{ "cells": [ { "cell_type": "markdown", "id": "formal-hardware", "metadata": {}, "source": [ "# 1. Inventory and Analysis of a Digital Accession\n", "\n", "One of the early steps in taking in a digital accession is to perform some kind of appraisal, including an inventory or survey of the materials. The survey will inform your next steps for caring for the deposit, including formulating an appropriate preservation plan. Hopefully this is aided by some kind of inventory and an interview provided by the donor, but often it is the case that a donor does not leave any inventory. When accessions are relatively small, we can perform an inventory by merely browsing the contents and making some notes on the format and directory structure of the files. However, when the number of files jumps into the hundreds, thousands, or tens of thousands, we need to reach for more powerful tools. This notebook demonstrates in Python code some methods for building an inventory for a set of files and then some code to summarize and visualize accession contents. Many of the same principles at work in these examples are at work in larger preservation tools or environments, such as BitCurator, or Preservica, but you may find them useful as complementary tools.\n", "\n", "## Issues an Inventory May Uncover\n", "The inventory and summary may reveal the presence of file formats that have not been encountered previously by your institution. Such file formats may be unique to the donor's discipline or trade, or they may be unique to a particular researcher's practice. It is important to understand how these files are produced and the intellectual works within them, but first you have to find them. Folder structures are also sometimes standardized for a particular tool or practice. These folder structures are laid out according to a pattern that serves the workflow in which they were produced or managed. Folder structures are often used to create websites, geographic databases, audiovisual productions, or software projects.\n", "\n", "You will also want to look for these issues, but they are beyond the scope of this notebook:\n", "* Folders or files that were not intended for deposit.\n", "* Private or embarassing material.\n", "* Computer viruses\n", "\n", "## Step One: Buildng the Inventory\n", "The first step is to build a basic file inventory for a sample accession, using Python code. The Python code below collects information about every file within the samples folder, including subfolders and so on.. The details about each file are appended to a comma-separated values (CSV) text file. You can point the inventory code at any accession folder to build an inventory CSV file.\n", "\n", "The inventory code records this information:\n", "* file name\n", "* file location - This is the folder path where the file lives.\n", "* file extension - This is the part of the filename after the period, such as \"PDF\" or \"docx\".\n", "* file format - This is the two-part MIME Type for the file. (More detail to follow)\n", "* file size - This is the size of the file in bytes.\n", "* modification timestamp - The date and time of the last time this file was modified." ] }, { "cell_type": "code", "execution_count": 25, "id": "complimentary-young", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Inventory done: ./samples/\n", "Inventory file count:656\n" ] } ], "source": [ "import os\n", "from os.path import join, getsize, getmtime\n", "import datetime\n", "import csv\n", "import mimetypes\n", "\n", "accession_dir = './samples/'\n", "\n", "# function to identify file extension\n", "def get_extension(name):\n", " result = None\n", " i = name.rfind('.')\n", " if i > 0:\n", " result = name[i+1:]\n", " return result\n", "\n", "# TODO Find another sample folder that is more office docs..\n", "\n", "file_count = 0\n", "with open('inventory.csv', 'w', newline='') as csvfile:\n", " mywriter = csv.writer(csvfile, quoting=csv.QUOTE_MINIMAL)\n", " mywriter.writerow(['name', 'path', 'bytes', 'modified', 'mod_year','extension', 'category', 'mimetype', 'folder1', 'folder2'])\n", " \n", " # This is where the \"crawl\" of files starts, using the Python os.walk() function\n", " for folder, subfolders, files in os.walk(accession_dir):\n", " # Walk gives us the folder name (folder), subfolders list, and file names list for each folder in our accession.\n", " for name in files:\n", " file_count = file_count + 1 # Count this file\n", " fullpath = join(folder, name) # The full path to a file is made by joining file name and folder name.\n", " \n", " mod_dt = datetime.datetime.fromtimestamp(getmtime(fullpath)) # modified timestamp is converted into a Python date\n", " \n", " (mime, encoding) = mimetypes.guess_type(fullpath) # Python mimetypes module will guess a mimetype\n", " if mime is None:\n", " mime = \"application/octet-stream\" # This is a generic \"stream of bytes\" mimetype\n", " category = mime.split('/')[0] # The high-level mimetype is the half before the slash '/', such as 'text' or 'image'\n", " \n", " folder_path = folder[len(accession_dir):] # We trim off the accession folder path to get just the path within the accession.\n", " path_segments = folder_path.split('/')\n", " folder1 = path_segments[0]\n", " folder2 = path_segments[1] if len(path_segments) > 1 else '.'\n", " \n", " mywriter.writerow([name, folder_path, # This writes a line to the CSV file \n", " getsize(fullpath), \n", " mod_dt.isoformat(),\n", " mod_dt.year,\n", " get_extension(name),\n", " category,\n", " mime,\n", " folder1,\n", " folder2])\n", "print(\"Inventory done: \"+accession_dir)\n", "print(\"Inventory file count:\"+str(file_count))" ] }, { "cell_type": "markdown", "id": "collect-pointer", "metadata": {}, "source": [ "## Inspect the Raw Inventory CSV\n", "After you execute the file inventory code above, you will see a new CSV file in your notebook directory. If you like, you can open that inventory CSV file in Jupyter, which will display it in tabular form. The next block of code will display the first few lines of the file as raw text." ] }, { "cell_type": "code", "execution_count": 49, "id": "strong-gasoline", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "name,path,bytes,modified,mod_year,extension,category,mimetype,folder1,folder2\n", "fade.gif,Agency History,828,2015-02-17T17:11:48,2015,gif,image,image/gif,Agency History,.\n", "hts-log.txt,Agency History,4489,2015-02-17T17:11:48,2015,txt,text,text/plain,Agency History,.\n", "History of BOP.whtt,Agency History,0,2015-02-17T17:11:48,2015,whtt,application,application/octet-stream,Agency History,.\n", "index.html,Agency History,5220,2015-02-17T17:11:48,2015,html,text,text/html,Agency History,.\n", "backblue.gif,Agency History,4243,2015-02-17T17:11:48,2015,gif,image,image/gif,Agency History,.\n", "\n" ] } ], "source": [ "with open('inventory.csv', 'r') as csvfile:\n", " lines = ''\n", " for x in range(0,6):\n", " lines = lines + csvfile.readline()\n", "print(lines)" ] }, { "cell_type": "markdown", "id": "durable-regression", "metadata": {}, "source": [ "You can see above that the first line of the CSV file is made up of column names. The data then follows, row by row.\n", "\n", "Next we will load the same CSV data into a Python data science tool called Pandas. This means that Python will read your file into a Pandas \"data frame\" object that we will use going forward. Data frame objects hold tabular data for further processing and display. We will first print the same first few rows of data to give you a sense of how it is organized and let you see that it is working properly. We will also call the shape() function on the data frame object, which gives us the exact dimensions (row and columns) in the data frame." ] }, { "cell_type": "code", "execution_count": 44, "id": "oriented-priest", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namepathbytesmodifiedmod_yearextensioncategorymimetypefolder1folder2
0fade.gifAgency History8282015-02-17T17:11:482015gifimageimage/gifAgency History.
1hts-log.txtAgency History44892015-02-17T17:11:482015txttexttext/plainAgency History.
2History of BOP.whttAgency History02015-02-17T17:11:482015whttapplicationapplication/octet-streamAgency History.
3index.htmlAgency History52202015-02-17T17:11:482015htmltexttext/htmlAgency History.
4backblue.gifAgency History42432015-02-17T17:11:482015gifimageimage/gifAgency History.
\n", "
" ], "text/plain": [ " name path bytes modified mod_year \\\n", "0 fade.gif Agency History 828 2015-02-17T17:11:48 2015 \n", "1 hts-log.txt Agency History 4489 2015-02-17T17:11:48 2015 \n", "2 History of BOP.whtt Agency History 0 2015-02-17T17:11:48 2015 \n", "3 index.html Agency History 5220 2015-02-17T17:11:48 2015 \n", "4 backblue.gif Agency History 4243 2015-02-17T17:11:48 2015 \n", "\n", " extension category mimetype folder1 folder2 \n", "0 gif image image/gif Agency History . \n", "1 txt text text/plain Agency History . \n", "2 whtt application application/octet-stream Agency History . \n", "3 html text text/html Agency History . \n", "4 gif image image/gif Agency History . " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "dimensions: (656, 10)\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "df = pd.read_csv('inventory.csv')\n", "\n", "display(df.head())\n", "print('dimensions: '+ str(df.shape))" ] }, { "cell_type": "markdown", "id": "introductory-orlando", "metadata": {}, "source": [ "## Step Two: Visualize the Inventory\n", "\n", "The next step is to use some powerful Python tools to show us the inventory in a variety of way. These tools are not installed by default in Jupyter environments, so you will first have to run the following code block to install them." ] }, { "cell_type": "code", "execution_count": 45, "id": "involved-panama", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: plotly in /opt/conda/lib/python3.8/site-packages (5.5.0)\n", "Requirement already satisfied: jupyter-dash in /opt/conda/lib/python3.8/site-packages (0.4.0)\n", "Requirement already satisfied: ansi2html in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (1.6.0)\n", "Requirement already satisfied: retrying in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (1.3.3)\n", "Requirement already satisfied: ipykernel in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (5.4.3)\n", "Requirement already satisfied: flask in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (2.0.2)\n", "Requirement already satisfied: ipython in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (7.31.0)\n", "Requirement already satisfied: dash in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (2.0.0)\n", "Requirement already satisfied: requests in /opt/conda/lib/python3.8/site-packages (from jupyter-dash) (2.25.1)\n", "Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/lib/python3.8/site-packages (from plotly) (8.0.1)\n", "Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from plotly) (1.15.0)\n", "Requirement already satisfied: flask-compress in /opt/conda/lib/python3.8/site-packages (from dash->jupyter-dash) (1.10.1)\n", "Requirement already satisfied: dash-html-components==2.0.0 in /opt/conda/lib/python3.8/site-packages (from dash->jupyter-dash) (2.0.0)\n", "Requirement already satisfied: dash-core-components==2.0.0 in /opt/conda/lib/python3.8/site-packages (from dash->jupyter-dash) (2.0.0)\n", "Requirement already satisfied: dash-table==5.0.0 in /opt/conda/lib/python3.8/site-packages (from dash->jupyter-dash) (5.0.0)\n", "Requirement already satisfied: itsdangerous>=2.0 in /opt/conda/lib/python3.8/site-packages (from flask->jupyter-dash) (2.0.1)\n", "Requirement already satisfied: Werkzeug>=2.0 in /opt/conda/lib/python3.8/site-packages (from flask->jupyter-dash) (2.0.2)\n", "Requirement already satisfied: click>=7.1.2 in /opt/conda/lib/python3.8/site-packages (from flask->jupyter-dash) (7.1.2)\n", "Requirement already satisfied: Jinja2>=3.0 in /opt/conda/lib/python3.8/site-packages (from flask->jupyter-dash) (3.0.3)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.8/site-packages (from Jinja2>=3.0->flask->jupyter-dash) (2.0.1)\n", "Requirement already satisfied: brotli in /opt/conda/lib/python3.8/site-packages (from flask-compress->dash->jupyter-dash) (1.0.9)\n", "Requirement already satisfied: jupyter-client in /opt/conda/lib/python3.8/site-packages (from ipykernel->jupyter-dash) (6.1.11)\n", "Requirement already satisfied: traitlets>=4.1.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel->jupyter-dash) (5.0.5)\n", "Requirement already satisfied: tornado>=4.2 in /opt/conda/lib/python3.8/site-packages (from ipykernel->jupyter-dash) (6.1)\n", "Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (0.18.0)\n", "Requirement already satisfied: backcall in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (0.2.0)\n", "Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (4.8.0)\n", "Requirement already satisfied: setuptools>=18.5 in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (49.6.0.post20210108)\n", "Requirement already satisfied: pygments in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (2.7.4)\n", "Requirement already satisfied: decorator in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (4.4.2)\n", "Requirement already satisfied: matplotlib-inline in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (0.1.3)\n", "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (3.0.16)\n", "Requirement already satisfied: pickleshare in /opt/conda/lib/python3.8/site-packages (from ipython->jupyter-dash) (0.7.5)\n", "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /opt/conda/lib/python3.8/site-packages (from jedi>=0.16->ipython->jupyter-dash) (0.8.1)\n", "Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.8/site-packages (from pexpect>4.3->ipython->jupyter-dash) (0.7.0)\n", "Requirement already satisfied: wcwidth in /opt/conda/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython->jupyter-dash) (0.2.5)\n", "Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.8/site-packages (from traitlets>=4.1.0->ipykernel->jupyter-dash) (0.2.0)\n", "Requirement already satisfied: jupyter-core>=4.6.0 in /opt/conda/lib/python3.8/site-packages (from jupyter-client->ipykernel->jupyter-dash) (4.7.1)\n", "Requirement already satisfied: pyzmq>=13 in /opt/conda/lib/python3.8/site-packages (from jupyter-client->ipykernel->jupyter-dash) (20.0.0)\n", "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.8/site-packages (from jupyter-client->ipykernel->jupyter-dash) (2.8.1)\n", "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests->jupyter-dash) (2020.12.5)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests->jupyter-dash) (1.26.3)\n", "Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.8/site-packages (from requests->jupyter-dash) (4.0.0)\n", "Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests->jupyter-dash) (2.10)\n" ] } ], "source": [ "!pip install plotly jupyter-dash" ] }, { "cell_type": "markdown", "id": "referenced-decrease", "metadata": {}, "source": [ "## Visualize Files by their Media Type\n", "Our next step is to visualize the file format information in aggregate, so that we can make preservation decisions. Here we look at a summary of the media types using a standard called the IANA MIME type. IANA MIME types have a type and a subtype, separated by a slash (/) character.\n", "\n", " type/subtype\n", " \n", "For example, these are some common MIME types:\n", "\n", " image/jpeg\n", " text/plain\n", " application/pdf\n", " \n", "Sometimes MIME types are longer and more complex. Here you can see the difference between older MS Word documents and the more recent .docx documents:\n", "\n", " application/msword\n", " application/vnd.openxmlformats-officedocument.wordprocessingml.document\n", "\n", "In the visualization below the area of each block reflects the number of files of each type and subtype. The color of each block represents the number of bytes stored in each type and subtype. This kind of visualization is called a Treemap and they were first developed in the early 90's by Ben Shneiderman in the Human-Computer Interaction Lab at the University of Maryland's iSchool.\n", "\n", "These treemaps are interactive; with some detailed values presented when you hover your pointer on a block and a zoom-in feature when you click on a block." ] }, { "cell_type": "code", "execution_count": 46, "id": "going-humor", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 2018.7692307692307 ], [ 612058.7368421053 ], [ 265330.5714285714 ], [ 1041.5 ], [ 11678.07 ], [ 6468 ], [ 28532.617511520737 ], [ 8141.166666666667 ], [ 260363.8076923077 ], [ 4046.1807909604518 ], [ 25780.712 ], [ 32647.018292682926 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/application/application/octet-stream", "all/application/application/pdf", "all/application/application/zip", "all/image/image/gif", "all/image/image/jpeg", "all/text/text/css", "all/text/text/html", "all/text/text/plain", "all/application", "all/image", "all/text", "all" ], "labels": [ "application/octet-stream", "application/pdf", "application/zip", "image/gif", "image/jpeg", "text/css", "text/html", "text/plain", "application", "image", "text", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 2018.7692307692307, 612058.7368421053, 265330.5714285714, 1041.5, 11678.07, 6468, 28532.617511520737, 8141.166666666667, 260363.8076923077, 4046.1807909604518, 25780.712, 32647.018292682926 ] }, "name": "", "parents": [ "all/application", "all/application", "all/application", "all/image", "all/image", "all/text", "all/text", "all/text", "all", "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 26, 19, 7, 254, 100, 9, 217, 24, 52, 354, 250, 656 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total File Stored by Mimetype (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABUwAAAFoCAYAAACMirH9AAAgAElEQVR4XuzdBVQcy9YF4B13d3d3IUSIE3d3d3d3dw9xd3f3ELkR4u7u7p68OpU3c4HAZSDDCOz+11v3D/RUd39dI+w5VRXkl9rAjQIUoAAFKEABClCAAhSgAAUoQAEKUIACFKAABRCEgSl7AQUoQAEKUIACFKAABShAAQpQgAIUoAAFKECB3wIMTNkTKEABClCAAhSgAAUoQAEKUIACFKAABShAAQr8X4CBKbsCBShAAQpQgAIUoAAFKEABClCAAhSgAAUoQAEGpuwDFKAABShAAQpQgAIUoAAFKEABClCAAhSgAAU8CrDClD2CAhSgAAUoQAEKUIACFKAABShAAQpQgAIUoMD/BRiYsitQgAIUoAAFKEABClCAAhSgAAUoQAEKUIACFGBgyj5AAQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUMCjACtM2SMoQAEKUIACFKAABShAAQpQgAIUoAAFKEABCvxfgIEpuwIFKEABClCAAhSgAAUoQAEKUIACFKAABShAAQam7AMUoAAFKEABClCAAhSgAAUoQAEKUIACFKAABTwKsMKUPYICFKAABShAAQpQgAIUoAAFKEABClCAAhSgwP8FGJiyK1CAAhSgAAUoQAEKUIACFKAABShAAQpQgAIUYGDqdR9wrtYJj568+M8Okj1TKsyf0MPfOlHxml2RKW0yjOjdzMtjPH72EoWrdPzP4y+f3g/Ro0bS+w3u1ggVSuTFxh2H0X3oDGxdPAIJ48X6q/P/8eMnlq3fgw3bD+Heo6d4/+ETIoYPh2wZU6JB9RLInC75X7XvXw92LNUC5Ys7oUebWl4eos/IOTh47Cz2rhpv9lOQttdscYVz3myYMKiNl+3PXroFY6evQJb0KbBoci+9jzzunxMXsGv5GLOfkz01+O37DzTsMBwxokXB2P4tjafuduYKFq3eiVPnr+HN2/eIHCkCUidPgKplCqKQU1ZfXaLhuTWgcwNULp3fV48198620FfdX1PkSOGROH5s1ChfGKWL5DL35Zq1vVdv3mH+iu3YdeAEnjx7ha9fv6l+Ewn5c2VG41qlESdmVLMezxyNLVi5HSNcluKfTVNw7tJNtOk1AXPGdbPZ11JzXDPboAAFKEABClCAAhSgAAUoYKsCrDD1dGeOn76Mz1++GX/ab/QcRFEBTPsmVYw/ixwxHDKkSerjPR06cTFCBA+GLi2r+7iv+x1MDUzLFs2DkoVzetl2lvTJETRoUBWSHkKOLGmQJGEcswamvYbPwtY9R9G4ZilkVSFp+HBhcOf+E8xdthU37jzEgok9kSF1En1ufnXwFZqJO1s7hNqy+wi+q+Bvz6pxiBYl4h9nXbpuDzx8/BxpUyY2BqbSJyX0sVRIVaFhb7RrXBkFcmc2UdUyuw0ctwBuymLZtH4IGyaUPuj0hRsxcfZq3dfKFnNCbBWEPXv+CpuV84mzV1GnclF0b13T5BNkYPqbSkL6tVsPYM7Ybvrfv9T/vXz1Vv/s0PHzGNK9sf7iwdTNkq8BHz99Rs2Wg/H+4yc0Ua9PKZImUK+FQXDhym1MW7AeYUKHwprZg/Rrlmy20t/dB6YRw4dV57oBS9ftxupZA/WXX9woQAEKUIACFKAABShAAQpQwHICDEx9sC5Vpztix4iK2WO7+vquVG8xENkypPS3wLRNw4poXresyedlrgrTp89fo2Dl9mjdsAJa1C3n4fhSaVqt+QCUK5YHTWuX0b/zq4PJF+aLHa0dmF67eU8Hy01ql0bD6iU9nLlUSNZuPUQF3Knx7dsPY2Dqi8v7610/fvoCx1LNMWlwO5sKTC9evY0qTftj2ohOyOuYQV+nBHdNu4zW1dODujZEkCBBPFz/0ImLsHjNLv3czZk1rUk2DEx/M0lgum7bAZzbM9eD2/cfP5C3XBukT50UM0d3NsnU0q8BEpZ3HTRNf2kjFe/uNwnR5cue3u3rwClHBthSf/ccmH779h0l1ftP7uzpIBXP3ChAAQpQgAIUoAAFKEABClDAcgIMTH2w9i4w3Xv4lK5uu3rjnm4hZdL4aFijFIrmz67/na5AfQ8tyxD59KmSqOHe5/TjLl27jV+/oIbGx0T9aiV0wGjYTK0w9SkwNYQ//zUkX0KnGYs24trN+/j2/TsypkmGDs2q6HP1bpMKyCLVO6uq28poooa3/tfmncP1Ww8wfuYquJ29gs+fvyBOrOi6Yk0qVoMFC6qbLFGrK/LlzKQrZVds2Iv+neqjTNHcKuT4rB67Wg+df6imT5Dqq/KqurCZCo+lotewTZm/HsvVtAFv3n1AKlVl1k1VGrboPtbHIfmHlcmwnk0xcspSXL/9AJEjhkfVsgXRsl45fPj4GQUqtdf3S0IX99uYaSuwZO0u7Fs9HhFUhZjnTUKoS9fu6L5y5uINbF443MMu8vsrN+7q6RIeP33p7ZD8krW7qbAno7ruiFixcR9eqMq/NMkTYnivpjh++grmLNuiKlJfIlmieBjQpYEanp5QH+eX6nByfmu2HFCh7WOEChUS+RwzoVPzqtrw2KnLaKCGvBu2MKFD6lB32sIN2L1irBrSHNn4u7fvPyJfhbZooPpupVL5UKxGFwzs0hDHz1zGIdXHxSmjmlaiT4e66jziGh/nl/4mD27Vczyev3gDeR4ZtoYdRuCy8tqzchxCq2vxvH3+8lV53lN9OqkxTPXpeetVYBpY+6pXgan0IbnvjiqAHt23BabMW+dj/5DXF/eb4bVQvjgYN2Mlzl66gVdv3iNJgtjqNbQkSjv/O9z/8vW76rm+Eucv38YH9byPHSOKeg3Ig+Z1yuqqUa+2ddsO6lB0sUvv/xzO7lV/d9s2QzfpUz+Riu9CVTpguHqdkOOdOHcVWxeNUK9j0XSQ79Nr6g31ujJg7Hycu3wL4cOGVtXjufVzUKbjkCH5UmEqmzy/B42bj21LRiFe7OheXi9/SAEKUIACFKAABShAAQpQgALmF2Bg6oOpV4HpgaPn0LzbGFQpXUAN+S0ClcZg3vJten7KKcM6qHnyMqkA4B2KqPlQy6kgTyoxJUC7//AZytXvhRKFHdFYhashQgTHTlc3HRrMGt0FuVQlkWyWCkxl7kcJyGROzTaNKuGHqh6bPGctDrud18NAvZvnVEKTyk36QYKkxrVK6WkB3Idi7km9cnj1+p12kGkCurWqgahqaPqegycxetpy1K1SDJ2bV9NNlK3XU4elSRPFQe1KRZBIzZ8ow9gbdRqph9dKgCph2OkLN1T4MA8lCzmin/qZDhpUwCqBRKsGFVBWhawyL604SwBTpUyB/5zDVO5Jgrgx0Ubdt1iqulgCEan+MsxrOUgNDZcqtv1rJiBUyBD6eGIi9ztntnR6zlivNglEL1y5hS4tqqNx51FYOKknsqoKZNmk0i1/xXZo26iiup7regi+d3OYllV2r1X/qlWxiAo0S+CJGoJeqXFfbZMpbXIdUsq9rNt2qB5+vGRKH30Mw/D1tupey/B+MZFh7kFV/105c4De54TqE+Ir8+c6OWTQIXrhqh3VeVXSYbZhW73ZFf1Gz8X2paN0wC1z5crUFRIiF83vgKcvXqFVj/H4pMJwCYal+tOv/U0C8txlW+tq5mZ1flctS/WdQ4lmKK7uuYRWpmymPG89B6bPXrwOtH1VAtNTO2f9v39DBfNvsHDlDj1MfN747joQFx+f+odMn+D5tfCdCtzLN+it+0zfjvV0WCjTVUyaswaj+rRQrymOkGrWgurLCTlOa/U8liH0UoUtz7/mqi80UuGqV5tUwJes3RXhwobRz/9CebJ4OaRd5sT13N9lnlZT+slL9RqWt3wb/eVHkXzZVdVzRqRMlkDPPerTa6rMpyqVoyHV679MbRAtSiRs2nkYy9Vr1vOXbzwEpvJveV2QOZflNZAbBShAAQpQgAIUoAAFKEABClhGgIGpD85eBab12g3TFVHr5w42Vq5JYFaiVjddMTpj1O+hqtmLN0W1soWMQ/I/ff6K+2qBpLiqmjKcqioybLnLtNJVj11VeCibqYGpDMf3LjQIGyY0fKowbdRxpK403KwqowzBn5yjc7WOKKpCAEP46BWR/CE/UFU+7T5wUv9aAo+sGVLo4KB4QUfjHJNeObjMXaur0qQy0H3VYu8Rs7F93zEc3jhFV4pKMCiVkgfWTkTI/weTJ1UlV502Q3UoWL1cIeOpyWJJEohKmzGjR0bVZv11qLZ2zmDjPkdPXVKLBo3QwcN/LfokwfdSFTJKUGPYiqqK2liqum3hpF46KC7XoJcOFQ3VcIbz8vw493aGwHTVzIEoWr2Tnlt2aI8meheZG1ICyH2rJ2DIhIU+BqZSlSthpWEYeuueE7D/yGkcXD8ZkSKE021K+D1rySYden1VFk7lWqv7k8nDgkkS8MiUCYaQ6rwKdKs1GwCXoe2NQ/I79JusguZ7erEwwyZ9J7i6R9NHdjL2s+IFc2BMv38XY9qx3w3yWEMw7Nf+Zhh6736ItaHCr1X98mip/mfKZsrz1nNgGpj7qjwPPG/St3q3r6sDTcPmU//w6jVA5ueUcHTDvCFIljiesS35Iuqe+mJJQvZ7D5/q10J5jrivwJeqYXn9jB8nhre3XSq4JViVim7ZEqvqVVmsr1CerKpqPaPxeeNVfzeln8gXQU5qaoI8DumNr/dyHFP6+P5/zqBlj3F64Tf5ssqwyRccMmWA+wpT+V0ZNa9xUlWl7d1Ccab0fe5DAQpQgAIUoAAFKEABClCAAr4TYGDqg5dXgWm2Yk1RRg2h7N+5vodHy7x5h90uqNBqkv6558BUfiZ/LC/fsAc37zzCuw8fdWXi23cfdRWkITwzNTD9r1O/sG+ej4GpXEcJVaHnuSJSwjepWlw5o7+PvUmquaQiVf7QP3ryIh6o4foSnk4e0s64MJZnh+bdxuLugyfYooJa99vKTfvQf/Q8Y4gigWl0VTUpK0UbNhluLkPfZcV4Gf5q2CQYkapXQ9CXpWgTVFRzW0qwath+/PiJLEUb61W+/ysw3bzrH5zYPsPDnJjdhkzHgSNnVZjropuTUCWYqn41nJtUap5SYa77gNYzniEwlQVnJsxaratWpUpVKufqtBmigs7wmDy0HToNmOJjYCrDc6cO72A8RM9hM/HPiQvYu2q88WeGORGPb52uF+KqruaW9Rw+yc4yr2vlUvl1sO9VgGQYumwILCUslzlsxw1orQMfQ8golcENVMWrYZMh1zJ9gKEy16/9zTDEWgJbQ9WzYR5dqTqVCm5TNlOet54D08DcV6XCdOnUvkba9+8/4dSFa5ijvpyQeWN7tq2tf+dT//DqtVBcb6o+uWPZaA+3br56ToxUK8Uf2zJNT7MgYb4Ep9XUlBi5VTiZNX0KXZlv6nbt1n31unRJvT5d0f+V6TlkgbCpI35XRHvV303pJ4bA1PM8zqb08VlLNusvdw6sm4SokSMYL0WmN3BR//McmErF9ydVgW6oFDf12rkfBShAAQpQgAIUoAAFKEABCvhdgIGpD3aeA1MZJpqpcCMdDBmGjhuakCHgEu6c2jFT/8hzUCjVkx37T9HDoWur4dQSLAZR8/BJRZ9UKvk2MK1cOr+Hyiv3lyJDvf+rwjSuCtzkOmQewGDB/p33U9qQ4dxRI0fUYZ5vNwlPOw+Yqqo8o2CdqsD1ykEWNpLqT/fzUcp+W/ccReeBU43VnRKYJlXD9scPbG08DQkaZX5Ar0ITabOfGt5boWQ+ZHb2+h7JMO6K6vf/FZi6Hjnzx7VLICoVd6f/P0R5295jOtjctmSkDm4LVGyvhv+W12Gsd5v7wFQCY6lIlvOV+SAlWJTrlOG9pgSmnl0kMD157po+H8P2b2A6DWfUtAUyDUBwda+lz7nfxE2Cc5mT0qsASfaV6RHSq6BJ+ujCVTtU5epm7F45Vrdn6GdSkVxVTXdg2GS4tsz3KnOkylQLfu1vcrzhk5d4CJjkeZijRHNVBZvFQ8Wsd/amPm89B6aBua96NYep+Bq+2JAAL9P/q7D/q3949xogw+s9P49//fylh+JvWjBMT9khi8jJvLtSrSxfikjlfGnnnOisprVwX6VvyuuUDMGXOY2HTVqsprNw1oGv5/5uaj8xBKbShrQlm+GxPr2mytzNMxdvgsyXKvMEGzaZ1mXU1GV/BKYd+7voOaY3KhNuFKAABShAAQpQgAIUoAAFKGAZAQamPjh7VWEqQWhpZ68rTGXYtyFo9ByYtug+Tv3he09VVY0xLlgif2RnV5WeMg+obwPTv130ScJDGaLtVYWezGspw1i92uScHz5+oacf8GobOnGxWp18pw4XJRDxykGmAvCuwtQQlngVmBpCBal2jOKuOstwHtFU0BspYjgdzkmg7L7CVIJBqTyVgOO/AlMJQ49vnebh0roPnYGDau5aQ/WwhC/Oam7P6uULqQWykqJ930nGalHvupT7wFT2kTBOhtTnzJpGr+Yu/Ua8/CMwvXX3sZ6mQOZPzafm2PW8yTyTsdV8rd4FpnJ+sviO69pJeo7GXGqu1naNK+lmvKswlapWCdJkBXsJqf3a37yqMJXjyvDto2qhqi1q+Lb7amPDtUlF8WQ1/UPFknn1nLSmPG89B6bynA2sfdW7wFQWKpJqZfcB+X/1D7kfnl8DZEj6NTW1hUzp4NUmFdSGaUIMv3+tpkHZuveoXhhJhtbLlBhebTKtyJt373V/9mqr0LC3Dl5lUSiv+rsp/cSrwFSOZUofly985IsfzxWmE2ev1vMMs8LUMh9+eBQKUIACFKAABShAAQpQgAL/JcDA1If+4VVgKvNgPlcrk8v8e4btp6qMKl6zi1oEJIEeVm0ICaqWKWicm1SGVsof/bKgkmFbv/0QpDqwrFr5eVjP3/NZmjok/28D0yadR+uFXGSIuPvt7oOnejVqw7yhnolkOKnMGSqPk0VP3G8yxUD99sNx4/ZDD1MTuHeYumC9Xl3b8xym4rDv8GkdJMhCQl4FprIgUq1WgzFxUFsUzpvVeGhZGOjN2w/G4Kxioz46jHRvLW3LauumzGEq0xGkTZnY2L5Ug8aJGdXD9AAyR+g2VTUsq9DL8GHvFnsyNOI5MF21ab+eB1bmYsydPb1eMEk2/whMpRI0j5pzUcJDz2GxBJtSsSpehgBJ+nBBVb1p2KTST4bhN6hWAlPmr9fzpxpW7TaEjE45MngIwGReVpmX1lCJ6Nf+ZpjDdP6EHnoeSsNmGAou8+ZOGtz2j2pFqdaTgH32mK5qMa60ev5an563ngPTwNxXvQtMJRwdOnGRcYE7uR//1T+8ei2UCkuZH3bXirEeFmSSqRZChQqh5+F9qKb3OKWe76XUl0nuN5ke46Ja9M27issaLQfhpXp9XjtnkA5G3W+y2FQhtUBZXscMqjK5lZf93ZR+4l1gakofl3mf2/aZiElq2hJZkMqwyRcaspgd5zD1/I7Df1OAAhSgAAUoQAEKUIACFLC8AANTH8y9Ckxl2Ln8YSyLDslQ4+9qJXEJEDeqlY7nT5CVz1PoVmXlcKl8kypHWYhoiQoaZLGjCQPb6AWFJMBbv/0gvn79jp8qaJQ5KWWYvqUCU8Oq5ZVK5teVkhIuHDx2Tg8L7dSsqrerMssclrLw0tv3H1CnUlE9V6lUKD5++lJfj6wy3Vddc7X/L8rk2UEq/2TRpGRqIZNurWrqitBdB06ouUmXq6rFysbV2L0KTMVVhpbfuP1AD6mVUPOpmm9Vwstb9x6pxWJG6GGuhrkQZY7LYgUddEWsVBveVvv4NCR/x/7jOviWoeRyPyT4k0VqRvRSizyp6RQMmyw8VEQt3iTbIrUYlPtForzqVp4DUwmZZAXsz1++Ytm0fnpuRdn8IzCVeyvVaxIAdmxaRS18kwnfVL9duXGfGqa8V4ea6VIlNi60U0tNGSHhqtwjw7BpmXJi9eb9urrUfWWgIWSURbFqVnBGsQLK+8kL9Bw6U/cLQ7Dl1/4mYXjusq3RvE5ZtTp6WQ+0hjltJfCtrKYDkEpS6Z8bdxxWUxRc1fOy1q9aXD/GlOet58BU2gqsfVX6/Zyx/84f/PnLF70K/JxlW1VfT6oWO+qiF2czbN71D69eC+Vn5Rv01lXq7ZtU0V9GXFaLOclw+TQpEuovRAwLktVTr7Hl1KJ4MgRf5iTtO3KOWlguB3q1+/0Fg+dN5lNu1nU04saOoaY+cVaV8vJlAHDr7iMsUq/BDx490wuRyWuHYWEp9/39+JnLPr6+exeYmtLHpQJWvlyTuYvlvSFyxPDqdfMQdrq64ZF63rgPTKX/yWuEfMkhX/RwowAFKEABClCAAhSgAAUoQAHLCDAw9cHZq8BUHiJh5zQVPl1Rc8vJ8HX541vmsMyp5qM0bCs27MVoFQL+/PlTVzNJdZzMhblfPVYCUpm3VP7ol8V6BoyZpxchkUVQLBWYynkeOXFRLzRy8eptPU2ALKojC6xUVf/7r+3l63d62L1US8lK9h9UqCVVYelSJdFD3qXqzzsHCeukqlGG1h4/fRlfvnxDovixUKNCYQ9zgHoXmH5UC6DICts79h3X4ZgMzXfInEqHrYaVs6Xid8KsVXre0XcqmEyRJL4OHaSKVVbJNixY4/kae6iQ7+K12+iuglwJjmVhGmm/tgqGG9Uo+QeJVNNK1Zr7Slbv3DwHprJft8HTcUHZyzQEhs2/AlNpf+m63Vi6drdedCusCqBSJ0uIZiqEdMySxnj8XsNnYYuaT1aC5y0qgI4cKbz+ndwruV6p5izk9G91ryFklL4sgZbM1SuhkMxvKXO0ylyUhs2v/U0qg1+oey3BsudN5sKU+VplDtc3b98jqlooTPqhVMMavrwwPMan563nwFQeF1j7qjx33G9SRR1XfQEk893KF0US+LnfvOsfso/n10J5DZCwUqrVpU98/PxFD6F3zpcNrepXMM7tuefQKcxS1agyfF+mApF9JJBvWa+ctxXwcjzphzL3rZyTzKX7XU2hET1aZDhkSq2+kCmJZInj/Wd/96mfeBeYSqOm9HF5vR08fqF+3Q2nHEsVzqUq1RNAXiMOb3DRXyJpN/WFxiBVhb5tyb8V3d69vvDnFKAABShAAQpQgAIUoAAFKGA+AQam5rNkS4FM4IEaMiyB+qAuDVGmaO4Af/US6h9RK41vVnOGSrhu2LwKGc2NIUOVZciyVLbK0H9uvhOwRF/1rn/47ky5t0FA5kkupRaDk0XhZB5gbhSgAAUoQAEKUIACFKAABShgOQEGppaz5pECiIBUtd6+9xiDxi/Q0xjIcHyZczUgbl+/ftPD62UhLKnqnTKsA/J7WjTKEoGp2Eogd1JVky6b2s/D6uIB0d1c1+TffdWU/mGuawls7cjiUItW79TV6zFUdSw3ClCAAhSgAAUoQAEKUIACFLCcAANTy1nzSAFEoEO/yWqe1rNq+oV06N+5vodFawLIJRov46qackIW0JIFnmT+0Aol8v5xiZYKTL99+46GHUcglhqWPbpvi4BG7S/X49991ZT+4S8XFsAb/cftgl6gbvbYrsiS/vec2NwoQAEKUIACFKAABShAAQpQwHICDEwtZ80jUYACFKAABShAAQpQgAIUoAAFKEABClCAAjYuwMDUxm8QT48CFKAABShAAQpQgAIUoAAFKEABClCAAhSwnAADU8tZ80gUoAAFKEABClCAAhSgAAUoQAEKUIACFKCAjQswMLXxG8TTowAFKEABClCAAhSgAAUoQAEKUIACFKAABSwnwMDUctY8EgUoQAEKUIACFKAABShAAQpQgAIUoAAFKGDjAgxMbfwG8fQoQAEKUIACFKAABShAAQpQgAIUoAAFKEABywkwMLWcNY9EAQpQgAIUoAAFKEABClCAAhSgAAUoQAEK2LgAA1Mbv0E8PQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUMByAgxMLWfNI1GAAhSgAAUoQAEKUIACFKAABShAAQpQgAI2LsDA1MZvEE+PAhSgAAUoQAEKUIACFKAABShAAQpQgAIUsJwAA1PLWfNIFKAABShAAQpQgAIUoAAFKEABClCAAhSggI0LMDC18RvE06MABShAAQpQgAIUoAAFKEABClCAAhSgAAUsJ8DA1HLWPBIFKEABClCAAhSgAAUoQAEKUIACFKAABShg4wIMTG38BvH0KEABClCAAhSgAAUoQAEKUIACFKAABShAAcsJMDC1nDWPRAEKUIACFKAABShAAQpQgAIUoAAFKEABCti4AANTG79BPD0KUIACFKAABShAAQpQgAIUoAAFKEABClDAcgIMTC1nzSNRgAIUoAAFKEABClCAAhSgAAUoQAEKUIACNi7AwNTGbxBPjwIUoAAFKEABClCAAhSgAAUoQAEKUIACFLCcAANTy1nzSBSgAAUoQAEKUIACFKAABShAAQpQgAIUoICNCzAwtfEbxNOjAAUoQAEKUIACFKAABShAAQpQgAIUoAAFLCfAwNRy1jwSBShAAQpQgAIUoAAFKEABClCAAhSgAAUoYOMCDExt/Abx9ChAAQpQgAIUoAAFKEABClCAAhSgAAUoQAHLCVgkMD3u+gDHXO9b7qp4JApQgAJmEvj4/jvChg9uptbYDAUoQAHLCbx78w0RIoWw3AF5JApQgAJmEvj4QX3+CsfPX2biZDMUoIAFBRzyxUOOfPEteEQeyr8ELBKYugw+hsmDjvrXNbBdClCAAhSgAAUoQAEKUIACFKAABShAAQpYVaBV7xxo3cfRqufAg5tHgIGpeRzZCgUoQAEKUIACFKAABShAAQpQgAIUoEAgFmBgGnBuPgPTgHMveSUUoAAFKEABClCAAhSgAAUoQAEKUIACVhJgYGoleH84LANTf0BlkxSgAAUoQAEKUIACFKAABShAAQpQgAKBS4CBacC53wxMA8695JVQgAIUoAAFKEABClCAAhSgAAUoQAEKWEmAgamV4P3hsDYdmNZtkxkp0kVDn+a7cb3J6pMAACAASURBVOxpM5TJshhPHrz3BwY2SQEKUIACFKAABShAAQpQgAIUoAAFKEABvwswMPW7na09koGprd0Rng8FKEABClCAAhSgAAUoQAEKUIACFKCA3QkwMLW7W+btCdtEYFq5QVo06pQNIUIExcO779C1wQ48vv8erDANOB2NV0IBClCAAhSgAAUoQAEKUIACFKAABQKyAAPTgHN3rR6YRokeBvtuNkDJDAvx4M47DJpWGD++/0T/1nsZmAacfsYroQAFKEABClCAAhSgAAUoQAEKUIACAVqAgWnAub1WD0yFMlToYPjy+YdWLVUtJSrUTYPGpdYzMA04/YxXQgEKUIACFKAABShAAQpQgAIUoAAFArQAA9OAc3ttIjBt0dMBBUslwa9fQMTIofDo3js0LLGOgWnA6We8EgpQgAIUoAAFKEABClCAAhSgAAUoEKAFGJgGnNtr9cC0aIVkaNXbEbUKrsL7t19RrlZqlKudmoFpwOljvBIKUIACFKAABShAAQpQgAIUoAAFKBDgBRiYBpxbbPXAtFaLjHAqkhAtKm5ChEghMW5JCYSPGBLV865khWnA6We8EgpQgAIUoAAFKEABClCAAhSgAAUoEKAFbC0wrdioDyqVyo9aFZ0DtLt/XJzVA1NZ9Gnq2tKIGEkNxb//HpMGHMGklaWwYfFlPHn4ASnSRUOf5rtx7GkzlMmyGE8evPcPB7ZJAQpQgAIUoAAFKEABClCAAhSgAAUoQAE/CwSkwNT1yBkkjBcLiRPE9rOHPT/Q6oGpPePx3ClAAQpQgAIUoAAFKEABClCAAhSgAAUoIAIBKTCt3XoIGtcshQK5MwfKm8vANFDedl40BShAAQpQgAIUoAAFKEABClCAAhSggDkFbDEwdc6XHWcvXsexU5cRN3Z0dG9dE045MqB68wHImS0d2jepbCSYMn89XP85jTBhQun9Q4YMgaL5s2NEr2a4/+gZhkxYhDOqrR8/fqqfO6Bn29oIEzokvn3/gaETF2GXqxs+fPyMpIniokvL6nDMksacvBZti4GpRbl5MApQgAIUoAAFKEABClCAAhSgAAUoQIGAKGCLgemLV28xpHtjZE6XHPOWb8Pc5VuxZ+U4bN17FLOWbMbOZaMRJEgQfTt+z3maT815WgSOpVrooFQqTH/+/IXyDXqpgDUtOjStis9fvqD7kBmIHjWSbnvput1Yvn4vZo3pgkgRw2PdtgOYPGctdq8ci+DBgtnlrWZgape3jSdNAQpQgAIUoAAFKEABClCAAhSgAAUoYEsCthiYpkmRSIeasn3+8hU5S7fEqD7NkUNVf+av2A6zRndB9kypcPfBU5Su2x37Vk9A1MgRPASmJ85eRcMOI3B0y1SEDhVSt3X24g3UbTsUx7dO1yHsTtcTWDipp/H3UoUaLFhQW7o9vjoXBqa+4uLOFKAABShAAQpQgAIUoAAFKEABClCAAhT4U8AWA9MShRzRpFZp48k6V+2I+tVKoHalIujY3wURwofFgM4NMHvpFriduYKpwzvofd1XmK7degC9R8z28pZvXzpKh6TNuo7Bw8fPkdshPQo5ZUWxAg52W10qF8rAlM9wClCAAhSgAAUoQAEKUIACFKAABShAAQr8pYAtBqblizuhbpViHgLTpnXKomqZAtj/zxk1tH46XNdNQp3Wg9V+xVGysOMfgenWPUcxcOx8/LNpirdCv379wslz17Dv8Gls3v0PYseIqipOe9ltlSkD0798MvDhFKAABShAAQpQgAIUoAAFKEABClCAAhSwxcA0c/oU6Nuhrr45X75+05WjEwe1Qb6cmfTiTYWqdECrBhUweuoyuK6daBxS777C9MKV26jarD92rRiLODGj6rY+fvqih/jL8P2Pnz6rnwRBWLVYlGyv3rxD3vJtsXJGf8iUAPa4MTC1x7vGc6YABShAAQpQgAIUoAAFKEABClCAAhSwKQFbDEwlvJw4qC1SJ0+oh93PW7FNzVM63hiMjpqyDKs270dhNYx+aI8mRk+Z37RhjZKoVDIfwocLg2rNBiBmjCgY1KWhrhodNmkxHj19gbnjuqPTgCmQCtPe7esiUoRw2Hv4FDqrn+1ZNV4Hqva4WTUwbdX7d5kvNwpQgAKBXeDt6y+IGPn3t3HcKEABCgRmgXfq9XDB5NOaIEKkkKjbJktg5uC1U4ACFKAABbwVWD3vAh7ff69/X7FeWsRJYJ/BlL3eYpfBR/84dVsLTMvW64kKJfLisNsFnDh7BfFiR0ev9nWQM2ta47lfvXkfFRr2xuwxXZEz278/l1XuZy/bAke1ONS0ER1x/9EzDB6/UM1zehkhQ4bQbfRsWxvRo0bCy9fv0H/MXBw9eQnfvn1HkoRx0LphBRTMbb+f46wWmEonylIgDg663rXX5wbPmwIUoIDZBN6+UYFpJAamZgNlQxSggN0KFCmaDKumX8DahZcwal5RhAoXHJfOPrPb6+GJU4ACFKAABfxDIEHiiEiUNDJqFVyNnAXjY6xLPrzYddk/DsU2vRCImi0Blm57jMmDPIamthaYmnLzpBp0+KQl2LZkJIIECWLKQwLFPlYNTD8E/Y7hgw8GCmheJAUoQAEKUIACFKCAzwJTppfEOdcnOjAdMsMZRw7cx+qFF31+IPegAAUoQAEKBCKB3AUToGVXBzQssU4HpoP6ZcX5VisCkYB1LzV509zY/jyEXQemMn/p3QdP0LLHOD30vkrpAtZFtbGjMzC1sRvC06EABShAAQpQgAKBWYCBaWC++7x2ClCAAhQwVYCBqalS/rNfQAhMx05fgWXr96BSqfzo2rI6q0s9dRUGpv7z3GGrFKAABShAAQpQgAJ+EGBg6gc0PoQCFKAABQKdAANT697ygBCYWlfQ9o/OwNT27xHPkAIUoAAFKEABCgQaAQamgeZW80IpQAEKUOAvBBiY/gWeGR7KwNQMiDbeBANTG79BPD0KUIACFKAABSgQmAQYmAamu81rpQAFKEABvwowMPWrnHkex8DUPI623IrNBqaZs8bGnIXlkDXddFv247lRgAIUoAAFKEABCphRwLeBaaU6af9qUai/fbwZL51NUYACFKAABUwWsHZg6uzaFgcqz0Go6OGQeVhZuJabafK5u98xWo5EeH/7Bb48fY9sEyri0fbLeLjF9hd7ZGDqp9ttVw+y2cA0WLAgiBQ5NF6++GRXoDxZClCAAhSgAAUoQAG/C/g2MD16twkcE/rtjzQ5y799vN+vlI+kAAUoQAEK+F3AVgLTry8+IHiE0Pj22m/ZTdZxFXBjzhG8OfcIwcOHws+v39X/fvgdxkKPZGBqIWgrHsZmA1P3FaYtWmdHhkyxEDJkMKRMFQ2PHr3D/NlnULt+RqRKHQ3DBx/EymUX1YpewMhxReBcNCmCBQuKg6530ab5Fvz48QsFCyfG8DHOetWvOTNOoV0nRxQruAh377xBsRLJ0GdgfoQLFwJ3br9Bo7rr8eK5357sVryXPDQFKEABClCAAhSwewHfBKZTV5RGkbLJcO3SCzQssw5h1Ge5QZMKIXbc8Pj67Qe6NdmJs25P0Kh9VuRwiodmlTdqn/mbK2DHhhtwKpzQw+Mf3X9v9368AApQgAIUCBwCvg1MI2eMi7TdnRE8nAol1XvkxeE78dLtHiKljY0M/UvghdtdREgWXYWfoXBp1B68OnUf2SZWwvsbzxEhZUyEiBQa764+w4WhO/Dr+094VWEaImJoZBhQApEzxMW3N59wafQePP/nNkJGDYuMA0sibIIoCKKK424vcsOdZSeRpH4OpGjupKpL3+Hy+H2IXy6DscI0fPLoSN+rKEJEDoufX77j6pQDeOZ6Q59LxoEl8PTATUROFxuhY0dU57tbH8eSGwNTS2pb51h2EZg2aZ4VnbrlhmPmmXj79gvOXmmBvbtvo22LrciVJz7GuxRXv5uF0uVSomffvCiQa54OT/cero/Rww9j3erLuHijFVo324JdO26iV7+8aN85JzKlnoZfv37h0PFGKFNsCS6cf4ZW7RyQK3cC1K62xjp3hEelAAUoQAEKUIACgVjAN4FplGihcfhWY6SJOFmLbTxWE0tmnMPSWeeQIVsszFxTFk7JZuPnz19Ye7g6RvU+hNBhgqN5FwdUyb8ckaN6fHwgZuelU4ACFKCAnQn4NjDNs7w+bs47ikdbLyFuybRI1jgXDlScrQPIPMvqwa3NKjw/dAvR8yRBms6FcaDCLGQdWwEho4TB0cZL8Uu9l+acWwt3lp5UoeYlLwPT9H2K4cfnbzpwjaTCTIepVbHH2QWp2hdAsFDBcX7QdoSJFwl5VzfC/jLT8eXZBzitbIBzA7fpClPjkPytF5F3VUNdefpw80VESBEDOefUxL7S09UUAOHhpK7leKuVeHH0DmIVTokkdRxwpP5ii95BewhM33xJalETw8Eihbrp4biPnrxAj2Ezcf7yTSSIGxPDejZF6uQJ8eXrN/QbPReHjp1DmNCh0LhmKVQtW1A/9t7Dp+gzcg6uXL+LuLGjo1e7OsiaIQUuq3+37zsZ25aM9Pdrs5vA1ClfQtSruU6DbNlVCzOmntBBaBxVQXDkVGMkijVe/y5UqGD48uV3+bYEqVJBumn9VWzfWxtJ4k7QP48cJTRuPWyHdMmnoEixpChXMTUqll6ufydVprcetUfcqGPwXX1rwo0CFKAABShAAQpQwHICfg1ME6eIjM3HayFD1Ck6IJVtnQpJh/c4iCP77yNd5hgYNacYgqtRSG1qbsaVCy/gOXC13FXySBSgAAUoQIG/E/BtYBokeFD8+qEyDvUWGSpGOBTY3Bzbc4zRganjzOrYlX+iPiGpAC12rDN2F56MDH2L68rTO0tO6N+laJFHVZqGUdWpu7wMTAtubwG3tqvx7spTvb9Uq35/9wUIGgRB1P+kMlW2fOsa42zfLXh99qGXgekr9fM8S+piV77f5yRbzrk1deD78f4b/f8bfhchZQxkG1cR+0pZdv0buwhMP1kpMA3jMTCt02YoCuXJgtqVi2LTzsM4fvoyhvZoApe5a3H99gMdoL549Ra1Wg3GjFGdkTJpfNRrNwyFnLKidsUiOOx2QYWns7Fz+RjcUPszMHW36JNUmGbJFgctm2zWT5RNO2pi0rij2L71BmLGCoeTF5ohfvSxas7TUBgyojDSpY+hw86EiSJh5rSTcN13B9Nml/awgNSjV52QLf0MVK6WFl175vEwV2rEiKHgmGUmnjz+8HevYHw0BShAAQpQgAIUoICvBPwamGbMHgurXKvhsbth9WHCBUfftnuxdfU1fQ4r9lXFT/XHYvXCq/S/GZj66tZwZwpQgAIUsCEB3wamUomZuGY2BA0RTIWXQREhVUxsdxitA1OZR3S/u8CxyKH2OFRjPlKrytAne6/hwcbz+sqlkjNimlg403OTl4Fp0cMdcKDSbHx69NaDlISaKVvm1dWhEtpKxejxlivw6vQDLwPTD/deIfPQMqoKdYaxnWzjK+LJvut4fe4hHFyqYG/xqfp34dU0Au7/balbZA+B6dsP1glMI4b7NzC9/+gZ6rYdil3LxyKoCs3db2Xr9cSgbo2QKW0y/eORLksRLmxoVC9fGMVrdsU/m1zUF93B9O8qN+mHri1rIGKEsMbA9Nv3H2jcaSTy5cyERjVKmv3W202FqSmB6YixzggbNgTat9qm5y2dPL0kbt96jc0brmLj9ppInuD3txORIoXC7cftdYWpVK6Wq5AKtapyCL7ZexcbpAAFKEABClCAAr4U8GtgGjteeGw9WRtZYk3z8ogFSyRG007ZESp0MEwachR7t95mYOrLe8PdKUABClDAdgR8E5iGjBJWVZQ2w6Fa8/Hh1ks172cE5N/YzBiYynD3nU6/R+0GVWvHFD3SEbsL/a4wlblMby08rn+Xsk0+BA8bEhdHeF1hWmBLc5zqvA5vLj7W+4dLFAUfH75FnsV1cWvRcTzY8Dt4zb+xKc722extYCpBqkwT4KHCdF4tPUT/04M3DExN7IZv31kpMI3wb2C6+8BJLFqzQw/Fl0rRhOq/vTvURdKEcZCpcCO4rp2ISBHD6Stavn4P3M5eQY3yzhg4dj7WzR1svNJOA6bAMWtaZEyT1BiYDlD7/PjxAwO7NDRRxHe7BajAdP6S8jh29AFcJhzXi0GtXF8Vq1dcxLBBB3H1Ths9L6ksBNW9t5OaEzWXnsP0m5rsWOYwLVF4EW5cf6UqWWOjeq306NZxl+8kuTcFKEABClCAAhSgwF8L+CYwjRAxJE48bo5M0afg08fvWH+kBmaNPYGNK64iavQw6DM2P3q33K2H6G92q40WVTYiZOjgmLykJIpnWYjganii+8f/9cmzAQpQgAIUoICFBHwTmEoVpgy731NsqhoW/wMpW+dD0vqO2JF7nAo1oyL3ojq6avTxriuIWyotkjbIiYOV5+g5TENFC4ejTZfpq5L9rk8/rPfzatGntD2K6ArW84O3I6KqXJU5TPcWm4KC21roOUffXnqCOMXSIJ1azOl09w14fvgW8iythyuTXPX/b5zDdMtFuJ9zVapapS2pOA0dMwIDUxP72Lu31glMI0T8NzBdu/UABo1bgCnDO6iR3Gkwf+V2rNuqFm6fOQCZnRvhxHZ1T0OF1Fe0fvsh7HJ1Q40KhTFx1mosm9bPeKW9R8zWQ/VzqDZkSH6DasWxY78bpo/qZKxCNZHF5N0CVGCaI2c8PfT+06dvOH3yMbZuvo4pM0uhRaNNqpogOPoPLqAXjZqlhukPGFIAObPOwqOH71G0eDL0HZQfYdQiAG/ffEGPLrtx5PB9kxG5IwUoQAEKUIACFKCAeQR8E5jKEWXFexmOX7+0qmh5/RlDXAojTvwI+KGmZ5oz8ZReAKrH8LwIpsLRwZ3365McNs0ZH959xeAurh4ef+b474oYbhSgAAUoQAFbF/BNYCrXkkGtUh81WwJ8ffEBVycfQPLmeXQ16fmB25FlVFk93D1mvuRqjtNfODdgG16feaAD0w93XiJKlvgIHSuCWon+lgpDdwDqi0ivAtPg4UOqFexL6f2/vvqIiyN348WR20hYJTOSNsyJb68/4YFaxClk5NCIXz4jDtdZiHil06vwNgeuqtA0eq7EakGpy3ioAtNwSaIhvQpWpTr2x5dvuDJhv17kyfMQfA7J976nvnv9e6i7pbcIkW8YD7nrwAlMnb8eq2cN1D/7oaZkyFasCfatnoD8Fdth35rxiBIpgv7d0nW7cfr8dTUkv5BaDGoeNswbYmynY38X5M6eHulTJ0Ht1oPV8P6gKKjmRR3Rq5m/XZ7NBqb+dsWqYZk34enbLkgYcxw+fvzmn4di2xSgAAUoQAEKUIACvhDwbWDqi6a5KwUoQAEKUCDACPg2MPXuwmUO0yyjysG13Mw/dpHAVKpJJcDk5lHAHuYwff/SOoFp+Kj/Bqayqn3rXhPUHKZjNKAEplmLNsHB9ZMgi0H1aFtLV57K1nfUHMSPEwNVyhSAc9VOap/JCBP6d/VpiVpd9UJRYUKHQsOOI7B65kD135Ho1LwqnPNm85fuGWgC032H62PurFOYP+cMqtVMhzYdHOHkMMdfUNkoBShAAQpQgAIUoIDfBBiY+s2Nj6IABShAgcAlwMDUuvfbLgLT51YKTKP/G5jKXarQsDfqVimG8sWdsGj1TmzceRgrpvfHtAUbcPrCNYwf2Ab3Hz5DvfbDsMSlDxLFj4VGKgx1yJwaTWqVxta9R/UQ/a2LR+LarfvGOUxPnruGDv0mY+2cwYga+XeVqjm3QBOYOuaKhzETiyFixFB48fwj2rfehjOnnpjTkm1RgAIUoAAFKEABCvylAAPTvwTkwylAAQpQIFAIMDC17m22h8D0wzPrBKbhYngMTO8+eAoZUn//0TMkTxwPg7o2RBK16NPXr9/00PsDR88iXNjQaFm/PMoVy6Nv7IPHz9Fz2ExcuXFPLxjVv1N9pEuVGFKxKnOYblsyUu83wmUpHj15oULX1mbvEIEmMDW7HBukAAUoQAEKUIACFDC7AANTs5OyQQpQgAIUCIAC5gpMAyCNRS7JLgLTJ1YKTGN5DEwtckP84SAMTP0BlU1SgAIUoAAFKEABCvhNgIGp39z4KApQgAIUCFwCDEyte7/tITD9+Mg6gWnYOAxMTe6dLoOPYfKgox72b9U7Bz4E/Y7hgw+a3A53pAAFKEABClCAAhQI2AIMTAP2/eXVUYACFKCAeQQYmJrH0a+t2EVg+iC5Xy/vrx4XNt71v3q8rTyYFaa2cid4HhSgAAUoQAEKUIACYGDKTkABClCAAhTwWYCBqc9G/rmHPQSmn+5bJzANE5+Bqcl9jxWmJlNxRwpQgAIUoAAFKBCoBRiYBurbz4unAAUoQAETBRiYmgjlT7vZRWB610qBaUIGpiZ3O98Gpt16OZncNnekAAUoQAEKBBYBl4nH8P7dV325Lds4IELEUIHl0nmdAVDgzZvPmDbZ7Y8rMyUwjRApFBq0yRIAVXhJFKAABShgqsCUEcfw/dtPvXuLrg4IETKYqQ+1u/1WzruAR/ffeThvUwPT+GUzIHSciHZ3zbZ0wtenH/rjdOwhMP182zqBaejEDExN7r++CUy79coDp/wJccD1rsntc0cKUIACFKBAQBfIlCkW3rz5gpaNN6N2vYxo0Cgz9my/FdAvm9cXgAUKFUuC2TNPYcnCcx6u0pTAdOy84ggXLgQunX0WgIV4aRSgAAUo4J1AlpxxcPXCCwzp6opG7bOiUNkkcN17J0CCJUocCUmTRkX1git9HZhGy5EQMTo4Y9mqSwHSxhIX5ZQ3IWJfug/PoaldBKY3rRSYJmVganLf9G1g+isIMIyLQZnsyx0pQAEKUCDgC9RRIaljznho12KbDkxzOsZHxxbbA/6F8woDrMD4GcVx8OBdPwWmI2YUwfEDD7BmIf8ADLAdhBdGAQpQ4D8EGrbPghixw2FY9wM6MI0UOzT69dgXIM3yFUyIjl1yoV6JtX4KTFHDEc7FlwVIG0tcVHc1ArpKjKD2GZjeSGEJoj+OETrZNasc19wHtblFn6TClIGpuW8z26MABShAAXsXYGBq73eQ5+9ZgIEp+wQFKEABCvhVgIEpYMqQfKkwZWDq1172+3H2HJh+uWadwDRUCgamJvc6VpiaTMUdKUABClCAAl4KMDBlxwhoAgxMA9od5fVQgAIUsJwAA1MGppbqbXYdmF6xUmCaioGpyf2TganJVNyRAhSgAAUowMCUfSBQCDAwDRS3mRdJAQpQwF8EGJgyMPWXjuVFo/YcmH69ZJ3ANGQaBqYm908GpiZTcUcKUIACFKAAA1P2gUAhwMA0UNxmXiQFKEABfxFgYGqZwDRUqGAYPLwQDh24h53bb+DDh2/e3s8evZ30WjS16mTAYk8LOnr1oP6DCqB/n33ethc3XgQ4F0mKBfPOeNinao10cDv6EDdvvvLysYbzMFfHs+vA9KKVAtO0DExN7n9/G5hmyRobcxeWQ+Z0000+pn/sGCJEUJy92AJpU7rg1y+vj9C2fQ6kTBUNrVtsRY1a6TFspDMWzD2Nvr29fyHwj3NlmxSgAAUoELAEfBqSnylrLMxYWAaO6WZZ9cLlvfLYpSZoUG0dpi+w/vlYFYMH/08B/whMK9ZJ81cLQXl+fIvuDvj88Ruy5ooL1x13sHLuhT+uKXehBLh55RUeP3hv8h2furI0tq25hvVLr5j8GO5IAQpQgAL/CpgSmFavkx7LFp73M5vnx+fIFQ9tOuVAncoeF19yf4AFKytg45orWLn0orfHbdXeASlSRUV7ExfvNPeiTy3bOCBSpFCIGi0MunTYicXLK+LggbtIkzYG+qvcYunKSli75jLixAmPoYMO6MD0w/tvmDj+KLr3dFJZyC9cvPAMd++8gXPRpAgfISQmTziG6bPLYIAKQCtXS6uD0D798+PN6884dfIx3r75grIVUuHe3Td48fwTVi6/ADkPOW75CqkRUgWzLhOPo3CRJEiQIBKCBg2CmzdeIX/BRPocW7fLga9ff+Dy5ecoWSoFTrg9xKTxx7Rx5iyx0aBxZn2MjeuvYvhoZ30edRtkwtUrL7Bv720UKZoMUaKGxuwZp1CgUGIP1y9Z00HXu8jhGE+1+wjZHeKiaaONxvtnz4Hpt/PWCUxDpGdgavILz98GpsGCBUGkyKHx8sUnk4/pHzvmyZsALVs5oFb1Nd42HyZMcAQPHhTv3n3FoqUVsGvnLcybc9o/TodtUoACFKBAIBLwKTC1lffKXHnjo2nrbGhcc4NNvHcHoi5id5fqH4HpP3cbI1dCv39p4Pnxi3ZUxKCO+9G6l6O3gem0VaUxbaQbTh97bPI9YGBqMhV3pAAFKOClgCmB6cU7LZE20RQ/C3p+fJdeufH61WfMnHLS2zZNCUwlMwimMoP3KjMwZTN3YFqxchpd5JW/QCJUrbgSk6aWRP3a61BdFXy9fP4RlaqkRbPGmzB5Wkl077wT/VQlqASmG9ZfQUEVNo4Z+Q/iJ4iIqFHDoEKl1IitgtUN666gZOkUaKMKxyZNLYHjqgL02rUX+OfQfcxQQeqSRecQJ154LF10Xv9+y6ZrePnyE+rWz6Qfk0C1V1NVpiZIGAktm27W7Uu7aVWIKwFt9hxx8fjRe4QJEwKvXn3CehVKGypMc+WJjyrV0mHxgrM68JT2pc1Z88qicf0NcJleEvfvvUXo0MF1gPrp03cP1z9qbFE0b7IJU2eWQosmmzFgcAGMG30Er1XYK5tdB6ZnU5rSxcy+T4iMV83epjUaDKI6nze1kuY7nb8NTN1XmLZsnR0ZM8VGyJBBdSd/pJ40c2ef1k+0VKmj6RLwFcsuIEgQYPS4ovobj+DBgsLV9Q5aN9+CHz9+oVDhJBg5xlntEwSzZpxEh0454Vxwof6GpHiJZOg3sADChguBO7dfo0Hd9fobENl6982Lx48/6Me0V49pZk7cwgAAIABJREFU3DQLXr38jNkzT6Fzt1xIn2oqDBWmt269RsfOufS3HAvnn8FQdV7cKEABClCAAn4V8CkwdV9hKoFlhswxESJkMF3BIB8wF846i5oNMiCleq8cNegQVi+7pN8rh41zRqGiSdQH9yA4tP8eOjTfpt8r4yeMiGnzSyNGzLA4evgBwoQNjl3bbmL5wgsoUiIpeg7Ki3BhQ+r3yuZ1NxnfK7v1y4Mn6r3y1PFHxorXlh0c9PnIB9Vo0cPi+/efaF5vE56q/aQqYfh4Z2RzjINg6v16wsgjWDz3nGZqrao46jfNrP84mT/zNNp1zYnsqWb4lZCPszEBcwemU1aUgnPZZLh+6QUallmvP8sNnFQQseKGx7dvP9C9yS6cdXsC+SM7h1M8NK+8SYvM3VweuzbcQJ7CCT08/vWLz9hxrg7yJZ+LSUtLqnZfwsk5IRIkiYTjBx+gfe2taNQhK9r1zamrS0f0OIgKtdLgyvnnSJ0hOlKki4a1iy7h65cfyFkgAeLED492tbbi6oUXYGBqY52Rp0MBCtidgE+B6YIV5VGiTApcufQcVcuu0n+Xj1CfN7I7xtX5wDj1eWPR3LNo2c4B8mWvoWp01aYq2LLxGgoUTuzh8Q/vv8Om3TXQsdUOFFWfgzJkjvX/zzVh1OeaX2hWb6P+/OM+MK3dIKOuSA2hwtF7d9+iRcPNkHbcV5jK/mdPPUHmbLF1QPjw/lvUr74eP3/+G9OYOzCdObcMmjTYiOmzSqNrp50YP7k4GtRZj9p1M6rPjO9QuWo6Y4DYuf0O9FcBogSmG1VgWsg5CUYNP4wUKaOiY5dcOpisXjO9DjGLl0xuDEyPHXmA69df6sB05pwyeoh+tOhhsHrlJR1oPnv6EUMGumKCSwm0bbkViZNERtXq6ZBE/VfCWmlfiuYMgekD5bZn9y3Eih0ONWtn0IFp3vwJkT5jTPTsulvvW79hZtxSw/SlgtQQ3Mp/p8wohU7ttutRwiHVZ+MxE4p6uH6poJX9xk0qhg5ttkOmCpBqWkPBnj0Hpt9PWycwDZ6ZganJL6rmDEybNs+GLt1yI3vmGXj79gsuXGmpnzgyBF6+WZiknnDZM89EmXIpVcCZD3lzzdV/ELoeboCRww9h7erLuHKjNVo224ydO26iT7986NA5J9Knnqq/ufjneGOUKrYYF84/QxtV9p0rd3zUrPa7onT3/rporp688m3Qzr119DlIYLpsVSUkTRZFTxngfkj+0hWVsG7tZSxf+ufwLZPxuCMFKEABClBACfgmMG3YIgs6dMuJPJnm4J16rzxxtRn27bqNjmrol2OeeBgzpRic1O9KlksBCTiL5Fyo3yt3/FMH44YdwbqVlzF7aVncvvkag3q5okCRxFiwqgI6Nt+Og/vvYp9bfVQsuhwX1Xtli3bZkUO12aDqen2ftrjWQptGW3QQapgiQAJcOY5j2ll4/uwj+gzJh4hqKFiX1jsxaHRBPSSsTaOt6sNuKOw4XAf1q67D928/sWlfTX0Nr9V7rRw/SbLIVp9ygJ3RfALmDkyjRAuNg7caIV1EF32S64/VwNIZ57Bs1nlkyBYT09eURb5kc/QfoWsOV8Po3ocRSlX5NO+SHVXzr0BkNVTP/ePzFk0EGaLfoc42HZjGVpUxDUr/v2+61US/tntxaPc9bDlVCz2b7dYVprKffLnQuNwGJEoeGdvP1kGPprt0cNqqZw7EjBMO/drsZWBqvm7ElihAgUAq4FNgKp8tzt1sgXiRxmqhIaML6c8brdRnFPm8sftwXdRVnzfks8zOQ3UwqI8rwqgvdtt1cUSJAovV8G2Pjw+nvoQ7dKohMqecjmbqc02Pfk7Innam/lzTd0h+PcS7U+sdxsB0jxppevZGC+TMOAv37rzF+KnFdLDauc0OD4Hp3KXlEDlKaFQutUJ/YX3gRAP06bZXf24zbOYOTCWwlABS5gh13XcH5dRQ+WNHHyBjxljo0nGHGpJfWWclUkE6qP9+D0Pyu3bPo87zp67UlM96sWKFx/v3X3WQKaG0DL8vUiwp+qmh/f0G5tdfekvbEri6D0zl53167oWjmuagYqU0CK6mdJqshtgXKZZMV5fKyKnJE4/pIrgeKhDt1Scv3qj2jx97oCtEHVTFqRxDNjmehLXy2XGFGupfukxK43lIEOqgQnIpsAsZIhjGjv5HD+93f/0y7D/ABqanrBSYZmFgavJLs7kD07z5EqJOzd/zhmzfVRvTprrpIDSOqiA4fqoJ4scap38nExR/Ud/qyzbRpTjuqApSmdNCws5Eccfrn0dRL053HrZH6uQuKKqenOUrpkL50sv17+RF8e6jDogVdTTChg2Bw8cb6irSRk2yoLD6ZsUQpEo4O2hoQQamJvcI7kgBClCAAr4V8G1gmidfAjSqsUEfZoOqiJilho9tWH0FsdV75cHTDZE85sQ/3itHuxRVH+rfqCrPozh/tyWqllqJi+ee6f32utWDy5jjOgwqoz5YVy29Uv9cqviuPm6DxFHG69/tPV5fV4F6rnjNnT8B6ldZpx/jVCAhho4rjHxZ5uLsrRbqPNfj+JGH+nf9huXHRzVn5NMnH1DAObExiJVwt9/Q/AxMfdtxbHh//wxME6eIjI3HayJT1KnGKp01h6vrKtCj++8jbeYYGDWnqK5qbltzi6769By4dh/uhBuXX2LlvIs6CD155BHmTjilRaWadfemW1i94OIfgelR1/tYNPWsnn/tyqc2cIw/Ey+ffULZ6qlQsnIKXdnKClMb7pg8NQpQwC4EfBuYnr/VEg1qrDN+3ug/rAA+qc8bI9Som4yqWtRldkk9tV7Dmutx6cJzHa66D1yLqpGo5aukRktVJSqBaR5V3Vi3yu9MIq/6XDNcjdjJk2WOhwpTGVnz+fN3vU+lamlQQ82pWll9fnJfYSqB6RFVhTl98gm9n1TGbt10HUsX/Dv3qrkDU8832DCEXX5uWORJ5g3l9lvAnitMf5ywTmAaLBsDU5OfP+YOTLOocnWZW0K2LTtqYuK4o9i29QZixgqHMxeaI070MYisSrKHjCiE9Olj6qF/iRJFwvRpJ/Q3KNNnl/awgNTTV52ROf10VFWTE3dTkxi/ePHReG0RI4aCQ5aZ6huMeCilSvrluJ265tKl4lLVKlt2hzh6fgxWmJrcJbgjBShAAQr4UsC3gWlmtWBi2ya/36fW7qiGKeOOY+fWm4gRKyyOXWyCJNEm6AqLASMKIm2GGPq9MqF6r5w99STGDT+C++86wiH1DDz6/0I2S9dX0sP4Y6kKuc5qDi/DdDXSvlSLOmWeo+eXKl4muT6u58A0faaYxvOR3y1cXREZk0zF7VftdQWpHN/wQX29CnafqcA0kXqvlapY2bKq99qp80oxMPVlv7Hl3f0zMM2YPRZWuFbF4/v/LsQUJlxw9FdVoVtXX9csy/dV0dU8NQuv0v/2HJhuUIFri8ob8eDOOx2Yul/0yf2/PVeY7t1yy7jw1LUvbXVo+1GtKlyqSkqUq5kaTStsYGBqyx2T50YBCtiFgG8D03uvOnj4vCGLDK1XRVc9O+3R17tlb039nlDGean+t+fAdOiYQjh7+qleREoC0wzqc03r/3/Oyqw+1yxaXQnpk0zxEJh26pELxUsl1yNZI6lCrQdqWH7Fkiv+CEx377ilpweQTQJU9/+WnzEwtW6XtOvA9LiVAlMHBqYm91prBKajxhbRVaFtW23VL3wy0e9tNa/opg1XsWV7LSRJMEGfv5TO33vcQVeYSuWqrNBWo+rqP65tzPiiupRchtfLtABOagGourV+V8pIkDpEzXvBwNTkLsEdKUABClDAlwL+EZgOHVtYV4V2VvNxyXvl+OlqNIZ6r5TA9NKDVijvvEzN/fVCn+meY/V06Cpb6YopjdWi7i9D5iJ1U5P8r1Irw3oOTPMVToTaFX5PcSND/AeMKID8Wefh6IXGaKgqTC+c/V3JathkWoHc6r1WFo+SrYQKYvsPL8DA1Jf9xpZ398/AVIbPbz5ZC9liTfeSoECJxGjSKRtCqeqfyUOOYt/W2x4C06gxwmCFClSd0y3Qj2dgass9iedGAQoERgHfBqbHLzRRFabrcf7s0z+4ihRPqucalYrQUUMOY6eas91zYCrD8SuXXqG/SJbANL/6XFPz/59rCqrPNYPUF9BOWecaA1MZNt61d26UKrRETY/0FdVqpdP/s8XANDD2H99cs10HpsdS+eZSzbZvsBxXzNaWNRuyu0WfJKw0pcJ04ZIKOuCcNOGYXgxq9fqqWL3iEoYMOoDrd9ro4fQHXe+iR28nPSeqzGEqCwIcUXOYFiu8UE1Q/ApZs8VBDbVSXJeOO3HibFOULLpYT+ScLXscrFpbFdnUHKYyN9wSNVepTErMwNSaXZnHpgAFKBCwBfwjMJV5St3UUPipE9z0YlBLVBWpzF86uLer/v9l4aZRgw8jX6FEWLimAjq12IH9u2+r4fn1UbbQUtxU75WySEFV9QdAz467cfhcI5Qvskwv5uQ5MO3aNw8KOszT83iNm1YMXz6rRXja78KAkQX0iqdd2+zUQ+H6DM2Htcsv6zlVF6+rpOdalffaeSvLI3mKqAxMA1A3N3dgGj5iSLg9boYs0aeqYZbfse5IdcwaexKbVlxFVLXQRO+x+dCn5R49RH+TWy20qLJJBabBMHFJSZTMskjPUW94vHOZZMiRLx76tPpdefRfganMlSrzoR7YcUfvxwrTANRJeSkUoIDNCvgUmEZQ7wnXH7VFkhgT9FQ/g0YW1J83ZA5R+bwh0/ysWX5JfzG8X00nVLfqWh2Yzl5cVgefshim4fERI4XE2u3VkSvjbO0hgWn3vk7I5zBXf66ZMK24HnrfTX2uMSz6FFGN4ilUJAlqVVyjR+LMUe1GUKNXi+VbZHMVpjZ7k23kxOw6MD2S2iqKwXJetspxzX3QABuYOuaMp4fef1bf7JxUEw9v3XwN02aWRtNGG/UL4QC10pt80zNDDdMfOKQgcmSdiUcP36NY8WR6VbTQahEAmbS4W5ddakW7N1i7oZraZ5bRf/CwQqhUOQ0ePHiHZUvOo1VbB2RRw/q56JO5uyjbowAFKEABEfCPwNQhZ1xMVnN2fVIf8s+ceIztm29g0qwSaN1wC27deI2p80vpCryDe+/qFb7Xrbish+U7q0qMXoPz6j885L2yd+c9uK+GmS3bWFnPSyqb58DUIVdc3Vba9DH0vk1qbdArpIYLHwJSmeqoFlmUbY8altar025d8dpveH6Ur5waD9V77colF9G8bXbkTPfvezF7hn0LmDswFQ1Z8V6G4zdUizO9ef0Fg10Kqb4bQU/5MHfiKb0AlMxNKuHokM6uGnDotMJ4/+4bhnZxNT7e7dBDrFt8yTh8/78C09a9cuhq1TF9DsPBKR4DU/vuljx7ClDATgR8CkzlMmTF+yyq2KlKmZW4euk5Rowvoj5vxNNXKMPee6rPG7JgkwSovdRnGdlkcSZZxKh3l73Gx8v8orJgkQSisklgmkMtViSfa9KpzzWSFzT6/+caQ2Aqiz4tWVMJEpw+vPcOwwYe1POTrlCfZ2TaoRSpoqK9mnbI8xB8awzJt5NbbrXTtOvA9LCVAtPcDExN7rB/OyTf5AP5YUeZkP/F266IF3Os/ubJ1E0qX9RUJHpzUkP5B6tFnwo4zTf14dyPAhSgAAUo4CsBnwJTXzVm4s7u3+tkHlSXscexSw1TM2XzHJimThfdOB+pKY+XfdwfP7daxEoWhCqWZ5GpD+d+Ni7gH4GpjV8yT48CFKAABcwkYEpgaqZD/dGMBKZp1OcaCTwtsfn3HKaWuAZ7PoZdB6aH0liFPlieS1Y5rrkPahcVpua+aNfD9TFn1mnMm3Ma1WumQ7sOOZHL4Xd5vSmbfLt07lILFMq3AJfVN1WTp5ZQYauao6QTV5IzxY/7UIACFKCA7wUsHZj2V3OMymKKLetvRpJkkbHjcB3kUcPjZbi9KZvMUyoBZ8Hs89FU/WHh28BU3muPX26KEnkX6eFyY1XFx6dP39Cr4+8KEG72L8DA1P7vIa+AAhSggLUEGJgCuQsmQMuuDmhYYh1yFoyPQf2y4nyrFR5uSbQcCYEajmp00DJr3Sq7P65dB6YH0lrFP1jei1Y5rrkPGigD05yqfH7cxOKIqOYQef78I9q13obTpx77yrZBo8zo2CUXgqryl3Nnn6Bl8y14+eKTr9rgzhSgAAUoQAFTBSwdmMaIFRZT5pZCcjVH95cvPzBGLYIgw+JN2fIWTIhZS8pi3LAjmDbRzU+BqRynbuNMaNM5B2Q0iCzS0KHZdr7XmnID7GQfBqZ2cqN4mhSgAAVsUICBKQNTS3VLuw5MXdNZisnDcYLlu2CV45r7oIEyMDU3ItujAAUoQAEK+LeApQNT/74etk8BBqbsAxSgAAUo4FcBawamfj1nvz6OQ/L9Kmeex9l1YLrPSoFpAQamJvc+W57D1OSL4I4UoAAFKEABKwowMLUiPg/tLwIMTP2FlY1SgAIUCBQCDExZYWqpjm7Xgeme9JZi8nCcYIXOW+W45j4oK0zNLcr2KEABClCAAv4gwMDUH1DZpFUFGJhalZ8HpwAFKGDXAgxMGZhaqgPbdWC6O4OlmDwGpoXPWeW45j4oA1Nzi7I9ClCAAhSggD8IMDD1B1Q2aVUBBqZW5efBKUABCti1AANTBqaW6sB2HZjuzGgpJo+BaZGzVjmuuQ/KwNTcomyPAhSgAAUo4A8CDEz9AZVNWlWAgalV+XlwClCAAnYtwMCUgamlOrBdB6Y7rBSYFmVganL/5BymJlNxRwpQgAIUoICXAgxM2TECmgAD04B2R3k9FKAABSwnwMCUgamleptdB6bbMlmKycNxghU/Y5XjmvugrDA1tyjbowAFKEABCviDAANTf0Blk1YVYGBqVX4enAIUoIBdCzAwZWBqqQ5s14HplsyWYvIYmJY8bZXjmvugDEzNLcr2KEABClCAAv4gwMDUH1DZpFUFGJhalZ8HpwAFKGDXAgxMGZhaqgPbc2D6fXMWSzF5OE7wUqeM//769RuyFG2CECGCG39WKE8WjO3fCl/U7/qNnotDx84hTOhQaFyzFKqWLaj3u/fwKfqMnIMr1+8ibuzo6NWuDrJmSIHL6t/t+07GtiUj/f3aGJj6OzEPQAEKUIACFPh7AQamf2/IFmxLgIGpbd0Png0FKEABexJgYMrA1FL91a4D041WCkzL/BuYPn/5BuUa9MKh9ZP/uGUuc9fi+u0HGNazKV68eotarQZjxqjOSJk0Puq1G4ZCTllRu2IRHHa7oMLT2di5fAxuqP0ZmA4+aKn+z+NQgAIUoAAFbF6AganN3yKeoC8FGJj6Eoy7U4ACFKCAUYCBKQNTSz0d7Dow3ZDVUkwejhO87Enjv2/dfYQW3cd5WRFatl5PDOrWCJnSJtP7j3RZinBhQ6N6+cIoXrMr/tnkguDBgunfVW7SD11b1kDECGGNgem37z/QuNNI5MuZCY1qlDT7tbLC1OykbJACFKAABShgfgEGpuY3ZYvWFWBgal1/Hp0CFKCAPQswMGVgaqn+a9eB6bpslmLyGJiWP2H899mLN9Cm90QkTRQH124+QKrkCdCnfV0kThAbmQo3guvaiYgUMZzef/n6PXA7ewU1yjtj4Nj5WDd3sLGdTgOmwDFrWmRMk9QYmA5Q+/z48QMDuzT0l+tkYOovrGyUAhSgAAUoYF4BBqbm9WRr1hdgYGr9e8AzoAAFKGCvAgxMGZhaqu/adWC6JrulmDwGphXdjP+WIfQLV+1E3arFEE/NRTpl3jrs/+cMVs4cgMzOjXBi+wyEDhVS779++yHscnVDjQqFMXHWaiyb1s/YTu8Rs/VQ/RxZ0ujAtEG14tix3w3TR3UyVqGa+2IZmJpblO1RgAIUoAAF/EGAgak/oLJJqwowMLUqPw9OAQpQwK4FGJgyMLVUB7brwHS1lQLTSv8Gpp7vkwyjdyjeFDuWjUGRap2wb814RIkUQe+2dN1unD5/XQ3JL6QWg5qHDfOGGB/esb8LcmdPj/Spk6B268EIGjQoCqrFo0b0auZvXYGBqb/RsmEKUIACFKCA+QQYmJrPki3ZhgADU9u4DzwLClCAAvYowMCUgaml+q1dB6YrHSzF5OE4wascN/772YvXePvuA5Iljqd/9vXrN2RTgakMxW/QfgR6tK0FR1U1KlvfUXMQP04MVClTAM5VO+GgWigqTOjf1aclanXF0B5N1L9DoWHHEVg9c6D670h0al4Vznn9Z+oBBqZW6T48KAUoQAEKUMB3AgxMfefFvW1fgIGp7d8jniEFKEABWxVgYMrA1FJ9064D0xU5LMXkMTCtesz47wNHz2LAmHmYP7EnYseICpd5a/Wq98um9sW0BRtw+sI1jB/YBvcfPkO99sOwxKUPEsWPhUYqDHXInBpNapXG1r1H9RD9rYtH4tqt+8Y5TE+eu4YO/SZj7ZzBiBr5d5WqOTcGpubUZFsUoAAFKEABfxJgYOpPsGzWagIMTK1GzwNTgAIUsHsBBqYMTC3Vie06MF3maCkmj4Fp9aMe/j1z8SYsWbsLX1R1afpUSdCvU309n6lUm8rQewlVw4UNjZb1y6NcsTz6sQ8eP0fPYTNx5cY9JIgbE/3VY9KlSozL1+8aA1PZb4TLUjx68kKFrq3Nfq0MTM1OygYpQAEKUIAC5hdgYGp+U7ZoXQEGptb159EpQAEK2LMAA1MGppbqv3YdmC6xUmBa02Ngaql7Ze7jMDA1tyjbowAFKEABCviDAANTf0Blk1YVYGBqVX4enAIUoIBdCzAwZWBqqQ5s14Hp4pyWYvJwnOC1jljluOY+KANTc4uyPQpQgAIUoIA/CDAw9QdUNmlVAQamVuXnwSlAAQrYtQADUwamlurAdh2YLsxlKSaPgWmdf6xyXHMflIGpuUXZHgUoQAEKUMAfBBiY+gMqm7SqAANTq/Lz4BSgAAXsWoCBKQNTS3Vguw5MF+S2FJPHwLTuYasc19wHZWBqblG2RwEKUIACFPAHAQam/oDKJq0qwMDUqvw8OAUoQAG7FmBgysDUUh3YrgPTeVYKTOszMDW5f7oMPobJgzxO+tqqdw58CPodwwcf9NBOt1558CsIMMzTz00+GHekAAUoQAEKBEABBqYB8KYG8ktiYBrIOwAvnwIUoMBfCDAwZWD6F93HVw+158D025zfK85begvR8JClD+kvx2OFqb+wslEKUIACFKCAeQUYmJrXk61ZX4CBqfXvAc+AAhSggL0KMDBlYGqpvmvXgelsJ0sxeThOiEYeCyOtchJmOCgDUzMgsgkKUIACFKCAfwswMPVvYbZvaQEGppYW5/EoQAEKBByB/7V353E2lv/jx99mjBlkyb6TNklIhVJ9bBUtaCFb2VWGLBPKvoxskTCyE2UrW98KJZUlkTayhepjl53IMsPvPrefqVvTp2Pmuu5rrjOv+afvnLnP9T738758H5/H63GfcwimBFO/drPNwfTcxPv8YvLMydByhZG5qocSTFWLsh4CCCCAAAIaBAimGlBZ0qgAwdQoP8MRQAABqwUIpgRTvzaw1cF0/P1+MXmDaevlRuaqHkowVS3KeggggAACCGgQIJhqQGVJowIEU6P8DEcAAQSsFiCYEkz92sA2B9Oz4/7jF5NnTuRzXxiZq3oowVS1KOshgAACCCCgQYBgqgGVJY0KEEyN8jMcAQQQsFqAYEow9WsDWx1M36zsF5M3mL7wuZG5qocSTFWLsh4CCCCAAAIaBAimGlBZ0qgAwdQoP8MRQAABqwUIpgRTvzawzcH0zJgqfjF55kS1+czIXNVDCaaqRVkPAQQQQAABDQIEUw2oLGlUgGBqlJ/hCCCAgNUCBFOCqV8b2OZg+kdcVb+YPHMyRi8zMlf1UIKpalHWQwABBBBAQIMAwVQDKksaFSCYGuVnOAIIIGC1AMGUYOrXBrY6mI6q5heTN5i2+9TIXNVDCaaqRVkPAQQQQAABDQIEUw2oLGlUgGBqlJ/hCCCAgNUCBFOCqV8b2OZgenpkdb+YPHMyvbjUyFzVQwmmqkVZDwEEEEAAAQ0CBFMNqCxpVIBgapSf4QgggIDVAgRTgqlfG9jqYDrCUDDtQDANen/Gxa6V0f3XeI6P7lFeToXFy6DYlZ7Hu3avJBfTiQy84vGgh3EgAggggAACIShAMA3Bi5rGT4lgmsY3AKePAAIIpECAYEowTcH2uaqn2hxMT73+wFWdq6qDM3f8RNVSRtfhDlOj/AxHAAEEEEAgOAGCaXBOHGWPAMHUnmvFK0UAAQRSmwDBlGDq1560OpgOf9AvJs+czJ0+NjJX9VCCqWpR1kMAAQQQQECDAMFUAypLGhUgmBrlZzgCCCBgtQDBlGDq1wa2OZj+/tpDfjF55lzz0hIjc1UPJZiqFmU9BBBAAAEENAgQTDWgsqRRAYKpUX6GI4AAAlYLEEwJpn5tYKuD6dAafjF5g2nnxUbmqh5KMFUtynoIIIAAAghoECCYakBlSaMCBFOj/AxHAAEErBYgmBJM/drANgfTk4Nr+sXkmZOl6yIjc1UPJZiqFmU9BBBAAAEENAgQTDWgsqRRAYKpUX6GI4AAAlYLEEwJpn5tYKuD6aCH/WLyBtOXPzIyV/VQgqlqUdZDAAEEEEBAgwDBVAMqSxoVIJga5Wc4AgggYLUAwZRg6tcGtjmYnnj1Eb+YPHOydvvQyFzVQwmmqkVZDwEEEEAAAQ0CBFMNqCxpVIBgapSf4QgggIDVAgRTgqlfG9jqYDrgUb+YvMG0+wdG5qoeSjBVLcp6CCCAAAIIaBAgmGpAZUmjAgRTo/wMRwABBKwWIJgSTP3awDYH0+Oxj/nF5JmTrcf/GZmreijBVLUo6yGAAAIIIKBBgGCqAZUljQoQTI3yMxwBBBCwWoBgSjD1awNbHUz71fKLyRtMe71vZK716bLCAAAgAElEQVTqoQRT1aKshwACCCCAgAYBgqkGVJY0KkAwNcrPcAQQQMBqAYIpwdSvDWxzMD3Wt7ZfTJ452XsvNDJX9VCCqWpR1kMAAQQQQECDAMFUAypLGhUgmBrlZzgCCCBgtQDBlGDq1wa2Opj2ruMXkzeY9l1gZK7qoQRT1aKshwACCCCAgAYBgqkGVJY0KkAwNcrPcAQQQMBqAYIpwdSvDWxzMD3a63G/mDxzru0338hc1UMJpqpFWQ8BBBBAAAENAgRTDagsaVSAYGqUn+EIIICA1QIEU4KpXxvY6mDa01Aw7U8wDXp/xsWuldH913iOj+5RXk6Fxcug2JWex7t2ryQX04kMvOLxoIdxIAIIIIAAAiEoQDANwYuaxk+JYJrGNwCnjwACCKRAgGBKME3B9rmqp9ocTI90f+KqzlXVwTkGzEtyqbXfbZFmHQfJ/00bKMWL5Jez585L79emyKq1GyRjVKS0bPiI1KtVxX3urr2/Sc8hk2Xr9p1SIF8u6d7+GSl3242yxfm9Q6/RsnjGEFUv9x/X4Q5T7cQMQAABBBBAIOUCBNOUG7JC6hIgmKau68GrQQABBGwSIJgSTP3ar1YH025P+sXkmZPj1bl/m3vOiaMN2vSXg4ePydQ3XnGDadyU+bL91z0ysFtrOXz0hDSKjpXxQ1+Sm4oXkibtB0rVe8tJ4ycekC/XbXTi6ST5ZPYw2eEcTzDlDlMjG5uhCCCAAAKpU4BgmjqvC68q+QIE0+Tb8UwEEEAgrQsQTAmmfv0bsDmYHn75Kb+YPHNyDnrvb3MDcfTiRZGPl6+TEf3ausG0VpNu0r9rCylT8nr3+CFxMyVzpiipX6ea1GjYRVZ/ECfpw8Pdvz3Vqrd0adNAsmbJlBhMz8cnSMuYIXJ/xTLSosHDys+VO0yVk7IgAggggAAC6gUIpupNWdGsAMHUrD/TEUAAAZsFCKYEU7/2r83B9FDXun4xeebkGvyu5/dfd+2X9r1GyZxxfaRu6z6JwbRMtRayfP5IyZY1s3v87IXLZN36rdKgTnXpN/wtWTAlNnGdmL5jpEK5klL6luKJwbSvc0xCQoL069xcy3kSTLWwsigCCCCAAAJqBQimaj1ZzbwAwdT8NeAVIIAAArYKEEwJpn7tXZuD6cEu9fxi8szJPWSO5/fmHQdLq0aPyt133iq1mnZ3g2nhAnmkbPUW8s2S8RIVmcE9fuGSVbLUuQO1wePVZOTEuTJrbO/EdXoMnuS+Vb/87be4wbTZ0zXk4y/WybihMYl3oao+WYKpalHWQwABBBBAQIMAwVQDKksaFSCYGuVnOAIIIGC1AMGUYOrXBrY6mHZ+2i8mbzAdOjvx9wWLV8pq5zNIB/d4zn3scjANvCU/cIfp5/NGyLXZsrh/m7ngU/n+x+3OW/KrOl8GNVXenzogcZ1OfeLknjtLSakS10njtrESFhYmVSrdLoO7X1pXxw/BVIcqayKAAAIIIKBYgGCqGJTljAsQTI1fAl4AAgggYK0AwZRg6tfmtTmY/hZT3y8mz5w8w2Yl/t6ux0j5dsNPEu4EzsDPsRO/S5ZrMsmAri1lxIT35JUXG0kF567RwE+voZOlUP7cUvexylK9XoysXDhaMkZduvu0ZqMu8uorrZzfI6V5p8Eyd0I/579DJOb5elL9vju0nCfBVAsriyKAAAIIIKBWgGCq1pPVzAsQTM1fA14BAgggYKsAwZRg6tfetTmYHujUwC8mz5y8w2f+49y/3mE6dtr78v3Gbc5b9NvJ7r0HpUmHgTIjrqcULZRXWjgx9K6yJdy38i/6bI37Fv1F7wyRbb/sTvwM0283bJOOvUfL/MmxkiP7pbtUVf4QTFVqshYCCCCAAAKaBAimmmBZ1pgAwdQYPYMRQAAB6wUIpgRTvzaxzcF0f8eGfjF55uR7fUZQwfTcufPuW+9XrFkvmTNFSZumdaT2Q5Xc5+7Zf0i6DZwgW3fscj/vtE9MU7n15mKyZfvOxGAaOG5w3EzZd+Cw+7moqn8IpqpFWQ8BBBBAAAENAgRTDagsaVSAYGqUn+EIIICA1QIEU4KpXxvY5mC6r4OZYJp/xD8HU7+um4o5BFMViqyBAAIIIICAZgGCqWZglvddgGDqOzkDEUAAgZARIJgSTP3azFYHU+fzQU385B/5jomxymcSTJWTsiACCCCAAALqBQim6k1Z0awAwdSsP9MRQAABmwUIpgRTv/avzcF0b7vGfjF55hQY9baRuaqHEkxVi7IeAggggAACGgQIphpQWdKoAMHUKD/DEUAAAasFCKYEU782sM3BdE/bZ/xi8swpOHq6kbmqhxJMVYuyHgIIIIAAAhoECKYaUFnSqADB1Cg/wxFAAAGrBQimBFO/NrDNwXR39LN+MXnmFIqbZmSu6qEEU9WirIcAAggggIAGAYKpBlSWNCpAMDXKz3AEEEDAagGCKcHUrw1sczDd9UITv5g8cwq/+ZaRuaqHEkxVi7IeAggggAACGgQIphpQWdKoAMHUKD/DEUAAAasFCKYEU782sNXB9PmmfjF5g+nYqUbmqh5KMFUtynoIIIAAAghoECCYakBlSaMCBFOj/AxHAAEErBYgmBJM/drANgfTnc8184vJM6fIuClG5qoeSjBVLcp6CCCAAAIIaBAgmGpAZUmjAgRTo/wMRwABBKwWIJgSTP3awDYH0/+2au4Xk2dO0QmTjcxVPZRgqlqU9RBAAAEEENAgQDDVgMqSRgUIpkb5GY4AAghYLUAwJZj6tYFtDqa/tmzhF5NnTrGJk4zMVT2UYKpalPUQQAABBBDQIEAw1YDKkkYFCKZG+RmOAAIIWC1AMCWY+rWBrQ6mLQwF00kE06D3Z1zsWhndf43n+Oge5eVUWLwMil3pebxr90pyMZ3IwCseD3oYByKAAAIIIBCCAgTTELyoafyUCKZpfANw+ggggEAKBAimBNMUbJ+reqrNwfSX5i2v6lxVHXzd5ImqljK6DneYGuVnOAIIIIAAAsEJEEyDc+IoewQIpvZcK14pAgggkNoECKYEU7/2pM3B9Oemrfxi8swpPnWCkbmqhxJMVYuyHgIIIIAAAhoECKYaUFnSqADB1Cg/wxFAAAGrBQimBFO/NrDNwXRHk9Z+MXnmXP/WeCNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTAmmfm1gm4Pp9mef84vJM+eGaeOMzFU9lGCqWpT1EEAAAQQQ0CBAMNWAypJGBQimRvkZjgACCFgtQDAlmPq1ga0Ops887xeTN5hOH2tkruqhBFPVoqyHAAIIIICABgGCqQZUljQqQDA1ys9wBBBAwGoBginB1K8NbHMw3dboBb+YPHNufOdNI3NVDyWYqhZlPQQQQAABBDQIEEw1oLKkUQGCqVF+hiOAAAJWCxBMCaZ+bWCbg+lPDdv4xeSZc9OMMUbmqh5KMFUtynoIIIAAAghoECCYakBlSaMCBFOj/AxHAAEErBYgmBJM/drANgfTrQ2i/WLyzLl5ZpyRuaqHEkxVi7IeAggggAACGgQIphpQWdKoAMHUKD/DEUAAAasFCKYEU782sNXBtL6hYDqLYBr0/oyLXSuj+6/xHB/do7ycCouXQbErPY937V5JLqYTGXjF40EP40AEEEAAAQRCUIBgGoIXNY2fEsE0jW8ATh8BBBBIgQDBlGCagu1zVU+1OZhuqdf2qs5V1cEl5oxWtZTRdbjD1Cg/wxFAAAEEEAhOgGAanBNH2SNAMLXnWvFKEUAAgdQmQDAlmPq1J20OppvrtvOLyTPnlndHGZmreijBVLUo6yGAAAIIIKBBgGCqAZUljQoQTI3yMxwBBBCwWoBgSjD1awPbHEw3PfWiX0yeOSXfG2lkruqhBFPVoqyHAAIIIICABgGCqQZUljQqQDA1ys9wBBBAwGoBginB1K8NbHMw3fhke7+YPHNunfuGkbmqhxJMVYuyHgIIIIAAAhoECKYaUFnSqADB1Cg/wxFAAAGrBQimBFO/NrDNwfTHJzr4xeSZU2reCCNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTAmmfm1gm4Pphjod/WLyzLltwetG5qoeSjBVLcp6CCCAAAIIaBAgmGpAZUmjAgRTo/wMRwABBKwWIJgSTP3awDYH0/W1O/nF5JlTeuFwI3NVDyWYqhZlPQQQQAABBDQIEEw1oLKkUQGCqVF+hiOAAAJWCxBMCaZ+bWCbg+kPtWL8YvLMKfP+MCNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTAmmfm1gm4Pp94+95BeTZ07Z/3vNyFzVQwmmqkVZDwEEEEAAAQ0CBFMNqCxpVIBgapSf4QgggIDVAgRTgqlfG9jmYPrdo539YvLMuf2DoUbmqh5KMFUtynoIIIAAAghoECCYakBlSaMCBFOj/AxHAAEErBYgmBJM/drANgfTbx/u4heTZ065j4YYmat6KMFUtSjrIYAAAgggoEGAYKoBlSWNChBMjfIzHAEEELBagGBKMPVrA9scTL+p2dUvJs+cOxYN9vz+0adrZNTkeXLk2AkpeVNR6ftSMylSMK+cPXdeer82RVat3SAZoyKlZcNHpF6tKu5zd+39TXoOmSxbt++UAvlySff2z0i5226ULc7vHXqNlsUz9EdZgqmR7cNQBBBAAAEErk6AYHp1Xhyd+gUIpqn/GvEKEUAAgdQqQDAlmPq1N20OputqvOwXk2fOnYsHJf7+66790jC6v0wd8YpcX7SAvD7hXTd6Tnyts8RNmS/bf90jA7u1lsNHT0ij6FgZP/Qlual4IWnSfqBUvbecNH7iAfly3UYnnk6ST2YPkx3O8QTT2JVGLixDEUAAAQQQSI0CBNPUeFV4TSkRIJimRI/nIoAAAmlbgGBKMPXrX4DNwXTtQ938YvLMKb/k1cTf9+w/JD//d5/cV+E297EfNu2QmD5xsnTOcKnVpJv079pCypS83v3bkLiZkjlTlNSvU01qNOwiqz+Ik/Th4e7fnmrVW7q0aSBZs2RKDKbn4xOkZcwQub9iGWnR4GHl58odpspJWRABBBBAAAH1AgRT9aasaFaAYGrWn+kIIICAzQIEU4KpX/vX5mC65sHufjF55lT4eECSc38/9YcMHPWOZMoY6b7Fvky1FrJ8/kjJljWze/zshctk3fqt0qBOdek3/C1ZMCU2cZ2YvmOkQrmSUvqW4onBtK9zTEJCgvTr3FzLeRJMtbCyKAIIIIAAAmoFCKZqPVnNvADB1Pw14BUggAACtgoQTAmmfu1dm4PpVw/08IvJM6fiJ3+Gzst/GPrmLJk6e7HzOaQ3yegB7SWTcydp2eot5Jsl4yUqMoN72MIlq2Tp8nXS4PFqMnLiXJk1tnfiuj0GT3Lfql/+9lvcYNrs6Rry8RfrZNzQmMS7UFWfLMFUtSjrIYAAAgggoEGAYKoBlSWNChBMjfIzHAEEELBagGBKMPVrA9scTFdX6+kXk2fO3Z/2T3LuH2fOuXeRLlyyUuZN6u8E05by+bwRcm22LO7xMxd8Kt//uN15S35V58ugpsr7U/+8U7WT8zb+e+4sJaVKXCeN28ZKWFiYVKl0uwzu/py2cySYaqNlYQQQQAABBNQJEEzVWbJS6hAgmKaO68CrQAABBGwUIJgGH0xzdawus97dbONlThWv+b77i0i+zbtl+7hVntdzQ+t7ZMmhCBndf43n8ege5aVtzwqp4rV/WbWXkddxz7J+iXMDX/B07MTvUtF5O33gJ955C70bSueOcD5/dKi88mIjqeDcNRr46TV0shTKn1vqPlZZqteLkZULR0vGqEt3n9Zs1EVefaWV83ukNO80WOZO6Of8d4jEPF9Pqt93h5bzJJhqYWVRBBBAAAEE1AoQTNV6spp5AYKp+WvAK0AAAQRsFSCYBhdMA9e3UO3bJCrfpTv4+EmewPZxX/7tiTYE01VV/nxLe/LOPHnPqvRZ38QnrlizwQmhk+StN7pJkYJ5ZMHilTJ83Bz5Yt4bMm76/8n3G7fJiH7tZPfeg9Kkw0CZEddTihbKKy2cGHpX2RLSqtGjsuizNe5b9Be9M0S2/bI78TNMv92wTTr2Hi3zJ8dKjuzq9zjBNHnXn2chgAACCCDgqwDB1FduhvkgQDD1AZkRCCCAQIgKEEyDD6YhugWMn5YNwXRl5T5GnO793Dt38qyPZMb8TyXwpU+BO0hfbttQ7ixzs5w7d9596/2KNesls/OZpm2a1pHaD1VyX/Oe/Yek28AJsnXHLilcII/0iWkqt95cTAJ3rAY+w3TxjCHucYPjZsq+A4ed6NpW+bkSTJWTsiACCCCAAALqBQim6k1Z0awAwdSsP9MRQAABmwUIpsEH00K1nDtM82e1+XIbf+1Xvh0/8IJsCKYr/vPnnZ5+It73hZk7W1WfI8FUtSjrIYAAAgggoEGAYKoBlSWNChBMjfIzHAEEELBagGAaXDDNWb6IlH29giRkWGj19Tb54tOnqyC/Trhg5WeYLr/vz88S9dPw/hVmPjtV9TkSTFWLsh4CCCCAAAIaBAimGlBZ0qgAwdQoP8MRQAABqwUIpsEH09JDrpczUfWsvt4mX3xk+Iuye2J5K4PpF/cm/W31uj3/s7Kn7hG+rE8w9YWZIQgggAACCKRMgGCaMj+enfoECKap75rwihBAAAFbBAimBFO/9qrNwfTzSrF+MXnmVF7Vw8hc1UMJpqpFWQ8BBBBAAAENAgRTDagsaVSAYGqUn+EIIICA1QIEU4KpXxvY5mD62T0D/GLyzKnyZXcjc1UPJZiqFmU9BBBAAAEENAgQTDWgsqRRAYKpUX6GI4AAAlYLEEwJpn5tYJuD6bK7X/WLyTOn6upuRuaqHkowVS3KeggggAACCGgQIJhqQGVJowIEU6P8DEcAAQSsFiCYEkz92sA2B9NPKwz0i8kzp9qaV4zMVT2UYKpalPUQQAABBBDQIEAw1YDKkkYFCKZG+RmOAAIIWC1AME0dwXTzxiiZNT2H9B20Vwb2ySd16h6TW249c9V764tl18h/qv7uPq9JvevkrTm/XPUal58wengeqfLACbn1tuBeR2yv/FLr8WNS+vY/ZNjAvLJvb4R07blPcudJcJe0OZguLW8mmFZfSzANegPHxa6V0f3XeI6P7lFeToXFy6DYlZ7Hu3avJBfTiQy84vGgh3EgAggggAACIShAMA3Bi5rGT4lgmsY3AKePAAIIpECAYJr6gmlyL2d8vMhLbQvLiLG7krtE4vMuXrwoL7YuIq+/uUvSpw9uub8G03qPXSezFv4iYWF/PtfmYPrJXYOCQ1B81ANfv6x4RTPLcYepGXemIoAAAgggcFUCBNOr4uJgCwQIphZcJF4iAgggkEoFCKYpC6Yff5RFPluaVTJEXpCLF9JJ246/SZ588dL75QJSpNg5OXtW5MD+CLnjrtNS64njMueda2X3rgjJkOGinDoVJhkzXpA2HQ7Ktq1/3mEaeG69hkfk1tJn3OPXfpXJDY+BNZ5ufFSOHQ2XUc7dn/Hx6eTMH+mkYqXf5fG6x2XUsDzy1arMzh2ep507Ow/IU49cL+99uEP+cI6ZEJdLjhxJLxcS0snNt5yRRk2PyOaNkTLr7ZxStOhZ57WEy949EdLp5QPOHaHx8vP2DPLuzGulS4/90vDx4lL7yWNy6GB62b8vQuo3PiKlypxxX8frQ/JIRITItTniZZ/z/HoNj8qqFdfIp0uySNk7/pDn2/0muXLbf4fpx3cONvIv+MF1XY3MVT2UYKpalPUQQAABBBDQIEAw1YDKkkYFCKZG+RmOAAIIWC1AME1ZMJ3/bjap9uBJyZrtgrw/L5sc/C1CWjx/SPp2zy833BgIk0fl3DmRF5oVlaEjd8myT7LJt19nlFeH7XX3zau980nl6ied4JiQ+Jb8y8HUuclTpk3OKQOH75F0zruHB/XN5679++/hTrhML5XuPyXnz4u0eqaojBy3S079HiaxvfNL3MRLd5heDqZzZmR34mZ6aR19SC5cEOnRuaA8Wf+IZMlyQfo5r3Ps1J1yjfN/T5uU0/lvgjxR75jMnZ3d+XuCPPjwSan3WHHp1mevE0DPyPafIiXwVv3AXazTJuVwX9czzY/I8WNhEt2iiBNYD7hvyQ88Z87//ez5t2HzHaZL7hhi5N/5Q990MTJX9VCCqWpR1kMAAQQQQECDAMFUAypLGhUgmBrlZzgCCCBgtQDBNGXB9MsVmZ0ImlXSh1907uAMl3z5zzt3af7mBtPaTxxz77IM/PTsUkDqNjgqPzl3kp49k869wzPwE/jc0sDb3wPHXf4M08vBNHBsIEQ2bXXp2Ms/J0+EyfQpOeTIYedO1YiLsv77jDJoxC4Jd+5CTSqYBt4q/2DN41L+7tPuEtMn55DIyMDM0zLxzVwy5I097uPvzwuE1XB5tsVh5/Xml3YxByVP3ng3fr4z7xfnTtKLkuDcLPp0reLO2+1/llf75Jeajx2XuypcWrdH58CdsUdDMpguun2okX/nNb/rbGSu6qEEU9WirIcAAggggIAGAYKpBlSWNCpAMDXKz3AEEEDAagGCafKD6cHfwuXljoVkeNwuyZb9gixdnMWNl5eD6SO1j8ud5S/FxO4vFXDeyn5Utm6Jcu4ETSdNWl6KoDPeutZ5u306KVPudBLBNNK9M7RZ68OePfbmyNySM5cTMp04Gfhp/WwR6TVg7/8Mpg/UOC4V7rn0WgJ3kkZlTJCy5f6QKeNzuXewBn4CwfTokTB5qsEx6eUE3mFxu93HA8F06uxfJFOmi87HAIjUr30pmA5w7o59uNaJxGDaLaag+3b9ULzD9KOyrxn5d/7w9y8Zmat6KMFUtSjrIYAAAgggoEGAYKoBlSWNChBMjfIzHAEEELBagGCa/GAaeHv6mBG5ZfiY3e7b7ofE5nc+m/SC+7b0wB2mRYqec2Pn7yfTSZsWl942v3RJVlm7OpMMej3wNvuL0qtrQQmE1WzZ//6W/LBwkXGjcsnQUXskPPyC85b8/NKo2WF5Z0pOqep8DEDFSqfkm68zyXDnG+kHDNsjGaMuSE9nvfHT/uvuyctvyX9v1rXO3ajhiW/Jf6VTQWnU5IgTTS8kGUxvKnFWtmyKSgy1gS9weqn7ASlf8bSs/y6jTJ2Q0z3nKeNzOq9L3DtSDx0Md78k6uVe+0MymH5YZpiRf+eP/BBjZK7qoQRT1aKshwACCCCAgAYBgqkGVJY0KkAwNcrPcAQQQMBqAYJp8oPphQsX5bVX88mJ4+FyzTUX3PAZ+DKmxk7U/GxpFilU+LzzlvpLX6ZUxfmc0sDfA/Fy13+db0lyfgJfopS/QLy80P43+cm58/TKt+QHvvTpvVnZncCa2f3s0cDdqvWfOSo/fHspWubIlSC3lTktRw6lly2bo6Tf4D3SrVMhSe+8db7f4L3S+Mni7pc+nTkjMnFMbjnsRNP48+ncoFnXuYv0py2RSQbTwJdR3XPvqcSPEwgE07rO3aw/b490P6O1WetDcuttZ+TwIedLnwbndaNp4Eufjh8P+/8fQ3Am5D7D9IPSw438O390fScjc1UPJZiqFmU9BBBAAAEENAgQTDWgsqRRAYKpUX6GI4AAAlYLEEyTH0z/14UP3GH61NNH3W+6/+tPIJhecD4HtF6jS2+nt+EnqS9wSs7rtvlLn96/7fXknHKKn1NrQ8cUr5EaFiCYpoarwGtAAAEEEEDgXwQIpmyRUBMgmIbaFeV8EEAAAf8ECKYE03/bbQRTkYWlzATT2j8STP9tfyb+PS52rYzuv8ZzfHSP8nIqLF4Gxa70PN61eyW5mE5k4BWPBz2MAxFAAAEEEAhBAYJpCF7UNH5KBNM0vgE4fQQQQCAFAgRTPcE0BZckZJ9q8x2mC0qOMHJd6mzqYGSu6qHcYapalPUQQAABBBDQIEAw1YDKkkYFCKZG+RmOAAIIWC1AMCWY+rWBbQ6m8295wy8mz5zHN7c3Mlf1UIKpalHWQwABBBBAQIMAwVQDKksaFSCYGuVnOAIIIGC1AMGUYOrXBrY5mM4tMdIvJs+cJ7e8aGSu6qEEU9WirIcAAggggIAGAYKpBlSWNCpAMDXKz3AEEEDAagGCKcHUrw1sczB97+ZRfjF55jy1tZ2RuaqHEkxVi7IeAggggAACGgQIphpQWdKoAMHUKD/DEUAAAasFCKYEU782sM3B9N2bRvvF5JlT96e2RuaqHkowVS3KeggggAACCGgQIJhqQGVJowIEU6P8DEcAAQSsFiCYEkz92sA2B9M5N8T5xeSZU297tJG5qocSTFWLsh4CCCCAAAIaBAimGlBZ0qgAwdQoP8MRQAABqwUIpgRTvzawzcF09vVj/GLyzHl6Rxsjc1UPJZiqFmU9BBBAAAEENAgQTDWgsqRRAYKpUX6GI4AAAlYLEEwJpn5tYJuD6czib/rF5JnT4OcXjMxVPZRgqlqU9RBAAAEEENAgQDDVgMqSRgUIpkb5GY4AAghYLUAwJZj6tYFtDqYzrhvrF5NnTsNfnjcyV/VQgqlqUdZDAAEEEEBAgwDBVAMqSxoVIJga5Wc4AgggYLUAwZRg6tcGtjmYvlPMTDBt9CvBNOj9GRe7Vkb3X+M5PrpHeTkVFi+DYld6Hu/avZJcTCcy8IrHgx7GgQgggAACCISgAME0BC9qGj8lgmka3wCcPgIIIJACAYIpwTQF2+eqnmpzMH27yLirOldVBzfe+ZyqpYyuwx2mRvkZjgACCCCAQHACBNPgnDjKHgGCqT3XileKAAIIpDYBginB1K89aXMwnVZ4vF9MnjnP7mptZK7qoQRT1aKshwACCCCAgAYBgqkGVJY0KkAwNcrPcAQQQMBqAYIpwdSvDWxzMH2r0AS/mDxzmuxuZWSu6qEEU9WirIcAAggggIAGAYKpBlSWNCpAMDXKz+z74CIAACAASURBVHAEEEDAagGCKcHUrw1sczCdWnCiX0yeOU33tPT8vmzVdzJ83Bw5ePiYlLihiPR9qZkUK5xPzp47L71fmyKr1m6QjFGR0rLhI1KvVhX3ubv2/iY9h0yWrdt3SoF8uaR7+2ek3G03yhbn9w69RsviGUO0nxvBVDsxAxBAAAEEEEi5AME05YaskLoECKap63rwahBAAAGbBAimBFO/9qvNwXRKgUl+MXnmNNvbIvH3/QePSO2m3eXNQZ2k7K03yKjJ8+T7jdtkyusvS9yU+bL91z0ysFtrOXz0hDSKjpXxQ1+Sm4oXkibtB0rVe8tJ4ycekC/XbXTi6ST5ZPYw2eEcTzDlS5+MbGyGIoAAAgikTgGCaeq8Lryq5AsQTJNvxzMRQACBtC5AMCWY+vVvwOZgOjnfZL+YPHOa72/uCaY/bNwuD1Uu7z62edt/pc0rr8tn742QWk26Sf+uLaRMyevdvw2JmymZM0VJ/TrVpEbDLrL6gzhJHx7u/u2pVr2lS5sGkjVLpsRgej4+QVrGDJH7K5aRFg0eVn6u3GGqnJQFEUAAAQQQUC9AMFVvyopmBQimZv2ZjgACCNgsQDAlmPq1f20OphPzTvGLyTOn5YFm/zh30syPZNNPv8qw3m2kTLUWsnz+SMmWNbN7/OyFy2Td+q3SoE516Tf8LVkwJTZxnZi+Y6RCuZJS+pbiicG0r3NMQkKC9Ov8Z6BVecIEU5WarIUAAggggIAmAYKpJliWNSZAMDVGz2AEEEDAegGCKcHUr01sczCdYCiYtvqHYLrS+azSQAidNqqb5Lw2m5St3kK+WTJeoiIzuJdz4ZJVsnT5OmnweDUZOXGuzBrbO/Ey9xg8yX2rfvnbb3GDabOna8jHX6yTcUNjEu9CVb0nCKaqRVkPAQQQQAABDQIEUw2oLGlUgGBqlJ/hCCCAgNUCBFOCqV8b2OZgOi6PmTtMn/vt73eYfrB0tbz51kLns0w7SpGCed3LF7jD9PN5I+TabFnc32cu+FS+/3G785b8qs6XQU2V96cOSLzMnfrEyT13lpJSJa6Txm1jJSwsTKpUul0Gd39O21YgmGqjZWEEEEAAAQTUCRBM1VmyUuoQIJimjuvAq0AAAQRsFCCYEkz92rc2B9Oxuaf6xeSZ8/zBpp7fl638VkZOmicTh3WWXDmyJf6tTrMe8sqLjaSCc9do4KfX0MlSKH9uqftYZaleL0ZWLhwtGaMu3X1as1EXefWVVs7vkdK802CZO6Gf898hEvN8Pal+3x1azpNgqoWVRRFAAAEEEFArQDBV68lq5gUIpuavAa8AAQQQsFWAYEow9Wvv2hxMx+QyE0zbHPozmB4/eUoeb95Dpo/qLgXz5fJctrHT3pfvN26TEf3aye69B6VJh4EyI66nFC2UV1o4MfSusiWkVaNHZdFna9y36C96Z4hs+2V34meYfrthm3TsPVrmT46VHNkv3aWq8odgqlKTtRBAAAEEENAkQDDVBMuyxgQIpsboGYwAAghYL0AwJZj6tYltDqajc5oJpm0P/xlM5y9aIYHPH42ISO+5ZJ+/N0IyZYx033q/Ys16yZwpSto0rSO1H6rkHrdn/yHpNnCCbN2xSwoXyCN9YprKrTcXky3bdyYG08Bxg+Nmyr4Dh53o2lb5liCYKidlQQQQQAABBNQLEEzVm7KiWQGCqVl/piOAAAI2CxBMCaZ+7V+bg+moHG/5xeSZ0+5IEyNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTAmmfm1gm4PpG4aCaXuCafDbMy52rYzuv8bzhOge5eVUWLwMil3pebxr90pyMZ3IwCseD34aRyKAAAIIIBB6AgTT0Lumaf2MCKZpfQdw/ggggEDyBQimBNPk756re6bNwXTEtdOu7mQVHd3h6LOKVjK7DHeYmvVnOgIIIIAAAkEJEEyDYuIgiwQIphZdLF4qAgggkMoECKYEU7+2pM3BdHh2M8G00zGCadD7kztMg6biQAQQQAABBJIUIJiyMUJNgGAaaleU80EAAQT8EyCYEkz92m02B9Nh2cwE05jjBNOg9yfBNGgqDkQAAQQQQIBgyh5IEwIE0zRxmTlJBBBAQIsAwZRgqmVjJbGozcF0aNbpfjF55nQ+8YyRuaqH8pZ81aKshwACCCCAgAYB7jDVgMqSRgUIpkb5GY4AAghYLUAwJZj6tYFtDqaDDQXTrgTT4Lcnd5gGb8WRCCCAAAIIJCVAMGVfhJoAwTTUrijngwACCPgnQDAlmPq122wOpoOymLnD9OWT3GEa9P4kmAZNxYEIIIAAAggkKUAwZWOEmgDBNNSuKOeDAAII+CdAMCWY+rXbbA6mr17ztl9Mnjndfm9sZK7qobwlX7Uo6yGAAAIIIKBBgGCqAZUljQoQTI3yMxwBBBCwWoBgSjD1awPbHEwHZDYTTLufIpgGvT+5wzRoKg5EAAEEEEAgSQGCKRsj1AQIpqF2RTkfBBBAwD+BvwbTOg1LSNMXy8ruXSf8ewE+TsqePUoOH/hD2jde5Jl6T5XC0qbLXdK85gKpWKWQ9O9dTn6MnuM5Jmf5IlJ6yPVyJqqej684tEbZHEz7Z3rHyMXoebqRkbmqh3KHqWpR1kMAAQQQQECDAMFUAypLGhUgmBrlZzgCCCBgtcBfg2ngRKo+fJ2Epw+z+pz+14v/euUeOXbkDMHUwBW2OZj2y2gmmPb6g2Aa9FblDtOgqTgQAQQQQACBJAUIpmyMUBMgmIbaFeV8EEAAAf8Ergym/k1OPZO4w9Sfa2FzMO1jKJj2IZgGvzkJpsFbcSQCCCCAAAJJCRBM2RehJkAwDbUryvkggAAC/gn8NZjmyJVRYsdUFUnn33w/J4WHp5PpY9bLyqU7PWMJpv5cBZuDae+oGf4gXTGl75mGRuaqHspb8lWLsh4CCCCAAAIaBAimGlBZ0qgAwdQoP8MRQAABqwWu/NKnMvfklVkzNlp9Tv/04kuWyi1VKheTRtXnEkwNXGGbg2nPSDPBtP9ZgmnQW5U7TIOm4kAEEEAAAQSSFCCYsjFCTYBgGmpXlPNBAAEE/BO4Mphmyx8lvV75zL8X4OOk+ysXlZjOd0uTmvMJpj66Xx5lczDtnsFMMB1wjmAa9FYlmAZNxYEIIIAAAggQTNkDaUKAYJomLjMniQACCGgRIJiK8JZ8LVvrb4vaHEy7Rcz0B+mKKa+eb2BkruqhvCVftSjrIYAAAgggoEGAO0w1oLKkUQGCqVF+hiOAAAJWCxBMCaZ+bWCbg+nLhoLpIIJp8NuTO0yDt+JIBBBAAAEEkhIgmLIvQk2AYBpqV5TzQQABBPwTIJgSTP3abTYH067pzdxhOjieO0yD3p8E06CpOBABBBBAAIEkBQimbIxQEyCYhtoV5XwQQAAB/wQIpgRTv3abzcG0c/gsv5g8c4Ym1DcyV/VQ3pKvWpT1EEAAAQQQ0CBAMNWAypJGBQimRvkZjgACCFgtEEwwbfBMKZk5/cdkn+eVzy9/d0F5sVMFaVx3XrLXTM4T+dKn5Kipe47NwfSlMDPB9LULBNOgdyB3mAZNxYEIIIAAAggkKUAwZWOEmgDBNNSuKOeDAAII+CcQTDDd/Gu03FIsLtkv6srnd+leSY4dPSPjx3yT7DWT80SCaXLU1D3H5mDayVAwHU4wDX4DEkyDt+JIBBBAAAEEkhIgmLIvQk2AYBpqV5TzQQABBPwT+LdgOm324/LwYzfK1s2HpG7td+Xk8bMy+PUH5M4KBSR9+jAZPni1vD11vbRpf5fcc2/hxLtG3/ugnnz0/japXK2Y5/l7d5+UD5c2lE5tl8jWLYel38Aq8lT9knL+XIJMGPutjH59rRQumlXenPio5MmXWcLD08n0KetlxNCv/vHxYLUIpsFK6TnO5mDawVAwHUEwDX4zEkyDt+JIBBBAAAEECKbsgbQgQDBNC1eZc0QAAQT0CPxbMM2RM6P8uKONFMg+zH0BA4ZWlZw5M0mblh9KtuyRsuzLJvJMvfmy6ceDsnTls9K/5xcSlTG9dHipotSo8rZcm8P7/MyZI+TLb1tImZvHuqG0dZs7pNaDM93nrPi6mTRrtFDqOo//duCUDBu0WrJkySAjx9WUF59fJD363p/k4ydPnAsKh2AaFJO2g2wOpu0NBdM3CKbB70eCafBWHIkAAggggADBlD2QFgQIpmnhKnOOCCCAgB6Bqw2mG39uI00bLpCvv9rrvqC+r1aW06fPy+DYVVK6bF4ZM/ERCU+fTpo74XPzxkNyZXB9sOb18vhTJeSFFh/KuCmPyvff7pc3R61z1wrE0VOnzkvHLhWlctVi0uuVz9y/X7x46dxjXr47yceDlSGYBiul5zibg2m7sJl6UP5l1VEXGhiZq3ooX/qkWpT1EEAAAQQQ0CDAW/I1oLKkUQGCqVF+hiOAAAJWC1xtMN19pJMcPfKHJCRcqpgZMoTLgrlbpNtLn7q/L1rWyP3bow/McH+/Mpi++lo12fDDAfdLpGYveMp97pVfKBV4q390h7ucO01vlZy5MsqYkV/LqOFr3Y8ASOrxYC8AwTRYKT3H2RxMow0F0ziCafCbkTtMg7fiSAQQQAABBJISIJiyL0JNgGAaaleU80EAAQT8E7jaYLpuY2tp2mCB/Lj+t7+9yAdqFJcXO1WQyKj0MvTVVfLJ4p//FkwDb8d/6rE5snfPSfdu1E0bD7qfWxr4KVAwi3u3auALoS7/3HhTDlmwuL772ajffbP/Xx//X3IEU//2VVKTbA6mbQwF0zEE0+A3LcE0eCuORAABBBBAgGDKHkgLAgTTtHCVOUcEEEBAj8C/BdMsWTPIjr3tpVieEW7MjB1cVTJmSi8x7T527/jsM6CyzJ2zyflSqMOy3PkM0mfqzZMoJ5hOfqe2VCo32X17/uXnZ80W6cbPimUmuidT+8mbJabrPfJI9XckLCyd+3mozzX7QJ5zPtd05ts/yrJPfnHX+uyrJvJC8w8l2vliqaQeD7xtP5gfgmkwSvqOsTmYPh926Y5pv3/GXmjo90gt83hLvhZWFkUAAQQQQECtAHeYqvVkNfMCBFPz14BXgAACCNgq8G/BNHBegW+8L3dHfqlba44bRge/Xl0qVirknvKnH/8ir8Qsld6xld042r3zMvfxN96sISdPnpMeXZYlPn9c3DrnLfaZpEuHTxK5Al/k9GzzMnL2TLyMG/ONe7dpuTvzy2sjH3TvTk1IuCBzZmx0PyP1nx4P1p5gGqyUnuNsDqbPGQqm4wimwW9G7jAN3oojEUAAAQQQSEqAYMq+CDUBgmmoXVHOBwEEEPBPIJhg6t+r0TuJYKrX999WtzmYtjIUTCcQTP9tW/35d4Jp8FYciQACCCCAAMGUPZAWBAimaeEqc44IIICAHgGCqcg9VQpLmy53SfOaC6RilULSv3c5+TF6jgc8Z/kiUnrI9XImqp6eC5EGVrU5mLYIe8fIFZp0oZGRuaqH8pZ81aKshwACCCCAgAYB7jDVgMqSRgUIpkb5GY4AAghYLUAwJZj6tYFtDqbNDQXTyVcE0/iEBBkx4T2ZMmuRrFw4Sq7NlsW9fGfPnZfer02RVWs3SMaoSGnZ8BGpV6uK+7dde3+TnkMmy9btO6VAvlzSvf0zUu62G2WL83uHXqNl8Ywh2rcAwVQ7MQMQQAABBBBIuQDBNOWGrJC6BAimqet68GoQQAABmwQIpgRTv/arzcG0qaFgOvWKYNqu+xtS4oYiMnb6+7J8/sjEYBo3Zb5s/3WPDOzWWg4fPSGNomNl/NCX5KbihaRJ+4FS9d5y0viJB+TLdRudeDpJPpk9THY4xxNMY1f6tf+ZgwACCCCAQKoXIJim+kvEC7xKAYLpVYJxOAIIIIBAogDBlGDq1z8Hm4Pps2Fv+8XkmTPtQmPP74G7QgPB9LaqzTzBtFaTbtK/awspU/J69/ghcTMlc6YoqV+nmtRo2EVWfxAn6cPD3b891aq3dGnTQLJmyZQYTM/HJ0jLmCFyf8Uy0qLBw8rPlTtMlZOyIAIIIIAAAuoFCKbqTVnRrADB1Kw/0xFAAAGbBQimBFO/9q/NwfQZQ8F0+hXB9PK1ujKYlqnWwg2o2bJmdg+ZvXCZrFu/VRrUqS79hr8lC6bEJl7mmL5jpEK5klL6luKJwbSvc0yC83b/fp2ba9kOBFMtrCyKAAIIIICAWgGCqVpPVjMvQDA1fw14BQgggICtAgRTgqlfe9fmYNoo3Mwdpu8keO8wTSqYBu4OLVu9hXyzZLxERWZwD1m4ZJUsXb5OGjxeTUZOnCuzxvZOvMw9Bk9y36pf/vZb3GDa7Oka8vEX62Tc0JjEu1BV7wmCqWpR1kMAAQQQQECDAMFUAypLGhUgmBrlZzgCCCBgtQDBlGDq1wa2OZg2CJ/uF5NnzsyEZ5Kcm9Qdpp/PG5H4maYzF3wq3/+43XlLflXny6CmyvtTBySu06lPnNxzZykpVeI6adw2VsLCwqRKpdtlcPfntJ0jwVQbLQsjgAACCCCgToBgqs6SlVKHAME0dVwHXgUCCCBgowDBlGDq1761OZjWNxRMZwUZTOs06yGvvNhIKjh3jQZ+eg2dLIXy55a6j1WW6vViZOXC0ZIx6tLdpzUbdZFXX2nl/B4pzTsNlrkT+jn/HSIxz9eT6vfdoWU7EEy1sLIoAggggAACagUIpmo9Wc28AMHU/DXgFSCAAAK2ChBMCaZ+7V2bg2k9Q8F0TpDBdOy09+X7jdtkRL92snvvQWnSYaDMiOspRQvllRZODL2rbAlp1ehRWfTZGvct+oveGSLbftmd+Bmm327YJh17j5b5k2MlR/YsyrcEwVQ5KQsigAACCCCgXoBgqt6UFc0KEEzN+jMdAQQQsFmAYEow9Wv/2hxM64ZP84vJM+fdhGcTfz92/Hep/FQH9/fz5+MlIiK9+38vnT1Msl6TyX3r/Yo16yVzpihp07SO1H6okvv3PfsPSbeBE2Trjl1SuEAe6RPTVG69uZhs2b4zMZgGjhscN1P2HTjsRNe2ys+VYKqclAURQAABBBBQL0AwVW/KimYFCKZm/ZmOAAII2CxAMCWY+rV/bQ6mTxoKpnP/Ekz9uk465hBMdaiyJgIIIIAAAooFCKaKQVnOuADB1Pgl4AUggAAC1goQTIMPpmVeu1XORXaz9lqbfuEZwhvIzglFZfu4VZ6XckPre2TJoQgZ3X+N5/HoHuWlbc8Kpl+2O/9xQ8F0PsE0+OsfF7s2yU10KixeBsWu9CzUtXsluZhOZOAVjwc/jSMRQAABBBAIPQGCaehd07R+RgTTtL4DOH8EEEAg+QIE0+CCaUS2KCn7WjWJzKX+8x2Tf/XsemZY+vSyLvpDOb3zqHXBtE74W0awFyQ0MTJX9VDuMFUtynoIIIAAAghoECCYakBlSaMCBFOj/AxHAAEErBYgmAYXTK2+yKn8xdtwh2ktQ8H0fYJp8LuXO0yDt+JIBBBAAAEEkhIgmLIvQk2AYBpqV5TzQQABBPwTIJgGH0wzF8sh6TNm8O/ihOCk45v3/+2sbAimjxoKph8QTIP/V0AwDd6KIxFAAAEEECCYsgfSggDBNC1cZc4RAQQQ0CNAMA0umGa5Kbfc1vdhkQsX9FyINLBqRNYo+SlupexbvNlztjYE00fCpxq5Qh8mNDUyV/VQ3pKvWpT1EEAAAQQQ0CDAHaYaUFnSqADB1Cg/wxFAAAGrBQimwQXTnOWLyPXNKzqfwTnb6utt8sVf38r5nh3ni3Zs/NKnmoaC6SKCafBbljtMg7fiSAQQQAABBJISIJiyL0JNgGAaaleU80EAAQT8EyCYEkz92m02B9MahoLpYoJp8NuTYBq8FUcigAACCCBAMGUPpAUBgmlauMqcIwIIIKBHgGBKMNWzs/6+qs3B9MH0U/xi8sz5OL6Zkbmqh/KWfNWirIcAAggggIAGAe4w1YDKkkYFCKZG+RmOAAIIWC1AMCWY+rWBbQ6m1dNP9ovJM2dpfHMjc1UPJZiqFmU9BBBAAAEENAgQTDWgsqRRAYKpUX6GI4AAAlYLEEwJpn5tYJuDaZX0k/xi8sz5LL6FkbmqhxJMVYuyHgIIIIAAAhoECKYaUFnSqADB1Cg/wxFAAAGrBQimBFO/NrDNwfQ/6Sf6xeSZ80V8SyNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTFNPML1jZF35deY6iT95Vm544V75JnrOVe+tsMj0kuue4vLbZz9JscZ3SXjGDLJjwqqrXufyE27p+oAcXLFDDn35c5JrVFnaTj6vOUYunk/41xk2B9P7DAXTFQTTf91XiQfwpU/BW3EkAggggAACSQkQTNkXoSZAMA21K8r5IIAAAv4JEExTXzA9vPqXZG+A7GUKSuEnb5cNvT5I9hp/fWKld1vI6sZvyYWz8Slez+ZgWiliQorPPzkLrDrfKjlPS3XP4Q7TVHdJeEEIIIAAAgj8XYBgyq4INQGCaahdUc4HAQQQ8E+AYJqyYFqwdmkp9HgZSfjjvIRFhMumQR/L79sPyp1jnpZTvx6RsMhwicqbVY5v3Cfb31wh2csWkhIdq8qJLQecuz8jnL9lkU2vLpFT/z0il+8wTTh9Tm7uUEXWNHtbMhbKLqV61nTXvnhRZMuwpXJi035Jau4f+45LhUmNJSJblOxbvNm5U/WMhGfKINtGfyEZC2aXkq88KIFFAned7v3wR9k9/we57tkKkrlYDrng3CEakTWjRGTPKN91nCsJZ85L5utyuq/1mxfflbvGNUjclJmL5pDfvtgmmwZ+LA981Vk+vX+4FHumgmS5MbfrEDivdGHpZEPvD93fL//YHEzvjhjv3z/Kv0xafb61kbmqhxJMVYuyHgIIIIAAAhoECKYaUFnSqADB1Cg/wxFAAAGrBQimKQumgbe97120Sc4dPiUFHiklue+7Xn54eaEbP3//9bBsHb5MxImH981rJd+9NF/CoyLkrrH1ZXntcZee89htksd5zvddFiQZTO+Me1p2L1wv+z/eLDkrXid5q9zkhMol7tvtk5pb4NFSkrN8MfcO0+LN704MpneMqiv7Pt4ie/9vg/tY4PWsafmO5K18o+R74Bb5quk0J6aKlHujrux5f70c+HSrO+NC/AXZOeubxD1+zfW5pMzgOvL1czPd1385mBZtcKe7zurGU91jS/V5WE5sPiA7Z//5XJuDaYWIcUb+na85/5yRuaqHEkxVi7IeAggggAACGgQIphpQWdKoAMHUKD/DEUAAAasFCKYpC6Z5q97s3u15Md65QzN7Jve/gZgYCKY73/tODi7f7u6PQGT87fOf5PSuY1Ly5QcTw2IgQN7+2hOy4vHxSQbT6qti5ItHxsj5Y3949tk/zf2nYFrtiw6y4okJbuQM/Nw+7AnZt2STROXJIhnzZ5PNQ5deCp29H5ZjG/bI7nk/yJ1v1nfj7OmdR92/RWTLKOUnNHTvHD2xeb/72F+DaYYcmWXr604gdn6K1CsnWW7KIxtjFye+bpuD6V0RY438O//6/PNG5qoeSjBVLcp6CCCAAAIIaBAgmGpAZUmjAgRTo/wMRwABBKwWIJgmP5gG3k5/9ztNZdXTk90Qmce5+7No/TsSg+nuBc6dmsu2uvuj7NDH3bs2T+8+Jrf2qCFf1p/sPh54G3sgpq50YmZSb8mvtryjrKjj3I165HTiPvtfc4MOpsOflL0f/SgZ82WVSCeaunfCOj+Xgule5y39m6TitGdl1VOXvh0+XXiY3BFXzw2pgbtdL//8NZgG4uvl8FrEcbjm+tyyaUBoBNM7It408u/8m/MvGJmreijBVLUo6yGAAAIIIKBBgGCqAZUljQoQTI3yMxwBBBCwWoBgmvxgmrVkPikd+5gbOwNBsfSAxyQydxZZ2+JtN37+se+Ee4dm4Jvr71vQWtZFz5b0mSLduzQDd5Se2X9CAm9lD3xR0+W38f86c5389TNMA+vsX7rVfZt89tIFpJjzmaM/T179j3MLPHyr5P7PjfJD1wXet+Q76+xbstn97NL0mTNIpXdbytrAW/Kr3pRkMD139LTkvLNIYgC9xbkr9vzxP9zPYf3rz1+Daf6at8rqRlPlYsIFKfva43J4za+y693vEg+3+Q7TshFjjPw7//58GyNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTJMfTCWd81b7QXUkMtc17hcs/fLWV3Jb/8fkvzO+llzO542e3nXUfZt+piLXyqGVO2T7uJWSrVQB5y35DzhfArVfovJlcb5oKcr5vNEP3WOT/NKngtnk1u413C9SCvwE7uAMvB3+n+YeWvWz3Ol8RurRb3fL7zsO/vmlTwWyyS1dH5R0zmsOfIbprnnfy76PNrqfU5rUHaZZb8knB50vdjrovO7AW+vvfrupHP1uV+Je/2PPMfmx3yLPW/KzlsgnFy9ccD0CcXV9zw/kwtn4kAimpTPEGfl3vv5ctJG5qocSTFWLsh4CCCCAAAIaBAimGlBZ0qgAwdQoP8MRQAABqwUIpikIpv/jyl+On4dX/+I5KhBMS8RUlTXN3rZ631z54q9rUkHSZ4mSbaO/+MfzsvkO01IZRhu5Xj+ea2tkruqhBFPVoqyHAAIIIICABgGCqQZUljQqQDA1ys9wBBBAwGoBginBVMUGDvVgWtJQMN1EMA1+e8bFrpXR/dd4nhDdo7ycCouXQbErPY937V5JLjq3Ww+84vHgp3EkAggggAACoSdAMA29a5rWz4hgmtZ3AOePAAIIJF+AYKonmCb/ioTuM22+w7REhlFGLsyWc+2MzFU9lDtMVYuyHgIIIIAAAhoECKYaUFnSqADB1Cg/wxFAAAGrBQimBFO/NrDNwfSmDCP9YvLM+enci0bmqh5KMFUtynoIIIAAAghoECCYakBlSaMCBFOj/AxHAAEEOLDz5wAACPlJREFUrBYgmBJM/drANgfTGyLf8IvJM2f72fZG5qoeSjBVLcp6CCCAAAIIaBAgmGpAZUmjAgRTo/wMRwABBKwWIJgSTP3awDYH0+KRI/xi8sz5+WwHI3NVDyWYqhZlPQQQQAABBDQIEEw1oLKkUQGCqVF+hiOAAAJWCxBMCaZ+bWCbg2mxyNf9YvLM+fVsRyNzVQ8lmKoWZT0EEEAAAQQ0CBBMNaCypFEBgqlRfoYjgAACVgsQTAmmfm1gm4Np4cjhfjF55uw628nIXNVDCaaqRVkPAQQQQAABDQIEUw2oLGlUgGBqlJ/hCCCAgNUCBFOCqV8b2OZgWjBymF9Mnjl7zsYYmat6KMFUtSjrIYAAAgggoEGAYKoBlSWNChBMjfIzHAEEELBagGBKMPVrA9scTPNHvuYXk2fOvrMvGZmreijBVLUo6yGAAAIIIKBBgGCqAZUljQoQTI3yMxwBBBCwWoBgSjD1awPbHEzzRpkJpgfOEEyD3p9xsWtldP81nuOje5SXU2HxMih2pefxrt0rycV0IgOveDzoYRyIAAIIIIBACAoQTEPwoqbxUyKYpvENwOkjgAACKRAgmBJMU7B9ruqpNgfT3FFDr+pcVR188ExnVUsZXSdV3mF67/1FZMXynUZhGI4AAggggEBqEihdNq+cOH5G2rT8SBo3KS1Nm5eVZR//kppeIq8FgasSqPZQcZk04VuZMX2D53ljxj0sG5YfkPnTN8uA8dXlqxW7Ze70TZ5jhk+tIZkyR8jmHw5e1UwORgABBBAIDYFyFfPLT5sOy4Auy6VFh3JSpdZ1svyz/4bGyV1xFkWLZZfri18r9au86/nLPVUKS5sud0nzmgukYpVC0r93Ofkxeo7nmJzli0jJrtVl/ydbQtLGj5PKcUcRObxul2wft8oz7obW98iSQxFJ3hzYtmcFP17av87IGTXkX4/RccDhM110LOv7mqkumAYEXu5RyXcIBiKAAAIIIJDaBeJGrpOTJ866LzP6xbskS9YMqf0l8/oQ+EeB48fPyZujvv7b34MJplmzR0qzdmXRRQABBBBIwwJjBq+T8+cSXIE2Xe+SiAxhIavx7tRNsnfXSc/5BRNMA08oVPs2icqXJWRt/Dix7eO+/NsYG4LptVGD/eD524yjZ7oamat6aKoMpqpPkvUQQAABBBBAAAEE7BAIJpjacSa8SgQQQAABBPQJBBtM9b2CtL2yDcE0W9QgIxfp+JmXjcxVPZRgqlqU9RBAAAEEEEAAAQSSLUAwTTYdT0QAAQQQSEMCBFOzF9uGYGpWyP7pBFP7ryFngAACCCCAAAIIhIwAwTRkLiUnggACCCCgUYBgqhE3iKUJpkEgWX4IwdTyC8jLRwABBBBAAAEEQkmAYBpKV5NzQQABBBDQJUAw1SUb3LoE0+CcbD7KaDAt+58CsnL5Tpv9eO0IIICAEoHjx85ItuxRStZiEQQQQMBmgQcfKi7vjdso86dvliFTH5SozBGy6YeDNp8Srx0BBBBAAAHlAoWvyyrFimeTRlXmSsUqhWRY3P1yZOlW5XNYMGmBHHcUlpmL98no/ms8B0T3KC9te1aALQQEjAXTgF3bnuVDgJBTQAABBFIucPLYOcmSnW88T7kkKyCAgO0Cgf9/+Nao793TyJo9Up5tV8b2U+L1I4AAAgggoEVg7tTNsm/XSXftJ5uWlPyFr9Eyh0WTFhjdf+3f/kAwDZ3dYjSYhg4jZ4IAAggggAACCCCAAAIIIIAAAgggkJYFCKahc/UJpqFzLTkTBBBAAAEEEEAAAQQQQAABBBBAAAFDAgRTQ/AaxhJMNaCyJAIIIIAAAggggAACCCCAAAIIIIBA2hIgmIbO9SaYhs615EwQQAABBBBAAAEEEEAAAQQQQAABBAwJEEwNwWsY60swXbt8j6z9Yo+Gl8+SCCCAgF6BU7+fk8zX8GVMepVZHQEEdAicOHbG+dKkKB1LsyYCCCCgVeC087+/MvG/v7QaszgCCOgRKP+fglL+/oJ6FmdVXwV8Caa+nhHDEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBZAoQTJMJx9MQQAABBBBAAAEEEEAAAQQQQAABBBBAIPQECKahd005IwQQQAABBBBAAAEEEEAAAQQQQAABBBBIpgDBNJlwPA0BBBBAAAEEEEAAAQQQQAABBBBAAAEEQk+AYBp615QzQgABBBBAAAEEEEAAAQQQQAABBBBAAIFkChBMkwnH0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAg9AQIpqF3TTkjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEimAME0mXA8DQEEEEAAAQQQQAABBBBAAAEEEEAAAQRCT4BgGnrXlDNCAAEEEEAAAQQQQAABBBBAAAEEEEAAgWQKEEyTCcfTEEAAAQQQQAABBBBAAAEEEEAAAQQQQCD0BAimoXdNOSMEEEAAAQQQQAABBBBAAAEEEEAAAQQQSKYAwTSZcDwNAQQQQAABBBBAAAEEEEAAAQQQQAABBEJPgGAaeteUM0IAAQQQQAABBBBAAAEEEEAAAQQQQACBZAoQTJMJx9MQQAABBBBAAAEEEEAAAQQQQAABBBBAIPQECKahd005IwQQQAABBBBAAAEEEEAAAQQQQAABBBBIpgDBNJlwPA0BBBBAAAEEEEAAAQQQQAABBBBAAAEEQk+AYBp615QzQgABBBBAAAEEEEAAAQQQQAABBBBAAIFkChBMkwnH0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAg9AQIpqF3TTkjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEimAME0mXA8DQEEEEAAAQQQQAABBBBAAAEEEEAAAQRCT4BgGnrXlDNCAAEEEEAAAQQQQAABBBBAAAEEEEAAgWQKEEyTCcfTEEAAAQQQQAABBBBAAAEEEEAAAQQQQCD0BAimoXdNOSMEEEAAAQQQQAABBBBAAAEEEEAAAQQQSKYAwTSZcDwNAQQQQAABBBBAAAEEEEAAAQQQQAABBEJPgGAaeteUM0IAAQQQQAABBBBAAAEEEEAAAQQQQACBZAr8P28L2v6RCfOmAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "fig = px.treemap(df,\n", " title=\"Total File Stored by Mimetype (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'category', 'mimetype'], \n", " color='bytes'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "guilty-greene", "metadata": {}, "source": [ "### Exercise: Mimetype Analysis\n", "\n", "Look over the treemap above and notice which types of files are the most common (larger boxes). What conclusions can you draw about this accession based on the common file types? What does the treemap tell us is significant about the PDF files in this accession?" ] }, { "cell_type": "markdown", "id": "technological-jungle", "metadata": {}, "source": [ "# File Extension vs. Mimetype\n", "\n", "A quick look at the same visualization for file extension (the part of the filename after the last dot) shows why we use mimetypes. File extensions are not always informative, whereas at least mimetypes give us a high-level category for each format.\n", "\n", "Python's mimetype guessing module is useful for a quick analysis, but there are more sophisticated file format identification tools that you will find helpful. Tools such as Droid and Siegfried (recommended) offer the ability to identify detailed sub-formats for the files in your accessions, such as which version of PDF was used to produce a document. These tools require a fully functional computer with adminitrator access to install and so they are beyond the scope of this notebook demonstration, but they will catch a many more specific formats than Python." ] }, { "cell_type": "code", "execution_count": 47, "id": "center-opportunity", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 6468 ], [ 4864 ], [ 1041.5 ], [ 28532.617511520737 ], [ 1271.8333333333333 ], [ 11678.07 ], [ 721.8333333333334 ], [ 4399.714285714285 ], [ 612058.7368421053 ], [ 8141.166666666667 ], [ 0 ], [ 265330.5714285714 ], [ 32647.018292682926 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/css", "all/db", "all/gif", "all/html", "all/ini", "all/jpg", "all/log", "all/lst", "all/pdf", "all/txt", "all/whtt", "all/zip", "all" ], "labels": [ "css", "db", "gif", "html", "ini", "jpg", "log", "lst", "pdf", "txt", "whtt", "zip", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 6468, 4864, 1041.5, 28532.617511520737, 1271.8333333333333, 11678.07, 721.8333333333334, 4399.714285714285, 612058.7368421053, 8141.166666666667, 0, 265330.5714285714, 32647.018292682926 ] }, "name": "", "parents": [ "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 9, 2, 254, 217, 6, 100, 6, 7, 19, 24, 5, 7, 656 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total Files by File Extension (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABUwAAAFoCAYAAACMirH9AAAgAElEQVR4XuzdB3gVRdvG8QcCoRcRpApSlC69KEWqNKnSe+89FOkt0gUEQq8iXapKFQSkvCAoggUEBOlSLBSV0N6Z1XNMQmJOcPec7Oa/3+XlR7JnZuc3z+aVO7OzsR6rQzgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEJBaBKVWAAAIIIIAAAggggAACCCCAAAIIIIAAAgj8JUBgSiUggAACCCCAAAIIIIAAAggggAACCCCAAAJ/CxCYUgoIIIAAAggggAACCCCAAAIIIIAAAggggACBKTWAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEFmCFKRWBAAIIIIAAAggggAACCCCAAAIIIIAAAgj8LUBgSikggAACCCCAAAIIIIAAAggggAACCCCAAAIEptQAAggggAACCCCAAAIIIIAAAggggAACCCAQWoAVplQEAggggAACCCCAAAIIIIAAAggggAACCCDwtwCBKaWAAAIIIIAAAggggAACCCCAAAIIIIAAAggQmFIDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAaAFWmFIRCCCAAAIIIIAAAggggAACCCCAAAIIIIDA3wIEppQCAggggAACCCCAAAIIIIAAAggggAACCCBAYBp+DVRoECBXfrr5rwVSOF92WfzuAMuKqHLjfpIvV1YZN7hDuH1cvf6zlK/X+1/7Xzl7mKRMkcw4L7B/G6ldpZR8uG2/vDV6jmxeOk4ypk9t2fXrhiMbw3/pXLd94fK1CJvo07GBtGpYxbiGgnlflNED2onLbESfVlL3jdf+S/dGu//Wv278qx3zJY6f33/qxxsfdrm4asQbfeo+9D1Wr/1w6dq6tjSsWc7o9tGjx7Jx2z5Zv2WvnDx9Xv64Fyypnk0uRdT91rxeJcmRLWOULs+b9f5vF3ZCjeXNtkNl6qjuUr5UwXBP9eb94ucXW1IkTyp5c2SWtk3eMH7WROfj1NmLsnDFZjl09ITc+Pk3iR0rljyf/jmpUraYtFb3ub9/3Gh3+d0GvSuXrt6QtfNHybvz1shHnxyQ1bOHS/JkiaPdtXJBCCCAAAIIIIAAAggggAACTwqwwjSMyefqL+V/3rvv/uqwiQvkmWRJpGe7eu6vJU+aSPLmzBJpPY2eulTixvGTvp0bRnpuyBMiC09cIVeN10tI1fLFw227QJ5sEjt2bBWS7pOiBXJK5oxpHRWYJkoYP9SchETIkimtpE+TUj7e8T8jNC6mxm92YPpv/etrKVk0j8RSwY4nx9PWiSdtR3bO73/cC1UjkZ1vxveDg+9Lo86jJHvW540wWx/3HzyU7oOnyp7/fSWvv1ZYyrxaQLTxjxd/ktUf7pKr127K2EEdpHLZoh5fAoHpX1T650niRAmkX+dGxp8fPnxohHmLVm0xXFfOGiZZX0jvsWvt1oOlR9u6ao7ye/yZpz3x5JkL0rz7aHkpSwZpUqeipE+bSv5QNbvv8+OycOVmKavq5N1R3Yzmf7t9V16t3kU+3zxLEiaI/7RdmvK5kIGp/kVA+34T5dHDRzJ/Uj+Pfy6YciE0ggACCCCAAAIIIIAAAggg8FQCBKaRsFVr9pakSZXC+ItuVI+GnUZKobwvWRaYdmtdRzo2r+HxZXkzQIos9PX4osM5UbetA9GozInZgWlU+/+38T5tnfwXQ19+dvHqrTJ9wVrZunyiWumYxLiUKXM/kLlLP5K332ortSqXDHV5OtRtEzBefvjxsmxTn0mmfmHhyeHNev+364kOK0zDq9dvvz9nrPLt2a6utFMrTT059FwUq9ZRpgX28EpgOnziIvWLjwPy2fppEj+ef6hL1PWyeedBmTOhj/GLkc8OHpeO/d+JdoGpvugfzl+Rmi0HypiB7eWNCq94Qs05CCCAAAIIIIAAAggggAACPhQgMI0EP6LA9NP9X8rsJR/K92oFlD70CqjWjaoZq+P0kbtMy1At60fk82TPLHsPHTc+992pc/L4sahH45+Tlg2qSM1KJdznRxY2usK/yALTsI9bhxcg7fv8a5nz/ody6oeLapXfA3k5Z1bp1aGeca2uY+uuz2XB8k1y9sIVdc2PjdWqbRpVlUplIl7tp8eQX61y1e0tUivBrt34RTKke84IZyqUKiR6JW/LnmNl0vAuqp0ioawadhwhceLEkfenDwp3djwNTCN7JP/3P/5UQd0aNSfH5LJ6RFyHLrUqlZQOKoTWK4MjOjztXz92Xkutxqup2hzYvYm7ucHj5svOfV/IhoVvS5k3e4ZbJ5HNy/WbvxqfHadWXX759SmjvTt3/zAeWx/Uo5n78fVffrstk2avNsb4y6+3VdiYWEoVe1n6dmpoBI/hPZJ/+uwlI8A8fOyk/PnnPUmbOqURYrZtXE3049z6qNq0v1pF+7JRv0vXfqIelf5VUqtfLHRTj9j/W13cv/9AytTtaWwRobdO0McffwZL6drdpNDLL8mscQHhsmtLvQpV96cPvWpPrzBc8/FuuaxWS8aPH08K5HlRrXx80z328Oo9svv2p+u/SLl6vWSsCrb01gBHjn8vm98fpwyeNVa7Tp6zWo59d0Z++e2OZH4+jbrnq4YKwPQcjJr8nuh+9L1SvGAuqVe9jHR6a3Kkj+R7+345c+6S1Gg5SIb1biH1a5Q17sefVY1sXPR2qDn47OAxFUROUvPVUCbOWuH+XoL4/nJ4yxzjz5HVqz7naX6ODBo7Tz757IjsXvvuE4FpyIsMWrhOZize4P5S6eL5ZObYXh7VyUfbD0j/t2fLe1MHyrCJC9UK3EfGtiWejmvHZ1/I5Lmr5aLaJiTNc89Km8ZVZc+Br9yP5Lsuqu+omXL8u7OyZdn4CH+28A0EEEAAAQQQQAABBBBAAIHoIUBgGsk8hBeYulYy1XujjDSrW1HUM5YqFNwiazftkRljeslrr+RTgcptqaj2Q9Vhmd6nMUnihOov1NfVKqNBUqV8MWmrwtW4cePI9j2HjRBm3sS+8krh3MbVeCswPfzVSWnVa6wRYHZr86bxqO70Betk/+GvZc28kcY+p3p1XN12w4wVaNVff9W4vo/Vfnyz3tsoy2cMkZcj2P9Qj+GBCmCzZc5grIL1U9sD6BDu869OyHoVFGZRoasOa9I+l0Jmj/8nJDt/6ZpUadLPeFQ7ZIgccpo8DSwjC0z1qsVvTp6T4QEtVbCbRY5+c0ZGTFokVcsVk2HqaxEdut20qVNEGO7pUNG1f6nek3PgmHmyLGiwYXXoyxOG+eQRXY1wPbw6Ofr16UjnRX+uZM1uKqR8xgihq5QrrgLT36VN7/HGI796/vTRY8g0+f6HCzKiT2tJl+ZZuaB8R099Xz3anNK4/rCBqQ5idY3qULx/l0aS4pmksnPvFyooW2nsI+oKOfXc/XbrjhGO6pBS7yM5XIVNm9SKv+0rJhrhc3iHrq12fSbKkmmDjP1l9eEKz0f1ay11qpb26CejvmcWq0fK+6jgVz8afvOXWzJ2+jJjFeqHi8fIcymTP7EFhSf3rQ4MS9XqZvwCpGLpwka4/JLaOkCH67VaDTa25xiqAkY9vk1qy4dpaqXshCGd1NYYxYzr7jNypuxSYWlg/7bGth06zNb3ylm1wjCyPUytvF/SqcB3zsQ+xjXqQFCHe2OnL1ch8FWjVvTPp627Dknv4TOeuK91mPiVujc2Lh4tXxz73ljtq/dXLlkkr7Enp5U/R3TtdVNbNej9Vts1qa5+RuYK93F7HbrrAF0Hp7r+kiZJZGxD4EmduMatA/cGKjh+Uc29/sWDJ+PSv1yo03aI+pmf37gPta2uiWPfnpFn1b2j9zB1HVs+PSQBI2YYX9PbUXAggAACCCCAAAIIIIAAAghEXwEC00jmJrzAtEWPMcYKsw0LA9370enVZFWa9DdWwOlHRPVRuHJ79Rfwcu5H8vVf6i9euSbp1Io9vT+j69D77ukVfP1UQKUPTwNTHUTqlZ7hHXoPv8hWmOpwTQcmH6sVdPH+fnGKvsYKDXrL6yos0qGhDoGHjF8gn6x8x1hl5zq+UCvvdKimA6TwDj0GHajtUivDXG3rfRNfb9hHOjSrLt1VQLts3Q4jvNuu21bBqT50uKSDsE/XTIlwRZluO406f8aY0KszXdcRz9/fWAn5b4Gpvv5m3UbLkF7N3S8d0p+fr1bS6pBl5+rJRugW0dj+7aVP7ZtWN0JE19F7eJAK8q7IUhWa1ms/TPLnzubeuzO8OvFkXlyBqQ7qdGDnOvRjyjqY/nLbXCPE1C/90kG8fqmT69ArMvV+jzlfzPREjejAadaSjcb49QuXXIdeFauDpf0fzjBW3+rA9K5aTblNhVOuVadHvzktTboEGvVfokiecO30tekVx4e3znGHyq4VfoumvCVF8ucI93Mhv6hrtGTNrsY9o+cv5LgqqvpyPWIedoWpJ/ety1Vfv+s+dtWlDsL06suQ+33qR8AvqF+EfLxkrNy+87uUUNfVsGb5UCuK9S8hZr63IdLA1Mr7Jbx6zZopnYwf0tG9IveB+oVJhfoBxi989MvR9PGnevFWqVrdjXtWrzD++uRZadBhhASN7ul+JN+Ten3anyP6GtZt/sx4cZIO83Wt5VJ1WyR/TvVLgqKS66UX3POvXwylg33XHqae1ole+arv0bBbE3gyrgkzV8iSD7bJpx9MMQJSfehVxmXr9pLn06UKFZjqUL907e5Gbej9WDkQQAABBBBAAAEEEEAAAQSirwCBaSRzE15gWqhSe6le8VUZ3qdlqE/3GzVLrc78RvZumGZ8PWxgqr+2Wz2quXLjTiNAu61WBOqg9dbt36WGWr3pegGOp4Hpv136N7sWRRqY6nFUUaspQ4Zpus2uA9+Vn9Qj9KvnDDfeBl9f7XP4jNprUq+o1eGbXh0V2QuN9BgyZUgdavWobls/7pw3RxbjRS13f//TeKy8daMq0ql5TWM4NVoMlOKFcocKnMKOM7K31C+c/JZ60VWOfw1MF6zYJO/MWvVEEPzdqR+NFbUhA6Hw+k+mVrAN7NE03CnQqz71vreu47dbd6Vmq0HGird76oVH69QKM/3/u46wdeLJvLiCvYCO9dWbwv8JzVdu2Ckj1SPh+hFmvQpyzLSlxiPzerVu2RIFjBeAJVWrCV1H2FBdP3p9/tJPskmF6CGP1R/tUitIF7kDQx2Y6lWLs8b1dp+m92ms3nyATBzayair8A79iLVeZaoDJteh3yDeP3C2LJjc33hBV2TH8RNnRW/boMO+amFeeqbrSa9c1Vs9hA1MPblvXa56VbirJvX1aBdjD1UVEIc89H6s44OWy6FNs0Q/4q5fZjVpeOdQ2xK4VtBGtsLUyvtFv6hu8N/hst4K5JdfbxmPum/ctt/YN9blqAPzRau2GvWTMEE80asi9dzs/GCyEQiGF5h6Uq9P+3PEZa1XbupfcuhtIo6oVa6H1ZYeeosGvSJ5ZN9Wxs+jsIGpp3XiCkz1I/l6WwjX4cm4OvR7R/R2EXr1bchDb29wS/1SIuQKU/39fOXbSKuGVYxwlgMBBBBAAAEEEEAAAQQQQCD6ChCYRjI3YQNTvQrL9Zde1+PJriZGTFps7HuoV/fpI2wQ5nr0842Kr0hTtcJIB1qxYscyVmzpFW1RDUzrvvFahI+tF1Qvm/q3Fabp1EuT9Dhiq/79/ELv16kfzU+RPKkRmuhDhx3GKqr9R439IvXKyxb1K0sL9Yh2RMGpDjXz5swcavWjbksHanqlqmv1ng739B6J25ZPEP1G7DfbDjX29syWOeK3duu2kyZJKG91bRzu7L2otgHQjxj/2wpTvWJN792qt0UIe+h9Nl37OobXgadbAoT8rF6JprdtCLv6NGyduOorsnlxBXsDuzdVq9UquLsKG5jqvT4/3L5fNm7dZ+zH+ejRI3m1cB7D7gW1B2fYGmna9W3R49d77oY89Mt19OPmrm0YdGCqt1WYMrKr+zRXYBryEfWwfvrx6h8vXA0VMH1x/JRa7fv2E6t9I7o1D6hfSrTtM8HYo1LvVRnyeEPVl37Bkd7mIWRg6qp3HVb9230bkat20Y/Xh62Xx8pXz9lH742RK+qN83q7gbDXpbd9qN9heKQrTK28XyJ6SZn+Jc+uA0dl34bpxtiu3fjVWGGuV5jqfWb1fOkVxTqA1kfYwNTTen3anyMR1cAttZpXr07Xc6xrUG+fEDYw9bROXIHpevXEgP7ZoQ9Px6VXVD9QwW3Y+6XzgMly9drPTwSmehuN19WezUNDrIyO5H+C+DYCCCCAAAIIIIAAAggggIAPBAhMI0EPb4WpDkLfqBD+CtODX37nDhrDBqb6xS+n1H6S21a8YwSVrr+YF1YrPauqlXJRDUz/60ufilTpoPZozGfssRr2iK1WbOlALeyhVx+u3PCpWoW2xQhVdGgb3qFDxawvpDNWaoY89CPi+XJndQcwp85eNPaG1Ku7dqvgRodnEb3sydWOp4HlvwWmOrzUIabuV6+eDXs8qwLjiN7G7mn/rjb1Pod11aP4pYrmNV6O84HaM1KHja4jbJ14Mi+eBqYhx6Ufr9YroCfMWKFC0fvGW+qvq5c16TnRq4x1QKZrVG/TENEKUx0M6q0YnjYwDW+FabBadVu6Tg9jVa5ekee6N0Jeuw521368x9hH9Zy6Pv1LhohWmBbOl91Y5Rp2hakn921ErjoAO6XmMeR+uyGvTweS+q3zOlgNu8L0f0e+Nfb9jGyFqS/uF9dKa72lgOt+7zl0urE6Uq8CL6UeIZ+p9mV27a8c3gpTT+r1aX+O6PmIpf5P75Ua9tDbSujtTPT+ynrFZtjA1HWtkdVJeIGp7suTceng/pp6UVjYFab6FwB6BT0rTH3wXzV0iQACCCCAAAIIIIAAAgiYIEBgGglieIFp617j5Ibajy7k26T1Sr7Kjfuql8U8L9NH9zBa1QFN/epl3XuT6tDkV7X3qeuFPPqcDWrl38Axc9Uj+SVkzMB2xuc8fST/vwamejXczV9+e+Iv9frFS2nUY+V6D0wdOtxWWwa4AhMXl360vsyrBSJcKaXHoPfy27l6ktGOPnTopfdI7NKqVqjHnZt3H22EcHv+95X0al/PsPi3w9PA8t8CU9d+m2FDLP1yH/0Ifcj9WsNei6f968/px4b14+N6z1UdHusa0FswLFMvzNIr98KrE0/mxZPANH48f9mtTPXLeUKGv2tU8Dh0wgLZs26qur4HoQJTvdfmjEXrn9jDVNfoLrXC+LP104x9JJ82MA1vD1NtoN9wrh8HD6+mf//jngpyJ6nA8qJayTnWeFRc72GqX6gWcg/Ti1euS6VGfY37Ta9+DhuYenLfRuSq94bV1/fJqkmhXmilV2TGixdX9BYNum70HqbN6r5uvDDLdeiAWv+CIbLA1Bf3iw5Hd+77Qm0jMt29VYP+pY/ev7Njsxqit0vQb4x3rSR3hZD6Z1xZdf/rw5N6fZqfIzoQLau2WNA/Z3QIHfb43xcqiFbXObhnM2lUq7w7MNXbI+g9ovUvCDypk4gCU0/Gpbe8WLF+p/FLMleoq2uonPolRGb1C6eQgSl7mJrwXyw0gQACCCCAAAIIIIAAAgh4SYDANBLo8AJT15u+G9YsZ6x402+31i8L0o8+L353oPvt33rlng7edKijH2NfpvaS1C/UeXdkN+ON6TqA2rB1rwQHP5BHamNB/SivfkzfW4Gp6y3Qb1Z9TRrWKme8fXrvoePGysuADvWl6ZsVRa9AC1q43giA9P6XOjjZe+iYehx2qftN7+ER6jHcCw42PtNerQBTH1R7hq40Vjh+qPb7ez7dc+6P6ce99Zu4E6n+Q74kKqKp8TSw/LfAVLetV4fpfSf1Y+365THX1L6t+gU9Zy9cUS/xGScJ4vuHewm6XR3I9GxXL8LqyZHteeOlSTogXKH2Fd24aLRRA/rFVzVbDlShWiX3i6HC1smZc5elVa+x8m/z4klgmihhAqnYIECNLZN0VHvE6r1V9Rh1gHdXBcN664Owj+Tf+Pk3Y79V/UKg/l0aG0Gr3utSz12PtnWNF//o42kDU9e9s2Savk/+2S9SPwLda1iQ6Lei63C+StlikjxpYvnx0lUjkNLh2fS3e7hfCjV1/hpZoO65t7o1kdLqTfbX1AuBxqia1HvvblAvZtIBZtjA1JP7NiJX/XW9Elq/1E3Pu35J2Qm1hYQOzHK+mNEIQ/Wh9/89+OW36hcJLYyXaul9N/V2Fnq7gsgCUyvvF71nbr/O/4S4t+7clU/3fWlsIeJ6CVvIYtZbZ/yoVpPrl7O55lx/X2/Poetfv7SoTtVSRp18pd4IH1m9Pu3PER0063otVSyvEZCnVquQ/7x3T72F/gd5T+0fm0zVyAdzRxj3o+vFUmMHtjfs9bYentRJRIGpJz8fXdstlFP7A3dQL+HTj+frl4PpbSeSqhoMGZi6trXQX9P7QHMggAACCCCAAAIIIIAAAghEXwEC06cITPVHdNg5S63GO/nDRdGPr+vATa+cLF4wl7vFVRs/Nd7arPeN1HsA6keFjRfyqM/qgFTvWzqoRzM5cOQbGfHOIuON8/qlMt4KTPWF6seFg9SKQv04sX4UOmP61NKgRlmpr/7Rh34p1QL19mn9pmq9f6ne71Q/utu4dnnjEe6Ijgr1exsvGdLB6HsqMLquVuJlUp/r26mBCj9eDvUxvWdmkaodjbfVR7QvacgPmBWY6pWLOtzYpt6SrYNC/Wh+kfzZjWAwQ9pUEY4tspdO6Q/q0CaDeku2Xj07sm/rUFb6JUxjpy+VJdMGSf7c2SRsneh9OSObF08CUx2+60B40pzVxv6bd+/+Kc+mSKperJRLurd90wj9wgam+trPqJcbTZq9SvTLiu7du2+8vKuRmm+9is91PG1gque6TN2eUqdKadEvrAp56Fr7aPsBWbt5j3x36rzxgiy90vkVtedqa7X3aMg50ecuXLlZVn+426hLHZgVL5TLWKHsCuPDBqae3LcRuerP6rBwsrLUc/P7n/eMLQQqlC4kXVrWdofr+vMj1V7G+hcP+iiSP4exUlO/DMq112Z4hWX1/aKvPeShX/z1glrVXb96GalVueQTexHrVcZ6j98dq/962VPIQ2+rsEn9kkP/QmGT+sWCXlkZWb0+7c8R3a9eeb5S/Sw9oWripnpZlf55m0H9XCnzSj5p06iae/W0DtU79J1o1I7e9kNvt+FJnUQUmHry81Gfo1fh6tXHl6/eNH4p0Vb9guj4dz8Y/+h9UV1H31Ez1dfOypZl4yP82cI3EEAAAQQQQAABBBBAAAEEoocAgWn0mIcYfRWbdugVprNUkDDBeGEPh7MF9P6xOqTftmKC8UsCjqgJWH2/6NW+ddoMlXxqFfyofq2jdnGcHa7AWbXCuIZaWT76rXZS/fVXUUIAAQQQQAABBBBAAAEEEIjmAgSm0XyCnHx5es9JvQpruFpdq18e1bdTQycPl7H9LaBXjjbqNNJYla1fNsXhmYDV94t+8/yVn24aK+cPqFW0essGvWKS478J6FWuHftPMlZML5zc/4nVvP+tdT6NAAIIIIAAAggggAACCCBghQCBqRWqtOmRgH5Bjn4Dtl5x1Vs9Sh03bhyPPsdJ9hfQj9HXV2+679a6tjRQWzFwRC5g9f2ybN0OY6uIHNkyymC1VYjeZ5njvwvobT82btsvq2YPY0X1f+ekBQQQQAABBBBAAAEEEEDAKwIEpl5hphMEEEAAAQQQQAABBBBAAAEEEEAAAQQQsIMAgakdZolrRAABBBBAAAEEEEAAAQQQQAABBBBAAAGvCBCYeoWZThBAAAEEEEAAAQQQQAABBBBAAAEEEEDADgIEpnaYJa4RAQQQQAABBBBAAAEEEEAAAQQQQAABBLwiQGDqFWY6QQABBBBAAAEEEEAAAQQQQAABBBBAAAE7CBCY2mGWuEYEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8IoAgalXmOkEAQQQQAABBBBAAAEEEEAAAQQQQAABBOwgQGBqh1niGhFAAAEEEEAAAQQQQAABBBBAAAEEEEDAKwIEpl5hphMEEEAAAQQQQAABBBBAAAEEEEAAAQQQsIMAgakdZolrRAABBBBAAAEEEEAAAQQQQAABBBBAAAGvCBCYeoWZThBAAAEEEEAAAQQQQAABBBBAAAEEEEDADgIEpnaYJa4RAQQQQAABBBBAAAEEEEAAAQQQQAABBLwiQGDqFWY6QQABBBBAAAEEEEAAAQQQQAABBBBAAAE7CBCY2mGWuEYEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8IoAgalXmOkEAQQQQAABBBBAAAEEEEAAAQQQQAABBOwgQGBqh1niGhFAAAEEEEAAAQQQQAABBBBAAAEEEEDAKwIEpl5hphMEEEAAAQQQQAABBBBAAAEEEEAAAQQQsIMAgakdZolrRAABBBBAAAEEEEAAAQQQQAABBBBAAAGvCBCYeoWZThBAAAEEEEAAAQQQQAABBBBAAAEEEEDADgIEpnaYJa4RAQQQQAABBBBAAAEEEEAAAQQQQAABBLwiQGDqFWY6QQABBBBAAAEEEEAAAQQQQAABBBBAAAE7CBCY2mGWuEYEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8IqAVwLTz/dckkPqHw4EEEDAbgK/33kgCRPHsdtlc70IIICA3P4tWJIk80cCAQQQsJ3A73fVf38l4r+/bDdxXDACCEiR0umlqPqHw/4CXglMgwIPyfRRh+yvxQgQQAABBBBAAAEEEEAAAQQQQAABBBAIR6DL4KLSdUhRbBwgQGDqgElkCAgggAACCCCAAAIIIIAAAggggAACvhUgMPWtv5m9E5iaqUlbCCCAAAIIIIAAAggggAACCCCAAAIxUoDA1DnTTmDqnLlkJAgggAACCCCAAAIIIIAAAggggAACPhIgMPURvAXdEphagEqTCCCAAAIIIIAAAggggAACCCCAAAIxS4DA1DnzHa0D0+bd8o9ecN8AACAASURBVMmLuZ+VIR13yqFr7aV6gaXy06W7ztFnJAgggAACCCCAAAIIIIAAAggggAACjhAgMHXENBqDIDB1zlwyEgQQQAABBBBAAAEEEEAAAQQQQAABHwkQmPoI3oJuo0VgWrdVLmkTUFDixo0tl8/fln6ttsvVi3eEFaYWzDhNIoAAAggggAACCCCAAAIIIIAAAgiYLkBgajqpzxr0eWD6TMr4suuHVlI17/ty6cfbMmpWOXn44JEM77qLwNRnZUHHCCCAAAIIIIAAAggggAACCCCAAAJRESAwjYpW9D7X54Gp5okX30/u/fnQkKrW4CWp3TyntK22gcA0etcOV4cAAggggAACCCCAAAIIIIAAAggg8LcAgalzSiFaBKadBhaRstUyy+PHjyVp8nhy5cIdaV1lPYGpc+qMkSCAAAIIIIAAAggggAACCCCAAAKOFiAwdc70+jwwfb12VtEF1aTsGrlzK1hqNskhNZvmIDB1To0xEgQQQAABBBBAAAEEEEAAAQQQQMDxAgSmzplinwemTTrllZIVM0mnOh9JkmT+MnlZFUmc1F8allrNClPn1BkjQQABBBBAAAEEEEAAAQQQQAABBBwtEN0C0zpthsib1V6TJnUqONrdisH5PDDVL32aua66JFVh6ZWLd2TaiIMybXVV2bj0pPx0+Y68mPtZGdJxpxy61l6qF1gqP126a4UDbSKAAAIIIIAAAggggAACCCCAAAIIIPDUAk4KTPf87yvJmD61vPB8mqf2sPMHfR6Y2hmPa0cAAQQQQAABBBBAAAEEEEAAAQQQQEALOCkwbdr1bWnbuJqUeTV/jJxcAtMYOe0MGgEEEEAAAQQQQAABBBBAAAEEEEDATIHoGJhWKF1Yjn17Wg59eULSpUkpb3VtLCWL5pWGHUdI8UK5pWe7um6CGYs3yJ4DRyVBgnjG+f7+ceX11wrLuEEd5OKV6/L2u+/LV6qthw8fqa8XkYHdm0qC+P5y/8FDGT31fflkz2G5+/ufkiVTOunbuaEUK5DTTF6vtkVg6lVuOkMAAQQQQAABBBBAAAEEEEAAAQQQcKJAdAxMb/5yS95+q63kz51NFq3cIgtXbpadqyfL5k8PyrxlH8v2FRMlVqxYxnT8tedpabXnaUUpVq2TEZTqFaaPHj2WWq0GqYA1l/RqX1/+vHdP3np7jqRMkcxoe/n6HbJyw6cy752+kixpYlm/5TOZvmCd7Fg9SeL4+dlyqglMbTltXDQCCCCAAAIIIIAAAggggAACCCCAQHQSiI6Bac4XMxmhpj7+vBcsxd/oLBOGdJSiavXna3V6yLyJfaVwvuxy/tI1eaP5W7JrzbuSInmSUIHpkWPfS+te4+TgppkSP56/0daxb89I8+6j5fPNs40QdvueI7Jk2kD39/UqVD+/2NFpeqJ0LQSmUeLiZAQQQAABBBBAAAEEEEAAAQQQQAABBJ4UiI6BaZVyxaRdkzfcF1uhfm9p2aCKNH2zovQeHiRJEieUEX1ayfzlm+TwVydl5thexrkhV5iu2/yZDB43P9wp37p8ghGSduj3jly+ekNeLZJHypUsKJXKFLHt6lI9UAJT7nAEEEAAAQQQQAABBBBAAAEEEEAAAQT+o0B0DExrVS4pzetVChWYtm9WQ+pXLyO7D3ylHq2fLXvWT5NmXQPVeZWlavliTwSmm3celJGTFsuBj2ZEKPT48WP54vgp2bX/qHy844CkSZVCrTgdZNtVpgSm//Fm4OMIIIAAAggggAACCCCAAAIIIIAAAghEx8A0f54XZWiv5sbk3Au+b6wcnTqqm5Quns94eVO5er2kS6vaMnHmCtmzbqr7kfqQK0y/OXlO6ncYLp+smiRpn0thtPX7H/eMR/z14/u///Gn+kosSaheFqWPX367LaVqdZfVc4aL3hLAjgeBqR1njWtGAAEEEEAAAQQQQAABBBBAAAEEEIhWAtExMNXh5dRR3SVHtozGY/eLVm1R+5ROcQejE2askA8+3i3l1WP0owe0c3vq/U1bN6oqb1YtLYkTJZAGHUbIc6mekVF9WxurRsdMWypXrt2UhZPfkoARM0SvMB3cs7kkS5JIPt3/pfRRX9v5wRQjULXj4dPAVBcSBwIIIIAAAghETeD8md/kw+UnjQ9lzJJMqjfOHrUGOBsBBBBAIEYKbPnglJw58Ysx9spvZpOsOf9aJcSBgBMEDuy8IF/sv2IM5ZWyz0vBEmmdMKxoMYafr/8hy2cfN64lRaoE0qhD3mhxXb6+iKDAQ09cQnQLTGu0GCi1q5SS/Ye/kSPHTkr6NCllUM9mUrxgLve1f//DRanderDMf6efFC/0z9f1W+7nr9gkxdTLoWaN6y0Xr1yXwClL1D6nJ8TfP67RxsDuTSVlimTy86+3Zfg7C+XgF9/J/fsPJHPGtNK1dW0p+2oBX0/TU/fvs8BUF1H+Mmlk757zT33xfBABBBBAAIGYKNCgYR4Z0HK7fHXoJ1l7sIF8/eU1uXrpTkykYMwIIIAAAh4KpEiZQEpWyCSVcy+RbCoonfNRdVm66K8AhAMBuwv4+cWSrn2KycuJZ0hc/9hy5OeOMmXcAbsPK9pcf+U3XpR5447ItrVnZNHW16VA6VPy6PHpaHN9vriQOLGKyezRsWX6qNChaXQLTD2x0atBx05bJluWjZdYsWJ58pEYcY5PA9M7sYNlTODeGAHNIBFAAAEEEDBLYMeu5jKxzz4jMF2+p6683WeP+v+vmtU87SCAAAIIOFBAh6TvLq0qNQouMwLTiUsryWuFFjpwpAwpJgr4+/vJqevdJX/SmUZg+vmNDpIh2aSYSGHJmBcsrSmffHDGCEznfFhOCpULkvuPNlvSl10ajefXXeaPedXWganev/T8pZ+k84DJxqP39d4oYxd+r1wngalXmOkEAQQQQAAB8wQITM2zpCUEEEAgpggQmMaUmY6Z4yQwtXbeCUyf9HVCYDpp9ipZsWGnvFntNenXuSGrS8NMM4GptT9XaB0BBBBAAAHTBQhMTSelQQQQQMDxAgSmjp/iGD1AAlNrp5/A1JmBqbVVY//WCUztP4eMAAEEEEAghgkQmMawCWe4CCCAgAkCBKYmINJEtBUgMLV2aghMCUytrbDo2TqBafScF64KAQQQQACBCAUITCkOBBBAAIGoChCYRlWM8+0kQGBq7WwRmBKYWlth0bN12wSm3XoWlZeyPyvdOm2Whk3yyNjxFWTxwqMybPCu6CnLVSGAAAIIIGCRQGSBadNOL0v+YmmlT8utT1xBxqzJJFXqRHJk/2WPr65Ft/zyUu5nZVDHHR5/hhMRQAABBKKXgCeB6Q83e0iJl+fLlUt3otfFczUIRCLgSWCaOWtyeU79N9DB/ZcibM3PL5bUqpdD1qz4DvMQAmYGpuNHpZFiJe7Ia+XuyK4diWXR3JRS/vVb0qz1z7Yyd8IeprYC98HF2iYwTZAgjsSJE1tu3w6WJctry47tZ2XRgqM+IKNLBBBAAAEEfCvwXwLTlt3zi3+8ODJnwmGPB0Fg6jEVJyKAAALRVsCTwDRlqoRy88bv8vhxtB0GF4ZAuAKeBKYduxVW/w3kJ1MnHoxQMW++52TwqNLSoMYHSHshMJ3wdmrJX/B3qVjltu28CUxtN2VRvuBoF5j2DCgubdoXkF9+/lMWzP1SAvq/InmzzxTXCtNzZ3+VXn1ekVu/3ZMli7+SMYF7ozxoPoAAAggggICdBTwJTAu+mk7iql805i+eVq5duSvdGn4sGbMkk6nLq8qD+49kzeJv5ca13yVX/lQS199PsmZ/Rn66fFdWzv9a6rXMLVlzPCNTRx2UD1ecFAJTO1cL144AAgj8JeBJYOpaYZo6TWKZMqey7Nt9QbLnelaSJY8vgwN2yMF9lySeCpwmzaokRV5JLxd+vCX/23tBMmRMJj3abYYaAZ8JRBaYliyTURYsqyn37z+U5e99LTlzp5TPPj0vs6YdliRJ/eXAV22lZcN1Mu/9mpL8mfhy5NBlebPqKp+NJ7p1HNkK0w1rksnZM/EkODiW3L7lJ7H9RHr0uSopnn0k1676yZQJaeTXX2NL1mzB8scfsaRUmTty43ocWb86uSRM9EjKVbwtDZr+Et2G/a/XQ2Bqq+l6qouNVoFpjpwpZdunzaRI/jlGYLr8gzclS9ZnpEDu2e7AVD+Sv2zVm7J+3QlZtfybpxo0H0IAAQQQQMDOAp4Ept2HFpdGZVfLmRO/yDuLK8nFc7dk8rADMnRKGbmqHrXUK0z1o/ud3ioqlV9+T+7cCpZdp1rJ3k/OG4/eFy6RTkbNKC9V8i0hMLVzsXDtCCCAwN8CUQlMUzybQHYcaiGNa66RnVvPSrlKmWXUxHJSIu98ad2pgPHIcu2KK+S5NInk491N5NPt5ySg05PbwICPgLcEIgtM9XWMnVxBLl+6bawwTZchiWze1UTKFV8sPfsXl/vBj2TkoN1SvfZL0rTVy6wwDTNxkQWmH29IJiuWPCPT511Qv2B5KEsWpJC7d2NLx243ZNLY1JLqufvGI/fnzvrLgF4ZpGP3a8Yj+SEfz/dWrZjVjx0C09/uZTFruFFqJ1m8H0Kdf+WnmzJgzFz5+sQP8ny652TMwPaSI1tGuRd8X4ZNXCj7Dh2XBPHjSdvG1aR+jbLGZy9cviZDxi+Qk6fPS7o0KWVQj2ZSMO+LckL9uefQ6bJl2fgoXdPTnBytAtM27QpIuQqZpUmDtcZYqtd8SUaOLktg+jQzy2cQQAABBBwr4ElgWrJCJun45oeGQfOu+SV3gVTSv832JwLTYqUzSLdGm4zzlu2sK0uCvpLNa05J6nSJZPNX6j9MUs0iMHVsJTEwBBCISQJRDUzXbmso2dNMM4j0vo4X7wRInueDZPSUCnL4wCWZG/SF8b3ASeUkQYK4BKYxqZii4VijGpjqIbTvUkjKq18GZHwhmZQtulj+/PMBgWkEc+tJYPrNsQTSb8hVo4XjR+PL/FkpZcqsi9KmSSYZPPKKZM4abHxvYEB6qVTtNwJTL9xHv/3ho8A0QejAtFm30VKuRAFpWvd1+Wj7fvn86AkZPaCdBC1cJ6fPXTIC1Ju/3JImXQLVoo4+8lKWDNKixxgpV7KgNK1TUfYf/kaFp/Nl+8p35Iw6P0YGpgH9XpEXMic3Xuykj0JF0sq8RTUITL1wI9EFAggggIB9BDwJTEO+9CnkS6DCrjDNUyi1vNV2uzH497e/KfMnH5FPN52TlKkTyifftZD8KWYSmNqnNLhSBBBAIEKBqAami1bXliLZ57jb04/rVyj2noxRgemqpd/ImuXfGt/rGlBUMmd7hsCU2vOpwNMEpokSx5UTF7vK9EmHZNzIfcb1s8I0/Gn0JDA9e8Zfuva+bjRw5lQ8GTsyjcxd8qNarZtZps05r1akPzS+N3pYGinx2l8vfWKFqbW3za27vglMkyb6JzC9eOW6NO8+Wj5ZOUlix44VasA1WgyUUf3bSL5cWY2vjw9aLokSxpeGtcpL5cb95MBHQRLHT+3voI667YZJv86NJGmShO7A9P6Dh9I2YLyULp5P2jSqajpmtFph2r5jISlR6nlp0WS9MdBq1V+UwLHlCExNn3YaRAABBBCwswCBqZ1nj2tHAAEEfCMQ1cB0487GkjXlu8bF6n1Lf/ytl+RKHyTjp1dUe5uel4Wz/noB76iJZdUehP4Epr6ZVnr9W+BpAtMRY8tI4sT+UqFyFnm91BL5Se35TmAafkl5Epge+zKBDBj+1wrTo0cSyOJ5z8rkmX+vMB11WTJnuW98r1+P9FKtJitMvXHz3rrto8A0yT+B6Y7PvpD3124zHsXXK0Uzqn8P7tVcsmRMK/nKt5E966ZKsqSJDI6VG3bK4WMnpVGtCjJy0mJZvzDQzRQwYoYUK5hLXs6ZxR2YjlDnPHz4UEb2bW0JZ7QKTAsVTiur19WXwmoP09u37hl7lWZ7KQWBqSVTT6MIIIAAAnYV+C+B6cAJpSX43gOZOHi/sYcpK0ztWgVcNwIIIBA1gagGplv3N5NOzT+SD9d+L3Ub55JufYvJawUWSpfeRaRsxcxST70QJ3XaxPLhp41lz84fCUyjNh2cbbKAJ4HpqAll1X8DPZRRg/dI7rypZMGKmvJaoUXSumMBKVI8nbRquEEqv5FNeqhar/LaUpOv0N7NeRKYrnz/GZk47YKxkjRoSkrx938s7TrfNFaRpk0fbOxh+v0JfxnaP7106nGdFaZeKInbt3wTmCZJ+k9gum7zZzJq8nsyY2wvKVYgpyxevVXWb94rq+eOkPwV2siRrXMkfjx/Q2PD1n3yyZ7D0qh2eZk6b42smDXMrTR43HzjUf2iqg39SH6rBpVl2+7DMntCgHsVqtmk0Sow1YMLHFNO6tTNaWzGvGLZ19KlexEpkIeXPpk98bSHAAIIIGBfgf8SmJYo/7xMX1lNdm05J0f2XSYwtW8ZcOUIIIBAlASiGpjOW15Ttnx4Sl6vlk0eP34svTpskc8PXJbESfxl1pI35KUcz8rpkz/L18euybPqJVEBnbdF6Xo4GQEzBTwJTF8rn0kWragl27f8IJnUvqVTxv9PNn94WuLEiS27D7c0gtQvPr8iWz9rKnH9/STPCzPMvERbt+VJYHri2/jq5Vmx5Mdz/uolTw+k91s/SfJnHqpsJ66yfk5+/SWOvJj9D+UQSwoXuytlK/BIvtVFcfvXvx519/aRJPkZd5effHZEZi7eIGvmjTS+9vDhIylUqZ3sWvOuvFanh+xaO0WeSZbE+N7y9Tvk6Nen1SP55dTLoBbJxkVvu9vpPTxIXi2cR/LkyCxNuwaqx/tjS1m1L+q4QR0sG160C0xjqS0N1P8eG0fJ0hlllHrpU9mSiy0DoGEEEEAAAQTsJhBZYGq38XC9CCCAAALWC0Q1MJ2vAtPiueeFe2Eh/87WZ/Cr6pH8uDJywG7rB0EPCEQg4ElgCt7TC3gSmP54Lq507nHj6Tux2Sfj+XWX+WNelemjDoW68i6Di0rXIUWjxWju/OybwDRxin8CU/1W+66D3lV7mL5jmOjAtODr7WTvhmmiXwY1oHsTY+WpPoZOWCAZ0qaSetXLSIX6Aeqc6ZIg/l+rT6s06We8KCpB/HjSuvc4WTN3pPr3eAnoWF8qlCpkiXe0CkyfTZlAjn3XScqXfk9OfHdDps2sIn/8/kD6Bfz1MgoOBBBAAAEEEBAhMKUKEEAAAQSiKhBZYJowYVw5db275M4QJOmfTyIRBaavV8sqw8eVkfJFFkss9QKPj3Y1lomB+2XThlNRvSTOR8A0AQJT0yjDbYjA9EkWWwSmN3wUmKb8JzDVcrVbD5bm9SpJrcol5f012+XD7ftl1ezhMuu9jXL0m1MyZWQ3uXj5urToOUaWBQ2RTBlSSxsVhhbJn0PaNXlDNn960HhEf/PS8XLq7EX3HqZfHD8lvYZNl3ULAiVF8r9WqZp5RKvAVA+sVZv80qvvKxJb/dry+LGfpEvHTfLzTb1smwMBBBBAAAEEtACBKXWAAAIIIBBVgX8LTBMkiCNHTneQ/XsuSNtGGyX3y6kiDEz1W47HvltBKlTJolYKPVZB6fcyrN+uqF4O5yNgqgCBqamcTzRGYPqkrx0C07vXfROYJkoVOjA9f+ma6EfqL165LtleSC+j+rWWzOqlT8HB941H7z87eEwSJYwvnVvWkpqVShjYl67ekIFj5srJMxeMF0YND2gpubO/IHrFqt7DdMuy8cZ544KWy5WfbqrQtavpN0G0C0xNHyENIoAAAggg4DABAlOHTSjDQQABBLwgENkKUy9cAl0gYJkAgalltEbDkQWm1vYePVu3RWD6k48C09ShA9PoOYORXxWBaeRGnIEAAggggEC0EiAwjVbTwcUggAACthAgMLXFNHGRTylAYPqUcB5+jMD0SSg7BKa/X/FNYJowLYGph7eWSFDgoXA3wr0TO1jGBO71uB1ORAABBBBAAAEeyacGEEAAAQSiLkBgGnUzPmEfAQJTa+eKwNSmgemlbNYWRgStJ0x/2if9mt0pK0zNFqU9BBBAAAEELBZghanFwDSPAAIIOFCAwNSBk8qQ3AIEptYWA4GpPQPTPy76JjBNkIHA1OM7khWmHlNxIgIIIIAAApEKEJhGSsQJCCCAAAJhBAhMKQknCxCYWju7BKY2DUzP+ygwzUhg6vEdSWDqMRUnIoAAAgggEKkAgWmkRJyAAAIIIEBgSg3EIAECU2snm8DUnoHpn+d8E5jGf4HA1OM7ksDUYypORAABBBBAIFIBAtNIiTgBAQQQQIDAlBqIQQIEptZONoGpTQPTH3wUmGYhMPX4jiQw9ZiKExFAAAEEEIhUgMA0UiJOQAABBBAgMKUGYpAAgam1k01gatPA9MyL1hZGBK3Hz3rKJ/2a3SkvfTJblPYQQAABBBCwWIDA1GJgmkcAAQQcKMAepg6cVIbkFiAwtbYYCEztGZjeO+WbwDTeiwSmHt+RrDD1mIoTEUAAAQQQiFSAwDRSIk5AAAEEEAgjQGBKSThZgMDU2tklMLVpYHrSR4FpdgJTj+9IAlOPqTgRAQQQQACBSAUITCMl4gQEEEAAAQJTaiAGCRCYWjvZBKb2DEyDv/NNYOqfk8DU4zuSwNRjKk5EAAEEEEAgUgEC00iJOAEBBBBAgMCUGohBAgSm1k42galNA9NvfRSY5iIw9fiOJDD1mIoTEUAAAQQQiFSAwDRSIk5AAAEEECAwpQZikACBqbWTTWBqz8D0/te+CUzj5iEw9fiOJDD1mIoTEUAAAQQQiFSAwDRSIk5AAAEEECAwpQZikACBqbWTTWBq08D02EvWFkYErcd9+Xuf9Gt2p7Eeq8PsRsO2R2BqtTDtI4AAAgjEJAEC05g024wVAQQQMEeAlz6Z40gr0VOAwNTaeSEwtWdg+uCobwLTOPkJTD2+IwlMPabiRAQQQAABBCIVIDCNlIgTEEAAAQTCCBCYUhJOFiAwtXZ2CUxtGph+6aPAtACBqcd3JIGpx1SciAACCCCAQKQCBKaREnECAggggACBKTUQgwQITK2dbAJTewamD4/4JjD1K0Rg6vEdSWDqMRUnIoAAAgggEKkAgWmkRJyAAAIIIEBgSg3EIAECU2snm8DUpoHp5z4KTIsQmHp8RxKYekzFiQgggAACCEQqQGAaKREnIIAAAggQmFIDMUiAwNTaySYwtWlgeii7tYURQet+RU/6pF+zO+WlT2aL0h4CCCCAAAIWCxCYWgxM8wgggIADBdjD1IGTypDcAgSm1hYDgalNA9P/5bC2MCIKTIuf8Em/ZndKYGq2KO0hgAACCCBgsQCBqcXANI8AAgg4UIDA1IGTypAITL1UAwSmNg1M9/soMH2VwNTjW5NH8j2m4kQEEEAAAQQiFSAwjZSIExBAAAEEwggQmFISThZgham1s0tgatPAdF9Oawsjgtb9Snznk37N7pQVpmaL0h4CCCCAAAIWCxCYWgxM8wgggIADBQhMHTipDMktQGBqbTEQmNo0MP0sl7WFEVFgWupbn/RrdqcEpmaL0h4CCCCAAAIWCxCYWgxM8wgggIADBQhMHTipDInA1Es1QGBq08B0T24vVUjobvxKf+OTfs3ulMDUbFHaQwABBBBAwGIBAlOLgWkeAQQQcKAAgakDJ5UhEZh6qQYITG0amO7yUWBahsDU41uTPUw9puJEBBBAAAEEIhUgMI2UiBMQQAABBMIIEJhSEk4W4JF8a2eXwNSmgenOPNYWRgSt+5X72if9mt0pK0zNFqU9BBBAAAEELBYgMLUYmOYRQAABBwoQmDpwUhmSW4DA1NpiIDC1aWC6I6+1hRFRYFr+uE/6NbtTAlOzRWkPAQQQQAABiwUITC0GpnkEEEDAgQIEpg6cVIZEYOqlGiAwtWlguv1lL1VI6G78Kh7zSb9md0pgarYo7SGAAAIIIGCxAIGpxcA0jwACCDhQgMDUgZPKkAhMvVQDBKY2DUy3+SgwfZ3A1ONbkz1MPabiRAQQQAABBCIVIDCNlIgTEEAAAQTCCBCYUhJOFuCRfGtnl8DUpoHplnzWFkYErftV/son/ZrdKStMzRalPQQQQAABBCwWIDC1GJjmEUAAAQcKEJg6cFIZkluAwNTaYiAwtWlguim/tYURUWBa9ahP+jW7UwJTs0VpDwEEEEAAAYsFCEwtBqZ5BBBAwIECBKYOnFSGRGDqpRogMLVnYPrg4wJeqpDQ3cSp9qX7C8HB96XA6+0kbtw47q+VK1FAJg3vIvfU94ZNXCj7Dh2XBPHjSdvG1aR+jbLGeRcuX5Mh4xfIydPnJV2alDKoRzMpmPdFOaH+3HPodNmybLzlYyMwtZyYDhBAAAEEEDBXgMDUXE9aQwABBGKCAIFpTJjlmDtGVphaO/cEpjYNTD/0UWBa/Z/A9MbPv0nNVoNk34bpTyAGLVwnp89dkjED28vNX25Jky6BMmdCH3kpSwZp0WOMlCtZUJrWqSj7D3+jwtP5sn3lO3JGnU9gau39TusIIIAAAgjYVoDA1LZTx4UjgAACPhMgMPUZPR17QYDA1FpkAlObBqYbC1pbGBG0HqfGF+7vnD1/RTq9NTncFaE1WgyUUf3bSL5cWY3zxwctl0QJ40vDWuWlcuN+cuCjIInj52d8r267YdKvcyNJmiShOzC9/+ChtA0YL6WL55M2jaqaPlZWmJpOSoMIIIAAAghYK0Bgaq0vrSOAAAJOFCAwdeKsMiaXAIGptbVAYGrTwHR9IWsLI6LAtNYR93eOfXtGug2eKlkypZVTP1yS7NmelyE9m8sLz6eRfOXbyJ51UyVZ0kTG+Ss37JTDx05Ko1oVZOSkxbJ+YaC7nYARM6RYwVzycs4s7sB0hDrn4cOHMrJva0vGSWBqCSuNIoAAAgggYJ0Agal1trSMAAIIOFWAwNSpM8u4tACBqbV1QGBq08B0bWFrCyOiwLTOYfd39CP0Sz7YJRkBOwAAIABJREFULs3rV5L0ai/SGYvWy+4DX8nquSMkf4U2cmTrHIkfz984f8PWffLJnsPSqHZ5mTpvjayYNczdzuBx841H9YsWyGkEpq0aVJZtuw/L7AkB7lWoZg+WwNRsUdpDAAEEEEDAYgECU4uBaR4BBBBwoACBqQMnlSG5BQhMrS0GAlObBqZrfBSYvvlPYBpWTj9GX6Rye9m24h2p2CBAdq2dIs8kS2Kctnz9Djn69Wn1SH459TKoRbJx0dvuj/ceHiSvFs4jeXJklqZdAyV27NhSVr08atygDpYVP4GpZbQ0jAACCCCAgDUCBKbWuNIqAggg4GQBAlMnzy5jIzC1tgYITG0amK4uYm1hRNB6nHqfu79z/eavcuv2Xcn6Qnrja8HB96WQCkz1o/iteo6TAd2bSDG1alQfQycskAxpU0m96mWkQv0A2ateFJUg/l+rT6s06SejB7RTf44nrXuPkzVzR6p/j5eAjvWlQilrth4gMPVJ+dApAggggAACTy9AYPr0dnwSAQQQiKkCBKYxdeZjxrgJTK2dZwJTmwamq4paWxgRBab1D7m/89nBYzLinUWyeOpASZMqhQQtWme89X7FzKEy672NcvSbUzJlZDe5ePm6tOg5RpYFDZFMGVJLGxWGFsmfQ9o1eUM2f3rQeER/89LxcursRfcepl8cPyW9hk2XdQsCJUXyv1apmnkQmJqpSVsIIIAAAgh4QYDA1AvIdIEAAgg4TIDA1GETynBCCRCYWlsQBKY2DUxXFLO2MCIKTBseDPWduUs/kmXrPpF7anVpnuyZZVhAS2M/U73aVD96r0PVRAnjS+eWtaRmpRLGZy9dvSEDx8yVk2cuyPPpnpPh6jO5s78gJ06fdwem+rxxQcvlyk83Veja1fSxEpiaTkqDCCCAAAIIWCtAYGqtL60jgAACThQgMHXirDImlwCBqbW1QGBq08B0mY8C08ahA1Nrq9O61glMrbOlZQQQQAABBCwRIDC1hJVGEUAAAUcLEJg6enpj/OAITK0tAQJTmwamS4tbWxgRtB6nyf980q/ZnRKYmi1KewgggAACCFgsQGBqMTDNI4AAAg4UIDB14KQyJLcAgam1xUBgatPAdMkr1hZGRIFpswM+6dfsTglMzRalPQQQQAABBCwWIDC1GJjmEUAAAQcKEJg6cFIZEoGpl2qAwNSmgel7r3qpQkJ3E6f5fp/0a3anBKZmi9IeAggggAACFgsQmFoMTPMIIICAAwUITB04qQyJwNRLNUBgatPAdJGPAtOWBKYe35pBgYdk+qhDoc7vMrio3IkdLGMC93rcDicigAACCCCAgAiBKVWAAAIIIBBVAQLTqIpxvp0EeCTf2tkiMLVnYHp/wV9vnPf2Ebf1Pm93aUl/rDC1hJVGEUAAAQQQsE6AwNQ6W1pGAAEEnCpAYOrUmWVcWoDA1No6IDC1aWA6v6S1hRFB63HbOGNhJIGpT8qHThFAAAEEEHh6AQLTp7fjkwgggEBMFSAwjakzHzPGTWBq7TwTmNozMA2eV8rawoigdf+2n/mkX7M7JTA1W5T2EEAAAQQQsFiAwNRiYJpHAAEEHChAYOrASWVIbgECU2uLgcDUpoHpnNLWFkZEgWn7PT7p1+xOCUzNFqU9BBBAAAEELBYgMLUYmOYRQAABBwoQmDpwUhkSgamXaoDA1J6B6b3Zr3mpQkJ3E6/Dbp/0a3anBKZmi9IeAggggAACFgsQmFoMTPMIIICAAwUITB04qQyJwNRLNUBgatPAdGYZL1VImMC00y6f9Gt2pwSmZovSHgIIIIAAAhYLEJhaDEzzCCCAgAMFCEwdOKkMicDUSzVAYGrPwPTPGWW9VCGhu4nf+VOf9Gt2pwSmZovSHgIIIIAAAhYLEJhaDEzzCCCAgAMFCEwdOKkMicDUSzVAYGrPwPSPoHJeqpDQ3STostMn/ZrdKYGp2aK0hwACCCCAgMUCBKYWA9M8Aggg4EABAlMHTipDIjD1Ug0QmNo0MJ1W3ksVEiYw7bbDJ/2a3SmBqdmitIcAAggggIDFAgSmFgPTPAIIIOBAAQJTB04qQyIw9VINEJjaMzD9fWoFL1VI6G4Sdv/EJ/2a3SmBqdmitIcAAggggIDFAgSmFgPTPAIIIOBAAQJTB04qQyIw9VINEJjaNDCd4qPAtCeBqce3ZlDgIZk+6lCo87sMLip3YgfLmMC9HrfDiQgggAACCCAgQmBKFSCAAAIIRFWAwDSqYpxvJwF/fz85db275E86U+L6x5bPb3SQDMkm2WkI0fpaCUztGZjenVzRJ3WVqNd2n/RrdqesMDVblPYQQAABBBCwWIDA1GJgmkcAAQQcKEBg6sBJZUhuAQJTa4uBwNSmgemk160tjAhaT9R7m0/6NbtTAlOzRWkPAQQQQAABiwUITC0GpnkEEEDAgQIEpg6cVIZEYOqlGiAwtWdgemdiJS9VSOhuEvfZ6pN+ze6UwNRsUdpDAAEEEEDAYgECU4uBaR4BBBBwoACBqQMnlSERmHqpBghMbRqYTqjspQoJE5j23eKTfs3ulMDUbFHaQwABBBBAwGIBAlOLgWkeAQQQcKAAgakDJ5UhEZh6qQYITO0ZmN4eV8VLFRK6myT9N/ukX7M7JTA1W5T2EEAAAQQQsFiAwNRiYJpHAAEEHChAYOrASWVIBKZeqgECU5sGpmOreqlCwgSmb23ySb9md0pgarYo7SGAAAIIIGCxAIGpxcA0jwACCDhQgMDUgZPKkAhMvVQDBKb2DExvja7mpQoJ3U3SgR/7pF+zOyUwNVuU9hBAAAEEELBYgMDUYmCaRwABBBwoQGDqwEllSASmXqoBAlObBqZvv+GlCgkTmA76yCf9mt0pganZorSHAAIIIICAxQIEphYD0zwCCCDgQAECUwdOKkMiMPVSDRCY2jMw/S2wupcqJHQ3yQZ/6JN+ze6UwNRsUdpDAAEEEEDAYgECU4uBaR4BBBBwoACBqQMnlSERmHqpBghMbRqYjqzhpQoJE5gO3eiTfs3ulMDUbFHaQwABBBBAwGIBAlOLgWkeAQQQcKAAgakDJ5UhEZh6qQYITO0ZmP46oqaXKiR0N8mHbfBJv2Z3SmBqtijtIYAAAgggYLEAganFwDSPAAIIOFCAwNSBk8qQCEy9VAMEpjYNTIfV8lKFhAlMR6z3Sb9md0pgarYo7SGAAAIIIGCxAIGpxcA0jwACCDhQgMDUgZPKkAhMvVQDBKb2DEx/GVrbSxUSuptnRq7zSb9md0pgarYo7SGAAAIIIGCxAIGpxcA0jwACCDhQgMDUgZPKkAhMvVQDBKY2DUyH+CgwHUVg6vGtGRR4SKaPOhTq/C6Di8qd2MEyJnCvx+1wIgIIIIAAAgiIEJhSBQgggAACURUgMI2qGOfbScDf309OXe8u+ZPOlLj+seXzGx0kQ7JJdhpCtL5WAlN7BqY/D6rjk7pK8fbacPs99OUJadVrrHz43hjJkjGt3Au+L8MmLpR9h45LgvjxpG3jalK/RlnjsxcuX5Mh4xfIydPnJV2alDKoRzMpmPdFOaH+3HPodNmybLzlY2OFqeXEdIAAAggggIC5AgSm5nrSGgIIIBATBAhMY8Isx9wxEphaO/cEpjYNTAe+aW1hRNB6itFrnvhOsApHG3UeJddv/iqL3h1gBKZBC9fJ6XOXZMzA9nLzl1vSpEugzJnQR17KkkFa9Bgj5UoWlKZ1Ksr+w9+o8HS+bF/5jpxR5xOY+mRa6RQBBBBAAIHoL0BgGv3niCtEAAEEopsAgWl0mxGux0wBAlMzNZ9si8DUnoHpzbfqWlsYEbT+7NgPnviODkcfPxbZtuewTBnZ1QhMa7QYKKP6t5F8ubIa548PWi6JEsaXhrXKS+XG/eTAR0ESx8/P+F7ddsOkX+dGkjRJQndgev/BQ2kbMF5KF88nbRpVNX2srDA1nZQGEUAAAQQQsFaAwNRaX1pHAAEEnChAYOrEWWVMLgECU2trgcDUnoHpjf71rC2MCFpPOW51qO+cu3BVegydJqtmD5d67Ye7A9N85dvInnVTJVnSRMb5KzfslMPHTkqjWhVk5KTFsn5hoLudgBEzpFjBXPJyzizuwHSEOufhw4cysm9rS8ZJYGoJK40igAACCCBgnQCBqXW2tIwAAgg4VYDA1Kkzy7i0AIGptXVAYGrPwPR6v/rWFkYEracavyrUd1r3GiftmrwhrxTOLTVaDjIC0+fTPSf5K7SRI1vnSPx4/sb5G7buk0/UCtRGtcvL1HlrZMWsYe52Bo+bbzyqX7RATiMwbdWgsmzbfVhmTwhwr0I1e7AEpmaL0h4CCCCAAAIWCxCYWgxM8wgggIADBQhMHTipDMktQGBqbTEQmNo0MO3bwNrCiCgwnbDS/Z31W/bKAbUH6bjBHYyvuQJT/Ui+XmG6a+0UeSZZEuN7y9fvkKNfn1aP5JdTL4NaJBsXve1up/fwIHm1cB7JkyOzNO0aKLFjx5ayJQrIuEF/tWvFQWBqhSptIoAAAgggYKEAgamFuDSNAAIIOFSAwNShE8uwDAECU2sLgcD0Sd94ft1l/phXZfqoQ6G+2WVwUek6pKi1E+Jh69cCGnp4prmnPffOCneD3QZPlS+Ofy9+KuDUx6+37kiSxAnl7f5tZcrcD2RA9yZSTK0a1cfQCQskQ9pUUq96GalQP0D2bpguCeL/tfq0SpN+MnpAO/XneNK69zhZM3ek+vd4CehYXyqUKmTuAP5ujcDUElYaRQABBBBAwDoBAlPrbGkZAQQQcKoAgalTZ5ZxaQECU2vrgMD0SV87BKY/9W5kbWFE0HrqScsj7DfkCtNZ722Uo9+cUo/od5OLl69Li55jZFnQEMmUIbW0UWFokfw5jEf5N3960HhEf/PS8XLq7EX3HqZfHD8lvYZNl3ULAiVF8r9WqZp5EJiaqUlbCCCAAAIIeEGAwNQLyHSBAAIIOEyAwNRhE8pwQgkQmFpbEASm9gxMr/ZqbG1hRNB6msnLPApMg4PvG4/ef3bwmCRKGF86t6wlNSuVMD576eoNGThmrpw8c8HY73R4QEvJnf0FOXH6vDsw1eeNC1ouV366aeyLavZBYGq2KO0hgAACCCBgsQCBqcXANI8AAgg4UIDA1IGTypDcAgSm1hYDgak9A9MrPX0TmKadEnFgam2lmts6gam5nrSGAAIIIICA5QIEppYT0wECCCDgOAECU8dNKQMKIUBgam05EJjaNDBV+4P64kg7dakvujW9TwJT00lpEAEEEEAAAWsFCEyt9aV1BBBAwIkCBKZOnFXG5BIgMLW2FghM7RmYXu7W1NrCiKD1dNPe90m/ZndKYGq2KO0hgAACCCBgsQCBqcXANI8AAgg4UIDA1IGTypDcAgSm1hYDgak9A9NLXZtZWxgRtJ5++hKf9Gt2pwSmZovSHgIIIIAAAhYLEJhaDEzzCCCAgAMFCEwdOKkMicDUSzVAYGrPwPRil+ZeqpDQ3WQIes8n/ZrdKYGp2aK0hwACCCCAgMUCBKYWA9M8Aggg4EABAlMHTipDIjD1Ug0QmNozML3QqYWXKiR0N8/PXOyTfs3ulMDUbFHaQwABBBBAwGIBAlOLgWkeAQQQcKAAgakDJ5UhEZh6qQYITG0amHZs6aUKCROYzlrkk37N7pTA1GxR2kMAAQQQQMBiAQJTi4FpHgEEEHCgAIGpAyeVIRGYeqkGCEztGZie79DKSxUSupuMsxf6pF+zOyUwNVuU9hBAAAEEELBYgMDUYmCaRwABBBwoQGDqwEllSASmXqoBAlN7BqY/tmvtpQoJ3U2muQt80q/ZnRKYmi1KewgggAACCFgsQGBqMTDNI4AAAg4UIDB14KQyJAJTL9UAgak9A9Nzbdt4qUJCd/PCvPk+6dfsTglMzRalPQQQQAABBCwWIDC1GJjmEUAAAQcKEJg6cFIZEoGpl2qAwNSmgWkbHwWm8wlMPb41gwIPyfRRh0Kd32VwUbkTO1jGBO71uB1ORAABBBBAAAERAlOqAAEEEEAgqgIEplEV43w7Cfj7+8mp690lf9KZEtc/tnx+o4NkSDbJTkOI1tdKYGrPwPRs67Y+qavMC+b5pF+zO2WFqdmitIcAAggggIDFAgSmFgPTPAIIIOBAAQJTB04qQ3ILEJhaWwwEpvYMTH9o2c7awoig9SyL5vqkX7M7JTA1W5T2EEAAAQQQsFiAwNRiYJpHAAEEHChAYOrASWVIBKZeqgECU3sGpmdatPdShYTuJuviOT7p1+xOCUzNFqU9BBBAAAEELBYgMLUYmOYRQAABBwoQmDpwUhkSgamXaoDA1J6B6enmHbxUIaG7yfbebJ/0a3anBKZmi9IeAggggAACFgsQmFoMTPMIIICAAwUITB04qQyJwNRLNUBgatPAtFlHL1VImMB0ySyf9Gt2pwSmZovSHgIIIIAAAhYLEJhaDEzzCCCAgAMFCEwdOKkMicDUSzVAYGrPwPRUk05eqpDQ3by4dKZP+jW7UwJTs0VpDwEEEEAAAYsFCEwtBqZ5BBBAwIECBKYOnFSGRGDqpRogMLVnYPp9485eqpDQ3by0bIZP+jW7UwJTs0VpDwEEEEAAAYsFCEwtBqZ5BBBAwIECBKYOnFSGRGDqpRogMLVnYHqyURcvVUjobrIvD/JJv2Z3SmBqtijtIYAAAgggYLEAganFwDSPAAIIOFCAwNSBk8qQCEy9VAMEpjYNTBv6KDBdQWDq8a0ZFHhIpo86FOr8LoOLyp3YwTImcK/H7XAiAggggAACCIgQmFIFCCCAAAJRFSAwjaoY59tJwN/fT05d7y75k86UuP6x5fMbHSRDskl2GkK0vlYCU3sGpifqd/VJXeVYNd0n/ZrdKStMzRalPQQQQAABBCwWIDC1GJjmEUAAAQcKEJg6cFIZkluAwNTaYiAwtWdg+l29btYWRgSt51w9zSf9mt0pganZorSHAAIIIICAxQIEphYD0zwCCCDgQAECUwdOKkMiMPVSDRCY2jMw/bZudy9VSOhucn0w1Sf9mt0pganZorSHAAIIIICAxQIEphYD0zwCCCDgQAECUwdOKkMiMPVSDRCY2jMw/ebNHl6qkNDd5F7zrk/6NbtTAlOzRWkPAQQQQAABiwUITC0GpnkEEEDAgQIEpg6cVIZEYOqlGiAwtWdg+nWdnl6qkNDd5Fk7xSf9mt0pganZorSHAAIIIICAxQIEphYD0zwCCCDgQAECUwdOKkMiMPVSDRCY2jMwPV6rl5cqJHQ3eddP9km/ZndKYGq2KO0hgAACCCBgsQCBqcXANI8AAgg4UIDA1IGTypAITL1UAwSm9gxMj9Xs7aUKCd3Nyxsm+aRfszslMDVblPYQQAABBBCwWIDA1GJgmkcAAQQcKEBg6sBJZUgEpl6qAQJTewamX9UI8FKFhO4m38Z3fNKv2Z0SmJotSnsIIIAAAghYLEBgajEwzSOAAAIOFCAwdeCkMiQCUy/VAIGpPQPTo9X7eKlCQneT/8OJPunX7E4JTM0WpT0EEEAAAQQsFiAwtRiY5hFAAAEHChCYOnBSGRKBqZdqgMDUnoHpl2/09VKFhO6mwEcTfNKv2Z0SmJotSnsIIIAAAghYLEBgajEwzSOAAAIOFCAwdeCkMqRwA9PYsWPJou21pEDxtAiZJHD10h3pVPMjOf3dz9JlcB7pPKiUSS3bt5lYsWJJq8ob5eCui6EG0WVwUek6pGi0GNgXVfv55DoKbhrvk37N7pTA1GxR2kMAAQQQQMBiAQJTi4FpHgEEEHCgAIGpAyeVIYUbmOov6tA0lvqHwySBx4/l4cPH7sb84sQ2qWF7N/PwwaMnBhCdAtMjVfr7BLjQ5nGh+t2046BMW7BWfv71luR6KZOM6NNKMqZPLfeC78uwiQtl36HjkiB+PGnbuJrUr1HW+OyFy9dkyPgFcvL0eUmXJqUM6tFMCuZ9UU6oP/ccOl22LLM+lCUw9Un50CkCCCCAAAJPL0Bg+vR2fBIBBBCIqQIEpjF15mPGuP39/eTU9e6SP+nMmDFgRhltBaJTYHq48ls+cSq8Zay733MXrkrjLqNk0ZQBkjVTOpk8d7URes6b2FeCFq6T0+cuyZiB7eXmL7ekSZdAmTOhj7yUJYO06DFGypUsKE3rVJT9h79R4el82b7yHTmjzicw9cm00ikCCCCAAALRX4DANPrPEVeIAAIIRDcBAtPoNiNcj5kCIQNTvbp0/paaUrhEOjO7iHZt9W/9iWxa+b3kzJdS3lPjTZg0XrS7xqhc0PKpX0rggAOSOn0imb2xumTNkSIqH/f6ueqJfGn5+no5vPdyqL6jU2B6qNJAr7voDotuHe3u99LVG/LDj1ekVLG8xte++vaMBAwPkk9WTZIaLQbKqP5tJF+urMb3xgctl0QJ40vDWuWlcuN+cuCjIInj52d8r267YdKvcyNJmiShOzC9/+ChtA0YL6WL55M2jaqaPlZWmJpOSoMIIIAAAghYK0Bgaq0vrSOAAAJOFCAwdeKsMiaXQMjANK5/bPn8RgfJmHKyY4Gat84nBfOkkZFdd0v9trmlRdkU8sPEbbYdb7KX00viNmWkTum1UuCVtNJzdHGpUmlptB5PvwElJPGjuDJ91KFQ1xmdAtODrw/yiWGxbW+H2++du3/ImGlLJWGCeMYj9vnKt5E966ZKsqSJjPNXbtgph4+dlEa1KsjISYtl/cJAdzsBI2ZIsYK55OWcWdyB6Qh1zsOHD2Vk39aWjJPA1BJWGkUAAQQQQMA6AQJT62xpGQEEEHCqAIGpU2eWcWmB8ALTdMnfcSxOizb5pEi+dP8EpmWekTPjt9p2vMnzqcC0XTl3YNpDBaavl18Srcfz1qCSklT8o3Vg+r+Kg31iWHz7P0Gn6wImzFwhi1ZuUfuQviTT3+4hCdVK0vwV2siRrXMkfjx/47QNW/fJJ3sOS6Pa5WXqvDWyYtYw9/UPHjffeFS/aIGcRmDaqkFl2bb7sMyeEOBehWr2YAlMzRalPQQQQAABBCwWIDC1GJjmEUAAAQcKEJg6cFIZkluAwJTA1Nu3gx0C0wPlh3ibxejvlR2jwu33jz+DjVWkG7bulbXzR6nAtK3sWjtFnkmWxDh/+fodcvTr0+qR/HLqZVCLZOOif1aq9laP8b9aOI/kyZFZmnYNVC92iy1lSxSQcYM6WDZGAlPLaGkYAQQQQAABawQITK1xpVUEEEDAyQIEpk6eXcZGYEpg6u27wA6B6f5yQ73NYvT36s6R7n71C55+vXVHiqvH6fXxQD1CbwSla6ao/UcnyIDuTaSYWjWqj6ETFkiGtKmkXvUyUqF+gOzdMF0SxP9r9WmVJv1k9IB26s/xpHXvcbJm7kj17/ES0LG+VChVyJJxEphawkqjCCCAAAIIWCdAYGqdLS0jgAACThUgMHXqzDIuLUBgSmDq7TvBDoHpvrL/PNLuTZ8Sn45wd/fZweMqCJ0vi98dKBnTPyfrt+yVSbNXye6178rsJR/K0W9OyZSR3eTi5evSoucYWRY0RDJlSC1tVBhaJH8OadfkDdn86UHjEf3NS8fLqbMX3XuYfnH8lPQaNl3WLQiUFMn/WqVq5kFgaqYmbSGAAAIIIOAFAQJTLyDTBQIIIOAwAQJTh00owwklQGBKYOrtW8IOgeneMsO9zWL0V3JX6H4XrNgky9btEP3SJ72C9K2ujaVwvuwSHHzfePT+s4PHJJHa07Rzy1pSs1IJo41LV2/IwDFz5eSZC/J8uudkeEBLyZ39BdErVvUepluWjTfOGxe0XK78dFOFrl1NHyuBqemkNIgAAggggIC1AgSm1vrSOgIIIOBEAQJTJ84qY3IJEJh6FpgmzZlGXh5dU/bWnh2tiseTlz5dvhGgQrY5cvnS7QivfdXaevLB6m9l1fJvLB+fHQLTz177Z6Wn5SAhOii12zcrW80eI4Gp2aK0hwACCCCAgMUCBKYWA9M8Aggg4EABAlMHTipDcgsQmHoWmMbyiyVxEseX+7/9Ea2qx5PANGWqhHLzxu/y+HHEl54sWTz5888Hcu/eQ8vHZ4fAdE+pf/YStRwkRAelP/PN3qlmj5HA1GxR2kMAAQQQQMBiAQJTi4FpHgEEEHCgAIGpAyeVIUUpME3+THyZPqeqFC6aTn7++Q8Z3Hen7PzkrJQt/4KMGldO4sX3k/vBj2TogE/lk60/RPj16MDeok0+KZIvnYzsulvqt80tLcqEDkyfr19QXmhazH2p8Z5LIscHb5Q/Lv3qXmGaqVlRSZo9tcT2jyP+zySUxw8fybFBGyX45l2vD9GTwNS1wvTZZxPIzLlvyNbNp6Vg4bTy/PPJpH/Adtmh5pIVpqGnbnfJ8N9Wb/UEv7Z3iNVdeKV9AlOvMNMJAggggAAC5gkQmJpnSUsIIIBATBEgMI0pMx0zx+nJCtMpMyrL77/fl4F9dhhB25qP6kuOTNNl5/4W0rvbVjm4/5LkypNK2ncuJD07b5F9R1qH+/XoIBxZYBryGlOVzibZOr8mB1sslsRZUroD04yNCku2DqWMx/ODf/ldXuxWRq0+jSffjdnq9SFGJTDVq0j3f95G6lRfKZ/uPCc1a2eXrt2LSsWySwhMw8zcrhKBXp9L3WGZfYN90q/ZnRKYmi1KewgggAACCFgsQGBqMTDNI4AAAg4UIDB14KQyJLeAJ4Hp12c6S6M6H8jxr64Zn0uWPJ789us9WbupgZw59bNMn3xIfjz3m7vNiL4eHdg9DUzjpU4ixeY3kyPdV8ndH25IyD1MdWCaolBGOdpnrTGkFIUzSo6+FWV/g/leH2JUA9OtO5tJxjSTjevMk/c5WfFBXcmTfcb/27vzOJvqx4/j74YZ+1ZkrSTJGioj7ZYWLZYWWSp7yjoh2RUTIbKNNUuGQVmixZayJoMWWjCkBSUkWWJQv3uvut9mSvdcv7Pcc+bln++Xe+bzOZ/n53P74/U4dy7BNN3OfXDZP7GcAAAgAElEQVTTi7bvpX/C6h/2cmResyclmJotyngIIIAAAghYLEAwtRiY4RFAAAEPChBMPbipLCkoYCSY7vm5s6pVflXff/trGrlLC+ZQl+7VdF+dUvr1yCn16f6+VizbrfP9eySwGwqmURepysTG2vfWVu1duCVw2+mDaa5SBfXFC+8EX6s0/CGtrp1g+xLDDabzFz2qMiXP3WeZsvn119/5SH7arXu/2kDb99I/YY31PR2Z1+xJCaZmizIeAggggAACFgsQTC0GZngEEEDAgwIEUw9uKksKChgJplt2PK2mjRbok80/Bn6u5NUX67tvjyg19X9fEFT7/pIaN/l+lSg8Ur///r9vFzrfvzu1BUaCacmnb1O2Ynm11fd7Sf/6kz6YXhJbXJ88Mzfw8iU3XqlScTW0vmHkP2FKMDV28lZUHWTsQpOvqrmhh8kjOjMcwdQZd2ZFAAEEEEDgggUIphdMxw8igAACGVaAYJphtz5DLNxIMB068k7FZMmkZ9ouVflrL9X8dx7VDeUmaM7CR9S88ULt23tUVxTPo5UfNVO5EglasLjhP/7dH1L/61va7cIOFUwvjr1CZZ67Wx89MU1nj6eeN5he1eYWrW80VSd/OKKyfWrr91NntG3IcruWEZyHJ0ytIX8v1plgWiuZYGp4RxPikzVmQHKa69v1jtWxqFQNil9reBwuRAABBBBAAAGJYMopQAABBBAIV4BgGq4Y17tJwEgwzZU7RmNfvU/Vbr5MBw+eUI/O7+mDFd+o8eMVFNftRmXOHKWTv53Ri8+v1juLUs7775HgEiqYVh75iPJVLKYzx08Fb9f/sfwDa3am+dKnvNcWVVRMZuW6+lL95oumW3q8qdSfT9i+RIKpNeTLq7xkzcAhRr1zY3dH5jV7Up4wNVuU8RBAAAEEELBYgGBqMTDDI4AAAh4UIJh6cFNZUlDASDD1EleoYGpkrf4vfcp5VQF9Gb/YyOWWXmMkmFp6AxcwePdetyi3Yv714cD2fWIvYETzf2TZDYPNH9TAiHdtes7AVZF/CcE08veIO0QAAQQQQCCNAMGUA4EAAgggEK4AwTRcMa53kwDBNJ92DVka1pYRTMPi+sfFbgimS68f8v9b5AX+9N2bu13gT0bWjxFMI2s/uBsEEEAAAQRCChBMQxJxAQIIIIBAOgGCKUfCywIEU4Kp3efbDcF0ceWhdrME5qv9ybOOzGv2pARTs0UZDwEEEEAAAYsFCKYWAzM8Aggg4EEBgqkHN5UlBQUIpuEH00g6Pnwk35rdeLfSy9YMHGLUez/t6si8Zk9KMDVblPEQQAABBBCwWIBgajEwwyOAAAIeFCCYenBTWRLBtP0qNWhVTk3vIJja/XZwwxOm71QcZjdLYL77PuviyLxmT0owNVuU8RBAAAEEELBYgGBqMTDDI4AAAh4UIJh6cFNZEsGUYOrYu8ANwfTta4c74nP/ls6OzGv2pARTs0UZDwEEEEAAAYsFCKYWAzM8Aggg4EEBgqkHN5UlEUwJpo69C9wQTBdVeMURnzpbn3FkXrMnJZiaLcp4CCCAAAIIWCxAMLUYmOERQAABDwoQTD24qSyJYEowdexd4IZgurC8M8G07ucEU8MHMyE+WWMGJKe5vl3vWB2LStWg+LWGx+FCBBBAAAEEEJAIppwCBBBAAIFwBQim4YpxvZsE+NInfoep3efVDcH0zbIj7GYJzFfvyzhH5jV7Up4wNVuU8RBAAAEEELBYgGBqMTDDI4AAAh4UIJh6cFNZUlCAYEowtfvt4IZguqDMSLtZAvPV/6qTI/OaPSnB1GxRxkMAAQQQQMBiAYKpxcAMjwACCHhQgGDqwU1lSQRTPpLv2LvADcF0XulRjvg8tK2jI/OaPSnB1GxRxkMAAQQQQMBiAYKpxcAMjwACCHhQgGDqwU1lSQRTgqlj7wI3BNO514x2xOfh7R0cmdfsSQmmZosyHgIIIIAAAhYLEEwtBmZ4BBBAwIMCBFMPbipLIpgSTB17F7ghmL5RaowjPo/saO/IvGZPSjA1W5TxEEAAAQQQsFiAYGoxMMMjgAACHhQgmHpwU1kSwZRg6ti7wA3B9PWSCY74NNjZzpF5zZ6UYGq2KOMhgAACCCBgsQDB1GJghkcAAQQ8KEAw9eCmsiSCKcHUsXeBG4LpnKvGOuLz6K62jsxr9qQEU7NFGQ8BBBBAAAGLBQimFgMzPAIIIOBBAYKpBzeVJRFMCaaOvQvcEExnlRjniE+jr592ZF6zJyWYmi3KeAgggAACCFgsQDC1GJjhEUAAAQ8KEEw9uKksiWBKMHXsXeCGYJp05XhHfBrvfsqRec2elGBqtijjIYAAAgggYLEAwdRiYIZHAAEEPChAMPXgprIkginB1LF3gRuC6czizgTTJt8QTA0fzIT4ZI0ZkJzm+na9Y3UsKlWD4tcaHocLEUAAAQQQQEAimHIKEEAAAQTCFSCYhivG9W4SiInJpJQDHVUp9zhFx0Rp48E2KpJ3mJuWENa9Nm1ZUVUqFlF/gmlYbmZe7IZgOuPyCWYu2fBYj33XxvC1kXwhT5hG8u5wbwgggAACCPyLAMGUY4EAAgggEK4AwTRcMa53kwDBNJ92DVnqpi1Lc695KxZVztY19OBt81W5WmF1Gnij7qqZGNHrcUMwnX7ZREcMn/j+SUfmNXtSgqnZooyHAAIIIICAxQIEU4uBGR4BBBDwoADB1IObypKCAgRTgqndbwc3BNPXik2ymyUwX9M9rR2Z1+xJCaZmizIeAggggAACFgsQTC0GZngEEEDAgwIEUw9uKksimPKRfMfeBW4IptOKvuqIT7O9rdLM+/66TzR8wus6cOgXlS55uV7o2lzFLyukU6mn1e/lqVqXvFXZsmZRq8b3qUGd6oGf/X7fT+ozZIq27/xORQrlV69Oj+u6Cldrm+/vcX3HaEnSEMvXRjC1nJgJEEAAAQQQMFeAYGquJ6MhgAACGUGAYJoRdjnjrpEnTHnC1O7T74ZgOrXIZLtZAvM139cyOO+PB35W3Wa9NO6lzqpUrqRGT5mvT79I0dRXuith6gLt/GavBvV8UocO/6om7eI1cWhXlSpRTE07DVKNW67TYw/eqQ83feGLp5O1fM4w7fJdTzB1ZFuZFAEEEEAAgcgXIJhG/h5xhwgggECkCRBMI21HuB8zBQimBFMzz5ORsdwQTKcUmmJkKaZf0+LHFmmC6Wdf7NTdd8QG/u2rlG/Vtscr+mDuCNVp2lMDnmupimWvCrw2JGGWcmTPqob1auqext20/u0EZc6UKfDaw637qVvbRsqdK3swmJ4+c1atugzRbTdWVMtG95q+Dp4wNZ2UARFAAAEEELBWgGBqrS+jI4AAAl4UIJh6cVdZ018CBFOCqd3vBjcE01cLTrWbJTBfq/3Nzzvv5Fnv6ssd32hYv7aqWLOlVi8YpTy5cwSun7PwfW3asl2N6tVS/+Gv6c2p8cFxurwwVlWvK6try5QIBtMXfNecPXtW/Z/9X6A1c8EEUzM1GQsBBBBAAAEbBAimNiAzBQIIIOAxAYKpxzaU5aQRIJgSTO1+S7ghmE5yKJi2Pk8wXev7XaX+EDp9dE9dki+PKtVqqc1LJyprlpjA9i1cuk7vrd6kRvVratSr8zR7fL/gtvYePDnwUf3YymUCwbT5o/do2apNmjC0S/ApVLPPAMHUbFHGQwABBBBAwGIBgqnFwAyPAAIIeFCAYOrBTWVJQQGCKcHU7reDG4LphEudecK0zU//fML07ffWa9xrC32/y/QZXV60YGC7/E+Yrpw/Qvny5Ar8fdabK/Tp5zt9H8mv4fsyqGlaNO3F4LZ2fj5BN91QXuVLX6nH2scrKipK1W+urMG92li29QRTy2gZGAEEEEAAAWsECKbWuDIqAggg4GUBgqmXd5e1EUwJpna/C9wQTMcXmGY3S2C+pw40SzPv+2s/1qjJ8/XqsGeV/+I8wdfqNe+tHh2bqKrvqVH/n75Dp6hY4QJ65IE7VKtBF61dOEbZsp57+rR2k24a2KO17+9Z1KLzYM2b1N/3v0PU5akGqnXr9Zask2BqCSuDIoAAAgggYJ0AwdQ6W0ZGAAEEvCpAMPXqzrIuvwDBlGBq9zvBDcF0bP5pdrME5mt7sFlw3iNHj6t+i95KHN1LRQvlT3M/46cv0qdfpGhE/w7as++AmsYNUlJCH11RrKBa+mJolUql1brJ/Vr8wYbAR/QXzxyilN17gr/D9OOtKXqm3xgtmBKvi/Oee0rVzD8EUzM1GQsBBBBAAAEbBAimNiAzBQIIIOAxAYKpxzaU5aQRIJgSTO1+S7ghmI65xJlg2v7Q/4LpgsVr5P/9o9HRmdNs0cq5I5Q9W5bAR+/XbNiiHNmzqm2zeqp7982B6/b+eFA9B03S9l3f67Iil+r5Ls1U7pri2rbzu2Aw9V83OGGWfth/yBdd25t+BAimppMyIAIIIIAAAtYKEEyt9WV0BBBAwIsCBFMv7ipr+kuAYEowtfvd4IZgOvri1+xmCczX4eemjsxr9qQEU7NFGQ8BBBBAAAGLBQimFgMzPAIIIOBBAYKpBzeVJQUFCKYEU7vfDm4IpiMdCqadCKbGj2NCfLLGDEhO8wPtesfqWFSqBsWvNT4QVyKAAAIIIICACKYcAgQQQACBcAUIpuGKcb2bBAimBFO7z6sbgumIfNPtZgnMF3f4CUfmNXtSnjA1W5TxEEAAAQQQsFiAYGoxMMMjgAACHhQgmHpwU1lSUIBgSjC1++3ghmA6PK8zwbTzLwRTw+eRJ0wNU3EhAggggAACIQUIpiGJuAABBBBAIJ0AwZQj4WUBginB1O7z7YZgOiyPM8G0yxGCqeHzSDA1TMWFCCCAAAIIhBQgmIYk4gIEEEAAAYIpZyADCRBMCaZ2H3c3BNOhuRPtZgnM9+yvjzsyr9mT8pF8s0UZDwEEEEAAAYsFCKYWAzM8Aggg4EEBnjD14KaypKAAwZRgavfbwQ3BdLBDwfQ5gqnx48gTpsatuBIBBBBAAIFQAgTTUEK8jgACCCCQXoBgypnwsgDBlGBq9/l2QzB9KZczT5h2P8oTpobPI8HUMBUXIoAAAgggEFKAYBqSiAsQQAABBNIJEEw5El4WIJgSTO0+324IpgNzzrCbJTBfz2OPOTKv2ZPykXyzRRkPAQQQQAABiwUIphYDMzwCCCDgQQGCqQc3lSUFBQimBFO73w5uCKYv5nAmmPY6TjA1fB55wtQwFRcigAACCCAQUoBgGpKICxBAAAEE0gkQTDkSXhYgmBJM7T7fbgimA7LPtJslMF+fE00cmdfsSXnC1GxRxkMAAQQQQMBiAYKpxcAMjwACCHhQgGDqwU1lSUEBginB1O63gxuCaf9szgTTvr8RTA2fR54wNUzFhQgggAACCIQUIJiGJOICBBBAAIF0AgRTjoSXBQimBFO7z7cbgunzDgXT5wmmxo8jwdS4FVcigAACCCAQSoBgGkqI1xFAAAEE0gsQTDkTXhYgmBJM7T7fbgim/bIm2c0SmO+Fk40dmdfsSflIvtmijIcAAggggIDFAgRTi4EZHgEEEPCgAMHUg5vKkoICGT2YPvlQMf0wZ5NrT0TOkvkVVaOC6t40V5WrFVaPEbeqe7f3Ino9jR+voF++/U1jBiSnuc92vWPVvk9sRNx7nyzOBNMBpwimhg8AT5gapuJCBBBAAAEEQgoQTEMScQECCCCAQDoBgilHwssCGTmYFiiUXSOm1VJMTJRrtzgqc5Rmjv9c85N2KEeuaPUedbsKX5YzoteTJUtmdX1sqfZ+ezRig2mvGGeC6YupBFPDh5dgapiKCxFAAAEEEAgpQDANScQFCCCAAAIEU85ABhLIyME0A22zK5YaSU+Y9oye5YjZwNONHJnX7En5SL7ZooyHAAIIIICAxQIEU4uBGR4BBBDwoABPmHpwU1lSUCCjB9NKNxZSdEymiD4RJ46d1hcf/xS4x2w5olX++ksj+n6N3NzG1Xv/cVkkBdPuDgXTlwimRo7PuWt4wtS4FVcigAACCCAQSoBgGkqI1xFAAAEE0gsQTDkTXhbIyMH0jvuKq2P/qjp8+GREb3Hu3Fk0KG6NPv7wB/UaeZsqViuko7+eiuh7/q+bK1Awh6YO+VgLEreluSySgulzmZ15wnTwGZ4wNXywCaaGqbgQAQQQQACBkAIE05BEXIAAAgggkE6AYMqR8LJARg6mDVqVU/FK+RTXcUlEb3HSnIe0ODFFKxZ9rZGv19bUmZ/qnbdSIvqe/+vmuve6RXkUE9Ff+vRsptmO+A4929CRec2elI/kmy3KeAgggAACCFgsQDC1GJjhEUAAAQ8KEEw9uKksKShAMCWY2v12cEMw7RrlTDB9+XeCqeHzyBOmhqm4EAEEEEAAgZACBNOQRFyAAAIIIJBOgGDKkfCyAMGUYGr3+XZDMO3sUDAdTjA1fhwJpsatuBIBBBBAAIFQAgTTUEK8jgACCCCQXoBgypnwskD6YLrpUBs1eXi+Z5d8590llCdrFj3fdqX4SL4z2+yGYBrnUDAdQTA1figJpsatuBIBBBBAAIFQAgTTUEK8jgACCCBAMOUMZCSBvwdT/7rb96uqClXc/y3s59vDmJgoDe66Ttu2HCSYOnTQ3RBMOzkUTEcSTI2fSoKpcSuuRAABBBBAIJQAwTSUEK8jgAACCBBMOQMZSSB9MM1Ia/+3J0wrXHupps+qr8rlJkQMhRlf+pSYVF/Ll32t6dM++8e67qheXDt2HNK+vUdVokQ+XVoohz76cI9l63dDMO0QNcuy9f/XwKN/b+TIvGZPypc+mS3KeAgggAACCFgsQDC1GJjhEUAAAQ8K8JF8D24qSwoKpA+mV5TMq8uuzO1poQ2r9up06tl/fcI0IwbT2W88pGFD12tj8j6161BFMVky6ZWXP7LsDLghmLZzKJgmEEyNnzueMDVuxZUIIIAAAgiEEiCYhhLidQQQQACB9AIEU86ElwX+HkwzZ47Swk8a6dtvj3h2yfkLZNfKt77R2PjkkMH0ooukXn1vU70HS+uPP/7QJ5t/VJe4pTp6NFWXXZ5bk6fVVYGC2QNPY2bLFq1lS3cpKXGr6Xb/9YSp/4nQd5Y2VpmrEwLzvjLqbpUrV0B31ZwR+PuceQ9rxvQtavBoOW376qCq17xSV16ZVx+u+17NHn9THeKqqlefW7Vv31Elzdiqp9tV0ZnTZwM/83zfVaavxT+gG4JpW4eC6ViCqfEzRzA1bsWVCCCAAAIIhBIgmIYS4nUEEEAAAYIpZyAjCaT/0qeNB9uocN5hniVo1rKiqlQsov7tV4UMpg89Ukadn62mu6on6vjx05qaWFfffnNEz/dZqem+j7jv/vqw+vVeqZq1rtSsuQ+r/dPv6vVZX5huF+oj+V/uaKs7ayRq756j+mBNU/lD7101ZijV9xTt7u876bprJ2hUQm0VLpJLD9aZo9O+IPrhxpbq3HGpPnj/G23Y3Cpw7/4nTF9+5U7t9X00P6M/YfpUVJLp+2hkwPG/NzZyWcRfw0fyI36LuEEEEEAAAQTSChBMOREIIIAAAuEK8IRpuGJc7yYBgmk+xXVcEtyyv38kf+LkB/TZZz8qYdTGwOvVaxTXCy9W123Vpmrntx1V7/7Z+nzrT4HX/AFyxPCPHAmm4yfdr6VLdmrVB9/IH1dTUn7WzMQt+uWXU5rw6v26/eZp8v8O0w0f7dGYP9eSNOdBvft2imb4noglmP7zHdvGoWA6gWBq/D+fPGFq3IorEUAAAQQQCCVAMA0lxOsIIIAAAukFCKacCS8LEEzPH0znLWqgN+Z8qdkzPw8cgUqVC2mW7/d9limZoIO/dtO1ZcYFvijJ/2fuwgZ6ffYXjgTTJo9XUPkKl2rtmu9UtWpRpez4WZfkz6Zff01V8eJ51Nf3FGz6L336+98Jpv98h7d2KJhOIpga/88twdS4FVcigAACCCAQSoBgGkqI1xFAAAEECKacgYwkQDA9fzD1P7m5Zct+jR197gnTGr7f/9lvwO26/aZp2r2nk2rfOTPwe0H9f9ZuaKFRIzY4Ekz9v091WmI9fbR+j9b5oqn/CdMBvidh/b9rdZYv9r6/YjfBNMw3dcuomWH+hDmXT/69iTkDOTwKH8l3eAOYHgEEEEAAgXAFCKbhinE9AggggABPmHIGvCxAMD1/MK1b/xp1fe4m3e37faAnT57RazPr6asvD2rggDWa+2YDbd60T4Pi1+qO6sU1Z/7D6tB2sSPB1H8+N3/2pE6cOK26vl8T8POh37Tp09aBY3ur79cH/Pbbmf8Mpms/au77vayr9N7yrzVoSE2lnjqrfr7f02rVHzd86VMLh4LplHTB9MzZsxoxaa6mzl6stQtHK1+eXIFtOZV6Wv1enqp1yVuVLWsWtWp8nxrUqR547ft9P6nPkCnavvM7FSmUX706Pa7rKlytbb6/x/UdoyVJQ6za2uC4BFPLiZkAAQQQQAABcwUIpuZ6MhoCCCCQEQQIphlhlzPuGo0E0xmv19fCBdv1xqwvzwt1e/UrAh8F/+sj6pEqGs6XPvnX0KP3LXrw4TK+L1K6SOs//F7PdXkvECbLlM2vV6fVUdasmbVq5bcqWjSX5r3xVeBj+Wb/CfWlT/75EsbfqxurFdP1FScGpn9jwSPKkSNa99517suL/usj+c/1vFlxnW/UC31Xavu2Q5ox+0EtW7JLzZ9YaPZSAuO5IZg2cyiYTksXTDv0GqnSJS/X+MRFWr1gVDCYJkxdoJ3f7NWgnk/q0OFf1aRdvCYO7apSJYqpaadBqnHLdXrswTv14aYvfPF0spbPGaZdvusJppYcaQZFAAEEEEDA/QIEU/fvIStAAAEE7BYgmNotznx2CpgVTGe+8aBeGfqRNvm+aT2S/4QKpuHcu//b6P/449xPvLOssUYO3xAIjWb/MRJMzZ7TyvHcEEyfiJphJcF5x57++2NpXvM/FeoPphVqNE8TTOs07akBz7VUxbJXBa4fkjBLObJnVcN6NXVP425a/3aCMmfKFHjt4db91K1tI+XOlT0YTE+fOatWXYbothsrqmWje01fK0+Ymk7KgAgggAACCFgrQDC11pfREUAAAS8KEEy9uKus6S+BcINp+7gqataqUuCJy5/2H9dTLd5WvYdKq3ufW/TDvqPq22Ol3l64I2KBzQqmL75UQ5cWzKHWzd9SiavyaeW6ZqpSaaL2/3jc9LUTTE0nDTng4w4F08R0wfSvG00fTCvWbBkIqHly5whcMmfh+9q0Zbsa1aul/sNf05tT44Nr7PLCWFW9rqzvS8pKBIPpC75rzvo+7t//2RYhLS7kAoLphajxMwgggAACCDgoQDB1EJ+pEUAAAZcKEExdunHctiGBcILpimW7tWlra11baryOHUtVw8fKK3v2aE2Z+InWbW6hTk8vyTBPmPpj6aSpD+jqqy/RqVNn9NLAtZqTZP7H8f2bSDA1dJRNvahJJmeeMJ15Nu0Tpv8WTP1Ph1aq1VKbl05U1iwxgUsWLl2n91ZvUqP6NTXq1XmaPb5f0KP34MmBj+rHVi4TCKbNH71Hy1Zt0oShXYJPoZqK5xuMYGq2KOMhgAACCCBgsQDB1GJghkcAAQQ8KEAw9eCmsqSgQDjB9K0FO/TV7nbq7/uCoDfnb9Phn08Gx8lowdTOI0QwtVP73FyNMiXaP6lvxllnH//Xef/tCdOV80cEf6fprDdX6NPPd/o+kl/D92VQ07Ro2ovBcTo/n6Cbbiiv8qWv1GPt4xUVFaXqN1fW4F5tLFsjwdQyWgZGAAEEEEDAGgGCqTWujIoAAgh4WYBg6uXdZW3hBFP/lz5VrFxQcV1vVPWaxfXJxz+qS4dl+nrX4Qz3hKmdJ4dgaqf2ubkaOhRMZxsMpvWa91aPjk1U1ffUqP9P36FTVKxwAT3ywB2q1aCL1i4co2xZzz19WrtJNw3s0dr39yxq0Xmw5k3q7/vfIeryVAPVuvV6S3AJppawMigCCCCAAALWCRBMrbNlZAQQQMCrAgRTr+4s6/ILhBtM/1Lz/5z/95aWLV9ADevPJZhaeJwIphbinmfoBg4F09cNBtPx0xfp0y9SNKJ/B+3Zd0BN4wYpKaGPrihWUC19MbRKpdJq3eR+Lf5gQ+Aj+otnDlHK7j3B32H68dYUPdNvjBZMidfFeXOZDkwwNZ2UARFAAAEEELBWgGBqrS+jI4AAAl4UIJh6cVdZ09/DZ8qBjqqUe5yiY6K08WAbFc47LA3QjNfra+GC7dq96xd17Byr1k3f8v3ezrNq9Hh51a1/jRo+OE+rPmoW+Kj+iuW7IxrXrC99snORBFM7tc/N9Uim6fZP6pvxjbNPBOf95cgx3fFwXODvp0+fUXR05sD/f2/OMOXOmT3w0fs1G7YoR/asatusnurefXPg9b0/HlTPQZO0fdf3uqzIpXq+SzOVu6a4tu38LhhM/dcNTpilH/Yf8kXX9qavlWBqOikDIoAAAgggYK0AwdRaX0ZHAAEEvChAMPXirrKmvwTCecJ03pyvNOCl6nqgbimdOft74Bvh49ou0fZth/Rsz5t8MbWqBvRdrYljN0csMMHU+a3p3usW5VGMxgxITnMz7XrHqn2fWOdv0HcHDzkUTOf9LZhGBMQF3gTB9ALh+DEEEEAAAQScEiCYOiXPvAgggIB7BQim7t077jy0gJFgGnoU91xBMHV+r9wQTOs7FEwXEEyNH9CE+OR/re7HolI1KH6t8YG4EgEEEEAAAQREMOUQIIAAAgiEK0AwDVeM690kQDDNp7iOSyJ6y/hIvv3bUy/Ta/ZP6pvxzbNNHZnX7El5wtRsUcZDAAEEEEDAYgGCqcXADI8AAgh4UIBg6sFNZUlBAYIpwdTut4MbnjCt41AwXUQwNX4cecLUuBVXIoAAAgggEEqAYBpKiNcRQAABBNILEEw5E14WIJgSTO0+324Ipvc7FEzfJpgaP44EU5+JZ+AAAA71SURBVONWXIkAAggggEAoAYJpKCFeRwABBBAgmHIGMpIAwZRgavd5d0MwvS/TNLtZAvO9c7aZI/OaPSkfyTdblPEQQAABBBCwWIBgajEwwyOAAAIeFOAJUw9uKksKChBMCaZ2vx3cEExrOxRMFxNMjR9HnjA1bsWVCCCAAAIIhBIgmIYS4nUEEEAAgfQCBFPOhJcFCKYEU7vPtxuC6T0OBdMlBFPjx5FgatyKKxFAAAEEEAglQDANJcTrCCCAAAIEU85ARhIgmBJM7T7vbgimd2WeajdLYL5lZ5o7Mq/Zk/KRfLNFGQ8BBBBAAAGLBQimFgMzPAIIIOBBAZ4w9eCmsqSgAMGUYGr328ENwbRW5il2swTme+9MC0fmNXtSgqnZooyHAAIIIICAxQIEU4uBGR4BBBDwoADB1IObypIIpu1XqUGrcipeiWBq99vBDcG0eubJdrME5vvgTEtH5jV7UoKp2aKMhwACCCCAgMUCBFOLgRkeAQQQ8KAAwdSDm8qSCKYEU8feBW4IprdnftURn1VnWjkyr9mTEkzNFmU8BBBAAAEELBYgmFoMzPAIIICABwUIph7cVJZEMCWYOvYucEMwvdWhYLqGYGr8XPKlT8atuBIBBBBAAIFQAgTTUEK8jgACCCCQXoBgypnwsgC/w5SP5Nt9vt0QTG+OnmQ3S2C+dadbOzKv2ZPyhKnZooyHAAIIIICAxQIEU4uBGR4BBBDwoADB1IObypKCAgRTgqndbwc3BNNq0RPtZgnMt/70k47Ma/akBFOzRRkPAQQQQAABiwUIphYDMzwCCCDgQQGCqQc3lSURTPlIvmPvAjcE06rRExzx2XC6jSPzmj0pwdRsUcZDAAEEEEDAYgGCqcXADI8AAgh4UIBg6sFNZUkEU4KpY+8CNwTTKtHjHfHZePopR+Y1e1KCqdmijIcAAggggIDFAgRTi4EZHgEEEPCgAMHUg5vKkgimBFPH3gVuCKbXR49zxGfz6acdmdfsSQmmZosyHgIIIIAAAhYLEEwtBmZ4BBBAwIMCBFMPbipLIpgSTB17F7ghmFaKHuuIz6en2zoyr9mTEkzNFmU8BBBAAAEELBYgmFoMzPAIIICABwUIph7cVJZEMCWYOvYucEMwvTYmwRGfLantHJnX7EkJpmaLMh4CCCCAAAIWCxBMLQZmeAQQQMCDAgRTD24qSyKYujSY9h1zh0pVukS/HD7p2lNcpGhOJY3eqrlTv0yzhna9Y9W+T2xErKt8zBhH7uPz1PaOzGv2pARTs0UZDwEEEEAAAYsFCKYWAzM8Aggg4EEBgqkHN5UlEUxdGkxz5IrRddUKu/4Er1n27T/WEEnBtKxDwfRLgqnxs50Qn6wxA5L/Ud2PRaVqUPxa4wNxJQIIIIAAAgiIYMohQAABBBAIV4BgGq4Y17tJICYmk1IOdFSl3OMUHROljQfbqHDeYW5aQlj32qxlRVWpWET9XRpMw1qsyy6OpGBaOma0I3rbUjs4Mq/Zk/KEqdmijIcAAggggIDFAgRTi4EZHgEEEPCgAMHUg5vKkoICBNN8iuu4JKJPRNKch7Q4MUUrFn2tqtWL6clu1+vMmd8j+p7/6+ZismRS9+bLtX/v8TSXRVIwLRUzyhHfHakdHZnX7EkJpmaLMh4CCCCAAAIWCxBMLQZmeAQQQMCDAgRTD24qSyKYuvQJ04T592nTZ/u0ccM+157iRxqW1YFdx//109SR8jtMS2YZ6YjvzlOdHJnX7EkJpmaLMh4CCCCAAAIWCxBMLQZmeAQQQMCDAgRTD24qSyKYujSYjnq9tl6buUXvvpXi2lPcrdfNyqXoiA6mJbKMcMT361Nxjsxr9qQEU7NFGQ8BBBBAAAGLBQimFgMzPAIIIOBBAYKpBzeVJRFMCaaOvQvcEEyLZ3nFEZ9vTj3jyLxmT0owNVuU8RBAAAEEELBYgGBqMTDDI4AAAh4UIJh6cFNZEsGUYOrYu8ANwfSyLMMd8fn+VGdH5jV7UoKp2aKMhwACCCCAgMUCBFOLgRkeAQQQ8KAAwdSDm8qSCKYEU8feBW4IpkWzDHPEZ++pLo7Ma/akBFOzRRkPAQQQQAABiwUIphYDMzwCCCDgQQGCqQc3lSURTD0YTEeOu0eL5m9XjpwxWrRge8SecjcE08JZXnbE74dTXR2Z1+xJCaZmizIeAggggAACFgsQTC0GZngEEEDAgwIEUw9uKksimHoomI6ZWFvbvjyoO2oW17hRm/Two2V18OCJwL/NnL414k67G4JpwazOBNP9J9MG0zUbturl8bN14OAvKl/6Sg3s0Vr5L84TcXua/oYIphG/RdwgAggggAACaQUIppwIBBBAAIFwBQim4YpxvZsEYmIyKeVAR1XKPU7RMVHaeLCNCud15uPIdrg1a1lRVSoWUX+PBNOSV1+s++pcrZHDNmhyYh0l+QJpkaK5lDhtiyZMuV9tWrxtB2tYc7ghmBbIOjSsNZl18YGTzwaHOnrshO5p0k0JA+MCsTRh6pv65vsf9MoL7c2azrJxCKaW0TIwAggggAAC1ggQTK1xZVQEEEDAywIEUy/vLmsjmOZTXMclEX0QkuY8pMWJKVqx6GuNer22Xpu5Re++lRK456tLnQumI17eoGlJdZU4dYsKFsqppMStGjvpXrVt/W7Erc0NwfSSrEMccTt0sltw3qUrkzXvndWaOPTcU6f+gHpr/Y5KfmecYmKiHbk/o5MSTI1KcR0CCCCAAAIRIkAwjZCN4DYQQAABFwkQTF20Wdxq2AIEU3cH04sukiZMfUApOw7phtgimjR2s+o8eI0OHvhNO7Yf0uwZn4d9Jqz+ATcE03xZB1vN8K/jHz75XPDfJyS+pUOHj6hnx8eC/3abL5hOH9VTxS8r5Mj9GZ2UYGpUiusQQAABBBCIEAGCaYRsBLeBAAIIuEiAYOqizeJWwxYgmLo7mIa94RHwA24IpnmyvuSI1JGT3YPzjpg0V2fP/q4uTzUI/ttdDbtqVHxHlS55uSP3Z3RSgqlRKa5DAAEEEEAgQgQIphGyEdwGAggg4CIBgqmLNotbDVuAYEowDfvQ/D9/wA3B9P+5RFN+fOKMt/ST78ueesc9HhzvlrodlDS2ty4vWtCUOawahGBqlSzjIoAAAgggYJEAwdQiWIZFAAEEPCxAMPXw5rI03+9C5Euf3Pw7TN14hAmmxnZt+epNSpy7LPARfP+f/QcO697HntOGd8cpc6ZMxgZx6CqCqUPwTIsAAggggMCFChBML1SOn0MAAQQyrgDBNOPufUZYOcGUJ0ztPucEU2Pix0+c1F2NumpYv7a6oeI1Gjhqpn777ZQG9WxtbAAHr3I0mFa6vZDWrP7OweUzNQIIIIAAAu4TaNiovHo0W67Pkvdr/oZH9fnHP+nHvcfctxDuGAEEEEDANoGLC2TTLbWu0D3lEuWPpxPefkBJ07baNj8TIWClQKZMUWrfNVbX5hyr6Jgobf75KQ0fvN7KKR0du9J1hfTr/pPq+9QHatCqnO5/4hq9t/xrR+8p1OQP1Cml8QM2acWirzV+4QM6dPSEUrb/HOrHIvb1m2+7XJ+t/kFjBiSnucd2vWPVvk9sxN63Ezf24abP9dLoJB38+YgqlS+pgd1bK2+enE7cSlhzOhZM/XfJIQprr7gYAQQQQACBgMB3u45oUdL2wP+//Ko8qtP4GmQQQAABBBAIKbB47k7t+upcoKj98NW6qky+kD/DBQi4RWD9+3u0ed2+wO1Wq3GZrr+5sFtu/YLuc8orn+jEsdOBn23xTGVlzxl9QePY9UMH95/Q7Innvu0+f8Hsavhkebumtmye9LHUPxHB1DJu2wd2NJjavlomRAABBBBAAAEEEEAAAQQQQAABBBBAwAIBgqkFqA4NSTB1CJ5pEUAAAQQQQAABBBBAAAEEEEAAAQS8I0Aw9c5eEky9s5esBAEEEEAAAQQQQAABBBBAAAEEEEDAIQGCqUPwFkxLMLUAlSERQAABBBBAAAEEEEAAAQQQQAABBDKWAMHUO/ttSzBNXr1Xyav2ekeNlSCAQIYROH4sVTlyxmSY9bJQBBDwjsCvv5xS7rxZvLMgVoIAAhlGwP9FNpH+BTYZZjNYKAIIhCUQe3tRxd5WNKyf4eLIFLAlmEbm0rkrBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgrQDBlBOBAAIIIIAAAggggAACCCCAAAIIIIAAAgj8KUAw5SgggAACCCCAAAIIIIAAAggggAACCCCAAAIEU84AAggggAACCCCAAAIIIIAAAggggAACCCCQVoAnTDkRCCCAAAIIIIAAAggggAACCCCAAAIIIIDAnwIEU44CAggggAACCCCAAAIIIIAAAggggAACCCBAMOUMIIAAAggggAACCCCAAAIIIIAAAggggAACaQV4wpQTgQACCCCAAAIIIIAAAggggAACCCCAAAII/ClAMOUoIIAAAggggAACCCCAAAIIIIAAAggggAACBFPOAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFaAJ0w5EQgggAACCCCAAAIIIIAAAggggAACCCCAwJ8CBFOOAgIIIIAAAggggAACCCCAAAIIIIAAAgggQDDlDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkFeMKUE4EAAggggAACCCCAAAIIIIAAAggggAACCPwpQDDlKCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRTzgACCCCAAAIIIIAAAggggAACCCCAAAIIIJBWgCdMOREIIIAAAggggAACCCCAAAIIIIAAAggggMCfAgRTjgICCCCAAAIIIIAAAggggAACCCCAAAIIIEAw5QwggAACCCCAAAIIIIAAAggggAACCCCAAAJpBXjClBOBAAIIIIAAAggggAACCCCAAAIIIIAAAgj8KUAw5SgggAACCCCAAAIIIIAAAggggAACCCCAAAIEU84AAggggAACCCCAAAIIIIAAAggggAACCCCQVoAnTDkRCCCAAAIIIIAAAggggAACCCCAAAIIIIDAnwIEU44CAggggAACCCCAAAIIIIAAAggggAACCCBAMOUMIIAAAggggAACCCCAAAIIIIAAAggggAACaQX+D9jSfzztGkOcAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "fig = px.treemap(df,\n", " title=\"Total Files by File Extension (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'extension'], \n", " color='bytes'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "neither-lover", "metadata": {}, "source": [ "### Exercise: Comparing File Extensions with Mimetype\n", "\n", "The treemap above shows the distribution of files, by area, and bytes, by color, across file extensions. How does it differ from the treemap showing the same distributions across mimetypes? What information is missing?" ] }, { "cell_type": "markdown", "id": "white-miniature", "metadata": {}, "source": [ "# Identify Important Folders\n", "\n", "This treemap will help you to identify folders that may hold a lot of content or have a special structure, either holding lots of files or very large files. Run the visualization code below and note the way the treemap encoded both of these metrics visually.\n", "\n", "Can you identify the folders that contain the most data in terms of bytes? Which folders contain a bunch of smaller files?" ] }, { "cell_type": "code", "execution_count": 28, "id": "therapeutic-wallpaper", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 2492.8333333333335 ], [ 2432.1666666666665 ], [ 2955 ], [ 2327.8 ], [ 1958.3333333333333 ], [ 2095.2 ], [ 21039.37037037037 ], [ 66136.33333333333 ], [ 67151.83333333333 ], [ 19810.833333333332 ], [ 41501.333333333336 ], [ 87515.33333333333 ], [ 14974.850877192983 ], [ 14430.338842975207 ], [ 6437.2786885245905 ], [ 57013.67307692308 ], [ 62835.496402877696 ], [ 16816.73015873016 ], [ 16267.481203007519 ], [ 19506.79661016949 ], [ 7266.361111111111 ], [ 53363.620689655174 ], [ 61798.013333333336 ], [ 32647.018292682926 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/Agency History/.", "all/Organizational Chart/.", "all/Organizational Chart as of 9 February 2009/.", "all/Prisoner Visit Regulations and Information/.", "all/Rules and Regulations Concerning Inmate Matters/.", "all/Website Concerning Career Opportunities/.", "all/Organizational Chart as of 9 February 2009/BOP- Org Chart 2-4-09", "all/Agency History/hts-cache", "all/Organizational Chart/hts-cache", "all/Prisoner Visit Regulations and Information/hts-cache", "all/Rules and Regulations Concerning Inmate Matters/hts-cache", "all/Website Concerning Career Opportunities/hts-cache", "all/Agency History/www.bop.gov", "all/Organizational Chart/www.bop.gov", "all/Prisoner Visit Regulations and Information/www.bop.gov", "all/Rules and Regulations Concerning Inmate Matters/www.bop.gov", "all/Website Concerning Career Opportunities/www.bop.gov", "all/Agency History", "all/Organizational Chart", "all/Organizational Chart as of 9 February 2009", "all/Prisoner Visit Regulations and Information", "all/Rules and Regulations Concerning Inmate Matters", "all/Website Concerning Career Opportunities", "all" ], "labels": [ ".", ".", ".", ".", ".", ".", "BOP- Org Chart 2-4-09", "hts-cache", "hts-cache", "hts-cache", "hts-cache", "hts-cache", "www.bop.gov", "www.bop.gov", "www.bop.gov", "www.bop.gov", "www.bop.gov", "Agency History", "Organizational Chart", "Organizational Chart as of 9 February 2009", "Prisoner Visit Regulations and Information", "Rules and Regulations Concerning Inmate Matters", "Website Concerning Career Opportunities", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 2492.8333333333335, 2432.1666666666665, 2955, 2327.8, 1958.3333333333333, 2095.2, 21039.37037037037, 66136.33333333333, 67151.83333333333, 19810.833333333332, 41501.333333333336, 87515.33333333333, 14974.850877192983, 14430.338842975207, 6437.2786885245905, 57013.67307692308, 62835.496402877696, 16816.73015873016, 16267.481203007519, 19506.79661016949, 7266.361111111111, 53363.620689655174, 61798.013333333336, 32647.018292682926 ] }, "name": "", "parents": [ "all/Agency History", "all/Organizational Chart", "all/Organizational Chart as of 9 February 2009", "all/Prisoner Visit Regulations and Information", "all/Rules and Regulations Concerning Inmate Matters", "all/Website Concerning Career Opportunities", "all/Organizational Chart as of 9 February 2009", "all/Agency History", "all/Organizational Chart", "all/Prisoner Visit Regulations and Information", "all/Rules and Regulations Concerning Inmate Matters", "all/Website Concerning Career Opportunities", "all/Agency History", "all/Organizational Chart", "all/Prisoner Visit Regulations and Information", "all/Rules and Regulations Concerning Inmate Matters", "all/Website Concerning Career Opportunities", "all", "all", "all", "all", "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 6, 6, 5, 5, 6, 5, 54, 6, 6, 6, 6, 6, 114, 121, 61, 104, 139, 126, 133, 59, 72, 116, 150, 656 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total Files per Folder (Depth of Two) (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAFoCAYAAAB5WPgIAAAgAElEQVR4XuydBXwVxxrFPyQEd3d3KO7uVhxKS1ukUGgp7lCkuHuhSJGWokUKFCtS3N2tuLsTAd53JmzezeXeGCECZ97v/UqS3Z2Z/8xubs6cPRPutRZhIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEPnEA4CuIf+AizeyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoYABXFOBBIgARIgARIgARIgARIgARIgARIgARIgARIgARIggY+CAAXxj2KY2UkSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEK4pwDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACHwUBCuIfxTCzkyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhTEOQdIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQ+CgIUxD+KYWYnSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAEKIhzDpAACZAACZAACZAACZAACZAACZAACZAACZAACZAACXwUBCiIfxTDzE6SAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlQEOccIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES+CgIUBD/KIaZnSQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEqAgzjlAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTwURCgIO7PYS73WUe5fvOur0fn+ySTzBrb3Z9XDPhhlb7oIp9kTSdDf2zh8OQbt+9J2XodfL3w/Ml9JH7cWOa4AV2/kVqVi8vytdul26ApsuqPoZIyWaKANyyUn2H1z1kzo0SOJHtXT/F3L3oNmy5bdx+WjX+OcXrOybOXpE6z3jKufxspWzyPv68d0AMxJ+t921d+aFpLGtQoI2jb4pWbvS8TIUJ4iRMrhmTNmFqqVygilUoXkHDhwgW0mkAdf//hYylWo7X0aPOlNKxdLlDX8OukJau2yJipf8rDR09kxphukjt7Bh+nhOR9O3baIlmxbocsnNxXYseK7ldXzM89PF9K0/ZDJEG8ODKq7/fe5+w9dEpmL/pHDhw9Y/oaW8c0c/oUUv/T0lKmWMDml/Wc+KlTE6lbraS/2vW+DipY9TupWamYdG/d0GEV/rnXAts2+3sF18E4pU6eWD6vWVaqlS8c2EsHy3m4v2YtWCPrtuyTm7fvi7u7h86bWFKycC5p1rCaJEkYN1jaEZBKflu4Rob+PFd2rJgoR078J617jpXpo7tKrmzpA3IZHksCJEACJEACJEACJEACJEACJEAC70SAgrg/8e05eFJeuHl4H91nxHQjNLZrXs/7e7FjRpMcWdL6ecVB4/4Ql4gRpPP3Dfw81vYA/wri1SsUlSplCzm8du7s6SV8+PAqgm+TArmzSJqUST4aQbzzdw0kXepkb3GJqKJx4XzZ/D0W/hHpgkMQhwD2+ff9JVO6FDKoe3PTfrQNIvH0UV3N154vPeXGrXuyYesB2bj9gBQvmFNF+tYSKZKLv/vr3wMhzE3+fbksnNLXnBIcgnjRGj9IulRJjeieMllCiRolso/mBuV9618O1nGvXr2Wb7uMkFcvX8mvo7r4ayGi3+jfZK8+a+b90kf74mouBabjfl0kOTKnkeoVi0liFTpv37kvf6/fKfsOn5av6laQbj984e/mURD3QmV/r7yW13Lv/iNz/2zbc1QGdmtmxHr/lsA+1/17fdvjnj1/IV98P0CePHsuzb+oKhnSptDnejg5duqC/PLbXxIlsqss/rW/RI8WxZxWq+mP0rZZXSlVJFdgqguyc2wF8ZjRo2pbl8ncpetl0bR+ZqGWhQRIgARIgARIgARIgARIgARIgASCgwAF8UBSrvpVN0mcIK4RugJaGnzXT/LmyPjeBPHWTWtLy6+r+7tZH4tD/PfxPSSPcn/XEloE8VnqtpwwfbGsmTtC4saOYbqFti1dvUWObJjxVjdXbdglnfv/Ip9VLy292n/9rhjeOn/U5AWyY9/xYBXEs5VqLN99XcM45P1T3uW+9c/17Y/579J1qdG4hwzu8a1UK+e74/j46QvG7f/L0I66cJHDXArC7LedR5g3Ofp3afqWqD5o3Gz5Y/E68xwqlCerv5pIQdwLk7N7xfPlSymubzZkz5xWpo7o5C+mOCiwz3V/V2BzIBZDuui9/Nu4HpI3p89nGhZJeg6ZJj+2+0qKFcghz567ScGqLWX8gLahThD38PCUKvq7tIguSOKNBRYSIAESIAESIAESIAESIAESIAESCA4CFMQDSdmZsAYXLhydp89dNlfOmDa5NP28qlQomc98DQHPtiDCJHumNBrBccScd+LMBXn9WozbtfFnlaVGxaLeh/vXIe6XIG4JYr5FpkCImzJ7uZz574rGOHhKzizppH2LeqatVlnz7x6ZPnelnL98Xdv82rjNv/m8ilQsVcAp1XL1O5hX+uPrq/2LVmySew8eS/IkCdRpX9dH9MPFKzdl9JSFcvjEOXUaP5E0KRIrxyo+RMXKDbtIiUKfGMf7gmUbpW/HxvKpxoLYF0vw948g/ujJMxmtwu6GbQeMwxlvAZQs/Im0/7ae+TeKvSD+5Olz6a/OXow9OECYrPdpKfmu22gfkSl+9QmxB2XqtZchKp4uXb1V9h05LatmD5UkieK91ScISaXqtjNCaaeWn3n/3DdBHAf9OPRXWaZvB/y7aKy3iO7XWMMxi/MQBzRhxhKBcIvYlTJF80jPtl8aF2qjtoMFsR5WQZtqVi5mIlN6tv1KbqmjGVEujx4/lcwZUhlxN0Oa5E7nCdzVM+avkkV/b5JrN+5IZHW8Ig6lbbM6GhWSUnbsPSbNOg33cf6M0d30rYfMvt7Rju5bCIun/rssf80Y6H3uiF/my4x5q2T0Tz9437sQFgtX+166qhv7i1pl5ez5qyauZe/hU/LihZuOU3zjKG6mjl1E1Vilc/9JGg9xXlbPGeZr21r1GCN37j4UPBOs0rT9UDl57pJsWDhaIrtGeuv8F27uckqfNTn1zRQrCsevZ5AjQdw/fXF2v8GtPGbqIhMjdE0jfOD0ralO9ha6KIc3YawycdZfMv+vDfJQ50AmdTSD43fdRvkZmbJdn0VYUBg2ca6cvXBVYseMLvV1Uef7RjXk6bMXUqpOO/OchABsW0b+skDmLFmnc32MxFA3sn1xdq/gHi5Rq40U1Pt4RO/vZOLMpfLL78tk/YJRGkkS2/syeFbguCb6nMaz0rZYz3W/7nmcg7dJxkxdKEdPXpCnyjJxgjj6HCsqLb+qblzfjgqeDxC9//j5R1/jRnYfOClNNILHKrbxUH7NE9+eR349M1DfOR2rn0bNkiMnz0v0qJE1gqaImRtm4UwjU+AQR1mw/F99fs7S+2O4JEsc39d7hD8kARIgARIgARIgARIgARIgARIggaAgQEE8kBQdCWtbdh2Rll1HSr1qpTTGoLyoQiUz5682QuDEwe2NsAqRtbzmkddQwQiuVgg1V67dVhdpT6lctqA0U/HcxSWi/LN5rxGEp43o7B3nEVyCOIRNiCjliueV1t/UkZfqmJwwfYls33vUvNqOnHGIOHWb95HmmlVridB/a16yeQV+Yi/JqVnnjgr6gAzk2lVKSBsVNz01M3nw+D9MbMtKzTCHIAJGNZv8aATo3h0aGRFlpToix6sbeniv7zQOpqC5dPVGPYwYnjZVEvmyTnlJpdm/8eLEfKta/wriEMIathpgRD3Um1mjSNBPiDrI4507qbcRHe0F8U79Jsm/KoYP6NrMROYg5xkczqs72MoQ90+fsDhQvGZrs4hSvkQ+E2+SUdvg6iDeBGPRvNMI+X18T3W9/z832y9BHAsvLbqMNPnUWLjwz1hb/BDNgkWULCpoHzx21gj+WOjp17mpPFZxsEPfiXL3/kPjVkZkw3MViSGIp9WFEuRcVy5TUO7ceyh9hs8wWc2YS84K5v6sBaulk8bcIObhrkZZDJkwR/67eE2WzxoscdQR/+TpM3P9Jg0qm4WY6NGi+hBgHV3b0X2LBYLug6bK1r/Gey96YG4/0HlYqkhub6HVur8hbEOcxj2LRaCurT6XuDrvNmzdLxDSv65X0ccixeqNu6XjTxNNhAUYOioQlYtU/8G43Vt89ak5BIse+Su3kErKDYsk/in+eQbZC+K37z7wV1+c3W/fdBxmojqwIAVh/uCxc3rPzJQq2u4++j0ULFjhPmrVpJbJskf2PcYY9xcWj3zLEMezMEXShNJan5eJ9K0ciMGI3rAy0LEYBcf0psVjve8V3Mt4zhbKm83MWUfFulcO/DPN/BgLkZi/vy9ca2I8ZmomPZ5j4FNWF/La6LMQix1WWfT3ZukzYoa+oTHcxNvYP9dxT/j1HIMbvbQK+qjnB2WDxSU8P9CnljoXMK8dlVt3HkiVL7tItKhRDNMyRXM7jBxBJv0+fZ5jjLD3RLH8Ocy955954ux5hOxvv34/IM4Jzu9I+rsM0TPx4sSSFf9sl/k6D/AMsBXE8XXJ2m3NHMBznIUESIAESIAESIAESIAESIAESIAE3jcBCuKBJOxIWINLFm7mv2YM8HZrQpip3LCrcXxPGe71+n2+St9qbEUZ78iU5y/c5cr1W5JUHabR1ElnlSKftjLuyS4quKH4VxBHXIozIQUZy345xL/pMEwuXrkhf6s72RJj0cZyn3WQCirUQuSCyA9Bad38kT4czPvV1QyR0HJT2+NFHyCUYkNKy/0IsROCCAQhtB1iMsTvZTMH+sj8xmLDZV08+Pt3L8djdRUkb+pGoluWjPM1E9sSdBF/4GjzNojqEDgtN6UlFltt/2vNNukxeKrMUaEfm5raCuIQvZBj3aBGWc2x/v/GgFhAmKRZvpYg7p8+WZnbRfNn954rzqYnnMkz1UG9d80UiRjh/y5cvwRxiPTVvu5uMqeRPe2fsbb49daYlc90406rDBz7u1fe8rKfzTyBQA5xyz5DHAtBWBCyys/qModbeP/aqQ7Ffsy1YsoUc9822gVO8fINOpm3CbAQg4I3LuAUhijon+LovsX8g9N3TL8fzELEw0dPzZiinmU69stmDTKXHj5pnmzUNwdW6n2BPsA1DOe2rWsYTvo1/+6W7csneovz1vUxPxrWdiz4WdEothEYlkO3VeOa8r3+3z/FP88ge0Hcv31xdL/hfv+q9SAzTtjU1Sq/6psjELzBJ2H82FK/RV8j8C+ZPsD7mF0HTugGokONCOqbII5njf0iWwWdB4nUSY0FIbjbazTpaQRfK5bGapdvi3OONtVE42LFiKaLIF97L7zhe+37TFDx/rLZeNgquHciqgN+8rCO5lv2z3X/3POXr90yz3XsAWD7NhBc//hdgLdnnJVDx88Z4fzEmYvmkNT6Fg02dsabGyUK5fT+HXT01Hn5rMVP8vOgdt6RKf6ZJ86eR/55ZmzacUi+7z5axup+BVhYtcrXbQaZ3HtbQRw/+1SfSWl1LwAcz0ICJEACJEACJEACJEACJEACJEAC75sABfFAEnYkrOWt+K18qq+F9+3U2MdVEcmwXSMe4EB1JJzgexAQ5i/boA7Y6/JYna8Q0h89fmbclNaGif4VxH3r0rF/Z/opiKMfcPPaOyt/6DFWbmr0BQRPCDn1Ne8YTl044rEpJdyvVmyDszagDxDMJw35v0CKYxF7UFA3+YSo1bLrKOMEXjtvhI/LIDN72M9zZffKX4xYBIEuvjpzp4/22kDSWbEEXWc/h4iEOJDp81YKYhYQsWArciL2oMqXXY1T+POaZX0I4odVlMLGlvYiOjZzbNxuiLcg7p8+uXt4GMcz3hyAU9i3grgEuMSxsGBb/BLEz5y/YlyrVl/8M9YWPysGwqpv4Yp/pe+ImUYkxFsDzgTxDi3q+1igmaexGRDy4Oh1tJEeIhYatPxJhvVqKVXtNofFPIEjflTfVqYZQSGI4zp1mvU2WczYnHPtpr0yQsVvxFGgvs264II3D3AM5grEW4znpas3jThuWywm9os5n5T9xjjZIbI7KlYEhsUSx8AFXFpjcQKSke6fZ5C9IO7fvji636x7xn5hDCItXPaWCJu7QnOprfE+tgscL3Wz0dwVmpl7yjdBHG+e7NOFH9tnS9eBk2XLzsO68PCzwQmBN4IubFnPAmxOekDFelsB3p67da/gzQ+rPHnyXA4cO2OioBBHhPmAYi2WWQsWWPjB2CBSxxJ87QVx/9zzWIhD9jiep8j2L6KLYXk0GghvCfm34J7etf+ECs2nzH8RSYMNWCcN7WAWJh0J4v6ZJ5Ygbv888s8zY9qcv82CyJal472jmdAfxM/8rP+3F8ThYH+ukURYdGQhARIgARIgARIgARIgARIgARIggfdNgIJ4IAnbC+J49d0SvWwznXF5RAVA8DqgjlgUe+EEjlLETVQrX1i+VAcpRMJwmh0LVx/cwgEVxOtWK+nDbWjbRWwq6ZtDPKlGlqAfcG9HsHEe4xqITokbO6YRMlEg4vz+51rNzj5ocp7hBG1Uv5I00sgIZ8I4BPEcWdKY6BPbAsEZouovKuJ8+cNAExtgLwq91lxpcF7x22AjqkOgQxwHnL2+FUvQhRiHOBL7gqgNfH/stEUmC3jv6ika+fH/vGbrlX7kiCMywdYhbkWXQOBHnrlVECEBV6zlEPdPnxBlAEEcIlzD2uV87VPrH8fJxcs3vN3L1sF+CeLIfe/Q92fDGYsY/hlrix+c+XChWsXa2G/eL32MAOdMELfvD3KkIVg6E8StfHB7pqgX7nbE6liu3KASxOG437TjoBFQcb/CzYwFIbzdgdzywhq9Adc4uGGjQownjrHN+0b7sHEpInTsnckY1wql8gtc9o4K7iNEwtgKiJjrBSq3NLEtWHDxq/j3GWQviPu3L47uN+uecSTggk8fjR6qpfFIucp5LQjYPxsRCYP4JN8E8c07D3k/cywGmD9wjh98E3dixdIgzgaZ+6Vqt9O3Bmoasd1Z8e1esRY2rLdCcA1ExmTXeY7nMcYLou/6haO839Cwf677557Hcwx7ECDrHAsxWEjAWzzVyhUycUG2bwz5Nf74OSJScH8hhgrPENx79oK4f+eJJYjb3r/WuX79fsD9NPWPFW89SxEhhjct7AVxPJOwX8VyfbazkAAJkAAJkAAJkAAJkAAJkAAJkMD7JkBBPJCEHTnEIYhUK+fYIY54AEtIthdOICSe0U391s4b6R0jAuEhnzq1q6hDNqCC+LtuqgmRqnjBT4xT2b6E1wxtW1HU+jncsvP/2igzNffZyvZ1hNaZQxzZ2UVVaERWMl61P6MxCJboaX8dCKKI6AioIO7XpprYRBEZ0M4c4hD3sJmfrSAO4R7Cl71DfOe+4ya31xLE/dMn5Ej7VxAPrEMcLv9dB46buQjhzT9j7cwhbjm9IUIi4zmoBHFLwHPmEIdLG5sdogSVIG45+rdr/Ascu4gpwQIVMqIRqQNBvJu6kiHkWfEwiBVy5hC3Fm2suRsYhzjORUzQLt0YcaUuRjjaXBUua2x0WrtKcTMG/nkG2QviGDf/9MXR/WYJnHBO420R+xJPF9BixYxmFl6wUGfrEIdgDuc4hFvfBHGI3XtW/eLj0t0GTZGtumeD9dYNhGBs2NugZhnd+DettOs93sxxZHI7K74J4tZbCoiHqq8Z5yh/LF5nNr/cvGS8ydDGnMBiiVXsn+v+ueft9wd4oJFbqzbuMhtPIvoEb8w4KogVevj4iW7AGdfhz2s1/dHc33jLwZFD3D/zxJEgjsr888zAwiIWS+wd4uN+XWQ2j6ZDPJAfPHgaCZAACZAACZAACZAACZAACZBAkBCgIB5IjI4EceTh3tE8YsQlWOWVuporfdFZHcgpZMKgtubbECPqf1raOxscwimEENtNBq3c6uoVisrgHs3Nef6NTHlXQRybNWJzOWwCaFsuXb2lAkwck9cNkeWxRrrAZWxbytRrbxytzpyw6MMjfaV/w5+jTW43ylV1lyMT2MqGhrMQucbrFozyEamBCAlXVxeT8YsS1II4sm2RcWsvbiMnG9nQf079yWwoaSuIW3nTyOPG5opWGT5xnlkcsARx//TJmQDlaIoGJkPccr3aRnD4Z6wtQdxyyFvtQa76ui37ZKvGImBOQFjFBoTghOKsP345xF+4eWWIY+NZWwH1yvXbUvHzzua+wVsIKEEliENQRWZ/u+Z1ZNC4P0z2NTKqV/yzw2TB400NzH84xFHwPcQ/2GeIg8m/+sYEhMAIEcKbYwOSIY7oHgj+VrGiOrDB6vgBbd56awJuW4jSv47sohtIZjWZ3H49g+wFcf/2xdH9hs1VsRGtNc+tdmNxB/eGJeLX/qaXeWvE9hkHTq16jPFXhjhimrJmTO3NBc59bHRrG5eE3P7V+rZN5vQpzbPF2Waa1kV8E8Qhfg8aN9t7M2ScAyc3YlKafFbZZOBjM00szlnF/rnun3seb9YcUIb20UCIhDmub5k4c0wjpume/q5ZMr2/Eb5tC/Y1KFOvgy5q5jDRQpYgjt8/pfXZjOKfeeLs/vXPM2P9lv3Sptc4GT+wrdnw0yp4awZvzzBD3NFTnd8jARIgARIgARIgARIgARIgARIILgIUxANJ2pEgbsVnYHO5r1Ww8/T0FGwut/yf7ZpR3cNkH6OUVbECQhHEPsSMzFHxBRv0je3XWnLqpo0Qiv5as1Xc3T3llWaJIzoCMSrBJYjvPXTKOCDrVClpHJcQXLbuPmJede+oedDYBA/ZwT/PWGpE4AKa/Q2xa+vuw0ZMRK5uhZL5HJJFH9zc3TWvOZNmI1c3r/jjuvu0zlVzhhuRC0IMcq6xEWm75vXM907qJnOIAciSIaUR31CCWhDHNbFB4NUbt43LPX2a5HL05H8m7xpCuOVYtxXEcY7luu7dvpE5Dhv6IVLhP93A0hIK/dOngAji1lyzd72jbRDwp4/yylV/rf+7rQsJazfvEYhUyDseqfEb1kac/hlrSxDPoDywuWO2TKk1U/mE/DRyptSuWtJ78QOuXczdKbrJYDydr1GjuDp0vPsliKPdcJIix7mb5nWXUDH4lgrtg3VuIcP+L11wshZFgkoQR52te46VE2cvSSTNb7ac39bGlogSaqxxQFaUDWJ0sJFjOt0IsGurL4wLGosDI/UNg7bN6ppoHatYMSpYYELOvqMCAblI9R+k5VfVzcaytsXK6UY8UF11K8MJjvoxLphrnb9vYNqG4p9nkL0g7t++OLvfmnUaLucuXDXxHBCtb+kYQZw+f/m6boA71MQPWfn/WIypWDq/RizdNc72C3qMX5EpazftMQuKHVvWN89BzG9sWDm0p26iqS5+q2Csyjfw2uBytm62iWepb8X+XsGxL9zc5MiJ//T5tkrPT6ub23b23hwVP0eczqK/Nxl3uP0bLPbPdRzv13MMdeGNBCzw1NBNZBGRgkzw3nofVypdQHq2/cphF7B416LLCEmaOIHGbJXTt3aS6DNYBJvmztbfJ1d18QjPBoyHtXEnNnTFmwSYs3sOnRQI2779rnL2PPLPMwMOdiwEw6GP33OxY0bX32nb5J/Ne+X6zbs+BHErkgpvCeB3CwsJkAAJkAAJkAAJkAAJkAAJkAAJvG8CFMQDSdiRII5LQRD8Rd2jpzQPFfEiECSQZVsoT1bvmhYs22iiOV69emUcfHCEmkxlPRcCONyoEEJ27DtmREdsjIYNJoNLEEdDEfmBzc+On75gYlyQ741N3xAZgoJNPyEaQZyCyxF544hS+aJWWbMZnbOCPuTWTeMgbP++6B8Va+8bga9jy8/UWZ7L+zSIONiUDe149sLNRAOUK5FXoyxqeed7vw9BHO5KxBVs2HbACPMQ4CqUzC9tvqljBF4Ue0Ecx/VToQyLBij5c2U2wiZcnMg3L1/Ca3HArz4FRBBH3EQpdavWrlzCCIVWQduQrWxbIErBNVtXxWsIiPb57n6NtSWIw4U8Y/4qs3kfxrtssTxmnlo5x9hgtH2fn83bBY3VRduofsVAC+KYX6hr4fJNZn6hDjig4VLHfLFKUArillCPiAxEZVgFcxZjZ7vhJX52Tjd+xVxB3Iqbm4ekSp5IPtf5b59b3bn/JBVZzwuiZXwrcEvfVaEbmez2BdE8v+mmsvuPnFHn9ROJq5t8ZsuUxriVrYU26xy/nkH2grh/++LsfnummyGOn75Y1mo+PcRNRKfkz5XJLAwkT5LANAtvyoyd9qeZm4/VaY3FFQigcNSXKJTTe/NK+353HzRVjp+5IN100QELZ9hsF9f/sk4FHxu1WudhI1vcw7ZOdGfMHd0rcJYn1cVKbCqMRU37yBUrWgdu/TI6/22L/XMdewr4dc/jfDxrpulbMYiJQlQWnnUVNW/++0Y1zJsXzgqEcyy8oU14M8NTFxfjx4st+T/JrAsyVSRd6mTepyJiaaXm22NxYqUuUmC/Ar/miW/PI7+eGagYvzsGjPnd/DeaPoOqli2sz6EU5vmJaCIsIqEsWP6vLjrO0vvDp+Pe15uFPyQBEiABEiABEiABEiABEiABEiCBdyBAQfwd4PHUgBPwS9QP+BU/3jMQlYFFi7XzhptFk/dVLEHcXhB+X/V9SNeFY7d64x4yqFtz+bRCEV+7Zm3ECucxNu5kCRgBRC9hobJ/56Z+sg7Ylf9/NBYod+4/oc73Id77PQT2WjzPaxPQqrqhckFdMO7fpSmRkAAJkAAJkAAJkAAJkAAJkAAJkECwEKAgHiyYWYlFgIJ40M0FN3cP+VzjFvAWgl95ye9SKwXxwNGDy71l11EaEeQhM0Z3fcuZ7+iqEFz3qxt83qQ+3m9CBK72j+csuNIvXL4h/cf8ZuKdEJdi5bcHBQV3Hb9rGvOBzT3hhJ84uL2ULPxJUFz6o78GNt+crW8KwdGfQN3tLCRAAiRAAiRAAvTXLS0AACAASURBVCRAAiRAAiRAAiQQHAQoiAcHZdbhTYCCeNBOBsSJ1G/xk7RuWks+0+z691EoiAeOKsTTZZrzvWByH387+BGF07TDUN3QM66M6P1d4Cr+yM5q32eCbNl1WGOpsknfTo19bMQbFChOa/wVNgXFBprId/ctEioo6vtYrrFj7zGzqeqvo7xitFhIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIUBAPLtKshwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIEQJUBAPUfysnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILgIBIsgfnPndbm581pw9Yn1kAAJkMAHQeDlU0+JEC3iB9EXdoIESIAEgouAxyN3cYkZKbiqYz0kQAIk8EEQePlMP3dG5efOD2Iw2QkSIIFgI5CoUBJJVChpsNXHioKOQLAI4kfG7JPDo/cFXat5JRIgARIgARIgARIgARIgARIgARIgARIgARIgARIIIQI52uWVnO3zhlDtrPZdCFAQfxd6PJcESIAESIAESIAESIAESIAESIAESIAESIAESOCjI0BBPOwOOQXxsDt2bDkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAIEKAgHgLQg6hKCuJBBJKXIQESIAESIAESIAESIAESIAESIAESIAESIAES+DgIUBAPu+NMQTzsjh1bTgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAIEKIiHAPQgqjJUC+KZm+aQ2JniyM6um6X+kcayovxCeXbjaRB1nZchARIgARIgARIgARIgARIgARIgARIgARIgARIggYAToCAecGah5QwK4qFlJNgOEiABEiABEiABEiABEiABEiABEiABEiABEiCBMEGAgniYGCaHjQwVgni6BpklW8tPJHzE8PL06hPZ1m6DPLv+VOgQD7sTiy0nARIgARIgARIgARIgARIgARIgARIgARIggQ+VAAXxsDuyIS6Iu8aNLLV3NpRlZebL0ytPpNDQEvLq5WvZ3WMLBfGwO6/YchIgARIgARIgARIgARIgARIgARIgARIgARL4YAlQEA+7QxvigjjQRXCNIC/dXhqKqWukl7T1MsqGL1dSEA+784otJwESIAESIAESIAESIAESIAESIAESIAESIIEPlgAF8bA7tKFCEM/eJo8kL5dK5PVriRTL1cSmrG/4NwXxsDuv2HISIAESIAESIAESIAESIAESIAESIAESIAES+GAJUBAPu0Mb4oJ4isppJGe7vLK27jLxeOwuaWpnkLR1MlIQD7tzii0nARIgARIgARIgARIgARIgARIgARIgARIggQ+aAAXxsDu8IS6IZ2yUTZKWTCH/Nl0tLjEjSfGJ5cQleiRZU3MpHeJhd16x5SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTwwRIIrYL4+i37pdfwX2X7sp8/WPbv2rEQF8SxqWap6ZUkkorhz64/lUMj90jJKRXlv8Wn5fmNZxI7UxzZ2XWz1D/SWFaUXyjPbjx91z7zfBIgARIgARIgARIgARIgARIgARIgARIgARIgARIINIEPURB//sJdlv+zXep/WirQXMLCiSEuiIcFSGwjCZAACZAACZAACZAACZAACZAACZAACZAACZAACVgEPkRBfMfeYzJqykJZOKXvBz3QFMQ/6OFl50iABEiABEiABEiABEiABEiABEiABEiABEiABIKaQGgWxHuPmC6dv2sgY6f9KXB9lyqSS/p0aCx7D52UNr3Gy5Yl4yR6tCgGyQs3dylW4wf5tuGnMnHWUvF8+Uoiu7rI/Ml9JV2qpPL7n2tl3l8b5PrNu5IscXzp3qahFMmX3Zy768AJGT5xnpy/dF2iRHaVCqXyS/cfvhAXl4hBjTtIr0dBPEhx8mIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIfOoHQLIh36j9JyhXPI91bfykPHj2R5h2HS7XyhaXNN3WkTL320rZZHaldpYQZImSO9x05QzYuGiNzFq/TyJQd3g7xlet3yeDxs2XysI6SKV1K2bzrkLTv87MsmzlIUiZLKMVrtpbWTWtL7aol5Pbdh9K651ipVbm4NKxdLlQPPwXxUD08bBwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEBoIxCaBfE2vcbJP/NGSFJ1dKNMmL5E1m3ZJ0tnDJARv8yXY6fOy4zR3czPug6cLLFiRJce6vz+beEaH4J40/ZD5ZNs6Y2AbpUWXUZKzixppcXX1aVA5ZYyuEdzqViqgPnxS3WXR4gQPrQN1VvtoSAe6oeIDSQBEiABEiABEiABEiABEiABEiABEiABEiABEghNBEKzIN6x30Q5+M80b1xLVm2RYT/PlR0rJsq5C1elRpMfZd2CkRIvdkwppi7vX0d1keyZ0rwliJf7rKOJSrEv1SsUNUL47EX/GIE9Q5rkUqxADqlZqZikSp4oNA2Tw7ZQEA/1Q8QGkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhCYCoVkQ7zFkquz6e5IPQXzM1D9l0+Kx5nv1W/SVyqULSvo0yWTIhDny9+9DzPftHeLVvu4uDWqUkS/rlHeK/s69h7JpxyHZsG2/bNt9REb99IOUKZo7NA3VW22hIB6qh4eNIwESIAESIAESIAESIAESIAESIAESIAESIAESCG0EQrMgjsgUiN/x48Yy2BCZsmXXYd0os4/5es6S9bLin+2SJmUSSZE0obTU+BMUe0H8++6jJV6cWNK/S1Nv/HCMJ0oQV8KFE7l7/5F3HThg0LjZcu3GXZkwqG1oGy4f7aEgHqqHh40jARIgARIgARIgARIgARIgARIgARIgARIgARIIbQRCsyCOTTVraKxJ1x++UNH6oTRuN0Q+q15amjesZjA+fPRUStVtJy4RI8jiX/tL8iQJzPcXLNsok377S5b8OkCiRnGVnfuPS7veE2Rs/9ZSOF82OXTsnLTqMUbGD2gjcePElPrf9pXxA9tIgdxZzDU7aVQLNt/spvWG5hKignjOdnlDMxu2jQRIgAR8ELhz4JZc23TZfC9+7oSStGQKEiIBEiABXwncO35Xrqy9YI6JkyWepKiYmsRIgAQ+EgLXt16V23tvmN4mLppMEuZP/JH0nN0kgbBH4PCYfd6Npk4R9sYvtLT49Ozj8uLOc9OcDA2zSJQEUUNL09iOICBg+5ywLhdaBfE1/+7WXO8F0vKr6jJhxmJ5/sJdyhXPK73bfy2RIrl402jba7zce/BIfh/f0/t7cH9DPL9994FMHdFZ8ubMaHLCZy5YbdzgyXSTTojqNSoWNecsXb1VpsxeLtf0vBjRokjJwrmke+uGEi1q5CCg/v4uEWKCOCZNttqu4nnxyPvrHa9MAiRAAkFIwKVAbfkz/1zxeOQu9Y41kbU/nxIPt1dBWAMvRQIk8KERKP9dRllXc7E8vfJEauz6UrbPvyjPHnp8aN1kf0iABOwIhI8QTqp1ySZz00+T8JHCS4MTTeTRqhXkRAIkEAoJuGbMJGdWPZXDo/cJdAr3vIllz6arobClbFJoJpA6Y2zJnDCKbG+8SpKXTyUZ2xSQA0s4j0LzmAWkbRlKJpQXBy+b54RtCa2CuH/7Vk/d3Q1rlzMbYX5sJUQF8Uz5Tovb5jkfG3P2lwRIIIwSiNZugSwqNN8I4nUON5a2aZZS2AqjY8lmk0BwERj3Xw3Z9MUyI4hX2/KF9C+1Tu5cfBpc1bMeEiCBECIQUUXwyQ/qy7yMv3oJ4scby+VW34ZQa1gtCZCAbwRiVasul/5L4S2Ib3vyUib130NoJBAgAqU/TSOtm2eVXS3WGkE8fvVsMqnm1gBdgweHXgKVe2eXlLHdPhhBHI5xZIUvXrlZls0aJK42rvHQOwpB2zIK4kHLk1cjARL4gAlQEP+AB5ddI4H3RICC+HsCy8uSQCgnQEE8lA8Qm0cCNgQoiHM6BAUBCuJBQTH0XuNDEsSfPXeTglVbSrpUyWRIz28lc/qUoRf8e2wZBfH3CJeXJgES+LAIUBD/sMaTvSGB4CBAQTw4KLMOEgh9BCiIh74xYYtIwBkBCuKcG0FBgIJ4UFAMvdf4kATx0Es5eFtGQTx4ebM2EiCBMEyAgngYHjw2nQRCiAAF8RACz2pJIIQJUBAP4QFg9SQQAAIUxAMAi4c6JRAQQTzfF6kkRsLIEjW2ixxYdFmuHXnob7JpCseX8zvuODw+Wc7YEilaRKc/tz2pyDdp5ciKa/L45gtJkSeOZK+aVJ7ec5dbpx+br/8ZesJpm1LkjiOXD9z3d5txYIlWGUy7Lu+/L4WbppVIUSPIw2vP5eDiKxIllot8OaOgnFp/U64dfiBnt9z2vnalntlk9cBjAarL9mBcu0K3rBLBJbysGXJMyrTLLOHCi+lfuc5ZzL83jjklpdtlktevRf7uc0Reeeo/7AoF8UAPQag9kYJ4qB0aNowESCC0EaAgHtpGhO0hgdBPgIJ46B8jtpAE3gcBCuLvgyqvSQLvh0BABPG5O+rJ3s3XJFoMFzm064b8NeukaVTEiOGlYv308vec00HWyCLlU0jSVDHlz2leYuDwPyrK+qXnZNPKi/L86f836K5QJ51sWX1JGnfIrdnnu73rt9oaXgU/CH0jumwLUNuKVkgpUaO7yD+Lz/k477teBWTq4L1B3l/7xmXNk0Cy5U0oC6d69b/vL6VlaMetPvqO74+YW0l+H3tQDu28EaD+2R+Mfq1bclZcIkWQ4/v/L8j696IBEcSr9c8hK3odkXDhRKr1zylxUkSVdSNOSJ76KeXR9Rfi6fZSXKNHlMgxXeTwX1elVJuMcmnvPblx8pGkK5pArhy8LzlrJpcDf16W1AXiStS4rrJfN27P3zC1PLrxQk5vvCkp88WVKLEjyf1LT1X0DSfxUkeT/QsvSeZyiY1o/uj6c29BvFo/bU/vI6arEI7x9Y0Tj4xQ/ejGc3MdT/dXkjhzTLmw+67k+zyV/NFst7x45CGl22b0bmfueilM/dunndM+vJLCTdKaa4aPGE7SFo0vG0adkqsqeFf6UUXuAce0714cUE+RZulk/Uiv+6lij6zi/uylnNt6WwXsTHJh113T9wJfptY+X5IIOkYR9JoQ5fN+pvNU+7/p59NSXgVu9Gv1wONSrlNmWTP4uLke+l/yhwxG7H/+wF3C6cbXyXLENhzx78RZYhlOESN7ifRgbV8oiPv3Tgg7x4VaQbzDHjepnTKCFEsU0dD0ePlavt72QlplcvH+nrv5npuMzucqSaLqk8RBWXHFUy49eSXfZ47k71EZdMRdiiYILyUTR5QN1z2lTBKvNgSkXHn6Sv74z1OOPXwl2kxJFS2c1E8VUXLFixCQywTbsX9d9pSr2uaAcPKtca/1N+7yKy/ln2uecuuFiD7HpZAybZjWRSLrAyeky6tXaJ+nrLv+0rRPfx9I/vjh5Ys0LhIrUvC07/qzV/JAP8dkiaWfUAJRzj1+JSOPucvEQpHlpfZn2+2XUkLvF9vvB+KyPMUXAgEVxJPqL9b6Az6RLKUSiYv+cr1y9IH8PeK47NIPIsFR0uSNK63mFpdOGf8KVHXZyiaWa/rB4/7VZ9JxWSnZoR+ytv9xPlDX8u2kyffqS7ccK0w99iVnpaRSq1cOSZUrjrjph6KTm27KvK775ea5J5I8WyzpsqqMtEm55J3aZNvPd7oQTyYBBwQCI4hHixNJBh//VPb/dUVmttwVKrmG19/l092/kPZ6/9neuxXaZpbMJRPJuNqbpFLHLJI0UyyZ/u1Op33Iqs+Z62+eM6Gyo2wUCQSSwPsWxH+7c0/yRYsqWaNEDmQLA37a3ifP5IK7u9SNGzvgJwfijAeenjLp1l3pnjSRn2evevBIMkdxlTSurn4eG1YPePrylfx574E0ShA3rHYh1LY7IIL44JnlpXvjf4yQOfT3CrJk5gmp1TiLirZHpVzt9HL68B0jYkePGUlGd98ubQYUkof33CSiioyTB+yRqWtqyOoFZyR1pjgyeeAeadY1r3h6vJILZx7ITd2AG9ea8/NhObjjhqlj2OyK0rnhGkmeJqbU+Sarfi+czJt0RH74qaBcOvtQbug5aTPHkS2rLkjHYcWkh7btwukHhrXVVvx75LxK0rHBavm+dwHB38KRo0aUMT12SP+pZeXi2QdSoFQymT3+sBEZNy47b8RnCOEQxBMnjy7RY7lKvERRZP7ko/LT5DLS59v1Urd5dlmjfalQN71Eco2g5x+Sqp9nkkf3X0jS1DF1seCEVKqfQZ48dNfrhvcW6+Mnjmra8fSxh+zaeEVyF0ni45x4iaJKsUqpVIB9afpiL4j3n1pG9my6KrkKJ5G5Ew9Lj3ElZcAP/0qVzzP+n7WynbG+lmlvqaqpzfE5CyaWo3tuSs5CiQ2nrqOKy4O7L8TtuadsXXvJ9OtPHcfH2t67N5/56Nf3KpZbdf703UZ5oefYl4AI4tUH5ZRlPQ6bS0B8hvi7dshxqdhdN+X87bxkrZTELGJAEL9/+ZkkSB/diMy56qSQGAkiyzb9N4TgnTPPqwieSpLr30obxpyUdEUSSMzEUeS1jjHEYAjPD648k2OrrktRFZwPL7siKfVvxNQF4xnR13KIfzogpyz/0as9UdS1XrxlBtMeuLMhOkOwTqRiuMdzr3baurbh9rbaCRE/ZuLIsmXSWSOWoz9oB8RkiPyW6zxdsQSSMGMM8/+/uh0y1284rYCcXHdTLu27JxW6ZjFtc3/qKUmzx5K/+x6Vyr2yyUuP13JoyWVJkj22Cvfh5NrRh5K+eALT/y2Tzpg2Xt53X9KXSCBueu6+eV5/d+eum8K0x+2Jp2EDETxpjlhy9eAD82+4xFPkjiuxkkaRvXMuGtHevlAQD7WP8EA3LNQK4rPOesgzVZK/y+QlZB978EqGH3WXgiqqWt87fP+VTDzpLr8Udv5BMDCC+BO9yXQzeNHfWfLNdjeZXjRgHzTvvHglHfe6S6lE4aVKchfR3yGyS8XK6Wc9pXsOF8kWO/SJ4i/0lZCX+sSNhk4HQflNx2/HnZfSMqOLZIgZXu68eC2zdIEAwm3fXCH/QfXXMx5y4N4raZ4hoqSPEU70zSCZd14XBZ69lpH5IkkEXUF832W5LkLgTZxaKQO+4IK2gaU+4yWmCvj/qTj+h7a/V85IPr7/vvvwsV0/IIJ4gjTRZcDeyrJhylnZMPm0PHvoIRB3G43PLzNb7ZadKi6/7wLBKqqu5j+56xaoqtovKSnL9LWyc7vuSFT9kOLx4qV46Ep/UBdngniuqsmk1Zxi8kfHfbJXP/hAXKisr7gV+zqtdM6yXOImixIkgrhtP4O6b7weCQRGEC/bKqPec5Gk5DfppXvWZe/lvnvXkfGPIB4pSgR1BIWXF/oHr7PSVp8zK948Z961TTyfBEITgYAK4j9cuKKCrtffHK/1fy/0c97nKjwnd3Vs6gktgvgFN3cZe/O2pHsjRHvq3xOqUUiT+OpYjPBuf/P4JYjj50vvP5LG70kgvu3hKQtUgPbQPuHlefx10CBebEnson/chcECXmNu3JG+yRMHaet3PXkqOl2lcIxofl537I3bEkEF3R8Sxfc+dpEyPvD0uQxIkcTp+TivbeIE8r7GPCCC+Jzt9WS3iriuUSLKqnmnjWAM8XfFH6dUkC4q1y8+ViHztTq5/zOu1CqfZZDJg/YagXlI+83Sc1wp6dV8vfkaDvOcBRLLrWtPjeN86+qL5lqLp3u5WlFa9MwvaxedlcoqLC/XOuo0zWrE9w5DispSFZx3/HPZiOMzRx2QdgMLS9+WG73PtdqaMWd8Wfb7STm696b0/rmUHNh+Q9Jkii1TtF0lVCyePny/jFtc1TjRHQniuGC6rHFVNE8u7eqtlA6Di8igtptNf6MoB9SZMFk0qacCOfq+6NfjEjteZMmRP5HA5b1v6zXZtOKCPHrg9TdJDP2M07RzHnnxzFPiJIgiTx65+zgnR4FE0lsZ5SuRTFJnjP2WIN5rQknp0WSdfNU2l2xdc1GadsojU9Sxbs+6z6QyZvFi0Ixy5viB08vJj9+sU16FZPa4g7r4kFXweSZX4cTyQ82/fSwCFFdB3rZfSVJE91Hn+ZNvx4UERBBHZAqE40jK7+Diy5KjejIjFkMoh0McYm6SrLGMKzp6fFfDFYJ47ropzdeJs8SUUxtuyuPbLyT5J3GMIH1i7XX5RF3jOP/0v+oQV+EbQvO9S8/k+GovQfzO+ScSXudlhtIJjegLwdiKTMlZI7m46We268cfGbEY7YHwDWc43NOZy+tcPfPYfL/W8FxGGH96111qj8jt1c4EriZqBEI1ROW7F56aaBQI0Pg8GC1eJG9BHMJ+bBWfcT20zd4hXl4F8Wf33eXs5ttGHL+o4v1tPTa5RrVsm3JOynfJoi7x8HJk+VWBuI7+X1TnOsZz33x9W2J2Yfmj+W4j4MMZX3tUbhPHcnTFVSnaPL3huW7YCSnfNavX/Tr8pJTpkEkXi0RW9z9qFiPsCwVxPx/xYe6AUCuIH7z3Uqac9lT3q5d4Ou+8h+jCqey680omFPT63h//ecgjFa8hkO9V8XWOCoLPVURPHCW8tMsSUZ2+4QWC+Cl1aT/TG/Pi09eSKHI4aZ/VReJHDi8H7740Iq273qC6ECpfq3s5b/wIYjnEd95+Jbv1mBRRw0vPnC76oU7kVxW1Tz96bX7p11IHe/mkb4uZM1QMvqbCak8VJ23LPr1WPNdwkjp6eNl2y1MWXngpkJZiq6D5rQqzyaN5tfeCOto99QcQaZ9ruztnd5GE2l4I9RNOemj9rySGPmSapFfHedwI8lTBOGoXRFIsGKTQ6953fy2N0rvIhBMekideeDmrP4NI/U0GF3MNW4f4UF14SBM9nDqNX8s9t9cSX9vcOXskgUa8+KKHrL32UnThTyoki6hfe761IPFI62q+w00G5IYY/v8PwujL5psvpWwS/QNZ+z1NOUGUfv06nC4ShJPv1f0PIXqIOvRTqqP+3xsvpVVmFyNYO+PubNwhNl9Sx/v5J6/V+R1BPkv9/3G6rQsW3+90U+HbVVLqWFgFY9pm9wupkSKiGdeBh5WdvnlwQefNE207XP4tVOC/oNf8+ZSHtjm8XNY6nuq4NFWOWXWhA6vt8y54yg5dAMHqfTrl2EzHFgsNtv2qnCyCLL38Uj8Qir6BEEEd6uHk5vNX0vLNAtCSS57eXzsbj/M6T+AQH6H9aK9vVGB+ZIwVQb5MG9HbOY6+LdIx26gsMafy6hsKGHOMpbP5H+aeYsHY4IAI4k1/KWhE5Amfb/XRwiIN0xjXePu0SyWlfnhpNq2wXD32QGLpSv7QiuulWpesUrZlRnmiDwAI6dW7ZzfHxtSMuRYzi0ii9DHML/rVY07I2vGnzLUhKC/ocUByVUkmCdPFkG2z/5Nlg4+JrUN8xOka5gMuSmS9gR/pqxFds69wel20o3bfT4zzc26X/VKySTpvh3hyXZFvOqmAxNAPY+56P/3Z66Ac0A8X6E+LGYXl4N9XJW3+eBIvZTT5vd1eOaIfzvxqvyOH+IB9VWT73AuyUl31tqVk03Smvpj6oavDstKyeeY5KdE4nXHRTFc3rV/1TblfX/moy6BDVmV4Umr0zOHdTwjvLCQQlAQCI4j32VlJJuqzo6reh8f1ldfdC7wW0Fxcw0vTqYUkQ9GEcufCEzm1+ZbESxVNpjXdIUkyxZRGEwtInGRRzR8u077ZIef33PV6zuh9eUjvyzRv7ss/9L48qvclSoNheaSwPpfgwlqnr5pumnZWxlypLZ30uYPnhDlmeB7zR/1cXZyyin8EcVuHOP5d+tsM5nfjw5vPZcrX2yV/vZRS681zZr4+Z/YvvSy1f/pE8ukfe1Cfzu+9K7/9sMcIeoyeQgAAIABJREFU6pP0vl3+5r7dMfe8RIgQXn5vs8c0Bwt/aHOHVEsCvQAYlGPOa5EACARUEG+jgvi41Mm94a1Wx/NT/cu8dIzoMk3d4F2SJDQ/63n5uvRTQfOPu/eNQzxDZFeZefue+Uz5XD+HVowVQ9Lr9+bpzx+po1g/aUuKSJGkauyY3td+rt+frteMrPf1Pc+XUitOLHNOnyvXpVD0aPL45Uu57O4hrVS0vKr/XXz/oSRTEfi5tidWxAg+HOIQxJfoz9urWGkViJdlY0aXTCrwO2rb+oeP5fCz55JIr3lf6yquQircz7dUsK2hbbGE8O8SxvN2iO98/FR2PX0mrtpmV7XyNY4fR2ZqH85p/TW0bydeuBkesfXZ8Oe9hxJD/4v+N9BFhSj671HXb0nOqFHkmfYBhhSI6Dv0mvu0HeCAvwOa6ffC48OElleqhvx09YY0jBdHMr5ZqEBfTz5/IZW0vv3alm0qBEfTLApcr4meO//uA/MZO7Je47weCyd9Kl3QgOB7Q8V18Kug44N2/K3je1GPiajHYgxLK68+Wl9W/XcS5XJJudtfK5b2w3LMOxqrK3oOxiJZJBfTfnCqpwK+VWwF8dl37r91/Tg6tqN17NC+mx4eph34W/WaXjePfg+C93ydV/d1zqAvuZR3gWhRZKSeE0U5fKb9faDjufHRE4mpbXXRvn2h/CymaAfmhru2ranyihcxojFkTbx1R+4qn77Jk8gVfQNhoXKMqW15oPV8q3Pg6LMXZr5jbt/ROWKNuavWaV8XxnO7jqur1l1f+z5H+xlV2/JY50IZZZxD++GoBEQQt3Vd41qFyiSX2PGjyIa//jMC8fBOW42bu3m3fLJkxjHJWzyZEcT7TSkjA9tski4ji0v/Vv96C+K3VQzfuuaSwDWdXkVnXAsOcqskUnd2/W+zSwL9ee9vNxjRG+I3XOX51dUNkRoOZ0eCuNXWGl9nNqLzKXWv122WzTjDUV/MOK5SskpqmTHygIxdVMUIz3B6b1qhDnF1S6MdEPzL1Egr3Rv9Y/owSl3vaIMliEeOHFHgmE6SMrrUVIEZt9DciUfM9fOo83vxjOOSOVcCE+fSvv4q0y204fyp+3L1wiNpomL2YxXKbc/Jli+h9Gq2XgqWTi4p0sV6SxDvOrKYEau/bP2J7NxwWRq1z62M90jVBhmdssbxWITAf7GAsGXVRSlcLoX8oq599L1tnZU+BPFiFVP56Bf429Z59tjbkRoBEcSd/aYs2CiNxEwUWY6vuS5XD73tUuZvWL8JpC0SXwX92LJ18lm/Dw7AERTEAwArjBwaagVxNxW2G2kcytj8kSSRCtw/HnCXRukiyBgVdPvliqTCcnjpvt9NPk0eUTLFCicd9rjLT/p9iM1/XfKQkw9fS9cckYzAPFeF8yF5XY0wPEEFYnxghIjebrebtFARFpEVEKFXXfU037cE8dwqFH+rwum8El5ujenqKoYA3yZLJHXmvpYu+9ykiwrFaWxEVRzXac8LdYZHdBq1cluFaETCDM0bSZKq2L5K27hJhWK0ceUVD1mgQvmYAq5GKJ962kM/xIl8mc5FJp1yN871pipsQ9Duf9hDphV2ldkq6jtqV3j9ANzjgId8lzGiiZm5+OSlca7DRfyJ9m37rZcC4Xiw1msriA8/quKqOo9763H4INZBz2mkImtcFcZ/POguY3RMIMgPOaqrhxr7gcgO27L7tqdxw/vm3N+pgjEc2cPVjY3Vty779ENjKq+IHNT/0EPrUjd9ZBXwnHFHDIuzcQfHPy++lEG5I0liZWxbtijrRSrkg7F9mattuvL0pS4AuAqE6Icq7vfXeYWPxj11DlZJHsEsXHRSJj21fXlUYN6vCx3TVdyfUDCybL3pKYtVzB6Y21WjYURGHffQxYxw8pWOn32/MLbx9WdwiNsK4GiT7dfOxiOGzg8rMgVjuV5Fb4ytbWQK3kzAQtFA5RBVWeItCwj51VT0dzb/w8izK0SaGRBBfPjJ6rKg50HZs8hnPAoy2WY8ayA9cv1t+tB3RyWZ1nyncYwnUxdA760Vpas6QiGIt19aygjgiDz5akw+dRBEkF9b7BK4z4ce+1Q6pFsqDzQjbdKturJu4mlZ1PewEYnHXqotLeMtEES22EemQBTvtbmCrJt0Wrb+ft7X6w4+XM20DQ5xKzJlx5zzurhTzTjHt80+Lyn0w0bvLRWMaB87SRQZdLCqDKu8QY6uuyH566SUyu2zSL9ia3ytx5FDPLK6ZKY+qG+ue+fiU4fjjciUfnuqyPQWO01fSutqf3F1j/crvtZPXptnnJN53Q6Y549tP0NkYrHSD5pAQAVx3LdNJheUgSXWSkZ1vFTtml1Gf+rl9oJzvNBnqWVw6X/MIlqv7RXlqP7BhEiSfrqAtGHyGfl3yhlJky+etPurlArEiyWxCuUD9L4cofflMb0v8+l9WUnvywF6Xxb+IrWUb53ZXA/PlwGHqsqE+lukWrdscnz9DfnnzaLbMF1Qm/zVNvMssEpABPEF3Q/I0FPVpWPqJfJCP2AU1fvUVbPKNuhzaKA+Z6a/ec4U/CyV1p3dtA3OqO/nFpPb6mRa2OOgTNDn3Ba9bxfofZtSX4vtuLKMtEu+WF7p58UiX6bRvqSRkVU2fNBziZ0LWwQCKojbOsQhQCL+o2bsWCq2vvZVEL+lwuV9Ffsgaj9RMRKCZq9kGgegwnmXJAkktoqO593cfESJwPl8Xc+D8HlCBV4Iu80SxJNeKohDBIcDepaKzQVU8Fyr4nX1ODHN+ctUbIWYaRuZYusQR1shWBbU8yDAb3785K229dT4k25azyAVPyEGQ3SubdruuyAOkTNXVN2ATl3nQ1Tc/kYd6He1rh3a9ibadssxD4G0ggqfGVTEPqSi9X4VU+vGjWXqGZYiqRFnsajwky4qTLx5xwjUcOZfUXE6oUtE/VvL6+8GjMFsFWGthQj72df18jXpp5whyi7Q45LrosN/yhmLDyW1/p3aruvKOa8yxoJCO10weKQC79HnzyW1iuS/qVDb7U0UzABtG9zPw7RfLVQAxrVmK3/7a5VWQdoSxB2N1Rodq5rKPbWK6hCu4cS2HSufgvjb1y+n7e5/7aYM1bGB6D3sxi0Zosxu61yBgN5a27hVx7RUzBhqKHul8+WGDE2ZVP7S/iXUeQbBvJty6a39wjhhUSaTtiW3zgerQBAvGD2qXFe+tVRAx8ICxn6Djhuc66d0YSOa/gEKBhD346swXlwXhXBdtAULEtaYO6oLUaVYOME8xoLDYl2MwL9h9ryrfUqqiwWOSlAK4reuPtW4FBd1SEeRUd22GYc3BF+UaUP3mXgPSxAfrcI0xF04p4/uvSV3rj99SxDHecNmV5B/VaReOe+MEaNXqjMdAvO1S48F9SVNFcMI4r3U/T11yF45edDr97VtvMuYhVVM9ApEe5M/rlDG9dopA9U9fe74PSmowj5E6Fa9C8rxA7ckQ/Z4xuUOQRzC8U2tJ0GSqCbKBcLvzFH7pVrDzMYlj8gU5G7PHndIPv0ykw9xG+70Oxo/Elmd0CO7emWY51QHeIPvcsgRjS8pXjm1nDmqC+BjDnqL6NcvPzaRKRD6HUWmOBLE0fZO2jdnrO0FcbjrOw0tKsf23ZKMOeIbQR0Z4ns2XdG4lOdyW8fCtl9NOuYOFkE8bP2m+7haG9YE8YduXvntwV1iuf4X3FUGur5QK4ijRz8d8sryLpYwgrTY+UJmFI0iv6goDEEPrt8mKphPK+Jq3Lj4f59PvAROOJEbad74nOKRZbW6mQ+oYNnrzc8OqfN8hoq1EENx/SRRwkn1FBGMq9wqzgTxZttfSKdsLpJZXbgov53zMAJ1A82dti3faVu/VRdubid54es0V3vP3Vcan+LlIEcW+hdbXsisoroRgIq1Rx6omK9CO8oKFazhcm6dxUWaa3wLIlfSxvBq62NdFY6h4pqzdhVWdt32u8sfxSKb12IgiPc66CG/6dco51VUH6qi9i8qqtsL4lnU7VxNRX2UoerYBm8PtU4cVEc3FhpQIGqDgb0g/u8NT1l91Uvg962g35He5In/oo5rjcKSOqm8hON0MSJIbc1cR3HWPwj0zsZ9rTLee/e19P7k7ddM1+jCx05906CPk59t1zcDsLgCQdyIx284YGHlsc4tuMf7qDj+m84vFESX1N/8QqbrXJypcyuNjk91FZxRMN9+V0Yj8kd+q18BEcQdjUcqdZ/7JYiPPu7ltgdXFLylsFQF+/4q2Dub/74O2kf+w4AI4j9fryNj626W09ve3pAFPxv/2RbjZPxpV2VpFmOeEWbLalZbjvJJZEydzYZ0vloppMHQPEYQhzsTAtRLvCqjBYL7lCbb5Yzu1A1BfHD59XLpkNere5Pv1pMf866U6PFc3xLEPx+a27i1JzfZYY717bqOBPGzO25L/71VpEXcBd6zAYL48mHH5fZ/j6XXloreP0upu5x3UFGuXZqlvtbjSBCPmzyqjL1YS5pGnes0LgKCeJ9tFaV5bK+2+Lc+8BpZ/V85u/PNHws2wv9HPsXZ/fdAIKCCeP0huY0IvFHFbRQIyQN1kQdubQjEZ/Qe/Gec19shDXWhzFUzQP8efkz6H6gqLWLON6+lovTZVUnmdz1gXqXtqffl92/u2RR6X0Is76j3ZYvfi8qFfXdljWZOomAhCkJ0AXVuV2iTWfoX1cxSXfRqr3sI4HjbYgnij2+7mbejrOKqr9Md11d4bTPE4eQee7W2EbZ3L7woT/EK3JtiK4h/O6uIXDx4T9aM9mpPNt30qf6QPNIn30ojiI/W+/acdd9qxrrldG/9Zwk5uOKKbJkZdj6Av4epxkuGMgIBFcRtHeJww6ZQUbqECpT3VFT1zSF+VAVCiNLx3sSTwGWNzO1T+n2Iw49UuCymAmQRFRWtAmF22YOHRhyGGOnx+pWKhgmMIN5Lz4UoPFfbgHxyCIodEyc0jl2IvHAh2wvilkMcruSB11SsVvcvhEfEjdi3rY3WM+z6TRWkveIxZtzWzdlUMPVLEEcsx3HtU2Rt20GN12itIucT7Zu9IL5Q62yndcDJDtEVonZLFZnHqfgNMR6lrwq53ZImNK5hiMhXVPDNoCI1FhUsNzMEcYjslmhtO73gMh+kwvGAN33499Fj40Z/pAsSn6gADhcyhN4zKu5CEMYYfakCvlXgjoebPO2bOJx7et7n6maerHnpFn8I4vbXgkPaVhB/a6xUQO6ionU0nQvbVbi+pnPHN0Hc/vpVVEy3OOEtgQnKDHMJQvoUfQuhk157hTrb4QKH+3uvjsNIG0E8j7rFO+liQ643jnqMT14d22I2USoQxL9S1/hvOi4Yw+l63Ubq9h+k8waCOObLRuWJcb6k/8bcKKv9thfE4Tx3VJflzrec8VuUwz5tJyIRaurCiLOM+YAI4qHsUfPOzUmfLa7A7YwscUS5sASeQFA4xANfO8983wTCnCD+PIQE8Shh5/N4qBbEEc+BmJMyiSOo0/uliSDZpGLrUc0TL6QCLaIphmtcxBJ1hMMNHMMmvUTjqFT0jiQQN89r9AcEZRS4Z4cc8ZCpKl7e1yxcnLdbxdGoEVVEVxcvHL/OBPHPNz/XqJBwxmGOAl2qSMLwGkHhU3TtrS7q4iril0/qODcP7l9EqiAOxCoN9dqIvjigAioiWdpl9bomnM7W16h/TH5X45i3Lc7aVU6jOAYc9jR9RYEgPkBd5VOLeAm5tl/bC+KIUbHiYCBQ42u40G8+f+298ebph+pkV8e+vSCO8RmrzmirXkcPJoj5v53TTTLUmQ+et9Q1D1d9XRXBvepDbIkXP2f9gyDubNwh1p9+JMrxbRcAYlZ+V1f9WEcOcRW9r2kfO2bzEsTza7yMtakqGCGGpqY6urFIYOuAb6gLGsPV8Y9oF4x9KZ2zKGcfvTSLDmBu36+ACOKOxgMLI34J4gMOu8kZjdiJ8mbSQrPApqG4b5zN//f9iyQsXz8ggni/3ZWNSGW/gSYc2tOffS7dc64wAneX1WWlTYrFBkv17tnU/R1Dfn2zAV26AvHku9nFjCAOsbdu/1zGhf1K829S5IxjIlYguEPg7Vt4tdloEsX6GjECtg5xZJg3HJlXehdYZUQvFN+u60gQv3n2sbT6o6h0SP//jToheu9fdtkIzLabXNpueulbPY4EcSO2Kaeu2ZYL6nRU7DfV9G99hk+RNd7XpUM8LN+Vob/tARHEsUA1WheCsCGRlV2IDXn/7HnAiMSdVpeRbfo2xI43m9tW0UiVxOljysapZ6SXLg7d002TrAIH9m+6X8G1Ew+lk24+i80vUZLpQpL1dYcVpY1AvXWWzw+ucIuPu1FXfvxkhRT9ysvNDWe2bbEE8d66+PZQ31SxSkl9UyN1HhWf7DbVTJ0nrrrds0k2XfS7oFEos77fbe5BW0Ecru+dGoeCPqLgnLZLS5q2QxDvb3Pf1uidQxLq2zIzv9tt4lI66zPp2YP/C+2hf2awhR86gXcRxCFGDlaBsKeKtlhuGvtGzPVQgbH9pWsyNlUy78gUOMSRN44YDwjSiOaIq2IwhGvEoCD/urcKwINUbERkEcoSFY1jq2haWoVGbJRpOWodCeIbVDCGUAzXMYRvRFw4E8Rx7WMq9q7WczpqxAuEYvu2JVIXNtzVllu7/9WbUlMd6HCeWzEj/6mQPF/baEWmdNJr/fjGVY4ewO0NR/szZOqqcxxxJZZDfJMuAiAaA3EtB1SUPqxiNBzojgTxc1pPtjcRGpOUcfk3cTPoh4lMUdG7np6b/c0xEGvhkIa43VXHAdE1cIjPU/d06siR5Kxez15khhg8R8XvztoHjOsO5Z1D24bFArjCUSC+J1YuiEx5F0H8H+WO2JIUKrTj+viLMSgF8WrKZ7PybqlCNkTyvjp2Y3Qu4s2B+OoQL6J9tZ1DcJbH1HkGRlaxBPFjL16Y2FKI63W0zVikgCA+RJl/rQJ50jcuebytUE7rxZwZqg5xOMitMXdU1xF9I8Da+PWO3guY/0l0cQaMsciDeemofMyCeM/xJY1jHE5zbIrJEngCFMQDzy4snBnWBPFHT0NGEI8ZjYK4j/l8ZMw+OTz6/7mT+GGOdnklU77T4rZ5jtO5D/F6mIqSpRJFkCgqIkGIxIaVfQ95SCF1P6N8qbnfEMnh+LVc1bYXRGTKYRWZe+T0EoWRm/ybiqGjVFi2LbtVJB2v4u4sdU8P0TrhTLePTPlend/I0raPSLHvAGI3jt1X8TmPzzq2aJxGRP1jFxsSo75udg5xOLfhrnYmiLfYofWrUJteN6lEuar51QnV4d5Wo18ctcs3ARznB1QQh0P8uLrXO71xryOOY5YDhziyrFtq1EwXddPnVCHdKnCEI1qksUa+IOYFsTjYdBO54T9rNnoi7cv/BfH/C/LOuPs27rYLCfbj80BjUJAhPjCPz7GEw629RqEgwgSCNgTxzBqng0xxlNkqlmPsyqlQ/6PG9cxWhzj+sEC/Pt/iJjN04WHWOU+N7Qknn745B/MNm11CgLYWFqyFBltBHK7tGyrEt9QIH1OXckVuOTLF7c+zvvaPII4MeeSkWy53Zzeb7fwPhv1Ew8LvO4dtDIgg/oVm7iZMG93b7W1dsHCDVFKnXy4jctsLuuU1DiFziUTGPY6SVzc2+Xx4XnPsYI0yWDX6hOZle/2CGXW2hvzSaLu/BXEI6YhnGVV9o1yy2TXbt+s6EsTPbLslA/arE9XWIa4xL8uHHDWuVmeCuG/1ONtU88dNFeTExhsmCsa21O6TUxcaLpqMwsDUZ7+AQEE8zN6SYaLhARHEc+iiFZzZttEfiAdpNr2w9M6zUn5YUFxO6CZJ6zUiCeWLUXl1TwAXWfLTYRWWq8r38Ra+xcRWAMcPbb9urvsSXDn6QFa9yelH/ri7Ogqe6iZGcI9fPnxfsO8BMsov7PeZlRmQyBREulgFImGtvjnVeR7HRMHYCuLNNescb7pYjvXsKp7XHZRL+uZfZQTxfrrwd+vNwh/ipProwuOs73aZuJQxNf4NE/OBjfx4CLyLIA5KK9XB/VBdx5+rExZibWwVuaOqsAindD91Js95kyGeXsXPWSrIIn4EDmU4cgurI/xXdd6aTAQtECtrq+hoFTitl6qImUKFwqQqOK5X4bqRirxwU9u7juG4ReQHjvPQ68UKH8FHLrWjDPHRGv2B2JDsKvzatw0C8Sp1GcM9DeEejvYKMWNKSm3LZHWLwzUNd/AhFda/t8kQH68bdyIXGu7ncNotCKnIBx+hsR6IPUHmNtzE8fSayKCOof+F6xzHRNIPt44EccR0QISPoj+HcNpYGdiKt9ammi90IQJ/feE6DXQ8kH2N9m1VcTjqmw/OX+u5EFztBfHP9HgsJECQhbMcLm9E1cBpje8h4z2G9glZ5bYCb2Ac4vgr4m8VxZOouO6m/cGiB8Rmq9hHpgTUIf6tLjz8rHMR7n8wgDiNbPG4+m/EpnyhLvfnWu8W5QqOWOSA+zu6zeaqliAeXXO9++oCALLnE+jcsgRxZKuf1vmJ78XVTfj2qLu7rQrwE9U9n1JF8irKzxrzOFqvfV0nn7v5EMQxp2NoW15oWwrpfYH7w1H5mAXxj+ep/P57SkH8/TMOyRrCnCD+OIQE8RgUxH3M08AK4ni1qanGhMRRRyvc1OneRIW02vVCf8nqZijq6IbgCoETmdwDNCcZmdxn1RH7r0aPNNPYEgji81WQHKFZ1XBWQyB00Q8uX2kmdl+NTEEECjbYvKEbGiLHeqaKmkOOeRhBPJ+60BtrLMvvxZAHHU5mnHEXNZWbjRWRT4YojOKaeW0J1Fan4X5us9vLXVxbxVU4ciE4IlcbGc9q2jTZ18gQT6LtRRt3agY0BHR7Idf26ymaOQ1RGjnn2FCxn7Z/qsadYHNRR+1yCf/aqSMcbQ2oIA6hd6A6zMepsxq55sOU01UHGeK49p+a0Y1s9O9U4M2qsSMYI4jhGDfkc0PUzajCfo2ULmZjSmxgWVSd1VbWtq0j2hl35G87G3ffBHG0D5u0YoPP7zNHkoy6aSeiUBB3AlF6qArliJiBIH5fNxVFfApKV50f9VJHMHOsy1434z4vmjCiWcSA639sgcgmlx0Z4piL+NAMB3dy3Zjzc124sRe2sfkq9jhEnyHur7+hY6p1QWDvrlE3GWKG87cgjvmFNiAz/T+N2LGc48hzX6hvQeC6WFRClAzM4kUTRHA6/9F3FscEAiKIY8NJ5Hxvmn5O1k44JY80iy5XteTSbEpBmdpspzqqr7wliGMjyk7q2OySdbk8f+Qh7RaXNBvlQRCHiDu00gYjSkFUbzKpoExosEUOa36wXw7xzpn+ku7rysmuPy/Jes3stS2+XRebWmKzTtRhZYhvV2cqcsJXDDsm2+dcMA7ObmvLGsd43GRRnArUvtXjTBDPXCKhud58zR/eMfeCaTYyyQvWTyU9cq+U+CmjBqo+e162/eTcJ4GgJhAQQRyRKBC8rbgUqy0j/qtpBF+85ZG9QhIZXmG9xNJFrh91Meq45oJDcO67p7KsGnlcds27aDa8RZzKTN1kFptuOnOIIxrl0x45ZFDJtSbWCNcwWeH6tscnVZPJV+Pz6xspumeKPoPsS0AE8U2/npUqnbPKLw23mgikYo3Smj0GEIGC7POF+pw5os8Z5JtX76EZ4sXXiIcaIFrNL242HV6ii2L2gjja01cF8eja10W9Dnm75oN6/Hg9EggsgYAK4oGtJyyeB0E+nQrfEE3HaYQGHOhwNbO8GwHkoINpAhXE1zx8JLp0YNzVLH4ToCDuNyMe4TcBCuJ+MwrLR4Q1Qfzxo5ARxGPEpCDuY54HVhDHRUapoHhAc6vh3LZ0OojaW1R4hKMa4jYKspH/gOtYBeOoqvg1VTEcm2XCeXtZY1fgtr2kwmsCFb/bZ4kocVSZ3XDdS7xEjATE48/TRFTneUTvyJSSiXXH5ENuck4jTH7M6WI2U/z1jKcc16gQlNxxNS5F3c5wONuXayoUI5bjmMaH4PoQ87/Q62fSNqHsVKESm2dC4I6n0R9wBiPH3DdBHBt5TlAn9XG9JjaURN25NOLlmX7fUbuuaBucRaSgDQEVxOFsnqUi7jZlH0/F6JLq3F+uovfPupmkfcFiBmJu1qgAq/GlZlGjeKLwUl8jUVx0fE4qw3HqyHfVf6dTQTqf9gN9a60LH5vVSW8riDvrH7g7G3e/BHG0b7m2DwIx2qdvg2tOenjzxgE2DEWBIJ5E+3lCF1juaqRLLh1vOLYv6jwaofOygLZ5j847HP09NmfV3HVcd4EK0GCEf2MOYi5iQcVeEEe++HBdVMA8woLPEI1hwcIGNlNFvU9VGMfih38c4og/6b7fa8Gkhy66WII4+rFIo4c2qtiOVz+Rmd9KFwEQN+Ns/oflX1Lvu+0BEcTRlsQZY0oDzQPOUiqRuOgz58qxh7Js8FHZu+Syaaq9Qxzf+3xYHt00L5WJPtiqm1ZWbpdZOmVaJmW/yyjVdaO7x3fcZJuK0tHjukqpb9JJ74KrZcDeyr5GpkxUEeqnnZXk/tX/xymgri7ZNA5BN6Nzdt3iKlpVUxELm4Mi23yHbvwJQRyb/jWdVEBiaPC/+/OXMr/bfrOJpm8RJr61HwJ7txwr3mof2phDxb866iZN+UkcsxnfkbXXZV7X/XL/2vNA12fPq2avHN79XPtmE8H3PZd4/Y+HgH8F8aixXGTM1Toa/bFUHt7QX0w2BU5wCNNL+x+R7+YUMxvwXj/5UPO21fmmgvAM3Ww3UYYY0uSXghI3RTR5qbFKcFljg03fHOKoou6AXIKYE48XL80mmpZbHPFOY6/VMeI8BGf7EhBBfIYK8w30rZl8tVNo215r/57LjG93mTiXGnr/QSz/U58zqL+mvgGCRS/8cj2z9bbMbrdHXeuaZWvnEEd7KrbPbNrfOvEiefFYNwhjIYFQRICCuPPB2KwO4t3iM/GSAAAgAElEQVQaZxJLncNR1SkMdzTLuxPA5qkL1B0PQfyZ/k3QRN3ZcNSz+E2AgrjfjHiE3wQoiPvNKCwfEeYE8QfpQgR3jNjnQqTewFQaqjPEA9MhnvN+CSBWxHIQIyscm2oO82PzzPfbovd3dQjihVQkx8KIbYE7f7j+zD47/f21hFcOLQQCKogHpt2IAbGyg7OUTKQCeW4jerOQAAmETQL+FcT92zvbZwTEY2xiic0z30cZrG+5jNfNgSFch8ZSUBcP89ZKKRP1bRkWEghtBCiIh7YRYXtIwDkBCuKcHUFBgIJ4UFAMvdcIa4L4k3shI4hHj0tB3McsfheHeOi9HT6+lj10f2WytwdrtEuKaOFk0ikvh/c36oD+EAsF8Q9xVN+tT+9bEIfTc9S5msbtffX4Q/lmSiGT5/t7u73v1nCeTQIkEGIEglIQz/1pcuO07pX7bxNxgsiUpf0Oy743b50EZSeLfp3WvEEyTONZQmOJrBuP9txSUX77Ybec0c2FWUggtBGgIB7aRoTtIQEK4pwD75cABfH3yzekrx7mBPE7ISSIx6cgTkE8pO/W91T/2qual33ZUx2s4czmkYgKiakRHx9ioSD+IY7qu/XpfQviaF3pbzPIp12z6ZsYGmukcQjIG39y1+3dGs6zSYAEQoxAUAriEMG/npDf5Hu/0litfYsvy9xOPjctD4qOdt9YXqJohMsEdYff+u9JUFwySK+BhYHGGg+zUSNhluqGoiwkEBoJUBAPjaPCNpGAYwJ0iHNmBAUBCuJBQTH0XiOsCeJPb4eMIB4tAQVxCuKh9z5my0iABAJJIDgE8UA2jaeRAAmEUgJBKYiH0i6yWSRAAg4IUBDntCCBsEOAgnjYGavQ3FIK4qF5dN69bWFOEL8ZQoJ4ov+xdx7wUVRdHz5pJPTepEnvvfcmoCBFEBRQOii9SC8iVZqANClSpSodUVBAOghEMPTepfeekOQ9dxLCLvhKdnYmc+/sf36/73s1ueXMc+5eN8/ePQMhDiHu/usNI4AACEhGAEJcsoQgHBBQgACEuAJJQoggYAIBCHEToGJIEDCJAIS4SWA9bFgIcXsnXDUh/viKNUI8TmoIcQhxe+8FuDsQ8EgCEOIemXbcNAi4RQBC3C186AwCyhKAEFc2dQjcAwlAiHtg0k24ZQhxE6BKNKRyQvxyFkvoxUlzypJ59UzqFc6Xno6u9MFDNV2hhbYgAAKyEoAQlzUziAsE5CUAIS5vbhAZCJhJAELcTLoYGwSMJQAhbixPTx0NQtzemVdNiD+5ZI0Qj50WQtzplQAhbu+NAXcHAp5CAELcUzKN+wQB4whAiBvHEiOBgEoEIMRVyhZi9XQCEOKevgKMuX8IcWM4yjqKckL8gkVCPD2EuFtC3L9cQ1lfA4gLBEBAMgLBu1dSePATLSr/4rX5/8VxO8LQS8fp+Zm/XhsnOkI8c/FklK/aW27HgAFAAASMJ7B32Xm6dPieNnDRuukpbZ5Ehk1y4cBtClx96bXxoiPE0+dPTIVqpzMsFgwEAiDwOoGts0/R7YuPtV+UbZaZkqaPaximwxuv0MkdN5zGi64QD8iZi/yzZDUsFgwEAiDw3wTurVn1WoPoCvG2A4oBLwhoBH6cfohuXYv4b8qLK7pCvMxnWShBqgCQlJjAL4MOvRadakL86TlrhHjA2xDiTovHlRPi/mUbku/beSn0QpDELw+EBgIgIAMB75SZKfzpY3qyehz55a9Csd4tTyFem90OLcCrDd0f25zo2SOnsaIjxGfc/YjWTTlGIc9C3Y4DA4AACBhHIH5SfypcIy11y7yKUmVLQD02VqLZs/cbNkHr1oVpSIn1dPO8874RHSE+7mJd2vXTOXp8L9iweDAQCIDASwIpMsajVJkS0PByv1GuSqmo7sSCtGzZEUMQ+fh4UZduJalV7EVO40VLiPv6UvqJ39GjjSsNiQWDgAAI/DcBv8w56cmRk/SqFI+OEP+8f1EqUiEN7d36+off4O5ZBDJmS0wJEgZQu5prnG48OkI8b600VHNQXjq0EutI1lWTuXwKOr7lOr0qxZUT4mcsEuKZIMTdEuJePuEUvH2BrK8PxAUCICAJAb98Vck7dS56snaiJsR93klNT7x7uR1dAp+/6cG41rqE+NRb9aldpuUstkLcjgMDgAAIGEfgLZbgvVZWpF651mhCvN3KMlSowHTDJjh0tC2NqbRJlxAffboODaq0nm68ItMNCw4DgYCHE8gjJHjvvDS66kZNiJfpk5Vq1HAW2HoRxYrlQxevd6U2cRbrE+ITJtP1Xk30To9+IAACLhCIW7UePQ/20y3Ew7zCafLQPS7MiKZ2JFCpZkaq1yQXdfnwV11CvHTzTDT7g+12RGOLe6r6ZW4K9SL1hfhpa759FpD5pNM6WPfHHpoyZyUFhzynNKmT0VdfNKN0b6WgZ8EhNHDMbNqx5yDFDvCnVo1qUINaFbW+xWu0pVVzhlGq5ElMXVPSPVRTnBCHEDc15xgcBGxDAELcNqnEjYCA6QQgxE1HjAlAQFoCEOLSpgaBgUCMEoAQj1Hctp0MQty2qdVuzC5C/NlJa4S4f9aXQvzajTtUu3k/WjpjEKVNnZzm/LiOtu0Ooplje9Lk2Svo1LnL9HXfNnTrzn1q3H4oTR/dnbJlSgshjhPi9t5kcHcgYASB/xLih4MCKHe+p3T7ljclSRr2r9O9aPPqL3FC3IjsYAwQkIsAhLhc+UA0IBCTBCDEY5I25gIBeQlAiMubG5UigxBXKVuux2obIX7cIiGe/aUQ3/f3cRoyfh6tmj1MS8TJs5eoZbdRtHXFBKrVtC8N6dWS8ufKrP1u1ORFFDdOALVv/oGTEB8/YymdOHORJg3rQt7efHTfwAsnxA2EiaFAAARilsB/CfHdO+KSj284PbjnRU+e+FKN2vdo6x/xKCQ4nOLF52ooz7womMv1+geE0eULAVSz7h2KGzdcuwEI8ZjNI2YDgZggACEeE5QxBwjISQBCXM68ICoQiGkCEOIxTdye80GI2zOvL+7KLkI8+Kg1QjxWzpdC/MHDx1Tj0940dWQ3ypk1A037YQ2dvXiFRvb7jPJXbqmJ8YQJIh5yvmTVJtoXdJxGD2gbJcT3HzxJ3y9cSz9M7EtxYhv/IFoIcXu/lnF3IGBrAm86IS5u/t59b7r6TyzKV+ARXfnHn0Kfh1N4uBf5+hH58PMK/GOF0u3bflThnYfk5wchbusFg5vzaAIQ4h6dfty8hxOAEPfwBYDbB4FIAhDiWApGEIAQ//8UC3yUnpJliUcbhhnz4Goj8uXqGLYR4kcsEuK5nGuI//z7Luo7YgbFZaEdO7Y/zf22D6VKkZQKvNOSAtdPpwD/WFqKVq3fQRu27qOJwzprQlyUUhk9ZRHNGd+HUiZP7Goao9UeQvz/YFpzIYzOPwyjDrl8owUSjUAABGKeAGqI/3/mc29/TF3zrqbblx/HfGIwIwhISABC/M1Jmc37xhfYN94MCi2UIwAh/uaUtT58i0ZkTURJ+SGhuEDArgTsIMSbdCxAWXMnpQGfb7RrmqS/L6OFeIbiSanZstJ0af8dIj6f5RfHh5a03Et3+GHrKXMmoOrD8pFvgLfG5dHNYFrT8wA9uPqUKvXKSYUaZaA7Fx6RF5eSCA8Np4VN/6Qnd/hr0P/nqtA9B+WolopCQ8LIJ5Y37Zl1lv5aeN5l5jnfS03lumbX5vSP70vHf7tKvw0+THqF+Mezi9PyDoEU/Oh5VCxv5U9ENUflp6f3n5N/PF+a33gXPb79+r2J332xvxqt7n6ADq267HQvSTPHo3qTCtMzHjc0OIwWMZ+ABL4k5nvO/+4X4EM/fbaX7l1+EtXPLkI85JA1Qtwvz0shfuLMJWrfdzzNHd+b3kqVjNZv3ksTZi6jNXO/poJVWtHm5eMpcUL++j5fi1ZupAOHTtHI/p9pQlyIclFCZfnMIVHS3OWF+oYOEOL/BxCEuNFLDeOBgPEEIMT/P1MIcePXG0ZUmwCE+JvzByH+ZkZooSYBCPE35w1C/M2M0EJ9AhDi6udQhjswQ4iX65KNfmi4S7u9WmMK0IU9t+jQ6n+o276qNO+jnXT18D3td7lrvqWJ6O8q/aEJ8Sd3g2nXtNPa78p3y06+LLk3jjj6r5hKfZ6F0hVNQj+23kvhYeEUK64vtV5bjtYNPESJ0samfB+mo5AnoTS/0S5qOKc4hbHsvn32IRVokJ5G51sXNWaK7PHp08Wl6LvKf0QJ6ir9c9H+xRcobeEkVJBPiT+69YxS5EhA6748SKf+uE61vilA8VMGULzk/rRt4kk68vM/1OXPKnTprzt08/QDqtg9Jx1ccYmWtt0XNU+J1pnpzNbrdP34A6r2VR66fe4R7Z1z9rV7+3BqEYqd0E+b/1Uh3nh+Cdoy7jhdCrxDFb7ITk/vhVC8FAH08PpT2v39GcpSIQXlr5+OlrUPjBrXNkI8KJslLxe/fCei5p3303o6dOwsjRrwedTPxMnwdYtG0+c9x1KfTo2peMGc2u++HD1Le/Bmm09qakJ84tDOtGztFi6pEo/6cjszLiWEeKttITS4kA+9Fdebtl8No/GHn9P88n4U4OtFK8+F0rmH4XToTjh9X5ZrIPA19ehzPt1N9HXRiNPdw/aH0GP+oKlCam+qktaH7j4Lp+bbntPAgj5UIKk3nboXRpOO8rglXp4GF0L8OP/8cUg4j0+UMrYXn5ryoWQBXjx2uDbHff5wyo8/qGuUxYeKJfemk2KcI6GUJ7E3XXgURo9CiFpl96Fc/O+vXsvPhtK6y2HEH2bRu2m9aem5MJpexo/CeGNadCaMdl4PI1EuPksCL2rNY4jf84d42njius91kNtsf04zy/lSXOaACwQ8kYAKQrxyyyyUu3wqmtBku5ai8Ydr0Z/LL9CiAQfIi1+6s258RAc3XqG/f/uHNs48RQn5P9DfX6lPQ6ptoKANVyhToSTUflZpips4Fn1V6Te6ym8YSjXIQB3nlaGmiRdTML9pqdktFyVPH5dmddkbtQyEEF82PIjeaZWNAnijWf3NYfp5XMSbo5IfZqD6X+Yjbx8vunftKU1ru5v+OX6f+qypRBcP36W38yemeEn86XzQHZrOvxNlZhyvZDxXlwVlKSG/qTm2/Tr5x/Glv369TJvnnqb0eRJRm+9KUPxk/hTyNFS7z8CfL9GIP6vTihGH6M8VF7ShitVJR3V65qG+pX71xKWLe7aAgEpCPGXm+DRwU1Vql2GZRqrV5OKUPm8i+rLceu3fe66qSHESxKKt80/Tpsh9YzrvG0N53zjI+0ZG3jfaRe4bg3jfuMb7RsnIfaNZ5L7xPu8b4rU8x2HfEEJ8Oe8blSP3jTW8b6yN3DdK8L7xocO+MSNy36jZPRdlLJBEO2GTIHmAtl9MaLyN7l59edJGxOzn702fzShFOUonp+v8B83RrdcoeYa4NKXFTkrH+0Zr3jcS8L4RzPvGksh9YzjvGyt539gTuW8U5X2jNu8b/bFvWPAKUntKlYT4pltP6OjDEGqfIYEGvcfxO1SEX+8fpY5LYeHh9PmR25SbJUbe+LGoUtLYdI//QGh39Db1zphA+9mZxyE0+cIDCua/KSbmSqqNMevSQ7r4lP/2yZJI+/cxZ+9R+SQBVDShf1RihRCvnTw2/XH7GT0NC6Ma/M/Vk8fR5lx67THtufuM37d4UcbYPtTsrXgUx9ebRvM4afx96AK/bh+xOEnH+0CLNPHI95WHXt0IDtViuvc8jLLH8aNgHjM/xypiuPiE/565/JAe8O/8ePz6qeJQjrh+1J7v6dsciSmhX8TfPvO4TSwe92PmgAsE9BIwWoj/cbo5Na26nC6cvkfvfZiVRs6pyl5gGj3ldd28S0HKnjcpFa+Qjipmnq2FPHBiBcqWJxk1rrhU+/fvlr9P8RL406oFR2np7COUNEVs2n6xFbWsvpJ2brxIuQsmp+HfV6HahRdG3bI4IV6gRCp+JlIsypEvGV08e5+6fbKOrvFrRJwcHzS5IiXmveHZs+c0fuBu2rz2LOUpnIKGz3iH9my5TFlyJaH4ifxpeLetFLjjn9dQtupemBq2yUt37zylJdMP0me9ilLlbHO0v1s6DSxB1epm4fKTRIf+uk6DO22mdn2LUizeB4bxeOJKxK/rTcylXIaZ9FAIExteZgjxT5eUovO7blIAi904/HfYtKqbWSjHJ3Gie16DnU4Uexx8lyaV3UglP8viJMTfG5qX7l95SjsmO5eseNG59S/ltFPU147cjxovP0vwjGWS0bldtyhn9dTaCeq3SyalMh2zaWI8VZ6E1GpNORqacU1Un7KdspE3O6gtY4+/ll1xQlycHl/U7E/KWDoZFWuekSV3oHaSfe/cs1o5lXqTC9O0aluo15H3aEaNrSzdH1GnXe/Q1Hc2O50QfzG4L7+HbLGyLC1tt09r63jlq5eWx4w4YXz92P3XhHjPQ+/RqDwRf29mKpecCn/yNl3jDxd8+b9Xm0YepayVUlK1QXk0ni8uuwjx5wesEeK+BV4K8Z37DtHAMXPop2lfUaKE8Uj8e/fB32m1w79fsJYOHD5J4wd3pEv/3KCmXb6mhZMHUIa0KaNqiMf296fazfvRqP6fU7GCOQzfTZQQ4t8eek75knhRxbd8aBqLaP6Qij7J4q2J56//fk6V3/KmGcdCaXgRH0oe25t6/Mkmmnfs4UV8ydcrnJpuDaEGGX3o7INw6pjbl3ZcDaU1F8NZhvObqkw+tOZCKN14StQi28uvCAohvvDUcxpVzI/SxfOiiSzhxXu7tjl8qPOfz6luBm8tnnMPwqjvvuc0tbQf8Ydg1I1/17+ADxVO5k2BN8No1nF+A8i/c7wucCmWvvtCaUIJH4rPn+CJe7jyOJy+43bbOLZlZ8M0mc+vUfrmUCilYAlfPLmX9s9Cmotr4z9h9CdL874FUNLF8FcFBlSGgApCPEXGePTlb1WoQ9YVmuzptaqSJoq/qvwbZciXmDrMLk2/TDpKOUqloO9a79Jk9ftdc2mC/MdBf1P1TjkoRYZ4FC+pvybIt84/Q60mFmPhlZQW9v2LDm+5Rj2WVdBk9N7VF6NyJ4T4rqXnaWobfiPDbxK++bsmdc6xSvv9N0E1qXextXTlJH/a3i47lf8kkyamey6voAmtLyus104NDN32Lsd2jHYsPue0Jr74sbwm2Ob3+YvyV32Leq2syLHvpO0Lz9LYg7U08S3iFAJPjNEu03IWbFkpXc5ENKn5Dm0scd/ngm5HSXplFh0CVZaASkJcQJ5yri4NKLOObl16TMN3V+f3NXxyouw67eud319rQD8N/lsT0VN53xCy+sW+8RPvG+/xvpGc9434kfvGNn49tuB9I1PkvnGE943ukfvGPod9Qwjx3bxvTIvcN8a8sm/0cdg3yvK+IcR09c45qcGg/NQp60q6z2+mGn1diOImikVCmDte1dpnp9IfvU1fVfyNEqWKTUN3vkd/r/+Hpn+2i76J3DdEnGLfGMz7RofIfSMN7xtTIveNdrxvnOd944WkV3YxIvAYJ6CSEL/+jP+mOXOPxudMwrI7lMaef0Cx+O+afpkT0vknITTt4kOqmiw2neCTN23Sxafdd5/SrzefUj6WY/VSxqFfbzymmyzJ994Lpi+5TzIugTLgJH8NnzcR8e/iHE1blupjsvOH3yy1X1xCiBdj8d4qbTy6xvtM7xN3tDZintXXn9BXWRKSP/8xNInFdnIeU4jpsefu030W2QN4XHE8Z9Cpu1pspRM7P/hq/Ll7lJL7NGSRHvQgWOsn5inFUq73ibtUk+V7WZZoF1giDjp9l8bnSEJTeJ4S/HshzcXVmQV5lwzxKSMLdVwgoJeA0UJ8xKwqtHPDBVq98DgN+LYC5WKBPa7/Ttqz9TJN/LEGrfjhCPUfV4EaVfiJrvIHUz/uaKB9sNSowlIK4Q+Kdl5uRZOH7aGc+ZNT/882UrV6WahZ54K04/cLNGnIn/Rph/yUhj8cG9FjW9QtCyHe+asS1KDMj3SaXxdCdD/n1+HAdptozf7GNH3UPi2ebHn4b4XNH9I72eZSKn69rdjbkNrUWk3b1p+nstUyUN8x5ei9vD84oczC+87CLfWpRr4f6C5/ODZl2fuUnl/f1XLNo+r1s1KbXkWoUfml9Jj3hbEL3qVLLOM3rDpN4xa8p0lzcX3QJCdVqZ2Z2tX7WW+apO9nhhB3PCEuxLQQyFu/PUEVe/yLEA96lyaywBUnvgt+nF47OS0+sLh56iGt7RNExVtlojy10mglWH7pGxTFsxWfBl/Tw1mIC6GcsUxyOr/7FiXPGo9+H3pEOzEtypX82v+g1rfvyRo0POvaqHHKdc6mlVv5Y/Sx13LlWDJFjCGE/mKW41UG5Ka4/LewOJAlJLsQ0I6y+v8J8aSZ4mkn5n8felg7TV6qbZaoe9s+6aQm1+fU3U4Ve+bUhPjJTdeo6Y+ltbhWfbGfmvAHDaPzRpxuF6fB83yQltb2/ptqjy1IsRP50bWj97X7Fx9AvLhsI8T3WyTEC74U4oLp9PlraMWvEXtY/HhxqGe7hlQkf3YKDg7RZPm2P4O00ijtmtWh2tUicidOiK+aM4xSJU9Cm3bsp68nLqCVs4Zq7Yy8lBDiQv6euh9On7GM/oJl97tpvOkun5Cun8mXmrPsnlTKl2YeD2MJ7UV5E3vRCBbMaeKyQOcT4fH4PdOEw6HUI58vDT3wnCaW9KPvWVJn5pPXm/8JpUGF/WhU0HOtbVE+5f3iEkJ8/81Q+rJQxJuuv2+F0cwTodQnvy/12POcfijvq/3HTFx99oZQHRbkKVjGDwgMofkVIorCh7JQ+nBTCM3hk+sJ/V+e4l53icfm8cRY4trNYnvuyVBNiI9n+Z8xvhfVzhAh5w9wu3n8u7El/PhEeAj38eHfe9NwvpdSKb341Dvq/Bn5gsBYahFQQYgLot+drUu9iv1COcuk0ARWkVppqVfRtfROm2yU8u14tG7KcerzcyXqmmc1tRhflE4H3qJyLJvEKfFuS8rRlnmnNVGduUgy+r7DnzRybw36bepxPqEdm09zHqQZlz+kzjlX0eP7/GFg5CWE+JB3N9CpPTe1nwzZWo3WfnuU4iSMRUVrpaORdf7Qfi5Obc5/2IiaJVlCHeeW1gS7aCeuj77Krwm17zvucVoYL06wixPk4vrmQE1aOfoQndh1g0bte5+aJlkc1V4I8ZWjDtGFQ3fpa5Z6rVP/pIk9MUaPQj9rsg8XCMQEAdWEuJC/+3+5pH2DpPvyivwtjnu0hT/4esRfjW0/pzSNbbBV2ze68b7RjPeNM5H7hjgl3vWVfWMm7xsjHPaNFbxvTON9owvvG08c9g0hxIc57BuDX9k3RjnsGz/wvtGc942KLbJQrvIpaUzdzVoac1dMRS0mFNNqkTteXRaVo+O7rtOvEyL+eBIxi2+XrBxxkEbwvtHcYd8QQnwV7xsXed8QHwaIfUO85RKn4Hth34iJl4vt5lBJiAv4Qv4O5nreQkafY0kcyHJ7KP/7pttPSZy2rsLSeQyLqFEsrMXJ6Yz8WtrGv+ubORF9y7K5LJ8u3MN9CrAkz81/DI3jn6XmE5zlEvtTHB9vmnbpAY/n/IAqIcR7vp2AsvLpbHEJuf0uzxN4/xm9HdtXOy0uroMstBddeUTDsyXWxHYuHl+0E9dPVx/RQxZzzdNGnNZ7cbU9cks7wZ4hdsTYQra/zxI8K8fd/9Q9ms4nVl/8XfUVzysEuRDt+3mubm8npLN86n0CC/JxLMpxgYA7BIwW4kL+5i2SUjspvXT3x7R4WhAl5Q+mpo3YR1vPt6TqLJz7jStPW345S7v/uEQTf6pBZ3n9r5h3lB7wty6EUO/c8FeatrImvV9gAfUbW44OBXJ5icY5tFPi4xe+RyvnH6XNv5yLum0hxMtUSa/JbXGVrJSO+nxTjtqzgF7GMRRLMS2qrRDiM8YE0hV+/cz9vS4VTzld+50PS8mDjzpQ6bTf052bL7/R9TGfDC/9Tnrq2CBCflapk5m6Dy+tCfGRs6vS0QPXac63B7Tflaqcjr7g39Urvpg2nmxG7er+TMcP3tQk+q9LT9KaRa+fHnYndzL1NVuIpyuShN4bkpdm1t5G3QKr0oLG/G3eoLsaguxc/7siS+apVTa/VjLlTYxECRJxantJyz1aORRxSrrVmrJa7e8Eb8WOehhm5vIpqFiLjNppcVH2pM2v5Z1OiIuSKc2WlaEpFTfRwxt8KpSv90fmpwNLLlCyrPGjxnkhxPfNO0f5P0zLtbr3kbi3Ot8WoomlN5A46f5CVnfa+Q6fGt9Mzx68rCEu6qeLU+9LWu3917roQo5nr5qKT8mHUOq8CbVyKKIeuPhg4MXVcG5xEuL84t7bVLlPTq1WuCjhIkq3CMFe5NO3tXhF2ZgXl12EeGigNULcp7CzEH/TurTy90oI8WtPwmhkEMvrgr407O9Q6pLbh2aw1G6e1ZsmcIkScYp7I8ttUSYldyIvOsalS9LE8ab7XO6En0dA157yKfGsvvT5jhAazSevB+1/ToML+1IvFtvfsiAXovlbLpcS1++ltBZCXJwo78RziUsIeXGSuyeL9XEsrcWJ8BeXKMkiSqZkSRhx2vvFKW7x+4Z/hNCYYr6aoH9xLeVyKVefhEc9sPP4XVEGJkKID+bYyqbi0+cs6LV5+V7EmDPLxaJZLORFiZVaLN9bc8mXaWV8+euKKJdi5QsIc1tLQBUh3n5WKdqzkr/2WCGldvK79McZad3kY9qJTiG796/7hyaf+oB6FlnLp8nfoYFc4uDrXdXpi/xraArLdCHK4yWJxSe4K2ony/uurUzffrJNOyk+54t91JHlWJ+SzqVHhBAXwvm6qPnEV+/VlbQT5EJwv5U1AU1p9fKrdz/ca6i1bTK6MO1ZdVE7bS6uml/kokwFk/BcEeVeXlyLnjam9plXRD2wU8PTXl0AACAASURBVMSzbeEZunrqgVZKpX2WFVFte3NpBzGvKAczOvB9mtl5D/lyramPBxeg/nzaFRcIxBQB1YR4+aaZtW+RiNIiWUskpysn7nEpogBNYCfnD9IW8jc0JvK+0Zv3jf68b4jSKMN43+jO+8Zk3je+iNw3hEwfzPtGH36dTuB9Q5wUn8f7hpDq/V7ZN4QQ78l7wY3IfaMX7xviBLn4hkpq3jemOuwbc3nfEG0Lv59WK7MkSp+IK1PhpFpJl8/TRnwd/MXVb907tPWH07RtQUTtx9o9c/O3VxJwyZeT1In3jY4O+4boL+YV5WBG8r4xm/cNH943PuJ9Q5ySxwUCrhJQTYhPZXlVlD/APsylU/LF96Nd/EFYlaQBfBL8CZVlqV2ASyx0OXabhnIJlBFctqRfpoQ0kEXyCJbUQqaP5P/dy6UKLnCZlJwsuE+yWE8d4KuVJYnNp7yFVBentR0vIcSHsXRPEflQTSHcC3MMe+49005yl4089S1KsggRPonLsYj/Lcynyl+c4l574wmd5VPsHdJHlHt5cTUJuskyO3HUAztH8gn40nwfqVjSixPn4kT4i0uUcynEY4pyLt24XMxkPrG66vpjLt3CH9SjXIqrSx/tXyFgtBBPw99aEJK7WdUVNG11LerRdD0NGF+BRvTcRiNmVqGP+BT3B5/mpOxc2mTvtstUoHgqFuJ3KTH/91yUE0nLH0J9028n/X6sKdUrsZhm/VqHmlRZTku2N6DahRZqolmI8kf84VDU64mFeM4CyalPy9+1H+UulEKT0J0++oXGzKtGVXLMjWorSrJsXHNGk+yTl74fdYpbNAi8/bkms8+djBCt4hInwNNlTBj1wM58RVPS6LnVNCE+Y01t+nnxcS7vEvHBtijnMpnnrZBpNvUeXZbucYmVOeP30x9nWlClLLPpMe9fdr3MEOJNl5ami/tua8hiscT6uXcQXeYT3kIKC9ksHpopDhU9vhXMZU/2cw3sZy4LcXG4QJykFhJZ1AoXD+r8c+YZ2r/ogtPDMEW7Jj+Vpqf83x4hkPPVSxdVduRFTkVZlAp8ej30WcTDOUVNcFGr+99OiIsT2U15vCsH7/L/3aOSbTLzg0H/ppqj80cJ8boTC1ESPg0+p94Oes7fptbWI4t4Uedc1CMXV9CyixQ4/98fACrqqf9byZQkb8eluvxQTXG/wVxHWXwYIOqNf7KwJD1l+S4eCipqqj91OCBiGyG+1yIhXhRC3GnvOzg+kILGvSxSL36Zt0thyl7kBD3b+rIelvi5f9mG5OUTTsHbFziN0ZZldsNMXO+bxXSL7L7UYWeIdor66uMw+pRl93UWzN8cfE45WIjn4v9LE8eL5p3iN33ss0Xt8IJcwkSUPRFlUladD6Mxxf1oDJ8ML5nCi0umhNEIluqOl/hZ0K1Q6lcw4uf7ufzJXB5PnND+gsuiOJ4Q770nhOpySZbkXNqkL58WX1jRTzvlEMwvro/+eE5zuc53glgvxfVaLtFy+G64JtfFJUqfzIk8IS5Os/PfuSy9I0S8mHf+6VD6huM9cieMZp8Mo3pv89dTrrw8YW7X/9DgvkDgTQRUEeLlm2SitDkSUt7KqWlw1d81IR6LN6fqHXJo0vspP/W63cxSmiyvxRJanCbvsrCsVmv8/S45qR+XTRDXxBN1aPGXBygLnxSf232fVo98Ddf3FafMF/bf74RLCPFB7/xGZ/6KeGM1bPu7XEf8CJ8Q96OitflNzQebtZ+/OCEu6pF34rrkR3dcpzXcTlyNhvFXyfgP8ZmdnE+Iz7reQCurculIxMNdRv/1vlaj/PiOG9o/O54QF/Mu5xIqoo543b55KS7/cS3mvHrmAf0SeVL0TXnG70HACAKqCXGtVv9iPlXNr8kjLMWvnLhPjUcUoif85l2I5aDfr1DbyH1DfHjVh/eNzpH7Rg3eN0S5FXFN4H1jCe8b4hsm83jfGMv7hig5IqT64lf2DSHEB/O+cTZy3xjCr1+xH7zYN0Y77BvihLioR16pZVZtbxtZa5M2nyij9OmYwtQ938tak+Ln3bjU0uHNV2k9fyNGXE3HFuHnG/hp33IZxfuG4wlxMa+oHS72jQ8i9w1RP/Ia7xsvTpgbsSYwhucQUE2Ib+XT3v9w6RQhxMXJ6l18kpTP+dB6ri8+gqV1gDjlffEB5eXX0C8sycVp74nn72sS/VeW0oP434X0nsjlVrKxTBBSXMjnxVcfE/+5okn1fCzVHS8hxPvwXJkiS5IM5DIr76eIwyfEgykDy/T3+NS2uIL4xPgSHmdY5Anx7Dy2qDcuriV8cvwJm+tmXEfc8frs0E3qz6fX0/FJc3H14ROyok827tuPZZzjCXExby2etzAL8eFcPuU9Ppm+hE+et00XL+qEueesXNyp0QSMFuIivvVHmtCEr3ZTHj4pPpJF+Nq/P+FT1Ps12T3uy130Vvr4WnmRv3Ze0aS4ENDdh5WmRw+DadV8Lk3IJVdE2ZPtv52nFt0K0Ycll9A389+l31acomadClLD8vztSodLnBAvWTEtteUT2eISJ7p7jiyjlShZsaeh0wnxRVz+ZBqXULnK+8WCPz6kwkmnan1Eze+/77ejkm/NoLu3uHZs5NW4bT4qWjYNdWkUcdCmcq1M1HNEGU2If82C/9jfN2juhIgT4mLerkNL0Ycs8guWTE19+ZS6KNdSq1GOqBPmRudPlvGMFuKy3NeLOMQhhMxcXuTE71e5njmX0vq5HE0otUG2ME2LxzZCfE920xj918A+xdT5dogSJ8QF7ElHntNFfphlHRbFJVNGnMTmbwJSo8zeXF884jR1e5bk/PcSfVXIl9jhUMddEV+3ECe0xQM4hURedzGUH1TJJ6y5/IqoHb7jWrhWn7xRZh86eJsfcsmnxEXJEiHEF7OIHst1vlNyKRQxP3/wpT3gsuufofQBn9Iuz6JdnOAetD+UpnDZlpv8wVV3LunSLY8PlU7lQ3/wqfXl/DDMiaX86BE/ZGoXz/UOl3s5wX1E+ZZJfDpdCHtx+v1yZA3xndfC+AGaoh66r/bgmNEs+dPxNxQbZfHlh1dEPEhTxFeGy6WUQ7kUS17gmFQeAqoI8WTp4nKd7/JcM42fcVD4Z+3Up3jwZJiou1k+4iF55T/NRNXaZqdTe2/SrM57tdrhpT/KqD0gb/HAiDee7b4vRWlzJaRVYw5rslzUDhe1eBcP2E8HN12lMg25PZdXuMdPzRZCXJz0nt11L6XkT9tFDfEOXONX1G0bq9UQ/0V7QGcNrv9b/IP0muAWNcTFeOLhneIasac61ykO0mqRi9Ptj+4E07m/71BfLtNwau8trcZ53sqptNPnola5OPmplU/hUgfbuJ64eCDoAFE/nU9+ijIPqfkrdN0Wl9fk2oBy6+j2P84P3ZNnZSESOxKIjhAvUy493eN6vAeDrruM4NDRtjSm0ia6ed75YT8TztSmLY1W0yOuHfr+tkY0pMKG19qMPl2HT3ivpxuv9B13pDY949Msw7gMygM+HSNktrjEqXDxQN1yvG9U5X3jNO8bs3nfELXDxb4hnjfwY+S+8XnkvrEmct8QtcNf7BuHeN8ozfvGoch9QwhxUZZlTuS+MZr3DVEbXOwbY3jfENJdPD9A1A0vxvvGV7xvaDXEubxSjwJrtPg/n1FSezDmLC61JPaNh7xvnOd9o1aP3JosH8ofCiZKHZuGbH9P299EvfLRvG+IEiniOQTigaBi3xAnxl/sG10i940ved+4g33D5bWJDkTREeJ6X/+x+ET1xetdqU2cl+XCBHNf/sNh2t0GtDjbTPLmf/74SDO62L6Nczp8fSn9hMl0vVcTp5/fZJk9ngW3OBUtSpOI2uGzLj8ifilyHfCIB2Nu49OYv3Pt8MxcdqQpC2hRO3w3/3GUhyV5/VQRD57szqfIxd8TvfkEeXzu3JNPpoprCNcDD+P/FWVVKkTW6BZCvCyfBG/CY13jh/H14bbfiBrivAeJE9pf8ml0cb5nAkv2NPw1ezGHOCF+l+uV98sUcSL8Sy5/8gGXcyuRKIBlfjDF4/c9GViCj+IT4ZlZfosa54f4pOuYyBripXm+PiwHRYkUUXdcnD4fwSfTx0bWN9/IHwD8ze0v857yDcql4KVsAAEzhPiw6ZUpM3+TYdbYv1hin9Zqhyfjh8N+O3CXViZFXL8EfUJPuPyRKIMiBLSQ5uISp8LFAzhrc4mUhp/npUP7rtPQrlu02uHVG2SjXfxgzQmDdlOx8mno/p1ndIy/bSGEeMcvi1OdIgvpMr8eh0ytTM/42yBDu2yhVYGNaMboQO0ktzjBPfPXD6gqnxgXUv6nXR9R9ybraf2yUyyts1PrnkWoJp8+j8ffyKj6QRZaPveIVv5l2qqaVD3ffHrEH4aJ0+8ZeQ8SQrwqP0zz895FqDHXP3/Gr8lxXM7lFJdDmjj4T+1eNp1qrgnztUtO0Nof1TkhqmdZ2V2ICyYfzy6unVT3Y2G1bcIJOrHhmh5USvaxjRDfbfxDKKOTUJ8Sr9eWj04/K9ooI8SFXJ5whOt4l/GhJPzVjhUsjRed4dPTXMs7lnh3yJc4AX7sXjhNZgEtrqFcfuQpv9sbyuVRxHWDS6+02RFKXXN7azL5JIvpnntDaXAhH8rLUl2cGM/Asrk+n/YW41/kv2kf8nEM8RDMZCzFv2DRnZhrgQsx/x0/3FN8q0JI8iZZffjkubdWYmU0jyHKp+y9wRNzWO1z+lAufvjnJR6jM4v0ZZUjYpvD5U+2s/xOxsc0yqeKEPBTuGSKkN5L+KGa26+GEb8Hppx82r0VS/iAyHsU9c9/vxxKc8qxTEe5FCteM5hTIgKqCHFtf+JTmgc3XqXp/KA58TW0uXc+1h4oKaSyuJKmjUNTz9ej8Y23aQ+xzFwkKY34s7pWIuXw5og3IKKuuKjz3TrNUrp79QnV6p6LS48UpKaJF1EIf11txj/16Zv6W+gYnyid/6AhLeiznypxfd94iWNpknr9dxFvTovVScf1wQtof6zf5I1u2ue76To/rVgI8X/4FGrOsim1eA6IB97x78L4L3JxYv3i4bu0bNhBSpc7EXWeX4b8+A9iIdRE2x1LzmkSPG3OhJrsT8B12YSwm9/7L03OvbjG7H9fK/nw4oMAiZYTQrE5gegI8ZnzatHRIzdpzIiXJYWii8UMIS7kcvbSKahrrogH4vZeU4n8+bSnKI/yYt+YwvvGBId9YzjvG6JEyot9Qzz8sgPvG59F7hs1ed/4iPeN5pH7xvTIfUOcRJ/H+8bCyH0jLu8bQlL/FrlvFOV9o0HkvnGL9w2xN4h9QwjxbCWTUyzeD9Lzh303uX7duI+2ah/MiRPrYt9YzvuG+LaJ+Hfxod5lfujRuQO3uQSMPz9Uczel4X2jtcO+sYD3DSHLX1yjIveNgZEfIEY3J2gHAi8IREeI6339myHERdxdWWbnZoncih+cGcZ/Hwhh/R7X6v4wUnYLad752B1qxyenhUw+zTJZCOm+LKdzx4t4ntF0PhUq6pCPiZTJo7kcCb9d4NPa/DpkgSYeaPkDl3IQVwuu/StKkmzm0+mP+Vuuosa3qFUu/jZZzg/V3M2n1MU/ixPhn7I0D2DRLoR4Kn4vcZyl+W2ORzzYsyU/vM+b3+iIE+vp+GR5HZbgF1joT7nwkE+5h2ux3eaHhZZkGS7ivsRxzOIPDB/wnKJ6ZUOOIS+PIy7xUNEOR8WJ8dhRkh+rGgTcIWCGEBdyWdTXLpdhJt3gb0+IU97ioZdFk0+jYP6mh7iGTqtMhfgUtRDN4prKNcPj8GtJlEcRl3jo5R+nm1P3T9drMjlP4RT0086PqGnV5bRny2XtxPhJ3gOmfr1XGz9r7qSUkF9DWbj+vnhYZ7dP1tHNa481Mf/VpIqUhF+7T/m19U3fHbSTpXoOfp2PX1SdNnH5lIo1Mmqv5X78EM/9u65QRv4ASjyMM0+cSVos4kT4e/wAzav8fILVXB6lKZ9Sfzf3PO13HQYUp/c+zKr9LRPIJ96Hd9tCT/j1Ly5R//zDFrmpdJrvtYdu2vnyBCFu5/y96d5sI8R3WiTES0GIO60xI0qmvGnRyvB7IcTFAzpFLfA3XUIweYs6UHwd4lIoc7kUymg+yY4LBEAg+gRUEuLRvyvrWgohvmvZ+agav/8ViXgjzO+ltWvQpqraqfW/frlsXfCYGQTeQCA6QtwdiGYIcXfiiam+QoiLD8nESe83XY77Rv2B+bWHas7v5VxS701j4PcgoIdAdIS4nnFFH7OEuN54YrKfEOLFuExLmcj64v81t5D6QpSLa+jpe1rJlIJ8MhUXCMQkATOEeEzGr3cuIcS/XVxdO+n9psvxv9XFyqWhHizI65da8qZuHvV7CHF7p9s2QnxHTksS5VP6qCXz6plUmRPiem4upvtEV4jfexauPeBzJAvwdPywzclHQ7UT4OIkOC4QAIHoE4AQjz6r6LSMrhAXD98UJRcmfLqdH4oXn0buqUGd+QSrOLWOCwRkJQAhbk5moivEC9dMS5+OLkI9C67RHgwl6oQv5ZJMe1ZcMCcwjAoCDgQgxM1ZDtEV4vP/eUj3uHykOM1+LZjLxfEDQEdxLfTEkQ/wNCc6jAoCrxOAEP9vIZ6YT5ZvON5UexjoKX5AryjH8pS/fTKs21YsJwcCEOL2Xg62EeLbclmSKJ+yEc8jU+GCEDcwS9EV4mLK9Zci6ouLA5Zvx/OiDrl8nB68aWBYGAoEbEsAQtzY1EZXiCdKGUCdfihLb2VPQCFcQ/CnIUG0df4ZY4PBaCBgMAEIcYOBRg4XXSEuJHjLScWoUI20FMalEfbwcxDEQz5xgUBMEIAQN4dydIX4XS59MuXiQ7rCJRz8eC/4gB+aWTaydrk5kWFUEPh3AhDibz4h3qBVHmrTo7D24fWxv29yaZUNTg/exNoighC39yqwjRDfmtuSRPmUO2zJvHomhRDXQw19QAAEpCAAIS5FGhAECChBAEJciTQhSBAwhQCEuClYMSgIKEfAU4W4comSPGAIcckT5GZ4thHimy0S4hUgxJ2WoKfUEHfzdYfuIAACLhKAEHcRGJqDgAcTgBD34OTj1j2eAIS4xy8BAAABjQCEOBaCEQQgxI2gKO8YthHim/JYAtmn0iFL5tUzKU6I66GGPiAAAlIQgBCXIg0IAgSUIAAhrkSaECQImEIAQtwUrBgUBJQjACGuXMqkDBhCXMq0GBaUbYT4xryGMXFlIJ/KB11pbmlbCHFL8WNyEAABdwhAiLtDD31BwLMIQIh7Vr5xtyDgSABCHOsBBEBAEIAQxzowggCEuBEU5R3DNkL893yWQPapEmTJvHomhRDXQw19QAAEpCAAIS5FGhAECChBAEJciTQhSBAwhQCEuClYMSgIKEcAQly5lEkZMIS4lGkxLCjbCPHfLBLiVSHEnRYjaogb9trEQCAAAg4EIMSxHEAABKJLAEI8uqTQDgTsRwBC3H45xR2BgB4CEOJ6qKHPqwQgxO29JmwjxNfltyRRPu/+bcm8eibFCXE91NAHBEBACgIQ4lKkAUGAgBIEIMSVSBOCBAFTCECIm4IVg4KAcgQgxJVLmZQBQ4hLmRbDgrKNEP+lgGFMXBnIp/oBV5pb2hZC3FL8mBwEQMAdAhDi7tBDXxDwLAIQ4p6Vb9wtCDgSgBDHegABEBAEIMSxDowgACFuBEV5x7CLEH++tqAlkH1r7LdkXj2TQojroYY+IAACUhCAEJciDQgCBJQgACGuRJoQJAiYQgBC3BSsGBQElCMAIa5cyqQMGEJcyrQYFpRthPgai4R4TQhxp8WIGuKGvTYxEAiAgAMBCHEsBxAAgegSgBCPLim0AwH7EYAQt19OcUcgoIcAhLgeaujzKgEIcXuvCdsI8dWFLEmUb62/LJlXz6Q4Ia6HGvqAAAhIQQBCXIo0IAgQUIIAhLgSaUKQIGAKAQhxU7BiUBBQjgCEuHIpkzJgCHEp02JYULYR4isLG8bElYF86wS60tzSthDiluLH5CAAAu4QgBB3hx76goBnEYAQ96x8425BwJEAhDjWAwiAgCAAIY51YAQBCHEjKMo7hm2E+PIilkD2rbvPknn1TAohroca+oAACEhBAEJcijQgCBBQggCEuBJpQpAgYAoBCHFTsGJQEFCOAIS4cimTMmAIcSnTYlhQthHiyywS4vUgxJ0WI2qIG/baxEAgAAIOBCDEsRxAAASiSwBCPLqk0A4E7EcAQtx+OcUdgYAeAhDieqihz6sEIMTtvSZsI8R/KmpJonzr77VkXj2T4oS4HmroAwIgIAUBCHEp0oAgQEAJAhDiSqQJQYKAKQQgxE3BikFBQDkCEOLKpUzKgCHEpUyLYUHZRoj/WMwwJq4M5NtgjyvNLW0LIW4pfkwOAiDgDgEIcXfooS8IeBYBCHHPyjfuFgQcCUCIYz2AAAgIAhDiWAdGEIAQN4KivGPYRogvLm4JZN+P/7RkXj2TQojroYY+IAACUhCAEJciDQgCBJQgACGuRJoQJAiYQgBC3BSsGBQElCMAIa5cyqQMGEJcyrQYFpRthPhCi4R4Iwhxp8WIGuKGvTYxEAiAgAMBCHEsBxAAgegSgBCPLim0AwH7EYAQt19OcUcgoIcAhLgeaujzKgEIcXuvCdsI8QUlLEmUb+PdlsyrZ1KcENdDDX1AAASkIAAhLkUaEAQIKEEAQlyJNCFIEDCFAIS4KVgxKAgoRwBCXLmUSRkwhLiUaTEsKNsI8R9KGsbElYF8P93lSnNL20KIW4ofk4MACLhDAELcHXroCwKeRQBC3LPyjbsFAUcCEOJYDyAAAoIAhDjWgREEIMSNoCjvGLYR4vNKWQLZt8lOS+bVMymEuB5q6AMCICAFAQhxKdKAIEBACQIQ4kqkCUGCgCkEIMRNwYpBQUA5AhDiyqVMyoAhxKVMi2FB2UaIz7FIiDeDEHdajKghbthrEwOBAAg4EIAQx3IAARCILgEI8eiSQjsQsB8BCHH75RR3BAJ6CECI66GGPq8SgBC395qwixAPmVXakkT5tdhhybx6JsUJcT3U0AcEQEAKAhDiUqQBQYCAEgQgxJVIE4IEAVMIQIibghWDgoByBCDElUuZlAFDiEuZFsOCso0Qn1nGMCauDOTXcrsrzS1tCyFuKX5MDgIg4A4BCHF36KEvCHgWAQhxz8o37hYEHAlAiGM9gAAICAIQ4lgHRhCAEDeCorxj2EWIB39f1hLIsVpts2RePZNCiOuhhj4gAAJSEIAQlyINCAIElCAAIa5EmhAkCJhCAELcFKwYFASUIwAhrlzKpAwYQlzKtBgWlG2E+PRyhjFxZaBYbba60tzSthDiluLH5CAAAu4QgBB3hx76goBnEYAQ96x8425BwJEAhDjWAwiAgCAAIY51YAQBCHEjKMo7hl2E+LNp5S2B7P/ZFkvm1TMphLgeaugDAiAgBQEIcSnSgCBAQAkCEOJKpAlBgoApBCDETcGKQUFAOQIQ4sqlTMqAIcSlTIthQdlGiH9XwTAmrgzk33azK80tbQshbil+TA4CIOAOAQhxd+ihLwh4FgEIcc/KN+4WBBwJQIhjPYAACAgCEOJYB0YQgBA3gqK8Y9hFiD+dUtESyAHt/rBkXj2TQojroYY+IAACUhCAEJciDQgCBJQgACGuRJoQJAiYQgBC3BSsGBQElCMAIa5cyqQMGEJcyrQYFpRdhPiTyZUMY+LKQLHbb3KluaVtIcQtxY/JQQAE3CEAIe4OPfQFAc8iACHuWfnG3YKAIwEIcawHEAABQQBCHOvACAIQ4kZQlHcM2wjxiZUtgRy740ZL5tUzKYS4HmroAwIgIAUBCHEp0oAgQEAJAhDiSqQJQYKAKQQgxE3BikFBQDkCEOLKpUzKgCHEpUyLYUHZRYg/nvCOYUxcGShOpw2uNLe0LYS4pfgxOQiAgDsEIMTdoYe+IOBZBCDEPSvfuFsQcCQAIY71AAIgIAhAiGMdGEEAQtwIivKOYRshPt4iId4FQtxpdR8cH0hB4wKdfpa3S2HKXuQEPdu60Onn/mUbkpdPOAVvXyDvKwSRgQAISEEAQlyKNCAIEFCCAIS4EmlCkCBgCgEIcVOwYlAQUI4AhLhyKZMyYAhxKdNiWFB2EeKPxlUxjIkrA8Xt+rsrzS1tixPiluLH5CAAAu4QgBB3hx76goBnEYAQ96x8425BwJEAhDjWAwiAgCAAIY51YAQBCHEjKMo7hm2E+NiqlkCO2+03S+bVMymEuB5q6AMCICAFAQhxKdKAIEBACQIQ4kqkCUGCgCkEIMRNwYpBQUA5AhDiyqVMyoAhxKVMi2FB2UWIPxxTzTAmrgwUr/t6V5pb2hZC3FL8mBwEQMAdAhDi7tBDXxDwLAIQ4p6Vb9wtCDgSgBDHegABEBAEIMSxDowgACFuBEV5x7CNEB/9riWQ4/VYZ8m8eiaFENdDDX1AAASkIAAhLkUaEAQIKEEAQlyJNCFIEDCFAIS4KVgxKAgoRwBCXLmUSRkwhLiUaTEsKLsI8Qcj3zOMiSsDxe/1qyvNLW0LIW4pfkwOAiDgDgEIcXfooS8IeBYBCHHPyjfuFgQcCUCIYz2AAAgIAhDiWAdGEIAQN4KivGPYRoiPqG4J5Pi9f7FkXj2TQojroYY+IAACUhCAEJciDQgCBJQgACGuRJoQJAiYQgBC3BSsGBQElCMAIa5cyqQMGEJcyrQYFpRdhPj94TUMY+LKQAn6rnWluaVtIcQtxY/JQQAE3CEAIe4OPfQFAc8iACHuWfnG3YKAIwEIcawHEAABQQBCHOvACAIQ4kZQlHcM2wjxYe9bAjlBv58tmVfPpBDieqihDwiAgBQEIMSlSAOCAAElCECIK5EmBAkCphCAEDcFKwYFAeUIQIgrlzIpA4YQlzIthgVlFyF+b2hNw5i4MlDC/mucml+5dov6fD2DDh07Q+neSkFf921DObKkp2fBITRwzGzaAqiGqwAAIABJREFUsecgxQ7wp1aNalCDWhW1vsVrtKVVc4ZRquRJXJna5bYQ4i4jQwcQAAFZCECIy5IJxAEC8hOAEJc/R4gQBMwiACFuFlmMCwJqEYAQVytfskYLIS5rZoyJyzZCfHAtY4C4OErCL1c79fi043CqVLogffJhVfr5952098AxGt6nNU2evYJOnbusCfJbd+5T4/ZDafro7pQtU1oI8eDtC1zEjuYgAAKeRgBC3NMyjvsFAf0EIMT1s0NPEFCdAIS46hlE/CBgDAEIcWM4evooEOL2XgF2EeJ3B9W2JFGJBq6KmvfSlRvUpNNw2rBkLHl7eznFU6tpXxrSqyXlz5VZ+/moyYsobpwAat/8AychPn7GUjpx5iJNGtbltTHcvUGcEHeXIPqDAAhYRgBC3DL0mBgElCMAIa5cyhAwCBhGAELcMJQYCASUJgAhrnT6pAkeQlyaVJgSiG2E+MA6pvB506CJBq2MarJx2180f/lvWqmUnfsOU3r+3/5dm1Cm9Kkpf+WWtHXFBEqYIK7WfsmqTbQv6DiNHtA2SojvP3iSvl+4ln6Y2JfixA5409Qu/x5C3GVk6AACICALAQhxWTKBOEBAfgIQ4vLnCBGCgFkEIMTNIotxQUAtAhDiauVL1mghxGXNjDFx2UWI3/nyA2OAuDhK4sEronqs+HUbDRk3j6aM6ErFC+akuT+tp5W/bqefZgyiAu+0pMD10ynAP5bWftX6HbRh6z6aOKyzJsRFKZXRUxbRnPF9KGXyxC5GEb3mEOLR44RWIAACEhKAEJcwKQgJBCQlACEuaWIQFgjEAAEI8RiAjClAQAECEOIKJEmBECHEFUiSGyHaRogPsEiID3kpxDdsC6Tv5q6iZd8P1jISGhpGhau1ps3LvqXydTvT5uXjKXHC+NrvFq3cSAcOnaKR/T/ThLgQ5aKEyvKZQ6KkuRtp/deuEOJGE8V4IAACMUYAQjzGUGMiEFCeAIS48inEDYCAbgIQ4rrRoSMI2IoAhLit0mnZzUCIW4Y+Ria2ixC/3a9ujPB6dZIkw5ZH/ejYqQvUod+3XEP8myghXqhqa9q+aiKJh2326dRYOzkuri9Hz6K0qZNTm09qakJ84tDOtGztFi6pEo/6cjszLghxM6hiTBAAgRghACEeI5gxCQjYggCEuC3SiJsAAV0EIMR1YUMnELAdAQhx26XUkhuCELcEe4xNahsh3rdejDFznCjJ8GVO837Qoj81qV+N6rxbhuYv+53W/L6Tfpz2FU2dt5oOHD5J4wd3pEv/3KCmXb6mhZMHUIa0KaNqiMf296fazfvRqP6fU7GCOQy/Hwhxw5FiQBAAgZgiACEeU6QxDwioTwBCXP0c4g5AQC8BCHG95NAPBOxFAELcXvm06m4gxK0iHzPz2kWI3+r9YcwAe2WWpCOWOv3kwuXr1O2ryXTpyg3K8nYaGtKzBWXkh2oGB4fQwDFzaNufQVpplHbN6lDtaqW1vuKE+Ko5wyhV8iS0acd++nriAlo5a6jWzsgLQtxImhgLBEAgRglAiMcobkwGAkoTgBBXOn0IHgTcIgAh7hY+dAYB2xCAELdNKi29EQhxS/GbPrldhPjNXvVNZ/VvEyQb+ZMl8+qZFEJcDzX0AQEQkIIAhLgUaUAQIKAEAQhxJdKEIEHAFAIQ4qZgxaAgoBwBCHHlUiZlwBDiUqbFsKDsIsRv9GxgGBNXBko+6kdXmlvaFkLcUvyYHARAwB0CEOLu0ENfEPAsAhDinpVv3C0IOBKAEMd6AAEQEAQgxLEOjCAAIW4ERXnHsI0Q7/GRJZCTj15iybx6JoUQ10MNfUAABKQgACEuRRoQBAgoQQBCXIk0IUgQMIUAhLgpWDEoCChHAEJcuZRJGTCEuJRpMSwouwjx6198bBgTVwZK8c1iV5pb2hZC3FL8mBwEQMAdAhDi7tBDXxDwLAIQ4p6Vb9wtCDgSgBDHegABEBAEIMSxDowgACFuBEV5x7CLEL/WraElkFOOXWTJvHomhRDXQw19QAAEpCAAIS5FGhAECChBAEJciTQhSBAwhQCEuClYMSgIKEcAQly5lEkZMIS4lGkxLCi7CPGrXRsZxsSVgVKNW+hKc0vbQohbih+TgwAIuEMAQtwdeugLAp5FAELcs/KNuwUBRwIQ4lgPIAACggCEONaBEQQgxI2gKO8YdhHiV7pYI8RTj4cQd1rdB8cHUtC4QKef5e1SmLIXOUHPtjrD8i/bkLx8wil4+wJ5XyGIDARAQAoCEOJSpAFBgIASBCDElUgTggQBUwhAiJuCFYOCgHIEIMSVS5mUAUOIS5kWw4KyjRDv1NgwJq4MlHqCOi4XJ8RdySzaggAISEUAQlyqdCAYEJCaAIS41OlBcCBgKgEIcVPxYnAQUIYAhLgyqZI6UAhxqdPjdnB2EeL/dPzEbRZ6Bnhr4nw93SzpAyFuCXZMCgIgYAQBCHEjKGIMEPAMAhDinpFn3CUI/BsBCHGsCxAAAUEAQhzrwAgCEOJGUJR3DLsI8csdPrUEcppJP1gyr55JIcT1UEMfEAABKQhAiEuRBgQBAkoQgBBXIk0IEgRMIQAhbgpWDAoCyhGAEFcuZVIGDCEuZVoMC8ouQvxS+yaGMXFloLST57nS3NK2EOKW4sfkIAAC7hCAEHeHHvqCgGcRgBD3rHzjbkHAkQCEONYDCICAIAAhjnVgBAEIcSMoyjuGXYT4xbZNLYGc7ru5lsyrZ1IIcT3U0AcEQEAKAhDiUqQBQYCAEgQgxJVIE4IEAVMIQIibghWDgoByBCDElUuZlAFDiEuZFsOCso0Q/7yZYUxcGSjd1DmuNLe0LYS4pfgxOQiAgDsEIMTdoYe+IOBZBCDEPSvfuFsQcCQAIY71AAIgIAhAiGMdGEEAQtwIivKOYRchfuGz5pZATj9ttiXz6pkUQlwPNfQBARCQggCEuBRpQBAgoAQBCHEl0oQgQcAUAhDipmDFoCCgHAEIceVSJmXAEOJSpsWwoOwixM+3bmEYE1cGyjBjlivNLW0LIW4pfkwOAiDgDgEIcXfooS8IeBYBCHHPyjfuFgQcCUCIYz2AAAgIAhDiWAdGEIAQN4KivGPYRYifa9XSEshvfz/Tknn1TAohroca+oAACEhBAEJcijQgCBBQggCEuBJpQpAgYAoBCHFTsGJQEFCOAIS4cimTMmAIcSnTYlhQthHiLS0S4jMhxJ0W48HxgRQ0LtDpZ3m7FKbsRU7Qs60LnX7uX7YhefmEU/D2BYYtaAwEAiBgTwIQ4vbMK+4KBMwgACFuBlWMCQJqEIAQVyNPiBIEzCYAIW42Yc8YH0Lc3nm2ixA/26KVJYnKOOt7S+bVMylOiOuhhj4gAAJSEIAQlyINCAIElCAAIa5EmhAkCJhCAELcFKwYFASUIwAhrlzKpAwYQlzKtBgWlF2E+JlmrQ1j4spAmebMcKW5pW0hxC3Fj8lBAATcIQAh7g499AUBzyIAIe5Z+cbdgoAjAQhxrAcQAAFBAEIc68AIAhDiRlCUdwy7CPHTTdtYAjnz3OmWzKtnUghxPdTQBwRAQAoCEOJSpAFBgIASBCDElUgTggQBUwhAiJuCFYOCgHIEIMSVS5mUAUOIS5kWw4KyixA/1eQzw5i4MlCWedNcaW5pWwhxS/FjchAAAXcIQIi7Qw99QcCzCECIe1a+cbcg4EgAQhzrAQRAQBCAEMc6MIIAhLgRFOUdwzZC/NPPLYGc5YeplsyrZ1IIcT3U0AcEQEAKAhDiUqQBQYCAEgQgxJVIE4IEAVMIQIibghWDgoByBCDElUuZlAFDiEuZFsOCsosQP9m4rWFMXBko64LvXGluaVsIcUvxY3IQAAF3CECIu0MPfUHAswhAiHtWvnG3IOBIAEIc6wEEQEAQgBDHOjCCAIS4ERTlHcMuQvxEo3aWQM62cIol8+qZFEJcDzX0AQEQkIIAhLgUaUAQIKAEAQhxJdKEIEHAFAIQ4qZgxaAgoBwBCHHlUiZlwBDiUqbFsKDsIsSPN2xvGBNXBsq+aLIrzS1tCyFuKX5MDgIg4A4BCHF36KEvCHgWAQhxz8o37hYEHAlAiGM9gAAICAIQ4lgHRhCAEDeCorxj2EaIf2yREF8MIe60ug+OD6SgcYFOP8vbpTBlL3KCnm1d6PRz/7INycsnnIK3L5D3FYLIQAAEpCAAIS5FGhAECChBAEJciTQhSBAwhQCEuClYMSgIKEcAQly5lEkZMIS4lGkxLCi7CPFjDToYxsSVgXL8OMmV5pa2xQlxS/FjchAAAXcIQIi7Qw99QcCzCECIe1a+cbcg4EgAQhzrAQRAQBCAEMc6MIIAhLgRFOUdwy5C/Gj9jpZAzvnTREvm1TMphLgeaugDAiAgBQEIcSnSgCBAQAkCEOJKpAlBgoApBCDETcGKQUFAOQIQ4sqlTMqAIcSlTIthQdlFiB/5sJNhTFwZKNfSCa40t7QthLil+DE5CICAOwQgxN2hh74g4FkEIMQ9K9+4WxBwJAAhjvUAAiAgCECIYx0YQQBC3AiK8o5hFyF+uF5nSyDnXvatJfPqmRRCXA819AEBEJCCAIS4FGlAECCgBAEIcSXShCBBwBQCEOKmYMWgIKAcAQhx5VImZcAQ4lKmxbCg7CLED9XtYhgTVwbKs3y8K80tbQshbil+TA4CIOAOAQhxd+ihLwh4FgEIcc/KN+4WBBwJQIhjPYAACAgCEOJYB0YQgBA3gqK8Y9hFiB+s09USyHlXjrNkXj2TQojroYY+IAACUhCAEJciDQgCBJQgACGuRJoQJAiYQgBC3BSsGBQElCMAIa5cyqQMGEJcyrQYFpRdhHhQ7W6GMXFloHyrxrrS3NK2EOKW4sfkIAAC7hCAEHeHHvqCgGcRgBD3rHzjbkHAkQCEONYDCICAIAAhjnVgBAEIcSMoyjuGXYT437W+sARy/tXfWDKvnkkhxPVQQx8QAAEpCECIS5EGBAECShCAEFciTQgSBEwhACFuClYMCgLKEYAQVy5lUgYMIS5lWgwLyi5C/EDN7oYxcWWgAmvGuNLc0rYQ4pbix+QgAALuEIAQd4ce+oKAZxGAEPesfONuQcCRAIQ41gMIgIAgACGOdWAEAQhxIyjKO4ZdhPj+93tYArngz6MtmVfPpBDieqihDwiAgBQEIMSlSAOCAAElCECIK5EmBAkCphCAEDcFKwYFAeUIQIgrlzIpA4YQlzIthgVlFyH+V/WehjFxZaBCv4xypbmlbSHELcWPyUEABNwhACHuDj30BQHPIgAh7ln5xt2CgCMBCHGsBxAAAUEAQhzrwAgCEOJGUJR3DLsI8cD3elkCufCvIy2ZV8+kEOJ6qKEPCICAFAQgxKVIA4IAASUIQIgrkSYECQKmEIAQNwUrBgUB5QhAiCuXMikDhhCXMi2GBWUXIb7v3d6GMXFloCLrRrjS3NK2EOKW4sfkIAAC7hCAEHeHHvqCgGcRgBD3rHzjbkHAkQCEONYDCICAIAAhjnVgBAEIcSMoyjuGXYT4nmp9LYFcbP1wS+bVMymEuB5q6AMCICAFAQhxKdKAIEBACQIQ4kqkCUGCgCkEIMRNwYpBQUA5AhDiyqVMyoAhxKVMi2FB2UWI/1m1n2FMXBmo+G/DXGluaVsIcUvxY3IQAAF3CECIu0MPfUHAswhAiHtWvnG3IOBIAEIc6wEEQEAQgBDHOjCCAIS4ERTlHcMuQnx3lf6WQC7x+1BL5tUzKYS4HmroAwIgIAUBCHEp0oAgQEAJAhDiSqQJQYKAKQQgxE3BikFBQDkCEOLKpUzKgCHEpUyLYUHZRYjvqjzAMCauDFRy4xBXmlvaFkLcUvyYHARAwB0CEOLu0ENfEPAsAq8K8R4bK9GsWQcMg9CmTSEaUmI93Tz/yGnMCWdq05ZGq+nRpYf0/rZGNKTChtfajD5dhwZVWk83XulrWHAYCAQ8nMCrQrzuhIK0dNlRQ6j4+HhR1+4lqFXAIqfxfGN507S7DWhxtpnkzf/88ZFmdLF9G+c5fX0p/YTJdL1XE0NiwSAgAAL/TQBCHCvECAIQ4kZQlHcMuwjxnZW+tARyqU2DLZlXz6QQ4nqooQ8IgIAUBCDEpUgDggABJQg4CnERcLF66SltnoSGxX7+wF0KXHXxtfEgxA1DjIFAQDcBRyEuBinXPDMlSR9H93ivdjyy8Rqd2H7d6ccQ4obhxUAgYBgBCHHDUHr0QBDi9k6/XYT4jooDLUlU6T8GWTKvnkkhxPVQQx8QAAEpCECIS5EGBAECShB4VYjHVNAQ4jFFGvOAwP8n8KoQjwlWEOIxQRlzgIBrBCDEXeOF1v9OAELc3ivDLkJ8e4WvLElUmc3WzKvnZiHE9VBDHxAAASkIQIhLkQYEAQJKEHhViBetK06IJzIs9gsHblPg6kuvjQchbhhiDAQCugm8KsTLNstMSdPH1T3eqx0Pb7xCJ3fccPoxhLhheDEQCBhGAELcMJQePRCEuL3Tbxchvq28NSe1y26x5mS6nlUJIa6HGvqAAAhIQQBCXIo0IAgQUILAqzXEh+0qSz6nVxoWe1jWetSzwEbUEDeMKAYCAeMIvFpDvPP8HORzYYMxE3h5k3eBRtTCfzGEuDFEMQoImEYAQtw0tB41MIS4vdNtFyG+taw1tbzLbbOmdrmeVQkhroca+oAACEhBAEJcijQgCBBQgsCrQnzwH0XJZ81HhsUe9sEy6lNsO4S4YUQxEAgYR+BVId5uSkry29DRmAm8/civxS/UImAJhLgxRDEKCJhGAELcNLQeNTCEuL3TbRchvqXMEEsSVX77gH+dd8/+Y9S86whaM+9rypQ+NT0LDqGBY2bTjj0HKXaAP7VqVIMa1Kqo9S1eoy2tmjOMUiVPYuo9QIibiheDgwAImEkAQtxMuhgbBOxFAELcXvnE3YCAKwQgxF2hhbYgYF8CEOL2zW1M3hmEeEzSjvm57CLEN5ceGvPweMYKO/q/Nm8wy++G7YbQjVt3ac63fTQhPnn2Cjp17jJ93bcN3bpznxq3H0rTR3enbJnSQogHb19gSfIwKQiAgDoEIMTVyRUiBQGrCfyXEN93xYuKpA6n64/CKUVcr/8banAo0bFbXpQvRfhrbXBC3OoMY34Q+P8E/kuIB171osKp+PX/mF//cf779X/8thflTf7K6x8nxLH0QEAZAhDiyqRK6kAhxKVOj9vB2UWI/1FqmNss9AxQcWe/17oJ+R3Ob59+27qPxg/uoAnxWk370pBeLSl/rsxa+1GTF1HcOAHUvvkHTkJ8/IyldOLMRZo0rAt5e///92l6YsUJcT3U0AcEQEAKAhDiUqQBQYCAEgT+S4gLIXb1IZG3lxfF8RVSnChnsnDadI7/3Y/o8A2WYCzB/X3C6fRdb63N/WAvqpMtjGL5RNw+hLgSywBBeiiB/xLif13j1/8j8fonis2vcfH6fzsB0eaLXhTgG0aPQ7wpNu8Db8cPpwM3X7z+iepkCY94/UOIe+iqwm2rSABCXMWsyRczhLh8OTEyIrsI8U0lhxuJJdpjVdrV16ntuYtXqfOXE+nHaV9R/TZfRQnx/JVb0tYVEyhhgoiHnC9ZtYn2BR2n0QPaRgnx/QdP0vcL19IPE/tSnNgB0Y4hug0hxKNLCu1AAASkIwAhLl1KEBAISEvgTSfE48UiusJSPHnscDp/35uyJQmjyw+8KTQsjOW3NyX2D6eE/D7Mx5vo9B0vSsnv3Uq8FRp1UgFCXNrUIzAQoDedEI/Lr3/xoVgyfv1fuE+UPiHRpQdCiBPdfupFSQLCKU3ccHoa6sUfihGfJOfXf+qwiNc/hDhWGAgoQwBCXJlUSR0ohLjU6XE7OLsI8Y3Fv3abhZ4BKv/Zx6lbi64jqXXj96lkkdxUq1k/TYineysFFXinJQWun04B/vwmjK9V63fQBj5BPnFYZ02Ii1Iqo6csojnj+1DK5In1hPLGPhDib0SEBiAAArISeFWI+1bJQk+9R7kdbjzvn+nBuFZEz/jImMMVt8uPtKzEEgq5H0z1gppR54wr6fG9EKc2U2/Vp3aZlr/2c7eDwgAgAAJuEUANcbfwoTMIKE0ANcSVTh+CBwHDCECIG4bSoweCELd3+u0ixDcUs0aIv7PnpRBfuW477dp3mEb2/0xbNC+EuCiZIk6Ib14+nhInjK/9btHKjXTg0CmtrRDiQpSLEirLZw6JkuZGrzwIcaOJYjwQAIEYI+AoxL0TpaLYDXuTl19st+cPvXaCnvw0nmsgcMFghwtC3G20GAAELCMAIW4ZekwMApYTgBC3PAUIAASkIAAhLkUalA8CQlz5FP7nDdhFiP9edIQliaqyt3fUvB37T6C/Dp7gb9jyV2z5unv/IcWPF4eG9WpFojZ4n06NqXjBnNrvvhw9i9KmTk5tPqmpCfGJQzvTsrVbuKRKPOrL7cy4IMTNoIoxQQAEYoSAoxCPiQkhxGOCMuYAAXMIQIibwxWjgoAKBCDEVcgSYgQB8wlAiJvP2BNmgBC3d5btIsR/KzLSkkRV3dfr/87reEJ86rzVdODwSS6h0pEu/XODmnb5mhZOHkAZ0qaMqiEe29+fajfvR6P6f07FCuYw/H4gxA1HigFBAARiisCrQtw7YQqu5Rn5hDs3ggh/+pDCnzx4bQQIcTegoisIWEwAQtziBGB6ELCQAIS4hfAxNQhIRABCXKJkKBwKhLjCyYtG6HYR4usLu19KNhq4XmtSLbBntIR4cHAIDRwzh7b9GaSVRmnXrA7VrlZa6ytOiK+aM4xSJU9Cm3bsp68nLqCVs4Zq7Yy8IMSNpImxQAAEYpSAoxD3SZ+HHpT/gsKJH3Dl5uX97AHFXt6d6Pkzp5EgxN0Ei+4gYCEBCHEL4WNqELCYAIS4xQnA9CAgCQEIcUkSoXgYEOKKJ/AN4dtFiP9acLQliXpvfw9L5tUzKYS4HmroAwIgIAWBVx+q+cu9stSi1Xq3Y7t6vTOFTGuOh2q6TRIDgIA8BCDE5ckFIgGBmCYAIR7TxDEfCMhJAEJczryoFhWEuGoZcy1euwjxXwqMce3GDWpd/QAfLFTkghBXJFEIEwRA4HUCEOJYFSAAAtElACEeXVJoBwL2IwAhbr+c4o5AQA8BCHE91NDnVQIQ4vZeE3YR4mvzf2NJomr8/YUl8+qZFEJcDzX0AQEQkIIAhLgUaUAQIKAEAQhxJdKEIEHAFAIQ4qZgxaAgoBwBCHHlUiZlwBDiUqbFsKDsIsR/zjfWMCauDPR+UDdXmlvaFkLcUvyYHARAwB0CEOLu0ENfEPAsAhDinpVv3C0IOBKAEMd6AAEQEAQgxLEOjCAAIW4ERXnHsIsQX513nCWQax3sasm8eiaFENdDDX1AAASkIAAhLkUaEAQIKEEAQlyJNCFIEDCFAIS4KVgxKAgoRwBCXLmUSRkwhLiUaTEsKLsI8VV5rBHitQ9BiDstxoPjAyloXKDTz/J2KUzZi5ygZ1sXOv3cv2xD8vIJp+DtCwxb0BgIBEDAngQgxO2ZV9wVCJhBAELcDKoYEwTUIAAhrkaeECUImE0AQtxswp4xPoS4vfNsFyG+Mtd4SxJV50gXS+bVMylOiOuhhj4gAAJSEIAQlyINCAIElCAAIa5EmhAkCJhCAELcFKwYFASUIwAhrlzKpAwYQlzKtBgWlF2E+Iqc3xrGxJWBPjja2ZXmlraFELcUPyYHARBwhwCEuDv00BcEPIsAhLhn5Rt3CwKOBCDEsR5AAAQEAQhxrAMjCECIG0FR3jHsIsSX5ZhgCeR6xzpZMq+eSSHE9VBDHxAAASkIQIhLkQYEAQJKEIAQVyJNCBIETCEAIW4KVgwKAsoRgBBXLmVSBgwhLmVaDAvKLkJ8afaJhjFxZaAPj3d0pbmlbSHELcWPyUEABNwhACHuDj30BQHPIgAh7ln5xt2CgCMBCHGsBxAAAUEAQhzrwAgCEOJGUJR3DLsI8Z+yTbIEcv0THSyZV8+kEOJ6qKEPCICAFAQgxKVIA4IAASUIQIgrkSYECQKmEIAQNwUrBgUB5QhAiCuXMikDhhCXMi2GBWUXIf5jlsmGMXFloAan2rvS3NK2EOKW4sfkIAAC7hCAEHeHHvqCgGcRgBD3rHzjbkHAkQCEONYDCICAIAAhjnVgBAEIcSMoyjuGXYT4ksxTLIH80el2lsyrZ1IIcT3U0AcEQEAKAtER4vU/ykWb/zhHN64/jnbMV693ppBpzYmePXLqE7fLj7SsxBIKuR9M9YKaUeeMK+nxvRCnNlNv1ad2mZa/9vNoT46GIAACphCAEDcFKwYFASUIQIgrkSYECQKmE4AQNx2xR0wAIW7vNNtFiC/K9J0liWp4pq0l8+qZFEJcDzX0AQEQkIJAdIT4yXMd6dNGK2j3zkvRjhlCPNqo0BAElCEAIa5MqhAoCBhOAELccKQYEASUJAAhrmTapAsaQly6lBgakF2E+MKMUw3lEt3BGp39PLpNLW8HIW55ChAACICAXgLREeJ6xoYQ10MNfUBAbgIQ4nLnB9GBgJkEIMTNpIuxQUAdAhDi6uRK5kghxGXOjvux2UWIL3jbGiHe+ByEuNMqPDg+kILGBTr9LG+XwpS9yAl6tnWh08/9yzYkL59wCt6+wP2VjBFAAARsTQBC3Nbpxc2BgKEEIMQNxYnBQEApAhDiSqULwYKAaQQgxE1D61EDQ4jbO912EeLz00+zJFGfXPjMknn1TIoT4nqooQ8IgIAUBCDEpUgDggABJQhAiCuRJgQJAqYQgBA3BSsGBQHlCECIK5cyKQOGEJcyLYYFZRchPi/ddMOYuDJQk4ttXGluaVsIcUvxY3IQAAF3CECIu0MPfUHAswhAiHtWvnG3IOBIAEIc6wEEQEAQgBDHOjCCAIS4ERTlHcMuQnxu2hmWQG56qbUl8+qZFEJcDzX0AQEQkIIAhLgUaUAQIKAEAQhxJdKEIEHAFAIQ4qZgxaAgoBwBCHHlUiYhxYYWAAAgAElEQVRlwBDiUqbFsKDsIsTnpPneMCauDNTscitXmlvaFkLcUvyYHARAwB0CEOLu0ENfEPAsAhDinpVv3C0IOBKAEMd6AAEQEAQgxLEOjCAAIW4ERXnHsIsQn/3WTEsgN/+npSXz6pkUQlwPNfQBARCQggCEuBRpQBAgoAQBCHEl0oQgQcAUAhDipmDFoCCgHAEIceVSJmXAEOJSpsWwoOwixGelmmUYE1cGanG1hSvNLW0LIW4pfkwOAiDgDgEIcXfooS8IeBYBCHHPyjfuFgQcCUCIYz2AAAgIAhDiWAdGEIAQN4KivGPYRYh/n3K2JZBbXWtuybx6JoUQ10MNfUAABKQgACEuRRoQBAgoQQBCXIk0IUgQMIUAhLgpWDEoCChHAEJcuZRJGTCEuJRpMSwouwjxGRYJ8dYQ4s5r8eD4QAoaF+j0w7xdClP2Iifo2daFTj/3L9uQvHzCKXj7AsMWNAYCARCwJwEIcXvmFXcFAmYQgBA3gyrGBAE1CECIq5EnRAkCZhOAEDebsGeMDyFu7zzbRYhPS2HNCfHPruOEuNMrBELc3hsG7g4ErCIAIW4VecwLAuoRgBBXL2eIGASMIgAhbhRJjAMCahOAEFc7f7JEDyEuSybMicMuQnxq8jnmAHrDqJ/faGbJvHomRckUPdTQBwRAQAoCEOJSpAFBgIASBCDElUgTggQBUwhAiJuCFYOCgHIEIMSVS5mUAUOIS5kWw4KyixCfkswaId7uJoS402LECXHDXpsYCARAwIEAhDiWAwiAQHQJQIhHlxTagYD9CECI2y+nuCMQ0EMAQlwPNfR5lQCEuL3XhF2E+KSk1gjxDrcgxCHE7b1H4O5AQAoCEOJSpAFBgIASBCDElUgTggQBUwhAiJuCFYOCgHIEIMSVS5mUAUOIS5kWw4KyixCfmGSuYUxcGajj7aauNLe0LUqmWIofk4MACLhDAELcHXroCwKeRQBC3LPyjbsFAUcCEOJYDyAAAoIAhDjWgREEIMSNoCjvGHYR4t9aJMQ7Q4g7L26UTJH3xY7IQEBlAhDiKmcPsYNAzBKAEI9Z3pgNBGQiACEuUzYQCwhYRwBC3Dr2dpoZQtxO2Xz9XuwixMcnnmdJorrcaWLJvHomxQlxPdTQBwRAQAoCEOJSpAFBgIASBCDElUgTggQBUwhAiJuCFYOCgHIEIMSVS5mUAUOIS5kWw4KyixAfm8gaId7tLoS402LECXHDXpsYCARAwIEAhDiWAwiAQHQJQIhHlxTagYD9CECI2y+nuCMQ0EMAQlwPNfR5lQCEuL3XhF2E+DcJrRHiX9yDEIcQt/cegbsDASkIQIhLkQYEAQJKEIAQVyJNCBIETCEAIW4KVgwKAsoRgBBXLmVSBgwhLmVaDAvKLkJ8dIIfDGPiykA97n/qSnNL26JkiqX4MTkIgIA7BCDE3aGHviDgWQQgxD0r37hbEHAkACGO9QACICAIQIhjHRhBAELcCIryjmEXIT7SIiHeC0LceXGjZIq8L3ZEBgIqE4AQVzl7iB0EYpYAhHjM8sZsICATAQhxmbKBWEDAOgIQ4taxt9PMEOJ2yubr92IXIT4ivjUnxHs/wAlxp1UFIW7vDQN3BwJWEYAQt4o85gUB9QhAiKuXM0QMAkYRgBA3iiTGAQG1CUCIq50/WaKHEJclE+bEYRchPjzefHMAvWHUvg8/sWRePZOiZIoeaugDAiAgBQEIcSnSgCBAQAkCEOJKpAlBgoApBCDETcGKQUFAOQIQ4sqlTMqAIcSlTIthQdlFiA+La40Q7/cIQtxpMeKEuGGvTQwEAiDgQABCHMsBBEAgugQgxKNLCu1AwH4EIMTtl1PcEQjoIQAhroca+rxKAELc3mvCLkJ8SJwFliRqwOPGlsyrZ1KcENdDDX1AAASkIAAhLkUaEAQIKEEAQlyJNCFIEDCFAIS4KVgxKAgoRwBCXLmUSRkwhLiUaTEsKLsI8cGxrRHiXz6BEHdajDghbthrEwOBAAg4EIAQx3IAARCILgEI8eiSQjsQsB8BCHH75RR3BAJ6CECI66GGPq8SgBC395qwixD/yiIh/hWEuPMLBELc3hsG7g4ErCIAIW4VecwLAuoRgBBXL2eIGASMIgAhbhRJjAMCahOAEFc7f7JEDyEuSybMicMuQnxgwEJzAL1h1EFPG1kyr55JUTJFDzX0AQEQkIIAhLgUaUAQIKAEAQhxJdKEIEHAFAIQ4qZgxaAgoBwBCHHlUiZlwBDiUqbFsKDsIsQH+FsjxIc8gxB3Wow4IW7YaxMDgQAIOBCAEMdyAAEQiC4BCPHokkI7ELAfAQhx++UUdwQCeghAiOuhhj6vEoAQt/easIsQ7xfLGiE+LBhCHELc3nsE7g4EpCAAIS5FGhAECChBAEJciTQhSBAwhQCEuClYMSgIKEcAQly5lEkZMIS4lGkxLCi7CPG+fosMY+LKQMNDGrrS3NK2KJliKX5MDgIg4A4BCHF36KEvCHgWAQhxz8o37hYEHAlAiGM9gAAICAIQ4lgHRhCAEDeCorxj2EWI97ZIiI+AEHde3CiZIu+LHZGBgMoEIMRVzh5iB4GYJQAhHrO8MRsIyEQAQlymbCAWELCOAIS4deztNDOEuJ2y+fq92EWI9/K15oT4yOc4Ie60qiDE7b1h4O5AwCoCEOJWkce8IKAeAQhx9XKGiEHAKAIQ4kaRxDggoDYBCHG18ydL9BDismTCnDjsIsR7+Cw2B9AbRh0d+rFTi0079tPYaT/SjVt3KUeW9DSoe3N6O10qehYcQgPHzKYdew5S7AB/atWoBjWoVVHrW7xGW1o1ZxilSp7E1HtAyRRT8WJwEAABMwn8r737gI6qTt84/qSHEgKh19BFmiBNwCCuIoIIuFhRlCIIVmTVRWX1b0FdUYmwgIgUC6Au0hRZFSwIKAKCNKWINBVRkGKQJCT5z1wXZADXycy9c8t855w9Byf3vr/393nv5OjD3TsE4lbqUhsBbwkQiHtrnuwGgcIIEIgXRotjEfCuAIG4d2cbyZ0RiEdSO/JreSUQvyvWnkD8qfzfA/HdP+5Tt973a9wTQ9SkQW2NnjRTq9dv1uSRQzVm8ixt2fatHr9vgPb+fFDX3vKonh9xl+rWrEIgnrN4auSvfFZEAAFXCRCIu2pcNIuArQIE4rbyszgCtgoQiNvKz+IIOEaAQNwxo3B1IwTirh7fnzbvlUB8iE2B+DMnBeJfrN+iju1bGu5fbt6um+8dqQ9mZKrrDffpkb/301n1axk/e3LMdBUrmqxb+lwWEIhnTpihTVt36l/DBys2NuZP51eYA7hDvDBaHIsAAo4SIBB31DhoBgFHCxCIO3o8NIeApQIE4pbyUhwB1wgQiLtmVI5ulEDc0eMJuzmvBOKDbQrEM08IxE8exsTpb2vDpm16+sGbddYF/bRo1iillihmHPbanPe1Ys1GjfjHoOOB+Kq1m/XCtHl6efR9KlokOezZnlyAQNx0UgoigECkBAjEIyXNOgi4X4BA3P0zZAcIhCpAIB6qHOch4C0BAnFvzdOu3RCI2yUfmXW9EojfYVMg/uwfBOKLfc8Kf/iZF/WSL9wuXSpVTS7sp5XvPK/kpERjsHPeWaIFi1Zo9PA7jEDc/yiVEWOna0rmvSpftpQlwycQt4SVogggEAkBAvFIKLMGAt4QIBD3xhzZBQKhCBCIh6LGOQh4T4BA3HsztWNHBOJ2qEduTa8E4rfFTo8c2gkrjc6/5pR131rwica9OMf3LPE7Va1yeePn/jvEP5yZqVKpKcY/T5+9UKvXbdE/h91kBOL+oNz/CJWZEx85HpqbvSECcbNFqYcAAhETIBCPGDULIeB6AQJx14+QDSAQsgCBeMh0nIiApwQIxD01Tts2QyBuG31EFvZKIH6LTYH4mJMC8fcXf65RE2fqhafvVpm01OMz7N5nmO69/Vq1anqm8d4DIyapSsWyGnDdpUYgPvrRO/TGvI98j1Qprvt8x1nxIhC3QpWaCCAQEQEC8YgwswgCnhAgEPfEGNkEAiEJEIiHxMZJCHhOgEDccyO1ZUME4rawR2xRrwTiN9sUiI89IRA/cChLl/Ud5nsG+P2qXKFMwAyfe2muVq/frMyHb9Ou737UDYMf17Qx/1B6lfLHnyFeJClJ3frcryeHDVTLpvVMvwYIxE0npSACCERKgEA8UtKsg4D7BQjE3T9DdoBAqAIE4qHKcR4C3hIgEPfWPO3aDYG4XfKRWdcrgfjA2GmRATtplefyex5/Z9b8jzXsnxOVkBAfcNSHMzJ9X5KZpAefmqKPl60xHo1yc+/u6taxrXGc/w7xOVOGq0LZNL2/ZJUeHz1Vsyc9ahxn5otA3ExNaiGAQEQFCMQjys1iCLhagEDc1eOjeQTCEiAQD4uPkxHwjACBuGdGaetGCMRt5bd8ca8E4jfZFIiPPyEQt3xYYS5AIB4mIKcjgIB9AgTi9tmzMgJuEyAQd9vE6BcB8wQIxM2zpBICbhYgEHfz9JzTO4G4c2ZhRSdeCcT72xSITyAQD7ws12au1JqRKwPebDS4mc5ovknZiwJv40/KuEYxcQXKWTzVimubmggg4CEBAnEPDZOtIGCxAIG4xcCUR8DBAgTiDh4OrSEQQQEC8Qhie3gpAnEPD9e3Na8E4v1i7clUJ+Zb8wWYVlx13CFuhSo1EUAgIgIE4hFhZhEEPCFAIO6JMbIJBEISIBAPiY2TEPCcAIG450Zqy4YIxG1hj9iiXgnE+9oUiE8iEA+8VrlDPGKfXRZCIKoECMSjatxsFoGwBAjEw+LjZARcLUAg7urx0TwCpgkQiJtGGdWFCMS9PX6vBOK9bQrEpxCIE4h7+1cEu0PAGQIE4s6YA10g4AYBAnE3TIkeEbBGgEDcGleqIuA2AQJxt03Mmf0SiDtzLmZ15ZVA/PrYV8wiKVSdl/KvK9Txdh7MI1Ps1GdtBBAIS4BAPCw+TkYgqgQIxKNq3GwWgQABAnEuCAQQ8AsQiHMdmCFAIG6GonNreCUQ72VTIP4ygXjgxc0jU5z7YaczBNwsQCDu5unROwKRFSAQj6w3qyHgJAECcSdNg14QsE+AQNw+ey+tTCDupWmeuhevBOLXxtlzh/jUPO4QD7iqCMS9/QuD3SFglwCBuF3yrIuA+wQIxN03MzpGwCwBAnGzJKmDgLsFCMTdPT+ndE8g7pRJWNOHVwLxa+JetgboT6pOz+tly7qhLMojU0JR4xwEEHCEAIG4I8ZAEwi4QoBA3BVjokkELBEgELeElaIIuE4g3EC8VsM0vTNzi+v2TcPmCjRsVk6166Xp1m7zAgqff2kN3da/vpbd9K6qdEhXma4NNK774oBjGnWtrLZ9amryZYHvm9sh1cIR8EogfrVNgfirBOKBlx93iIfzceRcBBD4IwECca4NBBAIVoBAPFgpjkPAewIE4t6bKTtCIBSBcALx1LRk/d/49srNyQ9lac7xkEBcXKymPP251i7fQyDuobke24pXAvErbQrEXycQJxD34O8FtoSA4wQIxB03EhpCwLECBOKOHQ2NIWC5AIG45cQsgIArBMIJxF2xQZq0VYA7xG3lN21xrwTiV8S9ZJpJYQr9O+/6whxu67E8MsVWfhZHAIFwBAjEw9HjXASiS4BAPLrmzW4ROFGAQJzrAQEE/ALhBuIXX1EHyNMILF2wQwd/zjZ+0vrCqkotlex5pyXv7dCh/b/t+diLQNwbY/dKIN7DpkD8DQLxwA8Cj0zxxi8GdoGA0wQIxJ02EfpBwLkCBOLOnQ2dIWC1AIG41cLUR8AdAuEE4lcPbKSevRto9+ZD7thshLosUTZZO384pLtveFfNMippyFNt9fWWfRFa3Z5lypQrqp92HNYD/RYSiNszAktX9UogfplNgfgsAnECcUs/oRRHAAFDgECcCwEBBIIVIBAPVorjEPCeAIG492bKjhAIRSCcQHzgsBaqUVBU8x9aF8rSnj2nQedKajgoXYMue0sZndLVbeCZuvKvMzy7X//GOnepo769mmjI5fMJxD04aa8E4t3jXrRlOrPzbrBl3VAW5ZEpoahxDgIIOEKAQNwRY6AJBFwhQCDuijHRJAKWCBCIW8JKUQRcJ0Agbv7ICMR/N+WRKeZfX3ZU9Eog3tWmQHwugXjgZcsjU+z4GLMmAt4XIBD3/ozZIQJmCRCImyVJHQTcJ0Ag7r6Z0TECVggQiJuvSiBOIG7+VWVvRa8E4l1sCsTfIhAnELf3I8zqCESHAIF4dMyZXSJghgCBuBmK1EDAnQIE4u6cG10jYLYAgbjZohKBOIG4+VeVvRW9EohfEjfFFsh5eb1tWTeURXlkSihqnIMAAo4QIBB3xBhoAgFXCBCIu2JMNImAJQIE4pawUhQB1wkQiJs/MgJxAnHzryp7K3olEO9kUyA+n0A88ALmkSn2fqBZHQGvChCIe3Wy7AsB8wUIxM03pSICbhEgEHfLpOgTAWsFzA7EKzZI1aD/tNcDVeec0nhsXIzOvqqaVkzbbu2m/qB6u1vqqPo5ZfRSr08sXZ9AnEDc0gvMhuJeCcQvtikQ/w+BOIG4DZ9blkQg6gQIxKNu5GwYgZAFCMRDpuNEBFwv4OxAfKx+evRW1xuzAQTcIFD0vC7K/SVPB94MDLBTu3TVjq1VtWbkSjUa3ExLfMeMe2R5wJYGDmuhGgVFNf+hdcff/1+BeJUmpXTp4401rtNHttAQiFvH3rlLHfXt1URDLp8fsAhfqmmdeSQreyUQvyh+ciTZjq/17tE+tqwbyqI8MiUUNc5BAAFHCBCIO2IMNIGAKwQIxF0xJppEwBIBxwbiMTEqO+hmJdWqbcm+KYoAAicJxMZpT+Yzytm+LeAH4QTiN73ZTp9O3qpz+tSUYqRXb1qub5b+pPvWd1bRUonatmyvnuv8kXpObKkabcooNjZGW30/n37jZ8o9knfKiJpfm65LHm6suMRYbflwj6b1W6ajOflq3a+mLrznTMUlxGrf9izfnd+fav+uw8b53Uc0UfNrqyvPd9yif23Swqe+kj8Qr9G2rO/4GNVoXUYHvvtVEy9frJ93HFa5M1J01bgWKlm5iFF7Wt9l2r58X0iXC3eI/85GIB7SJeS4k7wSiF8YP8kW2wVH+9qybiiLEoiHosY5CCDgCAECcUeMgSYQcIUAgbgrxkSTCFgi4NhA3JLdUhQBBAorEE4gfveKjpo+4DMtf3mb2vSvpVY31NDIcxeoSY+qan1jTeMOcf+f2wyopbEdP5Tv78HU7ckm+mLWLiM4P/GVll5M/nojWrxjBNf9Z2do65If9enErXp4Zzc9Wm+eEYZfM6Gl8o/m67VBK9S8Z7rOu72uRrV/XwlF4jR0TSdNumKxqjVLU+eHGhm9/PDVQV3/Smvt25alt4at0T2fd9SS57ZoyfNfq1rzNA2Y204PVJvjq1lQWDq+VPMEMQLxQl8+jjzBK4H4+fETbfH94Gg/W9YNZVEC8VDUOAcBBBwhQCDuiDHQBAKuECAQd8WYaBIBSwScHIjHJCUp1vc/Xu4RyM/KUkHeb3f2xhYtppj4OPc0T6fKO3jwFIVwAvE7l3bQPakzjJqVGpfUTb5w+cHqcwMC8Zpty6j3q231mu/u8Y0Ld+todv5pJ9H6xlpq2KWSJnT/2Pi5P+AuyCsw7uJOSI47fkd5s2vS1ap3DSNg9wfdO1bs04eZG41zklPilZ2Vp4xBtVXvogp6vttvtfyhedWzS+md4Rs0dPXFuitlhgryfwvA7/rsIs25Z7U2++5IL+yLO8R/FyMQL+zV48zjvRKInxf/gi3AHx290ZZ1Q1mUQDwUNc5BAAFHCBCIO2IMNIGAKwQIxF0xJppEwBIBxwbisbEqNniYksqVtmTfFDVfIMY3s0NLlypn9nTFl6+g0v1vVVyJFPMXoqIlAjHx8do35Xn9uuaLgPrhBOInfqnmic8UP/EOcf9iTS6vajzGpErTUlr9xk7NuG2l7zEotXTxAw2NXv7z8DrF+0LvCvVLaGqfZafsv+OwBmp4aWWpoMB4FMs+3x3kYzp8oIHzztOq13do2YvfBJxz8jPEj/3zR6M2yh/iH3vciv+kxGLxev3mFVo9Y2eh3QnEfycjEC/05ePIE7wSiGfYFIh/TCAeeF2vzVxpfEHFiS//l1Wc0XyTshdNC3g/KeMaxcQVKGfxVEd+OGgKAQScI0Ag7pxZ0AkCThcgEHf6hOgPAesEHBuI+8K5SpljlZb6lHWbp7KpAue1T9ekJ5rq1zFPKrnemUo+/69afXvgf8+auiDFTBVI79NOJcvut+xLNf9XIH5sI0XTEtXntbb66p3v9fHYzUpKSTB+lH0oV2dfla6zelTR+C6LjPeKlExQUvEEpbdMU6cHGykzY4GOHMxVi17V1fL6GkYg3uvFc/Td2v3Gc8P9L/9zwXMO5xmPUql+Thnfs8Y/Md4/FojPHbpa967trL+nvWGKLYH474zBBOL+R9Rc53uefIz/2Tm8HCmQnJqgWXet0uf/DvwLok6+v7yqVjL7tNlm4zubOW4vbRMm2NLTktz+tqwbyqLcIR6KGucggIAjBAjEHTEGmkDAFQIE4q4YE00iYIkAgbglrFFZlEDc3WOPZCDeqGtldRhaX8+0eU/n3VZX/iB8/kPrDMBrJ7XS9+sP6P2nfwuxj71SKxUxvoxzZNv3fM/9PqQ+r7bRjpX7lPPLUdXrWFHPd12kIr6wrs/rbZVcIkHPtH5PTa+oqo73N1Bmu4WKiZXxDPKXrvvEeIb46QJxf0DuP+b9p77Uyld3qHiZJPV49mzjy0CzfesU9hVMIJ7Rrpr27z+itWsK/0iWwvYTieM7d6mjvr2aaMjl8wOWCyYQ959QplZxJfoeh8PLuQLfrTtwSnNuC8RbJzxvC/AnuQNsWTeURQnEQ1HjHAQQcIQAgbgjxkATCLhCgEDcFWOiSQQsESAQt4Q1KosSiLt77JEMxFPKJ+uuZRcpLjFWTzSer2sntzKeMe5/Jvj25fs0te8y5WSdGkD7H63y12eaKjY+VhsX7Nb0Gz8zwu8Bb7ZT0ZKJ+nnnYc17YI36z8rQZ74v8vQ/+7vL8MbGF3oePZKnj0ZtMu4W/6NHpvgD8bJ1UnT1+BYqVbWo8UWaH4z8yviCzVBewQTik17qqg0bftJTTywNZQnHnRNuIO64DdFQUAJuC8RbJYwPal9mH7Qs9yazS1pWj0DcMloKI4CA1QIE4lYLUx8B7wgQiHtnluwEgcIKEIgXVozj/0iAQNzd14bZgbi7NczpPphA3JyVnFMlnEC8RIVkXTv1HKWUTXbOhugkQCA+KVaTui/W7i8Dv4DXbYF4i4TnbJns8tyBtqwbyqIE4qGocQ4CCDhCgEDcEWOgCQRcIUAg7oox0SQClggQiFvCGpVFCcTdPXYCcfPnRyD+u2kwj0zxP0qn4W3pGnrPQvOHQUVTBPoMaKIKuxP09n8fcXSsqNsC8WYJ40zxKGyRlbmDCnuKbccTiNtGz8IIIBCuAIF4uIKcj0D0CBCIR8+s2SkCJwsQiHNNmCUQTCB+7rtDtfiiJ05Zsky7etq7dJMKjuab1c6f1mk88jp9M+EDHdrw7Z8eGw0HEIibP2UC8cIH4rX6VtLVV840fxhUNEXg7vvbqFF+qusD8SYJY03xKGyR1bk3F/YU244nELeNnoURQCBcAQLxcAU5H4HoESAQj55Zs1MECMS5BqwSCCcQbzq+r74Y/LLyf821qr1T6hKIB5IQiJt/6RGIE4ibf1XZW9ErgXjjxDG2QK7JucWWdUNZlEA8FDXOQQABRwgQiDtiDDSBgCsECMRdMSaaRMASAe4Qt4Q1KosGE4i3eftu7Xr1U6WdU0txxZL05YMzVbJpumrd3lEHVm/XhofeUI3+f1GxGmUVExerXzbt1uan3z7Fs2j1sqp7zyXG+0ezsvXVI7MVmxCnev+4TIqR4ookatdrn+rHheuNY6oPOF9pLWupoKBA381coR/mfyF/IH5g3U6lNqqmpHIltG3ih8bxyZVLqfYdFysmNkaxifHGXeQH1+70/EwJxM0fMYE4gbj5V5W9Fb0SiDdM/JctkOtybrVl3VAWJRAPRY1zEEDAEQIE4o4YA00g4AoBAnFXjIkmEbBEgEDcEtaoLBpMIJ7xwf1ae/c07V/xjar2bKPE0sX19eh31eatu/TpFc8quVyqzhjWTav6TzQMK3Zvpj3vrVOeL/Q+8dVkbG8jqD6warsqX9FKeUdylPX1HiWULKp9SzcroVQxNZ9ykz7p9oxKNq+h9Osz9MXtLxkhfIPhVxo9NHryGh1cv0vbXvhQKWdWUp27L9HnfSeo8bO9tHXsAv2y8XsjKG+c2UvLe9pzN2EkLyQCcfO1CcQJxM2/quyt6JVAvL5NgfgGAvHAC3ht5kqtGbky4M1Gg5vpjOablL1oWsD7SRnX+P6mvEA5i6fa+ylgdQQQcLwAgbjjR0SDCDhGgEDcMaOgEQQiLkAgHnFyzy4YTCB+7sJ7tfiCxw2Dshc0MO7a3vj43OOBuP8Z4mf5Aumjh45o75JN+vGDDcafT35lLLxPH1/wWMDbCWnFVHPQhUYoXpCbp9Jt6mpR+0dVzReGx8TFaPvkRQHH++8Q9793YM0O+c9t+lxffXbVaPlD+xPvCPeH4it6j4/o41zsuEgIxM1XJxAnEDf/qrK3olcC8XqJo22B/CrnNlvWDWVR7hAPRY1zEEDAEQIE4o4YA00g4AoBAnFXjIkmEbBEgEDcEtaoLBpUIH7Cl2oagXgrXyD+2O+B+LFniBc/o6JKt62rCp3P0qqBk1Xr1g5KqVdJOfuztNr3z0aw3sH35Zz5Bcet/XeW+x+x8u3ryxSTGKeMd+/9byB+rmLi47R90kenBOLHvlTTH4ifPb6fll0xSue+N1RLLhmhgpy8qJojgbj54yYQJxA3/6qyt6JXAvG6iaNsgdyUc21OKEcAAAzNSURBVLst64ayKIF4KGqcgwACjhAgEHfEGGgCAVcIEIi7Ykw0iYAlAm4LxMuVL6ZY37Odd3//iyUeFA1dIJxAvPWbf9Pya8cqqWwJpdSvpN1vrjIaafjPq7Xr9U+1f+W2gMbOGn29dryyRD8v+1oVu56t+JQiKtmsur57Y7lxZ7n/vdp3dtLHFz6m1MbVVGPAX7T6limK9QXjjUf10tohU41Hp5wuEPffOb777dXGo1qSKqSqUrdm+mb8+6HDuORMAnHzB0UgTiBu/lVlb0WvBOK1k561BXJL9h22rBvKogTioahxDgIIOEKAQNwRY6AJBFwhQCDuijHRJAKWCLgtEL932LkqVixRw+71fkBpycAtLBpOIF7vgctUvE4FffnQTPmD2UTfM8AL8vL167c/a/OIecafT3wVTS9jPPPb/8WXeYdz9NWjs407yGsMukA5Px7SnvfXq9xfGijn5yxtHD5H1fu3V6nmNSXf8d/PXqnd81YbX6p5ukDc/6Wade/yfWHnf79U0/9lm/5nnnv9RSBu/oQJxAnEzb+q7K3olUC8ZlKmLZBbswfbsm4oixKIh6LGOQgg4AgBAnFHjIEmEHCFAIG4K8ZEkwhYIuC2QNwSBIqaIhBMIG7KQhSxRIBA3HxWAvHwA/EBtzTTBwu+0eaN+8wfEBULLeCVQLx60shC792ME7Zl32lGmYjUIBCPCDOLIICAFQIE4laoUhMBbwoQiHtzruwKgWAECMSDUeKYYAQIxINRcu4xBOLmz4ZAPPxA3PypUDEcAa8E4lWTngmHIeRzd2YPCfncSJ9IIB5pcdZDAAHTBAjETaOkEAKeFyAQ9/yI2SACfyhAIM7FYZYAgbhZkvbUIRA3351AnEDc/KvK3opeCcQrJz1tC+S32X+zZd1QFiUQD0WNcxBAwBECBOKOGANNIOAKAQJxV4yJJhGwRIBA3BLWqCxKIO7usROImz8/AnECcfOvKnsreiUQr5j0lC2Q32ffZcu6oSxKIB6KGucggIAjBAjEHTEGmkDAFQIE4q4YE00iYIkAgbglrFFZlEDc3WMnEDd/fgTiBOLmX1X2VvRKIF4+2Z5A/IcjBOIBV/DazJVaM3JlwHuNBjfTGc03KXvRtID3kzKuUUxcgXIWT7X3U8DqCCDgeAECccePiAYRcIwAgbhjRkEjCERcgEA84uSeXZBA3N2jJRA3f34E4gTi5l9V9lb0SiBeNnmELZA/HrnblnVDWdSRd4jH12ikvB1rQtkP5yCAQBQJxJWvpfzDh/XrmyOVcFYHba7YQ/PmfxO2wN/+1lJHxlwvZWcF1Co2+HW9cc5ryj2Yox5reuuOGrN1+EBuwDET9l+l+WO/Uu6R/LD7oAACCJgnkFI6Sc27VNGQWrNVoW4JDf8kQ3FbZ5m2QH7tHrqnyfv6aXvg741RW7vpo55zlbXrF3X5uKceab/glGNG7vyrlv57mw7vD/x9YlpzFEIgygXK1yiuCrVS9Fi7d1X/LxV0xyv1FL/zPXNUYuIUe1ZP9Ul6NaBefGKsxu+/Uq/WnahY35+v3tBbO28ZELhmfLwqjxqnJ5/4xJxeqGK5QHr1kup4dhFlZQ5Xcr0zlXL5Ddqz4CvL12UBcwRKNk2Xdq3WgTfnBBRM7dJVO7ZWNW7i89+4t+SXPI17ZHnAMQOHtVCHdtW15aM95jTjkSrl6qQov1yc+nWeo4xO6bpleCvNnb3JI7s7/Tbq1E1T2dSiuvXStwIOOP/SGrqtf30tu+ldVemQrjJdG2hc98UBxzTqWlnnPVxPc+du9rSRmzfXtl1VHfjggN5+aF3ANjo90FDVSmaf9mbfxnc2c9yWSyc/aUtPe4/cY8u6oSzquEDcv4mkjJ6h7IVzEEAgCgVyPputguzDxs6TWnWXEouGrZD33UYd/Trw/9XiLxpMIF77nDJq3LFi2D1QAAEEzBf47I2d2rVuv1G4ZY9qqtIw1bRFtq/er5Vzdp5SL5hAvFqTUjq7WxXTeqEQAgicKvDx5K3au+O3v7Bq16eW0qqF/+8Lx1bZsPAHbVocGJIFFYj7CiSfWV9JteswMhcJZC1ZrKP79hodF2/r+8vVtDQXdU+rJ4fhfpFgAnH/cYP+0QLA0wjMeGGDfvz+t9+vl9/YQGUrmvf71ang/56wXj/t/u2/QY+9ggnE/cdmDKytlPLJTt0affkETg7D/ShuC8RLJf/Tlln+fOTvtqwbyqKODMRD2QjnIIAAAlYLBBOIW90D9RFAwF0CwQTi7toR3SKAQDACwQbiwdTiGAQQsFYg2EDc2i6o7naBYANxt+8zWvt3WyCemvyELaM6cGSoLeuGsiiBeChqnIMAAlEpQCAelWNn0wiEJUAgHhYfJyPgWgECcdeOjsajUIBAPAqHbsGWCcQtQHVQSbcF4g6ic2wrBOKOHQ2NIYCA0wQIxJ02EfpBwPkCBOLOnxEdImCFAIG4FarURMAaAQJxa1yjrSqBuLcnTiDuvfkSiHtvpuwIAQQsEiAQtwiWsgh4WIBA3MPDZWsI/A8BAnEuDwTcI0Ag7p5ZOblTAnEnTyf83gjEwzd0WgVbA/EGPRJ1dPtap5nQDwIIIHBagYQWl2tGi2nKPZijK9b30TtjNin3SD5aCCCAwB8KdLy5jt7rPlNZu35Rt0+v09LXd+jw/lzEEEDA4wKxcTHq8vf6ml77BcUmxurqL/vo4Py3PL5rtoeAOwWS656hTfOztGbkSjUa3Ew5Z1fQ8kXfuXMzdG2bQPW6JVWvXLKW9p6vKh3SVff2llo161vb+mFhcwXqnFdOR1bvNH5PnPjy/85ofGczcxejWkQEbAvE/btrxEUTkSGzCAIImCOwd9UefffhTqNYmablVbF9FXMKUwUBBDwrsH/DXu18Z5uxv1L1S6tKx+qe3SsbQwCBQIEfFn+rPct3G29WOLeyyraoABECCDhUYO0JIRc5hUOH5IK2trzypX798bDRaZ3r6iu5bBEXdE2LwQqc+Hvi2DkE4sHqOe84WwNx53HQEQIIIIAAAggggAACCCCAAAIIIIAAAggg8L8FCMTde4UQiLt3dnSOAAIIIIAAAggggAACCCCAAAIIIIAAAjYIEIjbgG7SkgTiJkFSBgEEEEAAAQQQQAABBBBAAAEEEEAAAQSiQ4BA3L1zJhB37+zoHAEEEEAAAQQQQAABBBBAAAEEEEAAAQRsECAQtwHdpCUjEojv+fR7/fAJ39Js0swogwACUSKQm5WrhGIJUbJbtokAAgiYI5BzMFuJJZLMKUYVBBBAIEoE+PfOKBk020QAAVMFyrWupPLnVDS1JsUiIxCRQDwyW2EVBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT+WIBAnKsDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBAnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICoECMSjYsxsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD/AXnCosz7jnidAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "fig = px.treemap(df,\n", " title=\"Total Files per Folder (Depth of Two) (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'folder1', 'folder2'], \n", " color='bytes'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "supposed-lewis", "metadata": {}, "source": [ "### Exercise: Analyzing Folder Structures\n", "\n", "People organize files in a variety of ways. Sometimes their folder and sub-folder names are entirely indicative of the content. In other cases, folder names and structures are constrained by the technical considerations of the software tools that either produce or consume the files. As you look at the distribution of files, by area, and bytes, by color, across the top two folder levels what can you see? \n", "\n", "What folder contained the largest files?\n", "\n", "Why are there many folders called \"www.bop.gov\"?\n", "\n", "Which folders are named to reflect a person's choices and which seem to be named due to a technical consideration?\n", "\n", "## Another View of Folder Structures\n", "\n", "As mentioned at the start of this notebook, sometimes folder structures are part of a production workflow for a particular tool is discipline, such as GIS or audiovisual productions, or websites. One way to uncover such structures in larger accessions is to determine the most common folder and file names. Usually folders that are patterned by a workflow will reuse the same folder names or file names. These folder and filename \"slots\" determine the purpose of the folder or file within the larger workflow.\n", "\n", "In the code below we take the \"name\" column from our data frame and convert the individual names into a shared set of unique categories (`.astype(\"category\")`). Instead of separate text values, the names are now coded as category numbers. So each occurrence of the same name will have the same code. Pandas can then add up the occurrences of each code and give us value counts. (`.value_counts()`) Finally, we call the `head()` function to get just the first 25 most frequent names." ] }, { "cell_type": "code", "execution_count": 62, "id": "informed-remark", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "index.html 45\n", "backblue.gif 7\n", "fade.gif 7\n", "new.txt 6\n", "new.lst 6\n", "readme.txt 6\n", "new.zip 6\n", "winprofile.ini 6\n", "doit.log 6\n", "cookies.txt 6\n", "left_repeat.jpg 5\n", "matters-over.gif 5\n", "business-over.gif 5\n", "business.gif 5\n", "locator.gif 5\n", "careers-over.gif 5\n", "careers.gif 5\n", "locator-over.gif 5\n", "blue_cover.gif 5\n", "yellow_bar_middle.gif 5\n", "left_curve.gif 5\n", "arrow.gif 5\n", "hts-log.txt 5\n", "home.gif 5\n", "home-over.gif 5\n", "Name: name, dtype: int64" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(df[\"name\"].astype(\"category\").value_counts().head(n=25))" ] }, { "cell_type": "markdown", "id": "split-confidentiality", "metadata": {}, "source": [ "As we look at this list of the most frequent file names in this accession, we can clearly see that the most common file name is index.html, a web page file, with 45 occurances. Next there are some GIF files, usually these are web graphics. Then we have some files called \"new.txt\", \"new.lst\", and \"readme.txt\". It is clues like these that make digital appraisal somewhat of a detective story. You might dive deeper into these files, by reading the files themselves or by researching the file names on the Internet to see what workflows may have produced them.\n", "\n", "# TODO Differentiate Older and More Recent Folders\n", "\n", "Depending upon the operating system, files will have a modified date and/or a created date. Usually the modified date is the more significant of these, because it indicates the last edit to a file and may indicate when it was completed or no longer relevant. When transferring files to our own storage we have to be careful to either capture or preserve these dates as metadata.\n", "\n", "NOTE: Since this notebook is copied from a Git repository, the sample files included here do not have their original modified date. Since we cannot provide accurately dated files via Git, we are providing some alternative inventory CSV files that were prepared separately.\n", "\n", "TODO: color by average timestamp\n", "TODO: find samples or supply an inventory file better good timestamps.." ] }, { "cell_type": "code", "execution_count": 17, "id": "small-percentage", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 31223.39541984733 ], [ 965120 ], [ 32647.018292682926 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/2015", "all/2022", "all" ], "labels": [ "2015", "2022", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 31223.39541984733, 965120, 32647.018292682926 ] }, "name": "", "parents": [ "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 655, 1, 656 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total Files per Year (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAFoCAYAAAB5WPgIAAAgAElEQVR4XuzdB3QVVbvG8ZeiBJCighQBBVR6r9J779J77z300AmE0FvoXTrSUToiBBAERBAFAUWqiKiAjX73Hm7Ol4QAA0zOzMB/7voWKydz9jvzm31yXc/s806U+2oTNgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEXnCBKATiL/gV5vQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEDAECcSYCAggggAACCCCAAAIIIIAAAggggAACCCCAwEshQCD+UlxmThIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAQJw5gAACCCCAAAIIIIAAAggggAACCCCAAAIIIPBSCBCIvxSXmZNEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIBBnDiCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi8FAIE4i/FZeYkEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAjEmQMIIIAAAggggAACCCCAAAIIIIAAAggggAACL4UAgfhLcZk5SQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAECceYAAggggAACCCCAAAIIIIAAAggggAACCCCAwEshQCD+UlxmThIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAQJw5gAACCCCAAAIIIIAAAggggAACCCCAAAIIIPBSCBCIm7zMJWr5yqXLVx+7d84saWTe+N4mR3z63crU7SFZ0qeWwL6tInzzL1d+l+I1uj524KXTBkiCN+IZ+/n3bCZVyxaUdZv3SK9h02XDwkBJ8Xaipz8wB79Dm1Rs2EcK5M4oYwe1f+hI79y9K9WbD5D/bt6S1XP8xSfGq7acze07d6Vpl+GS8M3XZczAtp5jOPDNCVmwYot8/e1JuXb9L4kfL46kfS+51KxYVIoVyP5UxxoyPwZ1ayLVKxR+qvdavXOe8m2kSpkC0rtDvQiH7jditgTvPyKffzLO6tKix1752c4w48aP95q8myyx1KlSXCqU/NDymlYO+Me1GzJv2SbZuuugXL7yh9y6dVvNm3hS+MOs0rxeBUny1htWlrNkrPnLN0lg0GLZu36yHP3+R+ngN15mj+0pWTO8Z8n4DIIAAggggAACCCCAAAIIIIAAAgiYFSAQNyn11eHjKjS97dl7wKjZ8roKJzu3qOF5LX7c2JIpXaonjjhswkJ5JXo06d629hP3Db2D2UC8Uqn8Uq543gjHzpbxPYkaNaoKwXdL7mzpJGWKJC90IK4RFq3aJkPHfyxThneRQnmzhHGZtfgzGTNtmcwa00PyZk//VNfDyp0Hj50vB9QcWzJ1gMSKGcMYetrH62TCrBWSKW1KqVS6gCRWQeeV3/6QT7d9KQeP/CANqpeSXu3rmj4MAvEHVDoQX7Vhl8we09P4+b76v9//uG68tvurb2Vor+ZGWG92e9bPs9nxQ+/3z7//Sd22/vLXP/9Ki7rl5f1UydXnOYocO3FGps5fIzF9YsjKWUPktdgxjbdVbdpXOjWvLkXyZX2Wcpa9J3QgHve1WOpY18ri1dtkxczBxg06NgQQQAABBBBAAAEEEEAAAQQQQMBbAgTizyhdvkEvSZzwDSNIfdqtdpvBkiPTB5EWiHdoWk1aN6xk+rBe5BXiGuH+/ftSv/1Q+fXqn7J27jAVGj5YBX7xl9+kYqM+xs2DIT2amvayesfvfjgjNVoOlKmBvlIwTyZjeB3Mtuw+yljBr48tSpQoYcoOm7BAFq7c+lRBPoH4A0IdiK/euEuObp8TxlR/W6Bg5Q6SMW0qmTGqm+nL/KyfZ9MFQu2ob4b0GDJV5k/oIzkyfxBmCH2TxG/4TOnbuYH6RkQm+effm5KnfGuZ6N/JcYH47dt3pJz6G5ovZwbR31hgQwABBBBAAAEEEEAAAQQQQAABBLwlQCD+jNKPCsQ/3/O1sbL3h9PnjJE/SJVMmtYpL6UK5zR+zlCkcZiKuoVJxjQpVXuIo8b7vj95RgW4olqXvCWNa5WVyqXze/Y3u0L8SYF4SDD6uJYpOpCdvmCdnPzxvNy+c0cyp0stXVrVMI41ZNu04yuZrVZY/3TukhE669XmzeqUk9JFcj9StUTNrkZrhwSqxcOK9V/I73/ekGRJEqqV9tXDtAD5+fxlGTt9uRz5/rT8ce0vSZk8sXIsJxVK/K+dRdl6PYwV33rF+7K1n8tA38ZSsVS+CGuf/vmifNSsn1pVXVp8W9c09mnTa6zoMHrd/ADRq1b1OSxatVW109glP5//RWKo9imF8mQx9g+9itXMtXqaY2vXZ5z8dvWa6LkQsjXtEijHT5+V7cvHRtjGRbd4OaHmWGb1jYSQsPxJcy+iQPzUTxdk3IxP5MCRE/LffzclSaIExuro5mr1cbRoUY3DedS56NXK42asMFqbXFTthLRRFbWSvZW6GaO/ARGyTZ63Rpau2S7XbvwtadSK5p5qVXubXmOe2DJlj5qDAX1ayojJi+XUmQsSP+5rUrNSUWnbqLL8/c9/UuSjzsbnQwfAobfRU5cZ13HHinESR13X8NujAnF9/QtV7Sh51DcFRvVvI5PnrpapH6+VbcvGqJYk8T3DXP/rH2O/JurzqT8jobeQz7OZ+Xv81Fnlt1y+PX5G/laWiRO+ruZvfmndoJKx6juibfXGYCP0XhjU97HtRvZ/fVyaqBY8IZu+CXRg43TjxyfNE92GpViNLjJc2et6B4/+IBsWBKq58aZxo+ZJfxdOq2s1aMw8OXr8J3ktlo9qQZPPmBv6mxi6ZYr+rOlt2bodMmTsPNm4aKS8nTjBI/9m8AsEEEAAAQQQQAABBBBAAAEEEEDASgEC8WfUjCgQ37XvqLTuOVpqVCiigteSopJKmbt0o9GveHJAFxUEZ1Hh7g0pqfqRV1bBYfumVY3A7vzFK1K5sZ+ULZ5Hmqvw/JVXosuWnQeMQHjmqO7yoVpFqTdvBeK6b7UO00oUzCEdmn0kd9XK2UmzV8meA98aLQ50n3Ed5lVvMUBaqJ7FISH0p1v3PmiFMLmfZFa9ziPa9DnoXtjVyhWSjs0/kjuqd3bAxIVG25bPVA9zHYxpoypN+hotafp3bWSEaZ+plbETZ6+Ukf3aqBXdeYyhK6nV3ToMT/VOEqn/UUl5R/WAfvP1uI+8oiEB5yczBsuZc79IlwGTjL7iITcrQlqUdFTnrPtI657xupVJVHUdl88YZIS8+n1mrpXZY9Ohcr5K7aVNw8rSqkFF49j16tlcZVtJmWJ5jFDSzGZm7oUPxK+oFfP6XPSNjJ7t6sgbym578CEZNXWpNKxRWrq1rvVY52a+I4xWHfpGhA7mDx87rYLQuVJOHfcA9Zre9I0KHY62a1JVKqmbFdpUz2s9f2pULPLYHuL6M5A86VvSQX1OEqlvY+hwVrfeCOmBPkRdG71i+ouV4yXGq68Y9XSorT9feXNkMHrkR7SFBOJfb5n5/+8RufrHNfl4+Wajjcfccb2M+at9iqsbOHo+6BsEIduKT3fKgFFzZNPikUZ7m/Cf5xsqMH/S/NWr0YuqQF/Xaa9sdIsT3Sden1NrNRf0jaWItl9/+1PK1e8hsWPFNEyL5c8WYcsR3ZP+oPoc62uknzlQIFcm1X/+NTEzT/RNqoJVOhg380oWyqm+tZBZPkid3Oj9/aS/C7qfuV75/ar6G6Zbz7z5ejxZv2WPLFXz4Lffr4UJxPXPhat1MuaA/vyyIYAAAggggAACCCCAAAIIIIAAAt4QIBB/RuWIAvFGnQKM1cxr1MMZQ1bt6oCubL2exorv6SMftGHIWaal1KpUzNMy5d//bsn5S79KUrU6N7ZaURmy5avYzlhF20OFlXozG4jrdimPCtRixfSRJ60Qb9Z1hLFC+lO1KjQkaNTHWKJWVymlAjIdduqQXweLW5eONlaOhmyH1GpSHbDqMDuiTZ/Dv2olsn5YYsgq2Kuqf7MOxnQwqI9dh+o6/F47d6ikfvdtzzD6ZsM5dfPg048frHytpMLcy+qhmbtWTZBX/z8Qfdzl1EHzR837GyHmZdWLW7fGmOjf0XjLTRXkFajcXoV/WcI81FKHgLolRkgQb/ZamT22kNYooVtghKzQbde4irRV/zOzmZl74QPxoDmrjBXQehV66BXQfQNnyaYd+2XPusnGTYCIzkVf5wYdhkm/Lg2lduVinkPUPdl14K3HfCtBfKnZaqAR8K+a7e/ZZ9/X36sHiAYaIejjHqqp51j4myulandT4fjr8vFEP9Gr2ys38TMC35BvDoQc1+NuykT0UE19cPHixFarzRt6brjo1/RNk+OnzhkPnA3Z9OcjunKZNsI3ws+zmfl77uKvxud5WO8WYb4Folf9678B+lsTj9q++e60EZx/f/JnY5d31bcn9AN9i+XPrr4xkdnzt+fbEz9JrVaDJGhYZ0/LFDPzRN+QKqBax+TPldHzN0vXMfN34Yu930jb3mNl/JAOxg21kK1hx2FG3/vQK8T17yo27K1uaCU19mdDAAEEEEAAAQQQQAABBBBAAAEEvCFAIP6MyhEF4jlKt5SKqj3AwG6Nw4yqe/7uOXBMgtdMNF4PH4jr13SQtHTtdvnx50ty4+9/jJWu12/8Y6yq1aGZ3swG4o87pWM75j4xENfnUVat8g2/wrZ9n/FGkLx8+kAVTP8qNVXf69fjxzFWxOtV7GnUKtLwva7DH4s+Bx2Y6wdcht50+4s86iGfOtxs3XOMcrgom5eMCrPPPLU6eETQYtn/2VQjNNRBbQK1qnn22AcPRzSzHT52yugnrt+/bl6AEdrqTbd3qN160EMBpf5dnvJtpHr5wp4bGGauldljC2mBoQNXvfJeb3oVcNHqnY1V4/pbBGY2M3MvfCCunc9euCyfqRsfobfl63fIwFFzPTckIjqX2Us+E92aJPwNER3S6m8OhISw2Uq1kGqqD7oOzkO2u3fvSbZSzaVOleKPDcT1Nw4ObpoeZk71HDpNdn15RIX1QcZwOuCNpr4lEDIH9Ir+r1VYHzqAD+8XskJ88ZT+nl/99de/8vWxk0YLIN23vU/H+sbvQlqPhNyw0Kua9bXR3ywICXzDf57NzF8f1Y5H32jRn6Naqg1MPhU+Z8/4vvHtELPbyZ/Oy75D36ug+YTxr25Jox/AOiWwq3FDKqJA3Mw8CQnE9dzTczBkM/N3YeaiT40bIrtWT5Q31N+GkE1/OyNI/S98IK5XsP+rep0vUt8qYUMAAQQQQAABBBBAAAEEEEAAAQS8IUAg/ozK4QNx3QIhS/Fm0qR2WU+riZChdcsIHXx+vXmG8VL4AE2vxu06cLLRpqN+tZJGC4QoqoewXt2pV2k+bSBevULhMKtOQ59idvUwz8etEE+qWpbo89Crt6NF+18faD2Gbp3yRvy4RosKvekw7+NPNquexIeNB1TqcLlRzTLSSLXbeFQwrgPxTOlSGiuuQ2/l6utV9InUgyW7GoG1bh8RPhy8f+++aOf1que3DtV1UJtK/TtucPunuoolVEuN91MmCxPK71U3LJp3GynR1Tlr+9CbXuGsbxDovtJmr5XZY9N+wyctChMg6nPMXba1WtWbLcxq9UedpNm5Fz4Q18763EL3Ltc1NmzfJ90GT/Gszo7oXMbPXGH0ko4owNVjDlCtbqqqtjhZS0T8mdAtYXTbnMetEN/55TeeuRZy7jrw1ivHD/9/u5ONn+8X30GTVR/qEcY3FYpU66xaiVQxwvZHbY/qIa73D7kZoAPaLP/f9ke3v8mogmb9OdTXS4e+25aPMeZKRJ9ns/P3r7//NXqdb/7igLHaW397o0KJvNKtTe0w3xQxM7l1ixTdp123H6pXrYQR6IcPxM3Ok5BAXI+hx9JbyHuf9HdB96OfsXC90a885OG1+v26ddTIKUseCsS7DgwynlOg+/izIYAAAggggAACCCCAAAIIIIAAAt4QIBB/RuWIVojroLtCiYhXiOs2ESFBcvhAXD/c8eSP59SK6NGeNiI6gMqpVmqXK573qQPx532opg4rdeuQiFYn637aukVD+E2vNF665nOZu2yjp8dzRLSPWiGuexbnz53J6JmtWy6cVO0wQlpShB9H9xnXrVzMhs7h3x9RIK57Yev2Ht1VGFlI9XoPv+k2K4lVH2uz18rssUW0QlzX1u1h9qkHI36m2sOEbkkTclx6lfUk1fKkWrmCRp9tM3MvfCCuz0W3xnnUCvHH3XgICTj1ymn9LYHw25vqxkm8uLGNmyv6Bk3oFeI6MNcrx3XY+rhAXIfdX22YGmboXsOmS7Dq1R/ybQsdBOsHtdauUkw98DWVdO4/0fic6Z7cj9oeF4iHfFNAtwWqqXqc623hyq3Gwy93rppo9ND+UPUn76T634ds4T/PZudv6OP7U7Va2vD5PuPBk7r1if6mRESbbtlz7cZfxlyMaKvatK8RrOuHbka0QtzMPIkoENe1zPxd0DdJ9M2S8CvEJ8xaYTw0mBXiz/j/cHgbAggggAACCCCAAAIIIIAAAghYJkAg/oyUEQXiui/yb6oftu59HbLdU6uay9Ttrh5Ql1wmDetkvKxDqZoVi3p6g+u2AToQ0w+sDNnWbNotfQJmqJYp+SWgz9O1THneQLxFt1HGQwZXzhoSRufshV9VEPe60a9bh203VEuXkAd+huxYrEYXY2Vz/1AtMkIPogPx66q1w/ZPxopuG6G3C2p1ue4N3blFdeMhnXqFqe5vvXXZmDAPDNStRGLEeMXo9aw3s6Fz+EscUSCuHwaYX/VN1gFz+JD2tGrfolei61XvZq+V2WML6SE+b3xvow90yBbSqkM/0FD3OQ+/EluvttWh9KzRPdQDJNMbPbmfNPfCB+JT5q8R3coifA9xPe92qFX/OtSMFi1qhM669Uy9dv4yYUhHKV4wu+e49UNCr13/2xPiV2vWz3ALPbf12O36jDPVQ1y350n/wbue8XU//iRvvRGmTY5+4OtG9S2LtO+lMObUox6mGTLI4wJxHX4Pm7DA8xBc/R69klu3SWlSq6xMnrfGeJimvikTsoX/PJuZv/obFV8rw/LqhlfoTbeE+U7dnHnUiuk6bYfI7+pvzKrZQ4zgO/SmH+ZZrEZXdTMrk/pmQTtPIK7/7hRVn0m9mZknjwrEzfxd2LbrkHTsN0EmDu1kPPAzZNM3m/RNJ3qIh/9rxM8IIIAAAggggAACCCCAAAIIIOBtAQLxZxSPKBDfc+Bb0aGRfshgQ9U25M6dO6IfMrhuyx6ZN76PZM/0vlGtuAqt9KpfvWpWtxlZpEI4/XDD8YM7SGbVpkEHhms2BcutW3fknuolrvtt6zYqZnuIP28gfuCbE8ZK2I/KFTZW3urgLXj/UaPlgW+rmkaQqXtIB81ZLT3VAz9zq97fOvQM3n9EhYkLjf7KpQrnjFBWn8PNW7ckR+Y0qj9xJdErfPW4B1XNDYtGGmGnDuSqNOlrPIi0c4saxmvH1cMGdTuIdO+nMEJYvZkNncMfSESBuN5Hr2DVIXHXljXUwwmzqGO7I8vX7TBWvusWGhnSvGsE9Wauldlj0wFyvkrtpXWDSsYDRUNvIX26dRhfXa1W1ivBdQ/rdZv3iH54ZPe2taWxalGjNzNzL3wgrsfSD6VMrR5q2LNdXWNF99ZdB1Vv8KVqBXR1aV63/GOddYuZ02cuGO05dGj9q+ovr8Ppn85dUg8+DTRaZoT0fde9qEsXzaVa61w1VrafUfs8qWXK5i++Mm4k+bauacz/VRt2GQ9cDfRTD9FU7YVCNv0Q0pK1HzzgcoF62Kb+DD1u04G4Hmv2mP/1nv/v5k3RD1CdvWSDen8q9TDJ7sYDRUM23fZoxadfGKvDw39zIfznWb/nSfM35GGtur1QZfXgXN3TXvcE76+OrUzR3OLXqUGEp6AfTNmqxyhJmjihaq9UQn1bQ9+oEfnp7CVZoP6OXLh0RT1wtI9xPUIe3FlPtWHSN3r0df7qm+NP/Bv1qEDczN8FvYJd3wDUK/T137f4cV9Tf8t2y5adB+TS5athAnE9//TDdPUNKP03hQ0BBBBAAAEEEEAAAQQQQAABBBDwhgCB+DMqRxSI66F0mD1VhaonVF9c3V5EB1O6p3He7Ok9lZat/VxGqdDx3r17xkpOvTJY90b+Qr1XB+C6b7gOxPYePCaDRs81HpCnHzDprUBcH+iXB78zHoL33Q9njDYuur+3fvhfTfU/vemHfurwUAeLerWr7jeuW6nUrVrceCjhozZ9DtnUwwN1sP3xii1yRYWoOuj1bV1LrSzP6nmbDvP0w/n0cfzz302jRUSJQjmkXeOqnt7EZkPn8MfyqEBc77d49TZZvGqb8bDJWCqkTJs6hbRSQbV+4KfedIBt5lo9zbHp1dJXVTi4ZOqAh9h0L/X56mGih46eVCuv/5I31ENEM6RJaaxWDrnBEvKmJ8298IG4fp9e/a7bdHx1+LjcvHlb3kmWSOqoaxi6B/ejzuUf9TDEibNXyuYdXxlBvW6dkitrGiNMT5YkoXFY+hsS42d+YvT9vqFWWuve7ToA1avQC+XN7Hl4ZfgT7z1shnx38oz0UkG9vmGiH7Kqx6//USlpVqfcQ06NOw8XvUI69Er0R81BHYjr4wm96ZXlSdVNKt0rXt/MCt9yRfvoGnq1frEC/1sRr8cI/3nWN1PMzN/tu7+WmerbELo9kG6RpOd46SK5pG2jysa3MB616eBc9zLXx3Tl6p/qxttdSfBmfMmVJa26iVFOUr/7tuetfsNnymeqJ7y+OfGZukkRP95rT/wb9ahA3MzfBb2P/pvhP+5j49/YKhgvX/xDtXo/uWj3PWuDjBsvhpu62TRk7DzV/z3sivtHnji/QAABBBBAAAEEEEAAAQQQQAABBCwQIBC3AJEhzAs8KdQ3P9KLs2dI/3K98riA6qPO9nQCuuWOvkE1pHtTqVgq39O92eTe+sbUl4e+Vyvfh3v6/Jt8K7tFIKC/GVJePUg3j7pROKRHU4wQQAABBBBAAAEEEEAAAQQQQAABrwkQiHuNmkJagEA84nmgA9dDajX4kikDPCvgmTGPF9Cr0s+c+0WGjJtvtPXR7VJ0z3OrNt1X/qJq86Ef7qlXwk8O6CKFI3jgqlX1XqZx9MM3F6hviOgV/QnV6nY2BBBAAAEEEEAAAQQQQAABBBBAwFsCBOLekqaOIUAgHvFEuH37jjTtGiiJVNuMUf3bMFtMCHQZMEl27Tui2hFlkIHdGod5AKuJtz9xlx9U2yP9UFD9AE3d3/1xrYCeOBg7eAT2HjhmPFR11pgH7ZPYEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KEIh7U5taCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArYJEIjbRk9hBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAW8KeCUQD951VoJ3nvXmeVELAQQQcK3AtWs3JV68GK49fg4cAQQQQAABBBBAwLkC/Lemc68NR4YAAs4TKFAwhRQolMJ5B8YRPZeAVwLx4UODJcA/+LkOlDcjgAACCCCAAAIIIIAAAggggAACCCCAAALeEujlV0B69y3grXLU8ZIAgbiXoCmDAAIIIIAAAggggAACCCCAAAIIIIAAAu4RIBB3z7V6miMlEH8aLfZFAAEEEEAAAQQQQAABBBBAAAEEEEAAgZdCgED8xbzMBOIv5nXlrBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgOQQIxJ8Dz8FvJRB38MXh0BBAAAEEEEAAAQQQQAABBBBAAAEEEEDAHgECcXvcI7uqowPxNu1zSvoMCaVDmw1y9pcukjfHTLl44UZkmzA+AggggAACCCCAAAIIIIAAAggggAACCLzkAgTiL+YEIBB/Ma8rZ4UAAggggAACCCCAAAIIIIAAAggggAACzyFAIP4ceA5+qyMC8YaNs0hn37wS/ZWocu7sNWnZdJ1cOH9DWCHu4JnDoSGAAAIIIIAAAggggAACCCCAAAIIIPACCxCIv5gX1/ZA/M0EMeX7U+0lZ5bpcvbnazJxSlm5c+eedOmwiUD8xZxznBUCCCCAAAIIIIAAAggggAACCCCAAAKOFyAQd/wleqYDtD0Q10ft4xNd/vvvjnECNWqll5MZTKsAACAASURBVLoNMknVCksJxJ/pkvImBBBAAAEEEEAAAQQQQAABBBBAAAEEEHheAQLx5xV05vsdEYj36J1fypR7T+S+SPzXfeTcuWtSudwSAnFnzhmOCgEEEEAAAQQQQAABBBBAAAEEEEAAgRdegED8xbzEtgfilaqkET25yhRfINev35Ta9TJKHfU/AvEXc8JxVggggAACCCCAAAIIIIAAAggggAACCLhBgEDcDVfp6Y/R9kC8ZescUrxkSqn10ScSL14MmbuwisSNE0OKF57PCvGnv568AwEEEEAAAQQQQAABBBBAAAEEEEAAAQQsEHBqIL5t1yHpN3KW7FkbZMFZvnxD2B6I64dqLltRQ+LF95Hz56/L0ME7ZdHSj2TJom/l4sUbkj5DQunQZoOc/aWL5M0xUy5euPHyXSXOGAEEEEAAAQQQQAABBBBAAAEEEEAAAQS8KvAiBuL//ndL1m3ZIzUrFvGqpZOK2R6IOwmDY0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBLTAixiI7z1wTMZMXy7Lpw98aS8ygfhLe+k5cQQQQAABBBBAAAEEEEAAAQQQQAABBBB4lICTA/H+o2ZL9za1ZfzMT0Sv+i6SL6sM6NpYDnxzXDr2myi7Vk2Q12LHNE7tv5u3pEDl9tKyXkWZPG+13Ll7T3xivCJLpw2UpIkSyMgpS2THnq/l2vW/JXP6VDKkRzNJliSh8d59X38vIycvkZ/OXpKYPjGkVJFc0rt9XXnlleiunTgE4q69dBw4AggggAACCCCAAAIIIIAAAggggAACCESWgJMD8W5DpkiJgtmld4f68uf1v6SF70ipUPJD6djsIylWo4t0av6RVCtXyKDRPccHjp4jn68YJ4tWblUtU/Z6VogPGj1XTp25KKMHtJV4cWPL1PlrZcP2ffLZgkCJGjWKFKzSQTo0rSbVyheSK1evSQe/8VK1bEGpV61EZLFH+rgE4pFOTAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcJuAkwPxjv0myJYloyRp4gQG66TZq2TrroOyeo6/jJq6VI6d+EnmjO1l/K7n0GkSL85r0qdjPZm/fJMnEL99+47kLt9GJg/rLB/mzGDse1etHs9TvrVMDugq2TO/L7nLtpaAPi2kdJHcnt9HixbVbZcyzPESiLv68nHwCCCAAAIIIIAAAggggAACCCCAAAIIIBAZAk4OxH0HT5bDW2Z6TnvVhl0yImix7F0/WU6fuSCVm/SVrctGy5vx40oBtcp71pgekjFNyjCB+IVffpNStbtFSOffs5mxEnzBii1GwP5+ymRSIHcmqVKmgLyTLFFkcHttTAJxr1FTCAEEEEAAAQQQQAABBBBAAAEEEEAAAQTcIuDkQLzP8Bmy79MpYQLxcTM+kS9Wjjdeq9lqoJQtmkfeS/m2DJ+0SD79eLjxeugV4r/9fk0KV+skK2cNkTSpkz/ysuj9vtj7jWzffUh27z8qYwa1l2L5s7nlMj50nATirr10HDgCCCCAAAIIIIAAAggggAACCCCAAAIIRJaAkwNx3TJFh98J3ohnnL5umbJr3xH1oMwBxs+LVm2T9Vv2SMoUSSR50rekdcNKxuuhA3H9cy7VEqV/l4ZSsVQ+D6NeOf62asVy//59ufrHdU8NvcOwCQvk4i9XZdKwTpHFHunjEohHOjEFEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBtAk4OxPVDNSuXyi8929dVofU1adx5uNSqVFRa1KtgMF+7/rcUqd5ZXokezVgBnixJQuP1ZWs/lynz18iqWf4SK2YMmTB7pfHQzaCAzkZw/sn6HTJ+5grZunS0XP7tD6nZcqBMHNpRcmdLZ4zZTbVqSZM6hfRSdd262RqI60nFhgACCCAQscC9e/eNJzqzIYAAAgjwd5I5gAACCDyLwF3135PR+O/JZ6HjPQgg8JII3LlzT0YF7nnk2To1EN+0Y7/q671MWjeoJJPmrJR//7slJQrmMFZ6v/rqK57z6dRvovz+53X5eKKf57VLl68a4fmVq3/KjFHdJUOadyVQ9R7XY96+fVfSvpdcurepLZnTpzbes3pjsExfsE4uqvfFiR1TCn+YVXp3qCexY/m4dpbYFojrCVWwcArZtfOsa/E4cAQQQCBSBe6r0cnDI5WYwRFAwOUC/J10+QXk8BFAILIF7t9T/zkZNbKrMD4CCCDgXoFChd+RLZtOy9hRX0Z4Ek4NxM2K11Cru+tVK2E8CJPtfwK2BuI66AnwD+Z6IIAAAggggAACCCCAAAIIIIAAAggggAACXhUYMLiw3Lh+84ULxPWKcd0rfOVnO2XtvGESI9Sqca8CO7QYgbhDLwyHhQACCCCAAAIIIIAAAggggAACCCCAAAKRJ/AiBuL//HtT8pRvLanfeVuG+7VULVBSRB6gS0cmEHfpheOwEUAAAQQQQAABBBBAAAEEEEAAAQQQQODZBV7EQPzZNV6edxKIvzzXmjNFAAEEEEAAAQQQQAABBBBAAAEEEEAAgf8XIBB/OacCgfjLed05awQQQAABBBBAAAEEEEAAAQQQQAABBF5qAQLxl/PyOy4QL1f+PRk8tKgkSvyaHD1yWTq23SCnTv1hXJ3OvnmlRcvsEiNGNFm75oR077pF7t69b/yuRq30Mn5SGWnT8lNZs+qE8dqrr0aT3651l5s373qu7mfrT0qj+qtfzqvNWSOAAAIIIIAAAggggAACCCCAAAIIIICAIUAg/nJOBEcF4knfjiP7DjaXGlWXyb4vL0jf/oUkz4dvS4Uyi6VAoRQycXJZKV18gfz91y1ZtOwjWb/2B5kx7ZC075hL8hdIYYTo48d+6QnE30oUW/YdaC4pk49/Oa8uZ40AAggggAACCCCAAAIIIIAAAggggAACEQoQiL+cE8NxgXjuPG/L6pXHjauROUsiWbaiunoaapCMHldKzp+/LmNHfWn8rmy596RD59xSrtQiyZT5LbWa/FdZ+1ltmTXja08g/v77b8jy1TUka4ZpL+fV5awRQAABBBBAAAEEEEAAAQQQQAABBBBAgECcOeARcFQgHv66dO6aR7JkTSxNGq6RNZ/WlpnTD8m6NT8Yu73/wRvy6ca68kGqSZ63hQ/Ec+ZKIouWfiQ//HBV0qdPKEeP/iq+nTZ5WrAwDxBAAAEEEEAAAQQQQAABBBBAAAEEEEDg5RRw6wrxazdT2XLB4sX40Za6Vhd1bCBevERKGTuxtJQpsVAuXrghm7c3kJHDd8uWzQ/gkyWPK3u/aibJE499ZCCeJu2b0rZ9Lpk0Yb+c/fma9PYrIKXLvicf5ppltSPjIYAAAggggAACCCCAAAIIIIAAAggggICLBFwbiP9rUyAek0Dc9PQePjRYAvyDw+zfS4XTEkUeel3vpB+Q2atPAdVLfLn8+OODB2quXl9L5sw67GmHosPuNetrG+1UQrbwK8TDH2D06FHll6u+kjHtFPnl0l+mj58dEUAAAQQQQAABBBBAAAEEEEAAAQQQQODFEnBrIH79b3sC8bixCcRNfwKeJhAvV+F96TegkFSusER+vfy3p8aI0SXlzz/+lWH/H6zXrJ1B6tbPKFUqLH1kIJ4ocWyJH99HThy/auzz6qvR5PLv3ST1OxPk96v/mj5+dkQAAQQQQAABBBBAAAEEEEAAAQQQQACBF0vAtYH4DZsC8TgE4qY/AWYDcR1e6zYopUssMFqchN7y5ksms+ZUkpLFPpa/btwyHqA5c9ohWfDx0UcG4iVLpZJxE8tI2VIL5fy569KnbwEpWjylFC883/SxsyMCCCCAAAIIIIAAAggggAACCCCAAAIIvHgCbg3Eb1y3JxCPE5dA3PSnwGwgXr9BJgmaVl5u3bobZuw0qSbK77//Jx0755Y27XKJbn2yfNl34tdrm9y/L7JzT2NJpx6a+corUeXu3fty7959adF0naxeeVy6dMsrrVrnEB+f6HLo0CXp3GHTQ2G76RNhRwQQQAABBBBAAAEEEEAAAQQQQAABBBB4IQRcG4j/mdoW/zjxT9tS1+qijn2optUnyngIIIAAAggggAACCCCAAAIIIIAAAggggECIgFsD8b9+tycQf+0NAnHTnx6zK8RND8iOCCCAAAIIIIAAAggggAACCCCAAAIIIIDAcwi4NhD/zaZAPAGBuOnpRiBumoodEUAAAQQQQAABBBBAAAEEEEAAAQQQQMALAm4NxP++Yk8gHjshgbjpaUkgbpqKHRFAAAEEEEAAAQQQQAABBBBAAAEEEEDACwKuDcQv2xSIJyIQNz0tCcRNU7EjAggggAACCCCAAAIIIIAAAggggAACCHhBwK2B+D+X7AnEYyUhEDc9LQnETVOxIwIIIIAAAggggAACCCCAAAIIIIAAAgh4QcC1gfiF97yg83CJWG+fsqWu1UWj3Feb1YOGH49APLKFGR8BBBBAAAEEEEAAAQQQQAABBBBAAAEEnkbArYH4v+ftCcRjJiMQNz2/CMRNU7EjAggggAACCCCAAAIIIIAAAggggAACCHhBwLWB+FmbAvEUBOKmpyWBuGkqdkQAAQQQQAABBBBAAAEEEEAAAQQQQAABLwi4NRD/74w9gbjPuwTipqclgbhpKnZEAAEEEEAAAQQQQAABBBBAAAEEEEAAAS8IuDYQ/9GmQDwVgbjpaUkgbpqKHRFAAAEEEEAAAQQQQAABBBBAAAEEEEDACwKuDcRPv+8FnYdL+KQ+aUtdq4vyUE2rRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZA/OZJewLxGO8TiJue1KwQN03FjggggAACCCCAAAIIIIAAAggggAACCCDgBQHXBuInbArE0xCIm56WBOKmqdgRAQQQQAABBBBAAAEEEEAAAQQQQAABBLwg4NZA/Nb39gTir6YjEDc9LQnETVOxIwIIIIAAAggggAACCCCAAAIIIIAAAgh4QcC1gfh3NgXi6QnETU9LAnHTVOyIAAIIIIAAAggggAACCCCAAAIIIIAAAl4QcGsgfvtbewLxVzISiJuelgTipqnYEQEEEEAAAQQQQAABBBBAAAEEEEAAAQS8IODaQPzIB17QebjEK5l/sKWu1UWj3Feb1YOGH49APLKFGR8BBBBAAAEEEEAAAQQQQAABBBBAAAEEnkbArYH4ncP2BOLRsxKIm55fBOKmqdgRAQQQQAABBBBAAAEEEEAAAQQQQAABBLwg4NpA/GubAvFsBOKmpyWBuGkqdkQAAQQQQAABBBBAAAEEEEAAAQQQQAABLwi4NRC/e9CeQDxaDgJx09OSQNw0FTsigAACCCCAAAIIIIAAAggggAACCCCAgBcEXBuIf2VTIJ6LQNz0tCQQN03FjggggAACCCCAAAIIIIAAAggggAACCCDgBQHXBuL703hB5+ES0XKfsKWu1UV5qKbVooyHAAIIIIAAAggggAACCCCAAAIIIIAAAo4XcG0g/mVaW2yj5T1uS12rixKIWy3KeAgggAACCCCAAAIIIIAAAggggAACCCDgeAHXBuJ7bArE8xGIm57UtEwxTcWOCCCAAAIIIIAAAggggAACCCCAAAIIIOAFAdcG4rvTeUHn4RLR8n9vS12ri7JC3GpRxkMAAQQQQAABBBBAAAEEEEAAAQQQQAABxwu4NhDfld4W22gFv7OlrtVFCcStFmU8BBBAAAEEEEAAAQQQQAABBBBAAAEEEHC8gGsD8Z0ZbLGNVuiYLXWtLkogbrUo4yGAAAIIIIAAAggggAACCCCAAAIIIICA4wVcG4jvsCkQL0IgbnpS00PcNBU7IoAAAggggAACCCCAAAIIIIAAAggggIAXBFwbiG/P6AWdh0tEK/atLXWtLsoKcatFGQ8BBBBAAAEEEEAAAQQQQAABBBBAAAEEHC/g2kB8WyZbbKMVP2pLXauLEohbLcp4CCCAAAIIIIAAAggggAACCCCAAAIIIOB4AdcG4lsy22IbreQRW+paXZRA3GpRxkMAAQQQQAABBBBAAAEEEEAAAQQQQAABxwu4NhDfbFMgXopA3PSkpoe4aSp2RAABBBBAAAEEEEAAAQQQQAABBBBAAAEvCLg2EN+YxQs6D5eIVuabMC9u/Hy/TJ67Wm7dviNvJ0kgA30bS/Kkb8nNW7dlwKg5snv/UYnpE0Oa1y0vNSsVNd577uKv0m/EbDlx6qwkTZxA/Do1kOyZ3pfj6ufO/SfJxkUjIv3cWCEe6cQUQAABBBBAAAEEEEAAAQQQQAABBBBAAAGnCbg2EP8sqy2U0cod9tS9fOUPqdzETz6ZMUiSJUkoc5dtlF1fHpFZY3pI0JxVcurMBQno01Ku/nFd6rXzl+kju8kHqZJJo04BUqxAdqlfraTsOXBMheOzZMvS0XJa7U8gbstlpSgCCCCAAAIIIIAAAggggAACCCCAAAIIvAwCbg3E73yazZbLE7381566B745IUPGzZc1c4Yar5386bw06zpCdq6aIJUa9ZEhPZtJlvSpjd+NCFossWP5SO0qxaVM3R6yd32QRI8Wzfhd9RYDpEfbOhI3TixPIH77zl1p7jtCCuXNIs3qlLP8XFkhbjkpAyKAAAIIIIAAAggggAACCCCAAAIIIICA0wVcG4ivsykQr/i/QPzGX/9I+Qa9ZGpgV0n3/jsy7eN18tO5SxLo10qyFG9mBOPx4sY2psDSNdvlwJETUqdKCRk8Zp6snuPvmRq+gyZLnuzpJXO6VJ5AfJDa5+7duzK4e9NImUIE4pHCyqAIIIAAAggggAACCCCAAAIIIIAAAggg4GQB1wbia7Pbwhq90qEwdddv2St9hs+Q2DF9JGbMGDJvfG9J/NabkrVEMzm4abr4xHjV2H/Npt2ydecBqVO1uEyYuUKWTB3gGadv4CyjlUrubOmMQLxJrTKy+YsDMm2kr2cVudUnSyButSjjIYAAAggggAACCCCAAAIIIIAAAggggIDjBVwbiK/OYYtt9CoHPXV/+PG8tOszTuaN62U8HHPTjq9kwqwVsm5egGQr2Vx2rBwnr8eLY+y/ePU2OfztKdUypZh62OZcWTv3QZsVvXUdGCT5cmaUjGlTSv32/hI1alQpmj+bsdI8sjYC8ciSZVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQcKyAawPxlTltMY1e7YCn7vzlm+Tb4z/JiH6tPa/pleEbF4+U1j3GSO+O9SSPWvWtt/4jZxsP3qxRsYiUqOkrwWsmSUyfB6vHy9brIcN6t1A/x5CmXQNlxYzB6t8R4tu6ppQoGDnBP4G4LdOHoggggAACCCCAAAIIIIAAAggggAACCCBgp4BrA/EVNgXiH/0vEN9z4FtjtffyaQMlfrzXRP/cbfAUo3f4zIWfyuFjJ2Xc4A5y/uIVadQ5QBYF9ZN3kiUyHryZK2taaVGvgmz4fJ/RQmXDwhHGQzl1y5SNi0bIoaMnpcuASbJqtr+8Ef/BKnMrNwJxKzUZCwEEEEAAAQQQQAABBBBAAAEEEEAAAQRcIeDaQHx5Llt8o9f4Kkzd6QvWyaoNu4zX4rwWS3q0rSM5s6SRW7duG2H5rn1HJHYsH2nbuIpULp3f2O/CL79Jn4AZcuL0OUme9C0Z6NtYMqR5V46fOusJxPV+gUGL5dLlqypUb2/5uRKIW07KgAgggAACCCCAAAIIIIAAAggggAACCCDgdAHXBuLLcttCG73mflvqWl2UQNxqUcZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAccLuDYQX5LHFtvotffZUtfqogTiVosyHgIIIIAAAggggAACCCCAAAIIIIAAAgg4XsC1gfgimwLxugTipif18KHBEuAfHGb/Xn4FRKLIQ6+bHpQdEUAAAQQQQAABBBBAAAEEEEAAAQQQQACBZxRwbSC+MO8znvHzvS16vS+fbwCHvJsV4g65EBwGAggggAACCCCAAAIIIIAAAggggAACCHhPwLWB+Mcfeg8pVKXoDfbaUtfqogTiVosyHgIIIIAAAggggAACCCCAAAIIIIAAAgg4XsC1gfj8fLbYRm+4x5a6VhclELdalPEQQAABBBBAAAEEEEAAAQQQQAABBBBAwPECrg3E59oUiDcmEDc9qekhbpqKHRFAAAEEEEAAAQQQQAABBBBAAAEEEEDACwJuDcRvz87vBZ2HS7zSdLctda0uygpxq0UZDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQcL+DaQHxWAVtsX2kWbEtdq4sSiFstyngIIIAAAggggAACCCCAAAIIIIAAAggg4HgBtwbit2YWtMX21ea7bKlrdVECcatFGQ8BBBBAAAEEEEAAAQQQQAABBBBAAAEEHC/g2kB8eiFbbF9tudOWulYXJRC3WpTxEEAAAQQQQAABBBBAAAEEEEAAAQQQQMDxAm4NxG9OK2yLbYxWX9hS1+qiBOJWizIeAggggAACCCCAAAIIIIAAAggggAACCDhewLWB+JQittjGaLPDlrpWFyUQt1qU8RBAAAEEEEAAAQQQQAABBBBAAAEEEEDA8QJuDcT/m1zUFluftp/bUtfqogTiVosyHgIIIIAAAggggAACCCCAAAIIIIAAAgg4XsCtgfi/QcVssY3Zbrstda0uSiButSjjIYAAAggggAACCCCAAAIIIIAAAggggIDjBVwbiE8sbottzA7bbKlrdVECcatFGQ8BBBBAAAEEEEAAAQQQQAABBBBAAAEEHC/g1kD8nwklbLGN1XGrLXWtLkogbrUo4yGAAAIIIIAAAggggAACCCCAAAIIIICA4wVcG4iPsykQ70wgbnpSDx8aLAH+wWH27+VXQCSKPPS66UHZEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQeEYBtwbif48t+Yxn/Hxvi91ly/MN4JB3s0LcIReCw0AAAQQQQAABBBBAAAEEEEAAAQQQQAAB7wm4NhAfU8p7SKEqxe662Za6VhclELdalPEQQAABBBBAAAEEEEAAAQQQQAABBBBAwPECbg3E/xpV2hbb17ptsqWu1UUJxK0WZTwEEEAAAQQQQAABBBBAAAEEEEAAAQQQcLyAawPxkWVssX2t+0Zb6lpdlEDcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EL8RWNYW2zg9N9hS1+qiBOJWizIeAggggAACCCCAAAIIIIAAAggggAACCDhewLWB+PByttjG6fWZLXWtLkogbrUo4yGAAAIIIIAAAggggAACCCCAAAIIIICA4wXcGohfH1beFtu4fT61pa7VRQnErRZlPAQQQAABBBBAAAEEEEAAAQQQQAABBBBwvIBrA/GhFWyxjeu33pa6VhclELdalPEQQAABBBBAAAEEEEAAAQQQQAABBBBAwPECbg3Er/lXtMU2Xt91ttS1uiiBuNWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwbSA+uJIttvH6r7WlrtVFCcStFmU8BBBAAAEEEEAAAQQQQAABBBBAAAEEEHC8gFsD8T8HVbbFNv6ANbbUtboogbjVooyHAAIIIIAAAggggAACCCCAAAIIIIAAAo4XcG0gPqCKLbbxB622pa7VRQnErRZlPAQQQAABBBBAAAEEEEAAAQQQQAABBBBwvIBbA/E/+le1xfb1watsqWt1UQJxq0UZDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQcL+DaQLyfTYH4EAJx05N6+NBgCfAPDrN/L78CIlHkoddND8qOCCCAAAIIIIAAAggggAACCCCAAAIIIIDAMwq4NRD/3a/aM57x873tjaErn28Ah7ybFeIOuRAcBgIIIIAAAggggAACCCCAAAIIIIAAAgh4T8C1gXifj7yHFKrSG8NW2FLX6qIE4laLMh4CCCCAAAIIIIAAAggggAACCCCAAAIIOF7ArYH41V7VbbF9c/gnttS1uiiBuNWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwayD+W88attgmCFxuS12rixKIWy3KeAgggAACCCCAAAIIIIAAAggggAACCCDgeAG3BuJXetS0xTbhiGW21LW6KIG41aKMhwACCCCAAAIIIIAAAggggAACCCCAAAKOF3BtIN69li22CUcutaWu1UUJxK0WZTwEEEAAAQQQQAABBBBAAAEEEEAAAQQQcLyAWwPxX31r22L71uglttS1uiiBuNWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwayB+uWsdW2wTjVlsS12rixKIWy3KeAgggAACCCCAAAIIIIAAAggggAACCCDgeAG3BuK/dKlri23isYtsqWt1UQJxq0UZDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQcL+DWQPxSZ3sC8STjCMRNT+rhQ4MlwD84zP69/AqIRJGHXjc9KDsigAACCCCAAAIIIIAAAggggAACCCCAAALPKODaQLxjvWc84+d7W5IJC59vAIe8mxXiDrkQHAYCCCCAAAIIIIAAAggggAACCCCAAAIIeE/ArYH4xQ71vYcUqlLSiQvC1L10+ar0Dpgh3x7/UZInfUsC+rSUtO+lkJu3bsuAUXNk9/6jEtMnhjSvW15qVipqvPfcxV+l34jZcuLUWUmaOIH4dWog2TO9L8fVz537T5KNi0ZE+rkRiEc6MQUQQAABBBBAAAEEEEAAAQQQQAABBBBAwGkCbg3EL7RvYAvl25M+DlO3QYdhUix/NqlfvZSs37JHvjp8XIb1biFBc1bJqTMXjID86h/XpV47f5k+spt8kCqZNOoUIMUKZJf61UrKngPHVDg+S7YsHS2n1f4E4rZcVooigAACCCCAAAIIIIAAAggggAACCCCAwMsg4NZA/Hy7hrZcnmRB8z11z1+6Ig07DpOtS8dI1KiqL3aorVKjPjKkZzPJkj618eqIoMUSO5aP1K5SXMrU7SF71wdJ9GjRjN9VbzFAerStI3HjxPIE4rfv3JXmviOkoMDYmQAAIABJREFUUN4s0qxOOcvPlRXilpMyIAIIIIAAAggggAACCCCAAAIIIIAAAgg4XcCtgfi5No1soU0+ZZ6n7rZdh2TBys1GqxS90juF+rdvl4aSKkUSyVK8mexcNUHixY1t7L90zXY5cOSE1KlSQgaPmSer5/h7xvEdNFnyZE8vmdOl8gTig9Q+d+/elcHdm0bKeRKIRworgyKAAAIIIIAAAggggAACCCCAAAIIIICAkwVcG4i3bmwLa/Kpcz11V23YJUPGzpfJw7tInmzpZN7yTbJ6Q7AsnzFIspZoJgc3TRefGK8a+6/ZtFu27jwgdaoWlwkzV8iSqQM84/QNnGW0UsmtxtAtU5rUKiObvzgg00b6elaRW32yBOJWizIeAggggAACCCCAAAIIIIAAAggggAACCDhewK2B+NlWTWyxTTFtjqfu1l0HZcq8NbJi5mDjtbt370mO0i1kx4rxUrhaJ9mxcpy8Hi+O8bvFq7fJ4W9PqZYpxdTDNufK2rlDPeN0HRgk+XJmlIxpU0r99v6q/UpUKar6kgf6tYq0cyQQjzRaBkYAAQQQQAABBBBAAAEEEEAAAQQQQAABpwq4NRD/uUXktBJ50nV6Z8Zszy7HT52V9n7jVQ/x0Z5APHupFhK8ZqLoh2327ljPWDmut/4jZ0uyJAmlRsUiUqKmr9pnksT0ebB6vGy9HsaDOGP6xJCmXQNlxYzB6t8R4tu6ppQomONJh/RMvycQfyY23oQAAggggAACCCCAAAIIIIAAAggggAACbhZwayB+pnkzW9jfnTkrTN2qTftKwxqlpUqZArJgxRZZt2WPLJs2UKbOXyuHj52UcYM7yPmLV6RR5wBZFNRP3kmWSJqpsDtX1rTSol4F2fD5PqOFyoaFI+TkT+c9PcQPHT0pXQZMklWz/eWN+A9WmVu5EYhbqclYCCCAAAIIIIAAAggggAACCCCAAAIIIOAKAdcG4s1sCsRnhQ3Ez174VXTLk/OXrsh7774tQ3o0lZTqoZq3bt02WqPs2ndEYsfykbaNq0jl0vmNOXHhl9+kT8AMOXH6nPFAzoG+jSVDmndFrzjXPcQ3Lhph7BcYtFguXb6qQvX2ls8lAnHLSRkQAQQQQAABBBBAAAEEEEAAAQQQQAABBJwu4NZA/KemzW2hTTl7pi11rS5KIG61KOMhgAACCCCAAAIIIIAAAggggAACCCCAgOMF3BqI/9i4hS22qebOsKWu1UUJxK0WZTwEEEAAAQQQQAABBBBAAAEEEEAAAQQQcLyAWwPx041a2mKbet50W+paXZRA3GpRxkMAAQQQQAABBBBAAAEEEEAAAQQQQAABxwu4NRA/1bCVLbbvzZ9mS12rixKIWy3KeAgggAACCCCAAAIIIIAAAggggAACCCDgeAHXBuINWtti+97HU22pa3VRAnGrRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZA/GS9NrbYvr9wii11rS5KIG61KOMhgAACCCCAAAIIIIAAAggggAACCCCAgOMF3BqI/1C3rS22HyyabEtdq4sSiFstyngIIIAAAggggAACCCCAAAIIIIAAAggg4HgBtwbiJ+q0s8U2zeIgW+paXZRA3GpRxkMAAQQQQAABBBBAAAEEEEAAAQQQQAABxwu4NhCvbVMgvoRA3PSkHj40WAL8g8Ps38uvgEgUeeh104OyIwIIIIAAAggggAACCCCAAAIIIIAAAggg8IwCbg3Ej9ds/4xn/HxvS7ts0vMN4JB3s0LcIReCw0AAAQQQQAABBBBAAAEEEEAAAQQQQAAB7wm4NRD/vkYH7yGFqpRu+URb6lpdlEDcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EP+uekdbbNN/MsGWulYXJRC3WpTxEEAAAQQQQAABBBBAAAEEEEAAAQQQQMDxAm4NxI991MkW2wwrxttS1+qiBOJWizIeAggggAACCCCAAAIIIIAAAggggAACCDhewK2B+LfVOttim3HlOFvqWl2UQNxqUcZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAccLuDUQP1qliy22mVaPtaWu1UUJxK0WZTwEEEAAAQQQQAABBBBAAAEEEEAAAQQQcLyAWwPxI5W72mKbec0YW+paXZRA3GpRxkMAAQQQQAABBBBAAAEEEEAAAQQQQAABxwu4NRD/ppKvLbZZ1o62pa7VRQnErRZlPAQQQAABBBBAAAEEEEAAAQQQQAABBBBwvIBbA/HDFbvZYpt13Shb6lpdlEDcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EP+6QndbbLOtH2lLXauLEohbLcp4CCCAAAIIIIAAAggggAACCCCAAAIIIOB4AbcG4ofK9bDFNvtnI2ypa3VRAnGrRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZA/GDZnrbY5tgQaEtdq4sSiFstyngIIIAAAggggAACCCCAAAIIIIAAAggg4HgBtwbiB8r0ssU258bhttS1uiiBuNWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwayC+v3QfW2xzbxpmS12rixKIWy3KeAgggAACCCCAAAIIIIAAAggggAACCCDgeAG3BuL7SvnZYptn81Bb6lpdlEDcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EP+yZF9bbPNu8belrtVFCcStFmU8BBBAAAEEEEAAAQQQQAABBBBAAAEEEHC8gFsD8b3F+9li++G2IbbUtboogbjVooyHAAIIIIAAAggggAACCCCAAAIIIIAAAo4XcGsgvqdYf1ts820fbEtdq4sSiFstyngIIIAAAggggAACCCCAAAIIIIAAAggg4HgBtwbiu4sOsMU2/+eDbKlrdVECcatFGQ8BBBBAAAEEEEAAAQQQQAABBBBAAAEEHC/g1kA8uMhAW2wL7LCnrtUnSyButSjjIYAAAggggAACCCCAAAIIIIAAAggggIDjBdwaiO8qbM9K7YJf2LMy3eqJRCButSjjIYAAAggggAACCCCAAAIIIIAAAggggIDjBdwaiO8saE8v70K77OldbvVEIhC3WpTxEEAAAQQQQAABBBBAAAEEEEAAAQQQQMDxAm4NxL8oMMQW28LB/Wypa3VRAnGrRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZAfEd+f1tsi+zua0tdq4sSiFstyngIIIAAAggggAACCCCAAAIIIIAAAggg4HgBtwbin+cbaott0T1+ttS1uiiBuNWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwayC+/cNhttgW29vHlrpWFyUQt1qU8RBAAAEEEEAAAQQQQAABBBBAAAEEEEDA8QJuDcS35Qmwxbb4vt621LW6KIG41aKMhwACCCCAAAIIIIAAAggggAACCCCAAAKOF3BrIL41tz2BeIn9BOKmJ/XwocES4B8cZv9efgVEoshDr5selB0RQAABBBBAAAEEEEAAAQQQQAABBBBAAIFnFHBrIL4l1/BnPOPne1vJr3o93wAOeTcrxB1yITgMBBBAAAEEEEAAAQQQQAABBBBAAAEEEPCegFsD8c05A72HFKpSqQM9balrdVECcatFGQ8BBBBAAAEEEEAAAQQQQAABBBBAAAEEHC/g1kB8U44RttiWPtjDlrpWFyUQt1qU8RBAAAEEEEAAAQQQQAABBBBAAAEEEEDA8QJuDcQ3ZBtpi23Zr7vbUtfqogTiVosyHgIIIIAAAggggAACCCCAAAIIIIAAAgg4XsCtgfhnWUfZYlvucDdb6lpdlEDcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EP80y2hbbMt/42tLXauLEohbLcp4CCCAAAIIIIAAAggggAACCCCAAAIIIOB4AbcG4uszj7HFtsKRrhHW3f/1cWnSZbismx8gqVIkkZu3bsuAUXNk9/6jEtMnhjSvW15qVipqvPfcxV+l34jZcuLUWUmaOIH4dWog2TO9L8fVz537T5KNiyK/PzqBuC3Th6IIIIAAAggggAACCCCAAAIIIIAAAgggYKeAWwPxtZnG2sJW6WiXh+reUuF3nbZD5MrVP2Xu+N5GIB40Z5WcOnNBAvq0lKt/XJd67fxl+shu8kGqZNKoU4AUK5Bd6lcrKXsOHFPh+CzZsnS0nFb7E4jbclkpigACCCCAAAIIIIAAAggggAACCCCAAAIvg4BbA/E1Ge0JxCt/+3AgrsPv+/dFNu88IOMGtzcC8UqN+siQns0kS/rUxjQaEbRYYsfykdpVikuZuj1k7/ogiR4tmvG76i0GSI+2dSRunFieQPz2nbvS3HeEFMqbRZrVKWf5VGSFuOWkDIgAAggggAACCCCAAAIIIIAAAggggAACThdwayC+Ov04W2irfNc5TN0z536RTv0nyrJpA6VGy4GeQDxL8Wayc9UEiRc3trH/0jXb5cCRE1KnSgkZPGaerJ7j7xnHd9BkyZM9vWROl8oTiA9S+9y9e1cGd28aKedJIB4prAyKAAIIIIAAAggggAACCCCAAAIIIIAAAk4WcGsgvirdeFtYq37fKUzdpl0CpUW9CvJhzgxSqbGfEYgnT/qWZC3RTA5umi4+MV419l+zabdsVSvI61QtLhNmrpAlUwd4xukbOMtopZI7WzojEG9Sq4xs/uKATBvp61lFbvXJEohbLcp4CCCAAAIIIIAAAggggAACCCCAAAIIIOB4AbcG4ivSTrDF9qPjHT11V28Mlr2qB3hg31bGayGBuG6ZoleI71g5Tl6PF8f43eLV2+Twt6dUy5Ri6mGbc2Xt3KGecboODJJ8OTNKxrQppX57f4kaNaoUzZ9NAv0ejBsZG4F4ZKgyJgIIIIAAAggggAACCCCAAAIIIIAAAgg4WsCtgfgnaSba4lr9RAdP3Q59J8ihoz9INBVg6+3P639JnNdiydCezWXcjE+kd8d6kket+tZb/5GzJVmShFKjYhEpUdNXgtdMkpg+D1aPl63XQ4b1bqF+jiFNuwbKihmD1b8jxLd1TSlRMEeknCeBeKSwMigCCCCAAAIIIIAAAggggAACCCCAAAIIOFnArYH48g8m2cJa44f2j6wbeoX41Plr5fCxk6qFSgc5f/GKNOocIIuC+sk7yRJJMxV258qa1mi1suHzfUYLlQ0LR8jJn857eogfOnpSugyYJKtm+8sb8R+sMrdyIxC3UpOxEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAVAm4NxJe9F2SLb81T7UwF4rdu3TZao+zad0Rix/KRto2rSOXS+Y33XvjlN+kTMENOnD5n9Bsf6NtYMqR5V46fOusJxPV+gUGL5dLlq0Zfcqs3AnGrRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZAfGnqybbY1jrd1pa6VhclELdalPEQQAABBBBAAAEEEEAAAQQQQAABBBBAwPECbg3EF6eaYottnR/b2FLX6qIE4laLMh4CCCCAAAIIIIAAAggggAACCCCAAAIIOF7ArYH4opRTbbGt+1NrW+paXZRA3GpRxkMAAQQQQAABBBBAAAEEEEAAAQQQQAABxwu4NRBf+K49gXi9MwTipif18KHBEuAfHGb/Xn4FRKLIQ6+bHpQdEUAAAQQQQAABBBBAAAEEEEAAAQQQQACBZxRwayC+IMW0Zzzj53tb/bOtnm8Ah7ybFeIOuRAcBgIIIIAAAggggAACCCCAAAIIIIAAAgh4T8Ctgfj85NO9hxSqUsNzLW2pa3VRAnGrRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZAfF6yGbbYNjrfwpa6VhclELdalPEQQAABBBBAAAEEEEAAAQQQQAABBBBAwPECbg3E57490xbbxhea21LX6qIE4laLMh4CCCCAAAIIIIAAAggggAACCCCAAAIIOF7ArYH4nKSzbLFtcrGZLXWtLkogbrUo4yGAAAIIIIAAAggggAACCCCAAAIIIICA4wXcGojPTjzbFtumvzS1pa7VRQnErRZlPAQQQAABBBBAAAEEEEAAAQQQQAABBBBwvIBbA/GZiebYYtv8chNb6lpdlEDcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EJ9hUyDegkDc/JwePjRYAvyDw7yhl18BkSjy0OvmR2VPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDg2QTcGohPe8ueFeKtfmWFuOmZRiBumoodEUAAAQQQQAABBBBAAAEEEEAAAQQQQMALAm4NxKcmnOsFnYdLtL7S2Ja6VhelZYrVooyHAAIIIIAAAggggAACCCCAAAIIIIAAAo4XcGsgPjmBPYF4298IxE1PalaIm6ZiRwQQQAABBBBAAAEEEEAAAQQQQAABBBDwgoBbA/FJb9oTiLe/SiBueloSiJumYkcEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8IKAWwPxiW/M84LOwyU6/N7IlrpWF6VlitWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwayA+3qZAvBOBuPk5zQpx81bsiQACCCCAAAIIIIAAAggggAACCCCAAAKRL+DWQHzc6/MjHyeCCp3/aGhLXauLskLcalHGQwABBBBAAAEEEEAAAQQQQAABBBBAAAHHC7g1EB8T355AvOufBOKmJzUrxE1TsSMCCCCAAAIIIIAAAggggAACCCCAAAIIeEHArYH46Hj2BOK+1wjETU9LAnHTVOyIAAIIIIAAAggggAACCCCAAAIIIIAAAl4QcGsgPjLux17QebhE9+sNbKlrdVFaplgtyngIIIAAAggggAACCCCAAAIIIIAAAggg4HgBtwbigTYF4j0JxM3PaVaIm7diTwQQQAABBBBAAAEEEEAAAQQQQAABBBCIfAG3BuLD49izQrzXDVaIm56VBOKmqdgRAQQQQAABBBBAAAEEEEAAAQQQQAABBLwg4NZAfNhrC7yg83CJPn/Vt6Wu1UVpmWK1KOMhgAACCCCAAAIIIIAAAggggAACCCCAgOMF3BqID41tTyDu9zeBuOlJzQpx01TsiAACCCCAAAIIIIAAAggggAACCCCAAAJeEHBrID4k1kIv6Dxcot8/9Wypa3VRVohbLcp4CCCAAAIIIIAAAggggAACCCCAAAIIIOB4AbcG4oNj2hOI9/+XQNz0pGaFuGkqdkQAAQQQQAABBBBAAAEEEEAAAQQQQAABLwi4NRAfaFMgPpBA3PysJBA3b8WeCCCAAAIIIIAAAggggAACCCCAAAIIIBD5Am4NxAf4LIp8nAgqDPqvri11rS5KyxSrRRkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBwv4NZAvF8MewLxITcJxE1PalaIm6ZiRwQQQAABBBBAAAEEEEAAAQQQQAABBBDwgoBbA3G/V+0JxIfeIhA3PS0JxE1TsSMCCCCAAAIIIIAAAggggAACCCCAAAIIeEHArYF4n1cWe0Hn4RLDbtexpa7VRWmZYrUo4yGAAAIIIIAAAggggAACCCCAAAIIIICA4wXcGoj3sikQH04gbn5Os0LcvBV7IoAAAggggAACCCCAAAIIIIAAAggggEDkC7g1EO8Z3Z4V4oF3WCFuelYSiJumYkcEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8IKAWwPx7tGWeEHn4RIj79a2pa7VRWmZYrUo4yGAAAIIIIAAAggggAACCCCAAAIIIICA4wXcGoh3i2pPID7qHoG46UnNCnHTVOyIAAIIIIAAAggggAACCCCAAAIIIIAAAl4QcGsg3tWmQHwMgbj5WUkgbt6KPRFAAAEEEEAAAQQQQAABBBBAAAEEEEAg8gXcGoh3tikQH0cgbn5SEoibt2JPBBBAAAEEEEAAAQQQQAABBBBAAAEEEIh8AbcG4p1sCsTHE4ibn5QE4uat2BMBBBBAAAEEEEAAAQQQQAABBBBAAAEEIl/ArYF4h6iLIx8nggoT79Wxpa7VRXmoptWijIcAAggggAACCCCAAAIIIIAAAggggAACjhdwayDezqZAPIhA3PycZoW4eSv2RAABBBBAAAEEEEAAAQQQQAABBBBAAIHIF3BrIN7WpkB8crhAfPvur2XMtGVy5eqfkva9FDKoWxN5N3liuXnrtgwYNUd27z8qMX1iSPO65aVmpaLGBT138VfpN2K2nDh1VpImTiB+nRpI9kzvy3H1c+f+k2TjohGRfuFZIR7pxBRAAAEEEEAAAQQQQAABBBBAAAEEEEAAAacJuDUQbx11kS2UU+/V9dT95crvUrmxn0wZ3lWyZnhPJs5eKYePnZQ5Y3tJ0JxVcurMBQno01Ku/nFd6rXzl+kju8kHqZJJo04BUqxAdqlfraTsOXBMheOzZMvS0XJa7U8gbstlpSgCCCCAAAIIIIAAAggggAACCCCAAAIIvAwCbg3EW9kUiE8LF4h/c+yUlC6S25gq35/8Wdr2HiuffzJOKjXqI0N6NpMs6VMbvxsRtFhix/KR2lWKS5m6PWTv+iCJHi2a8bvqLQZIj7Z1JG6cWJ5A/Padu9Lcd4QUyptFmtUpZ/lUZIW45aQMiAACCCCAAAIIIIAAAggggAACCCCAAAJOF3BrIN7CpkB8RqhAPPy1nbX4M/nuhzMyekBbyVK8mexcNUHixY1t7LZ0zXY5cOSE1KlSQgaPmSer5/h73u47aLLkyZ5eMqdL5QnEB6l97t69K4O7N42UKUQgHimsDIoAAggggAACCCCAAAIIIIAAAggggAACThZwayDeLOpCW1hn3asXYd1g1StcB93zJ/aRN1+PJ1lLNJODm6aLT4xXjf3XbNotW3cekDpVi8uEmStkydQBnnH6Bs4yWqnkzpbOCMSb1Cojm784INNG+npWkVt9sgTiVosyHgIIIIAAAggggAACCCCAAAIIIIAAAgg4XsCtgXhTmwLx2REE4uu37pUp89aoXuJdJMXbiYxrrleI71g5Tl6PF8f4efHqbXL421OqZUox9bDNubJ27lDP3Og6MEjy5cwoGdOmlPrt/SVq1KhSNH82CfRrFWnzh0A80mgZGAEEEEAAAQQQQAABBBBAAAEEEEAAAQScKuDWQLyxTYH43HCB+PbgQzJh1kqZObq7JHgjnucyV2nSV3p3rCd51KpvvfUfOVuSJUkoNSoWkRI1fSV4zSSJ6fNg9XjZej1kWO8W6ucY0rRroKyYMVj9O0J8W9eUEgVzRMrUIRCPFFYGRQABBBBAAAEEEEAAAQQQQAABBBBAAAEnC7g1EG8YdYEtrPPv1ffUvXbjb6natK98PNFP3k6cIMzxTJ2/Vg4fOynjBneQ8xevSKPOAbIoqJ+8kyyRNFNhd66saaVFvQqy4fN9RguVDQtHyMmfznt6iB86elK6DJgkq2b/X3v3GqJ5VccB/MzOPDuTvvASJRZrIqKhIUJEiLNbgnhB8UIoRqhrqZmZpXaZ2l74YpcZ71pes7wSRiWKKNoFSmfEJIKQCJPdiBVRqaX23Vx3mzVwXXZy//+Z8zzn/GY+A/tmOOf3Pc/n/FmWL3+e3ZgOPvB/b5nn/FGI59Q0iwABAgQIECBAgAABAgQIECBAgACBEAJRC/ELCxXij76nEH/i2fG06/u/O52BPe7697+8Pe33gcF3vhpl/OVX0v77DaUr15+Tzj71xHfWvfHWv9L3Ru9Pf9vyelrzkQ+n669bn449+vD06uat7xbiu9bdcNdj6c23t82X6ldlf5YU4tlJDSRAgAABAgQIECBAgAABAgQIECBAoHaBqIX4F/rLvCH+07ndb4jXfrfvdz6FeOTbc3YCBAgQIECAAAECBAgQIECAAAECBBYlELUQ/3z/o4v6vEvd9NjchUsdUcV+hXgV1+AQBAgQIECAAAECBAgQIECAAAECBAj0UiBqIX5BoUL8Zwrx5o/n2KaJNLpxYo8NIxuGU+pLe/2++VQrCRAgQIAAAQIECBAgQIAAAQIECBAgsDiBqIX4+YUK8Z8rxJs/aArx5lZWEiBAgAABAgQIECBAgAABAgQIECDQfYGohfh5/Y90H2eBhF/MXVQkN3eor0zJLWoeAQIECBAgQIAAAQIECBAgQIAAAQLVC0QtxD9XqBB/XCHe/Jn2hnhzKysJECBAgAABAgQIECBAgAABAgQIEOi+QNRC/NxChfgTCvHmD6VCvLmVlQQIECBAgAABAgQIECBAgAABAgQIdF8gaiF+Tv/D3cdZIOHJuYuL5OYO9ZUpuUXNI0CAAAECBAgQIECAAAECBAgQIECgeoGohfhZhQrxpxTizZ9pb4g3t7KSAAECBAgQIECAAAECBAgQIECAAIHuC0QtxM8sVIg/rRBv/lAqxJtbWUmAAAECBAgQIECAAAECBAgQIECAQPcFohbiZ/Q/1H2cBRKemVtfJDd3qK9MyS1qHgECBAgQIECAAAECBAgQIECAAAEC1QtELcRPL1SIP6sQb/5Me0O8uZWVBAgQIECAAAECBAgQIECAAAECBAh0XyBqIX5aoUL8OYV484dSId7cykoCBAgQIECAAAECBAgQIECAAAECBLovELUQP2Xgwe7jLJDw69lLiuTmDvWVKblFzSNAgAABAgQIECBAgAABAgQIECBAoHqBqIX4yQMPFLH97ewXi+TmDlWI5xY1jwABAgQIECBAgAABAgQIECBAgACB6gWiFuInDfykiO3vZr9UJDd3qEI8t6h5BAgQIECAAAECBAgQIECAAAECBAhULxC1EP/MwI+L2D4/e2mR3NyhCvHcouYRIECAAAECBAgQIECAAAECBAgQIFC9QNRCfG2hQnxcId78mfafaja3spIAAQIECBAgQIAAAQIECBAgQIAAge4LRC3ET+zc332cBRJenLmsSG7uUG+I5xY1jwABAgQIECBAgAABAgQIECBAgACB6gUDXxkRAAAIiElEQVSiFuIndH5UxPalmcuL5OYOVYjnFjWPAAECBAgQIECAAAECBAgQIECAAIHqBaIW4p/u3FfE9uWZLxfJzR2qEM8tah4BAgQIECBAgAABAgQIECBAgAABAtULRC3EP9W5t4jtH2euKJKbO1QhnlvUPAIECBAgQIAAAQIECBAgQIAAAQIEqheIWoh/snNPEds/zXylSG7uUIV4blHzCBAgQIAAAQIECBAgQIAAAQIECBCoXiBqIX585+4itn+eubJIbu5QhXhuUfMIECBAgAABAgQIECBAgAABAgQIEKheIGohftzqu4rYvjL91SK5uUMV4rlFzSNAgAABAgQIECBAgAABAgQIECBAoHqBqIX4J1bfWcT2L9NXFcnNHaoQzy1qHgECBAgQIECAAAECBAgQIECAAAEC1QtELcSPKVSI/1Uh3vyZHts0kUY3TuyxYWTDcEp9aa/fN59qJQECBAgQIECAAAECBAgQIECAAAECBBYnELUQ//jqHy7uAy9x16vTX1vihDq2e0O8jntwCgIECBAgQIAAAQIECBAgQIAAAQIEeigQtRA/avUPeqi0O+q16auL5OYOVYjnFjWPAAECBAgQIECAAAECBAgQIECAAIHqBaIW4kcO3lHEdvPU14vk5g5ViOcWNY8AAQIECBAgQIAAAQIECBAgQIAAgeoFohbiRwzeXsT271PfKJKbO1QhnlvUPAIECBAgQIAAAQIECBAgQIAAAQIEqheIWogfPnhbEdt/TF1TJDd3qEI8t6h5BAgQIECAAAECBAgQIECAAAECBAhULxC1EF8zeGsR29enri2SmztUIZ5b1DwCBAgQIECAAAECBAgQIECAAAECBKoXiFqIf3TwliK2b0xdVyQ3d6hCPLeoeQQIECBAgAABAgQIECBAgAABAgQIVC8QtRA/dPDmIrZvTn2zSG7uUIV4blHzCBAgQIAAAQIECBAgQIAAAQIECBCoXiBqIX7IUJlC/O1JhXjjh3ps00Qa3Tixx/qRDcMp9aW9ft94qIUECBAgQIAAAQIECBAgQIAAAQIECBBYpEDUQvxDQzct8hMvbds/J7+1tAGV7PaGeCUX4RgECBAgQIAAAQIECBAgQIAAAQIECPROIGoh/sGhG3uH9J6kbZPfLpKbO1QhnlvUPAIECBAgQIAAAQIECBAgQIAAAQIEqheIWogfNHRDEdt/T36nSG7uUIV4blHzCBAgQIAAAQIECBAgQIAAAQIECBCoXiBqIX7A0FgR2+2TI0Vyc4cqxHOLmkeAAAECBAgQIECAAAECBAgQIECAQPUCUQvx6mErP6BCvPILcjwCBAgQIECAAAECBAgQIECAAAECBPILKMTzm0aYqBCPcEvOSIAAAQIECBAgQIAAAQIECBAgQIBAVgGFeFbOMMOKFuJr1x2Wxl/YGgbLQQkQINBLgR07d6ZVfX29jJRFgACBUAL+ngx1XQ5LgEABgbkdO1P/Kv+eLEAvkgCBIALrPvux9JtfbUm33fyHBU88smE4fff7w0E+jWM2FShWiO86oAeq6TVZR4DAShSY78OTPnwl3rzPTIBAUwF/TzaVso4AgZUqsGNHSqtWrdRP73MTIEBg3wKzszvTTWMv/t+FCvF9G0ZcUbQQjwjmzAQIECBAgAABAgQIECBAgAABAgQILH8BhfjyvGOF+PK8V5+KAAECBAgQIECAAAECBAgQIECAAIElCCjEl4BX8VaFeMWX42gECBAgQIAAAQIECBAgQIAAAQIECJQRUIiXce92qkK828LmEyBAgAABAgQIECBAgAABAgQIECAQTkAhHu7KGh24J4X4xAtb0/j8Hz8ECBAgsG+B7f+ZTAccOLTvhVYQIECAAAECBAgQaCng35otwSwnQGBFC6xdd1ganv/jZ3kJ9KQQX15kPg0BAgQIECBAgAABAgQIECBAgAABAgQIRBRQiEe8NWcmQIAAAQIECBAgQIAAAQIECBAgQIAAgdYCCvHWZDYQIECAAAECBAgQIECAAAECBAgQIECAQEQBhXjEW3NmAgQIECBAgAABAgQIECBAgAABAgQIEGgtoBBvTWYDAQIECBAgQIAAAQIECBAgQIAAAQIECEQUUIhHvDVnJkCAAAECBAgQIECAAAECBAgQIECAAIHWAgrx1mQ2ECBAgAABAgQIECBAgAABAgQIECBAgEBEAYV4xFtzZgIECBAgQIAAAQIECBAgQIAAAQIECBBoLaAQb01mAwECBAgQIECAAAECBAgQIECAAAECBAhEFFCIR7w1ZyZAgAABAgQIECBAgAABAgQIECBAgACB1gIK8dZkNhAgQIAAAQIECBAgQIAAAQIECBAgQIBARAGFeMRbc2YCBAgQIECAAAECBAgQIECAAAECBAgQaC2gEG9NZgMBAgQIECBAgAABAgQIECBAgAABAgQIRBRQiEe8NWcmQIAAAQIECBAgQIAAAQIECBAgQIAAgdYCCvHWZDYQIECAAAECBAgQIECAAAECBAgQIECAQEQBhXjEW3NmAgQIECBAgAABAgQIECBAgAABAgQIEGgtoBBvTWYDAQIECBAgQIAAAQIECBAgQIAAAQIECEQUUIhHvDVnJkCAAAECBAgQIECAAAECBAgQIECAAIHWAgrx1mQ2ECBAgAABAgQIECBAgAABAgQIECBAgEBEAYV4xFtzZgIECBAgQIAAAQIECBAgQIAAAQIECBBoLaAQb01mAwECBAgQIECAAAECBAgQIECAAAECBAhEFFCIR7w1ZyZAgAABAgQIECBAgAABAgQIECBAgACB1gIK8dZkNhAgQIAAAQIECBAgQIAAAQIECBAgQIBARAGFeMRbc2YCBAgQIECAAAECBAgQIECAAAECBAgQaC2gEG9NZgMBAgQIECBAgAABAgQIECBAgAABAgQIRBT4L20tZmwkpBMGAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "fig = px.treemap(df,\n", " title=\"Total Files per Year (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'mod_year'], \n", " color='mod_year'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "endangered-celtic", "metadata": {}, "source": [ "## Dive into Folders\n", "If your initial inventory reveals a sub-folder that is of particular interest, you can run the same visualizations against a specific subfolder. Let's pick a sub-folder and show the mimetype distribution of that subfolder by itself.\n", "\n", "The first step is to subset our inventory dataframe, to include only the desired sub-folder." ] }, { "cell_type": "code", "execution_count": 29, "id": "sorted-laser", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namepathbytesmodifiedmod_yearextensioncategorymimetypefolder1folder2
121new.zipAgency History/hts-cache3591302015-02-17T17:11:412015zipapplicationapplication/zipAgency Historyhts-cache
122new.lstAgency History/hts-cache53572015-02-17T17:11:412015lstapplicationapplication/octet-streamAgency Historyhts-cache
123new.txtAgency History/hts-cache297632015-02-17T17:11:412015txttexttext/plainAgency Historyhts-cache
124readme.txtAgency History/hts-cache6122015-02-17T17:11:412015txttexttext/plainAgency Historyhts-cache
125doit.logAgency History/hts-cache7022015-02-17T17:11:412015logapplicationapplication/octet-streamAgency Historyhts-cache
\n", "
" ], "text/plain": [ " name path bytes modified \\\n", "121 new.zip Agency History/hts-cache 359130 2015-02-17T17:11:41 \n", "122 new.lst Agency History/hts-cache 5357 2015-02-17T17:11:41 \n", "123 new.txt Agency History/hts-cache 29763 2015-02-17T17:11:41 \n", "124 readme.txt Agency History/hts-cache 612 2015-02-17T17:11:41 \n", "125 doit.log Agency History/hts-cache 702 2015-02-17T17:11:41 \n", "\n", " mod_year extension category mimetype \\\n", "121 2015 zip application application/zip \n", "122 2015 lst application application/octet-stream \n", "123 2015 txt text text/plain \n", "124 2015 txt text text/plain \n", "125 2015 log application application/octet-stream \n", "\n", " folder1 folder2 \n", "121 Agency History hts-cache \n", "122 Agency History hts-cache \n", "123 Agency History hts-cache \n", "124 Agency History hts-cache \n", "125 Agency History hts-cache " ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "subfolder_df = df[df['folder1'] == 'Agency History']\n", "subfolder_df.tail()" ] }, { "cell_type": "markdown", "id": "collaborative-plymouth", "metadata": {}, "source": [ "Next we use the same treemap code as our prior mimetype visualization, but supply the new subfolder dataframe." ] }, { "cell_type": "code", "execution_count": 30, "id": "proved-vermont", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 1828.25 ], [ 359130 ], [ 1184.8979591836735 ], [ 12504.95 ], [ 7008.5 ], [ 30331.478260869564 ], [ 8760.25 ], [ 73288.6 ], [ 4466.072463768116 ], [ 27775.115384615383 ], [ 16816.73015873016 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/application/application/octet-stream", "all/application/application/zip", "all/image/image/gif", "all/image/image/jpeg", "all/text/text/css", "all/text/text/html", "all/text/text/plain", "all/application", "all/image", "all/text", "all" ], "labels": [ "application/octet-stream", "application/zip", "image/gif", "image/jpeg", "text/css", "text/html", "text/plain", "application", "image", "text", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 1828.25, 359130, 1184.8979591836735, 12504.95, 7008.5, 30331.478260869564, 8760.25, 73288.6, 4466.072463768116, 27775.115384615383, 16816.73015873016 ] }, "name": "", "parents": [ "all/application", "all/application", "all/image", "all/image", "all/text", "all/text", "all/text", "all", "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 4, 1, 49, 20, 2, 46, 4, 5, 69, 52, 126 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total File Stored by Mimetype (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAWgCAYAAABwrEDCAAAgAElEQVR4XuzdB5gURbuG4Q+WnM1EFVAyEiTnrASJAgqKRAUkRwWUKElyzkEyCAhKRrIogiIqCiqSJCmgBAkCcqrKM/sv66507+xW7wxPn4vrP+zWdHXfVTPq2zVfxbmtDuFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCDIBeIQiAf5CHN7CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkaAQJyJgAACCCCAAAIIIIAAAggggAACCCCAAAIIIHBPCBCI3xPDzE0igAACCCCAAAIIIIAAAggggAACCCCAAAIIEIgzBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTuCQEC8XtimLlJBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJx5gACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAPSFAIH5PDDM3iQACCCCAAAIIIIAAAggggAACCCCAAAIIIEAgzhxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQuCcECMTviWHmJhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIxJkDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAveEAIH4PTHM3CQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAgThzAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOCeECAQdzjMFep3llNnzv1n6wJ5ssrs0W86PKP7Zs826CZ5cmSWIb1ei/DFp387L+XrdvrPEy+a3FsevD+laTegezOpVbmkfLh+p7wxcIqsmTdEHk33iPsLC/OKW7f+loUrNsnKdZ/I8VO/yuU/r0qKZEnl6aeySJMXKkvenE/4df6YenHhqq2k5rMl5M22DSPs4q2hM2TH51/L5vdHRfsl6HMvW71NKpR8Wkb3bxvh+acvWC0jJi+WfLmelLnjepo2+nWffrFfNi4aHu3XFEgnvHHzljTtOFgeeuA+GdGndeil79l3UOYu3SB7v/1RLly8LKlSJpdsT2SQes+VlXIl8ru6Rd97q2+XJvJ8tdKuXhvdjWPDXA17T6lSJpPH06eWF2uWl2oVi0b37Ubr+X6/cElmL14nG7d/IWd++13++uuGmjcppXTRvNK8YTVJ8/D90dpfdJzsvSXrZMj4BfLpRxPkm+9/lrY9R8uMkd1j7WdpdNwz50AAAQQQQAABBBBAAAEEEEAgJgUIxB3q7v7qgFy7fiO0de9hM+Q+FbB1aFE39GepUiSV3Nkz3fWMA8fMk/jxQqRr6xfu2jZsA6eBePVKxaVK+SIRnjtfrickbty4KgT/RArlyy4ZH00TrYF4z8HTZM2mXdK8QVXJr0LwZEkTy9FfzsjMhWvk0NGT8t6YHpI7W0ZzbVF1cIXmsLHXIePqjz+TmyrY3fT+SHngvhT/uupqjd6Uk6fPSo4sj4cG4npO6lDPVghZq2kvad/8eSlTLK9DVTvN+o18T/Yoi4WTekuSxAlNp5PnfChjpi81c636MyUktQo6fzv7u6xSzl98/YO8/HwleaNNA8cXSCD+D5V+CLN8zXaZMaK7+ftt9X/nf79ofvbJ7m/lnTeamwdLTg+bnwFXrl6TBq0HyOUrV6WF+nx6MlMG9VkYR/YfPCKT3lshiRMllGXT+5vPLH3ElvkeNhBPkSyJutaVsuCDj2XptH7m4SYHAggggAACCCCAAAIIIIAAAgi4EyAQd+cV2rrqy29I6oful+kjurk+wwut+snTubPEWCDetmltadmouuPriq4V4r+e/UPKPt9B2jStJa0a1bijf71SvH7LvlLjmeLy6kvPmd9F1cHxjblo6HUg/uPPx82DgxYvVZOmL1S548r1CueX2ryjHmBkkxs3boUG4i5uz++mV65el8JVW8rYAe1jVSD+3Q9HpO6rfWTSkM5SsnBuc586mH216zDz7Yf+3ZpKnDhx7rj/gWPmyrxlG817t0j+HI5sCMT/YdKB+Adrt8s3m2be4Xbz1i0pWaOt5MqWSaYO6+LI1PZngH4Y0q3/JPNQTn9jJeyhH5Loh3m9OrwsJQrlltg038MH4jdu3JQq6p8/xQrkFP2NBQ4EEEAAAQQQQAABBBBAAAEEEHAnQCDuziu0dWSB+Oade83q1B8OHTdts2RKL01frCqVShcwf89ZpvEdPeoSJrmyZlTlOL4xr/v+xyNy+7ao0iUPS+P6lU2A7DucrhC/WyDuC/f+q2SKDhWnzP1Qfvz5F7lx86Y8lT2zdHytrrnWyA69grniC13UqvnnpYUqP/BfR2QOPx0+IaOmvi97vj4o165dlzSPPGhWnOoV5yEhcc0pKzfsJqWK5DEr3Rev3Cx9OjeW5yoVUyHWNfXapaa0yUlV3kavnqypVge/ph4O6BX5vmPC7BWySJV1uXDpT8mqVol2VyuFW70x4q4lU3Yqk0E9XpWhExbIT0dOSKoUyaRe9bLS+pUa8ueVa1KmTgczXjpUC3sMn7RY5i/fKFuWjpLkaoVn+EOHjN//eNTMlX3fHZJVcwbf0UT//uChY6aczelfz0daMqXKS91VmPeUuu8UsvjDLXJOrdzN/sSjMrjnq7L7q4MyY+FqtaL8vGR+LJ307dpElQ951PRzW004fX3LVm9XofxpSZgwgZQqnEc6t6xnDD/fe0CaqJIkviNxogQmtJ80Z6V8vHiEKjmRKvR3Fy9fkVK12kkTNXfrVC0lz7zYVfp1bSq79x2QT9Qc105PqbI/b3VspK4jbejrojLf9Itf7zFKzp67IPp95DuadhwiB5TXpiUjJZG6l/DHtet/Kc/jak5nCg3L7/a+jSgQv1fnakSBuJ5DetwLqwcMw95uJRNmfXDX+aE/X8Ievs9C/WBo5JQl8vX3h+T3C5clY4bU6jO0ilSr8L9yLAd+Oqbe60vk2wNH5E/1vk/90H3qM6C4tHy5uln1HdHxwdodJvSeN77Xf5YbiWi+71k7xZzybvNEf2OjXN2OMlh9Tuj+vvjmB1kzd4j6HHvAPKi522fqIfW50nfEbPnmwGFJliSR+vZHMfMe1OWSdMkUvUJcH/r93X/kbFk7/11Jl/rBCO+XHyKAAAIIIIAAAggggAACCCCAQMQCBOJRnBkRBeLbd30jLbsPl7rVyqiSDBVFpW0ya9FaUx96wqCOqk5tHhXwXJKKqh55DRXU6pXUOiD95eRvUqNxT6lcvrA0V+F5/PjxZMO2PSYUmjasqxRVKwH1YSsQ17WXdQCqa1q3bVZHbqnVn+NmLJede741X9OPrM64DsWeb9FbdFDYvGFVU7YlbOgZljoih9//uGQcdBmX7q+/KPer0iGbdnwpwyYtkkZ1n5EuLeubU1R/pYcJwzM9lkZeqlNRHlP1i3WZkWadh5ryBzog12HnV/sPqXBpllQpV1h6q5+ZIEkF6Dpwer1JLamuQnRdF14764Ct7nNl/rOGuB6TDGkflrZq3B5R3w7QgZdevemrK91fle7Qq1C3LhstCRPEN/1pEz3eRZ7OaWq2R3TowHv/wcPStdUL0rzLuzJnbA/Jr75BoA+9UrV07fbSrlltdT8/mRIpkdUQr67s/lDzq2HtiiqwrixnVImQOs3fNjZ5cjxhQmg9lo3aDTTlIeZPeMv04Ssv0k6NtS6/ok10GZK4av4umdrXtPlCzQntq+vXlyiY2zwkKV+vk7quOuZhhe9Yumqb9B42U9YteNc8wNC16nVpIf2QoFLpgvLrud/l9TdHyVX1sEMH/3r1dlTnm34AUqx6G/NthNde/udbB3r1bMHKr8mzasx1KOnkcPK+DR+I/3buj3t2rupAfO+Gaf8/v0U9eLkgc5asN2U8Zo16wzzw0D53mx+6vE34z8JL6oFKzSa9zJx5u9MrJgzW5YTGzlgm777VSn2mFBa9Gr2sevik+2mj3se6xIn+FoV+/7VUc6GZCs8jOvQ3WKq81E2SJkls3v/liueLsOSIrkkffr7rOulO5sl59RlWsmZb83CrYqkC6lsLT0mWzBlM7e+7fabqeuZ65XcC9fmvS888cF9K+WjDTlmkPrPOnr9wRyCu/64/F/SeB/ozkAMBBBBAAAEEEEAAAQQQQAABBJwLEIg7t7qjZUSB+CvtB5kVjStmDghdeaoD0coNu5sV31Pe/aeUQIFnX5X61cuFlky5eu0v+UVtQJlWrYZOqlYF+o5iz71uVi13U+GwPpwG4rpcSmShUJLEieRuK8SbdRpqVgqvUisbfcGuvsYK9TtJJRXy+MLliOh0UNNPrVz8ePuX5tc60Mqf+0kTDD1btnBojeeIHMbPXG5WleqVvWFXHfcaMl3Wbflcdn44waz01sGvXum8ffkYSfD/wfOXaiXmy20HmtD3hRrlQi9Nb0apA299zocfTCX1XutjQtPlMwaEttm193u1KeMQEyz916aa+sHGAhUi6yDOd1RSK+IfUatT54ztaR4E1GjS04TGvtWsvusK/7qwdr5A/P2p/aTSC51NbfeBb7YwTXRtZh0wb1k6Wt4ZPeeugbheVa/DaF+ZkDY9RsvWz76SHSvGScrkSc059cONafM/MqHmX8qiRI02anzy3LEhpQ7wdEkbXwj5rQrs67/WV8YP7BBaMqVj73HqQcJxsxmr79BzJ54ao8lDO4fOs2fLFpLhvf+32eX6rXtEv9YX/Ed1vvlKo4QtgeFboft645rSWv1xcjh534YPxO/luarfB+EPPbd6dWhkAmvfcbf5EdFngK6PrcPvlbPekcyPpws9l37QeFw9ONQPUY6f/NV8Fur3SNhv0OhV//rzM32ahyIddv0NDB2c629k6ONxtfpcb4Zcrnh+9a2Tp0LfNxHNdyfzRD/oK6FKxxQvmCv0817342SOb/10n7R+c6TZWFc/jPQd+gGWLukSdoW4/t1zal+BTOpbFpFtxOtk7tMGAQQQQAABBBBAAAEEEEAAgXtRgEA8iqMeUSD+9DOvynPqK+59ujS+46y6bu3OPftVKDnW/Dx8IK5/psOQRSs3yc9HT8mlP6+YlcUXL10xq5h94ajTQPy/bmn/lll3DcT1fVRWK2zDr2jW4apedbxkSp+7qunVmHpFuQ5ydn35nZxQ5VR0OD7unfahG4+Gd2jZfYQcO3FGVqsgPuyx5KMt0mfYrNCQTAfiD6pVzzNG/rOxnz50ORBdmmTjouGmPIHv0MGXXrXuC3LzVWohtVVtaR2c+45bt/6WfJWay4s1y/9nIL5q46fyxbopd9Sk7v7OZNn+2dcqrB9vTqdDsxC1et13bXql9V4V1ocN4MPj+QJxvaHf6GlLzapzvcpcr3x9ue07KshOJuMGtpfOfSfcNRDX5RMmDu4Y2kWPQVPl0y/2y+b3R4X+zFeTePeayWaj0xdUbffw4aJurOuqP1+1tHlwE1FA6Cst4Quk9cMQXUN+ZN82JtDzhch6ZX8TtWLdd+iSGLq8i29lfVTnm68Ehg7kfd9a8NWx16vG9TcwnBxO3rfhA/F7ea7qFeILJr4dSnv58lXZu/9HmaEePum67T3avWR+d7f5odtE9Bnws5qT6xcOu2PoZqv3xNDxC+Tz1ZNMGRz9sEYH4/VVyaJiKnzOn+tJ880ap8ePh39Rn0vfq8+ng+Z/dfkkvQHrxCH/fKMhovnuZJ74AvHw+yg4mePT5q8yD++2fzBW7k+VPPRWdPmZ8epP+EBcf2PjqvoGie+bHk7vnXYIIIAAAggggAACCCCAAAII3OsCBOJRnAHhA3H9Nf485ZuZ4M9X2sN3al2iQ4d3e9dPNT8KHwLp1c+d+kww5SpeUuUudHAcR9XB1Sty9UpDt4H489VK37FyMuwt6lIc/7VCPK0KVPV96Dq8ISH/q7utz6HLbdyfKoUJa90eOhzv0neiWqV9n3ygVtBH5KA3jtSrt8PWg9bt1mzaJV36TQxdna0D8UyqrMqofm1CL0MHybo+b0ShmD5nb1V+oVaVUpK3QsRjpMts1Fa//68V4ts+2/eve9eBt14x+9X/l5BYu/lzE1yvnT/UBPNlandQ5RlqmrA9siNsIK4fCOhvFOjr1fWYdXCs71OXX3ASiId30YH4l9/8aK7Hd/wvEJ8k+1RZGV2mJZ4aaz3nwh7aTT8Y0TWhIwoIdVtdviaXChL1HJ3z/nq18nyVfLxkhDmfb57pbxTUU+VofIcup6Hrresa5boUTlTnm+5v8Lj5dwSI+n1YqHJLtYo93x0r3iOzd/q+DR+I38tzNaIa4trX9+BKB7R5/v9bFP81PyL7DNDlT8K/j2//fduUSvnovUGmpJLepFfXvdffNtAPvfQ3X6pVKCJdVNmhsN+ycfI5pUuk6D0FBo2dp8oNVTCBfvj57nSe+AJxfQ59Ln34Xnu3z1S9d8LUeR+Jrleu6/T7Dl12692JC/8ViHfqM97s8fChMuFAAAEEEEAAAQQQQAABBBBAAAHnAgTizq3uaBnRCnEddFerEPEKcV2Wwxckhw/EW70xUgUbx9WqyOGhG8LpEKWAWqmt63C7DcT93VRTh8O6hEZEK2x1XWldZiCiQ1/zydPnTHmYiI6BY+bJvGUbTHisA6+IHHSplshWiPvCsIgCcV9opFcr3xdmdaXvOh5QQX7KFElN+KofGIRdIa6DX71yXAdY/xWI67B795pJd9zaGwOnyA5VO963+l+HaxVUbe0XapZTG5Bmkg5vjw1d7R3ZVAsbiOs2OmzVJU+K5M+uvDaa12uvmAjEDx87bcrI6PrlpVSN+/CHrvOcWtVLjywQ19enNzfctnysqZFcVNVKb9+8jjlNZCvE9ap0HZT279bUPISI6nyLaIW47leX19ilNgJdrcprhP22gO/e9DcCxqnyPLWrlDQ14Z28b8MH4vo9e6/O1cgCcb0RpP62QdgHIP81P/R4hP8M0CVDflSlh3TJnYgO/Q0IXxkn3+//UGWq1mzeZTae1KVPdMmiiA5d9unCpctmPkd01GraywTretPNiOa7k3kSUSCu+3Iyx/UDPf1gL/wK8THTl5o6/6wQj+I/rHkZAggggAACCCCAAAIIIIAAAuEECMSjOCUiCsR1Heqzv180pT18x99qZeOzDbqqTdYymLIXvhCo3nNlQ2uD66++61BHb1jpO1as+0T06t7qlYrLoB7/1JN2WjLF30C8RZdhZqM8XcIj7HHsxK8qTLovtG53eDr9dX9ds1u/Tm8qF/bQJWAadxgsh46cvKN0TFiHie+tEF0eIHwNce2wZedXJijSGzVGFIjrDScbvj5AxvRvJ+VL5g/tWm+8eOHin6HBaO1mb5mwOay1PvfrPUY5qiGuy8XkyPJ46Pn1au40D99/R/kWXaN7rVr1n+2JR015h8g20/SdJHwg/v5HW00ddl0LuViBXGZDSn3ERCCuV3IXVzWPdTgc/mGADq71inPt5QsI9Rwuq1Zf+w69UleXSWlSv7JMmL3C1C/XoaU+fCFyiUK57wg4dV10XRfet5I4qvPNV0N89ug3TR1o3+Er1aHr1o8d0O5fq431alv9AGX68G5qs9Mcpn783d634QPxe3muRhaI6/B74Ji5oRsI6/H4r/kR0WehXiGt67NvXDzijg0vdSmchAnjmzr4J1X5pb3q/V5VPSwMe+jyRd+pTXUjWzH9Yuv+cl59Pi+f0d8E32EPvZlnObUBbMnCudU3C16PcL47mSeRBeJO5rjed6HdW2NkrCorpTf89B36gZXeLJga4uH/icPfEUAAAQQQQAABBBBAAAEEEIiaAIF41NwkokBclwXRwYfe1FGXgrh586YJiD/csFNmj+5hNpfUR3kVvOiVq3qVst7ocb4KkvRmkqP7tTUbNuqAdsW6HfLXXzflbxUk65rQuoyKrUB8z76DZrVvnSqlzUpnHR7t+Pwb87X9zq/VM8FxRIeuIa03trx4+U95uU4lUytcrzA+/et5cz/b1Urqt9U91///TS/DO+iVu3pTysxqo7jurzcwK7o3bv9C1QZfpFYdPy/NG1Q13UYUiOuf69Ifh46cMCUPdGj9q6p3rsPpw8dPqc34hpgyBL5axLrG9DNlC5oV7Xq18BHV5m4lU9Zv3W0ebOhSH3o8dLCrNwEc0lNtoqnK3fgOvbFjRbU5pj7mqs02w27CGZFb+EBch4ila7eXa9f/koWTepvaxvqIiUBcj61efaoD3k6v1lUbC+aRG2reLvlwiyojsdmE1jmzPh66kWFDVdJHh+d6jHxlLXRJoKWrtprV4WFX9vpCZL3paINaFeSZMsr7zDnpMXCqmRe+4DKq800/7ChWvY20fLm66I1kwx6+mvI60H9elWvRK8H1/Pxw/U5VQuYHUxe9cb1nzUucvG/DB+L6XPfqXNXzfsaI/9Xvv3b9uuhNWGcsXKPmeia1mWRXs/mt74hsfkT0Wah/VrNJL/Mtkw4t6pqHTQfUZpm6nEn2Jx81D7x8G76+oj5ja6hNh3WJFF0T/O2hM9TGvYWkZ/t/HiCFP/R+Bq91GyZpUz+kSlNVUN900Q97RA4fOyVz1WfwiVO/mY1e9WeHb+POsPN9974Dd/18jywQdzLH9Qp2/fBU7x2g/9mQKkUy9bn5iWzYtkdOqfdN2EBczz/9GaEfYkX2eRwhAj9EAAEEEEAAAQQQQAABBBBAAAEhEI/iJIgoENen0mH2JBUuHlS1XXV5ER2u6BrSRVQ9aN+xeOVmGaZC3r///tusRtSrW3Ut6q3qtToA13XDdaijN0PsO3yW2eRNbzJnKxDX1/nZF9+Zjdy+++GIKeOiNy3UG9jVU3/+6zj/xyVTFkWvdjzz23n5U4WWelVnzqwZTUkSvWo3MgcdxupVybr0we6vDsj16zfksfSPyIu1yt9RgzuyQPyK2mBu7Ixlsn7LbhN+6tIpBfNmNWG6Xm2tD71if/S0903d70sqeH4yY3oTKulV6KWKPBW6IWD4e3xThbjf/XhE3lBBvX4woDf+0+d/SQX/zV6s8i8SvRperzoNuxI9Mrfwgbhu133AZNmv7HWZGN8RU4G4Pv+CDz6WBcs/NpuaJlEBY7bMj8prKmQunC97aP89B0+T1aqeu36wsFo9YEiVMpn5nR4rfb96NXa5Ev9bne8LkfVc1oGlrpWvQz9dX1rXSNe1oH1HVOebXtl/To21fnAQ/tC1qHW9dF1D/cLFy3K/2ohVz0O9mt33cMr3mru9b8MH4vp19+pc1e+dsIf+FkRa9YBP15vXDwJ1oBv2iGx+6DbhPwv1Z4AOo/W3TfScuHLtuilxUqHU0/J641qhtbU3fbJXpqnV5Lq8ii7VpNvoBy6tX6kR6TdYdH96Hura8/qadC37m6rE0YMPpJKCebKpB25VJPPj6f5zvt9tnkQWiOuTOpnj+vN2wKg55nM3qXKsWr6o+qZJBtGfETtXjjcPCY2bemDVX32LZO38/30jI7LPF36OAAIIIIAAAggggAACCCCAAAJ3ChCIMyMQiGaBE6qkg35g0r9rU3muUrFoPnvsO51+aPPZl9+rVfiDQ2vg66uMKESO7qvXpSR0SQm9Ml2XZuFwJ2BjrkY2P9xdKa19Anqfgqpqs1296a6uw8+BAAIIIIAAAggggAACCCCAAALuBAjE3XnRGoFIBfSq9CPHT0v/Ue+ZMjO6XIqueR6Mx19/3TDlT/RGo3pV/oRBHaV0uE05bQTi2lYHrl+q1eALJ/YOXUEcjObReU8xPVedzI/ovJ976Vx68825SzeYb588pFa3cyCAAAIIIIAAAggggAACCCCAgDsBAnF3XrRGIFKBjr3HqTrpX6vyODmlT5fGd2wKGGxsP6iSQHqDUr2Bpq7fXatyyX/doq1A/MaNm9K00xB5RJXNGPZ2q2CjjpH7iem56mR+xMiNBflJP92z32wAPH1EN8mX6589KTgQQAABBBBAAAEEEEAAAQQQQMCdAIG4Oy9aI4AAAggggAACCCCAAAIIIIAAAggggAACCASoAIF4gA4cl40AAggggAACCCCAAAIIIIAAAggggAACCCDgToBA3J0XrRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCVIBAPEAHjstGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcCdAIO7Oi9YIIIAAAggggAACCCCAAAIIIIAAAggggAACASpAIB6gA8dlI4AAAggggAACCCCAAAIIIIAAAggggAACCLgTIBB350VrBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQAVIBAP0IHjshFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTcCRCIu/OiNQIIIIAAAggggAACCCCAAAIIIIAAAggggECAChCIB+jAcdkIIIAAAggggAACCCCAAAIIIIAAAggggAAC7gQIxN150RoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgQAUIxAN04LhsBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAXcCBOLuvGiNAAIIIIAAAggggAACCCCAAAIIIIAAAgggEKACBOIBOnBcNgIIIIAAAggggAACCCCAAAIIIIAAAggggIA7AQJxd160RgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhQAQLxAB04LhsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAnQCBuDsvWiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggEqACBeIAOHJeNAAIIIIAAAggggAACCCCAAAIIIIAAAggg4E6AQNydF60RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEAlSAQDxAB47LRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEHAnQCDuzovWCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgEqQCAeoAPHZSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgi4E7ASiO/a9ovoPxwIIIAAAncXuHThL0meMsHdG9ICAQQQQAABBBBAAAGXAvy7pkswmiOAwD0tULhUetF/OIJLwEogPoX+fbQAACAASURBVGbALhnT/7PgkuNuEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBoBdr2Kizt3yoStPd3r94Ygfi9OvLcNwIIIIAAAggggAACCCCAAAIIIIAAAghEKkAgHpyTg0A8OMeVu0IAAQQQQAABBBBAAAEEEEAAAQQQQAABPwQIxP3Ai8UvJRCPxYPDpSGAAAIIIIAAAggggAACCCCAAAIIIICANwIE4t64x3SvBOIxLcz5EUAAAQQQQAABBBBAAAEEEEAAAQQQQCDgBAjEA27IHF1wrA7EG7fNJ1lyPiA9Wm6Uvb+2ksr55sjpE5cd3RiNEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBqAoQiEdVLna/jkA8do8PV4cAAggggAACCCCAAAIIIIAAAggggAACHggQiHuAbqHLWBGI12uSU17tXEDixY8rJ45dki5N1sqpXy4LK8QtzAC6QAABBBBAAAEEEEAAAQQQQAABBBBAAIF/CRCIB+ek8DwQv//BxLLj52ZSMfd7cuLoRRk4qYLcuvm3vNVmE4F4cM457goBBBBAAAEEEEAAAQQQQAABBBBAAIFYL0AgHuuHKEoX6Hkgrq86YaIQuX7tlrmB5+pnlTqNckjjqssJxKM0pLwIAQQQQAABBBBAAAEEEEAAAQQQQAABBPwVIBD3VzB2vj5WBOKv9ygk5atmktu3b0vKVInk5PFL0qjyMgLx2DlnuCoEEEAAAQQQQAABBBBAAAEEEEAAAQSCXoBAPDiH2PNA/JlaT0i7XoWlftklcvniX1KrYXap9VJ2AvHgnG/cFQIIIIAAAggggAACCCCAAAIIIIAAAgEhQCAeEMPk+iI9D8RfbpVHSlZ8TF6tvVKSp0woY+dXkWQpEsjzJRexQtz1cPICBBBAAAEEEEAAAQQQQAABBBBAAAEEEIgOgdgaiH+8/Ut5693psnPl+Oi4zXvuHJ4H4npTzSnLq0sKFYaf+uWSjOr7qUxc8pwsn/e9nDn5p2TJ+YD0aLlR9v7aSirnmyOnT1y+5waJG0YAAQQQQAABBBBAAAEEEEAAAQQQQAABuwLBGIhfvfaXfLhhp9R7roxdzFjUm+eBeCyy4FIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEjEIyB+Kd79suIKUtkyZQ+9+woE4jfs0PPjSOAAAIIIIAAAggggAACCCCAAAIIIIBAZAKxORB/e9gM6drqBRk97X3Rq77LFMsrvTs1lj37Dki7t8bK9uVjJFnSxObWrl3/S0rUaCOvNnxOJsz+QG7e+lsSJYwviyb3kbSPPCjvTlwoW3bulQsX/5SncmSS/t2aSfo0D5nX7tr7vbw7YaEcPnZKEidKKJXKFJQ32zSQ+PHjBezEIRAP2KHjwhFAAAEEEEAAAQQQQAABBBBAAAEEEEAgpgRicyDepf9EqVAyv7zZ9iX54+JladH5XalWsai0a1ZHytXtKO2b15HaVUoZGl1zvM/wmbJ56SiZv2yjKpnyaegK8b7DZ8lPR07K8N6tJWWKpDLpvZWyZtMuWT13iMSNG0dK1mwrbZvWltpVS8lv5y5I256jpVblktKwdoWYYo/x8xKIxzgxHSCAAAIIIIAAAggggAACCCCAAAIIIIBAoAnE5kC83VtjZMPCYZI29YOGddyM5bJx+xfywcwBMmzSItl/8LDMHPmG+V33dyZLyuTJpEe7hvLeknWhgfiNGzelUNVWMmFgBylaIKdpe0utHi9ctaVMGNRJ8j/1pBSq3FIG9Wghz5QpFPr7kJC4gTaUd1wvgXhADx8XjwACCCCAAAIIIIAAAggggAACCCCAAAIxIRCbA/HO/SbIVxumhd728jXbZej4BfLpRxPk0JETUqNJL9m4eLg8kCqFlFCrvKeP6Ca5sma8IxA/cfqsVHqhS4R0A7o3MyvB5y7dYAL2JzOmlxKFckvNZ0vIY+kfiQlua+ckELdGTUcIIIAAAggggAACCCCAAAIIIIAAAgggECgCsTkQ7zF4quxaNfGOQHzU1Pdl67LR5mf1XusjlcsWlicyppPB4+bLqjmDzc/DrhA/e/6ClK7dXpZN7y9ZM2eIdFh0u62f7pNNn3wpn3z+jYzo20bKFc8XKMP4r+skEA/YoePCEUAAAQQQQAABBBBAAAEEEEAAAQQQQCCmBGJzIK5Lpujw+8H7U5rb1yVTtu/6Wm2U2dv8ff7yj+WjDTsl46NpJEPah6Vlo+rm52EDcf33gqokytsdG8lzlYqFMuqV4+lUKZbbt2/Lud8vhvahGwwcM1dOnj4n4wa2jyn2GD8vgXiME9MBAggggAACCCCAAAIIIIAAAggggAACCASaQGwOxPWmmjUqFZfubRqo0PqCNO4wWOpXLystGlYzzBcu/illnu8g8eOFmBXg6dM8ZH6+eOVmmfjeClk+fYAkSZxQxsxYZjbdHD+ogwnO3/9oi4yetlQ2LhouZ87+LvVe7SNj32knhfJlN+fsokq1ZM38qLyh+g3Uw9NAvF2vIoHqxnUjgAACVgQu/HFdUqZKaKUvOkEAAQQQQAABBBAITgH+nTI4x5W7QgCB6BUYM+Czf50wtgbi67Z8rup6L5aWL1eXcTOXydVrf0mFkk+bld4JEsQPvY/2b42V839clDlje4b+7NSZcyY8/+3cHzJ1WFfJmfVxGaJqj+tz3rhxS7I9kUG6tnpBnsqR2bzmg7U7ZMrcD+Wkel3ypImldNG88mbbhpI0SaLoHQCLZ/MsENcTqkCZdPLJtmMWb5euEEAAgcASuHjhuqRISSAeWKPG1SKAAAIIIIAAArFLgH+njF3jwdUggEDsEyheMoN8se2UjOl/ZygeWwNxp4J11eruhrUrmI0wOf4n4Gkgfj3uLRky4BPGAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8ESgW8/ikljiBU0grleM61rhy1Zvk5WzB0rCMKvGPQGOZZ0SiMeyAeFyEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCeQDAF4leuXpfCVVtK5sfSyeCer6oSKI/agwyQngjEA2SguEwEEEAAAQQQQAABBBBAAAEEEEAAAQQQiH6BYArEo18n+M5IIB58Y8odIYAAAggggAACCCCAAAIIIIAAAggggIBDAQJxh1BB0oxAPEgGkttAAAEEEEAAAQQQQAABBBBAAAEEEEAAAfcCBOLuzQL5FbE2EM+bP7VMm1NdCuScEsi+XDsCCCCAAAIIIIAAAggggAACCCCAAAIIxGIBAvFYPDgxcGmxNhAPCYkjKVMlkvPnrsbAbXNKBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBAhED83poFsTYQD7tCvGWbApI7z8OSIEGIPJn1ATl96rLMnv6VvNT4KcmS7QEZMuATeX/hdxInjsiQkRWlfKWMEi8krmzfdkzat1wjt27dlrLlH5eBw8urNnFk5pS90q5zYXm27Fw5fvSiVKqcWd7qV0qSJI0vR49ckBaNVsq5swTx99ZbgbtFAAEEEEAAAQQQQAABBBBAAAEEELgXBQjE761RD4hAvHnL/NKpe1EpkneaXLp4XfYdbCWbPz4s7VutlSLF08vI8c9I0bzTpVqNLPLm2yWkbNHZJhzftPMVGTZ4p6xYelC+PdRa2r62Wj5ef1h69C4p7bsUlnzZJsvt27dl++6mUv2ZBfLdt79J6/YFpUix9NKo/vJ7ayZwtwgggAACCCCAAAIIIIAAAggggAACCNyDAoEWiF+4nsmTUUqZ8GdP+o3uTgMmEC9eKoM0abDC3P+qjQ1kysQvTNCdJm0y+XRvc3n8kVHmdwkThsj167fM/6+D8mNHL8iqFT/Kms0NJXPaMebnqe5LJIdOtpPcT0yUCs9kkuq1s8rz1Rab3yVVq8QPnWov6e8fITdv/h3d3pwPAQQQQAABBBBAAAEEEEAAAQQQQAABBGKRAIG4s8EgEHfmZFqNGbBLxvT/7I5XtO1VWK7HvWXKnUR0hC2ZoleI5306tbRpsdo0Xbn+RRk38nNZv+aQPPxIUtmz/1V59MGRquZ4Quk/pJzkzPWQCbMffSylTJv0pWzbclQmTq92xwadJ37vJAVzTZU69bNL1x7F76hVniJFQimab5qcOf2ni7ukKQIIIIAAAggggAACCCCAAAIIIIAAAggEmgCBuLMRIxB35mQ1EB88ooIkThJPOr2+ztQNHzO5shw9/IesWvmjrFz3omTJMNZcT4qUCeXw6fZmhbheeV69VlZ5uR4lUlwMKU0RQAABBBBAAAEEEEAAAQQQQAABBBAICoGAC8SveVQyJRElUxxPeFsrxGfOryG7d52UCaN3S1a12eaiFXVl2eLvZXD/HXLgaBt5uf4y+WTbceneq7ipSa5riN+4ccvUEK9afp4c+ul3yadWotdvmEve6LTR8f3REAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCU4BA3Nm4pSQQdwalW9kKxAsWSWtKo1y7elP2fnlK1q06JOOmVpHWzVZJwkQh0ntAGbMppy6j0uedMlIs/3Q5dfKyVHw2k7zdv7QkShxPLl64Lj26fiy7dp5wfoO0RAABBBBAAAEEEEAAAQQQQAABBBBAAIGAFCAQdzZsBOLOnEyrqATiLk7vumncuHHk9MUu8vjDo+TKlRuuX88LEEAAAQQQQAABBBBAAAEEEEAAAQQQQCA4BAIuEL/qUcmUxJRMcTzjY0MgvmnnKzJr2lfy3ox9Uq9BTmnbsZCULDjT8T3QEAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCT4BA3NmYpiQQdwalW8WGQLxQ0XQyfEwlSZEioZw9e0U6tVkn+/aecX4TtEQAAQQQQAABBBBAAAEEEEAAAQQQQACBoBMgEHc2pATizpxMq9gQiLu4XJoigAACCCCAAAIIIIAAAggggAACCCCAwD0iEHCB+BWPSqYkoWSK47cEgbhjKhoigAACCCCAAAIIIIAAAggggAACCCCAgEUBAnFn2CkJxJ1B6VYE4s6taIkAAggggAACCCCAAAIIIIAAAggggAAC9gQCLRC/6NEK8RQE4s4nJYG4cytaIoAAAggggAACCCCAAAIIIIAAAggggIA9AQJxZ9YE4s6cTCsCcRdYNEUAAQQQQAABBBBAAAEEEEAAAQQQQAABawIBF4j/6U0N8RRJqSHueFK6DcT1JORAAAEEEEAAAXcCly5el+QpErp7Ea0RQAABBBBAQNatPiT79p42EpUqZ5a8+VOjggACCCAQpAJD3/nkX3dGIO5ssAnEnTmZVm4CcT0Bi5fOINu3HXPRA00RQAABBBBA4NKlG5I8eXwgEEAAAQQQQMCFQJKk8aVRozzyRLox8tDDSWTXvhYyY9yXLs5AUwQQQACBQBEoUiq9bN9+TIYMuDMUJxB3NoIE4s6cohSI/x3ntgwasMNFDzRFAAEEEEAAAQQQQAABBBBAwL2ADsE//byZZH98vAnEt3/eVJ5+bLL7E/EKBBBAAIFYL9ChZxG5GffvwA/EL3tUMiUZJVMcT3K3K8QJxB3T0hABBBBAAAEEEEAAAQQQQMAPAQJxP/B4KQIIIBBgAgTi/g1YCgJx54AE4s6taIkAAggggAACCCCAAAIIIGBPgEDcnjU9IYAAAl4LEIj7NwIE4i78CMRdYNEUAQQQQAABBBBAAAEEEEDAmgCBuDVqOkIAAQQ8FwiaQPySRyVTklMyxfEkJhB3TEVDBBBAAAEEEEAAAQQQQAABiwIE4hax6QoBBBDwWIBA3L8BSEEg7hzQ30A8X/7UMnNODcmb09uNTeLHjytff9dKcmQZL7dvR3z/7ToUkixZH5A2rdbIiw1zyaChFeS9mV/J2722OAejJQIIIIAAAggggAACCCCAgBUBJ4H4zOU1ZeXiA7J8wQEr1xRZJ/NW1ZGBPbZJlz7FY8X1eIpB5wgggEAUBAjEo4AW5iUE4i78/A3EQ0LiSMpUieT8uasueo3+psVLZpDWrxeUhi8si/TkiRPHk3jx4sqlS3/J3AW1ZOOGwzJrxlfRfzGcEQEEEEAAAQQQQAABBBBAwG8BJ4F4ipQJ5fq1m3L9+i2/+4vqCRIkCJHt3zWVwk9MldhwPVG9D16HAAIIeCkQNIH4RY9KpqSgZIrj+etvIB52hXjrNgXkqTypJUGCuGYl9qlTl2Xm9K+kUeM8kjXbAzJowA5ZvHC/xIkjMmxkJalQKZPEC4kr27YdlTYtV8utW7elXPmMMnR4BdUmjkyb8qV07FxEKpSdI8eOXpBnK2eW3v3KSJKk8eXokT+kSaMVcu7sP0F8r7dLyunTf5rXdFCvaf5qPvn9/DWZPnWvdOleVHJlnSi+FeKHD/8hnboUlYsXrsuc2ftkoLouDgQQQAABBBBAAAEEEEAAgdgl4CQQ960QP7j/nIyY9oxs23hU8hZILfc/lFje7rhZXmmZVx7PnEp2bf9F3u602dzgC01ySavOBc2CqRPHLkr7pmvk1C+XJWHCEBk6qZIUKJpWfjl6UXbt+EXSPZpCOrdYJ8mSJ5D+o8pJ/sJpRC8MGzf0c1k481tzvuJlM0jD5k9J64arxHc9h374XYZPqSSfbv1FsuR4QFKkSih9Om+Rzz85YV7Tplshef7lHOq/n0Pk49U/S2/1u7//vq36Sy5jZ1cRfe+f7zwpiZPEk81rD8uSOd/FrsHhahBAAIFoFgiWQPySR4F4cgJx5zMyOgPxV1s+LV27F5MCeafIxYvXZf/B1rLp48OmREnR4ull7PjK6ndT5bkaWVSAXUpKFp1pwvFtO5vI0MGfyPKlB+TgoTbS+rVVsmH9z/JW71LSsUsRyZVtoiqDcls+3d1cqj4zT/Z/+5u0bV9IihZLLw3q/7Mi/OOtjaRl848kRP0LzYbNL5tr0IH4wvfrSKbM95mSLmFLpixYXEc+WH5AFi3Y7xyLlggggAACCCCAAAIIIIAAAtYE3ATi3+37TdbteVnqlFskX3x2SsbMqizZn3pIqhaZZ/6786sTraRUzhlmIdauQy2k7FOzTOg9dGJFuXnzb+nR9mN5pVVeqV43q9SruFgeSp1UVmx9UbZuOCLdWm2Q3sPKyP0PJJaOzdaacHvVzobSot5K+e7r3+SNASXk+JELMm/aN6GBuA7o137+kjSqsVy2rDsiZZ55XPqoc5TJPUsqPZdZuvcvIbVKL5TL6hvMkxdWM8H5jPF7ZdKCanL05wsyqOd2KVXxMZn+fg3p1nK95yVhrA06HSGAwD0rQCDu39ATiLvwi+5AvGSpR+XlBsvNFazb+JJMmrjHBN1p0iaT3XtbSPpHRprf6Sfvvq+0jRn/rBxVK8A/XPGDCbMfSzvKtLnvvkRy9GQHyfbEeKn0TGapWTur1Ky2yPwuqVolfuxUR3nk/mGSJEl82bm7qVkF3qxFPilfIWNoUK7D9/4DyxKIu5gTNEUAAQQQQAABBBBAAAEEYoOA20B88YZ6kifdRHPpXXoXk/vuTyQ9228yf9+2v4m0avCR7FfBecJE8UyZFX3UqJ9N6qqV2i9VWybj51aVLz49aYJpffQdUVZ06U0diO8+/Kq0fPFDE7bro+egknL1yk0Z0f9T+WhnA3n9pVUmyA67Yn3R+rqSO/UE016vKv/5cgfJl2GS9B1eRnRgrleZ66PcsxnVivUCUrfiEvny2GvSsOpS+f6bs+Z361XIP3H4bgLx2DAhuQYEEIhRgaAJxC94UzIleUpKpjieoNEdiOd7OrW0arHK9L96fQMZM3KXrF1zSB5+JKns299S0jw4XFKpmuPvDCknuXI9bJ7EP/ZYSpk86QvZtuWoTJ5e7Y4NOn/9vYvkzTVZ6tXPId17lJBz566E3luKFAmlYL6pUrBQOqn63JOm387dikrGjKnMqnR9FCiYRqbNqk4g7nhG0BABBBBAAAEEEEAAAQQQiB0CbgNxHUYXyzrdXHzHXkUlabL4MuCNbebvm79uLO0br5Gvvzwj7d4sLBWrZlLfRBZJqRZi6bIpDaoslbkf1Zal874LDZ91SJ3xiftMIP7D723lD/UtZP3fsPpIoBZ5fbT0Bxk54DP56JMGUjLHDPPzsIH4tCXVQ69H/+7AuTZSufBc6TNcLdpSZV3+vPyXeU2IKiV69rcrUrXoPDl0qb0UzzZdTp+4bH733opasnzh9wTisWNKchUIIBCDAgTi/uESiLvw8yIQf3dERbOqu93ra8zX1cZPriJHVF3vj1b+IKvXNZSMGUabO0ipNkc5frqjWSGuV57XrJVNXqy39F93N3xUJfl81wlT/kSXbSmhNths1PAD004H5e8MLkcg7mJO0BQBBBBAAAEEEEAAAQQQiA0CMRGI6xrdOizXpVUuXfxL6jTMrv7kMIG4Lleyc+txeW/SPnP7ukyK/nayDsS3qxXmr734kSmREvaoWvtJKV3xcdNGH2ED8aWb6kv2B8eZn+tvSf94oZ1Zwf7mgJJqhfhZmT7un5XoYY99qrRL3QqL5Yfvz5kf67Irk0eqb14vOBAbhoRrQAABBGJMgEDcP1oCcRd+XgTic+bXMgH22NGfm802l66oJ0sXfy/v9N8uPx1ta8qd7Nh2TN7sVcLUJNc1xG/cuCWfqRriz5SfIz/99LvkfzqNvNgwl3TttEG++PpVqVJpnpxRm2o+XSCNvL+8njytaohfUnXM56ta4U9muZ9A3MWcoCkCCCCAAAIIIIAAAgggEBsEYiIQz6c2xSytanM3rb1CUqhFWBPmVZXk6tvHNUotkJadCphwu0GV9+XhNMlk+eb6smPTMRN2vzW0tCmfomuN68043xxYUlYsOiANmuY2IfrKxQcNWdhAXJdSadtotaxa9qPUbpBdWnctKBXyvWdWp7fvWUTVKl8iV/68IQ2a5TYrzxfP3i+z1Yrwr3afVivPP5US5R6VmctUDXHVP4F4bJiRXAMCCMSkQNAE4n94VDIlFSVTHM9PLwLxwkXSmdIo167elC+/PC1rVv0ok6ZWk1ebfSiJVC23vgPKmCf1U1QZlX7vlJVC+afKqZOX5ZlnM0uf/mUkkfqXkIsXrkv3rhvl+LELsnxlfdVmWug9DxhUTuo8n11OnLgkC+d/K6+3Kyj5VNkVNtV0PC1oiAACCCCAAAIIIIAAAgh4LhATgfgvqjzKzGU1zcaYJ49fkuH9dsrUxdVl2fzvZPTAXTJuThV5Ui3cOnTwvOxXq8H1RprdW28w5Vf6jyonBYulMy5b1x+R3p03yxZViqVmmYVy7rer/wrE9Yrz9R8ekgr/X56l62vrZY+qUa6PNt0KSd1GOSWu2vDz8E9/SFe1ceaZU39K1hwPyJjZVVSd8xD5ZPNxSZM+mQnbP1jICnHPJyQXgAACMSoQPIF45hh1iuzkyVMduuNXqz/eJWNnLJPzf1yUHFkek75dmsij6R6REZMXy6zFayVu3Lih7RdN6i1ZM2eQ4yd/VQ+AZ8jBn45J2tQPqn04Xpb8uZ+UA+rvHd4eJ2vnD43xe4tzWx0x3Yu/gXhMXl9c9W8G5y52k3QPj5ArV2447krvIO6TK6FKrQxQm2qWKTHb8etpiAACCCCAAAIIIIAAAggg4L2Ak0A8uq8y7H9P6tIqSZLGk3fe3O64m7ArxCerQLxkzpmOX+trGPYaFquNOSeN2COb1h52fR5egAACCASSAIG4f6MVNhA/cvy0NHi9v8wa9aZkfiytjJy6xITa04Z1VRs7z5InM2WQBrXK/6vDV9oPknIl8stLtSvKzj37VTg+XTYsGi6HjpwgEB80YId/I/Qfr962s7HMmPaVzJrxlbzQIKe071hEihb8Z1MUJ8cDDyaWb75vJeVKvScHvj8r4yZWVmH6TenW+Z96bhwIIIAAAggggAACCCCAAAKBIWA7ENelTHoNKS3PFJyjVs7FkeVbXjClS9au+Mkx2AdbXzAB9rHDFyQqgfhbQ0rJQ48klXZqA9DHM6cSXXalXJ7Z8qsqEcqBAAIIBLNA0ATiv3u0Qvy+/60QP3H6rPx89JSULJzbTJl93x2Szn3Gy8bFI6RLv4lSukgeea5SsTum07nfL8qzDbrJpx+Nl3ghIeZ3z7foLd1avygpkicJDcRv3LwlzTsPlVLqHM1erBLtU/KeXCFepGg6GTnmWUmharidPXtF2rdZK1/tPe0Kt0mzvNKpa1H11bM48s3XZ6R1y9Vy/tw/X1/jQAABBBBAAAEEEEAAAQQQCAwB24G4DsEHjC4n5Stnklu3/pY1Kgjv322rY6y5H9aWtGrTztplF0na9MmjFIg/9EgSGT2zsmRWe2Fdv35TRr3zmSrn8r3ja6AhAgggEKgCBOL+jVzyMIF42DNd/vOqDBo7T5IkTmhKoLzWbbj8/fdtOfLLaVFFNqTuc2WkRcNq8uU3P0q/EbPlg5kDQl/eue8EKZw/hzyVPVNoIN5Xtbl165b069rUvwuO5NX3ZCAeI5KcFAEEEEAAAQQQQAABBBBAIOAEbAfiAQfEBSOAAAJBJEAg7t9gRhSIvztxocxatFbVAc8i495pLylTJJUpcz+U5MmSSJ0qpeToiTMmIH+zbUNJmiSRjJm2VBaqeuK+o9eQ6ZIlU3oplC+7CcSb1H9W1m/dI5Pf7Ry6ity/q/73qwnEo1uU8yGAAAIIIIAAAggggAACCASMAIF4wAwVF4oAAgj4LRAsgfjl896UTEl2/52bavoG5Oq1v2TRik2yYt0OWTa9v8TRG1WEOSbMXiFnfjsvNZ8tIb2HzZKVs94J/W0nVWalWIFckitbRnmpzQCzEWfZ4vlkSM/X/B7vyE5AIB5jtJwYAQQQQAABBBBAAAEEEEAgtgsQiMf2EeL6EEAAgegTIBD3zzJsIK430Pzj4mUposqd6OOmKnGSt0Jz2bJ0lBxTq8JzZc0oCRLEN78brVaFX7p8RV5vUlMq1OssO1aMk8SJEpjfVW7YTQa+2UL9PaE07TRElk7tp/53qHRuWU8qTUGbNAAAIABJREFUlHzavwuO5NUE4jHCykkRQAABBBBAAAEEEEAAAQQCQYBAPBBGiWtEAAEEokeAQNw/x7CB+PZd38jb706X2aN7yKPpHpYP1u6QEZMXy9Zlo+XFVv3MhpgtG9WQX079Ko07DJa+XZqaDTibqbC7YN5spqb4ms27TAmVNfOGyo+HfwmtIa5rjXfsPU6Wzxgg96dK7t9FR/BqAvFoJ+WECCCAAAIIIIAAAggggAACgSJAIB4oI8V1IoAAAv4LEIj7Zxi+ZMqMhatl/vKPRW+qmT7NQ/JGmwZSIE9WOXL8tPQZPkv0KvIUqpb4y89XMn/0ceL0WekxaKocPHRcMqR9WPp0biw5sz5u2uoa4mvnDzXthoxfIKfOnJNR/dr4d9EE4tHuxwkRQAABBBBAAAEEEEAAAQQCWIBAPIAHj0tHAAEEXAoETSB+zqMa4g9EXEPc5TB43pwV4p4PAReAAAIIIIAAAggggAACCCDglQCBuFfy9IsAAgjYFyAQ9888GYG4c8AxA1Q9mP6f3fGCtr0Ky/W4t2TIgE/u+Hm3nsXl7zi3ZdCAHc47oCUCCCCAAAIIIIAAAggggAACURAgEI8CGi9BAAEEAlSAQNy/gSMQd+FHIO4Ci6YIIIAAAggggAACCCCAAALWBAjErVHTEQIIIOC5QNAE4mc9KpnyICVTHE9iAnHHVDREAAEEEEAAAQQQQAABBBCwKEAgbhGbrhBAAAGPBQjE/RuAZATizgEJxJ1b0RIBBBBAAAEEEEAAAQQQQMCeAIG4PWt6QgABBLwWIBD3bwQIxF34EYi7wKIpAggggAACCCCAAAIIIICANQECcWvUdIQAAgh4LhA0gfhvHpVMeYiSKY4nMYG4YyoaIoAAAggggAACCCCAAAIIWBQgELeITVcIIICAxwLBEoj/6VEgnpRA3PkMJhB3bkVLBBBAAAEEEEAAAQQQQAABewIE4vas6QkBBBDwWoBA3L8RIBB34Ucg7gKLpggggAACCCCAAAIIIIAAAtYECMStUdMRAggg4LlA0ATiv3pTMiXpw5RMcTyJCcQdU9EQAQQQQAABBBBAAAEEEEDAogCBuEVsukIAAQQ8FiAQ928ACMRd+BGIu8CiKQIIIIAAAggggAACCCCAgDUBAnFr1HSEAAIIeC5AIO7fEBCIu/AjEHeBRVMEEEAAAQQQQAABBBBAAAFrAgTi1qjpCAEEEPBcIGgC8TMelUx5hJIpjicxgbhjKhoigAACCCCAAAIIIIAAAghYFCAQt4hNVwgggIDHAgTi/g1AUgJx54AE4s6taIkAAggggAACCCCAAAIIIGBPgEDcnjU9IYAAAl4LEIj7NwIE4i78CMRdYNEUAQQQQAABBBBAAAEEEEDAmgCBuDVqOkIAAQQ8FwiaQPy0RyVTUlMyxfEkJhB3TEVDBBBAAAEEEEAAAQQQQAABiwIE4hax6QoBBBDwWIBA3L8BSEog7hyQQNy5FS0RQAABBBBAAAEEEEAAAQTsCRCI27OmJwQQQMBrAQJx/0aAQNyFH4G4CyyaIoAAAggggAACCCCAAAIIWBMgELdGTUcIIICA5wLBEohfOeVNyZQkaSiZ4ngSE4g7pqIhAggggAACCCCAAAIIIICARQECcYvYdIUAAgh4LEAg7t8AEIi78CMQd4FFUwQQQAABBBBAAAEEEEAAAWsCBOLWqOkIAQQQ8FyAQNy/ISAQd+FHIO4Ci6YIIIAAAggggAACCCCAAALWBAjErVHTEQIIIOC5QNAE4ief8MQySdqfPOk3ujuNc1sd0X3S8OcjEI9pYc6PAAIIIIAAAggggAACCCAQFQEC8aio8RoEEEAgMAUIxP0bNwJxF34E4i6waIoAAggggAACCCCAAAIIIGBNgEDcGjUdIYAAAp4LEIj7NwQE4i78CMRdYNEUAQQQQAABBBBAAAEEEEDAmgCBuDVqOkIAAQQ8FyAQ928ICMRd+BGIu8CiKQIIIIAAAggggAACCCCAgDUBAnFr1HSEAAIIeC4QNIH4CY9qiKejhrjjSUwg7piKhggggAACCCCAAAIIIIAAAhYFCMQtYtMVAggg4LEAgbh/A5CEQNw5IIG4cytaIoAAAggggAACCCCAAAII2BMgELdnTU8IIICA1wIE4v6NAIG4Cz8CcRdYNEUAAQQQQAABBBBAAAEEELAmQCBujZqOEEAAAc8FgiYQ/8WjkinpKZnieBITiDumoiECCCCAAAIIIIAAAggggIBFAQJxi9h0hQACCHgsQCDu3wAkIRB3Dkgg7tyKlggggAACCCCAAAIIIIAAAvYECMTtWdMTAggg4LVAsATiVz1aIZ6YQNz5FCYQd25FSwQQQAABBBBAAAEEEEAAAXsCBOL2rOkJAQQQ8FogaALx496UTEmcgZIpjucwgbhjKhoigAACCCCAAAIIIIAAAghYFCAQt4hNVwgggIDHAgTi/g0AgbgLPwJxF1g0RQABBBBAAAEEEEAAAQQQsCZAIG6Nmo4QQAABzwUIxP0bAgJxF34E4i6waIoAAggggAACCCCAAAIIIGBNgEDcGjUdIYAAAp4LBE0gfsyjkimPUjLF8SQmEHdMRUMEEEAAAQQQQAABBBBAAAGLAgTiFrHpCgEEEPBYgEDcvwFITCDuHJBA3LkVLRFAAAEEEEAAAQQQQAABBOwJEIjbs6YnBBBAwGsBAnH/RoBA3IUfgbgLLJoigAACCCCAAAIIIIAAAghYEyAQt0ZNRwgggIDnAkETiB/1qGTKY5RMcTyJCcQdU9EQAQQQQAABBBBAAAEEEEDAogCBuEVsukIAAQQ8FiAQ928AEhOIOwckEHduRUsEEEAAAQQQQAABBBBAAAF7AgTi9qzpCQEEEPBagEDcvxEgEHfhRyDuAoumCCCAAAIIIIAAAggggAAC1gQIxK1R0xECCCDguUDQBOJHPCqZ8jglUxxPYgJxx1Q0RAABBBBAAAEEEEAAAQQQsChAIG4Rm64QQAABjwWCJRC/5lEgnohA3PkMJhB3bkVLBBBAAAEEEEAAAQQQQAABewIE4vas6QkBBBDwWoBA3L8RIBB34Ucg7gKLpggggAACCCCAAAIIIIAAAtYECMStUdMRAggg4LlA0ATih70pmZIoIyVTHE9iAnHHVDREAAEEEEAAAQQQQAABBBCwKEAgbhGbrhBAAAGPBQjE/RsAAnEXfgTiLrBoigACCCCAAAIIIIAAAgggYE2AQNwaNR0hgAACngsQiPs3BATiLvwIxF1g0RQBBBBAAAEEEEAAAQQQQMCaAIG4NWo6QgABBDwXCJpA/GePSqZkomSK40lMIO6YioYIIIAAAggggAACCCCAAAIWBQjELWLTFQIIIOCxAIG4fwOQiEDcOSCBuHMrWiKAAAIIIIAAAggggAACCNgTIBC3Z01PCCCAgNcCBOL+jQCBuAs/AnEXWDRFAAEEEEAAAQQQQAABBBCwJkAgbo2ajhBAAAHPBQjE/RsCAnEXfgTiLrBoigACCCCAAAIIIIAAAgggYE2AQNwaNR0hgAACngsETSB+6ElPLBNl/tGTfqO70zi31RHdJw1/PgLxmBbm/AgggAACCCCAAAIIIIAAAlERIBCPihqvQQABBAJTgEDcv3EjEHfhRyDuAoumCCCAAAIIIIAAAggggAAC1gQIxK1R0xECCCDguUCwBOLXPVohnpAV4s7nMIG4cytaIoAAAggggAACCCCAAAII2BMgELdnTU8IIICA1wJBE4j/5E3JlIRPUDLF8RwmEHdMRUMEEEAAAQQQQAABBBBAAAGLAgTiFrHpCgEEEPBYgEDcvwEgEHfhRyDuAoumCCCAAAIIIIAAAggggAAC1gQIxK1R0xECCCDguQCBuH9DQCDuwo9A3AUWTRFAAAEEEEAAAQQQQAABBKwJEIhbo6YjBBBAwHOBoAnEf/SoZMqTlExxPIkJxB1T0RABBBBAAAEEEEAAAQQQQMCiAIG4RWy6QgABBDwWIBD3bwASEog7ByQQd25FSwQQQAABBBBAAAEEEEAAAXsCBOL2rOkJAQQQ8FqAQNy/ESAQd+FHIO4Ci6YIIIAAAggggAACCCCAAALWBAjErVHTEQIIIOC5QNAE4j94VDIlCyVTHE9iAnHHVDREAAEEEEAAAQQQQAABBBCwKEAgbhGbrhBAAAGPBQjE/RuAhATizgEJxJ1b0RIBBBBAAAEEEEAAAQQQQMCeAIG4PWt6QgABBLwWIBD3bwQIxF34EYi7wKIpAggggAACCCCAAAIIIICANQECcWvUdIQAAgh4LhA0gfhBj0qmZKVkiuNJTCDumIqGCCCAAAIIIIAAAggggAACFgUIxC1i0xUCCCDgsQCBuH8DkJBA3DkggbhzK1oigAACCCCAAAIIIIAAAgjYEyAQt2dNTwgggIDXAsESiP/l0QrxBATizqcwgbhzK1oigAACCCCAAAIIIIAAAgjYEyAQt2dNTwgggIDXAkETiB/wpmRKgmyUTHE8hwnEHVPREAEEEEAAAQQQQAABBBBAwKIAgbhFbLpCAAEEPBYgEPdvAAjEXfgRiLvAoikCCCCAAAIIIIAAAggggIA1AQJxa9R0hAACCHguQCDu3xAQiLvwIxB3gUVTBBBAAAEEEEAAAQQQQAABawIE4tao6QgBBBDwXCBoAvHvPSqZkp2SKY4nMYG4YyoaIoAAAggggAACCCCAAAIIWBQgELeITVcIIICAxwIE4v4NQAICceeABOLOrWiJAAIIIIAAAggggAACCCBgT4BA3J41PSGAAAJeCxCI+zcCBOIu/AjEXWDRFAEEEEAAAQQQQAABBBBAwJoAgbg1ajpCAAEEPBcImkD8O49KpuSgZIrjSUwg7piKhggggAACCCCAAAIIIIAAAhYFCMQtYtMVAggg4LEAgbh/A5CAQNw5IIG4cytaIoAAAggggAACCCCAAAII2BMgELdnTU8IIICA1wIE4v6NAIG4Cz8CcRdYNEUAAQQQQAABBBBAAAEEELAmQCBujZqOEEAAAc8FCMT9GwICcRd+BOIusGiKAAIIIIAAAggggAACCCBgTYBA3Bo1HSGAAAKeCwRLIH5jvzc1xOPnpIa440lMIO6YioYIIIAAAggggAACCCCAAAIWBQjELWLTFQIIIOCxAIG4fwNAIO7Cj0DcBRZNEUAAAQQQQAABBBBAAAEErAkQiFujpiMEEEDAcwECcf+GgEDchR+BuAssmiKAAAIIIIAAAggggAACCFgTIBC3Rk1HCCCAgOcCQROIf+tRyZRclExxPIkJxB1T0RABBBBAAAEEEEAAAQQQQMCiAIG4RWy6QgABBDwWIBD3bwDiE4g7ByQQd25FSwQQQAABBBBAAAEEEEAAAXsCBOL2rOkJAQQQ8FogeALxLJ5Qxs/1gyf9RnencW6rI7pPGv58BOIxLcz5EUAAAQQQQAABBBBAAAEEoiJAIB4VNV6DAAIIBKZA0ATi33gUiOcmEHc88wnEHVPREAEEEEAAAQQQQAABBBBAwKIAgbhFbLpCAAEEPBYgEPdvAOITiDsHJBB3bkVLBBBAAAEEEEAAAQQQQAABewIE4vas6QkBBBDwWoBA3L8RIBB34Ucg7gKLpggggAACCCCAAAIIIIAAAtYECMStUdMRAggg4LlA0ATiX3tUMuUpSqY4nsQE4o6paIgAAggggAACCCCAAAIIIGBRgEDcIjZdIYAAAh4LEIj7NwDxCcSdAxKIO7eiJQIIIIAAAggggAACCCCAgD0BAnF71vSEAAIIeC0QLIH4TY9WiMcjEHc+hQnEnVvREgEEEEAAAQQQQAABBBBAwJ4Agbg9a3pCAAEEvBYImkB8nzclU+LloWSK4zlMIO6YioYIIIAAAggggAACCCCAAAIWBQjELWLTFQIIIOCxAIG4fwNAIO7Cj0DcBRZNEUAAAQQQQAABBBBAAAEErAkQiFujpiMEEEDAcwECcf+GgEDchR+BuAssmiKAAAIIIIAAAggggAACCFgTIBC3Rk1HCCCAgOcCQROIf+VRyZS8lExxPIkJxB1T0RABBBBAAAEEEEAAAQQQQMCiAIG4RWy6QgABBDwWIBD3bwDiEYg7ByQQd25FSwQQQAABBBBAAAEEEEAAAXsCBOL2rOkJAQQQ8FqAQNy/ESAQd+FHIO4Ci6YIIIAAAggggAACCCCAAALWBAjErVHTEQIIIOC5QNAE4ns9KpmSj5IpjicxgbhjKhoigAACCCCAAAIIIIAAAghYFCAQt4hNVwgggIDHAgTi/g1APAJx54AE4s6taIkAAggggAACCCCAAAIIIGBPgEDcnjU9IYAAAl4LEIj7NwIE4i78CMRdYNEUAQQQQAABBBBAAAEEEEDAmgCBuDVqOkIAAQQ8FwiaQPxLj0qm5KdkiuNJTCDumIqGCCCAAAIIIIAAAggggAACFgUIxC1i0xUCCCDgsQCBuH8DEI9A3DkggbhzK1oigAACCCCAAAIIIIAAAgjYEyAQt2dNTwgggIDXAsESiN/yaIV4CIG48ylMIO7cipYIIIAAAggggAACCCCAAAL2BAjE7VnTEwIIIOC1AIG4fyNAIO7Cj0DcBRZNEUAAAQQQQAABBBBAAAEErAkQiFujpiMEEEDAc4GgCcS/8KaGeMjT1BB3PIkJxB1T0RABBBBAAAEEEEAAAQQQQMCiAIG4RWy6QgABBDwWIBD3bwAIxF34EYi7wKIpAggggAACCCCAAAIIIICANQECcWvUdIQAAgh4LkAg7t8QEIi78CMQd4FFUwQQQAABBBBAAAEEEEAAAWsCBOLWqOkIAQQQ8FwgaALxPR6VTClAyRTHk5hA3DEVDRFAAAEEEEAAAQQQQAABBCwKEIhbxKYrBBBAwGMBAnH/BiCEQNw5IIG4cytaIoAAAggggAACCCCAAAII2BMgELdnTU8IIICA1wIE4v6NAIG4Cz8CcRdYNEUAAQQQQAABBBBAAAEEELAmQCBujZqOEEAAAc8FgiYQ3+1RyZSClExxPIkJxB1T0RABBBBAAAEEEEAAAQQQQMCiAIG4RWy6QgABBDwWIBD3bwBCCMSdAxKIO7eiJQIIIIAAAggggAACCCCAgD0BAnF71vSEAAIIeC1AIO7fCBCIu/AjEHeBRVMEEEAAAQQQQAABBBBAAAFrAgTi1qjpCAEEEPBcIGgC8c+zemIZUuigJ/1Gd6dxbqsjuk8a/nwE4jEtzPkRQAABBBBAAAEEEEAAAQSiIkAgHhU1XoMAAggEpgCBuH/jRiDuwo9A3AUWTRFAAAEEEEAAAQQQQAABBKwJEIhbo6YjBBBAwHMBAnH/hoBA3IUfgbgLLJoigAACCCCAAAIIIIAAAghYEyAQt0ZNRwgggIDnAkETiO/yqGRKYUqmOJ7EBOKOqWiIAAIIIIAAAggggAACCCBgUYBA3CI2XSGAAAIeCxCI+zcAIQTizgEJxJ1b0RIBBBBAAAEEEEAAAQQQQMCeAIG4PWt6QgABBLwWIBD3bwQIxF34EYi7wKIpAggggAACCCCAAAIIIICANQECcWvUdIQAAgh4LkAg7t8QEIi78CMQd4FFUwQQQAABBBBAAAEEEEAAAWsCBOLWqOkIAQQQ8FwgaALxz7J5YhlS5IAn/UZ3p3FuqyO6Txr+fATiMS3M+RFAAAEEEEAAAQQQQAABBKIiQCAeFTVegwACCASmAIG4f+NGIO7Cj0DcBRZNEUAAAQQQQAABBBBAAAEErAkQiFujpiMEEEDAcwECcf+GgEDchR+BuAssmiKAAAIIIIAAAggggAACCFgTIBC3Rk1HCCCAgOcCQROIf+pRyZSilExxPIkJxB1T0RABBBBAAAEEEEAAAQQQQMCiAIG4RWy6QgABBDwWIBD3bwBCCMSdAxKIO7eiJQIIIIAAAggggAACCCCAgD0BAnF71vSEAAIIeC1AIO7fCBCIu/AjEHeBRVMEEEAAAQQQQAABBBBAAAFrAgTi1qjpCAEEEPBcgEDcvyEgEHfhRyDuAoumCCCAAAIIIIAAAggggAAC1gQIxK1R0xECCCDguUDQBOI7PaohXowa4o4nMYG4YyoaIoAAAggggAACCCCAAAIIWBQgELeITVcIIICAxwLBE4hn90QypNj3nvQb3Z3Gua2O6D5p+PMRiMe0MOdHAAEEEEAAAQQQQAABBBCIigCBeFTUeA0CCCAQmAIE4v6NG4G4Cz8CcRdYNEUAAQQQQAABBBBAAAEEELAmQCBujZqOEEAAAc8FgiYQ/8SjFeLFWSHueBITiDumoiECCCCAAAIIIIAAAggggIBFAQJxi9h0hQACCHgsQCDu3wCEEIg7ByQQd25FSwQQQAABBBBAAAEEEEAAAXsCBOL2rOkJAQQQ8FqAQNy/ESAQd+FHIO4Ci6YIIIAAAggggAACCCCAAALWBAjErVHTEQIIIOC5QNAE4js8KplSgpIpjicxgbhjKhoigAACCCCAAAIIIIAAAghYFCAQt4hNVwgggIDHAgTi/g1ACIG4c0ACcedWtEQAAQQQQAABBBBAAAEEELAnQCBuz5qeEEAAAa8FgicQz+EJZUiJ7zzpN7o7jXNbHdF90vDnIxCPaWHOjwACCCCAAAIIIIAAAgggEBUBAvGoqPEaBBBAIDAFCMT9GzcCcRd+BOIusGiKAAIIIIAAAggggAACCCBgTYBA3Bo1HSGAAAKeCwRNIL7doxXiJVkh7ngSE4g7pqIhAggggAACCCCAAAIIIICARQECcYvYdIUAAgh4LEAg7t8AhBCIOwckEHduRUsEEEAAAQQQQAABBBBAAAF7AgTi9qzpCQEEEPBagEDcvxEgEHfhRyDuAoumCCCAAAIIIIAAAggggAAC1gQIxK1R0xECCCDguUDQBOLbPCqZUoqSKY4nMYG4YyoaIoAAAggggAACCCCAAAIIWBQgELeITVcIIICAxwIE4v4NQAiBuHNAAnHnVrREAAEEEEAAAQQQQAABBBCwJ0Agbs+anhBAAAGvBYInEM/pCWVIqf2e9Bvdnca5rY7oPmn48xGIx7Qw50cAAQQQQAABBBBAAAEEEIiKAIF4VNR4DQIIIBCYAgTi/o0bgbgLPwJxF1g0RQABBBBAAAEEEEAAAQQQsCZAIG6Nmo4QQAABzwWCJhDf6tEK8dKsEHc8iQnEHVPREAEEEEAAAQQQQAABBBBAwKIAgbhFbLpCAAEEPBYgEPdvAEIIxJ0DEog7t6IlAggggAACCCCAAAIIIICAPQECcXvW9IQAAgh4LUAg7t8IEIi78CMQd4FFUwQQQAABBBBAAAEEEEAAAWsCBOLWqOkIAQQQ8FwgaALxLR6VTClDyRTHk5hA3DEVDRFAAAEEEEAAAQQQQAABBCwKEIhbxKYrBBBAwGMBAnH/BiCEQNw5IIG4cytaIoAAAggggAACCCCAAAII2BMgELdnTU8IIICA1wIE4v6NAIG4Cz8CcRdYNEUAAQQQQAABBBBAAAEEELAmQCBujZqOEEAAAc8FgiYQ35zLE8uQst960m90dxrntjqi+6Thz0cgHtPCnB8BBBBAAAEEEEAAAQQQQCAqAgTiUVHjNQgggEBgChCI+zduBOIu/AjEXWDRFAEEEEAAAQQQQAABBBBAwJoAgbg1ajpCAAEEPBcgEPdvCAjEXfgRiLvAoikCCCCAAAIIIIAAAggggIA1AQJxa9R0hAACCHguQCDu3xAQiLvwIxB3gUVTBBBAAAEEEEAAAQQQQAABawIE4tao6QgBBBDwXCBoAvFNHtUQL0cNcceTmEDcMRUNEUAAAQQQQAABBBBAAAEELAoQiFvEpisEEEDAYwECcf8GIIRA3DkggbhzK1oigAACCCCAAAIIIIAAAgjYEyAQt2dNTwgggIDXAgTi/o0AgbgLPwJxF1g0RQABBBBAAAEEEEAAAQQQsCZAIG6Nmo4QQAABzwWCJhD/OLcnliHlv/Gk3+juNM5tdUT3ScOfj0A8poU5PwIIIIAAAggggAACCCCAQFQECMSjosZrEEAAgcAUIBD3b9wIxF34EYi7wKIpAggggAACCCCAAAIIIICANQECcWvUdIQAAgh4LkAg7t8QEIi78CMQd4FFUwQQQAABBBBAAAEEEEAAAWsCBOLWqOkIAQQQ8FyAQNy/ISAQd+FHIO4Ci6YIIIAAAggggAACCCCAAALWBAjErVHTEQIIIOC5QNAE4hs9qiFegRrijicxgbhjKhoigAACCCCAAAIIIIAAAghYFCAQt4hNVwgggIDHAgTi/g1ACIG4c0ACcedWtEQAAQQQQAABBBBAAAEEELAnQCBuz5qeEEAAAa8FCMT9GwECcRd+BOIusGiKAAIIIIAAAggggAACCCBgTYBA3Bo1HSGAAAKeCwRNIL7hKU8sQyp+7Um/0d1pnNvqiO6Thj8fgXhMC3N+BBBAAAEEEEAAAQQQQACBqAgQiEdFjdcggAACgSlAIO7fuBGIu/AjEHeBRVMEEEAAAQQQQAABBBBAAAFrAgTi1qjpCAEEEPBcgEDcvyEgEHfhRyDuAoumCCCAAAIIIIAAAggggAAC1gQIxK1R0xECCCDguQCBuH9DQCDuwo9A3AUWTRFAAAEEEEAAAQT+j737jrq0qg89vl8YqSIWVOy9FxQLXtHEgoodGwqodDUoogyO0kRgdJxBECkqSrOBDRA1gr2BipdYY6IBb+zdxBhNYsH3nnmz7si84s3eZz/v78d5/Jy17vIC++zfmc9+8s93PWsPAQIECIQJCOJh1AYRIEAgXWA0QfxDSXeIP9wd4tUPsSBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zuADQXxekBBvN7KSgIECBAgQIAAAQIECBCIExDE46xNIkCAQLaAIN53AoJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1gNEH8g0lXpjzClSnVD7EgXk1lIQECBAgQIECAAAECBAiqFaPcAAAgAElEQVQECgjigdhGESBAIFlgPEF8mxTJDR/x5ZS5Qw+dm598ht508X6C+FIL258AAQIECBAgQIAAAQIEphEQxKdR8x0CBAjMpoAg3ndugniDnyDegGUpAQIECBAgQIAAAQIECIQJCOJh1AYRIEAgXWA0QfzCpDfEd/SGePVDLIhXU1lIgAABAgQIECBAgAABAoECgnggtlEECBBIFhDE+w5gQ0G8HlAQr7eykgABAgQIECBAgAABAgTiBATxOGuTCBAgkC0giPedgCDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcQxPuOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJohfkHSH+CPdIV79EAvi1VQWEiBAgAABAgQIECBAgECggCAeiG0UAQIEkgXGE8TvkSK54SO/lDJ36KFz85PP0Jsu3k8QX2ph+xMgQIAAAQIECBAgQIDANAKC+DRqvkOAAIHZFBDE+85tcRD/wEcvKSeefm75l1/8stz59rcoRx60Z7n5TW5YfvPb35UjXnVGufjzXy2bbrJx2WfXR5edH/fgheHf/cFPyuFrTi/fuPw75cZbb1UOPeAZZdu73a58ffLPL3jpSeXCs9b0/ciKbwviFUiWECBAgAABAgQIECBAgMA4BQTxcZ6rPxUBAgSuSmA0QfwDSW+IP+qPb4h/67s/Krs+9+hy5vEHl9vc4sbl1W9810LUPvVVLyonn3Feufxb3y+rDnlW+fm//rLs9tyV5Q3HHFRuf+ublt0PWFUe8oBty9Of+LDymUu/Nonjp5UPv+PY8s3JekF85UX+L5cAAQIECBAgQIAAAQIECCypgCC+pLw2J0CAwNVKQBDvO44NrxTEv/+jn5X/8+0flgdud7eFTb/8D98sy192cvnIO48rj9v9kHL0i/cu29z5Ngv/bc3JZ5fNN9ukPG2nh5Ydd11RPvv+k8uyDTdc+G9P3veIsmK/Xcq1tthsXRD/3e+vKPssX1P+6n7blL13eVTfj76Kb3tDfHBSGxIgQIAAAQIECBAgQIDArAgI4rNyUn4nAQIE+gUE8T7DKwfxK+/0q1//Z1l14tvKZptuvHAFyjYP3bt86rwTypbX2nxh2TvO/1i59CvfKLvstEM56rg3lfecsXLd15cf+dqy3bZ3Lne/063XBfEjJ2uuuOKKctSL9ur7wX/m24L4krDalAABAgQIECBAgAABAgRmQUAQn4VT8hsJECAwjIAg3ud4VUH8mNe9vZz5jgsn94Dfvpz08gPKZpM3we+xw97l7z74hrLJxhstDDz/gxeXj3zq0rLLEx5aTjj1nPL21x+x7occtvq0hatU7nvPOy0E8T2fumP50CcvLaccs3zdW+R9v/pPvy2IDy1qPwIECBAgQIAAAQIECBCYGQFBfGaOyg8lQIBAt8BogvjfJt0h/ug/3iF+5cP4z//67cJb4Od/8KJy7mlHT4L4PuUT5x5frrPlFgvLzn7PR8uX/v7yyZUpD5n8ZZtnlvee+fJ1Xz9wcs3K/e9913LXO96qPP15K8sGG2xQHrz9PcvqQ5/dfd5/bgNBfMlobUyAAAECBAgQIECAAAECV3cBQfzqfkJ+HwECBIYTGEsQ//3f3nM4lIadlj36i+tWr/0LNH/xy1+V+02uO1n7+f3kipOFEH7O8ZP7v48pBz9/t7Ld5K3vtZ+XHnN6uemNrl+e8tgHlR12Xl4uOv+ksukm//32+CN3W1FecfC+k3/euOx14OpyzhuPmvzvmrL8OTuXHR54r4ZfV79UEK+3spIAAQIECBAgQIAAAQIERiYgiI/sQP1xCBAg8P8REMT7Ho8rB/FPX/LVSeg+rbzpNYeUm9/kBuU9F15UjjvlneWT576mnPKW95Uvfe2ycvxR+5fv/eCnZfcXrCpnnXx4ucVNb1j2nsTu+9zjjmXf3R5TLvj4JQtXqFzwtjXlsn/+3ro7xL/w1cvKC484qZx3+spy3Wv/91vmQ34E8SE17UWAAAECBAgQIECAAAECMyUgiM/UcfmxBAgQ6BIYTRB/f9Ib4o/54xviaw/i9Ld/oJx13kfL2r9Uc+0b4C953q7l3tvcofz2t79buBrl05d8pWw+uVN8vz12Ko9/xPYLZ/f9H/2sHLLqjeUb3/xuudmNb1BetnyPcpc73LKsfeN87R3iF561ZmHd6pPPLj/88c8nUf15XWd+VV8WxAcntSEBAgQIECBAgAABAgQIzIqAID4rJ+V3EiBAoF9AEO8zXLYoiPftlvdtQTzP3mQCBAgQIECAAAECBAgQSBYQxJMPwHgCBAgECgjifdiCeIPfCSsn98Ec/bn1vrH/YduV32xwRVm98uL1/v2KQ7cvf5ibL6tWXtQwwVICBAgQIECAAAECBAgQINAuIIi3m/kGAQIEZlVgNEH8fUlXpjx2/StTZvU58Ib4rJ6c302AAAECBAgQIECAAAEC3QKCeDehDQgQIDAzAoJ431EtE8TrAb0hXm9lJQECBAgQIECAAAECBAjECQjicdYmESBAIFtAEO87AUG8wU8Qb8CylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4wniC+bYrlssd+IWXu0ENdmTK0qP0IECBAgAABAgQIECBAYGYEBPGZOSo/lAABAt0Cowni700K4o8TxKsfQm+IV1NZSIAAAQIECBAgQIAAAQKBAoJ4ILZRBAgQSBYQxPsOYJkgXg8oiNdbWUmAAAECBAgQIECAAAECcQKCeJy1SQQIEMgWEMT7TkAQb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLjCaIn590ZcrjXZlS/RAL4tVUFhIgQIAAAQIECBAgQIBAoIAgHohtFAECBJIFBPG+A1gmiNcDCuL1VlYSIECAAAECBAgQIECAQJyAIB5nbRIBAgSyBQTxvhMQxBv8BPEGLEsJECBAgAABAgQIECBAIExAEA+jNogAAQLpAuMJ4vdKsVz2+L9LmTv00Ln5yWfoTRfvJ4gvtbD9CRAgQIAAAQIECBAgQGAaAUF8GjXfIUCAwGwKjCaIvycpiO8kiFc/+YJ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8Algni9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWwBQbzvBATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLrAaIL4eUlXpjzBlSnVD7EgXk1lIQECBAgQIECAAAECBAgECgjigdhGESBAIFlAEO87gGWCeD2gIF5vZSUBAgQIECBAgAABAgQIxAkI4nHWJhEgQCBbQBDvOwFBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJ4gfu8Uy2VPuDRl7tBD5+Ynn6E3XbyfIL7UwvYnQIAAAQIECBAgQIAAgWkEBPFp1HyHAAECsykwmiB+blIQf6IgXv3kC+LVVBYSIECAAAECBAgQIECAQKCAIB6IbRQBAgSSBQTxvgNYJojXAwri9VZWEiBAgAABAgQIECBAgECcgCAeZ20SAQIEsgUE8b4TEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKjCeLnJF2Z8iRXplQ/xIJ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8Algni9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWwBQbzvBATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLrAaIL4u5OuTHmyK1OqH2JBvJrKQgIECBAgQIAAAQIECBAIFBDEA7GNIkCAQLLAeIL4fVIklz35f6fMHXro3PzkM/Smi/cTxJda2P4ECBAgQIAAAQIECBAgMI2AID6Nmu8QIEBgNgUE8b5zE8Qb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKCeN8RCOINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIHRBPF3JV2Z8hRXplQ/xIJ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8Algni9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWwBQbzvBATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLrAaIL4O5OuTNnZlSnVD7EgXk1lIQECBAgQIECAAAECBAgECgjigdhGESBAIFlgPEH8vimSy3b+fMrcoYfOzU8+Q2+6eD9BfKmF7U+AAAECBAgQIECAAAEC0wgI4tOo+Q4BAgRmU0AQ7zs3QbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLiCI9x2BIN7gJ4g3YFlKgAABAgQIECBAgAABAmECgngYtUEECBBIFxhNEH9H0pUpT3VlSvVDLIhXU1lIgAABAgQIECBAgAABAoECgnggtlEECBBIFhDE+w5gmSBeDyiI11tZSYAAAQIECBAgQIAAAQJxAoJ4nLVJBAgQyBYQxPtOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJoi/PenKlKe5MqX6IRbEq6ksJECAAAECBAgQIECAAIFAAUE8ENsoAgQIJAuMJ4hvlyK57GmXpMwdeujc/OQz9KaL9xPEl1rY/gQIECBAgAABAgQIECAwjYAgPo2a7xAgQGA2BQTxvnMTxBv8BPEGLEsJECBAgAABAgQIECBAIExAEA+jNogAAQLpAqMJ4mcnvSG+izfEqx9iQbyaykICBAgQIECAAAECBAgQCBQQxAOxjSJAgECygCDedwDLBPF6QEG83spKAgQIECBAgAABAgQIEIgTEMTjrE0iQIBAtoAg3ncCgniDnyDegGUpAQIECBAgQIAAAQIECIQJCOJh1AYRIEAgXUAQ7zsCQbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLjCaIH5W0h3iu7pDvPohFsSrqSwkQIAAAQIECBAgQIAAgUABQTwQ2ygCBAgkCwjifQewTBCvBxTE662sJECAAAECBAgQIECAAIE4AUE8ztokAgQIZAuMJ4jfL4Vy2a6fS5k79NC5+cln6E0X7yeIL7Ww/QkQIECAAAECBAgQIEBgGgFBfBo13yFAgMBsCowmiL8tKYjvJohXP/mCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvAJYJ4vWAgni9lZUECBAgQIAAAQIECBAgECcgiMdZm0SAAIFsAUG87wQE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6gCDedwSCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdYDRB/K1Jd4g/3R3i1Q+xIF5NZSEBAgQIECBAgAABAgQIBAoI4oHYRhEgQCBZQBDvO4Blgng9oCBeb2UlAQIECBAgQIAAAQIECMQJCOJx1iYRIEAgW2A8Qfx/pVAue/pnU+YOPXRufvIZetPF+wniSy1sfwIECBAgQIAAAQIECBCYRkAQn0bNdwgQIDCbAqMJ4m9JCuLPEMSrn3xBvJrKQgIECBAgQIAAAQIECBAIFBDEA7GNIkCAQLKAIN53AMsE8XpAQbzeykoCBAgQIECAAAECBAgQiBMQxOOsTSJAgEC2gCDedwKCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdQBDvOwJBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJog/uakO8Sf6Q7x6odYEK+mspAAAQIECBAgQIAAAQIEAgUE8UBsowgQIJAsIIj3HcAyQbweUBCvt7KSAAECBAgQIECAAAECBOIEBPE4a5MIECCQLTCeIH7/FMplz/xMytyhh87NTz5Db7p4P0F8qYXtT4AAAQIECBAgQIAAAQLTCAji06j5DgECBGZTYDRB/E1JQXx3Qbz6yRfEq6ksJECAAAECBAgQIECAAIFAAUE8ENsoAgQIJAsI4n0HsEwQrwcUxOutrCRAgAABAgQIECBAgACBOAFBPM7aJAIECGQLCOJ9JyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFRhPEz0y6MmUPV6ZUP8SCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvAJYJ4vWAgni9lZUECBAgQIAAAQIECBAgECcgiMdZm0SAAIFsAUG87wQE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6gCDedwSCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdYCxB/HdnbJ9ieY09L06ZO/TQufnJZ+hNF+8niC+1sP0JECBAgAABAgQIECBAYBoBQXwaNd8hQIDAbAoI4n3nJog3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gUE8b4jEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKCeN8RCOINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIHRBPHTk+4Q38sd4tUPsSBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zuAawji9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWyB8QTxB6RQXmOvi1LmDj10bn7yGXrTxfsJ4kstbH8CBAgQIECAAAECBAgQmEZAEJ9GzXcIECAwmwKCeN+5CeINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIHRBPHTkt4Q39sb4tUPsSBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zuAawji9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWyBsQTx3ya9Ib6RIF7/CAvi9VZWEiBAgAABAgQIECBAgECcgCAeZ20SAQIEsgVGE8RPzbkyZaN9XJlS/QwL4tVUFhIgQIAAAQIECBAgQIBAoIAgHohtFAECBJIFxhPEH5giudE+n06ZO/TQufnJZ+hNF+8niC+1sP0JECBAgAABAgQIECBAYBoBQXwaNd8hQIDAbAoI4n3nJog3+K168afLacd/Yb1v7H/YduU3G1xRVq+8eL1/v+LQ7csf5ubLqpXjeAW/gclSAgQIECBAgAABAgQIEAgWEMSDwY0jQIBAokBrEN/rgHuWQ9b8VeIvvurRvz3VG+I9h+IN8R493yVAgAABAgQIECBAgACBmRYQxGf6+Px4AgQINAm0BvG1L/QecPj9mmZELP7tG5OC+L6uTKk+X1emVFNZSIAAAQIECBAgQIAAAQKBAoJ4ILZRBAgQSBYQxPsOYCNBvB5QEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtMJ4gnnONy0b7fir7CAeZ78qUQRhtQoAAAQIECBAgQIAAAQKzKCCIz+Kp+c0ECBCYTkAQn87t/31LEG/w84Z4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIHRBPE3JL0h/ixviFc/xIJ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8ANhLE6wEF8XorKwkQIECAAAECBAgQIEAgTkAQj7M2iQABAtkCYwniv0l6Q3xjQbz+ERbE662sJECAAAECBAgQIECAAIE4AUE8ztokAgQIZAsI4n0nIIg3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gVGE8RP+esUy42f/cmUuUMPnZuffIbedPF+gvhSC9ufAAECBAgQIECAAAECBKYREMSnUfMdAgQIzKaAIN53boJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1AEO87AkG8wU8Qb8CylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4giPcdgSDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcYTRB/fdId4s9xh3j1QyyIV1NZSIAAAQIECBAgQIAAAQKBAoJ4ILZRBAgQSBYQxPsOYGNBvB5QEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtMJ4g/qAUyo2f84mUuUMPnZuffIbedPF+gvhSC9ufAAECBAgQIECAAAECBKYREMSnUfMdAgQIzKaAIN53boJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1gLEH8v173oBTLTf7mEylzhx7qDfGhRe1HgAABAgQIECBAgAABAjMjIIjPzFH5oQQIEOgWEMT7CAXxBj9viDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXEMT7jkAQb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLCOJ9RyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFRhPEX/vgFMtN9vt4ytyhh7pDfGhR+xEgQIAAAQIECBAgQIDAzAgI4jNzVH4oAQIEugUE8T5CQbzBzxviDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gUE8b4jEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKjCeInJ12Z8lxXplQ/xIJ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8ANhHE6wEF8XorKwkQIECAAAECBAgQIEAgTkAQj7M2iQABAtkCgnjfCQjiDX6CeAOWpQQIECBAgAABAgQIECAQJiCIh1EbRIAAgXSB8QTxh6RYbvLcj6XMHXro3PzkM/Smi/cTxJda2P4ECBAgQIAAAQIECBAgMI2AID6Nmu8QIEBgNgXGEsT/86ScIL7p8wTx6idfEK+mspAAAQIECBAgQIAAAQIEAgUE8UBsowgQIJAsIIj3HYAg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXEMT7jkAQb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLCOJ9RyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFRhPET0y6Q3x/d4hXP8SCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWSB8QTxh6ZIbrr/R1PmDj10bn7yGXrTxfsJ4kstbH8CBAgQIECAAAECBAgQmEZAEJ9GzXcIECAwmwKCeN+5CeINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdAFBvO8IBPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAusBogvgJSVemPN+VKdUPsSBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zuATQXxekBBvN7KSgIECBAgQIAAAQIECBCIExDE46xNIkCAQLbAWIL4fyS9Ib6ZIF7/CAvi9VZWEiBAgAABAgQIECBAgECcgCAeZ20SAQIEsgXGE8R3SKHc7PkfSZk79NC5+cln6E0X7yeIL7Ww/QkQIECAAAECBAgQIEBgGgFBfBo13yFAgMBsCowmiL8mKYgfIIhXP/mCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvADYTxOsBBfF6KysJECBAgAABAgQIECBAIE5AEI+zNokAAQLZAoJ43wkI4g1+gngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0AUG87wgE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wGiC+PFJd4i/wB3i1Q+xIF5NZSEBAgQIECBAgAABAgQIBAoI4oHYRhEgQCBZYDxB/GEpkpu94MMpc4ceOjc/+Qy96eL9BPGlFrY/AQIECBAgQIAAAQIECEwjIIhPo+Y7BAgQmE0BQbzv3ATxBr+rCuL7Hniv8l8bXlFOOPaS9XZacej25Q9z82XVyosaJlhKgAABAgQIECBAgAABAgTaBQTxdjPfIECAwKwK/Lkgvv8L71s2n7tGOeVVl673R9v/sO3KAYff72r3x/2P470h3nMo3hDv0fNdAgQIECBAgAABAgQIEJhpAUF8po/PjydAgECTwGjeEH91UhB/oStTqh84V6ZUU1lIgAABAgQIECBAgAABAoECgnggtlEECBBIFhhLEP91UhDfXBCvf4IF8XorKwkQIECAAAECBAgQIEAgTkAQj7M2iQABAtkC4wniD0+h3PyFH0qZO/RQV6YMLWo/AgQIECBAgAABAgQIEJgZAUF8Zo7KDyVAgEC3wGiC+HFJQfxAQbz6IfSGeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvADYXxOsBBfF6KysJECBAgAABAgQIECBAIE5AEI+zNokAAQLZAoJ43wkI4g1+gngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0AUG87wgE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wGiC+LFJd4gvd4d49UPcEsT3P/C+5Q9zpRx/7Oeq97eQAAECBAgQIECAAAECBAhMI7DVVpuWc97z1LLDA95crjf5/7/r/J3LY+9/1jRb+Q4BAgQIXM0Fnn3gvcrvN5gvJxx7yXq/dMWh25dNy7JywtHr98j9D9uuHHD4/a52f6pfH/uIlN+0+fIPpswdeujc/OQz9KaL92sJ4msfwD/MzZdVKy9a6p9lfwIECBAgQIAAAQIECBD4Cxfwhvhf+APgj0+AwF+UwHjeEBfEex5cQbxHz3cJECBAgAABAgQIECBAYKYFBPGZPj4/ngABAk0CgngT158s9oZ4g583xBuwLCVAgAABAgQIECBAgPaz+M4AACAASURBVACBMAFBPIzaIAIECKQLjCWI/+pVOW+IX/MgV6ZUP8SCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvAATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLqAIN53BIJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1gPEF8xxTLax50YcrcoYf6SzWHFrUfAQIECBAgQIAAAQIECMyMgCA+M0flhxIgQKBbYDRB/JikIP4iQbz6IfSGeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvAK4piNcDCuL1VlYSIECAAAECBAgQIECAQJyAIB5nbRIBAgSyBQTxvhMQxBv8BPEGLEsJECBAgAABAgQIECBAIExAEA+jNogAAQLpAoJ43xEI4g1+gngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0gdEE8TVJd4ivcId49UMsiFdTWUiAAAECBAgQIECAAAECgQKCeCC2UQQIEEgWGE8Qf2SK5DVXXJAyd+ihc/OTz9CbLt5PEF9qYfsTIECAAAECBAgQIECAwDQCgvg0ar5DgACB2RQQxPvOTRBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJYj/+5qcN8S38IZ4/TMsiNdbWUmAAAECBAgQIECAAAECcQKCeJy1SQQIEMgWGE0QX50UxF/sypTqZ1gQr6aykAABAgQIECBAgAABAgQCBQTxQGyjCBAgkCwgiPcdwBaCeD2gIF5vZSUBAgQIECBAgAABAgQIxAkI4nHWJhEgQCBbQBDvOwFBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJ4g/qgUyy1e/IGUuUMPnZuffIbedPF+gvhSC9ufAAECBAgQIECAAAECBKYREMSnUfMdAgQIzKbAaIL4K5OC+EsE8eonXxCvprKQAAECBAgQIECAAAECBAIFBPFAbKMIECCQLCCI9x3AFoJ4PaAgXm9lJQECBAgQIECAAAECBAjECQjicdYmESBAIFtAEO87AUG8wU8Qb8CylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4giPcdgSDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcYTRBflXSH+MHuEK9+iAXxaioLCRAgQIAAAQIECBAgQCBQQBAPxDaKAAECyQJjCeK/XPXoFMlrHfy3KXOHHjo3P/kMveni/QTxpRa2PwECBAgQIECAAAECBAhMIyCIT6PmOwQIEJhNAUG879wE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wGiC+CuS3hA/xBvi1Q+xIF5NZSEBAgQIECBAgAABAgQIBAoI4oHYRhEgQCBZQBDvO4BrCeL1gIJ4vZWVBAgQIECAAAECBAgQIBAnIIjHWZtEgACBbAFBvO8EBPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAuoAg3ncEgniDnyDegGUpAQIECBAgQIAAAQIECIQJCOJh1AYRIEAgXWA0Qfzlj0mxvNah70+ZO/TQufnJZ+hNF+8niC+1sP0JECBAgAABAgQIECBAYBoBQXwaNd8hQIDAbAoI4n3nJog3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gUE8b4jEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKCeN8RCOINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIHRBPGVSXeIH7b+HeIfu/iL5bhT3ll++vNflDve9ublyIP2LLe82dYL/+7Md15YNthgg3Vn/o7XH1HucJuble/+4Cfl8DWnl29c/p1y4623Koce8Iyy7d1uV74++ecXvPSkcuFZa5b8OXGH+JITG0CAAAECBAgQIECAAAECV1cBQfzqejJ+FwECBIYXGEsQ/7ekIL7llYL4j376L+XxexxaXvfKA8s97nLbcuLp55Yvfe2ycsarX1KOPPbMcrtb36zs+oSH/skh7n7AqvKQB2xbnv7Eh5XPXPq1SRw/rXz4HceWb37r+4L4qpUXDf/U25EAAQIECBAgQIAAAQIECFxJQBD3OBAgQOAvR2A8QfyxKYe25WHvWzd3bRD/8tcuL4940H0X/t0/Xvbtst/Bry4ff/fx5aCjXlf++n7blMc+/P7r/c6f/+svy467riifff/JZdmGGy78tyfve0RZsd8u5VpbbLYuiP/u91eUfZavKX812WPvXR41+J/VG+KDk9qQAAECBAgQIECAAAECBGZFQBCflZPyOwkQINAvIIj3GV45iC/e6bSzP1D+4Z++VY49Yr/y7BXHlj/8Yb5863s/KnOThU957IPKvrs9pnzhq5eVo457U3nPGSvXfX35ka8t221753L3O916XRA/crLmiiuuKEe9aK++H/xnvi2ILwmrTQkQIECAAAECBAgQIEBgFgQE8Vk4Jb+RAAECwwiMJogfnfSG+OF/fEP8yidy0ee/uhC633ziIWXr61+3vOGt7ytbXHOz8qRH/VX59vd/vBDID95/t7L5ZpuUE049p7x9cp/4//sctvq0cvtb37Tc9553Wgjiez51x/KhT15aTjlm+bq3yIc5/T/uIogPLWo/AgQIECBAgAABAgQIEJgZAUF8Zo7KDyVAgEC3gCDeR7jlVQTx93/ks+V1bzp/cpf4C8vNb3LDqxzw2sl///HkipWddnxAOeJVZ5b3nvnydesOfNnJ5f73vmu56x1vVZ7+vJULfxHng7e/Z1l96LP7fuz/59uC+JLR2pgAAQIECBAgQIAAAQIEru4CgvjV/YT8PgIECAwnIIj3WS4O4h+76AvlhNPOLace+6Ky1XW3XLf5F776T+Wud7hV2Wijayz8u9dM3gr/91/9R3nunjuVHXZeXi46/6Sy6SYbLfy3R+62orzi4H0n/7xx2evA1eWcNx41+d81Zflzdi47PPBefT/4z3xbEF8SVpsSIECAAAECBAgQIECAwCwICOKzcEp+IwECBIYRGE8Qf9wwII27bHn4e9d949/+/dflCXsdVt5y4qHlJltvtd5OT3vOkQt/IeZznvn48r0f/qTs8YJXliMP2qs8cLu7lb0nsfs+97jjwp3iF3z8koUrVC5425py2T9/b90d4mvvGn/hESeV805fWa577S0af+X/vFwQ/5+NrCBAgAABAgQIECBAgACBkQoI4iM9WH8sAgQIXIXAaIL4UUlB/KV/DOLnXfDpsvb+72tcY9l60p949/HlF7/8VXnZsWeWr1/+nXKtyV3iz3jywxf+39rP93/0s3LIqjeWb3zzu+VmN75BednyPcpd7nDLhbVr7xC/8Kw1C+tWn3x2+eGPf16OP+p5gz/LgvjgpDYkQIAAAQIECBAgQIAAgVkREMRn5aT8TgIECPQLCOJ9hlteKYj37ZT7bUE81990AgQIECBAgAABAgQIEEgUEMQT8Y0mQIBAsIAg3gcuiDf4nbBych/M0Z9b7xv7H7Zd+c0GV5TVKy9e79+vOHT78oe5+bJq5UUNEywlQIAAAQIECBAgQIAAAQLtAoJ4u5lvECBAYFYFxhLEf5F0Zcq1vSFe/+gL4vVWVhIgQIAAAQIECBAgQIBAnIAgHmdtEgECBLIFRhPEj8y5Q/zaR/zxDvHss+yZ78qUHj3fJUCAAAECBAgQIECAAIGZFhDEZ/r4/HgCBAg0CYwniD++6c891OJrH3H+UFul7iOIp/IbToAAAQIECBAgQIAAAQKZAoJ4pr7ZBAgQiBUQxPu8BfEGP1emNGBZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcQxPuOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJoi/LOnKlJe5MqX6IRbEq6ksJECAAAECBAgQIECAAIFAAUE8ENsoAgQIJAsI4n0HcG1BvB5QEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtIIj3nYAg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGE0QP2KnFMtrH/melLlDD52bn3yG3nTxfoL4UgvbnwABAgQIECBAgAABAgSmERDEp1HzHQIECMymgCDed26CeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdQBDvOwJBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJYg/q9JV6Zcx5Up9c+wIF5vZSUBAgQIECBAgAABAgQIxAkI4nHWJhEgQCBbYDRB/KU5d4hf5yh3iFc/w4J4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8ABPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAusB4gvgTUiyvc9R5KXOHHjo3P/kMveni/QTxpRa2PwECBAgQIECAAAECBAhMIyCIT6PmOwQIEJhNAUG879wE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wGiC+OFJb4gf7Q3x6odYEK+mspAAAQIECBAgQIAAAQIEAgUE8UBsowgQIJAsIIj3HcB1BPF6QEG83spKAgQIECBAgAABAgQIEIgTEMTjrE0iQIBAtoAg3ncCgniDnyDegGUpAQIECBAgQIAAAQIECIQJCOJh1AYRIEAgXUAQ7zsCQbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLjCaIH7YE1Msr7Py3JS5Qw+dm598ht508X6C+FIL258AAQIECBAgQIAAAQIEphEQxKdR8x0CBAjMpsBYgvi/JAXx6wri9Q++IF5vZSUBAgQIECBAgAABAgQIxAkI4nHWJhEgQCBbQBDvOwFBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuIIj3HYEg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGE0QPzTnDvHrvtwd4tUPsSBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zsAQbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLjCeIP6kFMvrvvyclLlDD52bn3yG3nTxfoL4UgvbnwABAgQIECBAgAABAgSmERDEp1HzHQIECMymgCDed26CeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdYDRB/JCkN8Rf4Q3x6odYEK+mspAAAQIECBAgQIAAAQIEAgUE8UBsowgQIJAsIIj3HcB1BfF6QEG83spKAgQIECBAgAABAgQIEIgTEMTjrE0iQIBAtoAg3ncCgniDnyDegGUpAQIECBAgQIAAAQIECIQJCOJh1AYRIEAgXUAQ7zsCQbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLjCWIP7zg5+cYnm9Ve9OmTv00Ln5yWfoTRfvJ4gvtbD9CRAgQIAAAQIECBAgQGAaAUF8GjXfIUCAwGwKCOJ95yaIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFBPG+IxDEG/wE8QYsSwkQIECAAAECBAgQIEAgTEAQD6M2iAABAukCgnjfEQjiDX6CeAOWpQQIECBAgAABAgQIECAQJiCIh1EbRIAAgXSB0QTxlyTdIf5Kd4hXP8SCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWQBQbzvAK4niNcDCuL1VlYSIECAAAECBAgQIECAQJyAIB5nbRIBAgSyBcYTxJ+SQnm9V74rZe7QQ+fmJ5+hN128nyC+1ML2J0CAAAECBAgQIECAAIFpBATxadR8hwABArMpMJYg/rOX5ATxrQTx+gdfEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtMJog/uKkIL7aG+LVz7AgXk1lIQECBAgQIECAAAECBAgECgjigdhGESBAIFlAEO87gK0E8XpAQbzeykoCBAgQIECAAAECBAgQiBMQxOOsTSJAgEC2gCDedwKCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdQBDvOwJBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJ4gvnOK5Var35kyd+ihc/OTz9CbLt5PEF9qYfsTIECAAAECBAgQIECAwDQCgvg0ar5DgACB2RQYTRBfkRTE1wji1U++IF5NZSEBAgQIECBAgAABAgQIBAoI4oHYRhEgQCBZYCxB/KdJQfz6gnj9EyyI11tZSYAAAQIECBAgQIAAAQJxAoJ4nLVJBAgQyBYQxPtOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAsI4n1HIIg3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gVGE8RflHOH+PWPcYd49UMsiFdTWUiAAAECBAgQIECAAAECgQKCeCC2UQQIEEgWGE8Qf2qK5PWPeUfK3KGHzs1PPkNvung/QXyphe1PgAABAgQIECBAgAABAtMICOLTqPkOAQIEZlNAEO87N0G8wU8Qb8CylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4giPcdgSDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcYSxD/yUE5V6bc4FWuTKl+iAXxaioLCRAgQIAAAQIECBAgQCBQQBAPxDaKAAECyQKCeN8BCOINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdAFBvO8IBPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAusB4gvjTUixv8Kq3p8wdeujc/OQz9KaL9xPEl1rY/gQIECBAgAABAgQIECAwjYAgPo2a7xAgQGA2BQTxvnMTxBv8BPEGLEsJECBAgAABAgQIECBAIExAEA+jNogAAQLpAqMJ4suT3hA/1hvi1Q+xIF5NZSEBAgQIECBAgAABAgQIBAoI4oHYRhEgQCBZQBDvO4AbCOL1gIJ4vZWVBAgQIECAAAECBAgQIBAnIIjHWZtEgACBbIGxBPEfJ70hfkNBvP4RFsTrrawkQIAAAQIECBAgQIAAgTgBQTzO2iQCBAhkCwjifScgiDf4CeINWJYSIECAAAECBAgQIECAQJiAIB5GbRABAgTSBUYTxA/cJcXyhsednTJ36KFz85PP0Jsu3k8QX2ph+xMgQIAAAQIECBAgQIDANAKC+DRqvkOAAIHZFBDE+85NEG/wE8QbsCwlQIAAAQIECBAgQIAAgTABQTyM2iACBAikCwjifUcgiDf4CeINWJYSIECAAAECBAgQIECAQJiAIB5GbRABAgTSBQTxviMQxBv8BPEGLEsJECBAgAABAgQIECBAIExAEA+jNogAAQLpAqMJ4i9MukP81e4Qr36IBfFqKgsJECBAgAABAgQIECBAIFBAEA/ENooAAQLJAmMJ4j9KCuJbC+L1T7AgXm9lJQECBAgQIECAAAECBAjECQjicdYmESBAIFtgPEF81xTKrV99VsrcoYfOzU8+Q2+6eD9BfKmF7U+AAAECBAgQIECAAAEC0wgI4tOo+Q4BAgRmU0AQ7zs3QbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLiCI9x2BIN7gJ4g3YFlKgAABAgQIECBAgAABAmECgngYtUEECBBIFxhNEH9B0pUpx7sypfohFsSrqSwkQIAAAQIECBAgQIAAgUABQTwQ2ygCBAgkCwjifQewtSBeDyiI11tZSYAAAQIECBAgQIAAAQJxAoJ4nLVJBAgQyBYQxPtOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJYj/MOnKlBt5Q7z+GRbE662sJECAAAECBAgQIECAAIE4AUE8ztokAgQIZAuMJogfsFsK5Y1e87aUuUMPnZuffIbedPF+gvhSC9ufAAECBAgQIECAAAECBKYREMSnUfMdAgQIzKaAIN53boJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1AEO87AkG8wU8Qb8CylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4giPcdgSDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcYTRB/ftId4ie4Q7z6IRbEq6ksJECAAAECBAgQIECAAIFAAUE8ENsoAgQIJAsI4n0HcCNBvB5QEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtMJYg/oPnPz2F8sYnvDVl7tBD5+Ynn6E3XbyfIL7UwvYnQIAAAQIECBAgQIAAgWkEBPFp1HyHAAECsykgiPedmyDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcQxPuOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJojvn3RlyomuTKl+iAXxaioLCRAgQIAAAQIECBAgQCBQQBAPxDaKAAECyQKCeN8B3FgQrwcUxOutrCRAgAABAgQIECBAgACBOAFBPM7aJAIECGQLCOJ9JyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFxhPEn5FieeMT35Iyd+ihc/OTz9CbLt5PEF9qYfsTIECAAAECBAgQIECAwDQCgvg0ar5DgACB2RQYSxD//vNygvhNThLEq598QbyaykICBAgQIECAAAECBAgQCBQQxAOxjSJAgECygCDedwCCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdQBDvOwJBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuIIj3HYEg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGE0Qf27SHeInu0O8+iEWxKupLCRAgAABAgQIECBAgACBQAFBPBDbKAIECCQLjCeIPzNF8iYnvzll7tBD5+Ynn6E3XbyfIL7UwvYnQIAAAQIECBAgQIAAgWkEBPFp1HyHAAECsykgiPedmyDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcYSxD/3nNz3hC/qTfE659hQbzeykoCBAgQIECAAAECBAgQiBMQxOOsTSJAgEC2wGiC+H5JQfy1rkypfoYF8WoqCwkQIECAAAECBAgQIEAgUEAQD8Q2igABAskCgnjfAdxUEK8HFMTrrawkQIAAAQIECBAgQIAAgTgBQTzO2iQCBAhkCwjifScgiDf4CeINWJYSIECAAAECBAgQIECAQJiAIB5GbRABAgTSBcYTxHdPsbzpa9+UMnfooXPzk8/Qmy7eTxBfamH7EyBAgAABAgQIECBAgMA0AoL4NGq+Q4AAgdkUEMT7zk0Qb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLjCaI/03SG+Kv84Z49UMsiFdTWUiAAAECBAgQIECAAAECgQKCeCC2UQQIEEgWGEsQ/25SEL+ZIF7/BAvi9VZWEiBAgAABAgQIECBAgECcgCAeZ20SAQIEsgUE8b4TEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKCeN8RCOINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIHRBPHn7JFiebPXn5kyd+ihc/OTz9CbLt5PEF9qYfsTIECAAAECBAgQIECAwDQCgvg0ar5DgACB2RQQxPvOTRBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAsI4n1HIIg3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gUE8b4jEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QJjCeLfefYeKZY3P+XMlLlDD3WH+NCi9iNAgAABAgQIECBAgACBmREQxGfmqPxQAgQIdAsI4n2EgniDnzfEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJ4jvmWJ581POSJk79FBviA8taj8CBAgQIECAAAECBAgQmBkBQXxmjsoPJUCAQLeAIN5HKIg3+HlDvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLqAIN53BIJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1gNEH8WUlXprzBlSnVD7EgXk1lIQECBAgQIECAAAECBAgECgjigdhGESBAIFlAEO87gJsL4vWAgni9lZUECBAgQIAAAQIECBAgECcgiMdZm0SAAIFsgbEE8W8nvSF+C0G8/hEWxOutrCRAgAABAgQIECBAgACBOAFBPM7aJAIECGQLjCeI75VCeYs3nJ4yd+ihc/OTz9CbLt5PEF9qYfsTIECAAAECBAgQIECAwDQCgvg0ar5DgACB2RQYTRDfNymIv1EQr37yBfFqKgsJECBAgAABAgQIECBAIFBAEA/ENooAAQLJAoJ43wHcQhCvBxTE662sJECAAAECBAgQIECAAIE4AUE8ztokAgQIZAsI4n0nIIg3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gUE8b4jEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKjCeL7JN0hfqo7xKsfYkG8mspCAgQIECBAgAABAgQIEAgUEMQDsY0iQIBAssBYgvi39tk7RfKWp56WMnfooXPzk8/Qmy7eTxBfamH7EyBAgAABAgQIECBAgMA0AoL4NGq+Q4AAgdkUEMT7zk0Qb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLCOJ9BYNlUQAAIABJREFURyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFBPG+IxDEG/wE8QYsSwkQIECAAAECBAgQIEAgTEAQD6M2iAABAukCownieyfdIX6aO8SrH2JBvJrKQgIECBAgQIAAAQIECBAIFBDEA7GNIkCAQLKAIN53ALcUxOsBBfF6KysJECBAgAABAgQIECBAIE5AEI+zNokAAQLZAoJ43wkI4g1+gngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0gbEE8X/ee58Uy1uddmrK3KGHzs1PPkNvung/QXyphe1PgAABAgQIECBAgAABAtMICOLTqPkOAQIEZlNgNEF8r6QgfrogXv3kC+LVVBYSIECAAAECBAgQIECAQKCAIB6IbRQBAgSSBQTxvgO4lSBeDyiI11tZSYAAAQIECBAgQIAAAQJxAoJ4nLVJBAgQyBYQxPtOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAsI4n1HIIg3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gVGE8T3TLpD/Ax3iFc/xIJ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZIHxBPF9UyRvdcYbU+YOPXRufvIZetPF+wniSy1sfwIECBAgQIAAAQIECBCYRkAQn0bNdwgQIDCbAmMJ4v9nz5wgfmtBvP7BF8TrrawkQIAAAQIECBAgQIAAgTgBQTzO2iQCBAhkCwjifScgiDf4CeINWJYSIECAAAECBAgQIECAQJiAIB5GbRABAgTSBQTxviMQxBv8BPEGLEsJECBAgAABAgQIECBAIExAEA+jNogAAQLpAqMJ4nskXZlypjvEqx9iQbyaykICBAgQIECAAAECBAgQCBQQxAOxjSJAgECygCDedwC3FsTrAQXxeisrCRAgQIAAAQIECBAgQCBOQBCPszaJAAEC2QLjCeLPSqG89ZlvSJk79NC5+cln6E0X7yeIL7Ww/QkQIECAAAECBAgQIEBgGgFBfBo13yFAgMBsCgjifecmiDf4CeINWJYSIECAAAECBAgQIECAQJiAIB5GbRABAgTSBcYSxL+5e84b4rd5kzfEqx9iQbyaykICBAgQIECAAAECBAgQCBQQxAOxjSJAgECygCDedwCCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdQBDvOwJBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuIIj3HYEg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGE0Qf+azUyxv8+ZTUuYOPXRufvIZetPF+wniSy1sfwIECBAgQIAAAQIECBCYRkAQn0bNdwgQIDCbAoJ437kJ4g1+gngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0AUG87wgE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wFiC+OVJV6bc1pUp9c+wIF5vZSUBAgQIECBAgAABAgQIxAkI4nHWJhEgQCBbQBDvOwFBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJog/oycv1Tztm/xl2pWP8SCeDWVhQQIECBAgAABAgQIECAQKCCIB2IbRYAAgWSB8QTx56RI3vYtr0+ZO/TQufnJZ+hNF+8niC+1sP0JECBAgAABAgQIECBAYBoBQXwaNd8hQIDAbAoI4n3nJog3+AniDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gUE8b4jEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKjCeJPT7oy5a2uTKl+iAXxaioLCRAgQIAAAQIECBAgQCBQQBAPxDaKAAECyQJjCeKXJQXx2wni9U+wIF5vZSUBAgQIECBAgAABAgQIxAkI4nHWJhEgQCBbQBDvOwFBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuMJ4g/jcplrd76+tS5g49dG5+8hl608X7CeJLLWx/AgQIECBAgAABAgQIEJhGQBCfRs13CBAgMJsCowniuyUF8bcJ4tVPviBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zuA2wni9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWwBQbzvBATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLqAIN53BIJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1gLEH8n5LuEL+9K1Pqn2FBvN7KSgIECBAgQIAAAQIECBCIExDE46xNIkCAQLbAaIL4rvulUN7+rNemzB166Nz85DP0pov3E8SXWtj+BAgQIECAAAECBAgQIDCNgCA+jZrvECBAYDYFBPG+cxPEG/wE8QYsSwkQIECAAAECBAgQIEAgTEAQD6M2iAABAukCgnjfEQjiDX6CeAOWpQQIECBAgAABAgQIECAQJiCIh1EbRIAAgXQBQbzvCATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLrAaIL4Lkl3iJ/tDvHqh1gQr6aykAABAgQIECBAgAABAgQCBQTxQGyjCBAgkCwgiPcdwO0F8XpAQbzeykoCBAgQIECAAAECBAgQiBMQxOOsTSJAgEC2wFiC+Dd2eW4K5R3OPjll7tBD5+Ynn6E3XbyfIL7UwvYnQIAAAQIECBAgQIAAgWkEBPFp1HyHAAECsykgiPedmyDe4CeIN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcYTRB/WtIb4m9f/w3xj138xXLcKe8sP/35L8odb3vzcuRBe5Zb3mzr8pvf/q4c8aozysWf/2rZdJONyz67Prrs/LgHL5z/d3/wk3L4mtPLNy7/Trnx1luVQw94Rtn2brcrX5/88wteelK58Kw1S/6ceEN8yYkNIECAAAECBAgQIECAAIGrq4AgfnU9Gb+LAAECwwsI4n2md7hSEP/RT/+lPH6PQ8vrXnlgucddbltOPP3c8qWvXVbOePVLyslnnFcu/9b3y6pDnlV+/q+/LLs9d2V5wzEHldvf+qZl9wNWlYc8YNvy9Cc+rHzm0q9N4vhp5cPvOLZ8c7JeEF95Ud8J+TYBAgQIECBAgAABAgQIEPgfBARxjwgBAgT+cgQE8b6zXhzEv/y1y8sjHnTfhU3/8bJvl/0OfnX5+LuPL4/b/ZBy9Iv3Ltvc+TYL/23NyWeXzTfbpDxtp4eWHXddUT77/pPLsg03XPhvT973iLJiv13KtbbYbF0Q/93vryj7LF9T/up+25S9d3lU34++im97Q3xwUhsSIECAAAECBAgQIECAwKwICOKzclJ+JwECBPoFBPE+wysH8cU7nXb2B8o//NO3yrFH7Fe2eeje5VPnnVC2vNbmC8vecf7HyqVf+UbZZacdylHHvam854yV676+/MjXlu22vXO5+51uvS6IHzlZc8UVV5SjXrRX3w/+M98WxJeE1aYECBAgQIAAAQIECBAgMAsCgvgsnJLfSIAAgWEEBPE+xz8XxC+a3BW+NnS/+cRDyvWus2W5xw57l7/74BvKJhtvtDDw/A9eXD7yqUvLLk94aDnh1HPK219/xLofctjq0xauUrnvPe+0EMT3fOqO5UOfvLSccszydW+R9/3qP/22ID60qP0IECBAgAABAgQIECBAYGYEBPGZOSo/lAABAt0CYwniX3/q87otptngju846U++9v6PfLa87k3nT+4Sf2G5+U1uuPDf174h/olzjy/X2XKLhX8++z0fLV/6+8snV6Y8ZPKXbZ5Z3nvmy9ftc+DLTi73v/ddy13veKvy9OetLBtssEF58Pb3LKsPffY0P7HqO4J4FZNFBAgQIECAAAECBAgQIDBGAUF8jKfqz0SAAIGrFhDE+56MxUH8Yxd9oZxw2rnl1GNfVLa67pbrNt9pz8PKwc/frWw3eet77eelx5xebnqj65enPPZBZYedl5eLzj+pbLrJf789/sjdVpRXHLzv5J83LnsduLqc88ajJv+7pix/zs5lhwfeq+8H/5lvC+JLwmpTAgQIECBAgAABAgQIEJgFAUF8Fk7JbyRAgMAwAoJ4n+OVg/i//fuvyxP2Oqy85cRDy0223mq9jV//5veWL33tsnL8UfuX7/3gp2X3F6wqZ518eLnFTW9Y9p7E7vvc445l390eUy74+CULV6hc8LY15bJ//t66O8S/8NXLyguPOKmcd/rKct1r//db5kN+BPEhNe1FgAABAgQIECBAgAABAjMlIIjP1HH5sQQIEOgSEMS7+MqVg/h5F3y6rL3/+xrXWLbepp949/Fls003Xrga5dOXfKVsvtkmZb89diqPf8T2C+u+/6OflUNWvbF845vfLTe78Q3Ky5bvUe5yh1uWr1/+nXVBfO261SefXX74459Povrw18MI4n3PgW8TIECAAAECBAgQIECAwAwLCOIzfHh+OgECBBoFRhPEdx4+EtdQ3vGdf3qHeM33rm5rBPGr24n4PQQIECBAgAABAgQIECAQJiCIh1EbRIAAgXSBsQTxf9x5/xTLO73zxJS5Qw8VxIcWtR8BAgQIECBAgAABAgQIzIyAID4zR+WHEiBAoFtAEO8jFMQb/E5YObkg/ejPrfeN/Q/brvxmgyvK6pUXr/fvVxy6ffnD3HxZtfKihgmWEiBAgAABAgQIECBAgACBdgFBvN3MNwgQIDCrAoJ438kJ4g1+gngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0AUG87wgE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wGiC+FOS7hB/lzvEqx9iQbyaykICBAgQIECAAAECBAgQCBQQxAOxjSJAgECywFiC+D885fkpknd+1wkpc4ce6i/VHFrUfgQIECBAgAABAgQIECAwMwKC+MwclR9KgACBbgFBvI9QEG/w84Z4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdAFBvO8IBPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAusBogviTk65MebcrU6ofYkG8mspCAgQIECBAgAABAgQIEAgUEMQDsY0iQIBAsoAg3ncAdxbE6wEF8XorKwkQIECAAAECBAgQIEAgTkAQj7M2iQABAtkCgnjfCQjiDX6CeAOWpQQIECBAgAABAgQIECAQJiCIh1EbRIAAgXSBsQTxrz35gBTLu7z7NSlzhx46Nz/5DL3p4v0E8aUWtj8BAgQIECBAgAABAgQITCMgiE+j5jsECBCYTQFBvO/cBPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAusBogviTkt4QP8cb4tUPsSBeTWUhAQIECBAgQIAAAQIECAQKCOKB2EYRIEAgWUAQ7zuAuwji9YCCeL2VlQQIECBAgAABAgQIECAQJyCIx1mbRIAAgWwBQbzvBATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLrAWIL43z/pBSmWdz3n+JS5Qw/1l2oOLWo/AgQIECBAgAABAgQIEJgZAUF8Zo7KDyVAgEC3gCDeRyiIN/h5Q7wBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6wGiC+BOT3hA/1xvi1Q+xIF5NZSEBAgQIECBAgAABAgQIBAoI4oHYRhEgQCBZQBDvO4C7CuL1gIJ4vZWVBAgQIECAAAECBAgQIBAnIIjHWZtEgACBbAFBvO8EBPEGP0G8ActSAgQIECBAgAABAgQIEAgTEMTDqA0iQIBAuoAg3ncEgniDnyDegGUpAQIECBAgQIAAAQIECIQJCOJh1AYRIEAgXWAsQfyrT3hhiuXdznt1ytyhh87NTz5Db7p4P0F8qYXtT4AAAQIECBAgQIAAAQLTCAji06j5DgECBGZTQBDvOzdBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuIIj3HYEg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXEMT7jkAQb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLCOJ9RyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFxhLEv7LTgSmWd3/PcSlzhx7qL9UcWtR+BAgQIECAAAECBAgQIDAzAoL4zByVH0qAAIFuAUG8j1AQb/DzhngDlqUECBAgQIAAAQIECBAgECYgiIdRG0SAAIF0AUG87wgE8QY/QbwBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6gCDedwSCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdYDRB/PFJd4if7w7x6odYEK+mspAAAQIECBAgQIAAAQIEAgUE8UBsowgQIJAsIIj3HcDdBfF6QEG83spKAgQIECBAgAABAgQIEIgTEMTjrE0iQIBAtsBYgviXH788hXKb849NmTv00Ln5yWfoTRfvJ4gvtbD9CRAgQIAAAQIECBAgQGAaAUF8GjXfIUCAwGwKCOJ95yaIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFBPG+IxDEG/wE8QYsSwkQIECAAAECBAgQIEAgTEAQD6M2iAABAukCownij0u6MuW9rkypfogF8WoqCwkQIECAAAECBAgQIEAgUEAQD8Q2igABAskCgnjfAWwjiNcDCuL1VlYSIECAAAECBAgQIECAQJyAIB5nbRIBAgSyBcYSxL/0uINSKO/x3lelzB16qL9Uc2hR+xEgQIAAAQIECBAgQIDAzAgI4jNzVH4oAQIEugUE8T5CQbzBzxviDViWEiBAgAABAgQIECBAgECYgCAeRm0QAQIE0gVGE8Qfm/SG+Pu8IV79EAvi1VQWEiBAgAABAgQIECBAgECggCAeiG0UAQIEkgUE8b4DuIcgXg8oiNdbWUmAAAECBAgQIECAAAECcQKCeJy1SQQIEMgWEMT7TkAQb/ATxBuwLCVAgAABAgQIECBAgACBMAFBPIzaIAIECKQLCOJ9RyCIN/gJ4g1YlhIgQIAAAQIECBAgQIBAmIAgHkZtEAECBNIFxhLEv/jYF6VY3vN9x6TMHXro3PzkM/Smi/cTxJda2P4ECBAgQIAAAQIECBAgMI2AID6Nmu8QIEBgNgVGE8QfkxTE3y+IVz/5gng1lYUECBAgQIAAAQIECBAgECggiAdiG0WAAIFkAUG87wDuKYjXAwri9VZWEiBAgAABAgQIECBAgECcgCAeZ20SAQIEsgUE8b4TEMQb/ATxBixLCRAgQIAAAQIECBAgQCBMQBAPozaIAAEC6QKCeN8RCOINfoJ4A5alBAgQIECAAAECBAgQIBAmIIiHURtEgACBdIGxBPEvPGZFiuW271+TMnfoof5SzaFF7UeAAAECBAgQIECAAAECMyMgiM/MUfmhBAgQ6BYYTRB/dFIQ/1tBvPoh9IZ4NZWFBAgQIECAAAECBAgQIBAoIIgHYhtFgACBZAFBvO8AthXE6wEF8XorKwkQIECAAAECBAgQIEAgTkAQj7M2iQABAtkCgnjfCQjiDX6CeAOWpQQIECBAgAABAgQIECAQJiCIh1EbRIAAgXQBQbzvCATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLrAWIL43z3qxSmW9/rA6pS5Qw/1l2oOLWo/AgQIECBAgAABAgQIEJgZAUF8Zo7KDyVAgEC3gCDeRyiIN/itPOhT5cwTv7jeN/Y/bLvymw2uKKtXXrzev19x6PblD3PzZdXKixomWEqAAAECBAgQIECAAAECBNoFBPF2M98gQIDArAq0BvHdn7tNOfy4B13t/rjeEO87Em+I9/n5NgECBAgQIECAAAECBAjMsIAgPsOH56cTIECgUaA1iK99ofeAw+/XOGXplwvifcaCeJ+fbxMgQIAAAQIECBAgQIDADAsI4jN8eH46AQIEGgUE8UawRctdmdLg5y/VbMCylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4wmiD+yKS/VPMCf6lm9UMsiFdTWUiAAAECBAgQIECAAAECgQKCeCC2UQQIEEgWGEsQv/SRL0mRvPcFr0yZO/RQV6YMLWo/AgQIECBAgAABAgQIEJgZAUF8Zo7KDyVAgEC3gCDeRyiIN/h5Q7wBy1ICBAgQIECAAAECBAgQCBMQxMOoDSJAgEC6gCDedwSCeIOfIN6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdYDRBfMekK1MudGVK9UMsiFdTWUiAAAECBAgQIECAAAECgQKCeCC2UQQIEEgWEMT7DuDegng9oCBeb2UlAQIECBAgQIAAAQIECMQJCOJx1iYRIEAgW2AsQfx/73hwCuV9LlyVMnfoof5SzaFF7UeAAAECBAgQIECAAAECMyMgiM/MUfmhBAgQ6BYQxPsIBfEGP2+IN2BZSoAAAQIECBAgQIAAAQJhAoJ4GLVBBAgQSBcQxPuOQBBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJog/IunKlA+6MqX6IRbEq6ksJECAAAECBAgQIECAAIFAAUE8ENsoAgQIJAsI4n0HcB9BvB5QEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtIIj3nYAg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGEsQ//wjDkmxvO8HX5Eyd+ihc/OTz9CbLt5PEF9qYfsTIECAAAECBAgQIECAwDQCgvg0ar5DgACB2RQQxPvOTRBv8BPEG7AsJUCAAAECBAgQIECAAIEwAUE8jNogAgQIpAuMJog/POkN8Q95Q7z6IRbEq6ksJECAAAECBAgQIECAAIFAAUE8ENsoAgQIJAsI4n0HcF9BvB5QEK+3spIAAQIECBAgQIAAAQIE4gQE8ThrkwgQIJAtIIj3nYAg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGEsQv+Thh6ZYbvehl6fMHXqov1RzaFH7ESBAgAABAgQIECBAgMDMCAjiM3NUfigBAgS6BUYTxB+WFMQ/LIhXP4TeEK+mspAAAQIECBAgQIAAAQIEAgUE8UBsowgQIJAsIIj3HcB2gng9oCBeb2UlAQIECBAgQIAAAQIECMQJCOJx1iYRIEAgW0AQ7zsBQbzBTxBvwLKUAAECBAgQIECAAAECBMIEBPEwaoMIECCQLiCI9x2BIN7gJ4g3YFlKgAABAgQIECBAgAABAmECgngYtUEECBBIFxDE+45AEG/wE8QbsCwlQIAAAQIECBAgQIAAgTABQTyM2iACBAikC4wliH9uh8NSLO/3kZUpc4ceOjc/+Qy96eL9BPGlFrY/AQIECBAgQIAAAQIECEwjIIhPo+Y7BAgQmE0BQbzv3ATxBj9BvAHLUgIECBAgQIAAAQIECBAIExDEw6gNIkCAQLqAIN53BIJ4g58g3oBlKQECBAgQIECAAAECBAiECQjiYdQGESBAIF1AEO87AkG8wU8Qb8CylAABAgQIECBAgAABAgTCBATxMGqDCBAgkC4wmiD+0KQ7xD/qDvHqh1gQr6aykAABAgQIECBAgAABAgQCBQTxQGyjCBAgkCwwliD+2YceniL5vz56dMrcoYf6SzWHFrUfAQIECBAgQIAAAQIECMyMgCA+M0flhxIgQKBbQBDvIxTEG/y8Id6AZSkBAgQIECBAgAABAgQIhAkI4mHUBhEgQCBdQBDvOwJBvMFPEG/AspQAAQIECBAgQIAAAQIEwgQE8TBqgwgQIJAuIIj3HYEg3uAniDdgWUqAAAECBAgQIECAAAECYQKCeBi1QQQIEEgXGE0Qf0jSHeIfc4d49UMsiFdTWUiAAAECBAgQIECAAAECgQKCeCC2UQQIEEgWGEsQ/8xDXpoief+PHZUyd+ih/lLNoUXtR4AAAQIECBAgQIAAAQIzIyCI/1/27gJcjvJc4PgbggV3K1CgLe7Q4lqcYMVdU/wiAQrFg1PcijsEKUWL0wS3AAWKuzvBPcndXZ6ek4QAM8zOzp4vv/M892lDvp1v5vfuUu4/w2yXGZUTJUCAQGEBQbwYoSCew88d4jmwLCVAgAABAgQIECBAgACBlgkI4i2jthEBAgQqFxDEi41AEM/hJ4jnwLKUAAECBAgQIECAAAECBFomIIi3jNpGBAgQqFxAEC82AkE8h58gngPLUgIECBAgQIAAAQIECBBomYAg3jJqGxEgQKBygWSC+FIVPUO8n2eIZ34TC+KZqSwkQIAAAQIECBAgQIAAgRYKCOItxLYVAQIEKhYQxIsNYGFBPDugIJ7dykoCBAgQIECAAAECBAgQaJ2AIN46azsRIECgaoFUgvjdS+1fCeUi/Q6sZN9mb9ptSO2n2Qcd/niCeNnCjk+AAAECBAgQIECAAAECv0RAEP8lal5DgACBrikgiBebmyCew08Qz4FlKQECBAgQIECAAAECBAi0TEAQbxm1jQgQIFC5QDJBfMmK7hDv7w7xzG9iQTwzlYUECBAgQIAAAQIECBAg0EIBQbyF2LYiQIBAxQKCeLEBLCKIZwcUxLNbWUmAAAECBAgQIECAAAECrRMQxFtnbScCBAhULSCIF5uAIJ7DTxDPgWUpAQIECBAgQIAAAQIECLRMQBBvGbWNCBAgULlAKkH8riUPqMRy0f7V7Nvsi/Wlms0WdTwCBAgQIECAAAECBAgQ6DICgniXGZUTJUCAQGEBQbwYoSCew88d4jmwLCVAgAABAgQIECBAgACBlgkI4i2jthEBAgQqF0gmiC9xQCWWi95ezb4/vkROAAAgAElEQVTNvlh3iDdb1PEIECBAgAABAgQIECBAoMsICOJdZlROlAABAoUFBPFihIJ4Dj93iOfAspQAAQIECBAgQIAAAQIEWiYgiLeM2kYECBCoXEAQLzYCQTyHnyCeA8tSAgQIECBAgAABAgQIEGiZgCDeMmobESBAoHIBQbzYCATxHH6CeA4sSwkQIECAAAECBAgQIECgZQKCeMuobUSAAIHKBVIJ4ncufmAllovdsX8l+zZ7U88Qb7ao4xEgQIAAAQIECBAgQIBAlxEQxLvMqJwoAQIECgsI4sUIBfEcfu4Qz4FlKQECBAgQIECAAAECBAi0TEAQbxm1jQgQIFC5gCBebASCeA4/QTwHlqUECBAgQIAAAQIECBAg0DIBQbxl1DYiQIBA5QKCeLERCOI5/ATxHFiWEiBAgAABAgQIECBAgEDLBATxllHbiAABApULCOLFRiCI5/ATxHNgWUqAAAECBAgQIECAAAECLRMQxFtGbSMCBAhULpBKEL9jsT6VWC5+536V7NvsTX2pZrNFHY8AAQIECBAgQIAAAQIEuoyAIN5lRuVECRAgUFhAEC9GKIjn8HOHeA4sSwkQIECAAAECBAgQIECgZQKCeMuobUSAAIHKBQTxYiMQxHP4CeI5sCwlQIAAAQIECBAgQIAAgZYJCOIto7YRAQIEKhcQxIuNQBDP4SeI58CylAABAgQIECBAgAABAgRaJiCIt4zaRgQIEKhcIJkgvmhFzxC/yzPEM7+JBfHMVBYSIECAAAECBAgQIECAQAsFBPEWYtuKAAECFQsI4sUGsLggnh1QEM9uZSUBAgQIECBAgAABAgQItE5AEG+dtZ0IECBQtUAqQfz2RQ+qhHKJu/atZN9mb9ptSO2n2Qcd/nh5gvif1pkl9j5gsRg48KuyT8vx21SgW7c2PTGn1RKBbt4ALXFu102Mv9hkXnxhYMzwmwmLHcSru6xA+f9E12VpRooTb8E/0o8Ujl31In3+i02ue/du8cnHX8dqy18S440/Rlxz0/ox+LvBxQ7q1QQIECDQlgITTNQjDjnwjrji0qeGOb899l4kesSoccJB9w3z13fcZ4HYad8F2+5aBPFiI2m7IF6/nLnmmbzYVXl1lxbwD/RdenyFT97/Q1+YsEsfwOe/2PgGDRoc3buPUuwgXt1lBfyBUpcdXVNO3B8oN4Wxyx7E57/46F579ZP48IMvGweaeprxYpJJxyp+UEcgQIAAgbYU+M/Db//gvATxbKNyh3g2p8aqPHeI5zispQQIECBAgAABAgQIECBAgAABAgQIECgk0OWC+CIVPTLlbo9MyfxGE8QzU1lIgAABAgQIECBAgAABAgQIECBAgEALBQTxbNhLCOLZoOqrBPHsVlYSIECAAAECBAgQIECAAAECBAgQINA6ga4WxPsvcnDrcIbaacm796lk32Zv2pbPEG/2RToeAQIECBAgQIAAAQIECBAgQIAAAQIERiQgiGd7Xwji2Zwaq0Z0h3jPdWaMXfosFB8N/CrHkSzNIuBLlbIo5Vvji4ryeWVZ7X2aRSni6afej5lnnSTbYqsIECBAgAABAgQIjEDgmSc/iJlmmZhNkwWG+Eb4JotGIG06ac10SPMPmuARJ5hwzDhu//vi2kufGebqdtxngdhp3wXb7ordIV5sJJXdIV4/7dnmmazY2Xv1CAX8za6EN4b//Wg6qvdpNtLBgyNG6d4t22KrCBAgQIAAAQIECIxAYPCgITHKKGiaLeAmn2aL1o7n//VpOqr3aXbSJx559weL2zaIL1zRI1Pu8ciUzO+oEd0hnvnFFhIgQIAAAQIECBAgQIAAAQIECBAgQKDFAoL4sOBLCuLZ34EjCuK//u0E8ffLesY3Xw/KfiArMwl4vEcmplyL/IlqLq5Mi7vi+/T5pwbGb2eZMNP1WUSAAIGqBT768KuYYKIxqz4N+xMgQCCzwCvPfxy//u34mddb+PMCnpTw80a/ZIV/2/WXqP30a7rie/WdNz6LPbe+JQZ+8FWssf7M0WvneWNQ7d/G8NM1BUYfo3tsvd518fJzHw1zAYK4IP6L39EjCuL1N9Q0U44X/zzjyV98XC8csUBX/B+Stp8l1KaPqCuSDh5c+1dNu/t3TZv+ZnBAAgTKEaj/jbYr/uljORqOSoBAFxAYXHtW3Cj+vtXUSeFsKmfnwcA2HbYrku5+/KJx1AH3xL39XotLb14rnrv0zXhlwIdNt3HA1ggsstVv4uF3P4gTDrqvSwTxfgsf0hqY4XZZ6p69K9m32ZtW9gzxehDvEaPG6QcNaPY1OR4BAgQIECBAgAABAgQIECBAgACB0gROvrFnnHTkA40gfvENa8a9hz4bz/77ndL2c+ByBVbab/Z4YdQvuk4QX6iiIH6vIJ75nfhjd4gL4pkJLSRAgAABAgQIECBAgAABAgQIEGgTAUG8TQbRpNMQxLNBLiWIZ4OqrxLEs1tZSYAAAQIECBAgQIAAAQIECBAg0N4Cgnh7zyfv2Qni2cQE8WxOjVWCeA4sSwkQIECAAAECBAgQIECAAAECBNpaQBBv6/HkPjlBPBuZIJ7NSRDP4WQpAQIECBAgQIAAAQIECBAgQIBA+wsI4u0/ozxn2NWC+L8XOjTP5TVt7dL3/rVpx6ryQG39pZo9N5kprjv/mV/sU/T1v3hjLyRAgAABAgQIECBAgAABAgQIEEhWoMogvtROM8VUs48fF/V6ILa9dokYcMkr8eBFL+e2HqV7t5hv3WnjwYtfiWnnmyi2uGSROOB31+Y+Tgov6HJBfMGKgvh9gnjm9/svfWTKTa9tGstPc17mfYZfWPT1v3hjLyRAgAABAgQIECBAgAABAgQIEEhWoF2CeI/xR4tvvxoU3309OLf11HNPGKsdNlecvGL/qMfxHhOMHp9/8HXu46TwAkE82xSXFsSzQdVX/ZIgftTly8cSq04fLz75YfzfKv+KHmOPFnuetHhMNtXY8e03g6JPr/7xxIB3Y6Od54p5Fpsyeq95Y+OETrq+Z/S/+qVYcJmph3n9O69/nv2ErSRAgAABAgQIECBAgAABAgQIECDwIwJ5gni3bhHrnDh/zLrClDHKqKPEs/3eiYu2uj8GDxoS2123RLz5xMcx9VwTxlgTjR5vPPZR9N3mgZimFqs3OnvBeK7/OzHlbOM3YvXlOz0UL9z1XvzYHeK/33C6WKXPnNF99FEar7twy/vju28Gx8Jb/iaW3WOW6D7aKPHhK5/HuRvfG19+9E3s+8TKMdaEo8fL938QV+35n447xOvn27N2nHnWmiaGDIl4dcCHcen2D8ZXn34XW1+5WLz68MD49fwTxfhT9YiBr30RZ6x1VwwZXFvYhX8E8WzDE8SzOTVW/ZIgPsHEY8b1L28cC497RuMYFz2wVlxx+pPxzzOfjFnnmzSOuXLF6DnDhTG49oE7/54146R97osxeowam+0xT2yx+JUx/kTDvj7H6VpKgAABAgQIECBAgAABAgQIECBA4EcF8gTxudeYuhGYD5+vdjNnLTbvOWCFuOHg/8ZDl77aCMzjTDpmHLvErY2o3PuuZaP/ic/G2099HHs9smKcvFL/ePLGtxoxfe3j5osDZ75uhEG8Hsr3HLB8HPH7m+LDV7+Ira9aLF68+/2456wX4pDXVm+8rh7DNzzjDzH4uyHRd9sHY541p4mFt/pN4w7xoR+ZUn+MyvJ7zRZHL3JLfP35d7Fl7VEq77/0WVy916Ox1eWLxti1cH/icv0aQX/vx1aKf/Z+OJ665e0u/W4RxLONTxDP5tSUID7t78aPiwesHYtPeFYjgNd/zr93zThhz3tjwO1vxszzTBIHnLV0jFr7U7Y9N7g5nv/vhzF8UM9xupYSIECAAAECBAgQIECAAAECBAgQaEoQrx9k1DFG6XisyQan/SE+ePmzuOmwJxtB/Nn+70a/47//Dr2eB84RY088Rtx9xvOxc79lYreJ/tH46/VHmpzwzXqx5+T/jPqd4MM/Q3z0Ht1j9p6/itNWv6OxfrTar4fUgnX9DvHRxuzeeKxK/Wf+9X8dC242Q5y0fL8fDeKbnr9QvPbIwPj3sU83XjPzMlPE6kfM3Qj69SBej+//O98//3OxeOyaN+K+c1/s0u+WrhbEb1vgsEq8/3j/XpXs2+xN2/ZLNYcO2rPNP1mcfeca8e7rn3Vcf/0RKofveEfcesX3H7izbl+98SdTvZa+uvFrQbzZbxXHI0CAAAECBAgQIECAAAECBAgQqAvkuUO8xwSjxZpHzxu/mnOCxt3ZE003dtx+0rNx4yFPNIL4o1e9Hved91ID9o+9Z45p550objmyFsuvWjz2nf6aDvBjPl07Dp/3xphtpal+EMQnqD2+ZIpZx48LNr/vBwNacZ/ZYo5Vpq49/mRI4xEpA2t3kJ+w7L9/NIhvf8OSMaD2RZv3X/D9OU0z74SxzdVLxN7TXNUI4vU71ut3ntd/hv91V313COLZJieIZ3NqrCr6yJTJfjV2XPrIurHUZGePcNdFV5w2Ntltnhi99ideZx48IO664VVBPMd8LCVAgAABAgQIECBAgAABAgQIEMgukCeIr3PCfDHaWKNG360faNzMudFZC8T7L37WEcSfr91xfdvR39+Nvdqhc8UY444W95z5fOx657Kx63iXN/56/Q7z479cN/aY9J/xh41+eIf4qLXnhtcfgXJKz9sb6+sRfoxxRovp/jBxrLz/7HH0YrfGV598GwtsPH0ssMn0PxnENzl3wXj9P7U7xI/7/q71WZadovblm7U7xOf//g5xQTz7+6Ssle4QLybbtneIjzPe6HHbO5vHEhOfFV998V1ceN9accGx/4mbLn0+JphkzNjtmEXj0O1ubzxC5ZKH1ond1r4xRh+jexzed7lYZ+5LG49PGfr1xZi8mgABAgQIECBAgAABAgQIECBAgMD3AnmCeD0iv3Tv+3HbMU/HFLOMF9tfX7sD+5JXGs/krt8hPt4UPeK4pW5rHPcvDy4f/zrw8XjvuU9r/32FOHuDu+ORf7zWiODL7TlrHDz79SN8hnj9izrrX5JZf+73209/0nju96sPfRhff/ZtzLL8lHHqqndEj/FHiy0vWzR6jDda/G2hm2POVX/VOOZRC98yzDPE62F9hb1rzxBf9Jbao1YGx1aXLRJv1b7487r9HxfE2+QDIIgXG0TbBvH6ZZ10fc+oPy5lx5Wvi08++jr+esoSMcXU48R33w2Oi49/rPEFmzsfsVB0r8Xvo3vf3ZDY59Ql4ovah/2Y3e4Z5vX/ffDdYlJeTYAAAQIECBAgQIAAAQIECBAgQCBnEJ9+oUmi/lzub78cFK8O+CAev/aN2PjcheK8Te6NhTabPt559tP47WKTxoRTjxVP3vRWXLz1g/GrOcZvxOfHrn6j9riTXzUed3LhlvfHi/e8P8Ig/uBFL8c8a00Tax0zb4xS62RP3/p2XLTV/TFmLX5ve+0SjTvGB772RVy33+Px51qEf6D2OJT6Xem737981O8u//sqt8cWtYh+wO+ubcx35f3niHlrX67ZrfYloPVnhl++00PxzReDBPE2efcL4sUG0dZBvNileTUBAgQIECBAgAABAgQIECBAgACB5gvkuUP8p3av3yH+cO0O8HrQHvpn6rkmiK3+sVhHoG7+FTji0AJd7Rnit/6hmi/VXOYBX6qZ+ZPzS54hnvngFhIgQIAAAQIECBAgQIAAAQIECBBooYAg3kLsFmwliGdDFsSzOTVWCeI5sCwlQIAAAQIECBAgQIAAAQIECBBoawFBvK3Hk/vkul4QPzz3NTbjBcs8sGczDlP5MTwypfIROAECBAgQIECAAAECBAgQIECAAIGuJNCsIN6VrjnlcxXEs01XEM/m1FjlDvEcWJYSIECAAAECBAgQIECAAAECBAi0tYAg3tbjyX1yXS2I3/KHau4QX9Yd4tnfW4J4disrCRAgQIAAAQIECBAgQIAAAQIE2ltAEG/v+eQ9uy4XxH9fURB/0CNTMr+3BPHMVBYSIECAAAECBAgQIECAAAECBAi0uYAg3uYDynl6gng2sGUF8WxQ9VWCeHYrKwkQIECAAAECBAgQIECAAAECBNpbQBBv7/nkPTtBPJuYIJ7NqbEqTxCf5rfjx1GXLx/ffD0oxw6WZhHo1i3LKmtyCUDNxZVl8U+RfvbxNzHu+KNnOYw1BAiMZALvv/1lTDJFj5Hsql0uAQJZBN546dOYavpxsyy1JofAkCE5FluaTQBqNqecq36K9ZVnP4pDt7sjvvjs21jv/+aIlTecMQYP9ubOSZz88nff/DwO+fPt8dEHXw1zrVmC+Lwb/jqW3m2mGPyd91W7vFFGG6N7nLPm3fHuc58Oc0pdL4gfUQnpsg/+pZJ9m71ptyG1n2YfdPjj5QnivfaZPyafauy48oynyj6tke/45Y96pDNF2vyR/5TpkNo/nI4yij/Zab66IxLo+gKDB0ft7w9d/zpcAQECzRcYNKj2zw/d/fNDs2XdF9Js0QimzTdtHPEnYA+6cOnYba2b4sWnBsalj64bRx56d7zy4sclnYjDdlWBQ45aKs468KF44N9v5A7i2962VJxz1WPx0IC3uurlJ3fem24xV0z++qjxrwMf79JB/Ob5qwniyw0QxDN/KPIG8e61/8E6s89DmY9vIQECBAgQIECAAAECBAgQIEAgj8DF/1kr9tzglkYQ7/vw2tFrk2vjmSc/yHMIa0cCgcv+tXb0/dujvyiIb33zErHvMXdE/34vjwRSXeMS99x70Zhr0ASC+C8clyCeA04Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYyx4yIE8WLzFMRz+AniObAsJUCAAAECBAgQIECAAAECBEoXEMRLJ05iA0E8iTEK4k0aoyCeA1IQz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYwxuSB+U0XPEF/eM8SzfyAE8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5RunsEO7BPHfzThR7Lr7QnHoQXfG2uvOFsf87d5cvD1XnTG+/OLbuO3WlzK/7oRTVowD9u0fH37wZebXtPvCVB6ZctN8R1ZCvfxDe1Syb7M37Tak9tPsgw5/vGYE8ZU3mTH+df6zv/hUh3/9ZnvNE1998V189+3gmH2ByeKATfv94Ni/X/pX8fIzH8V7b3yeed91/2+O+M1sE8ahW9+R+TUWEiBAgAABAgQIECBAgAABAq0V+Lkg3r17t1ht7Znjn5c89YtObESvv/Rfa8VBf70j/vvouyM85mxzThpn9l01FprtrJ/c84UP/i8WnfPseOuNz37RuXlRdoF2C+Lb9vpX9pOvrTztzJ6x9VbX5XrN/xZffNmascE6V2R67U/tM9vsk8bSy0wfJx73wE8ea+vt5osH7nsjHnn47Ux7/pJFgvgvUet8jSCew68ZQfz61zeOlaa+IMeuwy4d/vUn39ozjt3lnph7sSl/NIgf+c/l47wjHokn7h/x/1CN6GQE8V88Ii8kQIAAAQIECBAgQIAAAQItE/i5ID77XJPFXw9aLDZYNVsQHP7Eh3/96KN3j3uf3DLm++3pP3qNWYP4xJP2iA/f/zLKv8WxZeNo242aHcS32X7+WHChqWO88ceIU054MG695cW4/Z7N4t+1O7cnn2Kc+E8tBt/e/+U44eQV4567X4uZZp4kjj363vho4FeNO8Trd4b/3y4LxI7b3hDHn7xCTDDBmFF/b/Xa/NrYaNM5hzn2wIFfxqVXrB2nnjKgcZf3Z59/E7fc9EIcf9KK8fHHX8W4444RO2xzfRx30grxwvMfxphjjhpT/WrcxrF+NfW4sdMuC8YevW+Jo49frvF7E03UIw464I548on3htn75Np1nHvh6o19zjj1oTjx7ytFfe/u3UeJXf/vpjj51JVi+hkmjJ13vDH++/j3jW3CicaMv5/eM9577/OYcMIesdvON8dV/1ovnnv2gzjs4Lvi8KOWiQ/e/yJ23/WWOOb45Yc53vgTjBEn1faom4zZY9TYYpOrY+NN52pc+xtvfBIz/GbCxj71/3zkobfjzNMf7nh/CeLFPmqCeA6/okH8iH8sF4uvOl289OTA2Lnn9dFj7NFij5MXjcmmGju+/WZwHNyrfzz54HuxwS5zNgL3Hn+6qXF2J9ywUtx+9cvxh2WmHub1H3/wdVz2xDqx2gwXx1rbzRZzLTxFjDraKDH7gpPH+29+Hnute0ssu+5votf+8zfuDj/xL/fF5NOOGzPNPXGMVvubzK9nmiDef+vzuOqMp2KVLWaO6WaeMM7sMyBu6vt8COI53hiWEiBAgAABAgQIECBAgACBigR+KoiPPc5ocfsjm8cEE44ZDz/wVqyz0uWxzIozNAL5WGONFq++/HFsu8l1tWD3ZZz/zzXirn6vxuknPhTjjjd63PnoFrHlelfHaReuMszrF11q2thkq7nizxteGy9+uFMce9i9sdBi08TkU44dF5/zeJx1yiMxdBDv1i3i0GP/GEstN310H7Vb3HP7a7HrNjfFoEFD4n93iE80cY84/swV49YbXoy555siflVrF/v27hf9b3m5ItX0tm12EN9w4zniogsej2mmHS8O/9syseG6/4xHn9omFpz3zPjyy+/izvs2bwTeerReabmLYrrpJog+hy5VC9G3DxPE68dY408zx192uzUWXXzaeOvNTxtBePhj33b7JvHHJc6PLbaapxHEp556vHjpxYFx5RVPx5+3mS+++WZQLLLoNHH2WY/EvXe/Hldet25susFVsdIqv4svPv823nrr01hvg9mj9043xyyzThK991i4EZiH3/v0s1Zp7LPLbgvWovSncVnfJ2LbHeavnddntT+4GRLT/nr8Ye4Qr5/zOuvNFjvvcGNMM8148X4tfh9w8JJxce26Pv7o6zjl9JVjhWUuHOHx6kG+/gcKAx54s7HulBMfjHnnmzImmXSsxh8YXHHNOrHPnv+OF18YGJdftU6sumJfQbxJH01BPAdk0SA+/sRjxrWvbBiLj/P9vzJ0/oNrxj9Pf7IRpGeZf9I46srlY9XpL44hg4fE2feuEafs/UDtT4i6xyZ7zBO9Fr8qxqv9qdPQr19wualj5U1min03uq0RxP9cC99/XuLqePnpj+LA85eOt17+NE7d78G4+D9rxyFb3964Q7y+bvPaY1bWnf2y+PyTb+KqFzaI+295vfFolLkWnSL2+vvisd4clwniOd4XlhIgQIAAAQIECBAgQIAAgaoEfu4O8Z5rzBgbbD5H4w7xKaYaJ/49YNNYc7lL46n/vh/b7DR//GGRX8UW61wdU9XupL22//qx3IIXxP/9ZYHvb9zb+44Y+vX1a9z74MUaIf2CMx+LZ97ZofGf9XUTT9Ij7ntqq1hsrnMa//1/j0xZabXfxR77L9I4bj2O33Tvxo2IfvXlz3QE8XoUrJ/X+qtcEXfc9kpjz613mi9WWbIzAFblm8q+zQ7ivbaeN2abY7IYXGtYv55u/Fhz1cui312bxlKLntcg63/3ZrFtr+til94LxZ+3vDbGrt0UeuW168X22/xrmCB+e79XYoopx4mTju98DMmIjj18EF9o4anjwvMei4cGvBUrrvzbmG/+qeLXtVhdvyv7xVoorz8mpX4n934HLhH77d0vllp6upi6FqyPP+b+2h3lo8c/aoH5jNMe/sHe/9vn2BOXj6mmGjc+/PDLxh3oN9/4QuNu9HoQf/SRd2Kn3gvEC88NbNx5vv3//T5WWOm3tbvTB8Zfar8++PClO4L4Xvsu2rhTfUTH69/v5djtLws3gv0itT9U2qV2F/qss076fTM899HGNeyw7fWNu+Jvum2jWP6PFyYXxG+ct5pniK/wsGeIZ/57WzOD+DS/Gz8ufGjNWGqCcxp/86j/nFOL4CfteX88dPubMdM8k8R+Zy9Z+9PTUWLv9W+NF/77YQwf1Hc8YsFa/B4Y157zTCN0L7Ds1LH7Gt/fVb7ujrM3jtFni/4/COLzLTFV4+7x+s9p/VaNy07+b9z2jxdj0qnGikseXyf+OPG5gnjmd4WFBAgQIECAAAECBAgQIECgOoE8QXyjLedsxOb1ev6jccJj1SLl02/vEDNMeHx8993g2Gr7eWPp5aePaaYbL5b9wwXx1Vff/SCI33jPRrH1RtfGKy9+3Ajif1r20njisfcax7vy1nXj7Nod4i/WwuDQzxAfY4zu8fXXgxpr/nbysvHaK5/ECUfeP0wQv6bf+jHT5Cc11sw6x6Rx3hWrx+9nPKM62MR2bmYQrz/e5NIr1moE2jnmnKxx5/caPS+Nx5/ZtnGH+Be1L7286/4tYrONrqo9ZmTlWG7pC2qPTJk46o/5qH+Z5tCPTDnvnEdjg43maDySZJllZ4ivvv4u9t1/8R8c+993bhpLL3Zexx3iU9Yi+uuvfRJXXP5U4w7uzz79JhZf4tc/COL1R7ast9Y/asF8ysajWHbZ8abGOe+40wJx+mkPDbN3/e7uY05YvrFP/Q7x55/7MK69+tlGNP/8s29iqT9OX3tkygSNqP6/n3qEH1TrevVz2feAxeO+e1+PZZf/TVx68X9j4IdfxV771IL4FteO8Hh777d43HTD89Hv3y834vdxx9wXM9ceLVP/EcTL/QAK4jl8mxnEZ/39pHHGnavHu693ftFlj7FHjSN3uCv+fcWLjbM6/fbVYnDtXyHaZulrGr8ePohfMGDN2GPNm+KtVz5rBPGhv1Rz6F8Pf4f4LPNNGgdt2b9xzFNuWyUuOvrRuPv6V2OiyXvEFc+sX4v0ZwviOd4XlhIgQIAAAQIECBAgQIAAgaoE8gTx7Xb9ffTee6HGc7v/9zNu7e7sxec+J959+/OoP2Llv69vF6cc82D8rc89jSVD3yFef/TKjXdvFAvOembj9+pBfJk/nN8I3PWfC65cI2667oV45MG3OoJ4/TnJBxyxZD9onFoAACAASURBVMxSi9yDatF9mlpAPPvvj8Rxh983TBDve+1aMe9vTmscZ6ZZJ46hf12VbUr7NjOIjzJKt8bjPN6sPVLkif++F/XHp9Tvbj7y6GXj1ptfjFlnmzRuqz1T/I7bX2kE5sdrX746R+1Z9gfs0z8++eTrHzxDvH73dD2y9+gxWmxdu5v83ItW/8Gxt6w9KuXr2mNR6s8mrz8y5eYbXmgc+9NPv67dfT564xniJ56y4jBB/MjD724E7z1qz++u/xxRe553/Q+B6s8Q3792LvXgPfTevTa/Jo46drnGPvvX7io/9sQVao9/+TbGH3/Mxt3mE9ce7XPWeatF751vajyWpf5Tf753/Tzeeeuz6FF7DNFO298Qq6w2U6y/4eyx9163xbbb/b4RxCesfXaGP1790TBb1e60f/aZDxpBv36nfb/bXm4cd+QJ4n+r5GO2wsO7V7JvszftVnuOz/e3WZf408wgPumvas/Wqj3KZNlJzx3hGS+84rSx8W5zxehjdo+zDn447rnh1WGC+ISTjhmn37F6rD3LJY3XC+IlDt6hCRAgQIAAAQIECBAgQIBAmwrkCeJrrj9L9PzTjLH52leP8Gr2O3yJGGec0eOPK0wfKy12US3yfT5MEF+l9toll50uem97c+P19SC+zoqXx6MPv9P49XW3bxCnHjcgXqo98/h/d4gfcszSjVC4+/Y3N54bfuxpy8crL30siLf4/dTMIP5jp/6/x4387/d/N+NEjfi9ba9/tfhq098ulS/VvHFeQbzIu7VLBPGxa19KcfO7m8YfJzonvvriuzj3/j/FRcc8Grdc+kJMMMmYseuxC8fh297ZeITKhQ+vFX9Z6+ZGED+07zKx/lyXNx6f8r/X17+cc97Fp4zDt7vzZ4N4/Vnlp+x9f9x38+uNcO4O8SJvNa8lQIAAAQIECBAgQIAAAQLtI/BzQXz5nr+JHXdfIHoucXFMMtlY0a/2rO7Vlr6k8ViT+hdYrr3hrLH3rv9uPKbkzEtWjaXnOy8232bumG/BqWKr9a6JoV9ff9zJ3bUvxbzqsqc7gvhlFz7R+ALMX89Qu7v1oc1igZnPiMkmH7sjiJ/Rd5V46L634tTjB8SMtcdmXHT1n+Kqy5+OQ/a50x3iLXwbCeItxG7BVqkE8RsqCuIrukM8+7u06B3i9Z1OuGGl2hdoThY7r3x9fDLw69jz74vF5FOP0/jXhvoe/3jjCzbrzwYftfbNy8f2vrdxcn89bfH44tNv47jd7u14/aN3vxXXX/Bcx+NVfuoO8S32mbd2t/nc8fd9HmjEdkE8+8ytJECAAAECBAgQIECAAAEC7Szwc0F80snHiuvv3DBGH717zDXdqY27v/c+ePEYs8eo8cnHX8d+u/WLB+99I/51x4aN53rfeO3ztSYxStw2YJM4tBatH649/uR/r69/+V/PJS+OD977/pEr9TvEjz/i/vjTerNE/XEqJx39QJx76n9itjlrcb3vqrHQbGfF/LWwfuJZKzaeR/7oQ+/Ezf96IY4/c4XYcYsb4uRzV4pF5zw76l+q6ZEp5b7LWhHEy70CRx9aIJkgPk81d4iv+IhHpmT+RDUjiGfezEICBAgQIECAAAECBAgQIECAwM8I/FwQLxOwHsSXnPfceOuNz8rcxrGbICCINwGxjQ4hiBcbhiCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYyx4yIE8WLzFMRz+AniObAsJUCAAAECBAgQIECAAAECBEoXEMRLJ05iA0E8iTEmGMSPqmQwKz6yWyX7NnvTLvGlms2+aMcjQIAAAQIECBAgQIAAAQIERm6BKoP4yC3fta5eEO9a8/q5s03lDvHr56kmiK8kiP/cW6zz990hnt3KSgIECBAgQIAAAQIECBAgQKB8AUG8fOMUdhDEU5hi5zUkE8TnriiI/8cd4pk/EYJ4ZioLCRAgQIAAAQIECBAgQIAAgRYICOItQE5gC0E8gSEOdQmCeLF5rjRcEP9u0KA47ox/xDmX3BB3XX1iTDj+uI0Njjntsjj3shtjlFFG6djw0lP3j5l+M0289ua7se+RZ8czz78aU00xSey908Yx7xy/i6drv955v5PixouPLHaSGV7tkSkZkCwhQIAAAQIECBAgQIAAAQIE0hIQxNOaZ1lXI4iXJVvNcQXxYu7DB/Ed9z4+Zv7ttHHqBdfEHVee0BHEDzz63PjdDNPEBmv88QcbbrrTYbH0ovPGRn9aNu4Z8EQtjp8Vt1x6dLzw8huC+Jl9Hio2Ia8mQIAAAQIECBAgQIAAAQIECPyIgCDurZFFQBDPotR11qQSxP9V0SNTVh7uDvH6Xd31ID7H0psPE8R36/P3WGLBuWKV5RYe5s3xwcBPYoUN9oh7rzs5Ru3evfF7a/XaP/bYbv0Yb9yxOoL4t98Niq16HxmL146x5forNf0N5g7xppM6IAECBAgQIECAAAECBAgQINDuAoJ4u0+oPc5PEG+POTTrLJIJ4nMd3SySXMdZ+dHeI1w/fBDfeo+jY/DgIfHy629Ht9or1l5lyei1Yc94+PHnos8x58VV5xzccZzeB54SC8w7a8w5ywwdQfzA2ppBtcex9Nl9i1znl3WxIJ5VyjoCBAgQIECAAAECBAgQIEAgGQFBPJlRlnohgnipvC0/uCBejDxrED/9wmtj3HHGijVXWjxeeeOdqAfyvXbcMMYea8w44cwr4pLa88T/97PPEWfFjDNMHX+YZ5ZGEN983RXi5tsHxGl/691xF3mxs/7hqwXxZos6HgECBAgQIECAAAECBAgQIND2AoJ424+oLU5QEG+LMTTtJATxYpRZg/jwu5xy3tXxznsfxuorLBr7H3VuXHPuIR1Ldj3g5Fh4/tlj9pmnj412OLjxRZxLLTJPHLH31sVO9ideLYiXRuvABAgQIECAAAECBAgQIECAQLsKCOLtOpn2Oi9BvL3mUfRsBPFiglmD+MOPPxuzzzR9jD76aI0Nj6/dFf7pZ1/E9puvHsus0zvuuvqk6DHm6I3fW3HDPeLQvXrVfj1GbLHrEXHFGX1q/3lk9N5mnVhmsfmKnfCPvFoQL4XVQQkQIECAAAECBAgQIECAAIF2FhDE23k67XNugnj7zKIZZ5JKEL+uomeI98z4DPH1tjmw8YWY22yyWrz+1rux2c6Hx4G7bRGLLTBHbFmL3b+fe+bGM8Vv6Hd/4xEqN1x0ZDz30usdzxCvP2t8l/1PiivPPjgmmmDcZox+mGMI4k0ndUACBAgQIECAAAECBAgQIECg3QUE8XafUHucnyDeHnNo1lkkE8TnrOZLNXs+1vmlmh99/FksudbOjdF8++13Mdpoozb++62XHh2fff5lHHD0ufH086/GeLVniW+81nKN/6v/vPH2+/HXw86IZ154LaaZarI4oPdmMdtM0zXW1p8hfuPFRzbWHXFy33jrnQ/iuD47NGv8HccRxJtO6oAECBAgQIAAAQIECBAgQIBAuwsI4u0+ofY4P0G8PebQrLNIJ4gf0yySXMfp+diuuda362JBvF0n47wIECBAgAABAgQIECBAgACB0gQE8dJokzqwIJ7UOEMQLzZPQTyH3wkH154Hc9B9w7xix30WiB4xapx+0IBh/nqvfeaP7t26xZl9Hsqxg6UECBAgQIAAAQIECBAgQIAAgewCgnh2q5F5pSCe1vRTCeLXzlnNHeKruEM8+wdCEM9uZSUBAgQIECBAgAABAgQIECBQvoAgXr5xCjsI4ilMsfMakgnic1QUxB/3yJTMnwhBPDOVhQQIECBAgAABAgQIECBAgEALBATxFiAnsIUgnsAQh7oEQbzYPFcRxLMDCuLZrawkQIAAAQIECBAgQIAAAQIEyhcQxMs3TmEHQTyFKXZegyBebJ6CeA4/QTwHlqUECBAgQIAAAQIECBAgQIBA6QKCeOnESWwgiCcxxo6LSCWIXzPHsZUMZtXHd6lk32Zv2m1I7afZBx3+eIJ42cKOT4AAAQIECBAgQIAAAQIECOQREMTzaI28awXxtGYviBebpyCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYyx4yKSCeKzV3SH+H/dIZ75EyGIZ6aykAABAgQIECBAgAABAgQIEGiBgCDeAuQEthDEExjiUJcgiBeb56qCeHZAQTy7lZUECBAgQIAAAQIECBAgQIBA+QKCePnGKewgiKcwxc5rEMSLzVMQz+EniOfAspQAAQIECBAgQIAAAQIECBAoXUAQL504iQ0E8STG2HERqQTxqyt6ZMpq7hDP/oEQxLNbWUmAAAECBAgQIECAAAECBAiULyCIl2+cwg6CeApT7LwGQbzYPAXxHH6CeA4sSwkQIECAAAECBAgQIECAAIHSBQTx0omT2EAQT2KMHReRTBCf7bhKBrPaEztXsm+zN+02pPbT7IMOfzxBvGxhxydAgAABAgQIECBAgAABAgTyCAjiebRG3rWCeFqzF8SLzVMQz+EniOfAspQAAQIECBAgQIAAAQIECBAoXUAQL504iQ0E8STG2HERqQTxqyq6Q3x1d4hn/0AI4tmtrCRAgAABAgQIECBAgAABAgTKFxDEyzdOYQdBPIUpdl6DIF5snoJ4Dj9BPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHGjotIJojPWs0zxFd/0jPEM38iBPHMVBYSIECAAAECBAgQIECAAAECLRAQxFuAnMAWgngCQxzqEgTxYvMUxHP4CeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMXZcRDpB/PhKBrP6kztVsm+zN+02pPbT7IMOfzxBvGxhxydAgAABAgQIECBAgAABAgTyCAjiebRG3rWCeFqzTyWIXzlrNUF8DUE8+wdCEM9uZSUBAgQIECBAgAABAgQIECBQvoAgXr5xCjsI4ilMsfMaBPFi8xTEc/gJ4jmwLCVAgAABAgQIECBAgAABAgRKFxDESydOYgNBPIkxdlxEMkF8loruEH/KI1MyfyIE8cxUFhIgQIAAAQIECBAgQIAAAQItEBDEW4CcwBaCeAJDHOoSBPFi81xDEM8OKIhnt7KSAAECBAgQIECAAAECBAgQKF9AEC/fOIUdBPEUpth5DakE8X9WdIf4nwTx7B8IQTy7lZUECBAgQIAAAQIECBAgQIBA+QKCePnGKewgiKcwxRSD+AmVDOZPT/1fJfs2e9NuQ2o/zT7o8McTxMsWdnwCBAgQIECAAAECBAgQIEAgj4Agnkdr5F0riKc1+2TuEJ+5oiD+tCCe+RMhiGemspAAAQIECBAgQIAAAQIECBBogYAg3gLkBLYQxBMY4lCXIIgXm+efBPHsgIJ4disrCRAgQIAAAQIECBAgQIAAgfIFBPHyjVPYQRBPYYqd1yCIF5unIJ7DTxDPgWUpAQIECBAgQIAAAQIECBAgULqAIF46cRIbCOJJjLHjIlIJ4ldU9MiUNd0hnv0DIYhnt7KSAAECBAgQIECAAAECBAgQKF9AEC/fOIUdBPEUpth5DYJ4sXkK4jn8BPEcWJYSIECAAAECBAgQIECAAAECpQsI4qUTJ7GBIJ7EGDsuIpkgPtOJlQxmzWd2rGTfZm/abUjtp9kHHf54gnjZwo5PgAABAgQIECBAgAABAgQI5BEQxPNojbxrfyyIn3JTzzjh8Pvjvv6vR98b14x7Dn4mnu337jBQW9+8ROx7zB3Rv9/LIy9gm125IF5sIIJ4Dj9BPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHGjotIJYj/o6I7xNdyh3j2D4Qgnt3KSgIECBAgQIAAAQIECBAgQKB8AUG8fOMUdhDEU5hi5zUI4sXmKYjn8BPEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmPsuIhkgviM1TxDfK1nPUM88ydCEM9MZSEBAgQIECBAgAABAgQIECDQAgFBvAXICWwhiCcwxKEuQRAvNk9BPIefIJ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYY8dFpBPET6pkMGs9u0Ml+zZ7025Daj/NPujwxxPEyxZ2fAIECBAgQIAAAQIECBAgQCCPgCCeR2vkXSuIpzX7VIL45TNWE8TXFsSzfyAE8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5RunsIMgnsIUO69BEC82T0E8h58gngPLUgIECBAgQIAAAQIECBAgQKB0AUG8dOIkNhDEkxhjx0UkE8R/V9Ed4s95ZErmT4QgnpnKQgIECBAgQIAAAQIECBAgQKAFAoJ4C5AT2EIQT2CIQ12CIF5snmsL4tkBBfHsVlYSIECAAAECBAgQIECAAAEC5QsI4uUbp7CDIJ7CFDuvIZUgfllFd4ivI4hn/0AI4tmtrCRAgAABAgQIECBAgAABAgTKFxDEyzdOYQdBPIUpphjET65kMOs8t30l+zZ7025Daj/NPujwxxPEyxZ2fAIECBAgQIAAAQIECBAgQCCPgCCeR2vkXSuIpzX7dO4QF8SLvDMF8SJ6XkuAAAECBAgQIECAAAECBAh0SQFBvEuOreUnLYi3nLzUDZMJ4r+tKIg/7w7xzG9Qd4hnprKQAAECBAgQIECAAAECBAgQaIGAIN4C5AS2EMQTGOJQl5BKEL+0oiC+riCe/QMhiGe3spIAAQIECBAgQIAAAQIECBAoX0AQL984hR0E8RSm2HkNgnixeQriOfwE8RxYlhIgQIAAAQIECBAgQIAAAQKlCwjipRMnsYEgnsQYOy5CEC82T0E8h58gngPLUgIECBAgQIAAAQIECBAgQKB0AUG8dOIkNhDEkxhjekH8N6dUMph1X9iukn2bvakv1Wy2qOMRIECAAAECBAgQIECAAAECbS8giLf9iNriBAXxthhD004imTvEBfFC7wlBvBCfFxMgQIAAAQIECBAgQIAAAQJdUUAQ74pTa/05C+KtNy9zx1SC+CUVBfH13CGe/e3pkSnZrawkQIAAAQIECBAgQIAAAQIEyhcQxMs3TmEHQTyFKXZegyBebJ6CeA4/QTwHlqUECBAgQIAAAQIECBAgQIBA6QKCeOnESWwgiCcxxo6LEMSLzVMQz+EniOfAspQAAQIECBAgQIAAAQIECBAoXUAQL504iQ0E8STGmF4Qn6GaL9Vc70Vfqpn5EyGIZ6aykAABAgQIECBAgAABAgQIEGiBgCDeAuQEthDEExjiUJeQyh3ifWf4eyWDWf/FbSvZt9mb+lLNZos6HgECBAgQIECAAAECBAgQIND2Ahc/unb8Zf2b46WnBkbfh9eOXptcG888+UHbn7cTbK2AIN5a77J3E8SLCQviOfzcIZ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYY8dFCOLF5imI5/ATxHNgWUqAAAECBAgQIECAAAECBAiULiCIl06cxAaCeBJjTC+IT1/RI1Ne8siUzJ8IQTwzlYUECBAgQIAAAQIECBAgQIBACwQE8RYgJ7CFIJ7AEIe6hGTuEBfEC70xPUO8EJ8XEyBAgAABAgQIECBAgAABAl1RQBDvilNr/TkL4q03L3PHVIL4xRUF8Q3cIZ797ekO8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5RunsIMgnsIUO68hnSB+aiWD2eClbSrZt9mbukO82aKOR4AAAQIECBAgQIAAAQIECLS9gCDe9iNqixMUxNtiDE07CUG8GKUgnsPPHeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMXZcRDJBfLqK7hB/2R3imT8RgnhmKgsJECBAgAABAgQIECBAgACBFggI4i1ATmALQTyBIQ51CakE8YsqCuIbCuLZPxCCeHYrKwkQIECAAAECBAgQIECAAIHyBQTx8o1T2EEQT2GKndcgiBebpyCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYyx4yIE8WLzFMRz+AniObAsJUCAAAECBAgQIECAAAECBEoXEMRLJ05iA0E8iTEK4k0aoyCeA1IQz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYwxvSD+69MqGcyGr2xdyb7N3rTbkNpPsw86/PEE8bKFHZ8AAQIECBAgQIAAAQIECBDIIyCI59EaedcK4mnNPpVHplxYURDfSBDP/oEQxLNbWUmAAAECBAgQIECAAAECBAiULyCIl2+cwg6CeApT7LwGQbzYPAXxHH6CeA4sSwkQIECAAAECBAgQIECAAIHSBQTx0omT2EAQT2KMHRchiBebpyCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYwxvSA+bTXPEN/oVc8Qz/yJEMQzU1lIgAABAgQIECBAgAABAgQItEBAEG8BcgJbCOIJDHGoS0jlDvELKgriGwvi2T8Qgnh2KysJECBAgAABAgQIECBAgACB8gUE8fKNU9hBEE9hip3XkE4QP72SwWz86p8r2bfZm3YbUvtp9kGHP54gXraw4xMgQIAAAQIECBAgQIAAAQJ5BATxPFoj71pBPK3ZC+LF5imI5/ATxHNgWUqAAAECBAgQIECAAAECBAiULiCIl06cxAaCeBJj7LgIQbzYPAXxHH6CeA4sSwkQIECAAAECBAgQIECAAIHSBQTx0omT2EAQT2KM6QXxaSp6ZMprHpmS+RMhiGemspAAAQIECBAgQIAAAQIECBBogYAg3gLkBLYQxBMY4lCXkMod4udXFMQ3EcSzfyAE8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5RunsIMgnsIUO69BEC82T0E8h58gngPLUgIECBAgQIAAAQIECBAgQKB0AUG8dOIkNhDEkxhjx0WkE8TPqGQwm7zWq5J9m71ptyG1n2YfdPjjCeJlCzs+AQIECBAgQIAAAQIECBAgkEdAEM+jNfKuFcTTmn0yQXzqioL464J45k+EIJ6ZykICBAgQIECAAAECBAgQIECgBQKCeAuQE9hCEE9giENdQipB/LyKgvimgnj2D4Qgnt3KSgIECBAgQIAAAQIECBAgQKB8AUG8fOMUdhDEU5hi5zUI4sXmKYjn8BPEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmPsuAhBvNg8BfEcfoJ4DixLCRAgQIAAAQIECBAgQIAAgdIFBPHSiZPYQBBPYoyCeJPGKIjngBTEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmNML4j/6sxKBrPpG1tVsm+zN+02pPbT7IMOfzxBvGxhxydAgAABAgQIECBAgAABAgTyCAjiebRG3rWCeFqzT+WRKedWFMQ3E8SzfyAE8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5RunsIMgnsIUO69BEC82T0E8h58gngPLUgIECBAgQIAAAQIECBAgQKB0AUG8dOIkNhDEkxhjx0UI4sXmKYjn8BPEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmMUxJs0RkE8B6QgngPLUgIECBAgQIAAAQIECBAgQKB0AUG8dOIkNhDEkxhjckH8nKmq+VLNzd/0pZqZPxGCeGYqCwkQIECAAAECBAgQIECAAIEWCAjiLUBOYAtBPIEhDnUJqTwy5ZypzqpkMJu/uWUl+zZ7025Daj/NPujwxxPEyxZ2fAIECBAgQIAAAQIECBAgQCCPgCCeR2vkXSuIpzV7QbzYPAXxHH6CeA4sSwkQIECAAAECBAgQIECAAIHSBQTx0omT2EAQT2KMHRchiBebpyCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYwxuSB+9pTVPDJli7c8MiXzJ0IQz0xlIQECBAgQIECAAAECBAgQINACAUG8BcgJbCGIJzDEoS4hlTvEBfFi70vPEC/m59UECBAgQIAAAQIECBAgQIBAFxQQxLvg0Co4ZUG8AvQStxTEi+G6QzyHnzvEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmPsuIh0gvjZlQxmi7e2qGTfZm/qDvFmizoeAQIECBAgQIAAAQIECBAg0PYCgnjbj6gtTlAQb4sxNO0kBPFilIJ4Dj93iOfAspQAAQIECBAgQIAAAQIECBAoXUAQL504iQ0E8STG2HERqQTxs6ao5g7xLd92h3jmT4QgnpnKQgIECBAgQIAAAQIECBAgQKAFAoJ4C5AT2EIQT2CIQ12CIF5snoJ4Dj9BPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHGjosQxIvNUxDP4SeI58CylAABAgQIECBAgAABAgQIEChdQBAvnTiJDQTxJMYoiDdpjIJ4DkhBPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHG5IL4mZOfU8lgtnpn80r2bfam3YbUfpp90OGPJ4iXLez4BAgQIECAAAECBAgQIECAQB4BQTyP1si7VhBPa/apPDJFEC/2vhTEi/l5NQECBAgQIECAAAECBAgQINAFBQTxLji0Ck5ZEK8AvcQtBfFiuO4Qz+HnDvEcWJYSIECAAAECBAgQIECAAAECpQsI4qUTJ7GBIJ7EGDsuQhAvNk9BPIefIJ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYY3JB/IyKniHeyzPEs38gBPHsVlYSIECAAAECBAgQIECAAAEC5QsI4uUbp7CDIJ7CFDuvIZU7xAXxYu9LzxAv5ufVBAgQIECAAAECBAgQIECAQBcUEMS74NAqOGVBvAL0ErcUxIvhukM8h587xHNgWUqAAAECBAgQIECAAAECBAiULiCIl06cxAaCeBJj7LiIVIL46ZOdU8lg/vzu5pXs2+xN3SHebFHHI0CA/sucyAAAIABJREFUAAECBAgQIECAAAECBNpeQBBv+xG1xQkK4m0xhqadhCBejFIQz+HnDvEcWJYSIECAAAECBAgQIECAAAECpQsI4qUTJ7GBIJ7EGDsuQhAvNk9BPIefIJ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYoyDepDEK4jkgBfEcWJYSIECAAAECBAgQIECAAAECpQsI4qUTJ7GBIJ7EGJML4qdV9AzxrT1DPPsHQhDPbmUlAQIECBAgQIAAAQIECBAgUL6AIF6+cQo7COIpTLHzGlJ5ZIogXux96Us1i/l5NQECBAgQIECAAAECBAgQINAFBQTxLji0Ck5ZEK8AvcQtBfFiuO4Qz+HnDvEcWJYSIECAAAECBAgQIECAAAECpQsI4qUTJ7HBjwXxv9+8Shx36H1x/+2vxyU3rRV39Xk6nuv/7jDXvPXNS8S+x9wR/fu9nIRFCheRShA/ddJzKhnHNu9tXsm+zd7UHeLNFnU8AgQIECBAgAABAgQIECBAoO0FBPG2H1FbnKAg3hZjaNpJpBPEz22aSZ4DbfPeZnmWt+1aQbxtR+PECBAgQIAAAQIECBAgQIAAgbIEBPGyZNM6riCe1jwF8WLzFMRz+HlkSg4sSwkQIECAAAECBAgQIECAAIHSBQTx0omT2EAQT2KMHRchiBebpyCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYwxuSD+90nPrWQw23pkSnZ3QTy7lZUECBAgQIAAAQIECBAgQIBA+QKCePnGKewgiKcwxc5rSOUOcUG82PvSM8SL+Xk1AQIECBAgQIAAAQIECBAg0AUFBPEuOLQKTlkQrwC9xC2TCeKTnFui0o8fetv3N6tk32ZvKog3W9TxCBAgQIAAAQIECBAgQIAAgbYXEMTbfkRtcYKCeFuMoWknkUoQP6WiIL6dIJ79veiRKdmtrCRAgAABAgQIECBAgAABAgTKFxDEyzdOYQdBPIUpdl6DIF5snoJ4Dj9BPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHGjosQxIvNUxDP4SeI58CylAABAgQIECBAgAABAgQIEChdQBAvnTiJDQTxJMYoiDdpjIJ4DkhBPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHG5IL4yRU9Q3x7zxDP/oEQxLNbWUmAAAECBAgQIECAAAECBAiULyCIl2+cwg6CeApT7LyGVB6ZIogXe192G1L7KXaIn3+1IP7zRlYQIECAAAECBAgQIECAAAECrRMQxFtn3ZV3EsS78vR+eO7JBPGJz61kMNt/sFkl+zZ7U0G82aKOR4AAAQIECBAgQIAAAQIECLS9gCDe9iNqixMUxNtiDE07iVSC+EkVBfEdBPHs70V3iGe3spIAAQIECBAgQIAAAQIECBAoX0AQL984hR0E8RSm2HkNgnixeQriOfwE8RxYlhIgQIAAAQIECBAgQIAAAQKlCwjipRMnsYEgnsQYOy4inSB+XiWD2eGDTSvZt9mbemRKs0UdjwABAgQIECBAgAABAgQIEGh7AUG87UfUFicoiLfFGJp2EoJ4MUpBPIefO8RzYFlKgAABAgQIECBAgAABAgQIlC4giJdOnMQGgngSY+y4iFSC+IkTV3OH+I7uEM/+gRDEs1tZSYAAAQIECBAgQIAAAQIECJQvIIiXb5zCDoJ4ClPsvAZBvNg8BfEcfoJ4DixLCRAgQIAAAQIECBAgQIAAgdIFBPHSiZPYQBBPYowdF5FMEJ+oojvEP/QM8cyfCEE8M5WFBAgQIECAAAECBAgQIECAQAsEBPEWICewhSCewBCHuoRUgvgJFQXx/xPEs38gBPHsVlYSIECAAAECBAgQIECAAAEC5QsI4uUbp7CDIJ7CFDuvQRAvNk9BPIefIJ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYY8dFCOLF5imI5/ATxHNgWUqAAAECBAgQIECAAAECBAiULtD3sbVj93Vvipef/ij6Prx29Nrk2njmyQ9K39cGXUtAEO9a8/q5sxXEf07op39fEM/hJ4jnwLKUAAECBAgQIECAAAECBAgQKF1AEC+dOIkNBPEkxthxEakE8eMreob4Tp4hnv0DIYhnt7KSAAECBAgQIECAAAECBAgQKF9AEC/fOIUdBPEUpth5DckE8QnPq2QwOw3ctJJ9m71ptyG1n2YfdPjjCeJlCzs+AQIECBAgQIAAAQIECBAgkEdAEM+jNfKuFcTTmr0gXmyegngOP0E8B5alBAgQIECAAAECBAgQIECAQOkCgnjpxElsIIgnMcaOi0gliB9X0R3iO7tDPPsHQhDPbmUlAQIECBAgQIAAAQIECBAgUL6AIF6+cQo7COIpTLHzGgTxYvMUxHP4CeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMXZcRDpB/PxKBrPzwE0q2bfZm3qGeLNFHY8AAQIECBAgQIAAAQIECBBoewFBvO1H1BYnKIi3xRiadhKCeDFKQTyHnzvEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmPsuIhUgvixE1Zzh/gu7hDP/oEQxLNbWUmAAAECBAgQIECAAAECBAiULyCIl2+cwg6CeApT7LyGZIL4BBUF8Y88MiXzJ0IQz0xlIQECBAgQIECAAAECBAgQINACAUG8BcgJbCGIJzDEoS5BEC82z10E8eyAgnh2KysJECBAgAABAgQIECBAgACB8gUE8fKNU9hBEE9hip3XkEoQP6aiO8R3FcSzfyAE8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5RunsIMgnsIUBfFmTVEQzyEpiOfAspQAAQIECBAgQIAAAQIECBAoXUAQL504iQ0E8STG2HER7hAvNk9BPIefIJ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYoyDepDEK4jkgBfEcWJYSIECAAAECBAgQIECAAAECpQsI4qUTJ7GBIJ7EGJML4kdX9Azx3p4hnv0DIYhnt7KSAAECBAgQIECAAAECBAgQKF9AEC/fOIUdBPEUpth5Dak8MuXo8c+vZDC9P96kkn2bvWm3IbWfZh90+OMJ4mULOz4BAgQIECBAgAABAgQIECCQR0AQz6M18q4VxNOavSBebJ6CeA4/QTwHlqUECBAgQIAAAQIECBAgQIBA6QKCeOnESWwgiCcxxo6LSCWIH1XRHeK7uUM8+wdCEM9uZSUBAgQIECBAgAABAgQIECBQvoAgXr5xCjsI4ilMsfMaBPFi8xTEc/gJ4jmwLCVAgAABAgQIECBAgAABAgRKFxDESydOYgNBPIkxdlyEIF5snoJ4Dj9BPAeWpQQIECBAgAABAgQIECBAgEDpAoJ46cRJbCCIJzHGBIP4BZUMZrePN65k32Zv6ks1my3qeAQIECBAgAABAgQIECBAgEDbCwjibT+itjhBQbwtxtC0k0jlDvG/jVdNEN/9E0E885vRHeKZqSwkQIAAAQIECBAgQIAAAQIEWiAgiLcAOYEtBPEEhjjUJQjixeYpiOfwE8RzYFlKgAABAgQIECBAgAABAgQIlC4giJdOnMQGgngSY+y4CEG82DwF8Rx+gngOLEsJECBAgAABAgQIECBAgACB0gUE8dKJk9hAEE9ijMkF8SMremTKHh6Zkv0DIYhnt7KSAAECBAgQIECAAAECBAgQKF9AEC/fOIUdBPEUpth5DancIS6IF3tf+lLNYn5eTYAAAQIECBAgQIAAAQIECHRBAUG8Cw6tglMWxCtAL3FLQbwYrjvEc/i5QzwHlqUECBAgQIAAAQIECBAgQIBA6QKCeOnESWwgiCcxxo6LEMSLzVMQz+EniOfAspQAAQIECBAgQIAAAQIECBAoXUAQL504iQ0E8STGmFwQP2LcCyoZzF8+3biSfZu9qUemNFvU8QgQIECAAAECBAgQIECAAIG2FxDE235EbXGCgnhbjKFpJ5HKHeKCeLG3hCBezM+rCRAgQIAAAQIECBAgQIAAgS4oIIh3waFVcMqCeAXoJW4piBfDdYd4Dj+PTMmBZSkBAgQIECBAgAABAgQIECBQuoAgXjpxEhsI4kmMseMiUgnih1f0yJQ9PTIl+wdCEM9uZSUBAgQIECBAgAABAgQIECBQvoAgXr5xCjsI4ilMsfMaBPFi8xw+iH83aFAcd8Y/4pxLboi7rj4xJhx/3MYGX3/zbex/1Dlx9wOPR48xx4itNlg51ll1qcbvvfbmu7HvkWfHM8+/GlNNMUnsvdPGMe8cv4una7/eeb+T4saLjyx2khle7ZEpGZAsIUCAAAECBAgQIECAAAECBNISEMTTmmdZVyOIlyVbzXEF8WLuwwfxHfc+Pmb+7bRx6gXXxB1XntARxE8+58p4/uU34rC//jk+GPhJbLj9wXH633aLGWeYOjbd6bBYetF5Y6M/LRv3DHiiFsfPilsuPTpeqK0XxPs8VGxCXk2AAAECBAgQIECAAAECBAgQ+BEBQdxbI4uAIJ5FqeusEcSLzWr4IF6/q7sexOdYevNhgviqm/41DvrLljHXrL9pbHjkyX1j7LHGjPVW/2OssMEece91J8eo3bs3fm+tXvvHHtutH+ONO1ZHEP/2u0GxVe8jY/EF54ot11+p2EmP4NXuEG86qQMSIECAAAECBAgQIECAAAEC7S4giLf7hNrj/ATx9phDs84ilSB+2DgXNosk13H2+myjEa4fPojP9cctG4F8/PHGbqy/9Op/x4DHnon1V18m+hxzXlx1zsEdx+l94CmxwLyzxpyzzNARxA+srRlUexxLn923yHV+WRcL4lmlrCNAgAABAgQIECBAgAABAgSSERDEkxllqRciiJfK2/KDC+LFyLME8frd3XMvs2U8dNPpMeYYozc2vPqmu+PWOwbE+mv8MU4484q45NT9O05knyPOajxK5Q/zzNII4puvu0LcfPuAOO1vvTvuIi921j98tSDebFHHI0CAAAECBAgQIECAAAECBNpeQBBv+xG1xQkK4m0xhqadhCBejDJLEK/vUL9DvP8/j+t4pnjfq26L//z3+dojU5aufdnmuXHNuYd0nMiuB5wcC88/e8w+8/Sx0Q4HxyijjBJLLTJPHLH31sVO9ideLYiXRuvABAgQIECAAAECBAgQIECAQLsKCOLtOpn2Oi9BvL3mUfRsUgnih1b0yJS/Znxkyuqb7xN7/d+GsUDtru/6z35/OzumnnLSWHuVJWOZdXrHXVefFD3G/P7u8RU33CMO3atX7ddjxBa7HhFXnNGn9p9HRu9t1ollFpuv6MhH+HpBvBRWByVAgAABAgQIECBAgAABAgTaWUAQb+fptM+5CeLtM4tmnIkgXkwxaxA/9fxr4j9PPBfH9dkxXn/zvdh058Pi4pP3jV9PPXlsWYvdv5975ui1Yc+4od/9jUeo3HDRkfHcS693PEP84cefi132PymuPPvgmGiCcYud9AheLYg3ndQBCRAgQIAAAQIECBAgQIAAgXYXEMTbfULtcX6CeHvMoVlnIYgXkxw6iH/08Wex5Fo7Nw747bffxWijjdr477deenSMN85YjUej3Hn/YzH2WGPGdputHqstv0jj9994+/3462FnxDMvvBbTTDVZHNB7s5htpuni6edf7Qji9XVHnNw33nrng1pU36HYSY/g1YJ400kdkAABAgQIECBAgAABAgQIEGh3AUG83SfUHucniLfHHJp1FskE8bEvbBZJruP89fONcq1v18WCeLtOxnkRIECAAAECBAgQIECAAAECpQkI4qXRJnVgQTypcUYqQfyQioL43oJ49g/ECQfXngdz0H3DvGDHfRaIHjFqnH7QgGH+eq995o/u3brFmX0eyr6BlQQIECBAgAABAgQIECBAgACBHAKCeA6skXipIJ7W8AXxYvMUxHP4CeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMXZchCBebJ6CeA4/QTwHlqUECBAgQIAAAQIECBAgQIBA6QKCeOnESWwgiCcxxuSC+MEVPTJlH49Myf6BEMSzW1lJgAABAgQIECBAgAABAgQIlC8giJdvnMIOgngKU+y8hlTuEBfEi70vfalmMT+vJkCAAAECBAgQIECAAAECBLqggCDeBYdWwSkL4hWgl7ilIF4M1x3iOfzcIZ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYY8dFJBPEx7qwksHs88VGlezb7E3dId5sUccjQIAAAQIECBAgQIAAAQIE2l5AEG/7EbXFCQribTGGpp1EKkH8oLEuappJngPt+8WGeZa37VpBvG1H48QIECBAgAABAgQIECBAgACBsgQE8bJk0zquIJ7WPAXxYvMUxHP4eWRKDixLCRAgQIAAAQIECBAgQIAAgdIFBPHSiZPYQBBPYowdFyGIF5unIJ7DTxDPgWUpAQIECBAgQIAAAQIECBAgULqAIF46cRIbCOJJjDG5IN6nokem7OeRKdk/EIJ4disrCRAgQIAAAQIECBAgQIAAgfIFBPHyjVPYQRBPYYqd15DKHeKCeLH3pWeIF/PzagIECBAgQIAAAQIECBAgQKALCgjiXXBoFZyyIF4BeolbCuLFcN0hnsPPHeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMXZcRDJBvMdFlQxmvy83rGTfZm/qDvFmizoeAQIECBAgQIAAAQIECBAg0PYCgnjbj6gtTlAQb4sxNO0kUgniB1YUxPcXxLO/F90hnt3KSgIECBAgQIAAAQIECBAgQKB8AUG8fOMUdhDEU5hi5zUI4sXmKYjn8BPEc2BZSoAAAQIECBAgQIAAAQIECJQuIIiXTpzEBoJ4EmPsuAhBvNg8BfEcfoJ4DixLCRAgQIAAAQIECBAgQIAAgdIFBPHSiZPYQBBPYozJBfEDKnpkygEemZL9AyGIZ7eykgABAgQIECBAgAABAgQIEChfQBAv3ziFHX4siJ96yypx7MH3xv13vBGX3rxW3HnA0/Hc7e8Oc8lb37xE7HvMHdG/38spUCRxDancIS6IF3s7+lLNYn5eTYAAAQIECBAgQIAAAQIECHRBAUG8Cw6tglMWxCtAL3HLZIL4mBeVqPTjhz7gqw0r2bfZmwrizRZ1PAIECBAgQIAAAQIECBAgQKDtBQTxth9RW5ygIN4WY2jaSQjixSgF8Rx+HpmSA8tSAgQIECBAgAABAgQIECBAoHQBQbx04iQ2EMSTGGPHRaQSxPev6A7xA90hnv0DIYhnt7KSAAECBAgQIECAAAECBAgQKF9AEC/fOIUdBPEUpth5DekE8YsrGcyBX21Qyb7N3tQjU5ot6ngECBAgQIAAAQIECBAgQIBA2wsI4m0/orY4QUG8LcbQtJMQxItRCuI5/NwhngPLUgIECBAgQIAAAQIECBAgQKB0AUG8dOIkNhDEkxhjx0WkEsT3G7OaO8T7uEM8+wdCEM9uZSUBAgQIECBAgAABAgQIECBQvoAgXr5xCjsI4ilMsfMaBPFi8xTEc/gJ4jmwLCVAgAABAgQIECBAgAABAgRKFxDESydOYgNBPIkxdlxEMkF8jIruEP/aM8QzfyIE8cxUFhIgQIAAAQIECBAgQIAAAQItEBDEW4CcwBaCeAJDHOoSBPFi8+wjiGcHPGzPO+OsYx8e5gU77rNA9IhR4/SDBgzz13vtM39079YtzuzzUPYNrCRAgAABAgQIECBAgAABAgQI5BAQxHNgjcRLBfG0hp83iG+x0zzx1yMXbzuEfSu6Q/wgQTz7e8Ed4tmtrCRAgAABAgQIECBAgAABAgTKFxDEyzdOYQdBPIUpdl5D3iBev6F3p30XbDsEQbzYSLoNqf0UO8TPv1oQ/3kjKwgQIECAAAECBAgQIECAAIHWCQjirbPuyjsJ4l15ej88d0G82DzdIZ7DTxDPgWUpAQIECBAgQIAAAQIECBAgULqAIF46cRIbCOJJjLHjIlIJ4vtU9MiUgz0yJfsHQhDPbmUlAQIECBAgQIAAAQIECBAgUL6AIF6+cQo7COIpTLHzGgTxYvMUxHP4CeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMXZcRDJBfPSLKxnMwd9sUMm+zd7UM8SbLep4BAgQIECAAAECBAgQIECAQNsLCOJtP6K2OEFBvC3G0LSTEMSLUQriOfzcIZ4Dy1ICBAgQIECAAAECBAgQIECgdAFBvHTiJDYQxJMYY8dFpBLE967oDvFD3CGe/QMhiGe3spIAAQIECBAgQIAAAQIECBAoX0AQL984hR0E8RSm2HkNgnixeQriOfwE8RxYlhIgQIAAAQIECBAgQIAAAQKlCwjipRMnsYEgnsQYOy4inSDet5LBHPLN+pXs2+xNPUO82aKOR4AAAQIECBAgQIAAAQIECLS9gCDe9iNqixMUxNtiDE07iVSC+F9HryaIHyqIZ38vukM8u5WVBAgQIECAAAECBAgQIECAQPkCgnj5xinsIIinMMXOaxDEi81TEM/hJ4jnwLKUAAECBAgQIECAAAECBAgQKF1AEC+dOIkNBPEkxthxEckE8dEqukP8W49MyfyJEMQzU1lIgAABAgQIECBAgAABAgQItEBAEG8BcgJbCOIJDHGoSxDEi83zUEE8O6Agnt3KSgIECBAgQIAAAQIECBAgQKB8gUseXzt6r31TvPLMR9H34bWj1ybXxjNPflD+xnboUgKCeJca18+ebCpBfK+K7hA/TBD/2fdYxwJBPLuVlQQIECBAgAABAgQIECBAgED5AoJ4+cYp7CCIpzDFzmsQxIvNUxDP4SeI58CylAABAgQIECBAgAABAgQIEChdQBAvnTiJDQTxJMbYcRGCeLF5CuI5/ATxHFiWEiBAgAABAgQIECBAgAABAqULCOKlEyexgSCexBiTC+J7VvTIlMM9MiX7B0IQz25lJQECBAgQIECAAAECBAgQIFC+gCBevnEKOwjiKUyx8xpSuUN8z1H7VjKYw79bv5J9m71ptyG1n2YfdPjjCeJlCzs+AQIECBAgQIAAAQIECBAgkEdAEM+jNfKuFcTTmr0gXmyegngOP0E8B5alBAgQIECAAAECBAgQIECAQOkCgnjpxElsIIgnMcaOixDEi81TEM/hJ4jnwLKUAAECBAgQIECAAAECBAgQKF1AEC+dOIkNBPEkxphcEP9LRY9MOcIjU7J/IATx7FZWEiBAgAABAgQIECBAgAABAuULCOLlG6ewgyCewhQ7ryGVO8QF8WLvS88QL+bn1QQIECBAgAABAgQIECBAgEAXFBDEu+DQKjhlQbwC9BK3FMSL4bpDPIefO8RzYFlKgAABAgQIECBAgAABAgQIlC4giJdOnMQGgngSY+y4iFSC+B6jXlLJYI78br1K9m32pu4Qb7ao4xEgQIAAAQIECBAgQIAAAQJtLyCIt/2I2uIEBfG2GEPTTiKZIN69oiA+SBDP/GZ0h3hmKgsJECBAgAABAgQIECBAgACBFggI4i1ATmALQTyBIQ51CYJ4sXkeKYhnBxTEs1tZSYAAAQIECBAgQIAAAQIECJQvIIiXb5zCDoJ4ClPsvAZBvNg8BfEcfoJ4DixLCRAgQIAAAQIECBAgQIAAgdIFBPHSiZPYQBBPYowdF5FKEN+9okem/M0d4tk/EIJ4disrCRAgQIAAAQIECBAgQIAAgfIFBPHyjVPYQRBPYYqd1yCIF5unIJ7DTxDPgWUpAQIECBAgQIAAAQIECBAgULqAIF46cRIbCOJJjLHjIgTxYvMUxHP4CeI5sCwlQIAAAQIECBAgQIAAAQIEShcQxEsnTmIDQTyJMSYXxHer6JEpR3lkSvYPhCCe3cpKAgQIECBAgAABAgQIECBAoHwBQbx84xR2EMRTmGLnNaRyh/huo1xSyWCOGrxeJfs2e9NuQ2o/zT7o8McTxMsWdnwCBAgQIECAAAECBAgQIEAgj4Agnkdr5F0riKc1e0G82DwF8Rx+IwrivXadL8bqNmqcd9R/hjlSr33mj+7dusWZfR7KsYOlBAgQIECAAAECBAgQIECAAIHsAoJ4dquReeWPBfHD+y4bZ570cAy45804rW/PePTYl+KFu98bhmrrm5eIfY+5I/r3e3lkJmyra/+xIL7M7jPH86N+EacdNWCY891xnwVip30XbKtrqJ+MO8SLjcQd4sX8vJoAAQIECBAgQIAAAQIECBDoggKCeBccWgWn7A7xCtBL3DKVO8R7V/TIlKM9MiX7u9MjU7JbWUmAAAECBAgQIECAAAECBAiULyCIl2+cwg6CeApT7LwGQbzYPAXxHH6CeA4sSwkQIECAAAECBAgQIECAAIHSBQTx0omT2EAQT2KMHRchiBebpyCew08Qz4FlKQECBAgQIECAAAECBAgQIFC6gCBeOnESGwjiSYwxuSC+a0WPTDnGI1OyfyAE8exWVhIgQIAAAQIECBAgQIAAAQLlCwji5Rv/f3v3HWZZVSZ6eBVNB3KQ0JJEUFFABRMoKmYdEdQRkEFEgogkQRgTgkowAIoIIgqoCAooqCByUVQyEiQakCBBkpJTN3Sue6ocz+lA23uxz6p9zldv/XVvu85ee71fneeZ+blnV4QdBPEIU+ycIcoT4oJ4vd9Lf1Sznp9PEyBAgAABAgQIECBAgAABAn0oIIj34dAauGVBvAH0glsK4vVwPSGe4ecJ8QwsSwkQIECAAAECBAgQIECAAIHiAoJ4ceIQGwjiIcbYPoQgXm+egniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGMMF8Y839A7xr3uHePUvRE4Q33afl6YxA2PSSYddV30DKwkQIECAAAECBAgQIECAAAECGQLf/M0m6Uu7XZTuvOWxdMrq9aZcAAAgAElEQVQ1W6Sdtj0r3XTDQxlXsHQ0CAjisaYc5QlxQbze76V3iNfz82kCBAgQIECAAAECBAgQIECgDwU8Id6HQ2vglgXxBtALbimI18P1hHiGX84T4jvt94rWE+ID6fgDr87YwVICBAgQIECAAAECBAgQIECAQHUBQby61WheKYjHmn6UIL5XQ69MOcIrU6p/IQTx6lZWEiBAgAABAgQIECBAgAABAuUFBPHyxhF2EMQjTLFzBkG83jwF8Qw/QTwDy1ICBAgQIECAAAECBAgQIECguIAgXpw4xAaCeIgxtg8hiNebpyCe4SeIZ2BZSoAAAQIECBAgQIAAAQIECBQXEMSLE4fYQBAPMcZwQXzPhl6Z8g2vTKn+hRDEq1tZSYAAAQIECBAgQIAAAQIECJQXEMTLG0fYQRCPMMXOGaI8IS6I1/u9HBhs/dS7xII/LYgv2MgKAgQIECBAgAABAgQIECBAYOQEBPGRs+7nnQTxfp7evPcuiNebpyfEM/wE8QwsSwkQIECAAAECBAgQIECAAIHiAoJ4ceIQGwjiIcbYPoQgXm+egniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGMMF8Y819A7xI71DvPoXQhCvbmUlAQIECBAgQIAAAQIECBAgUF5AEC9vHGEHQTzCFDtniPKEuCBe7/fSO8Tr+fk0AQIECBAgQIAAAQIECBAg0IcCgngfDq2BWxbEG0AvuKUgXg/XE+IZfp4Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYoztQ0QJ4nssdEojgzlq1v80sm+3N/WEeLdFXY8AAQIECBAgQIAAAQIECBDoeQFBvOdH1BM3KIj3xBi6dhOCeD1KQTzDzxPiGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjLF9CEG83jwF8Qw/QTwDy1ICBAgQIECAAAECBAgQIECguIAgXpw4xAaCeIgxhgviuzf0ypRvemVK9S+EIF7dykoCBAgQIECAAAECBAgQIECgvIAgXt44wg6CeIQpds4Q5QlxQbze76V3iNfz82kCBAgQIECAAAECBAgQIECgDwUE8T4cWgO3LIg3gF5wS0G8Hq4nxDP8PCGegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGNuHEMTrzVMQz/ATxDOwLCVAgAABAgQIECBAgAABAgSKCwjixYlDbCCIhxhjuCC+W0PvED/aO8SrfyEE8epWVhIgQIAAAQIECBAgQIAAAQLlBQTx8sYRdhDEI0yxc4YoT4gL4vV+L71DvJ6fTxMgQIAAAQIECBAgQIAAAQJ9KCCI9+HQGrhlQbwB9IJbCuL1cD0hnuHnCfEMLEsJECBAgAABAgQIECBAgACB4gKCeHHiEBsI4iHG2D5ElCC+a0OvTPmWV6ZU/0II4tWtrCRAgAABAgQIECBAgAABAgTKCwji5Y0j7CCIR5hi5wyCeL15CuIZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNBPEQY2wfQhCvN09BPMNPEM/AspQAAQIECBAgQIAAAQIECBAoLiCIFycOsYEgHmKM4YL4Lg29MuUYr0yp/oUQxKtbWUmAAAECBAgQIECAAAECBAiUFxDEyxtH2EEQjzDFzhmiPCEuiNf7vRwYbP3Uu8SCPy2IL9jICgIECBAgQIAAAQIECBAgQGDkBATxkbPu550E8X6e3rz3LojXm6cnxDP8BPEMLEsJECBAgAABAgQIECBAgACB4gKCeHHiEBsI4iHG2D5EnCB+ciODOWbW1o3s2+1NPSHebVHXI0CAAAECBAgQIECAAAECBHpeQBDv+RH1xA0K4j0xhq7dRJQg/tGFmgni3xbEq/8uekK8upWVBAgQIECAAAECBAgQIECAQHkBQby8cYQdBPEIU+ycQRCvN09BPMNPEM/AspQAAQIECBAgQIAAAQIECBAoLiCIFycOsYEgHmKM7UMI4vXmKYhn+AniGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjDFcEN+5oVemfMcrU6p/IQTx6lZWEiBAgAABAgQIECBAgAABAuUFBPHyxhF2EMQjTLFzhihPiAvi9X4v/VHNen4+TYAAAQIECBAgQIAAAQIECPShgCDeh0Nr4JYF8QbQC24piNfD9YR4hp8nxDOwLCVAgAABAgQIECBAgAABAgSKCwjixYlDbCCIhxhj+xBRgvhHGnplyrFemVL9CyGIV7eykgABAgQIECBAgAABAgQIECgvIIiXN46wgyAeYYqdMwji9eYpiGf4CeIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMsX0IQbzePAXxDD9BPAPLUgIECBAgQIAAAQIECBAgQKC4gCBenDjEBoJ4iDEK4l0aoyCeASmIZ2BZSoAAAQIECBAgQIAAAQIECBQXEMSLE4fYQBAPMcZwQXynht4hfpx3iFf/Qgji1a2sJECAAAECBAgQIECAAAECBMoLCOLljSPsIIhHmGLnDFFemSKI1/u9HBhs/dS7xII/LYgv2MgKAgQIECBAgAABAgQIECBAYOQEBPGRs+7nnQTxfp7evPcuiNebpyfEM/wE8QwsSwkQIECAAAECBAgQIECAAIHiAoJ4ceIQGwjiIcbYPkSUIP7hhl6ZcrxXplT/Qgji1a2sJECAAAECBAgQIECAAAECBMoLCOLljSPsIIhHmGLnDIJ4vXkK4hl+gngGlqUECBAgQIAAAQIECBAgQIBAcQFBvDhxiA0E8RBjbB8iThD/USODOX7WBxrZt9ubeod4t0VdjwABAgQIECBAgAABAgQIEOh5AUG850fUEzcoiPfEGLp2E1GC+I4LNRPEvyuIV/9d9IR4dSsrCRAgQIAAAQIECBAgQIAAgfICgnh54wg7COIRptg5gyBeb56CeIafIJ6BZSkBAgQIECBAgAABAgQIECBQXEAQL04cYgNBPMQY24cQxOvNUxDP8BPEM7AsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsIIiHGKMg3qUxCuIZkIJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNBPEQYwwXxHdo6B3i3/MO8epfCEG8upWVBAgQIECAAAECBAgQIECAQHkBQby8cYQdBPEIU+ycIcorUwTxer+XA4Otn3qXWPCnBfEFG1lBgAABAgQIECBAgAABAgQIjJyAID5y1v28kyDez9Ob994F8Xrz9IR4hp8gnoFlKQECBAgQIECAAAECBAgQIFBcQBAvThxiA0E8xBjbh4gSxLdv6JUp3/fKlOpfCEG8upWVBAgQIECAAAECBAgQIECAQHkBQby8cYQdBPEIU+ycQRCvN09BPMNPEM/AspQAAQIECBAgQIAAAQIECBAoLiCIFycOsYEgHmKM7UMI4vXmKYhn+AniGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjDFcEN+uoVemnOCVKdW/EIJ4dSsrCRAgQIAAAQIECBAgQIAAgfICgnh54wg7COIRptg5Q5QnxAXxer+XA4Otn3qXWPCnBfEFG1lBgAABAgQIECBAgAABAgQIjJyAID5y1v28kyDez9Ob994F8Xrz9IR4hp8gnoFlKQECBAgQIECAAAECBAgQIFBcQBAvThxiA0E8xBjbhxDE681TEM/wE8QzsCwlQIAAAQIECBAgQIAAAQIEigsI4sWJQ2wgiIcYY7gg/qGG3iH+A+8Qr/6FEMSrW1lJgAABAgQIECBAgAABAgQIlBcQxMsbR9hBEI8wxc4ZojwhLojX+730DvF6fj5NgAABAgQIECBAgAABAgQI9KGAIN6HQ2vglgXxBtALbhkniP+woNL8L/2DWds0sm+3NxXEuy3qegQIECBAgAABAgQIECBAgEDPCwjiPT+inrhBQbwnxtC1m4gSxLddqJkgfqIgXv130StTqltZSYAAAQIECBAgQIAAAQIECJQXEMTLG0fYQRCPMMXOGQTxevMUxDP8BPEMLEsJECBAgAABAgQIECBAgACB4gKCeHHiEBsI4iHG2D6EIF5vnoJ4hp8gnoFlKQECBAgQIECAAAECBAgQIFBcQBAvThxiA0E8xBjDBfEPNvTKlJO8MqX6F0IQr25lJQECBAgQIECAAAECBAgQIFBeQBAvbxxhB0E8whQ7Z4jyhLggXu/30h/VrOfn0wQIECBAgAABAgQIECBAgEAfCgjifTi0Bm5ZEG8AveCWgng9XE+IZ/h5QjwDy1ICBAgQIECAAAECBAgQIECguIAgXpw4xAaCeIgxtg8hiNebpyCe4SeIZ2BZSoAAAQIECBAgQIAAAQIECBQXEMSLE4fYQBAPMcZwQXybMT9sZDA/nLlNI/t2e1OvTOm2qOsRIECAAAECBAgQIECAAAECPS8giPf8iHriBgXxnhhD124iyhPigni9XwlBvJ6fTxMgQIAAAQIECBAgQIAAAQJ9KCCI9+HQGrhlQbwB9IJbCuL1cD0hnuHnlSkZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMsX2IKEH8Aw29MuVHXplS/QshiFe3spIAAQIECBAgQIAAAQIECBAoLyCIlzeOsIMgHmGKnTMI4vXmKYhn+AniGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjLF9CEG83jwF8Qw/QTwDy1ICBAgQIECAAAECBAgQIECguIAgXpw4xAaCeIgxhgviWzf0ypSTvTKl+hdCEK9uZSUBAgQIECBAgAABAgQIECBQXkAQL28cYQdBPMIUO2eI8oS4IF7v93JgsPVT7xIL/rQgvmAjKwgQIECAAAECBAgQIECAAIGRExDER866n3eaXxA/5txN0xFfujxdceHd6dRfb54uOfDGdMsF989x1J3P3Tjtf/hF6YLz7+hnglD3HieIn9TIXE6e+cFG9u32poJ4t0VdjwABAgQIECBAgAABAgQIEOh5AUG850fUEzcoiPfEGLp2E4J4PUpBPMPPE+IZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMsX2IKEH8f8Y084T4KZ4Qr/6FEMSrW1lJgAABAgQIECBAgAABAgQIlBcQxMsbR9hBEI8wxc4ZBPF68xTEM/wE8QwsSwkQIECAAAECBAgQIECAAIHiAoJ4ceIQGwjiIcbYPoQgXm+egniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGMMF8a0aemXKqV6ZUv0LIYhXt7KSAAECBAgQIECAAAECBAgQKC8giJc3jrCDIB5hip0zRHlCXBCv93s5MNj6qXeJBX9aEF+wkRUECBAgQIAAAQIECBAgQIDAyAkI4iNn3c87CeL9PL15710QrzdPT4hn+AniGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjLF9iChB/P0NvTLlx16ZUv0LIYhXt7KSAAECBAgQIECAAAECBAgQKC9wyh+3SJ94/6/THTc+mk65Zou007ZnpZtueKj8xnboKwFBvK/GtcCbFcQXSPQfFwjiGX6CeAaWpQQIECBAgAABAgQIECBAgEBxAUG8OHGIDQTxEGNsH0IQrzdPQTzDTxDPwLKUAAECBAgQIECAAAECBAgQKC4giBcnDrGBIB5ijIJ4l8YoiGdACuIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMMVwQ37Khd4j/xDvEq38hBPHqVlYSIECAAAECBAgQIECAAAEC5QUE8fLGEXYQxCNMsXOGKK9MEcTr/V4ODLZ+6l1iwZ8WxBdsZAUBAgQIECBAgAABAgQIECAwcgKC+MhZ9/NOgng/T2/eexfE683TE+IZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNBPEQY2wfIkoQ36KhV6ac5pUp1b8Qgnh1KysJECBAgAABAgQIECBAgACB8gKCeHnjCDsI4hGm2DlDnCB+YiODOW3mto3s2+1NvTKl26KuR4AAAQIECBAgQIAAAQIECPS8wOxB/Cd/fH86+ogr011/f7zn79sNjqzAZw58XTpu/z+kK8+7Z46Njzl303TEly5PV1x4dzr115unSw68Md1ywf1zrNn53I3T/odflC44/46RvWm7zVdAEK/3yyGIZ/h5QjwDy1ICBAgQIECAAAECBAgQIECguMDsQXzT7dZK79z6BWnWrOJ/Zq34uWzQXYH7/zE5fW3PS9Okx6cJ4t2lbeRqUYL45mOaeUL8dE+IV/+9FcSrW1lJgAABAgQIECBAgAABAgQIlBeYPYiX380O0QQ8Id6fExXE681NEM/wE8QzsCwlQIAAAQIECBAgQIAAAQIEigvMHsSXWX6R9PwXL1t8Txv0n8ATj05Lf73mgXluXBDvv1kO3bEgXm9ugniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxg9iD+jV++M41bYkyaOmVm8X1t0F8CyywzIX3loxfPE8UF8f6a47/vVhCvNzdBPMNPEM/AspQAAQIECBAgQIAAAQIECBAoLjB7ED/lmi3SjtuelW684cHi+9qgvwR+evaW6ZTDrvdHNftrbPO92yhB/H0NvUP8p94hXv2bIIhXt7KSAAECBAgQIECAAAECBAgQKC8giJc3jrCDIB5hip0zCOL15imIZ/gJ4hlYlhIgQIAAAQIECBAgQIAAAQLFBQTx4sQhNhDEQ4yxfQhBvN48BfEMP0E8A8tSAgQIECBAgAABAgQIECBAoLiAIF6cOMQGgniIMYYL4v/d0CtTfuaVKdW/EIJ4dSsrCRAgQIAAAQIECBAgQIAAgfICgnh54wg7COIRptg5Q5QnxAXxer+XA4Otn3qXWPCnBfEFG1lBgAABAgQIECBAgAABAgQIjJzAgoL4mDED6T1bvDD99NS/PqOberrPn3b2FumAfS9Mf77+/md0TR8aeQFBfOTNS+4oiNfTnf0J8WnTpqf137ZTGjt24fZF37TR+unwL+yWprb+s89/9fvp0iv/lBaZMD59eOtN0pabvXF43Qab7JLOPOGLaeLyy9a7mRqfFsRr4PkoAQIECBAgQIAAAQIECBAg0J8CCwri6750hbTfQa9PW212+jM64NyfHzduTLryhg+n9Z73nWd0PR9qRkAQb8a91K5Rgvh7G3plys9ne2XKgw8/lt69/WfTpWd+c55xHf39n6e/3XFP+vK+H0kPPfJ4+sBuB6djD/vf9II1VhHEF0kLp2MPumoOtJ32e0UaMzCQjj/w6lK/+65LgAABAgQIECBAgAABAgQIjHKB/xTEF1t8bLrk2h3S0stMSFdfeW/a/J2npbf+1xrpswe9Li266Lh05x2Ppp23/WV66MGn0g9/9t508fl3pu8cdXVaYslx6ffX75i23+qMdNwPN5vj869742rpQx9+afrwB85KQ7H8G995R1phxcXS7bc+kvbY6Zz099sfS7vu9cr0oZ1eOjyZB+5/Mu22w9n/8d9H+QhH5PiC+Igwj9gmgng96tmD+O13/iPt8umvp1+dfOg8F93sQ/umgz61Y3rp2msO/2eHHn1KWmzRCWm37d87RxA/4rjT08233ZW++cW90kILDdS7uYxPe0I8A8tSAgQIECBAgAABAgQIECBAIIbAgp4Q3/S9L0gf2P4lw0+IT1xp8XThVdul977tx+mGPz+QdtnzFWmDjVZO2215ZlpplSXS/7tg6/TmDU9Me31qwzRt2sx00GcvSrN/fkhsv4Nf3wrpj6UTj78+Xf7nHdPB+12UfnnGLWn3vV+ZXvuG56Rdtz97+N/Xf/530uRJ09P7t1knLbrY2HTm6Tc97b9//zvXxRhEj59CEO/xAWXeniCeCTbX8tmD+B9vuDXtsd+RaY3nPDvdcts9aa3nrZr232vbtPqqE9NL37xjuujnR6alllxs+Ao/PvO8dNUfb0qH7b9LO4hf+6db0vEnn51OOmrftOgiE+rdWOanBfFMMMsJECBAgAABAgQIECBAgACB/hfICeIf3PElrcC9VtryXacNH3yxVqi++Z97pOcsc0SaMWNW2mm3l6U3v32NtNrqS6Y3verENGXKjHmC+G9+/8G00za/SAOt/6v4of/381Y8avhaCy+8UBo/fkyaOXMw/emOXdLB+1+UfvHTm9IjD08Z/s8nTFj4af+9/yfQHycQxPtjTlXvUhCvKvX062YP4re2Xoly0um/Sdtu+fa08sTl0rdOOCNdeNn16bTjDkjrvWXHdPWvj00Txo8bvtCZv740/faiq9JRX9xzOIgPvUrlsG+dkk444jNpxeWXqXdTz+DTgvgzQPMRAgQIECBAgAABAgQIECBAoL8FcoL40FPc+3z2Nenh1itS/v2z5FLj00brfS/d/8/JaegVK3+9e7d09OF/SIcceOnwktmfEB969cq5l34wvWrt49L6r5iYjv/RZunlax07D+BL1l8xfewTG6Q3vPk56bqr/5k+scdvWq9UeTTN79/7ewL9cfeCeH/MqepdRgni7xnzg6pH7uq6M2Z+aL7Xmz5jZnrlOz6Szj31a+mt798nXfCzI9IySy0xvP6UM36Xrvvz39Ih++08HMSHQvnQK1R+9t2D2tG8qze6gIsJ4iOpbS8CBAgQIECAAAECBAgQIECgJwRygvjm/7N22vS/X5A+tMUZT3vvX/jKxmnxxcelt7xjjfT21/0w3fePyXME8c1an33jW5+bPr7Lr9NznrtUOv/KD6U1VzgyDQ6mNHbsQq1/Wzr97eaH29ce+gOcn/zcRmntdZdLW7/nZwv8954ADXoTgniswQri9eY5exB/4KFH0+NPTE5rrr7y8EWnTZueXt4K4kOvStl+r0PSZz72gbTB+i8a/s8+d9j30irPXj59ZJtNh4P4UQfvmX569oWtV6osnvZtrRvpH0F8pMXtR4AAAQIECBAgQIAAAQIECDQusKAg/o53Pa/1tPar0js3Pjktv8Ki6YLWO8Q3fdMp6ba/PZLWe/nEtOUH1kn77v27tM6Ll0/fO/XdaeOXn5B2+Oj66RUbrpR22OrMNPvnv3b029IlF96Zfv6TG4fPffG127eeJr8ynXrSX9qvWzns4EvT7vu8Kn209cc6p06dmbb64DqtCL9WOvzLlz3tv3/gvZ1Q3jhm4BsQxGMNVxCvN8/Zg/jFV/wxHfC1E9IPjtw3TVx+2XT0CT9Pv7/qL+nUYz6Xvn3iL9J1f7klHXHgHunuex9IH9rry+nko/dPz1llxfY7xBcZPz69e/vPpkP3+2h61fovrHdjmZ8WxDPBLCdAgAABAgQIECBAgAABAgT6X2BBQXyFFRdNv7p4mzT0tPa6qx8z/PT3fge/Li2yyNj0+GNT037/e1668rJ70jkXfSB949Ar0jln/W34feAXXPWh1h/MvDhd84d725+fPHl62uQNJ6cHH3hyGO6Faw+9b3eT9OzWH+u85caH0u4fPifdfefj6YBD3pA2effzW+8lH0z33zc57d16onzoyfGn+/ebW5/zU15AEC9vPJI7RAni727olSlnzvXKlON+9Mt08s9/m6a2ng5fd63nps/vs93w+8SHnhb//FdPSEPRfOjVKLtu95707rdvNDzqoSfEzzzhi8MR/bxLr01fPupH6YzvHTy8bqR+BPGRkrYPAQIECBAgQIAAAQIECBAg0DMCCwriPXOjbqRRAUG8Uf6uby6I1yOdO4jXu1pznxbEm7O3MwECBAgQIECAAAECBAgQINCQgCDeEHyfbSuI99nAFnC7gni9eQriGX5HHnxFOvKgy+f4xB77bZAWSQunYw+6ao5/32m/V6QxAwPp+AOvztjBUgIECBAgQIAAAQIECBAgQIBAdQFBvLrVaF4piMeafpQgvllDr0z5xVyvTOnX3w5PiPfr5Nw3AQIECBAgQIAAAQIECBAg8IwFBPFnTDeqPiiIxxq3IF5vnoJ4hp8nxDOwLCVAgAABAgQIECBAgAABAgSKCwjixYlDbCCIhxhj+xCCeL15CuIZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNBPEQYxTEuzRGQTwDUhDPwLKUAAECBAgQIECAAAECBAgQKC4giBcnDrGBIB5ijOGC+KYNvUP8LO8Qr/6FEMSrW1lJgAABAgQIECBAgAABAgQIlBcQxMsbR9hBEI8wxc4ZorwyRRCv93vpj2rW8/NpAgQIECBAgAABAgQIECBAoA8FBPE+HFoDtyyIN4BecEtBvB6uJ8Qz/DwhnoFlKQECBAgQIECAAAECBAgQIFBcQBAvThxiA0E8xBjbh4gSxN/V0CtTfumVKdW/EIJ4dSsrCRAgQIAAAQIECBAgQIAAgfICgnh54wg7COIRptg5gyBeb56CeIafIJ6BZSkBAgQIECBAgAABAgQIECBQXEAQL04cYgNBPMQY24cQxOvNUxDP8BPEM7AsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsIIiHGGO4IL5JQ69MOdsrU6p/IQTx6lZWEiBAgAABAgQIECBAgAABAuUFBPHyxhF2EMQjTLFzhihPiG8y5oRGBnP2zO0a2bfbmw4Mtn66fdG5ryeIlxZ2fQIECBAgQIAAAQIECBAgQCBHQBDP0Rq9awXxWLMXxOvNUxDP8BPEM7AsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsIIiHGGP7EIJ4vXkK4hl+gngGlqUECBAgQIAAAQIECBAgQIBAcQFBvDhxiA0E8RBjDBfE39nQK1P+n1emVP9CCOLVrawkQIAAAQIECBAgQIAAAQIEygsI4uWNI+wgiEeYYucMUZ4QF8Tr/V56h3g9P58mQIAAAQIECBAgQIAAAQIE+lBAEO/DoTVwy4J4A+gFtxTE6+F6QjzDzxPiGViWEiBAgAABAgQIECBAgAABAlmsa1AAACAASURBVMUFBPHixCE2EMRDjLF9iChB/L8aemXKOV6ZUv0LIYhXt7KSAAECBAgQIECAAAECBAgQKC8giJc3jrCDIB5hip0zCOL15imIZ/gJ4hlYlhIgQIAAAQIECBAgQIAAAQLFBQTx4sQhNhDEQ4yxfQhBvN48BfEMP0E8A8tSAgQIECBAgAABAgQIECBAoLiAIF6cOMQGgniIMYYL4u9o6JUpv/LKlOpfCEG8upWVBAgQIECAAAECBAgQIECAQHkBQby8cYQdBPEIU+ycIcoT4oJ4vd/LgcHWT71LLPjTgviCjawgQIAAAQIECBAgQIAAAQIERk5AEB85637eSRDv5+nNe++CeL15ekI8w08Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYoztQwji9eYpiGf4CeIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMMVwQf3tD7xD/tXeIV/9CCOLVrawkQIAAAQIECBAgQIAAAQIEygsI4uWNI+wgiEeYYucMUZ4QF8Tr/V56h3g9P58mQIAAAQIECBAgQIAAAQIE+lBAEO/DoTVwy4J4A+gFtxTE6+F6QjzDzxPiGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjLF9iChB/G0Lf7+RwZw7Y/tG9u32pp4Q77ao6xEgQIAAAQIECBAgQIAAAQI9LyCI9/yIeuIGBfGeGEPXbkIQr0cpiGf4eUI8A8tSAgQIECBAgAABAgQIECBAoLiAIF6cOMQGgniIMbYPIYjXm6cgnuEniGdgWUqAAAECBAgQIECAAAECBAgUFxDEixOH2EAQDzHGcEH8rQ29MuU3XplS/QshiFe3spIAAQIECBAgQIAAAQIECBAoLyCIlzeOsIMgHmGKnTNEeUJcEK/3e+kd4vX8fJoAAQIECBAgQIAAAQIECBDoQwFBvA+H1sAtC+INoBfcMkoQf0tDT4j/1hPi1X87PSFe3cpKAgQIECBAgAABAgQIECBAoLyAIF7eOMIOgniEKXbOECeIf6+Rwfx2xg6N7NvtTT0h3m1R1yNAgAABAgQIECBAgAABAgR6XkAQ7/kR9cQNCuI9MYau3YQgXo9SEM/w84R4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNBPEQY2wfIkoQf/PCzTwh/jtPiFf/Qgji1a2sJECAAAECBAgQIECAAAECBMoLCOLljSPsIIhHmGLnDIJ4vXkK4hl+gngGlqUECBAgQIAAAQIECBAgQIBAcQFBvDhxiA0E8RBjbB8iShB/U0NPiJ/nCfHqXwhBvLqVlQQIECBAgAABAgQIECBAgEB5AUG8vHGEHQTxCFPsnEEQrzdPQTzDTxDPwLKUAAECBAgQIECAAAECBAgQKC4giBcnDrGBIB5ijO1DxAni321kMOfN2LGRfbu96cBg66fbF537eoJ4aWHXJ0CAAAECBAgQIECAAAECBHIEBPEcrdG7VhCPNfsoQfyNCzcTxM8XxKt/IQTx6lZWEiBAgAABAgQIECBAgAABAuUFBPHyxhF2EMQjTLFzBkG83jwF8Qw/QTwDy1ICBAgQIECAAAECBAgQIECguIAgXpw4xAaCeIgxtg8hiNebpyCe4SeIZ2BZSoAAAQIECBAgQIAAAQIECBQXEMSLE4fYQBAPMcZwQfwNDb0y5QKvTKn+hRDEq1tZSYAAAQIECBAgQIAAAQIECJQXEMTLG0fYQRCPMMXOGaI8IS6I1/u99Ec16/n5NAECBAgQIECAAAECBAgQINCHAoJ4Hw6tgVsWxBtAL7hllCC+8cLHF1Sa/6UvnPHhRvbt9qaCeLdFXY8AAQIECBAgQIAAAQIECBDoeQFBvOdH1BM3KIj3xBi6dhOCeD1KQTzDzytTMrAsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsML8g/q1fvysd+ZUr0uUX3J1O+dX70u8PvindfP79c5x553M3TvsfflG64Pw7QlhEOIQgXm+KgniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGNuHiBLEX9/QK1Mu8sqU6l8IQby6lZUECBAgQIAAAQIECBAgQIBAeQFBvLxxhB0E8QhT7JxBEK83T0E8w08Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYoztQ0QJ4q9r6Anxiz0hXv0LIYhXt7KSAAECBAgQIECAAAECBAgQKC8giJc3jrCDIB5hip0zCOL15imIZ/gJ4hlYlhIgQIAAAQIECBAgQIAAAQLFBQTx4sQhNhDEQ4yxfYg4Qfy4RgZz8YydGtm325sODLZ+un3Rua8niJcWdn0CBAgQIECAAAECBAgQIEAgR0AQz9EavWsF8VizjxLEX7twM0H8EkG8+hdCEK9uZSUBAgQIECBAgAABAgQIECBQXkAQL28cYQdBPMIUO2cQxOvNUxDP8BPEM7AsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsIIiHGGP7EFGC+EYNPSF+qSfEq38hBPHqVlYSIECAAAECBAgQIECAAAEC5QVOvn6L9Kn/OTfd/tdH0inXbJF23PasdOMND5bf2A59JVAniH/kVxun2yc9nu6994m+OnPkm13/Zc9O95/1UDr3kBvmOOY7P7duunXhJ9ORB10+x7/vsd8Gac/9N+w5ko3GNvPKlEune4d45V8GQbwylYUECBAgQIAAAQIECBAgQIDACAgI4iOAHGCLOkF8qZUWSS/fcrUACrGOcN4RN81zIEG82owF8WpOw6sE8QwsSwkQIECAAAECBAgQIECAAIHiAoJ4ceIQG9QJ4iEARskh+i2Iv2bssY1M5vfTP9LIvt3edGCw9dPti859PUG8tLDrEyBAgAABAgQIECBAgAABAjkCgniO1uhdWyeIT1x7qfTandZM5cvb6J1P7skHxgykMz55bZoxddYcHxXEq0kK4tWchlcJ4hlYlhIgQIAAAQIECBAgQIAAAQLFBQTx4sQhNqgTxD99zWvTii+5KM0avD2ERYRDLDzw+nTuQcumsw/4kyD+DAYqiGegCeIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITaoE8Q/ccWr0/Lr7Z9mDF4awiLCIcaP+Vg67+C39H0Qf3VDr0y5zCtTqn8NBPHqVlYSIECAAAECBAgQIECAAAEC5QUE8fLGEXYQxCNMsXMGQbzePAXxDD9BPAPLUgIECBAgQIAAAQIECBAgQKC4gCBenDjEBoJ4iDG2DxEliG/Y0BPil3tCvPoXQhCvbmUlAQIECBAgQIAAAQIECBAgUF5AEC9vHGEHQTzCFDtniBPEv9PIYC6fvnMj+3Z704HB1k+3Lzr39QTx0sKuT4AAAQIECBAgQIAAAQIECOQICOI5WqN3rSAea/aCeL15CuIZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNej2In33mUunvd4xNu+75YPryFyam17x+Utr4TZOy7WfOTOnSixZPr3/jpHTrLePT4YeskI4+/q7s68z+gQM+OzFtu8PD6blrTnva69S532d6Y1GC+AZjm3lC/ApPiFf/1RPEq1tZSYAAAQIECBAgQIAAAQIECJQXEMTLG0fYoZ+C+ORJA2nsuME0bly+/O23jks/+sGz0n4H/iMNxfHJkxZKSy41K/9C//eJ6dMH0u4fXjV9+4S/p4GBgae9Tp37faY3Jog/U7l/fU4Qz/ATxDOwLCVAgAABAgQIECBAgAABAgSKCwjixYlDbNDtID5r1mD67reXS9devWganDWQ1nnxU2mXPR9IY8ak9KXPT0yrrDat9cT3+DTpiYXSaqtPTTvv/mC647bx6VtHLJ/WecmUdOffxw7H6h12fiitve6UNL8nxC88b/H04x8tm2ZMT8N77LrXg2ns2MH0218tkc786dJpxsyBtMIKM9Lue9+XFlt8Vtp711WH93z+C6embbZ7uP2E+ND9/viHy6bLLlm8FbZTWvP5U9KOuzyYFltsMB160MS0+ppT0m23TEgPPzwmPWu5GekTn70vLbRQSn+6bpF07jlLpn0+c1/arRXGZ7X2G/p56qmBtPTSs9IR376r/UT7yqtMn+/5uv1LFCWIv6qhJ8Sv9IR49V9JQby6lZUECBAgQIAAAQIECBAgQIBAeQFBvLxxhB26HcSv+P1i6dSTlkmHHnlPGvqzfp/ac5X0vq0eSa/dePJwYH7ssYXSgYfc24rPg2m/T6yc/mvTx9Kqq01P/7vHqmnfL9ybXvbKp9I1f1gkff/Y5dJRx931tEH8RWs/lT651yrp0CPuScu1ovchB66YXrjO1PSmtz6ePrrd6ukb3/57WmHizPStbyw3HOKHovtllyyWfnfuksNPiM/+ypRLLlws/fwny6SDv3pPmjBhVvr6IRPTCitOT9ts/3A67IsrpEmTxqTPHfyPVgQfTPvstmradscH03ovn5J++P1lh9e97Z1PtH8NZsxIaf9Prpzevslj6Q1vntQO4s9Zfdp8z9ft3yFBvJ6oIJ7hJ4hnYFlKgAABAgQIECBAgAABAgQIFBcQxIsTh9ig20F8CGVa65Xa/36tybePWj4tv8L09L73PzocxNd5yVNpk3c/Nmw3FM6faD21/dZ3PJE+9+mV0ok/uWP434deafL+zdZI3/3RHemSC5eY5x3i06cNpKuvXCx96nP/HF4/ZUpqhe/W61RaT4hPnZrS+PH/Gs3FFyyezv/tEsNBe35B/MivLj/8DvBN3/uve7r+mkXSSa3Y/dWj7hkO4muvO7V9v4cctGJ61YZPpje+9Yn0yT1XTnt/6r40caVWBf+/nxO/+6z0+GNjWk+l3z/8L/9+h/hQEJ/f+ZZqPU3ezZ84Qfzb3WSpfK0rp3+08tpeXjjQ+m+jBkvfoCBeWtj1CRAgQIAAAQIECBAgQIAAgRwBQTxHa/Su7XYQn/TEQPrBd5dLf7993PDT2ffft3DrKfDH0+atp8SHgvgrN5zUCsr/+qOYv/jZ0um2v41L79n80XRI6z875vt3tgexzfue23rK/O507VWLzhPEH2m9vuTuO8e1wvMDcwxuKAGefuoy6aorFh1+r/fQq1eGniD//BfnH8QP/tyzW0+vPzH8RPfQz623jBu+l2NPvHM4iK//8qfSW1rBfujn3///DTea3HpCfeX0re92/ijn0FPtPzh+ufSVI+5OiyzyrxQ5exCf3/lWWrn1zpcu/kQJ4q8c20wQ/4MgXv23URCvbmUlAQIECBAgQIAAAQIECBAgUF5AEC9vHGGHbgfxofeHDz2x/dE9HhwO4ke33g2+4sQZ7SD+wnWmpM3++9Fhuh+dsOzwO7ff8vYnWq9PWSmddPrtwyF76Anzrd+7Zvreybe3nvKe9wnxmTMG0uWXLpb2PeBfT4gPRfinnlqoFbMnpNNOXiYdeOi9rXeAz0oX/G7xdOF5S/zHIP7Nw1dIq68xNb3rPf96Qvy6qycM//HNw1qvfJlfEF+0de3rWk+S77rng8OfefihMWnffVZuPbH+j/TcNTqBe/YgPr/z1fnDnk/3+yeI1/tWCuIZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNuh3EhyLyWi+a2orej6W77hzb+kOaz04bvX7S8Du5h54Qf+SRMekLX75n2O7TrfeAb7H1I2noKemhV5Ds9cn702teN3k4ZJ9x2tKtP0x599O+Q3zd1mtX9t51tXTQYXenVVadng7/ygqtP4Y5rfWqlFnDrzz5zBfuaz0dPpC+9pWJ6aknF0pfPvyedOXli7auuUz64lfvbj2VPqH9RzWHXqXy0x+33iF+2D2t17wMpq99ecXWO82npa0++Mh8g/jfWuF9nRc/mV73hslp6I9yHvDZldOrN5qU3vGux+f4nZg9iM/vfN3+JYoSxF/R0BPiV3lCvPqvpCBe3cpKAgQIECBAgAABAgQIECBAoLyAIF7eOMIO3Q7iN94wPh3Veup6fCsur/H8qemVGzyZvnn48mmPfe5PF/x2ydY7t6elG29YJD304Jj00pc9Ofwk+Z13jEtf/dKKrdepTG697mSx1lPiKe2y5/3pRa0/lHn2mUvN88qUjd80Kf3+4sVaryh5Vut94wPpJes92Vr/YHpy8kD6yoHPHn5VyrOWn5622qb1mpaDJ6ah9Zu+95HWU9yrpOnTB9JnPv/PdhAfes3KaScvmy69aPHWHwFNrT/O+VTaYeeHWn9gc3C+Qfznpy+dvvTVe9NSS89Mt9w0Pn1m71XSss+a89UnXz/mrnTkYSum17T+y4Chd4jP73zd/h0SxOuJCuIZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNuh3E/xPK0BPiG7SepB4K1LP/3HHbuHRYK4gffXznndwhcP/vECN5PkG83m+OIJ7hJ4hnYFlKgAABAgQIECBAgAABAgQIFBcQxIsTh9hAEC8/RkE83/jlY4/J/1AXPnH19F26cJXmLzHQ+j99+Nefdi34I4gXxHVpAgQIECBAgAABAgQIECBAIFtAEM8mG5UfEMTLj10QzzcWxPPNZv+EIF7Pz6cJECBAgAABAgQIECBAgACBPhQQxPtwaA3c8kgG8QaON+q2jPLKFEG83q+uIF7Pz6cJECBAgAABAgQIECBAgACBPhQQxPtwaA3csiDeAHrBLaME8Zc19MqUa7wypfpvp1emVLeykgABAgQIECBAgAABAgQIECgvIIiXN46wgyAeYYqdMwji9eYpiGf4CeIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMsX2IKEF8/YaeEL/WE+LVvxCCeHUrKwkQIECAAAECBAgQIECAAIHyAoJ4eeMIOwjiEabYOUOcIP6tRgZz7fRdG9m325t6h3i3RV2PAAECBAgQIECAAAECBAgQ6HkBQbznR9QTNyiI98QYunYTgng9SkE8w88T4hlYlhIgQIAAAQIECBAgQIAAAQLFBQTx4sQhNhDEQ4yxfYgoQXy9sc08IX6dJ8SrfyEE8epWVhIgQIAAAQIECBAgQIAAAQLlBQTx8sYRdhDEI0yxcwZBvN48BfEMP0E8A8tSAgQIECBAgAABAgQIECBAoLiAIF6cOMQGgniIMbYPESWIv3RcM0+IXz/NO8QrfyME8cpUFhIgQIAAAQIECBAgQIAAAQIjICCIjwBygC0E8QBDnO0Igni9eQriGX6CeAaWpQQIECBAgAABAgQIECBAgEBxAUG8OHGIDQTxEGNsHyJOED+6kcFcP223Rvbt9qYDg62fbl907usJ4qWFXZ8AAQIECBAgQIAAAQIECBDIERDEc7RG71pBPNbsowTxl4xrJoj/URCv/oUQxKtbWUmAAAECBAgQIECAAAECBAiUFxDEyxtH2EEQjzDFzhkE8XrzFMQz/ATxDCxLCRAgQIAAAQIECBAgQIAAgeICgnhx4hAbCOIhxtg+hCBeb56CeIafIJ6BZSkBAgQIECBAgAABAgQIECBQXEAQL04cYgNBPMQYwwXxFzf0ypQ/eWVK9S+EIF7dykoCBAgQIECAAAECBAgQIECgvIAgXt44wg6CeIQpds4Q5QlxQbze76U/qlnPz6cJECBAgAABAgQIECBAgACBPhQQxPtwaA3csiDeAHrBLaME8XXHfbOg0vwv/edpuzeyb7c3FcS7Lep6BAgQIECAAAECBAgQIECAQM8LCOI9P6KeuEFBvCfG0LWbEMTrUQriGX5emZKBZSkBAgQIECBAgAABAgQIECBQXEAQL04cYgNBPMQY24cQxOvNUxDP8BPEM7AsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsIIiHGGO4IL5OQ69M+YtXplT/Qgji1a2sJECAAAECBAgQIECAAAECBMoLCOLljSPsIIhHmGLnDFGeEBfE6/1eeod4PT+fJkCAAAECBAgQIECAAAECBPpQQBDvw6E1cMuCeAPoBbeMEsTXbugJ8Rs8IV79t9MT4tWtrCRAgAABAgQIECBAgAABAgTKCwji5Y0j7CCIR5hi5wyCeL15CuIZfoJ4BpalBAgQIECAAAECBAgQIECAQHEBQbw4cYgNBPEQY2wfIk4QP6qRwdwwbY9G9u32pl6Z0m1R1yNAgAABAgQIECBAgAABAgR6XkAQ7/kR9cQNCuI9MYau3USUIP6icc0E8b8K4tV/Fz0hXt3KSgIECBAgQIAAAQIECBAgQKC8gCBe3jjCDoJ4hCl2ziCI15unIJ7hJ4hnYFlKgAABAgQIECBAgAABAgQIFBcQxIsTh9hAEA8xxvYhogTxFzb0hPiNnhCv/oUQxKtbWUmAAAECBAgQIECAAAECBAiUFxDEyxtH2EEQjzDFzhkE8XrzFMQz/ATxDCxLCRAgQIAAAQIECBAgQIAAgeICgnhx4hAbCOIhxtg+hCBeb56CeIafIJ6BZSkBAgQIECBAgAABAgQIECBQXEAQL04cYgNBPMQYwwXxtcYd2chgbpr2sUb27famA4Otn25fdO7rCeKlhV2fAAECBAgQIECAAAECBAgQyBEQxHO0Ru9aQTzW7KM8IS6I1/u9FMTr+fk0AQIECBAgQIAAAQIECBAg0IcCgngfDq2BWxbEG0AvuKUgXg/XE+IZfp4Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYoztQ0QJ4i9o6JUpN3tlSvUvhCBe3cpKAgQIECBAgAABAgQIECBAoLyAIF7eOMIOgniEKXbOIIjXm6cgnuEniGdgWUqAAAECBAgQIECAAAECBAgUFxDEixOH2EAQDzHG9iGiBPHnN/SE+C2eEK/+hRDEq1tZSYAAAQIECBAgQIAAAQIECJQXEMTLG0fYQRCPMMXOGeIE8W80Mphbpu3ZyL7d3tQf1ey2qOsRIECAAAECBAgQIECAAAECPS8giPf8iHriBgXxnhhD125CEK9HKYhn+HlCPAPLUgIECBAgQIAAAQIECBAgQKC4gCBenDjEBoJ4iDG2DxEliD9vfDNPiP9tqifEK38jBPHKVBYSIECAAAECBAgQIECAAAECIyAgiI8AcoAtBPEAQ5ztCIJ4vXkK4hl+gngGlqUECBAgQIAAAQIECBAgQIBAcQFBvDhxiA0E8RBjbB8iShBfs6EnxG/1hHj1L4QgXt3KSgIECBAgQIAAAQIECBAgQKC8gCBe3jjCDoJ4hCl2ziCI15unIJ7hJ4hnYFlKgAABAgQIECBAgAABAgQIFBcQxIsTh9hAEA8xxvYh4gTxIxoZzK1T92pk325vOjDY+un2Ree+niBeWtj1CRAgQIAAAQIECBAgQIAAgRwBQTxHa/SuFcRjzT5KEF9jfDNB/DZBvPoXQhCvbmUlAQIECBAgQIAAAQIECBAgUF5AEC9vHGEHQTzCFDtnEMTrzVMQz/ATxDOwLCVAgAABAgQIECBAgAABAgSKCwjixYlDbCCIhxhj+xBRgvhzG3pC/HZPiFf/Qgji1a2sJECAAAECBAgQIECAAAECBMoLCOLljSPsIIhHmGLnDIJ4vXkK4hl+gngGlqUECBAgQIAAAQIECBAgQIBAcQFBvDhxiA0E8RBjbB9CEK83T0E8w08Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYozhgvjq47/eyGDumPrxRvbt9qYDg62fbl907usJ4qWFXZ8AAQIECBAgQIAAAQIECBDIERDEc7RG71pBPNbsozwhLojX+70UxOv5+TQBAgQIECBAgAABAgQIECDQhwKCeB8OrYFbFsQbQC+4pSBeD9cT4hl+nhDPwLKUAAECBAgQIECAAAECBAgQKC4giBcnDrGBIB5ijO1DRAniz2nolSl/98qU6l8IQby6lZUECBAgQIAAAQIECBAgQIBAeQFBvLxxhB0E8QhT7JxBEK83T0E8w08Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYoztQ0QJ4qs19IT4nZ4Qr/6FEMSrW1lJgAABAgQIECBAgAABAgQIlBcQxMsbR9hBEI8wxc4Z4gTxwxsZzJ1T925k325v6o9qdlvU9QgQIECAAAECBAgQIECAAIGeFxDEe35EPXGDgnhPjKFrNyGI16MUxDP8PCGegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGKD+QXxo3/1rvTNQ69Ml51/Vzr5nPely750c7r5vPvmOPMnrnh1Wn69/dOMwUtDWEQ4RJQgvur4Zp4Qv8sT4tW/BoJ4dSsrCRAgQIAAAQIECBAgQIAAgfICgnh54wg7COIRptg5gyBeb56CeIafIJ6BZSkBAgQIECBAgAABAgQIECBQXEAQL04cYgNBPMQY24eIEsRXaegJ8bs9IV79CyGIV7eykgABAgQIECBAgAABAgQIECgvIIiXN46wgyAeYYqdMwji9eYpiGf4CeIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMsX2IOEH8a40M5u6p+zSyb7c3HRhs/XT7onNfTxAvLez6BAgQIECAAAECBAgQIECAQI6AIJ6jNXrXCuKxZh8liK88vpkgfo8gXv0LIYhXt7KSAAECBAgQIECAAAECBAgQKC8giJc3jrCDIB5hip0zCOL15imIZ/gJ4hlYlhIgQIAAAQIECBAgQIAAAQLFBQTx4sQhNhDEQ4yxfYgoQXylhp4Qv9cT4tW/EIJ4dSsrCRAgQIAAAQIECBAgQIAAgfICgnh54wg7COIRptg5gyBeb56CeIafIJ6BZSkBAgQIECBAgAABAgQIECBQXODk6zZPn976N+m2vz6STrlmi7TjtmelG294sPi+NugvAUG8v+a1oLsVxBck9J//c0E8w08Qz8CylAABAgQIECBAgAABAgQIECguIIgXJw6xgSAeYoztQ0QJ4s8e/9VGBvOPqf/byL7dYBDfnAAAC+dJREFU3nRgsPXT7YvOfT1BvLSw6xMgQIAAAQIECBAgQIAAAQI5AoJ4jtboXSuIx5q9IF5vnoJ4hp8gnoFlKQECBAgQIECAAAECBAgQIFBcQBAvThxiA0E8xBjbhwgTxCc09IT4FE+IV/5GCOKVqSwkQIAAAQIECBAgQIAAAQIERkBAEB8B5ABbCOIBhjjbEaIE8YkNBfF/CuLVvxCCeHUrKwkQIECAAAECBAgQIECAAIHyAoJ4eeMIOwjiEabYOYMgXm+egniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGNuHiBLEV2zoCfH7PCFe/QshiFe3spIAAQIECBAgQIAAAQIECBAoLyCIlzeOsIMgHmGKnTMI4vXmKYhn+AniGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjLF9iDhB/LBGBnPflE80sm+3Nx0YbP10+6JzX08QLy3s+gQIECBAgAABAgQIECBAgECOgCCeozV61wrisWYfJYivMKGZIH6/IF79CyGIV7eykgABAgQIECBAgAABAgQIECgvIIiXN46wgyAeYYqdMwji9eYpiGf4CeIZWJYSIECAAAECBAgQIECAAAECxQUE8eLEITYQxEOMsX2IKEF8+YaeEH/AE+LVvxCCeHUrKwkQIECAAAECBAgQIECAAIHyAoJ4eeMIOwjiEabYOYMgXm+egniGnyCegWUpAQIECBAgQIAAAQIECBAgUFxAEC9OHGIDQTzEGNuHEMTrzVMQz/ATxDOwLCVAgAABAgQIECBAgAABAgSKCwjixYlDbCCIhxhjuCC+3IRDGxnMg1M+2ci+3d50YLD10+2Lzn09Qby0sOsTIECAAAECBAgQIECAAAECOQKCeI7W6F0riMeafZQnxAXxer+Xgng9P58mQIAAAQIECBAgQIAAAQIE+lBAEO/DoTVwy4J4A+gFtxTE6+F6QjzDzxPiGViWEiBAgAABAgQIECBAgAABAsUFBPHixCE2EMRDjLF9iChB/FkNvTLlIa9Mqf6FEMSrW1lJgAABAgQIECBAgAABAgQIlBcQxMsbR9hBEI8wxc4ZBPF68xTEM/wE8QwsSwkQIECAAAECBAgQIECAAIHiAoJ4ceIQGwjiIcbYPkSUIL5sQ0+IP+wJ8epfCEG8upWVBAgQIECAAAECBAgQIECAQHkBQby8cYQdBPEIU+ycIU4QP6SRwTw85VON7NvtTf1RzW6Luh4BAgQIECBAgAABAgQIECDQ8wKCeM+PqCduUBDviTF07SYE8XqUgniGnyfEM7AsJUCAAAECBAgQIECAAAECBIoLCOLFiUNsIIiHGGP7EFGC+DITmnlC/BFPiFf/Qgji1a2sJECAAAECBAgQIECAAAECBMoLCOLljSPsIIhHmGLnDIJ4vXkK4hl+gngGlqUECBAgQIAAAQIECBAgQIBAcQFBvDhxiA0E8RBjbB8iShBfuqEnxB/1hHj1L4QgXt3KSgIECBAgQIAAAQIECBAgQKC8gCBe3jjCDoJ4hCl2ziCI15unIJ7hJ4hnYFlKgAABAgQIECBAgAABAgQIFBcQxIsTh9hAEA8xxvYh4gTxrzQymEenfLqRfbu96cBg66fbF537eoJ4aWHXJ0CAAAECBAgQIECAAAECBHIEBPEcrdG7VhCPNfsoQXypCc0E8ccE8epfCEG8upWVBAgQIECAAAECBAgQIECAQHkBQby8cYQdBPEIU+ycQRCvN09BPMMvN4i/cuOV0zUX3puxg6UECIwGgenTZqax48aMhqM6IwECmQJTnpqRJiyycOanLCdAYDQIPPnE9LToEmNHw1GdkQCBTIHNdlgr7b7J2em2vz6SfvqXrdJ5592RHnzgycyrWB5d4N3ve2E64uOXpivPu2eOox79q3elbx56Zbrs/LvSyee8L132pZvTzefdN8eaz1z7urTii69Mswbvis7UN+cbs9AG6dwDF09nH/CnOe75nZ9bN9268JPpyIMun+Pf99hvg7Tn/hv23PmWbOgJ8cc9IV79dyEniA9d9SP7v6L6xa0kQGDUCMyYPistPHahUXNeByVAoLrA1Ckz0/gJ/guz6mJWEhg9Ak9OagXxxQXx0TNxJyVQXeD2Vgj/zem3Dn9gjRctk96y+ZrVP2zlqBH4512T0i9OuHGe81YJ4suutlh69fbPHTVW/XLQsw/48zy3KohXm54gXs1peFVuEM+4tKUECBAgQIAAAQIECBAgQIAAAQIERlSgShAf0RuyWS0BQbwanyBezUkQz3CylAABAgQIECBAgAABAgQIECBAoPcFBPHen1HOHfZbEM85m7XzCgwMtn5Kw3hCvLSw6xMgQIAAAQIECBAgQIAAAQIECIyUgCA+UtIjs48gPjLOvbKLIN4rk3AfBAgQIECAAAECBAgQIECAAAECfSEgiPfFmCrfpCBemSrEwkaD+Gs3Xi1dfeG9ISAdggCB+AJPPDo1LbH0+PgHdUICBEIITGv9odFx/tBoiFk6BIHRIjD5selpsaX8AdTRMm/nJNDvAkN/hPXzHz8/XXb+Xen087ZMU26dkh66fXK/H2vU3v8LNl4hnXPJ7enIgy6fw2CP/TZIe+6/4ah1iXrwxoL4EOjH9t8gqqtzESAQUOCJR6e3grj/JS3gaB2JQEiB6VNnpbHjFwp5NociQCCmwOQnWkF8Cf+zVszpOhWBeAL/uGtSOu2EvwwfbKVVl0ibb7d2vEOOshMdedAV85xYEI/5S9BoEI9J6lQECBAgQIAAAQIECBAgQIAAAQIECPS7gCDe7xN8+vsXxGPO1akIECBAgAABAgQIECBAgAABAgQIEKghIIjXwOvhjwriPTwct0aAAAECBAgQIECAAAECBAgQIECAQDMCgngz7qV3FcRLC7s+AQIECBAgQIAAAQIECBAgQIAAAQJ9JyCI993IKt3wiATxKy66J11x4d2VbsgiAgQIjHaBxx6dmpZaevxoZ3B+AgQIECBAgACBAgL+Z80CqC5JgEBYgQ02Xjlt8PpVwp5vtB5sRIL4aMV1bgIECBAgQIAAAQIECBAgQIAAAQIECBDoHQFBvHdm4U4IECBAgAABAgQIECBAgAABAgQIECBAoKCAIF4Q16UJECBAgAABAgQIECBAgAABAgQIECBAoHcEBPHemYU7IUCAAAECBAgQIECAAAECBAgQIECAAIGCAoJ4QVyXJkCAAAECBAgQIECAAAECBAgQIECAAIHeERDEe2cW7oQAAQIECBAgQIAAAQIECBAgQIAAAQIECgoI4gVxXZoAAQIECBAgQIAAAQIECBAgQIAAAQIEekdAEO+dWbgTAgQIECBAgAABAgQIECBAgAABAgQIECgoIIgXxHVpAgQIECBAgAABAgQIECBAgAABAgQIEOgdAUG8d2bhTggQIECAAAECBAgQIECAAAECBAgQIECgoIAgXhDXpQkQIECAAAECBAgQIECAAAECBAgQIECgdwQE8d6ZhTshQIAAAQIECBAgQIAAAQIECBAgQIAAgYICgnhBXJcmQIAAAQIECBAgQIAAAQIECBAgQIAAgd4REMR7ZxbuhAABAgQIECBAgAABAgQIECBAgAABAgQKCgjiBXFdmgABAgQIECBAgAABAgQIECBAgAABAgR6R0AQ751ZuBMCBAgQIECAAAECBAgQIECAAAECBAgQKCggiBfEdWkCBAgQIECAAAECBAgQIECAAAECBAgQ6B0BQbx3ZuFOCBAgQIAAAQIECBAgQIAAAQIECBAgQKCggCBeENelCRAgQIAAAQIECBAgQIAAAQIECBAgQKB3BATx3pmFOyFAgAABAgQIECBAgAABAgQIECBAgACBggKCeEFclyZAgAABAgQIECBAgAABAgQIECBAgACB3hEQxHtnFu6EAAECBAgQIECAAAECBAgQIECAAAECBAoKCOIFcV2aAAECBAgQIECAAAECBAgQIECAAAECBHpHQBDvnVm4EwIECBAgQIAAAQIECBAgQIAAAQIECBAoKCCIF8R1aQIECBAgQIAAAQIECBAgQIAAAQIECBDoHYH/DwefaLU7kGN8AAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.treemap(subfolder_df,\n", " title=\"Total File Stored by Mimetype (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'category', 'mimetype'], \n", " color='bytes'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "consistent-mainland", "metadata": {}, "source": [ "### Exercise: Visualize a Sub-Folder\n", "\n", "Pick a different top-level folder and then run a visualization that is limited to that folder. First subset the dataframe as shown above and then use that dataframe to run one of the prior visualizations." ] }, { "cell_type": "code", "execution_count": null, "id": "crazy-throat", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "touched-township", "metadata": {}, "source": [ "### Looking at a Larger Deposit Inventory\n", "\n", "A second and larger set of sample files was inventoried previous and those files are not included with this notebook. However, the inventory file is supplied and you can use it to visual a larger deposit. Below we will load this inventory and visual it with the MIME Type chart." ] }, { "cell_type": "code", "execution_count": 33, "id": "elect-resident", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(10413, 10)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namepathbytesmodifiedmod_yearextensioncategorymimetypefolder1folder2
0spmjc108.txtCopps/2001214832016-04-06T19:23:182016txttexttext/plainCopps2001
1spmjc101.txtCopps/200119962016-04-06T19:23:162016txttexttext/plainCopps2001
2spmjc106.txtCopps/2001158142016-04-06T19:23:172016txttexttext/plainCopps2001
3spmjc107.htmlCopps/2001163332016-04-06T19:23:172016htmltexttext/htmlCopps2001
4spmjc103.docCopps/2001358402016-04-06T19:23:172016docapplicationapplication/mswordCopps2001
\n", "
" ], "text/plain": [ " name path bytes modified mod_year extension \\\n", "0 spmjc108.txt Copps/2001 21483 2016-04-06T19:23:18 2016 txt \n", "1 spmjc101.txt Copps/2001 1996 2016-04-06T19:23:16 2016 txt \n", "2 spmjc106.txt Copps/2001 15814 2016-04-06T19:23:17 2016 txt \n", "3 spmjc107.html Copps/2001 16333 2016-04-06T19:23:17 2016 html \n", "4 spmjc103.doc Copps/2001 35840 2016-04-06T19:23:17 2016 doc \n", "\n", " category mimetype folder1 folder2 \n", "0 text text/plain Copps 2001 \n", "1 text text/plain Copps 2001 \n", "2 text text/plain Copps 2001 \n", "3 text text/html Copps 2001 \n", "4 application application/msword Copps 2001 " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "df173 = pd.read_csv('rg-173-inventory.csv')\n", "\n", "print(df173.shape)\n", "df173.head()" ] }, { "cell_type": "markdown", "id": "twenty-field", "metadata": {}, "source": [ "You can see above that this inventory describes 10,413 files, a more challenging quantity for manual appraisal. Now let's run our visualization on this data." ] }, { "cell_type": "code", "execution_count": 36, "id": "located-outdoors", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 35342.88275084554 ], [ 10167.949364688033 ], [ 89291.76044568245 ], [ 1055 ], [ 176640 ], [ 1161216 ], [ 1270436.6666666667 ], [ 20446.105263157893 ], [ 25919.5 ], [ 3647536 ], [ 9690293 ], [ 10603.082176568572 ], [ 9465.80612244898 ], [ 18673.262068965516 ], [ 1270436.6666666667 ], [ 599049.7391304348 ], [ 9996.574242031615 ], [ 17460.921828483628 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/application/application/msword", "all/application/application/octet-stream", "all/application/application/pdf", "all/application/application/smil+xml", "all/application/application/vnd.ms-excel", "all/application/application/vnd.ms-powerpoint", "all/audio/audio/x-pn-realaudio", "all/image/image/gif", "all/image/image/jpeg", "all/image/image/tiff", "all/image/image/x-photoshop", "all/text/text/html", "all/text/text/plain", "all/application", "all/audio", "all/image", "all/text", "all" ], "labels": [ "application/msword", "application/octet-stream", "application/pdf", "application/smil+xml", "application/vnd.ms-excel", "application/vnd.ms-powerpoint", "audio/x-pn-realaudio", "image/gif", "image/jpeg", "image/tiff", "image/x-photoshop", "text/html", "text/plain", "application", "audio", "image", "text", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 35342.88275084554, 10167.949364688033, 89291.76044568245, 1055, 176640, 1161216, 1270436.6666666667, 20446.105263157893, 25919.5, 3647536, 9690293, 10603.082176568572, 9465.80612244898, 18673.262068965516, 1270436.6666666667, 599049.7391304348, 9996.574242031615, 17460.921828483628 ] }, "name": "", "parents": [ "all/application", "all/application", "all/application", "all/application", "all/application", "all/application", "all/audio", "all/image", "all/image", "all/image", "all/image", "all/text", "all/text", "all", "all", "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 887, 5273, 359, 1, 1, 4, 6, 19, 2, 1, 1, 1801, 2058, 6525, 6, 23, 3859, 10413 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total File Stored by Mimetype (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAFoCAYAAAB5WPgIAAAgAElEQVR4XuzdBZwV1fvH8YcuSelSEUVKQFLplu4QBJHublBQWrpBukNKukQERBoUUBADUUoEBUSR8neeA/f+dtdd2LssNz/zf/1ef9mdO2fmfebenfudM8+J8q9ZhAUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAT8XiEIg7uc9zOEhgAACCCCAAAIIIIAAAggggAACCCCAAAIIWAECcU4EBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYAQIBAPiG7mIBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIxDkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAJCgEA8ILqZg0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAgEOccQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgIAQLxgOhmDhIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAQJxzAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAgBAjEA6KbOUgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABAnHOAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGAECAQD4hu5iARQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECMQ5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCQoBAPJzdXKpOFzl/8fJD186TI5PMGdsrnFt0fbXX63WXHFmel2F9W4T64guXrkjJWp0fuuElU/tJ0iQJ7XoDezSRauUKy5rNu6Xn4A9lw4Jhkj5NCtd3LMgr7t69J4s/3iarN30uP5//Vf688bckeCqe5H75RXm7bjnJmTXjY23/Sb04f4VWUvX1QtKrXf1Qm3jng5mya99X8umyMZG+C7rtFet3SKnCuWXsgHahbn/GovUyaupSyZXtBZk/oY9dR1/3xcHjsnXJyEjfJ1/a4O07d6Vxp6GS7OnEMqp/a+euH/jypMxfvkUOHzslV6/9KYkSxpeXMqaT2pWKS4lCr7h0iI731ntd35aaFYu69NrIXtkbztWgx5Qo4VPybNqU8kbVklKx9KuRfbiRur3fr16XOUs3ydadB+Xipd/l1q3b5rxJKEVfzSlN61eUVMmTRGp7kbGxuR9tkmETF8kXayfJ0W9+kHZ9xsrM0T289rM0Mo6ZbSCAAAIIIIAAAggggAACCCDwJAUIxMOpu//ICbn5z23n2v1GzJTEJmDr2KyW82eJEsST7JkzPHKLg8ctkBjRo0m31nUfuW7QFcIbiFcuU1DKlywQ6rZzZcsoUaNGNSH455IvV2Z5Ln2qSA3E+wydLhu27ZWm9SrIKyYEfypeHPnpl4sya/EG+f6nczJ3XG/J/tJzdt8i6uASWjhX9nTIuP6TPXLHBLvblo2WpxMn+M9eV2zYS85d+E2yvPisMxDXc1JDPXeFkNUa95UOTWtKsddyhlPVPau9P3quHDAWi6f0k7hxYtlGp85bI+NmLLfnWuWyhSSlCTov/fa7rDPOB7/6VhrULCM929YL9w4SiN+n0pswKzfslJmjeth//2v+78rv1+zPPt9/TAb1bGpvLIV3cednwF9/35R6rQfKn3/9Lc3M59MLGdKZz8IocvzkaZky92OJEzuWrJgxwH5m6eIt53vQQDzBU3HNvq6WRas+keXT37c3N1kQQAABBBBAAAEEEEAAAQQQQMA1AQJx17yca1do0FNSJksiM0Z1d3kLdVu9L7mzv/jEAvF2jatLy4aVw71fkTVC/Nff/pDiNTtK28bVpFXDKsHa15HidVq+J1XKFpTmb1ayv4uoQ7gPzIUVPR2In/rhZ3vjoNmbFaVx3fLB9lxHOL/ZdpC5gfGS3L591xmIu3B4j73qX3//I/krtJTxAzt4VSD+9benpVbz/jJlWBcpnD+7PU4NZpt3G2GffhjQvbFEiRIl2PEPHjdfFqzYat+7BV7JEi4bAvH7TBqIr9q4U45umxXM7c7du1K4SjvJ9lIGmTaia7hM3f0ZoDdDug+YYm/K6RMrQRe9SaI38/p2bCCF8mUXbzrfQwbit2/fkfLm789rebKKPrHAggACCCCAAAIIIIAAAggggAACrgkQiLvm5Vw7rED8092H7ejUb7//2a77Yoa00viNClKmaB7776zFGgVrUUuYZMv0nCnHcdS+7ptTp+Xff8WULkkujeqUswGyYwnvCPFHBeKOcO9hJVM0VPxw/ho59cMvcvvOHXk58/PSqUUtu69hLTqCuXTdrmbUfE1pZsoPPGwJy+G7H8/KmGnL5MBXJ+XmzX8kVYqkdsSpjjiPFi2q3WS5+t2lSIEcdqT70tWfSv8ujaRSmddMiHXTvHa5LW1yzpS30dGTVc3o4Bbm5oCOyHcsk+Z8LEtMWZer129IJjNKtIcZKdyq56hHlkzZbUyG9G4uH0xaJN+dPiuJEjwltSsXl9ZvVZEbf92UYjU62v7SUC3oMnLKUlm4cqtsXz5G4psRniEXDRm/OfWTPVe+/Pp7WTdvaLBV9Pcnvz9jy9lc+PVKmCVTyr/Zw4R5L5vjTiBL12yXy2bkbuaM6WVon+ay/8hJmbl4vRlRfkWefyaNvNftbVM+JL1t519zwun+rVi/04TyFyRWrJhSJH8O6dKytjXcd/iEvG1KkjiWOLFj2tB+yrzV8snSUabkRCLn7679+ZcUqdZe3jbnbo0KRaTsG93k/W6NZf+XJ+Rzc46r08um7M87nRqa/UjtfF1Ezjd9cZveY+S3y1dF30eOpXGnYXLCeG37aLTENscScrn5zy3j+bM5pzM4w/JHvW9DC8QD9VwNLRDXc0j7Pb+5wTDi3VYyafaqR54f+vkSdHF8FuqNodEffiRfffO9/H71T3kuXUrzGVpeKpb6fzmWE9+dMe/1j+TYidNyw7zvUyZLbD4DCkrLBpXtqO/QllUbd9nQe8HEvg8tNxLa+X5g44d2k486T/SJjRK1OslQ8zmh7R08+q1smD/MfI49bW/UPOoz9XvzufLeqDly9MSP8lTc2Obpj9fse1DLJWnJFB0hrou+vweMniMbFw6XNCmThnq8/BABBBBAAAEEEEAAAQQQQAABBEIXIBCP4JkRWiC+c+9RadljpNSqWMyUZCgtJm2T2Us22vrQk4Z0MnVqc5iA57qUNvXIq5igVkdSa0D6y7lLUqVRHylXMr80NeF5jBjRZcuOAzYUmj6im7xqRgLq4q5AXGsvawCqNa3bNakhd83ozwkzV8ruA8fsY/ph1RnXUKxms36iQWHT+hVs2ZagoWdQ6tAcfv/junXQMi492rwhSUzpkG27DsmIKUukYa2y0rVlHbuJym/1tmF4hmdSyZs1Ssszpn6xlhlp0uUDW/5AA3INO48c/96ES7OlfIn80s/8zAZJJkDXwKnN29WksgnRtS68OmvAVqtSsYfWENc+SZc6ubQz/ZbCPB2ggZeO3nTUlR5gSnfoKNTPVoyVWDFj2PbURPu7QO6stmZ7aIsG3sdP/ijdWtWVpl2Hy7zxveUV8wSBLjpStWj1DtK+SXVzPN/ZEilh1RCvbOz+MOdX/eqlTWBdTi6aEiE1mr5rbXJkyWhDaO3Lhu0H2/IQCye9Y9twlBdpb/pay6+oiZYhiWrO34+mvWfXOWjOCfXV+vWF8ma3N0lK1u5s9quGvVnhWJav2yH9RsySTYuG2xsYWqteSwvpTYIyRfPKr5d/lza9xsjf5maHBv86ejui55veAHmtclv7NEKLBvefOtDRs3nLtZDXTZ9rKBmeJTzv25CB+KXLfwTsuaqB+OEt0x+c32JuvFyVeR9ttmU8Zo/paW94qM+jzg8tbxPys/C6uaFS9e2+9px5t/NbNgzWckLjZ66Q4e+0Mp8p+UVHoxc3N5+0nbbmfawlTvQpCn3/tTTnQhMTnoe26BMs5d/sLvHixrHv/xIFc4VackRr0oc837VOenjOkyvmM6xw1Xb25lbpInnMUwsvy4vPp7O1vx/1mar1zHXkd0zz+a+lZ55OnFDWbtktS8xn1m9XrgYLxPXf+rmgcx7oZyALAggggAACCCCAAAIIIIAAAgiEX4BAPPxWwdYMLRB/q8MQO6Lx41kDnSNPNRAtV7+HHfH94fD7pQTyvN5c6lQu4SyZ8vfNW/KLmYAytRkNHc+MCnQsr1VqY0ctdzfhsC7hDcS1XEpYoVDcOLHlUSPEm3T+wI4UXmdGNjqCXd3HUnU6SxkT8jjC5dDoNKh534xc/GTnIftrDbReyf6CDYZeL57fWeM5NIeJs1baUaU6sjfoqOO+w2bIpu37ZPeaSXaktwa/OtJ558pxEvNB8HzIjMRs0G6wDX3rVinh3DWdjFIDb91m8qSJpHaL/jY0XTlzoHOdvYe/MZMyDrPB0sMm1dQbG4tMiKxBnGMpY0bEpzCjU+eN72NvBFR5u48NjR2jWR37FfJ1Qe0cgfiyae9LmbpdbG33wb2a2VW0NrMGzNuXj5VBY+c9MhDXUfUaRjvKhLTtPVY+23NEdn08QRLGj2e3qTc3pi9ca0PNW8aiUJW2pn9yBJuQUgM8LWnjCCGPmcC+Tov3ZOLgjs6SKZ36TTA3En62k7E6Fj13ops+mvpBF+d59nrxfDKy3/8nu9z82QHR1zqC/4ieb47SKEFLYDhG6LZpVFVam/+FZwnP+zZkIB7I56q+D0Iuem717djQBtaO5VHnR2ifAVofW8Pv1bMHyfPPpnFuS280/mxuHOpNlJ/P/Wo/C/U9EvQJGh31r5+faVMlC7Pb9QkMDc71iQxdnjWjz3Uy5BIFXzFPnbzsfN+Edr6H5zzRG32FTOmYgnmzOT/vtZ3wnOOfffGltO412k6sqzcjHYvewNKSLkFHiOvvKpl5BTKYpyzCmog3POc+6yCAAAIIIIAAAggggAACCCAQiAIE4hHs9dAC8dxlm0sl84h7/66Ngm1V69buPnDchJLj7c9DBuL6Mw1DlqzeJj/8dF6u3/jLjiy+dv0vO4rZEY6GNxB/2CEd3z77kYG4Hkc5M8I25IhmDVd11PFHH/Z/pJqOxtQR5Rrk7D30tZw15VQ0HJ8wqINz4tGQDi17jJIzZy/KehPEB10+Wrtd+o+Y7QzJNBBPakY9zxx9f2I/XbQciJYm2bpkpC1P4Fg0+NJR644gN1eZZlLd1JbW4Nyx3L17T3KVaSpvVC350EB83dYv5OCmD4PVpO4xaKrs3POVCesn2s1paBbNjF537JuOtD5swvqgAXxIPEcgrhP6jZ2+3I4611HmOvK1QbtBJsh+SiYM7iBd3pv0yEBcyydMHtrJ2UTvIdPki4PH5dNlY5w/c9Qk3r9hqp3otK6p7R4yXNSVta56zQpF7Y2b0AJCR2kJRyCtN0O0hvzo99raQM8RIuvI/rfNiHXHoiUxtLyLY2R9RM83RwkMDeQdTy046tjrqHF9AiM8S3jetyED8UA+V3WE+KLJ7zpp//zzbzl8/JTMNDeftG577/Zv2t896vzQdUL7DPjBnJObF48I1nVzzHvig4mLZN/6KbYMjt6s0WC8jilZ9JoJn1/J9oJ9sia8y6kffzGfS9+Yz6eT9v9r+SSdgHXysPtPNIR2vofnPHEE4iHnUQjPOT594Tp7827nqvGSJFF856Fo+ZmJ5n8hA3F9YuNv8wSJ40mP8B476yGAAAIIIIAAAggggAACCCAQ6AIE4hE8A0IG4voYf46STWzw5yjt4di0lujQ8O7w5mn2RyFDIB393Ln/JFuu4k1T7kKD4yimDq6OyNWRhq4G4jUrFg02cjLoIWopjoeNEE9tAlU9Dq3DGy3a/+tu6za03EaSRAlsWOvqouF41/cmm1HaiWWVGUEfmoNOHKmjt4PWg9b1NmzbK13fn+wcna2BeAZTVmXM+22du6FBstbnDS0U0232M+UXqpUvIjlLhd5HWmajuvn9w0aI79jz5X+OXQNvHTF75EEJiY2f7rPB9caFH9hgvlj1jqY8Q1Ubtoe1BA3E9YaAPlGg+6v1mDU41uPU8gvhCcRDumggfujoKbs/juX/gfgU+dKUldEyLdFNX+s5F3RRN70xojWhQwsIdV0tX5PNBIl6js5bttmMPF8nn3w0ym7PcZ7pEwW1TTkax6LlNLTeutYo11I4ET3ftL2hExYGCxD1fZivXEszij1XsBHvYdmH930bMhAP5HM1tBri6uu4caUBbY4HT1E87PwI6zNAy5+EfB//e+9fWypl7dwhtqSSTtKrde/1aQO96aVPvlQsVUC6mrJDQZ+yCc/nlJZI0TkFhoxfYMoNlbKBfsjzPbzniSMQ123otnRxvPZRn6k6d8K0BWtF65VrnX7HomW3hk9e/J9AvHP/iXaOhzXGhAUBBBBAAAEEEEAAAQQQQAABBMIvQCAefqtga4Y2QlyD7oqlQh8hrmU5HEFyyEC8Vc/RJtj42YyKHOmcEE5DlDxmpLbW4XY1EH/cSTU1HNYSGqGNsNW60lpmILRF9/nchcu2PExoy+BxC2TBii02PNbAKzQHLdUS1ghxRxgWWiDuCI10tHLiIKMrHfvxtAnyEyaIZ8NXvWEQdIS4Br86clwDrIcF4hp2798wJdih9Rz8oewyteMdo/81XCtlamvXrVrCTECaQTq+O9452jusUy1oIK7raNiqJU8KvJLZeG21r1evJxGI/3jmgi0jo/XLi5ga9yEXrfOc0tRLDysQ1/3TyQ13rBxvayS/amqld2haw24mrBHiOipdg9IB3RvbmxARPd9CGyGu7Wp5jb1mItD1prxG0KcFHMemTwRMMOV5qpcvbGvCh+d9GzIQ1/dsoJ6rYQXiOhGkPm0Q9AbIw84P7Y+QnwFaMuSUKT2kJXdCW/QJCEcZJ8fv/zBlqjZ8utdOPKmlT7RkUWiLln26ev1Pez6HtlRr3NcG6zrpZmjne3jOk9ACcW0rPOe43tDTG3shR4iPm7Hc1vlnhHgE/1jzMgQQQAABBBBAAAEEEEAAAQRCCBCIR/CUCC0Q1zrUv/1+zZb2cCz3zMjG1+t1M5OspbNlLxwhUO1KxZ21wfXRdw11dMJKx/Lxps9FR/dWLlNQhvS+X086vCVTHjcQb9Z1hJ0oT0t4BF3OnP3VhEmJnXW7Q9Lp4/5as1tfp5PKBV20BEyjjkPl+9PngpWOCeowee7HouUBQtYQV4ftu4/YoEgnagwtENcJJ+u3GSjjBrSXkoVfcTatEy9evXbDGYxWb/KODZuDWuu22/QeE64a4louJsuLzzq3r6O5UyVPEqx8i9bo3mhG/b+UMb0t7xDWZJqOjYQMxJet/czWYddayK/lyWYnpNTlSQTiOpK7oKl5rOFwyJsBGlzriHP1cgSEeg4XN6OvHYuO1NUyKW/XKSeT5nxs65draKmLI0QulC97sIBT66JrXXjHSOKInm+OGuJzxvaydaAdi6NUh9atHz+w/X9GG+toW72BMmNkdzPZaRZbP/5R79uQgXggn6thBeIafg8eN985gbD2x8POj9A+C3WEtNZn37p0VLAJL7UUTqxYMWwd/HOm/NJh836vYG4WBl20fNHXZlLdsEZMv9F6gFwxn88rZw6wwXfQRSfzLGEmgC2cP7t5sqBNqOd7eM6TsALx8JzjOu9C+3fGyXhTVkon/HQsesNKJwumhnjIvzj8GwEEEEAAAQQQQAABBBBAAIGICRCIR8xNQgvEtSyIBh86qaOWgrhz544NiNds2S1zxva2k0vqUtIELzpyVUcp60SPC02QpJNJjn2/nZ2wUQPajzftklu37sg9EyRrTWgto+KuQPzAlyftaN8a5Yvakc4aHu3ad9Q+tt+lRW0bHIe2aA1pndjy2p83pEGNMrZWuI4wvvDrFXs8O81I6nfNMdd5MOllSAcduauTUj5vJorr0aaeHdG9dedBUxt8iRl1XFOa1qtgmw0tENefa+mP70+ftSUPNLT+1dQ713D6x5/Pm8n4htkyBI5axFpjumzxvHZEu44WPm3WeVTJlM2f7bc3NrTUh/aHBrs6CeCwPmYSTVPuxrHoxI6lzeSYusw3k20GnYQzNLeQgbiGiEWrd5Cb/9ySxVP62drGujyJQFz7VkefasDbuXktM7FgDrltztuP1mw3ZSQ+taF11kzPOicyrG9K+mh4rn3kKGuhJYGWr/vMjg4POrLXESLrpKP1qpWSssWM98XL0nvwNHteOILLiJ5verPjtcptpWWDyqITyQZdHDXlNdCvacq16EhwPT/XbN5tSsh8a+uiN6r9un1JeN63IQNx3Vagnqt63s8c9f/6/Tf/+Ud0EtaZizeYcz2DmUyym5381rGEdX6E9lmoP6v6dl/7lEnHZrXszaYTZrJMLWeS+YX09oaXY8LXt8xnbBUz6bCWSNGa4O9+MNNM3JtP+nS4fwMp5KLzGbToPkJSp0xmSlOVMk+66M0ekR/PnJf55jP47PlLdqJX/exwTNwZ9Hzf/+WJR36+hxWIh+cc1xHsevNU5w7Qvw2JEjxlPjc/ly07Dsh5874JGojr+aefEXoTK6zP41AR+CECCCCAAAIIIIAAAggggAACCAiBeARPgtACcd2UhtlTTLh40tR21fIiGq5oDekCph60Y1m6+lMZYULee/fu2dGIOrpVa1F/Zl6rAbjWDddQRydDfG/kbDvJm04y565AXPdzz8Gv7URuX3972pZx0UkLdQK72uZ/D1uu/HHdlkXR0Y4XL12RGya01FGdWTM9Z0uS6KjdsBw0jNVRyVr6YP+RE/LPP7flmbQp5I1qJYPV4A4rEP/LTDA3fuYK2bx9vw0/tXRK3pyZbJiuo6110RH7Y6cvs3W/r5vg+YXn0tpQSUehFynwsnNCwJDH2MuEuF+fOi09TVCvNwZ04j/d/psm+G/yRvn/kOhoeB11GnQkelhuIQNxXa/HwKly3NhrmRjH8qQCcd3+olWfyKKVn9hJTeOagPGl59NLCxMy58+V2dl+n6HTZb2p5643FtabGwyJEj5lf6d9pcero7FLFPr/6HxHiKznsgaWWitfQz+tL6010rUWtGOJ6PmmI/svm77WGwchF61FrfXStYb61Wt/ShIzEauehzqa3XFzyvGaR71vQwbi+rpAPVf1vRN00acgUpsbfFpvXm8EaqAbdAnr/NB1Qn4W6meAhtH6tImeE3/d/MeWOClVJLe0aVTNWVt72+eHZboZTa7lVbRUk66jN1xav1UlzCdYtD09D7X2vO6T1rK/Y0ocJX06keTN8ZK54VZenn82zUPP90edJ2EF4rrR8Jzj+nk7cMw8+7kbzzhWKPmqedIknehnxO7VE+1NQutmblgNME+RbFz4/ycywvp84ecIIIAAAggggAACCCCAAAIIIBBcgECcMwKBSBY4a0o66A2TAd0aS6Uyr0Xy1r1vc3rTZs+hb8wo/KHOGvi6l6GFyJG991pKQktK6Mh0Lc3C4pqAO87VsM4P1/aUtR0COk9BBTPZrk66q3X4WRBAAAEEEEAAAQQQQAABBBBAwDUBAnHXvFgbgTAFdFT66Z8vyIAxc22ZGS2XojXP/XG5deu2LX+iE43qqPxJQzpJ0RCTcrojEFdbDVwPmdHgiyf3c44g9kfzyDymJ32uhuf8iMzjCaRt6eSb85dvsU+fJDOj21kQQAABBBBAAAEEEEAAAQQQQMA1AQJx17xYG4EwBTr1m2DqpH9lyuNklf5dGwWbFNDf2L41JYF0glKdQFPrd1crV/g/h+iuQPz27TvSuPMwSWHKZox4t5W/UT+R43nS52p4zo8ncmB+vtEvDhy3EwDPGNVdcmW7PycFCwIIIIAAAggggAACCCCAAAIIuCZAIO6aF2sjgAACCCCAAAIIIIAAAggggAACCCCAAAII+KgAgbiPdhy7jQACCCCAAAIIIIAAAggggAACCCCAAAIIIOCaAIG4a16sjQACCCCAAAIIIIAAAggggAACCCCAAAIIIOCjAgTiPtpx7DYCCCCAAAIIIIAAAggggAACCCCAAAIIIICAawIE4q55sTYCCCCAAAIIIIAAAggggAACCCCAAAIIIICAjwoQiPtox7HbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAq4JEIi75sXaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAj4qQCDuox3HbiOAAAIIIIAAAggggAACCCCAAAIIIIAAAgi4JkAg7poXayOAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4qACBuI92HLuNAAIIIIAAAggggAACCCCAAAIIIIAAAggg4JoAgbhrXqyNAAIIIIAAAggggAACCCCAAAIIIIAAAggg4KMCBOI+2nHsNgIIIIAAAggggAACCCCAAAIIIIAAAggggIBrAgTirnmxNgIIIIAAAggggAACCCCAAAIIIIAAAggggICPChCI+2jHsdsIIIAAAggggAACCCCAAAIIIIAAAggggAACrgkQiLvmxdoIIIAAAggggAACCCCAAAIIIIAAAggggAACPipAIO6jHcduI4AAAggggAACCCCAAAIIIIAAAggggAACCLgmQCDumhdrI4AAAggggAACCCCAAAIIIIAAAggggAACCPioAIG4j3Ycu40AAggggAACCCCAAAIIIIAAAggggAACCCDgmgCBuGterI0AAggggAACCCCAAAIIIIAAAggggAACCCDgowIE4j7acew2AggggAACCCCAAAIIIIAAAggggAACCCCAgGsCBOKuebE2AggggAACCCCAAAIIIIAAAggggAACCCCAgI8KEIj7aMex2wgggAACCCCAAAIIIIAAAggggAACCCCAAAKuCbglEN+184zs2nHGtT1jbQQQQCDABW78eVviPRUjwBU4fAQQQMB1gatX/5GECWO5/kJegQACCAS4ANefAX4CcPgIIBAhgUKF00uhIukj9Fpe5BkBtwTiQwftkiEDd3nmCGkVAQQQQAABBBBAAAEEEEAAAQQQQAABBBB4ArvVvRYAACAASURBVAI9+xSSXn0LPYEts8knJUAg/qRk2S4CCCCAAAIIIIAAAggggAACCCCAAAII+LUAgbjvdS+BuO/1GXuMAAIIIIAAAggggAACCCCAAAIIIIAAAl4gQCDuBZ3g4i4QiLsIxuoIIIAAAggggAACCCCAAAIIIIAAAggggIAKEIj73nlAIO57fcYeI4AAAggggAACCCCAAAIIIIAAAggggIAXCBCIe0EnuLgLXh2It2qbR7JkTSbtWm2QMxc6SYHc0+Xc2esuHiKrI4AAAggggAACCCCAAAIIIIAAAggggAACkS9AIB75pk96iwTiT1qY7SOAAAIIIIAAAggggAACCCCAAAIIIICAXwoQiPtet3pFIN6wUQ7p2KWARI8RVX4+c1WaN14jZ3+5LowQ970Tij1GAAEEEEAAAQQQQAABBBBAAAEEEEAgUAQIxH2vpz0eiD+dNI58811byZPjQznz01UZP7mc3LlzTzq120Qg7nvnE3uMAAIIIIAAAggggAACCCCAAAIIIIBAwAgQiPteV3s8EFey2LGjy82bd6xerTpZpF6D7FKt4hICcd87n9hjBBBAAAEEEEAAAQQQQAABBBBAAAEEAkaAQNz3utorAvHuvQrK6+UzivwrkihxbPn556tSpfxiAnHfO5/YYwQQQAABBBBAAAEEEEAAAQQQQAABBAJGgEDc97ra44F45aqZRE+c10vOl2vX/pG69bPJG+Z/BOK+dzKxxwgggAACCCCAAAIIIIAAAggggAACCASSAIG47/W2xwPx5i1zS8nSz0mdGsskYcJYMntBVUkQP5aULDqXEeK+dz6xxwgggAACCCCAAAIIIIAAAggggAACCASMgLcG4p/sPCTvDJ8hu1dPDJi+CO+BejwQ10k1ly6vJQkTxZZffrkmg97fIQuX1JDFC4/JuXPXJUvWZNKu1QY5c6GTFMg9Xc6dvR7eY2M9BBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgiQn4ayC+aNUnUrNCUYkRI/oTs/PUhj0eiHvqwGkXAQQQQAABBBBAAAEEEEAAAQQQQAABBBB4HAF/DMT/vnlLClRoJV+snShx48R+HB6vfC2BuFd2CzuFAAIIIIAAAggggAACCCCAAAIIIIAAAt4u4M2B+LsjZkq3VnVl7PRloiF3sddySr/OjeT2nTtSpFp7mTSko7yWJ5uT+O1OQyXz88/I4tXb5J9btyVO7JjSvU09qV2pmMxbtlkWf7xNzl+8LGlSJpVe7es7X7v38DcyfNJi+fHMefOaWFKmWF7p1bae144uJxD39ncV+4cAAggggAACCCCAAAIIIIAAAggggAACXingzYF41wGTpVThV6RXuzflj2t/SrMuw6Vi6VelU/Na0rn/JIkZM7oM7d3cuv5+9boNyZdPHyD37t2TGk3flf0bptgR4us/2StDxs+XqR90kUzPp5cde7+UTv0myurZgyV9muRSuGo7ade4ulSvUEQuXb4q7fqMlWrlCkv96qW8ss8IxL2yW9gpBBBAAAEEEEAAAQQQQAABBBBAAAEEEPB2AW8OxNu/M062LB4hqc2Ibl0mzFwpW3celFWzBsqOPV9Kl/cmyY6V4+1I8OXrdsj85Ztl5cyBcuK7M8EC8cadhkmOrBmlQ9Mazu5o0X2kvJw5g7RoWFnylWspQ3o3k7LF8tnf3717T6JFi+q1XUcg7rVdw44hgAACCCCAAAIIIIAAAggggAACCCCAgDcLeHMg3uX9SXJky3Qn38oNO+WDiYtMbfBJNrQuUauTdGtdVyqWelVa9hgp+XNlkbfrlvtPIF6qThdbKiXkUrlMQRuEz1++RUZMWSIvPJdWCuXLLlVfLyTPpE3htd1GIO61XcOOIYAAAggggAACCCCAAAIIIIAAAggggIA3C3hzIN576DTZu25ysEB8zLRl8tmKsfZnwycvlh9+Oi8f9G0hRap3kE0Lh0vypIn+E4hXbNhL6lYpIW/WKB1mV/x25ap89sWXsu3zQ/L5vqMy6r22UqJgLq/sOgJxr+wWdgoBBBBAAAEEEEAAAQQQQAABBBBAAAEEvF3AmwNxLZmi4XfSJAkto5ZM2bn3K1kytZ/993c/npWazfuZiTfryLZdh2XGqO725yFLprTuNVqeTpxQBnRv7OwOHTGeIlkSiRJF5PLv15xt6AqDx82Xcxcuy4TBHbyy+wjEvbJb2CkEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8HYBbw7EdVLNKqasSY+29UxofVUadRwqdSoXl2b1KzpZazXvL2fOXpSeZh2dCFOXH8+cFx0VvnRqf3kufSo58OUJ6fjuBBk7oJ28mierfHn8e2nTe4yMH9hekiROILXNNsYPai/5cmWWq9duSFdTqkUn39RteuPi0UBcTxgWBBBAAAEE3C1w9Y+bkjBRbHc3S3sIIIAAAgEucOPPWzJ+7D6rEDdeDGnfMX+Ai3D4CCCAAAIIeLfAkkXH5ccffrc7WbtuVlm6+Ph/dthbA/FN2/eZut5LpWWDyjJh1gr5++YtKVU4t7zbqaHEjBnDeRwLVmyRkWa9navGS7y4978n37v3rzTvPkIOHDkhbd6uZgN0rRM+e+lGOxo8jZmkU39WpWxBu/6qjbvkw/lr5JwZNR4/Xhwp+mpO6dWuvnN73tbLHgvE9WQpXDS97NpxxttM2B8EEEAAAT8XuHr1H0mYMJafHyWHhwACCCDgbQIlSj0ni+Yfk5nTD8u4SeUkRcp4cvjQBW/bTfYHAQQQQAABBIxA6tTx5ZXcqaRQ/pmSO28qWflxHZk86YAMGbgrmI+3BuLh7USdZPPq9RsyqGfT8L7E59fzaCCuNWZCnkQ+L8oBIIAAAggggAACCCCAAAKhCIwaW0aOHb1kA3H976MP/hssBBBAAAEEEPA+gTwmBB82orSUKjrXBuILF9WQ2bOP+E0gfvvOXdlz8Lh07j9JFk9+R55/No33dcIT2iMC8ScEy2YRQAABBBBAAAEEEEAAgaACBOKcDwgggAACCPiOgL8H4nVbvS86MWa3VnWlYulXfadjImFPCcQjAZFNIIAAAggggAACCCCAAAKPEiAQf5QQv0cAAQQQQMB7BPw9EPceaffvCYG4+81pEQEEEEAAAQQQQAABBAJQgEA8ADudQ0YAAQQQ8FkBAnGf7bpH7jiB+COJWAEBBBBAAAEEEEAAAQQQeHwBAvHHN2QLCCCAAAIIuEuAQNxd0u5vJ2AC8ewvJ5e5i6pJrqxTpV3HfPJipqelXasNERKv1yC7LJx31L723G9dJE+OD+Xc2esR2hYvQgABBBBAAAEEEEAAgcAQcDUQr2++dyx48L0jIkKP+/qItMlrEEAAAQQQ8BcBAnF/6cn/HkdABuJx4kSX6NGjyvXrtyLUs6dOt5MXnh1vX5s0WVy5/Ntf8u+/EdoUL0IAAQQQQAABBBBAAIEAEXA1EP/OfO/I+OB7R0SIHvf1EWmT1yCAAAIIIOAvAgTi/tKTPhaIN2yUQzp2KSDRY0SVn89cleaN18jZX65L+0755eUcKSR27OiSNGlcuXP3njR562O5eOGGnL/cRYYP3S0FC6eTlCmfkrmzv5Spkw5KWCPEdTsTppSXFCniyQ/f/y6tmq2T06f/kLz5U8vIMWUlfoKYcuufu9K142bZueOMLFhSXSpUelFOfPOb1KiyRPYfae4cIV61+kvSs08hiRYtivz66w3p2HajnPr2irRqm8e0n0JimBA+ddr4Ei9eTGnwxgpzTNf898ziyBBAAAEEEEAAAQQQQCCYgCuB+MIg3zuqm+8dcePGkDHjX5dUqePL7Vt3pXWLdXLwwHlp1yGfFCyUTurWWm7bWrW2jqxdfUpKlHzW+b1FX6/fo1gQQAABBBBAIPwCBOLht/K1Nb12hPjTSePIN9+1tWHzmZ+uyvjJ5eTOnXvSqd0mGzD3ebeI5Mw6RX679Je8N7CYJEwU2wbQZy50klnTD0u/vttFt/Hl160kb84PbXAeWsmUQ0dbSP93tsvqVSelQ+f8UqTYM1Kj8lLZvb+JjBm5R5YuPi6138gq3XsWtPuS5Ok4cuL7tpI80XDb146SKVGjRpEvDjSRYgVny/ff/S7NWrwidetlk5JF50rzlrltUJ4/9zS59OtfMnx0abl+7Za83+8zXztf2F8EEEAAAQQQQAABBBCIoIArgbh+7zhpvncke/C9Y9eet2XGtMMya8YReSV3KlmyrKZkfmGi3Lv3r2zf9Zb5TvOZxDZPwnbu+qqULj5XEicJ/voI7jIvQwABBBBAIGAFfD0Qv/pPBo/0XcJYP3ikXVca9dpAXA9CR4DfvHnHHk+tOllEa3dXq7jEBuKFizwj9WrfHwVRpOgzNmTO/8p0G4hXKLNAjn71q/3dhi31ZerkgyakvvKfQHz0iD2y/fNGkj7laLuullGJFSua3LhxW2KYUekawGsplJSpnpJjJ1tL0gQfhBmIlyz1nB2BUbfmMrst3c6FK13ttt+on12KlXjWub8t2+SRnDlTSstma13pK9ZFAAEEEEAAAQQQQAABHxaIaCCeMWNi+XxfE0mVdKQNwHXREPyd3p/ap1hz5EwhU6dXtN9nGtZfJV8fv2S/twQN1H2YjV1HAAEEEEDAIwI+H4j/7aFAPA6BuD1hhw7aJUMG7gp28uqI6ShR5D8/D7pS914F5fXyGUXMNV+ixLHl55+vSpXyi20grqVOtLyJLrleSSmLzQiJTBkm2EC8UP6ZdlS5LktX1JL1a0+ZxwnP/ScQn21GV8xeUFWyZ5r8nzdWlWqZpFWbvBIzZjSJakqgaHtJnhoWZiBex4wiz/hCEmnTYr1zW2cvdZbC+WdJqTIZJG++1NLMlHzRRUeMB/23R97VNIoAAggggAACCCCAAAJuFYhoIJ47TyrZur2hnD37/5KL8eLGlE4dNsmqFSfsMWze1kDumVKSr5deYP9NIO7WrqUxBBBAAAE/FPD1QPzaDc8E4gniEYjbt0NEAvHKVTPZMiOvl5wv1679I3XrZzMjrbM5A/HiJZ6T2tU/stvX0dmDhpWUArnvjxCvUn6RHD50wf5OLxzHj91r64OHLJkyctgXsmtfY0mXYpQdCa6jwp99LpH8/vtNOyK8yKuz5NuTlyVtugTy1TetHhqIFzcjwCtWflHeeFC7zzFCPF2K0VLvzewE4n74wcghIYAAAggggAACCCDgikBEA/HUaeLLHlOeMX2qMaE2V/b156Vj5wISyzxhO2zwLtm08XsCcVc6hnURQAABBBAIRcDnA/HrHgrE4xOIRzgQ11HUJUs/J3VqLJOECWPZkdwJ4seyNbl1hHjvdwpLwXz3R4LrpJhaWkUnvtRAfNH8o9Kj61Z5zoTbXxxsKi9nnmwnzQythvjeQ01l7Oi9snDeUdFSJqXLZpC+PbfJuk315aXnJ8jt23fl3feKSidTiy9lkhF2xPjpcx0lbfJR8tdft501xPVAtYZ48YJz5IcfzOScZh8rV8kk5cwIjZAjwhkhzucsAggggAACCCCAAAKBJ+BKIJ4gQSz5yXzvSPPge8eO3Y1k3Jh9smzp13aupA9GlJYOZg4lLaGye39jU55xhS05Ocd8b9JSklo+JejrA0+bI0YAAQQQQODxBHw9EL9+zTOBePwEBOIRDsT1Im/p8lp2ssxffrkmg97fIQuX1JDFC4/JuXPXJX+BtPaCL2v2ZPLzT9fkrTdX2gkrNRAf+cFuU3M8qyQ2ZVZ0YsxpUw9J9peThxqIZ86SVKbNqiypzWztJ0/8Ji2brpWfTMg+ZVpFKVgknVy6+Jed/LJX30IS09QFL15ojqw0M7frRDbVKy+RNRvq2ck2z529bkeIa1Cvobnuc8c2G+X06T8IxB/v84dXI4AAAggggAACCCDgFwKuBOJ6wKuCfO/4wzzFOnZiOUmTNr7cvfOvTBi3z06wOXBICRt+9+y21RpNmFxOrl+/Jb26fxLs9Qf2n/cLQw4CAQQQQAABdwn4fCD+x/PuogrWTvxE33ukXVca9epJNcM6EB19nSVrMmnXasN/VtFAXEunaEDNggACCCCAAAIIIIAAAgh4i4Crgbi37Df7gQACCCCAQCAK+Hog/ucVzwTiTyUhELfvl4jUEH/YG41APBA/hjhmBBBAAAEEEEAAAQR8W4BA3Lf7j71HAAEEEAgsAZ8PxH/zUCCelECcQDywPis4WgQQQAABBBBAAAEEEAhDgECcUwMBBBBAAAHfEfD1QPzGJc8E4vGSEYg/kUDcd9467CkCCCCAAAIIIIAAAgggcF+AQJwzAQEEEEAAAd8R8PlA/KKHAvEUBOIE4r7zPmdPEUAAAQQQQAABBBBA4AkKEIg/QVw2jQACCCCAQCQL+Hog/td5zwTicVMRiBOIR/Kbkc0hgAACCCCAAAIIIICAbwoQiPtmv7HXCCCAAAKBKeDzgfjZjB7puLhpvvNIu640GuVfs7jygoisG9mTakZkH3gNAggggAACCCCAAAIIIOBJAQJxT+rTNgIIIIAAAq4J+Hog/vcvngnE46QlELdnGoG4a2841kYAAQQQQAABBBBAAAH/EyAQ978+5YgQQAABBPxXwOcD8TMeCsTTE4hHKBDv2aeQ/76bODIEEEAgkgSu/nFTEiaKHUlbYzMIIICAfwpcvHhDZk0/bA8uefJ40rhZLv88UI7KqwRu/HlLxo/d9599Ck8gHjdeDOnQMb9XHQ87gwACT15g6uSDcuXK37ah5i1zy9NPx3nyjdICAgg4BRYvOi4//vB7MBFfD8RvnvZMIB77WQJxeyK5MkJcw/DCRdPLzh1neFsigAACCDxE4NrVW5IgYUyMEEAAAQQeIlCx0osyZOBOWbfmlCxbVUuuXbslp769jBkCT1SgRKnnZNH8YzLzwc0YR2PhCcTHTyonKVLGk8OHLjzRfWTjCCDgPQKZsySVaFGjSv26K6R6zczSsXN+2bje+wMl7xFkTxB4PIFUqePLK7lTScH8M/0rEP/BQ4F4Bu///PK6GuJ2dHgUMV9cdj3e2cyrEUAAAQQQQAABBAJeYMGS6iaYPGoD8fv/fcz+NwsCT1Jg5NgycuzorxEKxIOG5k9yH9k2Agh4j4CG4JUqvyhvN/zYBuL6343Nf7MggIB7BHLnTSXDRpSWkkXn+lcg/v0L7gEM0Urs573/WptA3COnBo0igAACCCCAAAIIuEOAQNwdyrQRUoBAnHMCAQRcESAQd0WLdRGIfAF/DcT/OeWZQDzWCwTi9ix1tWQKI8Qj/83NFhFAAAEEEEAAgUAUIBAPxF73/DETiHu+D9gDBHxJgEDcl3qLffVHAb8NxE96KBDPRCBOIO6PnxQcEwIIIIAAAggg4CMCBOI+0lF+tpsE4n7WoRwOAk9YgED8CQOzeQQeIeCvgfitbzwTiMfMTCBOIM7HDgIIIIAAAggggIDHBAjEPUYf0A0TiAd093PwCLgsQCDuMhkvQCBSBfw2EP/aQ4F4FgJxrwzEs7+cXOYtqiY5s06V9h3zyYuZnpa2rTZE6M1Uv0F2WTDvqH3t+d+6SO4cH8q5s9cjtC19Udcer8nff92WieP3u7yNYsWflW+/vfzI9sO7XtAdiBYtitSolUWWLj7u8n7xAgQQQAABBBBAwFMC7g7EW7XNI5mzJpP25tpyyYqasvyjb2TpItevn/Taq3qtzPLR4q8t3dnfOkveHNMeeZ33MOcuPV6115mTxh/wVHc8st2gfo9c2YtXeBKBeNDvHRE59JCvD8/3jp8vdJL8uac/9LxbuqKWOc+/liUROM8jchy8BgF/FAhPIB6R7/FBrUK+Pv+raaRj5wLy6SenJW++1NKs8Zr/0GbIkFiSp4wne3b/Em52/RzPYv4OtotgxhLuhlgRgUgU8NdA/PYxzwTiMbIRiNvT09tqiAcNxOPEiS7Ro0eV69dvReit9N3pdpLx2fH2tUmTxZXLv/0l//4boU3ZF63bVE+6d9kix49dcnkjiz+qISOHfyH795176GvDu17QjbycI4X0H1BUqlde6vJ+8QIEEEAAAQQQQMBTAp4MxBMmjCU3b96Rf/656/Lhv5wjufQbUExqPLj2iozrzDWb3pCeXbZG6DrT5QOI4AsIxEVGjS0jx45ekpnTDwdTDPq9IyK8IV8fnu8d4QnEH+c8j8hx8BoE/FEgPIH4ogff9w884vt+WD4hX9+zTyH5/fe/5d97EmYg3rpdXokVK5qMHrEn3OwE4uGmYkUvEvDbQPyrFz2iHOPlbz3SriuNRvnXLK68ICLrRkYg3rBRDunYpYDEiBFVfj5z1d69PPvLdenQKb9oWBs7dnRJmjSu3Ll7Txq/9bFcvHBDLlzuIh8M3S2FCqeTlCmfkrmzv5Qpkw5KWCPEdTsTp5SXFCniyQ/f/y4tm62T06f/kHz5U8vIMWUlfoKYcst8oenScbPs3HFGFi6pLhUqvSgnvvlNqldZIgeONHeOEK9a/SXpZf7A6OieX3+9IR3abpRT316R1uZuabaXU0gME8KnSRtf4sWLKW++scIc0zXRcP7gl80ly4uTJEoUkb7vFhHdjnbRoYMXTLubbHAf2n5WrfGS9HmnsJw7d1369tomaz7+Vrp0f1XqvZnd/gHbuP47E7RvlfbGK+R6Qfs0/TMJ5cPpFc1d4Kfsvs+Z9aV8OPmg7DvUVBIlji0H9p8z2//UOn3z9W+SwtwtrlJhsbxe7nnp934xiRsvhvxkzN5u+LG5OfC3PY4Ro8tIqTIZJHq0qLJjx0/StuV6uXv3X9EL7MEDdtrf6Sj93j0+kTJln5cXX3zaHnP1KkvlLzOKiQUBBBBAAAEEEIiowKMCcb1WGT66tL0eiWauVfQar92Da5WlK2va6x29dkycOI4cO/ardGq7Se7cuSfnLneW4fY6M729Hpo3+yuZaq4zwxohrgH3+CDXma3tdeZVyWuuM0eMKSMJEsQywfkd6dZxixw+dEH2HGry4NrrvFQtv9g5Qvy8udbr825hqfLgGvGwuUbsaq5N9RpxwdLq8uWRi5LrlZSSKtVT8ou5Vm74xkq5d+9fe525/8tmku3FyXa9r83gi6zZk9lRfAvnHzPXuHekSLFnzPVpAnn7zY/l6+OXpHjJZ2XQsBL2OvvWrbvyjrkG1O0WKpJemjdea7tk35GmsmbVtzKg/w573ffj2Q6SK9tUs158GT2+rDydNI69KTCw/057Pdq63f0R9DlyppT1a0/JaDOYY+LU8pL/1bTm2v6a3f84cWPYEfa+vET2CPGQ3zviGqMx41+XVKnjy23TN61brJODB85Luw75pGChdFK31nLLt2ptHVm7+pSUMH0Z9HvLlct/O793fLSyVpDzPLa9YaLfXfQ8DxqIh/V9LOgIcV2//zvbpWy5jJIhQyJZtPCYjPzgC1/uSvYdAbcIPCoQ1yyk94Pv+++Y7/vbt52237Pz5k8j0aJHkZHDvrB5R+48qWTuwmqSL9c0uXHjtn0CPVv25HLk8IVgr9e8YOPWN817fYMULfas+QxOY7KWaCb7SCPnz5u/HfVWynPPJbbbun37rsyf+5XNNXLkSCkxYka1398vnP9TZs04IvrZkOmlp2XIwF32iXICcbecMjQSyQL+GojfOeKZQDx6TgJxe4o+biCuF9Invmtrw+YzP12VCZPL2Qu0ju022YC5jwmOc2SdIr9d+kveH1hMEiaKbS/i9IJslhlZ8W7f7fZi/KuvW0menB/a4Dy0kimHjrawF3CrV500jw7lt18KdET0F/ubyOiRe+yHe503skr3ngXtviR5Oo6c/L6tJEs03B6no2RK1KhRZM+BJlKs4Gz57rvfpVmLV6RuvWxSsuhcad4ytw3K8+WeJpd+/cv8ESst16/dkvf6fSalSmcwAXY2E+ivNuVJMkuXbq9K6eLz7B+y2fOqmKD5qvQz+xfWfu492NSUfllvR4hXqPSC9DcBdalic+0XpPmmRIx+wZs88YAEXS/kZ4juz8WLN+wXvPjxY8qkqRWkjflSqF+I3no7h/XInCWpbNvxlm1LHwNOlfopY9RUKpRdYC+g9UL81dfSSr06K6RSlRdtsF/41Vn2S9KO3W+bmxSf29ed/qWDjBm9V8YYW9328FGlpUDuGfLDD7/Lmg1v2D+uK5Z9E8kfc2wOAQQQQAABBAJJ4FGBuF6r9DYBc9FXZ9trle27G9nroBXmWkWDY71uLF96gQ2VN217U6aagQLLl34jP13oaK4zj0j/B9eZR75uKflyTrODGUIrmXLwaHN5z15nfisdHlxn6ujvz/c3ttdCWhqltrnO7NbzNVsapUq1TNLQXB85Rog7SqYUMNdYnbsVkLLF59trxFn2GvEPcw37mcxZWFUSJ4kj1cxgBR18sPtAY+nTY5t9HL5k6efsQIkm5jpT19NAtVbVjyTD84ltUK4DFhaZYLxbr9ds6N25/Wb54mAT6WSut/VR+azZkknz1rlltAk3V62vKzmzTLXX14uX1ZSbJkyvVHaRDV0mTatgLGeZQL+pjDJh95KFx+1rNxq7l1+aLDVrZ5HuvQpK6WLz5PSPf0jjZrmkdt0sUtG8Pp4ZWLHlsway54uzBOIhRoiH/N6xa8/bMmPaYXu9/EruVLLE9EPmFyba83T7rrfs+RDb3ATp3FW/T8y150XQ7y1Bv3csWlrD9GVcKVd6vn395m0N7Hm+bOnXzkBcb9aE9X0saCCu1/fTph6SQWbQiz7VcOK7NpI+1RgGuQTShy7HGiGBRwXiutE9D77v6wjxocNLydMmj2jRdK3JP2LJZ+Z7dv3ay+XoV7/KsBGl7N+HD6cclE93viXFCs22AwaDvl4/b/ceMjdJM02yGYWG7WVKzJNvT16WabMq2dxFb3TqDWMtCasjxHU9Ddjzmkzl2rV/5NjJ1rLtkx9taZRXC6aVcRPLmd9NIxCP0BnAizwt4LeB+GEPBeK5CMQjJRDXw53t+gAAIABJREFUjejIFB1dokutOllEa+BVrbjEBuKFizwjb5gPf12KFH3Ghsz5XpluL+DKl1lg/yjosnFLfZliLu6+/+7KfwJx/YDf/nkjSZdytF1Xy6joyGr9Q6Kj0jWA17H0Kc0XhOPmg//pBB+EGYiXLPWcHYFRt+Yyuy3dzsUrXe2236ifXYqXeNa5v63a5LEjZFo2WysDh5SQkyd+k3lzvpIPZ1SSr768IBPG3a8lrq95f1BxafTmqjD3M2jQPWN2Zfn660vOERllX3/e1gcrZzweFojrl7ASJZ6TPuau8+FD553lX/RLWdBAfPuuRpLy6RH2940a5zRf/jLZ/tBF/7ieOd9JUiQZYd30+B2PCo+b+Lr8ZP646kgRvWDW/dGRV0XNzQd7h9vcydZl/KRyduR9RGqpe/qDlPYRQAABBBBAwHsEHhWIO67VHNcqY8y1igYBo8y1igbiu3RAwYT7Nbd7v1PIXv91NaO4NRCvWGah8zpz/ZZ69qk6HbEbMhDX8OLTz9+SZ1KOeeR15tGTrSRZguFhBuL93i9qrhEvysQH14jFzDXie4OK2UBfg24Nrx37O988zbjBjMLW+W4GDCku3564bK8zdT09rmlTDokO5Lhyo7tkTD/eDi6pZcLpaubJw3q1Vtjg+/tTV2S8GcCgo9kdi+5j8UJz7AAIfXKxXMWMUuy1OdKoSU555tmEMuPDw/LZF42cx6uv05sJGvynTZdAylXIKNUr3S/DN3NuZfsEoqOuuR7f0yZIZYR48JIpQQPxjBkTy+f7mkiqpCNtgK2LhuDv9P7UDoDJkTOFTDVPfOr3mYb1V9nR/iED9aDfOzQQ32me4pz04DzXp0l1fX0qNugI8bC+j4UMxCuVX+R8X5w531EKF5hlr/9ZEEAgbAFXA/GTP7SVBmYU9749Z+1GBwwubm886Sht/T6+c09j8777Q1avPGlvnOkSNBAva57wrlEzizRvssYG3SVMhuHIL1qajCLng4wiZCCuTwjp6HFddIT51MkHZOXyE3aQ3L7DzSRditEE4pzoPingr4H43YOeCcSj5SYQt2+Exx0hrtvQkSTlyme0AayW7vjl56tS2Tw+qoF4dnMh3so8dqqLPiKqIyRezDDBXsAVzD/TfqnRRS/W9NHMgwfO/ScQ1z8ScxZUNXdIJ//nzathcOs2ec2jQdFsGRG98E/81LAwA3EdRZ7xhSTSpsV657bOXeoshfLPso/jBp2wQv/4OP79+d7GNijX/V2xurZ8tORrWbTgmN1GzlwpRWt/16+7Isz9DBp0L1tVW/KYx6X+vHG/Nnq0qFHl0qUbUuS12cECcR15rpNr6FK10hJTr/BXaWcmGq1TN6sdETVh3D4ZM2qv/VIWNBBftaauZHp+gn2djqbv0buQXL78l/N49bFfDbf/uXnXPmqbLVtyG44/Y0qyTDV3qnXklQbiRcwoej1e/cM6yNwQKGr+rcsY84itlq0ZN2bff/qDHyCAAAIIIIAAAuEVeFQgnsiMrBs4rKS5Vklmr1Vs+TgTFI8w1yoaiK9bc0oWPphAXa+RNGxs2miNDcQLm2s7x3WmTqCp4bOW+wgZiH9nQuXZ5jrz5TCuMzV8iPngOlOva59+6oMwA/Hx5klJvUZc7LxGTCELzTViloyTbND9yeYfzGPzX1meoP/euVdHD66w+6s/37The+dx/fF3D0mTdJQdCKITeeq1bJ3qyyS5KSOogyUqVn5Rrl69KX17fipbzfZ1FPha87h94aLp5ZMtP5pR35mtWdv2eW35lT/+uCnT51SWnJmnOLtp8fIast5YxjKDXPSR/GZv35+8baUp6aHH4zBu3ymfZDTl8wjEww7EtSTC1u0N5ezZa07feHFjSqcOm2TVihP2ZzrK+54pJfm6ebpBl5CBeNDvHRqIr13zrb1xokt7e56nlCaNVgcLxMP6PhYyEC9RZK594lMXvd4P+u/wvm9ZD4FAE3A1EL9gBtz9fuVvWzJWl1gxo5tg+hvp0XWr/fc7/YtIm/b55Pl0Y+1nuy5BA3EdRf6lubmqn71BMwldL+i/QwbiuXKndGYv6zbXk3Hmhqn+PdG/F0eOt5TU5kYdJVMC7ez1j+P120B8v4cC8bwE4vad8biBeOWqmWyZkbIl59tHc96on83+zxGIFzMjmmtX/8i2paOzB5svNTobugbilc0IBa3DqIteOI4fu9cGrSFLpowwNbc+39dY0qYYZUN3HRX+7HOJzCQTN+2IcC35oY8P6aiWo9+0emggXsKM1NEvDo7afY4R4mnN3VJ9VDW0QLyXqZ+95dMGtuaiLlOmVTQjK8zon/H3R4iXKPmcndSyYb1Voe6n1icPGohrWRkdDeIY6RH0IyroeolMeZmYZgS3LlpLUL8IOpYXXkwi6zbWs8eRLn2CYIH4ytV15KWME+2q+qWparWXnKPeg7alZVD0kdz2bTbYR3e1RqQ+Hksg7h9/NDgKBBBAAAEEvF3gUYH4B6NK2RC7Y5uN9lplwoNrFUcgriOuxz+4Qa+jl58yJeW6dbo/QryKGZxx5MF15pbtDWTC2H2SOs1/R4jv++IX2WmuM9Oba8GQ15k62lpHdzuuM7/8puVDA3ENOfQa0TGiWsva6eSbxcygh7AC8fXrvpPNn74pr2T70HZXeAPxoH1bvuILMmVGBXk21VipUy+rZDL1Y4sWf1aqmvIsGqJrjfLmrfNIwTwz7KCKHSaAd4yI1+1o+6OG77HXlHot7KhBriVf9poRjlNMWT9ddCS7lj8kEA87ENdzTMszaimS0BbHk6F682HY4F2yaeP3wQJxLWUS9HuHBuJf7P7ZORCl/4PzvKs5zx0jxPPkTR3m9zECcW//FGT/fEHA1UD88PEWdo4Ix9PwQY9Rn2rfbLKFHdt/sqG5Pj2iS9BAfK8pa1XNDIjTcigE4r5whrCPT1rAbwPxfZmeNF2o24+W76RH2nWlUZ+YVFM/oLXuYZ0ay0RnMdeR3PHjx7I1uXWEuNa7ei3f/ZHgOtmjllZxPOK3cP5Re5f0ORNu6x+A7Jkn20kzQ6shrhNHjjV3OHV0hJYyKV02g/TpuU3Wb6pvR0PrZBL93isqnUwtPi0HoiN5fjrXUdIkH2UfT3LUELd/bGwN8Tl2dITuY+UqmewIjbD+2Gze9L2dlElrn+uiI7K7mfpcZUrMt8cz1xyzlhbRenyh7afW9tZaglovcOuWH6S8eRRVR21ryRi9I6xlTe6asHuemQwj6HohT5aZZjSPjuzRbehjkbquTmCqj/9qDUKtSa41xIMG4smSx5U9poZ42ZLzbM10rWOoNyy6dd4i88wkHPv2njU3IvbZiTaWf1zb1t3UWuiMEHflrcq6CCCAAAIIIBARgUcF4hoO7zfXKhPG7rfXKh+Za5UVpnayXlPpCHG9btT61rpo2ZNhg3aZUbgnbSC+yFxn9uz6iR1EofW2c5gR0ToPTGg1xHWSzHGj99nReDoiXK8z+5rrzLWb6knm5yfa68x3zXVmx64FJFWSkfbx9U7mv7XWti6OGuIaJncx14ivP7hG1JHnJ0yZvMEDdoUZiP/19x07yXxHMyGoLuEJxBuZUhtrNr5hB2NoYPKsKYXymbkufNaEsDrx5vzF1SSqmYS0iCmHobXDdQJNHVhRrtT9EclBa6PnzJVCVq3TuuNTTEmWrMECcR1JqNe9aqx1cPXGwq6dPxOIh6ghrk9fBv3escPUutcnKbXOt9Zy/2BEafs9Qkuo7DZ16euZpwH0Wl6/N+U3pSS1fIrj9TrXUNDvHRqI6+jOCmUX2r77zJSRHGLP8xPOQLyiKQcZ1vcxAvGIfDLxGgSCC4QnEN9pPoPfe/B9XwcBxokb3c7zoO9vLa+qnweHDp63E2F+9ulpWbLouKkT3tSWQtHg3PF6nSB6rRn4lsfMi6bLwwLxIR+UtOVPda41XY8R4py5/irgt4H4npc80mXRCtx/Ys2bF58IxPUib+nyWqKjmX8xs88Pen+HLFxSw85afv7cdclfIK19/DJb9mTy80/XpOGbK+2ElTqiYeQHu03N8ayS2JRZ0YkxdZKX7C8nDzUQ16B3+qzKktqEv1rLWyeo0Hp3Olq7UJF08utFM2mnmfyyd99CdlR1MVM7UWdu1wC4euUlZiLIenayTf3SoCPEtf6ehua6zx3MqKPTZsKjsP7Y3DJfgrZs+sH5mKOeNL1MOzVqZjYTPEWxoza6d9lqg/ew9rNH74K2Tvh7726XKZMOSpfur5pa6y+b2pBi6qb/bifH1JmgQ64X9ATVRzBHjytrR5HoKKnFxljrkOlF8qdmIk09nsoVFgULxPX1OhKlvxmdpJP3XLv6j/TottXWsMxfII1MnVFRbpovYofMCKoN605ZT61VNnFyeUqmePOnA/uGAAIIIICAHwg8KhDP9+Ba5e+/b9unCjea0dRaEqRlk7VSz8xZo+VOXiuYzo78/mTrj3YkuYaOGohrnfGaZm4bvc4cM3KvTDfXmRrwhhaI6/Xbh2aiMsd1Zqum6+x15mTTVkFTOu6SmdR8gLnO7Gmu/2LFim4Hgnyyo6G99sr03ARnIK7XmbpO9ZovPbhG/EV6PrhGDGuEeL5X08pWM/hCg3xdwhOIa8kUnbOns7mejGbClpvGZ6CZYG3t6lN2Gzo6UQMXDdl1MtIzFzvJJFPXXK8bddGbCxqS62jkv811YL8+22X7ttPSrOUrwQJxfZJwirlW1GvGX36+Jjs/+0mSmevONs3/X3rQF0/DkWPL2FKEM6cfDrb7o+zP74/+1v8+GiL41pWDrhP0xUG/d/xhnmIdayawS5M2vhn0Yp5sMGUOtQSk1gbXcKynuRbXRZ8avX79lvTq/onze8sX5hpdyzI6yqtoIH7qwXmexp7nP5inO++f544R4jqpZljfxzK9lFSWf/S1Dd9ClkihZIovnr3ssycEwhOI6/f4Dg++7y+Ye9TOwVXATGapi5az6tFli7lxZQb1mYmii5lSpPpEkk7WrIP9SppSRloCS1+/dvVJ8+T9LTMfxmb72ocF4jqX2bzF1WWzedJEv98TiHvi7KBNdwj4bSC+20OB+GsE4va8fdySKQ87+XX0dZasyaStmdk45BJ0Ehh3vIFoAwEEEEAAAQQQQMC7BB4ViD9sb3WE+MdmQrKlJugLuWgg/mruGXYgBAsCIQWeRCD+pJQ1EF+18oQNtFkQQMAzAuEJxD2zZ7SKQGAI+G0g/nlmj3RgtILfeKRdVxr1iRHiDzsgAnFXupt1EUAAAQQQQACBwBIgEA+s/vaWoyUQ95aeYD8Q8A0BAnHf6Cf20n8F/DYQ35nFI50WrfDXHmnXlUYJxF3RYl0EEEAAAQQQQAABnxIgEPep7vKbnSUQ95uu5EAQcIsAgbhbmGkEgTAF/DYQ35HVI70erYj3P3Xm84G4R3qWRhFAAAEEEEAAAQR8QuBxAnGfOEB20isFfCkQ90pAdgqBABMgEA+wDudwvU7AbwPx7R4KxIsRiNuT/EnWEPe6dxE7hAACCCCAAAIIIOA1AgTiXtMVAbUjBOIB1d0cLAKPLUAg/tiEbACBxxLw20B8W7bHconoi6OVOBbRl7rtdYwQdxs1DSGAAAIIIIAAAgi4W4BA3N3itKcCBOKcBwgg4IoAgbgrWqyLQOQL+G0g/kn2yMcKxxajlTwajrU8uwqBuGf9aR0BBBBAAAEEEEDgCQoQiD9BXDYdpgCBOCcHAgi4IkAg7ooW6yIQ+QJ+G4hveTnyscKxxWilvwrHWp5dhUDcs/60jgACCCCAAAIIIPAEBQjEnyAumyYQ5xxAAIFIESAQjxRGNoJAhAX8NhDf7KFAvEzwQHzjp/tk0uxVcuv2HUmTKqn079JI0qVOLmOnL5cP56+RTYuGS9pUyZz99+tvf0iJWp2kWf2K0qFpjQj368NeSCD+RFjZKAIIIIAAAggggIA3CBCIe0MvBN4+MEI88PqcI0bgcQQIxB9Hj9ci8PgCfhuIb8zx+DgR2EK01790vuripd+lytt9ZNm092zoPXvpRtm55yuZMaq7DcRXb/pcalcuLi0aVHK+Zs5Hm2TGwnVSo0JRAvEI+PMSBBBAAAEEEEAAgQAXIBAP8BPAQ4dPIO4heJpFwEcFCMR9tOPYbb8R8NtAfH1Oj/RRtPJHnO0e+PKkDBgzVz6eNcj+7NSPv0iTzh/IjpXjbCB+8dIVOfrND7Jm7hDna+q0eE/SpUluR5EzQtwjXUijCCCAAAIIIIAAAr4sQCDuy73nu/tOIO67fceeI+AJAQJxT6jTJgL/F/DXQPzOulwe6eboFQ47273+519SoUFPmTKss2R+4RmZOm+N/PjzeRnWp4UNxGPFjCFbdhyQgT2a2N+fOfurtO87TkoXyS137t4jEPdID9IoAggggAACCCCAgE8LEIj7dPf57M4TiPts17HjCHhEgEDcI+w0ioBTwG8D8TUeCsQr/T8QV+S1W76Q3kOnSbw4sSVOnFgyZ2wvZw1xDcRjxowul69ck26t68qUuaslWrSocuvWbQJx3qMIIIAAAggggAACCEREgEA8Imq85nEFCMQfV5DXIxBYAgTigdXfHK33CfhtIL76FY9gR698yNnutz/8Im16j5E5Y3pK6pRJZdP2/TJuxnJZM2eIjJ+5wo4Qr1qukNRrPUC2LhklVRv3lclDO8mqDTsJxD3SezSKAAIIIIAAAggg4PMCBOI+34U+eQAE4j7Zbew0Ah4TIBD3GD0NI2AF/DYQX5XbIz0cvepBZ7tzzQSZx078KB+809L5s5ylmsjGRcNlycef2kC8ZcPK0rD9YClfsoCdZHPhpHdk4qyVBOIe6T0aRQABBBBAAAEEEPB5AQJxn+9CnzwAAnGf7DZ2GgGPCRCIe4yehhHw70B8RR6P9HD06gec7e4+cEz6jZgtH03tL4kSPiX6767vT7aTak6ctcoZiC9d/alMnL1Kmr9ZUepXL00g7pGeo1EEEEAAAQQQQAABvxAgEPeLbvS5gyAQ97kuY4cR8KgAgbhH+WkcAf8dIb7cQ4F4jf8H4np6fTh/jaw0JVB0if9UXOne+g3JkyOTc1JNHSF+9doNKVazo2xZPEKSJklIIM77EgEEEEAAAQQQQACBiAoQiEdUjtc9jgCB+OPo8VoEAk+AQDzw+pwj9i4Bvy2Z8lFej0BHr7XfI+260miUf83iygsisu7QQbtkyMBdwV7as08hiRJFQv25hPLziLTLaxBAAAEEEEAAAQQCW4BAPLD731NHTyDuKXnaRcA3BQjEfbPf2Gv/EfDbQHxpPo90UvTa+zzSriuNEoi7osW6CCCAAAIIIIAAAj4lQCDuU93lNztLIO43XcmBIOAWAQJxtzDTCAJhCvhtIL44v0d6PXrdvR5p15VGCcRd0WJdBBBAAAEEEEAAAZ8SIBD3qe7ym50lEPebruRAEHCLAIG4W5hpBIHAC8QXeigQr0cgbk82SqbwqYMAAggggAACCCDgCQECcU+o0yaBOOcAAgi4IkAg7ooW6yIQ+QJ+O0J8QYHIxwrHFqPX3xOOtTy7CiPEPetP6wgggAACCCCAAAJPUIBA/AnisukwBQjEOTkQQMAVAQJxV7RYF4HIF/DbQHzeq5GPFY4tRm/wRTjW8uwqBOKe9ad1BBBAAAEEEEAAgScoQCD+BHHZNIE45wACCESKAIF4pDCyEQQiLOC3gfjc1yJs8jgvjN5w9+O83C2vJRB3CzONIIAAAggggAACCHhCgEDcE+q0yQhxzgEEEHBFgEDcFS3WRSDyBfw2EJ/toUC8EYG4PUupIR75b1a2iAACCCCAAAIIIPBoAQLxRxuxRuQLEIhHvilbRMCfBQjE/bl3OTZfEPDXQPz2zIIe4Y/R+HOPtOtKo4wQd0WLdRFAAAEEEEAAAQR8SoBA3Ke6y292lkDcb7qSA0HALQIE4m5hphEEwhTw20B8RiGP9HqMJrs80q4rjRKIu6LFuggggAACCCCAAAI+JUAg7lPd5Tc7SyDuN13JgSDgFgECcbcw0wgCAReI35pe2CO9HrPpTo+060qjBOKuaLEuAggggAACCCCAgE8JEIj7VHf5zc4SiPtNV3IgCLhFgEDcLcw0gkDgBeIfFvFIr8dsvsMj7brSKIG4K1qsiwACCCCAAAIIIOBTAgTiPtVdfrOzBOJ+05UcCAJuESAQdwszjSAQcIH4P1OLeqTXY7X4zCPtutIogbgrWqyLAAIIIIAAAggg4FMCBOI+1V1+s7ME4n7TlRwIAm4RIBB3CzONIBB4gfjkYh7p9VittnukXVcaJRB3RYt1EUAAAQQQQAABBHxKgEDcp7rLb3aWQNxvupIDQcAtAgTibmGmEQQCLhC/Oam4R3o9dutPPdKuK40SiLuixboIIIAAAggggAACPiVAIO5T3eU3O0sg7jddyYEg4BYBAnG3MNMIAgEXiP89sYRHej1Om20eadeVRgnEXdFiXQQQQAABBBBAAAGfEiAQ96nu8pudJRD3m67kQBBwiwCBuFuYaQSBwAvEx5f0SK/HafeJR9p1pVECcVe0WBcBBBBAAAEEEEDApwQIxH2qu/xmZwnE/aYrORAE3CJAIO4WZhpBIOAC8b/GlfJIr8dtv9Uj7brSKIG4K1qsiwACCCCAAAIIIOBTAgTiPtVdfrOzBOJ+05UcCAJuESAQdwszjSAQeIH4GA8F4h0JxO3JNnTQLhkycFewE69nn0ISJYqE+nMJ5ee8bxFAAAEEEEAAAQQQcFWAQNxVMdaPDAEC8chQZBsIBI4AgXjg9DVH6p0CufOmkmEjSkvJonOD7WCeBz8vZX6u6yxcVENmzz4SapbZq28hrzu4G6NLe2Sf4nXa4pF2XWmUEeKuaLEuAggggAACCCCAgE8JEIj7VHf5zc4SiPtNV3IgCLhFgEDcLcw0gkCYAn4biI8q45Fej9d5s0fadaVRAnFXtFgXAQQQQAABBBBAwKcECMR9qrv8ZmcJxP2mKzkQBNwiQCDuFmYaQSDgAvE/R5T1SK8/1XWTR9p1pVECcVe0WBcBBBBAAAEEEEDApwQIxH2qu/xmZwnE/aYrORAE3CJAIO4WZhpBIPAC8eGve6TXn+q20SPtutIogbgrWqyLAAIIIIAAAggg4FMCBOI+1V1+s7ME4n7TlRwIAm4RIBB3CzONIBBwgfj1YeU80uvxe2zwSLuuNEog7ooW6yKAAAIIIIAAAgj4lACBuE91l9/sLIG433QlB4KAWwQIxN3CTCMIBF4gPrS8R3o9fs/1HmnXlUYJxF3RYl0EEEAAAQQQQAABnxIgEPep7vKbnSUQ95uu5EAQcIsAgbhbmGkEgYALxK8NruCRXk/Qe51H2nWlUQJxV7RYFwEEEEAAAQQQQMCnBAjEfaq7/GZnCcT9pis5EATcIkAg7hZmGkEg8ALxQRU90usJ+qz1SLuuNEog7ooW6yKAAAIIIIAAAgj4lACBuE91l9/sLIG433QlB4KAWwQIxN3CTCMIBFwgfnVgJY/0esK+azzSriuNEoi7osW6CCCAAAIIIIAAAj4lQCDuU93lNztLIO43XcmBIOAWAQJxtzDTCAKBF4i/X9kjvZ7w3dUeadeVRgnEXdFiXQQQQAABBBBAAAGfEiAQ96nu8pudJRD3m67kQBBwiwCBuFuYaQSBgAvE/3ivikd6PVG/jz3SriuNEoi7osW6CCCAAAIIIIAAAj4lQCDuU93lNztLIO43XcmBIOAWAQJxtzDTCAKBF4j3q+qRXk/03iqPtOtKowTirmixLgIIIIAAAggggIBPCRCI+1R3+c3OEoj7TVdyIAi4RYBA3C3MNIJAwAXiv79bzSO9nvj9lR5p15VGCcRd0WJdBBBAAAEEEEAAAZ8SIBD3qe7ym50lEPebruRAEHCLAIG4W5hpBIHAC8Tf8VAgPoBA3J5sQwftkiEDdwU78Xr2KSRRokioP5dQfs77FgEEEEAAAQQQQAABVwUIxF0VY/3IECAQjwxFtoFA4AgQiAdOX3Ok3imQO28qGTaitJQsOjfYDuZ58PNS5ue6zsJFNWT27COhZpm9+hbyuoO70qe6R/YpyaAVHmnXlUYZIe6KFusigAACCCCAAAII+JQAgbhPdZff7CyBuN90JQeCgFsECMTdwkwjCIQp4LeBeO8aHun1JIOXe6RdVxolEHdFi3URQAABBBBAAAEEfEqAQNynustvdpZA3G+6kgNBwC0CBOJuYaYRBAIuEL/cs6ZHev3pocs80q4rjRKIu6LFuggggAACCCCAAAI+JUAg7lPd5Tc7SyDuN13JgSDgFgECcbcw0wgCAReI/9ajlkd6PemwjzzSriuNEoi7osW6CCCAAAIIIIAAAj4lQCDuU93lNztLIO43XcmBIOAWAQJxtzDTCAIBF4hf6l7bI72e7IOlHmnXlUYJxF3RYl0EEEAAAQQQQAABnxIgEPep7vKbnSUQ95uu5EAQcIsAgbhbmGkEgcALxLvV8UivJxu+xCPtutIogbgrWqyLAAIIIIAAAggg4FMCBOI+1V1+s7ME4n7TlRwIAm4RIBB3CzONIBBwgfivXep6pNeTj1zskXZdaZRA3BUt1kUAAQQQQAABBBDwKQECcZ/qLr/ZWQJxv+lKDgQBtwgQiLuFmUYQCLhA/GLnNzzS6ylGLfJIu640SiDuihbrIoAAAggggAACCPiUAIG4T3WX3+wsgbjfdCUHgoBbBAjE3cJMIwgEXCB+oVM9j/R6ytELg7V7/uJl6TVkmhw78YOkS51chvRuLi9lTC9jpy+XD+evkU2LhkvaVMmcr/n1tz+kRK1O0qx+RenQtMYTOQYC8SfCykYRQAABBBBAAAEEvEGAQNwbeiHw9oFAPPD6nCNG4HEECMQfR4/XIvD4ArnzppJhI0pLyaJzg20sz4OflzI/13UWLqohs2cfkSEDdwVbr2efQtKrb6HH35FI3sL5jp4JxFMCUiT9AAAgAElEQVSNCR6IN2g3WEoUzCVv1iwja7fslv1HTsjgXs1sIL560+dSu3JxadGgkvPo53y0SWYsXCc1KhQlEI/kc4LNIYAAAggggAACCASAAIF4AHSyFx4igbgXdgq7hIAXCxCIe3HnsGsBIeC3gXj7+h7pv1TjFjjb/eX8JWnYfrBsXTJKokaNEmx/NBC/eOmKHP3mB1kzd4jzd3VavCfp0iS3o8kZIe6RLqRRBBBAAAEEEEAAAV8WIBD35d7z3X0nEPfdvmPPEfCEAIG4J9RpE4H/C/hrIH6u3Zse6ebU4+c72/1k5yGZv2KzDbd3Hzgu6c3/79upoWRIn8qOEI8VM4Zs2XFABvZoIplfeEbOnP1V2vcdJ6WL5JY7d+8RiHukB2kUAQQQQAABBBBAwKcFCMR9uvt8ducJxH2269hxBDwiQCDuEXYaRcAp4K+B+Nm2DTzSy2kmzHO2u3LDThkweq5MGtpJ8ufKLFoOZdWGXbJq1kBnIB4zZnS5fOWadGtdV6bMXS3RokWVW7duE4h7pPdoFAEEEEAAAQQQQMDnBQjEfb4LffIACMR9stvYaQQ8JkAg7jF6GkbACvhrIP5Lm4Ye6eG0E/9fi33rzoMyec7Hsnz6+3Zf7ppR37nLNpPty8facFxHiFctV0jqtR5gy6pUbdxXJpvwfJUJ0hkh/r/27gTarvH8H/gTmWipeQiltH6tqaWNsWIWSjVmNdcUURQxVDTRUkmTVAyhGZBEBImYh6qqouWiKDHPtNVqDU0JVUMM/3tOKn+Jm7r75uS8993nc9eyVhzv3s/zfp6976pvt32SjE9RAgQIECBAgACB3AUE4rlPMM/+BeJ5zk3XBFIJCMRTyatLYIZAWQPxv37/e0lGvPyoC2bWfeKZ5+Pw/sObw+7TZgbi39iqdzRdc3aMu+SGaiB+yL69qu8Z33aL9atfsjlx5Ikx4vyrBOJJpqcoAQIECBAgQIBA9gIC8exHmOUGBOJZjk3TBJIJCMST0StMoNyB+CH7JZnw8qPHz1J3x+anvvfddevY4Vs94qIrborrbrozLj3npJmvTKkE4pdee2uMGH91HLz3drHXTj0F4kkmpygBAgQIECBAgEApBATipRhjdpsQiGc3Mg0TSCogEE/KrziB0j4h/nyf/ZNMd4Vzzp+lbuWLMo8+aUT87R+vxMorLhen/PCAWOljX6pZCcSnvf5mbLrLUXHTJcNiicUWFognmZyiBAgQIECAAAECpRAQiJdijNltQiCe3cg0TCCpgEA8Kb/iBEobiP+l9wFJpvuF88YlqVukaIcPm3+KHNCWtUMGNcXggU2zHNqvf4/o0CFa/Dxa+LwtdR1DgAABAgQIECDQ2AIC8caef6rdC8RTyatLIE8BgXiec9N1eQTK+g7xPx90YJIhrThmbJK6RYoKxItoWUuAAAECBAgQIJCVgEA8q3GVplmBeGlGaSME6iIgEK8LsyIE5ihQ2kD8wESB+FiBePVi84S43zoECBAgQIAAAQIpBATiKdTVFIi7BggQKCIgEC+iZS2B2guUNRD/0wEH1R6rFWdcadyYVqxKu8QT4mn9VSdAgAABAgQIEJiHAgLxeYjr1HMUEIi7OAgQKCIgEC+iZS2B2guUNRB/br/etcdqxRm/OP68VqxKu0QgntZfdQIECBAgQIAAgXkoIBCfh7hOLRB3DRAgUBMBgXhNGJ2EQJsFyhqIP/u9g9tsMjcHfumCc+fm8LocKxCvC7MiBAgQIECAAAECKQQE4inU1fSEuGuAAIEiAgLxIlrWEqi9QFkD8Wf27VN7rFacceUJ57RiVdolAvG0/qoTIECAAAECBAjMQwGB+DzEdeo5CgjEXRwECBQREIgX0bKWQO0FShuI73NI7bFaccaVLxzdilVplwjE0/qrToAAAQIECBAgMA8FBOLzENepBeKuAQIEaiIgEK8Jo5MQaLNAWQPxp/f6fptN5ubA/7t41NwcXpdjBeJ1YVaEAAECBAgQIEAghYBAPIW6mp4Qdw0QIFBEQCBeRMtaArUXKGsg/tSeh9YeqxVn/PLEka1YlXaJQDytv+oECBAgQIAAAQLzUEAgPg9xnXqOAgJxFwcBAkUEBOJFtKwlUHuBsgbiT+5xWO2xWnHGr0wa0YpVaZcIxNP6q06AAAECBAgQIDAPBQTi8xDXqQXirgECBGoiIBCvCaOTEGizQGkD8d0TBeKXCMSrF+OQQU0xeGDTLBdmv/49okOHaPHzaOHzNl/VDiRAgAABAgQIEGhYAYF4w44+6cY9IZ6UX3EC2QkIxLMbmYZLJlDWQPyJ3Q5PMqlVLv1FkrpFinpCvIiWtQQIECBAgAABAlkJCMSzGldpmhWIl2aUNkKgLgIC8bowK0JgjgJlDcQf3/UHSaa+6mVnJ6lbpKhAvIiWtQQIECBAgAABAlkJCMSzGldpmhWIl2aUNkKgLgIC8bowK0Kg4QLxx3Y5IsnUV7v8rCR1ixQViBfRspYAAQIECBAgQCArAYF4VuMqTbMC8dKM0kYI1EVAIF4XZkUINFwg/ujORyaZ+upXDE9St0hRgXgRLWsJECBAgAABAgSyEhCIZzWu0jQrEC/NKG2EQF0EBOJ1YVaEQMMF4o/sdFSSqa9x5ZlJ6hYpKhAvomUtAQIECBAgQIBAVgIC8azGVZpmBeKlGaWNEKiLgEC8LsyKEGi4QPzhHfommfpXrz4jSd0iRQXiRbSsJUCAAAECBAgQyEpAIJ7VuErTrEC8NKO0EQJ1ERCI14VZEQINF4g/tP3RSab+tWtOT1K3SFGBeBEtawkQIECAAAECBLISEIhnNa7SNCsQL80obYRAXQQE4nVhVoRAwwXiD/Y6JsnU17z2tCR1ixQViBfRspYAAQIECBAgQCArAYF4VuMqTbMC8dKM0kYI1EVAIF4XZkUINFwg/sB3jk0y9bWuG5akbpGiAvEiWtYSIECAAAECBAhkJSAQz2pcpWlWIF6aUdoIgboICMTrwqwIgYYLxKdsd1ySqX/9l6cmqVukqEC8iJa1BAgQIECAAAECWQkIxLMaV2maFYiXZpQ2QqAuAgLxujArQqDhAvH7t/1hkql/41c/T1K3SFGBeBEtawkQIECAAAECBLISEIhnNa7SNCsQL80obYRAXQQE4nVhVoRAwwXi921zfJKpd79haJK6RYoKxItoWUuAAAECBAgQIJCVgEA8q3GVplmBeGlGaSME6iIgEK8LsyIEGi4Q/+O3+iWZ+tq/HpKkbpGiAvEiWtYSIECAAAECBAhkJSAQz2pcpWlWIF6aUdoIgboICMTrwqwIgYYLxO/Z+kdJpr7ujT9LUrdIUYF4ES1rCRAgQIAAAQIEshIQiGc1rtI0KxAvzShthEBdBATidWFWhEDDBeJ3b9U/ydTX+82gJHWLFBWIF9GylgABAgQIECBAICsBgXhW4ypNswLx0ozSRgjURUAgXhdmRQg0XCD+h54Dkkx9/ZsGJqlbpKhAvIiWtQQIECBAgAABAlkJCMSzGldpmhWIl2aUNkKgLgIC8bowK0Kg4QLxu7Y4McnUN7j5lCR1ixQViBfRspYAAQIECBAgQCArAYF4VuMqTbMC8dKM0kYI1EVAIF4XZkUINFwgfufmP04y9W/e8tMkdYsUFYgX0bKWAAECBAgQIEAgKwGBeFbjKk2zAvHSjNJGCNRFQCBeF2ZFCDRcIH7HZj9JMvUNbz05Sd0iRQXiRbSsJUCAAAECBAgQyEpAIJ7VuErTrEC8NKO0EQJ1ERCI14VZEQINF4g3bXpSkqn3+F2aukU2KxAvomUtAQIECBAgQIBAVgIC8azGVZpmBeKlGaWNEKiLgEC8LsyKEGi4QPz2TdI8qb3R79M8mV7kEheIF9GylgABAgQIECBAICsBgXhW4ypNswLx0ozSRgjURUAgXhdmRQg0XCB+20Zp3uW98e1p3l1e5BIXiBfRspYAAQIECBAgQCArAYF4VuMqTbMC8dKM0kYI1EVAIF4XZkUINFwg/vsepySZ+iZNJyapW6SoQLyIlrUECBAgQIAAAQJZCQjEsxpXaZoViJdmlDZCoC4CAvG6MCtCoOEC8d9tODDJ1De9Y0CSukWKCsSLaFlLgAABAgQIECCQlYBAPKtxlaZZgXhpRmkjBOoiIBCvC7MiBBouEL/1m4OSTH2zO/snqVukqEC8iJa1BAgQIECAAAECWQkIxLMaV2maFYiXZpQ2QqAuAgLxujArQqDhAvFbNvhZkqlvftePktQtUlQgXkTLWgIECBAgQIAAgawEBOJZjas0zQrESzNKGyFQFwGBeF2YFSHQcIH4zesNTjL1Le4+IUndIkUF4kW0rCVAgAABAgQIEMhKQCCe1bhK06xAvDSjtBECdREQiNeFWRECDReI/3bdNIH4lvcIxKsX25BBTTF4YNMsF16//j2iQ4do8fNo4XP3LQECBAgQIECAAIGiAgLxomLW10JAIF4LRecg0DgCAvHGmbWdtk+B7ut0i6HDesYWm0yYpcG1//v5ls2fV9ZMnLRzjB//QItZ5gkDerS7zd20zpAkPfW8t1+SukWKekK8iJa1BAgQIECAAAECWQkIxLMaV2maFYiXZpQ2QqAuAgLxujArQmCOAmUNxH+z9tAkU9/qj8e3WPeeKU/E/n2HxHUTBscXV+gWw8dcEededF3cOOnU+Hy3JWce8/I/X4vNd+0bvffaLo48aOd5sgeB+DxhdVICBAgQIECAAIH2ICAQbw9TaLweBOKNN3M7JjA3AgLxudFzLIG5FyhrIH5j95/PPU4bzrD1fT/8xFHvvjs99jj0lHhl6msxfvgJMwPxa2+8I3brtVn02ec7M4+54LIbY+zE62Pnb28iEG+Dv0MIECBAgAABAgQaXEAg3uAXQKLtC8QTwStLIFMBgXimg9N2aQTKGojf8PVTk8xomynHfaLuiPOvig8/jPjNbX+MM396+MxA/KVX/hUPP/5c9anxj36+2+fkWH65pWL5ZZcSiCeZoKIECBAgQIAAAQJZCwjEsx5fts0LxLMdncYJJBEQiCdhV5TATIGyBuK/WmtYkilv+8Cxs9T9819fjCN/fHZces5JsevBJ80SiHft0jluag7JBx5/YKz6f1+I5194OY4YcFb03Lh7vPf+BwLxJBNUlAABAgQIECBAIGsBgXjW48u2eYF4tqPTOIEkAgLxJOyKEih9IH79mqclmfK3HzxmlroH9B1afR/4BmuvHr326/+JQLxLl04x9V+vx3GH7h6jJ1wbHTvOF5VXrAjEk4xPUQIECBAgQIAAgdwFBOK5TzDP/gXiec5N1wRSCQjEU8mrS2CGQFmfEP/l105PMuLtHjp6Zt2rf90Ud/3x0Rg6oE/1s5YC8R226RF7Nr9f/LeTT48dDhgQo4b0jatvuF0gnmR6ihIgQIAAAQIECGQvIBDPfoRZbkAgnuXYNE0gmYBAPBm9wgRKHYhf+9Uzkky418N9Z9b9QfPrT+5/+KnoON981c9ee/3fsdCCn4lBxx8UDz72bFRemXLIvr1i3yN+FttusX5UvmRz4sgTo/LOcU+IJxmfogQIECBAgAABArkLCMRzn2Ce/QvE85ybrgmkEhCIp5JXl8AMgbI+IX7NGmkC8e0f+f+B+OzXWEtPiFcC8UuvvTVGjL86Dt57u9hrp54CcTcnAQIECBAgQIAAgbYKCMTbKue4uREQiM+NnmMJNJ6AQLzxZm7H7UugrIH41audmQR6h8eOmmPdOQXi015/Mzbd5ai46ZJhscRiCwvEk0xOUQIECBAgQIAAgVIICMRLMcbsNiEQz25kGiaQVEAgnpRfcQKlfUL8qlWHJ5nujo8fmaRukaIdPmz+KXJAW9YOGdQUgwc2zXJov/49okOHaPHzaOHzttR1DAECBAgQIECAQGMLCMQbe/6pdi8QTyWvLoE8BQTiec5N1+URKOsT4lesclaSIe38xBFJ6hYpKhAvomUtAQIECBAgQIBAVgIC8azGVZpmBeKlGaWNEKiLgEC8LsyKEJijQFkD8cu/cnaSqe/y5A+S1C1SVCBeRMtaAgQIECBAgACBrAQE4lmNqzTNCsRLM0obIVAXAYF4XZgVIdBwgfhlX/5Fkqnv+tThSeoWKSoQL6JlLQECBAgQIECAQFYCAvGsxlWaZgXipRmljRCoi4BAvC7MihBouED80pVHJJn6bs8clqRukaIC8SJa1hIgQIAAAQIECGQlIBDPalylaVYgXppR2giBuggIxOvCrAiBhgvEJ39pZJKpf/fZQ5PULVJUIF5Ey1oCBAgQIECAAIGsBATiWY2rNM0KxEszShshUBcBgXhdmBUh0HCB+KQvjkoy9T2e+36SukWKCsSLaFlLgAABAgQIECCQlYBAPKtxlaZZgXhpRmkjBOoiIBCvC7MiBBouEJ+40ugkU9/zT4ckqVukqEC8iJa1BAgQIECAAAECWQkIxLMaV2maFYiXZpQ2QqAuAgLxujArQqDhAvGLV0wTiO/1Z4F49WIbMqgpBg9smuXC69e/R3ToEC1+Hi187r4lQIAAAQIECBAgUFRAIF5UzPpaCAjEa6HoHAQaR0Ag3jizttP2KdB9nW4xdFjP2GKTCbM0uPZ/P9+y+fPKmomTdo7x4x9oMcs8YUCPdre5i1Y4J0lPez/fJ0ndIkU9IV5Ey1oCBAgQIECAAIGsBATiWY2rNM0KxEszShshUBcBgXhdmBUhMEeBsgbiE5Y/N8nU9/3rwUnqFikqEC+iZS0BAgQIECBAgEBWAgLxrMZVmmYF4qUZpY0QqIuAQLwuzIoQaLhA/ILPn5dk6t/7W+8kdYsUFYgX0bKWAAECBAgQIEAgKwGBeFbjKk2zAvHSjNJGCNRFQCBeF2ZFCDRcID5+uTFJpr7fCwclqVukqEC8iJa1BAgQIECAAAECWQkIxLMaV2maFYiXZpQ2QqAuAgLxujArQqDhAvHzlx2bZOr7//3AJHWLFBWIF9GylgABAgQIECBAICsBgXhW4ypNswLx0ozSRgjURUAgXhdmRQg0XCA+bplxSaZ+wIsHJKlbpKhAvIiWtQQIECBAgAABAlkJCMSzGldpmhWIl2aUNkKgLgIC8bowK0Kg4QLxMUufn2TqB720f5K6RYoKxItoWUuAAAECBAgQIJCVgEA8q3GVplmBeGlGaSME6iIgEK8LsyIEGi4QPy9RIN5bID7jWhsyqCkGD2ya5cLr179HdOgQLX4eLXzuviVAgAABAgQIECBQVEAgXlTM+loICMRroegcBBpHQCDeOLO20/Yp0H2dbjF0WM/YYpMJszS49n8/37L588qaiZN2jvHjH2gxyzxhQI92t7lzlkrzhHiflz0hLhBvd7eDhggQIECAAAECjSMgEG+cWbennQrE29M09EKg/QsIxNv/jHRYboGyBuKjlxyfZHCHvLJfkrpFinplShEtawkQIECAAAECBLISEIhnNa7SNCsQL80obYRAXQQE4nVhVoTAHAXKGoiPXCJNIH7oPwXi1YvNK1P81iFAgAABAgQIEEghIBBPoa6mQNw1QIBAEQGBeBEtawnUXqCsgfgvFk8TiB8+VSAuEK/9feqMBAgQIECAAAECrRQQiLcSyrKaCgjEa8rpZARKLyAQL/2IbbCdC5Q1ED97sQuSyP/gX99LUrdIUa9MKaJlLQECBAgQIECAQFYCAvGsxlWaZgXipRmljRCoi4BAvC7MihCYo0BZA/HhiQLxIwXiM641r0zxW4cAAQIECBAgQCCFgEA8hbqaAnHXAAECRQQE4kW0rCVQe4GyBuJnLjqh9litOONRr+7bilVpl3hCPK2/6gQIECBAgAABAvNQQCA+D3Gdeo4CAnEXBwECRQQE4kW0rCVQe4GyBuKnL5ImED/6NYF49Sr1hHjtb1ZnJECAAAECBAgQ+HQBgfinG1lRewGBeO1NnZFAmQUE4mWerr3lIFDWQPy0hdME4sdME4gLxHO48/VIgAABAgQIECipgEC8pINt59sSiLfzAWmPQDsTEIi3s4Fop+EEyhqIn/q5C5PM8rjX90lSt0hRr0wpomUtAQIECBAgQIBAVgIfD8T7Hrt+DPjJxln1r9k8BaZNeyd22f7SuP++f8yygdOHbxWPPPxKjBszJSp/fvi/f/74oo+vyXP3uiZAoKiAQLyomPUEaitQ1kB8aKJA/HiB+IwL1CtTanujOhsBAgQIECBAgEDrBD4eiFeO6NRpvtYdaBWBuRD48MMP4/33P/zEGQTic4HqUAIlFhCIl3i4tpaFQFkD8SELpXlCvN8bnhAXiGdx62uSAAECBAgQIFBOgdkD8XLu0q5yERCI5zIpfRKor4BAvL7eqhGYXaCsgfjPFrwoybB/9O+9k9QtUtQrU4poWUuAAAECBAgQIJCVwMcD8cOPXDdOHrhpVv1rNi+ByqtQjut70xybFojnNU/dEqiXgEC8XtLqEGhZoKyB+KDPpgnE+78pEK9eaV6Z4lcOAQIECBAgQIBACoHZv1Tz8kmPxQ2/fCZFK2qWXGC1NZaMs87ZJnqsN04gXvJZ2x6BWgsIxGst6nwEigmUNRA/5TMXF4Oo0eoT/7NXjc40707jCfF5Z+vMBAgQIECAAAECiQVmD8QnX/Ro/Oq6pxN3pXwZBVb/6pIxYsy3BeJlHK49EZjHAgLxeQzs9AQ+RaCsgfhPF0gTiP/4LYF49ZLzhLjfPQQIECBAgAABAikEBOIp1BuzpkC8Medu1wRqISAQr4WicxBou0BZA/GTEgXiJwnEZ1yMAvG235SOJECAAAECBAgQaLuAQLztdo4sJiAQL+ZlNQEC/19AIO5qIJBWoKyB+E/mn5gE9uS390xSt0hRr0wpomUtAQIECBAgQIBAVgIC8azGlXWzAvGsx6d5AkkFBOJJ+RUnEGUNxE/smiYQP+UdgXj1tvKEuN8uBAgQIECAAAECKQQE4inUG7OmQLwx527XBGohIBCvhaJzEGi7QFkD8f5d0gTig94ViAvE234/OpIAAQIECBAgQGAuBeodiB9y+Nqx6upLxJHf/3VMunLnuPKyx+OySY8V3kXHjh1ix11XjcsvmXHs8//sG+uvOSb+/sIbhc/10QFHH79BvPWf6THq7D+2+hx/evHI2LD7uPjX1Lfiupv2iBW+sHBstM758fJLb7b6HI2yUCDeKJO2TwK1FxCI197UGQkUEShrIP6jzpOKMNRs7c+m71Gzc82rE3llyrySdV4CBAgQIECAAIHkAikD8c8t3DXeefu9eOed9ws7fHXNpeLHp2wSu/a6rHrsEkt+Jqb+8z/x4YeFTzXzgGtu3D1OOObmeOyRV1p9ko8C8YUX6RqXXbtbrPGlka0+ttEWCsQbbeL2S6B2AgLx2lk6E4G2CJQ1EO+XKBAfIhCfcRl6ZUpbbkfHECBAgAABAgQIzK3ApwXiHTpEDD2jZ2yx1UrRqeN8cfttz8eRh9wQ77//YVxy1S7xxGP/jNW/tmQsuugC8egjL8cxh/8m3nvvg/jr1L5x2pC7YsONlo+ll1kwLhr/UJw78r6Y0xPilYD7rNHbxFJLfzb+9OxrcVjv6+Mvf54Wa6+3bJx6Zs9Y6HNd493m4PyHR90UD9z/Ytx5/4Gx8KJd4757/xE7bTt55hPi//j7G3HCjzeKXjt9pTkc/zAeuO/F6jFvvPFuXHjpjvHQAy/FWt9YJpbptmC88Lc3Yr89ro4PPvgwFligU9z9YO/42pdH/c99bb7lSjH0zC2r+688nX7YkevEtza9KC6+YudY7vMLxXPPvBo7bHNJvPLyf+Z2NKU7XiBeupHaEIG6CQjE60atEIEWBcoaiB/fKc0T4kPf84S4QNwvGwIECBAgQIAAgWQCnxaIb7f9l5sD5h6x2QYXRCUcv+XO78WwIXfGVZc9UQ2Yl1jiM7Fdz4nVUPmGW/aOc0fdF1de+nhUnpweP+aBOHnA72PxJRaI+x7rExusNSa232mVFl+Zcs/DveOUE38f1139VPzg6HVj402/UH36+/Z794/hp91dDZ933WO1OKbfN6uvRum141din/2/NvMJ8Y9embLeN5eLvsdtENtsdlG8+eb0GHthr2qw/tPmc58/cftYdLEFYudvT64G2k1/PCBOPP6WuPXmP8fmPVeKPfZeI3p/77o57uvqy5+Ih57+fvPrXm6Im3/zp9i/91rx8+awfs0vj47FFl8gxk/aIdZe/dxks2zvhQXi7X1C+iPQfgUE4u13NjprDIGyBuLHdbwkyQBPfX/3JHWLFPXKlCJa1hIgQIAAAQIECGQl8GmBeGUzXbt2nPlakzNGbB3P/2VanPHzP1SD4ztu+2uM/sWMd273O7FHNRiuPJFdCcS/s9WkeOShl6v/7Jc37RnnNYfl3ZZd6BOB+H33/CNuvmPfWGmZ4dW1nTrNV61ZCbQ7d56v+sR55VUolae6H3jykFjmc8PmGIif+NON46EHX4pRZ83oadPNV4yfDNqkGuhXAvG773xhZr8TJu8Yv/7lMzHxwofjp4M3i6eemBoXXfDQHPd1XvMT7r+5bZ+ZfVZ6/Ptrx8RXVx4lEG/FVS8QbwWSJQQItCggEHdhEEgrUNZA/Nj50gTiwz6YNRC/5Y4pcfo5l8YrU1+LVVZeIU4+dv9YcfllYviYK+Lci66LGyedGp/vtuTMi+Dlf74Wm+/aN3rvtV0cedDO8+TiEIjPE1YnJUCAAAECBAgQaA8CnxaIV96NfcrQzWP1NZasBtOVL40cM/r+6utQKoH4r657OiZd+Eh1K4cdtU6sudYycfB+11UD8Y3XOz/++pfXq/+s8gWaNzSHz5/5TOdPBOLPPv1qjLt4+1jrK6M/QVJ5ErzPYd2jc5eOUfkiza+uuXQsteCpcwzEh4/6Vlw++bGYfPGj1XOt+fWl46LLdqqG1pVAvPJkd+X1LZWfj//97+/eL/be7cpqv3Pa13mj74vzLug1S5+VV8Os9wHmEmAAABaySURBVLUxAvFWXMwC8VYgWUKAQIsCAnEXBoG0AmUNxI9OFIif/rFA/MVX/hXb79c/Rg05OtZafeU4e9yV8cCjT8f5Z/SrBuLX3nhH7NZrs+izz3dmXgQXXHZjjJ14ffN/9biJQDztraE6AQIECBAgQIBAjgKfFogPOX3LWOAzneLow26svmbkrHO2ib/86bWZgfgf7vxbjDjz3urWK09nL7hQlzi+72+rgfiOze/2rrzvu/Jz4+/2jhHD741ll/vkE+L33PVC/P6e/WOlpc+sPgleeSp8xZUWiVdffbv6RPjmzU93P/Xk1Fhu+YViyuOH/M9AvP9JG1WfSh919ownxDfbYsU4sfnLNzf/5ownxFsKxH99/TNxw617xTprnFc9phKIt7SvsaOnxK+b9/HFbjOeZP/sZztX313uCfHWXfkC8dY5WUWAwCcFBOKuCgJpBcoaiB+VKBA/c7ZA/MFHn4mtN123OuTHn/5LHHrCGXHr5WdWA/GXmgPzhx9/Lq6bMHjmRfDdPifH8sstFcsvu5RAPO2toToBAgQIECBAgECOAp8WiFdC5Hvv/nuMbA6zv7LK4jH5ml2r7wivvJO7EhxXvgRz+61n/Oemldee/HzQHXHNlU9WA/FJFz0SPzr25mq43XTfAfGNVc+JnXZdtcV3iFe+JPPsM+6uPm1eeSJ8y62/GCf2u7X5qZg9Yo0vjYzp09+PASdvHEceu358frHTY7MtV4yjmv+8dfMXWlZ+PnqH+NrrLhtHH79BbLv5xfH22+9VnzyvfPHnkFOa5hiIv/XW9OYv/1whjj78xuq55rSv6699Oh597tA49KDrq8F65Yn4nwzctPrEuHeIf/rVLxD/dCMrCBBoWUAg7sogkFagrIH4kYkC8eGzvTLl49MdO+lX8dhTf47TfnJoNRDv2qVz3HTbH2Pg8QfGqv/3hXj+hZfjiAFnRc+Nu8d7738gEE97a6hOgAABAgQIECCQo8CnBeLrrL9sjBq7Xbz91nsx5f5/xI3XPxu/OG/bOPTA62OPfdaIyutONtjw89Unv2/57Z+ib/OT5JUv2KwE4qf//K7Y5burxaKLLtD8xZh/iLHnTIlDDl+7xUB8ldWWiHPO3676jvHKu7wroXPlXeUjmmttuPEK8fJLb8agn9wWxw/oEV2a3929585XNP/LwT7VV6msttKImYH43194o3nNhrHDLqs0fwloh+Z3hv8tTjjm5vjPf6bPMRBfd4Pl4uYbn6sG+R8F4nPa1zbbrRw/G7ZF9dwXnv9gHNjnG7HVJhfGIovM70s1P+UGEIjn+BtCzwTah4BAvH3MQReNK1DWQPwH801KMtSzP9ijxbpN9zR/r83pF8SEs38Uyyy52MxAvEuXTjH1X6/HcYfuHqMnXNv8GsH54t13pwvEk0xPUQIECBAgQIAAgewFPi0Q/18brDxJfe1VT8Zlkx77xLJKIL5h93FRCahz+/lf+8ptL+2pX4F4e5qGXgjkJSAQz2teui2fQGsC8S80f8/MdTfsGccfd1Pc0Pw6uo//9OvfI05ofqihvf0cligQH9FCIP7L394Voy64pvld4n1jheWWrlJ99IT4Dtv0iD0PPSV+O/n02OGAAdU1V99wu0C8vV1Q+iFAgAABAgQIEMhDQCD+yTkJxOfNtSsQnzeuzkqgEQQE4o0wZXtszwKtCcQr/S+++AIxdepbn9hKew3ED00UiI+cLRC/pen+OGvslTHmtONiicUWnun3USB+yL69Yt8jfhbbbrF+9Us2J448MUacf5VAvD3fNHojQIAAAQIECBBovwICcYF4va5OgXi9pNUhUD4BgXj5ZmpHeQm0NhCf067aayB+yHwTkwxi9Ad7zqw77Y03Y8fmp74vPLt/LLfMErP08/FA/NJrb40R46+Og/feLvbaqadAPMnkFCVAgAABAgQIECiFwNwE4qUAsIm6CQjE60atEIHSCQjESzdSG8pMoDWB+OJLLBDXXL17HHb4r+LBB16aZYftNRDvkygQP+djgfhVza8+GTB0bHTu3GkWs99dfmZccNmN1S/VrDwhPu31N2PTXY6Kmy4ZVn2K3BPimd1E2iVAgAABAgQIEGg/AgLx9jOLsnciEC/7hO2PwLwTEIjPO1tnJtAagdYE4pU1l07eNcaMuz8GD2zKIhDvnSgQP+9jgXhr/FOs6fBh88+8LjxkUFOLF0vzl9e3+Hm08Pm87tH5CRAgQIAAAQIEyicgEC/fTNvrjgTi7XUy+iLQ/gUE4u1/Rjost0BrA/HJk3aJseOnZBOIHzjfxUkGN/aDvZLULVJUIF5Ey1oCBAgQIECAAIGsBATiWY0r62YF4lmPT/MEkgoIxJPyK04gyhqIH5AoEB8nEJ9xV3lC3G8XAgQIECBAgACBFAIC8RTqjVlTIN6Yc7drArUQEIjXQtE5CLRdoKyB+H6JAvHxAnGBeNtvR0cSIECAAAECBAjMrYBAfG4FHd9aAYF4a6WsI0BgdgGBuGuCQFqBsgbi+853URLYCR/snaRukaJemVJEy1oCBAgQIECAAIGsBATiWY0r62YF4lmPT/MEkgoIxJPyK06gtK9M2SdRIH6hQHzGXeWVKX67ECBAgAABAgQIpBAQiKdQb8yaAvHGnLtdE6iFgEC8ForOQaDtAmV9QnyvjmmeEL/4fU+IC8Tbfj86kgABAgQIECBAYC4FBOJzCejwVgsIxFtNZSEBArMJCMRdEgTSCpQ1EN+j44VJYCe9v0+SukWKemVKES1rCRAgQIAAAQIEshIQiGc1rqybFYhnPT7NE0gqIBBPyq84gdK+MmX3RIH4JQLxGXeVV6b47UKAAAECBAgQIJBCQCCeQr0xawrEG3Pudk2gFgIC8VooOgeBtguU9Qnx3RIF4pcKxAXibb8dHUmAAAECBAgQIDC3AgLxuRV0fGsFBOKtlbKOAIHZBQTirgkCaQXKGojv2nFCEtjL3t83Sd0iRb0ypYiWtQQIECBAgAABAlkJCMSzGlfWzQrEsx6f5gkkFRCIJ+VXnEBpX5myc6JA/AqB+Iy7yitT/HYhQIAAAQIECBBIISAQT6HemDUF4o05d7smUAsBgXgtFJ2DQNsFyvqE+I6JAvGrBOIC8bbfjo4kQIAAAQIECBCYWwGB+NwKOr61AgLx1kpZR4DA7AICcdcEgbQCZQ3Ed+h4QRLYq9//XpK6RYp6ZUoRLWsJECBAgAABAgSyEhCIZzWurJsViGc9Ps0TSCogEE/KrziB0r4ypVeiQPxagfiMu8orU/x2IUCAAAECBAgQSCEgEE+h3pg1BeKNOXe7JlALAYF4LRSdg0DbBcr6hPh2iQLxXwrEBeJtvx0dSYAAAQIECBAgMLcCAvG5FXR8awUE4q2Vso4AgdkFBOKuCQJpBcoaiH+74/gksNe/v1+SukWKemVKES1rCRAgQIAAAQIEshIQiGc1rqybFYhnPT7NE0gqIBBPyq84gdK+MmWbRIH4DQLxGXeVV6b47UKAAAECBAgQIJBCQCCeQr0xawrEG3Pudk2gFgIC8VooOgeBtguU9QnxbyUKxH8tEBeIt/12dCQBAgQIECBAgMDcCgjE51bQ8a0VEIi3Vso6AgRmFxCIuyYIpBUoayC+Vafzk8D+5r39k9QtUtQrU4poWUuAAAECBAgQIJCVgEA8q3Fl3axAPOvxaZ5AUgGBeFJ+xQmU9pUpW3Yal2S6v33vgCR1ixQViBfRspYAAQIECBAgQCArAYF4VuPKulmBeNbj0zyBpAIC8aT8ihMobSC+WaexSaZ763sHJqlbpKhAvIiWtQQIECBAgAABAlkJCMSzGlfWzQrEsx6f5gkkFRCIJ+VXnEBpA/FNOo1JMt3fv3dQkrpFigrEi2hZS4AAAQIECBAgkJWAQDyrcWXdrEA86/FpnkBSAYF4Un7FCZQ2EN8oUSB+u0B8xl01ZFBTDB7YNMst1q9/j+jQIVr8PFr43P1JgAABAgQIECBAoKiAQLyomPVtFRCIt1XOcQQICMRdAwTSCpT1SzU37HxeEtg7pvdOUrdIUU+IF9GylgABAgQIECBAICsBgXhW48q6WYF41uPTPIGkAgLxpPyKEyjtE+IbdD43yXTvmn5wkrpFigrEi2hZS4AAAQIECBAgkJWAQDyrcWXdrEA86/FpnkBSAYF4Un7FCZQ2EF+v8zlJpnv39D5J6hYpKhAvomUtAQIECBAgQIBAVgIC8azGlXWzAvGsx6d5AkkFBOJJ+RUnUNpAfJ3Oo5NM997phySpW6SoQLyIlrUECBAgQIAAAQJZCQjEsxpX1s0KxLMen+YJJBUQiCflV5xAaQPx7p1HJZnufdO/n6RukaIC8SJa1hIgQIAAAQIECGQlIBDPalxZNysQz3p8mieQVEAgnpRfcQKlDcTX6jwyyXQfmH5okrpFigrEi2hZS4AAAQIECBAgkJWAQDyrcWXdrEA86/FpnkBSAYF4Un7FCZQ2EP9alxFJpvvQu4clqVukqEC8iJa1BAgQIECAAAECWQkIxLMaV9bNCsSzHp/mCSQVEIgn5VecQGkD8TW6/CLJdB959/AkdYsUFYgX0bKWAAECBAgQIEAgKwGBeFbjyrpZgXjW49M8gaQCAvGk/IoTKG0gvlqiQPwxgfiMu2rIoKYYPLBpllusX/8e0aFDtPh5tPC5+5MAAQIECBAgQIBAUQGBeFEx69sqIBBvq5zjCBAQiLsGCKQV6L5Otxg6rGdsscmEWRpZ+7+fb9n8eWXN5Em7xNjxU1rMMk8Y0CPtJlqovkqXs5P09MS7P0hSt0hRT4gX0bKWAAECBAgQIEAgKwGBeFbjyrpZgXjW49M8gaQCAvGk/IoTKO0T4l/uclaS6T717hFJ6hYpKhAvomUtAQIECBAgQIBAVgIC8azGlXWzAvGsx6d5AkkFBOJJ+RUnUNpAfOWuw5NM95l3jkxSt0hRgXgRLWsJECBAgAABAgSyEhCIZzWurJsViGc9Ps0TSCogEE/KrziB0gbiX+x6ZpLpPvfOUUnqFikqEC+iZS0BAgQIECBAgEBWAgLxrMaVdbMC8azHp3kCSQUE4kn5FSdQ2kB8xa5nJJnun9/pm6RukaIC8SJa1hIgQIAAAQIECGQlIBDPalxZNysQz3p8mieQVEAgnpRfcQKlDcSX73p6kun+9Z2jk9QtUlQgXkTLWgIECBAgQIAAgawEBOJZjSvrZgXiWY9P8wSSCgjEk/IrTqC0gfhyXU9LMt0X3jkmSd0iRQXiRbSsJUCAAAECBAgQyEpAIJ7VuLJuViCe9fg0TyCpgEA8Kb/iBEobiHfrOizJdP/xzrFJ6hYpKhAvomUtAQIECBAgQIBAVgIC8azGlXWzAvGsx6d5AkkFBOJJ+RUnUNpAfOn50wTiL70tEK/eVkMGNcXggU2z3GL9+veIDh2ixc+jhc/dnwQIECBAgAABAgSKCgjEi4pZ31YBgXhb5RxHgIBA3DVAIK1A93W6xdBhPWOLTSbM0sja//18y+bPK2smT9olxo6f0mKWecKAHmk30UL1Jec/NUlPr7x9XJK6RYq2yyfEN9p4hbj9tueL7MNaAgQINJzAa9PejkUWnr/h9m3DBAgQKCLw7V5fjiEDb4/rr3s6Lr96t3jj9Xfi6Sf/VeQU1hJolcBSS382Nmz+95h11jp3jutPH75VPPLwKzFuzJSo/Pnh//754wecPXKbWLr5XFPuf7FVdS0iQCB/gVVXWzI6duwQe+1+ZVTC8aOOXi9uuP6Z/DdmBwQyEVh2uYXi6927RY/1xs3Sce6B+OLz/zzJBKa+/cMkdYsUbXeBeKX59vj/qhRBtZYAAQL1EHh92jvxuYW71qOUGgQIEMhW4KWX3oxx502p9l8JGQ/o/fVs96Lx9i9wxWWPx1NPTp1jo60JxD+7YJc44qh12/9mdUiAQE0Fzh11X0yd+lb1nH2+3z0WW3yBmp7fyQgQ+N8Ckyc9Gs89++osi3IPxBedf2iSsb/69vFJ6hYp2i4D8SIbsJYAAQIECBAgQIAAAQI5CLQmEM9hH3okQIAAAQKNIJB7IL7w/EOSjGna2/2S1C1SVCBeRMtaAgQIECBAgAABAgQItFFAIN5GOIcRIECAAIEEArkH4gnIsikpEM9mVBolQIAAAQIECBAgQCBnAYF4ztPTOwECBAg0moBAvLwTF4iXd7Z2RoAAAQIECBAgQIBAOxIQiLejYWiFAAECBAh8ioBAvLyXSNJAfKPmb2G//bbny6trZwQIECDQLgVee+2dWGQRX0jaLoejKQIECJRYYIstV4pJFz8S48ZMibNGblP9otcp979Y4h3bGgECBAgQyFdg2eUWiq937xYbrTcuuq/TLa65ZvcYMfLeGDywaZZN9evfI04Y0CPfjTZg58kC8Yq1i6UBrzhbJkCAQDsQmDbtnVh4YYF4OxiFFggQINBQAm/+e3qcdebd1T1/dsEuccRR6zbU/m2WAAECBAjkJjB50qPx3LOvVtv+7h6rR+XvZ/8RiOc21YikgXh+XDomQIAAAQIECBAgQIAAAQIECBAgQIDADAGBeH5XgkA8v5npmAABAgQIECBAgAABAgQIECBAgACBdiAgEG8HQyjYgkC8IJjlBAgQIECAAAECBAgQIECAAAECBAgQqAgIxPO7DgTi+c1MxwQIECBAgAABAgQIECBAgAABAgQItAMBgXg7GELBFuoSiDfd9nzc3vyXHwIECBBovcC///1uLNj8hVt+CBAgQKCYwLTX3o6FF5m/2EFWEyBAgED4358uAgIECBQX2GjjFaJH819+8hGoSyCeD4dOCRAgQIAAAQIECBAgQIAAAQIECBAgQKCsAgLxsk7WvggQIECAAAECBAgQIECAAAECBAgQIEBgFgGBuAuCAAECBAgQIECAAAECBAgQIECAAAECBBpCQCDeEGO2SQIECBAgQIAAAQIECBAgQIAAAQIECBAQiLsGCBAgQIAAAQIECBAgQIAAAQIECBAgQKAhBATiDTFmmyRAgAABAgQIECBAgAABAgQIECBAgAABgbhrgAABAgQIECBAgAABAgQIECBAgAABAgQaQkAg3hBjtkkCBAgQIECAAAECBAgQIECAAAECBAgQEIi7BggQIECAAAECBAgQIECAAAECBAgQIECgIQQE4g0xZpskQIAAAQIECBAgQIAAAQIECBAgQIAAAYG4a4AAAQIECBAgQIAAAQIECBAgQIAAAQIEGkJAIN4QY7ZJAgQIECBAgAABAgQIECBAgAABAgQIEBCIuwYIECBAgAABAgQIECBAgAABAgQIECBAoCEEBOINMWabJECAAAECBAgQIECAAAECBAgQIECAAAGBuGuAAAECBAgQIECAAAECBAgQIECAAAECBBpCQCDeEGO2SQIECBAgQIAAAQIECBAgQIAAAQIECBAQiLsGCBAgQIAAAQIECBAgQIAAAQIECBAgQKAhBATiDTFmmyRAgAABAgQIECBAgAABAgQIECBAgAABgbhrgAABAgQIECBAgAABAgQIECBAgAABAgQaQkAg3hBjtkkCBAgQIECAAAECBAgQIECAAAECBAgQEIi7BggQIECAAAECBAgQIECAAAECBAgQIECgIQQE4g0xZpskQIAAAQIECBAgQIAAAQIECBAgQIAAAYG4a4AAAQIECBAgQIAAAQIECBAgQIAAAQIEGkJAIN4QY7ZJAgQIECBAgAABAgQIECBAgAABAgQIEBCIuwYIECBAgAABAgQIECBAgAABAgQIECBAoCEE/h/eX0ZZRfSxSQAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "fig = px.treemap(df173,\n", " title=\"Total File Stored by Mimetype (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'category', 'mimetype'], \n", " color='bytes'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "million-phrase", "metadata": {}, "source": [ "### Visualize Larger Deposit Folders" ] }, { "cell_type": "code", "execution_count": 63, "id": "associate-shipping", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "branchvalues": "total", "customdata": [ [ 18368.1884057971 ], [ 19340.50495049505 ], [ 19279.3427672956 ], [ 23102.967871485944 ], [ 16591.589371980677 ], [ 34724.28571428572 ], [ 10441.711111111112 ], [ 21285.627272727274 ], [ 38983.07407407407 ], [ 16055.47619047619 ], [ 16127.153846153846 ], [ 12237.234375 ], [ 15209.64 ], [ 12122.231481481482 ], [ 20579.833333333332 ], [ 16477.779411764706 ], [ 13535.666666666666 ], [ 38809 ], [ 14059.342857142858 ], [ 99375.63636363637 ], [ 12228.625 ], [ 26650.597826086956 ], [ 28348.12962962963 ], [ 62310.68518518518 ], [ 138510.31914893616 ], [ 128805 ], [ 19909 ], [ 87776 ], [ 53113.8 ], [ 13624.923076923076 ], [ 8177.555555555556 ], [ 88204 ], [ 4529 ], [ 19701.551136363636 ], [ 43651.09090909091 ], [ 20829.964200477327 ], [ 13378.433447098976 ], [ 13755.5421686747 ], [ 16957.302325581397 ], [ 14989.25946969697 ], [ 20877.871090770404 ], [ 9082.988821138211 ], [ 4126.2 ], [ 9413.8 ], [ 8148.8 ], [ 8682.4 ], [ 4635.2 ], [ 4020.8 ], [ 485.8 ], [ 4737.6 ], [ 11411.603448275862 ], [ 10681.2 ], [ 14694.8 ], [ 12039.5 ], [ 5142.4 ], [ 6179.8 ], [ 6801.666666666667 ], [ 6110.6 ], [ 5819 ], [ 5704 ], [ 5856.2 ], [ 6818.166666666667 ], [ 5908.166666666667 ], [ 6242.6 ], [ 5508.4 ], [ 9188.2 ], [ 7363.6 ], [ 6446.8 ], [ 7190.4 ], [ 7859.8 ], [ 7642.6 ], [ 16956.8 ], [ 8050 ], [ 4363.4 ], [ 6989.4 ], [ 6596 ], [ 7231.8 ], [ 7828 ], [ 6962.4 ], [ 9966.4 ], [ 8122.8 ], [ 12286.4 ], [ 8451.8 ], [ 6704.2 ], [ 5364.833333333333 ], [ 7389 ], [ 9845.8 ], [ 10189.833333333334 ], [ 7599 ], [ 11018 ], [ 5353.166666666667 ], [ 9234.8 ], [ 9104.8 ], [ 6285.6 ], [ 4225.6 ], [ 7591.6 ], [ 4991 ], [ 6790.4 ], [ 9354.6 ], [ 6763.4 ], [ 7938.6 ], [ 7274.8 ], [ 7773 ], [ 8163 ], [ 6328.2 ], [ 6751 ], [ 6610.2 ], [ 7590.5 ], [ 8259.4 ], [ 8333.6 ], [ 5222 ], [ 10692.5 ], [ 6648.833333333333 ], [ 7408 ], [ 5776 ], [ 5455 ], [ 7939 ], [ 4488.4 ], [ 5648.2 ], [ 7207 ], [ 7447.4 ], [ 17512.18018018018 ], [ 3970.5714285714284 ], [ 21704.93820224719 ], [ 41672.583333333336 ], [ 15191.16535433071 ], [ 21279.968692449354 ], [ 13630.714449541285 ], [ 19279.3427672956 ], [ 14584.38813559322 ], [ 25791.35798816568 ], [ 10516.8 ], [ 26778.084905660377 ], [ 8382.712121212122 ], [ 19341.296539379477 ], [ 18726.4 ], [ 17460.921828483628 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "labels=%{label}
count=%{value}
parent=%{parent}
id=%{id}
bytes=%{color}", "ids": [ "all/Chong/.", "all/Furchtgott_Roth/.", "all/Hundt/.", "all/Kennard/.", "all/Ness/.", "all/Powell/.", "all/Quello/.", "all/Tristani/.", "all/misc/.", "all/Furchtgott_Roth/2000", "all/Kennard/2000", "all/Ness/2000", "all/Powell/2000", "all/Tristani/2000", "all/Abernathy/2001", "all/Copps/2001", "all/Furchtgott_Roth/2001", "all/Martin/2001", "all/Ness/2001", "all/Powell/2001", "all/Tristani/2001", "all/Abernathy/2002", "all/Copps/2002", "all/Martin/2002", "all/Powell/2002", "all/Abernathy/2003", "all/Adelstein/2003", "all/Copps/2003", "all/Martin/2003", "all/Powell/2003", "all/Abernathy/Articles", "all/Copps/Articles", "all/Martin/Articles", "all/Abernathy/Statements", "all/Adelstein/Statements", "all/Copps/Statements", "all/Furchtgott_Roth/Statements", "all/Kennard/Statements", "all/Martin/Statements", "all/Powell/Statements", "all/Tristani/Statements", "all/Ness/States", "all/Furchtgott_Roth/birthday", "all/misc/dabelson", "all/misc/dalenab2", "all/misc/dnh061700", "all/Furchtgott_Roth/fccRack", "all/Furchtgott_Roth/freeAd", "all/Kennard/images", "all/Furchtgott_Roth/nomanage", "all/Chong/separate_statements", "all/Furchtgott_Roth/spbroad", "all/misc/spdal901", "all/misc/spdal902", "all/misc/spdal903", "all/misc/spdal904", "all/misc/spdnh901", "all/Tristani/spgt903", "all/Tristani/spgt908", "all/Tristani/spgt909", "all/Tristani/spgt910", "all/Tristani/spgt911", "all/Tristani/spgt912", "all/Tristani/spgt913", "all/Tristani/spgt914", "all/Tristani/spgt915", "all/Tristani/spgt916", "all/Tristani/spgt917", "all/Tristani/spgt918", "all/Tristani/spgt919", "all/Tristani/spgts911", "all/Tristani/spgts915", "all/Tristani/spgts916", "all/Furchtgott_Roth/sphfr902", "all/Furchtgott_Roth/sphfr903", "all/Furchtgott_Roth/sphfr904", "all/Furchtgott_Roth/sphfr905", "all/Furchtgott_Roth/sphfr906", "all/Furchtgott_Roth/sphfr907", "all/Furchtgott_Roth/sphfr908", "all/Furchtgott_Roth/sphfr909", "all/Furchtgott_Roth/spmba99", "all/Powell/spmkp806", "all/Powell/spmkp807", "all/Powell/spmkp811", "all/Powell/spmkp816", "all/Powell/spmkp901", "all/Powell/spmkp902", "all/Powell/spmkp903", "all/Powell/spmkp904", "all/Powell/spmkp905", "all/Ness/spsn909", "all/Ness/spsn910", "all/Ness/spsn911", "all/Ness/spsn912", "all/Ness/spsn913", "all/Kennard/spwek911", "all/Kennard/spwek913", "all/Kennard/spwek918", "all/Kennard/spwek920", "all/Kennard/spwek921", "all/Kennard/spwek922", "all/Kennard/spwek924", "all/Kennard/spwek925", "all/Kennard/spwek926", "all/Kennard/spwek928", "all/Kennard/spwek929", "all/Kennard/spwek930", "all/Kennard/spwek931", "all/Kennard/spwek932", "all/Kennard/spwek933", "all/Kennard/spwek934", "all/Kennard/spwek935", "all/Kennard/spwek936", "all/Kennard/spwek937", "all/Kennard/spwek938", "all/Kennard/spwek939", "all/Kennard/spwek940", "all/Kennard/spwek942", "all/Kennard/spwek943", "all/Kennard/spwek944", "all/misc/statements", "all/Quello/states", "all/Abernathy", "all/Adelstein", "all/Chong", "all/Copps", "all/Furchtgott_Roth", "all/Hundt", "all/Kennard", "all/Martin", "all/Ness", "all/Powell", "all/Quello", "all/Tristani", "all/misc", "all" ], "labels": [ ".", ".", ".", ".", ".", ".", ".", ".", ".", "2000", "2000", "2000", "2000", "2000", "2001", "2001", "2001", "2001", "2001", "2001", "2001", "2002", "2002", "2002", "2002", "2003", "2003", "2003", "2003", "2003", "Articles", "Articles", "Articles", "Statements", "Statements", "Statements", "Statements", "Statements", "Statements", "Statements", "Statements", "States", "birthday", "dabelson", "dalenab2", "dnh061700", "fccRack", "freeAd", "images", "nomanage", "separate_statements", "spbroad", "spdal901", "spdal902", "spdal903", "spdal904", "spdnh901", "spgt903", "spgt908", "spgt909", "spgt910", "spgt911", "spgt912", "spgt913", "spgt914", "spgt915", "spgt916", "spgt917", "spgt918", "spgt919", "spgts911", "spgts915", "spgts916", "sphfr902", "sphfr903", "sphfr904", "sphfr905", "sphfr906", "sphfr907", "sphfr908", "sphfr909", "spmba99", "spmkp806", "spmkp807", "spmkp811", "spmkp816", "spmkp901", "spmkp902", "spmkp903", "spmkp904", "spmkp905", "spsn909", "spsn910", "spsn911", "spsn912", "spsn913", "spwek911", "spwek913", "spwek918", "spwek920", "spwek921", "spwek922", "spwek924", "spwek925", "spwek926", "spwek928", "spwek929", "spwek930", "spwek931", "spwek932", "spwek933", "spwek934", "spwek935", "spwek936", "spwek937", "spwek938", "spwek939", "spwek940", "spwek942", "spwek943", "spwek944", "statements", "states", "Abernathy", "Adelstein", "Chong", "Copps", "Furchtgott_Roth", "Hundt", "Kennard", "Martin", "Ness", "Powell", "Quello", "Tristani", "misc", "all" ], "marker": { "coloraxis": "coloraxis", "colors": [ 18368.1884057971, 19340.50495049505, 19279.3427672956, 23102.967871485944, 16591.589371980677, 34724.28571428572, 10441.711111111112, 21285.627272727274, 38983.07407407407, 16055.47619047619, 16127.153846153846, 12237.234375, 15209.64, 12122.231481481482, 20579.833333333332, 16477.779411764706, 13535.666666666666, 38809, 14059.342857142858, 99375.63636363637, 12228.625, 26650.597826086956, 28348.12962962963, 62310.68518518518, 138510.31914893616, 128805, 19909, 87776, 53113.8, 13624.923076923076, 8177.555555555556, 88204, 4529, 19701.551136363636, 43651.09090909091, 20829.964200477327, 13378.433447098976, 13755.5421686747, 16957.302325581397, 14989.25946969697, 20877.871090770404, 9082.988821138211, 4126.2, 9413.8, 8148.8, 8682.4, 4635.2, 4020.8, 485.8, 4737.6, 11411.603448275862, 10681.2, 14694.8, 12039.5, 5142.4, 6179.8, 6801.666666666667, 6110.6, 5819, 5704, 5856.2, 6818.166666666667, 5908.166666666667, 6242.6, 5508.4, 9188.2, 7363.6, 6446.8, 7190.4, 7859.8, 7642.6, 16956.8, 8050, 4363.4, 6989.4, 6596, 7231.8, 7828, 6962.4, 9966.4, 8122.8, 12286.4, 8451.8, 6704.2, 5364.833333333333, 7389, 9845.8, 10189.833333333334, 7599, 11018, 5353.166666666667, 9234.8, 9104.8, 6285.6, 4225.6, 7591.6, 4991, 6790.4, 9354.6, 6763.4, 7938.6, 7274.8, 7773, 8163, 6328.2, 6751, 6610.2, 7590.5, 8259.4, 8333.6, 5222, 10692.5, 6648.833333333333, 7408, 5776, 5455, 7939, 4488.4, 5648.2, 7207, 7447.4, 17512.18018018018, 3970.5714285714284, 21704.93820224719, 41672.583333333336, 15191.16535433071, 21279.968692449354, 13630.714449541285, 19279.3427672956, 14584.38813559322, 25791.35798816568, 10516.8, 26778.084905660377, 8382.712121212122, 19341.296539379477, 18726.4, 17460.921828483628 ] }, "name": "", "parents": [ "all/Chong", "all/Furchtgott_Roth", "all/Hundt", "all/Kennard", "all/Ness", "all/Powell", "all/Quello", "all/Tristani", "all/misc", "all/Furchtgott_Roth", "all/Kennard", "all/Ness", "all/Powell", "all/Tristani", "all/Abernathy", "all/Copps", "all/Furchtgott_Roth", "all/Martin", "all/Ness", "all/Powell", "all/Tristani", "all/Abernathy", "all/Copps", "all/Martin", "all/Powell", "all/Abernathy", "all/Adelstein", "all/Copps", "all/Martin", "all/Powell", "all/Abernathy", "all/Copps", "all/Martin", "all/Abernathy", "all/Adelstein", "all/Copps", "all/Furchtgott_Roth", "all/Kennard", "all/Martin", "all/Powell", "all/Tristani", "all/Ness", "all/Furchtgott_Roth", "all/misc", "all/misc", "all/misc", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Kennard", "all/Furchtgott_Roth", "all/Chong", "all/Furchtgott_Roth", "all/misc", "all/misc", "all/misc", "all/misc", "all/misc", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Tristani", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Furchtgott_Roth", "all/Powell", "all/Powell", "all/Powell", "all/Powell", "all/Powell", "all/Powell", "all/Powell", "all/Powell", "all/Powell", "all/Ness", "all/Ness", "all/Ness", "all/Ness", "all/Ness", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/Kennard", "all/misc", "all/Quello", "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "all", "" ], "root": { "color": "lightgrey" }, "type": "treemap", "values": [ 69, 101, 318, 249, 207, 77, 45, 110, 27, 105, 234, 64, 25, 108, 78, 68, 3, 18, 35, 110, 64, 92, 54, 54, 47, 1, 1, 1, 5, 13, 9, 1, 3, 176, 11, 419, 1465, 1743, 258, 1056, 1311, 984, 5, 5, 5, 5, 5, 5, 5, 5, 58, 5, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 111, 21, 356, 12, 127, 543, 1744, 318, 2360, 338, 1315, 1378, 66, 1676, 180, 10413 ] } ], "layout": { "autosize": true, "coloraxis": { "colorbar": { "title": { "text": "bytes" } }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "legend": { "tracegroupgap": 0 }, "margin": { "b": 25, "l": 25, "r": 25, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Total Files per Folder (Depth of Two) (Colored by Bytes Stored)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABUwAAAFoCAYAAACMirH9AAAgAElEQVR4XuydBXgUyRZGf2Bxt4XF3d3d3d3d3d2dRRdZWBZ3d3d3De7uzuLOu7fC5A0hMgmxSf56334PhpaqU9XdM6dv3Qr0TQpYSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEEIjClKOABEiABEiABEiABEiABEiABEiABEiABEiABEiABBwJUJhyJJAACZAACZAACZAACZAACZAACZAACZAACZAACZDAdwIUphwKJEACJEACJEACJEACJEACJEACJEACJEACJEACJEBhyjFAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAj8SYIQpRwQJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJfCdAYcqhQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIUphwDJEACJEACJEACJEACJEACJEACJEACJEACJEACJPAjAUaYckSQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwHcCFKYcCiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAYcoxQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAI/EmCEKUcECZAACZAACZAACZAACZAACZAACZAACZAACZAACXwnQGHKoUACJEACJEACJEACJEACJEACJEACJEACJEACJEACFKYuj4FCVTvi/sOnbg6QTGmTYtbY7t42iIrV6IK0KRJiWK+mLp7jweNnKFi5g5vnX/RvX0SJFN5sN6hrQ5QvnhtrNu9HtyGTsWHeMMSJGc3b6u9bB7a0z7XzhwwRDEc3Tra5er2HT8few6ewY+kYV/e5cOUWKjbqg3ED26Bg7gw2H9ujG+qYrNykH1o1KI9qZQtA67Z8/W6nwwQJEhgRw4dFiiTxUKZIDhTLnwWBAgXy6Gk8tf3z/14hV9nW6NGmFmpWKOSpY7i304oNezBmylL89/I1ZozphvSpEv+wi29et2OnLsParQew5N9+iBA+jHtNMf/+6fMXNGj/J6JGjojR/Vo47XP05EXMXbYFJ85cNm2NIH2aLFFsVCmdHwVyeWx8We4T/TvVR6VSeW2ql3dtlLVkc5QrlgvdW9d08RS2XGuerZvza0WPo/0UL1Z0VC9XEKUKZ/fsoX1kP72+Zi3ehK17juHh4+f4+PGTjJvwyJs9HRrVLIU/fo/kI/XwyElmL9mEYRMW4MDaiTh9/hpa9xyL6X91RbqUiTxyGG5LAiRAAiRAAiRAAiRAAiRAAr5GgBGmztAfcbiA9x8+OX3ad+R0I6LaNa7s9FmEcKGROnkCdzttyLh5CPpbEHRuUc3dba03sFWYlimSEyUKZnPx2OlTJULgwIFFku5DlvTJET/OHwFGmHZuXg0J48X8ictvIhWzZ0ppc1/YInF8QpiqIKneYiCSJoyNId0bm/pr3VQiTh/d1fz985fPePDoGbbvPYEd+08gd9Y0InFbI1iwoDa319YNVdz8O2cNlkzuZ3bxCWGas2wrJIwbw0jZODF/R6iQIX6orldet7ZysGz39es3NOkyEl+/fMW00V1sEtUD/pqNo3KvWTipr7QluDmUMh03bRlSJ4uPMkVzIbqIsMdPnmPdtoM4duoSalcqgm6tathcPQpTR1TOr5Vv+IZnz1+a62ffkTMY3K2Rkbm2Fs/e1209vvV2b9+9R40Wg/D67Ts0rlESiRPElvt6IJy9eAOTZq9CyBDBsXzaQIQJHdLsVr5BL7RtVAn5cqTzzOm8bB9rYRouTCip62osWLkNy6YOMC/yWEiABEiABEiABEiABEiABEjArxOgMHWnh0rW7oboUSMZEeLRUq35AGRMncTbhGnrBhXQrE4Zm6sVUCJM54zvgQzC/VeLXxGmsyRa6+/py7FpwUhEihDWSQKt3LgHp7fP+KmZG7YfQueBk1C1TH70bl/nVzH8tP/ofxfjwLFzPipMU+arh+Z1ypoIW1vKr1y3thzf+TbXbt1H2Xo9MLRHE5Qq5HbE4rlLN0y08KRhHUVspzaHUnHXpPNIEwk+sEuDn6TrkHFzMW/5VnMfypYhhU1VpDB1xKTXsUvXyucvX5BbIqNTJUuAKSM72cRUN/Lsfd3mE1htqLK8i1zLs8f1QMY0P97TVKL3/HMqerWrjVxZUuPtuw/IWrIZxg9q6+eE6adPn1FCnqU55IWVRjyzkAAJkAAJkAAJkAAJkAAJkIBfJ0Bh6k4PuSZeNIpPI8IuXb1tjpAkQSw0qF4SRfJmMn9XwWNddIp8qqTxZYr3abPf+cs38O0bTLRcvarFUbZoTqfNbY0wdU+YWoSJW1PyVdRMnrsGl6/dkWnCn5EmeUK0b1rZ1NVSNu08gukL1uP67ftS528mWrVh9RIomi+Lq/QKVelgpoxGkamjy9buwrMXrxDrj6gSqVvph6nFN+88xF+Tl+DU+asSqfga8WNHF44lfpBOxWt2QZ5saU3E7OLVO9CvYz2UlmnnzotFCNsiTF++fou/RPxt33fCREhqFHHe7GnRvkll82ctzoXp6zfvMFAiA7XvlYOKq8ql86F5t79+mJLvXpt0Wm2Byu3xp8i1lRv34tjpS9gwdxj+iBb5pzapaMhXqZ0RaZ2aVXX6d9ckkGWDXsOmYbVEF+9cNtZJsrrX1xpxp/tpuom/Z6yAij2d1l8gZwb0bFvLRLHVbTsUOm3cUrRO5YrnMlPye7atjUcSEampAl6+eoNkieMa+Zc4fixXx4lGZ85YtAHL1u3CvQdPEEIi5nS6fdtGFWUqehwcOHoWjTqN+GH/GX91k6jpZG5euS5dtyqeLl67jVUzBjvtO3LSIsxYuAF/9W/ldO2qeMpeqgW6SjRnjfIFceX6XZMO4Oipi3j//oP0UxQTkdhIIv40FYKldB74j0w/vo6N84e7WbeWPcbgydP/oPcES2nQfhguXL2F7Uv+QojgwX7a//2Hj7go95o0EtluSbXg3j3IJWFqS1tcu9402nHMlGUmTcU9SRGhkYLlJBK2qby00Uh6S5k4axUWrdqO/2QMJJWISOXYvNtod6fk75d7kQrn4RMX4MqNu4gQLgyqiPRvUbcs3rx9j3wV25n7pApC6zJq0mLMX7FVxvoYhJVoRufFtWtFr+E85dsgq1zHI/s0x8SZKzFpzmpsWzxaprxHcDqM3it0u/pyn9Z7pXWx3Nfdu+Z1H41GHzNlCc5cuIE3wjJ61IhyH8uJZrXLmKhRl4reH1SKzpvQy83p7IdPXEB9SfFgKdbpR9wbJ27dj9y7Z+j5rkpf9R89C6cvXEeYUCEkxUEOMzbMixWZkq8RploWr9kp989Zcn2MQMzoUdy8RviPJEACJEACJEACJEACJEACJODbBChM3ekBl8TLnkOn0azrKFQulU+myRaGGAzMXLTRiKKJQ9sb8aYSrrDkQy0rQkGj4vSH/J17jyUKrSeKF8yKRiJXgwb9DVt2HzXCcOrIzk7TxX1KmKr40h/ZhXJnROuGFfFFIq7+nr4C+4+eMVMnNc+p/siv1LgvGkuuPIukXCf5Gs0Uy4m9kUZyrbpUtA2ag7FCiTxoI/Lrs+RsHDp+nkkLsF5yqOoPZmVUrn4vIyj7dKhrfmSvl4iq8RJNOaJ3c0k3kNUcukzdHkaWJoj7B2pVLIy4knswcsRwP53WVmGqoqRmy0FG+uh5k8lUd22n/ujXfIAL/uljpJRzYdppwD/YKbJ0UNdGJiWD5plUDtclutCSw9SWNqk8zl2utZHshfNkMtPnk0gdgrswfV77onGnkZgzvqdEzf4/b6d7wlTFfNMuo0x+TBXbtvS1hZ9O/VfJnlyEp8PZK0YI64uAAZ0b4JXIow79JuLp8/9MtKNOCX4nElGFaQIR6Zpns3iBrHjy7D/0HTHD5IrUseRa0bE/a/FGdJI0CjqN+KlMlf7z7/m4dvMe1swaiogSUfv6zVtz/PrVihtRHyZ0qB8EnUvHdum6VYHcfcgU7F013kmK69h+IeMwX470TiLOcn2r+FR5qdesviTo2rI6Ism42773OFS01qlc9AeJvXHHYXTsP9FMkVaGLhWVjjnKtDLRsk1rlzabqBTPXLwpigk3lei2FFvuQc6F6eOnL2xqi2vXW8OOw81UcH1hoeLW4exVuWZmooTUu698pkVfaOh11LJ+eZNLV3Pvah/r9aUvF9zKYar3wtgxfkdruV9Gk6h+lYU6tduSg1VfVmjE5a7lY52uFb2W9T6bLWNKM2ZdKpZr5cSWqeaf9UWVjt85SzabaeIzJSeu3seUT0F50dNG7oUqwy1l2brd6DtyhkR4jzDpE5zf1/WacO8+ptGs+UX46nlaCRt9+aD3D21TMxkLOq5dKo+evECJWl0QOlRIw7RAzvQuTmnXnLjH5H6ufaS5r3NlTm2uPVvGiWv3I8096t7zQdOFaORoMHmWaWqDyBHDY+2W/Vgk40DvAdbCVP+et0JbMwb0Ps5CAiRAAiRAAiRAAiRAAiRAAn6ZAIWpO73jknjRKDuNhlw1Y5BTtJf+cC9es6uJGJ08wnF6Z6ZiTWRadAGnKfnv3n/EnfuPEEMi1EJLJI6l5Cjd0kRfdREho8VWYarT8V37oa05Ht2LMG3YYThu3nmAdRLdaJF1WsdCVTugiIg8lSAqgVU4bF006ocIyOMSFakSyRKN6RyjtkFFmi6YZImeUhmmP5hVGGjdVTaqHF09c/APOUdVRt8WubxujmPEVBkRVg9loas9K8a5mZPTIvx0eq1Li4uodFUBZonGsshES91XbdqHHkOnYL6IYF10y1qYqhTRPJrVyhaUPJr/X7hGBfM/kkvQIkxtaZMl52fOzKmcxoprw1AjG2dKBObRTZPxW5D/R/G5J0xV4paq093kvNTcl7b0tYVfH5nGX1UWlrKUwWPnOOZ7XD3BjBMVqCo/nOcw1RcF+sLAUiZIlKpGGx7fPMVFGaxjLZcw1bFvnTpAI00LV+tkopFV1GvRiG2NNFRpZEtx6brV8aeRgmMGtDKi+r+Xb0yf6nlWS9+vnjXEHHrEPwuxQyKP18t1oW3QqEON/LSOOtRI3E07D2P/molO8tZyfB0fNSu4LIQsU++tp1hbIvxa1iuHFvKfLcWWe5BzYWprW1y63vR6r916iOknXXTMUqZJ5LkKUeXze5QIqNK0nxHAK6YPctrm0InzssDVMCPJ3BKmeq9x/hKmiIyDaBKJqS8MNDq2bP2eRgha0h5Y6uXWyxuXFn3SyoUPG1okeR2nFzP6Wfu+f4vcvW0WxrMUvXZ+kwjaf4d3NB85v6/bcs3fvvfI3Nc1B7H1bAKNGtZngUbfu1ZOnrtqxOr5yzfNJvEkCl8XHtTI7zzZ0jg9g85cvI6qTftjwpB2TlPybRknrt2PbLln7DpwEi26/4Wxki9ZX7xZSp02Q0zeXWthqv9WWu5JCSQXsW7PQgIkQAIkQAIkQAIkQAIkQAJ+mQCFqTu945J4yVi0CUrLtMN+ner9sLdO+d0vU4g1gs2lH9b6mf7AXLR6u0TQ3ccriZxT0fry1VsTjWVZ0MdWYepW1c/unOmuMNV2aDSg88isVj3G4qFMrVYhpj/0q0i+RY3004haXTRJo+fcW4Fd26BC9Z8//y/QtL46rTarLEKl0qNZ19EmknDzwpE/NEVzdg6XFZYPr59kZIIKnCgS2aerLLtVLMLPtW1UMuh08+kL10On8eoUXmsJptNqS9TqaiINdfVsa2F6SqSFLrzkXLLqYkP12v3pJExtadPHT59MxKRGHmukoVtFp+NqlKmKZ+vinjC9fP2OiXqztMWWvrbws0wztpxvydqd6DdyppFIGnXsmjDt0LTKDwJ/oUzLVtGjEYEuLfSiU3irNeuP4b2boaSzxct0nGhE7eh+LU01vEKY6nEqNupjckHq4lGbdx3FSJGjOt1Zz7dbhLxGLus2OlZU7ml/3rr70MhT62Jh4lz2py3Y0ETCqoR1qVimWFtY6jYaRZhf0i54JEerLfcg58LU1ra4dL1ZrhnnL05U4mmUrkXSpS/SGBUkfYS1AP8ii2GlL9LIXFNuCVONXD8mLwas7y1dB/+LPQdPiZieYHCqAAwiLz4s9wJdPOuEyFxrQeucu+Va0chxS3n9+h1OnL1sUo1ougsdD1osL1MsQltfDGjfaMoGixB0Lkxtueb1RY3mPtX7qeYWziEvSzJI6gmdZWBr0Wv60PHzIiIvmv/XlAe6QNg/wzqYF1cuCVNbxolFmDq/H9lyz5g6f50R5ntWjndK/aHt0fQGE+Q/58JUI2DfScoLfSnFQgIkQAIkQAIkQAIkQAIkQAJ+mQCFqTu941yY6tRKixSxzimph9GpqCpETkhEnRbnP6w1Ik2nM5cqnB21JAJNJVIgyV2nUUEabehRYVqpVN4fopWsm6KLHrkVYRpDpsRrOzT6M4hV5KIeQ6fmR4oQzoguLfojf87SzZK708HkmdRIsrpViqGuTEl2TZyqME2dPL6ZWm9dVEiqdJskP/JrtRpspqU6lwbfJK+lcl47e6iRripwdLq3Rga6VSzCT2WNTnd3XnQqt34+duoyk4vw6MbJMqX8//kiLVNGNY+pTsm1FqaWqfEqgDWfqqXoFGWNqrNEmNrSJp0qq8JUJU3NCoXcbFPrXuNw8/YDp+hHy8buCVPNO9uh3wTDWSW3LX1t4aeRvRrFZimWhWd0RXcVNK4JU+ft0TyWKrRcE6aW/KTOmep5NTpW0zZYovq8SphqxO6uAw5GsOn1qtGQ+sJAo8M1b2p2mdqtUafKTRfS0f7UbazzjWr9dGEtTdHgPLJR+7VIvszQKF2Xil5HmnLAWjDpWM9SvJlJC6BC3r1i6z3IuTC1tS0uXW+Wa8Ylwad8+kpqi/KSfiNdIUdh7PzeqCkHND2HW8J098GTTvccCwMdPxp56vB9Or0l7YGmS9Ccv/kqtJOo43JGxrpW3LpWLOLbElWux9CUBKlknOv9WPtLpeC2JaOdIryd39dtueb1PqY5kDXXqop6Fc06C6BUoWwmHYX1jAP3+l//Xafg6/WlaU70HqLXnnNhaus4sQhT6+vXsq97zwe9nqbMW/vTvVRT1GiktnNhqvckzZe9Ru7tLCRAAiRAAiRAAiRAAiRAAiTglwlQmLrTOy5FmOoP5lKFXI4w1emnFtHo/Ie1iqbLsujM5oWjnKap6w/TTBLpWUIi7DwqTH910SeVGLmzpnVx5fHAksPTWppZMGm03aJVOzBT8k5acgu6hNC1CFPN3ZlTRJTmatSpnJdlmq1Fijk/jgoznQLuUWHq3qJPusiP5qB0LcJU5Y8uNmMtTFXsqhhxHmF6UFaL16gpizC1pU2ax9JWYerZCFONEj504pwZiypmbOlr1yJMLZGiKqk0x6RXCVOL4HEtwlSjPHUxHi1eJUwtEcH7Jb2ARvzpNHh9gaE5KjVlgwrTbhLVqKLHkn5A01a4FmFqkfqWseuZCFPdV9NQHJKFe9aLrHZp8S+N0tSFuCqUyG36wJZ7kHNhqv1mS1tcut4sAkwjLzXa3HmJLC9YwocLbcS8vsixjjBVoaqRpyr23BKmKkOPbJj0w6G7DZmMvZIz2hK1r6JQF5SrVq6ALEyXAO36jDdjXHOCulbcEqaWKGdNP1JFcqxqmbd8q1mcafeK8SaHp44JlemW4vy+bss17zw/8QtJ6bJhxyGzMJJOrdeIe5eKpq3479VrWSAqkov/Xr5BL3N9a5S0SxGmtowTl4SpnsyWe4a+eFKZ7jzCdNy0ZWZxQ0aY+uWvf6wbCZAACZAACZAACZAACZCAWwQoTN0ZHy4JU83H90TyIep0XEvR1b6L1egsEYyx8feQtuZj/bFapXR+p9ykKtb0h7L1IjiWvJllZLXkoT0am/1snZL/q8JUFxPSxU90kRrrcuvuI7OCczCRlfoj/JWkDNAoReuiq7xrRJxrkXTaBl0pffvS/6/6fVeiUzUnoSU3pUYmaV7FrbIqtfWUbZ2iHDx4UJNjUItXC1PNrac59pzLT8sq8Uun9DcLHlkLU0u+S80Hqov/WMqIiQuNPLYIU1va5JqgcGkoeiaHqSVqznqKty19bRGmlghbS300r+vWPcewV6bd6phQ8aYL5CgnLa61x70IU135XXOY6sJo1oLtzv3HKFq9s7luNIpZi1cJUxVumjO4XeOKGDJunsm9qTky1245YHLRaqS3jn+NMNWin+n0Yuc5TJXJTom4VlEUJEhgs61HcphqaggVwpZimQquC4CNH9Tmp6hrjdZTaTltVBdZ4CiFyQnq3j3IuTC1tS0uXW+6+JculGYZ55Z6q/zXa8MieSs07G2izq3vccqpZY8xNuUw1TQgKZLEc+Kikb+6EJt1Og7NG7xRovWTJYpjchK7ttiT5SBuCVOVo0PGzXVarE/30UhQnYZfv2pxk4NXF3uyXtXd+X3dlmteI/NPCEPnqSc05cA5iVJ3LeJS04A8k2fNiukDjRi1LppXuUDlDvLSK7VJXWERpvr8yS/3Zi22jBPXrl9b7hnb9hxHm97jMH5wW7MglaVo1L1G3zOHqUt3dX5GAiRAAiRAAiRAAiRAAiRgDwQoTN3pJZeEqWV6ti5+oitlf/78Gbr4yRpZHXjW2B5Oq5kXlB+zKhJUBuk09vny41wXkBk7oLVZLVlFwqpNe/Hx42d8lVymOjVZxaFPCVPLyukVS+Q1EVv6g1xXV1c501HyUeoiLZq7cMKMlUYSZpHcoypD9h4+ZWST5vXT1dNdKtqGDx8/Sr7IpJKbsYyZQqrH1ZWcN8wfYSSIZUV5XSirXePK5rMLsgiKTjNNnjiOkTNavFqY6jF1AZu7Dx6bKNlE8WPhzIVrJt+milJLxKu1MNV9LFGbfdrXNdvpgjM6ZfeaLLBkEUm2tMkjwtQy1pxHzWrdVPBOH+2Y1/Wb/O+xiObNu49AJYbmWxwl07stC0XZ0tcWYZpYeOjiQymTxpOcjufRf9RMVCiZ10mOa9Sfjt3JsghOZBmvunK4SxGz7glTrbdGomkeyW6SLzSPyMJHImKHytjSHLqr5IWERZp7lTDVc7buORbnZdV2XdnbEjlqWXhJU1XUk3QTllQJmqZBFxpKKAvVdG1Zw0RRqjweJRHKbRtV+mE1dcs0fX0BoXl+XSoqGHOUaYVmtcuYhc+siyVPqKafqCTRjhpJqufXftGx1rlFNVM3Lbbcg5wLU1vb4tr11qjTCFy9cddM/1ap+Uj6SOXl9dv3ZYG2YSa9hSX/sMr6ovkzSwqPpyYy9oZs496U/M27jpgXTh2bVTH3QR3fuqDSsJ6yyJNEAVuK9lXhao4LMM2VxaD0XupWcX6t6LbvP3yArgI/XaLN06RIIIuvdXZavEv/XdM1LFu3y0SXOo+Ad35f1+01X7Bb9zE9l0Y06wuAsrLImU7B15ykfeQ6LpY/C3q2re1iE/TlTtMuIxEjelRJ41JIov7/kHswoIu6zZXnyV15uaD3Bu0Py8JSuuCYRiLrmD1y8gJUfLr1rHLtfmTLPUMjYPVFoUb46nMuQrgw8kzbhy27j+L+w6c/CFNLyhONMtZnCwsJkAAJkAAJkAAJkAAJkAAJ+GUCFKbu9I5LwlR3UWE0SaLPLko+Np2+rj9YNZdetgwpnI64ePUOM/X769evJgJII8pMTkfZVwWpRrPpD+UDx84aKaULd+gCSD4lTLWiOqVcF+c4d+mGSROg+UV1URKdkq5FF6VSqaDyQqOkNN+pTtWvUb6gWSzFtaJtSC+Lmqj4nLNsi8i850YAdWxW1WkFZ91Xf+TroiFaj7fvP5ipp4XyZJSp0uWd8ot6hzDV6CydDrtdVkNXYaCCpkjezGjTsKIRgFqcC1PdboCIFJXKWjKnS2bEl0aBWVZet6VNHhGmOp05n0S7VSiex4gkS3Fp5W+VFhp1V0nkpgom5/ll3etrizDVKMYZizaYxWW0vwvmymDGqSXPoi6A1b7vBBOdXE+i8OpWKeppYarjS8+1ZM0uM770HBpBqVGuOl4sxSuFqUXk6hRsnYptKTpmdTxaL8ik/3ZVFibTsaLT+T98+IS4saKhuox/53kzOw/8RyTcdWjqAreKRls+FRGqOWGdF039MFsWPTt++rJEbr5GJFmEKmXS+CbaURfBsi7u3YOcC1Nb2+La9fZWFusZP305Nkt+XJVfOjU/c7qkRhxbVnnXSPuxU5eavKOvJFJT5bsKMo3I1RXdLYsrOW939yFTcO7yDXQTKa0vVnQxOD1+rYpFflhIzLKfLrSm17B1JKtrzF26VjQyNYa8zNJF7/Sll/Mp/ZbUDRrtW0DGv3Vxfl/XnMa23Mf0XjNVouo1DYmmYtF7XVHJd9uiblkTue1aUbGqL2a0ThrZ/VlePkWJHAGZ0yYTYV8CCePFdNpVU3isl/y6Kq/Xi8TWfMnujRO37kfu3TP0xPrsGDRmjvn/0HIPKlkwu9yHYpv7p6a+0JcMWhav2SkvpWbJ9fFjxK6bFwv/kQRIgARIgARIgARIgARIgAR8iQCFqS+B9++ndU/6+vf2e2X7dCq2Su3NC0cYqe5dxSJMnQtD7zqffzquRvyVqdcDQ7o1RukiOdxsmmWhMI1c1IWlWDxGQFN76IusgZ0buMvaY0f+/9b6AuugrESvC6DpiySWXyOgMwxKyoJ/WeWF4sAuDX7tYNybBEiABEiABEiABEiABEiABHyAAIWpD0AOiKegMPW6Xv/w8ROqy3RejWJ2L1/jr5yVwtRz9DRKtlnX0ZKC4hNm/NX1p8hel46qQu64RJMu/KevUyS1584ecPbSqNYbtx9g4JjZJn2ITse35I/1Cgofpf/uyTRyXXxKI2knDm2PvNnTesWhA/wxdHGouTLTQCOCo0p0LAsJkAAJkAAJkAAJkAAJkAAJ+HUCFKZ+vYfstH4Upl7bcTpdvUrT/mjdoDyqSu5c7ygUpp6jqnJtteQZXfxvX5sjgDXVQmA5w5kAACAASURBVIMOw2TBqUgY2ae5504cwPZq3/dv7Dl0StKepES/TvV+WCjOK1BckvQqumiVLvCk+WXdSjniFecLKMc4cPSsWfRr2mjHNC0sJEACJEACJEACJEACJEACJGAPBChM7aGXWEcSIAESIAESIAESIAESIAESIAESIAESIAESIAEfIUBh6iOYeRISIAESIAESIAESIAESIAESIAESIAESIAESIAF7IEBhag+9xDqSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4CAEKUx/BzJOQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnYAwEKU3voJdaRBEiABEiABEiABEiABEiABEiABEiABEiABEjARwhQmPoIZp6EBEiABEiABEiABEiABEiABEiABEiABEiABEjAHghQmNpDL7GOJEACJEACJEACJEACJEACJEACJEACJEACJEACPkKAwtRHMPMkJEACJEACJEACJEACJEACJEACJEACJEACJEAC9kCAwtQeeol1JAESIAESIAESIAESIAESIAESIAESIAESIAES8BECFKY+gpknIQESIAESIAESIAESIAESIAESIAESIAESIAESsAcCFKb20EusIwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgI8QoDD1Ecw8CQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgD0QoDC1h15iHUmABEiABEiABEiABEiABEiABEiABEiABEiABHyEAIWpj2DmSUiABEiABEiABEiABEiABEiABEiABEiABEiABOyBAIWpPfQS60gCJEACJEACJEACJEACJEACJEACJEACJEACJOAjBChMfQQzT0ICJEACJEACJEACJEACJEACJEACJEACJEACJGAPBChM7aGXWEcSIAESIAESIAESIAESIAESIAESIAESIAESIAEfIUBh6iOYeRISIAESIAESIAESIAESIAESIAESIAESIAESIAF7IEBhag+9xDqSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4CAEKUx/BzJOQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnYAwEKU3voJdaRBEiABEiABEiABEiABEiABEiABEiABEiABEjARwhQmPoIZp6EBEiABEiABEiABEiABEiABEiABEiABEiABEjAHgj4iDA9vesB9D8WEiABErA3Au/ffEGI0EHsrdqsLwmQAAngzX+fEDp8UJIgARIgAbsjwO9fdtdlrDAJkMB3AqnzRof+x2L/BHxEmM4fcBLzBzjYPy22gARIgARIgARIgARIgARIgARIgARIgARIgARcIFC9d1rU7JuObPwBAQpTf9CJbAIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDvEqAw9V3+Xnl2ClOvpMljkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBEgCFKb+p9spTP1PX7IlJEACJEACJEACJEACJEACJEACJEACJEACvkSAwtSXwHvDaSlMvQEqD0kCJEACJEACJEACJEACJEACJEACJEACJBCwCFCY+p/+9tPCtGybFIibKgLGNdmPRU9roEWalXh6963/oc+WkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+AsCFKb+ohtNIyhM/U9fsiUkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK+RIDC1JfAe8Np/YQwLdIgMSp1ToUgQQPj0c03GFV3N57ceQtGmHpDj/OQJEACJEACJEACJEACJEACJEACJEACJEACXk6AwtTLkfraAX1dmIaLEhyzblZB0xQrRJa+RpvJOfDl8zdMaHGAwtTXhgVPTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4BECFKYeoeW3t/V1Yap4goUIgo/vvxhSeavFR6G6idC7+BYKU789dlg7EiABEiABEiABEiABEiABEiABEiABEiCB7wQoTP3PUPATwrRazzTIUio28A0IEzEYHt16g15FN1OY+p9xxpaQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgL8mQGHqf7rX14VpjgpxUaN3WnTJuwFvX35CgVoJUaB2QgpT/zPG2BISIAESIAESIAESIAESIAESIAESIAES8PcEKEz9Txf7ujAt1SIZMhSJiQHltiF0+GDotjAvQoULho451zHC1P+MM7aEBEiABEiABEiABEiABEiABEiABEiABPw1Ab8mTCs07I2KJfOiZoVC/pq7dzTO14WpLvrUd1UhhI4QDE9uv8HcfifQa1kBbJ97FU/vvkXcVBEwrsl+LHpaAy3SrDSfsZAACZAACZAACZAACZAACZAACZAACZAACZCAXyLgn4Tp7oMnESdmNMSLHd0vIfaxuvi6MPWxlvJEJEACJEACJEACJEACJEACJEACJEACJEACJOBNBPyTMK3VajAa1SiJfDnSeRMtv31YClO/3T+sHQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgB0Q8IvCtFCeTDh17goOn7iAGNGjoFurGsiVJTWqNeuPbBlTol3jSk5kJ85ahd0HHBAyZHCzfbBgQVEkbyYM69kUd+4/xuCxc3FSjvXly1f5PDN6tKmFkCGC4dPnLxgybi627j6KN2/fI0HcGOjcohqypk9uB73mchUpTO2261hxEiABEiABEiABEiABEiABEiABEiABEiABv0LALwrTp89fYnC3RkiXMhFmLtqIGYs2YPuSv7BhxyFMnb8OWxaORKBAgQxCx5yneSTnaWFkLdnciFKNMP369RvK1e8pgjUF2jepgvcfPqDb4MmIEim8OfaClduwaNUOTB3VGeHDhcHKjXvw9/QV2LZkNH4LEsSvdI+H6kFh6iFc3JgESIAESIAESIAESIAESIAESIAESIAESIAEfibgF4Vp8sRxjdTU8v7DR2Qr1QIjejdDFon+zFuhLaaO7IxMaZPi1t1HKFWnG3YuG4tIEcL+IEyPnbqEBu2H4dD6fxAieDBzrFPnrqJOmyE4suFfI2G37D6GOeN7OP27RqEGCRLYbocJhanddh0rTgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4FcI+EVhWrxAVjSuWcoJUaEqHVCvanHUqlgYHfpNQNgwodC/U31MW7AeR09exD9/tjfbWkeYrtiwB72GTXMR86YFI4wkbdplFO49eIIcmVOhQK4MKJovs91Gl2pDKUz9ylXFepAACZAACZAACZAACZAACZAACZAACZAACdgtAb8oTMsVy4U6lYv+IEyb1C6DKqXzYdeBkzK1/l/sXjketVsNku2KoUTBrD8J0w3bD2HA6Fk4sHaiq33z7ds3HD99GTv3O2DdtgOIHjWSRJz2tNsoUwpTu70MWXESIAESIAESIAESIAESIAESIAESIAESIAG/QsAvCtN0qRKjT/s6BtGHj59M5Oi4ga2RJ1tas3hTgcrt0bJ+eYz8ZyF2rxjnNKXeOsL07MUbqNK0H7YuHo0/fo9kjvX23QczxV+n7799914+CYRQsliUluf/vULucm2wZHI/aEoAeywUpvbYa6wzCZAACZAACZAACZAACZAACZAACZAACZCAnyLgF4WpystxA9sgWaI4Ztr9zMUbJU/pGCcxOmLiQixdtwsFZRr9kO6NnXhqftMG1UugYok8CBM6JKo27Y/fo0bEwM4NTNTo0PHzcP/RU8z4qxs69p8IjTDt1a4OwocNjR37T6CTfLZ96RgjVO2x+KowrdEnnT0yY51JgAR8kcDjW6+xZeYVU4OosUOjcP3EvlgbnpoE/C6B5aPO4P2bz6aC5TukRMgwQf1uZVkzEvAmAmd2P8CpnQ/M0VPmioa0Bf7wpjPxsCTwM4FDq2/hqsMz8w9ZSsVGogyRiYkEvIzAx/dfsHT4aXO8oMGDoHLX1F52bB7I/gm8fvERq8edMw0JHT4YyrZNYf+N8oMtmD/A4ada+TVhWqZuD5Qvnhv7j57FsVMXETN6FPRsVxvZMvx/TFy6dgflG/TCtFFdkC3j/z/XVe6nLVyPrLI41KRhHXDn/mMMGjNH8pxeQLBgQc0xerSphSiRwuPZi1foN2oGDh0/j0+fPiN+nD/QqkF55M+R3g/2nG1V8jVhqoMoVb7ocNh137aacisSIAESEAL5KsXHlPaH4bDtPobtLIY7N17i/vVXZEMCJGBFIGmGKHj18APGNdmPYo2ToHDdRHDYfI+MSCDAEajcMw3KhZqDr1++YfWHOlg/5IxEPwQ4DGywLxAIEfY3ZKkZHzVjLELkGKEw/kQZLJzoKLdYSMArCGQpEAtHlt3GKpFiTcdkQZzE4XH50GOvODSP4Q8IpCsWE2smXcS22VfQaXZuhA4dFDdPOr7AYfEaAinyRhOf9RDOpalfE6a2tFajQf8cPx8b5w9HoECBbNklQGzjq8L0c6BvmDXgRIAAzUaSAAl4DYERG4thxYgzRpgO3FgYc0acxLHtFEFeQ5dH8S8EyjROhuRpo2Biy4NGmCZKFxn/yp9ZSCCgEVj6vjbKh3YUpqve10HLUAvNn1lIwLsJRIgREt0OFkWduEuMMB15oASKxZ/j3afl8QMQgY4jcuLNzfdGmDYemRkvbr3F+rHnAxABNtUtAs2m5YCDzLJQYdpuak5c3v0Iu2ZdJTQvJFCxTxp8Erdoz8JU85feuvsQLbr/ZabeVy6VzwsJ2f+hKEztvw/ZAhIIUAQoTANUd7OxniRAYepJcNzN3xGgMPV3XWo3DaIwtZuustuKUpjabdf5SMUpTL0fs38QpqP/XYyFq7ajYsm86NKiGqNLnQ0bClPvv454BhIgAS8kQGHqhTB5KH9LgMLU33YtG+ZBAhSmHgTGzb2MAIWpl6HkgVwhQGHKoeEWAQpT7x8f/kGYej8l+z4Dhal99x9rTwIBjgCFaYDrcjbYEwQoTD0Bjbv4SwIUpv6yW+2iURSmdtFNdl1JClO77j5vrzyFqbcjBoWp9zP27TNQmPp2D/D8JEACHiJAYeohXNw4gBKgMA2gHc9m/0SAwpSDwrcIUJj6FvmAc14K04DT155pKYWpZ6h5bB8KU4/xsset/awwDRwkELZ+qI8qcRfiyd23hm3hmglRt08GtM69Bs8fvfczvCu2SYn4qSJiZJO9fqZOrAgJ+FcCHhGmGQvEwOhNxfHF2QIfqydfwJg2+38ZUfkWKZAy6+8YVHfnT8eKmTAcIkUPidP7Hnr6PMXqJMbG2ZfN/rYer1H/jKjRNS2+fP5q9tPFTW5f+g9Tex/FwY133KxLELnv5q+SAFsXXEX8lBExYl0xVIq3wNP1546+R8AjwrTv+kJIU/APU1l99loviFM76kK8ffnJqSEJM0ZGp/l50DzpClcbp8fIVSUedi+47mkAC/6rgVYpVuLp9+e/pw/EHQM8AY8I07ID0qB4t5T4+tlxUag3zz/CYeVtLOl0HB/fffE2li2W58GxZbdwaN4NjH1WGX1Tr8WLu++87Xw8sM8Q8KgwbdE/C2q2TYPyKRfg0d03TpVccETGRKPtuHTyqc9UnGexGwKeEaYl2ydHIVkM8vf4YfDy8XscknvPgp4n8OHtZ7tpNytqGwHPCtMBe4oheJjf0DX9WqcTxU0bER2W5EXbJCttO7kXbhUtYVhEkN9UF/c9QuyUEdB9Q0G0iLPMC8/g+UNRmHqenb3saTfCNH3+P9B9Zl60K7AO966+8lN8KUz9VHewMv6cgEeFaceJOVEj2RJvoeKWMK3cNhWCBg+M+cNPefrcK+7UQPlY883+th5PhamK2uFNHV/gBA4cCDlLx0FPuX9WTbwY/z1x/WVTYllJvcngTOhcchOFqad7zW/s6BFhal3jqTcrYXiVnbh06ImLDVEZGjpCMLx6+sHVhsZPFwm1B2fAgJJbPQ0jfNQQeClj9RsXM/c0Q+7oSMCjwjS83D9nNzlk9g0fPQSaLsqNy3seYUWvk96GlMLU29D66oE9I0xL1kwCh/0P0LPO/++fFKa+2o1++uQeFaY1/8yA7JXj4t+mB3H54GNEiRMadUZmMi9LBxX1/DPbT0MKwJXzjDCNlSI8ag3PaF6erxh6WsaJ4/dB3xSmJdoll99UQbBq2BkK0wA8nn2r6XYhTMNGDI5h64qiV4WtuHTs/z/ispWMjUaDMiFE6N/w4PorDKy508gAFZgJ00bCb0EDI2rM0Agpb0j6Vt6Gh7feYM3TWpjS4yiylYiNGBIBtmXuFcz70/FLcIkGSVCtcxqz38ObrzGk7i48vvMGldo6RpAmTh8F+1bfxPxhp9BlWm6kyhENj2+/xqUTTxEi1G+MMPWtUczzBigCXiVMU2SNiu7T8qJ2qqWGn/XfVU5qhGWS9JGxb80tzBhwHC2GZUHhGonw6eMXLJ94DgtHnYYK09RyH9B7Rspsv+PJvbfoU3UbYiYIi/6LCuLzp6/YMPMSZg48gS6THe8ZD26+wsndDxA9bhgMbbgben/rOCEnVFZqVOiWhVcxZ4gDBi0thFxl4uLGueeYNfgEOvyd0+l4k3sddbXPnQtTy4ZLb1RH/5rbTcRrvorxUa93evMFWaP1R7XYi8cSyTf7VEWpTzCcO/wY4zscxNCVRbBh1iUUr5tEVkwERjbfiyNb7gao8WavjfUqYarys9WUHLh97gUiRAuJOT2PO0WY/h43NNrOzGXe+gcOEhhbp13CugkXMP50WYSRcX3p0GP0LboFhRokRvnOKc118vjmG/xVdw+e3nmL0m2SI548q4MEDYQo8qwOIc/qYZV34rE8qxlhaq8jz+/V+1eEqbYmfblYKNkrNQZl2oBQcn+sNTELYqePaKJQDy+4gXWDz6Dh7By4uOsh9k67irC/h8Co+xXwV9HtOL/1AeJkiIT607Ohf7r1KN49JXLUSYDf5GXaqbV3sbDdMXz7+g0Upn5v3HhFjTwjTPV7Q6naSdG73jacPPDAVMNamOYuERctB2ZFSPntc+/GK3SvtQUv5LfPH3HDYuCMAogcLZR5tq+cfh4zhp9w9XOvaB+P4fsEPCJMw0YOjkl3KqFPno24euT/0crBZSzlqZUA26ddRoiwQdF4YjbESx9J7nFfsVdmiiwffNo0dPar6ubPKfJEQ4Q/QmLH9CvYMP4CEmaKjObTcuDszgdGZoWSl6oz2x3Bhb2PkKbwH0bIBg0RBJ8/fsXcLsdwYgO/R/rUyPGMMK05LCPunn+Bj++/IHnuaJjW0vEFogrT9ovz4tjq28gm0v3Th6+Y3PQAzu18iJAybuqPz4LE2aIiyG9y/xHRun3aFbPfjOfVjHgt1SEFWidYgX9kDC7ocRzpS8RCtIRhsGfuNdn+jNm2QMNEKN05lXxfDGS+L06osxfRE4cz5/0i98adM65g7/zr6LI6P3bOvIp89RJCf6BMaXbQ7FN9aAZ0TrPGCe/QIyWxbOApHJU6e1dhhKl3kfU7x/XzwrRljjXosyA/RjXbh6NWP9SjxAiFqQ7l0aHgelw7/RyV26dC6pzR0KfSNpRrkVym7qdHgzTLjQxoMy473rz8iGm9jmHlw5pY+c95zOx3HBEkgmXRzWooG2UugovwXHyzKuqkWGZkaafJuYy8+KvFfnO82r3So3WuNbh37RXKNE2GQjUSor2cO0TooJiwrzTO7H9IYep3xjVr4o8J+IQwVRFat2d6tMi92lzzhaonRKVWKdGm4DoED/kbZpyogL7VtiFJhiho0DcDWuVdi5sXXqD37Hy4Lz9gpvY5hnZjs5spdRphqscrKFPd28r+Gv35z94yOLz5jokCVVmqXy70z6HDBcXkQ+Uwtu0BXDz2GEtvVkfhMDNNb1ofz63udS5MdZp9vkrx0UHOUyXBQoQOL19kHSqiSbaVuHP5Jco3T44iNROjea7VyFshHko1TOoUYTr5UFmMbLYXm+TFUulGSVGsdmK0lLay+H0CXiVM48iPn2H7S2BC4/3Yu/gGrKfkNx6XBS8evMeSIafMl+XWU3Pgb9kubeEYKCySVCNMw0UJjqk3K8v0+hV4JF9+W07OLs/Wb5jU4iBKtEiGqn3Sok2aVfhPntV6vHcy/X9urxMUpn5/iNlNDX9VmGaoEBtFO6fA0OybjCwNLPdrjUANKffrnkeKYUGbo1AxlihHVMxqfAgZK8VB4fbJcHbzfazpfxoF2yRFZHm5cGn3I5QfnA5/5tyE968+o9mS3LgkknXbuIsUpnYzmjxWUc8I0/fvPuPmpReo3yU9amVznHJqEabPZfr0ouNV0LTwKlw+/Qy12qVFupzR0anyJnQdmwtPHrzFtKHHEVrux32n5MeAJjtFrmZx8fPX8ruIxf4JeESYZiwdC/XHZkGrBMtdbXijiVnlO2lg/NvkgLnH/SnCaXqbwzi56R5mPKuGLf9ewvzuxxFWnu3jr5RH+xSrEE5+Tw8/XgpDS26Dw8Z7SFcsBur9lRntkq/CyFOlMaX5ITOVOk7qCCjWKplItoP2D95OWuBRYRpIZqWNuVgO3TKsNR5k9LmyaJd0pZHdKkyHHC6JKSJJVVbmkZd/5XukQftkK1F3dCYZEyEwod4+mYUUFCoqR1bYiZsnn2PKoyoiOq9ifjd5QSizhvTvmydexJJ+J83YmXirIhpGXoRgoYLInyuhQ/KVRpY2ke+LKu2ntjiE+vL98JkEdlgiTIfI8bUeu+dcQ8HGiZG3TkL0z78Jk+5VxsCCm3Hr9AtEjhUKI06VQZPoi039vavYgzD970MC72q+m8cNH/yar5zXq0/q54WpTr/XCNJ/Oh/GNsmrZyml5Md7norx0KX4JvORbrP6SS0UDzsLpZskQ8aCMdG7ouPUggqtUxix8Wf93UaYdiyyAVdPPjP/pvs0ybQSD268RjB5+6VvU7QUrJYAResmNsdXYZqjVBx0KeF4rt7z8+G8RM4sHXvW/L2RTGFV+cocpl49PHk8EviZgEeF6Yj1xX6ahq4Rn5cdnrgaYaqCM6dc851KbHS85mfnwwWJbl8y1vENaCj5MfL+zWeUbZYcmQvHRI/yW8znlVqnNFGpQxrs/kFw9ptfAGcOPMTS8Y73jDZ/ZZeo9CBGki69Xg3dK2zBZYlUN/eTARmNlJ37p4OnhWm1TmnwQX50aQkpL3UuSt3/7nwQZw88Qsn6SZBTIlctdQ4mU1w2vayLklHmmLZYC9OJe0qjeKTZ5jgJ00TC0BWFUSXhIg5LOyDglcJ0xMGSqBZunvmiay1MK8sX5bSF/sDMLkdx9dhTp+nz2SvGdRKmisr62Zq7WnwUqJsI/YtvMcI0reROHVpxhyFaqnVyJJBovHH191GY2sEYs5cq/oowDS9RVE0X5sIZkQXrh5zFsJvlMKHcLtw68dw0v9zAtAgaMgi2/30RbdbmR99Ua1FtTEbcOPYM2WvFN1GmTRflwoHZ15GlejzcPfsCG4Y6PgdSl4hhROzI/FspTO1lMHmwnp4Rph/efzbSc/LWMlg79xJWz7zgJExTZf4dBSskRMsSji8uNcp056MGyBl+Kup2TodshWLjry77cf74Y6f7ccPuGVz83INN4eZ+lIBHhGluiSIt2iIpeuXY4GprJt6siBHlduD6CcffydUGpkMw+U46u9NRI0z7iZRSCaal386i2Pj3BdyXl+99txdBA5FeWjTCef6HWmgsoqqt5Dy/f+kl1ow6i0fXX/tRiv63Wh4VpumKx0Se2gkwrsYeA6XFjJw4uuY2Di+/ZYSp5jatF36Bub8EkVlDc9/VRJNoizH8ZGn8VXkXLh14bPbTKNWPkhN3Sf+TRpAOL7PdaWq//n1Q4S1O42ja06rolnEdHouL0UjkT99dTM7q8ZG3bkIMKbb1J2E6YF8x1I+w0JwrbpqI6LwqP1rFXw4V/pp7XHPyFmudTL5TRsZE+U7pncUuhOk7XxKmISlMbR578wecxPwBDj9sX713WnwO9A2zBpxw8TiWRZ+6l96M5w/fYYQs3NIu/zpcP+N4k67WKTXqyJRS63x8GjlVL9Uy5JEoqRQyPXZInV1mWxWelr+rMG2RQ6LGvudBtf577Z7pkF0kyTe5C+g02Ue3JNK06Eazf8rsv2NwbcfjDd9QVOTtNWz6vhhL1Y6pETtpeApTm0cENyQBzxPwqDDt/G9utJDoSeuiEecqAF2bkq/CNJXcQwbW2Wl2G7amKHYsuea0AJPlWM5zmFr/3ToidOSGYtg05zK2zHd86VNDUn/EShTOCNMtr+uhZvIleHTbcYGHqhItnzhdFJkSf8DTwtQ6h2nzP7Mg8h+hnBamqtElDWInDo9hjR2/DGnZ+LwOGsqLo0QyPdpamFov+sRFoDw/Zn1jT68Upn03FELDOI6pK6yFqUZGl+2QEnlrJDBRAqv/OosVI8/CuTCt3DMNMpeKBcgX7NAypfmJTLnXqfoqTJNki4IxMuVKi/XfOSXfN0aN/zynR4Wp9aJPryVX79HFN7Gsm4OZDjjxbTX0Sroaz25/X4y0QzLEkbQV0+rsx5ArZWTa/ka031wAIwtsRfcDRdE/7Xr8eb2sEalNFuRCvCyR8eG148ss/Z77SiKrB2XeSGHqP4eeiTzudrAo6sRdgsgyM27kgRIoFn+Oq63VRZ8swjRxmsgYv7oEKqZeiKnby5lFn1SINumVSabg/39BsDDhg6NSmoVmWn6t9mlRvHpiRIwaEnPHnMTsUQ74TaIFXfrcnyIPcM3yiDBNkTca2szNjWaxHZ/nLpW5b2uirUQUPv3+nVSnUceTe9zf8pxWYdol/RoT/ael6+oCRqZdOfwEnVeIsLKKXJ39sjq6ZlxrFo2sKN8BspSPgzcvPmJO56MmCpXFZwh4VJi2W5hHpsrHNDOBtOj3vDPbHxiJrsK080pHMWkps7SfJRp1uENpvH72wWk/XcPhgDw7Z7U/YoRpb5H0D644rkGjf++VfQMefncx1n+vIOlvMpaKbVxMaHExT+X74qAiW34SptaLPlkvQ3+4TgAAIABJREFUApVc0kW0mJlTpv4vR++thUXUn4ODN6eAsAdh+vKN7wjTcKEpTG2+0n9FmFaJuxBPJAS7bLNkqNQuFZplWSXT6z+ZKfF5JQ+fJYrUujLWglQ/t0WYJkwbGXVFwLaV6aZ6/CK1EqFI7UROwtRawGqKAJ2Cv3z8OXPaZsOzIIzka2GEqc1DghuSgKcJeFSYurboU7JMUSRyND9qpnBcECpzoZhoMya7yWnqXIT2mJEX1848M3lLtUSNGQrv334xU/VTZv3dSUa6JkwHSD7TEzvvYYWkA9HSelQ2k1tZheniq1XRU6LhLzs4Rpg2Hii5niTqc94wz0eYWgtTffmz4GJlEy174egTyUeaGLnLxkMPiWrVYokwLRF5DrIU+THClMLU08PU13f0SmHaZ30hNIr7szC1bmTMpOEwcGtRDCm/HVElP69lSn72CnFQVV6Q9si70fxwyicRLvlrJ6Qw9fUREnAq4FFhar3ok3NKKj8nlN+N2w6OL+/LD0or+UiDYEnn46g3LZuZhl+kY3IMzrIRjefnxPHlt1GoXTIMy7UZdSZnNRGm28Ze/Ak+c5j6z/H4K8JUifScmAev5b6ZJX9M9G+yA4lSRjIRph0rOc5+ca3ESxoB/24ug/YVNuCcpPexFNc+95/0A0arPCJMQ4UPChNBWn4nzu5wzI+rReVWXZlCP6fTMYw+W0b+fQdufL/HVRuU3vz7nM7HjDAdKJGB12RGiZZB+4pjzeizRoQN2F0MdSXy0HI8Fa+Nfl/8wwKRmcrERqtZOVFfIlE1dzOL9xPwiDDV8aHT8ZvHXmZeEGrRF3v/3K6ETmlWI5L89um3q6hTZKdGmM57XxMNoyzCkEMlMFoiTC3Rx9Ytc0uQ6naWf1chW0nSNPWVHLuankkjXfPI90WPCFM93gQZ49Mk7ZO2vXmspU4S17to24UwfeVLwjQshanN484rhKmerNe8fAgh0wJ08aeIklR/qkMFIzg1D19SkR8qOMe3PfiDINX9bBGmWYrGQuYisdCz3BaT46/vwvySTzAYWuZc89PxdFGpvJIOQHOYhokQHH/vLWUWcaEwtXlIcEMS8DQBrxKmKj3nnK2McjHmifz8bHKJpsv7h4vCNL/kAK3dPR1a518Lze8zRfKMDqq706T6cE2YthqZ1SRE/7fnEVSXKfIqIzsU3WCiPSfsLo1j2+4aYaqRqL8FC2IWVFK5OUXyhg5vsgcXjz/Bmke1UUKmxGv9rI/nFjyXFn2q2TUtshWLbeqv7XbMYboKd6++RCW9n5WLh9YF1iFn6Tio2SWt5G5dYxa9ojD19DD19R19Qph2mJcbO2ZfxQmZrqzT7kcdLYUxdfcisoyxCl1SoVuuDSZqNH2RGBhcbrs8W4Oi08J8CCV50brmXM8IU18fJQGjAl4pTKuPyyT3a5EHzQ6bBaB6SQ5TzVt6ccdDZKsdH/mbJ8ENWUxlQdujJndp5qpxzcJPq/qeQtrS8kKqd2ozBf+DpHTJ3TiRyc+2b8Y1Rpj606H4q8I0guQEXHqyKj7Kd4l25dfjyf23Jodpw/wrcevyf0iRMapZIGp4u70YMqcQ1sy5iAObbyO43I/nH66MXrJwVG2JOnXpc522z2L/BDwiTLW1FXqmNtPyNUfpOcmhHFHSjqgs/ShBAKOr7EIDyRWp97jJsoiOzgjRHKaTGh8wglWF6a5ZVzFTogajJQgj+UnLoFXC5Wbhx6GS23JczT04uPQmdOp/ua6p0D3LOvTZVsSINM0/+Xv8MBh2rJRM3V/olDLC/nvAb7fAI8K0cLMk0AhNy3R8S8t0Wv61409xfvdD/Hm0JMZU241Dy26Zfi7TJaVZZKm2LOwVXFKNab5RjUqt8WdG7Ft4HdeOPnUzotRamGru27TyfXF42R1QedtuUV7zfVFTSNQZlUl+U32RxaJOmIXFXIsw1ePVGp4RWSvFxemt9zFZxrl3F3sQpq9e+o4wDRuOwtTm8edVwlTzlP57uCw268r2Q08iq6x031jyhwaX/FFv/vuIvzscwhlZAdozEaZv/vuEIasKm0hRnRo7QxaFGrisoDmXLgJlHWEaQhaI6j4zD1LKitcPZdq+w877iCirBw9v+P8prjbD4YYkQAIeIuBVwlRPqhIyY4GYeHTnNY5tvweVTLVS/hxhqttq5KcufKR5jpf+fdZEm7o1JT9TwRgYuKQQDm64jRGycFLfefkRN3lE3Lr4AlckmjS8/BDSz8PIC5r2f+eQ3KdRzBv3dTMuYtFfjrlSdSp/8kxR0ankRrOIg+V4/Ws65nx0qbgkTPUeueBiFYxtdwC7lt+QCNO4slhVRvOl+NGdN0bW3r/+CpHkPjZpfxkEFYHbodgGClMPjUy/tbFPCNPEmaOg6YRsCCcr73758g275l7FQknBEyGaLABxoKQZX+3SrUbPVQVlEQCZii/P1gX9HNBtmaxuKtvqtD5Oyfdb48Y/1sYrhWlI+RFXc0IWWfk+otyvgb2ySvSW0RcMtoiywITmOJ1Scx+OLLyJeJkiocehYhhVcBsuyirCWop3T4kcdRMgsLx4e3j5FWY1Ooj/7r+jMPWPA0/a9KvCVLHUbJsGHUbkQPXMS3Dp5FPkKh4HrQZlkwCSIBJ9+hEjO+yDw/4HSJnpd3T/Ow8ifL8fr593Cf8OPOrq5/4UeYBrlkeFqQIq2S45CjdNgqjxwsjCje/MKuVLBpwyUYUqqhpNyIr4kvtRv5Nul3vc2tGOMypVmOpq57kkt2SYSMGwavhZbJLFezQysIOsYn5k1W1kkoWlNL/lpEb7cXH/Y7OKebluqY1E+/juCxb2PoEjK71vxfIANwDcabBHhOmg/cWxfux57F9044ejZiob24h2laHNZHHPU5vvIYOmWZKi/XxJ+jmEzJprMD4rkub63Xx+cuNdzGx3BF/lu6GtEaZvxeVomodQ8n1RU0Is7uuATsvzm4WdTm25hw5L8+LE+rtYMfi0m8I0fnpZc0HE7uCiW4009e5iF8L0RULvxuDi8cNG+P/6Q75SAS86qZ9d9MmL2sfDkAAJ+DMCHhGmfqnpgQJJCsfvM5Dq98kgiz7JYnbdDvulKrIu/oiAZ4WpP0LAppCAIeARYUpkJOCVBDwqTL3y3DxWwCDgGWHqWTIqTDumlhzOEi1qXVSYdlySF22SrPTsobmfNxHwiDD1pir4+GFNxLNERreIu8xHUj/YgzB9/cx3hGmYSBSmNl8Anokwtfng3JAESCBAEbBHYZpTFpNrMTwrGmRcbiKLdEr+zIEnsHvljQDVd2yszxGgMPU51jyT3yZAYeq3+8c/147C1D/3rt9oG4Wp3+gHv1qLgChMm07Jjkc3XptIVJ8odiFMn/iSMI1CYWrzGKQwtRkVNyQBEnCHgD0KU5Wk7cfnQHZJI6JTl3evuIEJnQ95qq8Ly4J3mmfUpbJ53hXMH3HKU8flTv6LAIWp/+pPtsbzBChMPc+Oe/4aAQrTX+PHvd0nQGHqPqOAvEVAEqbhZX2bPyVH7tUjTzC2xh58khRqPlHsQZi+eew7wjR0VApTm8cghanNqLghCZCAPxSm7FQS8GkCFKY+TZzn86sEKEz9as/4/3pRmPr/PvbtFvqkMPXttvL8HicQkISpx+l4zR52IUwf+pIwjUZhavMoozC1GRU3JAESoDDlGCCBXyZAYfrLCHkAf0KAwtSfdKQdNoPC1A47zc6qTGFqZx3mw9WlMPV+4PYgTN/e9x1hGuoPClObRyCFqc2ouCEJkACFKccACfwyAQrTX0bIA/gTAhSm/qQj7bAZFKZ22Gl2VmUKUzvrMB+uLoWp9wO3C2F6N5H3g3DhDKFiXvGV83r1SQN9k+LVB3V+PApT7ybM45NAwCFgjzlMA07vsKV+hQCFqV/pCdbDtwlQmPp2DwTc81OYBty+96mWU5j6FGn7PA+Fqff3mz0I03d3fEeYhoxFYWrzCKQwtRkVNyQBEnCHAIUphwgJuE+AwtR9RtwiYBCgMA0Y/ewXW0lh6hd7xX/VicLUf/WnV7eGwtSrif58PLsQprd8SZjGoTC1eQR6VJjW7ZPe5mNzQxLwLwR2LrmOm+dfmObkrRQf8VJE8C9N81Q7Ht56g40zL/20ry3C9PfYoVGiXlJPnZc7kYC9EVg4+hTev/n8Q7VtFaZlO6REiDC/2VuTWV8S+InAud0PcXrng58+t0WYJs79O5Llj0aqJOBpAifX3MGtE89/2N9WYZqnZDwkyxDF0+fmjv6fwEdZ8XvmiBM/NdQWYRo0eBCU7ZrK/0PyQy28fPAxTm6+Z2qUOGsUpC0a01tr9/bFR6wfd/6nc9giTEOFD4YSbZN7a/38y8GXDjj5U1PsQZi+v+E7wjREPApTm8e+R4Rpnd7pkS5/dDjsum/z8bkhCdg7gQhRQyBzoVionWypEaUj1hXDrhn+4ybj2b7JUikuxrQ/gOPbHL9wWIotwnT8jlK4f+Ml7l1/5dnTcz8SsAsCSeVH9vNH7zG8yZ4f6muLMC3SOAkK1k3o9KXeLhrMSpKAKwQq9kyDyqHm4uuXHzNN2SJMJ32sjnlDHOD9SarYff6RQKiwQVGkZiJ0+mP5D82zRZhGjREai45VxvyJp/wjGrbJiwhkKxAb25dfw/zxp384oi3CtN6YzPgjSThcPvTYi2rDw7hHoLS8jG4eZyne/vcJM19Ux5qJ5/Hpwxf3dvP0v2cqFgvbJl3Crlk/LrJjizBtNScXgoX+DddPPvP0+QPCjinzRsOFXY+wtP+P0tQuhOk1XxKmCfyHy/BzOUxVmCIwMGPA8YBw7bGNJGAIqCTtN78AGqZdYf7cf0EBdE+zNkDT6bKpIGaPOOkpYTpqQzHMk32Pbf9RtgZooGy8vySgYjRxuigY3XKfp4RponSRMKXFIX/Jho0KWAQWfKiFKqE9J0z/+VAdxUPP+km2BiyCbK1nCUSOEQr/HCiNbnFWekqYzt5XAYXiz/Ts6blfACDQeUQuPLr12lPCtM6oTHgss7bWjf05AjEAoPOVJs58WhWtEiw3wnS6/LluwqV4899Hb6tLh6m5cHn3I08JU5Wqp3c/wA5nstXbKmunB67SJy1+CxTIPoXp1cS+Qj1Ewsu+cl6vPimFqVcT5fFIwBMEKEx/hkZh6omBxF0CHAEK0wDX5WywKwQoTDk0fIsAhalvkQ8456Uwta++pjC1r/6ypbb2LEw/XPYdYRo8MYWpLWPLbOPRKfmMMLUZLTf0JwQoTClM/clQZjN8mACFqQ8D5+n8LAEKUz/bNf6+YhSm/r6Lfb2BFKa+3gUeqgCFqYdw2cXGdi1ML/qSME1KYWrz4KYwtRkVNwygBChMKUwD6NBns3+RAIXpLwLk7v6GAIWpv+lKu2sIhanddZndVZjC1L66jMLUvvrLltraszD9eN53hGmw5BSmtowtsw2Fqc2ouGEAJUBhSmEaQIc+m/2LBChMfxEgd/c3BChM/U1X2l1DKEztrsvsrsIUpvbVZRSm9tVfttTWroXpOV8SpikoTG0ZW14mTFUotRieFUnSR0FgWRTq3rVXmNL7qNOiLsXqJMbG2e53iq3b2dw4T2yYsUAM3Lr4Ao/vvvXE3tzFPxKgMPUZYZqrdFzU7Zke0eOGwRdZSfnC0ccY2+4A7t94hSBBAqFAlQTYsuDHFSad18zW7bx7nBaXe94GG+553l0PHt93CXiHMI2VIjzqjMiE+BkiIVDgQHgkz9sFvU7g9LYHprH56ibEThsWB7B1O+8kGD1hWESIHhIX9j3yztPw2H6AgHcI02pdUqNEw6QIEyEYPr7/gv1rbuGfjofNascxZGxFkrF1xp2xZet23okwsDzf8leJj20LrnnnaQLssb1LmDbonAEVG6RA2AjB8UHG38611zGi0158lPEXO2F4RIkWCif233eTu63bBdjOs5OGe4cwtTzrE1g96+fb6bM+dcHouHvhJZ75kd/WbgnTkGF+Q6sJ2fH03ltEixcWoxvuRdr80ZG9TBwEkkWF9iy9Doft99FmUg68fPIBYSIGw/jmBxAjUVjU7p8Bt8+/wNwBDj+MXO9Y9Cm2fBesJ98FE2SIbL4LPpTvgvNkfJza5njPyS/fBW1ZKMrW7bzzUkxT8A8ZH//h6S+MD3sWpp/O+I4wDZrKfTfnnf3uVce2m0Wf5p6thKXjz2LVv+fx7Zv8YKsYH92m5UHl+Avx6vkHrLhTA+VjzXeXi63buXugX9hgyPLCmDvMAecOPf6Fo3BX/0SAwtT7henvsUJj5omK6FhyA84ffoxgwYOg8cBMSJ0jGprlWi0rjUdG08GZ0ankRjeHlq3beff4XHmnJsrFmufdp+Hx/TgB7xCmY86Xxfpx57Fl0iXzvM1WKS5aTM+BFnGX4fXzj5h8rzKaxFjiLhlbt3P3QL+wQcl2yRFUrvWVw878wlG4qz0Q8Gphmr9qAlTvmgbdS202P2zDRwmBPovy49zBR5jW8xgqtk0pYyswFg4/7SYeW7fzTsaJ0kVCw8GZ0L3kZu88TYA9tncI0+JVE6Nh54xoUWYNHt17g4gy/kYtLI6TB+9jbK+DqN0mrbm3TR9x3E3utm4XYDvPThruHcJ07Pdn/ebvz/rs35/1zb8/66fIs76xDc96W7fzTtRdVuTDij/P4PKhJ955GpuP7ZYwDR8lOMLJ9XxbBF6TkZmxeeYVNBiSEX3KbBVhCvRZVhCbZlxCpD9CYf3kiyjdIhnuXn5pto8SKxQyFo7pI8L07/PlsFa+C26adNF8F8wh46PV9JxoEnep+S44/V4VNIix2F0mtm7n7oF+YYNuK/Jj+Z+ncekXxoddC9NTSX6Bnud3DZrmkud39kN72oUwDfJbIGx/18AI0WcP3znhi50kPO5eeYkBiwsiV5m4uHHuOTqX2gQVI+3H5UCocEElCuArxrTZjxO77mPQ0kI/bBcy9G/oMCEnosYIjU8fv+DPxntw4chjJEobCd2n5cWRLXeQPMvviCA3tbFt96N8ixSImTAcTu55YKLStGQvERtNBmVGCDmWRqn1r7kD/z15j0ptUiJRmsj4LWhgRJX66Ll6V9mGgvIFvH7fDHgibzj+6XoYl048Qc8ZeSVKIRQ0AmDt9IuYN+ykHxoirIpPEKAw/Zlyl00FMXvESRzfdu+HfxyxsRhWjDgDB3nDOXBjYcyRbY5t/3GbURuKYZ6zzzMVjIl2Y3OgVqr/i55gIYIgsnwhefH4PeacqoSw8hb3nMjU9kXXo1SDpKjRKS2CBJW3qrdeY1DdnXj14uNP21nuASFDBzX3gH41t5t7QOU2qYyEDRosMOIkjYAn999izZQLKCnHjZssAmYMOOYUzVqrWzoUr53Y/PjZv+4WxrU/gK9fv2HIssK4KPeIZBmjIorU89GdN3If2YqBi63vZRvN8VqOyAZtz+ePXzGx6yEc3HjbJ4Yuz+HLBLxamOrzVsWTCtEXD987tS5GknB4cOUVOizJi8xlY+POuRcYUmKbGW8tZ+ZEdIl80GfYujHnsWH8BXRalu+H7d7+9wkNx2dB4mxRoedYPvQ0tk+7gnhpI6LFjJw4tfkeEmWJgnBRQ2B6m8Mo2iKpOeb53Q8xve0RU48MJWOixuAMCC7P00fXX2Nsjd0m+qJE2+SIlyaiXKuBEVl+TISQ6I2RlXZBo0s7LM6Lz5++YueMK9gy+RJazcplIk61rtumXcZK+YHF4j8IeLUwbTAwA8JFDoExLfY7AYog41PvzQnSRDLy9IuMrY0zL2N6r2NoPS47MheNKeM7MBx23sfIxnuRJk/0H7ZT0VqjWxoUkRkCKlsPrruNCe0OmWP2lx/J1888R4LUERE/VURsnn3FRBKmz/8HosYOjUHVd5p/DxU2KFqPz47kWR2vpflDT2HDdMcfJaue1sTUHseQtUQsiYANh61zr2DF3+cw7XQFeb4Fx/lDj9Cl6CZU7pAKpZokNdFMz+V79Z91d+P+9Vf+YyD4Qiu8Q5i2HpANEWT8DWy506lFkaKGNGMlSerIIk+LmXvbylnnMa73QXQfmwe5isQ1Y+Lwzrvo13Q7MuaO8cN2Klobdc2IMrWTmZfGu9bfwLD2e8wxsxeKjU7DcyG4fI/Q30Sjuu3H3o03fYEmT+kSAa8WpjpOFsqzXoWoS8/6jlbP+sHyrNdna6O/syKk/Lb+LL+tp7Y+hLM7H6Kz1bNet9Pnc5OJ2RApZij5fvAFExvux5UjT82zvqU860/Ksz7x92f9NHnWF/v+rD9n9azP6OxZP+b7s77L8ny4duIZEmaMjEgxQuLJ7bcYVXkXSndKgar90pno0jldjuH960+oMzKT03fi2fLZiQ13fXRg2TIlP0vJWEidOzqmdTuKAasLGWGqRf98cO1t86LukPx/jvJxJco8mEjUy0gm9/1M8pzx7ghTHR9LPtQ2QtSl8dFZxkeWsnFwW74LDiyxVcZHaDSR8WFxL1NkfJzZ+QBdZXxYb6e+pKmMj8gyPj7J98e/zfh4YsZHmxm54GA1Pqa2OYTiIov1u6COj6ltDxs+GYVbrcHpxb0ExUN5bo3+Pj66Lc8v4+OpjI8o38fHG4yQ8VG2U0pU+z4+ZnU5incyPuqLqA76/TeTfnbchvFhz8L0s4PvCNPf0lGY2nzj8YocpkNXFkZkkYqLx57B8R338OzB/8Vp+MjBsfRmdRQOM9PUacbxCkaWbJWptYVrJESdHulRO9VSON9u6pFyWD35AlaLxEiWKQqGriiCSvEXGLkx/Xh5tMq3FmcPPELv2fmQUL4cN86y0ny5XP2gJmokW2J+cM04UQFtC63DtdPPUbV9KqTOGR29Km01crV+7/Som3YZnj96L6ImO968/GTSCMx0qIDhTfeYCFP9/Kl8WZ0zxMF8Ce42NQ+GNd5ttmUJOAQoTH/ua68WpqHlS95skaJnJTpIX0yc3v/QPDQtJW+F+CgtUy81wlQjiZbdqI5aKZfgwc3X6PJvbnz5/BWjWu6D9XZRYoQyUat6D7h6+pncA1IjjdwDelbaggpyD6jdXe89S+R6/oglV6vjsLyE0Ws/Ta7o6PxPLtROvdS8xGkqL12a516Nt68+GRl6Ytc9E1E/cFFBhI0UHB2LbTApBPRcEzofNC9alt2sgUJhZpjqz3KoiJEt9+L0vodImDoSKrZMieHN9gScCygAt9Srhami7LoqPyL+ERJrRX6e2f4AL6yet2HleTvpdiXUDOUY3Vx/TGYECxkE/zY9iN/jh8FfZ8uiVcLlRqRab1dvdCaEletqQr19CBUhKP48UhIjK+yU6+obRjiUQp88m3DpwGO0mZMLceWLc9dM60ykxbRHVdEmyQrzvB15sgz6FdiEW6dfoFSHFEiW83eMrLgTxVomRaU+adEx9Wr8J8/bBuOy4J08QzWNgP5Zf0RphKn++YU8b5cPPo2Q8rxtPi0HJjXaj7d83vqLK8irhWkKkfvDNxXDqonnsXflTVw8+gRf5T5sKa3HZcNjeYmlEaa55AdtvX4Z0DzzKujA/edwGcwd7ICdi6+LSP3/djnlB2aDQRnRJtc6vJP7fd/F+eGw6wFWjD9nxGqIUL+hR+ktiJkoHGacrYCRjfZi85wrqNUzLVTKjW15AC1GZ5VnVHAMq7fHpAqYKOfqW3Ebrp58huUPa2DVP+cxq98JqNxdcLMqykeZhyzFY6F4gyQmwjScXMOzLlRCjfiL5Bn4GUVqJzIv/VdPuuAvxoFvNMI7hGmarNExZWMZLPhHXi6tvIazxx6Z7wGWooL04Z3XJsK0YLkEaNk3K6pmXWR+pyw8WAWThx7FxsWXjUi1bJe/THy0HZgdtfMsxRsZf6MXFcORXXcx7+9TWH6iupGzOsU/sQjZGi3SoH/zHb6Bk+d0gYBXC1M9RTerZ/1pF571/8qzvsb3Z/0oh9JYOfwM9sy/jtw146NSzzRom2IV9DuB9XYjjpXC5n8vygvKy0iYKbI5RzOJWI2RNDxGyrO+t9WzXiVZl+/P+unyrG/9/Vk/Sp71fb8/60t/f9aPkGd9R3kBGiZSMAwsutXci0edLI3ZnY7i5Jb7GH2qNP7H3llAR5F0UfhCgAR3d3d3Z3F3d3dYnMUhOMHdgwd3Frfg7izu7m5B/qqO/JkEmM7Qk56euX3OniUzr15V3fcm3fnmVdW0FoeUClP575ltjihb8STKGAVl26fBdPGMEpyXOWBao3tGvHryEdvnX1OGNWhdcQysLCpMxdL3fiuLYvPsy4iVMAI2it/LVTqlx03xN4YsFAkuYCrH1HtdUeVZcMP4i5D58TLAs+DsuzVQK9wiZfzjRH6sEfnhKfKjUL1kqCHyo0O6tUp++LcbI/Jj64wr2Ca+wE4h8qOX6ENWrMYX+TFW+OhTaAsui2fBTgsLKhC1W46NyrPg/Ce10TbVavEsGBLjRdz7Fd2G24K9VBT5kVY8C44U+dFdyQ9nDCq1XcmP8SKP3LsdU/Jj/NmKmNrioFJhKv89o81h/CfyI7H4glLmx7RW3oVwv7sMDUxP6QRMsxKYmssrv/e1AKbym9AKLVKjcJWkyrfqd0RZ+oJhp7B39a1AIFRWdUq4IcvHZfXY8uu1UCycu4ldgpSRMPdEVZSOMl/5ZlVeMw5VwvR/juKVqA6bsLMcKsbx/iXQbGB25QFzXAfvKoPF/9XAwDq7FMhaWGwN0K2M9xJeWUW68WkDlIw0DxVbpkWOYvHQp5r3t0XVO6QX+69Gx7CmnibAtEHvLMgpKt9kRdjlE8+UMfNyPAUITAPHXGtgKnuILirLqrXPoFSGy6pM+eXL9N5HcU38oekfhEpbWa0p96yTV/HayVGmUSp0LbPZxK5C8zTK9iDydd/fAZueNkSJSO6oJH4HZC0cF/1q7VTem7y7PFZNuYDdYm8iCVoXnquBMtHno/9C8Y3ohZdYNMJ7P6K8ZRIqla0dim1UgOlZAUFXTPSughu6sgQkvD+6AAAgAElEQVT2b7iNgxtvmwDTcVvL4u6V1/AYe5ZVQg7268MawFRWvhVvmQq5qyZCSnG/lfs+rR56FodX3VEefv2D0JDi4V7CTFnpJK8JlypjSpMDeHjljYndjHvVlUoQCUXlVX9kdnz58BWHVt7GwN0l0SyW97KuWoOyeD9gtz+i/DzxcmWMrbUXKXLGQJ5qiTGktPc9VQKeuc9roUGEJSjRKhUyiv2p3ASAlVfZjmmQVNxv5Tj8A9OqfcQXGsXjYmH3E7hx4jnvt3b2WdEamEp5Uog8qtQmjbIEUsJJz1W3MLPHMbx58dkEhEpbuUJA7m0qr85i77nHt95hyYizJna9FxXGLVElKl+Xl6wErdUtI7oU3awA0zMCnkpAKz9X2740RvW4HsoKiGJ1kqFwjaToX3Unlt2tjUE1d+Gi+EJfXi1H5sRn8VmaP+iUAky7l9yiwFN5rX1WD61zrEMqUXHjC0zlvW35vdqiEvU4PFfeUubC688UsAYwlSNKmzUmarXKgHwlEin7mG5fdU2p/Hz94pMJCJW28u8kWZEsr/5Ti+DB7beYPfKEid2IBSVx7cJz5XV5FSyTGE27ZUOTYmswc0sl3L76CvPHnsK9m2/+TBC21lwBawBT33t9Hn/3+lX+7vX+Qaj/v60lRJt6syrquCw2AaZxU0bE6FMV0CCSh9/f1iOOlMXCnifw5ulnDBL3+qY+9/ra4l4fwd+9fpK414/5xb3eXdzr64t7faclhRQIumnCf4q+srr1+Ia72D3vugkw7b+tBB6IZ5D1Yy4oq1H0uH4HTDMWio224os0uU+pvHaI1QRRxd8nBasnUX7etfgGznk+Qsdp+fBOrGyTe55OFl+W/SXuA7nKJ0RscQ7DofV3sHzk/7eDscYepjI/SopnwTxVEyOVz7PgCpEfh1bdDgRCA+bHjJvVUNNlkYldXMFexon8qBtpiV9+jDpSDguU/PiEwbtLoVGsZYoGdXyeBWf6PAtOuVwFo5X8iI581ZJgUOntip18FlzwvDbqRFiMLiI/JATd6JMfsrr1mMiPXSI//APTgT75sU7kx+Mg5IeRgem3E/oAU6fsBKaqf/9oAUz9dyYf9gpVSYJuokKrc8l/8eD6G5MK08JVkwhAmUFZCiv/kEshlsUWdZlrAkzT5IyJqfsqKNUBvpcEnmPbH8TtS68wYl1J1Erh/aFt0j+bAkOniiX08lp4vrqyPDfbX/HQqG9WZfmt7xUhchilakzCl/S5Yyl28pIVp74/+68wlSXvtbpkRIk6KZRqgOXjz8NjtPeDNC/HUYDANHCsrQFM/fciq0irt0+Pyq3TicryJchTJpFfham0k4dD5SuXCBBfYsiljI/vvlOW6vsHq3W6ZULjvtl+8jtghWKXWiylH95sr9LtRPEljMcY8aDx711Eix0WHpdroVSUeRi1oRTS5ozlV+0qf2fJb52b516rANMjW+8pFbHy8v1537pbJsBU+pOV9IUqJ1Eerqb0OKy042X/ClgDmPpXTd5vc4k/plpOzwPX4tvx+PpbExCaWCyFrz04i1KFIKtF5c9DRPWHhKz+weqid3XxToAZaSMv+SB+cPlt7Jx9Ff9sKIp2yVYrr9cYkFl5AJbL6uQ1/mIlTGywHxmKxkH1fpnwVizB973CRQ6NzunXC5DqDXYnNdyvvCUrTn1/9g9M5f22Qtf0KFA3qbL0f+O4i1jvdsH+k8RBZmgNYOpfuoSiAqbF8Bzi2dJJ2dfUf+WohKmtR+cSy+mjKV/Yx0kSAWun/IfFw86Y2A3bUAJpcsUM8Pv+E9rkWq8AU7lEXy7Fl9eOr01QPvJCfHr/FUXEgU3F6yVH30o7sOltQ7xVPkveX1JIULt3xU1M6XxEAabt820Qz8Xey+t9f5bPwb7AVL6eUhziUadHJgGC4ymVs7JyVW5xxcsyBawFTP2PJolY/dZ5WD4l/9pW2GACQiMJmNptVH6kyhQDX0VexE8cER5TzylVpv4rTKeuL48MOWPjg8/qGnmI5XPxvFE7z3JEFwdIteydA8UqJRPbD33GmJ4HsH/rHcsEYSvNFbAGMPU/SHmvl1+Synv9IJ97vX9gKu+z5TqmRSifv62TiH2Ra4XxBmK+dhJmDT1QBs/v/f9QY7lEf3a7I7j332v0Evf6tj73+po+93q5XF5eE8S9foK412f8xb2+k7jXNxOrRE5vvS+20/H+HSkrTn1/9l9hGiW2C6qJCsdcVRLhg3gmXtD9OE5tMd26S/MABXBorsJU6/6tAUwD5ocE662n58WA4tvwSNxj/FeO5hVfaJf3lx9JRX5UD7PQBJjKL75H/CQ/ZrY7rORHnw3F0CrZKqXbWj75Md8nPyZdrIzxDfYp+VGzX+ZAz4Id069Dc5Efp7Y+wA6x3ZK8ZMWp78/+ganMD1kBm1vkx/tXXpin5If5LRsMDUyP6QRMcxKYqv6s/ykwjSX2bpL7gcq9/fxfbptKYd+629i76qYfMFWg4/XayvJ5CT5l26VXawUCpjHF3hnzxDLWcjEXBppH0vRRVQHTROLhWVaX+VaR+nfkH5DK138FTP23kf7Gby+L3lW3i9O7bWPTatVBpuEfKUBgGlg+rYGprAiXV8DP1o63TdA0x2okTR/ND5gWFl/INO6XTWzLsUHZHqNU/ZQoLfYYDQhMS9ZNofwO6F3N+5tO/5dckq8GmMrl/jdFhalvFal/H2qBqf82BSokRp95RcTvtgV+3+D+UXKysU0roDUwjSHumXJJ/ImNpsC997/FcGzdXRwWFaH+QehosTRKgsc94ht8eU2+VgWTGx0IBEwnXhGVoqLC9NaZlyZ6JkwfRRUwjZ8mklJh6ltF6t+Jf0AqX/8VMPXfJl7qSBiwsyRGVd6N68ef23SMOTh1CmgNTPNXToxLYs/P5w//vwWUXOHkuroYasRfagJC20/IA2exnH5c6wPKUsBuswvgoTxROAAw7Tozv7IP6eqJFwNNSi0wXXC5ulJh6ltF6t+RWmDq20YWFjQSWwnIPVP7VAx8H1OnPK2sAUyLCnB57ugjPBX7n/temXLFxoRVZfFXQncTENprfCG4hA0F17a7lWX7rjOLKlWiAYHpwOl/iQrTF1g06fdnJfxVISmGuou90mPN5nOEjaS31sD0V/f6PuJef9TnXu8LQuUXjNNERalcPi+/DJVtp1yvEgiYyn1LJbhsHN274Mj/Je/1aoCpvNdL+DbKZ8WIfx/+Aal8/VfA1H+bnBUTir3L86OJGJPvitLgCKnRgamMsVwSfzzAs2C/f4uL/LiDg+JZ0BeYRhb5IStK5fL5ez75Mf161UDAVO5bKsFlg+hLA4UgkcgPNcA0fprIosI0MUZUDbxdiH9AKjv4FTD133kukR8dxd72DcWYzOWHoYHp0dTBkfaB+nDK5V3wY/TLEIc+ycOd5HL5Ec09sV8AUpnQWcRS18HisKdOJf7FI3HQyoYnDVA22gLETRoRE3aURbXEHsoSQXkKdt0emZVl8vLB0Nfuk1i+NOtIZSwVS1h3Lruh7FnYcVwejG5zAHFEqbuaCtMnouLMXewpKKHKPXF6nQQyEqzIA6F+B0zl3qkz+xzH0W330H/RX9iy4Kryb/ntnnxvaOO9yvJ8Xo6jgBpgmrZIbLwXpxLeCQAc7FUlrYGpXFLfSFRh9q25XVmCL5ePSNhUv2cW1EjuIZbCJ0I98btC7iUqYWeukgnwT+VtkFXjg5YWQ3ix52HrAushgaSvXdRYYcW+olXR7ie/A9QC0/zlEylVqh3FEvyPopJILvOXlUP/zrvyywrT3StvYOOThigTbb5YVvwDE7aXU5b+P73/XvkdOOdYFQWYcosPe/10/H9eWgNTebjTMLGEbprYiP/Y2rvK/TZd4djotrIIBhXbhqdimfHcZ7XQKMpSZRnwnCc1MVQsk79x8gXy106CFtPyYHxtT2XpvX87eQCDczgnzGp7RDmUpN6I7Diw9Ca+fPymCpg+v/te7GFaQex1ugUPr75V9kYr3CCZciDU74BpozE5lGXSS3qfwt+LC2LvguuiIuWBcr8deaKcqEo9oCzP52V8BbQGpj3cCyKS2A9NQlAJTWUVadtxub3BVO3daDMml3KwqFzaLmHnxcNPsXLceSROGwXDNpbA7mU3lff82+WtkBANxMqkLkX/VSpHyzVPrfy+lwdHqQWmspJV7nUqD6OSn6UWI3Ji99IbSqXor4BpElEIUFtUlHYssFHZ1kpuAzC0/l7ls1GyYQoUEkscZfUqL8sUsAYwHTKnmHLok9xHVEJTWUXaY0wBEfvQ6FZnC7qPLqDEb3yfQ8rBTmcOP8KC8aeRLG1UTF1fQdm/VL7n365I+SRo3TeXsgT/43svVG+eXqlI3bLsKmZvr4yutTbjsXiOSJA0EpYdrSWA6Sw+R1iWEpq30hqYynv9cHGvl4cy+d7r0/vc6wf63Ovdxb2+objXy/3JB+4qiVYJVyoH3dUZkhWVe2ZQlsnLilNfO/lMMFLsTy6Xwh9YekucBO+s7HM+o/VhxBR/W6sBpvJeL/cm7feTe/3vgKncO3Vx75PK4UADxZeho8UXtHL/cjl2+V5jAcSC85nY6MBU5odcLj+52QEc9XkWlPnRUzwL9hf58UQ8Cy54Vhv1onggttDYdVcpNE+4QsmPekOyoYrID7lMXuaHr53Mj9HHymOtyI/94vlP5kez8bkwrfUhxBL5oQaYPhP5Ifcm7a3kxxtlH9QiDZIrB0L9DpjKvVMXify4IPLDdWcpcRjUHjwX+SHHPuaE2EYiuofZ/DA0MD2cRvPfSWocOuUx3Rv96zdxz5q1Eu5LNwumNwlRI0dU3Lx7/xGuY+dj/7FzCBM6NOpVLY4W9cor7919IM4TGjUXl6/dQbw4MdDn7wbIljElLomfO/WfjC1LRqkZyh/ZGAKYyhlmLxpPWRovH0R/iD/gHohv7heJ0+T3r/c+wXG0OBU7bY6YyoEtVVqnReZCcZWTP+UhS7KdXLLUKu86E7u3Lz8ry/pjiZPd5DLBFeJAKXkAlNoKUwk184j9BlsN9T704v3rL5jU9bBy8MrvgKlcxi+X8s7qewwXxMFPXSfnV/ZIlVUJ2xZfE6dnn/yjoLKx8RRQA0zbLymIuxdeYZ04sMQRLq2BqdRMQswqYgm+3Nv4s9if9MrJZ5jR5yhuiIofuax9xsFK4ubuhMZZV2Hk2pLiD2RncTL9O8wZeELZP3TroqtYNu6cn12VhIuVPUdbit8BzuKPaPk7YGLXQ8rvALXAVI6r/j9ZULZhKrHZO3BPLIscIQ5+ey7+QPpVhalcoj9mcxnld17XcpuRRPyB1ECAX/nH82cBoGb1P6ZU3/OyfwW0BqZSsYzF4ihL4xOI+60Epk/E/XaNOE1eVpjKq++W4kgul96V2Ylk2aOhyj8ZleVRnmLfLXlIWdFmKdAr979oPTOvn909cZJqs0m5kaZALMXHabH8yb3TMchqATVL8iXUzFY2PuoOy6bcbz+Iz9q8zseV/cx+B0zlnqVdV4plWf/eVyphm4vTWeUSQnm/9Vx0AysG/b7Syv4zyH5mqDUwdRZ51nxYDshKU3kopzwc7KjY6mSuOOle7vuZrXg8DFxRFEc338NqcWjTP/MKid+/X3FFPBseEicb95hbUBzM5Kl8EeZrN6TuHtT9JxNKNkqp7FN6X/zBN7rFPgXIqgWmcj+7DpPyikNGYyvBOyaWqE7udFjJ6V8BU3m405RDFZQ/XmsnWoZWbjlRUKykkLBWHqI6ttUB3P7vlf0kQzDPxBrAVIL5v4fmVZbIy/yTh0ce2HYH8qR7uYdpnmIJMW55GezbfEs5tGmYqAj9JO7/F8XhUHs23cSQOcXRu8l2Jf987XrU34bmPbOjUsM0Sv7dvvYaA1qKL1vF80alRmnQvEd28RwRUsnjSQOOYNe6G8GsJLv7lQJaA1Pfe71cGu//Xr86wL1eLrMfIu71pdukVr48fS3+tl4iDlSU7eTf1v+Ie718JvC1ey/+tm4llm1HTxgO38Xf1hvFgUHyACi1Faa+9/p6/u717j73+t8BU7llT6Xu6bGkzyl8EgeayecS+Uwsv5T16HdKgX7BeRkdmEqtMom94eXS+IRpI4tnQeCxeBZcNeKcUoEsrwFbSihxdy2zA2VEfqQvHEc5WHOxyA/ZTuZHj9ybTOzeicKfNmLbB1nBKtmLPFBKHgCltsL0ungWzC6eBesr+RFKeRac2/mYsnfp74BpTZEflbtnwOI+J5UDF6uJ/AgpftfJ/Fgi8uPIWvPbjxgamB7UCZjmMwWmHfpMQJoUiTB94Xp4rpnoB0yHjF+IF6/eYFivFnjx8g3qtB2MMQPaIkfm1Gj093AULZAN9auWwMHjFwQ8nYPty8bg+q37BKaEhsH5a5196a2AGmCq9xiDu39rANPgngP7owLWVsAawNTaY6Z/KmANBbQGptYYI33apwLWAKb2qRRnZakC1gCmlo6F7cwrYA/A1PwsHcvC0MD0QFpdguWU3/uANt9LVoVKYJqxaBMTYLpr/0mkSp4QCeLGVEzb956AIvmy4K/8WVG6bg/xJfQUhHJyUt6r3mIAerStg0gRw/kBU6+v39C86ygUypMZzeqU1Xyuhqkw1XzmdEgFbEgBAtPAwSAwtaEE5VBsVgECU5sNDQcWzAoQmAaz4OzOTwECUyaDtRUgMLW2wtr6JzDVVk9b8GZoYLovnS4SOhUMvF+7HEhAYOp/cHJ5frkG/2Du2B54/faDslR/rfsQP5Oug6Yid7Z0yJQ2mR8wHSRsvonl/q7dm1plngSmVpGVTqlA0BQgMCUwDVrG0JoKeCtAYMpMoALeChCYMhP0UoDAVC/lHadfAlNjxZrA1FjxUjNaQwNTz/Rqpqi5jVOhCz/1+Stg+unzFwFBJyF96qTo0LSqWIJ/HhNnr8LS6QP8/PQdOQepkiVArqxpFWDapFZpbNt7HDPcuvpVoWo9EQJTrRWlPypggQIEpgSmFqQNm1ABAlPmABXwUYDAlKmglwIEpnop7zj9EpgaK9YEpsaKl5rRGhqY7tEJmBZRD0zfvPuAdr3GIWeWNOjYrJoSklPnr2LA6HlYP2+oX4i6DJyCfDkyIEOapKjffojYjzuksnR/ZJ9WasJokQ2BqUWysREV0FYBAlMCU20zit4cRQFWmDpKpDlPcwoQmJpTiO9bSwECU2spS7++ChCYGisXCEyNFS81ozU0MN2VQc0UNbdxKnr+pz4DVph+/uKFZl1GofRfuVC/Wgm/Ni9fv0Xxml2xf91khHUJo7xepl4P5XCosC7OaNplJFbNchX/H4WurWuieMHsms9BOiQwtYqsdEoFgqYAgSmBadAyhtZUwFsBAlNmAhXwVoDAlJmglwIEpnop7zj9EpgaK9YEpsaKl5rRGhqY7syoZoqa2zgVO/dTnwGB6dR5a/H85Rv069wwkL0EqbLqtEW98ti8+4iyRH/z4lG4evOe3x6mJ89dRecBk7Fm7hBEixJR83kQmGouKR1SgaArQGBKYBr0rGELKkBgyhygAr4KEJgyF/RSgMBUL+Udp18CU2PFmsDUWPFSM1pDA9PtmdRMUXMbpxJn/Xy+ev0ORap3Un728vqK0KFDKf/esWwMarcehKfPXyNEyBB+9rUrFcU/7evi/qNn6D18Fi5fv4uE8WJhYNfGYo/TJLh07Y4fMJWNRk7xwMPHzzHetb3m8yAw1VxSOqQCQVeAwJTANOhZwxZUgMCUOUAFCEyZA3orQGCqdwTsv38CU2PFmMDUWPFSM1pDA9NtOgHTkv8Hpmo0tlUbAlNbjQzH5VAKEJgSmDpUwnOyminAJfmaSUlHBleAFaYGD6CBh09gauDgGWToBKYGCZTPMAlMjRUvNaM1NDDdklnNFDW3cSp9RnOfejgkMNVDdfZJBQIoQGBKYMoPBRWwRAECU0tUYxt7VIDA1B6jaow5EZgaI05GHiWBqbGiR2BqrHipGa2hgem/WdRMUXMbp7KnNfeph0MCUz1UZ59UgMDUbA702FoMC9zO4OTOBya2bltKY43beZze+RCDt5TAQmFzYpepzZjNpbH4J6+b7ZQGVMBgChCYGixgHK7VFCAwtZq0dGxGAQJTpoi1FSAwtbbC2vonMNVWT1vwZmRg+nVTVl0kDFXulC79at0pganWitIfFbBAAVaYBhaNwNSCRGITh1OAwNThQs4J/0IBAlOmhl4KEJjqpbzj9EtgaqxYE5gaK15qRmtoYLpBJ2BagcBUTW4pNktcz4j/TEty6/TLjK8hfmC+q6mQDfuJgIYE3F1PqvZPQypgdAUITAlMjZ7DHL8+ChCY6qM7e7U9BQhMbS8mjjIiAlNHibR+8yQw1U97S3omMLVENdtuY2hguj6bLuKGqmgfPI8VprqkDzulAqYKEJgSmPIzQQUsUYDA1BLV2MYeFSAwtceoGmNOBKbGiJORR0lgaqzoEZgaK15qRmtoYLo2u5opam4TqvIJzX3q4ZDAVA/V2ScVCKAAgSmBKT8UVMASBQhMLVGNbexRAQJTe4yqMeZEYGqMOBl5lASmxooegamx4qVmtIYGpqtzqJmi5jahqh7X3KceDglM9VCdfVIBAlOzOcA9TM1KRAMqAAJTJgEV8FaAwJSZoJcCBKZ6Ke84/RKYGivWBKbGipea0RoamK7SCZhWIzBVk1uKDfcwVS0VDR1UAVaYBg48gamDfhg47SApQGAaJLlobMcKEJjacXBtfGoEpjYeIDsYHoGpsYJIYGqseKkZraGB6YqcaqaouU2oGsc096mHQ1aY6qE6+6QCARQgMCUw5YeCCliiAIGpJaqxjT0qQGBqj1E1xpwITI0RJyOPksDUWNEjMDVWvNSM1tDAdHkuNVPU3CZUzaOa+9TDIYGpHqqzTypAYGo2B1hhalYiGlABLslnDlABHwUITJkKeilAYKqX8o7TL4GpsWJNYGqseKkZraGB6dLcaqaouU2o2kc096mHQwJTPVRnn1SAwNRsDhCYmpWIBlSAwJQ5QAUITJkDOitAYKpzABygewJTYwWZwNRY8VIzWkMD0yU6AdO6BKZqckux4R6mqqWioYMqwCX5gQNPYOqgHwZOO0gKcEl+kOSisR0rwApTOw6ujU+NwNTGA2QHwyMwNVYQCUyNFS81ozU0MF2cR80UNbcJVe+w5j71cMgKUz1UZ59UIIACBKYEpvxQUAFLFCAwtUQ1trFHBQhM7TGqxpgTgakx4mTkURKYGit6BKbGipea0RoamC7Mq2aKmtuEanBIc596OCQw1UN19kkFCEzN5gArTM1KRAMqwCX5zAEq4KMAgSlTQS8FCEz1Ut5x+iUwNVasCUyNFS81ozU0MF2QT80UNbcJ1fCg5j71cEhgqofq7JMKEJiazQECU7MS0YAKEJgyB6gAgSlzQGcFCEx1DoADdE9gaqwgE5gaK15qRmtoYDpPJ2DamMBUTW4pNtzDVLVUNHRQBbgkP3DgCUwd9MPAaQdJAS7JD5JcNLZjBVhhasfBtfGpEZjaeIDsYHgEpsYKIoGpseKlZrRGBqZec/OrmaLmNqGbHtDcpx4OWWGqh+rskwoEUIDAlMCUHwoqYIkCBKaWqMY29qgAgak9RtUYcyIwNUacjDxKAlNjRc9IwLTtvPx4cu89Tm6+byyRg3m0xZqkwMu7H7By0BmTnqv1zwSvELJA8LTJ63X6ZUa9AVmCeZQ/785rTgFdxhG62X5d+tW6UwJTrRWlPypggQIEpgSmFqQNm1ABLslnDlABHwUITJkKeilAYKqX8o7TL4GpsWJtJGCapmAs1B+VHd+8vhtL5GAebWgXJ4yv5YknN98ZDph+mV0wmNXy7i5M83269Kt1pwSmWitKf1TAAgUITAlMLUgbNqECBKbMASpAYMoc0FkBAlOdA+AA3ROYGivIRgKmxlLW9kZrhArTLzML6SJcmJaeuvSrdacEplorSn9UwAIFCEwJTC1IGzahAgSmzAEqQGDKHNBZAQJTnQPgAN0TmBoryEYCpqGdnZAsR3SbEvjehVd4/+qLMqYE6SIjfFRnmxjf5QNPAo3DCMD084zCuujn3GqvLv1q3SmBqdaK0h8VsEABAlMCUwvShk2oAIEpc4AKEJgyB3RWgMBU5wA4QPcEpsYKspGAaY2BmZGnamJ88AGUeisdOqwTHl9/i3G1PREvdSR0WFwQXz581XtYiBTTBWuGnYPnwhsmYzEEMJ1WRBf9nNvs0aVfrTslMNVaUfqjAhYoQGBKYGpB2rAJFSAwZQ5QAQJT5oDOChCY6hwAB+iewNRYQfYPTOe9rI15/U7i88dvVptEsXrJsG/+Deydf92kj9Zz8uG05yPsXHANnWbnx1XPJ4Fs2gibm55PcVC0t4Uraa7oqDE+O/rm24wUuWKg0fic6C3+rfdVQxzuFDJECEMe+vRp6l+6yOfSdrcu/WrdKYGp1orSHxWwQAECUwJTC9KGTagAgSlzgAoQmDIHdFaAwFTnADhA9wSmxgqyf2Cat0YSZCoZ16oT+PTWCx59TuFLAChLYKqd7EYGph+nFNVOiCB4CttuVxCsbdeUwNR2Y8OROZACBKYEpg6U7pyqhgpUbJEGKbPEwNh2B0y8ytfTZo6Bqe0Oo3SLVEiRJTpmiH/7v0oqr0fDrLZHNBwRXVEBfRTw+FwfNcMvwvdvP0wGsPJTA1QJv1B5fd2nhmgXbmkgm2mf66BM+PmBXtdnJuzVaAoQmBotYsYbL4GpsWLmH5jqOXICU+3UNzQwnVRMOyGC4Clsh51BsLZdUwJT240NR+ZAChCYEpg6ULpzqhoqQGCqoZh0ZWgFCEwNHT5DD57A1NDhM8TgCUwNESa/QfoHpgnTR0HK3DGsOoGPb7/i0IpbgfogMNVOdiMD0w8Ti2snRBA8heu4w8T667dvGD9rJdyXbsb+dZMQNXJE5f3PX7wwYLQ7DuRbtsQAACAASURBVBw9h7AuzmhetxxqVvTeRuDugyfoN2ouLl+7g3hxYqDP3w2QLWNKXBI/d+o/GVuWjArCiCwzJTC1TDe2ogKaKkBgSmCqaULRmcMoQGDqMKHmRM0oQGDKFNFLAQJTvZR3nH4JTI0Va//AdMr1qrju+RjfvExXP2g5o3iZomDN6As4vPK2iVsCU+1UNjQwHa8TMO1kCkw79JmANCkSYfrC9fBcM9EPmE5xX4Nrt+5jeO+WeP7yDeq1G4KZbt2QKlkCNPp7OIoWyIb6VUvg4PELAp7OwfZlY3Bd2BOYup7ULsPpiQrYuAIEpgSmNp6iHJ6NKkBgaqOB4bCCXQEC02CXnB36KEBgylSwtgIEptZWWFv//oGp+/Na6J90PT6+9tK2E3/e6s/NjVPicCctD33KXCE+qo3Iishxw+Lu6ZdY2OoIHl99i1DOIdFwRm6kLxUXn99/xZZRF+E585oymhhJI6DR7NxImDkqnt9+jyUdjuH6wWfKe7/yF1AUNYc+xU8TGa2m50Fi0c+L+x+wsMcJnPz3vuIqS6l4aDAqO6LFC4drx55hSpMDePX4k/JepR7pUbpNajEHJxxZfQdz/z7qtxVPgTpJFZ9Tmh7A4VV3AsXKyMD0/bgSVsu93zkO33m7yduyKlQC04xFm5gA04qNemNwz2bInC65Yj9qigfCh3NB7crFULpuDxzaOAWhnJyU96q3GIAebesgUsRwfsDU6+s3NO86CoXyZEazOmU1nysrTDWXlA6pQNAVIDANrFmPrcWwwO0MTu58YPKm25bSWON2Hqd3PsTgLSWwUNic2GVqM2ZzaSz+yetBjwxbUAHbVoDA1Lbjw9EFnwIEpsGnNXsyVYDAlBlhbQUITK2tsLb+jQ5Mo8QPi0HnymNi+d24cegZKg7KhBT5YmJM8Z2oMCAj4qWLjLmNDiFSbBf03F8SE8rswv3zr9FtV3GcXn8POydeRroScQQ8zYNeSdciorD7lb+AyqsBpmPPVsDOudewafx/yFwyHrqtKIxmcZYjVOiQmHS1CkZW2iVg6XPUHJAZ8VJHwthankhfODZaz8yLfoW24NO7r+i+ugiOrruLrVMvo3zntEhXMDaiCji8Tlbq2hswHVtS2wRX6S18l20/tQwITDMXa6YA1MiRwiv2y9btwvGzl1GncnG4jp2Pte5D/Px0HTQVubOlQ6a0yfyA6SBh800s93ft3lTlyIJmRmAaNL1oTQWsogCBKYGpVRKLTu1eAQJTuw8xJ6hSAQJTlULRTHMFCEw1l5QOAyhAYGqslLAHYJo8b0ycWOldaZkwS1R0WF8EPRKtwcBz5TC/+WHcPPJcea+GWzYBIL2wZ+oVDL1aCZ2ir/Cr2ux7rDSWdzuJJ9fe4lf+AkbWHDAN6RQCxZqlwC4BTL999d7mYP7L2uiZYxOSZo2Gok1TYGhZ78OGwkUKjdmPaqJhFA80HpMDz+59wNqR55X3spdPgIpd0mFA0W1IIipVb515if7bSmDbjMt2B0zfjS6lywcoQretP+3XPzCV1aFZijfDia0z4eIcRrFft/UAdngeR50qxTBx9iosnT7Az0/fkXOUpfq5sqZVgGmTWqWxbe9xzHDr6leFqvVkCUy1VpT+qIAFChCYBhaNFaYWJBKbOJwCBKYOF3JO+BcKEJgyNfRSgMBUL+Udp18CU2PF2ujANKDapbqnRSIBI2fVPYBpn2qja9zV+PDyi2JWqFUKpBLVmbtFpWb9qbkwKMu/fs1bLMmPS7sfY98s7yX7vpd/fwH7MgdMA9qnyBkd3VYWQdtkq1G5ZwZEieWCuZ2O+ZnNelAD/QtvQfPJubFt+hUcWeMNgWXl6cCdJdEywUo/W7sFpm6ldfkARei+5af9/qzCdM/q8X57mnqs3YnT56+JJflFxWFQ87B+3lA/P10GTkG+HBmQIU1S1G8/BCFDhsRf+bNiZJ9WVpsjganVpKVjKqBeAQLTwFoRmKrPH1o6rgIEpo4be87cVAECU2aEXgoQmOqlvOP0S2BqrFjbEzBNVzKuAKE5MarwdrwVe4FO+1wH7cIvg9enb0pQ8jRIimxVEgpgegWVB2fG8Lz/ryqUS/LvnXuJnRMu+wXQv79X9z8GCmxQgGmsJBHQd0txzOl4FGe2PUCdwVngFCokFvX6/1k4U65VgVu1PQowXTX0LE5t8d7GLUbC8BhzpgIaRVtq98D07cgyunyAIvbcrAqYVm7SF7061kNuUTUqr/5uc5EgbkzUqFAExWt2xf51kxHWxbv6tEy9HhjWq4X42RlNu4zEqlmu4v+j0LV1TRQvmN0q8yQwtYqsdEoFgqYAgWlgvQhMg5ZDtHZMBQhMHTPunHVgBQhMmRV6KUBgqpfyjtMvgamxYv07YOocIRRqCwD5+sFHRE8SHgubHkaqv2IjU6UECBECOLniDi7veoy6M3Lh3bPPCBc1DDxaH0OO2omQUuzDGUIsSb8iqjaPLb7lJ4o1Dn2SznPVSYzy/TJiUoU9eHr9ndKfrDDtHn8N3j3/rPxcpE1KZbn9nmlX0EAcBjUw0ya/cbVcWgAXtz/E/jnXldd+5i9gZNUC00QZo6D7qiKY1+U4Tmy8p7ip0isDosUNpwBU32vOoxrok19UmE7JjR2zrvgtt0+QNjL6bS2OVolW+dnaa4Xp2xHaH4Sk5hMZ8Z//Vxv7tw9YYTp9wXqcvnAV41074N6Dp2jUaTiWTOmHxAlio5mAoTmzpEGLeuWxefcRZYn+5sWjcPXmPb89TE+eu4rOAyZjzdwhiBYlopqhBcmGwDRIctGYClhHAQLTwLoSmFon1+jVvhQgMLWveHI2litAYGq5dmz5ZwoQmP6ZfmxtXgECU/Ma2ZLF74BphBjOkP89uvQG1cZkxSH3G6g8Igumlt+rANOWawrhoACMkeOFxf4Z11C4XUo8ufJWqei8tu8pXCKGQgP3PJhVfb/flK0BTDNXTIDKrpkwrtQuvPE5ZV52OOB0WSztdAKX9zxW+peQ9Nmtd9g38xpG3KqMLrFW4stH7+rTIZcrwL3xIVwXB0f9yl/AuKkBprGSRlBg5+TGB3D54FM/F7mrJELZjmkw4C/vw4aiCQ0nXq4s9jBdquxh+k5sI7B80BnlvYJ1k6Jww+QYUnqHX3t7BaZvhpXT5eMRqff/4fmr1+9QpHonZRxeXl8ROnQo5d87lo1BpAjhlKX3+46cRfhwLmjbuDIqlcqvvH//0TP0Hj4Ll6/fRcJ4sTCwa2OkT50El67d8QOm0m7kFA88fPxcQNf2ms+VwFRzSemQCgRdAQLTwJoRmAY9j9jC8RQgMHW8mHPGP1eAwJSZoZcCBKZ6Ke84/RKYGivWapbkZygXDykKxcLanqfRdmNhBZjKS/777Ib7eC2Wq5/beB9ZqiRQqkwPzr2hwNKqY7JhjziF/oE4ld730hqYhosSBgPOlMWoQtvx/PZ7E/HL9ckgKkpjYFr1fYiZLAK67S6OEfm3KQc7dd5WFFf2PsG/wy8gZ61EyhL9Pqk2IKw4fOlX/gJGVg0wlXuPbp12GYdW3jZp7iKqd6dcr4pxtT1x0fMxmk7IBZfwoTC5yQGkyR8Lfy8qgD4FtuDTWy/0315C8bF7nnf1q7zsFpgOLa/LByhSn4269Kt1pwSmWitKf1TAAgUITAOLRmBqQSKxicMpQGDqcCHnhH+hAIEpU0MvBQhM9VLecfolMDVWrM0B0xI90uLtk884PO+GMrE2GwpjekVRYRoyBFquLoj9olozWqLw8Jx2FUU7p8H9sy/xTCyJL9MvA9b3OYM3jz6ZCKI1MM3XOBnk/qPfvnw36ad7gtX4/O6rUlWaoUw8BTxucD2HwwtvKnbRE4dHE/e8SJA5irKEf2Hro7hz8gV+5+/9C+/Do3wvc8BU7ls65XoVeH02Hdv4up44uvYuMhWPiybjciJKnLCi+vSJAkvf+fRRoWs6lOuYVuxzGgL7PW5hQffj+PFDVCceK4eE6aPAKXQIfP/2Az+E60kN95sA2Rr9MyGkKAFe6VOh6jveauJ1L1EZvMT1tMk86vTLjHoDsthE4r4eUkGXcUTuu0GXfrXulMBUa0XpjwpYoACBaWDRCEwtSCQ2cTgFCEwdLuSc8C8UIDBlauilAIGpXso7Tr8EpsaK9e+AqawqrTU5By7vfKRM6vD8m4gUxwXZaiRSfj666BaueT5Bnek58fGVF+Sep0vbHkPHHUXx7MY7BVjKJfLbRlz0E0VrYKqn2uaAqV5jMzQwda2oi2yR+6/XpV+tOyUw1VpR+qMCFihAYEpgakHasAkVAIEpk4AKeCtAYMpM0EsBAlO9lHecfglMjRVrcxWmWs+GwFRrRQP7MzIwfTWokvUF+kkPUQas06VfrTslMNVaUfqjAhYoQGBKYGpB2rAJFSAwZQ5QAR8FCEyZCnopQGCql/KO0y+BqbFiTWBqebxYYWq5dr9q+WpAZe2dqvAYZdBaFVa2b0Jgavsx4ggdQAECUwJTB0hzTtEKCrDC1Aqi0qUhFSAwNWTY7GLQBKZ2EUabngSBqU2HJ9DgCEwtjxeBqeXa/arly/5VtHeqwmNU1zUqrGzfhMDU9mPEETqAAgSmBKYOkOacohUUIDC1gqh0aUgFCEwNGTa7GDSBqV2E0aYnQWBq0+EhMNUwPASmGorp4+plP52A6WACU9XRXOJ65qcnh30N8QPzXU+Z+GnYLysQEnB3PanaPw2pgNEVIDAlMDV6DnP8+ihAYKqP7uzV9hQgMLW9mDjKiAhMHSXS+s2TwFQ/7S3pmRWmlqjm3YbA1HLtftXyRZ+q2jtV4THa0NUqrGzfhBWmth8jjtABFCAwJTB1gDTnFK2gAIGpFUSlS0MqQGBqyLDZxaAJTO0ijDY9CQJTmw5PoMERmFoeLwJTy7X7JTDtXU17pyo8Rhu2SoWV7ZsQmNp+jDhCB1CAwJTA1AHSnFO0ggIEplYQlS4NqQCBqSHDZheDJjC1izDa9CQITG06PASmGoaHwFRDMX1cPf+nuvZOVXiMPmKlCivbNyEwtf0YcYQOoACBKYGpA6Q5p2gFBQhMrSAqXRpSAQJTQ4bNLgZNYGoXYbTpSRCY2nR4CEw1DA+BqYZi+rh61rOG9k5VeIwxcoUKK9s3ITC1/RhxhA6gAIEpgakDpDmnaAUFCEytICpdGlIBAlNDhs0uBk1gahdhtOlJEJjadHgITDUMD4GphmL6uHrao6b2TlV4jDlquQor2zchMLX9GHGEDqAAgSmBqQOkOadoBQUITK0gKl0aUgECU0OGzS4GTWBqF2G06UkQmNp0eAhMNQwPgamGYvoC0+61tHeqwmNMt2UqrGzfhMDU9mPEETqAAgSmBKYOkOacohUUIDC1gqh0aUgFCEwNGTa7GDSBqV2E0aYnQWBq0+EhMNUwPASmGorp4+pJ19raO1XhMdaYpSqsbN+EwNT2Y8QROoACBKYEpg6Q5pyiFRQgMLWCqHRpSAUITA0ZNrsYNIGpXYTRpidBYGrT4SEw1TA8BKYaiunj6nGXOto7VeEx9lgPFVa2b0Jgavsx4ggdQAECUwJTB0hzTtEKChCYWkFUujSkAgSmhgybXQyawNQuwmjTkyAwtenwEJhqGB4CUw3F9HH1qHNd7Z2q8Bhn3BIVVrZvQmBq+zHiCB1AAQJTAlMHSHNO0QoKEJhaQVS6NKQCBKaGDJtdDJrA1C7CaNOTIDC16fAQmGoYHgJTDcX0cfWwkz7ANO54AlPV0VziegZLXE+b2NfplxlfQ/zAfNdTJq837JcVCAm4u55U7Z+GVMDoChCYEpgaPYc5fn0UIDDVR3f2ansKEJjaXkwcZUQEpo4Saf3mSWCqn/aW9DzveS20T7YaH157wV38u3/S9fgo/m2tq/7c3Djl+Qh751836aL1nHw4LV7fueAaOs3Oj6ueTwLZtBE2Nz2f4uD8G9YaXpD8EpgGSS5Vxg871lNlp7VR3ImLtXapiz9WmOoiOzulAqYKEJgSmPIzQQUsUYDA1BLV2MYeFSAwtceoGmNOBKbGiJORR0lgaqzoEZhaHi8CU8u1+1XLBx3qa+9Uhcd4kxapsLJ9EwJT248RR+gAChCYEpg6QJpzilZQgMDUCqLSpSEVIDA1ZNjsYtAEpnYRRpueBIGpTYcn0OAITC2PF4Gp5dr9quX99g20d6rCY/zJC1VY2b4Jgantx4gjdAAFCEwJTB0gzTlFKyhAYGoFUenSkAoQmBoybHYxaAJTuwijTU+CwNSmw0NgqmF4CEw1FNPH1b12DbV3qsJjgikLVFjZvgmBqe3HiCN0AAUITAlMHSDNOUUrKEBgagVR6dKQChCYGjJsdjFoAlO7CKNNT4LA1KbDQ2CqYXgITDUU08fV3TaNtHeqwmPCafNVWNm+CYGp7ceII3QABQhMCUwdIM05RSsoQGBqBVHp0pAKEJgaMmx2MWgCU7sIo01PgsDUpsNDYKpheAhMNRTTF5i2bqy9UxUeE06fp8LK9k0ITG0/RhyhAyhAYEpg6gBpzilaQQECUyuISpeGVIDA1JBhs4tBE5jaRRhtehIEpjYdHgJTDcMTEJg2nZQLwyru0rAHy1xV7JoOX95/w8pBZ0wcVOufCV4hgCWup01er9MvM+oNyGJZZxq3utOqicYe1blLNMNdnaGNWxGY2niAODzHUIDAlMDUMTKds9RaAQJTrRWlP6MqQGBq1MgZf9wEpsaPoa3PgMDU1iNkOj4e+mR5vPwD00gxXdB5RSHESxXJcocatXQKHRLDSu/EjRPPDQdMb7doqpEKQXOTeNbcoDWwUWsCUxsNDIflWAoQmBKYOlbGc7ZaKUBgqpWS9GN0BQhMjR5B446fwNS4sTPKyAlMjRIp73ESmFoeL//A1HIvwdfSCBWmt5o3Cz5B/PWUZPYcXfrVulMCU60VpT8qYIECBKYEphakDZtQARCYMgmogLcCBKbMBL0UIDDVS3nH6ZfA1FixJjC1PF4BgWn4KGEQyjmk5Q7/oOW7F1/wzeu74iF81DB4//JLIG+GAKbNdAKmc0yB6ZbdRzF13lp88fqK+HFjYGDXxkgYLxY+f/HCgNHuOHD0HMK6OKN53XKoWfEvRevc5dpg3byhiBMz2h9E8s+aEpj+mX5sTQU0UYDAlMBUk0SiE4dTgMDU4ULOCf9CAQJTpoZeChCY6qW84/RLYGqsWPsHpvNf1sb6vmfh9fGb1SaRs34S7Jh/DXvnXzfpo/WcfDjt+Qg7F1xDp9n5cdXzSSCbNsLmpudTHJx/w2rjC4pj/8A0ZuLw6LSmMKLGCRcUF5rYOjmFwC73a1j2zynETxsZA/cUxLSmp3By0328S3wKYR+ngNOniDACML3ZtLkmmgTVSdK5s/2aPH76EpWa9MHKWYOQIG5MzFu+BfsOn8WcsT0wxX0Nrt26j+G9W+L5yzeo124IZrp1Q6pkCQhMv4b4gfmup0y0b9gvKyC+RHB3PRnUmNCeChhWAQJTAlPDJi8HrqsCBKa6ys/ObUgBAlMbCoaDDYXA1MECrsN0CUx1EP0PuvQPTPPWSIJMJeP+gTfzTT+99YJHn1P4EgDKGh2YpsgVA3XGZ0fNgssVEWLFC4+kqaIgbuKIeHL/PSJFdcH7t1+wb8tt8yIF0SJ/iURo3TE7RpXdJeIXD91WpMH6sc8NeejTjcYtgjh7bcyTzZvl5+j4mcsYPH4B1rkPVV67evMemnUZBc81E1GxUW8M7tkMmdMlV94bNcUD4cO5oF2TKibAdPyslbhy4y4mD+2EkCHFSVvBdLHCNJiEZjdU4HcKEJgGVqfH1mJY4HYGJ3c+MHnTbUtprHE7j9M7H2LwlhJYKGxO7DK1GbO5NBb/5HVmIRWwNwUITO0topyPpQoQmFqqHNv9qQIEpn+qINubU+BPgGm+Wkkgqwi/f/thrhu+r5ECt868wJAS2+H12Xs5t16XGmBask1q1BuVHT++20Z+hBAczFNUys7pcBTRE4ZH1/VFEDdZxGCXMIQAchvHX8TKfmcQN2VEDN5fGBPrn8DZ7Q9NxmKECtPrjVoGu36yw+TzZ/r1+/bdB5Rr8A+mj+yCtCkTY8bCDbh59yFG9mmFzMWaKeA0cqTwiv2ydbtw/OxluPVr4wdMT527itlLNmHhpN4IF9YlWOdDYBqscrMzKvBzBQhMA+tCYMpPCxUwrwCBqXmNaOEYChCYOkacbXGWBKa2GBX7GtOfAFOphEuEUPYliI3P5uuX75D/6X2pAaYSUDqHt638kJWyvoA/tIsTnEIFXzWh/5h9/vDNDySHCesUqIJX2hoBmF5r2EqXVEyxYIZJvxu3H0LvEbMQXgDPsGGdMX9CL8SJFR1ZijfDia0z4eIcRrFft/UAdngex6ShfyvAVC7Vd5vqgXnjeyF2zKjBPhcC02CXnB1SgcAKBASmbptKY+/caw4tVa4aiTG+8yFWmDp0FnDy5hQgMDWnEN93FAUITB0l0rY3TwJT24uJvY3oT4GpvenB+ahTQA0wVeeJVr9SwBDAtEFrXQKYYuF0v36v3LiHdr3HY/74fxAvTgxs3XMME+eswob5w5G1RHPsWT0eUSN7VxJ7rN2J0+evYWTfVgowlSBVLtFfPWewH1QNzgkRmAan2uyLCvxCAf/AVJoUqZEUidNGcWi9ntx9j83uVwJpwCX5Dp0WnHwABQhMmRJUwFsBAlNmgl4KEJjqpbzj9Etg6jix1nKmBKZaqvlzX0YAplfrtbG+ED/pIeXiaX6vLlixFecv3cSofv+Ht7KydIuHG1r3GIteHeshd9a0in1/t7nKwVAt61dQgOmkIX9j1aa9Ysl+BPQWdsF9EZgGt+Lsjwr8RIGAwJQi/VoBAlNmBxX4vwIEpswGKkBgyhzQVwECU331d4TeCUwdIcraz5HAVHtNA3o0AjC9Uret9YX4SQ+plkz1e/Xg8fMYMHoeVswYiCiRI0D+3M11mrJ36ezFm3D6wlWMd+2Aew+eolGn4VgypR8SJ4jtt4dpWGdnVGrSB6P6tkaurGmCdT4EpsEqNzujAj9XICAwLVw9KeRrjnw9vvMeW+axwtSRc4BzN68Agal5jWjhGAqwwtQx4myLsyQwtcWo2NeYCEztK57BNRsCU+srbQRgerlOO+sL8ZMeUntMMXl15qINWLN5n/JaxAjh0KNtHeTInBpfvngpMHXfkbPK0vu2jSujUqn8ip2sMF03byjixIyGXQdOYfikxVg7d4hiF1wXgWlwKc1+qMBvFAi4h+nITaWw1f2qQ2tWqHoSTOx8mHuYOnQWcPLmFCAwNacQ33cUBQhMHSXStjdPAlPbi4m9jUgNMC1UKyk6zc7vd1iOvWnA+QRdgXevPmNItd24duI5yrVOg6ajcvgdYhR0b2zxMwVCOoXA4Kq7cGr7A5O36/TLjHoDstiEaJdr6wRMl5oCU5sQw4JBEJhaIBqbUAGtFQgITPt7/IXWmddp3Y2h/A3bUhJL3M4SmBoqahxscCtAYBrcirM/W1WAwNRWI2P/4yIwtf8Y6z1DNcBUjtElQmi9h8r+bUiBH99/4POHr8qIQoiD5p3DMz+sEZ5P77wCubUlYHqpZntrTNuszzTLJ5u1MYIBgakRosQx2r0CBKaBQ0xgavdpzwlqoACBqQYi0oVdKEBgahdhNOQkCEwNGTZDDVotMDXUpDhYKmDHCtgSMP2vRgddlE67YpIu/WrdKYGp1orSHxWwQAECUwJTC9KGTagACEyZBFTAWwECU2aCXgoQmOqlvOP0qwaY5iybAP8sLSyWXDuOLmpmGiJkCPQvuw0X9j9BqlwxMHRrSVFtKcotHfh6eOMNXCvtwtO771GzZ0bU6p0JP344sCB/MPWQIr/6lNqK/w49NfFiS8D0YvWOfzBDy5umWznR8sY21JLA1IaCwaE4rgIEpgSmjpv9nPmfKEBg+ifqsa09KUBgak/RNNZcCEyNFS8jjlYNMG0xOie8Hn3B7mmBD0w14py1GnPpbmnxPuQPLBpwCjV7ZULESKGxfOhZrdwb0k+v1UWxfORZnN75EEMEQN446T+c2/PIkHPRe9DVBXD28vqOJa6nbRaYXqj2ty4ypV81QZd+te6UwFRrRemPCligAIEpgakFacMmVIAVpswBKuCjAIEpU0EvBQhM9VLecfpVC0w/3vmIHRMuO44wKmZarnd6fHYJ4QdMw7o4YckAU7ilwo1dmQzcUgIr3M55A1NxZsRqt/M4I/7NK+gK1BaHO/0QBcu2DEzPV+0U9Ilp0CLD6vEaeNHfBYGp/jHgCKgA1ADThGki4+9p+ZAsczQ8u/8Bs3sew9F/7ynq5SgVH81H5oB8aL987BnGNN2Pl48/Ku/V6J4RFdqkQWjnkDiw5jam/n1EOUEzTtII6DKrAJIKf09uv8OUjodx8eATm4kG9zC1mVBwIDasACtMbTg4HFqwKkBgGqxyszN/ChCYMh2srQCBqeUKE5gG1o7A1PJ8CtjSCMD0XOXO2k04CJ4yrh0XBGvbNSUwtd3YcGQOpIAaYDrjTGVsmXsFayZcRPaS8dB3eVHUjusBp9Ah4X6lOgZW3qHA0gYDsiJBqkgYWnsPMhWOg04z8qFr4c34KE7wG7CqKA6uu4MN0y5h1M7SOLT+DtaJZRjZSsRD51n50TDZCnz7ahub2BCYOtAHgFO1WAECU4ulY0M7U4DA1M4CaqDpEJgaKFgGHSqBqeWBIzAlMLU8e8y3NAIwPVupi/mJWMEi07qxVvAa/C4JTINfc/ZIBQIpYA6YhnQKgdJNU2Gr+xU/oLn6RT20z7keybNGR6kmKdG33HbFbzixN8+yh7VRNepitByTS9nQe/moc8p7ucsnRLXO6RWY6n6lGqrHWKJUm8pr8tEKmNn9GM7utY09bAhM+UGhAuYVIDA1rxEtHEMBAlPHiLMtzpLA1BajYl9jIjC1PJ4EpgSmlmeP+ZZGAKZnKnY1KUWtFQAAIABJREFUPxErWGReP8YKXoPfJYFp8GvOHqlAkIFpwAapc8ZAvxVF0TD5CtTskRFRY4fFtE5H/Mw87tdCtyKb0X5SHmyccVlZii+vBKkjY9SO0hhSazc6TMmLNlnX+bXptaQwTu96iM2zbWOzeAJTflCogHkFCEzNa0QLx1CAwNQx4myLsyQwtcWo2NeYCEwtjyeBKYGp5dljvqURgOnpCt3MT8QKFlk2jLaC1+B3SWAa/JqzRyrwR8A0dpIIGLa5pNiL9DBObHuAxoOzwSlUCMzpdcLP77yr1eFafZcCTJcMO4PjW+4r78VMGB7TT1cSwHQPGrtmw9/5Nvq16TI7P26cfYm1Ey/aRIQITG0iDByEjStAYGrjAeLwgk0BAtNgk5odBVCAwJQpYW0FtACmcrXazC91cHD+DcxtethkyA2m5ULhlinQMoyH38ozNXOKlTwCIsUJi2sHniJx9mho5VEAvVOtV9M02GyCAkylRqs+N0DzxCvxXJwX4XtV6JgWGcQ2Z8Or7dZk3EkzR0WP5UXQJvUayD4L1EwCT4+bmvhW48Qae5hW7pIeCdJEwuSWh9QMwW5sjABMT5XvroveWTe66dKv1p0SmGqtKP1RAQsUMLck39dl0oxR0W9lUczoehRHNt5VXq79TyZEE4c9TRWHNvleckl+5wKb0H5yXvw7+zL2r/KuME2UNjKGbSklluTvRqfp+dEq81q/Nr2XFsHJbffFPqlXLZiB9k0ITLXXlB7tTwECU/uLKWdkmQIEppbpxlZ/rgCB6Z9rSA+/V0ArYDr5VU28efIJ/dJvhNenb0qnsuhi8IXyiCaKKtpGXBYkYFqiUxqEEofKbh55UQF/4aKEwbvnn20qnLYOTJNmiYYGQ7PBtdyOYNPNGsA0TFgnkUsh8fGtV7DNwxY6MgIwPVm2hy5SZft3lC79at0pganWitIfFbBAATXAVJ5qL2Hn6Cb7TE6zz18lMSp3SIfuRTcrPcsH97mXqqKK2MO0ldjD9N3Lz1g46LTy3l91kqFEwxQYUX8vFt6sgZqxPfD5o/cDk2zjJnz/d+ipBTPQvgmBqfaa0qP9KUBgan8x5YwsU4DA1DLd2OrPFSAw/XMN6eH3CmgFTKe+rYVTa+/ixJq7OL7ijtJpxjLxkK9BUuSsldivwrRgs+Qo3T2dcrDs89vvMbvhQby89wHt1xTCvXOvkL9RMuyYeBll/0mPb17fsd/9Ok6svutXYdpudSHcOfUCSbJHR5R4YfHi7gdMrbEPP74H/8GyWgPTqj0yIJZY7Te9rXehiv+fFz+vg4W9TyB72QSIkzwi9iy6gVUjvM+RqNYzA8q0SYO3AigfWHkLxRqnQOfsGzDpXCVEiOqMK0eeYkAp7/MorH0FBZjK6tpkWaMhdJiQiC+2dnvx4CO2iu3bSojzMxKKQhwP8TfmXlEd67/CNEuJuGjqlhNhXJzw9ct3uPc8jhOb74t5hsHfc/IjdZ6YeCN0mNP1GE6J1ZJGvowATE+U6amLxNk3j9SlX607JTDVWlH6owIWKKAGmMq9RzdMv4R94ibr/wobIRTmXauBYXX24JznI7SdkBsu4UMrYDV9/ljoubAwuhTchA/iG78R20ph47RL2Db/GoZvLSUOeHqIZeJGXrhmUjQSS/ubpl6F7zo8zPxMMgJTCxKJTRxOAQJThws5J/wLBQhMmRp6KUBgqpfyjtOvVsB0+sfamFp9Hwo0SYbJVTwVAZvNzysg6j20XVlQAabhBNQafacK+qTdoMDSRjNz4/vXH1jY9ijaLC+ISLFdMK70LnwRBRd1J+bAS7F0XVaY+l+SL+3CRwuDsaV2KRWrg86Uw7JuJ3Bxe/AfLBucwHTB41rYPO0yPAaeRuSYLph9uzrqx1iKmInCY8T+MuiQYR1ePf6ITgsKIlWuGMqS/LzVEqNE05Q2W2Farm0a1OidEe3Sr8WHN16YfaMaTm1/oCy9T1cgFtpNz4t2Yl7+gemkMxUxVQDl/w48QWKxOrJ8+zSY0uoQ2s3Ii88fvmJ252NIKc7jGLSlBBrFWwavz98N+2E2AjA9XvofXfTNsWWELv1q3SmBqdaK0h8VsEABc8BU7ls6/1p1cUPxrgb1vYbX24uDa+8ga/F4aD02F6KJfYQuHnyC0U334+0L7yUx1cSeMlU6pkdIseRmz9IbmNX9GH6IL3hjJ46ArnMLIFnmaHh4/S0mtDmIayefWzB66zQhMLWOrvRqXwoQmNpXPDkbyxUgMLVcO7b8MwUITP9MP7Y2r4CWwLRN+GVwu11ZWZYvoeewKxXRK+U6TP9Q26/CNLSoDPRdsp+7TmJRUZocYwUklSD09skX+HfEBWXQvwOmVwUs2zHhsmLXblUhnN5wDwfm3TA/WY0tLAGmr59+EtWw/x+IczgnnNv1SNnD9HcVphKYDii5DTfPvFQaL3pWG11ybETWkvGQrXR8DK/qvQdqFvFzq0m5DQNMMxSOjZG19ipjH76nNDZO/k9Uyd5WtoSbcr4S6kTzMAGmrltL4MHVN1gz5gIe33znJ6T7neoYXHEXbpx+obwWXmzh8P7VF40jHrzujABMj5bqHbyi+PSWa+swXfrVulMCU60VpT8qYIEC5oCpBS4N34TA1PAh5ASCQQEC02AQmV0YQgECU0OEyS4HSWBql2G1qUlpCUxlFWmjGblx68RzvH/xRVmS797sMGZ/q+sHTMv3zYDM5eMDosBCVpy+uPMeY0p6A9PzYgn1vtnXFX1+B0zPbxV2c7ztlHb+fg5OcS0BphJyvnz4/0OfSjRPhRTZoqsCpj3y/YtHohBFXhKgyp/z10iC+KkiYWLTA8rrKXJER9fFhQwDTOV4J/iMfejOUlgz9gKOb7qHKKLaeMaVqqgVeYkJMJWv1+yTCXkrJxJA1AtzexzHSXEA8Yq39UQ16lo8EZXL9nIZAZgeKdlHF7lzbxuqS79ad0pgqrWi9EcFLFCAwDSwaASmFiQSmzicAgSmDhdyTvgXChCYMjX0UoDAVC/lHadfrYFp6iKxUb53enwQMGvvrKvKUnlfYJqlUgJU7J8RIwttx0exBDuv2N9U7nHqB0z9gU97BabNE6/Ec7HVgO8l9/HMUDiOAkwrd02PuCkjYVpr79Pg6w/JigjRnJU9TX0BaUBgmqV4XGQpEQ8jqu9R2uQolwDNxua0W2Dq/5OZq2JCdJ5XAPXE1gSzrlfF8Bp7cO2494pGCZEf33qn7HNq1MsIwPRwib66yJtn+xBd+tW6UwJTrRWlPypggQIEpoFFIzC1IJHYxOEUIDB1uJBzwr9QgMCUqaGXAgSmeinvOP1qDUxDhACGXqqgbNHVN91G5TAmX2BapHVKpC8ZF5Mq7UXYyKHRZllBuEQKjWH5tgaqFK01Jhu+iv0nV/U+HWgPUyNXmP4OmBauKw7QbZYSfYttRWjnkBh1sBwuiwObfgdMXcKHwpBdpdAh4zq8fvIJ3TwKI2nmqAowlUBRLvP/p4D34b3BcQXl0Ce5h2lQKkxn/n0UQ3eUwoiaexToHFscWjzueAUBTD2UbQhCOzsp+5kmEfOXS/ebJFzBPUytHPRDxfpZuYefu8+7c7Au/WrdKYGp1orSHxWwQAECUwJTC9KGTagACEyZBFTAWwECU2aCXgoQmOqlvOP0qzUwlcrVdMuGUAL4Lel4XBHSF5jKJfgd1xdBuCihldPt1w44i/bi1PtDC28ihoBf/kFouuJxxGFRhXDu3/vYMuY/tPIogN6p1gcCq0Zbkv87YOocLhR6ry0Kua/p68efcF/s1RlegOVpbX5dYSorTusMzIISzVMqe3Zum3UF5TukRasUq5Vl7aMOlUMocQp90wQrgiWprQlM5WFQxcSet9X/yQinUCGVfXIX9T+Fw+LMjXACvHdyL4B0BWPhzdPPmNnpCE5vfxgsc7ZWJ0aoMD1YtL+1pv9bv/l2uerSr9adEphqrSj9UQELFCAwJTC1IG3YhAoQmDIHqICPAgSmTAW9FCAw1Ut5x+lXC2DqOGqZzjQoe5g6ikZBAaaOooml8zQCMD3w1wBLp/dH7fLvHvRH7W2lMYGprUSC43BoBQhMCUwd+gPAyVusACtMLZaODe1MAQJTOwuogaZDYGqgYBl0qASmlgeOwDSwdgSmludTwJZGAKb7iwzUbsJB8FRgjz79BmGIqkwJTFXJRCMqYF0FCEwJTK2bYfRurwoQmNprZDmvoCpAYBpUxWivlQIEplopST+/UoDA1PLcIDAlMLU8e8y3NAIw3VdYn0rPgnv1qWw1H7WgWRCYBk0vWlMBqyhAYEpgapXEolO7V4DA1O5DzAmqVIDAVKVQNNNcAQJTzSWlwwAKEJhanhIEpgSmlmeP+ZZGAKaeBfXZS7TQPn32TjUftaBZEJgGTS9aUwGrKEBgSmBqlcSiU7tXgMDU7kPMCapUgMBUpVA001wBAlPNJaVDAlPNcoDAlMBUs2T6iSMjANO9BfQ5rb7w/n7WlD7YfBOYBpvU7IgK/FoBAlMCU34+qIAlChCYWqIa29ijAgSm9hhVY8yJwNQYcTLyKFlhann0CEwJTC3PHvMtjQBM9+QfYn4iVrAocqCvFbwGv0sC0+DXnD1SgUAKEJgSmPJjQQUsUYDA1BLV2MYeFSAwtceoGmNOBKbGiJORR0lgann0CEwJTC3PHvMtjQBMd+cban4iVrD462AfK3gNfpcEpsGvOXukAgSmKnJg2JaSWOJ2Fid3PjCxdttSGmvczuP0zocYvKUEFrqdwYldpjZjNpfG4p+8rqJbmlABQylAYGqocHGwVlSAwNSK4tL1bxUgMGWCWFsBAlPLFSYwJTC1PHvMtzQCMN2Vd5j5iVjBouih3iZeHz5+jl7DZ+H8pRtIGC8WhvduiTQpEuHzFy8MGO2OA0fPIayLM5rXLYeaFf9S2uYu1wbr5g1FnJjRrDBCdS4JTNXpRCsqYFUFWGEaWF4CU6umHJ3biQIEpnYSSE7jjxUgMP1jCenAQgUITC0Ujs1UK/AnwDRT2XhotawAfnxX3Z0hDUOEDIHxZXbh6v6nJuNXA0xT5oqBQVtLIESIEIac+68G/ejGGwyttBvP7r43MRkoCk5WuJ1Tik+GiAKV1aIQ5Yz4t/+res+MqNk7I378sF1Jbp1/iaGVd+HNs89o4ZYDJVqmAqw0Xplf/Uptw6VDpvllBGC6M/dwXYJY7Egvk34bdBiGovmzon71kti4/SCOnb6EYb1aYIr7Gly7dV8BqM9fvkG9dkMw060bUiVLQGD6NcQPzHc9ZSJkw35ZgZCAu+tJXQLLTqmAHgoQmBKY6pF37NP4ChCYGj+GnIE2ChCYaqMjvQRdAQLToGvGFkFT4E+Aac0x2XD/8XtsnHY5aJ0azLpa1/SIFNIJa/ufDTIwrd4rI8JFCo3lQ03bGkyCQMPtvbooVo48h7MBYKgaYCoB8rpJ/+Hcnkc2K4Pb3jKY0HQ/bp55iUknKmBvlyN4euGVVcabt2sG3P74DR6uZ0z8GwGY7silDzAtfvT/wPTew6do2HEYdiwbi5ACPvu/KjbqjcE9myFzuuTKy6OmeCB8OBe0a1LFBJiOn7USV27cxeShnQL5sErQfZyywtSa6tI3FVCpAIEpganKVKEZFTB9yGiRBimzxMDYdgcCvZ42cwxMbXcYpVukQoos0TFD/Nv/VVJ5PRpmtT1CVamA4RUgMDV8CA07AQJTw4bOMAP/U2B6685brJ140TDztWSgtXplQnSX0BYD0zAuTlgy4LQlXdtsGwlGZfWoRcBUtF3pU4VqqxOceLwCJjY74A1Mj5fHjraH8OTcS6sMt4DIr3tffxgSmG7POcIqmphzWuLYP34mO/edxKLV25Sl+AePX0Ai8f++nRsiWaK4yFysGTzXTETkSOEV+2XrduH42ctw69fGD5ieOncVs5dswsJJvREurIu5rjV9n8BUUznpjApYpgCBaWDduCTfslxiK8dSgBWmjhVvzvbXChCYMjv0UoDAVC/lHadfAlPzsSYwDawRgan5vFFrYWRgui3HSLXT1NSu5PGefv7WbN6HweMWYOqIzsidNS3mr9iKtZv3Y8WsQchSvBlObJ0JF+cwiv26rQeww/M4Jg39WwGmcqm+21QPzBvfC7FjRtV0jGqcEZiqUYk2VMDKChCYEphaOcXo3k4VIDC108ByWkFWgMA0yJKxgUYKEJhqJCTd/FIBAlPzyUFgSmDKCtOff062Zh9l/gNkBYtSJ3r4ed2x7wSmzV+HVbNdlde+ffuO7KVaYM+qCShc9W/sWT0eUSNHVN7zWLsTp89fw8i+rRRgKkGqXKK/es5gP6hqheH+0iWBaXCqzb6owC8UIDAlMOWHgwpYogCBqSWqsY09KkBgao9RNcacCEyNEScjj5LA1Hz0CEyDF5jW7Z8FS1wDb2Hwq9fNRzCwhTlfXJKvTtXNWd3UGWpsVeZUdz+Pl67dQfs+E8QepmP8gGm2ki2wf90kyMOgenWsp1Seyqu/21wkiBsTLetXUIDppCF/Y9WmvWLJfgT0FnbBfRGYBrfi7I8K/EQBAlMCU34wqIAlChCYWqIa29ijAgSm9hhVY8yJwNQYcTLyKAlMzUePwNS6wDRFtugo1TwVPr71wv5Vt9B6Qm7M73MSyTJHQ9iIoRExujO2zr6CjjPzYXQDTxSpmxw/fvxAiBAhcOnwE+SplAhfxKFJsr08cf76qed49fgjspdOgEii7YYp/6Fo/eTKiffxUkbC7kXX0HxMLqWP7KXi492rL8oElw///8FcvwOmUZJEwKtb78wnjkoLIy/J/zfLaJWz1Nas7OluJg6rNO2LhjVKoXLpAli0ajs2bD+I5TMGYvqC9Th94SrGu3bAvQdP0ajTcCyZ0g+JE8T228M0rLMzKjXpg1F9WyNX1jTaDtSMNwLTYJWbnVGBnytAYEpgys8GFbBEAQJTS1RjG3tUgMDUHqNqjDkRmBojTkYeJYGp+egRmFoXmGYoFBuFaiXFdveruHr8uQJGJ7Y8iII1kiBBmsjIWjwe+pXehlYCpEqo2W5qXvx36CkSpI6EbXOvIkqssLh++jlyl0+ITdMvo1bvTIgcwxlP736Aczgn3D7/CvFTRcK/4r1YicOLf0dGuvyxlD46zcmPMzsf4uime3j/2hucyosVpuY/F9JiU2bvqs7gvsqd6WrS5Z37T9Bl4BTce/gUKZLEx+AeTZFUHPr05YsXBoyeh31HzipL79s2roxKpfIrbWWF6bp5QxEnZjTsOnAKwyctxtq5QxS74LoITINLafZDBX6jAIFpYHF46BM/MlTAvAIEpuY1ooVjKEBg6hhxtsVZEpjaYlTsa0xaA1NZ0dd2Uh6EdAqB799/IFI0Z7j3OaGAsDYTc2PthIt4eP3tT0UsUC0xwkcOg60CggXHZW48vmMgMA0cDS0PfQoVOiQiRA2DMi1T485/r5SqTwkzuy0sKCpK96H7okKY1OogWo7LheUjzqFk05RY0PckosYJi8TpoyB8lDAKFJXtts65groDsiiVpdPaH1YGHjJUSFTvngHrRO7FTRFJaZMmT0yljzAuTkguKlwrdUyHEbX3+E2UwFTdJ3BjprHqDDW2Kn+2i8Ye9XFHYKqP7uyVCpgoQGBKYMqPBBWwRAECU0tUYxt7VIDA1B6jaow5EZgaI05GHqXWwLRcq9SIGjcsFg303oNSVvYlShsFz+69R7/VRXF+32NMaXdYAVhxk0eEswBWl489w/pJ/2HYtpL4/OEb5vxzHBEEBCvfJg1ePPqoQK3JbQ8hR5n4KNEopYCvz5CxcByc3HYfYcKGQuqcMbB20kXx8wNU65oeKbPHgNfnb7h35Q2WiYrEfFUSKe2unXyOeCki4ta5lzi966HfeOb0OI42onrx7cvPArS5YO+ym/BcftMvrASm1gWmMq65yiXEt6/fsXPhdRSolkTkxFPkLJMAT++8R8xE4ZVYF6yRFB5DzqB0i1T49P4rvn75jvOej34KTA+uvq2A1VBhQoqq1HP4q14yE2AaT4BT3z5ePPwIp1AhlCX6vheBqbrfauszjlNnqLFVxXOdNfaojzsCU310Z69UgMDUTA6wwpQfEipgXgECU/Ma0cIxFCAwdYw42+IsCUxtMSr2NSatgWmMBOHQeXYB3Lv8GpePPsU5z8diafR7RbRhW0tikgCfj2++Q1kBVjdOuyT2oQQW3a2JegmWo7ZYSv1SAFJZYTrnSlV0zLlRWSYtgeXrp5+U/wrXTooRdfYKwJYAEs4OqLhTgad/1U2GlW7n0G1+IXTJv0npb8jmEpj29xEF2BYTe1gOqbEboQVAm3qmElqkXeM3nnBin8zmo3JgYOVdAsJ9U5Zs37n4isD0N6muZYWpLX6i/APTqWcr4tqKW3jjk8dajzd1xUQ4efoFPFzPmLiu3S8zfojPR8ADsOqI1+uJKlpbuNZl0AeYVjpPYKo6/ktEYv0sib6G+IH5rqdM/DTsl1XUZAPurv//9kB1RzSkAgZVgBWmgQNHYGrQZOawg1UBAtNglZud2bACBKY2HBw7HxqBqZ0H2AampzUw9Z1SNFFlmkpUfsp9KF8/+YSZXY/9H5iKA3MkHI0WNxy+fPqGkk1SoGYMD9TsmVEBpns8bmDJw9o4IKoE5RU+UmhcOPhEWcov4ejMLkeRpVhcFBb7Xk4Qy6rT5I6JCu3SYLdo13pcblwUtvKSn5+losJUVqv6tpOvz7teHY2Tr/Qbj/RbrEFypbIxtHNIrBh1Dmd2P/KLDitMAyeqIwHTnKXj46/6yfDju3U+sLIKdlKbQ3j38v97qMqejABM16Ybbx1RzHitfLGTLv1q3SkrTLVWlP6ogAUKEJgGFo3A1IJEYhOHU4DA1OFCzgn/QgECU6aGXgoQmOqlvOP0qzUwLSOWS18X1XJXxDJ7ecl9JsfsK4umKVdh6JaSmNrhMGIkDI+K7dJicLVdyp6lC+/UUIBptW4ZlCrSLeJE9JkXqqBDzg1iif5XyKrVj2+/IlOROL8FpkvEcu12Yv/U3qW2KX0nSB1ZQNY3ynLvnwFT3/FIaOscLpRSFSvHO1RUprbNup7A9DcfA0cCpnr9NjACMF2TdoIu8lT5729d+tW6UwJTrRWlPypggQIEpgSmFqQNm1ABEJgyCaiAtwIEpswEvRQgMNVLecfpV2tgmlCcat5sZA6xH+UPfPX6hrARQmOd2J/0xNb7aDQkG9KKw3bm9DiGNpPyKgf8vHjwQQGb96++USpDmwzLjtni/ZAhQ6CsOATo/ZsviCCg6hRxgE/KHDF+C0zdGu5TqlSTZY6GHz9+4PPHb5goDguSp6f/DJj6jmeeOJSqTp/MePP8M5zFnqgnxH6Z/g+eYoVp4M+DIwHT6ALYZygUx0SEW2de4PYF720bkmSMisTiv59dp7c/UL4EkFeW4vEQOdbPT2Dfu+RGoOZGAKar0kzU5ZdltUsddelX604JTLVWlP6ogAUKEJgSmFqQNmxCBQhMmQNUwEcBAlOmgl4KEJjqpbzj9Ks1MLVH5awBTAuKvVjPioOn5HYFRrwcCZgO2VUSb958FvDeC2GcnRA1dlgkzxAVExofULZ7bDM1L47suhsojFFiuODHR2BktT1ILb4oaD4lF65efB7ILkmqKDi48BY2Tr5k8p4RgOnK1JN0Sd/qlzvo0q/WnRKYaq0o/VEBCxQgMCUwtSBt2IQKEJgyB6gAgSlzQGcFCEx1DoADdE9gaj7I1gCm7vdrYlTNPfjvgPd+q0a7HAmYjj1eHoOa78bVM96wU1Y/7/vQHFWcFyr/XvmxPrKFnaa8F1Psy5u3eEJ8+h97ZwEW1dLG8T/diLSi2K2E3a3Y3XXtvOZnK1cvXhO7GwPBRkzsxFYQW2wRAzFABKW+OWdFWHZhl2XZYN95nvtcZN+ZOfOfOcvu77wRmwCXmvlQvY4DDng+gH1RU5Sob4u+zf14u6Kl86J2E0e8fRWNdr1Lw+iXDi6znL0/ouNx69hb3kYdgOmekiuVcnQ7P/lbKfPKe1ICpvJWlMYjBWRQgICpqGiUw1SGg0RdNE4BCsnXuC2nBWegAHmY0tFQlgIETJWlvObMS8BU8l7nBDCVPKtqWxAwFQ9M0+5a1QYFMHxiZcx0OwWnhvZoPbksA6YHRDZ2+PSqsE42gC8rZp62qQMw3V18lVIOapenI5Qyr7wnJWAqb0VpPFJABgUImBIwleHYUBdSgDxM6QyQAr8VIGBKR0FZChAwVZbymjMvAVPJe03AVFQjAqapwHQf8zAd1yVARKQSFaxQt6Ejpjc8wQPTHnNdsWruDRG7Fl1KIOrRD7UEpruKrZZ8A+WARddnw3NgVMUPScBU8ZrTjKSAiAIETAmY0m1BCsiiAHmYyqIa9cmNChAwzY27qh5rImCqHvukzldJwFTy7hEwJWCaUUg+p0yHSeVRspq1iEjaOlo4wvKS3jn5DoYmuugzvyIs8xuL2OkZaGNF/8v4+kE4n606eJj6FhWkIlB06/58mKKnzJH5CJjmiKw0KCmQNQUImBIwzdqJIWtSQKAAAVM6CaSAQAECpnQSlKUAAVNlKa858xIwlbzXBExFNSIPU4GHaU42dQCmPkXW5qQEGY7d48VQpcwr70kJmMpbURqPFJBBAQKmBExlODbUhRQgYEpngBT4rQABUzoKylKAgKmylNeceQmYSt5rAqYETDPzMC1QOg8cSpqLPUgPLn1E9Oef/Gtla9nCzMpArN21g29Efq8OwHRHYeUA054vCZhKfuf6beHDkuP6eAQL2Xd3d0aCVjK2egQJ/b6PuysrawZ4edyWenwyJAXUXQECpgRM1f0M0/UrRwHyMFWO7jSr6ilAwFT19kRTroiAqabstPLWScBUsvYETDUbmE7cXQ/5Spgi/lfSHyF0dXQwrvJhaGkBa560x+N7n/jXjEz0YGquz35KhpGxHqIjfmHf3LvvVLZYAAAgAElEQVQoXCEvavcqjDevo0TEdChkjrNrnyJg/ROh19QBmHo7rpN8A+WARa/XQ3JgVMUPSR6mitecZiQFRBQgYErAlG4LUkAWBQiYyqIa9cmNChAwzY27qh5rImCqHvukzldJwFTy7hEw1WxgamKhj3zFzIREiAz/gS/vYqGtrYW9rOiTs5Fo8aNqDQrg74lVMNPtFF/0qcXkMujWfC8/Tuny1nCtlg8/4xLQrltpaH8Brvi94l8L3Cv4vzoA020F10u+gXLAos+bwTkwquKHJGCqeM1pRlKAgKkUZ2BOQFP4eIbg9ulwIWvPgGbw87yH4NPvMCugCbZ73sGtM8I2i441ww4xv5diWjIhBdRKAQKmarVddLE5qAAB0xwUl4bOVAECpnRAcloBAqaSFSZgKqqRJuUwzeyEyApM0445Znp15Es2hi+LnE7b1AGYbi2wQfINlAMWf4UNyoFRFT8kAVPFa04zkgIETKU4AwRMpRCJTDReAQKmGn8ESIDfChAwpaOgLAUImCpLec2Zl4Cp5L0mYKrZwLT5iNJo1LcYkpKS/wjxIPAjtoy7yXuY7mMepoNbHhQRqbSLDZo2Lwr3Rid4D9Mus50x1/2SiF3HXmUQ/zxeLYHpFoeNkm+gHLDo+3ZgDoyq+CEJmCpec5qRFCBgKsUZIGAqhUhkovEKEDDV+CNAAhAwpTOgZAUImCp5AzRgegKmkjeZgKlmA9MlQa2wcuENvAz9CgtLQ5Qsb4WJs2vBo/UpGOfRR+matihYLo+ISDo62ji0/BGu+7+GsbkeBiyvAu49PX3TM9DBkl6X8OlNjNBL6uBh6pV/k+QbKAcs+oUPyIFRFT8kAVPFa04zkgIETKU4AwRMpRCJTDReAQKmGn8ESAACpnQGlKwAAVMlb4AGTE/AVPImEzDVbGC66GZLjBt0HA9DBIWdOK/SB9//RgeD7ZIPTzYs1AGYbrbfnI0Vyt61//v+sndWoZ4ETFVoM+hSNFcBKvokuvcETDX3fqCVS68AAVPptSLL3K0AheTn7v1V5dURMFXl3ckd10bAVPI+EjAlYJoZMLUvaga7wqZiD1LorUj8+PaLf61YRSuYsgJS4tqdM+9Efq0OwHSjnZfkGygHLAZ+6JcDoyp+SAKmitecZiQFRBQgYErAlG4LUkAWBQiYyqIa9cmNChAwzY27qh5rImCqHvukzldJwFTy7hEwJWCaETDV0gJW3muLiLfC4fScYkZmegh/HI1lfS8xWGqJIeur4+vnWBExbfKZ4MiiRzi15anQa+oATDcoCZgOImAq+Y0rxcKHVRPz8QgW6tDd3RkJWsnY6hEk9Ps+7q7Mhxrw8rgt/QRkSQqouQIETAmYqvkRpstXkgIETJUkPE2rcgoQMFW5LdGYCyJgqjFbrbSFEjCVLD0BUwKmGQHTlKJPTQwEnpYWNoao3NQBpiy3aV57I9Rs6Yijqx6xXKd6KNs8H3o238fblSpvDddq9oiLS0DbbqWh9SUZV/xeIfrzT4Scec/bqAMwXWerHA/TIR/Jw1TyO9dvCwKmUktFhhqqAAFTAqYaevRp2dlUgIBpNgWk7rlGAQKmuWYr1W4hBEzVbsvU7oIJmEreMgKmBEylBaZplXJtmA+9JrlghttJODW0R8vJZf8A07R2o6ZXg12yEXyZI2Dapg7AdK3NFsk3UA5YDI3omwOjKn5ICslXvOY0IykgogABUwKmdFuQArIoQMBUFtWoT25UgIBpbtxV9VgTAVP12Cd1vkoCppJ3j4CpfIHprJNNcZl5U4bejJQsvpIsxmyqhUW9LuDFnS9YEtQaqxffwMunX/mr0WZx+L5nO/FFn1I8TEfVOSxypSUrW6N+hyJwb3yCB6adPJzhMeGciF2XfuWQHJaolsB0tbVygOnwTwRMpb41yMNUaqnIUEMVIGBKwFRDjz4tO5sKEDDNpoDUPdcoQMA012yl2i2EgKnabZnaXTABU8lbRsBUvsC0dtciaD+uLJISkiWLrySL8KdRWDviKmK/J8BtaEk06lscSUmp1/vg0kdsm3iLv7oBS6qgVFVrkSvV1tWG/+IHuLjrBUzz6mPY+hqwcjAWsdM30IFnl/N49yxa6DV18DBdaaUcYPp3JAFTqW8NAqZSS0WGGqoAAVMCphp69GnZ2VSAgGk2BaTuuUYBAqa5ZivVbiEETNVuy9TuggmYSt4yAqbyBaaSFScLTgF1AKYrLLcqZbNGfv5LKfPKe1IKyZe3ojQeKSCDAgRMCZjKcGyoCykAAqZ0CEgBgQIETOkkKEsBAqbKUl5z5iVgKnmvCZgSMJV8SuRvoQ7AdJmSgOnoDIDp9aBH6Dd2Hg5tm4uijvnw81c8Ziz0QuD1uzAyNMDAHi3RpU0DfrOqtRwG/y2zYW9jKf/Nk3JEAqZSCkVmpEBOKkDAlIBpTp4vGjv3KkDANPfuLa0sawoQMM2aXmQtPwUImMpPSxpJvAIETCWfDAKmBEwlnxL5W6gDMF2ad5v8Fy7FiGO+9BGx+sXgaPfhsxAR+RVblk3hgekqLz88ffkWc6cORuSXKPQc8R/We45HyaIFCJgmaCVjq0eQkJB93F1Zll7Ay+O2FNtAJqRA7lCAgCkB09xxkmkVilaAgKmiFaf5VFUBAqaqujO5/7oImOb+PVb2CgmYSt4BAqYETCWfEvlbqAMwXWyhHGA67qsoMOXgaDJLM3viwk0s9fibB6Zt/pqKWZMGwLlsMX6DFqzyhYmxIUb0ay8ETJdu2Isnz99g5ewxfCEvRTXyMFWU0jQPKZCJAgRMCZjSDUIKyKIAAVNZVKM+uVEBAqa5cVfVY00ETNVjn9T5KgmYSt49AqayAdM5J91w1e8VQm9GShaZLEQUaDKgBD69/QEfj2Ch17q7O6PnDBeVUGxRHuUA0/99EwamL9+8x+h/VmD3upnoPHjmH2Dq3GgALvgtRx5zE16vXf5ncDPkMTzdh/0BpkF3Q7HR5wi2r5gKYyNDhepKwFShctNkpIB4BQiYEjCle4MUkEUBAqayqEZ9cqMCBExz466qx5oImKrHPqnzVRIwlbx7BExlA6b1uhZBu3FlkZSQWl1estpkkaKAnqEO5nY5h3fPolUWmHqab1fKhk2I6i00b/+x8zGoZyvUqFwObfpO44Fpwfy2cGk8ALeOr4ehgT5v7388EKeYB+qK2aN5YMqF6nuu9sWWpVNgZ5NX4WshYKpwyWlCUkBUAQKmBEzpviAFZFGAgKksqlGf3KgAAdPcuKvqsSYCpuqxT+p8lQRMJe8eAVPZgKlkZclCFgVUycN0vpKA6aQ0wPRAwCVcuXkf86cP4eVMAaZcSD7nYXpu/1LkzWPGv+Z74DSC7z3lbTlgyoFULkR//6ZZf6CqLHsiax8CprIqR/1IATkqQMCUgKkcjxMNpUEKEDDVoM2mpWaqAAFTOiDKUoCAqbKU15x5CZhK3msCprIBU0NTPRQqayFZYBW2CH8ahejPP/krzFfcHOaWBgq92sfXI0TmUyVgOs9MOR6mk6NTPUxHTl+O23efQEebFSti7WvUd5iZGmP2pIHgcpNOGdUT1VzL8K/947kZBfLZYHCv1jwwXfHfaOw7cp6F7JtiKrNTdCNgqmjFaT5SQIwCBEwJmNKNQQrIogABU1lUoz65UQECprlxV9VjTQRM1WOf1PkqCZhK3j0CprIB05HraqJkNWv8/JEgWWQVtNDV10bkmx+Y1f4MbAqaYMr++vgVn6iwK81jZYjd/4bgrM9zoTlVCZjOMfVWmB5pJ5r6vVeG86b1MF277SCC74eyEP2RCAuPwF9j5sJnlTsKFbD7k8PUyMAAbftNw4LpQ1HVtbRC10PAVKFy02SkgHgFCJgSMKV7gxSQRQECprKoRn1yowIETHPjrqrHmgiYqsc+qfNVEjCVvHsETGUDprMCmsDX8y6CTodLFlkFLTjvWHffBhjh7A9H9vN43zpo7eqjsCsdPr0q8sJApYs+zTZRDjCdFiMdMP31Kx4zFm7BxWshfOj98L7t0NatFr+HnIep/5bZsLexxJnAIMxdsQMHNv/H2ymqETBVlNI0DymQiQIETAmY0g1CCsiiAAFTWVSjPrlRAQKmuXFX1WNNBEzVY5/U+SoJmErePQKmBEwJmIq/T2YZ75B8A+WAhfsPxYfP58AyQMA0J1SlMUmBLCpAwJSAaRaPDJmTArwCBEzpIJACAgUImNJJUJYCBEyVpbzmzEvAVPJeEzAlYErAVPx94mGkHGD6TywBU8nvXL8tfDzuiHVTTtBKxlaPIKFx+ri7AiwXrJfHbanHJ0NSQN0VIGBKwFTdzzBdv3IUIGCqHN1pVtVTgICp6u2JplwRAVNN2WnlrZOAqWTtCZgSMCVgKv4+makkYDqTgKnkN64UCwKm0mtFlpqpAAFTAqaaefJp1dlVgIBpdhWk/rlFAQKmuWUn1W8dBEzVb8/U7YoJmEreMQKmBEwlAdMWXUvAxt4EJmb6OHP4OR4FfxJ7sAZOqIRPH2Jw6fhr9v8fmR4+dchhOsNQcTld04r1b1wPyTeuGlhQSL4abBJdYu5XgIApAdPcf8pphTmhAAHTnFCVxlRHBQiYquOu5Y5rJmCaO/ZRlVdBwFTy7hAwJWAqCZiOmVUDS92v8EJxP8f+iMe6uTcxZEplfAyPga6eNhISkmBlY8wD0+Ar79G6ZykkJwM+q0PwOSJWRGR1AKbuBsoBprN+EjCV/M7124I8TKWWigw1VAECpgRMNfTo07KzqQAB02wKSN1zjQIETHPNVqrdQrIDTE3z6GPV0VawyWesduumC1asAjMHnsX1M2+FJv2fZy3EvIqD//IHGLSwCmJfx+LUssdCNl0WVcTL19E4wGxycyNgmnPA1MLGEAPnVkalJg74GZuAX3GJOLrhMQ6seshPeiCyJ/qV3Y8vH0SBYk6fuUJlLeDu2wAjnP0hCZiOnV0DS6YJgOloj+qIY2vhgOnQqVVgbW+Mezc/wMLSkIFTHR6Yfvv8EzHRv/DrZyIMjXVx9UyYWgLTafrKAaazfxEwlfr8EzCVWioy1FAFCJgSMNXQo0/LzqYCBEyzKSB1zzUKEDDNNVupdgvJDjDlFmue1wBG7Ms4NVIgIwWSkoCIdzEiLxMwTZWEgGnOAFM9fW1sCGmP0zueYcecO0hKTIatowk8/BrjxLan2L/svtoA0/Z9y8DEVJ+F5OvhQsArVKyRD+/ffocr+3/o/Uhoa2vxIfilKlgLPEyvvker7pyHaTLvYfrlU5xaAtOper5KeXOdE99dKfPKe1IKyZe3ojQeKSCDAgRMCZjKcGyoCykAAqZ0CEgBgQIETOkkKEuB7AJTZV03zav+ChAwJWCa2SmeGdAE+z3vIeT0OyEz7vd7PO8imP1+FvvZl/0cdDpc7FCth5ZGw25FMbb+UaHX81gb4kfUL8T/SuKB6c75IajY2AG2BU3gv/oh/FY8gJ6BDkYsrQbH0hY8aH3/KhorR11FXEwCDn7tjS0zbrPX8qBI+bw4t/sF38fUQh+Tt9Xj//8tIg4Rb2MQFfkT2/4VLhSecjFZ8TDl+tjmN8FfY1zhtei2xPyk0rxDqENI/mQlAdN5BEylOUICG/IwlV4rstRMBQiYEjDVzJNPq86uAgRMs6sg9c8tChAwzS07qX7ryA4wNTTSxfwdTVDKxVr9Fq6iV6ylDexefR+bFtyGBYM6C3yboGAxCxW9WukuKz4+EWPaH8PzB1+EOhAwJWCa08B0/MbaiHz3A17utzOcigOmG6fcxOH1j5G/mBnW3GyLtnm90XlceZSqYo3/up/j+/5vQ21EvInBNo8gHrIuGRKI83tf8pB1/Z32aGfpjb7/VgT3nrpo0CUemq4PboeAzaF8H3Etq8BUujtOeit1AKaTdJXjYTo/gTxMpT5JBEyllooMNVQBAqYETDX06NOys6kAAdNsCkjdc40C2QGm0243R2xcQq7RghaiWAV0dLUQH52IpY1OC01skd8Ik6+6oU+hPTwAWHilBZoV2S5kY8O8nXZc6YgxNY4o9qJz8WzFXCzRZZoTetfah/JVbDFlRV1M7nhcrVfcb1pFPH34GT4r7hIwzWAnKSRfVBh5eJiOWFYdP38k8EA0o8bBz0HOBxARFgNtHS0c/9kXbvpb8M/uBrh88DUfus+1Bl2Lolm/EpjU7DgPTAc6+eHT2x9CfTz8GuG0z3Oc3fWc7zN2XS1EMhsCprK/hU3Q2Sl752z09Ezslo3eqtOVQvJVZy/oSjRYAQKmops/J6ApfDxDcDtdiIhnQDP4sfCSlDCS7Z53cOuMcBjJomPNsEPM7zX4iNHSc6kCBExz6cbSsrKsQHaAqYWDMSwLUtGdLItOHf4oEPEsGtERP4UUkRaYbg/swENVavJRoFRVawxaUhV96uzngemExbUxuPYB+QyupFFGLayBt6+jCJhmoj8BU1Fx5AFM3fqWQJthZTCi2kGhCewKmcIkjx6eh3wRymH6B5gabMGM3Q15YHp8ayjft2H3omjapwQmNxcA05RCUWn7zDrQGCe3P+VD9Lk2dm1NRIbHEjDNxnvPeG3lANOFSQRMpd428jCVWioy1FAFCJgSMNXQo0/LzqYCBEyzKSB1zzUKZAeY5hoRaCEqpQABU+VsBwHTx0LCd1lUES9fR+PA8gfK2RAFzUrANGeAqa6eNh8Wf/1YGAvLv4WfsYnIV9QMM/c24nOVHt34OEP42XF0OaGQ/IledfD2aRR2zL6TYZ9B8ypDV18Hq0ZfhYm5Hpu7PY5voZD87NxG45QETBcTMJV+2wiYSq8VWWqmAumB6YydDfF3lUOaKcbvVXscbIwdC+6Qh6lGnwJavCQFsgtMK9S1w95ZIZKmoddJAZVXYFFIG3Qx8eYLS6Rte+N6o73Jdv73/nF9MMJ4p4hNr2XlUby2jcqvUdwF6rAvlmu63kD4g2+wKmyCITtrIzlJWAOFLUwLuOP/Fkfn3WdfeLXRb1sFOJRTfO7Ix2c/wHfUI2ixisedl1ZC4UqWMkvAeT6dWfkY171fwpjl0+u2vjIsHUyExtNi6w4++BYn5wkDKQKmMsuerY4ETAmYpj1ALaeWw09DLXjPCEKXKU4wMtSBz4xgoTPWaUoF6Iv5fbYOogp0loeHKbcMM0sDDPGsgqrNCiD2ewJivv3C3iX3cMZXEDafkbeoDnv/5EL6HYqb83YfXn3HipFXeOiaUZ+8toaY7tuAVaYHPr//gTiWDuAd8+DfMeeOWEUph6nkgzZGScB0KQFTyZuTYkHAVHqtyFIzFUgLTM2tDDD3UFMUd5b9A35uUJF7Ajml9Ql8eB0jtBwKyc8Nu0trkJcC2QGm9kVNMXF3feizoiPUSAF1V+DJ1QgsHxAosgxpgOm6X90Qt2sCGGlUOxl0yzbEudNFsGdSCJpNLIsi5fLgxnpBvjhFN2NrA7RZVQXjC/iBg4X/PW6AeP0BCr4MAxgmb8Eww73QN9bBog+dMKapcHXnrFxQCRcrtOxeAovqnkTJurZo7umE6ePOCg1haW0Ez1WNMbmAcNg3AdOsKC0/WwKmBEzTniYCpvcQcvqd0A3GgdQ9nnf/pDfzZT8HpUuBJr87MmsjFShpDscyFrjs/5rvOD/ADYfWP8Kl/a/EDkTAVLK+o5UETJcRMJW8OSkWBEyl14osNVOBtMBUMxWQftUETKXXiixzvwLZAaa5Xx1aISkASAtMY5a0Vktgql+1M87fqPoHmFpb6uPkdPGeODl9HswYJB18yQ0THQXAdNajeojTq5zT06Yb3wgmuI3hRvt4YLrwfUe4WWyV+Rqc69pj2D+VsaThaR6YNvi3LDo22S00nh0r3HTkUk9MdSRgKrPQcuxIwJSAKQFTgQLy8jCV4+0pcSgLG0NM2loXpsyjn3uGGRoUiZWjrvAep+IaAVOJkmKktq9koxywWJHUPQdGVfyQVPRJ8ZrTjKSAiALpgamOrjZfMTCzxoUXJiYIvGG4sDMux4y4xoXmJcT/tmNDcnlhMmucbUo4n6TryPLYvxL//MHjrpe77oxa2rHT2hAwpRuIFEhVILvA1L6YGbgKz7mlvXsa/SfcOjetLfxJ1J/3znwlzKEt/u0+x7ZRlvkTfiXhw4vv/DXpsPd7zqNZmhYbnYDP4T94U0NTXVixgkzStOjIn4j6JFx0h+tHwFQa9eRjo2nA9HRIHzR23gbbfARM5XOC5DOKNMC0UGkLTFpdFyVYNFcEq8C9ctJVXD4m8Gir1rQARs6vDmsGwh/ejMCs/mfx+UMs9A10MGltXVRnr8fGJMDbMxgHNjzk++QvYoapG+qhhJMV3rGw40WjL+Hu5Q/yWRAbhYo+SZaScpiKaqSOwFTyTgtbEDCVrNgIJQHTVQRMJW9OigV5mEqvFVlqpgJpgSn3ZG3ukaYsrC5vpmI8CfqEiW7HEcc+tP2ztyFqNi8o1v7D2+/4p+1pvHr4Fd0nOaHvDNcMn9JxAxz1eoLlf19hHxSNMedwEziWyjj/2Ic33zG97Sm8efwNvaa7oPdU50zHPrThMVaNuQqbAiaYc6gJCpbMk+Eaw19E8WOHs7w1aRsBU828R2jV4hXIDjB1amiPoauqq2MUslgxDIx1sW/BPRxb8wguTfJh0KpqSPj9UEmdz4+RiS52zgjBmS1PUamFAwYsr4p49vBJUc3IRA87pt7G+R0vUKV1AfRfVgVxcZLnT2YP9TYMvYaHgR/RcWp5NB5Ugs9bJqnFsfxoizqdRwRLxzLauzaKsYrXKQ8HM+v7k4HWKdWPivwNImAqSXH5va4OwLSvuyt02UPpG6ffoqSrNR7f/oTyNWz598GjW56g86hyePciGkfYZyGukYep/M6HokaSBph6B3fGIa9H2LXsLqo1KYDZu5ugZf7tvPPBnsfdMLF9AB7eiMAA5l3sWCoPpnc7xX6uhCJl88Kj71lY2hlh/YV2GNPyKJ7f+4xVp1vjwsGX2LPiHqo0dsC0DfXRvpiPVO9d0uhCwFSySgRMRTUiYCr53GTXYvj0qsgLA/h4COfF7e7ujJ4zXLI7vFz6D1cSMF1NwFT6/SNgKr1WZKmZCqQv+jTNtz5aVtyRqRiXXg3AkEr++MKeeu8O64bq1Tfh4wfhfJ/cADt3dsSVba8QyHLBcBUNfXfcxamDgiTd6Vs5V1vMY3m4hlc7iJIVrTBqTU10qrkrw+tYs78Vjq8PxdUjbzDrQGNs23QH546+FGvvVMUOMxfVx8hah1Gmqg2GLqmKLnWFw9rSdvQ62g57F9ynok+aeUvQqqVUIDvAtOmgkijuYomNw69JOZtqm7kNLwX70ubYMPo6mg8rBasyplg4WjSnpWqvQvTquo91gqOdGbZOuoW2Y8vCIJ8+VjBvKEW1XhOcYZfHBN7TbqP9hPKItUzC/OmXJE6/ZHMzvDj+Ced9nmPkllo4euopDvoKh4qKG+TQtR5YN+AKXtz5As+bLTF6EAMXIRES5wuNGcWKPu2QqegTl8OUQvIlSizRQB2AKVeEpN2wMvjFoP8hVt2Zew/liopwUD7o/DvERsejRb+S2LdSUMCJgKnEbVc5A0nAlDsDrfuXZsD08R+geTKyL/pW3Y9SLtb8a2MZCOWaibk+joT3RhNLL2y50RFzBp/H/Wsf+ddGLqiOH9/jsX/NfQZZu8PNZgsSfxed87rWAcsnXuHPlDwaAVPJKhIwFdWIgKnkc5NdC3UApkO1fbK7TJn6r03qIVM/VetEIfmqtiN0PRqpAAFT0W0nYKqRtwItOosKEDBNFYyAaRYPj5TmBEylFEpJZuqWw/TcaVMc2m/BwBJQv3E02nX6hh8/tLBsgR0iI3VhYpqIcZM+II9FEl691MeaZTbMU1wLRYvHYejICHAV6b3WWeP+XSP+5179PsGlUlwa9TPPYcp5/8UyQFqkrMUfYBobE8+D9ov+r1C+ui0cWbj2gbWCUGsCpko62NmYVhIwTT90mSo2mLu7KToW90GviS6wtDXCkrGX/5gdDuuNYQ0OYsedzmjpsB3RXwSpP9oNLgPXOvmwlwHTiSvroHfFvX/6eOxohFtnw+G/UXCOstsImEpWkICpqEYETCWfm+xaqAMwHaIkYLqOgKn0x4s8TKXXiiw1U4HMgGntJo5wLJYHJmb6CH0QiXNHXvIiZeRh6uxihynTaqNb5328XUYeptZ2xujavxz0DXVw81I4Lp58jcw8TNv0KIUKVe3wJCQSezbf58fOyMOUG7sLG1uPjX3j4ltcPvUGmXmYcmM7sbGfPviMnevv8WMTMNXMe4FWnTUFCJim6kXANGtnR1praYAp57GV4lmVMq40Hqbi+knjYSqun7w9TGPik7H+URJuRyRBn62vRUEtdCwqyAH+/kcyVj1IwsuoZNgYAQNLa6NsXkFi2f3PExEQloxfDMDVsNfGwFLa0Pmdr/s5s/e8kwhXay0MLpN5PnFp90edgOn3aC1MHFMQi1a+YWHxyRj/d0G4/xeOc6fNePjZsetXnDxmhjev9NF/aCT+nWaPrj2/oHTZn1i6wBY1an9nIdPAqQAzTJz+HhEf9DDLPR9WbHiTRq7MgelMn4a4c+k9XrAw6pIVrfGI5agsX8OOT+Vwbt8L1G5TCHoG2vBZEMKPScBU2pOoOnZZAab5Cpth6dEWWMyiEa6dDMMQjyosr7c2Vk9NjbzY+6Q7pnc/ic1XO6C+2SbeO5lrzXuVQL32RbBv9X2+38BaqUW/uHymz+5+xq7ld+UiDAFTyTISMBXViICp5HOTXQt1AKaDlARMNxAwlf54ETCVXiuy1EwFyMNUdN8JmGrmvUCrzpoCBExT9SJgmrWzI611ZsC0Wfvi4Fgg90Av6tsvPrfqmaMv+KEzA6ZurJ8tK6gS/ioKv1if8NfRePboC98vI2BqbWsM56r2sLQ24gsTvnkZhciIH3j68DPfT97AdP3DRLAlYVR5bf7/k64lYryTNrq4TboAACAASURBVMpZamP6jURUtdVCK0dtBEcmYdX9JKyro4NHX4HV9xMxu6oO2PNCzAtORDVm18JRBw+/JGEDA7COplpg6XY1EpgmsTyh0VE6zHtUAJxmTM7PwGgEvNZbYxjzHrXLl4CY71qYNt4Bi1aFYdSQgli1UQBDr18xxp0gI/TuH8nCqLWYJ2oy4uOBEQMKYT1LO5TaMgem0p77FDsCpllVTPn20gLTYhUsMW9PUyz932UEHhEUfOoz2RU2+YxZ0abUdC5HwvtgcJ0D8L3bBa0LeuNbpMCjucPQsqjAYPv+tQ8waU1d9HLZ82fx//k25gHsoc2P5CIIAVPJMhIwFdWIgKnkc5NdC3UApgO0M0/zl10NMuq/KalnTg2t0HEpJF+hctNkpIB4BQiYiupCwJTuFlJAsgIETFM1ImAq+bzIYiGNh6m4caXxMBXXTxoPU3H95A1Mr39MQiEzLdgZMSLM2pygRLDIXQZKtTHsYgK2N9D94zn6vysJ6FdKB4Hvk5jHqRY6FBF4m3JjHHyVjP+q6CA8Jgl5DbRw+HUyvvxM1khgmnbfnoUaYNNaK8xe+BZjhzli3tIwGBoyN0/WBvcpBM/lYZgz0x7zl77lf/fkkQH891lgwrTUyuNH/PPgU4QO/hoogOaCRsBUlvs8N/WRBphyVe2XHWsJj/5nharZ12tXGF1HVsDwRod4SbgCqLsfdvuTw5QL1b99Ppx/bfLaugh/GQ3/DQ/h97wHmttvY4XtEvjXuD6zuLGvpJ7X7GhMwFSyegRMRTXKDjA1MtUDV4Feldrbp1GI/ixIiZHSuGt0922AEc7+cGQ/j/etg9auojk7uWhNCyvDbC0n5Lro/awOwLS/koDpZgKm0p838jCVXiuy1EwFCJiK7jsBU828F2jVWVOAgGmqXtIA09qtCmHE3GqwZh5EoXciMXfoBbwJ/cYPwoHBjkNZmhIDHZzze4HFYwL5MHPu39wX4+pNCyA2hoEyz2AcYF+Qucb97u/51WHDvCUfsNBe7gvyZ1aIT56Nij4pv+gTF54/8nIi/q2kg2guVP9hEpbWZG6iv9vCOwlwstLmgWnzgtqobicApmHfk/DPrSRsrpdqu+d5ksYD0xfP9bBykR0fVs95lY4ZWhCzF72FiUkSC41PxoCehbFkdRgfbr9wRRiv5YN7hjh8IA/rI/jCyuVCPXvKDNP+fQd9/bR3XO4ApgVYZXb7Iqa4GSAAxtSkV0AaYLryVCtWrOkBzuwTLoJqzCDR3tDucO9+CsEX32Hs0lowMtFl7+3n0HeqK/MotceUzifgUNQcq0635j1PwxjEWX68JQ9St80LRqMuxfgQ/S6ldyKJecPLoxEwlawiAVNRjbIDTP+3rhZKV7PBT5bzWRWarr42It78gHv7U0KXIw0wzVfQFCv3tWRRMCzMQcbGwdaVs67jsI9w8Up1AKZ9lQRMtxAwlf60ETCVXiuy1EwFFAlMd/new+lDwh8QU1Qv62KLOSsaYXi1gyy3lxVGr62JLrUzrmS/am9LBKwLxdUjbzDrQGN4e4Xg/LGXYjexQmU7/ONZDyNrHUaZqjYYurQqutdPDV9K32nj4bbYO/8+bp8WPMlPaZ4BzeDneQ/Bp99hVkATBi/u4NYZYZtFx5phh5jfa+bpolXnZgUImKburiRgauNgAh9WtON/bY7xXj+DZ1ZBhZp2+LvJYVSslw9T1tbDkPr+iGVVj+fvc8N5/5fYx4p5DPynEisQkxcefc/C0s4I6y604ysov3/9HXsfd8OE9gzo3YhgdpXhyCDHtG7CH+aze/4kAVMurJSr1vydxY2bWxpiVr+ziHgbw3+5L1PZFnrsS8ax7U9wctcz1GzuiM5/s0r3rMjN+1ffsXzCFf7yWvUrhX5TK2LukAu4eUYY0KT3MC1YxxLHDz6VuKxOvcri0vrnOO/zHGN31MGHmB8Ivv5eYr9hE6pgcZfzeHHnC5aEtIb//sd4F/ZdYr85qxqhs7E3X7wnbdsb1xvtTbbzv/eP64MRxgxipLNZ96sbYpa0Bov1F5nnJ7NdwELri5lroUcJHQR/SoLP0yQsqJ4KQVfeS+S9US8zYNqpqDYq2QiAaURsMsZeSYR3QwKmKcKGvdFl+UjtMX7Ke9jnF3wR/3daPgwa/gn5HeLx7asOZk7Jx4fkjxjoiDWbBaHSly+yhxIMmg4cFolL500YMDXH+KnvmFdq+i3LHcC0xeBSqNOxMKa4HZd49slAWAFJwJTLW7qPQdFfPwWpIVLaPz1P4wJ736/SyAFjFteElb0x/7eCexAWxbzauPdS/uFZM0f8iP6FzbNu4Zh3KN/dvpAp3Dc3QHEnK7x9FoX5wy/g8e1PctsaAqaSpSRgKqpRdoDp/AA3/vvWHfZ9SxUa5z06wbceBjr7CV2ONMC0WFlLLNnRDF1cM/5OK2mNg6dXRqIWS8HDoGnapg7AtI+2t6Tl5cjr25J65ci4ih6UQvIVrTjNRwqIUUBRwLTT2HIYOq9qpnuwb+V9rPnfdeRlYGDukaYozr6MZ9TevojClJYnEP4sGt0mVsDAWZUzHXv30ntYP+kGrJh319wjTVC0XMZjv2ZeX9zYH9iX+rSNgCndQqRAqgIETFO1kAaYVqhu98ejqKSLFRYeaIY2hXdg/PJa+BAWg+0LgvkBa7d0RI9xznxYJgdZZw8+j/vXPvKvjWJw8geDqs/vf0Hr/qV5eMo1E3N9HA3vjcaWXtnyYkh/viUBU+4a7l//iOesiE3X0RX47leOveY9o8a2OAquQJLX9Y6sIIkfvK51QP/qfnzY6IytDfjce1xhEq5yeOUGDjwkzgyYGprqot/iKmwGyV5TP6Li4esejF+xibAvboaOU8qLgEpx9/L7p9E4uPgBy1OZjPL17VGXeRtyBXkktUdXPuGslyjIzQ4w/c68SecEJaG8JYOlxQUQlMtFuoYVfFpeKxWCcoWc2HFiHqbJaFpAGzVZsSeuvfmejJm3ErCpHqtU9Ltpsocp5z06bXwBjBj7AQ4FUr2WDuzNw3LZaqFLj684ctAcnz7q8mH2s/+xR7vOX1GuQhw8Z9uhQZNoFCn6Ewv+s4PH/HAYGIg7FbkDmEo67/R6xgpIAqbqqB0BU8m7RsBUVCMCpgJNNB2Y9lYSMN1OwFTyG1eKBXmYSq8VWWqmAmmBaf5iZvBg3pr3gwRfzjNqrtXy4e+ahxAV+RMbQtrj3sOPIk/Lub6lS1th65QgEU9NdVWagKm67hxdd04oQMA0VVVJwDS9/r3GO6OUqzXcmVfR8oCWDB7ex7kDL3mzQqUssPJkK7R29MbFHwPR0mE7or4I8ma1H1wGLnXy4cWDL7C0NcJiltMupR0J642hDQ7+CfOXx55LAqYpc3CVnefuaYK17jdQlHnEcg+7uJ+5Nm9vU+xZdReD/62KIXX9+d91GVme///uFff4//9vWS2JwFQe61H0GLICU67K/YxbiajFwutbFRIAUK5F/WL5Ry8kYkt9VthJV5DfdDjLaTqSFYcK/JAMFr2L7sVZxSfWzocn4Sz7b2Zl8jDl9Hj80AD/Ts0PO3tWrel36zMgEmXKx2KZpx0iGCi1yJuIMRM+wtQsCZw36uqltjxMLVPuJ/oPiYDfnrw45Mdy0f0uHMUNw8FTM/MU7+BUYKrLqt1PC2rB8kxGyXzsjFlBs+9hsdjUPRAFXfKi66YqiPgQIzSerr4O8hobYGHNk0K/t8hvhMlX3dCn0B5YsVyYC6+0QLMi24VsuHQe2wM78DbU5KMAAVPhkOEuiyriJSusd2D5A/kIrKKjEDAV3RgCpgJNNB2Y9tRRjofpjkTyMJX67ZKAqdRSkaGGKpAWmHISONW2hx0L78msvXnyDY9YGCjXCpQwZ2HutmLNuTCia8cEVWa5ps28jcQ1rupwihePFjPR4kofZ9I4W66PpHFTXs+ufco40gDTAR6V0HOCk4aeJlq2JimgxW7WeQMv4Li3sGcdB1LLOFtj9YiraDaoJIoz97d17Oe0rSn/e0tsHH4tV0iWFWBarUkBTFxVh4ebXPj6uvNtsWXObVw5LnivtGP5rryDOqEZK+JxKXYg6pttws84Qfhm814lUL99Ed7DVJdBylVTU/Xb96Q7JrP8dlx+VHk1aYApFw46ckENBj/v4s6l92jMcuilBabz97vxuVdHsnyrKcCU80aNYzlZ/TcK8rFKC0wb9CkGDs5m1qIi4nD9kEBLc2sDVG3jKNb8/sUPeBcqgFlla9shf0lzEbvEeAYdtz/jf6/DAGWDPsXFjvUi+DOe3RbVXVZguutZEr6y4kxDygrgZ9o242Yi73XakRV3usTC8LkQ/dW1dfH4azKW3E3EHFbkyYgx0pkMuDZjOU0bOaTqpQwPU6euhfDs7AfEfBRU986pZsYA4eBLbpjo6AcOFs56VA9xeplHnsj/WlKBKTe2fSlzWBfO/POUpGt4ceMTYj7/4s2KVLWCSV5R19a397/iS9gPoaEImEpSNmdeJ2BKwDTtyWo5tRx+GmrBe0YQukxxgpGhDnxmCKJJUlqnKRWgL+b3OXNCFTcqAVOB1poOTLvrCD+oU9QJ9E3sLTTVmcAgLF63GxGRX1G6uCP+Hd8PhQva4+eveMxY6IXA63fZ/WmAgT1aokubBnzfai2HwX/LbNjbZByVmtProZD8nFaYxicFpFAgPTCVootMJpmFzT8J/oTJLU7wHqvjN9VGMwYFMmtPWRgnFzL/hRU4Gb2qBloPLJ2p/cvHXzGV2X98E4MhC6qg82iBd1NG7c3Tb5jW+iTCn0cLmUgDTLkOkr7QyyQgdSIFVFCBxATRvIsETEvBqowpFo4OFNmxpt2Ko//0ihjfNgBhLNcc15Yda8EXcjq7/wX/78JlLLCcVVDmwvU5D9NWBb3xLVIAmzoMLQunGnZ48fArXzxqUZo5job3ERQB+T2uPI6LJGDKecOOmFcNcwadx9dPgmt0KGaOSavrYJTbEejqafOh+P2q7ceW6x3Y9fnzKQX+29mYT0GQkmdPGmDabEhJ1PirMJ7czxwIl3e1he/EIISceY9xu+oiyQT4+E7YK8/IWBflyttinPMhWDLvO49zTXHjvGiBG+6LzqUtL3BiwxN0cXdC6SZM+8dfRKRt0LIIBhbYK1JkRVZgOvhCAj4zYKrNPUH83ZoV0EL/0jr48CMZK+4n4WV0EuyNtTC0jDaK5xFA0QMvk3D4VRK4NKl17LXQt6Q2tNkDyM2PEhEQloxE7kEjG5N7dtnEQQuDyogC2aycG/2qnXH+RlXsmRSCZhPLwtpSHyen3xEaYtLr9vDtdgmvLwsesuZUU0VgmlNrlWZcAqbSqCR/GwKmBEzTnioCpvcQki4PKQdS93je/VMPwpf9HJSuZgTlMBV+b1LnHKbdlARMd6YBpu8jPqNt32lYM28cXMoVx4rN+xF8PxReSyZjlZcfnr58i7lTByPySxR6jvgP6z3Ho2TRAgRME7SSsdUjSOg09nF3ZS5wgJfHbfn/BaURSQEVVSAtMOW+3Had5ISCzGs0s/bszmfsW3qf/3LYoFtRVGtRQGxaOe4L9Bb324hjVQ5n7m2EPd73ceagaNGnwyG9MLPjabx5/A2b73XAkC6H8FzMl9KUazp0rQcWDbgE7jrW3myLKYNO4tGdjBPce5/pCK9pt3Ev8AOWnGuBhdMDcftyxonENx1lRZ88ZSv6pKLbTJdFCihMAQKm4oFpndaFMOTfKhjV/IhQNftxS2ryIfcbPW7xe+TWvTha9CmJ0c2Pwvt2Jz7snquAzLUprOhH+MtovHr0hYW1V+DznHLNhkG/3Q+78TlME9MVFcrOxksCpp7+zWBuYYAvn2L5aW6cessXq+rxP2e+mBX38OjA+gc4z9INcMVMek1w4f8ecLlL18+4Aa5o1KCZlZlHqhUi3/3A8wefMX/YxT+XnL7oU6wlK3jE3r8za5v2t0UgK/h080gYJh9ogPWbbuPMUQGM5nKqcvo4OJph76muGFZsP2wcTeBx1g1NS2wTsuH+8b+5NZH8IRH+i++jz7xKCP30BZuXCD47pozF/Xw/ZgS6mOyQe9Gn7OydIvpKA0wVcR3cHKoGTDnW3cqjAhwrsQSzUrQk5s3sPeg6opknbv7yedB5aUUkSFNVmc0TcvAtLq4R9vQnYCqF6DlgQsCUgGnaY0XAlICppnuYdlESMN2dDpjeuf8UbvUFtVQehr7C8ClLcHbvUrT5aypmTRoA57LF+NcWrPKFibEhRvRrLwRMl27YiyfP32Dl7DH8g2hFNfIwVZTSNA8pkIkC6Ys+eRxsjEX/pubFE9d1xsL6GODkx3t47nvXA4tnX0Y0q5Kcvv01xAX7WZXDQP/XGgNM+7lXRO+pznTm0ihwYf9LzOx5FobMq2vR0WYoU81G4/U5sOohlo+/ylc+n3u4KUqUFx/uEXTpHSawSsXcw4m5B5uiWhMHsdq9Zl7Rk1ud4KuP/8Ue/v011UWsXTALmR7vFiBxPL91D7FizFVY2Bhi/mE3lHASf33/9TuPMzuFH4JkB5jW6l4E95g3wrccDt+V9wGUFJJvZqHPwuw7Y2h9f7xLV0zOqZY9/t3WEINZfs8f0fFYcbwl9rGCSEe2PuarzTvVsMcUFmqfv6g5Vp9ujUHMi/Tze/beyyotT+9+CsEX32EcK7JkyBJYzup/Tq5LkwRM5TqZmMEkAdO00DKle0bA1MbOGEu2uKFXc79MgekC7yY4uvMJzh1+lSkw9TnbET0a7OOnJWCasYdpTp+RlPFVDZjqG+tg0YdO+F/XAKkk6DSwLN6djsTZVU/QdUVlfND+ibNHBKA/s2ZhaYip8+tgkoNw9WYCppKUy5nXCZgSME17sgiYEjDVdGDaWUfwMFrRbU9inwyn3OR7FA+evMSiGcPh3GgALvgtRx5zFo7E2i7/M7gZ8hie7sP+ANOgu6HY6HME21dMhbGRoUKXQsBUoXLTZKSAeAXSA9OpvvXRuOLWTOW6+WoIhlTy54Hp7rBuaFZtOytEIJw/ixtg4642uLDthQgwtWZfXDcdb4u2Lr78PBl5mHJ2LTuXgK29CR6zMMyDvoIPYhl5mHL2zZk9F6p67+ZHnPQT5J7LyMM0xV7PUJtVbk7EjlUhvH12PEwXHWsOP+aNFHwmYw9WTTqLFraGWHmjNdoV8EFe9rPX7Q4YVGivJkkgstairpYYuLIaBlX3R8mKVhi9piZa1fURq8njTyPRyno7X1TtRHRfODusEVtgzftgB+ydfw+3zoSDSx2xdskNXDkbJjJmcOQwofGq5F8vMl6pCtZYuK4JBlY+gGIMlE7yqov2NXaKjNWlfzm4VLDDkhHCD1iyA0zXh3fGos7n8Tgw88JzqnaAJAHTln+VwrQN9VgFe0Eu0pTGFXbicj33GOeErsxjlMuTeWLnM6yYeIXP66ynr43JzKu0RjNHBlN/YdOsWzjmHcp35zw2xy6uCSt7Y4Rc+cBg6Vl+LHk2VQamfUe6woY9cNi56R7evEgtrJOZh2mKNpl5mKbVLzMP07R2BEwJmArOQ2oOUw6YLnzfETXzbpDqlpy8pDYSHzNIyoBpl2WVcOXpe+xYI/hMklmzZYWb/C51wxTHA0JmBEwlKZczrxMwJWCa9mQRMCVgqunAtKOSgOm+DIDpJZar1GPxVmxj8NMqbx64NB6AW8fXw9BAn791/Y8H4tSFm1gxezQPTLlQfc/VvtiydArsbPLmzB+OTEYlYKpwyWlCUkBUAXkC07qNWcjp2EoYP+QE3oV9zxCYpr+K3BSSzwHTfXw+HgKm3D5zwHRNUFshYNrfQbMr8haraInBa6oLAdNmNQVVJNN7zD37OloIcJa3W4WfDJ6mb75HOmHfglRgunrhdVw+k1pwLcX+7rcRQuNVtF0rAkxLM2C6aJMbBqUA08110Kaq4OFG2tZ1YHlUdLaXKzBV1/doScBUXdelysA0I00JmCrutFFIfnqtCZgq7vSp5kwETAmYEjAVKEBFnwQ6aDowba8kYOonBpgePnUFa7b6s1ymY+HoYMfvD+dhem7/UuTNY8b/2/fAaQTfe4r504fwwJQDqVyI/v5Ns/5AVUX+9SFgqki1aS5SIAMFMgOmdZsUQuFiFjAx00Moy5l36pDAYzO7HqbpL4WAae49ngRMRfc2M2A6bnp1vtDLwllX+I4ZAdMW7YpjyP8qo20dgednRsCU86JeuasFutUXePVmBEx7Da2AChXtMGnwKWQGTBduc8O1s2+wx+sBCJim7i0B05x5D5MUki9uVgKmObMX4kYlYJpelYyBaUlnK5RxsYGRqR6fs/gpi5p5cie1gFlmHqZtepTi8wGbmevjCysAd+h3tA03O3mYKu68SzMTAVMCpmnPCXmYkoeppgPTdjqZR61K874qi82BxL+Eup25dBvLN+3HxkUTWIHKPH9ea9dvOqaM6olqrmX43/3juRkF8tlgcK/WPDBd8d9o7DtynoXsm2Iqs1N0I2CqaMVpPlJAjALy9DBNP3xGIfnp7QiY5t6jScBUdG8zA6bprcnDVD3uDQKmObNPaYFpo77F0XB4Cbx5+S3TyRyL5IH3uNt4cPGDSNGnlI4Uki+f/SJgKj0wlaQ4heRLUkg9XidgSsCUgKlAAfIwFeig6cC0jZKA6cE0wPRbdAza95/OcpBOg4O9tdAfk7XbDiL4fiiWeoxEWHgE/hozFz6r3FGogN2fHKZGBgZo228aKzo6FFVdSyv0jxEBU4XKTZORAuIVUDVguvVRJ1w4/RJfP8dluGVtu5XGvx3P4FnIZ2wMbo9bV98i8qOgSrO45taxBJYMuoR7lz9iRWArhD6OxHuWMiCj1qRdMawefQ1BZ4XD6rnckH6siFUwC7efFdAE2z3v8Dkj0zYKyRdWlYCp6CkjYAo0HVQSxV0ssXH4tVzx1kzANGe2MS0w5Wao3s4R2qzSfWYtmuVxvXv2PW8y+UADrN90G2eOChfPIWAqn/0iYJpeRwrJl8/JUt9R0gPTf9bVx8pJ6v13rs2A0rgdGA6fFXeFNuZ/nrUQ8yoO/ssfYNDCKoh9HYtTywiYphWJPEzl52FqwArHWhcwxtsnqTnLFfVO4VjWAhN862Ggs3BxvULs9+6+DTDC2R+czXjfOmjtKlyTICNg6v+wB/6qvR9fWdSApDZ4emUkaiVh1azrQqbDp1dFXhjAxyNY6Pfd3Z3Rc4b44q+S5pL3662UBEwPpwGmfscuYvr8TdDT0xVa3rm9S1kRJwPMWLgFF6+F8KH3w/u2Q1u3Wrwd52Hqv2U27G0scSYwCHNX7MCBzf/xdopqBEwVpTTNQwpkooCqAVPuj0/d9oUz3bPXj7/h/F7BF+ACJfOgQecimdq/exGNUz6CdAL2hU3RpGfxTO0/vP6OE9ufitgQMM36rUTAVFQzAqYETLN+JymnhyrlMJVFAQKmsqgmfR8Cpum1SgNMjXQw91U7HNohDJAyUrd8FVvc2fIKFzc+Q8dFFWFewQShLGxfUjMy0UXdhoXhXvygkCkVfZKkXM68nhaYcnszbkFN5CskyI2nri0pKRn/DjqLSFboNW0jYJqqRtcpTrAy1MOBf4QLtREwlR8wLVPLFkOXV8foSsLvdYq4r3ICmGblutUZmLbU2ZKVpcrN9khiX7mNpcyBCJgqU32amxT4rYCigKmHXyNcOv8a18+9FdF+GcuxOL3NSbxhIFSVW3aAac/pzmg+qBT0DXVwIyAMy4ddwc8fCdAz0MGYdTVRqakD4mISsHvBXRzdIPiCVdnNAQPnV4ZVfmM8vvEJi/pfwpffH1g7T6iA1sNKs/7aCPR7xXvEJiWystoq1giYim4IAVMCpip2m2Z4OaoETM2sDDBkbXUksy/vmbVvLNrAe0oQ4r4nwP1YIzx+/QWhD4TBU568BujZ3wmDHPfCxtEE8662wIb5t0SGrdeiMB4d/wD/xffxl2dlmBU3wrVzYSJ2kxfURmdjb5H34L1xvdHeZDv/e/+4PhhhvFPEZt2vbohZ0hpsYepyLP5cJwHT9FuWCky5V0rUsUUhVuRPmvYrNhEX1ofypnrsc0K9ISWk6cbbPDj1DuH3hT8/ETCVWj65GqYFpnIdWAUHkwaYdl1cCV9/xuOMt8BpIbe2ZixqRicqkYBpmg2mkHyBGJoekt9cScD0GAFT6d9ufTzuiHVTTtBKxlaPIKGB+ri7AtqAl8dt6ScgS1JAzRVID0xnMrA5ZcSpTFe10rslH5bAwbt94d0xdcxpfGNFDNK3MVOq49Cyhwj0f406nQrjr39ckJgg+mX39cOvWDQ4kAeGxZzyom7HzD1GU+Y5tP4RPr39wf+zzdDSsMpnnOF1B50NR/A5QZhmpcb54VTHPkPbj29icGSjqFeIrMC0dsdC6DurEiY2OoaYb/GYub8h7l36gB3/3UEvpgnnVevZ9yLy2hlh8cUWmNbiJD4yL1evJ50ws90pHpb2nuHKvGnNMbvbOTjVs+ch6//qHUPs93jM2NcQl5nGh9Y8UrnTSMBUdEsImBIwVbkbNYMLUiVg2n5CedhVM8fBXZl77A0aXQlH5j7AzSNhyM/eM5sNK4lkMYz1xsEw3Pv9N6FRv+JwrGAhogIHOndMC0LCryQYmemix3+uYh9MPQqMwJV9r0T6EzBV3Ek3y2+EwZfcMNHRDxwsnPWoHuL0KivuAviZhIGpgicXmo6AqXLUTw9My1S0gYW14sI3r5x482fhNZoWzFAE7r3t2mnBwx9tbS1Ua1wgQ9uE+CTcOCvq7CANMC1a3Rr9t9Tg30Nzc+OcF9Z0vIiwe1+FlkkepvLzMFXm+SEPU9nVb6YkYBpAwFT6TSNgKr1WZKmZCqQFpgYshGwIy0NUoERq9ThxqjwL+YKNk2/w8LPDmLKo0bKg2C+kXz/FYcWIK4j+8ktqcb1DO+PUkWf4wvpm1gqXsGCJm80w0e04qrUot7nEfgAAIABJREFUiH7/VUTAftEwem4MVnQcI1iel8YGXvwHwxNxfbHodxVycXO061wK68bewO3TwvlJZQWmJStb856g9wM/8tO1H10WJSpZY0GfC1gX0o7lVw3Eo2sR/GuDPFkeqOh4vHrwFW79SmB6y5P8743N9bDrXTd0yLsDgxdVRQSDupw3KteqtSqIjmPLMSAbILXOijIkYCqqdFpgmq+IGWbsagBdffa0TkxL+JmMEbUO8vfaqkutYGAqnH8npUtiQhLmM+j+/N4XLDnVHKcCnuN+kOBMpW0b/NuipdU2/PqZiJPf+2J4p8OIZ1+G0raCRfOg3whX9HfZzx5gWOIflp9p5qhzImPVZ953liyPz6JhgUKvtRlUGmWcrbF6xFVwXhfFXaywjv2ctlEOU0XdgdmbR9WA6Q9Lds6nX/qzKB2WzzQxnWe91/62CFz/ggemym4ETBW3A6oITCt3LYQi1azEi8A+l1z3folXtz5Di30uqTu0BGyKm4rYBu97jaeBn/jPMTUHFEO+sqKfz+4eeovHZz8I9SVgqrizl3amtMC0SJm8mLut8Z/IoJy+IhsHE3ivCGE59h6yAiWl0XOUEz68FZ+v3yafCbYtvoOjO56gy7Dy6DCwDCLexYi9RCs7Y2xZEIQTe4S9RKUBpjm9ZlUfn4ApAVNN9zBtquullNv0REI/pcwr70kpJF/eitJ4pIAMCqQFpjJ0l7oLF4pekOUbFdeiv/7iPSq5tvleBwzrchgvHn/JdOx6zZnH6iAXTG97kgemzYeWxND2h8T24SDpne/D0eQ3MD0e2xeFTZZkOP7OI53gt+CB3IBp+ok8DjbGtcNvcGT9YxyO7YPu+Xf+gcotB5dC+bp2eHX/K+9xumZMarEA37ddMb7+Mfy9ojoOr3vMh+JzrUCpPFhwqhl6FNwl9X4oypCAqajSaYEp96qdoymMzfTEbgn30CElDUMe5qViyc6EuMZ5Z797Gc2/VLuNIzqNKicCkrjXHl6PwEZ3Qehx72kucKkr6mnNFdU5ujUUJ1keX0OWZH/4wqpwKGYuMq2uvg5Wjr2K0GDhcGcCpqVgVcYUC0cLg2RF3XPynEeVgWn/ka6wy8++9K+5g7evBWefa2mBaR5bQ9TpJj5iIfhkOMIeCsKYnVnUQUExIIrzigpYK/Bo1dHTRvNhpcTKG3r9Ex5fFX1AQcBUnqcx87FUDZjqG+tg8cdOWOkuvuCPbQET1G1cCP85H4UjC9vvt7MmvNcI5z+0tDFCmy6l+PykdiXNMPJkQ2xYKhwFZ2aujz5DnDEx/34hgQiYKu7spZ0pfdGniYtrY0Rt8Z9N5X2Ff7FIyXhWGGbdrJvgch4ms2jKNbNuiJ1m1H/V8YNFPG3xDMLf/1XDt29x2OwpPsJygmdt/jO6LEWfuIcB+cqIfn6Q99plGe9jaPQfz1fb4mbQZY4N2Wnp02JwYxEwJWCq6cC0se7m7NxWMvc9ldBf5r6q1JGAqSrtBl2LxiqQHpgWLZ8XFrbioUyKSBFvY/7kG7V2MIZjKdFQRs72B/OUfHRD8CVyCPOcrN66IOJY3s70LZl5z/3T7jQ+hf8QAqZlXWwwY0U9jOoWIPKUPDNg2mNYBdjmM8WXyFhsXRbMe5VmBEzrsS8stRo58h+aFswQAI6cBKY93V1QoY4dpjY/wXuMHIn7C21Mt+NXXCI/d6NexVC7fSHew1RHVwubpqTm1dsS2gkenc7wwNRnzh3cDBCESNkUNMHa4LboaCVcmVEVDjUBU9FdSA9MVWGf5HkNBEwJmMrrPPWa4Ay7PMxratptcCH56T1Mxc2TFphO8quP6KR4hKcBqlwfY1M91KxbEH+XOgArVnV39sVmOHFANMdehcq2uOH7BkdXP0KPWSx9Sk0rPA75JDJth7/Koo81y0+aLr8qAVN5nQTJ46giMF34viPq5N0o9uJLV7TGv6saYF7V4zww7by2MjrW2ClkW7ikBdbta41/yx7hgemgA3XQyGmbkA330MD/UndMcTwg9HsCppLPTE5YEDAVTpnScGhxtJ1WGgk/4nNCbpnH1DHUxWXvV9g97R6K1bBGv/VVwb4qyNwM2EPv3ZODcc1XODULAVMCphwwXb67BcZ1kD0KsCvzAo/8/AOrZl0XOqPDWfRkXhiITT/Zc4aLzOdZnh0b6G6S53BSj3U2YYDUtqpsSMBUlXeHrk1jFEgLTO0KmYIrzsR5tWXWrBhQHdvgKO8VuTywFeJYQvcEFhKcvlnkNcSasddxl+XrnLm3EXx33MXJg6JfSk/e6YOZHc/wEDY3e5gOW1oNDiXMMYtBz5+swAPXOA/THgV2ISpSkAO2FcvFWramLV4zYGrJij2tHpUaysyF5I+tfQR/r6yBoyzH6qXfOfMcy+TBnAA39Cq0W+XOLQFT0S1JC0xN8+hj4uY6KCDGg5Pr+ZB5ri0ccpFPeTF6WQ24sPy14lpE2A/M6XceXyPiYMLGLM1SPmTUHt36xHLpCtJklGJf2k0t9EVMv3yMY+H9n/nfW9gYolgF8YVLQi69R3y63GQETAmYyuuNKLvAdPKBBti4KQhnj77gLyklhD+/oxl2n+qCYcX280Wf/j3rhoYltwjZcP+YMLcWtN8n8UWf+syrhNBPX+C1RJD/Pm06gHsxI9DFZAcVfbLUx8npd+S1/VkaR9WBafWmBdCuXxmcO/QCAT5PkRkwPfawF1qU9UYhlnooI2B6PKQXmjl7s4fDBEyzdFBy2FhVgemYOdUR9TkOx3Y/xTvmLZqZh+lYZvvx3Q+c8nuOD2HfkR0P0+6LXeGYHIawXeI9XXN4OzIc3rZRGcS7uGBl1yuo0sURtTsWxKF+F2W+nJrsgV6Uji4VfUqjIBV9EohhwmD6PK+mKFo6r8znS4+l7Rre/jCe3hd8Lk9p6gBM6+mKf2gosxhSdjyfMFBKS9U2I2Cq2vtDV6chCqQv+jSd5Svs4pp5aPfx130wuJI/Hyq8J6wbWlX1wacPguJLadua3a1wfttzvuiTpgNTLjepDQvBm9/7vFDhqzVBbRlUvoaQ38VHuGJO71985+Fxu5FlMaHhMV5SKwZPNz/qgPYsh+kQlsP0Oyuytf3fYP61Bt2Lokmf4rzXqqo1AqaiO5K+6NOEjXUwvO8RsVt3NLAnWlozD2Qu52h0X/Sv5ycCKLmOU1fW5QsZ3joTjiledVmaBnPEMA/v9I374Bb2OApz+11AyYpWGL+uNvsSJVqwzcLKEO6dTrEw/++Yf9gNhmY6+PnbCzplzLwsRcCF/a+wfbbgHKY0AqYETOX1PiRPYGrN8vAt2NQE/Vv5IzNg6rm1MQL2PsNpBrYyA6Z7r3RFpxqCv5UETEPQbGJZWBMwhQluY7jRPnAh+eRhKq93AvUZR1WBaXoFFRWST8C0HH4aasF7RhC6THGCEUtP5jND+DNTpykVwKUtS/979Tn14q80O8B0ydkWCH8ShXfPUtPtKFMP7rtMFVYv4q/Se4Uugyva686+N49w9gdXGGq8bx20dlVctJ86ANM6SgKmFwmYSn/LUNEn6bUiS81UQBnAlPviui2gA1q4evOip/Uw3fqwI+ZNuYS3r6Iy3ZBKtfKjSbNimNrqhMrnMK3AcpIOXVwNo2scBldtNG3rPtUJZWvYYlbns8hX1AwLzjTnvUi/vP+BLU87Y073c7h74T2GL6sGQxM9LGRPwMvVssWk7fUwrs4RPu3BvBNuOLzmEU5sFV/0SpknWxpg6sDgnh0rfnT7d4oBZV6vIuZOD0xHr6mJ5jUF90L69vTraLT6DUxPMGDawGYzD0/Tt9VHW2Gn510emC4MaIY1C2/gypnUarkp9tUbFMDwiVUx3i0AFRvkR/fJThjS7KDIeHtvd8WsXufw4v4XbA5qj7G9A/D0gfCT7S4Dy8HF2R5LRlwW6k/AlICpvO6jtMC0fH17TNpfn0+xklnjUrt4djiHsEffkN7DNKVfZsA07diZAdO0dgRMCZgKzoMRAVN53fxqOg4BU+GQfAKmBExDTr8Tups5kLqHfV4NZr+fxX72ZT8HpSuym7+YGVoMKKlS7wLndr/E03Q5+6UFplwkgImZaDRXVhb44olobQ91AKa19DZkZZlysw2MHyS3sZQ5EHmYKlN9mpsU+K1AZsCUCyErWCwPn+8t9G4kLgcIAExGHqZ1mjhi8LiKmDqchde/iIIsHqZdJ1RAo55FkSwa4S+0Zzq62tgx+w7O7nqu8sB0vFcdNOxRlHmWpi6KK+r0d9VD4MIsRq+rhSrNHHj46e0RjNPegrQFrqwQydDFVWFpb4QHlz9iYf9LiP7tDdhxXDm0Z4V9tFme03M7n2PDhBt82LaqNWmAqdvgkqjZsRBmuJ1UtcvPkevJDJgOGl0JDgXNMHP8OX7ujIApd292GlwO4zsd5+3kAUx3XO2IntX38eNlBExbdi2Bxu2KYWz3ABAwTT0ebsNLwb60OTaMvs4XBqKiT/K5ddICU25EQxNdQEKeuaTEZPz6nfKEgKl89iGjUfSrdsb5G1WxZ5JqAVMDU11Mu14T9qUK5KwAYkZ/fvU55tW6Sh6mCldeNSaUBEzNLQ0weVNd/sGnWV4DzBtwgY8Ymry5Hp/XnvuP+11MVDyGzKmCgqyop4GRLtZOvo5nIZ9RpYkDhntWwxaP2zi//6XQolWx6JM6AlNT9pnbpV8J/GDpyX59T4A5qxPwkGldtmNhfHsTgyj2X/4q1rjKUrWkNArJF73/suNhqhp3s+SrkAaY2jmYYMX+ljBiTi+yNhP2PXzeuIs4sV84rZ06ANMaeutlXXa2+l2JH5yt/qrSmYCpquwEXYdGK6AMD9P0gqf1MJVlM6q1KIhuUytgw0LxFT61WeHLpTubo7G+F++ddCK2LwZ1E/WqS5l7zOTq2Do1CLfTPfH0ZJ57fp73/jwV3e55h/foS9sWHWuOffzTUuEnqrKsKzf0kQaY5oZ1ZmUNivQw5by5py+rhwPbHuLc0ZcgD9Os7JT0tgRMpdcqK5bpgWlW+nK2BEyzqljW7FUVmGZtFTljTSH5OaOrqo8qCZi61s8HXT1t3Dj5Fq0HlYahsS4SE5P4wp+HWW76Rt2K8embrh9/g54TnTGr9znYsOKqY1fVwtR2J9GgcxHkL2qOsNBvEoEp9/lr19p7YiXrOdIJ4c+jscUzCCP/qwYdViF+v9cDsbb9/lcRocGf4LPirtDr//OshZhXcfBf/gCDFlZB7OtYnFqWCzxMeXCthYrsYX7izySEHg2Da//iuLP1GYq5OSB4Syj7dwkEbQr9owcBU9Gjkx1gyhUUbtSzuErd7pf9X/0peJxyYdIAU67o08IdbmhQaYvM6xk3rQaLX9BVy6JP1fTWybzu7HS8Fj8kO91Vpi8BU5XZCroQTVZA1YApV4DGztFUqi3hPjByxZOMWV7GISxHaF5WjCqjdjfwA/YsEnxw7DapAspUs83Q9tO7GGyYeBNxMQlCNgRMpdoWISMCpqKaKRKYpp+dgGnWz7A0PQiYSqNS1m3SAtPila0w43gTvthSZu0DK2gyr+1ZfGC5oAmYZl3zrPQgYJqxWgRMs3KSco+tJGCaslLOk/SfHQ2xY34wOowoB781DxAaFImCJfOg34yKuHr0DfKwgot7lgo+t2680Q4Dqxzgf+4x0Qlvn0ZlCkwLl7bAEr/miBeTwocbgwOC4zsH4NWTbyjlYoV5Pk3E5kfnbBMTkjGh63GEPRNOlZUdYGpduwSKjWgIfWtTfA/9gEdzjyL2zWdo6+ug1OQWsKrOorJi4/Fq+xWEHxAU2jPMb4Ey01rCtLgd4t5/w5NFx/EtJIx/LaPxMjpZkoo+uQ4sidDDb1C8eQEemLowYBqyjQHTpgyYejFgOoCAqaS7NjvAdMHJZoj4EIP3b75LmkYhr+dhnuEuNfNhYAU/oflkBab6LLrwV7qCqZktRJ2BaRW9tQrZo/ST3IgfqpR55T0pAVN5K0rjkQIyKKBqwNTDrxHysdw1CWnC18UtiwtRusFyXnIFkxTVCJhmXWkCpqKaETAFmg4qieIultg4XHH3b9ZPr/Q9CJhKr1VWLNMXfYq3A5bMupLpEKu9W+Hi2me4eSSMgGlWxJbBVlWBKReSP/p4QxSvbi3DqrLX5c6xcKxqdY5C8rMno9r2lgaYcqH4Y5bXwLEtT3CTRTJNXF/nDzB1ZKCz+3gnBJ0NFwKmawLbYFgtQWSUNMBUEQLKCkwNbMxQ1WcwQv63C9/uhqHo4Howr1AAwX/vQJGBdWBSxAYPPA5C39IEldb9heCxvoh5FgHX1b3w6cITvNl9A5ZVi6DM1Fa43H4lb5fReBnpkBkwtSqdB1VHlMGLM+94z1uLwqa4z/JXlutcGFFhMfj+LhZOrNDquRm38e1VDD8FeZiKKp0dYDovwA1enrdx48xbRRxliXMUKZsXc9lDhcHOgocWKU0WYFrOyQbOFe0Qy7zK/XY+lDg3Z6DOwLSS3hqp1ihvo1vxw+Q9pFLGI2CqFNlpUlJAWAFVA6ab73XAwC7+eP5YNLl12itv0LwI+g9yhXvbU/yvnerY8/mgpG13A98jKlJQHbx8TTvkYRW/U1pUZBw4j9T0jYCptOqm2hEwFdWMgCkB06zfScrp0X2sExztzLB10i20HVsWBvn0sWLSVYVdTHpgGmuZhPnTL/2Zn/M2TWQ5S9O2zfvbInD9CwKmCtglVQWmFvmNMOmqG7oV2qUAFVKn4MKr97zrjlHmu/8A00b2XmKvoSTz6nNfWg/zqh6HY0VLdF5XGd3r7RGyLVTCAit9W+DfskdgV9IMg/zronll4QKBXDGRvWe6YIqj8Bd5ToPJTIM+hfbAKr8xFl5pgWZFtguNb5PfBNsDO/A21OSjgCRgykVETd9eHyvGXsW7F4IK4O2GlQGXe/ng+kdo1qcEuEirm6feovdUV1Z88SzsGbAbsbA63DsJPu9KC0y5UGBpWxTLoxrBoqu4ZmZhAFt2NlIalzLg5eOvIkNlB5iaV3BAxJlH/JimJe3gtLALLrdZwYPPR7MPI+q+IN1V8VGNkPjjF8L23UKNvcNxsekiJP9+z6+8pT+eLj/FPFO/MOAqfryM1i/Jw1Ra3VLsCJiKKkbAVKCJpofku+itzurtJBf74PjhchlH2YMQMFX2DtD8pABTQFHA9L+D/2/vPKCiurYw/NuoolQRFBAsoNKxV+yo0WgUE7sm1piYGHtPjElMzFNjXoovRo29YO9dY++g2KNiQcWKigrWd+6doDPMMAwDMwzDf9bKCsI+7Tvnztz73332bohTZ+/gxBF1IXLYN7UwrNkmOTaMPoKpf01X9P2pCq5fVdx8pleKOlrh8aNn8Cpjj2unHwoP1WuwFjev9dp74/oVRV1HF2u4FLfBZnH0JnrnDVhYFsChTYo3nBRMM3/JUDBVZ0bBlIJp5q+knKlhyoJp909D4ChedM3/4wRuXHt7bE9ZMB29oQHirj/AhTQv4IoIQaBNpwro6REFF09bfL+/GWb8FK0GuXZjT5xaexMrRXKPrhMrwcHPBod3q8atlioNGFcdkTZzZdFDuUQld0Zr2zny71cmd0E/m4VqNtOefYDHk1sgw0yHObMFtPZKwVQVj7JgWkAkZPxkfT2Uq+mikaF0JHrzL2exfNAx2IlYkx+vrQPPig6qtuLY9q5ZF7Gw7yHYOFig75q68AlRF8EOLLmM2V1VX2RQMM2ZCyYjwbTLyGCEt/HBdZEYVSoHN17DxjnnMXR6HUjJTF+/eo3ve+7C06Tn+OirMHj7O4jkoAXw29ADuBmXJIutJcsUFSGjnuPs0TuY/MneNxNVTvrUUPQxYGINJD18phWEpVUB+T73lei3U9WlaNy2NGo280IJbzv5ZZT0UsquiAXWzD2HQ9vjReK9Qtix8pLcpr6CadoBeXaqBjvf4jg5egXCdw3D7uZT8OJhsmzm3joE9sGeiBeCqe+QCBzsNP1N9Ypft8L9w5dxfaXiyH5qUW4vvclTMDX89ZETgqmrR2EkaDjGr/z79GxSiTi72eD+racqL2Oz08NUH/K52cM00OIXfaac5TrHn/XLchum0AAFU1NYBY4hzxNQFkydxJfE+JUNtcYClYDdvv4YQ5tslLO6f7O6EUoHOmjM0P5Y/P27TjtxIeYe/Kq4oN0gfzkWUtoiCaXzv43Bi+evVATTCsEu+GpKPfSJXI27t5+qVFP2MJWSPjXpUxbdWys8LEKrucGuqAX8/F1wMvoWAiu5yjehVy49wIPEFDRs5oMaNT0wpd9eBNV1Q2iEOzo1UmQHl8rMda2w9IeTTPqUDVcHBVN1iMqCqVd5e4ycF46L5+9ppB0YWhxdKkTJ18b8M5E4e/yOxmtNerj56dN9OHXgNqZsa4aYIzdx4Yy6l7aPnwNCKrnhs3prEVrPHe2HBaJ3hHoCtKij7wvPlh24dPI+ZhxrjQGdN+CfU6pjbNejIoKDimOyuI6US0uRyKJ8kDN+7bcfEfLReydMEz8rFx7Jz4aLywhNmLJgmt70lQXTYl62aNy7nEbTgyuv4Zy4XqRS+wNveAXaq9lJ193ir47LYoKFdQG0GxMohE315k7vvoUj69SPDlIwNcIm/bcLO+FR2Wt3EwzxXA5T8DA13sw190TBNGdWICPB1JCjUhZMe42qhJT8LzH1a8V3b8R7ZXBTvFgKCHNFQSHmHztwEyHiXvlUzG0EhBZDj89D0a32Crh72WHs9Hro0ngp4i8rHAmGT6yNO+LouSGSPjlW9ZGF0KN95uDZvccI3z0MO8N/wKsURQ6B4k0D4BLui2tRR+DTpy6OfDTrDUI/Ec806Z9buLbo0JvfKbeXcjt9JwoKpobciYq2s1MwbfeJPw4LwT6ifVnEC89s6YUBxAulIuJk4et/v5MTxXOitcgm7yFeKKyfdx6XTt9HA/HiQPKcLhvoBOfitti/+SrCwt3lOjfiHonM9QXxQJw2lHJnxIsYvS4io72tcKS5KO53be0ssHHhP/JcKJjqv1/8Lf6rf+Us1Ix99kkWaptOVQqmprMWHEkeJqAsmEoY7ERga8lLQluR3nwnJSreWluJL5v0jsI/FwGtE8VbuswUfTxM0wqmHt5FUbuBJ4qKL9IEIe7mz58Pj8WXaz7xpPtE/D+8iTdq1PLA31FxIsj9S1RqXpKCaWYWKRO2FEzVYSkLptJfA0RICOllhaZy+UyiLFpKxVMkg/AJ0HzE7sGdZBwTHtFS8QtzxrvSET8h8qQt0rWw8vfTOHP4jiyYdhwRhAGR69Xs/tr5HsZ12C73PTP6PYzsuwUX0wiwrbuUh185Zwqmgh5jmGbiQyETphkdydfUlLJgmomuDGJKwdQgWDU2aoqCaX7hnZdfiFPplZfPX8svc6Ui2Un2aUtmbVLrUzA13t5T7slUBVPJcaC0n6PsLXr39hPhVVoQd2+J/wsP0yJFLDHih9oY8v4mVKzsisg+FdFZOBEYWjB1bVwRpT6sheODFuPpNcV9juRhuuedn/D8geLZocR7oSgaWFI+ku8nkkEd7PjHG9wVx7fGvYOXcGOV4nSApvbS2wUUTA1/fWSnYFqruZfYs/lFuApLvBQvMiXvZ+k/15K2uBB7D0WdrGTxM/nJCxQSHtOHRezT60IQLV/JRSQ1c8YzES9U2uuS56hPRUfEifvZlOQX4sSHgoO9OK0ieX0XFN7cZcR9tuS9HVLHDbMmKLyXsyKYugoRduqy5rDO4Nla24pI4u33X+zCpmUXVMw+HlUFDrDE/HGqJ2Tajw5Cx7HBhl9kHXqokEOC6SkKpjqszr8m88fFaNxEL/K9xl/jVF34u4wOEXcswrts3FHdO6AlCeRyAmkFU0NNR4rJVLlxSY3N3xJZjU/uvyX/LTsEU6kdB/Hl6ehsrXYUU/pb1dolMHR0LQxssB5BdYqj45fBFEwNtPAUTNXBphVMDYQ+w2ZdxI3mt8sbwt27iJqtdAM66r0teHgvBR9PrILmH/qqedZJD/ffdt+JXSsuq9Snh6kvnMoXxo+f7clwDUzdwNQ8TIv422De9ONasQ0dVxMbfzwrxzB1KG6Nel1Ka7SX/n7lpCIuX1jTEvAKSHMcWvz+hXjpt2rKKdmmQKH8chxXTeXM3ts4tVs93AwFU+PtcFMTTKUj+f23NUCZSk7pQtg58wIW9zsse8R+vLYuSvgWVbPdt/gy5nbbj8JOlui3Phye/uqe0MfWXMP0dqqfNxRMjbf3lHsyVcFUGqONOE7v4+uA2KOK+23lsvNsd/RutBo3hFfpqnMdDe5h6ly7LHx610V0/wWyZ2lqqTK3B85N2ozEo4r7Ct/hzZB8PRHXVxxDjRWfYFfE5Dfep9WW9JWTQz08EY/02ktvF1AwNfz1kZ2CqfJoqzX2wP5NV7VOwE14ShcT97iSl6l0H5vVkhXBVOpbijVtK15WZKVc0pDbIzcIpn4WP2dl2nrXPfPsU73rmlJFepia0mpwLHmWgLJgaiuOsY9aEC6/SdNWzok3b+M77JDf2PX/uTpqtPTUeEzx7s0nGNduGxKuPMbgGbXh5GUt3mire5z6VnTGqJab5fhMY5fUh7c4Gqnp6L7ymKSYS7uXX8G0wQeR1sM0o8WkYJoRoez7OwVTdZbKgqm0j7t9FQq3UnYaoZ85dBuL/nNC/lvrfhXk5Gaayt0bTzB95GH57bqDqzVqNBPXZDpl77oruJ+QOc/vzOwICqYUTDOzX7TZKnuYSrFGP59fS3hOa2/9wa1kTOu9H4/EMbsRq+vj7uOnuCrCsSgXyVujgQjN0sdnGZw9RAzTvc2wdY7i6J1yqVCjGA4su4LVU0+j83ehcA8ripNH1MWGTp8Eo0PR+Wpe3RRMs2snZNxORoKpf81iaPqRr4gTKbzsfzktf1a2/lQhgC+aeEL2PtL27/jzipiT2krapE8Tb7ZBeUfNxxH9Q4phyi9N8MO/SZ/a/h5JNnbkAAAakUlEQVSGVjUWqjTvXc4e06Navkn61GtFHbQMmK9iIyVuWrCnLZM+ZbQ4Rvq7KQum2hAYUzAtaGeFKnN7imP4s5F8Q/Wz2atbTdmjNHb4Uli72yPk10440vMv2QM1eGoH3BdC6uXZe+HasIIsuO6L/A0FbS3TbS+9OVMwNfwFYSjB1PAjV+8hq4KpocacGwTTchZTDTV9re2ee9Y/R/rN7k4pmGY3UbZHAnoQSJv0afRiEbuo2XKtLa3Y1x69QlfIoktUfHv0bbEa928rArQrl7G/hWPDH+ewZ+UVfBnVAAvmncCWVRfV7DbFdMaXbbbJSZ+kDKLOJTQfT05bURJYJdG2lEiUMHpheLqhAdLWkx6Yti64iF8HHKCHqR57JjNVKJiq00qb9Gn4bJEp+SvN3oj/ndkUzZ1EbK+Ul9ic1A0Dem2U45mmLZ8OqoIZw4/gyLbr+GZ5IzzP91I+bpe2OBWzgQUKYESrzfKfpJAaUqIJbeXxg7dJI2yLFBJxo94eG30iEkqkxo9KbYOCKQXTzHxGaLNVFkz1aXPYinqY8ecx7FgXJ1eXEphIx/jcPe2wYEsk+pZeJid9Gr89At1KR8k2kud0avKmDydUQpIQYKWkT10mhOGfO4mYOVlxOim1LennE4/7oZ0tkz45O1pg86gYfZYqy3UyEkzLhDjhsggxUqJsEVRr7oFiXoUxbdBBEZu2ILqMCZY9iLX9+5fPD2Q4xuwSTDfEdkLTgLkoVTZ9wXT5iffxXuAiOAvPJQqmGS6N0QxMRTCt39oHgybXEIlORaxHHYoUaqt/i3VIFOF9DO1h6tY8EH4j38Gr5/+eh/53fHtaTMXLp8/ko/dO1UvjxZNniPtzF26uV7w0tnIrivKjW6BwmWJ4Gp+IsxPW4dHZm9DW3ouHml8OpxVMm3/mi5PiuUDf4tO4BM5GJ2LFGNUTEM1HVESKVT7MHXsM7YYHwlq8mJk/VvX4dNvhAfILm7S/13csplKPgqnhVyI3CKZlLH8yPAgNPfyT8lmO9JvdnVIwzW6ibI8E9CCQVjAdITxMm4bO1drSvss90DtspSyYLrn2ASIrL8bdBHVxZsqSptgmss2nFUydXW0wZ1NrNA2aJ/ejLJjqMQW5ShFxXK2geODRtUhHNKTjljySrysx/ewomKpzSyuYfvZbDTSp8faak/TIVBHyYuJneMdZIZhuetQNFVz/ixTxc9qyaG1bOVGZJJhO3BCBX388iL3b1I8sVa/ngU+GVMGgJhtEpt0iGL+0oRzkPr0ivVz4SsQy3bfuKio1cMfXixuKsf0bc08ISz8PPIC1M86qVKdgSsFUv08L9VppBVPfai5yTGptRXrwjzuuiIenLJhK3zuT50Wgc8NlWgXT0UvDsVd4lW6ddxHaBNOlB99HmyqL5H4omB5HxJAKMGXBVFon6YVs7x+r4M8Rh9Hrh8r48aPd8voN/auOONXySuu/v+/6d4bbWptgWqeRF97/0B9/b4zDolknQQ/TDHHmSgNTEUwleKV81cM3pAc1Sbz8vCNOqkjF0IKpKSyssmBaUMTGbDU2ADYO+h+Zll48L/jiKJLTCNQUTGNxfKsivn5qkYTUJcKrP1r8/mvx8wLx87Gt11VsJmxogpkTj+KQiEVqCoUepvqvgo/lFP0rZ6HmxZTPs1DbdKpSMDWdteBI8jABbYJp7Uae8CptL2cMvHQ+EZtWKIJNpyeY1hBxZT4aHIoxPbchXgTbTk8wTYtbWTDtODIYDTv5iEQI2hdF8u6ZMz4GW+aqH6PMzHJSMM0MrczbUjBVZ6ZNMO3xSQiePHmO+TNi5YrpCaZ1G3qhe78QdGu9QrZLTzCVRKIxP9XFrKnROLr3BpQFUznp07BA9G+yNt2F7To8BDZWhTB97BF0Hh4MS+EFMX3sYdm+/6Rq8PZ3xJo/zyJReJhLYq1UKJhSMM38J4XmGsqCac3IUmgjHmof3FM/zaBc21rE6fuz70GcP3hHRTBVttHmYapsp00wVbajYGr6gqmdEEN6TKiMGSOPQEqS129KVUwfflh42RfC+0MCUMgiv9Z//2/I20zc6e3v7PIwTW2fR/Kz65PEeO2YkmCq76zzmmCqLydd6lEwpWCqyz7R1yY3eJiWspys7/SyVC8uZUCW6ptKZQqmprISHEeeJpATHqZpgSsLprNOtcGYQdtxNU57vDApDmmLFuUw8p3NKCZi0H25tD6kWF7aiuSBKnmRWNoUwqJJx/HwdgocilmjYrgrkz4Z6CqgYKoONiMPU+UahvQwzapgKgmjZYKdMKnfXpVJUjClYJpdHyfKgmnrwf546vgKP4zSnkzrz2XvYs//LspJn9IeyU8dFwXT7FkhiyqR2HmoCpYMNX3BtI/wLJXiO0svd07tu4UrpxPRZkBF2WN53jcx8pFYbf+O/4cxTLNn15h3K6YimPqIXASTlzfF82fqJ1I0rcC5E3cxrscOObZvXhRMK0d6Zehheu3EfVzYd0fGVzLAHqWru7xFKQ4+7P7zH7X8CxRM845g6iTCyY1YHg5LEerKWMWmsAX+/OIQ9ixVTb7afnQQOo4NNtYwtPbjYTkpR8ZxNeWLHOk3uzulYJrdRNkeCehBwNQE0xmx7+Gjdis1ZrdXnl69pt7o0TMEo9/dIid9avGpHwZ/tEk28Q8rhsIiqUdpP0ecO3kH5YNchMfqa8RfeYQkEY+xZkMPBIe5YXLfPajSuCQq1qNgqsfW0akKBdPcI5hGdCwrXiBYwc7eEv/714tUm4cpBdO3a9vkY18U9yuCPz47iKZ9KZjq9OGgg1FGgqlyHNHU5iiY6gA2m0xyk2CaTVPW2gw9TI1B2bT7MBXBtNeoSrAsVhCzflONl5mWnpR0taRnEfQfWgWdqy9DlXol8NGIMHRqEIX4y49k8+ETa+PO5ceY/7MilmhqGTixJh5fFjGep55Czx8r4+mVp9jyk2qInvaTQuD5+hquLcrYQ9uYK6t8JD+oRQl8MK4C7seqJ/RTHpN7fW8M81sjjt2/wHdx72LH1jg5przkjBFUyVXEU32CvbMviRjYr3BiveIYOgXTvCOYSuvt6G4DGynWvxHLtTOqidOkrk1JMC1h+R8j0njbVXzKwBzpN7s7pWCa3UTZHgnoQcCUBVP/YBd8/d/66N9pvZrHaVrBNKJPWfRqvVomUNK7CGo18EQRB0skXH8se5A8eawIfP9U/L9OEy9Uq1USG2aeh72zJcrXoWCqx9bRqQoFU3VM9DAFGvcsJ7xTHTH944wTqei00XLYiIKpYRZAm2Da7dMQ2IskQ0tnn8bVS2+9/yiYGmYtNLVKwVSVCgVT4+09U+3JlATTx/mfY9L4fTKq5q3L4kZ8EgLDXFFQxNs8euAGwqq6ITbmNgJDXdHn8zB0r70CnmWKYtTvddG50dI8I5hWbueJxh2K4/DAjTIrG7fCcK7kjlfCOzefYPXy2QsUsCiI0K/rYcmwaFw8eBcDNtVHVd8/8PBBilzn06FVUcGiKJM+KV2YeS3pkyl9JpmSYOpm+WOOoLmRMihH+s3uTimYZjdRtkcCehAwZcFU23S0CaZSPQcnKzg4W+PiWUXyD+VSWRznHzi6OgY2WM+kT3rsmcxUoWCqTouCKQXTzFxDOWnbfkAgPF3t8NfQI3h3QAVYulng56H7jTakjDxMNQ2EgqnRlgcUTFVZUzA13t4z1Z5MVTANrlQcZcWpq8JFLHD31lM5HvntW09gaVkAdkUtMfb7uhjRcQsCqxXHu9398rRgKu0t9/qlYOlkjUtLTiNgcHWcmLgPraJ7Y8ZH+3Hj9EMM2tGQgmkGF2FeE0ytRb6PobNqoYRfUaN9PBUUsbe/bLUNl08mqvRpSoKpq1XOCKYJyRRMdd6I88fFYP441eMI0iZ6ke81/hp3TKWdLqNDAJFke+a4ozq3T0MSyO0EzFUw1bYuFEyNt2spmFIwleKcTuunKrLRw9R412BWeqJgWglJt8SR00kn0WVCGP65k4iZk1XvHSW+TPpk+jFMs3Id6FqXgqmupMzXzlQFU4m4jUhwVsbXEcePJqgtwP4zPdCn0WrcEMfw81oM07QepkVKO8BNHL+/G30TNq62wsP0pfAwLYDQ8fXwV99DuHflCT5eXoeCKQVTeFWwx+gF9dAvaCU8xc/jltbDuk7bjfYBF9TDFydvpGjUukwlhqmL1USj8VDu6Hby4BzpN7s7NUkP0+BwNxzbqYg7wkICeYGAvYsVKjcqgS5+UZDE02/XNcbimSe1Tr3bJ8Ho7r8M9xOeYnlCByz/64x81D1tadDSB3PEi4k9K6/g2zWNcOfhU40enx986I/BjTfg6tkHmHM+ElvWX8D9u9ozIZcq64CSzoUxJGKjHMO0+zeh2Ljigk5LVsLLDr6+Tvi05hrZw7T/bzWwdvG5N3Wbti2D3z4/iKNbFVm/U8vEDRFYPjEW0Vtv4OsNjTBnYsybzOCpNj9vfwe3LiXh5iVF7Ke8XqxE8PMm3cviHde5cnzMuScjsWbq6TyNxdHNGuVquKBr8DKUC3XCmIX1sXie5muu/5CqaOY4G89SXmLL4+749T8H8fLlazV+Ldv44tfPD8j7cer25rgUd1/lmHJqhZLeReHjY4/+dddCSvr02U/VsXVJ+tdNcG03OUHK9LFH0Hl4MCo3dMfRHYrvSL8wZ9xLSMYPvXepjEfXpE8NupZGzEbz+L4tU9kJt64m4fd+B+QYptU7lMKBzddy/T4PqO6KhNiHmDn4sOxhGvJuSRzeFm+0eQXWLI6rRxIxZ8QRSEmfyjd3xd7t2rk2bVUGS0bFyEmfxmxoiGt3HiHuvKr3heRR1SKyHHp4RMHF0xYTDzTHmt9UY+9Jkwyq54bDq6/Kgmm3iZXgHFAY0ftuqs2/74jKiLSZK2LXqV6bUcmd0dp2jvz7lcld0M9moZrNtOcf4Pn+BaJN9evaaKD17KhAiYrYHmWBxUNiEDGkAkKbu+Pidu1xAPXsKsNqlnYFEdjBGwPdlsLe3Rqjo5th+S/G/a6RYhlGikRS/WwXwcKmACbdbotfJ2qO3VjMzRa1qntgfOA6eIY64sPFNbFsrup47cVJmcbNfDCq9Cq4lrPD51sbYMmfp1RY2AqvppYdfDHYbZnK7yUGw/Y3QRevJXAScfV+3NcMEd5zVGykRJmLj7TDKiNzynAxc7GBs0j8UrqSEz6ovAT+lYvh29kNsXmebvemWZ12cN3iOPh3PKZ9fRhSDNPA8OLY9/dVnZrt2isYXWsukwXT9XGdsT7qPB6JmP9SqdHAA9uXXtQrhmnHn8JEfM9CeBhrvO8NXSZs6+OChCQbTGm9G5Jg2naEHxJ2XNJateyHIfjCYzmePniOnxMjMeP3Y0gR92ZSqVqzJO7vfaD3kfygRu6I3aH+3aLLXEzVpmbbUpg+4CCOi2cm5SJ5ni6ZeOLNs9QC8fOxNM9bk3Y0E/ewDxBvIs9SDuJZuVoj8azpt1RlLmkF07EL62JBzVVGW5JqQ4NwUVymmpwDTUUwdbL6wWg8lDu6mzwkR/rN7k5NTjCVJth1jPAyZSGBPEZgR9QlXD6leKAMj/SGV3l7rQTOHbmDfWsVN2G+QjSp1txDo70kqK6adkb+m2Nxa7To5afRLu7kfexcGif/zbuiA+q0KaXTCqyZfhZ3rz+Rbd/pKRKtuNnoVE8y2jj7PG7GJcn2EV3LwtWr8Ju6t64+xvqZbwXU1D/oIpi6ehZGs25ldR5HXjDcK/bKWbFnpFKjuafYM055Ydpa57hlwUVcPa8I1N6wfWl4lC2i0f7Enls4vFXxoBFQ0xWVGrhrtEu48hjrZin2bEZ7cN2s80i4otj7zbqVE/a2Wsf61/hovBJJ06TSdVSIiAn81nzhpFg8TVJ9WaKLYCq10GpgRUiCurmU5T+eRIrIMCwVSdyztC5gFlOLmnACL569kufSdniAnODCmGXJt8ffZB6OHBkIKdGTtnLvxlNs+kNxLUgJGBr30Px5fGDlVVyKuSfbVX3XE95BDmrNSgk9or5TJDqRjr61HRagseuTuxJwYrv6w64ugmm5OsXgKxIP5tay9ptYvHqh+HxoPtIf+QtqXx9DzjNmdTyuHFWsaVCLkkKIVF9TQ/YvtX1q801c2Htb7qZCIzeUruGcbpcHF1xGwjlF/N0q7UvJomjacnTpVcTHKu7Pwtp4wt1f/bin8rxT6+simEq2dd8pBb+Q9MdoaF7m2P66+edx9YLi+71Zh3LwKK35+90Qc5fE0tTSe3Qlnbs4G3MXO1YpBEPfIGeEtyz1pq70wnbmD+qe9bokfSokjv43HVpB53EY03DbL+eQdEcRg7R+v3IoLHIaaCsX999F7EaFI4VPNWf4N3FTMV/9daycYFa56JL0SbJ/X5x+zZdzH50GwX5bPEttnfmPWtu6CKbFxH1phIk9S+2MinvzrJw6qcwIpvlEPo3U/ZFP3MfIP2fxPWluEEwdrL43yP7KqNH7yUMzMskVfzdJwTRXkOMgSYAEcoSALoJpjgyMnZKACRHQVTA1oSFzKCRgEAK6CKYG6ZiN5nkCugqmeR4UAehNQBfBVO/GzaSiroKpmUxXp2noIpjq1JAJGOkqmBYWL28LC6celyBHJAlHHxtnK7wSL2RTHj3DExH25+ZhhVNJZktuEEyLWk3I7LSyxf5B8rBsaSenG6FgmtMrwP5JgAQyRYCCaaZw0TiPEqBgmkcXntNWI0DBlJsipwhQMM0p8nmnXwqmGa81BVN1RnlRMM14p+hnkRsEU/1mxlqpBCiYci+QAAnkKgIUTHPVcnGwOUSAgmkOgWe3JkeAgqnJLUmeGRAF0zyz1Dk2UQqmGaOnYErBNONdor8FBVP92eWWmhRMc8tKcZwkQAIyAQqm3AgkkDEBCqYZM6JF3iBAwTRvrLMpzpKCqSmuinmNiYJpxutJwZSCaca7RH8LCqb6s8stNXNUMPUXmQOjd5pHdt7csuAcJwnkdgLhbb3xh8j4GC0yPk7YESFnb7xuIhkccztbjt98CPiJRHAPbybj5957EdGzHBp1LYNjmxSJElhIIC8RaDcyCK1sZuPVy9dYldIF676VkoLkJQKca04RsLIrhKqdSqGD+yI4ifh5U4+1xMJfFQnMWEggOwhUrV8Sh0RSspVTT6H35CrwLmePi/v1i8WYHeMxxTbK1S6G6H0JmDv2GNoND0RoI3fE7lBPEGiKYzfUmGq2LYVpAw7Iz1Lfi2ep65eScCOXPkvZu1ihUqMS6OW3DJ4V7PHdukY4Pfe8odCptVuyVnH8ve0m5o+LVvlbe5FErOPYYKONgx0ZjkCOCabSlDqMCTLczNgyCZCAWRK4ffUJNs9UfBG6iAyOjbqVMct5clIkkFUCyyadQnLSc7mZ9wb6w8rWPDLGZ5UL6+ctAid33ULMdsXLef/argisVzxvAeBsc5TAgdXXcOHYXXkMVVt4oHSIY46Oh52bF4HnKa+w5HuFCG9hVQBth/ib1wSzaTYLxh9/kx1dErLy5cumhnNpM+b2LLU76jKunEqUV6N2ZCl4lC9q1JWZPy5GrT8KpkZdAoN2lqOCqUFnxsZJgARIgARIgARIgARIgARIgARIgARIgARIwEgEKJgaCbQRuqFgagTI7IIESIAESIAESIAESIAESIAESIAESIAESMC8CVAwNZ/1pWBqPmvJmZAACZAACZAACZAACZAACZAACZAACZAACeQQAQqmOQTeAN1SMDUAVDZJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQtwhQMDWf9TaKYHpiZwJO7Mzb2ejMZ8twJiSQtwg8ffQc1iLTLQsJkAAJ5DYCSfefobCDRW4bNsdLAiRAAuD9FzcBCZBAbiUQUNcVAXWZZDK3rp/yuI0imJoDKM6BBEiABEiABEiABEiABEiABEiABEiABEiABEjA/AlQMDX/NeYMSYAESIAESIAESIAESIAESIAESIAESIAESIAEdCRAwVRHUDQjARIgARIgARIgARIgARIgARIgARIgARIgARIwfwIUTM1/jTlDEiABEiABEiABEiABEiABEiABEiABEiABEiABHQlQMNURFM1IgARIgARIgARIgARIgARIgARIgARIgARIgATMnwAFU/NfY86QBEiABEiABEiABEiABEiABEiABEiABEiABEhARwIUTHUERTMSIAESIAESIAESIAESIAESIAESIAESIAESIAHzJ0DB1PzXmDMkARIgARIgARIgARIgARIgARIgARIgARIgARLQkQAFUx1B0YwESIAESIAESIAESIAESIAESIAESIAESIAESMD8CVAwNf815gxJgARIgARIgARIgARIgARIgARIgARIgARIgAR0JEDBVEdQNCMBEiABEiABEiABEiABEiABEiABEiABEiABEjB/AhRMzX+NOUMSIAESIAESIAESIAESIAESIAESIAESIAESIAEdCVAw1REUzUiABEiABEiABEiABEiABEiABEiABEiABEiABMyfAAVT819jzpAESIAESIAESIAESIAESIAESIAESIAESIAESEBHAhRMdQRFMxIgARIgARIgARIgARIgARIgARIgARIgARIgAfMnQMHU/NeYMyQBEiABEiABEiABEiABEiABEiABEiABEiABEtCRAAVTHUHRjARIgARIgARIgARIgARIgARIgARIgARIgARIwPwJUDA1/zXmDEmABEiABEiABEiABEiABEiABEiABEiABEiABHQkQMFUR1A0IwESIAESIAESIAESIAESIAESIAESIAESIAESMH8CFEzNf405QxIgARIgARIgARIgARIgARIgARIgARIgARIgAR0JUDDVERTNSIAESIAESIAESIAESIAESIAESIAESIAESIAEzJ8ABVPzX2POkARIgARIgARIgARIgARIgARIgARIgARIgARIQEcCFEx1BEUzEiABEiABEiABEiABEiABEiABEiABEiABEiAB8ydAwdT815gzJAESIAESIAESIAESIAESIAESIAESIAESIAES0JEABVMdQdGMBEiABEiABEiABEiABEiABEiABEiABEiABEjA/An8H9BQ6owiQvcVAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "fig = px.treemap(df173,\n", " title=\"Total Files per Folder (Depth of Two) (Colored by Bytes Stored)\",\n", " path=[px.Constant(\"all\"), 'folder1', 'folder2'], \n", " color='bytes'\n", " )\n", "fig.update_traces(root_color=\"lightgrey\")\n", "fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "dense-surprise", "metadata": {}, "source": [ "### Frequent File Names\n", "\n", "Let's reuse our code from the previous example to look over the common file names." ] }, { "cell_type": "code", "execution_count": 64, "id": "difficult-mauritius", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[5]DocumentSummaryInformation 873\n", "[5]SummaryInformation 873\n", "WordDocument 870\n", "[1]CompObj 870\n", "1Table 870\n", "Data 320\n", "Welcome.html 4\n", "2001.gif 4\n", "Current User 2\n", "PowerPoint Document 2\n", "Pictures 2\n", "stwek012.html 2\n", "st970807.html 2\n", "spsn903.txt 2\n", "st970807.txt 2\n", "st970811.html 2\n", "st970811.txt 2\n", "2000.gif 2\n", "1999.gif 2\n", "1998.gif 2\n", "spsn903.wp 2\n", "stgt139.doc 2\n", "080296.txt 2\n", "spjhq706.html 2\n", "stmkp102.txt 2\n", "Name: name, dtype: int64" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(df173[\"name\"].astype(\"category\").value_counts().head(n=25))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" } }, "nbformat": 4, "nbformat_minor": 5 }