ I. For every U ∈ C define FSCovU to be the
family of all sieves S ⊆ hU satisfying

∀V f→ U, HomC (̂hV , Fi) ' HomC (̂S ×U V, Fi) ∀ i ∈ I

the morphism being induced by the natural map S ×U V ↪→ V ' hV . Then

1. The datum {FSCovU}U∈Ob(C) is a Grothendieck topology TF on C.

2. All the Fi’s are sheaves for TF .

3. TF is the finest topology such that all the Fi’s are sheaves.

Proof. Let’s first prove that TF satisfies all the axioms of Grothendieck topologies (we can ignore GT2
thanks to Proposition 1.10).

For GT1 consider U ∈ C and an arrow f : V → U ; we have hU ×U V = hV (easy to see) so
HomC (̂hU ×U V, Fi) ' HomC (̂hV , Fi) and hence hU ∈ FSCovU .

For GT3 let S ∈ FSCovU and f : V → U be a morphism in C; let’s prove that for any g : W → V we
have (S×U V )×V W = S×U W . This is a general fact (one can exchange two projective limits), anyway
here it can be deduced from this commutative diagram (using different times the universal property of
pullbacks)

S ×U W

(S ×U V )×V W S ×U V S

W V U

∃ !
∃ !

g f

Thus we have HomC (̂(S ×U V ) ×V W,Fi) ' HomC (̂S ×U W,Fi) ' HomC (̂hW , Fi) (last equality holds
because S ∈ FSCovU ) and this proves that S ×U V ∈ FSCovV .

For GT4 we will have to work a little longer; let’s first observe that we just need to prove the two
following facts:

(a) let S1 ⊆ S2 ⊆ hU be two sieves on U , if S2 ∈ FSCovU and, for every f : V → U ∈ S2(V ), we have
S1 ×U V ∈ FSCovV , then S1 ∈ FSCovU ;

(b) let S1 ⊆ S2 ⊆ hU be two sieves on U , if S1 ∈ FSCovU then S2 ∈ FSCovU .

Let’s observe that (a) is a particular instance of GT4 while (b) is exactly GT2. Let’s now show how
we can conclude using (a) and (b): consider S1, S2 two sieves on U such that S2 ∈ FSCovU and that
for every f : V → U ∈ S2(V ), S1 ×U V ∈ FSCovV . If S1 ⊆ S2 we just use (a) and we conclude;
instead if S1 6⊆ S2 we can consider the sieve S1 ∪ S2 ⊆ hU (coproduct of S1, S2 in C )̂ and we obtain
(S1 ∪ S2)(W ) = {α : V → U | α ∈ S1(W ) ∨ α ∈ S2(W )} = S1(W ) ∪ S2(W ). Since, clearly, S2 ⊆ S1 ∪ S2

by point (b) we have S1 ∪ S2 ∈ FSCovU . For every α : V → U ∈ (S1 ∪ S2)(V ), if α ∈ S1(V ) we have, by
Lemma 1.9, S1×UV = hV ∈ FSCovV byGT1; if instead α ∈ S2(W ), by assumption S1×UV ∈ FSCovV .
So by point (a) we conclude S1 ∈ FSCovU , proving the axiom GT4. Now we have only to prove the two
claims above. Since the functor HomC (̂•, Fi) commutes with pullbacks, it suffices to prove the following
facts

HomC (̂hU , Fi) ' HomC (̂S1, Fi) ∀ i ∈ I for (a),
HomC (̂hU , Fi) ' HomC (̂S2, Fi) ∀ i ∈ I for (b).

To do this, let’s prove a general fact (i.e. holding both in (a) and in (b)) that S1 ⊆ S2 induces, for each
i ∈ I, a map

α : HomC (̂S2, Fi)→ HomC (̂S1, Fi) (?)
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and α is always an isomorphism. Let’s observe that, in both cases, for each f : V → U ∈ S2(V ) we have
S2 ×U V = hV (by Lemma 1.9) and S1 ×U V ∈ FSCovV by assumption (in (a)) and by GT3 (in (b)).
Thus we have

Fi(V )
Yoneda' HomC (̂hV , Fi) ' HomC (̂S2 ×U V, Fi) ' HomC (̂S1 ×U V, Fi) (??)

where η : hV → Fi is sent to ηS1×UV : S1 ×U V ↪→ hV
η→ Fi. Let’s first prove α is injective, and consider

η1, η2 ∈ HomC (̂S2, Fi) such that α(η1) = α(η2), i.e. η2

∣∣
S1

= η1

∣∣
S1
. This means that for every W ∈ C and

for each g ∈ S1(W ), we have η2(W )(g) = η1(W )(g). To prove η1 = η2 we just need to show that for each
V ∈ C and each f ∈ S2(V ) we have η1(V )(f) = η2(V )(f) in Fi(V ). Following the chain of isomorphisms
in (?) we see that ηj(V )(f) ∈ Fi(V ) corresponds to the composite

S1 ×U V

S1 S2 Fi
ηj

and to see this is not too difficult: we must use first the Yoneda isomorphism η1(V )(f) 7→ Fi(•)(η1(V )(f))
and then, given g : W → V ∈ (S1 ×U V )(W ) (i.e. such that f ◦ g ∈ S1(W )), we observe that, by
functoriality, Fi(g)(η1(V )(f)) = η1(W )(S2(g)(f)) = η1(W )(f ◦ g) = η1

∣∣
S1

(W )(f ◦ g). From the above
diagram, and from the assumption that η1 and η2 coincide when restricted to S1, we deduce η1(V )(f) =
η2(V )(f) and hence (for all V and f) we obtain η1 = η2, i.e. that the map α is injective.

Let’s now prove that α is surjective; fix η ∈ HomC (̂S1, Fi) and let’s show that ∃ η̃ ∈ HomC (̂S2, Fi)
such that α(η̃) = η̃

∣∣
S1

= η. We must define η̃(V )(f) ∈ Fi(V ) for each V ∈ C and f ∈ S2(V ). Since,
from (??), we have Fi(V ) ' HomC (̂S1 ×U V, Fi), let’s define η̃(V )(f) as the unique element of Fi(V )
corresponding to the red arrow which makes the following diagram commute

S1 ×U V Fi

S1

η

We have now to prove that η̃ is a natural transformation whose restriction to S1 is exactly η.

• Fix f : W → V in C, we must prove that for every i ∈ I the following diagram is commutative.

S2(V ) Fi(V )

S2(W ) Fi(W )

η̃(V )

S2(f) Fi(f)

η̃(W )

g η̃(V )(g)

g ◦ f η̃(W )(g ◦ f)
?
= Fi(f)(η̃(V )(g))

Let’s observe that g ◦f : W → U ∈ S2(W ) (absorbing property of sieves) and consider the following
commutative diagram

Fi(V ) Fi(W )

HomC (̂S1 ×U V, Fi) HomC (̂S1 ×U W,Fi)

Fi(f)

(??)g

◦(S1×Uf)

(??)g◦f

where the vertical arrows are isomorphisms by (??) and the map below is the natural map induced
by f . Using this we will be able to conclude. Being Fi a presheaf and using the isomorphisms
above, we have

Fi(f)(η̃(V )(g)) ' Fi(f)(S1 ×U V → S1
η→ Fi) = (S1 ×U W → S1

η→ Fi) ' η̃(W )(g ◦ f)

and hence we conclude that η̃ is really a natural transformation.
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• Let f ∈ S1(V ) ⊆ S2(V ), then S1×U V = hV (as usual using Lemma 1.9) and the following diagram
commutes

idV ∈ hV = S1 ×U V η̃(V )(idV ) = η(V )(f)

f ∈ S1(V )

η(V )

and hence, by the definition of η̃(V )(f), we obtain η̃(V )(f) = η(V )(f), meaning η̃
∣∣
S1

= η.

Finally we can prove the asserts (a) and (b). For (a) let S2 ∈ FSCovU so that HomC (̂hU , Fi) '
HomC (̂S2, Fi) by definition (S2 ×U U = S2 using idU : U → U). Consider the following commutative
diagram

HomC (̂hU , Fi) HomC (̂S2, Fi)

HomC (̂S1, Fi)

'

β
α'

and we see that also β must be an isomorphism, and this, as we already observed, suffices to prove (a).
For (b) let S1 ∈ FSCovU so that HomC (̂hU , Fi) ' HomC (̂S1, Fi). Consider the following commutative
diagram

HomC (̂hU , Fi) HomC (̂S2, Fi)

HomC (̂S1, Fi)

γ

' ' α

proving that γ is an isomorphism and hence proving (b). We have proved the first part, i.e. that our
definition is really a Grothendieck topology. As already mentioned, using f = idU : U → U the condition
on sieves becomes HomC (̂hU , Fi) ' HomC (̂S, Fi) since S ×U U = S. This means exactly that all the
presheaves Fi are sheaves for our topology TF .

Finally, let T be a Grothendieck topology on C such that all the Fi’s are sheaves. By definition, this
means that for each U ∈ C and S ∈ SCovU (T ) we have

HomC (̂hU , Fi) ' HomC (̂S, Fi) ∀ i ∈ I

and usingGT3 (together with the Definition 2.5 of sheaves for topologies) we obtain that for all f : V → U
in C we have

HomC (̂hV , Fi) ' HomC (̂S ×U V, Fi) ∀ i ∈ I

so that S ∈ FSCovU , i.e. our topology TF is finer than T . �

Let’s give a final definition.

Definition 3.3. Let C be a category. The canonical topology is the finest Grothendieck topology on C
such that all representable functors are sheaves, i.e. the topology TF where F = {hU}U∈C .

4 Examples
In this last section we will try to give some examples of pretopologies and topologies. They won’t be too
much, since a lot of algebraic geometry (schemes) would be required for the most interesting examples
(e.g. fpqc topology).

Example 1 (The site of a topological space). Let X ∈ Top and consider Op(X) the category whose
object are the open subsets of X and morphisms are given by

HomOp(X)(U, V ) =

{
{pt} if U ⊆ V ,
∅ otherwise.
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Then we can consider the Grothendieck pretopology on Op(X) where the coverings of U ∈ Op(X) are
the set of open coverings of U . If U1 → U and U2 → U are morphisms (i.e. U1, U2 ⊆ U) then the fibered
product is U1 ×U U2 = U1 ∩ U2.

Example 2 (The global classical (pre)topology). Let’s consider the category Top. If U ∈ Top then
define a covering of U to be a jointly surjective collection of open embeddings Ui → U , where by “open
embedding” we mean an open continuous injective map. Observe that changing this with “open inclusion
of an open subspace” then PG1 would not be satisfied.

Example 3 (The global étale (pre)topology for topological spaces). Let’s consider the category Top.
If U ∈ Top then define a covering of U to be a jointly surjective collection of local homeomorphisms
Ui → U .

One can prove that these two last pretopologies are equivalent, so they define the same Grothendieck
topology. Let’s now focus on Example 1 and try to prove by hand that it is really a pretopology.

PG1 The unique possible isomorphism is U ⊆ U which is clearly a covering.

PG2 As already observed, in Op(X), the pullbacks are exactly the set-theoretic intersections; given an
open covering U = {Ui | Ui ⊆ U} and V ⊆ U , then we can consider U ∩ V = {Ui ∩ V } and it is
clear that it is an open covering of V , since

⋃
i(Ui ∩ V ) = V .

PG3 Consider the covering U = {Ui ⊆ U |
⋃
i Ui = U} and Vi = {Vi,j ⊆ Ui |

⋃
j Vi,j = Ui} for each i; we

must prove that U ◦ V is a covering of U . This is evident since
⋃
i,j Vi,j = U .

Finally, let’s prove that this is also a saturated pretopology. Indeed, let U = {Ui → U} and V = {Vj →
Uij → U |

⋃
j Vj = U} be a U -covering (i.e. assume that V is a covering in our pretopology). Clearly V is

a refinement of U , so that we just need to prove that also U is a covering for our pretopology. We have
the following commutative diagram

Vj ∩ Ui Ui

Vj U

and from
⋃
j Vj = U we obtain

⋃
i(Vj ∩ Ui) = Vj ∩ U = Vj so that U =

⋃
i,j(Vj ∩ Ui) ⊆

⋃
i Ui ⊆ U . Thus

we have
⋃
i Ui = U , i.e. U is a U -covering.

To this saturated pretopology on Op(X) we can associate a Grothendieck topology TOp(X), whose
sieves are exactly the hU ’s. Finally, let’s prove that this defines the canonical topology on Op(X).

Proposition 4.1. The afore-mentioned topology on Op(X) is the canonical one.

Proof. Let’s divide the proof in two steps.

1. Let’s first prove that all the hU ’s are sheaves for TOp(X). Consider a morphism U ⊆ V and a
U -covering U , we just need to prove

HomOp(X )̂ (hV , hU ) ' HomOp(X )̂ (hU ×U V, hU ).

Let’s observe that HomOp(X )̂ (hV , hU ) ' HomOp(X)(V,U) has only one element if V ⊆ U , empty
otherwise. We have hU ×U V = hU∩V and also HomOp(X )̂ (hU ×U V, hU ) ⊆ HomOp(X )̂ (hV , hU ) = ∅
if V 6⊆ U . Thus we can assume that V ⊆ U . Since HomOp(X )̂ (•, hU ) respects fibered products we
just need to prove

HomOp(X )̂ (hU , hU ) ' HomOp(X )̂ (hU , hU ).

We have HomOp(X )̂ (hU , hU ) = {U idU→ U} and (recalling Theorem 2.4) HomOp(X )̂ (hU , hU ) '
hU (U) = {(Ui

fi→ U)i ∈
∏
i hU (Ui) | fi

∣∣
Ui∩Uj

= fj
∣∣
Ui∩Uj

∀ i, j}. Since
⋃
i Ui = U clearly all these

fi’s may be glued to the whole idU and this proves our claim.

2. Finally, we need to prove that TOp(X) is the finest topology in which the hU ’s are sheaves. Suppose,
by contradiction, that ∃ T ′ a finer topology (in which the hU ’s are sheaves) which contains hU as a
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covering sieve, where U = {Ui → U} is such that
⋃
i Ui ( U (so that it is not a covering sieve for

our topology). Let V :=
⋃
i Ui, then

HomOp(X )̂ (hU , hV ) = ∅, HomOp(X )̂ (hU , hV ) = {idV }

but this is a contradiction since hV must be a sheaf.

This suffices to conclude the proof. �
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