
An introduction to spectral sequences

Carlo Buccisano

January 16, 2020

Contents
1 Preliminaries 1

2 Terminology 2

3 Spectral sequence of a filtration 4

4 Spectral sequence of a double complex 7

5 Snakes! 8

1 Preliminaries
We’ll denote with C a U-small categories, for some Grothendieck universe U . For our purpose, we’ll need
an abelian category C which respects the following Grothendieck axioms (and their dual versions, i.e.
substitute coproduct with product and mono with epi):

AB3 For every (small) indexed family (Ai)i∈I ⊂ Ob(C), the coproduct
∐
iAi exists, i.e. C is cocomplete.

AB4 C satisfies AB3 and the coproduct of a family of mono is mono.

For the sake of simplicity, we’ll use the Freyd-Mitchell embedding of C in a full subcategory of Mod(A)
for some ring A. Similar to the notation used in [Wei94], we’ll adopt left arrows for chain complexes: let
Ω ∈ C(C), then

. . . Ωn−1 Ωn Ωn+1 . . .
dn dn+1

which is the same as adopting the right-arrows notation and working in Cop. For double chain complexes,
we’ll use left and downward arrows, i.e. let E ∈ C2(C), then

...
...

...

. . . Ep−1,q+1 Ep,q+1 Ep+1,q+1 . . .

. . . Ep−1,q Ep,q Ep+1,q . . .

. . . Ep−1,q−1 Ep,q−1 Ep+1,q−1 . . .

...
...

...

d′p−1,q+1

dp,q+1

d′p,q+1

dp+1,q+1

d′p+1,q+1

d′p−1,q

dp,q

d′p,q

dp+1,q

d′p+1,q

dp,q−1 dp+1,q−1
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We ask for the squares of a double chain complex to be anti-commutative, that is, we must have d′ ◦ d+
d ◦ d′ = 0. We recall that there are two different definitions of total complexes, Tot

∐
(E) and Tot⊕(E),

defined by

Tot
∐

(E)n =
∐

p+q=n

Ep,q, Tot⊕(E)n =
⊕
p+q=n

Ep,q

d
∐
n

∣∣∣
Ep,q

= dp,q + d′p,q, d⊕n
∣∣
Ep,q

= dp,q + d′p,q

which coincides if E is such that, for any n, we have only a finite number of non-zero terms along the
anti-diagonal p+ q = n.

2 Terminology
Definition 2.1. A homology spectral sequence in C is the following data:

1. A family {Erp,q} ⊂ C defined for all integers p, q and r ≥ a, for some a ∈ Z;

2. Differentials drp,q : Erp,q → Erp−r,q+r−1 such that dr ◦ dr = 0, which corresponds to chain complexes
of slope −(r + 1)/r in the lattice Er••.

3. Isomorphisms between Er+1
p,q and the homology of Er•• at (p, q), i.e. Er+1

p,q
∼= ker drp,q/ im drp+r,q−r+1.

The total degree of Erp,q is p+q and each differential drp,q decreases the total degree by one. These objects
form a category: a morphism f : E → E′ is a family of maps frp,q : Erp,q → E′rp,q in C with d′r ◦fr = fr ◦dr
and such that fr+1

p,q is the map induced by frp,q on homology.

We can also define a cohomology spectral sequence, with differentials going “to the right”, and we’ll
denote one by {Ep,qr }. From now on, unless otherwise specified, we’ll work with homology spectral
sequences.

Definition 2.2 (E∞ terms). Let {Erp,q} be a spectral sequence; each Er+1
p,q is a subquotient of Erp,q and

with an induction on r we can prove there exists a nested family of subobjects in Eap,q

0 = Bap,q ⊆ · · · ⊆ Brp,q ⊆ Br+1
p,q ⊆ · · · ⊆ Zr+1

p,q ⊆ Zrp,q ⊆ · · · ⊆ Zap,q = Eap,q

such that Erp,q ∼= Zrp,q/B
r
p,q. We define

B∞p,q :=
∞⋃
r=a

Brp,q, Z∞p,q :=

∞⋂
r=a

Zrp,q

and set E∞p,q := Z∞p,q/B
∞
p,q.

Definition 2.3. A spectral sequence is:

1. Bounded if for each n ∈ Z there are only finitely many nonzero terms of total degree n in Ea•• (and
hence in each Er•• for r ≥ a). In this case, for each (p, q), there exists an r0 such that Erp,q = Er+1

p,q

for all r ≥ r0 and hence E∞p,q corresponds to this stable value.

2. Bounded below if for each n ∈ Z there exists s(n) ∈ Z such that Eap,n−p = 0 for every p < s(n).

3. Regular if for each (p, q) the differentials drp,q (i.e. leaving Erp,q) are zero for all large r. Equivalently,
there exists r = r(p, q) ∈ Z such that Z∞p,q = Zrp,q.

It is easily seen that every property implies the ones below it.

Example 2.4. A first quadrant spectral sequence is one where Erp,q = 0 unless (p, q) belongs to the first
quadrant. Clearly it is bounded. A right half-plane spectral sequence, instead, is bounded below but not
bounded.
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Definition 2.5 (Convergence). The spectral sequence {Erp,q} weakly converges to H? = {Hn}n∈N ⊂ C if
for each Hn we have a filtration (indexed in Z)

· · · ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ · · · ⊆ Hn

and isomorphisms βp,q : E∞p,q
∼−→ FpHp+q/Fp−1Hp+q for every (p, q).

We say that E approaches H? if it weakly converges to it and every filtration is Hausdorff and
exhaustive, i.e. ∩FpHn = 0 and ∪FpHn = Hn.

Finally, we say that E converges to H? if E is regular, it approaches H? and H? is also complete, i.e.
Hn = lim←−(Hn/FpHn). We’ll denote convergence by

Eap,q =⇒ Hp+q.

Example 2.6. If a first quadrant spectral sequence converges to H? then every Hn has a finite filtration
(sometimes called “canonical filtration”)

0 = F−1Hn ⊆ F0Hn ⊆ · · · ⊆ FnHn = Hn

such that the bottom piece F0Hn = E∞0,n is on the y-axis and the top piece Hn/Fn−1Hn
∼= E∞n,0 is on

the x-axis. Since this is a first quadrant sequence, each E∞0,n is a quotient of Ea0,n and each E∞n,0 is a
subobject of Ean,0. Hence we have the edge morphisms

Ea0,n → E∞0,n ⊆ Hn, Hn → E∞n,0 ⊆ Ean,0.

Definition 2.7. A spectral sequence E collapses at Er (r ≥ 2) if there is exactly one nonzero row/column
in the lattice Er••. If E converges to H? then Hn is the unique nonzero Erp,n−p. (The majority of
applications of spectral sequences involve collapsing spectral sequences at E2).

Lemma 2.8 (Mapping Lemma). Let f : E → E′ be a morphism of spectral sequences such that, for a
certain r, fr : Er

∼−→ E′r is an iso. Then fs is an iso as well for every s ≥ r. Also, the natural morphism
f∞ : E∞

∼−→ E′∞ is an iso.

Proof. The fact that fs is an iso can be proved by induction on s. It easily derives from the fact that if
fs−1 : Es−1

∼−→ E′s−1 then it also the induces an iso between homologies, which then implies that fs is
also an iso. To conclude that also f∞ is an iso we observe that

Z∞/B∞ = lim←−Z
n/Bm = lim←−Z

∞/Bm = lim←−Z
n/B∞

and that we have a natural induced map Z∞/B∞ → Z ′∞/B′∞ and we conclude using AB4.

Definition 2.9 (Compatible maps). Let E,E′ be two spectral sequences weakly convergent to H? and
H ′? respectively. A map h : H? → H ′? is compatible with a morphism f : E → E′ if h maps FpHn to FpH ′n
and the following diagram commutes

FpHn/Fp−1Hn FpH
′
n/Fp−1H

′
n

E∞p,q E′∞p,q

h

∼ βp,q

f∞p,q

∼ β′p,q

Theorem 2.10 (Comparison theorem). Let E,E′ converge to H? and H ′? and let h : H? → H ′? be a
compatible map with a morphism f : E → E′. If fr : Er → E′r is an iso for some r then also h is an
isomorphism.

Proof. By the Mapping Lemma we know that also fr and f∞ are iso. Weak convergence gives us the
following exact sequences

0 Fp−1Hn/FsHn FpHn/FsHn E∞p,n−p 0

0 Fp−1H
′
n/FsH

′
n FpH

′
n/FsH

′
n E′∞p,n−p 0

h h ∼
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Fixed s, an easy induction shows us that FpHn/FsHn
∼= FpH

′
n/FsH

′
n (use the 5-lemma) for any p. Since

this filtration is exhaustive (by def of convergence) then we have Hn/FsHn
∼= H ′n/FsH

′
n for any s, and

we conclude using completeness taking the projective limit of both members.

Remark 2.10.1. The same spectral sequence can converge to many different H?. For example consider,
in Ab, a first quadrant spectral sequence defined by

E0
p,q :=

{
0, if p < 0 or q < 0

Z/2Z otherwise

where the differentials are the zero morphisms. Then E∞ = E0 and a H3 can be Z/16Z or (Z/2Z)
4 or

even Z/2Z⊕ Z/8Z. The comparison theorem allows us to reconstruct H? in a different way, having the
right maps.

3 Spectral sequence of a filtration
Definition 3.1. Denote by C ∈ C(C) a chain complex. A filtration on C is a family of chain subcomplexes

· · · ⊆ Fp−1C ⊆ FpC ⊆ · · · ⊆ C.

Our goal is to show that we can associate a spectral sequence to any filtered complex.

Definition 3.2. A filtration on C is called bounded if for any n there are integers s < t such that
FsCn = 0 and FtCn = Cn. If s = −1 and t = n then the filtration if canonically bounded. If s = −∞
(t = +∞) then the filtration is bounded above (below).

Theorem 3.3 (Construction of the spectral sequence). A filtration F on a chain complex C naturally
determines a spectral sequence starting with E0

p,q = FpCp+q/Fp−1Cp+q and E1
p,q = Hq(E

0
p,•).

Proof. Let ηp,q : FpCp+q → FpCp+q/Fp−1Cp+q = E0
p,q be the natural surjection. Let’s define the sets

Arp,q := {c ∈ FpCp+q : d(c) ∈ Fp−rCp+q−1}

i.e. the elements of FpCp+q that are cycles “mod Fp−rCp+q−1”. Let’s immediately observe that we have
the inclusions

. . . Ar+1
p,q Arp,q Ar−1p,q . . .

. . . Ar+2
p+1,q−1 Ar+1

p+1,q−1 Arp+1,q−1 . . .
(1)

d(Arp,q) ⊆ Asp−r,q+r−1 for any s. (2)

Now let’s define

Zrp,q := ηp,q(A
r
p,q) ⊆ E0

p,q, Brp,q := ηp,q(d(Ar−1p+r−1,q−r+2)) ⊆ E0
p,q

Z∞p,q :=

∞⋂
r=1

Zrp,q, B∞p,q :=

∞⋃
r=1

Brp,q

so that we have the following inclusions in E0
p,q

0 = B0
p,q ⊆ B1

p,q ⊆ · · · ⊆ Brp,q ⊆ B∞p,q ⊆ Z∞p,q ⊆ · · · ⊆ Zrp,q ⊆ · · · ⊆ Z1
p,q ⊆ Z0

p,q = E0
p,q.

The inclusions Brp,q ⊆ Br+1
p,q and Zr+1

p,q ⊆ Zrp,q immediately comes from (1) while Bsp,q ⊆ Zrp,q comes from
(2). Let’s now observe some other “rules” we’ll use in all the following isomorphisms (together with the
classical theorem S + T/T ∼= S/S ∩ T ) and some clever tricks):

Ar−1p−1,q+1 = Arp,q ∩ Fp−1Cp+q (3)

Arp−1,q+1 = Ar+1
p,q ∩Ar−1p−1,q+1. (4)
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Let’s now define the terms of the spectral sequence:

Erp,q :=
Zrp,q
Brp,q

=
Arp,q/A

r
p,q ∩ Fp−1Cp+q

d(Ar−1p+r−1,q−r+1)/d(Ar−1p+r−1,q−r+1) ∩ Fp−1Cp+q
∼=

∼=
Arp,q + d(Ar−1p+r−1,q−r+2) + Fp−1Cp+q

d(Ar−1p+r−1,q−r+2) + Fp−1Cp+q
∼=

∼=
Arp,q

Ar−1p−1,q+1 + d(Ar−1p+r−1,q−r+2)
.

The differentials are the natural maps induced by the differential of the complex

Erp,q Erp−r,q+r−1

Ar
p,q

Ar−1
p−1,q+1+d(A

r−1
p+r−1,q−r+2)

Ar
p−r,q+r−1

Ar−1
p−r−1,q+r+d(A

r−1
p−1,q+1)

drp,q

∼

d

∼

which are well defined since d(Arp,q) ⊆ Arp−r,q+r−1. To conclude the proof we only need to give the
isomorphisms between Er+1 and H?(E

r). First of all, let’s prove that drp,q induces an iso

Zrp,q/Z
r+1
p,q

∼−→ Br+1
p−r,q+r−1/B

r
p−r,q+r−1.

Let’s note that d(Arp,q)∩Fp−r−1Cp+q−1 = d(Ar+1
p,q ) and that d(Arp−1,q+1) = d(Ar+1

p,q )∩d(Ar−1p−1,q+1) (apply
d to (4) and it’s easy to show that it commutes with ∩). Using these facts together with classical
isomorphism theorems and linearity of d we can prove that

Brp−r,q+r−1 =
d(Ar−1p−1,q+1)

d(Arp−1,q+1)
=

d(Ar−1p−1,q+1)

d(Ar+1
p,q ) ∩ d(Ar−1p−1,q+1)

∼=
d(Ar−1p−1,q+1 +Ar+1

p,q )

d(Ar+1
p,q )

=⇒
Br+1
p−r,q+r−1

Brp−r,q+r−1
∼=

d(Arp,q)

d(Ar−1p−1,q+1 +Ar+1
p,q )

.

In a similar way we obtain
Zrp,q

Zr+1
p,q

∼=
Arp,q

Ar+1
p,q +Ar−1p−1,q+1

so there is a natural map induced by drp,q : Arp,q → d(Arp,q) and it’s an isomorphism because its kernel is
contained in Ar+1

p,q . Now we have that

ker drp,q =
{z ∈ Arp,q : d(z) ∈ d(Ar−1p−1,q+1) +Ar−1p−r−1,q+r}

d(Ar−1p+r−1,q−r+2) +Ar−1p−1,q+1

=
Ar−1p−1,q+1 +Ar+1

p,q

d(Ar−1p+r−1,q−r+2) +Ar−1p−1,q+1

∼=
Zr+1
p,q

Brp,q

where the last isomorphism derives from the fact that left and right member are both isomorphic to
Ar+1
p,q /d(Ar−1p+r−1,q−r+2) +Arp−1,q+1. In-fact we have

ker drp,q =
d(Ar−1p+r−1,q−r+2) +Ar−1p−1,q+1 +Ar+1

p,q

d(Ar−1p+r−1,q−r+2) +Ar−1p−1,q+1

∼=
Ar+1
p,q

d(Ar−1p+r−1,q−r+2) +Arp−1,q+1

Zr+1
p,q

Brp,q
∼=
Ar+1
p,q + d(Ar−1p+r−1,q−r+2) + Fp−1Cp+q

d(Ar−1p+r−1,q−r+2) + Fp−1Cp+q
∼=

Ar+1
p,q

(d(Ar−1p+r−1,q−r+2) + Fp−1Cp+q) ∩Ar+1
p,q

=

=
Ar+1
p,q

d(Ar−1p+r−1,q−r+2) +Arp−1,q+1

The map drp,q factors as

Erp,q
def
=

Zr
p,q

Br
p,q

Zr
p,q

Zr+1
p,q

Br+1
p−r,q+r−1

Br
p−r,q+r−1

Zr
p−r,q+r−1

Br
p−r,q+r−1

def
= Erp−r,q+r−1

∼
d
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from which we see that im drp,q = Br+1
p−r,q+r−1/B

r
p−r,q+r−1. This, finally, implies

Er+1
p,q =

Zr+1
p,q

Br+1
p,q

∼=
ker drp,q

im drp+r,q−r+1

,

which concludes the proof (quotient both by Brp,q).

Let C be a filtered complex; then we have an induced filtration on homology:

FpHn(C) := im(Hn(FpC)→ Hn(C)).

If F is exhaustive on C then it is also exhaustive on H (any element of Hn(C) is represented by some
c ∈ FpCn s.t. d(c) = 0). If F is bounded below on C then it is bounded below also on H, since FpC = 0
implies FpHn(C) = 0.

Theorem 3.4 (Classical convergence theorem). Let C be a filtered complex.

1. Suppose the filtration on C is bounded. Then the spectral sequence is bounded and converges to
H?(C), that is

E0
p,q = FpCp+q/Fp−1Cp+q =⇒ Hp+q(C).

2. Suppose the filtration on C is bounded below and exhaustive. Then the spectral sequence is bounded
below and converges to H?(C). Moreover, if f : C → C ′ is a map of filtered complexes (i.e. it respects
the filtrations) then the induced map f? : H?(C)→ H?(C

′) is compatible with the corresponding map
induced on the spectral sequences.

Proof. As already said above exhaustiveness and below-boundedness are inherited by the filtration on
H?(C). Then H?(C) is Hausdorff, regular (both implied by bounded below) and complete (implied by
bounded below and exhaustive) hence, recalling the definition Convergence, we just need to prove weak
convergence. First of all, observe that, since the filtration on C is bounded below, fixed (p, q), we have
that the Arp,q = {c ∈ FpCp+q : d(c) ∈ Fp−rCp+q−1} (see Construction of the spectral sequence) stabilize
for a large enough r0: we’ll then define A∞p,q := Ar0p,q. Then we observe the following facts:

Z∞p,q = ηp,q(A
∞
p,q), A∞p,q = ker(FpCp+q

d−→ FpCp+q−1).

Let’s observe now that, since the filtration is exhaustive, we have

d(Cp+q) ∩ FpCp+q−1 =
⋃
r

d(Arp+r,q−r) = d(∪Arp+r,q−r) ⊆ A∞p,q

and that A∞p−1,q+1 = ker(A∞p,q
ηp,q−−→ E0

p,q), since A∞p−1,q+1 ⊆ Fp−1Cp+q. We easily see that

Brp,q
def
= ηp,q(d(Ar−1p+r−1,q−r+2)) =⇒ B∞p,q

def
=
⋃
r

Brp,q = ηp,q(d(∪Arp+r,q−r+1)).

Putting all together, recalling that FpHp+q(C) = im(Hp+q(FpC)→ Hp+q(C)), we have

FpHp+q(C)

Fp−1Hp+q(C)
=

A∞p,q/d(Cp+q+1) ∩A∞p,q
A∞p−1,q+1/d(Cp+q+1) ∩A∞p−1,q+1

=
A∞p,q/d(∪Arp+r,q−r+1) ∩A∞p,q

A∞p−1,q+1/d(∪Arp+r,q−r+1) ∩A∞p−1,q+1

∼=

∼=
A∞p,q

A∞p−1,q+1 + d(∪Arp+r,q−r+1)
∼=

ηp,q(A
∞
p,q)

ηp,q(d(∪Arp+r,q−r+1))
=
Z∞p,q
B∞p,q

= E∞p,q.

which concludes the proof of convergence.

Example 3.5 (First quadrant spectral sequence). Suppose that the filtration of C is canonically bounded,
i.e. F−1Cn = 0 and FnCn = Cn, so that the spectral sequence lies in the first quadrant. Then it converges
to H?(C).

We only cite a more powerful result,

Theorem 3.6 (Complete convergence theorem). Suppose the filtration on C is complete and exhaustive
and the spectral sequence is regular. Then

1. the spectral sequence weakly converges to H?(C);

2. if the spectral sequence is bounded above then it converges to H?(C).

Proof. See [Wei94, p. 140].
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4 Spectral sequence of a double complex
One important application of spectral sequences is to compute the total homology of a double complex.
Given a double complex C ∈ C2(C) we have two filtrations for Tot(C), hence two different spectral
sequences. We’ll then be able to play them off against each other to prove some properties (e.g. 5-lemma,
snake lemma).

Remark 4.0.1. Let C be a double complex; we’ll denote by Hh (Hv) the homology related to the
horizontal (vertical) differentials. We’ll use the generic notation Tot(C) meaning that we can define/do
the same things for both total complexes.

Definition 4.1 (Filtration by columns). Let C = C•• be a double complex and let IFnTot(C) be the
total complex of

(
IFnC

)
p,q

:=

{
Cp,q if p ≤ n
0 otherwise

* * 0 0
* * 0 0
* * 0 0
* * 0 0

We have defined a filtration of Tot(C), called filtration by columns.

It is easy to see that this filtration on Tot(C) gives rise to a spectral sequence {IErp,q} starting with
I
E0
p,q = Cp,q, where the maps d0 are exactly the vertical differentials of C so that I

E1
p,q = Hv

q (Cp,•).
The maps d1 : Hv

q (Cp,•) → Hv
q (Cp−1,•) are clearly the ones induced on the homology by the horizontal

differentials of C.

Definition 4.2 (Filtration by rows). Let C = C•• be a double complex and let IIFnTot(C) be the total
complex of

(
IIFnC

)
p,q

:=

{
Cp,q if q ≤ n
0 otherwise

0 0 0 0 0
0 0 0 0 0
* * * * *
* * * * *

We have defined a filtration of Tot(C), called filtration by rows.

Since II
FpTot(C)/

II
Fp−1Tot(C) is the row C•,p we have that the corresponding spectral sequence

{IIErp,q} starts with II
E0
p,q = Cq,p (vertical morphisms d0 of E0 are exactly the horizontal morphisms

of C) and II
E1
p,q = Hh

q (C•,p) and, as one imagines, the differentials d1 are induced by the vertical
differentials of C. Let’s now study the convergence of these sequences in some special cases.

First quadrant Let C be a first quadrant double complex then both the filtration of Tot(C) (here we
have only one kind of total complex) are canonically bounded and so, by the Classical convergence
theorem, both the spectral sequences converge to H?(Tot(C)):

I
E0
p,q,

II
E0
p,q =⇒ Hp+q(Tot(C)).

Zeroes in second quadrant Let C be such that Cp,q = 0 in the second quadrant (e.g. a fourth quadrant
complex).

• Columns The filtration on Tot
∏

(C) by columns is bounded below but is not exhaustive (so
we cannot apply our convergence theorems), in-fact we have

⋃
p≥p0

p∏
i=p0

Ci,p0−i (
∞∏
i=p0

Ci,p0−i

since the lhs contains only the “definitively zero terms”. Instead, the column filtration on
Tot⊕(C) is both bounded below and exhaustive so we can apply the Classical convergence
theorem to obtain

I
E0
p,q =⇒ Hp+q(Tot⊕(C))

(hence here we must be careful because the two different total complexes are different and we
have convergence only with Tot⊕(C)).
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• Rows The filtration on Tot
∏

(C) by rows is bounded above (hence exhaustive) and complete
so we can apply Complete convergence theorem to obtain that II

E0
p,q weakly converges to

H?(Tot
∏

(C)). (We cannot say anything on Tot⊕(C) since its filtration by rows here it is not
complete).

Zeroes in fourth quadrant Let C be such that Cp,q = 0 in the fourth quadrant (e.g. a second quadrant
complex).

• Columns The column filtration of Tot
∏

(C) is bounded above, hence exhaustive, and complete
so we can apply Complete convergence theorem to obtain that I

E0
p,q weakly converges to

H?(Tot
∏

(C)).(We cannot say anything on Tot⊕(C) since its filtration by columns here it is
not complete).

• Rows The row filtration of Tot
∏

(C) is not exhaustive so we cannot apply the convergence
theorems. Instead, the filtration on Tot⊕(C) is bounded below and exhaustive hence, by the
Classical convergence theorem, we obtain

II
E0
p,q =⇒ Hp+q(Tot⊕(C)).

5 Snakes!
Finally, we prove the famous snake lemma using the whole machinery of spectral sequences, inspired by
[Vak].

Proposition 5.1 (Snake Lemma). Consider the following commutative diagram, whose rows are exact

0 0 0

ker γ kerβ kerα

0 C B A

F E D 0

coker γ cokerβ cokerα

0 0 0

γ β α

δ

then there exists a morphism δ such that we have this exact sequence

kerα kerβ ker γ cokerα cokerβ coker γ.δ

Proof. Consider the double complex (fill with zeroes)

0 C B A

F E D 0

γ β α

where rows and columns are numbered such that F is the origin and C is (0, 1). This is a first quadrant
complex hence both filtrations converge to the total homology, call it H?. A little computation shows
that IIE1 (row filtration) is of this form
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0 ∗

0 0

∗ 0

where the bottom left square is the origin. Hence we see that, having only two non-zero terms in different
degrees, IIE∞ =

II
E1 and we can already read that H1 = H2 = 0. We’ll use this information with the

spectral sequence corresponding to the column filtration. The first page is

ker γ kerβ kerα

coker γ cokerβ cokerα

and the second page is

•1 ◦1 ∗

O ◦2 •2

where O is the origin and all the other non-written points are zero. Then we immediately see that,
since H1 = H2 = 0 and the ◦’s are already stable, they must vanish. We also must have that the arrow
between the •’s is an iso, because at the next page its homologies must vanish. Let’s translate all these
information:

(i) ◦2 = 0 means exactness at cokerβ;

(ii) ◦1 = 0 means exactness at kerβ;

(iii) the isomorphism between the •’s is an iso

δ : •1 = coker(kerβ → ker γ)
∼−→ ker(cokerα→ cokerβ) = •2

and so we can glue the two natural exact sequences by this iso to get the wanted exact sequence.
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