{ "cells": [ { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# From Gaussian Algebra to Gaussian Processes (Part 2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the previous post, we covered the following topics:\n", " \n", "- A Gaussian process (GP) defines a distribution over functions (i.e. function evaluations). √\n", "- Marginalizing a Gaussian over a subset of its elements gives another Gaussian (just pluck out the pieces of interest). √\n", "- Conditioning a subset of the elements of a Gaussian on another subset gives another Gaussian (a simple algebraic formula). √\n", "- Posterior over functions (the linear map of the posterior over weights onto some matrix $A = \\phi(X_{*})^T$) √\n", "- Covariances (the second thing we need in order to specify a multivariate Gaussian) √\n", "\n", "**If any of the above is still not clear, please look no further, and re-visit the [previous post]().**\n", "\n", "Conversely, we did not directly cover:\n", "\n", "- Kernels\n", "- Squared-exponentials\n", "\n", "Here, we'll explain these two." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The more features we use, the more expressive our model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We concluded the previous post by plotting posteriors over function evaluations given various phi_funcs, i.e. a function that creates \"features\" $\\phi(X)$ given an input $X$. \n", "\n", "For example:\n", "\n", "python\n", "X_train = np.array([-3, -5, 6, 2, 1]) # 5 inputs\n", "y_train = np.array([1, 4, 2, 9, 4]) # 5 corresponding outputs, which we'll use below\n", "\n", "def phi_func(x):\n", " return np.array([3 * np.cos(x), np.abs(x - np.abs(x - 3))]) # makes D=2 features for each input\n", " \n", " \n", ">>> phi_func(X_train).shape\n", "(2, 5)\n", "\n", "\n", "One common such set of features are those given by \"radial basis functions\", a.k.a. the \"squared exponential\" function, defined as:\n", "\n", "python\n", "def phi_func(x, D=D):\n", " return np.array([np.exp(-.5 * (x - d)**2) for d in range(int(-D / 2), int(D / 2))]) # phi_x.shape: (D, len(x))\n", "\n", "\n", "Again, the choice of which features to use is ultimately arbitrary, i.e. a choice left to the modeler. \n", "\n", "Throughout the exercise, we saw that the larger the dimensionality $d$ of our feature function phi_func, the more expressive, i.e. less endemically prone to overfitting, our model became.\n", "\n", "**So, how far can we take this?**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Computing features is expensive\n", "\n", "Ideally, we'd compute as many features as possible for each input element, i.e. employ phi_func(x, D=some_huge_number). Tragically, the cost of doing so adds up, and ultimately becomes intractable past meaningfully large values of $d$. \n", "\n", "**Perhaps there's a better way?**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# How are these things used?\n", "\n", "Let's bring back our GP equations, and prepare ourselves to *squint*! In the previous post, we outlined the following modeling process:\n", "\n", "1. Define prior distribution over weights and function evaluations, $P(w, y)$.\n", "2. Marginalizing $P(w, y)$ over $y$, i.e. $\\int P(w, y)dy$, and given some observed function evaluations $y$, compute the posterior distribution over weights, $P(w\\vert y)$.\n", "3. Linear-mapping $P(w\\vert y)$ onto some new, transformed test input $\\phi(X_*)^T$, compute the posterior distribution over function evaluations, $P(y_*\\ \\vert\\ y) = P(\\phi(X_{*})^Tw\\ \\vert\\ y)$.\n", "\n", "Now, let's unpack #2 and #3.\n", "\n", "### $P(w\\vert y)$\n", "\n", "- First, the mathematical equation:\n", "\n", "\n", "\\begin{align*}\n", "P(w\\vert y)\n", " &= \\mathcal{N}(\\mu_w + \\Sigma_{wy}\\Sigma_y^{-1}(y - \\mu_y), \\Sigma_w - \\Sigma_{wy}\\Sigma_y^{-1}\\Sigma_{wy}^T)\\\\\n", " \\\\\n", " &= \\mathcal{N}(\\mu_w + \\Sigma_{wy}(\\phi(X)^T\\Sigma_w \\phi(X))^{-1}(y - \\mu_w^T \\phi(X)), \\Sigma_w - \\Sigma_{wy}(\\phi(X)^T\\Sigma_w \\phi(X))^{-1}\\Sigma_{wy}^T)\n", "\\end{align*}\n", "\n", "\n", "- Next, this equation in code:\n", "\n", "python\n", "# Define initial parameters\n", "D = ... # dimensionality of phi_func\n", "\n", "mu_w = np.zeros(D) # often a vector of zeros, though it doesn't have to be\n", "cov_w = np.eye(D) # often the identity matrix, though it doesn't have to be\n", "\n", "# Featurize X_train\n", "phi_x = phi_func(X_train, D=D)\n", "\n", "# Params of prior distribution over function evals\n", "mu_y = phi_x.T @ mu_w\n", " = np.zeros(D)\n", "cov_y = phi_x.T @ cov_w @ phi_x\n", "\n", "# Params of posterior distribution over weights\n", "mu_w_post = mu_w + cov_w @ phi_x @ np.linalg.inv(cov_y) @ (y_train - mu_y)\n", " = mu_w + cov_w @ phi_x @ np.linalg.inv(cov_y) @ y_train\n", "cov_w_post = cov_w - cov_w @ phi_x @ np.linalg.inv(cov_y) @ phi_x.T @ cov_w\n", " = cov_w - cov_w @ phi_x @ np.linalg.inv(phi_x.T @ cov_w @ phi_x) @ phi_x.T @ cov_w\n", "\n", "\n", "### $P(y_*\\ \\vert\\ y) = P(\\phi(X_{*})^Tw\\ \\vert\\ y)$\n", "\n", "Here, $X_*$ is a set of test points, e.g. np.linspace(-10, 10, 200).\n", "\n", "In addition, let's call $X_* \\rightarrow$ X_test and $y_* \\rightarrow$ y_test." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Never alone\n", "\n", "Squinting at the equations for mu_y_test_post and cov_y_test_post, we see that phi_x and phi_x_test appear **only in the presence of another phi_x, or phi_x_test.** \n", "\n", "These four distinct such terms are:\n", "\n", "python\n", "phi_x_test.T @ cov_w @ phi_x_test\n", "phi_x_test.T @ cov_w @ phi_x\n", "phi_x.T @ cov_w @ phi_x\n", "phi_x.T @ cov_w @ phi_x_test\n", "\n", "\n", "In mathematical notation, they are (respectively):\n", "\n", "- $\\phi(X_*)^T\\Sigma_w \\phi(X_*)$\n", "- $\\phi(X_*)^T\\Sigma_w \\phi(X)$\n", "- $\\phi(X)^T\\Sigma_w \\phi(X)$\n", "- $\\phi(X)^T\\Sigma_w \\phi(X_*)$\n", "\n", "# Simplifying further\n", "\n", "These are nothing more than *scaled* (via the $\\Sigma_w$ term) dot products in some expanded feature space $\\phi$. \n", "\n", "*Until now, we've explicitly chosen what this $\\phi$ function is.*\n", "\n", "If the scaling matrix $\\Sigma_w$ is [positive definite](https://en.wikipedia.org/wiki/Positive-definite_matrix), we can state the following, using $\\phi(X)^T\\Sigma_w \\phi(X)$, i.e. phi_x.T @ cov_w @ phi_x, as an example:\n", "\n", "\n", "\\begin{align*}\n", "\\Sigma_w = (\\sqrt{\\Sigma_w})^2\n", "\\end{align*}\n", "\n", "\n", "\n", "\\begin{align*}\n", "\\phi(X)^T \\Sigma_w \\phi(X) \n", " &= \\big(\\sqrt{\\Sigma_w}\\phi(X)\\big)^T\\big(\\sqrt{\\Sigma_w}\\phi(X)\\big)\\\\\n", " &= \\varphi(X)^T\\varphi(X)\\\\\n", " &= \\varphi(X) \\cdot \\varphi(X)\\\\\n", "\\end{align*}\n", "\n", "\n", "As such, our four distinct scaled-dot-product terms can be rewritten as:\n", "\n", "- $\\phi(X_*)^T\\Sigma_w \\phi(X_*) = \\varphi(X_*) \\cdot \\varphi(X_*)$\n", "- $\\phi(X_*)^T\\Sigma_w \\phi(X) = \\varphi(X_*) \\cdot \\varphi(X)$\n", "- $\\phi(X)^T\\Sigma_w \\phi(X) = \\varphi(X) \\cdot \\varphi(X)$\n", "- $\\phi(X)^T\\Sigma_w \\phi(X_*) = \\varphi(X) \\cdot \\varphi(X_*)$\n", "\n", "**In other words, these terms can be equivalently written as dot-products in some space $\\varphi$.** \n", "\n", "*We have **not** explicitly chosen what this $\\varphi$ function is.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Kernels\n", "\n", "A \"kernel\" is a function which gives the similarity between individual elements in two sets, i.e. a Gram matrix.\n", "\n", "For instance, imagine we have two sets of countries, $\\{\\text{France}, \\text{Germany}, \\text{Iceland}\\}$ and $\\{\\text{Morocco}, \\text{Denmark}\\}$, and that similarity is given by an integer value in $[1, 5]$, where 1 is the least similar, and 5 is the most. Applying a kernel to these sets might give a Gram matrix such as:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FranceGermanyIceland
Morocco421
Denmark334
\n", "
" ], "text/plain": [ " France Germany Iceland\n", "Morocco 4 2 1\n", "Denmark 3 3 4" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "pd.DataFrame([[4, 2, 1], [3, 3, 4]], columns=['France', 'Germany', 'Iceland'], index=['Morocco', 'Denmark'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**When you hear the term \"kernel\" in the context of machine learning, think \"similarity between things in lists.\" That's it.**\n", "\n", "NB: A \"list\" could be a list of vectors, i.e. a matrix. A vector, or a matrix, are the canonical inputs to a kernel.\n", "\n", "# Mercer's Theorem\n", "\n", "Mercer's Theorem has as a key result that any kernel function can be expressed as a dot product, i.e.\n", "\n", "$$\n", "K(X, X') = \\varphi(X) \\cdot \\varphi (X')\n", "$$\n", "\n", "where $\\varphi$ is some function that creates $d$ features out of $X$ (in the same vein as phi_func from above).\n", "\n", "## Example\n", "\n", "To illustrate, I'll borrow an example from [CrossValidated](https://stats.stackexchange.com/questions/152897/how-to-intuitively-explain-what-a-kernel-is):\n", "\n", "\n", "\"For example, consider a simple polynomial kernel $K(\\mathbf x, \\mathbf y) = (1 + \\mathbf x^T \\mathbf y)^2$ with $\\mathbf x, \\mathbf y \\in \\mathbb R^2$. This doesn't seem to correspond to any mapping function $\\varphi$, it's just a function that returns a real number. Assuming that $\\mathbf x = (x_1, x_2)$ and $\\mathbf y = (y_1, y_2)$, let's expand this expression:\n", "\n", "\n", "\\begin{align}\n", "K(\\mathbf x, \\mathbf y) \n", " &= (1 + \\mathbf x^T \\mathbf y)^2\\\\\n", " &= (1 + x_1 \\, y_1 + x_2 \\, y_2)^2\\\\\n", " &= 1 + x_1^2 y_1^2 + x_2^2 y_2^2 + 2 x_1 y_1 + 2 x_2 y_2 + 2 x_1 x_2 y_1 y_2\n", "\\end{align}\n", "\n", "\n", "Note that this is nothing else but a dot product between two vectors $(1, x_1^2, x_2^2, \\sqrt{2} x_1, \\sqrt{2} x_2, \\sqrt{2} x_1 x_2)$ and $(1, y_1^2, y_2^2, \\sqrt{2} y_1, \\sqrt{2} y_2, \\sqrt{2} y_1 y_2)$, and $\\varphi(\\mathbf x) = \\varphi(x_1, x_2) = (1, x_1^2, x_2^2, \\sqrt{2} x_1, \\sqrt{2} x_2, \\sqrt{2} x_1 x_2)$. So the kernel $K(\\mathbf x, \\mathbf y) = (1 + \\mathbf x^T \\mathbf y)^2 = \\varphi(\\mathbf x) \\cdot \\varphi(\\mathbf y)$ computes a dot product in 6-dimensional space without explicitly visiting this space.\"\n", "\n", "## What this means\n", "\n", "![](./kernels-for-gaussian-processes.svg)\n", "\n", "- We start with inputs $X$ and $Y$.\n", "- Our goal is to compute the similarity between then, $\\text{Sim}(X, Y)$.\n", "\n", "### Bottom path\n", "- Lifting these inputs into some feature space, then computing their dot-product in that space, i.e. $\\varphi(X) \\cdot \\varphi (Y)$ (where $F = \\varphi$, since I couldn't figure out how to draw a $\\varphi$ in [draw.io](http://draw.io)), is one strategy for computing this similarity.\n", "- Unfortunately, this robustness comes at a cost: **the computation is extremely expensive.**\n", "\n", "### Top Path\n", "- A valid kernel computes similarity between inputs. The function it employs might be extremely simple, e.g. $(X - Y)^{123}$; **the computation is extremely cheap.**\n", "\n", "### Mercer!\n", "- Mercer's Theorem tells us that every valid kernel, i.e. the top path, is *implicitly traversing the bottom path.* **In other words, kernels allow us to directly compute the result of an extremely expensive computation, extremely cheaply.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# How does this help?\n", "\n", "Once more, the Gaussian process equations are littered with the following terms:\n", "\n", "- $\\phi(X_*)^T\\Sigma_w \\phi(X_*) = \\varphi(X_*) \\cdot \\varphi(X_*)$\n", "- $\\phi(X_*)^T\\Sigma_w \\phi(X) = \\varphi(X_*) \\cdot \\varphi(X)$\n", "- $\\phi(X)^T\\Sigma_w \\phi(X) = \\varphi(X) \\cdot \\varphi(X)$\n", "- $\\phi(X)^T\\Sigma_w \\phi(X_*) = \\varphi(X) \\cdot \\varphi(X_*)$\n", "\n", "In addition, we previously established that the more we increase the dimensionality $d$ of our given feature function, the more flexible our model becomes.\n", "\n", "Finally, past any meaningfully large value of $d$, and irrespective of what $\\varphi$ actually is, **this computation becomes intractably expensive.**\n", "\n", "## Kernels!\n", "\n", "You know where this is going.\n", "\n", "Given Mercer's theorem, we can state the following equalities:\n", "\n", "- $\\varphi(X_*) \\cdot \\varphi(X_*) = K(X_*, X_*)$\n", "- $\\varphi(X_*) \\cdot \\varphi(X) = K(X_*, X)$\n", "- $\\varphi(X) \\cdot \\varphi(X) = K(X, X)$\n", "- $\\varphi(X) \\cdot \\varphi(X_*) = K(X, X_*)$\n", "\n", "# Which kernels to choose?\n", "\n", "At the outset, we stated that our primary goal was to increase $d$. As such, **let's pick the kernel whose implicit $\\varphi$ has the largest dimensionality possible.**\n", "\n", "In the example above, we saw that the kernel $k(\\mathbf x, \\mathbf y)$ was implicitly computing a $d=6$-dimensional dot-product. Which kernels compute a $d=100$-dimensional dot-product? $d=1000$?\n", "\n", "**How about $d=\\infty$?**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Radial basis function, a.k.a. the \"squared-exponential\"\n", "\n", "This kernel is implicitly computing a $d=\\infty$-dimensional dot-product. That's it. **That's why it's so ubiquitous in Gaussian processes.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Rewriting our equations\n", "\n", "With all of the above in mind, let's rewrite the equations for the parameters of our posterior distribution over function evaluations.\n", "\n", "python\n", "# The mean of the posterior distribution over function evaluations\n", "mu_y_test_post = phi_x_test.T @ mu_w_post\n", " = phi_x_test.T @ cov_w @ phi_x @ np.linalg.inv(phi_x.T @ cov_w @ phi_x) @ y_train\n", " \n", " # Now, substituting in our kernels\n", " = k(X_test, X_train) @ np.linalg.inv(k(X_train, X_train)) @ y_train\n", "\n", "# The covariance of the posterior distribution over function evaluations\n", "cov_y_test_post = phi_x_test.T @ cov_w_post @ phi_x_test\n", " = phi_x_test.T @ cov_w @ phi_x_test - \\\n", " phi_x_test.T @ cov_w @ phi_x @ np.linalg.inv(phi_x.T @ cov_w @ phi_x) @ \\\n", " phi_x.T @ cov_w @ phi_x_test\n", " \n", " # Now, substituting in our kernels\n", " = k(X_test, X_test) - \\\n", " k(X_test, X_train) @ np.linalg.inv(k(X_train, X_train)) @ k(X_train, X_test)\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Defining the kernel in code\n", "\n", "Mathematically, the RBF kernel is defined as follows:\n", "\n", "$$\n", "K(X, Y) = \\exp(-\\frac{1}{2}\\vert X - Y \\vert ^2)\n", "$$\n", "\n", "To conclude, let's define a Python function for the parameters of our posterior over function evaluations, using this RBF kernel as k, then plot the resulting distribution." ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "X_train = np.array([-3, -5, 6, 2, 1]) # 5 inputs\n", "y_train = np.array([1, 4, 2, 9, 4]) # 5 corresponding outputs, which we'll use below\n", "X_test = np.linspace(-10, 10, 200) # vector of test inputs\n", "\n", "\n", "def rbf_kernel(x, y):\n", " x = np.expand_dims(x, 1) # shape: (len(x), 1)\n", " y = np.expand_dims(y, 0) # shape: (1, len(y))\n", " return np.exp(-.5 * (x - y)**2) # shape: (len(x), len(y))\n", "\n", "\n", "def k(x, y):\n", " return rbf_kernel(x, y)\n", " \n", "\n", "# The following quantity is used in both mu_y_test_post and cov_y_test_post; \n", "# we extract it into a separate variable for readability\n", "A = k(X_test, X_train) @ np.linalg.inv(k(X_train, X_train))\n", "\n", "mu_y_test_post = A @ y_train \n", "cov_y_test_post = k(X_test, X_test) - A @ k(X_train, X_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot results" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAIYCAYAAACovOl6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmcZGld5/vv75wTey6VW+3VW3Xb3YCAUCyCIkMLCOjojO0ACuM29p3hXnUYfDnjXO/V66joveJynTuj3MZxYZVmEVlkFZRFoOmGbnqtrWtfsqpyiczY4zzzx4nozsrKJSIz9vi8X696VVVE5IknTmScON/zPM/vMeecAAAAAGAQed1uAAAAAAC0C4EHAAAAwMAi8AAAAAAYWAQeAAAAAAOLwAMAAABgYBF4AAAAAAwsAg+AoWBmS2Z2Uwef73vN7LEWbu8TZvaTtX//lJl9sYXb/gkz+1SrtodIv+1XM7vBzJyZBW3a/kNm9tJ2bBsANkLgAdBSZvaEmeVrAeOCmf25mY1sY3stOQlzzo04545tZxsr2vTrZlY2s2ztz+Nm9l/NbM+K5/tH59ytDW7rnZs9zjn3KufcX7Sg7dfsT+fcu5xzr9jutntJ7feuVPs9rP95bRufr2P71cxeambhqte2ZGbf3ern2qra/v/Nlbc5557unPt8l5oEYIgReAC0ww8550YkPUfSIUm/2q2GbDcobfDz73POjUqalPQvJO2W9I2VoacVLMKxegMbvEf/dy3o1v+8r6MNa6+zq17biHPuK91uFAD0Ir5EAbSNc+6MpE9IeoYkmdleM/uImV0xsyNm9nP1x5rZ883sXjNbrPUM/X7trn+o/T2/8iq2mf2MmT1iZnNm9kkzu37FtpyZ/a9mdljS4RW33Vz797iZ/aWZzZrZCTP71XqoqA0X+5KZ/YGZXZb065u8xrJz7iFJr5U0K+ktte281MxOr2jTfzSzM7UeocfM7A4z+wFJ/1nSa2uv7Vu1x37ezH7LzL4kKSfpptpt/2bFU1utV2nBzB41sztW3PGEmX3/iv+v7EW6Zn+uHiJnZi8ys6/Xtv11M3vRivs+b2b/pbaPsmb2KTObXm//mNnP1d7rK7X3fm/t9v9uZr+36rF/Y2b/ofbvvWb2gdp7dNzMfmHV67nHzN5pZouSfmr9d2jNNj35u1D7/5O9EfX3zczeYmYXzeycmf30isemzOxttd+bBTP7opmlOr1fN3htrzWze1fd9mYz+0jt368xs/trn7NTZvbrG2xro98jmdn7zex87fX8g5k9vXb7XZJ+QtIv1/bF367enpklzOwPzexs7c8fmlmiwffg1Wb2cG0/nTGzX2p2PwEYLgQeAG1jZgckvVrS/bWb3ivptKS9ku6U9Ntm9rLafX8k6Y+cc2OSDkr669rtL6n9vaN+FdvMflhRUPiXkmYk/aOk96x6+h+R9AJJT1ujaX8saVzSTZK+T9K/lvTTK+5/gaRjknZJ+q1GXqtzrirpbyR97+r7zOxWSf+bpOfVeoVeKekJ59zfSfptRb1FI865Z634sTdKukvSqKQTazzlCyQdlTQt6dckfdDMJhto6jX7c1VbJyV9TNL/K2lK0u9L+piZTa142I8r2l87JcUlrXnCWXtv3yrpX0naU3sd763d/R5FQc9qj52Q9ApJ77UofP6tpG9J2ifpDkn/3sxeuWLzPyzpHkk7JL2rgdfdjN2Kfj/2SfpZSf9frX2S9HuSnivpRYp6935ZUqgO7tdN/K2kW83sllXbfXft38uKft93SHqNpH9nZj+yheeRoosZt9Tae59q74Nz7u21f9d72H5ojZ/93yW9UNKzJT1L0vN1dU/wRu/BOyT9L7XP0jMkfW6L7QcwJAg8ANrhw2Y2L+mLkr6gKNgckPRiSf/ROVdwzn1T0t2KTr4kqSzpZjObds4tOef+aYPt/1tJb3XOPeKcqygKDc+2Fb08tfuvOOfyK3/QzHxJr5P0K865rHPuCUlvUxQw6s465/7YOVdZ/fObOKvoJHi1qqSEpKeZWcw594Rz7ugm2/pz59xDtTaU17j/oqQ/rPUwvU/SY4pOYLfrNZIOO+f+qvbc75H0qKSVJ63/wzn3eG3f/LWik9a1/ISkP3PO3eecK0r6FUnfbWY3KAqpTk8FxDslfcU5d1bS8yTNOOd+wzlXqs29+v8VvW91X3HOfdg5F27wHv2Smc3X/lxqYh+UJf1Gbd9+XNKSohDhSfoZSb/onDvjnKs6575ce22baeV+laS9K15b/U/GOZdTFLxfL0m14HObpI9IknPu8865B2v77QFFwfP7mtg3T3LO/VntM1RU1BP6LDMbb/DHf0LRPr7onJuV9H/p6s/gmu/BivueZmZjzrk559x9W2k/gOFB4AHQDj/inNvhnLveOfem2gncXklXnHPZFY87oegKrhRdxf0OSY/Whvv84Abbv17SH9VP9CRdkWQrtiVJp9b52WlJMV3da7KyHRv97Gb21dpyFefcEUn/XtFJ4UUze6/VhnZtYLM2nHHOuRX/P6FoH2/XXl3bo7R6/5xf8e+cpPWKUly1LefckqTLkvbV2v5e1U7MFfVC1HtqrteqE3pFPXq7Vmy7kffo92q/hzucc80MD7tcC9J19dc4LSmpqGetWa3cr1IUynes+rNcu+/dunq/frgWhGRmLzCzv68NFVxQdPFgK0PnfDP7HTM7WhtW+ETtrka3tXp/rP79Xe89kKQfVdRzfMLMvmA9VKwBQG8i8ADolLOSJs1sdMVt10k6I0nOucPOudcrGh7zu5LuMbOMol6A1U4pGtKy8mQv5Zz78orHrPVzknRJ0RXilb1BT7Zjk59dV+3q/w8p6rm4hnPu3c6576k9r1P0Gjd6rs3asK8+HKzmOkX7WIqGLaVX3Le7ie2e1dX7pr7tM2s8djNXbav2fk6t2NZ7JN1Z65l7gaQP1G4/Jen4qvd31Dn36iZex0ZyWn//bOSSpIKiIZerdXK/bubTkmbM7NmKgs+7V9z3bkW9PQecc+OS/kTRxYK1bPR79OOKhhV+v6KhZzfUbq9vq9n9sfL3d0POua87535Y0bHiw3pq+CsArInAA6AjnHOnJH1Z0lvNLGlmz1TUq/NOSTKzN5jZjHMulDRf+7FQUSGAUNF8m7o/kfQrKyZJj5vZjzXYjqqiE6TfMrPR2sn2f6i3o1lmFpjZ7YpO3ncrmpux+jG3mtnLapOyC5LytdckSRck3WDNV2LbKekXzCxWe+23S/p47b5vSnpd7b5DioaL1a21P1f6uKTvMLMfr7221yqaB/XRJtsnRfvkp83s2bXX/tuSvlobRijn3P2KQsTdkj7pnKu/71+TlLWo0EOq1pvwDDN73hbasJZvSvrx2nZ/QA0O6ar9bv6ZpN+3qKiCb1FxgoQ6u183a2dZ0vsl/T+Khlh+esXdo4p6Wgtm9nxFwWU9G/0ejUoqKuqxSyt6b1e6oPX3hRT9bvyqmc1YVJzh/1QDn0Ezi1u0vtF47XUu6qnPEgCsicADoJNer+hK8FlJH5L0a865z9Tu+wFJD5nZkqICBq9zzuVrQ3F+S9KXasObXuic+5CiHpL31obTfFvSq5pox88runp9TNE8o3crOpFtxmtrbV1QdMX8sqTn1uagrJaQ9DuKTu7PKworv1K77/21vy+bWTNzEb6qaML4JUX7507n3OXaff+Hol6IOUVzI568wr/W/ly50do2flBRtbnLiibl/6Bzrpk5MPVtfabWlg9IOldr0+tWPezdinoJVraxWmvDsyUd11OhqNH5IZv5RUW9cfOK5pJ8uImf/SVJD0r6uqLhi78ryevkfq3Za9euw/OjK+6v79f3rxoa9iZJv2FmWUUhY6PekXV/jyT9paJhaGckPSxp9Zy7dyiaZzNvZmvt39+UdK+kBxTtz/tqtzXijZKeqH32/62i9xAA1mVXDwEHAAAAgMFBDw8AAACAgdVw4DGzP7NoAbBvr7ht0sw+bWaHa39PbLQNAAAAAOikZnp4/lzRGPuV/pOkzzrnbpH02dr/AQAAAKAnNDWHp7ZY3Eedc8+o/f8xSS91zp0zsz2SPu+cu3WDTQAAAABAx2x3Ds8u59y52r/P6+pF4QAAAACgq4JWbcg558xs3e4iM7tL0l2SlMlknnvbbbe16qkBAAAADJhvfOMbl5xzM9vdznYDzwUz27NiSNvF9R7onHu7pLdL0qFDh9y99967zacGAAAAMKjM7EQrtrPdIW0fkfSTtX//pKS/2eb2AAAAAKBlmilL/R5JX5F0q5mdNrOfVbRy+MvN7LCiFZ1/pz3NBAAAAIDmNTykzTn3+nXuuqNFbQEAAACAltrukDYAAAAA6FkEHgAAAAADi8ADAAAAYGAReAAAAAAMLAIPAAAAgIFF4AEAAAAwsAg8AAAAAAYWgQcAAADAwCLwAAAAABhYBB4AAAAAA4vAAwAAAGBgEXgAAAAADCwCDwAAAICBReABAAAAMLAIPAAAAAAGFoEHAAAAwMAi8AAAAAAYWAQeAAAAAAOLwAMAAABgYBF4AAAAAAwsAg8AAACAgUXgAQAAADCwCDwAAAAABhaBBwAAAMDAIvAAAAAAGFgEHgAAAAADi8ADAAAAYGAReAAA6DdHj0pvepM0NiZ5XvT3m94U3Q4AuAqBBwCAfvKJT0jPfKZ0991SNis5F/19993SM5+p4kc/pm/PFfSx01mdz1e63VoA6Lqg2w0AAAANOnpUuvNOKZe79r5yWSqXZT/2Y3rPX35GZ/Zer8+cW9b37EzrZbszmkj4nW8vAPQAengAAOgXb3tbFGw2EFQqevMn/1Kvv2FcTtJXZ/P63Ycu6dNnl+Sc60w7AaCHEHgAAOgX73znpoHHq5Q1/f736BV7M/rn+0dVldNE3NPfnV3S/VcKHWooAPQOAg8AAP1iaanhx5mZ/tnutF6zb1QXC1VNxn3dc2JRFwvM6wEwXAg8AAD0i5GRph63MvRcKVUVmOldxxZUrDK0DcDwIPAAANAv3vAGKRbb+DGxmPTGNz7533rouWkkLs+kc7mK/u4M83kADA8CDwAA/eItb2ks8Lz5zVfdZGZ6xd4RLVecdqd9/ePFZT08X2xjQwGgdxB4AADoFwcPSvfco3IypWqwKvjEYlI6Ld1zT/S41T86GtPedKClcqjJhK8PnMyqFNLLA2DwEXgAAOgjC3e8Qn/xwS+o8LP/Rhobkzwv+vuuu6QHHpBe9ao1f84z0yv3jmip4pQJPC1VQj04R9U2AIOPhUcBAOgj7z2+oKXrblTmT/6b9Cf/ramfvXU8rqmEr6VyqB1xT586u6xnTSQVeNam1gJA99HDAwBAnyiFTgvlUK/c22C1tlV8M71yb0YL5VCZwNOVYlWPLjCXB8BgI/AAANAnPnE6K0l6+o7Elrfx9B1JjcU85SqhxmKmT51dVkjFNgADjMADAEAfCJ3TIwslPXcqJbOtD0GLeaaX781orljVaMzT2XxZR7KlFrYUAHoLgQcAgD7wtUt5OTl93670trf1rImkfM8UShoJPH3m7DLr8gAYWAQeAAD6wOfP57Q/HWtJgYGk7+m2sYQWSlHxguNLJZ1YLreglQDQewg8AAD0uLliVZLTDx8Ybdk2nzOVVL7qZGZK+qYvXMi1bNsA0EsIPAAA9Lh/uLAsSRqL+y3b5o0jcZmiuUGTCV8PzxeVLYct2z4A9AoCDwAAPe7hhaJuHI23dJsjMU8HR+NaLIfyakUQHqNENYABROABAKCHLZVDhU566a5My7d9aCqp5XJUrGAkMH1llmFtAAYPgQcAgB72T7M5OUk7k60bzlZ3cDQumeSc02jM06nlii4XKy1/HgDoJgIPAAA97GuX89qVDLa19s56xuO+rssEypZDmZnMpAfnGNYGYLAQeAAA6FG5SqhKKL18b+uHs9UdmkopWxvWtiPu6Z9m86zJA2CgEHgAAOhRD8wV5OR0IBNr23PcMpaQFA1rSwee5kpVnckxrA3A4CDwAADQo/7+/LJGAk9+G4az1U3GPe1OBVquRL06nkVBCwAGBYEHAIAeVKyGKlSdfmBf6xYbXYuZ6dB0Uou1NXgm476+eimvSsiwNgCDgcADAEAPemyxJCfp5havv7OW+rA2SYr7pnzV6YmlctufFwA6gcADAEAP+vjpJSV9U8Jv33C2up1JX3HPVK716sQ86f4r+bY/LwB0AoEHAIAeEzqnfDXUy3a3rzrbSr6Zbh6NK1sb1jYR9/XgXFFVqrUBGAAEHgAAesxsoSqTdPt4YtPHtspt43Hlq1HgiXmmYuio1gZgIBB4AADoMQ/WqqSNxTr3NX0gE5PpqeFzZtLjiyxCCqD/EXgAAOgxX7uc11jMl7WxHPVqu1KBYp49WZ1tLObp/isFFiEF0PcIPAAA9JCqcypUnb53V7qjz+ub6eCKeTxp33SpUNVcKexoOwCg1Qg8AAD0kAv5iuSkgx0oR73a01bM4zEzOUnHs6WOtwMAWonAAwBAD3lkoSiZNBHv/Ff0gUxMWjGPJx2YvlmbTwQA/YrAAwBAD/mn2bxGA6+j83fqdiYDBXb1PJ4j2ZKKVYa1AehfBB4AAHpEJXTKV51e0qH1d1YLPNNNozFlK1HA8c0UOunEcrkr7QGAViDwAADQIy4UKnJyumkk1rU2PH1HQrnKU5XZfJMenqc8NYD+1ZLAY2ZvNrOHzOzbZvYeM0u2YrsAAAyTRxeKMpmmE37X2hCtx/OUHXFf35orKqQ8NYA+te3AY2b7JP2CpEPOuWdI8iW9brvbBQBg2Hyli/N36nbV5vFUa/N4Er4pVwl1Pl/pWpsAYDtaNaQtkJQys0BSWtLZFm0XAIChUAmdcpVQL+nw+jurrZ7HU3d4kfLUAPrTtgOPc+6MpN+TdFLSOUkLzrlPbXe7AAAMk3P5ipykG7uw/s5qt49fPY9nJGb6NvN4APSpVgxpm5D0w5JulLRXUsbM3rDG4+4ys3vN7N7Z2dntPi0AAAPl8cWiTNLOZPfm79Ttz8S0clTdSODp1HJZBcpTA+hDrRjS9v2SjjvnZp1zZUkflPSi1Q9yzr3dOXfIOXdoZmamBU8LAMDg+MpsXiOBJ6+L83fqdiV9OSe5WqECz0xO0pkc83gA9J9WBJ6Tkl5oZmmLZlneIemRFmwXAIChEDqnfDXU93R5/k5dwvc0k/SVrz41rM0kHcsyjwdA/2nFHJ6vSrpH0n2SHqxt8+3b3S4AAMNirlSVJN000v35O3UHR+JaXlG4YDTmMY8HQF9qSZU259yvOeduc849wzn3RuccR0QAABp0NleRnLQzFXS7KU+6YTSu0oopO5nAdD5fuSoEAUA/aFVZagAAsEX3Xyko5pniXvfn79TtSvpa2Zz62kCnl8tdahEAbA2BBwCALjueLWl/JtbtZlxlJhn1NoXuqXk8nklHmMcDoM8QeAAA6KJy6FQKnZ4zmex2U64S80x7U8FV6/GMM48HQB8i8AAA0EWzhWjB0X3p3urhkaSbR+NaWjFnJ+mbLherWqgVWQCAfkDgAQCgi07V1raZ7oEFR1e7biSm8KkOHpmZTNKpHPN4APQPAg8AAF30tdm8kr4nvwcWHF1tV/LaqnExT3p8gXk8APoHgQcAgC6aLVR063jvrL+z0lTCV8wzVVZ084zFPD28UJRbUcwAAHoZgQcAgC7JVUKVndN37uitggV1npkOZGJXrb2T8D1ly6GuMI8HQJ8g8AAA0CUX8tH8nV09tODoagdH41dVaqs7tVzpQmsAoHkEHgAAuuTYUkkmaSLeu1/HB9KBVseduCc9tkh5agD9oXePsAAADLh/ms0rHXjyerBgQd1avU+jMU+HF0vM4wHQFwg8AAB0gXNOuUrYcwuOrjYe85TyTaUVhQvq83jmS+EGPwkAvYHAAwBAF8yXQlWddPNYb1ZoqzMzXT8S13L52nBzNs88HgC9j8ADAEAXnC9EYWH3Gmvd9JpbRmPKV68evuabdCzLejwAeh+BBwCALnhsoSjfovkwvW53KqbV04xGY54epXABgD7Q+0dZAAAG0INzRY3HfVkPFyyom076Wl2qLeWbLhWqV63RAwC9iMADAECHOedUqIY6NN3bBQvqxmOeYp6psqJwgZnJTDqbYx4PgN5G4AEAoMMWyqGcpBsyvV2woM7MtD8Tu7Y3x0knlpjHA6C3EXgAAOiwS4WqJGkm6Xe5JY27YeTawgUjzOMB0AcIPAAAdNjxpZLMpJGgf76G96UChavm8WQC0+nliopVFiAF0Lv650gLAMCAuO9KQSnf64uCBXXTyUCrW+uZSSady5e70iYAaASBBwCADlsqh3r6jkS3m9GUqUQ0/C50V/fmOCedXibwAOhdBB4AADqoUA1VdU63jvVX4Il5ppmkr8Kq4WvpwPTYIoULAPQuAg8AAB00WytYsLOPChbUXZ+JK7eqUtto4OlYtnxVyWoA6CUEHgAAOuhcPlq3ZiLRf4Hnukyg4qrK1L5nqjiniwXW4wHQmwg8AAB00LeuFJTwTH4fFSyo25kK1jxxcE46m2MeD4DeROABAKCDzuTK2p+JdbsZWzKVCOQkuVWFCxK+6UiWwAOgNxF4AADokEroVAqdnjWR7HZTtmQkMKUDT+VVw9pGY6Yj2dI1QQgAegGBBwCADpkrRQULdqeCLrdka8xMB9KBctWrE0/cMy2WQ2VXJyEA6AEEHgAAOuRirULbdB9WaKu7YTSufOXqnhwzk+mpggwA0EsIPAAAdMijCwX5Zkr6/fv1uycVzeNZzSSdZAFSAD2of4+4AAD0mUcWShqL9fdX78w65bRHYh4LkALoSf191AUAoE8455SvhHrOVH8WLKibSPjyzVRdVaAgHZjO5MoqswApgB5D4AEAoAOy5VBO0vWZeLebsi2+mXan/Gvm8fhmck4sQAqg5xB4AADogNliVLBgpo8LFtTdMBK7plKbJIUsQAqgBxF4AADogJPLJZnU93N4JGl/OqZy9drbk0G0Hg8A9JL+P+oCANAHvnmlqKTvycy63ZRtm0oE8tZ4GSOB6Ui2zAKkAHoKgQcAgA6YL1V1y1h/z9+pm0r4a5amjnumpXKoRRYgBdBDCDwAALRZJXSqOulpOxLdbkpLZAJTyrdrKrLVe69YgBRALyHwAADQZnOlesGCoMstaQ0z0550TLnKtT05nliAFEBvIfAAANBml2oV2ibj/V+hre76TKB89dqBbZmYp8cXi11oEQCsjcADAECbHVksyTMp4fd/wYK6PamY1lpjNBOYTucqKrEAKYAeQeABAKDNvj1fUGqAwo4UFS5Y6xV5tXk8F5nHA6BHEHgAAGizfNXpGTuS3W5GS9Urta1Vgjp0TufyzOMB0BsIPAAAtFEpdHJOA1OSui4VeBoNPK1VgTrheTqaJfAA6A0EHgAA2uhKrWDBdGJwChbU7U0HylWvTTwjMdPRbKkLLQKAaxF4AABoo4uFaC7LxAAGnutG4spXrh3SlvBMC+VQWRYgBdADCDwAALTRYwsl+Sb5NlhFCyRpdyqax7Oamckz6TyFCwD0AAIPAABt9PhiUWOxwevdkaSpRKCNctyZHPN4AHQfgQcAgDYqhk7PnEh0uxltMRn35dzaldrSvukw83gA9AACDwAAbVKshpKTbhwdrAptdQnftCPuq7jGIqOZwNOJpbLCNcIQAHQSgQcAgDa5PMAV2ur2pQPl1ihcEHimcuie3AcA0C0EHgAA2uRcbdL+WGxwv26vy8RUqK7fi3OBwgUAumxwj8AAAHTZQ/NF+V5UtWxQ7UoF697nm3R8icIFALqLwAMAQJucXC5rZ3L9QDAIphL+upXaRmKeDi9SuABAdxF4AABok1Lo9J0TyW43o60mapXa1ipOkPJNFwsVFTcY8gYA7UbgAQCgDXKVUJJ0IB3rckvaK+aZZpL+mqHGq3X9XCgwjwdA9xB4AABogycrtCUHt0Jb3f50TLl1enFCOZ1nAVIAXUTgAQCgDU4tl2WKFuAcdPszwbqV2pK+pyMsQAqgiwg8AAC0wUPzRcU8G+gKbXUziWDdE4qRwNOxpbIcC5AC6BICDwAAbXChUNG+9GBXaKubTPjSOrku7kmL5VDZctjZRgFADYEHAIA2qIROt40nut2MjtixQaU2M5NJOk/hAgBdQuABAKDF8rUKbddlBrtCW13MM00n1q7UVncmR+AB0B0EHgAAWuxKqSqTNBkf/AptdXvTgfLrBJ5MYCxACqBrCDwAALTYyeWoDHMqGJ6v2QPpmIrheoHH08nl8ppD3gCg3YbnSAwAQIc8ulCS7w1+dbaVZlLrF2gIPFMldE+uTQQAnUTgAQCgxc7mytq1QQAYRJNxX9qgA8dJupBnHg+AzmtJ4DGzHWZ2j5k9amaPmNl3t2K7AAD0o4pzun1IKrTVTSR8OWnd9XZ8k44vlTvbKACQ1KrLT38k6e+cc3eaWVxSukXbBQCgrxSrTibTDUNSoa0u7pkmEr6KoVPSv3Y430jM09EshQsAdN62e3jMbFzSSyS9Q5KccyXn3Px2twsAQD+aK0XzVKYSw1OhrW5vKlC+snYPT8o3nc9XNixdDQDt0IohbTdKmpX0P8zsfjO728wyqx9kZneZ2b1mdu/s7GwLnhYAgN5zaggrtNVdl4mpsE6g8Szq9ZllAVIAHdaKo3Eg6TmS/rtz7rskLUv6T6sf5Jx7u3PukHPu0MzMTAueFgCA3vPYYlFDVqDtSTPJYKO6BQrldC7PPB4AndWKwHNa0mnn3Fdr/79HUQACAGDonFoua3oIh7NJ0mTCl20Q9pK+p6NZAg+Aztp24HHOnZd0ysxurd10h6SHt7tdAAD6USXU0FVoq5uM+3Ju/UptmcB0jMADoMNaVaXt5yW9q1ah7Zikn27RdgEA6BuVMDrRv3E03uWWdEfCN43HfJVCp8QaldoSnulssapsOdRobPjmOAHojpYEHufcNyUdasW2AADoV/Olqsw0tEPaJGlPOtDJ5ZLW2gVmJk/RAqSjseEMhQA6j8srAAC0yKlcVIEsPYQV2uoOZGLrlqaWJCfpTI5hbQA6Z3iPyAAAtNjhxaKGtEDbk3Yn/Q0rtaUD0xEWIAXQQQQeAABa5Fi2rLGgTFjDAAAgAElEQVTY8A5nkzav1DYSeHpiqaxwncIGANBqBB4AAFqk4pxu3zGcFdrqJhO+wg0qtQWeqRQ6zZWqHW4ZgGFF4AEAoAXqPRY3j8a63JLuSvqexgJP5XDjx53PE3gAdAaBBwCAFpgvhTJJO5OtWvGhf+1JB8pV1088nkknlpjHA6AzCDwAALRAvfJYao31Z4bNgUxMher6c3RGAo/CBQA6hsADAEALHF4syRStNTPsdqcChRvUJEgHprP5ikobPQgAWoTAAwBACxzNlpQa4vV3VpqI+xuW5/ZqofBivtKZBgEYahyZAQBogbJzum18uCu01U0mNl6LR5LCUDqfZwFSAO1H4AEAYJvqJZgPDnmFtrq0b0r5pvIGQ9YSvulIlsADoP0IPAAAbNNyxckk7U0ReKRoHtOedEz5yvqV2kZipmMEHgAdQOABAGCbztaGZmUCChbU7UsFym9QqS3hmebLVWU3W7AHALaJwAMAwDYdrfVUUKHtKXvTgTbo4JGZyTPpAoULALQZgQcAgG16bKGogLBzlcmEL2+TXeKcdDrHsDYA7UXgAQBgmwpVp5vH4t1uRk+ZjG9eqS0TGAuQAmg7Ag8AAC1wcJTAs9JozFPMM1U2qNSWCTw9sVRW6FiAFED7EHgAANiGYm1i/nUZKrStZGbanQpU2KBwQeBFpasvF6sdbBmAYUPgAQBgGy4Uokn34zG+UleLKrVtXoWNwgUA2omjMwAA23CsNgeFCm3X2pcOtFnVad+k40sULgDQPgQeAAC24fHFknyyzpqmkoE2y4GZwNNRChcAaCMCDwAA2zBfqmpvOuh2M3rSRNzXZvUI0oHpXL7y5FwoAGg1Ag8AANvgJN08luh2M3rSjrgnz6TqBqnHM5PpqblQANBqBB4AALao6pxM0k0jVGhbi2emncmNK7VJUijpHAuQAmgTAg8AAFt0pVZOeSrhd7klvWtfOqZ8ZePAk/JNjy8yjwdAexB4AADYovpke48Kbevanw5U2mDxUUkaCTwdXSrJsQApgDYg8AAAsEVHsiURdTY2nfQ3rdQW9035itNcafM1ewCgWQQeAAC26Hy+ogmGs21oMu5HlR0acJ4FSAG0AYEHAIAtck66ZTTe7Wb0tB1xX05SuMlwNc+kE8vM4wHQegQeAAC2oD7f5CCBZ0OBZ5pO+JuuszMSeBQuANAWBB4AALYgW47mm+xOsejoZvamA+U3CTzpwHQuxwKkAFqPwAMAwBYcXyrLLOrBwMYOpGObrsVTr3THAqQAWo3AAwDAFtRLUmNzM6lg00ptEguQAmgPAg8AAFvwxFJZCY+v0UY0WqmNBUgBtANHagAAtiCU0y1jFCxoxETCVyhturAoC5ACaAcCDwAAW0SFtsbEPdNE3Fcx3DjI1BcgnWcBUgAtROABAKBJhWp0Qn5dJtbllvSPfQ1Uaqs7xwKkAFqIwAMAQJNOLpdlkhI+FdoatT8TU6GyeeBhAVIArUbgAQCgSUeyVBJr1s6k30jdAhYgBdByBB4AAJp0eLEoa6TOMp40GffVyB5jAVIArUbgAQCgSZXQ6aYRChY0Y6rBSm2emWTSeebxAGgRAg8AAE0ySTePUrCgGQnf01jMUyMF2JyTTrMAKYAWIfAAANCEaq2H4kZKUjdtbypQvrp54kkHpkcXih1oEYBhQOABAKAJZ3IVSaZMwFdos67LxBoqTT0SeDq+VH4yXALAdnC0BgCgCUezVBDbql2pQI1kmMAzlUOn2UK1/Y0CMPAIPAAANOHIYkkUaNuayYQvr8F95ySdZR4PgBYg8AAA0IRsJdSeVNDtZvSlybiv0G1eqU2SEp50mN40AC1A4AEAoEkHKViwJanAUybwVG6gUttozNPhhVJD4QgANkLgAQCgQc45mQg827E33ViltrhnylZCLTSSjgBgAwQeAAAaNFuMJtFPxPn63Kr96cYqtVltotTZHAuQAtgejtgAADSoXqHNqFqwZXtSgRrIO5Ikz6TjS8zjAbA9BB4AABp0hEn029ZMpbbRmKdHF9jnALaHwAMAQIMuF6raEfe73Yy+NhH3G1qLR5LSvulioaJchXk8ALaOwAMAQBMOjsa63YS+lglMST9aWHQzZiaTdC7PPB4AW0fgAQCgCTdToW1bzEx7UoHyjfbamHRymQVIAWwdgQcAgAYslqIKbSw6un0HMo1VapOkjG96dKHY5hYBGGQEHgAAGnB0KeploELb9u1Lxxqu1JaJeTq5XG5oCBwArIXAAwBAA44sUi2sVSYTvhrNjb6ZnGMeD4CtI/AAANCAs7myUgFfm60wlYgqtbkGy7U5SSdZjwfAFnHkBgCgAU4ULGiVtG9KB57KjQ5rC0wPsx4PgC0i8AAA0CACT2uYmfY2UaltJObp+FJJJebxANgCAg8AAJtYrp2Y789Qoa1VrmuiUptvptBJ53LM4wHQPAIPAACbOJaNhlP5VGhrmT3pQM122JxcZlgbgOYReAAA2MRhKrS13GTcVzPxMROYHppnPR4AzSPwAJ129Kj0pjdJY2OS50V/v+lN0e0AeseKz+q/uHGH3vT8G/isttBUwpdT45XaRmKeTiyXmccDoGkEHqCTPvEJ6ZnPlO6+W8pmJeeiv+++O7r9E5/odgsBSNd8Vs05xZeX+Ky2UCrwNBJ4KjdWtyBaj0fM4wHQvJYFHjPzzex+M/toq7YJDJSjR6U775RyOalcvvq+cjm6/c47uXoMdBuf1Y7Zmw6UqzaYeCTJSSeYxwOgSa3s4flFSY+0cHvAYHnb2649eVqtXJb+4A860x4Aa+Oz2jHXN1GpTZLSgelh5vEAaFJLAo+Z7Zf0Gkl3t2J7wEB65zsbO4n6q7/qTHsArI3PasfsSgVqcAqPJObxANiaVvXw/KGkX5a0br+0md1lZvea2b2zs7MtelqgjywtNfQwl83qKxdzemKp1PCifABaqMHPasOPw7qmEs1Vaquvx3M2t0kgBYAVtr2Cmpn9oKSLzrlvmNlL13ucc+7tkt4uSYcOHeLSDIZKJXTyRkbkZbObPjafHtH7Tiwq6UUTdHcmA714Z0rfOZFUJqDOCNB2IyNRMZFGHodtmUr4ChVVarMm1jg6sVTWDSPx9jUMwEBpxdnTiyX9czN7QtJ7Jb3MzN7Zgu0CfW+pHOqTZ5b0Xx6Y1Zdf8S9VCTa+xuBiMS2+9vVK+aZUYNqT8lWohvrgiax+84FZffhkVufyVCgC2uoNb5BisY0fE4tJb3xjZ9ozwBK+p/GY19QQtUxgeniBeTwAGrftwOOc+xXn3H7n3A2SXifpc865N2y7ZUAfy1dCfe7cst767Vl97vyyJOmLb/h3stjGVyQtFtPu//zL+vnbJpXwPF0oVJUJTPsygaYTvr52Kac/ePiyPnIyy3A3oF3e8pbGAs+b39yZ9gy4vemYck0ULhiNeTqxVFaxmepuAIYa42OAFgqd09dmc3rrty/pk2eXtCPmK+lHwzR+7I7vkv+Be6R0+tqTqVgsuv2ee6SDB7U3HdPP3z6p7xiN63SuoqpzCjzTrlSg3SlfX5rN6W0PXdaj84WGF+0D0KCDB6PPYjott8lnFdt3XSamQqXx45hXW4/n1DK93QAa09LA45z7vHPuB1u5TaBfLJSq+vMj83rfiawygWlvOlDZOTkn/fxtkzo4Gpde9SrpgQeku+6SxsYkz4v+vuuu6PZXverJ7WUCT//65h160Uxa5/KVJ4ONb9G2zaS7j8zrfU8scqUTaLXaZ3X+J39GxZHRDT+r2J5dKV/NXrbxTDqcZVgbgMZYN64OHzp0yN17770df16gHZxz+vZ8UX/9xKKqzmln0peZqRI6nctX9XO3jOvW8eSWt18One4+PKfTuYp2Jv2r7gud07lcVfszMf3UwXGNxf11tgJgKz56OqujiyX94tOmut2UgXUuX9EfPXJZe1KN11HKVUJ5Zvrlp081VewAQH8xs2845w5tdzsMaQO2oRI6fehkVn9xdEHpIBpyZmZyLgo7r9ib2VbYkaSYZ/qJG8eV9EwLpepV93kWze+5UKjovz52RRcoaAC01NHFUrebMPAm475Cp6aG56Z805ViVfMlercBbI7AA2xRrhLqL47O6yuzOe1L+0qvKBl9sVDVLWNxvWx3piXPNRb39VM379Byxa05fG1n0lex6vTHj17R8SwnaECrOEkHxyh/3E4J3zQR91VsolKb1ebxnFxmPR4AmyPwAFtwpVjVnzw2p8OLJe1LB/JWDKlYKodK+J5ed8OYAq91Qy0OZGL6VzeM6WIhVLjGldDJhK+Ub3r74TmdWOIkAGiVm0cJPO12IBMo10ThAklK+qaH5gttahGAQULgAZp0NlfWHz96RXPlqvakg6vGjzvnNF+q6vU3jmm8DfNpnjOZ1KGppC4WqmvePxLzlAk8vePIHMPbgG2qrw1z48gmJaqxbddnYio0UZpaksZinh5ZKKlKpUoAmyDwAE04l6/oTx+fk+Q0nbg20Fwqhrp9PKFb2nRF2Mz06n0j8s1UWKcy22jMk0m6+/Cc5ktrByMAmzuxVJYpWhwT7bWriYIFdTHPVAqdzuW4uANgYxzFgQZdqIUdz6Qda/TeVJ1TKXR69f7RtlYNGov7+qH9I7pUqK47yXcy4StfdXrH4Tkts0ApsCWPLxabLpeMrZlKBNrqUfP4EvMWAWyMwAM0YLYQhR3n3JphJ3pMVd89k9LuLVypbNah6ZQOZOKa26BC0UzS16ViVe86tqBKE5OBAUQOL5a2fBKO5kzEPXlmTQ9PGwlMD8yxHg+AjRF4gE1cLlb1p4/NqeqinpO1lKpOnkl3tKgq22Z8M/3o9aPKVZyqG4SZXUlfjy+W9PkLyx1pFzBInKRbxhPdbsZQ8My0J+Ur32ThgpGYp5PLZeXoyQawAQIPsIFcJdSfH5lTMXSaTKz/cZktVvXyPSMdXfhzXzqml+xK68I6BQykaM7PnpSvT55Z0jHKVQNN+w4qtHXMdZmYcuvMTVxPvULmKcpTA9gAgQdYRyV0es/xBc0Wq5pOrh9kliuhRgNP3z2T6mDrInfsySjpr1/AQJICzzQe9/VXxxaULVPEAGhEvtZjcD0V2jrmQCamrRyiPJMeY4FYABsg8ABrcM7po6ezemShqN0bhB1Jmi+GevX+ka5UckoHnl65d0SXN+jlkaLKbcVqqL9+YpESrkADjmZLcooqgaEzphKBtrK7d8Q9PTBXWLeICwAQeIA1fHk2ry9ezGnvqnV2VitUQ2UCT985kexg66723KmURmL+pmPYdyZ9PbJQ1Bcv5jrUMqB/Pb5YEiXaOms66SuUmg4uSd9Tthzq/CYXfgAMLwIPsMqRxZI+fHJRu1KB/E3KS18phnrpnrTiXbwKnPBNr9o3oivFjQOPmWlXKtAnTi9ptsC6FcBGTiyXlQzo3emkTOBpJPBU3mL9gcOLVGsDsDYCD7DCfKmqdx6b1464v2mIKYdRZbbnTnZ+7s5qz55MaiLhaWmTM4W4Zwo80wdPZhUy/ANYl3NOt45Roa3T9qeDpgsXSNGw3fsuF9rQIgCDgMAD1NSLFJRdVOp0M5eLVb14Z7qhx7ZbzDO9Zt+I5huY8Tud8HR4saT7r3ByAKylPqTqO8ao0NZp14/Emy5NLUXr8ZzNVzRfYlgbgGt1/0wN6BGfObekY0tlzWxQfroudE5Vp65UZlvPMyaSmkkEWtwk9JiZphOe/uZklqptwBoWy6GcpL3p9i8ijKvt2eLCzWYmOVF+H8CaCDyApEfnC/rMuZz2JP0NixTUXS6GetZEUlOJ3jkh8i3q5VksbX51NBV4Kjunj51eorIRsMrhWonjzebwofWmk760xd2ejpnuo+cawBoIPBh6c8Wq3nV8UZMJT34DxQeccyqGTi/Zle5A65pz+46EdiZ9ZRuY9bsz6evey3kdybJgH7DS4/QSdM1E3Jdz2tIcw7GYpyPZ0pNrKAFAHYEHQy10TvecWFSoqEJQI+bLoW7IxLS/B4e7eGZ65d6MFhoYx+6ZaTzu6UMnF1UJ6eUB6s7lypqIb7z+Ftoj5pl2Jn0Vqs0fk3wzhU56YpmLOACuRuDBUPvKbF6PLRYbmrdTl6s4vXR3pqGhb93wtB1Jjcc3X5dHksZivmYLVd13Jd+BlgH9wUm6dZwKbd1yIBNv6Pi1lrgnPcCwNgCrEHgwtC7kK/roqax2JTdeXHSlUtUp6Ztu6eHqTYFnevnejOaKjRUkmEp6+tjpJYaBAIp6fZ1TT3/GB931mUClLR6OdsR9PThfpNcawFUIPBhK5dDpvU8sKOaZ4n7jPTWXS1W9aCbV1YVGG/HsiaRSgadiA+tZpHxPharTP17MdaBlQG+7VLtQMJ1gSFu3zCSDrdYtUMwzlUOn0zmGtQF4CoEHQ+kL55d1ermsqWTjJzXOOYVO+q4eWGh0Mwnf0z/bndHlYmOXSWeSvv7+/LKuNNgrBAyqeoU2r0eHrA6D6YSv7fTPeJIeni+2qjkABgCBB0Pn9HJZnzq7rN1NrvewWA51XTqmnU2EpG563nRKgRf1Zm0m5plM0VpEwDB7dIET5W4bjXlK+NbQsWstOxKe7r1cUJWS+wBqCDwYKuXQ6f0nFpUOTEGTw9KWKk7fsyvVs8UKVssEnr53Z1qXCo312swkfX39ckFnGAqCIXalWGXB0S4zMx3IxLZcuCDpe1qqhDpFtTYANQQeDJUvXsjpbL6iiSbH55dDp7hnur3PKje9cCZaK6iRK52emZKe9IkzLEaK4eUk3TrWX5/zQXTjSFy5ytaPQ4GZvnWF3joAEQIPhsaFfEWfPLukXVsYknalWNXzplJK+P31kdkR9/WcqaQuFRq7UjqV8PXYYkknlyttbhnQe+pDqA6OUqGt2/amgm3N45lIeLr3cn7Lw+IADJb+OnsDtqhaW2A05pliTQ5lc86p4qRD08k2ta69vmdnWhXnGuq1MTMlPdOnz9HLg+FzNleRc9KOOF+N3bYz6Ws7o4fjnqkYOh1fKrWuUQD6Fkd1DIWvzeZ1fKmkqSYWGK1bqjjtTgXa22SRg16xJxXo5tGY5hpc2GIq4dHLg6H06EJRTuqbeXqDbCLhy5Ntq/BA3JPuvcwipAAIPBgCc8WqPno6W7ti2PyJzGI51Itn+qdYwWpmppfuzijXwJo89cenfNOn6OXBkHlwvqCAb8We4JtpbzrY1jyeybivB+cKKjR47AMwuDi0Y6A55/S3p7Ny0pbm34TOyaS+K1aw2s2jcc0kAi2VG/vin4x7enyhpBNUOcIQKYVOT9vRn0NXB9FNIzEtb7FSmyT5nqnqpCOLDGsDhh2BBwPt0YWiHpgrbnntnIVSqFvG4hqL98faO+vxzHTHnowWGgw8ZqZUYPrU2WV6eTAUQufknHTbGAULesWBTEzVbR5+Ur7pq5fyrWkQgL5F4MHAKlRDfeBkVhNxb8vD0XJVpxdMp1rcsu54xo6kkr6p2ODwjsm4p8OL9PJgOMyVqnKK5ryhN0wng22fpOyIe3p8saRsgxd7AAwmAg8G1ufPLytbDjUS29qveTV0Cky6ZUCu+CZ800t3ZXS52NhCpGampG/67LnlNrcM6L6j2SjYp5jE0zOmE75kUe/bVnm1i12PLbAmDzDMOLJjIJ3LV/T353NbHsomSVdKVT1zIqlkn629s5HnTSdlMlUbXJtiKuHp0YWSzubo5cFg+/Z8kS/EHhPzTLuSgfLbHNc2Epi+eDHH8FxgiHF8x8AJndOHTi4q4ZmCJtfcWakUSs+ZGqwJzKMxX8+fTulSE708cc/0DxdybW4Z0F1nc2Xtz8S63QysckNme4ULJGk05ulsvqIzOUrtA8OKwIOB880rBR3LljW5hTV36kpVp6RvunFkMIazrfSinWmVnRq+2jmV9HTflULDQ+GAfuOcU9U5PWNHf1djHETXj8S0zbwjM1Ngpq9RvAAYWgQeDJSlcqi/OZXVdGLrhQqkaDjb86ZSim2jh6hX7U4FunUs3vBCpL6ZfJO+dJFeHgymbDmUXFQVDL1lZzJQK47CUwlPX7+c33ZvEYD+RODBQPnsuWUVq27bE4+rTnrW5GANZ1vp+3ZlmhoXP53w9ZXZnLJlenkweM4XKnKSJvq8/Pwgmkn6cmq8R3o9gWcKnfTAlUJrGgagrxB4MDBOL5f1xdmcdqa2d9KSr4Qaj3nanx7c8rQHR2OaTvgNL0RaP1lgPQsMokcWijJpW3P+0B4J39NUwldhuwvySBqPe/r8hdy2qr4B6E8EHgyEqnP60Mms0r7J38ZQNkmaL4V6wUzqyXKmg8gz0/c3sRCpFPXyfOF8TnmGhGDAPDRfVJpy1D3r+pGYlivbDymZwNNcqarjS1SdBIYNR3gMhPuvFHRiuaSJ+PZ/pZ2kp+8Y3OFsdU9vciHSuG8qhk73MyQEA6ZQdfquAR7C2u9uyMRUbLCU/mYSHvMRgWFE4EHfWyqH+siprKaT/rYKFUhSrhJqIu5r9zbW7+kXzS5EKkkTcU+fO7+sSotOPoBuy1VCOSfdNDp4FRkHxa5U0LKTlcmEr2/PFzVH1UlgqBB40Pc+fW5JpapTqgULhC6UQj1/OrXt4NQv6guRNhpg0oGnhXKoxxdLbW4Z0BkXawULphODf5GjX80kg5YULpCi4bwm6RtXmI8IDBMCD/raqeWyvjyb33ahAin6MnWSnjZEa3GMxny9cCbd8EKkkjQamD57bplVyzEQTi2X5eQ0GuPrsFdlAk/jMb9lw9qmE74+fz5HiWpgiHCER99qZaECScpXnSYTvnYNwXC2lV68M6WqU8OVi8Zink4ul3WKVcsxAO6/UlTS2966XWi/m0ZjWiq3JvDEfVM5dPrqLL08wLAg8KBv3Xe5oJMtKlQg1aqzDdFwtrqZZKDv3JFoeC6PmSnhS/94YbnNLQPa71KxooPM3+l5B0djKoat65GZTvj63Pll5ejlAYYCgQd9aakc6m9Pt6ZQgfTU2PDbx4dnONtKL9mVUbHa+Bj5qYSvb80Vmyp4APSaYjVUqeqGahhrv9qdislT6y5G0csDDBcCD/pSKwsVSFKu6jSV8LVzyIaz1V2XCXTDSEzzDa7L45nJl/TVWcq7on9dKFQVSpoZ0s99P9lZK1zQykVDpxO+PksvDzAUCDzoO6eWy/ryxVxLChXULQ5ZdbbVzEx37Mko18QY+amkry9ezHGygL51NleWc44KbX0g4Zt2pwLlq60LPHHfVKKXBxgKBB70lapz+sCJRaUDryWFCqRoGFeo4arOtpZbxuKaSvpaarCXJ+aZqk76JguRok/dd6WgpO8p0aKeYrTXwdF4w8enRjGXBxgOHOXRV75+Ka/TuXLLChVI0XC2maSvmSG/yuub6eV7MpovNf7Fv4OFSNGnnHM6s1zW9ZlYt5uCBt04ElMLO3gkRT1HpdDpywzPBQYagQd9Y7FU1UdPL2mmRYUKntpuqOdNDe9wtpWeMZHUWMxr+GpnOvC0WA51OMtCpOgvi+VQyxWnpw95z24/2ZUKWli24CkzSV+fObus2QKl9oFBReBB3/i7s0uqOqdkC4ef1BcbHdbqbKvFPdMr9mU010QvTzowfY6FSNFnzucrCuW0MxV0uylo0FTCl2+maot7lGOeKfBMHz6Z5TgGDCgCD/rCsWxJX7tUaHkVtfpio8NanW0tz55IKeN7ylcbCz07Yp6eWCrrXJ6ro+gfp3JlmWzoh7L2E99MBzKBltow32Y64emxxaIemGNOIjCICDzoeaUwKlQwFjN5LR52tsBwtmskfNP3783oSrGxkwozU8wzfekiY+DRPx6cKyodmEZjfA32k5vHEspVWt8LY2aaSvj60KklLVPAABg4HOnR8754IacLhYrG462/Eusk3TbOKuurPXcqqaRvKjbYyzOd9HTv5YIWSyxEit5XCZ3O5Su6LhPjYkefuS4TrcfTDunAU6ES6lNnl9r0DAC6hcCDnjZbqOhTZ5e0uw3j7POVUOMxX3sYw3+NpO/pjj0ZXWqwlycqEe5072WGg6D3XSpWtVwOdcsYc/f6za5ke4/XO1O+vnwxpyeWKMQCDBICD3pW6Jw+eDKrwIuGTLXafDnU86eTXOFdx/OmUop7plKDdWAnE76+cGFZJUpUo8edz1dUdk57udjRd8ZinjKB1/BxqVm+RcMc33l0gR5rYIAQeNCzvnWloMOLJU0n2vNrGjrpdkrSrisdeHrZ7owuFRv70k/6nnIVp4fn6eVBbzuWLSnumWYoVtJ3zEw3jsTaUrigbjzuK1cN9a7jCypzAQcYCAQe9KRsuaoPncpqOuG1pQemUA01FvMYzraJF86klPBNhQbn8ozFTZ87l6O0K3raY4tFpQNPk1Ro60s3j8aVb1MPT93OpK9j2ZI+fnqJ4xkwAAg86DnOOX389JLKoVMqaM+v6FytOlurq74NmnTg6ZV7R3S5wV6e0cDT+UJFTyyV29wyYGtylVCzhar2p4Pa3DP0mz3poO0nL2amPelA/3Axp/uu0GsN9DsCD3rOYwtFff1yvq1r4zgnPY3hbA05NJXSWOAr18AQEjNTwpO+cIES1ehNF/IVLVVC3TBCdcZ+tSsZVWprd8+Lb6ZdSU/ve2JRx7MUMQD6GYEHPWW5EuqvT2Q1Effb1vtSrIbKBJ72pRnO1oiEb3r1/hHNNVixbTLh6+GFomYLLESK3nMmX1ap6nRdJtbtpmCLUoGnXclAy21Yj2e1hO9pPObpTx+f06PMTwT6FoEHPSMaypbVciXUSBsXA5wrhXruVJLhbE145kRSU0lf2fLmocczk2/SVy/lO9AyoDmHF8tKBRQs6He3jcfbWrhgpZGYp/G4p3ccWdB9l4f0uHb0qP4ne3ceJMld3Yv+e3KrrL33fXbNjJbRhkYSWAsSEqANxCIWWQIZbMs2tsPcx7t+9nPEixvvhu+9XkCXZy5ggXFgsK8BYRvZICM2rwD673kAACAASURBVBjQwiJpJI2k0Uiavffu2iszz/sjq0c9Sy8zXV1L1vcT0TFdVdnZv+msyvyd/J3f+eFDHwIyGcAwwn8/9KHweaI2sOZepYhsEJHvicgeEXlKRH6rHg2jzvPcfAU/nChiKL6+HZFAgQuYznZGLENw22gKsxV/VWkkvbFwLQuuWE6tJFDFi7kKEqaBPhYsaGtb0w4aWUAtYRnodw385Yuz+Jej+c4qZPDQQ8BFFwGf/SwwPx/mhM/Ph48vuih8najF1eM2ugfgI6p6PoDXAvh1ETm/DvulDlLwAnz5xbl1TWUDgIqvcE3BBqaznLHzumIYSzqYWcUoj20IfAV+wsm+1ELGSz6myj4G4hZiJhMc2tlIvDHzeBaLmWFlz6+9PI8v7Z/rjHV6XngBuOMOoFAAqicVo6lWw+fvuIMjPdTy1nzGV9XDqvp47ft5AE8DGF3rfqlzqCoeOjiP+XVOZQPCdLbX9MRZneksGCK4fUMK+aoiWEUno9sx8L0jeXhcx4JaxIF8FQVPsYk3PNpexjHR7ZgoNfj8YhuCsaSFn06X8EdPTeLRyeKqzodt66MfPTXQOVm1Ctx3X2PaQ3SW6jprW0Q2A7gUwA/ruV+KtqdmyviP8WJDigj4qriwm+lsZ2tzysFlvS5+Nl3C4AprGMUtAwcKHp6ZLWNXt9ugFhIt7em5MgwBNqcY8ETBzoyDx6aKiDd4tM4QwVDcQtEP8NcvzuHRiSLeOJLC5pTd8JtpXqAoeAFKgaLoKUp+gHKgqAaKqq8oBYqyr/Ch8ANAoVAFRACBwBDAEMASgSECSwDLCCvUmSJ4zRe+CHMVAY//F1/AS//9YxCE+zZEYKC2b0Ng1fZtG4KYKZxDSw1Xtx6miKQAfBXAh1V17jSv3wvgXgDYuHFjvX4ttbmZio8v7Z9Db2x9U9kAoBIoYoawOtMa3TyawhMzJVR8hWMuf8zSluA7R/K4oCu2LgvIEq1WoIq9cxVkbAMDLis0RsH2jNPU4ihx08BYQnCw4OFP904jYxu4eiCBi7tddNdpjljJDzBbCTBXDTBf9TFe8jFe9jBV9jFTCZDzgjDIWPQzuvClOB7QLAQip2ynJ34f/qxCVSAC7M7nVtVOyc3jM89Nh/uTcIeLT/kn/B4ArimImwYytoE+10RfzEJPzETWDufXpe31WXScOlddzvoiYiMMdv5SVf/mdNuo6v0A7geA3bt3R3j8l1bLV8VX9s8hQDghdL1Nl31c3huHZfAkuhZZx8TNI2l87cA8xlYYlcvYBg7kw4VIt6S57gk1z3jJR9lXWAYrtEXFSAssLSAi6Ku9n4pegIcO5vCNgzl02Sa2pCxsSTsYcC3ELQOOIXAMgW0AXoBwFEbDEZi8FyDvBZgu+5go+zhW8jBZ9lH09fjcgwAKU+T4fuKWIGOb6xIYlPwAEyUflUQSsVUEPZVECoYI+lxjxZuXqgpfAU8V0xUfR0seKn4JQS1AU4TLIWxI2NiadrAlZWM0wXl3tDZrPltI+En7MwBPq+rH1t4k6hT/cayIZ+fKK3aa68VX4EKmVtXFlf1xfH+8gNmKj6yzdOdRROCagu8dyTPgoaZ6JV9BOVD0OCZSDbjBQuuvxzERt2RVo82NELcMxC0DqopyoHh6roKfTJdfHVWpfaP66kiL1Dr4UCBA2OF3DEHMEKRtA90OGjrSEajiWMmHKcAdmzKw3/++sBrbcmltto3g7ruxKxvDY1NFdDvmsvNxZSF1DoKl7j1UA8XhYhUv5CrH/15jSRsXdcdwXjaGvtj6BHoUXfXoaV4F4H0AnhCRn9Se+79V9Rt12DdF1KFCFX9/YB6DrtWQk1Y1UNiGYBNz9+vCNgTv2JjBn+6dQtpe/o5eT8zA03MVHCl6GFph3g/Renl6toJAFZtTNjtKESEi2JF28MxcBb1m64zaLdzoabeBxDDI8HB5bxy3jKaQcUzgIx8BPv/5FQOexH/+CO7cmsXlfXH8+QvTqAa6prQ+2xBkHRPZ2uNAFdMVD18/UMU/HMhhwLVwRZ+LC7pc9LLEPK1CPaq0/ZuqiqpepKqX1L4Y7NCSCl6AL+ybRdyUht2Vm6n4uKg7BpvpbHWzLW3jkp44xkvLl2Y1RGAL8P1jhQa1jOhEC/N3LBFsTfOmR5TszMRQ9pklv1YVX3G44OH2DWm8Z3MmDHYAYNs24IEHgEQCsE/67Nh2+PwDD4TbATgn4+A3z+2FYwqOrXBtOBOGhOl7IwkLI3ETZT/A1w/k8AdPTuBzz01j71wZfpSr5dGacVyfGipQxVdfmsN02a/bpM7VqAbAJT1MZ6snEcFbxlKwRFBYYYHRvpiJH00UMdsJ61ZQyzlW8lENFI4hGI4z4ImSERahWbOSH+Boyce7N2dw7WDy1BHQm28GfvYz4N57gUwGMIzw33vvDZ+/+eYTNh+KW/iNnT0Yci0cLnh1XytJRJCyDYwkLAzHTezPV/HZvTP4709M4PvHCij5XPCaTsWAhxrq348V8ZPpEobijQt2vEBhGoJNSc4hqbeMY+KOzRlMlP1l16IwDYEC+FETKypR5zqQryCoVaBihbZoGXBN2IZwva+zVPQCTJQD3LU1gyv7E0tvuG0b8IlPALOzgO+H/37iE8dHdk6WcUzcu6MLW9JOXUd6TmaIoDdmYjRpwRLg716Zx397YgL/dCS/4o046iwMeKhh9ucqePCVeQzFGzNvZ8F0xceFXTHEWmBSaxRd2BXDa3riK17U+mIm/uVoAUVehKjB9sxWYBpA2jKQsngeiBJTBFtSNnI8r5yxaqCYKPu4Z2sWl/bE677/mGngri1ZZB0TU+X1H92PWwZGExZSluChgzn8tycm8L3DeZQ54kNgwEMNMlfx8fkXZpF1wtKcjVQJgNcwnW3diAjeuiGNmCHIL9PpcExB2Vc8NllqYOuo0/mqeG6uEi44mmbBgig6NxtDweMIz5kIVHG46OOtG9LrujB0yjbwwXO6EADIVRsTeMTMMN0taxt46GAO/+PJSTwyUeQoYIdjwEPrruwH+It9s6gEivQypSrXgxeE625sTjGdbT2lbQPv2pTB1Aqpbb2ugW/zjhs10ML8HS8AtvI8EEkbOI/njB0p+ri818U1A8uksdVJv2vhA9u6MFcNGnrud0zBaNJCzAC+vH8OH9szib1z5brPKaL2wICH1lWgigdemsfL+Sr6Y41/uzGdrXHO74rhir44jhSXTl1wTQN538fjHOWhBnklX8FC92aYZdEjaThuwRSBzzv4qzJR8jESt/D2jemGjXhuTTt41+YMjpWCZW+KrYe4ZWAsaaHsB7h/7zT+4oVZTJa9hraBmo8BD60bVcXDh3L48VQRI/HmLBJWCYBLmc7WEAupbQPu8vnavY6Jbx3Oo8LOCTXAM7MVuGZYNKOfBQsiyTYE2zMO5hqUMtXOctUApgDv29aFmNnYLuBlPS6u7HOXvSm2njKOibGEhb3zFfzxk5P49qEcsw06CAMeWjePTZXwrcN5jDS4SMGChXS2LUxjaRjXNHD31i5UA12yOEHcMpDzAvx0iqM8tL6qgeLZuQpipqDLXn71d2pvF3Y5KHI9nmX5gWKmEuB927rQ04TFOkUEt46lkbENzFWbE/SICAZcE72uiYcP5fFRprl1DJ79aV3snS3jy/vnMOiaMJu02Od0xccuprM13GDcwnu3ZDFR9pdcCK7bMfDNQzlUOcpD6+iVfBVeoCj5ii0pju5E2Sbe2FrRkZKP64YS2JZu3t8qYRm4c0sWcxVtagqibYTzewIF7t87jb96cY7rxEUcAx6quxfnK/jz52fQ5RgNHzJfjNXZmufCrhheP5hcctG5hGVgthrgyWmO8tD6eXq2DEOAsq/Y2sROHq2/vpiJlGUwRWkJMxUffTETNw6nmt0UbE07uG4o0bTUtsXSdljK+qmZEv7wqQn8cLyw5I06am8MeKiuXs5X8dnnZpCyDSSt5r29vEBhCZjO1iQigptGU9i6zKJzXbaBfzyUZ6lQWheqih9PldDlGBCEI48UXSKCXV0xzHIezym8QJGrKu7ckm2ZjIcbh1MYiJuYbsD6PCsxRDAYt5CxDXzlpTl8+tlpHC6yqEHUMOChujlUqOIzz03DtdD0XPnpio9d3W7LnNw7kW0I7t7ahcwSi86lbANTZR8/5SgPrYOjJR/z1QAxIyxYMMCCBZG3MxsD1x891ZGihzeNJFuqfHfMFNy5JYu819zUtsVc08BYwsLRoof79kzi4UM5lDkvLDIY8FBdHCpUcf/eadgCZOzGT4Y8GdPZWkPaNvCL53QBwGknqfbEDHz9ACvlUP09P1cGAJQDRZdjItHEEWdqjI21Dj0noL9qquxjJGHjuqFks5tyitGEjdcPJXB0iSyAZhAR9LomBl0T3z6cx317JvHCfKXZzaI64BWA1uzF+Qo++ew0RICs0/xg59V0tta5m9XJ+l0LHzynG/nqqZXbErWKbT+cKDapdRRVj0+VkLYN5D3luaBDpGwDw3ELeY8BDxBWZSt6indvzsBuUvGglbxhKImEZaDQYkNzliEYTVioBgE+9ew0vrx/FvNNqixH9cGAh9Zkz0wJf7p3GnFT0NUCwQ4QprNd3O02tWACnWhTysbdW7OYKAeonJQi0BcLy4PmmHtPdTJX8XGw4CFlCUq+YisDno5xYbeLeZ5LAIRpndcOJTCaaN33f8IycPuGFCbLQUuOzGUcE6MJEz+eKuGPnpzEIxNFFjVoU+wR0ln70UQRn6tVY2v2nJ3FKgFwaS/T2VrNrm4X79yUxtGSd0I56pgpqAaKfzuWb2LrKEr25cIUFBGBAWAw3rodPqqvbWkbaM3BjIbKewGSloEbWjCV7WQXdbvYlrYxVW7NQNUQwVDcQsIWfGn/LD75zDQOFqrNbhadodbppVLb8ALFNw7M40v7ZzHoWoi3UG58JVC4XGy0Zb2uP4HbN2RwuHBi0NPvmvino4WWqNhD7e+nU2W4pkBVoQAG460x+kzrbzRhw4C0zET4ZlBVTJV9vGNjuqWuz0sxRPC2jRmUA23pqp3xWlGD8bKH/7lnCg++PM/MhDbS+p8EainzVR+fe34G3z1SwGjcgtNiVdCmywFe0+u2bL4yAVcPxHHbWBqHi97xi5ttCATAdw7nmts4antlX/HMXBlZx0DBVwy4Flymt3YM2xBszziY6+CO6EQ5wLnZGC7oijW7Kas2HLdw7WBiyWUMWoWIoDdmYjhu4t/HC/iDJyfwg/FCSwdqFOJVgFbtlXwVH98zhf25CsYSJswWDCo8VVzczXS2ViYiuG4ogZtHUzi0KOjpd038cLKEA3mmCtDZezlfRaCAKYJcNcD2DEd7O82FXQ6KHVpOuFobJXnbhjREWu8avZzrh5JwTUGxDap2moZgJGEhZQu++tI87tszib1z5Zach0QhBjy0Ii9Q/NORPP7kmSkEUAzGrZY8kZb9MGd5IycotzwRwQ1DSdw0ksKhWnqbKYKEKfjqS3OcFEpnbc9MGQsDz76CBQs60OaUA0Vnlqc+VvTxxpEk+tpw3amEZeDm0RQmS60f8CxwTQNjSQtFP8D9e2dw/95pvMybdi2JAQ8t60jRwyefncbXD+TQ75otUXZ6KdOVAJf3ujBbMBijU4kIbhxO4raxNI4UPVQCRbdj4JVCFY+wTDWdhWqgeGyqiO5F56mhePt1/GhtemMm+l0ThQ4b5clVA2QcA1cPJJrdlLN2WW8cvTGz7SrtZR0TYwkTB4se/uTpKXzhhRkcKXrNbhYtwoCHTqtSG9W5b88kJsseRhMmnBZMYVvM17AkKbWPhfS2t2/M4GjRQzUIU9v+4cA8ZiutnctNreeF+QpKvsKpVf5zDEFPrHVv0tD6EBFc3hvHbKW9Os1roaqYrvh424Z0Wy/JYBuCt4ylMFPx226EbmF+z0jCxDOzFXz0qUl8cd8MK7q1CN76ohOoKvbMlPHggRymKj4G3NYPdACg6AXI2gZGE3xLtxsRwVUDCVgCfOWlefS7BnwFvn4ghzu3ZFoyfZJa0w/Gi3Br+Ww5L8DWtAOD75+OtDMbw0MHO6cIymQ5wDlpp60KFSzlvK4YtqQcHCt5bXnDwhDBQNxEoIpnZiv46VQZ52UdvGE4iU1Jm9e0Jmnf2wBUd6/kq/jU3mn8+QszCFQxlrDaItgBgJlKgCv74+zctLEr+xO4a2sG46UAGdvA41NFvDDPO2O0OnMVH0/PltHthJe1oqfYnub8nU415JrI2AaKXvRHeXxVlHzFW9uwUMHpGCK4bSyNgqcI2myUZzFDBP1uuHDpi7kKPvnsNO7bM4UfTxZR7rB0y1bA2+EdTlWxL1fFd4/ksXe2grglGEu0ZlGCpSystXFBF9PZ2t2lPXE4Ivj8vlnYhuArL83hw+f1tMVaEtRcT86UAeD4TQ8BWnqFeVpfIoLL++L47pF85M8fx0o+fm4gjpEIvd83pWxc0uNiz2wZA277jfIsJiLocy2oKnJegP+9fw6uOY+rBhK4uNvFoGu2VZ+rXUX7LEBLqgSKJ6ZL+J9PT+HTe6dxIF/FaMJEb6z9Pnh5L1xrY6jNT4oUuqDbxS+d0wUAeDlfwddemW+7XG5qLFXFvx0rIGMbxx8rWLCg052XjSHqp46SH8ASwY3DqWY3pe7ePJJENdDIVO0UEaRrqfcpy8D3juTxsT2T+PjTU3hkotB2hRraDa8GHURVcbDg4fGpEh6ZCIdUU7ZgNN5+Qc5is9UANwwn2/r/QCfakY3hV3Z04/690/jO4Ty2Zxxc1htvdrOoRR0seJgo+xiJhzc9ir6i3zUjf2efljeasJCwDJR9RazFFsmul4lSgLdvTCNtR++93udaeF1/HD+aKEbu5kXMFAzHXx31eeCleQDz2JKycVmvi+2ZGLpauCpuO4rWO4hO4deCnL2zZTw2VcJk2YcpQE+sPYoRrCRQhQA4P9v+EzXpRJtTDj60swd/8swU/mrfLDYdeRl9/+vjwBe/CORyQCoF3H038JGPANu2Nbu51ESPT5VgCY7f9JivBriyjwFypzNEcFmvi38/VsRQPHqdx7mKjz7XxOURfq9fP5TEjyaKqAYKOwJ9lpOFoz7hyE+gimMlD1+pBT9DroWLumPYlnYwkrAjG7Q3CgOeiFFVTJb9MMiZq+CJmRLKvkIEyNoGRtp8NOdkM5UAOzIOMrwTEkljSRu/dV4PvvlnX0Hmt38J6nuQaq2Qwfw88NnPAp//PPDAA8DNNze3sdQUZV/xyETxhGpOvgJb004TW0Wt4oJsDP96tNDsZtSdqmK2qrh3SzqSgcCCLsfEtQMJ/NPRAkYiXoXVEEHWMZF1wuNb8AN8+0ge3zqchyHAxqSNndkYNiRsDMctpCI4qreeov3uiThVxVw1wLGSj6OlKvbnqnh+roJirfqHbQBZ20RvLLonw6KveG1/+y6yRisbOfwyfuF3fhlSOs1ipNVq+HXHHcDPfsaRng70/HwFZf/Uu79RS4Ghs7MhaSNmCCq1dZmiYqIc4Pysg+0dENhfPZjEv40XUKmtsdUJRARJS5CspeX6qpgoeXgpH97wCxTI2AY2Jm1sTtoYSljodkx0OWakA+C14BWhxVUCRa4aYL4aIOcFmK54OFTwcaRYxbGSj2oQjt6oAq4pSFkGuiMc4Cy2sLDgOR1wwu9oH/3oq6M6S6lWgfvuAz7xica0iVqCquJfj+YRt14953m11JfeNly/g+rPMgSX9Lh4bKqIATcaXR4/UFQCxa1j0ShDvZK0beCGoRT+8VCuY9faM0WQcUxkao9Vw/fAvvkKnqpVqBQAAYBux8Sga2LAtdDnmsg6JtKWgYRlIGkZcAx0xPvmZJ35zllnqooAYVqFHyg8VXhBGKFXNeyoV2snrGoQ1s/PewFy1QC5qo/ZWoAz7wUo+Xq8lJ7WvmKGwDUF3Y4Bq4Mj+alygMt7Xea1Rt0XvxgGNMupVoEvfIEBT4d5KV/F8/MVjC3qBOW8AFtSNtfkouMu7Hbxg4nTjBC3qaMlH9cMJDDYQaOYr+uP45+P5lHyA7gmU7lEBDFTEDOB7kXPqyrKgeKVQnhu9BQwBBAN+48BANsI5wylTANJ20DGMpCyDSRtgWsYiJkCxxBYhsA2BJaEP2OKwDbC4MuUMAVv8dzJVteUT8t0xcfnnps+/nitBQcVWLb0pC71fa106cLP6vHngaD2SBEOHS4sfhVo+IZZeE61FthAEWgY1HiBQkSw8BYQCXe0MBJzStsRRuaWAVhSe4MZ4ZybHqd93kyN5qni0l6uvRN5uVWulr7a7VqQqsJXwGyji0ezqSoePpRHwjJO+JsVPMWODEd96VVbUjaSlhGJznLJDxAzBNcPJZvdlIaKWwbePJLC3708h9Fkex/D9SQS3hBfbpUOX8Ob7bNVH5MVD16g8Gr9VyDsuwpe7bMunF4X91910ZeJMKgyaoGQKRI+hkCkdl2rbQOE2xm15xYeH+8vH/9/vPrY7OrvX9tfJdSUgCfvBThQWN8V1E/bZZCTH8pyL5/wBz/h39oBNGsHSSTcl9QOYPgcOy3rqegFx/NXKeJSqbBAwWq2a0GBKqbKPsbLPmYrPo6VPBwr+Zgu+yj54d24SqDH73zYhsCW8ALf44RrY/W7JrpjJvpjFnpjZkeP7C54Oe/hufkKRk+qvsUFR+lkliG4aiCObx/OYzje3p3lyVKAd25Od+SE9ct6w2NY8AIkWHL+rJkiME0JI5U1WlgjLwAAXRQIHf9ej7/mL3ru1Z8/aX+n+R0Si9clum/aeGiWVbVoDWYqAd40kmLaSie4++6wGtsyaW1q25D3va+BjVpa0QtwoODhxVwFL8xXcCDvwauVTw/TCcK0VKeWmpq0ane7RI6nwy6MFh8uVvFSvoKF9egWbqoMxi1sTzs4J+1gLGkfn9jaKVQV3z6cg3tSLnpQG7WPejUnOnOXdLt4+GAeqtq2NyRnKj6GExYu64luGerlxEzBTaNJPLB/ngFPi1j4LJnA6kYazkp9Vp7lVYHajmqYPnhRN9fe6Qgf+UhYenqZgMczLXi/+VtoRjdgYa2r5+YqeGqmhIMFD0B4mk9agt6YAXOVIzIiAhPhCLKN06clBKrIVwP827EC/qVWbnc4buGibhfnZh0Mx6227dCt1oGCh2dmKxhNnPgHKniK0YTV9mlLVH99roWtaRtHS15bLugYqGK+qrhnW7qjR3gv7YnjW4fyyHtBx93oobVhwENtZ6YaYGvaRl9EKu7QCrZtC9fZueOOV8tQL7BtBLaNz/3+/ThUzOJXClWMNCCdqegFeDFXxVMzJTwxXUY5CEdwUraBobi5riOPhghSthxPaVENi548fCiHbx4KKxpd3hvHru4YRiIa/Hz7cA4x89TUYS44Ssu5eiCBL+ybRVcbTvEaL/nY3etic6oNG19HtiG4ZSyFv9o3y4CHzgh7jNR2Cp7i6kGuvdNRbr45XGfnvvvCamy5XDhn533vg/Gf/hMu7xrBZ56bwR8+OYmrBuJ4w3ASvbH6nd5UFdOVAPvmy3h8qowX5isAamtdOSZ6m3jHVU4KgIp+gO8dzeM7R/Loi5m4aiCBXV2xyKQRH8hXsWf21Lk7CzZ1eIeQlrY9E4PThmvyVPzwhspNo605T7HRLuxy0efmMV8NkO7AuUx0dhjwUFup+IqYIdiRYTpbx9m2LSw7fZrS068BcKcX4G9fnsdjkyU8OlnC6/oTuGogjr6YeVajHCU/wIG8h71zZTwxU8ZU2YciTFNb71GctYibBuJxozbyo3jwlXk8+Mo8dnXFcNVAApvbuGRzoIqvH8zBNeSUY7ow/6lT1+mglcVMwRV9cXx/vNBWC9MeK3l4y4Z0W6birQfLENw6msLn980y4KFVa59PPBGAqUq4/kA73Z2jxrhmIIHpSoB/PVrAcNzED8cL+I/xAjK2gQu7XezMOOhzrVrJznBNgYU1C/KeouAFmCz7eHG+ghdyFYyX/ONVGLO2geH42QVOzbJ45CdQxbNzZTwxXUafa+L1Qwlc1OUi3mYpIT8cL2LvXBkbThPU5D3FcNziZGZa1mW9Lv71WKFtihfMVXz0uRZe28+shsXO64phyLUwW/EjM3pN64sBD7WNhbVKLutljj6dSiS86zdV8vDsXAXDtU5xyQ/wg/EC/v1Y4fiaWIECjinwawUwFq8zYBtA0mq/AGc5hgj6a3PectUAX31pHn//Sg7XDiZwZV+8LToM4yUPDx6Yx6B7+nlJuWqA3Zy/QysYjlsYjlvIeQHSdmt/vgNVzFYVH9qa4U2+k5giuG0shc88N42MbUTmXE3rhwEPtY25aoCNCRsDy62oRR3NMgTv2ZLFp56dwkTJR59rwjUNuCetvaGLAp12Te86Wyk7XFW74iu+cziP7x7OY3dfvKVXbvcCxZf3z8GqrS5+OgHCBSaJliMiuGYggS/tb/10qKMlH6/tc7E1zXlpp7Mj42BTysFkyUN3jP0CWl5rf9qJFsl5imsG47yTQ8tKWAZ+4ZxumIZgruqfdhsRgWlIxwU7izmmYCRhYcA18fhUCX/81CS+sG8GB/LV44vJtYp/Hy9gf66K3tjpL1kL7eWCo7QaF3bHkLRMlPyg2U1ZUsELEDMEN42mm92UlrUwqp/3gpY7Z1HrYcBDbaFaq6pzbpbFCmhlvTETH9jWhfmqouzzQrgc0xAMuiZGEiaena3g409P4bPPz+DF+UpLdCIOFar4xoEcBpZJMSz4igHXYplaWpWYaeDG4SQmy60Z8KgqJss+3rExfbz6Ip3elpSN7ZlYyx5Lah38JFFbmCz7uKIvjhgXFKRV2pSyccfGNI4WPQQt0HFvdeE8HxOjCROv5Kv45LNT+OSz09g7V27a32+85OFzz80gbsqycxjmqwHOyzLth1Zvd58L1xSUW3CUZ7wc4LxsDBd1u81uSssTEdw8mkLJV57nrG0jqAAAIABJREFUaVnsPVLLWyhWsLuXJ386M5f3xXHVQAKHC35LjFa0AxFBb8zEaMLCeNnD/Xun8fE9U3hyugQvaNzf8FjJw6eenUZVsWJ+fqDANs5zoDPgmgZuGE5iosVGBsq1jvvbNqaZvr1KG5I2LuzmKA8tjwEPtbyZaoAtKRvDLTqhmlqXiOC2DWlsTNoY58XwjIgIuh0TYwkL856Pz++bxR88OYEfThTW/a74kWIY7Piq6Fli3s4CVYUCGOH8HTpDV/TGETOkZdJeVRXHSj5u35Cu68LJneCNI6njwSLR6TDgoZZX8BTXDyV5t4vOimMI7t6WhW0I5qsMes6UiCBbC3xEgK/un8PvPzGBbx7KYbLs1f33vZSr4tPPTkGh6FlF5aWir+h3zZavuEWtJ24ZuH4oicny6YubNNqxko9dXQ6uYHn1MzYct7C7z8V4qTWOJbUeXiGopRW8ABnbwPYM01Xo7HU5Ju7ZmsVMJUC1gWlZUZO0DIwmbaQtA987nMcfPjmJP3tuGs/OllFZ4991tuLjK/tn8YlnJmEI0L3KtYHmqgHOZzETOktX9sdhG4JKk0d5ctUAjmngnZsyHV09ci1uHE4hUDQ09ZbaB8dMqaVNVwLcviENkxcAWqMtaQe3jqbw9YPztdEKvqfOlmMKhhMWAlW8nK/ic8/PwDIEF3XFcEmPi80pZ8n1ck6W9wI8MlHEw4dyUADDCeuMPu+BguuU0FlLWgauG0rg4UN5jCaa0yXyVTFdCfDL27NI21xP5mz1xkxcM5jAvxwtYKRJx5JaF98R1LK8QGEJcEkPixVQfVw7lMCLuQqem69giHPC1swQOZ525gWKJ2ZKeHyqBAEw4FrYmraxKeWg2zEgEIgAgnDk9sVcBXtmKjha8qAA+mMmnFUGSQsWClFs4PwdWoNrBhJ4ZKKEuaqPTBMCjiMFH9cOJrAzy2vdWl07mMT3xwuo+HrG5xOKNl7xqWVNlH28ri/BtTWobkwRvGtzFh/fM4m5io/MKtOmaGWWIeh3w0tKoIqiH+CRySL+Y7wIEQALWSYCqAKGAGnbwPAy6+usJOcpRhMW1yqhNYmZBt69OYNPPTuNpKUNzSiYKPkYTlh480iqYb8zytK2gTcOp/DQwRxHeegEvEpQS1ooRX1lPydvUn2lbQN3b8tirqprnndCp2eIIGkZGHAtjCQsDMctDCdqX/HwuaF4uFDoWlILc9WAa5VQXWxLO/i5/jiOFhs36X224sMyBPds61p1Ciit7HX9cSQtA0WPRWroVQx4qCVNVwLsyDgYZNoRrYPNKQdv2ZDC0aLH9XnaHNffoXq5aTSFlGUg14BqjkUvQNFTfPCcrlVVI6TVi5kGbh1LYYpLEdAiDHio5agq8l6A1w8mm90UirCrBxI4LxvDMZYxbUvVQGEZwvW5qG4SloF3bUpjuuKv63ou1UAxUQ7w81uz2JDk/LP1cHG3iz7XxFyV53cKMeChljNXDTCasLEtzQsBrR9DBO/alIFjNuaOLtXXXDXAeVkHlsFUIKqfndkYdvfGcbjgr8vor6+KwwUPt46mcCHTMdeNZQjetjGN2YpyFJ8AMOChFjRfVbxpOMm1CGjdZRwTd23JYroSwOd8nrZS9hW7uthhpPoSEbx9Yxpb0w6O1Hk+TzVQHMx7eMNwEtcNJeq6bzrV9rSDc7MOJpjaRmDAQy0mVw3Q55o4t4sLCVJjbM84uHE4gUOcz9M2VBUKYFOKo8BUfzHTwD3bshhN2Dha9Oqyz5If4EjRx+0b07hlNMV1wBpARHDbWBrVQHlDixjwUGuZrQR480iSC41SQ90wnMLmpINJ3glsCwVf0e+a6GJZcVonccvAB87pQr9rrXmeX94LMFEKcNfWDK4dTDLYaaChuIWr+hOcq0kMeKh1FLwAGcfABUxToQazDcGdWzPH14+h1jZfDXAx5z/QOkvZBn5pexe6HAOHCh78MxwBDlRxpOih4Cl+eXsXLu3hMgvNcP1wEpYhKPHc3tEY8FDLmKoEeNNIEjYnIVMT9MYsvGtzBuOl9a3QRGsXaJifT7Te0raJX9vRg9f1J3C44GOyvHIxA1XFdNnHoYKPS3tc/OcLerEjyzTtZknbBm4ZTWGixICnk7GeJ7WEoh8gZRq4uJt3wKh5Lu52sbevgscmS1ylu0X5qjAEGGU5X2qQlG3gbRvTuKLPxd+9Mo9981W4JhA3DbimwDIEvipy1QAFX+GrYizh4APnpDnPrEVc3hfHvx4rYLbiI8tU2I7EKzq1hKlygNs3pLnaNDWViOAtY2nsm6/ywtii5ioBtmdicDgSTA02krDxqzu6sWemjOfnKzhQ8HCk6KESKCwRbErZ2JlxsCFpY3PK5lzUFmIbgnduzODTe6eQtg1Wge1ADHio6QpegJRlYHcvc/Kp+eKWgbu2ZvEnz0whYSlTLFtMwVdc1MV0NmoOQwS7ul3sqs0hU1XkvABx0+CaUC1uW9rG7t44fjpdwhAXLO44nMNDTTddDnDbWAoxk29Hag0bkjZuHUvhKEtVtxRVhQDYmuZ8CGoNIoK0bTLYaQMigltGUzAELGDQgdjDpKaaq/roc01cxIpL1GKuHkhgRybGcqYtJOcphuMWemJMNSSiM5dxTLx1LI2J0srFJyhaGPBQ06gqZisB3rohzbtj1HJMEbx7cwaOIchVeTewFcxXA+zuZWETIjp7u/vi2JB0MF3heb2T1CXgEZGbRORZEXleRH6nHvuk6JuuBNiScrAzw3x8ak1Zx8SdWzKYrgRcqbvJVBUKYGeW5wsiOnumCN65KY2Cpzyvd5A1BzwiYgL4XwBuBnA+gDtF5Py17peiTVWR9xS3jqW46jS1tJ1ZF9cPJXC45DW7KR2t4CsGXAt9TGcjojUaTdi4biiBo0xZ7hj1GOG5AsDzqrpPVSsA/hrA7XXYL0XYRDnAri4Hm7iWBrWBN46ksCHhYIIXx6aZqwTY3evyBgkR1cWNwyn0xkzMVHhe7wT1CHhGAbyy6PGB2nMnEJF7ReRREXm0OD1Vh19L7aoaKKqB4paxNDsv1BYcQ3DX1gwCKIoe874bbSGd7VyuVk9EdRIzBe/dkkWuqvCY2hZ5DStaoKr3q+puVd0d7+5p1K+lFnSs6OONw0kMuKyDT+2jN2bhzs1ZTJR9+Kzu01BFX9HtmBh0mc5GRPWzMWnjxpEkU9s6QD0CnoMANix6PFZ7jugU89UA3TET1wwmm90UojN2QVcM1w4mcaTIi2MjzVYC7O5jOhsR1d/1Q0kMuiamyzyvR1k9Ap5HAGwXkS0i4gB4L4AH67BfihhVxUzFxzs3pREz2XGh9iMiuGk0hbGEzfk8DaQAzmc6GxGtA8cIU9sKfphuT9G05oBHVT0AvwHgmwCeBvBlVX1qrful6DlW8nFxt4vtaZaVpfa1MJ9HoShwPs+6K/kB0raB4ThTYIlofYwmbNwymsKRoscFSSOqLnN4VPUbqrpDVbep6u/XY58ULRU/PIHcxkIFFAG9MQt3bclishxwsus6m64EuLw3zvMGEa2rawYTOD8bwzGO3kdSw4oWUOdSVRwtebh1LI1urqFBEXFel4ubRpM4zDuC60ZVESiwq5vpbES0vkwRvGtzBq5pYK7KoCdqGPDQuhsvB9iRieG1/fFmN4Worq4fSmJXV4wVftZJzlMMuRZGmM5GRA2Qtk28b2sWcxXO54kaBjy0ropeAAPAuzZlYDIlhSImvCOYRdY2Mc3F6+puvhrg6kGmsxFR42xJO7hlNMXR+4hhwEPrJlDFRDnAuzZnmMpGkZW0DLx/WxZln4uS1pOvChHg/Kzb7KYQUYe5diiBC7tiOMwlCCKDAQ+tmyNFH1f0ubiwi/n3FG0jCRt3bcliohwwDaJOpsphVceUzcsUETWWKYL3bM5iKG5hguvzRAKvJLQuZis+MrbBqmzUMXZ1u7htLIUjRR8B0yDWrBIAV/Rx3h8RNUfcMnDPti6YIphjynLbY8BDdVfyAxQ8xfu3dSFh8S1GneP1gwlc2eficNFn7vcaFL0AGdvA5pTd7KYQUQfriZn44DldyPuKks+U5XbG3ijVlR8oxks+3rMlgw1Jdlaos4gIbt+YwdaUw7Uc1mC6EuDqgQQLnRBR021M2rhzcwbHSj5TltsYAx6qG1XFoaKPG4aSuKSbE42pMzmG4K6tWXQ5JiYZ9JyxQBUK4CKeQ4ioRVzcE8fbNmRwuOBxsek2xYCH6uZIyccFWQdvGk1x3g51tLRt4Be3d8M2BDPM/T4jM5UA56Rt9LCyIxG1kKsH4rh1LI1DDHraEgMeqouJko9ex8R7tmSZhkIEoDdm4pd2dMPTcD0ZWp2Cp7hmMNnsZhARnUBEcP1QAm+urdHjc55mW2HAQ2s2VfbhmoJf3N7NIgVEiwzHLfziOV3IVwMUuEbPinLVAP2uiR0Zp9lNISI6hYjgjcNJXD+UxMGCB58jPW2DvVNak6myD0sEv7KjmykoRKexOeXgnm1ZTJcDLky6gplqgDeOJDlKTEQtS0Rw82gKbxxO4mDRQ4VBT1tgwENnbabiQwDcu6Mbfa7V7OYQtaxzu1y8f1sWkwx6llT0AmQsA7u6WKyAiFqbIYI3j6Twjo0ZHC36LFndBhjw0FmZrvjwNQx2BuMMdohWsqvbxT0MepY0VQlw43AStsHRHSJqfSKCqwYSeN/WDKbKAXKcq9nSGPDQGTtW8mGL4Nd29mAkwbV2iFZrV7eLD5yTxVSFQc9iZV/hmoJLezm6Q0Tt5eKeOO7d0Y2ir5jgUgQtiwEPrZqq4lDBQ3/MxG+c24NhjuwQnbHzu1x8YFsY9PCOYGii5OO6wSRck5ckImo/29IOPnxeD3piJg4WPASs4NZyeHWhVfFVcbDgYWfGwa/s6EbWYYECorN1XpeLX93RjYIfdPw6PdVAYZvAFX3xZjeFiOis9bkWPrSzB1f0uTiQ91DmvJ6WwoCHVlTwAhwqeLhmIIn3b+tCnKWnidZsa9rBr+/sgQHp6DSI8ZKPqwcSSNk8rxBRe4uZgnduzOC9W7KYrgQYL/lQjva0BF5haEmqimMlHwVP8cFzuvDWjWlYnFBMVDcjCRu/fm4PMo6BI0Wv4y6MRS+Aawqu5UKjRBQRIoLL++L4yPm92JC0caDA0Z5WwICHTqviKw4WfGxI2Pg/zu/F+SwVS7QuemImfm1HD7akHBwodM7q3aqKibKPt21II8lRYyKKmD7Xwi9v78K7N2UwWwlwtMi5Pc3EWed0gkAV47X0mrdsSOGqgQQXASRaZynbwAfP6cJDB3P456N59Ltm5CfwT1cCbEo6uLiHN1OIKJoMEVzRn8A5mRj+8WAOP54qIWEJuh0Dwr5VQzHgoeNmKz7mqgEu7YnjltEUumMsTEDUKJYhuG0shdGEhS/vn0PC0sgWB/FVUfAVb9+YhsGLPhFFXE/MxM9vzeLqwQT+4cA89s1XkLUNpG0GPo3CgKfDqSrmqgHmPcWga+Lnt3RhW9rmB5CoCUQEr+mNY8C18Bf7ZnCo4GEobkYuKDhW8vFz/XGMJbmOFxF1jo1JG7+2oxtPz5bxjwfzOFjwOOLTIAx4OpSqYrYargMyHLdxx6YUdmYdpq8RtYCxpI0Pn9eLv39lHj+aLKLfNRGPSIpb0Q9gi+DG4VSzm0JE1HAigvO7XJyXjWFfrorvHM7h+fkqTBH0xgzYLA61LhjwdJiKr5is+PAV2Jy08d7NSWzPOJG7g0zU7hKWgXdvzmBn1sFXXppDrqroi7X3XUBfFeOlAHdvzSDNMtRE1MFEBNvSDrale3CoUMUjEyU8MllENVDETUHWMdg3qyMGPB2gGihmKj4qAeCagusGE7i0J44B12zrzhNR1IkILumJY0PSxgMvzeO5uQr6XaMtCxqoKo4UfVwzEMcl3SxUQES0YCRh4/aNNm4aTeK5uQq+P17AC/NVKMJ+W5dtwOTIz5ow4IkgVUXeU+SqAQIAtiG4qNvFRd0utqYdOPzQELWV3lhY3vTxqRL+7uV5zFa8trthMVEOsDFh45axdFu1m4ioUWKmgV3dLnZ1u5ivBtifq+DHUyU8M1tGUKtonbQFKYujP2eKAU8EVANFwQtQ8BQQQBUYdC3s7o1jR8bBhqTNBUOJ2pwhgt29cWxPO3jwwDx+NlVC2jbaopJbrhrAEuCurVnecCEiWoW0beDCbhcXdrso+4rDxSr256rYM1PGy/kqACBQwDGBpGXANYVB0DIY8LSJQBXVQFHywy9PFQbk+HDnxqSNzSkHG5M2RhMWElzIjyiSso6Ju7dk8XxfAl97eQ4HCh76Yq2b5lYJFDPVAL+6o5ul7omIzkLMFGxOOdiccnDdUBJlXzFe8nC06OHFfBX7cxUcKYZrKApQy+4BYoYgZgocg8EQA54mUFUEAPwA8KHwA8BTha/haI0XAIaEb9qFERsAyNomhuNW+JWw0OWY6IuZyLCOO1FHERFszzj48Pm9eGyqiK8fyGGq7KHPNVtqBKXkBxgvBXjnpjS2pZ1mN4eIKBJipmAsaWMsaeOyvjgAwKvN156q+Jgq+zhW8nCs5GOi7ONoyYdq2LdUBRThlwCwDMASgSmAKQLTqP0rgAFEpn/ZtIDnUMFb9bYKrfvv1xN2GR7Mk4+pYOENoce3Wfz8wvcir75xFva7sC89qekLbzLHEMQMgWsK0o6BhCVIWSZStqDbNpGwDcRNA0lLkLYNJJmvSUQnsQzBlX0J7Opy8R/jBXzvSB5eAPS7ZtNLmxa8ANPlsCLbJT3xpraFiCjqLEPQ51roc0/t2geqKPqKvBcgXw2Q9wOUPEXOCzBXDZCv+sj7iqIXoOgrip6iEoRfwKs94JP7vAsUgCigi/q+Iqf2gRe2VsirfWZ5dR+vdvcX/aBIXdIXmhLwdDsmbh2t3xoMIqcGKye8ftL3svCMLDqIIiceULy6T1n0+sLzxqLnTFl4TmDIq5GxabwaMdu1x5YIHCM6ETMRNV/SMnDjcApX9iXw/fEC/vlIHr4qemMmYk1IdZuvhhfVX9yexc4sK7IRETWTIYKkJUhaBnAGp2RVRVXD0SNfwwwkXxWehkGUr+HjQMP5RAFO/B4aptctjCoFtQhIj+//1YGAhed1UZSkAD42NzW+5j8AmhTwJC0D1w4lm/GriYgiK20bePNICj/XH8cjEyX889E8JsoeMrbRkHVvVBXj5QCmAL+6swebUva6/04iIlofIgJH0NRU6aCQy9VjP5zDQ0QUMWnbxBuGk7hqIIGnZkr47uE8DhY8mAL0xNZnnk+uGmC6EuCi7hhuHUujlwUKiIioRTDgISKKqJgpeE1vHJf2uDhQ8PDjyXAl73KgcIywEIpjri34WZirk3UM/NI5WezMxpiyS0RELYUBDxFRxIkINiRtbEjauGkshRfmK3hqpownpksolRWCMDhKWGExleUCFlVFKVDMVAKo1uZkbkjhtX3xpswXIiIiWgkDHiKiDuIYgvOyMZyXjeEdG9M4XPTw4nwF+3JVHMh7OFz2w4Itx0tPLqrII+Fk1C7bxBuGktjVFcNw3OKIDhERtTQGPEREHcoQwWjCxmjCxtWD4XMlP8BU2UfZV1RVUQ3CyjpJy0DWMZC2W2utHyIiopUw4CEiouNc08BIgqlpREQUHbyqERERERFRZDHgISIiIiKiyGLAQ0REREREkcWAh4iIiIiIIosBDxERERERRRYDHiIiIiIiiiwGPEREREREFFkMeIiIiIiIKLIY8BARERERUWQx4CEiIiIioshiwENERERERJHFgIeIiIiIiCKLAQ8REREREUUWAx4iIiIiIoosBjxERERERBRZDHiIiIiIiCiyGPAQEREREVFkMeAhIiIiIqLIYsBDRERERESRxYCHiIiIiIgiiwEPERERERFFFgMeIiIiIiKKLAY8REREREQUWQx4iIiIiIgoshjwEBERERFRZDHgISIiIiKiyFpTwCMifyQiz4jIz0Tkb0Wkq14NIyIiIiIiWqu1jvB8C8AuVb0IwF4Av7v2JhEREREREdXHmgIeVX1YVb3awx8AGFt7k4iIiIiIiOqjnnN4PgjgoaVeFJF7ReRREXl0fHy8jr+WiIiIiIjo9KyVNhCRbwMYOs1Lv6eqX6tt83sAPAB/udR+VPV+APcDwO7du/WsWktERERERHQGVgx4VPXG5V4XkV8AcBuAG1SVgQwREREREbWMFQOe5YjITQB+G8DrVbVQnyYRERERERHVx1rn8HwCQBrAt0TkJyLy6Tq0iYiIiIiIqC7WNMKjqufUqyFERERERET1Vs8qbURERERERC2FAQ8REREREUUWAx4iIiIiIoosBjxERERERBRZDHiIiIiIiCiyGPAQEREREVFkMeAhIiIiIqLIYsBDRERERESRxYCHiIiIiIgiiwEPERERERFFFgMeIiIiIiKKLAY8REREREQUWQx4iIiIiIgoshjwEBERERFRZDHgISIiIiKiyGLAQ0REREREkcWAh4iIiIiIIosBDxERERERRRYDHiIiIiIiiiwGPEREREREFFkMeIiIiIiIKLIY8BARERERUWQx4CEiIiIioshiwENERERERJHFgIeIiIiIiCKLAQ8REREREUUWAx4iIiIiIoosBjxERERERBRZDHiIiIiIiCiyGPAQEREREVFkMeAhIiIiIqLIYsBDRERERESRJara+F8qMg/g2Yb/YjpZH4CJZjeiw/EYtAYeh9bA49B8PAatgcehNfA4NN9OVU2vdSdWPVpyFp5V1d1N+t1UIyKP8jg0F49Ba+BxaA08Ds3HY9AaeBxaA49D84nIo/XYD1PaiIiIiIgoshjwEBERERFRZDUr4Lm/Sb+XTsTj0Hw8Bq2Bx6E18Dg0H49Ba+BxaA08Ds1Xl2PQlKIFREREREREjcCUNiIiIiIiiqx1C3hE5F0i8pSIBCKy+6TXfldEnheRZ0XkzUv8/BYR+WFtuy+JiLNebe0Utb/jT2pf+0XkJ0tst19EnqhtV5fqGBQSkf8iIgcXHYdbltjuptrn43kR+Z1GtzPqROSPROQZEfmZiPytiHQtsR0/C3W20ntbRGK1c9XztWvA5sa3MtpEZIOIfE9E9tSu0791mm2uE5HZReeq/6cZbY26lc4xEvr/ap+Hn4nIa5rRzqgSkZ2L3uM/EZE5EfnwSdvws7AORORzInJMRJ5c9FyPiHxLRJ6r/du9xM/eU9vmORG5Z1W/b71S2kTkPAABgD8F8H+q6qO1588H8L8BXAFgBMC3AexQVf+kn/8ygL9R1b8WkU8D+KmqfmpdGtuBROSjAGZV9f89zWv7AexWVdaerzMR+S8Acqr6x8tsYwLYC+CNAA4AeATAnaq6pyGN7AAi8iYA31VVT0T+AABU9f86zXb7wc9C3azmvS0iHwJwkar+qoi8F8DbVfU9TWlwRInIMIBhVX1cRNIAHgPwtpOOw3UIr923NamZHWGlc0ztpthvArgFwJUAPq6qVzauhZ2jdn46COBKVX1p0fPXgZ+FuhORawHkAPyFqu6qPfeHAKZU9X/Uboh1n3xtFpEeAI8C2A1AEZ6/LlPV6eV+37qN8Kjq06p6usVFbwfw16paVtUXATyPMPg5TkQEwBsAPFB76vMA3rZebe00tb/vuxEGntR6rgDwvKruU9UKgL9G+LmhOlHVh1XVqz38AYCxZrang6zmvX07wnM+EF4Dbqids6hOVPWwqj5e+34ewNMARpvbKlrC7Qg7hKqqPwDQVQtYqf5uAPDC4mCH1o+q/guAqZOeXnz+X6rv/2YA31LVqVqQ8y0AN630+5oxh2cUwCuLHh/AqSfaXgAzizokp9uGzt41AI6q6nNLvK4AHhaRx0Tk3ga2q1P8Ri014XNLDNeu5jNC9fNBAA8t8Ro/C/W1mvf28W1q14BZhNcEWge1lMFLAfzwNC+/TkR+KiIPicgFDW1Y51jpHMPrQeO8F0vfCOZnoTEGVfVw7fsjAAZPs81ZfSastbRKRL4NYOg0L/2eqn5tLfums7PKY3Inlh/duVpVD4rIAIBvicgztUicVmG5YwDgUwD+K8KL3H8F8FGEHW6qs9V8FkTk9wB4AP5yid3ws0CRJSIpAF8F8GFVnTvp5ccBbFLVXC2t6u8AbG90GzsAzzEtQMJ54m8F8LuneZmfhSZQVRWRus27WVPAo6o3nsWPHQSwYdHjsdpzi00iHLa1anf4TrcNncZKx0RELADvAHDZMvs4WPv3mIj8LcI0FJ6AV2m1nwsR+QyAfzjNS6v5jNAKVvFZ+AUAtwG4QZeYzMjPQt2t5r29sM2B2vkqi/CaQHUkIjbCYOcvVfVvTn59cQCkqt8QkU+KSB/ns9XXKs4xvB40xs0AHlfVoye/wM9CQx0VkWFVPVxL3Tx2mm0OArhu0eMxAP+00o6bkdL2IID3SliJZwvCKPlHizeodT6+B+CO2lP3AOCIUX3cCOAZVT1wuhdFJFmbxAoRSQJ4E4AnT7ctnbmTcq/fjtP/bR8BsF3CSoUOwmH2BxvRvk4hIjcB+G0Ab1XVwhLb8LNQf6t5bz+I8JwPhNeA7y4VkNLZqc2J+jMAT6vqx5bYZmhh7pSIXIGwv8DAs45WeY55EMD7JfRahMWGDoPqbcnMF34WGmrx+X+pvv83AbxJRLpr0wLeVHvu/2/vjlm6isI4jn9/FPgGbHHoNbQ7R9DW5uIQCSm2Cy6CNYirDg3REpS4BEHiS3AIFEInB4VobKwleBzOzTLNxfQPh+9nvMs9cO45l9+9z33upa70hucySR4Ba8Ad4GOSvap6UFX7Qwe2A1opyfyvDm1JtoCZqvoKLAAbSV4Au7TNWVd3rkY1yQTwqqoe0uol3w9r+zbwtqq2b3yU/VpNco9W0nYEPIWzczB0DntGW8C3gNdVtT+qAXdqHRijlZAA7AxdwVwL1+hf13aSZeBTVX2g7fVvkhzSPmiq0cOpAAAAvElEQVSdGt2IuzUJTAOf8/v3BIvAXYCqekkLm3NJfgI/gCmD53934R6TZBZO52GL1qHtEPgOPB7RWLs1hM37DPfj4difc+BauAZJ3tHe1Iwn+QIsASvAZpInwDGtwRZpv7eZraqZqvqW5DntARrAclX93fzg/PmcM0mSJEm9GkVJmyRJkiTdCAOPJEmSpG4ZeCRJkiR1y8AjSZIkqVsGHkmSJEndMvBIkiRJ6paBR5IkSVK3DDySJEmSunUCKp1MnvgETyUAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def plot_gp_posterior(mu_y_post, cov_y_post, x_train, y_train, x_test, n_samples=0, ylim=(-3, 10)):\n", " plt.figure(figsize=(14, 9))\n", " plt.ylim(*ylim)\n", " plt.xlim(-10, 10)\n", " plt.title('Posterior Distribution over Function Evaluations')\n", "\n", " # Extract the variances, i.e. the diagonal, of our covariance matrix\n", " var_y_post = np.diag(cov_y_post)\n", "\n", " # Plot the error bars.\n", " # To do this, we fill the space between (mu_y_post - var_y_post, mu_y_post + var_y_post) for each x\n", " plt.fill_between(x_test, mu_y_post - var_y_post, mu_y_post + var_y_post, color='#23AEDB', alpha=.5)\n", "\n", " # Scatter-plot our original (x, y) tuples\n", " plt.plot(x_train, y_train, 'ro', markersize=10)\n", "\n", " # Optionally plot actual samples (function evaluations) from this posterior\n", " if n_samples > 0:\n", " for _ in range(n_samples):\n", " y_pred = np.random.multivariate_normal(mu_y_post, cov_y_post)\n", " plt.plot(x_test, y_pred, alpha=.2)\n", "\n", "\n", "plot_gp_posterior(mu_y_test_post, cov_y_test_post, X_train, y_train, X_test, n_samples=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And for good measure, with some samples from the posterior:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAIYCAYAAACovOl6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmUpNld3vnv775b7BlZWXv1ou6W1BJqQAeE2A0HGJv1wIw1w2aMsceCYWbwxrGHGTx4sFk8AxgG5owPYzOMB0vCgM1igwEzltmXRhKgpRe1elFXVVflnhkR737v/BFRUqpUXd3VXblU9vM5J09mxhtx3/u+EVkVT9x7f6+FEBARERERETmO3GF3QEREREREZL8o8IiIiIiIyLGlwCMiIiIiIseWAo+IiIiIiBxbCjwiIiIiInJsKfCIiIiIiMixpcAjIq8IZjYxs/sPcH+fa2aP3sb2fsXMvnHx818xs9++jW1/vZn92u1qT+butPNqZq8ys2Bm8T61/z4z+/z9aFtE5GYUeETktjKzp8wsXwSMK2b2k2Y2eBnt3ZY3YSGEQQjhQy+njT19+gdmVpvZ7uLrMTP7MTM7t2d/vxVCePBFtvVTL3S/EMKXhBD+n9vQ9487nyGEfxlC+PMvt+2jZPG6qxavw2tfX72P+zuw82pmn29m/rpjm5jZZ97ufb1Ui/P/j/beFkJ4QwjhnYfUJRF5BVPgEZH98BUhhAHwKcCbgO88rI683KB0k8f/dAhhCJwA/nPgLPDHe0PP7WBz+rf6Jm7yHP2vi6B77eunD7Rj++vSdcc2CCH83mF3SkTkKNJ/oiKyb0IIF4FfAR4CMLPzZvaLZrZhZh80s79+7b5m9mYze9jMdhYjQz+02PSbi+9bez/FNrO/amYfMLNNM/tVM7t3T1vBzP5bM3sceHzPba9e/LxkZv/CzFbN7Gkz+85roWIxXex3zOyfmNk68A9e4BjrEML7gK8GVoG/s2jn883s2T19+ntmdnExIvSomX2hmX0x8D8CX704tj9Z3PedZvY9ZvY7wAy4f3Hbf71n17YYVdo2s0fM7Av3bHjKzL5oz+97R5E+7nxeP0XOzD7LzP5o0fYfmdln7dn2TjP7h4tztGtmv2ZmJ5/v/JjZX1881xuL5/784vb/08x+4Lr7/oKZ/e3Fz+fN7OcWz9GTZvZt1x3Pz5rZT5nZDvBXnv8ZumGfPvJaWPz+kdGIa8+bmf0dM7tqZpfN7Jv23LdrZj+4eN1sm9lvm1n3oM/rTY7tq83s4etu+1tm9ouLn7/MzN69+Dv7sJn9g5u0dbPXEWb2M2b23OJ4ftPM3rC4/a3A1wN/d3Eufun69swsM7MfNrNLi68fNrPsRT4HX2pm71+cp4tm9u23ep5E5JVFgUdE9o2Z3Q18KfDuxU3vAJ4FzgNvAb7XzL5gse1HgB8JIYyAB4B/tbj9zy2+j699im1mX8k8KPwXwCngt4C3X7f7rwI+HfiEG3TtR4El4H7g84C/DHzTnu2fDnwIOAN8z4s51hBCC/wC8LnXbzOzB4H/Dvi0xajQXwCeCiH8e+B7mY8WDUIIn7znYd8AvBUYAk/fYJefDjwBnAS+C/jXZnbiRXT1487ndX09Afw74H8HVoAfAv6dma3sudvXMT9fp4EUuOEbzsVz+33AfwWcWxzHOxab38486NnivsvAnwfeYfPw+UvAnwAXgC8E/qaZ/YU9zX8l8LPAGPiXL+K4b8VZ5q+PC8BfA/6PRf8AfgD4VOCzmI/u/V3Ac4Dn9QX8EvCgmb3munbftvh5yvz1Pga+DPhvzOyrXsJ+YP5hxmsW/X0Xi+chhPDji5+vjbB9xQ0e+z8BnwG8Efhk4M187EjwzZ6Dfw588+Jv6SHg/3uJ/ReRVwgFHhHZDz9vZlvAbwP/iXmwuRv4bODvhRCKEMJ7gH/G/M0XQA282sxOhhAmIYTfv0n73wJ8XwjhAyGEhnloeKPtGeVZbN8IIeR7H2hmEfA1wHeEEHZDCE8BP8g8YFxzKYTwoyGE5vrHv4BLzN8EX68FMuATzCwJITwVQnjiBdr6yRDC+xZ9qG+w/Srww4sRpp8GHmX+Bvbl+jLg8RDC/7vY99uBR4C9b1r/7xDCY4tz86+Yv2m9ka8HfiKE8K4QQgl8B/CZZvYq5iE18NGA+Bbg90IIl4BPA06FEL47hFAt1l79X8yft2t+L4Tw8yEEf5Pn6NvNbGvxtXYL56AGvntxbn8ZmDAPEQ74q8DfCCFcDCG0IYTfXRzbC7md5xXg/J5ju/bVDyHMmAfvrwVYBJ/XAb8IEEJ4Zwjhzxbn7U+ZB8/Pu4Vz8xEhhJ9Y/A2VzEdCP9nMll7kw7+e+Tm+GkJYBf4XPvZv8IbPwZ5tn2BmoxDCZgjhXS+l/yLyyqHAIyL74atCCOMQwr0hhG9dvIE7D2yEEHb33O9p5p/gwvxT3NcCjyym+3z5Tdq/F/iRa2/0gA3A9rQF8OHneexJIOFjR0329uNmj30hFxZ9+RghhA8Cf5P5m8KrZvYOW0ztuokX6sPFEELY8/vTzM/xy3Wejx9Ruv78PLfn5xnwfEUpPqatEMIEWAcuLPr+DhZvzJmPQlwbqbmX697QMx/RO7On7RfzHP3A4nU4DiHcyvSw9UWQvubaMZ4EOsxH1m7V7TyvMA/l4+u+pottb+Njz+vPL4IQZvbpZvYfF1MFt5l/ePBSps5FZvb9ZvbEYlrhU4tNL7at68/H9a/f53sOAP4i85Hjp83sP9kRKtYgIkeTAo+IHJRLwAkzG+657R7gIkAI4fEQwtcynx7zj4GfNbM+81GA632Y+ZSWvW/2uiGE391znxs9DmCN+SfEe0eDPtKPF3js81p8+v8VzEcuPk4I4W0hhM9Z7DcwP8ab7euF+nDh2nSwhXuYn2OYT1vq7dl29hbavcTHnptrbV+8wX1fyMe0tXg+V/a09XbgLYuRuU8Hfm5x+4eBJ697fochhC+9heO4mRnPf35uZg0omE+5vN5BntcX8uvAKTN7I/Pg87Y9297GfLTn7hDCEvBPmX9YcCM3ex19HfNphV/EfOrZqxa3X2vrVs/H3tfvTYUQ/iiE8JXM/634eT46/VVE5IYUeETkQIQQPgz8LvB9ZtYxs09iPqrzUwBm9pfM7FQIwQNbi4d55oUAPPP1Ntf8U+A79iySXjKz//JF9qNl/gbpe8xsuHiz/bev9eNWmVlsZq9n/ub9LPO1Gdff50Ez+4LFouwCyBfHBHAFeJXdeiW208C3mVmyOPbXA7+82PYe4GsW297EfLrYNTc6n3v9MvBaM/u6xbF9NfN1UP/2FvsH83PyTWb2xsWxfy/wB4tphIQQ3s08RPwz4FdDCNee9z8Edm1e6KG7GE14yMw+7SX04UbeA3zdot0v5kVO6Vq8Nn8C+CGbF1WIbF6cIONgz+sL9bMGfgb435hPsfz1PZuHzEdaCzN7M/Pg8nxu9joaAiXzEbse8+d2rys8/7mA+WvjO83slM2LM/zPvIi/QTNLbX59o6XFce7w0b8lEZEbUuARkYP0tcw/Cb4E/Bvgu0II/2Gx7YuB95nZhHkBg68JIeSLqTjfA/zOYnrTZ4QQ/g3zEZJ3LKbTvBf4klvox3/P/NPrDzFfZ/Q25m9kb8VXL/q6zfwT83XgUxdrUK6XAd/P/M39c8zDyncstv3M4vu6md3KWoQ/YL5gfI35+XlLCGF9se3vMx+F2GS+NuIjn/Df6HzubXTRxpczrza3znxR/peHEG5lDcy1tv7Doi8/B1xe9Olrrrvb25iPEuztY7vowxuBJ/loKHqx60NeyN9gPhq3xXwtyc/fwmO/Hfgz4I+YT1/8x4A7yPO6cN4+/jo8f3HP9mvn9Weumxr2rcB3m9ku85Bxs9GR530dAf+C+TS0i8D7gevX3P1z5utstszsRuf3HwEPA3/K/Hy+a3Hbi/ENwFOLv/1vYf4ciog8L/vYKeAiIiIiIiLHh0Z4RERERETk2HrRgcfMfsLmFwB7757bTpjZr5vZ44vvyzdrQ0RERERE5CDdygjPTzKfY7/X/wD8RgjhNcBvLH4XERERERE5Em5pDc/iYnH/NoTw0OL3R4HPDyFcNrNzwDtDCA/epAkREREREZED83LX8JwJIVxe/PwcH3tROBERERERkUMV366GQgjBzJ53uMjM3gq8FaDf73/q6173utu1axEREREROWb++I//eC2EcOrltvNyA88VMzu3Z0rb1ee7Ywjhx4EfB3jTm94UHn744Ze5axEREREROa7M7Onb0c7LndL2i8A3Ln7+RuAXXmZ7IiIiIiIit82tlKV+O/B7wINm9qyZ/TXmVw7/z8zsceZXdP7+/emmiIiIiIjIrXvRU9pCCF/7PJu+8Db1RURERERE5LZ6uVPaREREREREjiwFHhERERERObYUeERERERE5NhS4BERERERkWNLgUdERERERI4tBR4RERERETm2FHhEREREROTYUuAREREREZFjS4FHRERERESOLQUeERERERE5thR4RERERETk2FLgERERERGRY0uBR0REREREji0FHhERERERObYUeERERERE5NhS4BERERERkWNLgUdERERERI4tBR4RERERETm24sPugIiIiOyfEAKbTYsP0IscXWeY2WF3S0TkwCjwiIiIHFPTtuXizha7q89CnBAt300UR3Qjx+k0YRRHh91FEZF9p8AjIiJyzLTec2nzKquXn6DcfJZOO6PjHPHq44SVV5OPz/FU2+G+bsZQoUdEjjkFHhERkWPEe88HHvl9Vq8+SdNMiIc9ipPnSRvPaGeT5PIfMlxfZvP0Qzx18jz3dTMGCj0icoypaIGIiMgx8vSH38/7n/5DLoVNZqdP48fn6fgRlixR3v1a2ntfy8xN6F78A9rJDk/mJdO2Pexui4jsGwUeERGRY2Jra5X3PPqbbLc19537FD5h/BBvGL+BB1ce5GR0kmbaEDpLJHc/RGMF/YvvgrrmyVlJ3vrD7r6IyL7QlDYREZFjoGkq/uhPf5XV2SavffVn8eZXv5k4/uh/871ej+56lyu7V2h6MdGZCxSXPszguUfZPf96LpYVr+51DvEIRET2h0Z4REREjoF3v++dPLX2FKPRfbRXO/zmb/4Bzz76fqrtNXxb0+l0OHv6LPcM78HPPFXnJOnKSSZrf0a28RyTpmWn0dQ2ETl+NMIjIiJyh3vm2Q/w3icfZtYMYWuJVdaI0oRnPrDOyScf5/4RXLjnHkYXPpmTJ0/ShpYntp+gv/IqsrKgeu7d+M6Qy1HEMHK6To+IHCsa4REREbnTPPEEfOu3wmhEcI53/v1v4ak/eYbdzRF5XfBAz3j9Up/hPfexPrif9+ys8O5HnmH36p8BnpXlFU6kJ9gpa/pnH4Swi1t9jLxp2NQoj4gcMxrhERERuZP8yq/AW94CdQ11zftfe5rHztxLWI148NFf457X3oc/eYpJ6xjfez9nXnUPF4cXePqice6pZzifxvSXXs3Z0VkeXXuUne6A4fIZttY+BPmDXIkixnGE0yiPiBwTGuERERG5UzzxxDzszGbzwAP8xue+kUGe8MbLV3jg2ScZ/9LP855dzyO156nHHufKw+9ivPoM07TPY5srTC89y3TyBP1+ypnuGbYm27jl8zjX4NY+ROk963VzyAcqInL7KPCIiIjcKX7wBz8SdADef+8K09Fd9KqMU8WUlQ1jsDXi8z+4yr0PfQ5bK2fYKnKe/ZM/ob7yDJezEZfWxzSra9TNZVZGK2QhY8NDfzSm3foQaT7jSlnThnCIByoicvso8IiIiNwpfuqnoK4JQIhSfvVLvoDEJ0Rhkyvjmg89GBPO1Jz909/nk/pLPHDfJ3DprjfQG3XpPvso61ubPB4GTDcSmu010rTgdPc007zAxmeIwgw2n6EJgbVKozwicjwo8IiIiNwpJhOCRRQr9/KLX/lltL0VLPJ8ynsvcd+fbrI9qfjj054nR5dIuzu83mV80vKYxy68gVESET37KM/WnieKHs1mSdOsMR4N6ViHHVL6wzHl1odIyoINTWsTkWNCgUdEROQOEQZDmuUL/M5nPsTj96wQLPAZ73w3b3r0GT55dcKfe9cVlp92PNU7ySNrD9MfJLymNT5lPOLyqXs4N11j/dkneKxNWN8e0E5nOLfJSneFSd3QXT5H1OzQbF6iCoGpKraJyDGgwCMiInIHCCHQ/OVv4blzF3jsnjEBR7bxHJ/9roeJ157GNSXLFvM5H3yK++75dDYnM3bCowz7SzxQtGRn7sMNl7iw/gyPrK7zRO6wXUfT7DLqxlhr5Gmf4WBEs/kkTV6oeIGIHAsKPCIiIkdcCIF2o6D92m/g3Q8uM4u7NJHnK/79OwEwAvHWZTCHG63whm/+Zrqdu/jg6ofon8pJLeMTzfHsuddzhors6pP88aRlshVhjeHcNsN4wFpVMxqfw9Ub+Oka202r4gUicsdT4BERETni/G6FzxuebqasvvZuAgnpZI37Lm9/5D7mAlGzQ/gnP0p276t4zavfTJ5HPL32JyydGzAuPdmJM0xOnOPVs6s8ubrK07OWeNLBrGW5E1GWJU13TC+JYOvDtN6zVWtam4jc2RR4REREjrDgA+2kpqkLPvD4HzBtY6qO4/X9ZRiNwLn597e+legPfwf3RZ+H36151ekzjMav48mrl/DJRZIk5VN9wzPnH2IcG2e2L/G7u1BtFUR06aQVHetwtW0YDVdw+RV8MWWz0bQ2EbmzKfCIiIgcYX5WE3zgsQ+8i8n6Rco6Znsp4/O++wdgexvadv79x34MHniAaJxhiSOuPK9/4BOp22WeePZ99E46lvKKzmjM7vIF7qk2eO/aFquzGjeJSJKIQeSYlgXZ0mniJidM1pm2nqL1h30aREReMgUeERGRI8xPamZrq3zw0gdopxV5ZJy4cJZ+/8QN72/OcIMUGs+ZpRFnz34Sl3ameHeJCOMzm5xnzryaE9bSm1zld3YCbBdELmOpYzR1wzRK6Pd6hK1nCa3XKI+I3NEUeERERI4oXzSExvP4k++nnG4wmTpmQ+Oz3/BJN32c68bgjNgHXnvufkK8zDNbT9FbSVnamZEsnSQMl7l3tspvbeTs5DVRkZJ1jL6LuVqVjAbLUK7jigmbdUtQ8QIRuUMp8IiIiBxR7aTGFzkXN58knuRsBKNd7vKpr3vTTR9nznC9hFC0jJd7nBq/hrXpDtmowAX4LOe5ePJ+zrY5zc4679lucJNAmnRYSoyiqnH9MUko8JOr1CGwq2ltInKHUuARERE5gkLdEoqGq89dYra7zmwS2O4Zrz1/ht5g5QUfH/VjCIEkBC6cuofad9icPkNnucPKzoTZyl30koQL01V+da2m3J2RRCP6HYO2ZddiRp0ezdZlaFt2dBFSEblDKfCIiIgcQe2kJhD48OXHCNMZmyU0o5Q3vub1L+rxlkRYFhFmDWdPLBN1znJl6wqjUwmhangg6TAZn+V8tc3VnS0e2y7n09qyDh0a1pua0fAEod6knW4p8IjIHUuBR0RE5IgJbcDPGtp8ypWty1hVsxYnLI0TPvH+T3nR7UT9hNB40sg4vfIAG2WBhQ3iXsQ9ZcmlU/ezHBrGxRb/8WpOmBZk2Zh+4inqhqS/TBoqmskadQjMNK1NRO5ACjwiIiJHjJ/VEAJXnvswRbFFnhu7PXjg1Ek6gxtXZ7sRWxQviBrPhfEZ2njEpfUP0TvRZVBXtP0TxMMlzs7Wef9Owdb6NnG0zFJ3QF3tMHEx416Pdvc5mrpmV6M8InIHUuARERE5YnzeEELLsxefpC1ytiqH9SM+8dWvB7MX3Y6ZEfUTfN5warRE2jvD6nSTTlqSuJZXxSkby3dxsp0RVRMe2ZjhikCnMyRzLettw/LoFHG9QzPbYluBR0TuQAo8IiIiR0hoA6Fqqbe3uTq9TFI2bMYJy8OYN9z3xltuz/UTAJIAp0f3seVbmuI5XCfmAV9zdfku+hj9csLvrc1od3bp9U7SjxyTqiTpjMhCTTvbJPee2qs8tYjcWRR4REREjpBQzi/y+dylZyjLXaocdjtw98qYtLd8y+1Z7LAsIvKB88OTtPEyz00uk2SeYVNDNiQaLnF6ts2H8paN9U2iaIml7og832QWZ4zSDD+5SvBexQtE5I6jwCMiInKE+KLFz3Iub1yEqmK7gLbvuP/CveBe2n/brhND4zkxGNDtnmW1npJFU2JruCeKmYxPM2xm+HrK+9ZmWNEw7J0gChUbbcNwMCattqmKXQUeEbnjKPCIiIgcESEEfNFQbm9xZXqFpKxZs4R+z/HQvS+uHPWNuE4EQOKMM/272A1QNxtYYjxgnvXheQYOutWMh9emtNvb9Hqn6EbGRjml318mbguYbTFpW3zQtDYRuXMo8IiIiBwRofLgA1fWnqNsJvjcs5k6VkZdTp+6+yW3a0mExY4YODs4QRsNWas2SNKWcVtDOiTp9lnKd7jYBC6vbpFlY5ayAUWxQZVm9OOIerqBByYqTy0idxAFHhERkSMiFA2+qrm6fQkrSybTQN6PuWdlBZLey2rbOhFUntGgTzc7yY6fkbqC1DWcTjpUgxOMypyyznlkbReKlnH/NE09YScERt0BUb5BU1Wa1iYidxQFHhERkSPCFw1+NmNttkpc1KyFiH4PXnPXfbdUjvpGXCeGEMhix7hzmh3vcWFKcJ4Hsoid0WmGoaHbFLxrdUq1s8tgcJpuFLFeTRkNlonaHJ9vKfCIyB1FgUdEROQICI0n1J7J9gZ5sUMoPM8lGf0uvP7e173s9i2NwIzE4ER3hdql7NZbxJlnhZa2e4Iszujku2z4wIdXt+l2V+jHXXaKLVzWJwstfrZJHQIzTWsTkTuEAo+IiMgR4MuWAKyuXcY3M2azlu1ezNnBgP7g5Mtu35xhWQS15/RoDPGQHT8h8gXdqCFJBtAfMCxmVG3JBy5vYMSsDM5QllvkUcwoTWmn6wTvmbYa5RGRO4MCj4iIyBEQigafF6zn61C0zLwj7hn3nD4N6ctbv3ON60SE2tNJEvrZSbZCQUaBDw3n05RieJJhXRM1NY9sTKmnU4aDszg8G9WMpf4I10ypiwmTRiM8InJnUOARERE5ZPNy1C0hX6zfqRuuuA7DtOX1dz1w2/bjshiAGBhnK+wCbTMDV3MugmJwgsyMqJwyKSsurW3T752iG3VYr3cZ9sfETUEz22TatgSVpxaRO4ACj4iIyCELZQshsLO1Tlnu0lSwlkQsdR0P3P3a27YfSxwWOyICK52TtFGHSZgSh4pB3OKzZdJuj26RU4aap65uEccZo84ys3KHNskYJDHNdIMWmHmN8ojI0afAIyIicshC2eJbz+rGZUJdUJWBacc4P14i6oxu676sE2N14ER/iMUDtsKUqMkZJIHIZdAd0StKQvA88twGvmkY985R11OmFhhnGaHcoaoLpprWJiJ3AAUeERGRQ+arljCbsZ5vQtWw00ZkHcerTp6GpHNb9+U6EYRAJ4oZxmO2XU0cSoI1nMtiisEyPd9AU7ExLdnYmrA0OE3kHJvNjFF/iawtKGfbTFWpTUTuAAo8IiIihyiEQKg87XTKerFGVLZcjTJGacMbXvXgbd/ftfLUEYGl9CRTgybk0Mw4l0UU/RWyKCYqc6qy5JmrW3Q6S3Rdl41ym15nSOobQrHDROt4ROQOoMAjIiJyiELt5+t3NteoygltBetJwnIv4dype277/swZljpiWKzjydgJM1yds5SCz0ZEnQ5ZXuGjlg9c3iCOY4adk0zLbeooZZTGtLMtPFrHIyJHnwKPiIjIIQpViy8q1nbX8M18/U6RGWeGA8gG+7JPl0Y4jOXeAKPHtitwvmCUBlyIcN0xnaoimOfi2hZFWTHun6GuSybWMExTompKWWkdj4gcfQo8IiIihyhUHr87Za3YxIqWiXek3cCFk6chzvZln5bN1/GkkWMULbMTt7i2BBrOZBFVd0QneJq6oWkqnl7bZnlwDjA26l0G3RGpL6iLHSZaxyMiR5wCj4iIyCEKVUub52yW60R1yxWX0U8Crzl/377t09IIgNiMcXqS3IzaCkI54cIgoeotEbsEygrfVDx+eYtOp08vHrFRbtHtDkh9TZtv63o8InLk3ZbAY2Z/y8zeZ2bvNbO3m9ntLSkjIiJyDIXWExrP1u46VbVLqGAtSRmljvvPv2rf9mvOsMQRASvdE7QuZocZoZxwohPRdJZI04QkL3CR57HLG7goYpCeYFruUEcJoyTF51rHIyJH38sOPGZ2Afg24E0hhIeACPial9uuiIjIcRcqj68aNicb+DqnqoxZx3Fy1Mft0/qdayyLcCEwTPtE1mUaNbg2Z5SBuZS40yetGxoL1NMJl3cLlvvnaJqGacgZphlRlVPqejwicsTdriltMdA1sxjoAZduU7siIiLHVqha/LRgs9qCwjNrIcrgrvEyJL193bclERYgTSJ6bsg09VhTYm3FqW5E0x3RaT1V0+KbkieubDHunyYEY7ueMugNSXxJlW9rHY+IHGkvO/CEEC4CPwA8A1wGtkMIv/Zy2xURETnufNXiixlbxXz9zlXL6CUt956+C9z+LrN12bV1PDBwI6bOCNZCNeFCL6XqjkhxtFVLFkoefW6LTqdDN15ivdqm2xmQ+ZagdTwicsTdjilty8BXAvcB54G+mf2lG9zvrWb2sJk9vLq6+nJ3KyIicke7dsHRYjphlm/RVnAlThgmgdfe/cC+799iB9H8ejxL2RjvYnJKfL7LSj+m6S+RRDFpURLMc3V9i9ZFDNIVduucxlqGaUKb72gdj4gcabfj46MvAp4MIayGEGrgXwOfdf2dQgg/HkJ4UwjhTadOnboNuxUREblzhdoT2sDW7iahzqkr2MkiTvS6DIbjA+mDSx0OGHdW8N6YpvMRnqXMqOM+3TTBVS0VnqiYcnHWMO6foW0apqFimCS4OievZ8w0rU1EjqjbEXieAT7DzHpmZsAXAh+4De2KiIgcW6Fq8XnBTrlJW7XU3ogyx9nxEqT9A+mDZRHmA700I7Mu0zRgdUUcGgZpRNsd0akaCg+uKXlqdYel3gm8d+y0M0adAYmvKWc7CjwicmTdjjU9a6HdAAAgAElEQVQ8fwD8LPAu4M8Wbf74y21XRETkOAuVJ8wKtsoNXO3ZilI6Scs9J07t2wVHr3ftejyJQT8aMY1qAoGQ73K6G1P2lki9p64DWZvz6JVtep0eaTRkq5mRdbpkviEUuwo8InJk3ZYVkSGE7wohvC6E8FAI4RtCCOXtaFdEROS4ClVLW8zYzNexJrBqCYM48JoL9x9YHyxxYIYD+vGIwhmt8/h8wul+QjkYk0YJrmrAGtY3t6ldTDdZYtJUBGsZZRlNsUPpPZXW8YjIEbS/JWBERETk44TW4xvPbLpNVU9pasdGFLOURZw9dfbA+mFmWOqIQmCcLuM9zNKWNt/mRC+m7S7RiRxx0VAZxLMJF2cNo84KRV1S4hklCa7KKepcozwiciQp8IiIiBywUHlC1bA528aXOW0TKDrGmeEAlx3M+p1rXBbhMEbZMsHDLAlYXTAyT22G6w1I64YSI66mfHBzxqi7jA8RMwoGaUYWWop8osAjIkeSAo+IiMgBC/X8gqM71RZt5ZkRkaXGXSsnIDnYwGNphDPouJiO9ZikDWbgiinjTkTTH5JWNWXr6PuSR65sMegOMFK22pwsm6/jaapdpgo8InIEKfCIiIgcsFB5fJ6zWawT14E1OnSjlvvO3LvvFxy93rXCBREwjMdMXDvvYznhXDdh1h+TWAxlQxRKdrd2qCwli0bsNjVYwzCO8Pkuufe6AKmIHDkKPCIiIgcsNJ52NmMn3yQ0sJakLCWBe8+cP/C+mDMscUQGg2iJxreU6TzwnOknVP0l0shwtadyEOdTLleBXjpmWpe0FhgkMVbNqNpaFyAVkSNHgUdEROQAhTbgy5bpbIe6ntA0EbupY5x16B3QBUevZ0lEDCxly/jWk6ceX0w4kUXUcZdOmuGKlso8WT7h8e2KQTaibgOF1QzjhMw3zAqt4xGRo0eBR0RE5ACFpiXkJVvlNqGoaNtAm8KZpSEkvUPpkyUO54xhsoQFYzduIDSMQg0OQm9AWtXkZAxCzqOrOww7Q3xImPiSbqdH17eUCjwicgQp8IiIiBygUHuaacFmuUmoArukdGPPhZVTkHQOpU+WzgNPbI6eGzBx1fz2esZKJ6bs9Ul8oGog9SX5zoQm6uGsw8S34Fq6zgjljgKPiBw5CjwiIiIHKFSeUBRsVqu4JrDmYrqR597Tdx9anyxZFC5YrOOZuRofAqGYcKGbMOuNSImg8rS+Js53uVpHdOIhu21NoGaYpoRyQt421F6FC0Tk6FDgEREROUCh8TT5jGmxTWhhNYoZJ8b502cOrU/mDIsdMTCIlwjALA2EYsqZTkTRXyJzYKWndEanmPLBWUs3HpBXDa0LDOKYpKkp6pxp2x7asYiIXE+BR0RE5ICEEPBFw6TcpS2nVHXMNHOMuh26/eGh9s0SRwSMsxOE1jNNPb6YciIx2igj6aS4vKGIIgb1/AKkw86QxkfkNPTShE7wzPJdTWsTkSNFgUdEROSgNJ5Q1GwX2/iypvEBlzhOj0bYIRUsuMbSiMgZvXiIC44iafG+YWg1cWT4/oCsrigsJQ0F+c6UEPXxPmaGJ44DXQu01a5KU4vIkaLAIyIickB85WlnOVvVOr4K7FhCJ/LcdYgFC66x1OEiIwK6rsc08gQCVuWc6cSU/QGJh6pxRG1JnE/Y8R0i12U3eAI1gyjBFxMmTaMLkIrIkaHAIyIickBC4wl5yXa+StTAWpTQjVvuOXPPYXfto4ULMHpuSE6BxTGUU+7uJUx6IzIglIEmeJJyxodL6MQ9ZrWnDQ2DNCGpSsq2IlfhAhE5IhR4REREDkioWnxRMC22ab1jzSUsJY7TJ04edtc+UrggMui5IQHPLIZQ7LKSxdTdAZkzKFqqyDGsJjw2bejGXfLG07jAMElIQsOsnGodj4gcGQo8IiIiBySULdNiQlMXNLUj7xjjrEN/MDrsrgEfLVwwTJcIwcjTgG8qll1LE2VE3Yx4VpNHKb16yvq0JEkGtN5ROUgjT98iinyXXOt4ROSIUOARERE5AKH1+KJhp9zB1w11MOLEODVewqWHW7DgGkuj+bV4khG0gTz2NE3NyDVYFOP7fbK6Ig8xkS9J8hnT0MX7hJkZ5lp65vDFLrlGeETkiFDgEREROQCh9vi8YLtYpy08uy4ms5a7Tpw+9IIF11jicLEjCSmZpUyjBh88rik4k0YUvT6Z95RNgvmKKJ+w2iQ4lzJpwYeKYZpgdc5OXeBVuEBEjgAFHhERkQMQao+fFmyXa0QtbEYpvThw9+kLh921j7AkwoDYjG7UJw8lLsvwxZRz3ZjJYEgWPNSBhsCwyvlg7slcRuGhpWGQJMR1TVEXmtYmIkeCAo+IiMgBCFWLL0t2y3V8MDYsZpw4Vo5AwYJrLFoULgD6bkjtK+okIhQTTqdGmQ1I4hg3qyjjiH61w8U8EEddiibQRo5uZPTMmBUT8lYjPCJy+BR4REREDoCvWuoyp8hn1LVjN3OMuj2Gw6NRsOAaSxwO6McDsMDUBUJoGFtLG3dw3ZRkWpFHGXE1wdqagoyqNWoX41zJIIooi4lGeETkSFDgERER2WfBB3zRMKl2CHVNE4woMc4Mh0RHpGDBNZZGOINhOiZ4zywNNHXDctQSLMb3uyR1SxliYl8TTadstxnBRxQuAmp6Zvh6wrRpDvtwREQUeERERPZbaDx+VrFTbtHWLROLyFzLXStnjkzBgmssccSxo0OPKDimVLQEslBzIoJiOCANLUWbYKFkUE95tkwwi5gR0/qCQZqSVBXbda7CBSJy6BR4RERE9lmoPX5WsFlcgRq2og5957lw6uxhd+3jWBLhIiMKMb2oS+5nWJYQyinnugm7vRGpbwml0Rr0y5xnCocjpmwN7wKDOCZpG/I617Q2ETl0CjwiIiL7LDSeUBTszNYhGGsWs5Q6xuMTh921j2ORQTQvXNBbVGojTgh1ztnUKJIucTovXFDFMVm5S2OO0ifM6hYfpSSuou9iZvmEma7HIyKHTIFHRERkn4Wqpc1zpvUube2YpcYo6zAcLR12127IEoezeaU2rGUaAaHlhGvxcUbUSUnyeeGCqJpAXTENGWUTaOMMZzVD5+aFCxR4ROSQKfCIiIjsM583zKopTVlSeSOkjhODAWlncNhduyFLHBHGIB5CCEyjQNPULMctWErbz0iqhtwyIl/SrXJW64zWQxknBEr6cYxrcnbr6rAPR0Re4RR4RERE9lHwAT8r2a138FVDYTGZ85wbr0CcHXb3bsgljig2em4IPjCjxBsMrKGL0Qz6Hylc4HzNUjXl2Soh+EBJB+/LeeGCumZLhQtE5JAp8IiIiOyj0Hh8XrFVrBEq2IlSOpHn/KnzYHbY3bshSxxR7IjJ6FjK1M/wUUTUVJztROx2eyS+JRQOiwJpMWMWMirvyBuPd0Y3MjLvyauZprWJyKFS4BEREdlPjcfnBdvFFcwba1HCKIbl8cph9+z5xQ4XOaIQ0Ys6TNsc0hTagnOZMUsGxJHDZjVFkpLk25iLmDURee0JcYeYKcMoIS8mzFSpTUQOkQKPiIjIPgq1x+clk2KTtjV244hRkjEaDg+7a8/LzLDYiMzoRQM8NVVkEFpOR542TnHdlCivKOKUuJ7h2pqdNiOvG0LSwaym7yKqckreKPCIyOFR4BEREdlHvmyoqpyiLCjbiCoxlvp9+oOjG3hgcT0eoO9GmAvs0NI0DSeiFrOU0EtJi4qpdYlCyajKuVwlNG1LE/cIoWIQJ0R1xUY1O+zDEZFXMAUeERGRfeTLlmm1S6hqCjOyKHB2PCZKe4fdtZuyxM1HeOIBEMhDhTcYRw0xCVWvQ+pb8jYlCjW9esZ6k1E1LYWleF8yTDPSpmKnLlS4QEQOjQKPiIjIPgkh4Kcl2+UabRWYWkJmLWeXz0AUH3b3bsoSh4uNjnWJQsTM5/g4IvE1K5kj7/ZIQovPAeeJiwkW9dhtPIV3BBeRRQ2ZR4ULRORQKfCIiIjsl8bTzgq2iquE1tiJOvRj49SJ04fdsxdkiSNKIlyb0nUJRSjwzhGFhvOZMev0iCxgRaCKM5J8h+BipnU0X8cTZ7gwYynJyIsJudcIj4gcDgUeERGRfRJqT8grdqfr0Brr5lhOIoajo71+B8Aih4uMiJiu6zBrS0Icg3nOxJ6GDlE3IZqWFEmHuJzScZ7VKmZaVljaw0LBMEqoqxmTRhcgFZHDocAjIiKyT+bX4CmZVhMqbxQdx7DbZXjECxZcY4kjArrRAFxLHgXapuFE5HGW4HsJaVEwiTpEoWJY51ytU6qmoo0HhFAyTFPipmGzyg/7cETkFUqBR0REZJ/4oqUsp/i6pAxGFMHJwZhOb3DYXXtRLIlwFui5ARhMmgrvjLGrCS4jdDOSpqVsEqJQk5UzSuuyW9WUUYc2lPTimKSu2a5zggoXiMghUOARERHZJ75omNa7tHVD7mKyyHNufAKLO4fdtRfFEkccOfquj1lgWhe0UUyfmk4Sk3c7xHiaIsLhccUUF/XZKluKEIHFxFYwsIhZMaXQOh4ROQQKPCIiIvsghICflGzlV/GVMY0yuo55wQKzw+7eizKv1OZIyUhCRB4KfOyIzXMqMfKsR2we8pYmTYlnO8RRwmYFZR3mhQuYsRRn5MWU3KtSm4gcPAUeERGR/dAE2rxgp1wleNh0CePIGC6ND7tnL5rF88BjbUzXJcxCSXCOKDLORQ21y7DUYUVDHqek1YRubKwWjlldYmkf8zmDKKGtS3bq4rAPSURegRR4RERE9kFoPCEv2Zmu03hjx0UsdTIGd0jBAgBzRpQ4XEjpuIzSlzTO8N5zOg0EUkIvIZuV5FEH1xYM2pLNNmO3mGHpEiFUDLOMuKnZKGeHfUgi8gqkwCMiIrIPfN3ii4q8nlD4iDaGcX90RwUeWKzjMUcv6hFcIG9rQmQsuxYsJXRSorYm9xlxqImLKVHcZW1W4NMh3pf0EiNpWrZrVWoTkYOnwCMiIrIPwqJCW1PV1DjiFE4Pl0g7/cPu2i2xJCIy6FoPM8+kLmjjmOVofnHRupsRe09VxkS02GxGiDpsljUlCbgIF2YMo4RJMaPSOh4ROWAKPCIiIvvAFw2Taoe2bsmjhI7B6fEKRPFhd+2WWOKIYkeXRaW2Zr6Op+s8AwdVJyOmJZSBNkmI8x16cZ+rRUvReIg7uDBjFKcU5YRJ0xz2IYnIK4wCj4iIyD7wk5Kt2WV8bexEKaPIM1peOexu3bJ5pTYjJSW1mJkvaZ0jiuBU5KktwyUOmzVUaUpSTumnjtXCmJYFlg4xP2MpSmnrhi1dgFREDpgCj4iIyG0WGk87K9gu5hXatqOUcRoxHI4Ou2u3LpoXLjC/qNTmC7wzzIzzGVSk+CwiLhqKuEvcTMnahiIkrOUTXDYm+JJhlhI3NVtaxyMiB0yBR0RE5DYLjScUBdN8gzrADMco691xBQsAzIwoi7GQ0XUZpa+ofQNRxKl0XriAXkJSlUysRxxqoiIniXtcnkwgG+NDTScOdFrY1giPiBwwBR4REZHb7FqFtlk5pfQxIfWMB0v0+4PD7tpLYrEjtZiOJZiDWV0Qkohl10Cc0XYTXGipyojYWlw+xcU91mYljeuAOcznDKOY7XxK48NhH5KIvIIo8IiIiNxmoWgpixlN05C7iCz2nB2NidLuYXftJbHE4czo2QCLFpXaophl5wkW06bzwgW+MLxzRPku/aTDc3lN0XqIMxw5oyijrnN26/KwD0lEXkEUeERERG6zUDTs5Ou0tSd3MX1njMcnweywu/aSzAsXODrWwSwwqUtC5OikxtgF6jgjcuDzljbLSMtdBkmHtdIzKXMsGeDCjKUko60bNipdgFREDo4Cj4iIyG3WTiu28+fmFdpcysjB0vLyYXfrJbPYEcVGEjJS55j5Gh9FmBlnUk/jY0IaExU1VZwRVzNiAiGkXJ7szAsXNDlLWRdXt2zVCjwicnAUeERERG6j4APtNGenWKPxMIlTRlnKoH8HVmhbsNjtqdSWkvuCloBFjnNpoA4JbeZIy4pJ3CcKFa4siaKMS7sTXGcZH2riqKEPKk0tIgdKgUdEROR2aj2hqJjMtqmDURiMuoM7skLbXlEnxvmErkuoQkNZ5linw6m4AZfguwmuaZk1CQkNVsxI4h4XJ1NCPC/W4MgZWMxWPqP1/pCPSEReKRR4REREbqNQe3xekVcTihBhSeDkcInuHVqh7RqXRESk9FxKwDMpZ5CmLEctIU4hS4hoacoYDKJ8h2HW5/K0orYYopQozBjFHdqmYkvreETkgCjwiIiI3Ea+bCmLCU1dU7iYjgucWlrBxclhd+1lscQRRxFdOrjYM2kKfBQx7jgMh3cJEYEwbWjSjLSY0E8ytquWrbzA0gGEGeMkw9fN/8/encVqnt93Xn//tv/yrGervdtd7fbSjrPZcRAQaWDgAjIMXKAIIchwGWmQEMxEQnCDuIELRBgyijQoCuIiHoKQhZgBKcMFmQSUIXESj51x7Ha7l+rqWs/+bP/1t3DxnC47trvdVXW6n1q+L6nV3dXP+Z/v75TqnP48///v8+NEAo8Q4mMigUcIIYQ4R7HxzJpDgo9U1jE2MN7a2fRYj005jTaGLBYYpai6lmgNTmt2M/DaQqZJbcBnDtdXGG1RaG4uTtHZFLolk3KA9onTXvbxCCE+HhJ4hBBCiHMU65758g4hGGbaMTEwmW5teqzHpqzGWoVNGZnWrEJLUAqlFZezRJ8sMTe4tqNzI4xvUH2PUo7b8wU6Pysu0D2DqJh1zaaXJIR4TkjgEUIIIc5RWNYs6yP6GGmsZVqMGI2f3oa29yir0c6go6Uwlib0xL5HFQWXnccnR8wUrvcsU4GjRzU1ZTbgxnyGydehT9MwsY55W+Oj3/CqhBDPAwk8QgghxDlJIZGqlmU7p0sar2AyGDIePd2FBe8xhUGFdXFBrzxNW6GLgl0TUTaDzGJSpO0MWkVMs2KUDbm7aghmAMqsiwtMTt/3zGQfjxDiYyCBRwghhDgnKURi01G1KxosykQujLcoymck8OQGjaVQjqAiy2YJRcF2DkppkssgRUKTCNbimgWFyan7wEFdo7IRKlaMz4oLjtvVppckhHgOSOARQgghzknsAn3d0HtPYzQDA9tbu6DUpkc7F8pqrM4pkkMrWHYNyVom+bqKOhmLMYlURfosx7YrnMlRwDuLBSafkro546LABs1MiguEEB8DCTxCCCHEOUlNYFkfE/pIZRwTDaOt3U2PdW6U01hnyFKGMZrKt0StsFqx4zQ+KGJuMW2PtwWur1BJoTC8O5+jsi1ibMltpEyKed+QUtr0soQQzzgJPEIIIcQ5iU3PbHkXH2ClM8bWMt3a3vRY52ZdTa2xyZFpy8o3xBDQec6lPBKwxMxg25baDLD06L5h4DLeOp0/KC5QqWKkHMu2ow3thlclhHjWSeARQgghzklctsyrfbqU6JRhUg4Zj8abHuvcKKMxmUZHR2EVtff4vkMVJVdcxBtLyhQ6JpqQYfGoqmKYDbmzWkC2DjxWNUxcRtP3rHopLhBCfLQk8AghhBDnJCxrVs2MNil6rdgaTp6Zhrb32MKgg2WgLT2BuqnQZcFuDigD2qAV+MYQtcG2SzJbEoJnv41oN0SFipHNwEdOO9nHI4T4aEngEUIIIc5B8pHUtFTtgo4M7SJ7kx1slm96tHNlCouKjlw7gkpU7QqVF2zlBp0UymUkIrEJROvI2hUWCzHy7mKBzqekbsaoyHFBcyLV1EKIj9i5BB6l1JZS6itKqdeUUt9WSv0L53FdIYQQ4mkRfSDUHW3f0hrN0CQmWzubHuvcKaexJqdMDlRi0SxRecYkM2A0CYXKLKkJeJdjuyVGrVvdXj89RWXbRF8xcBqXNHPfEmLY9LKEEM+w87rD8+vAP0opvQr8DPDtc7quEEII8VRIbWRVz/A+UGnHRCsm289OYcF7lNMYm5EFhbWaVd8RYsDlGdNM4yPETOPals4NcbFDh0RpLW/N1tXUAJqakbZUnacJzYZXJYR4lj124FFKTYG/AvyPACmlLqV0+rjXFUIIIZ4mqfHM5rfpfaJWllGWM5k8g4HHaoy16GjJjKPqG0Lv0WXJZRfxWJLTqM5TkWPxmK5hYAr2Vwt6uy4u0DRMTEbd9VRSXCCE+Aidxx2el4ED4H9SSv1TpdRvKaWGP/gipdSvKKX+VCn1pwcHB+fwaYUQQognR1i1zFb7NAl6Y5iWI8bjZ6eh7T3KaKxbV1PnxrDy7bqpLc+5kic8GoxGKUXfWVAJ06ywJif5mqOQoXSOjhUDY9FeMZN9PEKIj9B5BB4LfBH4eymlLwAr4D/7wRellH4zpfSllNKXLly4cA6fVgghhHhyxGXDqjmhR9OrxNZwymj47AUeAFNaVDAMjKZP0LQrdFmyO7AopcAolIbQQjQW260wOicmz83lCp1PSP2cUZFjkpamNiHER+o8As8t4FZK6Y/P/v0rrAOQEEII8VxIKRFXDVWzoMOgnGJ3ew9tns0yVFMYVMzIlSYAVVuhi4KJ02it0MaSNMQmEm2Oa5ZY5XAkvnM6R+VbxG7OMHPYoFhFTxe6TS9LCPGMeuzvxCmle8C7SqnPnv3Svwp863GvK4QQQjw1fCI2LXVfUxvH0MB4+uzt33mPyQ1GOQY4kk4sqwXKOaZljkKRIsTMopuOPhvgfI3BUBjFm6cLTDaFFLGmY2jWxQW1l7s8QoiPxnm99fQfAX9fKfXnwM8C//U5XVcIIYR44sUu0FYrfOdplWViFNOt3U2P9ZFZFxfkuKiwxrDsaoL3FIOCsdOEBGQG3bY0psDhMX0gU47TZkFl1k1t5qy4oG2DBB4hxEfGnsdFUkpfB750HtcSQgghnjax8Zws79GFRJtpdrOSyXRr02N9ZJTTWJujQ6JwlmXfEnyPKksuFfBGrci0AaD1GZqAbhtslpFCw74fcFUZVFxR6DFEzaJfcXnD6xJCPJuezYeLhRBCiI9RbDzz2W0aoFeayWD8TDa0vUcZjc0dJhgyY6h9g+86dFFweWCIEbAKBfjekJTCdSuMzoi+5nbtUdkYujnDPMNGxaxriCluemlCiGeQBB4hhBDiMcVlw7w5pU2KoBU7kx0GZbHpsT5SJjfo5CitpQ2Bpq1QZcleYdAKEqCMwbeRYHNcu8KojEwFvjNfYbJ1ccG4LDBR0aRE4+UAUiHE+ZPAI4QQQjymuGqo6gW9MiSn2NneXdczP8NsaSBYSqWIylK3K3SWMS0cSoNV4J1FNZ5gHa6rMMpRaHhrviBlY1JoKUyiUI5aiguEEB8RCTxCCCHEY0gpEauGul/SqHVD22RrZ9NjfeRMbtEpo1TrkoJlswBgOh6gE6QEWINpOjo3wqUOGxQaRdNVLNQEAK0qhsbS9YnKywGkQojzJ4FHCCGEeBwh0dcVXddRG8PIWsbPcEPbe3RmMCbDBY11hkW9IqVEORwwyhSRRLIafE+ncgwe23uMskRfcT+u9zipWFFoRfSaqpfAI4Q4fxJ4hBBCiMcQO89scUDXR4LWjIqSyWSy6bE+cspqrMvRPpFZx6prCd6jioK9UU7wAWU0Cei8gRQwXYPBkmLDzRq0HZLaGcM8QwdFFXr62G96aUKIZ4wEHiGEEOIxxCYwO3mXBkVAsT2cMh0/L4GnQMdI7hyVbwh9hy5LLg8ckQRaobTB9wp0tm5qUxlZavjuvEXn03VxQVFgoqaJyD4eIcS5k8AjhBBCPIZY9czrIxrAa83udI88O5dj7p54rszQwVBYS+sDdbNC5Tm7hUWphCYSnSU2geCys6Y2R07gVlUT7JjUrxhmhkxbms5T9xJ4hBDnSwKPEEII8RjCqqaq1g1tWMX29oVNj/SxMbmBaCm1IQB1u0IpxXQ0xCTQKRKNQzWR3uS40GAxkCDGmuM0ARJatRRKE4KWOzxCiHMngUcIIYR4DGnVsmpXdMpQOsV4a3vTI31szMCikmOgEh7DqlkBsDUZoHUEBclYdNfS2gEWj/Prj+27hvuxBEDH1YPigtrXpJQ2tSQhxDNIAo8QQgjxGOKqpe1qGmMZuOy5qKR+j80tWmVYHzHGPaimHgxLcudI3qOcIcWETw6TerT3GAw21rxR5yidkbp1cUEMij4F2tBueGVCiGeJBB4hhBDiEUUfWMyPaEIgaJgWA7am002P9bFRVmNNjomJ3GUsmooUI6Ys2RkPCb4Ho4hK0QcDGFzfYJIhVw1vLT06mxC6GeMix0YlxQVCiHMngUcIIYR4RKmNnM7epU0KrzRbo23Gw8Gmx/rYKKuxWYHykcxaKt/h+w5VFFwcZCQ8SoHSitBG4nvFBTpDxYaTztOYMambMyoKDEYOIBVCnDsJPEIIIcQjSq1nNrtLkxTRaHa3LmLN8/Wj1ZUF2kOeObrQ07Q1SmsuTAYQQeMJNiN2EI3FdRWWDGIAeo7iCGIgMx1WQfRGmtqEEOfq+fquLIQQQpyjsGpZrGb0JFCG7Z3dTY/0sbNFDhEG2tGHRNUsAZhOBliTUMkTbYbuelpT4lKHjYoUEyHU3AkjAFRYUWhN8Io2tvjoN7ksIcQzRAKPEEII8YjiqqNulvTGkjnNZOv5CzymtOjkGGhNQFO168CzPR6itEYHD9aB7+l0gYkB6yOktD6AtClQSpP6GcPMEYImpST7eIQQ50YCjxBCCPGIwrKmbis6pRlkOZPnqJL6Pa6wKOXIgkfp7EE19WQ8wOQZyfdgNDEkPOumNusDJmkyGt6uIsqOiO2ccVmiQ6KNUPWyj0cIcT4k8AghhBCPqJnNqPoerw3bw+Fz1dD2Hp0ZrMlRfYczBfN6XU2ty5KdwQB8jzIalMJ3kGy2bmrDQWjoY2KuRqSzpjaFIkUrxQVCiHMjgUcIIYR4BNFHTk9u06KJOrE9ucC4zDY91sdOWY2xBToGcpez6hqC9yhj2N2aEGOHUjoo2mIAACAASURBVJGkLcFD0I6sW2GVw/uGlBLHaUTyDYVNKMWDA0hjiptenhDiGSCBRwghhHgEqQ2cnt6hRZGU5uLuJZRSmx5rI2yxbmorsowueJp2fXfm4tYQRcTQE0wGbSCYDOdrdDIQPYqOd/p1cYFOFYVS6308JBrfbHJZQohnhAQeIYQQ4hGk1jOfH9IRCdow3d7b9EgbY4sBhEhhHb1PrM6a2rYnI7RWKN8RXY7qehpbYFMg84kUE5lq+W5TgFKkfs4wzwh+HRzlsTYhxHmQwCOEEEI8grBsqeo5QRnsc1pY8B5X5pBgaAw+JeqzpratyRCcw4aGZDNiTPQ6x8YeGzQqRnJabneWSE5sThgVBX0fUMnJeTxCiHMhgUcIIYR4BHFVU3VLeq0ZFjlb289z4HEoHC4GUI767JG27ckAbA6hQxkDMRKSAaVwvkMnQ/AVCjhlTOwWjMsSUiIlKS4QQpwPCTxCCCHEI/CLimXf4w1MhxO2x+NNj7QxpjBoMkzf4eyAxVlTm3GOyWRCDB1KQ0rrg0WTybB9hUmG4BsicBAHpH7JKLcAxF7jk6cN7QZXJoR4FkjgEUIIIR7BydE92ghJKS5sXyZ3ZtMjbYyyGmtzVGjJ3YBFsyKlBMDe7jbKd2jtCSYjtIlgLXlfnzW11RQ68WY3gBSxVDij6f362nIejxDicUngEUIIIR5S9JHj/Ru0aIJWXLlwedMjbZRSClPkaB/IXEHrA0273n9zaXsMBEzsiMahe09jC/LosQGIgdIEvtuUJCC0c8Z5Tt8nrJLH2oQQj08CjxBCCPGwOs9isY8n4lXGdHt30xNtnM2HKB/JncXHSHVWXLCztS4u0KEhuYLkI73JMbHHBU0KEZ0aFgyogyW26+KCquvIVS53eIQQj00CjxBCCPGQQh1YLGf0KLTLmUx3Nj3SxmWDAlJiaDJ8iKzO9vHsjIdwtmcnuQxCxCuHSREbQMWI9zVJaU5iSezmjIocgBgMXezoY7/JpQkhnnISeIQQQoiHFJYNy3pOUJphmbG98/w2tL3HlQMASpWIWJrurKltWBBcifYtGE3sIyFqotFkoUVHg/cVWsHdOCB9X+B57zye2ks9tRDi0UngEUIIIR5SXNUs+xavYTreYzrINj3SxrmBQ2HRfYfRxYPDR61WDLcmpNChLUTlCD0Em+G6GqsswdeMrOaNdgChp9Ad1hp6Dwolj7UJIR6LBB4hhBDiIS2PD2lDImm4dvEqWsuPU50ZjM4wft3UNq+XD/7b3t4uybdoeoJx0EV6ayl8i40a7xtKk7jVDfERQnPKMC9YNS2lLaW4QAjxWOQ7tBBCCPGQDu+9RYciaM3lvee7oe09SilMXoBvyd2Qpu/o+vUZOpd3t4kKbKqJJkP1ntYUuBiwHgielHo6O2HeQ+xOGRc5lfcUKqfxDSGGzS5QCPHUksAjhBBCPIQYIqeHd+lJeJ2xtSsNbe+xeYnyHbkb4ENi1a6LC/a2RihrMX1FcjnJJ3qTo+mxad3U1ocary0nISO2M8ZFQUyANySS7OMRQjwyCTxCCCHEw+gii9kxAQUuY7olhQXvsWUBMVE6iw+Rqlk/irYzKkkux/QV5Dl0kaAsOiWcT6gQCb6hNIp3+pLUzRiVBQAhKBSKVb/a5NKEEE8xCTxCCCHEQwh1x7w+JShFORyxPZ1ueqQnRnbW1FYoRYzqwVk827mhG4wx3YrkLCGu/3twGUVfY1g3tY2s5u1uQOwbCuUxzrFqWgpbsPISeIQQj0YCjxBCCPEQ4qJm0bUklZhuXWSY202P9MRwZbn+u+/QqqA+CzyZVgwmUwg9RnmCzqCD3jqKvsVERfA1mVHMmFD7SOrmDLKMZdMytEMa3xBT3OTyhBBPKQk8QgghxENoZguaGPE68clLL256nCeKGxSARocea0tWzffuyuzt7hBCxNAStCN1gd7as+KCdVNbSpHWTDjtArE9YVQW1CFQkJFIUk8thHgkEniEEEKIh3B87018UgRjuXLx4qbHeaJorbFZgepbCjegahv60ANw6eIukYSlIdoM1UVak2OjxyYF3hNiR7QFB50hdjNGRUGfQHnZxyOEeHQSeIQQQoiHcHTvFp5A0I7pzt6mx3nirJvaWvJsSN9Hqm4dUi5ORySbYbsVKctRXaQ3GRqPS5rkA31sGDnDza540NQGULUdhS3kPB4hxCORwCOEEEJ8SDFGTo7u0QHB5exu72x6pCeOKwoIHWU+oI/xQXHBTm4J5QDdLaHMCH0kJU0ymrwNqBgJfcXAKu74IX27JFcRk2Usm4ahHVL7WvbxCCEemgQeIYQQ4sPqIifzExSKbLzLdFhseqInji1KIJJj1k1tZ/t4dnNDPxjh2iUqs/jkoFf0WUbpW0wyeF+jlaJ1U07bDhuWFHnOomkobSnn8QghHokEHiGEEOJDCnXHom8IJC7sXMRa+TH6g9xgXU3tkkclR9WuA09uNMVkSowRrXuCdkSf6I2lCD3Ggz8LM42ecNIGYrvex9MmyIIBkH08QoiHJt+phRBCiA/Jzyta3+NN4jMvvrzpcZ5I66Y2ML7H6oL6+5radvd28CHh0opgHLqNtC7DpICLiuAbYgrYYsztOhLaU0ZlQZMSoesobSmBRwjx0CTwCCGEEB/Syd138FHhteHFK1c2Pc4TybkSZTTGd2RuQN19r6nt2oU9goKsXxGzDNUmep1hY48NQN8TYsfQOe50Jb49ZZRlYAzLumFgB7KPRwjx0CTwCCGEEB/SwZ238SSiMWzt7G56nCeSUgqTr6up82xI23U0vgHg4mhAzDJMV5EGBakNBGVJFopekXqPDy1WK1Z6xGw5I1cK63IWTc3QDWUfjxDioUngEUIIIT6kgzs38SkR3JC9rcmmx3liubxYV1PbAb1PD/bx7OSGWA7RzRJd5oSgSWi8c5S9R6VEOKuebs2E07oiTw1ZnlH1nhwHyD4eIcTDkcAjhBBCfEhHs0MUoKcXyaSw4H3ZoiTRkducFBX1e9XUmaEfjFFdi7KJDovqoHOWMvbYoOjP7t6kbMK9xpO6GcN8XVwQO09pZB+PEOLhyHdrIYQQ4kOInWfZVAQFVy59YtPjPNFcWZIIuKRQyT64w1NajZtOIQW09kTj0FWkdxk2RmwfH9zhyfIp96uAb44ZFTkt0LcNQ7c+jyfEsMEVCiGeJhJ4hBBCiA8hLDsa7/EGfvLlVzY9zhPNDkoAXAposgeBB2BvZ4c+QtYvCFmG6hKdcWgVcEERunVTm8lKlilnUZ0ysIbkMqq6YpSNSCSqs2AkhBA/jt30AEKIhxdjoFksqBcLYgwY67DOYZwjHwyxWbbpEYV45iwP7uJDIhrFy1cvbnqcJ1qelaA1xrdYM6DtKvrQ44zj2vaEb1hL0S1YFnuk5YygHZhE7hULv25qc6akNSOOFydcu6KxLmPVrLigCzSaVb9inI03vVQhxFNA7vAI8RTxXcf8YJ+Dd26wODoEICsKUoo0qyXL4yOObt1kdXpCSmnD0wrxbLl34w18Am8tu9LQ9oGMzdFOo31HcdbUVof13pxLoyEpz7D1kjQqCF0CNMEq8i49aGoD6OyEw+WcjIDNM5qU8H3HwA1YdssNrlAI8TSROzxCPCXaquL0/l0AytGYcjLB5cVfek3wnsXhAcvjI9pqxeTCJaxzmxhXiGfOvZtvkFKiy0eMSrmL+kGUMpjcEVcteTFiVXmarmaSTdgpHGEwIs2XmFzRYylbRZs5hnVEh4j3FWRbuHzK3eptjJ9T5AVNgr5pGOZD7vf3H9w1EkKIDyKBR4inQLNcMtu/h80yti5fxVhLH3r2q31a3+KTJ6ZISIGszHDW0c9X9LduMr1wiWI02vQShHjq3T/eBxJ6Ww4c/TBsXtLNW5zJAcOqXcDoEtuZwZcj1OkpVnu8sag64McZBR2uT/izu0Em32I2i6yqY4bFSxxoQ980jEbb3Oc+y37Jttne7EKFEE88eaRNiCdcNZ8x27+HKwq2r16jSS3vzt/l9dPXOagP6GKHQpHpjKEbElLgVC05Gbbc6u5x8/br9E2z6WUI8dRbLBdEBS+8+MlNj/JUcEVJpCdTDh0dq7PigqFV2PEYosemnuAcNOCNRquI7RPhrMY6uBFgOZgfUxpFcBldU1PYAqssy14eaxNC/Hhyh0eIJ1g1O2VxdEg2GDDc2+Xm4l1WfoVVlu18l4wJVlus0VityIxGa0UXOhbdghN3zP2771Dd+BqvfvJnKbLBppckxFMp9pGu7whG8bOf+symx3kq2EFJosclBdHQNCtiimiluTgZMTMW1y6pigE0NUE5cImih6pviMmjlaUzQw7mR+xe05gsp141BN8zykayj0cI8aFI4BHiCdU3DYujQ/LBELcz4e35DVrvKdQOOg05rhMp9UD/lz6uzAyXJjm75S675S5jM+K7N7/JN978E169/jNMy63NLEiIp1hzOqcLiWjgcy9c3vQ4T4UsK0ArXOoxpsT3DY1vGLgB16ZjDqxjUi8Iw23izEMyRKPIWwXe42NHZiwqm3Jvfp+fUWCzjHYJXdMwciNO21NqX1PactPLFUI8weSRNiGeQDEGTvfvrffqjC035jeYVR7fXKBtB6Sk2C0cLw0yXhlmvDTMeGHguFhYfAjcOKx482DJoum5NL3CT1//OVSIvHbzG+xX+5tenhBPnftvvUZMit46tsbDTY/zVLAuRxuF7jpyt25qa8/a1y6PR8Qig77D5IYei2kUfa7JPKSuw4f1o7i22OKkblF+hXWOhvUbQgO3vmO96lfvN4IQQgASeIR4Is0PDojesxombi3vcbww5OkKO6bgldxyPWl260BReezKU6w8wyqw3URejporWtO3nhuHFe8eV4xH23z+hZ+lDI5399/isD7c9BKFeKq89fo/IxHoijFKqU2P81QwJkdlBhU6clfS9/5B4NkZFKSyAN/hbFgfPFpDyByZ1tjW4/26uMC7LRJwf3ZIaQzeZfRNg9OOwhTyWJsQ4seSR9qEeAwxJhatB0Ar0EphtKJw5pGvWS/mtKslVRm5Uy0J3Yg9t8dlNKOkoE+o3KBHDp1bMApiIsUEIRGrnkkTGGM4DYH9eYuPiU/sbPFifZ13Tm5wd34brTQ7xc55fSmEeKbt37u9/ofdFzY7yFNEKYfNDKHu0apER0vVLmEIu7khFCNSPMXh6ZxDNT1hx5DpnqyP+LM7N72d4lDcmx1ydfICsyzHN0tiDAzdkOPm+MHeICGE+FEk8AjxCEJMHC1bbs5qlj4CZ4EHsEqxVzquTEuG+cP9EfNdx/zwgKVuudO19M2AT7pdLqExRmPGGXrkfvgdZq1471d0aUk+Elc926seU/XcnzW8HSPXtne5XFccrmbctXcxyjDNp4//BRHiGTdbzonAy5/+/KZHeWoopTBFSTjtsMagkmPZrO/GDIwiL0qC1bi+ZjXISMuKkDToRNYl2m4deJI2GDfk3ZNDXrmuUS6jr9O6ntqNOGqOqPqKUSb1+0KIH00CjxAPIaXE2ycV78wa5t6TZYatcYbRipgSKUHrI68vGu5UHS8Mc65MS8rsw93xmR8esPQrbtuOvir5tN7jgkvogYeRIag50TusnXzgYzXKasw0R48c06MGs2y5c9JyM8KF8ZTdeWQZIreXtzHKyP8oCPFjNG1P0vDzn31106M8VVxZ0qQjchxES9+3Dw4LvTQesq81w7bGDyb402OUN8TMkFeKWdcSYofRGTqfcrI8wKDWxQUJurpmuLODQrHsl/J9TAjxviTwCPEh+Rj56t0Zd1cdk8Ly6u6YS2XGxBoUEBIEEm1M3Bt33Jk3fHNW8e6y5acujNgZ5R94/Wa1ZLY85p0wJzQTPkXBWL9GpwJKj6H93mniSlmc28K5HYx5/+sqo7EXSsZO8+Ks4fZxw+HUsWUzJk1kPg7cXt7mla1XsFq+HQjxo4Q+EEMgaM3nr8pjoA/D5SVR9WQoNBnBdzShwRnHi1sjblrHKHSYUtFHzaCJ+ByyuYauxccWozOCnaLjbU5WK5R1+Cyna2rGSjN0QxbdgstDac8TQvxo8sCrED9GFzpuL4/5h2++wbeO3mGaH/LKZMaAI1btffar+8y7OQlPrjUTa/jMsOTnL0z4icsTKp346r05h8v2fT9HSonZwX3eWN7DLwKfXN1lEr6GtYeUMTFYVgyrwChuMciuYu2Qrj9itXqdun6XlOL7Xlsphd0uGO4NuFI4+uOOhRmCj+yEESEF7q7ufhRfOiGeCXdf/xYxrTfUO/Po+/OeR87lKAum73FmSN/1D4oLLo6HUGTQ9zgd6J1DNRBzh1UWXTf4s9d2bl2nf3d+QKYU0eX4tiXGwDgb08XvNcAJIcQPkrd0hfgRUkrMuznHzTHvLGd892SF7yM/ubfFi5N1JW0XO0IIhBg44ggA20aKZctEDRjonBdjpIyJr4ecP7qX+NLFCZcnxQ99vno+442Tm/jje7xsI1vbBW53DwY7tFqhuhrVHaNP76HNgOLiF8mHV+j7Y9p2nxg7yvIl9AfcpTGjjLFS7N4OHC4iKrMMFxW7ezscdkfM2pns5xHiR/jWn38VSIRyvOlRnjrG5iirUH2HdRlNF6nP2te2ywE6s8RlR0ZP6yy6gdYYCqvIWo8PFbAuLhhqxdtHh7xw8UUWLoMa+qZlnI+5y10W3YK8/OA76UKI55MEHiG+T0qJo+aIo/oInzxHHexXA67le3zppV0ujn/4cLuUElW3YnH7BvPjfU51x4m15DZnK99ii5yfa+b86XLFH7UdPx+XXPt7fxe+/GVYLonjEe/8+/82R//ST3Jtt2Tn4lX05RfAFmgzwJiSlHtSCoR+RX/yJt2d3yO/+EWywTW0LmiaW1TVmwwG19H6/X/gm6HjwqUR7a05865A6xnbjWaQDbi7usvADnDGve/HC/FcefNN+LVf41Z3BJMdfuIf/wHc+g/hV38VXnll09M9FbTOMLmBrkcri/Kaul+HmN3Cgc3odU3hO6pBgV/UmL4jWU3WQdWuYADR5Dg34P7iCIMiOEdIia6pGA/2KEzBoluwV+5teMVCiCeRPNImxJkudLw9f5v71X0KW2DdZXy8wkW7yz9/9eKPDDsAcT7H3LjNtFZcf+HzvPzqX2X7xZ+h3rrEmzbwtaxiMdF8qexxf/gH/NHf/FUOfud/hcUCUuI49Xz31jfY+oN/wMWje5S7VxgwZJSmDH1B4R1lfo3B4GVG059kcOWvoE1Oc/9PWJ1+A6U0ZXmdlCKr1VuEs3dE34+Z5ly+OKToFCeVZjmfcbm4REqJ28vbH8WXVoinz+/+Lvz0T8Nv/RbL4QBU4l/86tfht35r/eu/+7ubnvCpoHWGdhZih9EWlSx1UxFTpLSasigIVmF8S1/mxD6hO4MvDUWfCF1FSgkA7yZkYc68jSit8VlO36wPJx1nY2pf46Pf5HKFEE+ocws8SimjlPqnSqn/87yuKcTHZdbOeGv2Fl3oeGH0Aja7wsxnqDby0ihnbA3NqqeadyxPGhbH679O37zD7FtvUleB49ElvtNkvHFvxcnC4eJlSq7RdwO+Xa/406MbbP/d/5KWwB9f/zytsfRa8/UvXSe/PuSF0wN2/9tfZ3Rjn7xp0asjqA5hfgvufxNmt8C32Hyb4dW/yqB4AWa3qeavEWPLcPhJlNJU9U3ij/mhn+2WXNkbkMWSw5MGv6q4MrzCyq84aU4+pq+6EE+oN9+EX/olqCroe7x1JBIvzBfQ9+tf/6VfWr9OfCClNLbIiHTkyqKjI/jv28czGdFohYoRbaBHoVtFyhU6GlRVEeL6tb2dkIWa+9X6kbjg1oEnxcjIjUgkVmdn9wghxPc7zzs8/zHw7XO8nhAfuZQSd5Z3uLW8RWYyXpm+wqIvuHVaMbuzoph78mXg5N6K+WHN8qShXvTr8LN/Qv3ObQ5by7fjFm8ctFSnHeMednrYaSOXvOMldYHr9kXsP/x/eHtviyo/4fWr2/zhp3+ab37hGv6LO1xbnnLpazdx73j63/zf8OYqYfhJ4s6rpN3PQDGF1SHsfwtO3wXjsBd/hmHxCexyRlPfou/nlOVLkAJN8+6Dd0V/FKUVw0tDdicDfG05PDhmko0Z2AH71T4hho/xd0GIJ8yv/do62JwJaPQPFoP0Pfydv/MxD/Z0cnkB2pNhINl14PHrEPOJrTGtdeA9GT1d5tCtgkyDzjF1hT8LPJ2dkml4+2hdXOCz9eO7fdswcAOsssy7+cbWKYR4cp3LHh6l1AvAvwH8V8DfPo9rCvFxuLu6y0l7wm6+y5Qdbt1reGfVkNpA0UdeuDBka1pinMYYhbYarRWxbWneOGF/UtJeuMrFwrE3ytAhcXDacFL1LJue6uA+y/27+LYh3FqirrxKN4ST3PIPXr7Cp4sTPre4y/DPTjlZjDBKo37vDzBvv43WGmMMrijIL13C7F1G1YewOoDYw9Z11PZ1ysOeputo1T0SgTy/QtPcpusOyPOL77t2ZTV7V0bM5hWHBwfs7p1yaXKJt+dvc9QccXHw/h8rxDPty19+EHhuDIeopHDdDzSA9T389m/Db/zGBgZ8urisIJljbEgoXZB8TRPWj6LtDQdoo/EasuRpM4fuISiDNhZTLR4EHm+nFEZxe36EUZ+gd+v9hl3TkJUDxtl43ZiZ0geeUyaEeP6cV2nBfw/8p8D7VtgopX4F+BWAT3ziE+f0aYV4dPdW9ziujhmGKaYasu8rbsfAaGCxmWF3UvDizuCHPi6FQP32De7MG5rLn+DyzhBnFPunNfOqR2mwNKi738GenHDJGqzuiac3WQ22GDFkGhwHU2jiNq+ZLQ4/8yqD3SOK5oiyXbJPwYtlzq5OuNUS+9p3KIYDBlevko2uopZ34Pgt2HkZNdihqE5QxZCuPSDLL+DcFm17H2MGWPv+h/HZUcblK1NW3znlzu19Prv9WabZlKP6iO18WwoMxPNpuXzwj3/yCz8HwHC2+MDXifdnXUEyAeMDWjuSh8avA8/2YIAz4LWiiC3HeUFsDVnT0RWGrEk03Qpy8HaI0u5sH0/AOYVyGV1dwzaMshEn7QmVrxi64YZXLYR4kjx24FFK/XVgP6X0Z0qpf/n9XpdS+k3gNwG+9KUvvf+zNkJ8DO6v7nP78D5FN2SYTTGlYT5UbLsMswokk7gy/eH66JQSq7ff4fbBnP7KC2xvD9if19S1x2nF5UlO++ZrHNy4SQxwYWvMIM9ZdC0zo+DkXfZuzLjwQs5oMOUb5iWOcku42HM522V4e8gi8/yT104wzkA5ZGdriy+OPNebOcW3v00+GrH10mWy7hCO3oCtT6CaOUWXYLhL1x5QFC8QQk3d3GI4eAWt3z+4TC4O2T7YZv/gPqcnJ1zausS8m7Nf73NtdO2j/G0Q4sk0Gq1LRYD9Fy8B8Mk33v7RrxM/ljE52hmU9xhtCf33As/uoABj1oGHRMwdfdRkTaQuDW6hWDWLB2+ndnZM1sw5qANXncVnOalaklJi5EYoFItuIYFHCPGXnMcenl8A/i2l1A3gfwH+FaXUl8/hukJ8JO6c3OfNm++SNSXXJlfZuTJkNjIkp9lC0fvIlWmBNT/8x6M+OOTdWwe0OxfRWyPundTENnB9Z8indksOvvpVbn3nBnayy8uf+yR6kPGHyxP+ftvzztU9PvP6a3xmdY/+ZUfpT/gPvvx/cPWfHdPOjjkevMPRS3Oyn/oco8EutswY9yuqO/v8/jue3z7e5Q/DHu/em3H7G29w2hTErl7v6RlfgXZOHnKMGdC2d8myS2f7ee584NdDWc2V67tkynHzrbtYbdkpdjhtTx+clyHEc+WXfxnOHpeqR2Mg8cU/+dZffo1z8Df+xsc/21PovWpqlc6qqaOj61v60JMbzags6KxCE0GBVwrVacgNSRn0ckFM6yKWzk6ZpiVvzdaPuYU8h5To2watNCM3YtH9iLtxQojn2mMHnpTSf55SeiGldB34d4HfSyn98mNPJsQ5SzFxb/+It26/w8RN+MyLL7N1acBxisxD4HJmWa48hdNsDbIf+vjQ9dx6/SaLLKfdnlLPWi5Zy2cujKDq+dbv/xMWx8e89FOf5fpnr/KNO3f4yt37fDUfk+2+yPzn/k2mWeL2L3yClYPrv3eD6yeHfOHdN5necWx9Z84qHnH/ZyNfGi+5lF1kefUa5lpGns/I+znfrnL+93iNrx1E3vmzt3jrO6fM9+8TuhrcALW4S5lfBRRdv49zu3g/x/sPfvQmn+RcvLpHe9Ryf/+IC+UFrLLcX93/iH43hHiC/eqvPgg8UVuUgmno//JrnIO/9bc2MNzTR6kMkxlIHU4Z1FlxQR3Wb6hcGo/oVSKicensANJ+/WYMKsdUK3zsAOjdhNLA/cUJpESwZ8UFZ/XUo2xEF7sHLXBCCAFyDo94Tvg+cHh3wY2Dm4zHAz73yVfIB44qRO51PVvW4Dx0PnJx8sOPsgG8+913uFs1dLsXGDaBTw1ypkXGyUHFja99lVCf8soXX+VuCPzOH32d/28xp7t2jZ3tT7FzWvOvffETzP+Lv8nhhZLstUM++dYMgC+8/S12mhUmTrn2hX8Haw3L5o95ubzD52aBJl5CX9ujn9ZYd8RkZPjTK5/i/9a73DuoufOdQ+586zWOZxnVvCXNjyjLF4ihIcYOrTOa9u4Ht7YpxeWXL5Bnjntv38dow165x8qvWHayT0E8Z155Bb7yFarRBKXBfH/Nu3MwGMBXviKHj35IWluMNUTlyZVFJUf0nrpfB54XtsbE4OmMJU8dXe7Ag/WQbI6p6wfV1J3dQinI/IzTNlEDNsvo6vX5Y2O3fvZN7vIIIb7fuQaelNLvp5T++nleU4jH1ax6Tu5W3K3uUG5bPnPtFYw2pJR4t+mwSnEtd+wvWspMMy1/eL/Lvf0T3nr3HnEy5cVswMvDAh8Vq0XD/de/heiKdAAAIABJREFUhvKnXPyJV/nHBy1/+Bff4rRU2FdeYTh+men9e/x7Lw25XC64c9lRffGf4yde/gXsaARaMywLXv3i5wn/yd9m9K//NS7u/By7daCJ32Q6ucdP1Qv8aclw7yXClqbq99mNNc2LL/F/7bzIN9OIbj5juf8Gs8pxfOM+q2OFZhfvZ2hdEEND3x9/4NfJ5JYL13boThoOjubsFDtYZTmsDz+q3xohnly/+It843/+bRSavO9Ba5hM4Fd+Bf78z+EXf3HTEz5VbFaQjMdFRcRggn7Q1LY7HGA09FqTpZ7GZkRlyOpAHGSYtqc/e7zW6zFJGQZxzt2qp0sJU5R0dU2KEWccpSmZt1JPLYT4HrnDI55p1bxbn5/DHDXxXNu+QmlLAO51PU2MvFBkLGpP5yMXxj98d+dw1fL1v/guSWk+d/EK29aybCMpwXL/DXx9SnftU/zOfuLwne+Qpgauf5bh4Dr+1l3+2rUBu3uO/eO3OQ4tu9e+wN5/9z/AbAYhwGzGq7/+3zC+fImDkyXTT7+KyT/NK/OE1TfJtk64MDug349Mxy/BbskyHuDmx+xMd/nm6DL/bzUlNjOUPsY4T39yRHUyYnGsqBYzlMpp2/s/9kDSS9cvkVnN3bfXj7Ltlrus/Er28ojn0l8cvAtAf+XlB39W+Y3fkDs7j8BlOcl4bIKYDDaoH2hqU3RakRlFNJZeWbKmRzkLQZFWZwFGa3ozYjvNeX3Wk1Ii5Ovv6d3ZY22TfEIdarrQbWStQognjwQe8cxazVqWJw3kgf+fvTv7kSxN7/v+fbezxR6RS1XW0vuoSUkjiaIoGda94b/RgG4M2HeGAEMWYBG2BFCiRFKkxEUzPTO9VHdV7rFHnO3dfBHV1V3T1UNa7O5a+nwuszIr3nMykRnPeZ7391bFmkHW5yg/AqD0gZvWMdGKgZLf2t1Zt47/+NHnqH3F3797RhokdYgkucK7W9YXn/OxmfIv9znTq18gC0/11ocM8jO251f885Hgg7dm7K8+5qKdE0yPd+//w8NBfF+jleQfvH+PsrY4Cb2H77KLx3ywsgyzJad3HPL2C8LljlF2Hznts1NL2s2cyWjG+eCE379OKRcLrF/TT+cMpxmpOWO/rtjcNLR1S9te/8Z7plLD0dmE+nbLfF0ySScoobouT+dHaXX1BABx592XvJLXn9YZKIeMAiU00YKLDust06KHlOC1QAJCBKyUaBcRRoFIYLN4NpZr9ZB+3LFtPDsb8V+ex/N0rG2UjAC6Q0g7nc4zXcHTeSNtFzX7VUPWM+yyJUoq7g0OEcvPjbJlCcvSvnDvTukDf3y+RF1c8feGY1Q6pNWK3ihFJi2P/uLP+a97wZ/kZ7x78zFB7dg8fJdhfo/lfMVP/I5/9t4d/Oacy80lW9Fy0n/A+PSdF6753umUs1GPR5dLzt65hzh+yKYteLjccec0470Hhs31I+TVnFFyDzMZUSZrqt0tvdEJy/E9/p8vLMv5iuVqjnALju5NGR/fI8SK/Soyv3hCU+1/4707efuERMHlpzdIIZmkEzbtpnta2vnRseUeELz92//oZS/ltSdlgkwVMlqU0IigCc5T+YpUSwZ5RgiOoDXKt7Q6AR9RUhKEQZU7fDz8DmrMGIkjCSW3taOKYLL8WcFjlCHXOetm/TIvudPpvEK6gqfzxtnMK6ptSz5ICP2GylecFqeYp2fRXLXu2SibBK63NXmiGGZfdXdKH/iLxY768oYPANmb4VLNYJphCsHP/uRP+ePLHZ/N3uatzRUxLNjePSEfvEtZWyaLG/6nd2ckuWd1/QVXskSogrtHH5IWLz4fQgjB33vvjOACV6uS++8+pOzfxe0cR1df8NZ7D/nJgyFX1+eImwuG+g7JcEKVbKl3S5LxKfXkAX/4RclmvWJx/gl1XTMcnzE+GVEMFd7Dzfkjys23Fy9Jr2B6OqC+XbPYNkzzKQLRdXk6PyrLbYmwFinh/fe6Ds/flpQJ2kiisKinSW3B2WdjbXeHPZxtsElGGi21SYlAbj0uyVFVg/8yqU0fOjgjNny+s5Q+kBYFrm3x7jC2O0pG1L7u0to6nQ7QFTydN8x+1VDvLMUwpRgbrsorcp0zzsYAVD5w3VomWjHUim3jsC5y3E+f/R+VD3xc1tyuSu7fLklVHzEdMDrOSXuK//Jf/pw/+MU5q6P7zIiY+oLqOENOfwuFwT9+zP98VjB9cIf24hFX7ZpStpwkdxifvocQ4lvXP50MuTvI+ex8zuxkyujuKdeMSVdL+ovP+fDDD7hzPObm9oYwf0RfztCDIaVZ0e63hNkDYj7lTz9bsNuvWV5+Qdta8vyMJBeMjjKE3rOZr1hdlXgfXriOo4fHaAKXj27RQjNJJ6yaFTbYF35+p/OmeXJ5iYwRrRTvTF+c3Nj5m5MyQWpJFI5EapwXqCCfFTz3R30IjlqnGBVokQRpSGpLSAtoGkJ76OBYPSIKySxueLQ7PMBS2eF79GWXZ5gOAbrwgk6nA3QFT+cNUu1a9uuGrG/oT1Juq1tcdNwp7jz7nPOmRQJn6eGcnfmuRSvBMNcANCHwSdWw3DQcz9cMaoG+e8L4To+sZ/jZp4/5t3/6c8JgRDaZku6usT1HM/uQVA/Y3iz4ifG89/5D4vqGxfKCm6QhJ+N49Db5aPzXXsdvv3WH4By/PL/lg3cekBzd4bbOGV49Im9X/O7feY+YTtlt17j5pwzUDDko2Mk5bVVTn36IJePPP35EXS5ZLBZAjjEjhIz0x5q0v8U2nuXFnrb+ZpBBPhwynmU0txsWm4ZZPiMSWVS/Oemt03lT/PyjnyM9KJ2QafWyl/PaEyJBaUmUjgSFCwET1bNAlFm/hxEBJwWJFjgpcWiMs6jE4COwXz39zxRW9cn9hhDhtvY4nSCk/GqsTRoKXXRjbZ1OB+gKns4boqkc23lNkh/GzlrfMq/njNMxhSkAWFrHzgfupglaChrn2dWOWS9BCIGPkU+rhrr15LWneLLADHpM3j8myTWf3a75P//wz9BKos7uYXYViDXV9IQsvUNwFjO/4Z+/c4LKDfXF59yIHVZ5JmLM8OQdpPrr3zjNTqacFSmPzm8JacLdsxPK/Jjd1jK6/Ih8IPjH795jH49xbYW9/ZS+OkIMU/bcUAdFOHkPv7P88SefUrcVi8UCY04QQhFjQKUlo1OFkIL1dUVTPt+5EVIyvX+E9A23l2sSlTBMhiybJT747+V72Om8Sj777L8hAFWMXvZS3ghCCLRJicqiIrig0UE+Cy6YFD20EjgiRmtU9FQ6I/EWLROiMMjVVw9crB6SuA06wpPyq7G2tvoqUXKUjmhC86yL1Ol0fry6gqfz2rONZ3NTYVLF6ChHCMHV/gqB4KQ4AcDHyEVjKaRklhy6OYt9ixAw6SXEGHlUtTQ+oCuH+OyGHMHot+6R9QyX+4b/9Q//Er3bomenBDKMu8X3A3H0E4QQ7M+v+Ok44e479/EXj1nsbpinkT6GWXGPfHr0N76mDx+e4BvLzy/mPLh/h97RhLmYEW5vGMw/4637BUfDMTVnxODxi8/o6yPCQLPzN6zye4jxHdT5I/7D4ysa61iv9xgzQwhFCBYfFkxOC3QiWd9UVLvn9/UUkzGDoaG63rAuW2bZDB8967Z7Ytp5s+0bS7u6AgHJ9MHLXs4bQ5vDWTwakGieZhBQ+epZNHX0lpgkSN/SyBQRA4kQWJXAfk3wh4czrRkjaJmKmk+2lioEkrwgeI9tD/t2BsnhENIura3T6XQFT+e1FnxgfVMhlWB0nCOkYG/3bOyG4+L4WVDBZWOxMXIvO4yyhRBZ7i3DzGCU5Elj2XrPIAra64piuWF4b8Do4RHzxvO//MnHmOtzenmGm56QNTWRBdXkLRLdx5UV+W7N//DBPURbUt9eME9KookMXI9i9gCTpL/pUp4zu3vM3czw+PyWSmoe3D2C3oiFLSiuPiHzFf/o/QFNSNDmASKAW3xOpkfYQWDfLriZ/l0Kk+I+/kv+spY0TUNdJ0iZEKPDuhUIy/ikIMk123nNfv3VBl9tDKOTAbGpmF/vKUxBrnKW9fK7/SZ2Oq+Yq/mGWNcoKbj77m+/7OW8MZRKQHsUh2hqnCQ4T+1qpDKcFgbvWpokI8HSCEVEUrgWZwZQN0R76NY0T4MLJmLLbe2Zt44kP3Tz2/Krsbae7nVjbZ1Opyt4Oq+vGCOb25oYIqPjHKkOP85X+yuMNEyzKXBIXLu1jpnRFE8/Z11ZfIhM+wk3rWVuHUdasZ/XxCdLxkPF5MN7lC7wL/7yCeHqMUPfYE/uIchRzRe4gUH1DwcQVucX/NPTAeOzU+z5Exb1LYsceqSMkynF0Z0XX8S3EELw4f0jfFnz0fWS6ckx06Mh22TGfrFhunjEbJjwwb0ei0qQDt7GRAXrS4zJafOaTfQsJx9wt77hz371KfOYUJY13vcRwuBdRdPcIuShWMx6hv2qea7oKaZj8hx2N1vKxjHJJtS+prTld/Et7HReSdfXV8gQ0ALef+/9l72cN4aUCUpHhAwooXAeTPwquOBs1MO5hsZkGCOwUeCVIXc1QvdpnYVqC4DXQ6KQ5G6NRvC4tASp0EnybB8PHMba2tB2hyd3Oj9yXcHTeW2V65a2dvSnKTo57I3ZtlsqX3GcHyPF4cf7vDmcuXM3/Sp2er5vSY1EKMF5YxlphWkj68+3TELJ+MGAOBjyv/1qzvLqguluAb0RfnBMUi0IeoMdfYCShna5YuQafufDh8T1kmZ9w21ag9YUrSbvn35rFPVvMrt3yp1E8vh8Tis1d46npP0eizghXj5ibPf81r0caaCpIB2/QxZS1G5DyCW1XHNd3CfonPeu/xv/x2WLlYqyVIAhRo91S0JoEUIwPPqq6Kn3h7GRrN9nOMnw5Z75vGSUjlBCsWy6Lk/nzfXk8WO0DwiheHhn+LKX88Y4FDwSpMMoQ+sDOnwVXHB32Ef5llonJFrixWGvTxpaEp3ihEBuDvt4ojBY3SNxaxIpeLRzlN6T5Id9PDEcEigHyQCB6Lo8nc6PXFfwdF5LbeUOiWw9Q95Pnn38prrBSMM4PaShLa1j7wN3EoN6GgddtZ6q9Yxyw6O6JRGCs8Tw+ccr0qrm5EhjTo/5V092fHRxw9Hq8LTX3jlDeo2oP8MORqjiAYSAu7zif3w4IZ9NcVdXzNs52wwGKmPgM/Lj+78xivrbCKV4/+4Mu93zyWpHfzrlZNrDFjOWyz3D208YpZrfethnVVq8l2Sjtyh8iqlamsKxYcft8F2m1Q3p5WP+zUoRhaSuU4RM8K6kbefPXnMwyzCpYjuvaWuHlIpiNiCTls28wofD+RbrZo0L30x363Red63zXFw+QgDG5CRPExw7f3tSJkglCcKSCIX1EROfBhcEy6jokUmP9wGZZ8hgKWWBocEoiSMhbFcQIwBWD9B+y5ER/HLbsHP+q7G2+tA10lIzSAasmzXx6dd1Op0fn67g6bx2vAts5hXaKAZfOx9j1+6oXMVRfoQQghAjl40ll5Kp+Sodbb5vEAK2ElyMvJWnXFztKecVd3NHOkn5ozbhDx4vOK4WmO2KODkmDk8x+wtIa8Lo7yCEIC7m9Aj89k/eIswXVNsbllmJTHPSOtLLZ+Tj6X/3tR6fHXMkBY8uFnhlGI3HDIYFazljd/45J+2aD45zRE9Tb1vaRFP0HzK0GYmPlPmei2yATQreX/+Sj6/X/Kw1eF/QNgIfGqxdEuMheU2Iw3ib1IL1TYWznnwwoj8y+G3J7bJikk2IxO6JaeeNdL3es1k9ORQ8+fC/62FF58UOHR5BUA4jBD5IlD+8DaldzbTXQ0pBtDWiKFC+pZIZwrdkCoLI8fUWZQ8PWxo9RsaWAS2tg88rR/L0PJ6m3D973Uk6wUXXhRd0Oj9iXcHTee1s5zUxwPA4Q8iv3ozcVDfPDskEuG0dbYycpebZm5YQIqvSEoxgHwN3U4N0gccfLxkmMBl5vtB9/uUXG47tFrO4RpqUcPYWYu8R9jFuMEGmRxAC9c2c33lrRtrr4a9vWNpbylTST/sUjSAZn6K0eeF1/E2oPOfdaUG52vC4bChGI2bjHnJ4wnxdI68/ZmIkf/+tPqs2wKal7hn6+T0mTYGQgUXacpPOGNTXvLW55vevLZU0tG1ODBpr11j71YiaVJLxcYEQsL6u0ElKOkhJYsPypiSRKbnuwgs6b6ar2xWx2iKBZHzvZS/njSKEQmtDlA4FyKDhaSJ+5Sp6ac7ASKJrsUmONtAiCNHQEw1C9bCuhupQzFgzAgKJW6OF4BebGoQgKQrarxU8PdPDSMOqWf3wF93pdF4JXcHTea1U26f7diYp+mtdm9KWlK581t2xIXLVHvbm9L92aOCmtpTeU0oYacVxYvj0kxWh9jycCkoB//tKMPI1an2L2e/h6C4xGSLLp92d/mETs1gtUcHz0/fv4+drmv0Ny6xGpCmqCvRFQXF8/299zXfOjhk4zyfXK0SSkeUZk0mPOjll9eQJs2rO++MUMTZUlYc6sB9mDNIzTtoJNm14kmkqnTKpLhlsFvz+WqHNmKoSOLd/bqwNQBnJ6Lgg+Mhu2ZCPhmRZIOwblruGaTqlCQ17u/+WVXc6r6fFzTX4BoHk9OF7L3s5bxxlUoT0KHFIarPWY9CH4AKdcrevsa6lTlKMFrQh4qOhFyuE7lH7iNwdOjVODQhSk7g1Y6P42bqlCpG06OGdexZPLYRgnI7Z2R3W29+0vE6n84bqCp7Oa8O7wG7ZkGSafJA892/PujvZobtz2VoiPBdUAIezd26dZ5QZHmQJm1XD/HLP6VFGIir+1QoaBFm5Qq0WqKJHuPuQuGtR7jGuN0JkJxAC1c0tP70/ZdDrEW6vWdoFdRrJiilF2aB6Y5Je/2993elkzDs9xXq+5rJuyIcjhoUhn91lvnG4y485STS/c79gKQI8DRwoRxljc5eTcMRVH66EJ2sX3ClXfLIseRQzECPaFqxd4dz2udc1qaI3TmlKByIjGxqkrVnOS4bpECUUi3rxoiV3Oq8lHyKL+S3aBxSRD97pEtq+a0qloCzaSJTQtC6QxKfBBUJwf1gQbIMLAp1nRCFoQ0ISKpI0xwUFuyWESCTFqQzj1oyN5KbxXNb2WUhMs39+rA3oAlc6nR+pruDpvDa288Mm1MEse+7jpS3Z2R2zfIYUktIHFtZxZDSp/OpH3PnAZ9uaLNU8zBJEhM8frRExcDZT/NHNll/IgonbEldzTNsQj84IIkNVl5CUz7o7er0C5/idnzzAL7Y0+zmLbINMUxKvKKwiP7r3ncz/C6W4dzIlLys+WZUkvT5SKWazHj47Zn5xwaRa8MEwQY0T9q2HnSUoSTlIOVb3OTInfFEENm5L2m65v1/wf122iPSYpkmo6yVte/uN1y6GCUmmqbcRlaRk2tFsLLUNjNMx23bbhRd03hiLXcV2dYkMES0Vpyejl72kN84huMCDEGilaJ3HRI2Ljta3HPV7JMLhfED0CqRr2Ksc5VrSTBBjhq3XaBdACKwaYNwWI0BE+GjToLTGZNlzBY9Rhr7ps2pWXXhBp/Mj1BU8ndfC10fZlH7+x3ZezdFCPzt35+JpDPXpr3V3LnYNS+d5e5jR04r1vGI1Lzk96fPFYs4frjzTXgLbNXq3RhcD/PEZ7C3SfkHI+pCdHro717e8dzJh1u8TFjcs3Zw2hbQYk+5alErJj86+s+vvHU+5n8Dt9Yq59WT9AUYExncfsNpYqsuPuZsm/JM7BQsloHbgAi5RtEXKPfU2cviQc7Ektlf06x2x2vMHW0mSHFHXjqa5xfv6G689mGUgwFpDkkNsWubzinE67sILOm+Uq8WOcnuLCJCqlKSX/PVf1Pn/RcoEpSQeS6IN1kISDmPHlauYFAUZLc55ZK9AKKjJEHVLnkZQKVW9RTeHBy2tOQQXGFcxMJI/XR4irtOih2sbvPtqhG2cjrHBdqO4nc6PUFfwdF55v2mUrfUtG7thkk2QQrK2jp0PnH4thhogxMjPlnt6RvF2P8O2nvMnW5QW9IaSf/3xLel0DNWWuJ6T+IA4vkcgQVY3CLPH9d9DCIHerHDO8nsfPsAvSppywcpsMWmCkiOyfUUyufO3Civ4dbLX4/4oR+9LPt1U5MPDk+fZtAf5Cbfn5wzrJT8ZJuiRpvQRtoc/9HWuiUnKw+SnuGzAlfsCXM2D3Zz/vGxZ6lNC6LHf33xjLw+A0pLBNEPKDOcDmWjZLmuMTMlUxrrtCp7Om+F6vqSsNhAhKUaItIuk/q4J8WVSm8UIQfAS6QQSSWlLRkUPLTmMtaUFWkOLxAdNnxKhcxof0PvDPp5WjwCPcRsmRvHp3rKznvTpOPHXuzzDZIgWuhtr63R+hLqCp/PK2y5ePMoGsKgXCMQhKjlGzhtLKgWzrwUaAHy+b9i2ng/HBVIIVjclq1XN0VHOv3l0RRAClRtYLzBVhe6PsLNjKB3SPiJkBRT3IEba21tOJwPu9XvEzYKVX+KyiEoHmNqRREV+9LcPK/h145MZJ6HlZrmnFJIkz4nRcXz3AetNw+biY+6kCb97knOjgdZDcxgd2fcTlMk4HfwuIdTM7WfopuG42fKvbwNJekpZltT1BeEFI2pZz1AMM5xVGGGhdix2DaN0ROUqGt9859fb6fyQfIhsFrdEt0eg6I3uPJcC2fluSJkgzeHwUYVARE3bNBSmoHIVxmQc5RLvWqyQqCyhCeCjIbcVqujRWgH7NdIHvOoTpCGxazIpiRF+vm3QxqCThPprBY8QglE66kZxO50foa7g6bzSmsrRVo7e+JujbCEGVs2KYTLESMOtPcRQ30uT5/bO7L3n003FSCvOBhnVruXmpkQnknMleHI1pzfq46s9sdxgEDA9xccEUS8QeovrvYMQArPd0DaW3/s7DwjrhqZasJYrdK4RyYxsVyKTgnT033/2zrdR4zEPc4Xd7ni8P4QXBO+ZnYyR2RFXjx8zbDd8OEqhp6gBti3ESJSHoictHnJszmjaK7bulqPNgtvK8bk8Rcohm80TrHtxdGt/mpENBrS2RUfHcl4ySg+dpm6srfO6W+wbyt0S5RtkhDtnb7/sJb2RpDRoJYnRorRECk3TWlKRUPkKLw0PegZrG6zzqF4PER21LDDNHl0UeBRNuca0gSBSrE5J3AojBEbAn84PY21JUWDriuD9s9f/8hyxLla/0/lx6QqezisrhshuUaOMJB98czxs1azw0TPNprgQuWosQ6UYfC2GOsbIF3VL0zje6qcYKdgsGtbbBtUz/L/nC2ZG0iaGuF5gGovpj7HjKZQWZc+JqYbiAQBiuUClKe8NB8Ryy8qvcIlFmxwZEtKyJp/d/V4OKxTGMDsaMaornmxrYpojtcaLyJ079ym3NfPHv+IsS/jHJzlXBvARysOTTG8k+0GP8eBDJk5zGy5omxVnzYr/+9qT9R5S1SX73eMXvr6Ugundw73WrsFuLY0VzzYCdzqvs/PbLWG/JIRIEiMP3+oiqb8vUqUI6dBaolHPktoAahz3+ikiHIILZK9AEKnJUHVNLxegE8pyi2k9CIVVQ7Tfo6NjnCj+Yt3gQiQrno61fe1MnlSl9E2fRb3owgs6nR+RruDpvLLKbYt3gcEke2EBsagW5DqnMAWXrSXwzRjqW+vYNI6xVMx6KeW2ZbmoEEby79tAb78BLbC2gaYmkQoxGONlimgrhLjB5fcRUqGqku2u5Kfv3EXuLG27YBvmJD2N0xPyfYMUkvz4+zus0IzHPNSR7XLPdWPJ+wNsXXFy7wSVTrl+8gWDdsdPRxkuk7RaHAqecPjD3uSacnjCA3lK3lpu3CW91RVNa/krd4ySA1arz3Fu98LXL4YZxaiPq0uE9SxX9bONwKUtv7fr7nS+bxe3a3w9JwZ5GIs9mrzsJb2xpEwQyiGkQGpN2x6S2uCQujkuemSixbmA6PdAQ0UCNlLQQpJSeUuyLyFGGjNGxAbtKgolqUPgcWkxWYZU6rl9PACzbIaLrntQ0+n8iHQFT+eV5F2gXLekhSHJv7lxeNfuaELDLJtRPY2hnhpNpr76kbYhctlYaAN9regninLdsNk3fO4jF23LNDY0xhA3C1TwmGJIO5ke9u4058QkEvpvAWBWC7xU/P3ZBGzLql1gTY02GVIPSbd7kt4QlQ+/t/sih0NOepqiqfh8U2H6AwCc0ZzduU+9q7n54mPu5wn/cJpxrsWh2Cm/mldfTSao0TFvtwNqadlV55xVS/7tjUP13qFp1+x2T751DdN7R3jl0U3LZlmRqx4S2b156Ly2qtaz28xp7R7hQOsM1f/mnsHOd+MQTe0IQpAmGtdCtI5MZVSuYtzrHZLafCQag0o1TVDEIMhtiehlNC4Qt2uMDVg9ROAxdoN5+nDsvy6eprX1ejRVSQzh2ev3kz65yplX3wxp6XQ6b6au4Om8knbLQ1BBf5K+8N8X9QItNMNkyEVjkcCd5PnuznnTEoEswCDT2L1jta5ZxcCfWnjgS4KzNNEjnCWXCSIvcCoH65HiApceIXUfYVua9YajoxlTD61bsrdrsp6iUQMSJ9Ft/Z1GUb+IkJJ8MuaOr5nvWzZRYLKMer/j+N5djO5zdfE5fVfzj6Y5jY7YREJpwR/+4DuTsRlPGKcZZ02PtaoQ84+RzvHH1RSj+8wXvySEF59I3h8NSPspuJq4s6wrxzAdsmk3hBhe+DWdzqvsZlsTyjW1q8BDmg6RWZfQ9n2RMkEZCMKhkYQocK0l1zmlK+lnOT0T8c7ifEANerTBY0VGWu8PkdNaUu03mNYTZA+nU1K3xAjBwAj+07zCx0ha9A9doOr5DvQsn9GEhm27/ZZVdjqdN0lX8HReOW3laEpHMUq+EVQAhyjqrd0yySZsfWDrPaepQX8tUWnnPCvnGSAQgUN3Z9Oy3Fv+bOfIhoZ0s6KRgrhbo6QiSXPa8RQ5olrHAAAgAElEQVQqj2qvQTf4/tsAJOsllYd/eucIQWRd3WD1Dp0ahJmQbSukkqSTO9/7/VGjEWeJQFU1j3YVWX+At5bYK7hzfIbb7bn84hPeKRJ+Osl4op7el/1XXZ5df4wf5Jy4FCVHVHbJ0fYRf7KS2OwhbbNkszl/4esLKZmcjonSEkvHalExSkb46Ls3D53X0vntGuNKWtugIwxGJ13B8z2SMkVqCRz28UT/NKlNF/joaaXkfqFxtsa5gCoKkJEmpiTNnjwpcIlgW+/RVXsILlAZid2gI2RKsnKeL/aWJM8RUlLvnh/T/TLspuvydDo/Dl3B03mlxBjZLRuUlhTDFx/692UU9Tgdc960JEJwZPRz/8eTxpIIQXpIZUa3kd2+5aNtwyLRHPuK0JRYPAJITQbaYLM+tB4VznGmQKYn4D1ytULmfd7NEtq4Zd/sSPsRq3ooUpLdjnw4RqT97/0eyX6fYW6Y2JqbXYvLcgDqumJ2dkYqCxYXj+hFz+/OcioR8JmC6nAYKUCTjNgNB+S54KzK2CeCsPiMxG74D7sjtE5ZLD4ihBd3bIrRiGykMcFSzmtkzNBCd2ltndeOD5Gb1RbjttQedPScnj7sIqm/R0IcDh8NsUVqiRKapm1JxeF3fknk4SDBuxbnA2I4QEiovEG1lkQERJ6yjw16W6K8xOo+MjaY0GCEIAL/ddEghCDrD2j2O0LwX1uDYJpN2bs9late0p3odDo/lK7g6bxSmr3DWU9vnL4wqCDGyLpZM0gGrL2gCZGz1Dz3ubfWUYfAWWrY1o5MS9q948m65q/2LcdHOWq1wHmHsw5pElIk7WgCdUC5LVEu8cVDhBAk2zWbxvHT4yMSLVntrwlyQ5obrByTNiBsST67+4PcIyEEejjkga9pasdlczhkr95tUZMxJ7O72P2O8y8+5b1eyvujhHMpQArYHcbUvEqxSQ870gwRFOIMF2qGy1/ys62mTu7StrdsNlcvXEOSF2T9hCQNhHXLYt8ySkfs7K4736LzWtnWlv1mi/A7nPUkMXL/7MHLXtYbTUqDECCVQ2uBUpq2DUgPWmjKaDnKDCkO6wIqTSAzVBiih6yt0HlCoxxhW2JaT2smiNhgXEkiJD0j+KPbEhsi+eCw1/HXuzyTdIISquvydDo/Al3B03llxBDZrxt0osh634yhBtjaLS46BsmI69bRV5LR17o7X8ZTD5QiRdC6gLGRqrb8+6s9ZpCREBCrW2wMCClITY6QCjsYQe0Q/oKoFbF4ADE+DStI+bvTPq1qqKodptfSYhBqQLorSbIU1T/6oW4VcjRmkioGbcPjTYXu9YkhYImMj47JZMLq8hF5CPyTWc42BmKuDgeRtoennI0Z4dIE2ZMcVYqQjlCbW0R9wR+Xd1EKVquPX9jlEUKQ9weYnicRkcXFjoEZEondWFvntXK1LpHNhsbXYCGVkuHR8cte1htNCHkILtAOKSTKJLSNx7WHsbbKVkx7PTLZ4J7uPZSDgioqoo2kbUkmM9pMUFZ7dONxakCUEe12JEKgpWAfAp/uWkyaoYyh2m6eW4eSinE6ZtNusP7FexY7nc6boSt4Oq+MamfxLnxrUAHAql6hhWYXUlyMnKXPj71dtxbPIZ56U1lCCCQ28mfXe26cZ3Kco+bXBGdxIiLyHpnztMMRsQXpWoS4oM3uoFSKLvfUdcvJYMRJ37Dc3RDjhqxnaOUI7QW6KskHQ0h63/Md+orq90hSw93YsC4tG2mezanr2Yzj4Qmh3HBx/gW/Pci4WyiuFIcuz/7wh71JhniVEoaRQkAWjokCppvH/PkmUptjmuac7fbF6Wtpr4/pKTITsfMa5wyJTNi0mxd+fqfzKrqYb+iJmnVTE0MgVRlmkL/sZb3xhDAI6QlCYLTEO4lrG3KT04SGIkspcPgQnwYX9HFKYqMha/YkOieksKVCbSpiTHEqI7WHA0gFgIj8yfwQgJMPhrimwdnnC5tZNgPgurr+ge9Ap9P5IXUFT+eVEHxgv25Ick3yLZuFbbDs7I7cDFk4z9Ro8q/FUDchcPs0njpXknVlUTayaTz/8XLHdJwilUQubnD2cJZDlhYIAe1wDJVDhRtQAd97GkW9WdG28A/uTLG5ot7OSYsKJwTBTEkrkKE+hBV8D4eN/iZqNOIkNGQx8sWuIe31afY7RL/PYDQlR7K5/IwsRH7vKGfhPPQNtAEaj1eHNwhBJ8QR9H2K1mOS/R7ZXPCf9sdI2bJaffbCLk+S50ilKEYgW8/V9Y5hMmRv991YW+e1ULWe1WZPIWqWjSe1jjQdIIpvf+jS+W582eFBgFaKGCSubSl0AUArBWc5NNbiXED2+wglqLzBNCVaJsgkYada2JQoa7A6RfstMnqMEPS04C+WNbUPZE8j/Otf6/IYZZhmU1bNitrVP/h96HQ6X4nOEaqKaL/7jmtX8HReCeWmJYZIf/ztbzTWzZpIpKL3whjqy8Yinn68cZ6q9WgX+XdfrIlSkM16iNUcqh1eSeiPSKsaVwyIUYMP6HhBowdoM0FYi9puMbrHO7OC+eYWYo0pPK0cgRdkVUNeZIh8/P3eoBdQoxE9LZl6y23Z4opDh6mpSsxsxrgYE+sNV1eX/M44p28kSxlBy8Nenhipk9GhUOtBoiOGKSpIjrZL/svKUuohTfOE3e6bB5F+uRlYpI5+plmd78l1vxtr67w2NpWl3JfkNOysxYTIZHyKzNTLXtob73D4qCfGgDGSEBRt05DKBIGgJPLWQGPtYazNJJqQZ9TRoJxD+0CqM5rM4eoGXUGrB8jYPtvH48XhPLZfbVqU1iR5TrX75u+mo/wIJRQ35c1LuBOdzo9X9B6/WmGfPKH55S+pf/4RzcefUH/0C6q/+ivqj37xnb1WV/B0XjrvAtXWkvUMOvn2NxqrekUgpUZzkhjM11KUSh9YOc/x049vKkdbOeaV5VfrhvEwQWpQi2tCXeKLPklaIGOgHU+gdCRugxM7bO/Bs7ACt7fcOZ6SDhOq9Q1FtiVqQyMHJFYgbUneH0A6+CFu1XNkniPThHu+wlnPjRPoJHkaXjCh1zuiB5Q3n5ME+KfHOVf2aZfHBag9jRkShSJqjerVGDEkkT2Kska5Hf9h3UPKLZvN1Qu7PNnTp66DiURUjs0qdmNtndfG5WpP6vaH87isI8Fx7+gtZNpFUn/fpDwktcUvk9qkoW0dwTkynVFGz93cYDh0eIQQiH5OJRNwkcyWJCjaxFPGFr1tsHKIiC3GVyRPO+5awX+6PaSwZYMhwTnaXzuTR0vNLJuxsRtKW35jrZ1O57sVY8QtlzS/+hXt4yf4zQaRJJjTE5IH9zFnd9FHR8jed7dVoCt4Oi/dft0A0PsN3Z3SljS+oRb9Qwx18vwbkoumRQvB8dOPr8uWtnL8u/OS3AjMOCPsNoj1kqA1TI7Iq4qQpHiTQevRXOK0RmanECPJcokn5bcfTLjZb1Fuh84bWlKE7JE1kkQ6VG/yg4+zfUkOR4xCy0gIHm9rRN7D1jVRKdLxiIHpI5olN7dzfm9SgIjsFWAOXR6vUrxMiEIis4hMISZHGBs5K0v+YhNZo2iax+z3+2+8fpLlSK0xuSfTkqsnh7G2Lq2t86prXeBquWWoGlZ2D60nDZGjk7sI1UVSf9+kTBAChHJoIxFa09QB17b0dI8qWoaZIafFukPQihr1qVQGbSCrd2iVohLFLm0R2xppE7wSGHsILhBAoQW/2LRsbSAreggpqbbf7PLM8hlaaK7KFydTdjqd74bfbmk//hj75BxhEtJ33ib98EOSt95CHx+jRiP0dIo5PSW5f+87e92u4Om8VN4Gmr0j65sXHjL6pXWzZusiWve4mxrk1wqMjfPsfOA0MSghsD6w2rb8amPZ1pYs00gdkas5stphByNMPkC2De1oCqVD+4ooFlTpMUYV6HJHuqtxgxF3jzPK1Q2DtCIYRSOHhzdHLlAUKWSjH+JWvZAaDdFScIZlW1m25lA0NvsdajolK2YMRKSdPyZzkX8yy3lS20OXJ0QoHU0yRAaPNymJ3iHNDKUKejuLCYr/uIrALbvd+sVdnl4fGxqmkwS3baE5rKHr8nReZauqZbfbMzGWedOinCeVhnw2e9lL+1EQT8/cUcYjpURpjW0jtmnomR6RiDGCTFpciIQQUUVBMJraK9Jmj8KglKHMWpxr0FuN0xnGrRGAEQJHBOCjdYOQkqzXp97viL/2u0wKyXFxTOnKbiS30/kexBixT57QPvqcGALJwwek776D7PVeeAzJd60reDov1ZfdnWL04kNGAUIMLJoVlcgYaMPY/Hp353DI6MwcxuE2leVyWfPzVUNPR1Q/IdZ79PKWGCPx5C7Zfk+UClv0oXakLLGixReHpwnZYknVRu6/fcK2tph2ic4qnFBYOSRtBdJXJFkK6fB7ujt/PZlliMRwFGoKKTmvPcokVLstcjAg6/VJREbS3LLYbPhn05w2RlolIFVQOmo9RBDxMsEkDSEVhP4dTFnxoAn8bJ+zCDVNc/nCLk/W7yOkoNcXaB9Y3XpSmbJpuoKn8+q63Tb4piFLAvPSolxDrgtUv3jZS/tRkFIjhEJITwyQpIrgxSG4wBQIBK2Ee4mn8RHrPMYofJFTB4NyLUlUaCFpTaQWLWInaUWKCjXKNyRCYGOkp+APrktijGSDAcT4wr08k3RCIhOuy2tijC/hrnQ6b6boHO1nn+GWK/TxEekHH6CGP+x7p67g6bw03gaa0pEPDEp9+4/itt1y27bkZvSNGOrV00NG73zt8NHbVcV/vq4wRKRSqDRAuUftNrjRFJUP0OUWO5pAG5HeIrlmb4akZoSwlt5izb435v07Bbv1glFisbqllUNihNwZ8gREOgD1cuf91WhE3tYcGcl839LmBa5pCN6hJmMSPaInI2F9SS9E/u445fHXujyuMQSpQQCJIo07YjIj5kN6izWKCf95VeLDBfv9/htdni/PuPA0DAcp63lNLgr2rktr67yaauu5Xu4YiAYVPUvryZynn4/Q/exlL+9H48ukthgjJlEEr3BtgxSSnumxx/NWIWhce4imVpLYLyh1gakbtLUYNOjILnUIF4lVjowNxpcYIYlAqgXnleNJ6UiyHJ0klOtvxu0LITgpTqh9zbJZ/vA35G8oxsimtnyxKPnLJ2v+8sma/3a+4aPLLb+63nGzbfChK9g6r4bQNDSffEIoS8y9M8zp6Q/S0fl1XcHTeWm+7O7kw2/v7gBcVwu2XnCWDym+VhjFGLlsLZmUTJ52fUKI/MnnW5Y2kBFQhYa2Qq9ukd7h7jwgq0pAPIuiTsMWK3Y0+SlapuTzBbH1lKdTCiJJuyRNvgwrGKGagAbyVLzU7s6XvnxKck84ggvcikN6Xb3bocdj8ryHjAlFc8N2V/N704xdCAQJ5BoqRy0HJK6kNkMytcUrRRidkdQ1D1vBR2Wfa3tL2y4py29u6s16fWxsmIwMWE+7OXxPu7G2zqtoVVo22x1TY6mbhqa16OA5md6Fb4nF73z3pEwQ8vBQRBtFFIq2tnjn6JkeNZHTQqD8IbgAQI37VDpFuEBa71HCIBS0icD5Bsoc8E+T2g5vqhygheCPnoYXFOMJ3lqa8psd61E6om/6XJfXr9xhpCFELtYVP7vY8ui2ZFNbxoVh1k8YFYbiaejP5brm55cbrjb1s4NbO52XIZQl7SefQAikb7+Nnkxe2lq6gqfzUjjrqff2r+3uWG95tF8zTEbc/bXuztJ5mhC587UAgyfrmj+62DPVgBDI1BNtS7KaYwcjxGBEslljB0NiFOA8iZizVwaTzCAEBtdzlmnBB3eH1GXFVJU0ssaLnCBSkkaQqoBSCrKXX/DIPEckhpEtmRjNVeXxJqHe7Q6pJ8MBSvbJhUOWt8wiPOxpLhoHvcO9a2yBiAEvE2QSSMMOX8zwvSGDm2uQb/EXmw2tP4QX/Pq4R9YfHJLtEk+mJNtlQGO6sbbOK2mxb/B1xbQQ3Ox30FoMgdPpGTLtIql/KEImSGmJMaKNROmEtva49rCPB5WSKUsuLfZpwaOzlCbJsE6R1TuUSNBS4hSUqkW2mtYrErtDCoERgiYGZqnkj+f/H3vv1SRJlqbnPecc1+GhU5WuajU7s7NYASyBC1Bc0EDc8j/wmn+JN+QVDbY0kkajLUDYkkaugQR2F7ZiendalEydGdrlUbzwrKqu7qqe7plSPR2PWViVRWVGnPSMcvfvvO/3fhWFcSS9HBkEFIuXqzjXete6DbXi5G0ejm+l1pbPzzdcrFvyOOD2NONn1wbcHGdcG6bcGKXcmmR8sJPy4V6PPA44WzX8/cmaRdm+6+Vv+RHimob20SNQiuiDD15r4tqvw7bg2fJOKJctQgiyX6HuPC4v2VjLB/nOCzHU3ntOG00qJcOv9PT86WdzjHPEAAFIrwlWc0TbYg9uEtc1eEc7HENlic0GK1YU8ZhY9clmS5TWnO9MuR5JIr0gjSps4GnkCNu09GRKGnpQMYTvx0R2NRxCVXIjDdlUmnWYYNpuqriaTMiiDHzAoD2jrQ1/PEqYG4uXAtIAbWKslSivsUFKrNY4K2h3bxNUNbcrxRdlj6P6PlrXVFX1wvsHUUQQRbSuYjyMKcuWoEm3trYt7x1la5italJhyRLJWdWirCbxnt7kAPkt0fhbXi9SRCBABo5ASWQYohuLaVvSICUIYsLAEqMx1uGcJwoUJh/QGoHSNbHxSOchFhRBi/cBropQtkDa9lkfjxJdTstfz2qEEPSGI3Rdo+tvDhuNVMRutstKr1g2y3dwZF5kVrR8frbBOs+93R63pxnDNMQaw2Z2yeL0hMsnjzl78CXnD+5THD9moJdcjzWB0zyeVZyttkNVt7w9fNvSPngAQhDdvYuMvv1e722wLXi2vHWeqzsR8lvUHe89n60uGEQ9bqQvNhLPtKX1noP4+fDRx5uWv3iyZhopHKBiA7olWszwaY6b7BGvFtgkw4Ux1IZELKmkwcc7KBT5+YwiCPGjPj3hmco1LStE0KMWMar2hCokVua9UHeeogYD8LBDS09KzpzCeU9TbJB5TpgkCJ8R+4awXXBdCAah5LK10AtBSmqdE7crqmhMFNQErsEmU0w+ID87xAe/wxdFwbp9+NJBpEnex3hNP5WECJqlAsc28WjLe8Wi1Kw3a/qhQyrLZeVQuiEVIVF/hPiWtMgtrxcpu/O3Cgw4UHGAMQLTXoXZhBmNhIPY0F4FFwSBxA56lFFGVFaE2gECGQlsIGkV+DZG6IbQPO/j0d4zjCR/dlrivCftDxBSvlLlmSZTUpVyUpxgnX1LR+RFvPc8npUczit6ccBHezl5HNBWJYuTYy4fP6RYzLu+p0CR5H3yyZQozbBaY9YLRu0c1hccXq54PCu3YQxb3jhea5oHD8A5ojt33otiB7YFz5Z3wHN1J/zWr3tUrKhswyf93Rca3Lz3nLWaTEoGQbcba73nf/x0Rug9kQCHRoYeWZeoqsDsHBAagzC6GzRaGwJdIeWadZgRqz7pqiIoNzwZj/g4VcSmoK9KWuXQMsNaSepCskSBd+9F/85TntrakmrDfhqxqB1l2A0hFUKgxiNimWC9YmzOUQ7+8TDitNUgBWQBrc8QrcGpAJQiFmtoHfW1e6im4fo65EGZcFp/gdaa+ms7o3EvRwiBVIYskjS1xDXbgmfL+4P3nnnZouuScSrZFDWzVhNYTRr1Ufn7odj+WJCyuxGSgcVqRxgrnJPopit48jDHKMWtpKayHn01gFQOcoogIWh19yDAeY0IAkplgRBfWiJTEF9dO1rv6QWSeWu5v9EIKUkHA5qywOhv9uoIIbiWX8N6+85m8zyZVyxKzf4g5t5OD3TL5ZNHzI+PaOuK3mjMzu277Ny6w/jgOoOdXXqjMcO9fXZu3WH37j2Ge/scZJJwM+Pw6JQvzta4baDBljeEt7azsRlDdPs2Mnl/QmC2Bc+Wt8pXk9m+Td1pneOLzTmDIOR69mKT2+VL1J2/mtU8Oi/IhMd7hwwMQrdE6yUiSjF714iXC3wQYrIcKkviV7SypoqGJKT0Li/RkWKRD7geK3aDgtavcGFARY6pKnoqIwkdCAVx/40dp18HNRxii4IbvRCcYy5jTNti2pZgNCIOQ5xLiGxBYtfcCRRSeNbaQBagowxbSSJdUEdDUrVCOIfPdq5UnscY8SGPqyXz5sk3VJ4gDAnimNZWjPMIbRy+jNjoDc5vG2e3vHs2jWFdtiTOMOkplss1hbHE2jDJJ8htwfNWESICIRCqs72GkcISoKsG7xx5mIOKmEQtYJ4FF0RRQJXmWAthXRIQ402NShJKr3FRhGsEQfViHw9ALOH/OeuCV7LBCIBy+XKVJw1SJsmEeTN/6xs3x8vnxc5uHrG6OGd29ATnHIPdPXZv3yWfTFHBq0M2pFSk/QHTW7e5fW3KRLYcPnrM/ZNvJtRt2fI60EdHuLomvHXrnffsfJ1twbPlrVKuu+bJX5XMdlg3FHrNh/kEKV5MZjtvNT0l6V+pOxvt+J8fLMmsQwmQrkUlIE2LKgvscIwMQlRddr072iF1Syw3LFVAEOTkhUNt1lwO+wRI9mMY+DmNbJBBn8YJokaQ5H2ULrpi5x3EKn4bT21tfVMzDgMujaJ2nrrowguC4YDIx7QWdvyMXAp+rxd1g0iFgDymJSMsllTxBKk8EQXUlvrmB0jdsLPu8aSSzPSXVHVF277YDJvmfQyaNIRICVwbo2uzVXm2vBd0draCLBQMEsFZ2aLakgjDweg6cpvQ9lYRQiBFiLoqeIJAIVWIaSxGt4QqJApzYqVJMWjTWcviUKEHA2pCompF5ARYi08DnIQqAIlHrmqEM8RXfTzeeyax4m8XDfPGooKAtD+gWq2w5uW9hnvZHqlKOdwc0tq30/x/tq65WLdM84hR6Lh88ohqtSQdDJjevPXMjvcU7xyuabCbDWY+xxXFC4NVpVQMdna599Fd9vsRTw6PODp/971JW367MOfn2OWKcH8f1X+/NoRhW/BseYtY66g3miT/FXN3jOWwXDAKJLvp5IV/e9q7sx89V3f+9fEGvdYI5xDGgDQoq5F1jRQKM+16dxCStj+E2hLrFS7SrMOMns2I12t04DkKcj7pheyHFdatsGFAS0bbWnLVI00CcBqS4Rs7Tr8uMk0RYYhYr7jdTym1Y6FCmqJTYtR4TBqEWJ8SNEv6suWTRNJ6T2UdJIo2zmFjwHuMSkjlCozD57u0+YDBxTHG3+WsvuCyOf2GyvPU1obQ9EOJ1SG69tuCZ8s7pzWOZaXxTUU/DTG+5aJqkaYlco7RcGeb0PYOkDJCKNNZbxWIMKBtHOZqMyXPpoRKE4kW6zzWOoJAYgZDqjAhLkqSxoEHrwyBUqy9QKQBomkJijXRVR9P4z1SCATwF7OriOphp/IU89nL1yckN/s3AXiyfvLG1epZ0XK6bBhlIQNfMT8+AmB8/QaDnT2k7D6jvm3Rp6fU//AP1L/4lOazz2kfPEQfHtHcf0D96ac0n3/e7bhfWQTDKObjj+4ySkM+e/CE2eKbvZjvA8YY6rqmKArKsqSua7TWWPtueqm2/GrspkCfnqGGA4KdnXe9nJeyLXi2vDWqVXcBy/qvVnec9zypWxq9ZD/JyMLnYQVPe3dS+VzdeVxo/vysZGgs3jqUq1AxSOcI6gqiCDeYEK5XtIMhCAmVJmVFIQVWhozqGFksqdOIhYz4eBQz8gsaXyOClNIHuKohj3Piq5kR71P/zldRwwG2KNhJFLmUXLiAtmkwbYvMc1QcE5BQt5p9uWA3CvkwVjypWxACPRrhrSBeL6jiMaGqCHwLlaG99SFCN+TLmONKsTKPWBZL9Ff87yoICJOU1lYMkrCzqzQRy3q1bZbd8k6ZFS11a4htw7inWJY1l7VDGU3iIRntI7YFz1tHyhjnWoJIEnqJSCJM45718fTiAaFSjFWBdh5tuz6eIO9RxD1U26LaBiVjdLMhTHs0xlHHEZFrCJdrIrq5yk9tbTux4s9OSgrjCKKIbDiiWq9emtgGXWrbjfwGla3eaFR12RqOFhVZJMibBcV8RpLnTG/eJkpStNVcXh5x9Mv/yMO//Xc8fvIpxyyZDwXVXh9/+4Dwow+Ibt8i2NlBBAF2saD57HP04SFea1QQ8rNP7pKFAb/4/BGb9TdnEb1tnHMURcH5+TnHx8ecnZ0xm81YLpcsFgtmsxnn5+ecnp5ydnbGarX6hrtgy7vDty36yWNkHBFev/6ul/NKtgXPlreCs45qrYmzABW++mN31hoK0zCQmknyYu/OwjxVdzrbifWeP3m0pmccWltsU6GUIwwcAkHYtpjxDnGxBnxnZ6sNsd6gYsMiiBi0KaGxGFouk5yeFPx04LDtBSYUIHtU2pHaiHQwhHoFYQ/U+2l9eWpri5qSg17ExiqWjs7WdhVekDiBVjlic8E08vwsVRTGop3DpxE2SQkXK+pwBFKRyBU0Fj/Yox0M6M/WlO2EtZlxUV9QFC9eMJM8xwpDGnhiJfA6pS5bCv3uL6xbfpxY57ksGmxbEwiY9hSLxZpVa5CmIVYJQTbYRlK/A4SM8N4iA481jigJcFY9L3iCHgQxt5INpfEYfdXHEyqaXo5zkqgoCAixuiTIeiAC1kIQxI6wqRCNIxKC9srmFSmBdp7/97xTeXrjMVIpVhfnr9yY6Ud9dpId5s2cRf36e2Cs8zyeVQhnyKsZbVXSn+4QjPucVmd8dvkP/OIf/m8efv4XnK4PWfcV+uYuZm/MIoNjtea+PuGXxX2OxJJ2khPdvUv8yScE0wlmsaD57DP06SlBGPLz37mLlJK/+ewhTfNuigetNcvlktPTU5bLJd57sixjOBwynU7Z29tjd3eX6XTKeDym3+8jpWSz2XBxccHpaecycG7bI/qu8N7TPnkC3hPevo1Q7+859P28a9vyW0e17obLZcNXqwr/uQ0AACAASURBVDu1dZy1Guk2xIFkGL9oGzttNclX5u785WXNo6LlpnVc1A3YmiBXSCAwBoHETPfonZ1gsj4+jGBVE7sVbShpUEx1im822FDyyCf8s2nCVGwo3Bqf9KgIaKqWSTgmzTK4KCA/eJOH6jdCZhkiDHGrFTd3rvFw03BmJbtFQT6eEIzHhOfnSBRVfcb+eM3dXp+DZcNhrbmbxTTjEb3jI+Smpo6GxHbJxk6hNrQ3PyT89K+IlwkXPc8wmnGxvqDf73eDWIGkl7O+OMfS0FMhlY8xpWXdrsmj/B0foS0/RmZFi3Mg24okDkiUZV5otK2JjWGU9VFZBur96sv7MSBFd01QgcU7QRhJGqkwZae2KKlI4yHT4BgneNbHE0WKctCnPokIig2R26UxBh1LEilZG7CxICkrVuuGeBKzwmO8JxCCnVjxb08K/tluShYo+tNdlmcnVOsV2eDlluW9bI/KVBwXx0QqesGB8JtyOK8oioKp20AgUDt9TtyMalVBWRFebtghZnjrY7KD60j5Ym9r61pqU1OZimWzZNWuiGXMOBkzOThATaeYszPM+QWuLElu3+bnP7nDX/3iSz6//5if/eSDF9JQ3yTee9br9TNLdJqmZFlGHMe/8nv7/T7WWpqmoSxLVqsVm82GPM/JsuyF47LlzWPOznBlRXTrJvI7/P7eJdtPxpY3jnOect0SZwFB+Orq/0nTIrwn9QV5mBPK5306S21onGfvSt3ZaMf/8mTNTiiwtUWXFSGOMPQQp4SbDa6XE1iLcLaLom4tQV0QhRWLICEvIZAp1hSUQUKL5I/3e9jiGBsEyCChNB5RG/r9CdJcKRTv0fydl6GGA+xmwyCSjMOAhQtY1TVGa0QYovp9Ym3RQY5fn3ItD/l5L2JWa6xz6GyICCFcLamCEUo6YgooDX6wix4MyRaG+SagcXMuqgvKsnz2/lIpojSlNTX9KCBQCkzMbP3yJKQtW94k3nfqjhKetiiYjnKatmS2aTG2JjKa3d4ushe/tRu+Lc95Gk0tgquktlDhCLC1fdbHM8h2SAJDLCq0dXjvCZTE9XqUaY+o2JBoD86jTUmcD/Has1CKRLUEuiSuOhWg9S9XeZI8J0xSNrNL3Ct6RYQQ3OzfJJQhj9aPqEz10q/7vsyKltPzGUm1wAUti77mVF9gvWV3Jbi7iLmT3+TaT/6Q/PrNb9zUCyGIVcwwHnLQO+Dj8cfc6N1ASslJecIXiy+ohSG6eZPo5g1cWdLev08/VNy+vs/5suL89Py1/Cy/Cq01FxcXbDYb0jRlf3+f8Xj8nYqdpyilyLKMnZ0dptMpQRCwWq04Ozv7xlDsLW8Ouykw5xcE41E3/Pw9Z1vwbHnj1BuNd55s+OoT2mVrKKxjqDQOwygevfDvp60hEoLRVe/Ovz7e0FpP2nrqssG0FXHkCMIQIRSybTA7+0TLOS6KsWkGlSExC3wcUBlJYiOsNOAtxzJjEgd8kta0ZoaNYpxI2FSaXGVkgwE0K5ABRO9X1OLXeWpr85s1twcJRoRcGvdCeEEsFY6MqirYFWt+OkwYeMdJa3AyxAx6xO0G00YYFZPIdTemXHvMtQ8Q1iKXimVdYUTN8fz4BStIkvex0pJIRyRA+pRNUVPq8lXL3rLljbCsNNp4fFMBnt1RzLJpuawMvm2IXMu0f4BMvn0u2JY3w9Pho1J1RYaSCplE6MairwaQDrM9hqFCuEUXXHA1Rybo9aiSDGUsUVmjRIBu1zAYEfqASxRKtiRUBJVBGUfzlRk0O7Hi/zgpKK/irgc7u3jnWF9evHK9gQy4M7iDFJJHq0c0tvmNfv66NXz24BBdXGLTDWXuCIOIm+l1bs0V/cIT7e0RffghMv1uselSSEbJiA+GH3CnfweH4/7qPifFCWI4ILpztxsOef8+t8YZed7jiyfnNNWbPT9vNhvOz8+x1jIejxmPx8+cAb8ucRw/K3yklMznc2az2Tbg4A3jrUUfHiKikODatXe9nO/EtuDZ8kbx3lOuWqIkIHyFP944z8lV1LR0G5RQ9KPnkYZrY6mcYy8KEUI8CyrYSyS+0tSbJcIb4iyAfEC0mCHCAJ+kyLahHU7AeVRZE8uCMsxJyhYR51CvabzkXET885t9fHmKERYR9iidpS1rRtmEKEmhWb+3YQVf5au2tt08ZhBFnGpJse6S0mSeI6OI2EkaYtz6hHvDmN8fRJyuG7z36GxAEDaoTUUVjIhkgUJDabCjXUw+JFlJjuYaKTdc1C+qPHGvhxACS0MfiQh66NqyqLdRqFveLhebhjiUVJsVvSympxyL5YbCGoQ1RB76ox1E8v56z3+bEUIhRABoVCBR3iPiCNO6ZyECYdynHybshisa69G6u5kNkgydJbQiIF7MUSLCtgU+DEmTIc40bKQgpwAhSAtL6+yzzZlICdqvqDxBFJGNRtSbNU356p7DUIXcGdwB4OHqIdp+c3Dpd8Eaw9/8/QMuV0fI4YZg1ONa/zr3spskR5f4qiK8cZ1wf//XVh/zKOfD4YdM4gmX9SVfLL5AJ4ro3j1AYB484MNrYwySLx4c4tybKRSWyyWr1Yo4jtnd3SX9jsXbd+Xp6/b7feq65vz8/IVr0pbXiz4+xhtNdPPmCxHp7zM/jFVu+cHSFAZn3bfO3TlsWqz3HISKVbtiGA1fmL1z2moiIZiECus9/+rhiiyQKO2xVUFdNUTKEfZSfBgTrJeY0S7RaomXCp33oTLE7QIRCxodIj3YNEHVJQuZIpTiP9kJaKtDfJwhZcyqagidYjjaAV2CM+/dsNFX8dTWFku4lkWUBFzUNdboZ+EFsbHYaExVbhiz4h/v9Ais5bzRNOEAmUJoC+o2ByFJ1ApaCw78wT2wClaWdVNgMRzNj569v5SKOOvRmIo8VsQqQLiIy8XW1vadcA6aDRQXsHgEF5/B5Rcwfwiro+75X/Mm68fEpjFUrSMWjqao2NsZ45s183VLY1pEW5EJSZRPt5HU7xApI7zvktqUAxErnFfPU9OEYJBOuRHXlKZFXykyYSixvR51mKKKDbEReKsxrkEOJoTWM5OQtiUik0QGqCzav6jy/NuvqDz5aEIQxyxOT9DNy1PbAGIVc2dwB+cdD1YPvveMHt3U/OKXn/Hl4kv6u5Lre7f4aPQRIzKa+w/wWhPduUMwHv/qF/sVKKm4ll/j3uDes/WW0hB/cA9UQHp+xo39Hc7XDefHp7/x+32dxWJBURRkWcZ0Ov2NVZ1XIYSg3++zu7uLUorFYsFisdiGGrxm7GKBXSwJdneR2evrY3vTbAueLW+UctUShIo4fXk+xlIbFsayH4W0do3HM0qe29k2xlJYx+6VuvPvLyqelJpxJPFlS7tao01DmkeI4ZRwdoHAY4YjgnKDHo5BSkTZkvg1Nhogqoo2jYnqhra1XMQ9bo5iduwl2m4gntA6y7po6EcD0rzfpbPBezl/52U8tbXZ1Yobg4QkTDisLPVVk2gwHqOUJHSKygW49Qk/mWb8wSjm0bLGqhgTZ0RBiW+hFn0S0aXdURnMaIrtjwjXEY8vlmSR47Q4paqf+6fjPMcpRyQsgfMo1WO9KX9jC8hvNbrqCpzTv4HLz2D5GJ6qYs52KuPmrHv+9O9gdr97bstLOV3VBErQFGsQsDsZUrcF68JQmRJpNP0oRaX97dDRd4iUURdNHaqrpDaFkQF6Uz9TY4bplIPQYkX5rOBRUiLShDLvocqGtDZgLa0pMb0+PRFSeU3jLbktCWOFKgyNea5ixFcqz5+fd2qAkJLR/jWkUixOjrHm1RsLSZBwu38b5x33l/e/s2W32qy5f/8z/nb+kMnekN+7+VNuD26jtKV98ADwRHfvovLXG/KShRkfDD941oO0tAXR7VtgDfvNil7e5/7J/FvVre+D9575fE5ZluR5zmg0+tXf9BoIw5CdnR3yPKcsSy4vLzGvGCy75fvhtUYfHyOzlGB3910v53uxLXi2vDGaymC0JXuFumO957Dpktf2ooBFsyBRCWnwXOo+aw3hlbqzai3/65MNu4lCeHCrJVXZIHGk0wFEMeH8At8bELQNIGgHI2gtcb1ARhbX9mhFi+nlBKsFSxFRqpB/fpBj1g8hyhBBxFprTG3Ym1zr5NpmBVEO8oexC/xVW9sgCdnNYpZGcnlla3saXpA0DSaZUpcFmV7yn14bgDGcVy1NOCAOS6Sw1DpHCUskS6gtXir8zi1wGc2qpDUlDseT2ZNna0iyHkJKjG/oIwiCHtY4Lldblecb1KtOwTn/e6jmkE5g8gHs/S4c/B7sfAy7n8DBz+Ha78PuT6G32xU7l5/D2aedIrTlGbOipWwse/2I2eWc8ahPSEvRGmaVpbWa1Gh2+hNkkiC+ZRjyljfL01k86qqNKggVVgSgHUZ3ykkYD9hPIoRfYa6CCwCCLKNOMpxQZMs1AoXRGxAC1dsBa1kLQ2+zRuYhoQC7elGN2U0U/+ao4LzubopVEDA+uI73nsXJ8bfavLIw4+7wLlJIHq4esmpXr/xa7xyri3MeH37G362OGU52+Gf3fo9RMsK1Le3DhyAE0b1737lf5/sSqpC7g7tkQcZhccil3xDevImsa24pQ+slTw7PXst7zedzqqqi3+8zGLxdO7gQgsFgwGQywRjD+fk59SvmLG357ujj4y6C+ubNH1zIy/YMv+WNUa1apJLEvZfvnB7WLcZ7biURrWupTPVCFHVhLWtr2Y0CpBD870cbrPckSuI2JdQ1dVUR92KC6T5yMUe2LXrS2dl0f4APAigNiV6iRIL2jnUPsgZ01VBkA5Ik5GdJTatnyHQfvGOxLkhV0tnZrO4sbT+A/p2vogZ97GaD8I5bgwQrQ4431bMdSzUeEyAIiCitxG9O+Nk05Y+mKQ8XFU04QAhBFFZon2J0SKpWXXhBbTHjXVw+Qq4Cvjw5YpQmnKxPqNvuoiKk7GxttiKPFLGM8C7cFjxfxZpOpZl90ak7/etdkTO61amJwUs2C4SAMIHhDdj/OYzugPedIrQ+6f7+I8dYx8myJosVrm2w2rK7O4G2YLEpKbWhtYbYVOzlB8g02UZSv0OeJrU9DS6IpMRHIaa2z21tYcqNpE9EgbYt5qnKk2SQhdRRSrScE1mBuVI928EeOZbCG9BLEu0I8hjTGFz5XLkJpSCQgv/p0fp5IRVFjPYPMG3L4uTkW4ueWMXcG94jDmIerx9zUX0z9KCtSi4eP+Th+Rc8Nmt6o2v8k5s/ox9n+Lalvf8AfKfsyOjVFvDXgZKKO4M7jOIRZ9UZs6Ah3N9joGuGEo4XBcXqN+u3XK1W1HXNYDCg3393VvAkSdjd3SUIAmaz2bMo7C3fH7tcYldrgr29N/4ZfRNsC54tbwTdWtrakA2il+4CrI1lbrpiJlOSeT1HIF5IZztrDIEQTMOAL9ct/99FzV6i8M7h5gt0UWHwpNd2QUqC2RkiTpAC8K4bNOo80WZBhMbJMauwwYUR6aaiMFBnPQ76MaP2IV4IZDKiNg2bomE62EMF4XPL0HseR/11ntra3HrNtBczyTKOK0NxdcKXeY4IQ5KmQcdTmqogapf8l7dGeGs5acDKiFhtIJCUpk/kC5QwUBl8ECDGNxF2wHKxQLoW5x2Hs8Nna0jyHK88IYbAOMIwZ7XZ0JrtlGzKGZx/2lnW+tdg/3ehv//9htpKCdkEdn8C6RjWx51S9CPv7zlZ1TjvuTFKuTifowLJdDSAZs3lxtLaBmc0sXP0e2NkGiLktuB5V0jZJXgKZRBCEHoQWYxu/fM+miBlHPW4mTpWevXM1ibiDBFA0RugqoaktjjT4JzBRn3iOARnKKiJy4YwVfhIotcNmOe9HTux5B9WDX89f64CRGnGYHcPXVdcPnlM+y0pZoEMuDu4yyAccFqe8mj1CO30M1VndnTIcX1KmweE6XU+HN1lr5/hjemUHWeJ7tx5a7NMhBDcyG88K3qWuUSNRtwQBqctjw7P8L9m70tZlmw2G7IsI3+dtjznusf33NQJgoDpdEqSJKxWKxaLxSsHzG55Od6YZ1Y2NZ2+6+X8WmxNy1veCOWyRUhBkn8z6tV6z5O6JZaC/SjEe8+yWdIP+wSy+0hW1rGyloMoxHj4Vw9XDEKBFAK3XuGblrqs8UlCb3cKVUG4WWEObhKtV9gkw8UJFJqkWRArwSLqswgXZC7DLBZUvT42CvnjoURXh6jsAI9lvl4jvGJv52a34HoJMoTwzVgM3hSy10OEAXa1IhmNuDns8ZeLGcfLFYPR+Fl4QXh2jugNKUtINqf8dOd3+KOdlL+8rLgzGtBrLhE9Sav7uHpGkqwp9Bi0o53sEM32YH3Bl8df8MHNP+BoecStnVtEQUScZkilMLZlIBLWQQ9dz7lcLbg22XvXh+jd4CwsHnafq7AH01u/+WdLKhjf7VTI5ePOGjf5EKIfTkPp66JsDfNCs9OPUMIzXyzZ3R0j8dRNwarQGNci24pMSpLBFPGKBMktb4enCo9zDUGU4TwQKpxQ6HUNu4AKCIOUj3sxn643VwNIQ6SSBL2EKnG4haK/KlnmGdpVxEEfk09JyxNqNIFe0W8iFv2IZqGJly1MYhACIQTTWPEnjzd8NIjpBd1+cNofEIQRy/NT5sdHpIMB/cnOS5OppJDcGtzisrrkeHXI7OKEkc2IZcQsKFCDHK+HTOSAm5MMby3tw4d4rQlv30EkCaV1aOewdNdK6zvxMRCCSHRKVPwaU7Gu967jnOOkPEFOr5GXMdNyw9my4tp8zuh73ty2bctyuSSKIoa/zmwW03Rqt67AVJ0K7nQXGuS/XoAJUNHVI4Qg6c55Ya/bDPoKUkomk8mzQaVPo7G3g0q/G/rkBG8t0fXrPzgr21O2Bc+W147VjqbUZIMY+ZJd06NG03rPR2mMFIJ1u8Z4w/ArgQBnrUYBO1HA/3lSclobbvVCvG5x64KgKCmdJz7YRSlJcHGGkAGEMaIsaHf2AQjXK3Jd0GYHLFIN1pNtDFVj8NemBIHiJ8EJTmvi/i0aM2O22dBPd+hl/W4nqVlD+naaLV83ajDAzGZ4a7neT/g0Sni4LPjIGFQQEIzHmPNzEq2pojG6XhHWC/7lvTH/4eKQJ03M7+CJREmTpDTLHrFbUDDqVJ5BhBhdRx4/4XB2ys9vwqV3PJk/4YPdD57Z2urFmjzOSG1MYRUXy9mPs+AxDcy+7P4c3Oj6cF7nxSObQJh1FrnZFzD9uLO//Ujw3nM4rwiUYK+fcHp6gXeevd0pNCsqY1mXjtLUKKPpBwEqmSC2CW3vFCEUQoZdcEHUpy40YRpgZYApu+ACIQSEKR+mMciWum0Y0n22oyyjCQuKuE9vuYG9hLbdEAd9dDYlD8+RdcUyKunVlngQUPUV/Y1FrDVc9ZlmgWRZGv70aMN/ffu5oh8mCdMbt1jPLqlWS5qiIM56hGlKlCSoIMRZi9UaYzRBqRmuAs7KkpOowGYBg2zEONpn3kTsDWIiKWgfPGRdVjTXb1BLRbmp+C6aSiAEuZL0lCJXkuQ36D8TQnCjfwO7shyXJ1zfnXCjapjNKx4entMfDlHBd7tVtNYym82QUjIej7/bjbHV3TW2XkK76QqbpwRJV8wEUbfpKJ+u40qd8Q5sC6btXqOaPf2punl5Ud4p3185Bw4GA5RSLJdLLi4u3mhq3G8Ldr3uUtn2dpHJD/d6si14trx2ynWLEIJ08E11Z2UsM23YiwJ6VyeZRb0gEAH9sPP51taxMJa9KGDWWP70aMNBGuC9xxVrKGts1dIkOdPJAK9bwuUMd5XM5qIY08uhseTLCwKlmPV3qMQcvEBeFDRphshihkox1I8hGuFlyKZY0RrJnf3r3YLbDXj7g+vfeYoaDDCXM9x6zWA45GDQ5+F5wcVqxf5k8iy8IC4KqtGIolgxWh/z8e5P+Sf7Pf7ipOJepkj0kiYfUJdD4mpDlFW0tYA8pJ1MCRfX8Zszvjj5Jft7P+FoccStyS1CFZLkOdV6ReANkYUo7rMqV7RaE4U/omGP9QrmD7oCZ/rhm4s4DxOYfnQVZf15F3gQvB2bzLvmfNNQa8ftSYaSgpOzC5I0ZtjvwfyCZW2pG03pLbFumGRDVLxNaHsfkCLqFJ5Q4p0njiRFEIA2mLYhjBMIU+7EMUpparPE2j5KSVTaQ4aXbJI+/WpDr9LUzQqyaziZood9ekdLSj1jGe4zbCVlpGhTSVwZCCVcJYnupYo/Pyv5w0nC3fx5n4KQksHOLkmvR7FcUBcbqvXLAwqElIwme+zcustfz/+GRXVBYjOeLCpGUcwwCzm8/5DLdYHb30NGMamHSRjQU5JIymeqjgQc0DqP8Z7WeQrbpZcurtLmEimZhIohoKoSby3emGcWMKMkTeBoA9DKE8qQSEZEKiJWMUoqbg9u82D1gCMz4+Y052DTcLgomF1csHtw8Ct/f957ZrMZ3vtfXUQ424WzlDPQV4lwMuyus1HencOC9Bsqza/E2e6a3RZdiMvmFDYnneKTTSAZgQro9XoopZjP58+KnuA7FnU/Nry16KMjZBL/4FLZvs72N7zlteKso95o4ixAfW3XybjOypZIyUEUXj1nWOs1k2TybDforNVIYBoE/HdfLAmkIJQCV25wTUNQVCyFQo5GpEmInJ+inMUkGUGxptrripVouaBXrSmuXaPuhbRVQVpa2lrDrQMKL/gX+QJn1iTTP0TbFZfLJYGK2B1fFTz1ChA/mPk7X+ertjY1GvHhNOfLM8nDWVfwAKjJBLtakzhHFYzI9ZKwuuRf3hnzH05LHtcpH8oN9MD0+9izkMQuaMmgNrgsQQ6vw8kXfHnxkJ/d+APm1ZzDxSF3p3eJrmxtrakZkLEIe9TlnMvlgms7P+wT6Hdmcw6rJ91FfHLvzRcgQdwVVZefd4/pxy8PQPgtYllpTpcNwzRkmIUs5l2K4917V9bUZs150fV3VM4wMSU701vIOEaGW1vLu0bKGGNWRFf2wkCAi2NsWaKb5wXPOAzZiSLW9YqmNWRphAsz0kwwL1PEWtBf1RTjCus0QqSYXo6LGybFgi9yQ1JJZBBQpZLYAuu2K3oCiRKCfij5779Y8t/+dMLga3bHKM2I0gzvPaZt0HWNvVLMVRiighAVBFgcD1cPGUQDPh5/zIPZjMfrc+b5hovPPFHtGR7ssbszYRgo1LeoIQpIvxKqMb26dWucY1VUzC8uOFqtOK4qelIyChWx9Kz0mlW7xn6lp0+pEJsnMOhDL0UgGMZDpsmU2/3bfLn8kuO04WCScfp4zoPDCyY7066f9VvYbDZorRmNRoRPN7Kc6xQbIQDRFSP1AqoF4LvzYf/aVaHzGuy3UnVhL0/dIlY/L6yWj2F1CNkO5PskScJ0OuXy8vJZ0RP+mDbgviPm7AyvDdGtWz9YK9tTtgXPltdKtdF4718aRX3YdKls99L42X+cZbPsZu9chRW0rtu1moYBf7do+GzVcjNTeKNxdYnc1IjGUKUjVD8mkJ5odgFJhmpbfBBi8j4Yx+jsDJKQ2c4BxjU4r1GXFTaMSaZjFo3jQ/EIKWJU7zqb5S9YNS2T6U3Cp/moP7A46pehBgPsfI53jkkeM81SHs83/KNWk0ThVVEUElcVVdajagv6m1M+mI75pzf6/MeHNdeaNZHe0Pb61MmQXnmByjW2kpCFtOMp4fIedvOXPDj5lNH4DseLY26MbxDKkKSXU86W5FFOzyYUKC6X8x9HwbM67nYZk2GXqPa2Pkth2vXxPC16dj75foEIPyDK1vB4VpJGipvjrh/q8OgUGQbs705AV1SmZbmxWF/TGENqDeN8ikhiCLYFz7umGz5qUEFnVwq9QCQRZgN6U8FgCEGKEPC7wyF/Vp5StmuydIpRCWmi8BKKqEdvXYHWaFugggEISTnZYffJ52R6xlrt0W8c61Tg+yFi7mDRwLhL6xtGitPK8D/cX/LffDwmfIk1WwhBGCddIfY1jDM8XD2ktS23B7fRLuaytoRZgl8+xqxnjA722BuHjAL1a91IuqZBnJ2RL1fkgI4j1qMB8zjmsVnR2BXDaMD19DY9mRBbSWRF55BYLtCLFrNqqfOIpZ2zaBb0wz47yQ6n5SkXY7i+iLl/Puf87JKD669Wedq2Zb1ek6YpWZaBrqE47yxm/mqIcnkJpu6sZpN7MLoHce97/9zfCxVCvtc9dNXNMCvOoLyA3i5Rb4+dnZ0Xip7oB5g+9qZwVYW5nBFMxu9swKhdvTrm/fuyPctveW1456nWLVEaEHxtV2x+NWD0IApJv6L8LJoFaZCSBN1F47zt/LuJEPzJ4zU7cfe1rliBMYiyRouEJonJ8xg2K4KywOZDlG5oRhMQgv75nEgXLPb28UrR2gJf1ojSIXamaGAiV4zcjKj/AcYVrJYzrAjZnVzrFmfa7gT9A0tn+zpqMMA7j1utCJXkg90R68ZxuOxiR5+GF4i6IQlDNnKANS1JdcF/dWuIjVJOSwibJUhBM5rgjCDRiy7lqLXYNEMOboDu8cuLz9gLh7S65Xh5DHRpbQQgnCaxniDMWVYr2ua3PE1sedgVO+kExvfefuEcZd08H9t2QQm/hbTG8fCyJFCCu9MMKQXFesNiXbJ/sEugJDTrrn9nY3DSIZqKREKa7yCjALEteN45T5PaPC0qkISAjyRWKHRxNdA4iEFIfp7FeBmyri+754UgTBOC0LKI+0TGExU1TbsGIXEiQfdTTJhysDymDSS60XhjaSQwiru4/WXzLAFsL1F8uW75355svleil3GGR6tHNLZhN7vBuQn4d6dLSuv4fen5z2TOP7rzE9KdCUfFEb+c/5KL6gLtvtu50GuNPjqi+fxz3HpNsLtL8snHDD75mMH+EKUuiGRBHOWo+CaF3MVFY7LBlGgyJbp5g+SnP6V3+x55Pma8gdvnsFMGlG3BcXlMrGLqwCP2FZGzPH58grMvj+V2zrFYLJBSMkjk2d9D4AAAIABJREFU1TyxT6G8xBtwZdXZ67IdOPgDGH/QKS+Lh1BcvL0Y/TCF8Z1uhlky7OxuZ78g1Gt2dnaQUnJ5ebmd1XOF9x59dIQIA4L9/bf+/na1ovn8c9pHj1/ba27P8lteG3Whcfab6k7rHId1SyYlu9HzHebKVNS2fqbuaOeZacMoUPyboxLtPGkg8VWBMwZZVQQaynSATCPiUBGenyCiCInHS4XuDwkrTe/ylLYXUYw6BaGxG+RlgZIhwe4O89bxT6NDpFCEgw9pqkvmmw1pb8QwuQooaK52Fn6g/TtPEVn2zNYGcHs6JAsUn50tn8+cGI9BQNq2+CChdBEUZ9yJJf/53SFPXEK9WoL3+F5Cmw0Iq3W3e1d1RWo7mhDEH1JtNhxffM4wHHK0OEI7TZikqCCgtTW5FERRjnGW2fI3m/Xw3uI9LB51u4m93e5C+67sAHHeBSQ0q26H87cI6zwPLwuc99yd9rriBjg+OUNIxbW9q4SpZs1MS0RdM/easK0ZCEWYTRCR3EZSvwc8LXi64AKFN54wVlgVYsqmi0gWAoKUg8jSi6a0tqTRXVS0DzN6sWWZDgDBcLHBtN1IAS9SJA3F9AZZs6RPiwSaoqWyVz08wxi0g2ULVyEJ17KA/+us5C9n3+0m2DrLo9Uj1rpCRQccmoDTTUNi4Y+U5mCzIt7ZYXLrIz4cfcid/h1iFXNanvLL+S95tHrUuR5eUQSY+Zzms88w8znBZEL88ceE+3uIKOK8POfR+hGxivnDnY/5L/Y/5pPegFAKjhrNp0XNSaMxziNkF0Ed3b1L/NGHhL2cwdJw51IwqASVrWhdy6onyMeS5fklFxezl65pvV5jjGEUWeTsS9y6wDQ92plEX2pM1UeLT2ij30eL29jsY/zobhdAsHzcqc/WvPS13whh0iVa7v5OVwQtHhIsH7Iz6sIMZrMZVVW9vfW8p9jZDFfVhPv7iLcY6uCKguaLL2gfPcY7R3Tzxmt77W3Bs+W14L2nXLWEsSL6SgOw957HdYsHbqcvzuRZNsvOPxx1ftsLrXHAorL8+8uqm7mj287KZjWisTjVp4oUYRoSmZpovcL1hqimph2OURb6lyuErVnv7vL/s/dmsZZleXrXb609T2e8Y9yYMiIza7J7qC66wQ0Ii1G2QGoJJDBYQrLkB54QvPmFF8QLEhLIL5RkIxAthExbbpDM0ILGeGia6qmquyvnjMwY7njGPQ9rr8XDvhEZWTlXZURGZMcnhXR17jl7nzhn37X29/9//+8z0kJrRV2meJnCms+Qjo3sc25aS7zwGsaSFNtzSi2YTfdw5KWcrd6C5T33LldCCKwkQec5RmsC1+LaNOF8W7Bphjych+YFIsvwfZ9cJGitCaoL/rn9BCsesykVphoISjObI7XGbTNoeugNKoqRyTVM4/H66nX2nRlN03CenyOEwItiWl0TOZJIB3RCsNh+DUNIjRmql+US4gMYX/2q3xHEu8PAbno8yEu+BmhUzzsXOY3S3JhH+M6wKTdVyXKTMt2ZEbg2aI1uUi5yjWhLtlrhq4aZHyGDMcL7esr8njd82Jpa0iuNKySd60Bn6NpmeKLjs2O1+N4YjCSrhi5PZwdEoURZFpU3JsxqRF2i+hotfEBTjWcY22a+OiaKfRxjWJctvdbgWZA4w3qWX4YzC8G+L/kf30u5k316dlive97Zvse9MqO2dmnwmVsWSQd7bcm82GBNJjiHh49eE7sxN8c3eWXyCrvBLpWquJ/f5431G9zL7rFttvS6x2hNe/8B3YNjhB8MROfwEOE4aKO5l97jvDpn7I65Ob5JYA+yzrFj83Lo83LgEVmSs7bjtaLift3SXGbsSN/HvXlzCDy1HXY2hr1Fj6cl2y6l3dEY0/Le2+9/JJenaRqKoiDSGe72jG7joAoXnaZIx2BdvY798rew9neRkQsC+rSh27r04UuDxLcthtDkp53N5gSDocvoKrQ51uotdkKJ4zis12vK8pMzl77uMF2HOj/HiiOsydNzqFXLJc1772FUj3N0Be+VV77U878gPC/wpaApFb3SBMmHuzsXrSLvNVc890PZAQ+zd0buCEta9MawbBUugr93r2DqWggYXNm0RrQtVu/Q2B7Ks/A8G3d1jpACadsgJH08Is5a7GJBHbnUo8vujsrRyw2eDJB7uzS9Zl/fY+5InPFt2mZNnm+wghGTYBjkR+thwPI5l7M9hByNB1lbNlQ8X96bgDa8df4B4bBmM4zqCbXGWC4lPhQLrjqGX729x8oI6svANhXE6NDDa9OhKloPFbpmOsP3XmK1XbHc3COxEo7XxyitCJIEHIHpGkIDthWRtSlN9TWTtW3vDYOyyRUYHX72858WJtcHi9f1e0+3ovoEkNYdb5/nqN5wcycifoy0nJ0t6I3kcH9neKDNqHpNlikkDVmn8VTFfLSDsAKk//zO532dIIRASheth8IZgCtAuS5aGbryssvihPhCcy20MCQUzZZedygrIPAltmzZ+mMCBc56Q9sXaDHMHygp6EZT3GaDX2fsOi60HRdtizYGQgdCG0oFxbAueZZk7Ej+6zfXvL75+E5PoxS/t3yb17Mtrn/IYTDmm5GPqwztdsteucEej3COrnzs613LZS/c49Xpq9xIbjByR5RdOZCf0x9x54f/kOXZe6hZgnPzxqOU+0533NneIe1S9sN9riZXkeKjt3WRbXEz8PhG6DNxbFad4vWi5r2qobh0erPiCO/2bZwrhyS9zZWFYafz2dgNalyxOl+wuFg+OqYxhu1mg50/IMwy1FYgdIsVlFhX5ojDm2gkukqBBhmAPfexd0OEJejXNV3uY0YvDRK3xZvDnM3TRrx72e0Jkek95naF57psNhvy/OtRHPqi6E5PwRjsKx9/vX7ZeEToT06x4hjv5dvYn9fW/AvgRWnrBb4UVNmgu/bCDy6pstecth0T22LufvhSS9sUZdQjOduiVShj+OGioVCaK6FNX6QY3SOVQiiAmNYC41m4QuOul5gwxmprutGMqNBYbUEvaprJLuZyQDurNvhpiT8/ovd90jLlX/RWeP4ewp+Qnf4hheoJZjNG7iXBaS/lWs+5nO0hZPSBrM0aj9mZJMx9h/eXW37h6t5ggxrHCNdBpBneeERex4SmISxO+N78Cn88GVGnGX3ZEUcu9XROWB1j1yWqtCC0UVECwU1I3+TN9Wv8cvwv8079HhflBYfxIbbr0pY1ieXieQl1nrPJMvYfEs3nHZt7H3R2kqeve/5UPAwnXbw5dKDmt7/qd/RT4TyrOds2BK7k+izCfWz+pmsbFqst4XjMOLwsvjQZmdIUWYPt9bRpR9h3TJI50nGQLzo8zwwGwtPgBZdObZfGBf1W0OUlzKZDNgvwndjw1mpC16fUaoPl7GBZFoGnSfuAXT8hWads6i2hO8dgI0RHnczxmjO81YJ+/yqjTlJXLReWJJIWUWQjtBm6PEJAaBM7Eingb7295d95yfDd+dBBKXvNRdPw2uYOtap5ZXyd2/EM35I0quf4/jlRumJ0MMH5HC5XQghiNyZ2Y4wxFOtzNidvUumO1X7EysuwNm8S2iGe5XFRXSAQ3BjdIHbjTz12rw261yQaPGGx7hTHZc0DAYlrs++77Hg29myGjGPE/Qdcz1O0trkz1WTvvM27f+M32fk7v47Ic/K9PfS//ZdJ/tW/jN49RHU5ddmgegf6BaaroW+QaGxHYDsS2xFYUYg13UEGI/rUoitD7PkNZHl/sNKf3RpkuE8TD10t02Nkcc7MaVi7E9JLGXgcP+X38xWiz3P6bTpk7jwFAwfTtrT37qGrGntvF2fvyeXz/cwrvRDiGvDfAfsMaVDfN8b8lz/rcV/g+UFbK7qmJ5n5jxZ0bQzvVw2OEFz1P/pHs222ONIhciK0MSw6xarW/OGq4Si0MW2DaWqE1gjdIewRSmmqxMZxbIJsOfzOcsAYHCtGaoNRK7S0qcZDd6fvNdXyjD3hIXaHiq/fnXAj0LjJLfq+oUzP6TyfeTD6wJ2tTkHI59aO+ifxUNbWbzYYrRFS8vLumN+5t+BeVnF7PLjl2PM53ckp0XzGSlhU1oio3nLFn/Ir1/f4nT9Zo7MtnjeDYEYYneFlGaoKoB1kIc1sh7C4zoPtXcrZisgLOdmcsBfu4ccJebEgtiBSAZmAVbpmb/fLr+Y8dWwfXLr/7D1bnZ3H4YaDxG57D4olRF8sRf2rRNEoTrY1VdszCR2OJsFHgo2XZ+dUneb2wc4H11OTsWpsnConCyxoS3yjifwJIvAQ9nN+3X2NIKVH122QUmDZEqkBW6CkTZddVv+dgWy85PfYjo9oI8p2Q+jMUXZAHOQcNzZ1NCXYrEg355jk5jDHY2paJ8YeFZALguUpwewQr1bQ9GQelEAcW3jaILNmGL0LbEJbIjH8t+9ueFC3vDJ2qbTiLL+HQ8cv7d5i97GA6nvvndIvFly5OsO5fv0Lr2/9ZoN1smB3cgX3+nWUBWVXUnQFeZvzxvoNmr7hIDzgrDxj02zwbZ/ADnAtF4nNtupIq45a9XTqo3NBEYZU9dxNG97SOY4UzH2Hw9Bl98pV/GzDjVOofucfsfy7/z3vplNu94aJEBSJi/WDH9L9vz8k/zf+dfQrL2N5Dt44BtdG+FNEmNAbh77qqFuF6TqcqsBvFwjOkK4N0qdPPZgmSLUdCjIHf35wWHuaEALGR+AEiM1dprJlbc9I0xRjDEny9bgX+DQYY1AnJwjXwd7ZefLnU4r2/fcxSuHeuI71hD/jL6O0pYD/2BjzB0KIBPh9IcRvGWN+/CUc+wWeA5Rpi7QEfvTBAvWg6WiN4eXA+0i+QKc7si5jxx9uShZtR971/IPjcpCyGUNfZiBAtDXYPnbhkMmG3rexBETrBTgeUvfY3hRjBK1b428qqmQPc+mnnxYpXpoSx7uoKEF1ObP+lMN4joh2yVZ3aVWHPdn7oLsDw4C3l3x1g+ZPAHI0Rq3W6CzDGo+5vjvlRw+WvHG64uYoxBICazJBnZ0hsxzX98g6CK2KKD/lOzvXeX0SsM0z0jxiNg5oxzPc6oKqrNG5A95gHOEHt6C4w1vpj/n2zq9wvzxhWS2ZJ1Py1ZK+rUksnzM7IG0yurrHDZ7jSnt2OhgUhDvDpvksI9oZcjDSB4Nk82nfWHxBNKrndFuTVgrbElydBkyjjxZR6jznYrXFH0/ZiYebYlRL19YsC4OvKt5A4DUliWXhRjtIW76wpH6GMFhT92jd4XgWXdNjWRLtOfR19SjvBsvjgA7LDrDVmFZdUKstyvIZexuOBaTOiBkO7npDd6XEFgGOyWgtn0gK1HyMfb4hypZswhmHtSZ0bdYStlpDJHCUwV6XmN5FeRIFOI7hN+6l/Hzm8E9Ntlx1DddHL31o/1jdO2Hz4IwrBxPCl258YbLTnZ+jzi+w4mggS3JwrRt7Y0buiLv6LvvhPvNgjiMdalVTdAXbdkvZaNKqp2oFtrCJXI/E84k9l9j3CB0Hx3IeSd+MgUZpNm3HWdmyqDtOFy2WgJFtsbftOfhPvk+63/BH1xN+eP2IX9ws6I6u0tg9WuXwv/9PyJf/A/TVb5C7Y5xohnQfm9kdDfndfWcoanCNYexrnLbAFCl9ptC6wokt5PLtQRJ85bsQTJ7+HhzOwPYQqztM1Tkbe5fsUgr+dSc9/XKJblrcG8M19yRh+n4gO12He+MGMnrCFuV8CYTHGHMCnFz+nAkhXgOOgBeE5ylCt+0wlN4pUN1gA2kMwveRvo8IAoTrfulVdNX1tJUiGnuPnI42nWLVKfZdh8j+qD5+U28AmPpTjDGcNx2/v6ipe5h5kj7fgtbIXiEAvDHqvKANbIQl8KsU2TbIcETQWnSjmCqwCYsLNA71eKhMqF6Tby+Yqga5c4VeCOr6hF/0FH50HSMssvV9WsfG9eMPNqyuGmx8489Ol36e8EjWtt1ijccEYcitkc+PtzlnVcuV0ENYFtZ0ilqtiCc3WLUtpT0las441BnfPdzhH7xzStv1FFWH5c2Zxxe4m5J648LYBVvSzA6IikPeS9/nm6Ofw3c9TrYnzA/muEFAu6lIrIDAjSmKC7Zp/qHq6HOFYgHZyWA9Pbn2Vb+bz4fJNbh4fej0zG591e/mY5E3ilXektbDLMX+yGMn9j7S1QHQumd1fkbRS67u7zxya6PJKHtFlmkC0bCsNE7XMHE9ZDQDS76wpH6G8GGnNoe66PB8gfJ92FQ0RUk4HoETkHQVu8GIZe1ja4+yXVBbEyaWwHc1WWMzjaa42TldvsCMBqlMbwm0sLBlRzPfJVqes/R9Uhmyk/c4Y5dagsKgphKzbhBZi4tHENhYlmDPtnh3fY93lzX/5q1X+LYz3AgbY2hPT7n33inhdMTBKze/ONk5OUEtV1iTMc7R0Udefz+/T97lXEuuMfWnjx6vu55765y8LQlkx2xk8N0eaXUos6UBmhaWl94AtrBxpIMtbSxp4dkWN8eSm2NBpiQXpWJZKl77X/8P+ld/Ea/coGzD//0LMxx1i8CFttOINsLqeuw/eh154xvIPkM2HbYzxfFCLBesALAMvdXT6IbVpuFBZggCi8S3cfoGuSoRTYyzcxVn+wbUK0xyCNEuIt5DShspJLa0scXwnp8Y3Ah2XkUs32KiLuDPAOkxXYe6uMBK4ifeaTFa075/F13XT43swJc8wyOEuAn8IvC7X+ZxX+DjYcyQrdKv1/R58ehx4dgIe/hq++VyEBoCwrawZjPs2ezR739WlGmLEIIgGarErdbcv7Sg3nc/eg5jDOtmTWRHuJbLslW8kba8vml5KXLRTYVpG4QQiK6BZIqTGwqt6eOBVCXbC4QQhEpAmFAmPkJmyKImCw8Htx0gL1q87SlhmKAmMyy9xW8vuL27i0gOyLZL+r7EjEaE1iADAAY5G3xtDAseQgiBNRqhViuMUgjb5qX9CW++ecqbq5zDSxc9az4fNtyyxHVdsk4RODFRec7L0z3uTJa8kZcUlcRzfZpwQtCk1HkMaQOzgHY0wQ9fpi9OuVO8wQ3rO5yXK9bNmjBOSLOSWPQkOuZUnLPKNuzsjZ8/WVu1HkiDNxpMAZ4X2N5A6LPj4f8QTD/7NU8BvR5cs1ZFS9NppIR57LITezjWJxOTYr1mmVX4k132ksdcFZstaSvoypokkmwWBft9zU48wXJjhGe/sKR+hvBhp7aB/DgGyodD+mkB4xE4IdQbvpVY/F8bgc8OhjM2fc7EshmFios+orITvOoCtTxGj68DAklN447w2pRscoRVlUw2a9Yzh2kvidIWPfZwpRzm3ub2kM9T9GBbGE+QNidMnBbbvsL/8gBeS9f8S3seR+tzzhYpOkm49uoN5Beskj8kO/bOHOfgowW3i/KCtB0MCh6SnbrreX9dcZo3KCOIw5jIs1EGtr2hbg210rSmpVUdynSovqM3CmMatMmBHltp7M7gKoOtQWqoDYR/8k84vzbijdkrGF8S6Zo/0hpp+2x7CzYN8eqc8R++Ab/mMvZbAk6hP4Hcx/RjLOnj+AIvkriRwAoM7brhfNtyLnq8UOPXKd7JOU4eI65dxatO0fkJlGeYhUUfzlDhdJCaAwKBLW08y8OzPFzLxbM8Ajv4WOOGLwzbhfkrj5Geva816enOzjFaY3/MdfdlwhhDd/cuuixxr13FeorzUV8a4RFCxMBvAP+hMeYj0ahCiL8O/HWA69efoxuDZxRqvUadn2M6hXAc7L1drMkE4Tgfumk0xmCaBl1V6DRFnV/QLxZYkwnWzs7PNJTW95qmUPixg7QkxhjufoIF9UMUXUGnO/bDfYwxvFM0/PZJwRXfRWhNX+ZgWYgyHxYcP8Ecb1COxHg2Mk0JqpJQBtjaZrk3o/Els9UpnfZpk6EF3rSKpsxIugyxfwsjLUx7RqIqjqavYuyAbPU6ODbGiUjcxxawJgU7eOalPj8NrMkEtVzRZxn2dEoyHnM1XPBgmbLYSdj1XaTrYiUx/XpNcvMmy+WSwpuQdAWHpubPzyLu1QWtiUnzhiCcMQ03eFVFs7SGED8pqadXCe/NeTd7l5vhN7CFzWl6yjd3vgG2oGsrJk7EieWRthltpfDC5+gzbzJYvw9uPISKPm9kLd6DejPMHnmjpx+K+hjKVrHMW7ZVhzEQuBZXpwHjwPnYjs7j6Jqa7WpFbQUcTpMPTAy0hiZjqTyc4gHFzKWrayLdME1mSNtHei+6O88ShHBBCLRp8S7Dqx0E2BLjOLQP53jcwXXt1aDnt6XEGPCtGZVaUJuG2LdZlZCJgKl0EOkK09Zoy0eaisaZEjRrHFVQ7x0QHN+jWJ+zjabMiYnyjiJxhr9pKYY1bdNithWpu6BzW2LvEN8eMXYNZ6uUv/PjYzyjme/v873r+yT+F1vLutPTjyU7da/ZtpqTcss7m3u0JqHf2qyaJRdFx9m2whiD79kEvovcdBiGOqcxw9uXAgRD0UvgAi5CG5xO47Y9TqcRBjSGXGoyoalQ2PUZ3xu5dG7IrS5jpBQbCT90e5LVkkjO6UOHIrhK0VzjD+7a9HaE78+YRy0TK8U2OV03wix9hDYYS9LFDl5gEzoQZzUj0zOeSiZOyvjBGXsiYe/WDtIxmOQKpl7T1xuoK7poh9ZL6I2m0x1t37Lu1mgGy2yBwLd8QickdEJiJ/7pCdAj0vM2E3X+qNNjjGE0+voURHVR0G822Ls7SM97oudSx8f0eYFzdAVrPH6i5/pJfCmERwjhMJCdXzfG/N2Pe44x5vvA9wG+973vPaVo3a8fTN/THR/Tb1NkGOJcuTI4qnzCzZYQ4pGsjekU3TT0iwVqvR4u8L29n3o4rUo7jDGEl1bU562i6DXX/A9bUD+Odb3GFjYjd8SyU/z9BxmesAhtSZ8NFsmy7xFGw2QHq1S0tULNfTAQri+IOoHjOWQ7Y5rYI6wukFVH6e1BYGGMIStavPQc17HQ86u4ekVTrvlOPMVO9ijSLUqlmFGEtJwPCI/uh1yA+Mk5hXyVkEGA9Fz69QZ7OsVxPW5NAu5f1Ly9qdg9GL5Laz6nf+99nKoacnnqhjCY4VdLjgKPnxu1/MMSrF6z6VwSJySIc5ptCMsGdgPa8RR/eYty+wPuT+6wL15iU2RsRyl+nNBcpMROTOgkpNWSIq+fH8LTVbC6M3RKpi/BE9Y7PxEIAeNrw5Bw+uCpd6iMMWyrjkXeULUaIWASOswjj8D9/OQrXVywrfuPdnfajKbvWReSkW55Q7o4qiTQhjiegnQQ3gtL6mcJQgikcNF9g/AEtmOBNiAEve8hyhyte6QzEJ5Dp8G2LVAaW4yxrJyVPmVqHPxAUrUhiTPGqlfIxX3MwRhLb6jtCCMkXpfShTHt0Q3k+TFNvsI4DY4/I4IPSI8Q9CNBcX6GSRXJ9ADPHiGUwtusGG3XaN/mbW/GG7XFH98rmJ03vBTbvJS47Pk2gS1xpcCVAkeC0kPYdmcM1ckp5dkF1WjCSscs7mw5rxXLpqfqDUa35M1dEDZjP8azWvpW0dYd+4HFJAmwP4800xicVuM2PU432FFrW1L7NqkNqTT0UhA0DaPzd+juHhMVPoflgrFTEPU98Z/cozwaI+ySX3ljQ5fMWe7vUCRTtmVK6yWs5IgtHn0wYT+8IPYXtOMjLBXhFQqngd4CFdpkJmCTtjStoPNmJL5m/tZ9uAMHh4LDm5L9q9/iKGnxijOCagtdO8xKPmYq1OmORjWUqqTsStb1mmW9RCJJ3ISRN/rpyI/twvzlgfT0C3D3H9lVfx1IjzGG7vQU4djYu7tP9FxqvUatB2JlT5++quDLcGkTwN8CXjPG/Bef5zWfECL8Ap+BPi/oHjzAqA5nfw9rZ+cLS4Ck5yGPjrD39uiOj+lOz+jTDOfq0Rfq9mhtqPIWL3SwHEnR95xdWlDPnI+/rB6aFcz9OUIIfus0537R8eeSAF2XmK5D2C4iX0M0Rrge8iSlwyDHHnq9ZZYWuK5DEzlk+zvIviWszmj6CDWOwZJUVYdWHUmzHAbo3QBHHaPblpf3r2DcEcXZu0jH0DoBjnTwL61OaVLAfG3sqD8OcjxGnV9g2hbhuownY/ZWJSebgu0sYuzaWHGM9FzUakVy7Rp1XZMTM7YyDlTB7dji9b4mawOKumXrTdjxT7CrDrWWMPXAtmjmt/HvvsWd9G2O3JcQNZzlZ9yMrlJvUlzTkRBxyoJluma6Ez/7EiPVwvKdoSMyuw3Wc2y24IYDuc/PIJwP2vUnDNVrVmXLMm9RvcFzJFcmPpPQxfqC33253VCXFY2XsBd7H7Kopt5SKEORNRzIlrutxGtLYinwgxnSdZDOC8LzrEFKD62HkFHblei6RwjofQ87y2nzEn+UgO0zpSXxI6pth1KG2N+nte7TtAt8f5+qDmhzH6QNm1OYjcHWCNHROjFem5KHV0BK5N4h5XpFvVkStC2BnSBVRD4J6GhJmweYRDNqD3Azibt+gKuGG98uGbEIJsi251bi4zkWjTa8lrb80brh0VV9+YMxj34k3Czw10uaZELmhMi6wJUCTwoSRzJxNNvmgsC3mATXkcIhLRq6VhF5NqNPmGt7HFan8RqF02qEMWghaHyb2pFsLUOpNQbwtGC03tDf/xH9Rc63Ip9bV12Sd99FNDHBWcbO2+/xvfIG//g7Y473zvmVH7/DwXLF+3/l17gy6VguztjRgpwx667nop1zZbQisI/J7APycYJdKLy8wa0V4dhDTrwh98hxMbdvYCUj3Ht3uHiw5Hz5I86WFlW4x9VoxnfDgG+qJdPubUQwgdER2C6OdHBc55E9tzGGoitI25Sszdi2WyxhMfWmzILZBwHjnwe2C7NbiMWbTPUK4e99bUhPv9mgqxr36tETNSrQdY06OUFGIfYTtJ7+NHwZO/WvAn8V+GMhxB9dPvY3jDF//5Ne0Kiertefqsl+gQ9Drdd0D46RnosWoAeIAAAgAElEQVR76xYyCH6m4wnHwb1xY2Dcp6e0b7+NfXj4uVl3nXcYbQhHLr0x3K3aT7SgfohNvcFgmPpT3khr/s/TguuBB32PLnOwbWSdDzeQyQTaHpXWtKGDjWB8ckGiNNXMo9zfBcsiye5hOijcHQhseq3Jq5a4zBCioZ9fx9YLTFfgaI/D3UOqPKPrtnjjiI0W7ASPLVh1OmyOT+HG76uCNZkM0sbtFnt3Fz9OeCm64Ad1zdubkl/aGz4Paz6nOz7BaVuCIKCoKqLxIW7/Poflml8eBfxvGwunM5y3ARNsgiQnW7mwqGA/pBlPGUcvka5/yNnkPlNzRFZmVHGH9Gy6smLHTXhg2aRtRlOpD7n9PXPQPazeHTKa5q8MG+HzjvgAyhVs78PuN57YabQ2LPKG86zBGIh9m52p+4WlPw/RViXZckGOgxsl7CaPSTGMgXrLSgeI4hQii8W6ZKRrZq6HDGcIW7wwLHgGIaWL6gfZkO1ag3GBK2hdFw9o0mIgPE6AaHK+MZrxu2lN0/XEUQDuPlX1GlpkBP6c0goIhU9ravxlhtkHqSsaZ5jjsVWFsgMCIUlHY5auy8FqgagXJJsl1rnhfpzjopmIHdx+hdg20EI7G9Ee7dBZDsWmwnNt/MvZVd8SfFamrbta4FUbut059d4BH3frnDXn9Lpm5B0hcFinNZ3qiQKXOPzk9Udog9v0uLXC0gYDdJ5F61l0tqTUmlz3GA2+kEQ9yLMH5O//MRMl+ObBhJfDNbLdwXotwMobgnsPcJXi5YsTHhyPOd9JeP1mx3fvFcz/tV/j6jeu8Yd37/P7b50RYZglM45LzWk/46XpliPvgkLalOOYxle0aYtYFtiJR+RL7KJDWIJmd4rjBHgXD3AXf0ry/h9w/upfYN2O+c3C5jfNLjfZ8Mv+GbezDZP51cF98rEC8EcyjbqCdbNmUS9Y1kvG3pi5P/+g2PlZcHyYvQTLd5hYGwhm5HmOEOK5nekxSg2urGGINXlypkGm72nv3gXLwr169Sub1f2ZV3tjzD8yxghjzM8ZY37h8t8nkh0YtKXvLQp6/aLV83nwkOxYSYx7+/bPTHYehz2d4t2+jQgCugfHdKenmM9owRljqLIhDdvxLB7ULa0xXPfdj1hQP46HZgXK2Pztd9eEliCxBLpMQQikNqA6GO8gpMROG5pOY489wtM1TlXQxqDikHY8wW1TvC6jZI52XHAledFies24XdMFHrYfY+s1XdlyezzGDmcUmzXCUSjbRTwuZ4OvpR31T0K6LjIM6TeDW57tOIzjkJlQ3E9rqofJ25MJwrZQi8WjBT3vJIRzdkTHFbPh1siitW16Y1joGN8qsEINuRrSyi2LevYqQRfyXv4OlhGYQrMoF3hRTNvXhMIQOQkblVMWH59k/kzAGFi/B6oeAjydL+/v8CuFlDC6Al05ZPM8AayLljfOMs7ShsS3eWU/5qWd6KcmO6rr2JydYiyb1p8wDhy8xx0h24K+VyxaF69KaUYhdV7g9TX7foIVjF84tD2jkNIDYzBm2GMAXCFohMDyHLr0YR5PBLrjG5HEWBaq7+m1xvOPsC2PqrmH9Go6b4RpbVrHQRdbZNkiTUnjJBgEXrsFhhvkQEpyPyC9fovNjZs82JWsu2PGF1sOixhPS4zjoa7sUN6+QRNO0YUhzWqkgFH0+ecf3PUSb72gS8bUex8/KN6ojEalBM4cW0aXZEczTvyPJzvG4DQ9UdoyXtcEZQdSUEYO26lPGbsUlmDZK1Ld4wjBju0wUcCDE/K3fsShtPlnb+3x3Ss9Il/iXP8Fon/r30fWKcl2+OwnVcmVTUGcTVnMA+5+/z/DOjzkMNf8xZeP+Fd+YUJlVqy3S65gEVSGdxYJm9IiNueMpWY39BnvRriejUobVr1iI3u6dCiIlImH2DmivfpdnKZl/tbvERVrDj3BYeiwcnf4jfKI77/X8pt/8hp33v9T+rb82M/xIfm5llzjlckrzPwZaZPyzvYdjvNjlFaf70vzkkH626SMSQmCgCzLKIris1/7DEKdn2NUj3PlyebGdcfHg/301asI56sraH4lq71nSxqleX9ZoF+Qnk/FI7ITR0NS8xNoOQrXxb15E3s+Qy2WdPfuYbT+xOc3paJXmnDssekUa9V/ogX1Q+RtTqc7Jt6UX7+zYdn2HPoONOXgGOb6iDKDIEb4w42kWdVICTsa+tUKIypUElHv7CKMZlQ+oDMeFSMIbJqup24VU11DX1KNR0SkiL5Htw4vHxxQZBm9avBjh9pILGER2oMenLYArb7WcraHsCZjdNOiq2ED8+OYG66m6zre2gybhpASazajz3KkUkRRRFmWdMEeTjTnoD7je0mL7UikY7M0CU0PoZ8DBtIWlKaZzHDCm2wWGzbmlKj2SIuU1tPgSeyuZWIiWmNYZynmWV0TNncHQjy5/rVz8COcDeYL2fHQxfqSUHc9b59n3F9XOJbk1m7EjXmE/zNIyYzWbM9OAGjDGUJK9kY/caNZb8lVT5r1TEzFPelhdRVRrxhFo8GhzRbwInT0mcOHrKkdiRACVwuMAR36qLxG9/2jgsOR2+FcXk9t26PtgJl3iCch55g+tlHKBWVoZIu7KpG6wkibzgnxug88lkIpMUDZt2zMguXYUNz+Jv6Nfxpr5xZifIVm75BmvouZhJC41FmDWdUkvvuZ0rKHcDcrvNUFKh5R73482dFakTen2NLHt2ZsshrVayaJ96iL9BBWpwnyjvG6IcpbrF4PczkTj2zs0fo2WsC2V6x6hTaGqWUzsx3sQtHcO6d690+4EcBf/M4+39oX5Ccn2KN9xle/Tfdzr+D/7f8B+6/9NRiNEFJyvc2Yfucv4PxH/ynv/NINiqM5SIl/rvjuzoR/93sjwiDntFwxl4JxA/dXCcuswemPLwPDLZJZyDTxSRrQvWHbKbbrksYWNJ6NiHeobv08kaoYv/8Gen2BaWtiR7KfhDi7t/mxPODvvbvgv/md3+UHd96lVp+8hrmWy0F0wKvTV5n7czbNhrc3b7Oslp9Z7B0ukhnE+4hqxcTu8H2f7XZLWX482XpWoesatVpjz6bDjPcTglqv6bcpzt7eU7Of/iR8JYRHiiE8rmh67q+rz3eR/RnEh8jO9ScbBCWEwDk8xDk8oE8z2jt3MF33sc8tty2WIxGe/FQL6sfx0KzgRxub/29dsudZ+H2PrkpwPWSZXVaaZwDYRYvc1ESOxKiass+xXYmJJ6goIarPkFqRyX0QAuNbZEWLJQTTKqW2e+zAxqZBdBaWtDiY7FFs1li+wXIcKiOInccMHx7aUf9ZIDyjEQjot0N1049jxp7NFMWdTfWoy2PPZggpUIsFcRwjpWSb5bDzCnPLMM/e51cPAwohELbLhYpwxAYrBOoesu6yy/NN3MbjbvUu0kj6TLFWKXbg0bYlu3ZIKyRpm9JUn7Pa9jSRnUK1GuRf4eyrfjdPBqOjgfBnp1/K4RZ5w9vnOa0yXJsFvLw32OX+rNien6HaFn+6y7YxzCL3w90dGORsyqPPM0ZOz50WnL4k1IYoniIsD+nZz58N+p8BPG5NLaTAcuQj7b3yPTDQ5eVgTY1g12oIHAuDoGn7weXNidmz59jSQflrckdjpYpN4qFbcLMVGEXjjLD7Bqu/nBkCtNpwVt6h0zWxe0AcHlFMI6rQweo0yabBLzvQhtYRZA64UuKXanAi+Ay4mzXe8hwVJVR7h5+oJsjaUwwQuwds8+ays+PhXe61Vqfxi45kXZOkDW6j6BxJnrikE486ctCXYwOt1ixVR6k1sZTs2g6+lJC1NHfPaN//U27HNf/8zx9xdeJx8d59ZBgxe/lX6JoUs7NL8nO/CH/zb8J2C33Pznt3iP69v0Ls3MbS8KP0x8ib17GSGHstuSoc/urP+xyNah4YRSwl41JwuozJihRbXwz/USGQI49g4jMVFrEW9FXHMq8596AHlH9EdeMWE50SX5yisw19vsVojRSCMJlj7X+LzhvzT969w/d/53f5f+4vKD/l+7CkxUF0wO3JbQI74LQ85d3tuzSX14I2+pH5wWlxyr30HvfSe5wWp6xcn8J20Ol9JpGL53lsNhuqywLi84Du+ARhW090nsa0Ler0dJjbecKGCJ8HX1k/fxK6HIx9tlXH8fYZlrF8Reiz7KmRncdhz+e4N65jmobm3TuYtv3Q79tKobqeIHG49xkW1A/x0KwgUyG/cS9l7EpiS2KKDCEl0hjoGhjNEJaF0Ib4QYbdadqdgDxfIOoCZxTT7B5gq5KwXlK4M1TngG9TNIpea+Z9iVAN+dgjEiXGODRly/X5DqoqwRi8WNIYgxHWR+Vsbvx8D6F/Tgh7MCbot1uMMVi2g+P73HR7tDa8sS4+eN5sRr/dIvqeJElo25ZSO8jJdQ6rB1y3Cr459Wkcm8yZU1YKX26H6nmjoOxoprs4wXWWZwsKsSSoXbIqo/Ohl4qg74mdhGW9pSraz3j3TxnV+jJYdAqjJ9v6/0rhhoNxQXEB3U+/Jne95s6i4GRTE3uDfG3yKbMGnxfGGNKLc5qyIJ7NWXYSKWEv+YnuTlejVcNCBXjZCp34PNiUuH3FGIkfTgfDiRcObc8kpHQQQqL1sA7YroTeYFsCdWmZ26TlUCCzfayu4qXYQUlB2/WD65QV4omekbVHEMQ0saEo1lTVltJ1cFcbpMppnKG45TRrynbJqnoXo5Zo4RB51/CdS9tcIWgCm3TioxwLv1LEy4rmLMNxLKLDZNDqr2poPqW7sFnhLc9QYUK1f+UTyU7Vbej6gtDZIcs1ndJMQpfECIK8Y7QaSI5fK8zjkrXERbnWo+MaY8h6xbIfikhzyyaxLol+1tLdOaE8fpNXJ1t+9eevcDQbs3jnAcbSTL79zyDqhtbXhLs3sawP/73YrsvR9X26RnG1O6DoCl7bvIF97Rr27h5OHTEqe/7S1YZDv2QZOXiehVu4nF44tOUZUj8mBQtsxMTH92ymLUSZIteaYxdQmjK+idqbk+iSZLvF1CV9usJ0w3VipE07voG7c4tEKP7wjR/xX/3gNX77OKfpP5n4eJbHjdENriXXUFrx2vI1frz8MW+s3uBOeofj4phVvaLVLU3fsKpXnBQnvCcMb5UnXJz+EfEoxHVd1us1TdN84rmeFfSbDbossff3v7RMxo9Dd3zZyTs6emLn+CL4SgXMu4nHbuKxyltOts8PM37SMG1Ld/8+0veeKtl5CCtJcF96CXRPc+c99GOkp0xbpCXJHEHea44+xYL6Idb1mrzr+Z8fSGzb4EmBX5UY3SP8EJFvwQsQYYzVaUbrGrNp2IxdHLum22ZYrg2zfbTrMCruo6VNyQ4YUK6kqDp8W5DkG2pXIP0aR7o4yqXvNa/sHVClKX4SgmipjYVg6PAA0HfDDMOfge7OQ1iTCaZT6Ev9sR/FxEKz5wne39aUD7s88zkA/WJBFEW4rkuapvQ73yJxbKbL1/jFmYVvS0QYsLFG0K2QtgYN5B0YQbPzbaza5UFzB9Eb1LYlkxV4EtnVzEREIwyb/BmStbUFbO5i7JDW26XKUvL1ivTinO35KdlqQZluacqSXj2DnakviuTKEOyXPvipXl40irfOcopGcWXic3Mn+lLMaQYZ2ylVlhJOJvR+TF4r9kc+9k8ev95SqJ6stohURjlOyDcpgW6Y+R5WNEdY1guHtmcYjzu1OZ6F0cO+URuBFbh02aV8yA2hK/nm2ENJicHQKU1nhwhp4eqW2D8gmb8EUlCfPeCOv2GrVnRnf8iqPeW4X5HmP6bsFtjSZy+4wci/RsVHrw9jCYqRSzpyOe8UVttzVQvGlcLzLWwDbOrBcewnMJCdy87OwSeTHaUbiuYc3wSIzEVkDUc97JeKKG9xG0Vvy0ckJ7+UrPETcrreGFb9QBpCKZnbzhCmCphtQ//uKfnFPb4xueCX/9w+R3tHrO4sUCpl9J2fx9Njmn6LGe8Tf8JQ/u7+Ln4U0J4rrgdH3M/vc5wf4+zv4167jseMSVnxlyZLQruhncckgYtKQ44vekx9H8xj66ZnwcxDhA5xrphnPZUnWaLpa0kxPkSObVytSIoSoQ19tkFXHxCn1h2RTb/BaDTlijrn9978Ef/5D4/5waJCfcq+YoxBCMGyWvLu9l2KtuBKdIVXJq/wrdm3uD25zcvTl/n2/Nu8OnmVG+OXiGYvs6gueOfeP6ZyKow0rFYruk9QxzwLMFrTnZ0jA/+JGhWo9Zo+L7APDn6mvMcvE1/5xObB2GceuyyylrP0RafHaE177x7AV0J2HkIGAe7Nm2A07Z076Kaha3vaWkFkcdapT7WgfghtNGflkt86hcpYOJYg0grT1kg/RFTFMAw+muFViiRtsPKOpQQ9s3HWK7qqxI0j2t19kvIYu2/YRtcwtQZHkrUdQsBcFQjdk48ErilA7uLUGa03Zq4VCIGXDANzlYbIibAehi0+lLN93WYzPgUySRCWfGRe4EUD+bvparQ2vL667PI4DvZkQr/ZYLqO8XiM1pqs7mDnG+x2a0bFff6FKyElkjbep1YdttqAdbkJpy3NZA8rvMb56TmVs8YtbIq6pAuhVSW7MkBJyabZDtfZVwzTNTTHr7FdZ5xngvXpCenFOcV6RVMWtHVNudmQLS7YnB6zuPseywf3KDZr1DO84X0qLBuSg6HbWX8kP/pTsSlb7iwKLCl4eS9mHn85AXZa96xPj2nKgmS+Qzydc7Kp8RzJPPqYjbTesupsuqxgKiqOvQTZ5nh9y54fY4VThBTDDM8LPJMYCM/DDs+wRntIWqURkUeX1+heD7I2rbjmaRzbAobQaWUHICWOrhFSk0T7zKbfYlIlVL1LGseI9Aw7zzDujBE2M++IsX8V1w6JpUVjDO0nzLJuW0XmSeThCJV4GAFB2xNZMKp7otOS4H6Ol7W4tSI6Pyc6PUV7Me3sAEsZ7LbHaQcXNa9SBHlHuG0wi7uM0o5kG2M2NVMh8T2bOrDJRh7bmU8xcml9m/+fvTf7sStLs/t+e+8zD3e+MUdwyklVlV3Z3apuWA+2XmyoAdsCZEiC/xy/+sH2mw1LfjBg2ZZtoCE10AYkA35wC7AsdHf1UF2VExlkMMY733vmafvhBINkJjOTlcksMqtyAReXRDBuHJ44Z5+9vm99a+kvmBnKm4ZpVVJpTU8ZdJWBfNL1WaQ0Dy5ZLa446j7ib7/T4XDvb7F8vCFfXRG8fQ/Pe5s6mVBYAn90gPyCfYjjB4x3+myijHE+oGN1+HDxIctsiep2cd56lyA8oLeZ8x+rx1SyxtjvMPBckmXA6cUGivPnP9RUMHbBMbCmOaNCkAcmSVWzqLpUnovoGhhVSZAkCMOkSWPqzfJm9lhLg3VwRBIesWc17Mef8Mcf3ue/+psZH63z58YosirjeHXM4+gxEskHWx/wk+2f4Fkek3SCRn9OwWKq1v76cPgub+/8bfpas9k8ZqmWpHXKbDajekMLYNV0ii5LzJ2db03S+5yUbfDmSMDfCO3OXs+l0ZqrdY4QPB8e9xuG6vy89UQ/OnztrPgJ6SkePqQ4PiYPttAoJgYYQrBvf/XxLbIl/+p0zazYxnc0TdNgJzFCGa0kIY3A7+JnYBUlpSHJyorcVPTqiGKxoDJN5M4Odr3BzRfE7hZl40KdkxqtjKHjGLiXSyrPR6tPMUSAXQmiouRwPEZnCX5/QNOsKDVUiM/I2VagrF8f562XgJCytaiez9E7OyjDwPI8ZJ6y5/d4tEp5t+/hmwZqNKJaLKnmc8ztbXzfJ45jPH8bx79ikF5RmT4fDLr85Rw8u4+TTNCqj3AtKBrINcX4t1APH3GR3udQfEC1yokHFqZp4FQVgREwy9etFe1rDCFNlnPi47+gKTLE4DZup4ftByjTRBlPZz+01jR1RV1VlFlGFkVE8xnRfIZh2/i9Ps41kfzOwB9DPIX12Us7Fl6tMy7XOb6tOBp4n++6fE1UZcnq8pyqKOhsbeMGIZNNTlE13Bp5n39g1yW6iJlVHtbmAse3+bQQWFWK39SEjouyOt87tL3hkNKmLJdo3dwYFzxZDWrHBr2hjBJs9zqA1CgxpMRQkryoaXybRllYZUlaVeC6yM6IcH3JemUgbr3HsDmhu5Zku4d0ahBVRmq096onJXFTs2lqhp/Z7CdZSZKVeI6J45rkQO4aoDVG2WC4JiouUOsSI6uw6w1WNKfyQ7QzwNy8WLKrhWDdzMnJMe1tpoWBOTTQXZfol9iYbuqa6NqBracMjCff22j0LEWfTomiBSP/AT+55XB453eJLtdkFxc4+wPcnXcQi5iCNTrcxf+SQXMhJdtbQy7P5szP5rz3W+/y09lf8MnyE34w/AGe4+G/+wG1KCgefMgfuAZ/FLzHzp0BzTEslgkX4oLd22O0eGbfZ0jY9eB4g7xI6NzqgKOpsoJzu8eOWpAOdrDmc4LEIO71W9KznqP8DsJs9ya53aM0fcL4lHfKCYvlhv8h2eMHgw5/sO/SNG04qSEM9vw9enbvZk0JrZCTzQkPVg84DA/xzRefB6t3yG6VM8gWnACRGZGlGXIuGQ6Hn5MCvk7osqSeTlGd8Fs1ECjPz98oKdsTvJ4VX39e47rfc+l5JpernGn05msgvw08m0Kr3pAwK+k4WLdv01QNyUf3WYqcgtaC2vgKRxqtNX/06ISPI9jyPErAz9s5GuEFiPUcKQzC2sUqajLXoLAkaVQgzQo32ZAVBXg+ajQgTM4oTJ/Y2YK0ohGtPtk0FL101XajOjlCZ2jjADdfslYd3jIqpFK4YUBVx6S6XYBCM3xyoJBHv1FytidQ/T5obro8btihqWvueZJGw4eLVjoibRvV7bRuedezPFJKVrlGe2OGBrjJJb/dq9l2DdbBDlo1NMkEKt1KFeKSwh8i/dtcnU8p3BVGJMibisQqoUwZyZBUV62s7TWYmZRFzuzxIzYP/hJFRffejxnffZfOeAvb8zBM87lNthACZZhYjovf6zM8OGR0dItgMETXNavLC6YnD0mjzXfHnEWIdlapStv5pS+B1pqTecLlOqfnmdwZ+a+M7CSrJbPHj6irit7OHm4QUtUNV5uM0DHovMjSOluR1DWbysHPFqhej09nEZZOcWuN53cRpvt9Bs8bjqdObTlCCAxLopr20qwcGwStPbXpAgKzSni7Y5ELQd00VHUrazMp0XWFtiVNEOLbPl4UM41K0vEQIUqs6ZRS2Lj502tdCIEvFYXW5M90eaKkYBPn2KbxeVtoIagsReabxFs+0VFIUa/J1huWvQGzO0dEXZsotIhCi02ndVBb92yWfYdpVzNxI8qgz0p44BqEXfelIxIarZlXJVFT4wrJ8FmyU9ToSYI+m5FWG2zzlN/f1ezf/RHNuiB5PEP1TNzbtzDSDnV2RWEqvMHOF3Z3nsDrdBiNOyyjFHOtOQqPWOUrHq4fUtQFwjAI3/s9urdvsRM/4t+bfcwsKxjcG9F1R6Srivn5p5//YFO1pKfWcBkjHJOOMiibLosGTBWRD7cx4g1utEGFfYQQNxK3J+ttI01W4W3W/gFdWfJb5TH3rx7yX/zZn/F/njwmMHvc692j7/SfW9s90+Nu9y6GMHi4fsgyW37xSejfwjYc7mhB3+1T2AUn6xNm85d0fvsVobq6avOtdl7sDPgqUC+X1JsIY3v7tRftP4vXs+JXOUw/gfLp3I64dm7ruAbny4z5mza4/C2jyfPXnkL7RZC2TTXYI9Ka9OKEsa4JvsSC+gn+5HLKv7lacSsYk+gGVWRYZYl0fUSWYKQFISEKQRRaZJ4Ji4yq0YQiQq3XbJSD2B7Ti0/QSNb+YbsA5jVRo9EIurbEWi2pfZNazihFh7CWNE1Fise2aggGQ+omAq3JG4mrXEx1vWEqopaE29/N8LBvAuk4SM+lXrQPe9vz2wykIuUwdHi4SonKtjVvjMfouqGaTpFS0u12KauKTeOi7JCRaWAsH/IHew6l6VL5A0y9II3TtmInBEQV+fh9yC2u4vs0VUO2TEjskqopGGJRSckiW1Fkr84e+augm4bNfMr88Qn18oxOYDJ4+7dxhnu/tKxUGWZLfg5v0dnaRgjB+uqS2eNH5Ml3JK/B7bc5J+sz+AJZT0t2UpZJyXbH5nDwgo7L10BVlszPHrOZTbEch+HBIbbXVvLPVxlat1LoFyJdsMgVRZLTERGb3pD5fI7RZPSFgeP3kcpCmOqp3PJ7vHF4lvBAO8fTlA22ISi0QjoG+Spu1xTTgzLl/Z5FfX2vFkVNaXgooZF1CU2DcC1qt8OgqcnSgnkqSccdZFnApsCoM4zq6Z7EkxIFRNc27Zs4J04LHNugG9pffq3XNd7kFFPFFFsDkmBIHVdUtKSoshS1KakNSaMkWmii/AK0oso6CKAXOi99P1VaM6sqCq3pKkXvSRdaa4hK9DxDT5dUMgF9yu+PE/buvYNX+6wfzRGWwrkzwlTbiHRNQUTjb39pd+cJLNdjOOzQoLk8nbDn7zF0W7vnR+tH1E2NlAaDd38f92CLH+pL9i4ekm1WjN/axlIDlpMl68kL3CF9E/o2ZA16XVCbinFtEJtD0mxJ4UqK7gBrtcDerJBhH2HZNGlMEy3Rz1jsZ3afeXiXhc7opn/BYTPlZ6sB/+yhxf2ofiExMZXJne4dfNPnND5lkkxefBKUCd0DVJVzKG0OegfgwsPlQ5bLLyFKv0I0WdYW1AeDb42I6LqmvLxs54PeICnbE7wewqOstno4+QUsHrYD47Sk52jgETgGp4uUZfKbQ3rK0zMQ4rWm0H4RmrohKgTzWwe4lkH/7JTmK5xIPlrl/K/3HzGyLYQKKOoKL0+RpgWGiTNbENQO2nXZdFtnGaOsydc5ZhnhFxtiJSmDkG0rwagz1v4+jTQhrSjKmlRpAs8kWE6BhqZbUDQNDSOCYs1V43FX1fi+ixt2qKoVDYpM1wTWM6kVE+UAACAASURBVDKjbA2I38gOD7RdniYvaOIYIQROEJLHEe/1XdDw15MIaMmR6nWpZzN0WeK6Lp7nETUmedXQ9XsEQqPW9/kHRz4Xzg6WK5DplGKTQ2hC1VCpLgS3mZxPKZ01cq0pRUNsZNhlQUcFXKUr8hcM/n4baOqa+fkpyXKJq2pGXQN361ab3P0NIITADUKGB0d0t9uK2vLinMX5KVXxHVjbOnvQlBBffe5LT8jOKi3Z7tpsdb65DLmuKjazKbPHj1oJ23iL/u4+ymgLE5usZJmUjEP7xTk+VQFFxKTysDZTHNvgvuGg0ginzhhbJtIfgmgt9d+0dfZ7PIWUdmsv/axxgdZYSJKiwux4lGlGU1zn8ZQxtwILpSRKSvKyao0LlIFZp+i6BNegDAd4WAzqmHVeM81Lou6QuhBYizlOPr85hiddnrxpmKzSGxlbN/hyIiLKAv/0ISpLybf2KG7tQM9uC3XzDDZFS0SeQVxMqXWBrvo0WtINHdRLdkqza8vpBs1AGXhP5lLzGuY5xCVNHFEbBVVxyttezMHdI4Z2j83ZGmqJvWtg9rZQqYeuJ2RS4fa2XlqO5Ycduj2XZZQh1wVDd4itbJIy4WRzQqMbDMOnf/cHmLsef3es4fQMa3rBzu1DLGGzPD9ms/xMQUgI6FjgGVDUFFmNajQ9MaSRFk10yro/pAo62PMJVrRBBV2kH6Krinq9uHFxq5qcWXnJpe2j/dscioAPmnNUGfPff7Tgf36wZlV8vsimpOIoPKJn97hKr7hKPr8eAm2RyOnC5pyRGXJveA9taR7MHxBF0Uudx28T1cUFQslv1R66mkzQZYW5u/tGrq+vaSLegK0fgL/VSiamH93YoAohuDXw8G3F40X7QP11RzWftxaBOzuvNYX2i5BuSk7LErsfcPjO2wghKI6Pv5D0PNgU/NOPLnFVRmgPiJoGI46wEUgvJDif4uSaYtBn07VusgJUVFCvIlwdo+qKteHgWzkdkRC5OxRWp9UhJxVRXWOYBp06w4g36E6FVppIh/SaAqlrFrnJe6FJOBqjdU1Vx2RP5GyftaO2w3am6DcQqttFKEl13eVxrx15VJHydt/jNMq5iq9zKra20FpTXbWLfqfTwbBdFrmkzmO2xncxyoRB9pi/s9tnag3wzRXpOqaqmvbBldYUvfepC5tFeoyuG8pVwcbJaMqMofBJdcnyVyADq4qC+ekJVVHQ7fp0zBTp9dtMmlcIxw8YHhwRDIaUeSubW08nNK8w5POVww7A6UF0eVOUgufJzk7X+cYzl3VVsZ5OmJ48JFktcXyf4cERbvi0ANE0mtNlim1Kxl9khpAuSKuadePhJXPMMORnqxKzinF0xdDxMIK26ihfokP9PV4fhBBIYVHX7b7AvLYQN5u24ShCDxpNvorA8kE3jFRJYEiEkhRlQykdkAqzydBVCaaEMATp08tSLL9GNAWXOKz8IU3e0Hv8IaJqr/W6aWiyis0yZZHlBJ5F6H+JEYfWWMsFwckxsq5J9g4pO9e21raCoQOuAUkFs6x915qijsmqBdQBTW0ReCbWSzoIRnXNoq5QQjB64sJWN7DKYZmD1jRNitY5srigQ8Q7d7cZ97skk5oqarDHCrnTx8wHkC/JdUzjbxMELz976AQhw0FIQ8PF6RU73g6u4WIog7iKebR+RKMbgs4hdqdHZ1Dz47f2WM9WdGdnjIcjlGjYnBwTf7bQ7Rjt+TMVWgnyvMHJaixnD7vOybIZq9E2tePhTC5QaYK03eckbsnmjEXykEaXhM4+RveHLLtvAYKj9Jh3xIyfLVL+y59N+beThPozzx0hBPvBPn27zySdfDHp6R4CApYn9Jwed7fukoucT64+Icu+nimX1pqiKIiiiOVyyWw24/LykrOzs+de5+fnTCYT5vM56/WaNE1prrvz9WbTOqZtbX1rNtRNllHNZhj9HvK6I/+m4fXt8KSC7j6M3mmrHbOPWwtYQEpxk8Z9Mk9YZ7++pOeJm4UKfIx+/3UfzufwZKNRWIKDwMHznri36Zb0fKZS/Sgu+acfLzHEClcptAqpsgRf1xhuQDiLMJOUdNgj7T3VJ8u6oZrFGNEcj5TcC6jNhr5KyJwhiXtdlUgr4qSgchRdV+JOLsEsqbqKlAChoVtmRNpFlCVv7YwwLZuqWoPWZFpgShPXuDYnKDOosrYy8xsKISWq220zeaoK03YwLIt0s+a9gY9jSP5i0pIPaVkYgwHVckmT50gp6fV6NFaH1XqNqSSj4SFVtuAn3pLR1iGVa+LXM6JJgvYUmJKKgMa/y9XZjMZZ0mwqKgWJSBjUBo2QzNMl5bcoayvShPnZY5qmYTAa4hQTMBzo335p3fwvAyEEfq/P6PAWbtghXa+YnTwiewOqf1+Izl67Pm9aJ6XPkp3xZzNwXhJaa/IkYXl5wfTRMel61ZLCw1t0t1oDjWdxsc4oK81+z/3iNPt0wbw0qfKKsF5hj3f5xWSJU6d4tSawbJTXv5ZB/WYWN75LeNaaWirZBpBe70MrywED8mV0YzQjypQf9WwyIQBNUTVUhotFCdc5NMJ3KN0QJ5PIsqQTFJiq4MoK+Ni5xWYVwc//kvVszXTRdnU6tokT2sgvyW2SRY53+qjN2HE9ooPb1O5nNn3yulvRt9s/bwr0NCZanaNrRV10sEyF73613KjRmkVVsXlmXkfVGtZFS6byGgKTxi5pkhinWqCzCT84GrOzM0DPNeW6xun6yG0LQ3URuYluZqQo3O7olxq2NywLx3XwfYvFKqWOM0buCI2mZ/WIq5iTzQkawWDrLaoq43d3Bea9OywbwTDLGAiNrpdsTqZkxWcczvzWFAJHUbgG9aZE5R6e5dPLJizqitX2Lo1p4l2cIou83diHXTZiwXrzCJWX9KxDbKMt6FWGx7zzFqndJ8wmvFc9oi9L/veHa/67DxecvyAAey/Y+3LSo8y2WFZsIJ4yckfcGt8ibmI+vfj0pe2q67omjmPm8zkXFxdMp9PnSIxlWQRB8NzL8zyklJRlSRRFLBaLm+9dPXhAo+S3KjMrz84RSmFsb39rP+Ob4vWv+pYHo7dBKJh9cmOFqqTgzsjHMSWPZklrgftriPK83UgYe3uv+UhejNUq57woGXUdRtcJz9K2n5KeBw9uSM9ZUvJPPl5gqQpFhK1CkrLCyhNcZdFJQK2XxKFNPnye3FlJCadnmDpHd31KVxJUM3Q4ZuNdnxutKVY5OQ1eaBMuZ8g6pR5qGhmQaIdOOkMJi7NY8FbPoz9qb/CyXIEwSOv6qVkBQLZq339D5WxPoAaD1rxg1Z4PJwip8hzqih+NAtZFzf1la2BgjMcIIW66PJZl0RntkpWaeHZKt7+PF4yIlqf8ZzsS1d3BcjJkHrNZZO1DX2uq4H3y0mUe3aepaqq4ZmFGWGVOR3lM0xVZ8u3c91kcsTg/QyrFcHcXM2klpQzutsWYbxFSKTrjLQZ7B0hlsLq6aGVub6KVtWG30r5kBmXK6fKbkZ0yy9jMp0wfHbO8OKNIE9xO95robGO8oMOdFBWzqGAQWPj2F1QnyxSqlMvKw4pnOKbk1OuQbjZYTYbfSNwwRAoXlEB8P7/zxkMqm0YXN11e01aIWiMlZJVuZW2bBC2sNjuqiHm3a4Ns5YpZUVEabmtcUJbt5ziKqtPHKBTOpqRoIkZhTce3abb2KMY7WMUS4+yUXrpm5BvsdDx8y2Bd15+r/Ks0wbm6wD85RpYF6dYe6e4B+suUGpaCgQM9m6ReINYl8irASGs61ldX35/M62S6oSMkvVogVtdEJ6vajsjQoTEqmukKp4kp08fs9Yfcuj3C2kTkkYOpLIwhiMDDSPtQbsh1ROOOf6nuzhO4YYd+16XWDVenVwzdIZa0yOqMPW+PqIw42ZzgBFu4fp9kfsw/fLvPxdYRSW/E0O3SrVbI+THxxYayfKbY5RhtkSKr0X2L0lGoeUouhgyo8coVc61Z7+yhAe/8lDJfscweUluCsHNER26hN2ua4mmnRUvFxj9gFRyh6pzd+AH3jJjLtOK//psZ/+osIq+f/51/Jenxh2CF7fxjVbAX7nEwOmCWz3h09eim6/JZNE1DmqY3HZzVakVRFDiOQ6/XY3t7m93dXcbjMf1+n06n89yr2+0yHA5v/t1wOCQIAsrFgtVqzcIwvrVg1F9VkOk3xZtxZIbdkp7ZpzC/31ZY3R5KCm4PfR5MYx7OEu6M/C9+4H0H8cTNwtx9c4KZnoVuNPcXMaaluPMZ2coT97bi+JjiwTGz7X3+yXGMKUDpFRVQyw7NZkO/gW7lQLJh4zTUo9Hz+s5Gox6fUyYxZldB6GKkZyRWQDm4c+M0UyclcZwjezbdJsPYLNCdnNoaUKg9ZPwLwqYiUQF51fA7t/eQUl3L2SIK7dCQPy9ny1btcLbx5p3/XyVuzAvmc4zhEDfsEM1npNGaW4MR91cpP5/FHIQOtnFtU301oRkmSM8jCEPyzpjV/Byjf8jO+B7HRUa0eMA/uneH/yOZ4c+XLFcOsWfghxb1GqT3t7g6/1O6d6fU0YhqaJImG4bK41hHrKOIcPDyw7svgzxJWF1eYNg2/e0d5PK4nVUZvvXtXQdat69nZJOm4zDYPyBdr4gWc2YnD/F7ffxe/7Xlb70QwQ4kcy7PHrJQuzeB0S8D3TTkaUIex+RJfJOTYXkebtDB9v0v/d1qrTldpJiGYOfL5oTSBZusZt0EDJNPkZ7HX2dgxGsUGQNh4Lh9hGUhlEB83+F546GkfS3JKlDKxrINsqjENiRpUdPrBUTzK6q4wDR9KGKO+q2Lom0q8rym8F0cqTCaHF1XYJiIMKC0AvxNxLJb4NobXGcLMJHyiNA/R5UeKlvD6Yra8ZBByJWGGM1QSmRVYW7WiKoAISnDLvlwhFYvvz/JVEwaJtQiQKU2XWWgViVEVUuKlGjNXpSAtmlFVjesqxJRNgxriVVXoGk7RoHZEgMl0FVJM11gVRlGdkIlHX7wg7folZ+Sb0bIUuF2DapBg1EFiEohmJLXAqc7wvgam1bHD9oOlW8xmazYvV2w5W3xOHoMAvb9fU7jU47Xx4xGd5k8/FM6ySP+g90D/p9LwX6ngycT9OUl6sMPyfRt5MHW01km32xlepUm3/axTjaIuaIJHA7KOR+bXaZCwtY21slf05ycIHcPCZ0jDOWgq4omWdNEa7SVI70AcV3cyq0upXLpxif04hNse8DC2eH/Oo/5s1nGP7zd4V749NmwF7RF2Ek6wZAGA+cznZPeYTujvj6FwR2OukdkZcbZ/IxgHrA9etoFKcuSOI5J07RVUUhJEAS4rov5NUcchBDYto1lGFh1Tb2zQ729RZIkZFmGYRg3P+PZ9VdrTVqlJFVCWZfUujVzqHWNEgpTmRjSwJQmnuFhKvOpUYHnvpEqpWfx5rAHZT4lPcuHrbTEbFO074x87k9jHkxj7o59vJeogrzp0HVNeXGB9Nw30s0C4PEiZVM1vLsb3iQ0P4snpOfBzz7mD3/xl6j9Q3zXYJEusVRImuX4RUlfBGhRs5EJOugg7Oc3Lt5ijT67pNE11tDFNFbMGsWq9zbDZxbeeJagpaTbtXBPH6LUkqw3pDD2qZuGID1DiA7rFKTt8s52e/M9kbOlWqCEeuqnX5dQxm26/PdA9fuUp2fUUYwKfGzPJ9tsCPpDPhiH/N+P5vzNNOK3d7oYwyH1fE55eYl95w4Avb27zKIJi9NPGd75EVs773J29jPs9UP+07f2+MO/eoiVpiRzhbEVYDuKKniHLPqUxeIBPW9AlTbM5YpBGdAImEYrtvI+lvNq7vkiS1lenmNYFv3dPeTqpHXp699uZwFeBbRuP7OIW7nkE9kkTyqFoq1IGzbC8vGsAHt3j2i1JF4uyKIN4WjrxpnstUMZTOWQq8Vj+jsDdrpfLv+sq5I8ScjjiCJtXa+ElNieh+X52K6HfEm5zNUmJyvbzB31ZTb46YJJbkJVE5Qr7L0jfjrdYFcxpi4YmybSHyCEgbie8/gebzakbJ8TTZOjlH0zx2NrWJYN5sgH1crazEEAm3MCpdl1DZapRlMRaZuuUphVSl6VCMOE0KXwu/hxhhGl5M4Ew7gDQpLZffxsAh2PyNjH3Kyw1iuC6SUAKympmoYAqF2fsj+kDH75+c+6KYnzS+rKRKsezpaN6ZhQ1JDVrSSteb6zkDYNcVNjCUFHKaQpwFUtObLkjQxX1zX1Yo4Zx3SbM04Lze/86LfZMx+RTQyUDvF9jd620SpDRR1EE5HXGyp3SO9rdHeg7Vzbnk+nqLhMSq7OJuzfO2SWzbhKrni7387/nkVnnIsSw+2ynj3m37+7z5/OJLGQ+Lc/IFd/jvMoofvhA7Jkjbp9CK7bzvEYsp19GjgUWy72ZUKadgmqS/acmGMEx/UVg57F1lLSiWxyv72OhGEgwz46T9vMntUc6QYIuy2oNcpiEd4lSC/wsilmlWAHRyxqwX/74YLfGzn8wX5AeD1ftevvUjc15/E5Sii69jPromFDsN1KgfMNwg65M7hDlEUcL45xLRfDMEiShOJaIfPEBMiyrFdW4KumU3RV4966hXRdgiAgy7KbeaAoivADn1SkREVEWqU0tEUpQxhIIVFCIYQgr3OiMrr5OoAtbbxlipNmdA9+8EqO+dvEm8UcpILBnWv3tgftfI9UT0nPpCU9d0bffdJTXV2hqxrr9t4b6WaR1zUPlyldx2D3S4aSf5HBP8s77IqI/uSUycACBbX2MaIVW7WFCF02xQxtKAifrwCoJMY/PmaR5jgDE6fXkNaSC+sQ75mFN1lnVFmNO3YJZleY5SX5XkBh7KGFg5Hcx6gLUtlhXcOP7u1jX29qynKNlBZJUeGbz1SUn8jZfoPnd56F6napLi+pZ1NU4OOEIXnSVub7fsCtnsvxMuWo4zD0bIytLcqzc+rVCtXtokyLwc4R07Nj5pNLRtu79LffY3HxC7bqFX9w2+cPP1xRpi6rdcag42KUFrX/PpezPyEMz2iiXQhAxzFdy+Mym/NWevBKCE+ZZywvzlGGQX93HxldtaYp4V7rsPNNkUeQLSFdth0jaB0pDefaFMMA3QC6fS+zVioWT1BA1wpx+yHrKGN5cYbleYSDEcZr7v4uk4Lz0qfj2uyLGejx52acyiy7uVaeONApw8Dr9rA9D9Nxf+l1Ls4rrq7zfV6YufME+Ya6yLiqu/TyFYKKqrfNxdkp3SrCrhv6joPhD9oKqqG+z+D5DuCpNXUGdFCmbGd5rmVlpTCQbmtP7W8NEABFxPt9h3+dVphSEpcCrSysMie7NiMQlkHT6dCsZ3ixYtNZE9oJWgXUyqY0PJx8QeKMKfpDiv4QURYIrambmgsNQ9P6Wl2QJ4iKy9YUoRpjmwa+a7b3lGO0L2gJT92gy4ZVU5NpgatMOkq1tuovKADopqFZL1DriL6eMslzujvv8cNxSTVZIcRdXFljDLoUToLKPURjIsQFWdlg9cdfu6sArRQ6T2L8wGZyMWPn1h473g4P1g+YpTPG3hjHcHi8eczaMWk2a4Llff7+4bv8T/fXuJ5Jb2ePcz1BnTr4kxW6SHG2huSDEY2rYFNCWZN7JnbXRmSKNFHo8ueo3oAGRd5/B2HmWMsZ2l5Q9Nr1XQiBcDyEabfdnmSDyBOE6yMtB4Qg8nYpDJ9OfEp//SnKPyDwQv58nvHXi5z/5DDkd4YOSgj2w32qdcVpdIohjefDSf2tdn1fncL4XSxlcXtwm58++Ck//eSnHA2OcF2XTqeD67qvPKBUFwXVdIrqdZFuO+cmpcTzPDzPYxWtOJ2e8vHsY5SpGHQH9L0+nunhGR6GfPH1XTc1RVMQlzFRsmR58RAdeFzmj/GaLq7VpcFA85SwSwSOFHhKYX5FfuO3iTePNSizrbbOPoXlo5YAAeY16XnwpNMzCnCt76bTTpPnVPN562bhfHM7128D9xcpTd3w1s4XZ9P8f9OU/+14xSj00P4t6tMHWCcPqHbuUpURw0yjBh02RoFOcuiOEM/c1DLP6D56RLlYoV1NOKzJ7A4XmUdjWTdONVXdkM5STEvRK5bYm1OqoUXh7tPIDqKpcJJHZJVJY7pkfo/f2W7JUitn21ALj0qndKxnZnWyFSgbzDfzd/CrhpDtUGN1NaHJMmzPRxrGzUD5Dwc+F1HOn11s+Lu3TIx+n3qxoDw/R/o+wjAwursMogmzaMLctBkPhySjt5lMP+LIrvmPDmv+6NGKKhmwVDmD0KaqbpNtPmE1O6HXG1EUiqVc0i+HPJARy/WGoP/NfkdVWbI4P0NI2XZ28hVEF+ANIfwGQ5Zat6Qpumy7OEK282Bur33/qnkgrdtOUBFBPMUqNgwth8SwidOU2eNHuGEHvz/43CD/rwJRXvF4keLbBoeDI8TyIaQLtNN7oVTNdByCwRDb878RUasbzeNrKdtez/3yf5wumMcVqRGwHT1AeB4fNm0Wh2piQi3xDavt8CAQxptXYPoen4cQEimtG+MCuM7jySoQ7WyX1Q3Izlc0tY1CQBFzLxzxrwU4tkGcFmSmg0kK1dMZOdkNyOchTlaRJFeU7gRDtc+M1O7TiU8xy5jyegOrTQsNdLRmWpWs0Ay0/lrFyrRcUNYxTdFBYdIJviDTRwpKIVgCFZKOVPhfsSlukg1iHTGoZmR1wpWxy39+bwd7/e9Iih6hMrF8hR7YNPUGK+8iREaZr6jsAf3wm2XR2Z6HkJJux+U8WjG9mLJ9sE3H6jBNp/ScHrayudO9w5myub844xcXP+O9twbcCwPOk4qRvU3QWzErDIx4n0plGKsNfhJROj5l41OnBnQUqa2pyikbleNvErbsLXqjOyybhouuy16RY8+uqG37ORMJoRQq7NMUOTqNWpmbkSAdH0yLwuowVw7d+BG96CGxu4V0tkgbzT8/XvH/TlL+wa2Qfc/kKDzieH3MyeaEW51bTw2RpITOPs3sPtn0Man0yPOcntNjUk7Im5zD0eErJzpPUF5dIYTA/EyuY9VUXCaXLPMlBLDtbWOWJmZp4lYugRt8adiskgpXuljKgYsI7Rww2xozyzek0Slwhm91GDgjTNU+A57tVZpC4CvJ0DReKs/xVeLNLHPZIXT20OkSvbq4GVq0jJb0KCl4MI3JyjfY0vVLUF1ctOGOb1jA6BPMipLJKmPPtQj9z29aqkbzx483/PPjFduOgWtIGstmsuVTmyad40v6l1OcTo9NYKGjBZg2wn+6mLauNie4kymlzAnDgmz7gIW5TV6DtFvCo7VmtUiRVcNAJrjrM5puQ9bdp1Ktc1sQn1HnG5KmQ2m52EGHO0F73E/lbBKBeFqBaWrIN+3G9HvcwBgMEFJQTWcIIfA6XYo0pSoKHEPx4+0Om6rmZ1ebdjHd30fXNdXl5fUHWFjdLfpWRZmnLBYLDn0P3b/LGQ4/8Av+w9EGneUUWcUyK9CBie79iMuFRaNPqLOGSGe4dY1CcbmZU70gH+Fl0TQ1y4szgDbXpc7aYooVXtuIfg1oDckcrn7eSnAR0LsF2z9qizRu/+XMD4Ro7Z/DHdj+IfRuIQT4esXILXA9h3SzZnrykPV08is1NsjKmoezGMuQ3Br6NEZAnDYsPvlLrh58yurygjyJsT2PztY241t3GOwd4Pf637grdb5KKaqGw/5XSNm0RqcLrkoXsy5wsgXmcIs/XcVYyQZD5ASNjR/4GGa7of2+u/PdwYsID43GFJDkNXY3ADTFJm0DSIuYfc9EIjCvC2ZRbWGIGqoCXV+vI75DFYSIwsSLGrLiaehlZvVohIGXTz93PEoIOsqg0JpFXf3StvlVnREXE6rSQhAS+hbGF8gr47pmVlXo63ydryQ7aQybNcPsCknKx82A37t3m319n3gJrrWNa2uM7S1KvUQWDkrbKLkkyUtUOMa2v57r4hO00lUf0xR4vs3V6QStNdveNhp9E9wpheQgPODtnQ+oK/j06qd80L0iKtcUjUHf7dF0c5aGRomQi+4ucXeIUWTYy3PEg5+TXP2cC/2QTEc43S063QOGUYW7qehKSa41l8MxjWniXpwiXrB2SstGdgZIP4SmoY5W1KsZTRpRo1iEd0ntAX56RS86xhMNB57BJK/4b/5mzr98tCGtBUfhEVJIHq0fUTbljQHBPG24jGqW5/ep8pwwDHn/1vsc7R8xLafMl/PPHdOrQJMk1MsVajhCPLMWr4s1ny4/ZZWvGDpD3hm8w1tbb3G4e4jnecRxzGQy+UIL7VprZkXFJ0nGzyZzziYz4k6PcWfEbw/u8Xe23uOD3g77RoFbn7El1/zQt3k/cHnLs9mzTXwlieqGT9Ocj+OMVfl5N7xvC29Uh6fJa5q4RFcNuvZhZSIm99E9gfBDhKUwTMntgceDWXIjb3thCN0bijqKW6OC7a03MnOnajQPlxl2A4fDz88QbMqa/+XBmo/WBfuucbMZqZqcjIR6eBt3doZXxhQ6hbhqycXgaRVdFjne+WOC6SWSFdIxyHbeIe0c0aznlCjsax3rOsrRcUGvyfHSC3QnJxseUKp27sbOl5jZBbNCIp0eC6fP7w2dm7ZpWa6Q0iKt6ufbtNkK0N/L2T4DYRiofp9qPkdvjW/MC5L1ks5oiwPf5qLvcrxI2fYtdjsuxmhENZkiuz1U4EOwjZPM6MqSVZ6znM857PZ4oO9ytmj4nc5DssLkX+R7YNSsHUF3dEC22GcxeUB/e0hWGiQsCJuAi2TBe0mF8TU6ulprVpcX1GVJf28fgxrmD1qN9eDO17Ofzjewetx2dEwPOndeDXEWArxB+0rmyPUpHT3D64+Iy7bTlq5X2J6P1+thOV/R+fgGqOqGB5MNZZqx7cH88YymqqA0UWWGZ5TYW7e/llTtq7BKSxZxGzD6lSY12YosLZjLIVvZlIIGZ3zARx9NsaoIQ+eMhY3pdRGWAzXfGxZ8hyClTVkubv5uOtdzvpKdPwAAIABJREFUPEIQFxVW3wdLkC9jnF0PkUwx0bzdsXgYFZiGYlNajJWB2eRUVYlQ7UyC7AXkCxsn9dlkcwo3wjICEJLEGRKkl6gqozae7y67UqJRrK4zcPrKeKl7oNEV6/yMphHoaohjGbgvkGrWWrOsKwqtcYSkqxTyKz5flwVNvGawPkeJik91j05vzE8GJenVFOns4itQYUjjNzRphZUPkaqkyGaUVpdu+GqcSp0gIIs29Po+Z4/nLKZLBuM+A2fALJsxcAY41+d0e7BPs3ifTX1Koza8G8Cfzy/Ycw1cc8UkrPBWIazhUd8k3LLRzhp1ucC41PTdkK65hyFDklFIOHuIHa2g7lKHikjAZLzD9sUp3sVj4v1bn5u3EkIgbBdtOegyR+cZTZpAmiAMg5XqkBuCTj6hX3/CKrzD0LapTc2/mST8u2nM39t1edcf83Bxn79a/hVb9hZSSKSUuKMj3PgE26vbHCjgdv82SZ5wujzFczx8/xXNj16jvLhEmAbGaAi0XZ2L+IJVscJRDkfB0dNOFNzES7iuy2q1Yj6f43kenU4HKSVRVTMrK9ZVTQPYUjBczPA8h+6tA+SN+sAEx6dsxkySCbNsxipfMfbGDJzBDWlvtGZe1kyKkuOswCkqjhwL91uerXzthEc3miataKICXTYgBdJSCFMi9u7C4mN0fYFuApqopNEaqSS3XJMHcXFjZGB/B4LktNZUF+cI00QNh6/7cF6Is6wg3uTc82xs7/nF+CQu+R8/WZLUDQeeem6RT8s5lA32UpPuHGA4BtZ8gopWpAe30FZbOTKiNe7VBe7ynF4159LymfbexR7soauSqqxolI1tKbK8Ik0KBtGGTj1H9iOS0SGFOgAhUHVOmJyxyRJifDqDPSoUP+4/GXatqOoIVIes3rDj7Tz9z2QrkOarG1T/NYIxHFLN51SzGebuLk4Qkm42BIMhUireHwbMkoK/mET0XQt7PKZerSjPTpFvvYUwbHD7+NkK0dliud6glwv2O10ei7dRdcZP3MeUyuVfVCPIKpRjEuz+mMtHM3reA2rnbdZs6OAzb0rm6zV+75dPiN7MJhRpSme8hWWabcjx17WfrsuW6GTLVgrZf0VE50XwBm2ne/kII72iawUEe/skSUK6XpOfxSjDwPYDHD/AfAXS2KapKbOcPE34+HxJnGQcdS2a3MByXKxeH9vzUOuwDes1jVeeV1TWDaeLFNeSbHdeotqczJhFDbXpEq4/pAo6TGSXMn+MV6wxtWTLBuUOQCqE+L7D812ClA5aNzRNgZQWhikRUmBriLQmr8HsuJSLFE0fgYYy4f2exS9WOT3bICptSi0x65SqLoHrIfbAoww7eLMVXnTJyjvBVO8ihGyr+tkEL5+yMQ4+d1ze9dqxqmvmdcXgJUjPJr+gbkqaYowhFZ3PBOhqrYmvjQk00FXq5ud8GXRdU2+W9JenWDTMjZBZ4fKPb/Wxlx8R4zKwfJSUGLu7JMUDZG6icJFqSprliN4RziuS11tuK2tzHQvLNrg4vWIw7jNyRyzzJVfJFUedI6A1Ogh6W9TzNV3T4e/f2uOT6IJM51hSgHnJAzNjvxDUa4vICOgODrGte9hpg6USZBThLmNEZCOcCl9NyOuQcKVpfMnKNDBH2wyuznAnF6TbLzYpEkK0RRHLQTc1Os/QVUFTZCTaoGy69FandFZTlt4BmAFbWlPUNf/yZ5q+Lfn9kYdrrIhkxJ3BnacGBGYJ8aSVUFsenulxMDjg/sV9rhZXHFgH32h26lnUmw1NkmDu7SKUoqgLHq4fUjYlY3fM2B1/4bVq2zaj0YgoilhvNlxFCWUQUimFAvqmQd9UOHFMUZaYe7vPkJ2nMKXZ2nc7fS7iC87jczbFhr1gD1OaSCEYWQZDU7Gqas7ykk+SjD3bYvgtzue/VsLT5BXVPIe6QZgS1XeQroF4VsLg3Ib5fRp3Te2OqLMSkTQYUcURgodJyf1JxL1xiPUGPMi01hRpSp7EFGlCc91C11rTrFaI+QLn9m10HGE67gtzJ14XNlXNxSajj2Q4eMr+q0bzJ1cJf3waERiCbff5y6asU/J8hbe61mrubJG7DlWd4a7n+Os1hTVH1BX2ckK4OcVpYmJnwMPwHRw3AEeh05i8BgwTqQSbRcTw7JJulSHHEenWLoVx2GY2aU0nfgxFxrRQSD+kskP8Go6C9pzehI027XVxY0fdNO2G7VUMqv8aQlhWG0S6WGCMx3jdLlm0IV2v8Xt9bCn58VaHf3u65K8uN/zuXhdzb5/i+JhqMsHc3m6tjNMFXhMhBwMWiwV6tWSn0+Vs/FuoYsPvTj6idj3+MPXQWYnsdNDh2/z/7L3Zj2VZmuX122efebjzvWZu5nNERuRQ1ZldqAZoGiFRDA+NQOIJtdTwwhM89BMI8YD4A0BCKnhAINRSI0QjRgkVQxd0A12oi6qsIbMyY3Q3dzdzsztPZx725uGYm7uHD+Ee4VWhLGJJJveQ271x7jnnnr3X961vrdPpH3Hj5pq48XHVDlvbnK2XHF0bIt+iOp/utmS7HX63hxeEsPocmrJ1gzTfUroRz2HfyuKIrrUDqX/W1tHSguF7rXRue4rc3icavEfYG5DFe4okJt1uSLcbDCnbwFjHwbRtTNvBkAbGFzZMWmu0UjRNTVNW1FVJU5XUZXllNnC2K8mU5P3rY0aDDpbzBVvwzjHMd+356N9+px/5dJ2htOZ6//V21QDUBXWyYUZE1KTIYgOHH/KTpEBlGaZK8DHp2hZG0IdaP3V6+ha/EHhqXFBgGO3m0bIl+lLOHhc1Xjckmc+oSwsboEy4HQ7RgGNJ9kKSKguHkvSZOR5h2dDxKHch/XjFrr8hrVYE9ghtmGTOAC9fkrgTlHxRoukbEgFsLklPR0os8fJ7Ky2XVE2CrnsIbDqh81yAbq4U+6ampu1edaR5FcfwOmitUcmWzv4Mt6nZmQEPSodfvn7I3WZBmmX44RBbC8zDQxqR0NQlVj7C8ARNtqCUAUHUeWedWiEEbhiS7fdMJgNOH83Y7lK6HZ+RN2KaTkmrFN9qFSRe1CHZDiiyPT234F+6c4f/5sGew84BjvkJj0SAs4m4WRuscws7CrFCUHVB3utSTDTiYo273VNViig7oYkUqXVAt3RRvsUycLB7Q8LNEttxKXuvd8YVhkR4ARC0ssWmoWkiNn6XXvKAYTVjaxoUTh/XkBx2DHY1/E+x5Ni1+EtewqDZMhGXYwvRtXbWc3/ePtOBsTdm3V0z28wI1gHj8auJyNugnk4RtoXs90mrlEf7RwDc7ty+OuevgxaCzPFY1IrdZou1WnK93+Oo20EaRhsafXGB4djIL7Gh9kyPO907rPM1F8kF9zb3OAqPrvZiQgh6lkkoJQ/ygtOiJGkarrv2l3Y1vwq+McLT7EqaXdESnYGH8QXpglKKNE1J0wK9KxGLP6Xuv9+6HtFqaWUhGNVwsay4pwV3J+E3RnqauiZeLcmTuNX3A7bnYXseIEBrqukcFQSUhqCYt4FVpu3gd7u4YfSNurUprTnNClRSc813cC5JzUVW83dOdjxKKiaebKsuz0BrTZxf4O5LRBVQDbt4nosuMmpDEL//ffx4T/ejP8HOt3gyoe4EFNEt7ru3aZTA8ky00OiqpBYWljQoLxb05lM6CpjU5NcOKczbINrjCvIZZrlnXZpUpsDtH7MuFX914iMvz2Ndt3K2tKlxpYv9ZNEq961Llvvt/M6rYI5GFJst9WqFNZlguS7Zbovf7SGE4NCzuTP0uTdPiOYxH05CZK9HvVhgBGErbXO7kMxxgxGDwYDVaoXYrBkHEbNrv844/T/41fRnmN1f5r/eO+iyZnztO+w+ecx+fooYvkfa7PBUn2myIk8rgu6bEZUyS9kv5ti+T9gfwObkq9lP1wVsHrX3jNOB7vW3J0tfF/6gdXpb3YPFJ4jBXfxOF7/TRamGImmLK1VRUKTJCy8Xl0GMSqmrZ9OzMEwT07YJgpBVCaYl+LDnvzprx7RbwhdfgD9qZ5DeAWb7nDivOe57byZTThbs45K9c8Tt7T0q08IaXOMfnqywiy0mOR1lEUgbMxwAoq3ifkt4fmHwhPA0qsCk3SRZrqTMa2xbkBQN/SggsQXFPscKHUQZMwwnjF1JrjSOLdkXDhHxVQDpk7VWRD65HxHEPt0kY2mtcMwI03BInSFevsQvFsT+y7sCniEBwa6pWdQ1njCIpLxagwDKJiGtFqB8dBPguxaObaK0JteKTClKrbGEYGBInLcopKh0T7g/xS9zYtllIW20GfBXogy932L4IYGSyE6A2e+TJJ9BLjCNEGnu2aUpKriF/44t8N0gJNvtiHoe1mPBxemM7vdvt7K2bMk0nXKn2xpS2Z6P7fhUeU5ZrfjL/QF/70Kyqw36do+On3JRS76bgZ/UJE6O1ffa8OC0Rvcd9pMhuCG5dYi51gTpmkZY2DG4S5ul5zAfd7D8qDUxsB0a/83WASEEmCbCNNGOx8bv0E0e0K+2xMIldVtS07OhqzWrssN/9zDlx8v7/Au3JB/0hq2aIDyE3SnkO3A7SENyFB2RFRmLdIG7d+l0vp6ssNlsUHmBff2YuIo53Z9iGia3Oree7n9egVppFlXNoqxogK7rcfd6QB3vybOUjWro9XrozQZdVli3br7xnrXvtu5vZ/szHu4fMnSHHPgHV683DcFdz2Fa1kzLijxtVUbyHe+JvxHCo2tFsyswfAvZc57r6HwxhMm2bazJXaz15wgjgf4BdV1TliWlUdLoiiCtWD8u+LxRvH/UwfpzzFjQWpNuN8TrFWiNF7VherbrPRceWM1mWGGEc/cOwvOoq5Iqy0h3W3bzGfvlot3EdHtvnFHxLjEtK/ZpxYGQRD2XUml+d5by22cxrhQcf0HC9gRZtcKKY2Rmk0Ye3W6vrYhsVwgEdl1h5TGujPGqJao0SP1blLpPmcaE0kIaNk26R+52OKnCzDOkVniejYo0ahxQmbeuyI5VxfjplDxTxMJCdXvYVkRTwC8/K2erY6Q1JC02jLzR04POt22XyPl6jjR/kWG4LjIK2yDS0Qi/02M7u6DMUpzLheK7XZ+4avhkm+JZBjevHaKzlOr0Ecbdu4joCPKPYHuKM7jDaDRivV6j9lu6jsfy5m/Qv/d7/Cj5Oe74e/ytaRsKyeEvM3284aZ7xt66hi9iqlww32wIul/uqNbUFZvpBdKy6E4OELvT9pp3rr9dVy9ZtMFxTwwJ/G8wL8v2nwln/rw9Hq+HYUi8qIN3qb/XSlGVBXVZopVqbWoviY4wDITR6sqFlJiWhWnZV8+pZVywTXKGkf3lwaLhAWRt54nxh19b2paWrQV117MYvMQo5QUoRbNfMKt8TBvCZE7WG3GhXfZphlnGSEoiurh+gLS7YLRyNvEN2qJ+i7eDYZgIYaKaLxgX0HZC4qLGHPoYvkWZpOjAR5Q7BPCrQ4/fPosZOCZ54lE3raxN1RVY7T0mHI+m41MmAf3tjnWnISlmdL0bKGmTOz28Yk3iTtCvsOn1DANHWMSqIVWKvFZ4hoElBKiCJH+MIWyqoouQAtM12dQ1uVZowETQlRJPGG9V9FRFhrc7IyhiMjkgMSxmlcFv3vLpJwsqUxCKBlMGWEdHNE1KXaXIoocRmTTZnFxb+J3+a125vgrsy6ytqiyZjHuczbfEWUno2Yz98ZXE6Uml3+t0qRY5qipQ5ox//vqE//zzDR23T99JiL2C89LlsNJUu4LMs/A9E+IKakVjGTSmgd1oNgfv001PqZwJugS52TPc7IjXaxLfwm1SgtMT9ne+g7be3lxFG5JNeIcoPSPMphi6viLEQgiGjqRnXePB7iH//k9+zm8cvs8/czzkOBhBMmu7PG77vO46XYbRkOlqyma3wXVd7DcwfGkqRVU0KKVRjUY1Co1GPTrHdGxSW3GxP8OTHjc6N7CMVyuJGq2Zl88QHVNyYFtP52kGA5IkYbvdMr+4IFgucTod5Fs6+j1x55umU5b5kqIpuB5eR16qEIQQHDoWvjQ4yQruZwV3Peeddnq+mQ6PAtl3kcHzF+HJSYU2hCkIgqcX39aXm48CorYyr7WmKAq23obmYs/5/QvKNOcH709e6XzyLlFmKbvFnKaqcPyAcDh6qURNNw3NcomIAnIL0nxJVmWkTYoONFWek8d76rN7OBcuo+Ehg/4hvuVjvKJF/i6RN4pZUeFmiq5r8Wle8z9+tmFVNkzcF7s6T1Crgno/xUw0uevj9AaYhgG7NeZqjguEeo+tU4QnWHd/wHZ4h3CbUc8WuErTM01gg0q3lA3sa5siDAkGDoZOUa5J6dy+IjuyzunGD6nzgp0xoApA2JpK23QtOPbb36vr9j4qtESjCS8dmtC63fw60TufP/iLBnM0orh/QrNc4oxGGKZJut1cER7bMPjhIOT3asXPVymONJjcvEl57x7lo0fYd+4gosP2AZ9vsdwuo9Go/Y5nGZawWF3/JYKTn/Pd7ef8a9du8Z+c+ehggPRvsZp/hH9tT1UZaCU5XS+4cX38NHn7JdBas5m2jku9g2sY+4s2CyE8hPANZ4DqEraPWtmj02md3MxvNgsHaDtLow/aTs/6PnD7BQInDKOdt3lLQ4NdXvF4kxO5JkfdN9DyGwZ0jmB90p7fYPSlL3kVGqV5uEqxpMFx/w2PO9+QblOW1jXG5Rpdl4j+AT/eKYw6xyj32AYcmQoj6GBYLiC+lbP9AsIwnOed2uy2+OYowV5DWjY4/ZDswZq67GCbDVQZH3YdfvssxrEkiRmQFQrLyMjrqpWzAUKaiMAhCwe4uy3DpGYepeTVFtfqkrpjvGKNXyxJvFcXW4xLGZpvaOKmIVOKvSqJiwuEkIiqT4Wm60k2qsGgJUqeMF4a6v1l0HWFs35EVK7IxYAYl5VWDHt9flAt0WgcX2NlDubxIcK2KbMpOm2wZA9ppSTLHcobv/OB+Sdww4h0u2FwOOFituHifMH7d4/oO32WWRtG+oTwuGFEvFrSFFCZWz6IRtwJbWa5wcSw6TgZm8Cnl2r8vCbeZDSTEJnQBrWGBrlnEuxLlIhoDBu/WbPuvw/9IaIskdMVxWrLLhWMFxdY6xXx3e9QdXoo5y3nl4RgH1xHCwM/XyK0Yu8fX+0ppGFwu3udVfqAH8/v89NNww96Pr/ZG3GjfIxIV1cFtMPgkLiIWcUr3I37SmmbahR5UlOkFVXRPHMoAkMK6s2Wcl1QTGwu7n1G5ERMJkdI/fICutZtR2dW1tRa0zMlk2eJzjMIggDLslh8/DGb1Yre8TFfZUUUQnAYHOJKl8fJY052J9zs3HyOkHVMyU3X5kFe8iArue29u7X3GyE8Dbp1ILlsLSul2G63ZFmG4zj0er0XvcmDcatl351d5lu01RDXdXGPDok6HeT9KSePF1RlyY++f/2tSY/WGo1+I5KR7Xfs5jOkadI7vHa1CXwZ8uk5y2TGvttF7VrJiW3YhHaIFBJta+gcUJY5q+U5Dy4+59HiAWGvxyCaMPAGzwdavWM8LirqrMHIFP/lLuN+2dC3Jdf9198eeXyOmeTURhcVhfSKAnMxxTi7jycSvMhFGIqy8UjCQ5KjmwhpU+mcU6eLXTaknoFwG9TOZG6EzGuL46EmaBbo1KSMnnZ2ZFPQj++ji5yN7kLYo7TX2DJgUyp+8yi4qgbU9Q7DcEiaElOYT7WrxR5U/e38zhvACAJkJ6Kez5G9Hn6nS7xaUpUF1qUJRWBKfjiO+IPpjj9dJliTiN7165QPHlI9fox9fNxql7enYEcYhkG/328LGdstW+Gzm9ykPD/j/eScf+PmmP/ogY8x/h7OyQU3lwviTitfnW9XFGmF/5ruw34xpy4KugeHmMW6raj5I+hce7MPfTkvAxrduY5yhtSVok4KVKNb3b0AwxAYpoHtyD/fjoE0Yfh+2+VZP2jDTL9mpzIrGx4uUzzb4ObAf/Mqs9eHZHlZsey1x/YVcLbOqBvN3fGXWFA/g3ozZVEYiHGH4aPPKF2fyhvwk9MYs6qQao+pXQYSpNNBOA66ar6Vs/0CQkqXqtpc/bcwBKZtQNNmPyVFTS/qkNkbilRhhRpRJhwGHh3LIG80XuBTJA5elaHr5+2JheNSdjvUqUd3uWMTHZFUcyzpg3Qo7A5eviR1RugvMREwhaBnmlRNzqq8oCMNhB6TNpq+ZxPZNlK0XZ2vKmHXSmGtT+kUU2pjxL6OaJySZRPxL7sxvtaYQxtjtcQefBdzMECpiirfIMsI2bPR2TlZ2eAMRl8rQPV1cIOQdLuhEZpR12M2W5NdP8CzJRN/wml8yrbY0nW6rQGLH1DmKVagqMopf+36dX7roxWN26drzdg7Fcva4lhJin1F6pdEtoSshsCksgyUIXDyhsSb0ElOscsdpd1B2zbixiHqYMh8nVLPu4ynZwQffUZ5bQiWTRVE1GFE8xbFotg/QgnzstPTsA1uXpEeQ5j0vOvAQ6SYcm9/xG/tBN8vS349PuHuez0c08CRDuNgzFl1xi7fvSBtU40i2ZbkcSvHNC1J0GvHDgzTwDAEWimK/SnJdYt1lDFQXQ7lMemmJNtWOIGJF0qkpdFasSorppWmERahNLjmOPhfsl82gS6QjMfsi4Jms6Hb7X6l+7jn9jANk9P4lPvb+9yMbl459wH0LJNaw1lR8igv3/r9X/cZ/twhhGC/zEm3JXYgSYsdTdMQRRHRq9pkQrT6+eWn7SYmOnzun/3Q570f3ML67IJPT1f84U8f8iu/9PpQp0Y1xFVMVmdkdUZe5ygUtmHjmR6u6RJa4XMXAiDZrIlXSyzXo3d4+MJg8BPkdc58f8H+wU8hDOhEI7pOF8/0Xplie2twhzTZMZ+dsd9tmaYP2XY3uJZHz+0xcAfvtOuzKWt+ts34+F7MIlNYI5fr/pc4zmhNmcyxFhcQgzJ3XK8rLBqs+ALT3CG7PZraJDO6ZMNDisEIDINgVxJXDYU0iDyLpuvQqIQq6DDfGUROxtDeodYuVXDtqfRA1fT2J1AWrOsQ5YQ0oY8uFpiGh27gB70ncraKuo6x7TFxsqbrPGM9nW8u5WzvxoLzLzrMw0OKTz+lms7wjg5JNmuS1Yre4VMCMbBMvj8M+Mlsz88XMR8MA/qTMfVsTu26mN0b7fc2vmi7AnDVvbU2G9bNgHWwp9hn3HZ3/M3rNb/1yOfR4Pt4i99nYM7JpERsN1ysNtx9RVBoutuS7Xf4vR6uTtuheq8PvTfI2mkq2DxEZVtK5ZNbh1Qridbx1a8IIV7I3RBCYLkSxzOxffO13ad3BsNoXeYWn7YW28P3W8nbV0BZK06WCaYU3BoGzw1SvxG6xzD/qD3XvZtv/f9fxgXbrOKw6+K/qTtPmZKtNizsAR2d4uQbsvEN7peCvE7RyQZJQUfZhLZERmNQGmF8Gzr6iwjDsNG6QakK47ISbHsm1abAtgRJ2TDpBBiBRRFX+I6FLGNEOOZXRx7/+0XCoWtSmQF2OkVX5fNzPLYLTkLS6dNZXtBPHeZ+wjZ/RNe9TuweMCw/Jcwu2AfHX3q8jSrZFWeYQtA1r7HdKwa2QT/4+i5oWmvk9pxO8ojGGbKpRmBsudA+PwgER1WKPe5B+gjL7GBdbx3mqmpNk5R48gjpNuTLFY3TpxO+m/m7l8FyXaRpUiQxk6Mx8589YDrfcPt4SNfpssgWzNIZHbs1TPA6nXYGsQmo2XHsF/xo4PKzjeZILojsjLh22GhBuFfsVhnlOMAuNJQKHEnhmnhpRWp0aAyLIJ9TPhM27tsWzShgETmIwKO7WNKkFto3sVYr7O0KbdqUUYcq6qLfwFQq9SZoYRCl53T1A7bhrSvSYxoOkXPIvniMKxeM7ENmjPlfT++Tbz7mRzdu8MO+y9gdsvE27Pd7/Ni/krZlcUmyKdqR49DCC62XxjPUiwVZmTEdCXw35Hb3NqZhUuYZ++2czWrBelmhPJO1bZErcA04dC36ZoipQpSIMF6xL4U2P1JKyej994nznDiOqeuafr//lcJTQzvkduc2D3YPONmdPB/aCoxsk1prpuW7y577RgiPtAy6E5/dMuX03hzDEIyuDfC9L+liOGE7CB3P2o7PF4iGYRjc+s41DEPy8cM5P/7JCT/8/o0XNJFaa1b5ikW2oNY1Bgau6dJ3+0ghyeuctE7ZllumTBm6Q8beGGlIdot5m4URhO18wMtaj1oxT+cs8gXGdEXH6jB+71dw/Dd7uPhBh5u323bwbjkn3qbUQc5UTVlmS8b+mL7T/1omB6XS/HyT81+dblhuCo4LOBh7CEsg6gqjrhF1jVFXiKbGqJ7+valSSC9oCkUlu3RDD8+uMUkgT9HKJ2v6lH6XfHx4VTGRtUKWNRsUHgZSCrQtUNucdaax9IZrUYnOQypjBOGlfahq6MUniDpnXXk0lg+DA8qmrfpV2mfimhxeZjQ8lbNZKNRTdzatIdu0+tk/a4etvyAwbLu1qV4sMYcD/G6PZL2iyvPnrJCPXJtsFHJvmfDJMuF2N2QcZVQXUxCHmP6w/d56fbDa+8GyLEajEV6SYGrFWfI5H13k3D0Q/M3rNf+x6nKyvYG7+hiiGVkNJ7Nzbt+YvLAxr/K8NSnwPEKzgt1F23Xo3Xru97RS6KJA5Tm6LKGu0fGSYv6YLNVUZh9cD0NeYDsSy5FIx8S0JYZlISwTDImWEqUMilpQ5Q37LEesBV5k4XdsjD9r4mPI1u1n8UkrcfsKznN105IdpTXvjcKvNvtoea2BQXJ5bd+i25RXDefbnNA1v3xm6BmU6ynbvKE5HDGYfkwpJaI74ffWCqvOyIsdliiItI8vTcxw2BIe0/g2g+cXEM87tV0SHtckocChdWrTWuP1OiSbOXVpIctWSfG9rsPvnCcIITDDHk0yRRUpsmngsrMhpETYDlUU0OwtgumC8oP32NbnbC5JT+qO8PMFmdMoR5OAAAAgAElEQVSnNl9dXMirLUk5AyGI7Ovs9gppCLrhu7F8lvGc7u4+2uuxUceQL8gjm6zx+LV6TnfgYQcNxSbDvf2XMGz70jl2jlE6WMMQkU/J8hw5uvO1g0a/DE4Ykm7aDLehb7GcLjmc9HCttsvzcP+QdbFm4A6u7KybwsIKbYrign/26DZ/vM5pjC4duSaxInaNJAht7H1OucuxLAtRNOBISkfiphVu8aTLc4Zd7Smtp8+lSJrUNsyuD7FkjbeNyZ0BuTnErHOsKsZeznHWCxrXp+z1qf3wtRL4zB0Bgih9TCd5xC64cfX7jhlRqyFZtcQ0XDy/T6/posoFf++8y++cJxx5Jj/sRfhWTlzFGEsDm5C6VFiOJBq4r8yh03VNPp/y2Nxhuofc6twClZFkc5omwfIgcrs82kpmscI2JXeHIeMAlEqo65iq2iCExHYm2Nbwhb2lShKa3R5zMsawbTq2jWmabDYbFosFg8HgK9lqu6bL3e5d7u/u83D3kFudW881GA4di/otw31fh2/Mpc20BcrKCAc2nh3R5LA8i7E9EzewsD3z5dXG8BDyj9vN00tkKkIIbrw3QRiSjx9M+cnPH/HL33tKerbFllk6o1QlgRlww7+BZ748PK9SFctsyTJfsit3hJmJzBVep0tn9PJ5gLRKeRw/plAFPSOkpxT2tQHWG5KdZz9H0Otj+z72bEadFzRaknuK8+ScZbZk4k+e7158CbTWnKU1P17l/P50zz5JEKrk+8sU32gwqpZcvABDokwTLU0q2yJmjXZDijAgCC0GVo3MU+rpirx00OPbVIMxZbf33EPCTWuSqiG3JINGgCVRVc4+KdA6puvVWPaIatsDt7WPNZqSXvwAo8rYFg619GAwaf3lywRpuOxrg3/66Ok1rKodhnTZNyUGxlM5YLED3XwrZ3tLmOMxzWZDdX5BcPvWpUnHkv61p9VOIQR3/XbA8GSdcm+bUfoDrmmozi/QowGWIWHzEIbfuSKcQgjCMMR1XTzH5N7HH/OnpzE3Djz+9ZuK/6w84uRkwZ3NKVVkMp0+Iok/JOo8rQSppmEzu8AwTbquQjwhVr1b7dB+kqDimCaO0c9Ui3RTUm6W5HFOY/oY3QO8wMVxBJbd2m+iFLrO0aWirl/8bliAbZk0SPIcdnOD2LYJBj7+wMdw7OfMS94ppAWD99ru2fLzdr7nDWVlSmlOlillrb5+eHN0rZ2L2zyC8XffqJigLud2pCG48aZzOwCqoZjP2NgdfJXT3c2IhwestMOiAlEVGGWMjWZoCizfw/J6cPkY+lbS9ouHZwkPtOuoaRsYUmDpS+OgssENQxJnSZFpbK9E1AXHvo1vGhSNxg07GEuTOtlh9ivEM1Iuw/VRhU8+CPAu9vjbFIY32OanbLOHaOcIp9zSSc5Ydd5/YfOrdE1cTCmbGNPw2qp+rGiUZtBx375z+rLzkK7prj5B2z475y56tgTX4DEd/qrecuAJousHxCc/xgonWOO2E17XO+p9hmMdY3gGxeMplRURvaOg0dfBDVrCU2Qp48Mhi/sXzNcJNyYdIjvCN33m6Zye08MQxpWdddAfkReP6doJ/+jY4/+ddzky14ROTtqEbBH0HItmX1J3DawciCy0IagciVU07LwejTHDz+bPER6AnpSsGs3jgzE3dYVbLkg7N6jrkLr2EU2NWabYaYybnYJlU3Z6VJ0u+hXP2MwdIlCE6QVaGOyDp/lNgT2iUQVJOUMaNrF3yKD6jLtiS+KOiWvF/3xuEOc5B2rDD1XBd8aKu7fGuMHriUQ5n/EoPUfcOORGeExdXlBVGwzDxrYP2BExqzT04YOuwI1r2GsKZRENBghP0DQZRTGlyM+pyiWOc4hlPd1bVtMnQaZPZzV938c0TVarFYvFgn6//5WynCxpcbtzm/vb+zzYPeB29zaOfErEj513F93yjRGe1WqFUoqDozG2bdPUijyuyOKKXZa1UhFHYnsmticxnyzItt9WbpN52+V5yc0nhOD6nSEawScPp/z80zO++50jZsWMXblrk2ajm08r/6+AZVgcBod07A73zj7iZD1nMrrBwUvIjtaaWTpjkS+wDItb0S2c+ZZaGJjjtw9MvDoG22FwfL3dZK6WRLWk2xuz0XtO41NW+YrD4PC5VuCzaC5JziebnD8+W7Hf7HDzlENqbNPATSrCUqNGEbXrtMTGtFCW1VaxTetqA6O1It6f4GUVNhUBSwaphahMksqkakLqm7eoD66/sOmRlcIsa9YCLCGwhEA7BrvVCpMLXNvBcsc01QhEDYGFVSV044egG7aVR2nY0J8gLBulG2qV45g9RAPf7z5ZFEuaJsFxDtgla0IrfCoBzL6Vs30VCCkxDw6ozh6j9nuCXp94taTMUmzvabXTEII7XqtRf7jLeZgUlG6fiRJ4ixUENpaTtgP3g7vPbRpM0+TatRv0woif/8kfcXKeMBjU/Ct3bP5OdszswZpO8ZjNZ2c8+Df/HX7po59CGKL/+l9n86/+DdRkwiAwMLIF2u3T0KU5OUGlKehW96+DgLLToTBM9tsN+22G8vuIgxHOaIjlSQrDQF7en6YQeFLgX84Laq3bjtCzP2UFlx1RU1Y4aUay3bOZL9hLQdSVWJ6FsOyW/LguwnExPBfxLtwYLfepvG3z4IXz+jJo3ZKNrGy4OfQJnK+5DBhGK2dbftpK27ovBjV+EY+3GUWluDMO3mrWslhekOQl6eQmh/P7CEdS967xcQpaZTR5haH3mIbHRNVIv4MwLw0LhED8OTp4fot3gzZ/Rz5nXNDuD0xUVoPRzvEEHRcZOpSLDJVrZJlg+A7/yNDlH8wyDj0bOwgx1jFFnuM9M6shTAssl8q3cVyF/XhOORjQcy9JT3GGkjDJl7hZRO4fXq1BVZOR1xu0Vvj2GN8akGQlRVUT+Q7W1ykmXEIWezrzn6FNm23/e6iLPRglu6BPZ5Pz/TBjcvMa1eoc3dT4t39wVQAskhmUEmc8RBQrsixBR7ffWdDo62A5T2Vt3fGIwdmcxXTJZNCGxR/4B9zf3WeVrxh5oys766a0MaRLUVzwTx68x+8tMpSI8MWezA7JlMIPLcxFRR0XmJGHyBvwTHLXxC4a7FKRuiOi9ByrSqiemYMWQtCXJkutORtNuDk9w99NSY5vggKdN1S5RdVEmHmGVeyxpzPs1YKqN6Ds9V9KfFJ3DFoTZlNAPCeBjJxrbPKH7PPHSO8Whd257BoOiSxJZBkU1ZDp9oS/X2/53VIzqSU/HAW8F9kc+RaO/EIsSFlydv4JVWBzIxrRFI/QNDjOAbUc8LCoyZQikm0+kGMY6I4m3ZYk24K6UnRHHtLy8P3b1PWevLggyx5SVR087zpqu0elGdbx0QvFO9u2GY1GrFYrVqsVvV7vK1mc29Lmdvc2J9sTHuwecKdzB0taV9fqXeEbITx1XVNVFYPB4KrzIk2DoOfgd22qoqHMaoqsJl7nsG43LJZ9KTExhshyjdxPMXov19QKIbhxZ0BZN3x+NmVV/hHDY4+j6Iih+2LL7nUwSsWoifD6NrmvOY/PuRY+7S41quEsPmNf7ek7/dZfvG4oNhvMwQDxEpvBRmnKWqG+0K4zpcCWz9tTPtvt2U4vqJc7RlGHJugxzxfc296j7/SZ+BOkkCyLpiU5u5I/ne8Q6zVusiMSmp4UKN9n7nXJDYvANYgDFzqvd8IQqqbafUR/9jlBrMiEgeMMyO0BlR9QVDnN6BAm1196bt2sJqsVmRT0hEAD23SLVT3ADV3W+gDXGkBag2viNhui5DG1MNnWEY1W0B8hLt1UqiYFNGnj8UHHpnPZ7q3qHQC1cKh1/XzYaL4Fr/elG8Jv8SJkr0ezXFJdTPHeu3tlxT7wnn+4CSG46dpIIXgkBRdJRWF3iCrNaL9HlxKrWSPko5fOfHhRjx/9+j/GyU/+mAcXS5Ky4p+75fDTjxLcR6ekkcHHh2N+8HON2O+J/4u/TfU//Ld0/oN/D/nrf5mqsmi2GbpJKC2TojcgNU0SDVlWkJ/NKTYrdF3hOg7+YIRtKYz9EpWapJaJsh1qy3qq8ad1VAqkQdeSBN6rOxIOENQ1xS5lexETVxWhIbBpaPZ79PqZ4WvbQgYBwvfbP9/AjvSlsIPWSW77EPYXrzVo0Fpzus7Y5zVHPZeu946qZ07YFqCSeVuQek02zyYtWScVk45D+BZkSzUN2fkpOzvAFA293ZTmxm1Kw+aP9xpbp8TpFlekhLVLzxJIv4+QJlrpb+Vsv8D4olMbgOOZFGmFLVpZ2wTwuh3idU6VgSx24A/4Qdfh/5qm7fsEXbzNmnmc4fW+4HDo+qjSpRgp7LMS52JKcXxEz71JWi2JmxhTZ7ibH7Nr3qN85nYyDY/QPcA0HMqqIU4rHNvEfwffL1kldGc/pRGS3fiXUJsa0jV6FDGLTf6aXHA88ZBWQLL5Oc7RLSy/Leo1TUa522JbY4zApJ5OKbSF3xm8cyvqV+GJrA3TZDLqsJ7ume1ybgwCfMsnsiIW2YK+08e6jPMo0oRweEianhCILf/ExOf/vOhyYO5IrJy68tgJQb/jUO9ytFEiHBM8E2Ua1KaBk9fsun2CfE6Qz9hYd547LkMI+qbFCng8GHN9McNdzMgnhxAaEFpQNtS5RV0EGEWJnWyxzhdY6xVVr0/ZH7xAfFJvgtCKIJ+jhCTx23lzIQw6zhGb/CG7/AzTmTAud/jFgsSdwLbEKWy6UZfKKYhKgzze8Xdr+N/OEwwBNwOLD7sON3yLa55JevYZ62rH+PgYs1liSA/Tuc2slqyyEksIbrk2PevpMbb7SQfTkewWGetpQmfoYXsmphkRyJCyWlIUF8TxZ5gXNYbnYr4iZNQ0zSvSs9lsrubx3/o+kQ63Orc42Z1wsjvhTvfOK2fdvyq+McLT6XReWmEQQmC7JrZrEvaf+o1XZUOVNyTby4fezofFBcYowLAsDCnaoVSjfY/2BzodE3Wa8/hBRiS6ODcD0rJ8Y8LT1CXb2TmWa3P7+A7zcsEyX2IaJmN/TNmUPNo/omgKrgXXGLit1WA1b61xzdGoDecsavZ5TV41FLWibl6tSxQCLGlgmwaBLQldE8+SWLbD8PgG+9WSbLdF5hb93hGfpxv+eHXOeXbGvOigRBcrz+jsVhxVOaYU1N2IqtMl9nxKYNfUREndjkG9pmVqVgnh7jHN6mOa/Qy77DC3hxBOEMMDyqiDylPYr6E7eul5lZXCqhouhEZKA6cRJCrBrD7Fc6Bw30MVFnalMFRNoOd4yY5CBmxLB12X7Xs/M+PVEh6DSrv8xvjppruutkjpkdTtfRLalxuvJ3K2b8NGvxKEEFjXrlHcP6G+mBL0B+wXc4o0ecGhUAjBddfGFIJzW7JPKjIvIq41vf2WwTbDje+3D7POi4F+hmlz94e/Qif4hPun58QPzvje7/99tr5H6h3w+MMR89/vERUJqWPgygT5b/9bZP/hf0py+7vEJsSWQ6k0erGkKRpkkmAlO0aqJAocOkcH2GG3netqanSt0HUNT76WAmrHIfcDCs8jsx0WVc28qrGFoGdJ+qaJ+5KOgTBN3EEHqxuym2dkRYPo2AQ9B+oaVRToLEOlKc1uh15vqADDdTA6HWS3i/G22vpg2AarxhctAXJf3sU8XWds0oqDrsMwfMf6/eioLSpsH8How5dK24q64WyT4TuSyVvM7QAkj8+oypL0+BbR6ac4rk3cOeRsW1MIG4oMyhgpCgKjS2A2mN22uy7Et3K2X2QYhkt9Wcx6Astri1y2hqRsM0ncICR2FhSpgb3fYfThRmDhGIJSaWorwHclKk8pihLHeVpkEJaDkgG1myB7Lvb5nKrfB98jdA4IOaCxRjjrn9Ar1uw772NJD9NwMcTl/Gij2OxzpCHoBF//+2VXe8LZz2g07A5+CVVZsLqAwGJOxHvpgg+PoXd8TPrgPrgm3uF7V68vkjmUGudgjCh3ZPH2z9SK+mV4ImvLkxh3PKS/2LGcbxhH7tUsz+fbz1lkCw6CgytZW3c8QcqAopzzVybv83/PXYR2cfQe5UbUWU0V2YikoooLXMdCdyyQBsWlRbVVQ+qOCNMLzDp9Yf7KFIK+abIKQqZFzuFug+W6VJ3LfYIt2x+tUaVNHroYSY6922A+XmKtN5TjF+X7iX+IoRuCfE4jHXKnJQvSsImcI3b5KZtmTWh1cNMFaRqiawGRReAesclOKKwKv5b4Ro3huDRas8hrHiStLFtlW/yLP+RgZPG9pGEiu5j2mCzVCFEztkwOHOuV4Z2OZzI4DNjOMzazlLDv4nfs1vLdHiENh/jRn1Du1kQf/tprr7FhGAyHQzab1nihaZqv5ODmmq366mR3wun+lFudW7/4HR4hBEVR4Pv+l1YZpGUgLQOXdlOulaapFU3vOs30Yxq2KGuMajRNpdCqrWKiIS5jZumMUd/FLztMT3Ks+pzD0Zt1eFTTsJ3PQGu6kw7LxynSCJBVxsPNObsgoTAyDFNwM7p5tblWZUm13pD5EbNdyT5P0br9PriWJHRMHMvAMSVPpL1PJDNV03Z+ylpR1A2n24p0qcgbDdKgkYJ1YzPdOqxmM+p6iur0qNwJWs2x6wv68ef0ChvbiihHI/JOD/2MXnlfV8haEeQaIhu+0CYVdUmwPSfanGKla9ZqQ6JNpPUhs2hE1Q3pjq5RGAa6qSHegusjXmHn6KUVWaNIpSASBlmyQdiPcQ2FEX1I3riYuiaMV/hijWw0e2dMmiqoCuiNEV+YgSqbBCE8HMPg/ahdtJQqaJoUxzlkn+3wTf9phSBbvxML3/8/wwgCzPGYej7H8j2kaRKvVq+0ZD90LCJp8EgaxGXDXnapXY/F0iJ4fMZw8Yf0PyiQB3defLEhGX3wPTqTMWf/7n/PmYrw6oqgKikCh//nV7/Pr//sZ1QdixybR7JD8nd/l/pvfAddaMymxMZAZhlmkyNMgXt9QjC5htUdooSgNMA2jauOqtYaXZYtGSkKjCTFXK8IVyBMiQ4C4qjDznKYl21+QdeUjG2T4CXyNCkNegc+8bog3ZXUpaI79pChBZfuSFprdJ5fDYXWszn1bI7hOsjBANnrvfkMUPcGVFkrbRt9+EJ20Ok6bclOx2ES/RnIWa6kbZ+18QFfcMfTWvNolQFwo/8W9tdAmZaUi3PyThdd1wzjBcbdDyhqzR/FCkcq9lkOzQ4PQQB40kZGI5400b8lPL+4kNKhqurnnNqkNDAtiVXXaAPSqiF0bMzIpdwlqKTCKFNM2+dHA5c/WGV4lk/oOfhlzmaTMB5bV/M1Qgi004f4gvLIx4sr3JMz0u+99zRfxerSdL7LKD3Hq2sS++mzr2kUm12OAHrvYG7HLVaE63uUDeyG3wMrgMfnQE3TPSB/nPJr3ZTrt69RLVPKeot99wam2a5xWiuK9QLT7mAGHmp5Sl42uKPJV3LV+qp4VtbmHR4x7rhsdlvm+z43Bj6u6dK1u6zyFQNvcCVrK9IUxz0gTe/h6DX/1GHI75x26FtzCgowLPZa0Rm4lI/3ONscejaE9lOL6qwm7gzxswVBNmMb3X7x+IRBX5qs+kOWZcFwdoGyneftqYUAR4IjUZFF3vUxdin2eoX18AIzWlEcHNI8sxbu/SOkKomSMxrDorrMArSlT2BPSMopc+FzvGtwzTXZ+BBcExNwzC653uIaDmQxwrKRhkHHlnQApRuy2UdIuWXvfsD/sghZLyQ1SyRtwfHYM5m4JiNX0rUlkWngmwaBaWBfNgakZdA/9Nktc+J1jmoU4WV4u8TDSkLo1OTGDFHZWNarC8ZCCPr9NsQ2SRK01vR6vbcmLL7lcxQccZacMU2nHLiTt3r96/CNEB7LsiiKgtVqxWDwdq3V1oNfYtohqGFrMzw4fmGWZ1fumO/XjEcRN6Ob1HHNTz+ZsSwSJm7J4WTES3ssz0jMVuePiQayDTCUdkuqasWkGPPZcscfzP+IsTfhu4PvIgyLigakYHbvEetFTHnrAJnVeI7EtU1cS9IIQaU0e6VZlopKafJGk9SKuFLEVcO2Uuwrxb5WpJVC1Q1V1VBWDY3WOIZBxzPpjq/hZhvId6ALHG3DtmavU2YhiJ6D7/hYz5ybTDWUWtNNVatnv8zaMcoCe78i2p7hJ1OEVqTS5GHokgbfpd8csFcWmVkz6I+fXrPduj1nnZen0Ftlg1krLoRu14x4gaEeIx0XuE1jd2G15iBd46uSZhyy8a/RbDdQlS8lO7UqULoiVV3+8ZF7pWutqssKoOGTNzMO/Ev7YqXaDo83+FbO9jVhTsboLKW5uMCfjNnvtqTbDX735Q/CwJR8KF1mZs3UNKh8ExW6bBYh+0cf8+Af/iGe/ynh0R2CyQQ3CpBG252VQmBEA679rb9N6Lnce+99fLdi40d89qMPWLo9/MZA5wKjbvB+/Cnev9hgqZpaaApVYVoCp9/D7g5I3JBECVhnzx2jEC3xcU2J70gCP8K9rE7ppmkND/Yxar8j3O6ILBPd7bIJQlaNYJsWhNLgwLYITfmF9xaXDjsG+2XOdp7x/7H3Zj92ZWl2328PZz53vjcmBslkVmV1Dd3V3RoLmhoa0BJgPxowDP8FftNf4n7Rq1/cT4YnQJZkwLLkQXZDbbclyI0qdVUOHGOOO5552tsPJxgkM8lMsorV6SrkAi5AMCJunLj33L33+r71rTVaBLfZPUIIRBAgg6DvBtc1XZL0JhGnZ7SXl6jptJfGflVehpQwfQBXP+0DQecf3d7vJ5viVka2N/wlave9wQvXNje6DdcDuEyqfm5oGuK+A/kwxpKeniJEy3ayT/joZ0S+Sz25w+nlloe1YupmrKsGZbY4NmRftIhogHaHQG9B/I0l9a8upHweOVDeEh4AN1DU2w4rDFnVEnuaYDAg8RKaPEXlW4Qb8lsTn399XdApD+OETL2ctGnYpiWTlwxQhB9hch/Z7ijvHuE/fIo+X9IevhjWLvw5uqt6yZLUFP4cYyzrXYmxlukw+IWDz6P8nDA9pWgFu8lHyGiMvdpCtoXFhMuV5YfOlu9/ECBsRJM8Q8wH+NELOWudLjFNQ7i3h+hKiu11n2nzS7SifhOey9qsMfjzKZPklNUmZTHwbrs8u3rHdX7NQXSAVIoySxnHB2g9oK6v+NH82/xv50O0uUaJBIIFXdbQhBpij3JVMFhXNLELQtxaVMvupstTnKPbgvY1886ulIy1w2ZxgDx5wuj8hOLuB683KFASYomJhpSjEL3c4a5X+OkTutmAav+g/zkh2Eb3mCSfMkqfsB5+i+5mGD9wxrRtQbHasLWKkbOhdA9uz6SRM6dqE0qnIqx8bJkhwhfF2mL3GU71kHh8j3XwARAxBQZKEQhJZSxP84ZPkprWghQg+j4ABnCkYOBIYiWJHMlQS7y8wV2XhFcFw7mPe3WBKsD58Hew9TmyekwQWAJ3iBICJXpZoBavztmMRiOklCRJckt63lU+OXJH5EnKxdkJQv6K21JvW8s/XQm6bIl4tEUN3qGK+RJU5zHebMkvP3klBblqE7blKVr5jP09xGUC9MOPq+sdf7R+xvhOiQ4jLC84zvObzVro0i3sltjRHNuUGNsfkoyFsk3ZFglFJQmyjn+13GLqLUXVUtUl8fIZ9d6c1q9xnK4/c9x0eD7vsGdvHoI+BFwLgSMFWsLIkUxdiRA33S1rqZuOsmqp6o5d3lHoIbGG8eOPUV1LfXCMd/QDOhKKZsW2fNpbITpTHBmRdB1O1RE0FhEJnPWScHtGlF/idDnG8UjGh1zFA9auRQrNop7S5oZEZQzjEeomG8fWFRQpxKN+6PPzsBY/ayitJcWi6iW6OkePRlg5w+8y5OYhNinwrUM6v0MVDWF1AW0Lk8UrMrbn6OVsgAj43dmLw1vbblEqJG1LgBfzO9UWrOnnd77BLwQhBM7xMdWnnyJXa5woJFktcYMQ/YYZFCEE+57DSCuum5aNbmnvzqgXfxlxdc7u/AnLj3+MfvwEGYyw2uktY5WisZbqzneotEthfNapx2oe4qmOzUdHhJ9suFtdE1cljjW4fksQasJBTDCKcYdzhPZ6SZMQdMbSGYuxlvZmjq5qO+rWkDct26JfXKWE2NMMfYdBPMAdjbDmEHNDRrrlkvH1knHgsxmMWPkBn3aGsVYces4X0tOD2EUg2C2LL5Ae6D/bnQXlOOjZDD2bYbKM9vqa9vKK7voaNZ+j5/MvXyu113dZ1g8hOccODni2LljnNYtQs/Alpij6hUhrhNbv30VueHTTaXrSX48bkVUtl7uKcegwCt9triFdFdjkgno6os5LjtIr9Ec/YFc1/PG6IfQC8nxJW+7wRIYjx8xNgw4GCOX1f6vlmxmeX2E8JzydqdC8OPi5gUbualwgKRv2hz5+HJPELtW1xd1sUeNDHsQOkZaUnaF1IiK1I9KWvOnIiproJs1dSIn1xlCc0UxD3GWEf3pOOh7CS4nvSXiEtC2D/IwOxXnl0xnLZOijf4FOojAdg/wEr1yTtg5pfISMJ9iigssLCH1qE6GKNT960DIcHVJfrun8Fj2dovWLPa5cX6C0jzsYw/YpRVmhFg++ENPx54GXZW3BZMLs/ILNbsdVEnN3GuIql4k3YV2tmQUzvCiiSBKsMXjeAVn2MbJb8vfvjPgfH8VETspWznC1Iqs7RouAalvSXuXIeYAJ9AuL6rKlCKeEN7M82/j+669RSnA9NvuHyNOnROcnlEf33lwkFQIihzaY0o5jnIsl7sWWMCuojg5poxgrFZv4A6a7Txknj1gNv4WVGowlzsekpuB6mDOgIiyvb+d9pNQEzpiiWeE7IZQFwvUR2qFs1qjVv0WrAaejH9IQEgjJUKnb4HVfCfwvaeJ11tIYy7bpWNYtrbG0Fshq1HmOeLhksDuhGk/JHpUIBoRmg7R/Si6P6UR0e3a1gKInVfKGCCkhEHWLyICFV9YAACAASURBVM8Rzgo9GCGFuFU0Pf/381dWCoEAhLEEeYNbdWBhaQy5eowa/wLOXy/hayE8u6rlz9Y1tApRJuhtiTOe4uh3bbMqki7A3V5wYccgJHWbktWnaOkTy30uS0PPaQEt8EcDistrtidXDA4E0n2hs729rdsGsV6C54MXIW4SnQVQtTuy5hzPCZiEf4Fd8YRte4WWfZv4XpEx8ByKyQKrJQTqvXUVem2lxnM1xljKuqW9WsL1OTsZYcYBSilksiIYzQiCMWW7o2hWJNUppRFU1uVg1eHlNePNGr/ZYrSkHoy4GN5j47qUtgIMjooYsaArK3Y2JfJ83JeqDGyXfR5I/Hoi4VYdylhOMHT5KUO5xXWG+M4Ab/cpjudw1UbUzEnHU2wAXJ32r9dsH+G9XiJXdxmN0Ux8n3s380ddV9F1BZ5/SFqmeNJ7YW1YrEE64P75V7Z+HSG0xj0+pnr0iKBpaYVge3XB9Oj1hhXP4SvJsXI58hx2bcdKa7LgHubOHbzdOdXynLra0RmFNRLTKhAWdeAzrFLmzY67J2f4P0n43//BXyd0BPFwiX++4vDsjJnp0H/5t3vnsjdASYF6WWryOZl93RryuiWt+seuaPt9zdOMAofxYNiTn7btic96zfjygpGAVTxgGcbsWp9912Hh9gG+xlpWVcdVZ1hiOX+8ZfV4yzbQlAYqY6mNva18OFLgCAi0ZOoOmbsBe9ma0WfPmFwsmd8/xhu+WZppVIhtNM2jH/OkuWJXwsKxjENN9ZrvF1IgHAcRhMgoRIbhu88QvfKEAiYfwPVPYfWQbvYdnq5LXC25M34HC2qgyhuq5QV+AGfuiPiTHxNFEXZxnydPL3lcK44iybNljq22+BgG1iFWLWrU5++gBNxIgr/Bryak1AjpYLrylf93PIUQAt8KkrqXgrvawRtEVMsV4SZBNg3acfjrewH/81nGRIe4ShCrhk5L0rzG0Qr3uZtaMIfiDPIryvt3CP/9J3hPz6k+PO6rknBTvb/LsPsMcfkZ0rvDaDx/8Rw/B9wmYZg9g65hZwKyYNIXgwF7en5TtJtwldT83mLH3fmYZlVhpYFF+Ep+SpOmtHVGNL+HsIZqc0HrxAwGbx9j8T7xsqwtHI7wJhMm50vWaXnb5ZmHczbVhsv8kr14ditr8+MYx5lQN0t+dzLlX5zOUN0WRYIKJzS7mkoJmIfkzxKmVznF3cErFtVF6FD4M6LiEtWWdPr1e4QvJSKM2c334OoCb3lFO/8KSZUUMPRowgO66xjv8hLv4VPUYkw138Mol83gPpPdZ4yyp2zC+7CtEZ0lWtxhY044z3cclpfk/rwnREDgTCibDYUqiLoAkycQRlSbP8G0lmzyu6AjZlJ9ocD2VVBCoJTomcrLCDRELcEnD9EG0v0FQ0cDGuwDvPYJc86p1TFG9sXo52HcBsC+IEFWhRgpMPmOLl1johFCyJuvv6j825uug191BEVLYWHjKSpPU6u7JOUThPdVIZ1vh6/NlnrgqN5NQ0CXpTTLFcRDXEcRePqtrRzVYI9h8hBI2CmPprlg7IUM/ePbQcKXIRYRh53lerPEbDcM9/desYe11sJm2S9ss8UrNqZls6XtLoh1ROwdUlaGrh5QNJdMwyGz0ZBRZajnB1jPhbSBou3nZLz3q5mVWKa7JU69oZgMuR4sqCzIMiXc7PDLEjmeEYRjfD2irLYUyTOGV58RZEuMX3MVR5TDMWU4o9ERCIOgJXDGeHqEsg5mlVO1BY6vCOIXQ2g2S17M17zuw2Ytft6yazs2+SMmas2s9QiEQWTPqKXDZvAtrraK2LVYWcF6C9rpc3Ze1zGi1yU3XUHRRfz+IrytaDwPG5UyImsumfmz/ge6tpf8RYtv5GzvETKKcPb3ac4v8B1F3rbk2w3R+KszjqQQjB196xzTGEsVf0g528NWKaItEU2JNDWqrND354h/+iekRtEawSjNOfmTT/j0r32PbDgmOc751HvA1e/9PodWM30pRf1d4WqJq13GYV8Fzeue9GyLhpN1wemmYBw6TCOX8KbjYrKMdr1hvtsS73Y8lZo/1iHX2idpJBe5obUWQb8puJ0hyFp01eGPPSItkViUBYzt53oMNG3HWdvx2EJjxjiNQ/zwEvXTK4azMccf3uXb45A7jsWvCkyWY7IM2zQ0neHJeU4jT7n7wXeYDmOEViBlv94J0Zs0tC2267B1jUn77hWAcBzUeIQaj38+8qP0jV32zzh5/DGtf4cP9+J3mmto647dVYHbLMlHIeXJY467Eud7f4u0qvm/rnM8f0jXlTRFA2zwcPCsYqAUevjioCK0fKWj9g1+9aCkhzGvEh4hBI6vcIv+GJWUDbPYIxyOqaIrqjRB7Tao2YLfmfj8TycZlRcRKwe3zYmjKa2RbJOSyehGiqZDhD9AVGva4IDmcI57ck1zMcAcjG6Jc9NaPmv3mNmc+1zQGEVu5+++z1jDID8jqFY00mWj92iERMUjhFLYy2tIMhjO2HWKqbfkdxYuTu3StS32MEA6FY7Tr73WWqr1BUJL3OEC8uWtFXXwJQ6Tv2w8l7WZrkPPpkxXa7ZpysXO4/4swpEOU3/KdXnN1J/2srY0wY9jPG+Ppt1Ae83fP57wzz4N8NyEijGhr8nLlvFeSHGdU11kePOAKnReWFRXHbk3JyiXxOXFG7s8AJ6UMJ6RVyUsL5G+h4jfgihqidkfUIQe7vk1ztkaleeUd45p3ZAkOmKYPiNKnpHpOYw8pKcYdkckXcE2OyMoFuQ3skQpNIEzJW+u6dwBMi9ZN/+eKt0wdD7CHR8SKv1eh/oBtCnRqqYKJti0g7G+cX1RVPouXvsEt3tGxT2sfJF/qOClrsENwhCjJSbdIYoEGY++cF5UjSHMW1RnaD1FHjlILQmAAIj0MV/URv2cf9v7eJJ3hRAtg4FESw8IaTKHcpfQNAWl8SmqBs/RRKHzlV2fxolpdICbnbDzfJT03kh2AKwUiHnIuGlY7nakzpJ4vnhx06TbFwf5l/SbZbMlrc9xVESg9tnsGtquY+BNCYMaxAZ/09dP6705OL2lIUkDm6onPAPn/VQZjSE8P0EVGfV4RjudMxaCpunIXIe08Cl2K/ziFD8KCaTE3Z4yLNfMSmhn91gv5hTeEKN6OwhXSJRwcFR0O8BdJQW6qcAx+EGMeC5lM6Z3ZXP9L8zXPIeXN5R5wbr8Mw7NGfvuHFuHVOMhGSO6YEQjA2S6RVOCrsGPehnbl1QrGlNgbYeUIT+cvDiINe0WpSLyrsZiX8jZijVgX5kl+AbvB7chZOcXyCQhsRY3DHHcdzsgO1LgSEWsRxD1G4spCtrzc7oqQ/yn/xnFP/5fMKYlLkvCuuEv/eRTPvvuA7aDAaMgJBpek/6dv8pn2x1XYcC+6zBxfvHlLXQ1oas5GPlkVcsqq9nkDeuswXcks9hj4AecT1w+ZsDPTq5YXy7p6kt2UqKCgMlgQDAYYp8nUYca3Ba5rXDWJY6r0K157e+3QtBpQasl1WSInQ1xL8/g9ITPHj7kx1F/AJt7im+PQz7cHzOcj3lWSRgu+DZnDKYujN5u8NNUFSbPMbtdL6e7ukaGAWoyQY2+uFl9KZyAtXvI9uIh+84FoX77/KuuM2yvCmS9xhvCo23OKFkSf/QD5GDKo8enPCzhaOiSpFc0dYYmwyVkTzVo10dHN4fPbxzafi0gVUBdX2M/V9BwfU1dtGggKVtmsYcXhjjjMeXqCn+1Rc0WzH3NhwOHi1IwdTzcOqfsGsaDAatdwWpTEEcuoe9gwzmyfkSbbykXC3SeEV6dkToOzCKKpmWX1SipMYffxdbnxMU5fr1hF935ghvY6yBMS1CtCatrpGnJ/Tk7E2LqChn2+63Nczi/AuHBYMCyyvlPJjlTNaSrDOpgTuNc4TpT5E1noMsa6nqNN5sjhaLZnlNZh2j0bnEc7xsvy9rC4Qg3DpkkGZti1OcoeZp5MGddrbkurhlHMUWyw5iuD9F0ptT1kh+OpvxLb4ptTyhEhvaGiKqPvRAHMenjHfvnGc394SsW1ZXv3czyXLxxluc5PCkRe0c0VYU8fQb3XNw3mDK9AtF3e2rvgO4qxLu+JOweUx4eUgYTnGJNVF3Q7A+pvf4e0conDO6RlktE9jNEsLjt8vjOmKJds2NHYy/Js1P22wWjxQd9RuL7hrV4y0tMHFAv9l6cX8fec6tLKn0Pr32M2z2jFh9gxZdfh3R9iMGkO0y6RQ5eGBm4ZUuYNRgpyAYujfvFc7uW789N9GshPBbYFk8Y+HdwVYgTxSgspioQgaDEISsaqm2L52ri0P3SIcDEiZHpzwjUXYLBgzeSnedoXUUwixldtKzWOdrbEQxH2KaGZAN+9MpBvmoT0vocLQNkO2ed1UgBo9jH9zSdOWKbfEqzfoicf/TiYOMqmMo+WyZrYNn13Z7gF3jZu64nO2VOuTikGb6oPDiOYuwo2sglCzzss88IHv07BiQk8zkiOmI7PaQ82McqzZuEP8ZakqomLBoEFa7nvjpLk2zAdDDcf+3Pd3WLPnuCbH7CVOV4g3vk+kMqHdOFElOmKC+gOtuitiuchQPDKWLw1TM2TZeRtJbvTkbM/ZsFvisxXYnvH7KuErTQL4JY82XvbuN8fZWtX2fo+RzhOERPHrM5O2OrNdP7HyDlz9fRNFVFe3lJt90hlETv7ZEtZtR/8J8T/sN/yOCGGMyTNcc/O+HJbz9gNdjn4sOPyM8f81cmQ8qj3+BJPOCybjlwNaP3QHygl7VFnubIWM6Tkj+9yvknT3Z8mjQIR+F7mlEwJPrWCF3XTNMdSZ5Sb5fIzTVD7YAfIISLg4OsDCSWbuhSDlyMElgpMDeHdNV0OEWFm1YEZc2oqelMRe10CN9lWKSYckN2cIeL2SE/RVNctcjTnB9OfH7vgymx7W6ycUZv5VAoPa/v6Ewm2Kah2257A4WTU9rLS/RshppM3io0tWo7TkqPaHrEQl317m3TD18bFv0yrLHsrgpM0zD211wVFc31hsPpHvr4I+q65o/Od7i+jxCCMs9p64SQEs2wNyzwfZQb98Wb1kLwDeH5VYeSfm8PbCqUerF7eYEmXUMgBGnVYoxFSkE4nrD1HOrNGlW2SF/zN/ZC/vCzLZUzwCPBNjU6lsxGAbusIskqqrplFA3wAx9ZbDFtTHHnmODRI9TpCat8nzJSuJ5mFPdubDv3HmW9Y5ifMN19SuFNqHVMq4PbQXUAaRpUV+HXW/x6g7CG2onJoj2qFkydIf0Q6Ye9A+rjZ1BauLvPiRb8sL3iW6FGVAo1HWEHQGVx3V7RYI2l3i5BW7x4DuWWMt1iw8XPFQj5PvF5WZuaTJhmJ+yqkrOt4tt7MUoq5sGci/yCkRfDzlLlOUE8wHX3aJoNprng9+8e8I8/PsVRCRUDosAhzWviiUd17ZCvS8KBR7oIXlhUN4bCmxGW10TFxWsd216GqxTm6B7myac0p09Ijx8Qv+38k6foDkYUSuNfX+I/fUbjDEiiPRyvYdicsepCjOqfz9MDqsF3qFb/DzL5M8ToNwEwSCoxZJf/DGWW7GWahZ5Tjr5aSfHzwN2ukU1NcXAMgdOTnF39BdJT6+Oe9LRPqfQHIL58fX2F9CQbZDwiLDq8sqXVkmzgYv8cOvBfC+FRwkEKza58xsA7xNMDRBgjTIctUsJ4RDAOycuGvGhYNQXD2MN3v3i5xrRcmow9qTnAI3nLoKIychhPh9SXDdvrLdrz0btlP608mt1+X9UmJNUZWI+mmFLZlsBziEP3Vp6hpMskE7RdQRk7r44F3Ay24SvYNf3N05i+2/OO1RbRtYSnz5B1RbF/RBu/pmJqLXGx5O75T3HqFfk05KHeZ2kjJlsfP3ZwhfxC5/E5GmtYNw2jtCEwNaWnUOHgtrJrmxqyHYQDxOcq+cZYuu0Vo4uHxOaETeSwc/8CweJbyHUNvsS2GQiwmxXd2Ron9uDozm336KtQdzmtDfibBy8I6XM5m1JD0uaagTvoKwh1Dm3R2/V+g18a1GhE8OG3aH/Wsnv4kGWWMf2N796aW3wVrLW9LfN6/YLoLBao2ZRkdU2VZUT/wX9I/Nf+BvzBH8Af/iEyTfnuMuNqNKM83MeRgux6xf/x4/+XD3YpH3z4m3TTOY/KmrBue4vsd54RfPUa17Xhs6Ti36wqPk3qmy8IxqHGtAbqms4aGl8jPQ/jLQhmC0xVkGQpTVZy9yrBbzusgEpb6hpMoZG5g3QlwhqEsWANomsBaOmDih3honTfQSvmIduPPIKrc3SeMt6tqIIxylrwFH/WwJ99smXuevw9Bz4yjxgcfb+fuXtLCMdB38j2ujSjvbqkOb+gvbpC3RgrvIn49BbUOULA8dEdRDPo7bKvf9aTni+Zs0pWJU3VMfI3mDzh7HLL1HGJvvcXAXi4SniYthzshxjbURUF1uyIhMLXDmPboQZjMBIc0b+W33R4fuXxslPby4RHORKlJa6xWGFJqpZR4OBHMbvRkPJihbfeIQ+nfDT0cKUgI2KqJbrNsV2LUprJMCAvG9Ks5noDgfUQZUZXryGeILwB4fYCd+PiuQu8ifuKTLJ2hyx1dNvpCap1f71CY6RCmQZh+4KNRVB6E3JvRqd9TFVgigThesgw7lUUj57BuoSju9RTH3l5yo/GNVETIgch+vCALP8YrYfImyq4yRrqaokeh2g9oFv9jLLp8Pf2/1ytqN+El2VtajRCXVwwazOuap9t0TAKelnbsliy7DbEUlLnGUE8QEqN6+1RlWd8fzDlfw3mJM01lawYeAHFTc6hnrpsryviTYkXKKrIubWobkYeub+4cWz7Yi7P5yFdF310D+fpI3aXp6wO7jBUGv02ZzctsYuIQhzgPTvHaa+RjmV79AGTpJ/nWQ8+vD0Hev4BIrhDkz+l8ha0zozCGJTQuN0JbgsL+y3KIMB23Ve7dr4jRNvirZe0YUwb3ZyvborKnyc9VnjU6gi3e4rbnVLr4zc/b2dxmg5hNVYEmN2O8DLH8weUkUseaeyfU+Px65nhEYJRcJddeUpSnWLsPoEzRsYjzG5Nl+1Qwylx6OJ7mm1SsU1KGr8nGs/bYcZ2bKtnGAwq/h5BvSHvqlcqKl92DcXQZa8Z0qxWrJ6eMPMsarZ/u4nXbcquPKVtFKKbopVkMvC+MJgomoY4h9VoRmo3uHaC+DzjVbL3iM9uuj2tgZH71hK3nuw8RdY1xcGdFzfk86+blqBcMrp6iLe9ptMum+MfsJncJakN4fkOu12TrK+Ruw3ebIY/nqBe+v2F6dh2HWFlmHSGXHUIL3iV2OzW/Qf0pW6MMZY2S3A2T4iqLSO1IZsdcSIe4AVjZGPBWIzsMOsl0lqaXGK9COf+3luTHWNayqYk1DO+M3xJztZs0DqmNA2d7V7I2fJlX3kIfjnVkG/wAjKKGHz/B4jPPmPz7CmXqzXTj76De9MB+jysMdiypEtSus0G2zQIrdCLOXo2w0rB7vKSKs+IJlPiyRSmM/hH/6h/AHe3FeN/98dsT36CmwsOuoLTtOHZyac83e7YP/5NfuujD2kwfFb01tGHnkv4lp+5sjM8y1p+tqv4003FquqwQKQFB8FzR5ybLqMxFGVLUTZUSYuSksDXBJ7DQHlMpWAT+DwJJ0SuxKFBdh3UDWJbI8oW4QisdkEKrJAYrTGui3H6B1IiO0OQt7h1h8o6kr0jmssr6ssrlFsyvH9MEPafDWstWWv577Zj9k4+485K8bsPvs0HsXM7+/a2UHGEih9g8vyFc9xy+Ubic7GrKGrDvdmNBbUeg3Jg9RksP+5DSoPJF8JJk1VJmTVEfo27/gmfXSQgJhx9/3cRrktnDP/88RLX83qNf7GhrCuk3eEbF0e6xLLoA0fNjR8r30jafh0gZX/Y6kzJ51cUL3TodhUoy+7m4CykJFockV6e0qzXqPkYz5H8lXnAv75omCkHr8komuZWvh76Dq6jyIsG2gHWqajzCmt3eIs5vu6YZDmZaTBrBcNX53OtVCTRnT6Dpatw2wzdFUjbUTsDOunSKZdGBbeyJVtXmCxBOC4yGvb37dNzuEpgtoe4N+J0lfF39IqDskHuHeHcu0fbbbG2xXV7abHtDM0mxTolXnQPmpJyd0XnTxh/DVbUr8PnZW1qMmF4ecUuGnO+LRn6Gikki3DBWXaG7wSQ57cyRteZ0dRL2vqcv3d8xH/zySVS7ajwiUOXbVqifYc66Ei6jsFVQe3rFxbVraHwpoTlNXFxwWbwmgy4z8GEEe7+IdPLc67WS67HU2KpiKT8aomgECAl1XCKsQFeucW7sCTTA0bFCVFxcevMBmAG36WqEi7Tx8jYZao9QvMIoSLUzmIClzYaIIoENXi/5xpvdQXGUM0+Z4j2BtJjZExj93HMBbq7pFUvZNOyNbh1h1MbVPeSXNso3MqlKxNqIZD+mOG2xgpB7SpqX9HdrNXWmF5J1HXv7W/82kwLpNCM/GOS6oysvgAsgTNBxiO63QqTbZGDCVpJpiOfNK/Jy4amNYwGHlIIkvKUztQM/TvUwsM2O8LymiS681bXYJSkHQTsVwOenD9mMwyZHffSrbrLWBfPKAuJJxf4nssw8l47dOutl33Ow+Lb2O6cot0QOq+ZGRECYgcc2d88q6onPa/RLb56oYbg7ATZNOSHx6+EW+m2IKiWhOkl3vKSzmpWs49I9j/Eaodt26KKmnkYIY5nVEVOubymuLyguL5GxUP0cEjjOVQCPAtHlaVpc9qw7+48hy1zqPJefqY0Vd1Slg1uekFcXaKUYBhJaueYU/cupvEIAwe7KqDKsPkSmgoxOaBpHYgUXvj2Fpl1l7JtDf/geI578z50XY4xNZ63x7JOkEhiJ+6zd4p1L+X5OeVV3+DdID2P4fe+h14sWH38U5Y//TNGV3OUVr0L2I0cwJQVtnnhra8GMepgHzkcIoSgLnK2V5eYtiWezt5ohOBHDg/Gd/hxcYkgYSh9urLkJDUc6iXLZ3/Cf73awuJDHox9Jr7kxG058DT3AxdPyX5WzfTEIG8Ny6rjYVLzaVpzVXa9VaboLeIPA/XGDU5JSRy6RIFDVXe3leJmWTA0FsdziAYelw6kwFB5hM/vy5np1wIpYOLdHtJfB6P69r+uWlgVFOucNAjx9/bZT5eI1TmFdwd7M8waO4LYGRLKBRfLM/6LImQUxfzeQcgPxz7BOxIBGYa49+71M1aXlz3xWa3Q8zlqOkVISVq1XCUVk8hhFLx0NHUjmH+nzwjaPoHkFMI5RHOQmt1VSpmUhEFHuPy/WZ+esgx/g3sf/Ab+vN+E/+h0y+Ok4nDe3xNFntI2GY4o0UTMVYcWGudmZklI0ZvffUN4fuUhhEBK7wtObQB+pMl3FYERJGV7e0AOJ3PSyKfcXuEkd9BTn7848/lXlzmNE+JVO/K2ph+P7qGVZBh7CDvFa7eUkUtbC5Qr6I7uYJ8+IqyXZN4hdlP1M3nx5xQbQtBpn+INbmDPYeoKk24RWiOjIaLssNdruF7BaIz4YMGmNuxlz/iBXRPNv4177x7S86jTxygVoHV/Huh2NY3ZIId9QKTdnVOWFXrvWzivKTp9Hfi8rE1PJrRX18xNwUmrWGU1s9hj4k1YFku2ZExNQFMWuEEfVux5hxTFYz6Kaxb+mJNqR6GmzDyPvFTUtkNrwUpLBq0hPM/JD0P8HPyyJY9d8mBOnJ/jNBmN89UGYPV4SlAW3NluOPdDEt+nMIaBUnhCvH5f6GxPELBwN6bJfGzq4OdLhDGUwyFReUXtDEhVQGEMhZWEwX3mxSPK6oSBbUmaNYG5i9tdsx73OXEmTzB12UvF3gNUWeAkW+rRFPO6Gdw3kJ5OTZHUaLPECg/MgCBv0E1PclotKUKnD4IFBmlDPY7Z7QXUdYZWNa4fo5oON81wlzWdqalkS63Nezea+toID4AQkoF3RFKdktWXQG/FJ6MhJt1iixQR9vKkQeThaMUurVhtCrS3oSMn9g5xVe8JXrpj/HpDGuzfVk++CpWviETLgdacoNltU4KBYpk8oSgh0gcM44DAf/2CIZoGJ9nSDEc4/gin7PNvfD168yyRp/qDzfbm5hl5X+riFlyeoaqCYv+oJzvW4NdbgmqF0+aoLMMmDdvgHun+/VtCVBtDWTYMapADFxyF7wzwhwPaLKParEnSDZfZFuO4hH7MzHgUVUnmdQh3gOlsz7Ctpbu6pDPQdA7tKoOuYVqeMpAljKdo3SLKinVwn6zQBKJGXidwlWF9i9ECsXcXYSIam6NH3jsNUVZthkXzo70X3aWm2YAQaD1kl35K5ERIIaFYge0gnH3JM36DXwbC+RwZ+KyfPSVtGuIgwFGqJznWIqMQ4bpI30cGwW0HyFpLsrom32xQWjM9Osbxv8RiWkvuThc8TA8xTQWJYH/hUy4znm0VxyLnI/1jVtcZP2l/QCMUJYbSGKyFkVY4CCzidl21tq9HRPrLCc6bIITA9zSxFDjbipKOnYRraRFlg9MpWmXZWEunLAOl+y7vyIV1BUndrwdvQNsayrqlrPp0+ZEU3EXQzaY0Q5/g/JTw9Cn54V3sS5KHPDxg1u6IueBpF/LfPk74H56m/K39kL86Dxh9VdHlc5BBgHv/ft/xubyRui2XMJ3xpNZ4juJo9Jq5Oe3B4jegSiC9hPQcm5yRbA1lbokGkjDbUp6d8zT8DoMH32f/oCc7V2XLP3t4xcx3kK6Ptbaf3+lSBsaghMORIxBodDgFI3r7UykQ6huHtl8HKOnTPc9hewnaVShH4tYdhbHkdUfkaaRShLM98ifPCHYFauBwGGgOA826jZmLFdQF1g6/8Fm3wsfi4ngtnQnosh0MxhT7R4RnzwiLC/LhITZvoTYQ6X4ff8s1w1RF39nRGukOEJu6NylIlhAEcLDAuJLN6SX/cfmM2d4ezoffRoYhbZtgTEUQ9HJtU3eY2BB22gAAIABJREFUrKHzMlxvgERRbs5pnQHDr8mK+k14WdYmXRc1HBDmCeF0yMWuYhy6KCnYC/d42j4hTVPCPMcNevmZ4wxpmpi2vuLvHh/yX378E9oupdEOg8hltS2wjsR0ls3QY7Kt0euKxu8tqkVoyb0ZYXFNVF6wcT58q+suFgdEdcXh9QXLo3vsJKy7FgUEUhFKiXr+3remP9sZ25MDV4GjaI2lbBR+eUW1EjSRpd1+xnr4bYTou0bDaI9Zu2HVPuaqSenUPe7lPq23IPEVjmpwlMbmKdZ5tzPUG9+T60us0lSTLzkvvYH0NHIf1ZYM0zPowEiPInSoPfViLsdYBkmN6gzpwMW4ClkImmRDV2yQCHLT4VlwrUNofTwUeezRue+PrH+thAduksg/T3rcCfghpsxBO7cs1vc0SgpOlyfUZcrBdB//Jeef3J8TVCuCak0evF1OkW0bcpsRD8fMmorL04dcRiVC+YzCD5iM4i81TPDWSwCqcX+jhM6MbfmEstkQul9y82jZk55NBduqb437X3w7vOtLdJZQzfYwgU+UnxNUa6RtaYVDnStMNaAdDyn2D19JBk6bFpm3hK7uq1AvIwypPBc7mzHOU/wkQe9WeLuGrWjIhxFWeqBaUAqR75BpjhntoawglgV77RleBGl4Fyu2BOuMwu6xXKeQV4ShgEpAGGFnAaKtUCqkzVraQDF4A4l87ftkLZsq5X40Yu8mUctaS9NscfSQqmtoTMPi+fterEG5bzWo/Q3eP/woZnr3HrvrK9K2xdEu8d7itU43bV1TpglFmmDalmAwZDD7ioDNG8QDj31/ysk8wW0TdOnx4FCRX5Y83S047tbMop8S2TXbgx9hnZjWWrZtQ2ksWsJYK5yvGLp8a1hLkLd4ZYtRkmY/JtYSp+moqpaq6aCyFKYmUYKBo5i4LlpLZKgQadtbKEcOnTF0naXrDG1nqOqOzvSVM1crwkmApxVOUuMnNVkckh8eE56fEJ08Ibtz75b0WKlIwiNG6RP2zIo4XFB3ln9xlvEvzzL+0jzgb+6F7L+joYoMQ9wPPsBkGc3lJY8+eUZhBN95sI8wAbyp8OQNwBtgm5Lk9JJSdER3fAKno/n4MZf+EebBD7i/N0cIQWss/9Wna3Tb4A17M4K6TKnqEmF3BGgc5TJ/TqhViNACWvtN4OivEaT0aZoN1naIzxUU/cihqQ3WGJKyd/0CCOZ3yC8eU24v0LGPvrnX//tdwEJp3Caj7do+EuFz6OQAbVbI6KAPHU42MJySH9zpSU9yQTY/gqzrC5hKQOh8Zf6eKTJMniKMQhIiigZrW+i24HkQzRFDl5NdyY+WP+Z46DD47u+gbqRpdX2NlC5a92Sm21a0NkcE9PbU+Yoiz2D4AP9LikZfB74ga5vO6HYJC1vx2DhcJRUHI5+RN2LpRGztOcMsZTCb3z5HH0b6CQ/ChvthyMfllsIZMdS9jLgsOlTVstGW4cAl2FSkcx+XPh+wCjRZsGCQn+E2CbXzFucEpSgO7hCdPGFydY57dJcKyE1HevNwhEC3Fr1r0IAYu6BFL+GWli5SdFuNCWYE2SXOxhINa+5VV1Tx3RvyoulcGOU5T4WHU5XIqoDDByi1pmiWuMFR3xQo89eGs78LnO0aVRWUi0P4qjmvV0hPDWMXr+zwszm6O6Xyr9jF9181prGWOKlRrSEbuLSuwpYFIk+Q2RbTNDCaIcdzKi+glhKn6giyhmFjqd6yefE2+NoJD7yO9Aj8YISoK8z1GhGM+sXNWrpqQ9CkiDai2riE4xb13K1LedQ6IqhWX0l4rDFQpNizx3RF1ifx1jvK3acUa487028zEUtEu8MGMYTxKzbV8Gp357kzm6MCXBXfJOSOkOJLXmIpepa8rfrF0vKKg5uzXeNuVxA6BDrB254AULlDSjlEL7fIuqSezntm/tICWxlDldUMrUAOvduvNdaQdobSGiQwdFzCyRwmc+JlihEX1FLgOQrbbKGhl4ela6QXIn2DX58xLPuE6ZW7h64/JShyumqPjV9T1oJoEKJGQ0gEItBAihASUUJlDdZXeO9QVW5NSdZ1/EcH89uKRtelWNui9ZhNnQAQuzG0NVQ7GBy+9fN/g/cPL4yYHwcUyY5ss2Z9eoJ2XYRUSCkRUtLWNW3d27m7QUA4X+CFb7+Ae4HmeDBnmW4xixYuK/xmzPePEv7ksuNZesSh3TLqLtAn/5zd/m8jvENmTkBhOnZdx7Jt316T/SVQrSFMapSxVL6mCPv8AgH4rsZ3dU/SW0NUt6yrhk3ZUJQt8fONpmwgLWDogX75WgSuIwkDD89VqOcmIkAydIl3NVFakw79nvScPSM8e0Z2dPd2E6vcEZUzICouKZ0RrnI5CjWdsfybVckfXxX8cOrxt/cj7oTvlu8go4hs7w5FG3BQJ+jVknK9RA2HqMkEGUVfeL6uM+yWHQ1jglGHU22pn3xM1cHm/m+xNxnfzlv9n1c5T9YJe464DSSu0i1VU6BJ8a3Xz++YHDU7hsYiIo3JG+Tniz3f4FcWz80Kuq68lXI9hxdqsk2Fa2BXNhyM+u914gnBYECxu8RL95EDl9+aePwTb0BVO7h1RtPUr81+6+QQbZZoUdAOxnS7NSbZ0A4nFAd3CM5PCJdn5Ad3eneRvO27tCl9UVPLvmUsRZ+x1RlskWLyHGEdpB8ghMWGEvJtn2MSTBEDn6Jp2f/k3/JbfsX8h38dNZ3e/O0FbZvi+Yd9sHHRYqsOE+ZIqdB6SHPxp9S4ROP5e+kAvE98wa0tjpCei5ftGI8PuE4rxqGD7ygW4YKNf8U6WzKpj9A3smilAhxnQtOu+LtHe3z68WOKtmAgY6LQoSwbbNrQ5i3bRcS07vA2Na2vbiyq1Y1j25I4P2c1ervCqHE9ir0DgvMTgutLxN4BvpR01lIYQ1211ElFIcWNMZXtswBvIFyBG2ncXCCmRwy3l4RphVArNt6Y2h0iTUKtDUVnmLl7uGnHVqwh/IjQzkiqU2pR4rgepswRrv9Wrpmvg2hb/NU1XRC94vj7pbg5b4t1RfSsRgeKxnPZBce49gmuPaO2d2/PnFHSoFtDFrvUysLyoh+NkAo5P+pz59oGKyXyZl9rPEXjSIKiLx6+L/z/Zid4Tnp25QlZcoowDV7j0xU5pt4g4wmVTSnsmsgZMFET1knFOq2ZjAJU5ICvKbwpo+zpG1m7NQbyBNIttsj6F352wNZ3Sdo1w8EhgZzTRWNM5KPaqs+cSTZYP4RoiPD6hfTz3Z3nCN05m+IRRbMmcr+i0/Sc9GzqnjUDBBqdJ4zPfoqjG1p3hGkcMn9B4U2hNYRnzxDWUhwcf8HAACDNa1RtCAc+VgkqY8hMR20tEoilJJTqtgXrVF0/IzSMUJM7CO1CU0PbYK/P+kNTPMDPlwzLU1rpsgmOcNQSx3YI+YBiMWEnNApBNA4RRQs0WBds3v5/7L1Jk2VJft338+HO940xR+RUVT2im0CDIAFIRqNkMsq0wIYr6TNpqY1kpgUlfQDtRC1kJmrDhQYTIZJAo7uquqpyiozhxZvuPLi7FjdyiMzIqigIUBUKeczS0iwj0t+7793r/h/O/xykCXDWUvmCIPh2AVXZ5XhC8Ac7r+c5um6NEBqtR2TFgkhHeNKD4uz6c/zgvfNdQ0hJPJkSjcaU2w1tXeGsxfQd1lqkUox2dgmSFPXXUJ3RvmISR4zzlGpu8Zor3KYhTab88UnOv7qEi80OtoqZ9S+Yuj+n2F/R+3OUmhGohK0VZNZQO8v0rgo8b8I5wqonrHqsEOTXVaxbPw8h8L3B1X2UBGSmZ9P1YGEkJIQ+blXjOoccBSgtUUqi5Ht44sOiFCOfdNOQZB3ZJKQ6OB6CsfNTyqN7rw6fLD5mZ/sZo/L0lSyrkoKDUGGd47ebln+3bPjJxOefHSY8Sr07Pad1ZzhdV0xmI052D7FNM6jurdeYzRYEA4UxDBFhSNcYtpclputJI4t2HdbkqERxMf8V/niPw2AIQE/Ljv/5acZctEgvGA535yjLgtYWTFw/KGVKhbYGf/cYnEMowLoP8zs/ILxWaquAmwmP9hTaV/iVoegsTW8I9NBpSQ8fUhV/RbldoZOAYC/mnx2n/Ovfphy7BXnf3fJqL2ltHspmGD1FjaaYbI3N13TJGA6PBxrp2XOqg2PcPBz89xoDvRv+roaAzfUtts5xziKjGDEeIyKNk8DVGfQG9AwRBAjZ0336Kf+BXLL3i18Snrwerm/bBUJIfG+Gsw6zaUCD9Qo8PUM0GVW+wUXfvRT1+3CD1qYUaj6ne3HGwb5lW8PpuuLjvZSRP2IymrNYPaYqMkZvsGaC4IC+33Icdvwo8fh1vWHiJYRSkiQ+5bbBlj15b0l2QoKrmro2hK3BizVdoMmjAybFU8JmRR3cTQSgT0a00x389RUmDOnGU5QQpK2D3ID2sROfXg4FqZdzoAKBAsTEB9dAa6h3j5GXjvHyBRP5mOX0EZ49Ze0cvXfESdbRixkvdjR1/ZxRcISSIWV3xTR8gOtabJWj7mKMegvCy3NwjmrvdouR90FLMTx9dU/pK9rUA+HTmQM8e4a2C3q1R1h2eJ0ZKG6mguUQMzPegWQYV1HOYfP1QO+U6rWIlRRUiUfl/QBEC26DaAzjbMamLcnFGTK9j57sYuuMWq8p1BZPjYiDEwQwawJWy4p12TI3DpF3NEGIdZKwWb2T8Lgyh80VOIvzQ/B8xN4JmyjlInuMPxrxs8lP6dqC5whWNmBnPkOYDsocqhzqAheliGj0TnfnJbQMCPSYqlsT6dkrQ7D3X7gYFNzWLXJdkORrZud/BRKy3U+ool1qfwJCoqqS+Ow5TkqKo/vYW1zQ67anzRsiT7MJJE3fYRmccMdSEUl5U6XJOcKspu0r+mmCuq6goiJc7YZh851PCAPBOM/ox4/YJA/x3SnSxuj8IXY8Iks0XVaTxt4g7lD14EucaQZqidV0vsQ6RxB8u1vvssr4w50JyUvzU2fp+y2eN6N3PZWpOIgPhiGMYgHBGPTdBRE+4G8XQkqS6YyEv3nFvCDWHIe7fGoLggf7NJ+dozNJvJPwT04a/pVU2G1K3z5kZ/GCuD+nOpSIcFB7iggpSFiZkIX1GWvvtaDAN0AaS5J3qN7S+ooq8b6Vn8BIaQRDwtUKyVTrge+9aqBz71JR3wMnBfk4YLRpSLct2SSh3jskvHxBdPGC6uAYAKt8imiftDzDb7e0/mtKsBSCvVANktJFx3/92yWPUp//9DjhRyP/vcpuzjmerUqkENybDXuHDALk4SH64ACbZdiqwlUVJsuoXyzJM4OQMNkJ8aIAlY5QXcelGFGmBzwKPJQQXNY9/+KzNZFt8XDIcAjgujqn6WqcK4idQjjFPWkRSPzJEdS8SvI+UNp+OJDSQwiNMc2tPw9iTVD1ZL1lW/XsjYbnWKW7jMYJWbmk2YxQqc8/2g3511+lmOYc2RY4N7k1uR9obStwBqE9VDLGFFvMZokLY9z+IfHlOemzr6j2Dga7iDcKHq7rcWWBbWtEHKLS8WsTb+dgdTGYnfszhPXRqqb86gWPmgse/OIhuz/+B6/Wsral6zf43hwhFCZrcL3FTWuwDs+bYpbPBynqg8NXFfPvG96htU2n9OfnsN5wON3ldF2zKTsmscfR+ISF95SL9QtGb8yYSOkRBPvU9Qv+k4OIX3+RUfQtoR8Shx515NGXFVXRUOykeCMPr+ixdU9wWdEdpzTBlK4ZfHlexlh3QTPfRTU14eU5VnkY413HOwomg2XJ10YfYx+WNaZVlEf3UKcd44tnzMSKVbLD1obE8Zz0xW+o44Z4/nv09XOy5hRPJXS2pnEZQRhjqwLXtXdWu30JXWToMqOZ7+G+xf8Nqp6o7DCRpkg1tjRDsX7sY9QM6Wq0XaBaj7AKaLSgrq6gLsEPYbp7o5sqhEAmE2y2wuQb1Hj2ik3V9Bl5d/atruvr8J08DfJtU/GXahabFqEV471HqPmYrb7EBNApQ5E9Q7uAcXA8bEpC4IUek92YPtVsfDG02hpLXUQE2yXSDB0TZy1udQnrS/B82D1GRCkOycIKLrLHBH7Avf0fY6cpsZ+wIy2mrthkNWgPMZnD/j1Ip1AVBL/7S1xd0sx2371AhlkecJTd8k6fiTYVY33GbvMZk69+Q2sjzh7+Cavpj4fKg5DobEt8+hSrNcXxg3eSnd45yr7n+aZkIxxlrGicJRCSudLsaY9EqXcCl7DqsVVGHWrkm6ps1g4JovYJfBjnT+l0zDp5iHbnSFegmj2ESylSn6zsUFISh95Q2TIOF0hsUyFbhVCSSg83eODdvQVrbE9ra/547/Vm1/dbnLNoPSG7prON/NEwu2O7QfnpA/5ewI808ygmZUQuFNG9KY3NiIoRcxHwj08cq1nAuT/iQhyiFg3p4zNkHdHLPZyQpFxxLJ6T2q+omsfkzTNkf4m0W4StwL3bVvfrntG6QRpHkfqUf03ztFQpUqmonGVrevDU4N1Vv64O3wVOCYqxj7COdNvSjcY0s110viW4unz1e2WwS68CRuULcG9vxsPzuRMoTmLNZdPz33664r/69ZK/WNX01r3z+2fbmqq1nMwivLfmHYUQqPEY7+AA7+FD+oOPaGYnxD/9hKN/8vukv/wZwUeP0GJL6eAsPmbue0w8zUXd89/8dkXnYOzaG9W/NttSdiXaFYQiQKuAXdcjRwlSJjeU7sT/B/+lD/j+QakQa99VaoNhjsdTAm0c67J9/YMgJZ7OUbqizNf0m4ZACv7D+wdsrcLvMnhPl8fICeBQdvB7E36AmswRQYitSxrTsd07wAhBdPqU4Px0qLzXFSZbY7Il1jTIJEVOd95Kdi6HQDCeompHvD1DX5xhmpxf/mSPvUc/GdgW12jbBQC+v4vrDCbrkLGHkfkw0+MU9fYSG81IvidS1LfhTVobgFAKNZ1iNmtmgSTyJaebCmMdsRczHe2y2JzR9jcTXc/bQamI/RB+ngqWzRZzrdCXTiO0ljR5R90ZqtRHxRqXeuiqRy4qMJY8OkTZjri5uvsFCEF5cIxFEX36JWJbDnv21P9alc1XkGJIeozDGI/s6BHGNoxffEFZ1gjpMeoSOhkjI9DWMgnv46uUzhS0pqJsryAIEVJhy3y4n+4KY4ZkzQ9op3dnwoRlR1R2dJ4im/jYUTAoFNYGsuH56dQBwviM8if01JT1AuoKxnPYObyVOiqkRKbTQe46W2NNT9FekDWnSPk3V7j+jhIeR/DyIK96WNZDGzj1YBYgA59JcIIUiqviM7ZigdIRaZcMPcI3EPiaNPZpnCXXwE5Ilewiyo7w/BxX1rB4MXRn0insHIL26FdXLOqSlb1iFCXcn/8IrT3aUOOiiInTpHQ0TUd+vXEKKRHjGWK2h1fXdBjsZoG7RSdcSZ9Aj6j7DfaWYAkA5wjaDbPt75hvf4ffF3Q6YqMPWYx+Tuu9rr56mxXRxSkmjCiOH+A8j85ZSmtY9z0XXctl33GxLWmMYZYGzAOffe0x1ZrgPfMJwjr0JqcVBjca3+SCZmswPTqNmBTP6HTMJn2I5grltli7i9emNKGmsJbeGJLomgJT9dd+Ij1UBiF9XKppekvgfzv1q0WdcxxpPn5DbabrVtdDmwl5m+NLn0AFg6u8Dgc56g/4ewE/1CgtuRfuU7WOcG8HMVXQ5nj5hAdO8uODjnLscTo55Gl0H7OumP3VvyFdLGjVA2r9E4y+x0TvkCqPxjasuiWif05gviLsPyPsPiXoviBsnjJZnZJul1hVk42h87/+fnbW4kyP6/uBr9y1w9/W4JxjpAaVn8JaCmOGzo4vIb/27LojzLVrtTKWqOhp57t04yn++gpvOwRsCDH4hNiWuF68dy0hBDNfcS/WZL3hf/hiw3/5Fwv+j0VJc+2tkNUdi6xlnvo3JajfgrWOzUVFuW2IZzGzoxT5MjnantI1JU/DQ3wv4CTwOKuGZMc4x0wZXN8hXgpeXNPZGgpGdGih0SJgbFq83YOhm+wrXGc/KLT9ACFl8N6ER2mJFygiBHVnqdrXZ7OI54wTjdUd1XqDLTr+8f4UGSTINh9MtW+BEyFWREOX5+VaUqGS8VCNlhLTNWxHI0qlUM8fE//6/8F7/hWyrpFhjBrPkHH66txzzsF6AXWBiFKiiy3J+ROk6HgajfmDeyH78x3S+es5VGs72m553d3x6FcNCBAj6Pscz5vjiguqqsYbH35vpKjfhyBNaasKex0/qfkcHNj1muNpRG8cF9nwPR/vPMA4w9nVsxtrCCEIwyFW/KdzizNbSjusF0QeYeLjqo6sbOh8RecplJYQe4R1D8uGrg1odEpcXSLsHQtMxkFpKINdhHPE7QIi+e1klH01zGyXPULmbA6PqFqP+dlnpGpGtF6Tj4+wUURSX75SNY68GRJB1pxR9ktEnA5nS1Pd+aXD5SXC9NR7h3d7z84R5y1h1dMGimL0hgx74g2xe9XDtkU4gVfuY52la389FKB3DhDp7R3UlxBKodIJxnRsrn5L1S4J9ZRp+ODO1/VN+E4obU5AVHaIfFBKwpcwCoYBv2tIqQn1lFX1FUp4zKZ/AEU98BWT8Y31ksjHGEdRtWglCXfGtMwIrs4oluVwU50cIa7pEMViwWZ7SZnCbLTDTvrghrhAkfqM2oR5vaFXDWU98Ojja1WxMMsQ012a3T0otrB4gZu/a6AZeXOafkvdbW4qtjlL1CyJ6wXKdhjpk8XHtMYnXj6nPZrR69EgZDAL8IoNweKcIk7Y7h7SOkvXGV6GQQrwhcSreratI41DdpNbJGFvQZjXmKagncbINxS0XNdCsUWGEbP2HCs1m/QB0q1RdkkvZsTlCCuhjBT5ph4++0APAVpjIPFw1RbZCsQsoFYC5xyh/+1uu22b82fHCbE3fH/WdvR9jh/sYawh73Lm4RyaHLoSJve/1fof8HcffqSY9B4Tf8ZVteHo0X0uPvuKQzdltR3zB9MN2W7LKk9ZeEe0cczx5aeMPv1zguUFV/d/NVBR5IgAENay7jtOaZkJSyQM0rVEZUNQ1QhhqCNLFwp8B/RgrcQ6H2s11voYq8Fdd0rfqr455zCuw7h2+EMP0sPqiIUO6f2Y8ShCrNphCHoa3Pkw7X1FE2qCuqf3JfXuAbJtCRfnmCDABiGdl1L7E5L6ktqfYtX7q2hCCCa+YuJD0Vv+x6+2/MtnOX+6GzE3PfNQczR+vxJU3xk2FxXWOEY7IVH6xmtVKyguONVjumDMj8KAp0XPf/f5CgTMA4UpikH84VqtsysLalNiRUVsNdIJJlKhXY/eO8Z1FpV62MZ8oLP9ACFliHMWa5vBjPQtBLFHXBtyY1iWLSf+9bkWzQiicwIs1TYjWCWERyP+4fEB//dnn+KaGuLbuyJGTvHMC6QtsPL17JDQHmo8H4qe1tClY+x8D3+7ImpbxHaNaVv6JMVJhVMSKyTy6hy1uUIpH7UsoDK0x/s8ncz4qD3jR4li9/4nN575th26tL6/iy06XGvQ85DODiwST6XUqy8w/pjJeMr3HW/T2mQYIpOYfrki2t1llnhc5S2z2GeUThmHEy7XZxztPRhmda+hVITv73AYbvl52vCbMmN0bcoZT0PKrGG7rZmNI0TiMe4MWgk8TyOUwOUduZuyY9Yk/gV5cvz+N93ZIbCv+2FvH8eU84+JXzwbqMOHJ98u6Rl5yGaL2lxRzo9YzmvuLb4iffwppZpRHjxA2BVhs6II97DKJ/H3kcKjzv6Si+wvOZn8I7TnY6tiEDD4BhqjLnK87Zp2Msfcopr6DpwjyYZZnDrS1PEtiXTiDc2IoiMuWoRwbE2Akiu8KfTB3eLRxhUUaoWrK2JzRJx+u9mib8J3kvD0UnDV9aispRp5dGmIJ8F37tUQfdWtKbtLpuEDLIbcLBgHO7imxnr+O4ZLo8SnN5Zt3qCUoNQJsfkSL0zpon1EIbHSsC1r8svf0fsNO7sfM4mO3/HLcUpQj0KCvmVqa5YEZMWQTAXYa4OmKUzmECWwPB+SnunuDYlALQM8lVD1ayJvjnSWqB0SHWl7Wp0MiY43QhhD8uJLrB/Q7B+Cg35ZYZ9e0Jo1l0lCtbMPOLQThFLiCUEgrrXfO0NZDhzSNH2/j8ebkL1FbjY0voI3uievqk9CMFb5EPyNPkZQ4tkLjBjjNTtI25OPfcqmx1jLdBQOGXzZgQCnLVw2CD+CkU9dNsjroe27ouwtoaz4vdnJq+pA3w+Vak/PyLschxvobNn5IIP7Qazg7x2C2KPOO+7Fe/zVZoMb+aSHu6wuLpkHJyzXjj8dr/lf/SXOP2Zbh5gwYnf5FTsXT9hfL9js/oRy7wibjvGkYsfzWRnJlbXsdjBvIkRvyX0oI4mzLaKpEaYGUyNdg3QbFD1KgC8VRqVYb4xVY5wMMK6j7tc0Jsc6Mygg4lBOYU2BLFfUKJ4imWnNTO0TNSNEeU1zuyOqWKM7S5x3bKcB1eExybPHxGfPKe49xClNHh0SdBmj6gWb9OGd1k20JNGS1jj+5e+WtJ3hj07GuNDno5H/yhD4JZqqZ7uoBvPW/Qj/Ten9egurx1wRsI4PGEvF//Q04/9cVIw8ycRXQ2esbRB+8Oog74uMssvxXYsnPHCW+1pAL/CnR5Bfd3iKDwptP0QoNQRPxrwn4Uk0cgWRE6zLlqNxOMyUehHoiFFkaZwiu7pEBZpfHe/zb7/8gr7Z4sz0HTVWYDjzuEDZ9Y2E5yWEUoN9A+CCiGa2Q9v3eNkGf7shuBosNwZZxTU0JS6dYtIZTaPoDsZk0wS/3PInQc5k9x5B9Jpebm1H163w9BRhNf2mRIQaGXt0+RqtU2SdURUFYvbJ906K+ja8rdYGoHd2aJ88xWYZh+OUbdXzbFXyyV7K4ewen5/9hvPinHujezfWCoID2m7Nn4yf8Ff5ltpMCJVERR7jJGBbVay3Nfth0sl4AAAgAElEQVQ7CXXskWQNnnH4I00zEphcUW1HRGenVOMEE0RDAV4wdHOMHUQoenutpKeHP1pi8Kl39wkX5wRXFzS7dw/SBQ1evMBuQrYbS717RGd8Dr78C7qTP8JEMYXRhM2KpL4kS06Awa/yYPQLTrd/zkX+a+bBI4KOWxsCN16v7wkvXgxx5s4drFucI8lfCw80X2dbkHoEVYe+KqnElm6e4qY/w5NrnLnCqPfbtBjbkTdndLbEC0bE3hGi6bB1+Wpu828C38lpYK3lAkc49YkE2LJjfX1NCgYt+n5JoBPGwTG9bdjUz8jEilQl12Zd/o1MVgjBdBRytS7ZXG1QfUXsh8R7AdsgpltW5I8LMvMYqXPmhz9hFN17b4utDTVeHBOta8Z+zVombLKao3YItttrZTbhB7i9Y1hewOoC100R49eD2ZE3I6seo7PfMTMt0hlaL6VI9ui819Wk8PIc4RzrvUNKZ2msBQrizRqiELF7wExpfCHeHR7uLW7VkEuHnwaEdxxUDNYZxnR0O/ObVLZ8A11DEloCU7FJ7mOlwzenWBHj7D5BPbQ2Gykoyo7A0wS+HjaGuodQY7N82CxmKU5C2xrCb6nOtqhL/mjuMfFfb/5dt0apCKUC8mqBFpoYBfUG0gP4ng5qfsDfHvxQIaRgrBRTf5fLYsnHJ/d4VnxK3S2ZpHtsMscf+wv+vXmODh9Q+Xus4oR2fsDe5ksmi98gNwu6cEQznmLjlIPW0jWW3jpWSqAihXESXnofSoVQE4Q3x0o9PEfSoUSHdAXa5ghyWnNJ3rXUzsOKlCCc4qkELQOU8F89E9b07HQVl01OXl/hmsdElSYuZ/jHJ6i7BjJCUIw8RuvmWq46GAwTnz8hOn9BeXRvEDAI90mrs7t7UVyj73omCpI04kVj+Refr9FS8PvTgF/NQx6lPn3eUqybQUlvLxqoJC/RlrD6kkJ4fB6c8NW6598uChxwFOtXhS/XVINZbXB9QBhHWW6pRMXc9GgZ4inLPh1ykqJUiqUbyNofFNp+kHiZ5AxKbe8Gd0pJ/EjjZw2VgazumbysSkczdHbKdO+QdXNJdn7J5KMj/vBgzP92uiVqm2sbhbcgJEZOUHZF53r4OruJazitaWc7tLOdwby7axFX5wgxxk0e4eb7A4sjdJhZwKrq+Of6nDQK2T16dGOttl3gnCUI9jDLYY5FTwP6PsfalsDfpz3/ik4GpNO/O/Orb6u1ydEI4XmY5RJ/POZkFvHkquQyaxiPpoyvRlxtL5iH81eMDwAhFFF4j5P4jF+kS35T7vLJKAEtCROfpOlYbipmkxBChd9okm1DUHY08xBmAXl0n+CqYNS8YM3D1/OTgsEcWgkIvSHReauw001myK7D3yxxavjevxGux++fga8owgl9dkmc7FGOR/T6c0bVKZvqp5gopg5mN7o8MMSWO/GP2dRPKcyCDk1Ux8ggunVOBgYTe+Ec5cHxnTpRcdHhtXdIdhgK6KGzdHZLIx1Eu5ggQvYWz14O1NC3igXOWapu9WrWPfEPiLyhO2ncZvCquqOA0F3wnSQ82sHhOELEHmHZEZQdWQvbULJuFmT9lkCNiPQ+IPBUxDgcJKtz5UhNjC2zd6T4pBSMtWF1cUUWB4wOPiZuV1SqZq06OvcMv74gnd4nTe5/4xdepgFpkxIXW+w8IisNzdkl8vjghou5UBq3ezR0RfI1zlrEdAdhe2ZNxig/RThLN/opRbhHr29mrHK7ps02nM/mFEohrCUucqbbJXIW0Ye7UDiYiHffs3WwaSlwmNEwr3MXqLqFPKNLQsQbvieubSBb4ytLSkkZ7tD6MUH/FQ6PThwzyg1GCsrEI8uHzTdNrmkq5bUEp+/gokIkw/dcNz0ON1De7ojeOpwt+Ok4IPGH92hMjTEVYXiEc468zUn9FFEuAAHJ3QxnP+CHBSEEQaRp656T0Q6/Xa0o+pKjRx/x/LPPOPRaRtMplI575px1B5W4R2l9Wm+Hq72U2d6ayXZDWxrc+Qpl13TpmGo6ZhEHrD2BJyVz7SOlgmsvodtgCbCkNGJO2Tyj6zI8aiYaAm1BefQyfidwkkrjqxGHQcoimtO1OehziqsF9eMNyckjvGR2p6KBVZIq8YiLjqDqaaKIeu+A8PKMYLmg2dl7Zdacli9YjtM7HYJ9b8mLFt9TpPFrelpvHf9+XfNvrip01rEL3N8J+fg4ZV73CMQgz9o3mMvf8mXR87+YI676jLHUHIQa/415G2fttc9EgLje1/qypOxzjGgYOYWiR5Ay6XK8nfvQXic51wxC8S26yR/wdwNCSKQMMOb2OR6AeOzTlD2btmNZtjcSHrJTQtkyOtkn++Kc7NmCPzw84C/OfsuLqmLyHiPHXk5Rdom2a3r17ZIKZw1srnACOH44MEGKDloLE5+zxvKn3ooDYdi59zPkGwVIa3u6bonnTXGlwNY9ahogtKSr1gih0L1lk28gOSaK7kYf+j7gbVqbEAI1m9JfXGKbhkkUMI09LrKGZCdiFs44b9aclWd8PPn4xlqeN2YSP+SXya/5tLykNTG+EohAsRv7bOqaq1XF4V5KmXoEdUdU9lSppQsULgwodu4xKk8JkoZGj4d9RN0Sd92CZncfaXqC5SVO6a/3tXEO3zxH0FPJe2TBGV4ZEBchfv6Ci4f/kFnxmNmzX3P18a8owr13ujwAabBPb0sECuNbsuyMYF2T7Hz0DnPJXy9RVUG9e4D1v5kFFOUdfjPQ2L4p2cE5km2D215RzhSEe4jKge7ookNkX+Ob5zTiI5zwcM7R9FvK7grrOjyVkPoHqDeoijIZY+0KU2y/8b3eFd/NDI+SiOsNqI49pHGkZU3WLwl1wyiYYdSM3Fmq3jJSmkglpMEhefOCQhqSBoQXIIPXFU9XV/j5kiQJKMIZSyGwxRl1+ZgmgHjUMBaHBP69QfZ14g+Z+3vfp6AZx3hNRZjnhF1HYx2XOmV8rQTyEkIImO3hpELkS+LqnDiwSByb8JAzaYmjPXz1OtmpraVqG6LzU0zg00/nTJQiLQuSq0tMlAweGlU/KGDkHYze4L87B5sG2xuKkSLQCv8u3Q3n8K7WOAH9bMbLq3DWwnqBwDLRJa1OyMN9gv4xAK2+T5w5pHNk44C2tzRtTxL5aCWHbk41dHfcqhg+l52hi1U3/bemsy0awy8mllkQv+Lsdt0KhEDrKVVf0bueVMWQPYFoCur7Paj5AX978CNNXXTMw4Cpv8+iuOCj+T7jg30WZ5ccTx+Av8dD67hanDFxirA/oGsVSkCtxsS+JPVqCjmmNj7OVKh6xS4xfpqy8AKWQjJXrz2sbsPblas4/ITIm6NcgbRLpL1E2yWd3MPI6TsHqhKCmfZYihGEY9KooDr9is3558TTA6J0f+Brf8NB3IYar7WDso4vB8+IusZfX9FHMSZOyOIjpvlj4mZBGX6DYbNzbPIaIWD8FnVWS8Gep6BscMJRRZo/N5b/6/F2uDwHyrTsll/irOWL+AF+oPlp4qFv2bdcUw7dnZeUBufo8jWFzQmtw9M+sqmY+xG6W+LvH2Mbgwz1IFgAHzo8P1AoFdGb4r0/90ON5yuioievezpjBwVB7cO1mmey/3O6w4r62QZPBfzHxyn//Yst/WSKvoXW5kSAFTHKrunlzp2CYBjiElYXw+/vHiH8YKBGFR0EigWCI93wC7sknu4zntykZLfd0N3x2MFsWmSoUal/bc2wQesp/eac1kA8+/5KUd+GW2ltsxn95SVmuUQeHXE8jcibntNNwzyMmdQdZV+xaTZMgptJRRw/4ih6zC+TC35dHfAwjSBQ+J5m4jzWec1sEhL4mmIUML8oibOWzfWMSRXMCds1o+oF7XiE+5aGntX+EbExhJdnOKVu9UgE8MwZ0pV06oiiK3AYoukh/ukGZ3qKjz9B5Yrx6edUL55SnDy6tcvz0gKl6TMm0X0qd0GzvaDdtMTJMaEeDwWCpia4uqSPR3STb7aGCIuOoOlpwvfM7LyFKO+Qqyty3+J2D4d5y007xK3Cpw3vEfSP8fpnZMwp+xXGNigZMg4Ob8TFL/FSrtps76Z0fBd8N0/GW/vEMqxYmjOSrGUmD5kE+8y1x44aqA1r07M1PYEakfgH9LqncmtsmQ2VE66H7FcXoD2S4xMc8OV5xWlb4LknjMOAmZ0S7N0bgnDjYDmYP30d2lDjRmOCbUmyPEcf7FE7Xim33YCzJIFhhyXJ9ilN2bEY/Yh68guMTqiug5/KWhZ9x8oMfMoYQXR0n7nnM2oakvMXmCAc3JuFgNgbVJvK/lUHZUh2WmgtxUhjPcnojg+nzgpE29DNJq8qp8DALe5bRn6LkJIsPsa3pwg6WnUPv5avuJy9EsO8lJQkL9WZqutBPuegrGASIHwfax1NZ75Vd8c5R2cNPxlZUj99/W/9Bq1GSKnZtlsEgrSvB3ndZP/O63/ADw9+NNAlZW/ZS8aYPmZVr5jv7qMmMev8gsQ55nKPnx3t8sRfYPe3ZNOQi2jE2vN4MjngcncPN2owBx7bRz+ime8h+57Z4oKHT78iunjBdrums7fvHZ2pWFePKbsFvkqYRY+I/Z3BFV2mtPoBjf4IKwI8e0bQf4W05Tvr+FIyUYrWOZo4ZXz4E0I1pagvyTaPMdvlrQqRb6NMPZwQxPkgG1rv7mP9gOj8FNH3tP6YxhuRVBdIe7s070vkZUtvLOM0QL0dWPUWVjX0FjENiccB+6HmONYcRZoHXsPv9Y/Z8wXF7CGjOOLIf0+yYy22rq67O8P+4uqeqt5Qqoaxs0jrEEge+YO5pJ4eDTS24FqhTckPCm0/UCgV4WyH/Zr7NR77xErSN4bVm+d1NIO+hrZkcniInkVkVzUHTvJHScPF9v1qV72cIRjoqt8EZy1ufQXLs8G4+2Wy49zgWyIEm0ChBfxn+gLP0+zf++jGGtZ2dO0VWo1xGwdSoGZDkbfvN9eJkE+9ucJGO8TJ7d2p7zPeVmsTnoeaTDDrgS2jpOBkFlF3lo3VxCIgwOesOMO+JasvhOJ4+jMexZaEZ1S9BU+CFMxDHwFcrSusHQoydaQHH7WXceC1gqW0PUl9/u0v5qVc9fX+qqp393VtFig3JM21C6j7NaGe4YchXpXRywTr+2ynj2inc8bbxwSrK4rrYlRSX95YL/aGbmPdbxiPHjKK7yNrQ9Gcsay+oCzPCE+f4JSi3v/m+SK/7gnrnibQVHeYG9WtwV8sqEVLv7uHCKIhbp34ECjYtpjasTEBWf05bf0XOGcZBcfMooe3JjuvPs5r5ba/KXwnCY91Hb1tsLYna16Qt2cUo4AkOmZeBchryVNfDv4xybVc69L0+HpC7O/R+oaqvcIWGc70g3CAENjZPlnZ0fYZtXvGxpPMvZDd2kMLf5CmDhTMgoGHuW6GSsvXoBqHxFWFVzSI+Ywo8Cjrjqp+/f+CdsPO5lPS8gwz3mN59Cu2corZbMA5Ij0l7wvO2oK16XEO9oqM/bZF7x0i/QDZ1MRnz7GeR3V0cnMWJfWG9521w4xM1kFjMKmm8AShkHh3MM1ypkevNjjfx4zf8Nxpaig2+NoRyY48OkCKDdIVdOoQbPhKf72JNGXdYawlTa7nD6wbxAq0gLzGKRCTYf267eFb0tlWreVR3DEPFen1rJMxOc52eN5QocjajERFqGIxVO3876er9Af8/wMpBV6oaMqevVHAxNujbiWZydjZO6AJwZqCsLbct0f8fDrmonrCfLzCxj4rHVF3PRu1QxHtEzVLJvVTusmU/OHHlMcPEOMpe03F6Ow59otPkZdnyGag1jjnKNoFm/opDsc4vMc4PL7Rpn8JJ0Ja/ZBOHQM9vnmMZ87fUXOL5ODRU1pLnfqk6X0SeUijW/LmHLNdYut3D9UbryXFIGLQW7zGgJRU+8cIawkvB1O3PD4C50jL95u8NW1PWXfEoTfM6934oRm65g6Yh8Ne9QaCdsM0+xInJF/GjyhUyETp93akX3d3XgdwXb4ldzlO9CRWolyPUimHdKhRihLDPiEDhevtB4W2HzCkfClc8P7kJEg0ga9QnWX15hkfTQeDyeISISXTRyeoNKRcGH7frkhsS97dLgVvxQiHviFRfRtcU8HlKZRbSCaD99/LuYqyh85SRYrKwX8+K/H6kvnRx3hvKb02zTkOh65muN6i5+GrJL7r1kjpI4qMuu0IZ8eob9mR+D4gvO6C1NeePAB6PscZi1mvARiHHrPEY9NLys4yF2N617Oo3pXVj8Mj9qIZP083bKuBEUKgCJxgHPuUdUdWNCAF21mAdJbx5rW/T68jqmBOXF+h+7tLPb+CUpTH97BaE794diPpkXaLtpcYMaaTe+TtOVJ4xP4OwWqBCKFJJ1D0GBWw3f0YFUC8eIKs21ddHvWG8a6SHqGe0vRbjG3xRzuM/ANGbgePAP38N2TlY86nktpVg1jOe6BbQ1wMcV6V3CFec45oscZ2FfXOFPGGyqHFUMcVmbtke/EVeVlh1T5THbEXzgn03WZGv62h6tfhOzkRnLO82P45T9b/O3lzSeTtMI4fUE2HgDXJulcHvxCCsdJMlaJzjqu+Q+sZUbhL47WU5Qvs+VOwlibd5XKTscifIPwl+/MEL/gR0syIs1OI09cdDS2HpMdXA1Vs07wTbLyEbCqsJzCjGXKbk8YevlZsixZb5Uy3XzDJn2ClZjX6iPXoI8z4AKZ70Nb0i1MKF7K1iqbfMlWKPWC2WmKimHY6Q3Qt8elTnJSUR/dxb7fUX2bMWsBpMSQ+qUcRDl/hXbs73nKNsJZ253Xb3BkD68vroe+KTse0nkLZJUbOMUxIshYrBGXqYYx9JVTwSmK67IekxzhcV8PYe3WjVnWPVhLvjgaAzjmK3vKHM4cWmkgPh1vXrRBCo/WIxjS0tmXUN2B7GB99w6of8PcBQawxvSWUkiTw0HYXYy1dYIjHYzLZ4scOLzf8UfiQaRhxWX7ObrJEBiFZJ2mLjExN2Cb38LqSWfY7lGmG4dH9Q6pHP8Y7foANQprlguDJl4SPf0t99u9oqnMCPWIaPcRX31xtNXJCoz/ByDnKLvHNY4S7WYAZKUUgBJm1dCNNIuekbo8uFFQuw5Y5Jlu96nbfhjbUGC2Jiw6swwYB9e4+uszx1yuMCiijPcJ2jde9W702dlDA1EremNsBhs7uZgggmN+0FwCIq0sm+RM6HfNl8pBCasZSEb0v2bnR3bneX1pDU23IxJbAaCJPoUyHDeaM6jVqdw/Ri6GroyWusx/obD9gKDVUkQfhgtshhCAa+SRI6rqnaK7ZEVJBvDNIovct2vPY+dlDgp191Krnn3YvWJU19rZ4QAiMnCJdjnDvzhC5rh1Mzq+uCwc7R4jJ/PWsX2eg6Oh9yUJI/osTjb95hp/OmL+l7mVMSdet0N0MaoEaB8jrQoK1zeC9I1Pq9RkmmJCM3q/O9X3G2yakADKOkVGIWb6mMx1NIuIo4jTvsY1l4k+4qq5ozU22jRCCo9FDDkLJTJ2RtSUECuEg9TVaScq6o256ukBTxj7JtkW3rz148ugQKzSj8vl748Kvg1Oa8vjB66SnLJC2fCX81Kkjqm6JsQ2pv4/qDd52Qz+f4tJwKB4bSxHuUc0PiN2W6PyUUl/Lbb/lnxZ7c0BQdlcI7SGCENVa9peWGbv0Rz+i9i1Zc8qy/B2b+hlVt6IzFe66SyZ7S5J3GCUpUu9OlM1wWyGzDcUkxo0ntKagbK/YVE9Zll+Qd+d0ox4/GDNtj4jUL1De7kDpu4XV8LeN7+xEEEik1EghafuMqlvSio4i9QbTvPKmAVQkFTtaI4CV6fH0LkG8R7c9o1g+5cIZnmdPyftnpAnsje9xNP0xSTRlkTt0m0PyVkYpxeBv8dIpdtncavIXXF3SJSHt4T2CskGVJdPUY96cEZz/GtFVbJMTVqNPbiivuShhO5mzbmrE1QU70ie2OYGA6OoCnKPaPwRjiF88QwDl0T3c1xmGCTFowVuHCYbKbyQl+g43p6tKdF7hRmPstafQK7dnYxgFPVI48miOZ8+xIqGT+0PL1zrKkYeTA5UNMUiBA0OiU/VDstP32NAh4gQhBH0/GJJGwd1na7ad5ST2mPs1iTesY21P12/xvGGwMWuz4T035WAy6v/da+V/wN88guvhyrbsOZyESHxCsUtrWsJJivMklWwJEoG86vmznZ9TE7ItP2M3XiGjlKy2dNsNlR6xHj1C2p7Z9gt0f71BS4kbjfHvPWL94BO+GikWzQuC5SXHZw0Hi44gG+7PO0FIOnVAq06QriXov0Ta/MavTJVGAmvpsJEi7ieEYkITdDS+wfU9Zrt6r3kiQJl4COde7a3dZEYfjwiuLpBNTRHuYaTHqDx955DP8hbrYJK+NTdUDmZzeNdd8zdmIpVpmGZfkFZn1P6UJ/E9CiSpVCRfU6Bx9bvdHVPUlP2SWjhmToK1OAcPwhRMg79/MszvXHd3cO5Dh+cHjNfCBV8fNEWpRxpq+qpnkb+uir+iPxeDXLTUiunPf8R0d4eDouSX9Rnn5wvsLc9TL2eAwjOvqUWuqXFX53D5HOpy6OrsHSPemDF+KTBkBZwqyZ8dx+xun+BQHD748TuvU9cvoFOoMh0kqEevz9CuGzofqm6oqgpvevy9Nxr9OrxNa4PBiNTWDSYfCjBKCh7uxKgg5MvzNfvR8B2+KF68s95OtEMa7vIPZtDXT3HagICIwSvQGEdWNBhrWc9DEDBdvr4/nFRkyTFeX5HUF3+ta3JaU548wHoeyekXRNlnODxadULvOsruCl+N8HVKsLoCIWhmu0M8CkMhXkiy5IRuNibs1wSLBdUtXR4pNZE3dHl62yCjlHC9RF1d0O2dEMw/Yh59wiS8T+RNMbalaC/Y1E+4Kj9nXXyFuDql7FYswpLWFnSmpDc1vW0wtqW3DZ2paE1B02c05SXu9HesWHIVFyzLz9nWzyi7BRZD5M2Yhg+ZJ58Q7x+hvAC2Ha09xOHhm2cI17zn0/vbwXdyIggkh+M/4P7kj5mE9xBCUXYL1tVXXJpnXKkVtlgh6moIyK/hCclcewhnuexyuqwiawq+NE9YlJ8ThYKj2TF7o0+IvClCCNJI0vSKtQsI31cNSrwh8bFuoGXUr5MtnW9RTUUz26XeGYPnk54/Y3f9Gw78gsLf4XPxgMK7OXhcW8tl31H6IcHuITMhmG1bhGkx2Tm6yGimc5z2iM+eI7uO8vDk/eoZ1sG6HZKd4wQCRbYZJFvTO8j2OWvwlmuk0jTTNwbpshW0FX4cELmKIpyhuHz1YIZVj9cZysSj9xRl1dH2hlHso14GN3k3zEIJgVX9UE259kmqmg4Q34rOlnWO/2hPYTGDvw7X3jvOvaKzbdstUVvgCQGjD92dDxgg1eC03pQ9aaBJQ03dBEz8GaUriSYxlalR0wDtg3xR8M/3f85l59M0v2EeLyEasS0a2s2KViesxp/ghGS2/YKweYPK4jqUuyD7f9l7s187szTN67fW+uZhj2f2scMOR0ZmVWdNUDRFlUq0aOhmkKqFkFBfgFpIcMn/wS0XiBtAqjtuQeKCO1pILaBpNTRUVlaEI8Kzz7Dnbx7WWlx82z522OFwdmcpyUg/liXLx2ef7b2/vb73ed/nfZ6o4/LsLt39fw1zeAfZ9wTXF6SPviK4upG8fR+MHNE4d7E4ePoJSi9v/l9CMHUcDLAJBTiSpJ7giZhK7OhDhUCgs813Sty0I4dA0qZH7SU79dExVinCy+dgIYvOcHRN2Nz87LLqaLqeNPJwXp+alN0wafYVTLw3rFrDesls9wCnr9nFt3ganlJYiOX7dw2tMZjmW9Od3tCVO7bsUMZlJCTK9AgZcN/RoCTe5Ai0QXhyIDzwkfD8wKFk9F6nNhjOgzB1iRFsi4662xfUjjfs8pRL0MP9Xvgeo3vHTGKfPw1DbtuC5ZPH2MULbL7DVgW2rrCdpu0TyC4Ri4fYi8ewfAFdA+kUjs7fnOq8RNbS94ZnjuLfuJXwe1xTlTmzW5/hf+u+33Vr+rrAKSZI18GZvtlo6LoNjgjpNldoNyUZ/3pnzwXJXv7+2pRHjccIR6GXN9OMwFXcOZpQNJrLdclRdETe5Wyb7RuPp1TAPBiTBil3IyjrJ+AKHG3xXIXnKqzdN3JcST7yCcoOt7qp/RpvTOVPiaurm2bXLwirHKrTI5RaElxcYaoxFkXeXA77x94Rsm2GbMfRZHD/VXLY2641dGbYsQxnqBicckdfDzuL357yhO4UgaRsF/jbNUHb0sQx9T7KQAiBqyJi74hZ9CnT8FNS/4zQmTDJwfQ118GOTF+xa56xrZ+wqR+xqR6yrr5hUz1kWz9mVz8lq5/hPHtE2+3YHcUoNyRyDxgFt5lFnzEN7xJ7hzhqT/ilGO4RAthqWganOa9/AvbN4cZfJ34lLm1Sujh7L/3AnRC4E7TpaHRG22esnYym7pCrS4rU3wd63XzYjW5ZZ1sutltCb0QYjkgszLwpgf+mXaQqM8I4ptIWN1uA/x0JxC/3enbtKzMAEodgucB4Pl06QtqeIMhJNk9p5JjV7b+BsD56V7PZNczGARbYaU1lDa4QzJTCdT2scpGrS9z1NaJaYKPbtJMZwfUFqi6pjs7Q4XfsoPRm2DUydpC1BQ69K6k2JXEhUB8Sqrzb4rYaMz/A7qVltiqGzJ0oYcSSXnpop0YwOLK5LQTVkLfTBg69NuRli+86hPsJ0csRPb3BRgorO6QfIaTEWkvd9PieGoLfPgB5ZzgIFGdRy7KG2B26vF23QaoApUI601HVGUddA5OzIVDuIz5iDz9yydc1ujOcjAIeXOW4ZsrI0+zYUauWxfaau/c+Y/nNkoNlw5+k9/lHuwec8peMo/tszYwsyxi7W0Q6YTW6z7h4zKh4iuorFm5A0S0RwFl4i1LErK3FTkKC2QGqrnB3W9x8h5ttMF5AO57QpV+8X/4AACAASURBVOP3SgWs8KjVJ7jtY5z2KYiSXgzFjCMlqZDshCBPJMnWkHYH7DxLrhek8RlOozFlju07ZDx6y8WtCh3cZtBpZ2NvuCEfnxE9f4y/uqY5OKZ1E+Lqitqb0BpBtv/MR+FrHeRi7xrpq+FM2v8cp69Iqhd4XUHrJuyiW2xRFEYTScnoHe5Xr8NU+TDdec0a2JYdRbugkh2RSfFEhdA1nXuHw2qFHCdImWIxSN/B7BtWHyVtP2woFdB1K4x5dwDpS0SpxyTreF41XO0a7sz399nkGKoVFNevJNFqPCecXoLx+I9+cps/f7LgerNl3r5JrLS1SF3hqAva6D54AYTxd6fclz1t2bNwJH92f8zfjBuePniGPz5i9q0ASGs1VXEBGw83HuPMwzfMN15m73i9R1YWyPnn+P6HhY3//xWu57/l1iakRM1mg0V1XSP3hfvJfMz1xSXPFzt+Ep8QOlsuigtiN8aRN+fLUTTnqs75l05OePrNE5S8RrcHhIFi1w8mSnXTk5ctcuwR5R3jdc3Cj181b/LwFK/LGedPWI5/NOx+/QIQtsazzyjPTnGuFcH1gqZc0SeGxD9FSgd/dQlS0U5fI62RM6hmig4mPnk0PA+/b7GbLc00JGjWlMEBWg3vvRQOoTOFyy9RdYSeHtBEIbbKEZ73Vp6Nki5KukxrH89JKaYeY1dirUbbDsswKX/5a4gVkAgEwbYk7iXl6ZTJ9AOiQDo9BLcqAasGu7U0kyM88QJPPqL1bw8ZRx9YJ/7z4ldzR3iHJFJJl8idMQk/YR5/TjC/z8g5YtZEeDLCVSGODOk7hzZzmW4dxuFdRrf/FT659ceE4QH59hFNe+PZbXUPZU44ThHpnCrLse17OkIv93piF6oe79Elom6o50d4XcZs+wBHVmTTO2T2GNtKXFcxTn16rbneVlx3LZU1JFIxV84rIwHh+TA/IakFLF+wiz28zQo329JMD+i/S39b97Cqh9ds4sM+qTxzQMQuSWOHwuM9MHWFn5WoMKFJhkPDdu2QG+T6RJ5F6ZY6ACE6WnULoR2ivEU7kjIefNNfSdmSvZTN2sE8oRqmOjYYpjxiHxLYtBpjLeEvMN3Ztoa/exZT9jmhE+JIB60btC5fTXfyNodqQepEH6c7H/EW/Gi43pqqJ/QUo9BhUbScRrc4CA6IJinX7YIny4ecfH4LL0r4faO4a++wrSJM/yVx9ALtBGxXO/qywEqHTXKPjRPQb/8Zwfqf4gmXSXiXyJ0wUw7u3lGyMgYdhNRHJ2Sf3Kc+OAYswfUFyaOv8NbLV3I3ay22bbDZBru6wl49hYsndCuL3jY4my9w1z8bHCiXF0SL5wSLF2SbK2qdQ96QimOUcMm7S0QcI8MY2zaYbP22i5sUVPEgG/aa4Ws6jGjHU7ztGlUWZNEZwhqi4oJt1iC/bUH9kuwEN2RH6YZR/uTVVCeLztik99ggyfdkZ/w9ZMd2LbapkUF0k3ZvLH1ZULDC4DIFhLVILKNghFdvcU6OEZ0a9nfcm/0d8dd88/yIXy3U3t3p+6Y8jqeIEpdIC9ZZczPlcYNBDl1cw8v9t2BMMPbAyVGN5h98csLs/A7X4zM4vAXzU5gdw/wEc/o3UEdjnLGLiNPvJju9odo2rCz8/Z/O+dMDj6vHD8DxOb19/61/XldX6EWD7x8MZOdbxL3rNggr6LcbehX9WgWNvg/vkrU5sxlCCvrFzTRDKsWtaYzSLU83FXPvGG01l+WbrmqpNyJQLlJqfvfgE7ZsccwK3wpe/gp8h6JqqawlH3kEjSZ8zeDCSsUuvo0yLWn5tnTufRC2xu8fYxG03l2KW/epkgi7eMTsOieUMbKpcYqMdjx9c29bioH0NBo6jVY+VTBDxAopNWbXD+qe6jWTGWOYrkqCrGAbW6rjM2Q8BmsxZf72E2RwZHuZtdN5anA5lQ6uCvFUPMjtnJTAGeE7KZ6KcbVHssjog4Bu/p6AVWuH+nVZD+siu71CKR2Ijd1Juv4IUdW4m2dwXQ4Kq3JYj/jrwK+E8Kj+/QW6EALphtjxAVMxZ9rNoJ9RlyNsO2ZUWQ7TOXfP7+E7io02RJP7KOmRrb+mfanrzQcZFOkEfzK8Mc1m+Z6fzNCpTFxEovDXC3QjCYslk+whRjqsxj9iffoZxnXwFmvQBt9zcAKH66alLFrmyiFV6q3uqkSQqoQ+immvv8K9fEqXjmln7ziwXlpXbltwJWLioFSP01fYrqDvS8aexg337mjlu19Tq3vEbouLQzdOsVJg+xtXOzmZkjTX9G6PUYZOHmOJSLIWKwR5OhQ0Zd3R9ZpR/JodbaUHSYsrsamH6RuE6w1p8/zi2Ttlbxh5kh+PHKq+It0nv3fdCoTAdYbOT1YucJuCYHQ2SBM+4iNeg3Ikjqdo9p+J41GAMXCdNxzHx9we32EynfFo85Avrv+C2a0D4mTO35nFqOIYnfvI9muC+Bm9gM31gqpcsamf8FwZttEJU5lyr63x97a4Ugimr5Ge8mUBpRTdeEpx+x7l6W2M5+NfvSD5y3+G9+Bn8PwhLJ4P0tKuBceFZASTI7rZ76Ann6EmPu5MwvQYxnPGYYJSiq0pMNk14tFzkjrA6JasuUCGMSoZY7UezAy+dd52vqJ3JMFLoxGgmR1iXI/w6gUGRRXMsdtLZJczToObCW3V35CdkYfSDWnxjNn2S/xuRxEesRz/mNKfsdU9hTHEH0J2rMUUGUKqIZTxJcqeqlmSiQKPmFgAuqPH48eOi6XFP76NbTXSG84l25u3jBM+4ocHKYPBROB79ngA4ukQYNnmLVe71/YGkmOwepC2ASgXL57iOAWtpwl7w38yDZj6Li86ifF8RBAhggjjzrAEOHoxxCK8A6Y3LC5LagP/4A+O+INZyOrZVzRty8Htz3G/FRTe1TvqiyscmeIdTd+SZb7K3ukNdVEgRye/VkGj78O7ZG3CcVCzGXq7xbY3+1R+HHHiW7CWF1vN2J2yaTYUrxmuCCGYhzOyruJPTg8x7gzDFq+5wvcUdbuX6SrFNm/YRYrOlSRZ+0ryC9C5MUVwSNis8NoPC8GUprwhO84drPCxwGJkKQ/mjHRE/PQx8bPHWKlo3pWNEzkD8cmHiXURHGOUh5OA0Ia+EPjtDrcrELonev4Erywxx5+ym4S0pkIo9aoBZts392VUZ4iKjt6V1N8XLPr607pcgLGUp8ffTfKrPdHZ7t+zkQcHARxFw+/zBBIH48b0RyfIaYUbLEGboaZcVkP9+46d+n8R/Gp2eIzB27zf1tEYy84aFm1Pc13QFi2+I5magnHo4B6d4jgu073V4w5BPL6L0pbd9uth0lPmw5jZcRFeQJgmUG7esJP+LgT5EhVbwlFFtL2krFJW/j208hFS0swnWN3jL7esu47Wk0wij0AL6u8gH8HiCqU87O3PcdbXtE1JFb0mY7MW1df4uyXRs6eky0dM+8cc2AccZj9nvv2C2e4BcveQSf6E2/k3zPqvmddfMXn+BdOrL0iLpwTNCtXXgx4+3xLUBhmNaAI1kJ3lCzAGZsck7QphdjSeMziyiQnJrkUYSzHysFLQdpq87PA952YXxwyhp3QWUg/r9G+EBGpjaLqe0Hc/KBUeYNUa/s5Z/Iqwxm48ZO90m332jos2mnzzDSMvgeTkgx73I37z4EcOXaPR2hC4iknkssxb2t4wCSb89tlPOUqPebj4hv9r939QuCVJPOHf/OyIVXWMzDyc7Gf04p+wKL/k4vlfovua2DvGH/8e+fSnAEx3XxPtcxGkEMyUgycEW61fkR7btdgio68LCmnJfYfetPirBelygSccODxHHJ8jZseI0QwRJYggpI8+QfunOKrEc7eIeISczJnOjzHzE3bHcxAKZ1ESb3va7IqiXSI8H5VOh72e3RrzrT2iKnKR1hK83FeUkur4DKE1wfUlCzGl6gWndon3kjw0+waHp/CChkn+kPnuS4J2Q+1PWY4/pwiPMUKy0ZrSDJPu75OxAdi6wBqNjNOb80JbbFGT2Uu0cImEgwdIXWLklNt6i4hDnHA+2FD7apiYdR8tqX8TIIRAyRBjvn9HTinJaBaSSsVyXd1Mebx4iDTIr14ZdchoRqCgMQVy6hNZ+M9mIX88C3hRapaNfrVb3KkjBB2OeTMc0VrLuu65vqz4SeLxn/+rJ/xkFpAvnrBaXRMd3GYyflOL3lc1xbPHSOsQnd1Gem83Cl9m75gso5M+8fT7c1V+XeB6Psp1qfM3pxHObJB69cubZrUfRrhKcBYLem3JywiFy/P8+RvZPAfBFJBU3Yq/ffszruUY1WwZyUusMbSdYZL6Qz5P3ZHHDm5niPL2DeOWIjymc8JB0qzfv2iv9ApPD2YUrfMJVgzT8apf05sa9+AzqvN7yLoifvI1susQ5h2FvdhPeVoNrcZKRREeopSGxKdvFVQN48svSR5/g2pqquMz1PwuQjiU7XBfEkGEUGqfW7nfbzR2cN6VgiLx3iuzfuO9yHLcoqCapxC8Q0Zp7bB+sWtvTMHmAYTOG4Y2eArGPnQGnSX07jEqKvAmy8HpM3BupkPbX56xwa9kh8dKib+8og9DzGsuJlob2k7TtJqm04DF8SUn1uWO45DbEnQD44NBIgY4+87qSvdkbkga36aonrFb/JyRSfDSs1ePL9MDguIR690G3zv4zr0SVRaE6xf4fkM3nrLx7tJW/sBWaz1I3qKIMs4pqhzju4ySkDj1yGVLUbcIAWnsv/GYTpnRpWNmuxW76YQyjYkWD3F3Ci8OcLoamxtsBzgSMwrQfkQnXYx00MKlRrDUhpEatPzSakTYIdY1suzw2RE6A5lsm56uUfjOIVnsDba1y4uB7MxPcKQlqp/ReT2dM6ETh0N3Qxvy1EM7Eq0N26xGScHotf8Pu3YofsY+jDxstkYo55UVdb23AA2CD7vEKm1IlOT3piHX5QpHOERuRNdtsbbH84ZDL989xbY56fG/DB9QSH3Ebyb80KHYNLRlT5h6HI8CtlXHxbbmzjwiciP+8P4fMfr6ZzzZPeF68hy1jQgdwfm54q8uR5zonERfIMkod6doDN65D8rSOxGr0Y8YlU9JygvcvmQbnoGxTLuWTdey7RpM3xG/nPZIBX6IGc2ozj+j1Rp/dU1Q5vjPHtHMDulGb4es9eoQsDhmidUuvTrAFZLU9ciUonIiwl1NKAq66gll/TPc2W/jxXPkaIoptphiB7pH7nMStCtpPYVfDQFzVonBZnt2gHN9Rd1IiE85kNdk7ZpaTlDrjMDsCNwSVXQY6ZCHJ1T+FLvXzhtr2eiexlpG3+PG9hJW95iqHIwKXs9cKDqqdkMhN0iOSa0egkWpQN5j3K2Qp1OUSDB0g2WvHrq+H/d3fjOgVEjXrbHWfm9jLUxd5iOfr64KLjc1nxzuJ4nJEay+GkhPegzhBD8IKOo1rTgimAeEq5p/x1P84d2U/2FZ83XWESgIVcjIJnhmSStist6j1BZtLeet5W+dJ/zkToofuTT5istnD3HiOadnd954bn3WUFw+BGmIb32G8t+tXOi6DbKtaIsWkd7+wUx3XiJIUor1Ct33qP30S3geajxBr9c4h4cIx8ENBlty1Td8Mp/yaFki7JTeveSyuOQ0GaTusesRuynLZssfzk/5X8enbK8FY7MloKWqTwnGCaPEZ5PVXAmJ70mCuqetHZqXkw8h2MZ3mO2+YpI9ZDW6/+rMewVrcPUFym4xIqFVZyCG8683DWW7wFMJgTNCO9BHMc3kACslyZNvaCcz2nT8pkvvy8D5ogdPUflzwmaFK1v6rcH96gIntnTz+2Tn9zH+QN5id07eXlL3OwJnhIxHQ+OrzFDxiDhrEdaSjXzsB0p/ba+JLpZo16GZzXjru7QZjLX6vWwteodroDUIOoTVWE9iUwm7Hi0TSASuucQT0Ka3hjq73K9M/JLwK6kYteOihcR9+oT16R06Y+k6g96zTyUlUTBkvLiuwrYa53pL0GypZ2PEt+ylPSmZ4LDuWyrPZVxGFKvHNOmKtHTxXya5WsNUbehzTa96RkmAEQojXbR0hwvYGGZPf0bYLslO7rMd3cVIFyI7XHjlsFPTeIJ1FOF0Lad5iQ1DegVJ7GGxlHU3uMRFHrJvGL34GtXXhMsVbl/RTnqMumRkUrpVSbeJaaJjtBujZxE6id4MHt1j1XcYaXEdl/b1A94fmHWuDSoUSJMjqwumTYsvF4h8SVW0VCrFHN1BeD7p7gsEK0r/U1p5Rlz0OL2hSDx6b+iWbvMGC0xHr8la6h4W1ZBgPPOxusPqHvna+1LVPa6jcNSHFR6rxvD3bqd4EvIuZ+QNO01dt0JKD6US6Fuy5Zc4XkI0ufM9j/gRv8lwPIVyJc2e8HiO5Cj1udw1ZHVHGrgIJfjs/HOcJ5JMl0xPDjBbxb8/Ufw5Jb3+bY7sinn5NYvljvXya/rymsPpEY4bYqVkYxVha0mWXzLnATv/iNZJmAAb6ZC5PngBcRC+FaBmHIfq9BxVlfjLa4LrF7jZlvrw+C23xl4dIWyPY66xwkHLCYlSNNaw8y1e4OEYj2ScsFn/BdniL5i0P0FODpHJBFNmmLocpijRsG9QRS5uqwnLjjLdNypGU7oXC5LyGnnyY/oqY778OWWT4toGRh6tk5L7pzTu6I3OoLaWte7prWWsFNEHuEcCmCIb5LXRa+d6b7BVy4rHaFw8EZKaAqMLsCHnQYxonuHO70ELSIFwFWZ/c/w44fnNgFIhbbvEmBal3r+4L4RgfBAy3jZcL0qOJwGBqyAYQTCB7MXwZzfES+e4Lx5TFgXRYYR7FNFvGg7rnv90FvDFPOBB2fO07LksD3H7hzjiMcejz/jxOOGwM8y1ZTQL8CMX05RcPvwrjBtxfvdHr+6lVhv0tqXevMC6NdHJJzj+u82LXmbviKygQxHPTz9YPfHrgiBOKNYr6jwjntzIvJzDA5rNhn65wj0+QgiBH0Y0ZcnhwRG3JiFP19DrESuxInIjxv7QPDqMZnyz2dJ0a/6D+xP+2+uSoAuIvUuy6ik2OsP3RiSRR162rK3lyEBQtHSexOxrGKM8NuknTHdfMy4es0nuvTr/pClx9SWCml4e7JtUA4zVZPVzhFAk/jCRc4oc1dbkd+/TRwnB6hpvvcBbL9B+SJ+k9FGMVQobqoHwVC2OaegKxXT5gMaEdDLE+qCmDsa7ub8E7oSq31K013gqRjouMowxVYHfFjhWUSQe5hdoDEWLFUL3lGcnr9YWXqHVN/K1if8qeFrYDmWGAHthWwTfIi8uEPVQWoxIMaGPMks8GAhj6g3E55eEXw3hMYYn/pjRxTNM/4T28BTXVUSOi+eqN61PgU5o2mZLYF26aMLL4Z8wGq/L8PqCqa6YdA1bK1DVmoPGUEc9ZfE1nndAoCKw4EvLWfeMZxvwtYPvvHZgWENy8Q3+ZkV2fp/ODQmaDVZIjHQwnsK6grLs2dY9XgXjHpxyQ2A09UEIoicRHbu+orlu8byeg2qDu1nvbZtd8lufYB3Jts7Q/h3ESEC+HGRi0wQRvfvAq42h3RcTbx10aj8+3DT02x6jLJ46oprFbNwSuX6E1+yIJpaueUHXuYTt11TBlMa9S1hY3FZTRS7d/mLdFQ1drxmnwQ1x6TRc7jXTRyG4CpPtQMpXVtRN26ONIQ4/zDmm7A2JI/nDeUDZl2irSbwEY1r6Psf3jxFCYDePyfuS9Ph3fnAH/Uf88hFELsW2wWiDVJLD1GdTdTzf1PzoyEFKgQpdzg/v8PXlA8pwy+HoHFMJ/uM7I/7rb7bUYUoYxByPLnGv11ytLM/qNXOvJxQjlBtQead00ZxR/YKJqKjDmGx0m6l02GhNZg1IRfIdz1OHEeX5J7i7DcHymvjJQ9rpnGYye6Pp0alThNa4+gKLg5EJE+WwsB3bWDLb9qjOZ3Ty+2xW/y9F9oi072F2hIpHGOVgyhyjNTIZg1I0gUNQ9zSdQbuSXdGiJ1Pur78ifPJ/Ykc+yeop0p2zvPVT6mg2NIC+hc4a1n2PYcgMCr5L2/0tmOqlo9y3lr6zjry7opZrHG4T2g4XMGZHyZyfyBpCiTc+GvZ39meW3WvvP054fjMg5XCvNKb8XsID4AUOxwchXz7d8egq5/OzvZPh+Da0BawfweGPITog8F+wyxf00ymO4+AehOi8RW9bPhfwW2MfeSsBOWXXTLDNQxxni+hTikYTjjyikQe65+rxz2m04Pjeb+G7LtZYTN6is46+z+j9HcH8CM9/xy7HHl23hXpHW/bY+JToO+qEX2c4nofj+dRF/gbhkb6PShP0eoVzeICQEi+KaMqCvm2Zxh6dMVxsR2zzEslzIifCVS4zP+aRCllUS+5PDvjpccxfXcLk+A5UT9HVEyIxQgTHWOOx6mq8HpLeEhUd+ejmuuqdiF18zrh4Qlo+J48OcfQ1yu6wOLTqHCPfbMgX7RXatoyC20jhgLX4yyuM69GNhjiT6vgMOZ3jFDlunuEvr/D3Cj5rLTazcAEykSAkTThCuIrt2Y+Ils/x8g1BsKb2b5zeEu+Ibf2YqlsRe4eIIMIvKrxsRz2fvarzPgSyrPE2Gc0oxsTfyjxs9SBjeylhU6D0GmV3SDvUikaEGBFjhYcVLhYFGITViFgjTIEsM4QA6da4+i9w+ksq77ew8pd3nf9KCI9A4E8nOMow3q1pXU2fvjs40moNqyvKUOK4M+Kio7E5QbfF7zKENVgh6ZwQFc7pcbmoHdKjQ9woJfcrNqIj8Y4J3Amb9BMm/gPqdsZDlXCQuji2R/UVs9UXuFlGPjunnJwStDukfdPlaGMF1kqOHMOsMaAtbVPg7FbMNxFVCjiDln8lFevcQW4EMTPacEw1P6W3EbYx2OYplVcTH5xiT1LYXMPmEtskMJq9waKtteRG4wDhd1kj7kmPebaFtiGKRnTUVF0B0Snl2W8TmYKoWnCU/xOM0qzS3ycoBH7TUwc3I9yXScRx6BF4+8tEW7iuB1nfUQixh+07bNcho+QVCanqwazgQ7N31o3h798b4SvJus6QSBI3odtrUF13AuWKorxCR3NG0Q/DleYj/nrhRw7Ftnk15RFCcDoOeLgoWeQNR6OBoHvjiDvVHR7uHrGYvmAqTxhVPf/uacz/9DznVnSA40jmRxLPKbnIPVYI4qhESbN3sJmy5oy4uiSqF/jZA3bRLSZuylZDZjQW3ptB040mQ7dveYW3XuAUGdXx2c20RwhadQu/f4Snn9GIT1AiYKQcNvTksSItNK7vEU3uUeZP8asd3nWPnR6+cj/T+Ra9W6GSMXXo4jWaOC/Yipx0t2DidkQji9rmZIyo4p/iRx2dn7yT7DTGsNE9Apg7N86U3wfT1oOUzQ+Q/mvSnEZjm441j5Hax7gpcbdC9R3WNFg558RmyDTGiebY0iD3YX220x8d2n6DIKWHEBKtq1cunt+H8UHIcdZycVlxEbmcTqNBHj25Dauvh0nP6Aw/SpGbFVVVkaZDEasSD+k76F2Dzlp03iFDhzQJ0NFt1tdf0RQPSMf3SaY+GM3qyc/JipLx7d8icX30rkXn7eBA6GzpwhWun+L773cc7do1Nt+iSYgPzn+wTb8gSchXS/quw3lN3uUcHNB88xC9WuEcHODtYzzaqsTxPI7SACw83RxwsX2Br55wb3wPX0rG/ph1fcFtnfN374748rKg0z7Wv0PWbUhsjt9/jRNMWRuPrLI4jcF1JW6j3yAHjTei6iPS6ksc84gqmNPLQ3o5e8u2uu42NP2OyD3A2yuN3N0G2bVUJ7femJAbz6f1fNrpHNG1OFU17PZYA1GPLTTmYIQexZT6DvPdlziepomm+JsnJOELGneM3U/WXRXiOyOqbk3gjHGNQ2JDWqejoEQR8C4o3eD2JY6ukaYbHDifPoO+pfBOSNYrQKCVS288ukwN5G02Qcgct79C0GHx6eUhWo6w4nvMpcZzsC2irJBjjaOuCfRDnGZJo+5+6KXzvfjV5PCoQepFeAy6Jby+oPC8N/Z5YCjy2VwPwWDzY0S7Y7ZY0peaOnKovQmVP6VX4asLJ9wuqaTLdnzApKlI9Yjcq8jbS4zVRN4c4wQcUvOICbveZeQ5JMVz2HVcz3+H9b2fDgFQANYMpEf37HRHbTSxELhSUIzAItB1TbXKSRqfXsQUrgsIpAfhxUPK6458NCGYzOidCDyJcF1UMqYiIwwFUvjYg7PBWS7fQlNh98vLAJU1dNYyedd05zWYrsJGENUu8mJFPtEwnQwXlJSUxGA3xK1LJ25xdH0NOmczOaSOh6KjbnqyosF3neF9Gt6MwR47awcWPx6KMFOXeyvq4Xt7PZgVxKH3QQfyrtMcBIrfnQ7vfdZmxG6MQNB2axwnRVoB26dkYlgofZnN8xEf8T58W9YGkAYuk8jlKmsYRy6+oxBSEB6MOO/PeZo/YxNdMaoO+d3I58uRzzd5y3E4B+GQTp4hzY5lfYj1E/BrivaKor3GVRGlGxGpW8zqBZP8Ea0b44anLKVLbjQW+94lfusMuThOMiK4ekH89BH1wdHQCYShu+fcxu8f4vVPaZy7hNKhtZLcB7+1eHlHNJ3SBhm50zKpQC4vsdNDRBijRlNMvsVurwldQ6BLgs2WFkMfJ+jJOZfeGK99gbPaUnz2CY54Tlo+YzX67I2beqE1mdGvdinVBxZhtu8GVzbHfVPKZgeb/W3/nNZmhN7n1PSMjKHTG1o54dj1CKhQs0NE72Np3pjwfJSz/eZgsNEN0fo7QsXfAaUkt+6MyL9Y8ejhjsR3SSN3sKgOZ5BfQjDGSY/wtyvKbPOK8MAgl3TmIbY36LzDFB267Kiyjq4aocIVjryg3xyQXXzDcrMjmHzCpPHpq706woPOv0aLAs+dEgRn771f9n2Oqa5pCw3jsx/kdOclXhKeOs9IXsumkXGMSmL6xQI1neK47pDdU5VEewOIo9EQ66A61wAAIABJREFU0NosGr5aXBO71xzHRxwEEx7UC7J6wTy9y79+HPM/r2tGI4e8HJFzQCgWKLPmILA0cU+zcxFlSIIikz5IkLZB2oLOM3QdhHVDo1L6dzRhe9OQt1e4Kiby9vbNWuOvFuggov/WasbrsK5H97oEemJhUYORgzOhE1D5M8JmzXZ2i7raES0XxMEVeXRDnGP3kLbPKeorzpsDrFKUB2NslWPqcmiCmR6/2+F1BV6fI80gO7MItPJwdjWd9slPbmGiZPiKtYi+Ra1zXN2j/AZns6F3BI07o/Q+pXc/JCByDyFg7GHXFp1Z9PRzOucWQfdzfP34wx/ne/CrvTMIQXVyhlWK6MVTRP8tfd9uBXVJEMBh9ZCgu6KOfBp1yjr5nCy+NRAI8VIPqxFlziSIUZ7PLogwvSY1E3xnRNktyJtLKnfCSFREytBmO0abB3irFYWaszv99IbsAAhJLxyuhUOmAkJ/RBhO6PwxjTem9Ubo0RHtbEI2dnBilzBy4SDA8TvmssCf+WSHExZHU+xBMJCFyMEPxoCh7bP9j5KI0RQOz4aO0+Yae/UUk23J+h5PCML36OJt36F3a1RREPYltdNh5BjhTl4dpkqvSZuHFP4nbMI/ppWHaK8l1I8ZZw/pqoJt3uA6Q77Q8MB7R7ZNA4k7uG7s7a1t2yCD8LXpTgcIwg8wK7DWsm0Nf3Y7xZGCuq9pTUvqpWidY02Hqyaw+gaw7PyUxEuQv2D410f85iKIXNq6x+gbF5yTcYAQ8Hxz4+4kPUUyGXFLnND3DRu1oC1b/uwgxJOCvDNoOabzPiGaJMycF5DXuOaUSXiX0J1gTEfZXrPor/hSWZ4paKsXRKt/ynHxNZGpyPuOzffY8gP0cUJx+x46CAmuLwgvnr3K7kE4tM45gh5PP4e9QYADbCKJMQaR9ST+CVZBOXLB82F9hcwWxO2KuV1yWD8iWn9D1Re8sBMa9x7dyW9Thkfo3qEOZ9jAJcxXZNEZjm6Iqytg/9nVPTuj8fbudB9MdozG5NuhWE2+FY5a9ui2Yc0TfBJ6Z0psCjxjwJYUHPA7gcQqjTs+GJzjlES4Cmvs4Nb2gTb4H/HDgFIh2lSvnNM+BK6nuP/pBGXhy6/W9C/tb8fnoLxB2hZM8P0Am1/TNG87RQlH4kx8nJOIykBjLMlozig4oVusufrLf8j1sye43gnH4ynCV4ixhIOeNnqOliVBcEYY3kaI91+zXbOi3Vxi5Jh4for8QMnoryOU4+IGAXWevfU15+gI2+tXjm1eFNFWb773h6nP54cHSBvzf794zrreMnFdXGfEos4wtuX3TmPOlKRCAoKqtXTOGbXzOa06R01nOJ6maxf05QVJ+QLHLBC2RssxrbrN9ehPycPPSOolcXnxxvM0tmdXP0MIRerfuMn66yXCaOqDo1/sRXndsW0v2y3CIxCCkB3l/BTdSOLtc1T/2n1NOoTuDJVv6LqcIvUQYYR0HfzNU8brLzjY/JxR8Qyvz2mdhCw6Yzn+nOvZT1lHn9JUKevxObvjH5FHp+TRGVl0xs6csonvsjs/okwd6iDFMiOoHWbZE8bZQ9zXbMK/F1LAZE/yNg2GhNL7A2r3R7/Ya/Ue/FImPEKIfxv4LwEF/DfW2v/iQ7/XKofy5Jz42SOiF08pbt0BKbH5DnfzglQWuES0KqaI79CpiNGmISp6srF8006v2II1qHTCRDmsgK3umNQlyWiOdBVVt+ZK+MTWcMYVZbGh0j3WjKhnh/TJmwGgry/iTpT6TsIho5S2X1OZlqiVWGHxLp/i1hnu3c/wpydkVct6VzNOhywbV4Uo6VP3W4LX2LBwPezBKVQFFDvybIXJJYkfYr1gyOpwnMH1SffQd9iuwayuEV1NTIJNYurjKaIRQ1BgZ5BpS9x+hdSClk/xjGU7mVOHR0T1EpldYfMt42iCP741FCK9GRzZNg14ciA7e328aV5Od17qqC1V3RN46iar5z1Yt4Z7icePR8NFnneDHWXiJbT1M4RwcPIldAVlekLfrl6ZGXzER3wIvi1rA3CV5HgU8GJTsypaZvHw9zJ1ieuUk8pyES5ZZtcc5Ef8h+cJ/93DjFAJkDFd+Bmx/gKxe8R2Z4BbJPERsQfG9LSmpNMluWrYKZe0XhDnX3KQf4lQKVfehLUTkkqxP76GELyXePVnIWAqCERDuLrAZo8pT2+BFyBQdCSEZoXCRzvHjJXDip5topjmGrdxCZ0xpnqO76Yk+RXqeQ7plD6ZU84+o+wl1+sax5HcCSPa1tA6wK7F+h71vXPCy+eIrKEKpkT1gtIdsRQurbUkUr1XpvdtvLTKt9ai0smb6d+thqJjwzO0LUiD32FNw0HfI/oaLUCZlNuqAt9DpQeYXCP3MtxX+zveD7cY/Ii3oVQE7QJjapT6cNeyMHK5f2/Czx+s+PKbDT+5Px2ux8kdWH4F62/wkwnq6gVlUeD7b+8IdY0mW9b01pLeHhGNPGwXsn58yc41yLtTpocVrXqBsXur43aQ4sXR/Q96vtYauuwhfWVQ8/Mf9HTnJYIkJVtc07UN7msGLjKKUKMUvVzizOf4UUy129HV1SuJG8A88fn909v842df8b8/esgf3bnPxJ+wKdd03ZIwOuBvH4X8+bohcCR105NEgzzSiHTYwzk6RlwVrLqeYKuwYYr5llX4LrmNLSRxfY3AkkenWGvY1c8wtmccnA97O4DoWrztmi4dv6Vm+iCELx3bumF1QboUwRFJdUGZTCiiI8bLp6TRMzbjm0DbaZdS6GuuwjVT6zPKN3jtGttm9K2imN2mDWb0ztvXYnS1xlpDdfStCdauhabDS5dIVdGKI4rgBIRC6Yag3RDWK6bZ17ROTBkc0H5I7abkQHrWzWCCMPFouPWLv1bfgX9hwiOG1sR/BfxbwFPgHwsh/kdr7c8+9DGM71MdnxJePCO8ekE1Sokv/oJA9tjxMev4jM69WfktE5ckawmqnnpvfWe1hiKDMEG4Hh4wQrH1IwrdkxQ7otEcKTyK9opld8297BsuvE/ZXkr6SUQ/f5N199ay7js0MFUO/nuKeOG4CD+gbGqU9Bk/fY77/Bm781uUJ7eIlEIqyS5vWG0qJmmA66ph8tRe05sGR958sIUQECX0YUxRFQR1iddUUL/NmK21gwOTtQTjU1yRUKUewnfAZwgu3WV4qyf4eofsj7BhShW5r3Z21mrKTnik4ZpzdwtZSS4PqJt46KJ6+1T1/eTGar1PRQ9fLRvXTY/FEoXf76phraXoLf/e+c3uz67dEaoQBVR9htf0iK6G0TmZMAgEiftdq98f8RFv412yNoB57LGrOp5vKiJPEbiDVNSZBaSXBttZXqRLLpYvOFNn/K3jkH94VXIeuVgR0MS/RWD+EvIn5HlHbj8hSXykdAjkiMC5OdxN1FPpgrC64lazYtZs2HYVrTfB9eJ9wvZNh/KmW2mxWNrpHBNERJcvCJ98ze5wRh/6lEBlMlz7glbdRrkH+CKklwZLzuQq4yBuyborrLimm/6IomxptcKoIwgTNrsa4wkCp0fXOf7W0L4M8x179E5AV5Z4myXVyRmSHWb3iC79lInjEv4CnWarh8mO1f0w2XFeOyfMELTcmpKNfUIkprTuBK9+xkRDY3NqOefMWhLZYKIA15lgzOuEZ5iAfTQs+M2CUkPxqHX1CxEegNk04Pw85enTjAcPVty+NSKIU5jfh9U3yK4koKPYXWEmk1eTFWMsxaahylqUIxkfRfiBgvya3dVjlnlLcPZH3D6e0veDi5yjRijpI2WAlMEH7+D07Ypm+wLjHDL+ATqzvQtBnJAtrqnzDHf2JtF0jo5oHnxFv1jiHQ6FeFOWbxAegHkS8Ed37vO/PX7AP3r4NZ+ffYIRKdt6xSw54DBw+JOx5X/Z1ITW0vXmjZD0PnBIxwEUDWXd4Vzm2LMU+S3n2Sy+hRWCqF4gdMczBb2tSf0zXHXznILlNQhBMzvknwtSDKSn6IZGtCMpgzlhsyRtrtgdneI/2RKtLqiCOY0/wW01UdniOD6meYDTvsBzD2iCOWXyKU1ZIbRESv8tm2k3b3DyjHIcw+v251WPqEq86ArhWTp5jFY30kOtfIrw+FVYa/SavDuLbqG/z1zEVUO247bGLkqM+n5FxIfilzHh+ZvAA2vt1wBCiP8e+HvABxMegD5OaWaHJE+/IH58RT+bUJ38mCo8fisUqfcUracIqp7WU4O13n66Q3KTYxFJRacsZZDglBlhkRGmEwLTE7b/D+tujehuoVTAZTxjinil8eusYbWX2M2Ug/cBN3YZJui2oWw3HD39CryY+tZ92HdAA9/BUZJNVrPa1Yxij8AfUbYLmn6L47095sy0RrgeozAenMp0D/0w1cFoUM4QbBhEqGhEXEuMELSvO3AE4HGFtynxrmIqf0aeKvpg+DdV3bErWv4/9t7kx5Jkze77mZnP7ne+MeZY05vEpyYFoklKlKCVCLYELVoQKKEBTQtupL9ESy1IgQstpIV2AihBDQjaNwSRhNit7n6vql5VZWZEZEx3vj67m5kWHjlERmRm1assPqgrDhCI4Y5x73UzP993vnMc18UbPWRZFcSrU6L8FE+65N6UNu53crYr2KrTIr/o7ljbWXG7jsJ13l/xnVWGvzb0eHRlOdialqIt2A13aZolFEu8JoDePUh22C5/Q+zGqG9pdXuHO7zAm25t0BUUHowjvjxPOVrkfLKTIKVAOBI19OkvLcpxOeqfcbw64W/tPuDryOOybJkGCiFdmuQXuPpLkuqcomhIeUyS3Jwvk9JBygGNO6A1mqBespNfUtYZTpMTen0av0/txGjpvxw6vf5PgEgeEZ0eM1g35O6UMomwzZig+Zxe8TVVdkqvbSiMocaj0QlttUM1+RvM9JLQ6xH1JrC8hPWMddFSC5fBqE/gCsr1iuR8jStd6oeTl8ShnOzgFDnm4pxn0zHT4jkP2hWN9+1DD23boNN1F67cG96w6GZbo5uKC/U1stYk8WMuTcG4rXC1JaOkLnf4xU6Addao3hBqBcIgvNcc2q7ewzv8eCCljxAOWufA+L3XfxMP9hNaCxfnGfU3Kw6nEb1xhDP9CSy+Jmieka8gm9wj8CLqoqVIG4w2hD2PeOgj2wJz8YyL5ZK1DvH2f8ajnRFSChzn3WYE70O1+g1VUeHvfvJXLnfnbZBK4YUhZZrSG1/vLsggQA366PkMZzLGDULqF7NRb2AYBvzdx5/yJ0+/5FcnT4n6O6zFhqFe4foxf9uR/Lo1nMwbgqq5RngA8sil1xpwFNW2orxIUZMI37t+6pxGhxjh0mz+ktBWhMNf4jqvZnRUkeNkW+rR9PrIxHdF5HTZNHkLfQ+EJI0OGKTPcIKWbHiIP/uC/vaIrYbxYoWjU8rEUsoBF1Ky7T3Cdbp9SkkPvV1hsg0yGbwk08JYwtmCVgnq6fQVGdIGuV3huafYMKBS97HyLZ9JISmC6cvsoLg4Z7z+kjyYXsnx3r5OG9lg2i2kDWL84YrcH4Lw3AOOXvv9GPhbb15JCPEPgX8I0N+/f/NerMWTKW5+iihbsuQxRbR/83pXKGIXtzHEWcMmVl13J4hvbKR9qWgdy9YLUVVOks4YN+c0yU8pN3+JLn9D9ejv0EqXNK/pJ/4116Gx4+J8y4qKkBIZRPT/4k8oVEv92d8gKi2olvqqM+I4kvEgZL0t2WQVQevgyJiy3RC5O9eqN5UxlNbQk+qlPl4op5vvuWqJmrrEXg2fRdZFmpZt/7XkXKvx22c4pmXUOJjEY51M0JXGXuTkVUupNYHn0As95KJEW8HGu4fj5cSbc/rNKa1MyfQB2gk6DX5VIvzgpZNc1Wi0MSTR+1u1jbE0xvIH91+lqqd1J2eL3Zh6+S9xihTZfwCDe1S6ojIV4/C7b2Z3uMNtsjbopG0PxiFPZjnP1wX3Rx15V7GLLVviQvBoeI+vymOOz4/4w8MH/OOnDUVrCB2JUA6m9wnKekTtJWXxGzJ7jyiZvLUKa6WiCKYQTGnqjG25oG5Sxu0pydVttHRpVYCRDlZILBIrZBcyPHIJzy/pPTnG9iL0MAEb45k1rbSso0eUQnJsLcehYJK2uJlBxSFFs8R3+qjRDunzE8rZjGR/jzDoig4mHtLKFl/XlMUaIRKEH2Cl5HQ8xXv+jCANCZIJQXnJ0ut1M5TvgakrTLbpZnZ6I8SbG37RYouapXpO1cwYu/epwzEyfcpYQ0NJJT3iRvK411n6uoMdbNkiA/XSkc02r8jPHX5cUCpC6+8wL/AahBB8fNgjiBSn5znHs4zdUiOlQIp7OGKBPvs1J3PLaPcRwkvwkoh4YHDFFhY5Vb7hNG3JvUOmh3vs9PwP0okxTUY+/wbcHfqTt58P/VVEkPTYXF7QlCVucP28wtndpVpvaGcz/CgiXcyvhZW+jsQP+DuPPub/PvqK48WczBdM1CV+0KNZN/yDRwP+20VBXrb04+sBttqVNK4iEgI5DJCbitmqoIo8evF1Y6ZLZWmCAXtNRT+fk+GQBztgLcHlGdZxu6iB74MXXZ6ihdgBJam8AY0TkRTnLEf3aecOk6d/yri3pPSmLKYj8mBCo1za4ilpfcFQPUYIgXA9ZNTD5Ftsnr7MuAxXGaLMyfeur9dyvcCzx9i4R+U8AvEtKIQQFMGE0huQFGfE5SVBvWIT37+m3AKwTX0VVdAiej7STxDth1vT/5W5tFlr/wnwTwD2f/F716YLpa7pr79BzE5Y7z3GelO8LMefXVC9ZbjLSkEeu8Rpjb/YUlkDvZuuEEIIhsph7vvk1YaDy89p+xMqPSJhnyxZkgUFupmTlSNwJbm039l16AV6z4/xs5TVR59S7Y1I0pYoa5DGvpTfSSkY9gOyoiErGrTxwdlQeyn+VVXAWsvWaBQQv6W79LrTkfIT/HVF4yn0C5cia/DaI4IiJ8hChC2ZHT5AhxGmbNkuCxprCD2HyHMQlu5g8hU4gnYpWPceE0YpcTMj2HxJ4Y/YmhCsRQavqtlF0aCkxP8WJxwXhebfO4zZfc3YYFtvcXFwV1/Rps9xk5/A8BEAm2rTvbbe211N7nCHt+FtsjboXNt2ej6X24qe3zC4OkbVMMBc5ESpx6cHj/ji6RMuzp7xh4eH/M9HJYdKoK42DBMfQObjs6Aun1HqDUH/AeIWC+fX4Xox1gk51y0zU7NjW0Jb4+gSR1c4ukRY031hsQisVLTTUecYlNdUvkux+xgjHuLYC1o5wVO7HBjNrM6o7BqyNa3U5GIFCCL1mMwfErRz4mKJjQOEchHbhmrYo4cmrGtyttRFxtYPsEFANJoy3K4ok308WTBIn7Hof3ozcfwKtm27zaupEY7TVRDf7F41Brup2NpLtvqUHmPi3kNO6pSoKem1gqXY0NYJE99jFFrK1OKGO9iNQV69n9ZabPPKnvoOPy4oJ6YtNxjTIN9z3L0Nh8MIz1E8XxTMtWbquzjSRU9/iVukBFWKozaM4hwpBORdLN2qdZg3CXawy8Npj+RbxjF8G5SzP6esSqLDf+3WGaK/yvDjGGaCIt3cIDzS91HDIXqxwH3YhZDXRU7Yu31OpOfH/P7DjzAnT/hiWfAvTw2/2F2hiNmXgr/3qM//9psFo1rfiNMoYof+qkJ5Dv2+QDQtZ2VN3Wh6sYfnStL6nKrdEAQH1L0JdX5Ckp/h12ua0kU0NcX+/VvD5L8zoivCk7ddMKe1VG7C3uLPiPIL2lghVgm4lvN79yjjTvUkgcTfY1MekzdzYq/rnMkgBKO7sQgsnhPhLhaUocIMhi+7Oypb4NbHmDih9h/De4w23oSVDtv4PqU3opefMNp+QxbukgW73WxnkWLrCqRExn2kH3RRKIvy/Xf+LfEhjswT4MFrv9+/+tu3gtuk9FffoFdztuE+zf6nCNdDXJ7hrRcAbyU9ja+oC0E429CMY+ybMokrKCGYoFH6krXycOaGgDX5zmMSd8QEj0uvZLZ+ztJM2B0NGCunW9S+A/zLc5LTI4qDB+STXWSZk/ViogyCokUaSx673aC/6Ky5fU+x3sIiFxg952Aco6QkN++2oX4x/PvC6SjOuo5UEb2w07b49RFJvsHofRwu2Qx6FOGIomxI8xrjSfqj5GWF9xpWVacTHfoUfkRpxkTljKC4pLc9ok2mVAwxKJpGU7f6aujv3a/ZtjGMfMW/vfeKLBlrSMsFw2JDYzfI+ABn55cvu1SbekPohLi/5UZ2hzvcJmt7gb2+T1q1HK9yfDfp5nmUwBn7tJcFUenxk0cf8/nX3yCXR/z+eId/vtTcuzrWZBCh2wYqF8etaJsZ9TrH7z0E592Dmp6UTITLsoVTPHqyR3ybCYC116W9Q/Bn53jrJXKZUe/sIXSNY+YYERPKmJ4TUfZ9QlsTlClNVHO+/gqlCya9B/Tv3YP5KczPsN4EYQRmHFBXhrB0mPuWTZ0j85ShchBxjM62+LNLNgeHDPNn9LNj1r3H159q22LKrNu8hECGMSKIbq4NrYFVRa4XbLwL/NIlie9RBTFmccZOVQIuqeMi5/Dzj4doWyCjEGljDA3yRdGkNV0R5s6S+kcJR8VUgNYZUn4HO9w3ME18XCk5XuWcN5rAtYyGAaPe76GOf00ZjWhGe9R1waKUbHDBFQz6LofD1wK6PwBssWIz+w022Gcw/n6yuP8/QkpFEMedrG2yc2P9cHZ3qNYrWK2QSr2T8EBXMP0373/CVnzDyeoEZ3bMyDxG+pK//3DA/3W84Xxb8egNwmOUpPKdq6xCxQDAk1y2msVmS20u8HzDINwl8iZYYJ08IqiWxNvnTM8/p4xGlN4tyqbfBkpC4OBsUwJygnaLtC0GhRCW7fAX2GyOXx8TVydUYfJSJu2p+CqbZ4GvEpyr+TcZJSDA5Bneek2ra8qDvZfz2apZ4qZPMW5CnXz0ncnO62jcmEX/U3r5KVF+jrO9YKXGWOkhwwgRxK/ea/Wac9sHwIc4Ov8Z8JkQ4iMhhAf8J8D/+m1u6FcrBquvaDZr1tF9mr1PXkrSyp196sEIb70gPH/+ypL1DeR0rDSSb89mkaZhN3tG4jhsxA5NmlI6inT3Aa0KGFuL493D+IayOMfmyxsDXO+Dt1qSHH2NDkKyz36BCMKOMRtNnniUoYNXaZJNjXzNItd1FJNhxCgZkpUZl4uUVVqybhv8t9hQW2sx6QprLTIZ4Lbg1poydDBKgjFE+RG9zRJjdql9l8Y3bLwpi3XBJqtQSjIZhLeTnW3dGRX03K7bQ8fOs2ifmXdI7fWJKZiuP2eQPqXcrJBCEPrvJiTWWla15j961MNXV6+w0WSrJ5jlE2IBbTLBHf7k5Qe+1jWlLu/c2e7wveBfkZMqb29cJoTg4ThCCsE3s4yq7dYa6TuovofJGxJ8fvboE2gVj80FUzdnVr5ak2TcDeFLG6Kij2m0oNp8haqeIOy7K1SOEEwcF19INkazbFvMmxa7txQSquke9XCCu10RXpzSyF0sHq5+DralrxRSCDY9D1/1GeWfIPSEWlxg1HNSfYEejaFq4fwUGypwFdtQsjIaWUPSH7GbDPAcB1MVpGGAXS+Qx8dsiHHTC4LVESZP0dsl7fISvVlgmxoZRqjBpCM8t5AduyzI6gu24QrKksibEA7usco3BE3GWMM20LS1IrA+H+8NaYsV3ngfW5nO5le9krMBdxk8P1J0JgDqao7n+2EQufxsv8+9UYgQcLoq+dUm4LxUnBw/4f99nvEkC8jx2R0E/HS/x8NJ9EHJDsZQnP85VdvS2/0lrvvjLPYFSR9rDFV+U64oPQ9nuoNerXHojAveZ00euxG/N33MZLxDa59zWp7xq5MNq7TiP/5kyLZqqVpz43Zl5GABpaF1Jf3aMIgsRl5Q6wpdjanKiKpuXz6H0h+R130yb4d20Ge0/YbJ6nOS/LSza/4ONurQBYIG1YJ++oxJ/Rv62TH+ZkXtxqySRxzt/VvUcswgm5Pu77KOR/irBUlx3TI79nYQQrGtTrH21f8qw4TQ+tjtgtRpseHVnI9Z426OMMTUg+9Hdl5CSNbOhKVJkMWaSXlCGLrIMLmxV1j1/aWhL/C9OzzW2lYI8d8A/wedLfX/YK39i/fdLiovidbPKLOaNLyHnR4ivOst22q6h5UKfzknKUuKvQN08GpAyhoDxZaiHxGj8MpXszIvIIxmkD5FthVUMYOiZDXdQ8QxUbYh94bI7ATtGe4NPyE1pyy3M6QqGUYHKPl+dulsNwRnx4imJX38CTqMkEaj6wqTb1G9EWXkopUkyhp6q4ryNYc0IQTj3hgjVtDmXJTQlpbDwKcN1bWFtCM7a2zbopIBQjlE2wojBWXo4FQtvewIR6+p3D22vT3i9ZesKjgxHlIa+rF/O9GBrk2at520Lbp+Hdu26EZTDB/R+B5htUBlC4LtknEc4FZjaje5FgT7Oi5Kze+NAj7reaAbSC8gn7PNz1FuhDu6T0N2LTF7U3dytoE3uHF/d7jDt4XjKRxXUWbNDVkbgOdIPprGfHWZ8mSW8/FOjKsksudhKk27rEj2Ij7df8STixP+drLmn15mZGqX+MrhTSYD9GaB02hs/Cl5PkNvZ/TiDOmOaNUOVtx+3EkhGDnOyyDPeWsYfAuzlGqyg5USf3FJCJS797pQUn1G7dx/aVV97lq8dcN+/BFt/xIhBLXOqU1KbF08WijnbMMdCmvp+YrdGiojuzU3CLHGYJuKUhuCyzNKqSg8h2j1DWVs0H4P6QXgOAjXf1kdvAFt0IstWXVJ1WuhKghkQjL8iNpammrOw3KDkEPmsiTctoS9PtPQkC9b3N4+dqNRg1f7hWlMt+bcGRb8KCGEQKmItk0/yP0pKRjHHuPYo6g126pBeh8TH/+K2q7ZmUzoB+4P5phmNs9ZrY6gd8Bg+OPr7ryAF4ZIpSi3W4L45vC6szNFr1bI9QYTR7RVdUP+9iZ2goD93VDfAAAgAElEQVTN4DOEWlO5J8wuNb9+3jJM+vwbA4+/3JR8MgqvvbdWCsrIJcwbtr6hbc6p1zlhErE7eERdS/KiYbUtXxZ/E13gFBnrvU+pB0OCeoVfbwjLOVE5wwiH1vHR0kdLDy1dBJaXwZ7WoEyFoyuUrpC2K7AZ6VCFfSrjUxNB3GVRqtZA28cxC4rBIW67g7vIibILKrf30hZaCoeev8+mPCatz+n53edLNYao1OS+SxuFyHSFCFQnY2s86t7jLg7le6Kb08mwbUPlD9H9XYbVGaP8iNQ25OEbLnbr+fd+zBf4IGJTa+0fA3/8ba+vTEM4/5q8tGTxPRjv3SA7L1CPp+gwIrw4JTp5RjWeUg/H3eaWbcAa6ukYv4Awb2lc9YoRWssge4a/WVDlHkK1qMkuzWBIXRaoMmfreYyMZafZQHCf/uQhz2eXbLMlVjwl8XauZeS8CSdLCS9OcfKcarr7Un4npEKGCSbfYqoC6Yc0vmLjSqK0Icwb3FpTxC7akSjpEbgxmcqJ1BBVG6qqpapaHCUJfAffcxDFtquexj2E5xPk3XxQETnEm5qgeQYiZxkdspEj9HKG3K5YhwdEoUscekj5lkW60pDWXVend/PEzJRZJ8cLIoyUZNE+y6aPjNZMgwy/OIfiHCMUjRujpYcR3eB1ZSW9suA/PIwQl6dwFY5lgyFbaYjDES0prjNEvjYTsKmu5Gzqx1nhusOHgx87ZKsK3RjULZ2AwFV8NI35+jLjySzj450EJQXOKKC5yGkXJb1pyIPmEG9zyb87WfK/nz/l4/49fMdHKIVKBujtCrfNUYN91ps+dTZnGCwI/A1a9GnVGCtu35RjpXCFYKVb5rolspKeVO+U19ajSSdhXc7wpaQZ7+CaC5RZ4YkBotLMTctu4jBVDrkdUcg1PW+fdrWmElsWowZdLnE2DslgTJQEuOsamTekV8RCSInwQ/S9R2jXJ9quKPof4eszJmSsoj208x7TktbQzJfk1YxmIHBai2gF0eAejhdxsV0QVEvGrWI9CDDFEll6/Pzn92i3l8goRIkBhvqVnI0rwwJX/igse+9wO5SKadstxrTX9pDvi9BThJ6C5B5VdcF6e4ljHtAJWn4ANAXpxVfUSjHe/RnqO+Rc/VWDEIIg6ZGvVxitkW+8FkJK3P099NOn6M2aajx5L+HpKYmnFF7yU/b8p7ilJbMLLouMkZAEueGZEDwcvrION7Zl61bUeoFeZ2SBZdQOQezQKh83hChwqWpNWbXkeYn7/Bm1cihVhFcbtDuk9McIo/HaFK/ZonSN32yQ5qbyADpy0yqfyhvQqoDaTV7ZOru6y6spNCJQxNuaPNyhJScpzllPHuBkKfFmTt89YeGEmKuxAE/FhO6EopnjypDAGRBuK2y5pR4PUMMppBc46yNMHVJ5nyGi73cOZpu6kzo3zdWcTg/hBVghWHof089OSIozHF2wie+DkNgig+LDFDHgX6FpwbUHbTPyqiYffAqj3ZdOX2+DDiPS+48JZ+f4i0u8zYoq6dEUW2yUIDyfXBl6q4ooa8iugiwHi69JZk8pTY86GVLsHmB8n5G1XHgBJ01FXORMZMio3TKzFqUk4/6ITepj2jUp51Q6peft31hEVZETnj9HNg1N0qOc7l5lanSQQYitS0yednNJUmGlIOt7eGVLmLf01hWtI6lCB1f12DYX9J2G/V6CsZaq0pR1S5rXpIsFoqlwogSnkbh1RTIvaCy0ZYW1J6RuxUrtUpcRULFfzwijkHbn8ObA8Ot4ETDqyCu7wzfaim2DratOnnJVue1mdwzJYMI6PECYFq/N8Jq0+7Ipwpouc6fU/P39mIFQ4AQQDCEak5mGdpsTSYs1Bs975WJS65pCF+xF397+9g53eBuC2CVbVZR5Qzy4vcASeQ6PJhFP5zlP5hmPJzHKkTijgHZeYLYNg50Io6dEbch8fMKfzL7m48EBodvZLcu4h8m2SJkxHvbYpC4XZUHPbBj4G3y7xoiYVo4xIr5xrHlSMhUuqdHkxlAaQ08pQvH2E/p6PEVYi7eaYxlhRhGqOWdeKmgg9lx0z8GkhqhMKMOUPLvAb3cpBz1yZ43czojXXxE4FtnfowwdwrzBqTXtG2Yk5XQXWVeEs0u2B/cZVMeM0m9Y9j5+a85Ck6dUixmtKTADH09b6nKNl+wQJQeUbUtZnvFRuUK695g7mmSZQvSAn96f0jz9Am//Xidnc+Q1+ZqtX+Xx3OHHCceJqaoXczw/gCJACPzpY9ztn5LNT4iizz48wbaWZv4N22KBOz4gju/2vqDXEZ4y3RINbhaf1WCA2+8jnj2h2m5JRu92QhNCMHAUC9Nj1+tzOJCU7ZB6sEHblAdlzr9YXpBmHqPIxfVahOikX04g2DMDYneAchSqsGw8i1XdXHbgOwS+g3c2xzqCxe4+ZaMp6o7QSCFwHImjAhwVIV2BkhIpLC7ddSwChOjcOd91zuYpcCXkDXHdIowlHYS4ep9+doJnc+rRBDWr8fOMvnPMKnn8cr+J3AmtKUnrS+LaRWU5mWtgMEa54MU5ZuVT5GPwS2Tr3YwTeA+stdi6wtbFK6ITJQj/egcNIdkkD2iLgKQ4Q5maVXgPu5qB++HMOn4nO4RBYEY+Ts9Ff9vqhVIUe4c4SR9vvSQ4eYafb2nvPcYy69yLtCFIW9S6xsvPibMzCn/M5uCjrgp69QK31mKw1H5IhEBXDdYs8ZottdcnClzKysOaHUKnpGjnLMsnJN7eSxc1VRZEZydYITGui/F8mv7Ng1HGPfR6gclT1GsZQXXgUHsKv9L4ZduxcxwCLRjYNUrFCCWIQpcodGnSDVWtEUGEtT52URBva5rWsEgEiguM19C4Byh3TN+RhFTsiJY02n832dGmqxRAFy56SwfIFFfdHf+VpDAtaqQQRFfyOCsdKm9A9br8zBpmRc3jieSXP92FN57HNl0gkXhUSBV1qdlXuJOz3eFDQjkS1+9kbW8jPNA5tz0YRRwtc766THk0ifBDB5l4mG2N4yv60xB7AX8w/JRF84Qvt885jHISbxfph6A71xshJYNeTFZINoVL3hqGUUGkNnj6CFBo2acVg2t5BlII+sohlIaN1qy1JkMTSUUo5a0dn2qy01UPN0ty22MlNMae0+8/Yuo7zNqGVSIZrQxe2ue0OcHzPZJ4j/uqh/SH5BdfkM1+TWG3xMl9/FIQ5i1bV14nZlJS7B0SHz/Bu7xkuf+IUfaU4fYbVr2PXpIeay2NzqjWc3Sag6twx1MocoryAjeZ0ut3bozL9JJ+ccZA99iMdhDzP8MtHfyfPGCqN2SmxRseYDf6mhubbQ0Yeze/8yOHlCFCSLTOcN0faM8IR0T9Eev1KdvNHv3Bh30cuz4mnZ/ThiHj4T7qfSGNPwK4no/j+RRvITwAzsEB7ulzytPnmPv3ke/J6xs5inkjKcUY5Z0StCPuxR+zF1Uk7pyH04L/5emSbaHxKo/A84mDgDhJEI7FL1rySBHmDXFav+yCAzjpBj/bUh/s0xuPSKyl1Ya60bTa0LaWoulC2l+HQCClQMnuu5QGJc3Vz68uu0YUIofweYYKFPk0RDsSrUZE5ZwkP2U++BR3u0YVLV6wJSlOSaPD7vGEoOfvs06/odw+xa0DmmGE8Fy89gkCaMWniKHAqAq9XV11+QOEF761UWGNhrbtIlOaGqztIltuIzpvIA+7jtkgO6J//P+wcaeYncN3vpffBb8TwtM4PUzvHq69RLU5tTr8dn7eQBsnNGGEaCu8MMLTGrGcdRdacLKGsC0hStkePGa5+7NrXZfCdCcPjhA88AMyx2UOJNsL/OyC2ut3H4TYZ7kpMG3MMIzZVmdsq+fUuk/f9IjOTjuS5Qe42YZy52ZAKnS5OTKMMUWGqSvk69I9KahChypQtGVLXmn2mpBgm5M0BVJILKDLFF2XKC/ACTodq0DgItn2LaPoAoFLrR5i1asFeJA+xwhF4b2j4mEsrOru55HfOYC8eZW66mR0UfKyu1M3mrp5vzNboQHp8ocfT26Ehlpr2dQbIiWxpsYLr7vx3cnZ7vChESQu23lJU2vcd1ioDyIXpWKezXO+ush4OImI+x621rSLEncvIhn5bBclf7T/Gf+oPWZWXlDrrBu+D0cIazBFjhSSJIrwXcU6rZhlMaE3oB82uGxQZo1iidUORsRomVx1fhSukEwcSWEMudFsjCY1mlBKfCHxxPUNsJjuURYN7dElYhwy3asRbkrDEE8IZlazCaF3qYibANHPGCvZJcjLPu7+X6c8+5xqfsqKGuuOmZQ9vErdmI+0rkuxf4/o+RH+5Yz59D6D9GvC1a+YxXtUtqVpClSqkY3C703we0Oq7TlZeYHTG9PvdXkQRV3gbL9gt2qp48dsREY8m1EkP+Pv/uw+zfzPkWGAo4Zo+4acrX1hWPDjlf7c4bU5nt8yj+dbPgj+zkeE+Z+Rn3+JH/zyw9lF5wvS8yfkyiMa9QiC6ftv8yNBkCSkizltXeN4N7sM0veJDg/Jv/icYjYn3r3d2fcFYkfhCUEm+oyDGdV2Tl0OGQxi9hPLJLT8l4P7/NNna6YKqlpTlIairNg4gnFjCLaWInGJiha/aKlCB9E0hJfnaD+kGk2A7nN5WyC71gZtLMZYtDFX37vfm7a7DN40NuhIj1JdZ2hQtohGk4XqVRdeCLbRAaPtN0T1gnKygzhvUA1EYo6WPkXQPTeJYq/dYV38mnO1phf/dXx9gkBTlftYXOQoQKjeVaemxBQ5FPmV27DsrLalBKOxWr8yYxAC4flIL/hOnaHa67MopiT1BSNvw9ZW3/q278PvRgNgDLU8wCHG1ecE7de0ckwrx+9MX32JbIN1FNX+J9QvCITWCKOpqpzDy69pvR2Wez9/2RK01rK5koh4Vxk7Uggkgm2UMK9GTNeXEB2CH+G5itB3ycuGwA8ZBg8pmgVl9pxi9mscZwczfUx0dkLTG14zU3gTIogQVwYGwnFvDPM2WOaOxXV9wmTMMk/RsiIiwRTbzn61n2CiHqUSGCnobWoqr8BGM4RwqJ3H1+YCVFvi1xuycPftbVFrO/tp3dlP3zbwa63F5luEcq51d7I3uju3wVjLrDL8Z58MGPk3n0PRFrS2JcAghIPjvNYBu5Oz3eEHgB86pEJQZc07CQ9A4jt8sht38rZZxsEgYPzaPE8wDWkbQ7Gt+S/u3+cfPwsxdk5eX1I1ayJvimN9TJ6CkLh+wGQYkuY1edlQNZIo3CHy93BIkSZD2RSl14DAiAAjws5mWoSEjkttDPnVV4ZBAK4QuELQNoY8q9FBn0lS0Ktr8sqhFpcUysMIFwVoCb6UDNwRi/KMmfMbYm+CtQZjNWYQYeZrqsUzjntnrAuHoIypR8Nug4Nr1UmnV+Isn2KagMWwT684w6nOsOIAz0xxpI+z08fIlnz5jLJdoXojBr2POrJmDXrxpwRNhvJ+QTHaQX31f+Lgs3zwKT+PHeonM9zdA0x+JWfzXpez3Tm03aGDUjFtdf7B53iuIRgQ7z2mPv6C9dkTpg8+6woG3wd1Tn76BbmWeNMxQWCv7Yc/dgRJj3Qxp0g39Ma3E8Hw/gPU0yfk33xNNB7fDDh+AwNHMWta9vwpQh1RZhnxwGcUeRwvC/7mTsDTLORX65rDkU/daKq6pW40F8ISbwt0VbOWkjCvKccB0eyUpjXkB3sIeKvbr7VdwKmU3XWEkFgJytrOmMpYrO1IUXv1ZbRFX11mrMUrGnRtaAToRYOwmrDnE/gOxokpvQFxeUnZ/wwdRNi8woYeSX6KVh6128MvNUHjksuI1MupzJdE1qWx+9jS7TJ/HNk9Rz8Avwuet3XVERxjwJrORVlKpO+CdLruj/PbmXrYpqbNSzbjzxi7KXuLP/vO9/E2/E4IjzWa7ekx/u4+gfMYV1/imEuUWdGqHfQ79LfWmM6swI+uGx0oBQISfUkVOVTyAW5tqQOojWGtW1q6EM+efJVtkyiFxrIaHBDVK5zlMc34EcLzSSKPqm7ZZjWjfkBiY8ZLwVo6nI4Fk4vPMSKhmry7EiOE6KRtmyWmSFHxK4tlYy2rtkUCQ+WghEvmBmzsBozCKo0cD5DhK9vteFPimHOKOMPIiFrdv9Ehi8tLrJDk/uQtL+RVZ6c1MPA7PehtVyszrDGoXv/la/bioH9fd+es0Pz+NOCXw9srYJt6gzAtgSvwvMnLk6kXl8GdnO0OHxZSSbxQUWYt8dC+d0H2HcUnOwnPFjnPVyVrv2E/cXC2DWbbkIx8dGMQpeaP7o/5n449xm5B1V6yrZ+jpI8vFe5VZpbwfHqxT+A5pEXdkZ9CEIURoT9ACpC2QNoMaXMcswS6PDKLjytjAhnSEtKgqK0hq1uWZUNVd+nwUeyyHTxEPT/Cuyywuxa8I6yaEtmK2XrJqdswdBzaIqMw5+hehadiJKozXxjtkawUupbUocWkOe2mwCZDfKeP83om1iBCqZhkscCmAW3/bzJYzvHqijYqSEcjimpJnp+ipcEb7pOEBwghcdoCuf6atlzg8YAm2Udnx3jrBeu9X/LXDka46SWVafEGB9i0RfWvp9jbRnck6G1mLHf40UCpbp/UOkfKHy7KQA7u08s3rGZHbOIBw+n+b39nuqU+/5y0KHH2foIXLHHd0bX98McO5Th4UUSZpiSjya3rtlSK6NFj8q9+Q3Nygvfo0Tvvc+Q6XDYtOUPc4JQiO8foIf3QRawKtkXLP3g84L//Ysms0kx9hXfVRdbGIHwXlVZkEorawJML1k1KPZrSZi1kLZ0W5woCsNyQst0GgUCIF11LiesohLjq91jwyhZPC/IAUkcgFxXNsmRZNEgFrlIkXsLHZkHonFJM94mPv6GqE5Sn6adHrKPHBLmgaVKU36fX96ibJ6zEI4IyAmkgvlnQFlIhgujG3z8ErDGIxRlevSYMQxzdFe4/FH4nhEcoB6cqKU+PKaf7JOE9XJvj6gtc/RxHz2jlsCM+b0rdsg0YDb2bWs5e/hxHl8zHH+EVHmHasJSWrbBIYKwc/FsqMX2pMG7IOhkzKFJ0ukZGPWQQ0ot91mlJvdowXV1gVYh/8BPk5giTHXO+4+BR4b3npRSOiwwiTJljXP+ltG2tNfrquamrg9iXCfnyKa3r4MZj5GsfLq/cEFZH1IGl8XZo5O4NKZ3SFX69pggmt6egW9sZFNS6Myi4pfsCYLXGFDnC81+2JK21bLMaJeU7uzvrWtN3Jf/B/d5bTyrX1ZqAGikiXPe67O5OznaHHwp+5FLlBU2l8YL3L4FKCj6axszTirNNyde1ZqJhtK7wfEl/J2R5lnHYGP5gL+KPz+EwfEyjtxTNgkxliGaGv1oTDg5x/ATXVYzckLrRZHlHfNK8wXcVvufieROU2gFrrghQgbQ5yqyQdo4yYBtJ3Xi4JmBARJiEBIGDpqHVJe1OgH98ineyot1XtO4GmiFDE7DtDWn9gKm6R5lfYIzLMPno1UlWCNbZg9UlOD38kYfNVpzbnNaUSOHgqRjPiZHCAR+kXeCfnKHXGeneQ9zhFj/7GnXyFQJDGPUJkscob4JfLQiqFU6bc5SfU4gp/fARIhSov/xLWj8iPfgpvz8NaZ7/GuF7OAwwwiDjN6R1Vw5td7iDUtFrczw/YHabEHh7PyEqUvKzzynChPAW2+T3Qre0sy9ZL+cw+ZS451DX5sZ+eAcIkz7rizPqosCPbj/hDkYjitGQarlEJgnO5C0FXyBUkkBKVhoOkl2K7RFlVhD1Y/qByypvOBgE/OefDPnvfr1gU2v6V4VhJSUMA0JHMqg0rTLE65Rt0mNxMMVeydNuIzhCXJGZq5mdF8Tmxc/yDZnyjf8xbwiUpRl7OIlLXwhMUqM3NVVPkbeGomxYFZovS4/J6ph8HGK8mGS9Zn3/PqPiGfsXT8jcPdY2R0aKoQ/rZp9taTHFJdFg79Z57h8KbpPhXX6NuznHGQwxIiCNDpj3f/LBHuN3I2lTiuTgPu35c9LzExaTKX7cI1aP8NiizArXXOCaS4xIrjTtEcY6t3d3gLCcE9Qr0nCfyknYhBq3rJFbTdD36TvOW61dhRAMlSILhuSmwgqNk2/BaPwwJqoL2osLmmFIde8hAhhvDdXgYzY9h7I8JnCGV4FOb994RRgj2hqTbRDOmMxCaQ19qV7mbdimxs1bMJbaA/8F2bEtXntBP73EKI80eohRt4etRmU305TfpgF+QXZKDYnb5e28BSbfdknp0auFPC8btDEMe8FbD8pSG/LW8l//bET0llyMvMlpTElPalx3dE1+cCdnu8MPCT90EFJQps23IjwvMEl8BqHL6bpkltVs1gWDqmHycMBwJ2J5nvNLa5kNPf75uuYw7OM7fWqdkss5eTYjmy/w4wlBNO0Ig+vhDUKapnNjrGpNlbWQdRtfN6wqkSLB2BjdGqwpcMhRFLhiie+2SKVpjCHLJFp4GBEgZACH9xmfhfSXKc2BT1PsYPsRYc9hrTXVUBBZQbY+I3cviV875kSUYNsa0jV1Mmbg73BoDTMnpdJbar2FyuK0Pm7hILWgjBRB/pxmdswichDSEjuSvh+TuAmyWkDVdawaJ+JcCU6dKYN2H8cB/+RLtuWK7PHvMQg8HgWCzWaGs7OPyQ0yUIjXc8mMxbYGeUsl8g4/PryY49E/5BzPCyiX+N7Pab76F2yP/gL5+F/Hf4e0/QaakubiCzbLGWbwgMnefcryK5SKUeo99u4/QvhRhJCSYrt5K+HxwghnMEQXJc3ZGTKKkOHb35Oxq3heNahwilTPSbfPifqfMYxd1kXDtmoZBy7/1adD/tHnCzxtCF5bf/LYxSkq+ucXNL6L15+SIGi/w77yXRBkDUHZUvuKPHZfFrtl7CKLFhdFMg47s5jWkGUh9iJDzJ/whfuQg1VJJC7YTB8S6yNk9SXKi3BCF4uHH35GnR6TmwXCjQj5gYm3NQT16irTcUWz2VAPD9lOP35/xMFvgd+Zj6cJI9S9R+ycnZDNLljXNZf9IbGKiVQfhxplVjhmjdRbAGxWYEyFiR6AXmCFi8XB0QW9/CmVE7P0emRtRmMNSdSymxts3VAqhbBXQ2DW0nnFvRgK6352nYZGbEiFASchKJa4y4bdtOTMSzjr7zJ0HMKzEzCGdu8xQ9clb2YUzZJaZ/T8fVx1+8HYSdv66M2SLN2wDWMCIYmV6mZlyhxTZEjl4Q72qEUJpsa1S5RZEWYVliGr3j2Muv2tk6YhqJaU/uil5/pLWAvb5hXZecdJgr1mVHDVxtWGLG/w3S4T6DZoY7ksNX/08YAH77j/Tb3BthuisI/rTm5cBndytjv8MBBS4IcOVdFijf1OUihHSR6MI0axx6VTsDjLWHw5p3+YMBh6VKuKfydwmNeWo7JhL3TwnR6+06MJDijXJ1TFiq3OkX6AQOKoEEcGuJ6D5yuMljStRWuDMYa67WZrEBpokcpQS41QgpoYaJC2xMMQKYMrwZUGKSXa72HvD5HPz4ienZGPXOr4p0RS0VhLZgzusIc3S6lnC5q9BNd/VUgR/XFnSZ8uKIIxUesxlFNaZ5c2y2izLU1T0MoS7Wsyv8aVDdEqZVyFmMOPYPqAUihKa3B0iaMrGidC6zVH6xTZjphoh3D1nHx9xGZ/j3zwmH9/N0Ivu3mMMNqH2t4gNra5m9+5w3UoFVFVF1irER8iFf4dEEGf3r2fsjn+Neuv/hnxvV8QD7+F2UC5oTj9NWmWYQaPGe3dBwqMqQnDu0LfbRBSEvb65OsVum1Rt8zoOK6LchzMYIDIcuqjI/yPP37rPM/QcXheNay1JIp3SDfntE1Bzw9QUrDKGvqBy8PY5T993Od//HrNQShwr/YMoTU2PccIqCd7WEcRpw2bgXyVB/mBEGYNftlS+Q5F8sa5lRRd8bpoIXYRSuC5Cm8Y44WfsbP8BmlqVvWQ8nROL3OoBiPi9jkT95TCPCT1P4YGEjPFxpA1l2jbXhXyP+z/onRFWM0JqhXSahpcNrVHNf4Mdu7/YHlqv9PgAuu6VPcekswuSNZL1lXFcrJDqgyekARiSuDs4lAj2i2y+BrpKVwnBdORIHRLf3NEjeHMv4euvyBEMJEK3xe4usHNDUJ2AZ+3QwICKwSJY3DqM2bOIWE5I1xfooOQqKdI6yeoeUuQL6mGewiVoaxH4o7wVMK2OmNdHhG5U0J3fOubJpRD5Ues8i2BchhGyVXybIpt287VIuoR65aifIas1ignRjQJtt0jjROM+/a3LSznCOzt3Z1t0x0Q7yM7xnQGC0pdt6HOOze3JL7dccNay//H3ps9Wbam512/b1rznnKuyhrO3Oq2pJY1EdjGYUMEKBQ4JAdgAt0hwjbiysH/QxAMQQTGgGxjcAT4ghuwZWPJCLVaPZyhpqzKYU9rr3mt7+Ni7cyqrMyqyjpV1XXUyt+JjDznZO69V+5hre/93ud9nkdFx7+1F/MLk5dX54tqTkCDZ0YXrDfn5ZxIR9dytmveGUFiKLOGqmgJvkZ3IPE1yY0BeWiYHqQsjnJmkUF0FlYtf9XX/P1GcFJ2bAb9ossoHz35kChb0pQpthO0nqRzFUUz5YIjj+q/1t/OEKKf9dMyQkm/NwWQ/ll3WbgKazOES9H2GAzYpMB8VRP6j7Fih5YthlLROscCy2RrF/GkoDh6jN794Lzj2Xgbpk+oiimeHePnLa0n0UiUP8aLBzhX9Q49gNi9i7ppiKbHqGVO2x5QTzbp/IBWR7Q6QtolJ9kTmirgbm6I2hMaVXI0MZjNjxAq4OcnAeUPv+zDRhkhtEA8J791zfoxrwuea9Y8O8ej1zES7xI9vsnYC1ne+yOye39AV3zIYO+jyxdtbY3Lj1k9/pyiscjtb7G1tYtSijw/uGDec815TguecpUSjyeX/o4XRRRpitnfp7l3j/qrr/A++OBSG2UjBQOlmDUtHw33WC2PWKWPGL/ox8sAACAASURBVG98zCgyzLKazjqUFHx3I+Q3G8fv3ltyM9JoHNHBA3CWkw9vEZUC4Ryys71V9SV5hl8HYR3RqsE0HVWgKV50vQo15C3kDQyertFqf0wUj/iwXfFocAedphTpnC8I2DSSG8ojTBtCsSAvBgglGYxukzXHlO0M6xoG/o03nylzDq9JiaoTvGaFQ1B5Iwp/g3qZglfBZPedhke//6Q2KSl39jBByNbxE0aPHzLd3iP3fZZrG1aFQK5AuW1ksgfSYG2Do2WcfU7rRpwkd1AmxpMCX0iEkNQI6kSQLGp0LinGAU7KPtgJAcgLb8g2vs2k/B7dYcNC7FJtfIgJJaopsFVLdrQkHhrsQGHsk7Pb+Ugio8magrL6EVkzJApuIWV4bg4ptx1LY/A9j2G+omsbaCuk7NCRQesVqnuCcy0dJZmLQXzIoLC0RlIFL96xErYjqk4ovfH58L/Tzs4Vih3opWzOWtRwcvbmq9eSmzj00JdYVwM8Ljv+3Mjj395PXu613uTUzZQNHeJ55wuzoi2obMWN8MZLj/Gaa94EL9AoLSlXzdcqeE6JxgGehc1VTREZVs4xs47lcckv4fhfs4aikGyEBqMkWktkPMQIgatKfOEh410QYF2Hcx3WteuOjuD0H4RECoUS5pUXHid8OuXTsQGuRdkUq47Q45SgeIQ8yUk3f4VWbjNWmpO2YSFgsLVLdfSI6viQYHv3zLVRCIELN2H+mDKbEpgBemSoYnC2gRaEUn032AvOXCjz/Tt48xn+9Aidr0Aq2jDC+pK6+Jx60XEjHTPyO5qNkONuhfNiGv8mnySGUZMzz6f4Nz/puzvDiyYprrag5DmZ2zV/tlEqAiFo29VPpOABkNGE0Se/yurhH1Mefk6bHuHFY0yY4EUD6FqaxROq1Ql1XdPqhODmpwzH/TXW2pq2XeL5b383/acJ7XmYIKBYLl5Y8PhRTLFc0imJuXOH+quv+qLn7t1Li56xUdwvOxpjMGaLIjshGa4YhwHTVc2yaJisN3n/0k5IYx3/6N6CT5ZPkHVFsbdPG0esPEuS1kgLftnSakn5hlJb1fTFk7SOIjJULwtX1hIC1St4Yndu/iaN9tlY/JDb+SHN3jbp/DFN+4Qy9PkRd9msK0YH90m6kHJnn1aGJP4OShqy+pB5eZ+hfxP1vGroCvSqozlhdYKyDVZqVuHumQrJpXOoChhtvXaw6evy/gueNc1wROcHRI8fsvv4AfVoQjbZogKarqErMxo/wiqFtBYpNMNySeIc5eAzhuHW2Ynieffy1TBksKiIMlgNX/6CiaohOJlxy1n++M6vcBJEeMCwbRjP77FcKe6P7zKUOwglkK5GUCNchXQ1AzMgEA15c58mv0+ktzA6wqFYWU3uBIOuZWRzbHGCLDrUeNxbVwuBc5pODOjUgNZtUTRTtpYNCE02ePmOQVidIJwlC7af/k/nYFFD9WoZG4CtSlxdIcMYodeBos6RZhVKSuLw8tsflx2bnuI//HB0Zr7wIpb1EtsuGEQfofX5Qc9FtUAgGHrvcOD0mmvouzzZvKJrLOoNOgRq7OOajqSyTHYibm+ETMclRwcZv6Elf/ekoKk7It1/LpSUaOWhhENmGaqu8YZjlPGAt9zVFJquTOisT3PnNvb4+8THf4TT/4Iy+YROjdlQI447SWYizMaQcrrATCPUIO5dHMs+SM4FEWV7COUSXYypwgEy6OcpT88Vz1OPJzSDASrP0UWGKWbI7AEHhcS1txhsDij3xlT5lDLPCSafsLCaf2M3pjj8E5wUmOAmVOKCWQH0HR7pXRc71zxFCIlWMW2bAj+5jTOhPQZ3v4uK71GcPCQ/eYhw9syb2EmDDcaYnR2GgwnhM7MlTTMDwLs2K3gl4XDE8vAJdZHjhRfHB7z1HFWV5ww2t/Bu36a+f5/6q3t4H9y9EAsy1oqHwLyzJPEOaTqjLA9Ikk/xtGT+TMEjhOCvbGj44ph/Nl+S3N7Hrs0qOiNZjnyStCZOKwbLitbIp/k4r4lftIR5g5WCdOjTXeUaFRkoyzNp2ymd8mnkBhv5I442JvirlDvtAw42/jVSt8Nh27HKFmzWx4Tpj/DFNkW8R2gmKGFYVgfMiy+JvC0CPX51Ue4sfr0krGd4zQqA2sSk0U1qMzhbx7qqgHQGYYKIfwLd2Hf+CK+B9X1Wtz/Anx7hLWaYLKPY2aOtin7hPto4u7CqtmSjPqL2x+TR9gv9zgGslhSxIcqas4Co5xFdi39yjEnnZOE2Ju7YCDRKqbOk813nCLc3mTYOdXxMGAdYL0DoBKGecY3TH2K8FXl5n7LN8J2gFgFVW+E1NYOuwkmBGGzRNQ7rElBbIH2ceNqZCYyHWkzp7IpqYxv3slkDZ4nKEyozeDrsZR0sKqht3+KMXv5yu657mhX0jDPcKq9puxcbFUyrjkAJ/pNPX2xScPYYzjHLHhJJQxjsXvjZolowMAP0u8pQuOaaNUHcFzxl1hC/wDr9Kggp0BsBzWFBOysxWyGbk5BBaNg8Kvjbic9/e5Tj+RLD02yFymqQEWK1hOUjZJigwhijFVr33aAXdVOvTGchayBQuNAnvfnzcN/gH3+B9DMQjoQpykUc2QG1GSODjOLkkPhwBIHDBuCMA19CtE29mBJWHUPrk0WvdqZyStMOhrjYQrfkYLbHsdziVjCk245w5YqieALJCCu32PYUn0aS5Q8foMfbiFpfMCuAtWFBY5HRtfT1mvNoPaQsH9F11QXJ9Lsm2rpDtHWHruuoi4y6SHEI/GSC7/sXMnucc9TNDK0HSPlud7h/GgiimFRK8uXy0oJHSIkJQuoiB0ANh3i3blE/eED95Vd4t/YRz4SXSiEYasW8admMDPlqi6qc4vsLxpHP4bKi6SxGSWzezwX962NNufkZ/yQV7K8lbwBOCdKhhxMwnFVsPc442Ylormpi4BymtgRFi+osjVFkibm6W5qRfcRI3vbrvVNTg9bi2jG1N8Urf0QRp5hiyAYJZhSynOU0IuJo8iExUwYnTwjTY3QyovbHaH+ftJ2S1YdU7ZLE30PL858r3RZ47ap3W2szhLN00pCFOxdVR4BrW5gdgTYwerGbnnP2an/7FfjmrSqlpNrapY0HhIePCe9/TtVUNLv7/RMD4Cyj7D5OKJbxrSvdbR1odGMJ84ZOiadVt3OY5Rx/eoywlnq0QbqxydbiB4TVlCa5g2cd9fSIkyDA7u4jVzVZVeM1LbJZzxIJ0Rdj65OZQBDafY6rQw7qDC07tvSYWI3pBtGZ9MNWBTZLkaVAxs85z9USvwmYBxmB93Kf/6g6QbqW/LS70z0TKjry4BUfOOccNuvNAmQ8PCdly8uG0DeXGhVMqw4tBH/7swkbL7C3fpasyaibIybRzgWtctZktK5l6F93d6559ygt8UJNsWqIRi/PlHoVwijU2KeblXRpjRp4eIFmvBshDnP+g3HA31vUBIkmWW8KONdblzZ1RLta0FYF3aKk9uOzc508Tek2Es9cTOt+JWnTfz8dclWK1f5nqK+WBE9mzG59hFQdfjtja3XAcgWusnR2RUGFZwcIEyFHCcJ4CKVwwzHlwQHRyRFGO5rxKz6vzmHsE5SdcZxrnhR7TJQh2ghxtqFbHlHqhjC5zbxT/LU7Me3JA2zXEA5uQ3PRrADA1ev5nesOzzXPcSpla7v0J17wnKKUIkyGhMnLPx9tu8TZBi/Y/wkd2Z9uhJQEyYBiucB2HfISmZofRaymJ2fmBmo0wgOahw+pfvxj9N4eevJUErdhNPO2o/QkWo3p6pSqesww+JjDZcUsq9noCppHjxDG4H/8Mb/mechHK/73g4y9UOOdFiVSsBp6dEowOS7YeZSx2AgokhfPkQvrMHWHX7Qo6+ikIEs8miusqS4Q6X7tV3YQaoR1JGmNk5LDrVtsPfhHOJ2QT34BbzHHH07Y1Jpl0FGGmlzt0bKFLqZEiyUDs2DHN2xLj5WrWHZH1PkDpIwYyBAfhbQN0vXn41b5lN6Y0hvRmMs3xJxzMDvsGxmTnQtdN+s66i6jblfUb9Fx8ZtX8KzpwojV7Q8wX/4AvTjBn01pENSTTeLqCN2VzJO7l+fMvIA8MaiFI141pEOBqAuCkyNkXdIFEeXWLtbvT46lPyYsT5C2IZkeo5uWwxv7LIWgjQx5a7FSs514iLaBroW2xbYNDVA5R+UcnZ4wVCHKLXAmR8Rb53ZxpB9C12HLHLTu/5u+Ig+zhjwcsPKOkF2O9wL3t767c0xtYhoTQ9P1oaLO9aGiV/jQuDLDtU1f7KxPINY6lqteyja4xKhgXncI4G99NmHrijsYJ9kDhGuYRHcvLDAX9QIlFAPvJ6O7vuaaMDEsjgrqssN/mT76CqjY4KqOblEhPIX0FcZTTHZjhBD8pnX87qyCsUeoJUIItBLo0INwuzcvyVNsW+MUtCagcYKmsVRNC/QFkOeptVOienmRVnVPpazPWjkbj/TmzzG+/88YfPWHzAffockHiFYQ6ow0qbG6Qsslkk+QrQ+lBLN2JtKG+uY+3r1HRI+PWEgHw8sHraVdoe0x0hWcFAkPpwGxUOxsxjhXwfSIwqV9rpoYM9SSnx0HZP/fPUQUo7ohwlfIS84vrj51aHu3TlzX/OlDSg+lQtpmie9dwTXtPVLXJ+vj/Ro5Pn9GCYdDiuWCIl1eOsvjreWCdZETDvqCU41GiDCkefiQ5uEjuvkcs7+P9DwSJTFCsOg6xoGmrjax9gjj5pii4vjgPoNQIKMI787tM9e3f+dmwsAo/ud7KduBfGpZLQRF4lF5is3jguGiQjcdTkmsFFglsFIgO4dqLdL1QxidkmSJ+XqFzim+6ud58hYCRZLWCOtYDTxk/SWVMCizQTeeYIrH+E8OKc2E0XaMJyHNaiqh0ZNbzJuOk3JFUq0YeJbQGCI0WXNC3hwxlQqtYgI9Qfg7tGaIVVfoUi6n0FR9sWO89eZfRd1lNLag6XLAIYQm0G9vA/wbW/AAuLahDnyaj75N0Fm8xYx49ohILkjHt6lfd85DCFaRYuNgys7BktxrsMZQ7NykHZy/r8LfICqPiU8eQFpRT7aIooTAOUplIbJMs5pSQRAYpNJIT9CtY6YEYIRgJBWhlNTdJmn1iHl5j6G/j1FP9bsijBFdi81ShFRIaUiWNU4KmuEYUU6p2sULC56wmiJtSxbf7rWbad23QCfB2eDxy7BV0QeM+gHSf+qutswqOuvYGF2Uss3qDuvgP/1swu4VF4qd7Vjk9xh4EzzvvFbZOsuyWjLyR8jrhOlrfkJ4oUYqQbmq37jggafzPO20xOxECCVQRjLZi/j2WoP9Dw4L2PQJn9N2C+MhhxuIMseWOV6V4muNiEKsDteFT0dVd5RVi6AvfgLvkuLHuf48oOU5Kauz3doVsmPe7BIdfUkw+AHFzY8h2cYLbxMIS94uWNRfIPgxY5NCGWCrGBsPsdEAoRTZrZuMHjwmfnLMqqthOEEoDa5D2QXazhDUODTTYosHxxAIyc2dBKhhekyroEx8Qm+DRav467djWM1oyznexidgQY0u36F3dYcw8rVsxa/5s4PWA6rqEGvbczlv3yS6LqfrMvzgxrVZwWtgPL83L3hBwWP8XkHzbMEDID0P/8MPaWcz2sePqX7wQ2TgI5OEgRdw4mBkLd2yo21L6vyfExe7HHYe7sZN/M3zjyWE4C/uRCRa8N99sWRoIHlm1sZ6itlWSLKsEA4qI1GuL3LMupPTGkmnJa2WV5vTuQqxhkVFdFyiJGQDDyEPkasnzMPvMA4kSXNIPhyjH52gNmO6MCQUAmMU82VJmtcMYg8dTljlMfO2Q1tJEnv4nka6jrpdkDVzZq6B7gTlMjwVomWIFBopFEIopFA4Z3HO0uVLXHpIG/pYmdEVU1pb4ug3sJTwCPQYXydoGb7Vz8U38yxwynIGUuEmW5RS0gwH7D76l4iixs4qktWPaeIBXRhijYc1lwz1W4uqSlRZoMoCXeS0bYeRPjLeYbk3OZOhPUunfBrhMzr4EbPJJ1STXmMohSASiiiJ8FooihbfMygtsQ58IfCExH8uLddTEePgDovyAYvyAQN/D3/ddj/N57HpHJvOGXYhQhnSgQdK4ushZbsk9jrk87kCzhGXR1Qqoik8KOpewznyrqT7dHXVF1rGQ0ZPOytl1VLVLUnkXZDRHJYdkRL89mcTbrzGInFePMbago34OxfexGmdYrGM/GtLzmt+cgghCGKPIq3pOot6w5mZy+Z5AKSSjHcivhtopIB/8CiDDZ/wufkTIUS/AeKHuLrErSWvCIFnPHxjIDA0TvYhpXX/ORUIfF8R+gbP9Bpu13QwULiqwHUtlDUubxBVf2FpRnu0QUNSP0ZEHdWwXxgkgJYeJyLmYXmfRlVsDw26mMHqGAqFiyKc51FvQ3hSYRdf0pY/RoR+/yUFVoS0bo809Xk4zdBGcGN3gGxySGc4E7CKSqQwKLVBgODPbwZUX3wfnMB4e8jIIF8w9Gvr7tLOzzXXQD/HU1WHdF2KlJc7er1v6voYIRSe+WYe3zeZcDBkeXT4QvMCP4qp8svlUHoyQcUx3XKJXa1oT04YWMdBC0scctahI4EcSQa3PebtbVLj8wKNDd/dCEmM4r/80Zyy69h6xk239RR54hFlDdLB6hXmU28FXxFUFt025DcTrE7Rq4e0Nqbd+IhUtoxXX6F1gLMSL59RiH4OXSvJxihkuapIs4rQN0yGAVXdscpr5mmJ0Yok8ojMBqGenHVl2q6gaBbA7NLDcnUNixMwHvgbiHaBlh6eHmBUhCejc5sTXWdZFdVbe1rey9VCtu0rf8cVGdQFjDbP9H1xe0IznnB46xeh6jCrJd5iBovp+lYC98ycj3AOrOXUs80aj2YwpB6OyYUhTmvirO2Hwp5/AzqHXXaorqEbx5e+QbeGIdNFQZc1jMbhKxdLSnqMwzssy4ek1SOs2yU0/ZtMSIlMRsQHJ9CkrHY3sOvuTKBHlO2cqk3Pfv+UsJoi6obc7QBrZ45YX+kD5dqGLlsitD43t9O0HctVhdGKKHi6IHPOcVB03Ag1//EnY0av6T4yzb5Aq4BhdPPCzxbVAiMNsYkvueU117w7gkSTLyvKVUP8gm7C63DZPM8p0dDjFz+ZIJXg73+Z4uKWaOxf6MQKKXvjkCDqOzJVAW2DrfuTvxKCWEgi1RupVY2lmrWUrkNZCMsWEyik58HKISqHsBKpfZj4kPgIX1PYDfwHBcmT79F6Cd160yOQkh0v4onb46A+otUDNid3keUKtVog0gohMqxnIWyIW0UGNGmFywWd2sR1MVljeVynCGXZj8DMDsBZCGLyGLq2ZuDd5LgS/Np+jNc2ZPMDtL+DUj5q9ILMr9aCddfzO9e8EKVChDS0bYr5BhYU1tY0zQLP23rnAak/jQRxQnpyTLaYX+7WFkWUq5SmLDHBxVxA4XnorS3Y2sJZi5fnjNKcTGt2tyRCa+KNnKp6QlQUzHLB7vDF+YIfDzz+zrc3+G8+X/Awb7kRKuTpLHSgEQ7CvCFJ3TsveoKixVeC0klaCkzzCJt1tOY2Ioio6VVM8ckT0mQD5Qr0akm7njeTUjAa+GS5JCv7zcDRIGBzHFJULVleM1sW/RoxNARedKZAOpWnncYrWLreeKDrEPkR0ttDbN1E6/CFNtfOObKiIS+a59Pp3oj3U/B0HWYxoxldfhJyzvXdHW3g9AJczQjqBatwj9aLwaOXoVmLbGpUVSGbGtnUIAROyN7VTCo636cLQpx6+udaoIgMYd4Qrfr5nmffgP70GNsKiu1dQrekZOfi3yEF40HAdFGwSCsmw8tdzM7dRmhGwW2W1SOy+gnWtcTeFjhHkndoP2Hl51RVijISYTy0ClDSp2wX5wseawmmh1RlQDOIYOhdaV4HwHUtXTpHiL7QOi0qO2uZL8uzN/zp39M5x0He8u2Rz3/04YjwClK5ZynrOVl1ws7wWxdyRFrbsmpWbAYvduq45pp3hTYK46u3VvDA5fM8pxhf8cufbRAPfP777x3TPekYDNcuipdsmgjjrS2reydF1zbQNTjbb+oYYTFSEvseVWNpZhVVLSikxptJfM/DiwwiNBCq848hFcsbP8/4/u8xePT/srj7K7j1YxkhueGPeWhLDus5BZJtfwM/GEGztquuOiprGeQNnoPSt9g0pWtrTiiYO4vWsB96+K2CMIYgpjWOsryPr0dImWBUx69uhRQPv48tG8K9W6ih98J8naeGBdcLxWtejNFDmmaGc+4bJxmr6+O+c+tdX/e+DkJKouGIbD6jrWu0d35zxF8XQVWeXVrwPH9fKknY9gPulzWdEpA2KLWJlHNCeUxW7pNVLbH/4mXzVqD5z761wT98sOT/PizYDRX++hxWhRonIMoakmXdFz1vW47rHFHW4FUd1dBQlyXe8hHOq6ndFgyfjhKk/i5ee0wUplRdRHByxCpKnhpvCUESeyglWGY100XBeBgQBYbQ1xRVS140LNKSlZSEgSbwNEpJtDr/fDtrYf4I1BC2brwwxqCzlnJ9v9Y5Ak+TRG/PufC9FDxOSoLjQ6zn011SmZOl0DWw0aeuqq5ikD+iNjF58NwAopRYP8D6L39DX8apPXWYN4gVZ50enaV48xOawZhmtMMwe4jXpL1/+HNoLRkmPotVySqvGcSvXjAJIRn6+6zqxxTNCTjLTj3G1B1F4tH6ASKd060WyGiA9AMCPSKrD2lt1dsB1h3+yTEiayg2dvt5nSt+eFxT060WAMjBGCH7RYNzjvmy6o0zhgHqNECwtZxUHX95J+bXbyXor/EhPVl9DkKxEd+98LNFtcDhruVs17w3woHH8rigLlq8tzDLA+t5nvr8PM8pQgq+s5/wN4eG/+pfHTOf14zztpejBqrfuLjkcyaUWpuKPHe+sw7qDt00YDVdIqm1oMSxMIC0hMISOHkh6ceaAenN7zC8/4cMHn6P5e2fg7VxiRKCW8Eux6VlXk957AQDMyTSCjMwqIGBxpINDPGyxhdwPN7hsG0o65qRgN1AovwA/F6PbV1HWnyFFIbE2+Gg6PgrexFhWzI7/BztbWGSCTJ5sd20rW3vjPm2NO/X/FSi9YC6PqHrfnIhpFfBuY6mmWH0+NqK+g0I1wVPvpwz3Dq/KS2VwgQBVZ6TbFytqBxrxSMg0xADTdERhPu03ee47Ih5Eby04AHwleDfuzPkbuzxP91booRjy+9NaupA44QgXtUM1kWPU2+p6LGOZFWjG0sZaspQ4NlDXOqoyxjiBPHsOrmwLMJ9JuYRmo5u0c/J15Pzz1UYGJSSLNKS6aJglPj4nj4rfKq6d/Jd5TWrvMZoReBrPK1Qp3/b9BDaFjb3LhQ71ro+2L5qqZoOcHhryZx5y4Y076Xg6bTBGkP4+CHZrQ9w5hnZVNf1QUR+2Es6nGOYPcAhWEa33nob8NmiJ15B4VnCJwd0fki5vQs4kuLJ2gXt8hNm4Gua1pCXzdmL/SqEEAz8G0gr8GZTWlra0Q5VqBH0hYhdLbDZEtfWeGFCxjFFfsKg2YS6JSyn2ElEs3n1sDJb5th81SejJ+NzycOLtKLtOsaDAK0lzjmOKosEfvuTMd8Zv35RCdC2GcvykCjYI9DhhZ/PyhmhDgn017v/a655U/xII5UkX9ZvreARUqA2Atqj8/M8z3Jr4PM7v7LHf/EnJxwua7Y7i1h2veuJlqDE0++n5z7nepVu53o9W2v7f2cdMuwr1E7Y77gJzi4medmSlw1aSULfEPgauS6qmuAG+d6S+NGXxI8TspsfP81wkJLt8CZe+YBle8xKSCrVS08loKXA+QI71viLilXa0HqCm0nCKPYv7Kxn9SHWtYyC25QdBErwl3dj8s//ALdq8T/4GDW+eLtncXWH8OQ3btf+mm8WSsUIIWnb9BtV8NT1FOcs3jfcQe6bjtK6t6hOU5KNTaQ8v0D2o/icPfWrkEIwNppZ0xIrQZW3hIOYwN8k0g+ZrYbcGAZn580XIYTgV7ZCPkwM/+O9lB8uK3aCvtvT+IqV8IjTmuGioog09RvOIoqut55WnSWPDbWv8Lp7iLClnka4uoEbzyiqrIOipY2HZMaSFE+ojcafndAMRrjnnivPKDZGIfO0ZJ6WDCKfKDT9DKyvCXxN2/XdmbJqSbNeei0cmGyKbkoYbyJaCV0NDtp1Hl1n7dlzHweGINBvnj/3At7P9piAYm8fAUSPH67nbNasFr3Ge916i8ojTJuTRjevZnf3NahCTREZTNGw+cUDHFDs3uwv+E6QmU1MmaLKvF9c2IuqwtPh/sWqoqpfPaMEvff6Xj0hdkOOvSUncvr0Z1IiB2NkGOHKAo7nBEuf7iTFtS2+n2OGDfnwotTuMpxzdNmyL3Y8HzmYnCt20qyianqTAt/T1J3jYd5xOzL859/Z/NrFDsAyv0dlWzaii92dvMmpbMWGf50wfc37QwhBODDUZUvbdG/tfqWnUCMPV7Z0aX3p72z4it/59hZ3d2IehJpu4veJ2UL00rFV0xcy86r/WtSwrCFv+kLHyH52z9e9rPVG3N9e9sYpvqcZDQK2J9G6Ay1I84qjWc58WVLVLc45iuRjiq1tgtWX+MePLzw/o2CfoQ4J2yMSVzKUimDdBbadpa46SufYrSzfER6T6HzR4pwjrQ6o2iWR2UTLgOOq4zdvD/DyJeX9++jBTfztzZeaETjXB45ey9mueRVCSJRKaNv0fR/KGX3Q6AlaJyh1vcn3pkTjMThHsVxe+JkX9Qqi0xDSq7BhdD/y4EuaqsN2Ft/fZRiGNNUjlsXl5/HL2Ao0f/PTMX/j7pBFbXlStFjnaD1FOvbplCDKGuJlbx392jhHkDcM5yVybT1dBxrTHSBdTiN2sVhQIYJnzpd522+aRZo82KbWMV5QotoCf3p86UOptZmBbzRpXrFcVf34yRqtJEnksTWJ2BxHDGOfcZpsJAAAIABJREFUqF4gqpwyGFCIgKxsyIqarGzorMXo/jaTYcjWJCKJvXdW7MB7dGmznk+xs0f4+CHh4QHF7s1em54tIRr0syttTlwcUnpjKn/86jt9A6pAERwcoVY1cmMHuWjpXAvWUbqIYCUJsyeswt3+BoJ+QaL6L6EkY62Z1xWLeclkEr60HadaS5TWSOuwm7tINEXTO1sk/g44h2gsovEQtcXmK3xrqYOCPE7Zrme0Jn6lNbdzrndpKnOctcgwRobnjQHSrDoLFw0Dw5OiL9j+2u2Ev7gTod5gF7VtU+bFY5TZZBxcnNmallOUUNdho9e8d8LEkC9q8mXNcPNiN+brohKvn+dZ1hfmeU5JjOS3Pxnzvz1c8X8+ydgOFcGppMs5aNcXlmc/is92fVoL0wZC/cI5PikFUWCIAkPbWoqq6WUEadsHnBpFGX3MVlIQTX+EU4Z64+kOtBCSYbDPsnxA1Ryg2wFabOAaaJsWTwiiUUQwEiRFi11UZIlHZyTWtSzLR7S2IDJbRN4m06rjbuzx8xOf9Pf+Ba6F6ONvnTN5uAzXWHAOeS1nu+YKaD2gLJd0XYFSb+9z/XVp2/l10OhbpLeoDsmXC6LR+Nwmi/F8pNZU+Xl76pcRKUkoJZnpCHNHVbSEicfG8A6PF9/jaPEV4/izKx+fFIJf3Y74ZOjzjx+u+P1pSaQFE0+yGvn4RUuYNwznlspX1IHCXmHRb6qOMG+Q1tF4ijwyOCUw3ROUW9DKbbrUgUc/O5O1MFb99aRon+b1AMvkNhu2IvSm2KWmHk3OMimfRQjBeBiwymuyoqbtLOPBxY6XVhKVzoAabuwhBm+wfm/sq3/nirxXT882HlBt7uCfHBIeHpDL9QV8MEHYjtHqPlZq0ktcvd4a6xc/eHhAu8yZjTYwVhMva4qBoUkMTghqb0xQzcjjXawwfXVsXb/D2lioOqSDsRMsVxWrRcVwFKI8dVYUoSQI8KqOsGiwUrKKDZ2A2G5CY6lWUwo6QjHiNNBHRD5yHEBXINIl5vB7OBOSbvzMpcOYbu1O55oKW2R98aQNKh4izPnFxHJVUVQNUWCwRvMwb/nzGyG/vp8weZPwq/Vx5MUjVk3JxuhT9HNZCK1tWdZLJv7kOnvnmveOVBI/1lRZix1b5FvcaVKTAHeYXzrPc4qWgn/3VsJ+pPm7Xy6JtOudEIU4C/18Iaum//6SuZdzj6UlA+2TRN4626elaSyLWlH4t5mkf4L66o8o8s9oJxsIBA6HdQ5ndyiqI/LmEMmU2NtlGI6IQoOUghZIjVrr1CvSwDIVT7CuY+DfxNcDOufIO8df34+pv3xIPT0i+OxT/I1Xz/FdGxZc8zqcStmadvHeCx7nHFV1hFTBN0pi96edaDRi8eQxVZYRJOcDXP0wosxWr2VcsWE0D62lllBlfcFjzJCN4T7Hiwfk5THR8/Pkr7pPX/FbH434S7sR/8uDlM/TmpGRDAJF40nCrCUo+69WS2pfYaXACYFbX4p0YzGNRTe9YU2nJOnQO8vv0d0xyk7p5AaNG0H+EOIhwgT9NaLp+vWqdb2b7xorDfPkAyZtw+DwCe1RQn7roiLnlCTqOzGLVdWbGazHIE5xiynkS4hHb1bsONerGd4S7z3EoB5vgLX4B/cJbEv50bcQSpFkD1G2Zjb4CCffwYXNur6tlzf402NUsaK+sU2zs0ktIM4a4sbSWEcRKQp/h2gxJ5ILVtGNi/fn+uJHdo4kMSxmBcuyZiQ8ZA04kNYR5C2qs9RGUoYa98yLGTNEtA0lc4gUYbjRDzFLgQAUHpHeJzr4nFUXUBYNFEe9w5pSICTYrp+DWrcahfGQQXSh0HHOkWY1edlgtWIhFLta8lsfjvl4YN6KNr5t5yyrY4TZYCO4KFmbV3McjsklnZ9rrnkfRAOPctVQvEXHNjg/z9PNSvQl8zzQ76D94mbITqD5rz+f8yhv2XvG3vRSqt4tjcRc6vL20uMSgsDr3XWg11U3jU9lOpLHPyY6+pxZB1Uy6PPC1scx8HcYRWMqd4QQUzpVUbYhWgVoGdCqllW4wluuULOKsZIE0S6okBbLLK35q4nH9rwk++L7yElI8tHPXOmYXW1BScRrOkVe82cTKQ1aD2iaOb63+17nvtp2jrUVYXjnvR3DTyNBnLDSmmwxu1DweFFEkS5pyuJS++rLmBjFQQW5J/HXsjapJFvDGxwv5xzN73NrO/5aBfSd2PA7n03440XFP36Y8TBv+47PwCCdwas6/LIlyppLb2+loPEkjekLpdMuv+pmaHtEJ4Y0ahdmR+sGwghkn81GWvcWxZ6E5xRIrQ5ZDu+yma0YLr+kzjZp4+SSI+gJfI2SgvnazGA48Ak8jVucrJVaQ8ToDUcVsrZXL7wl3nvBA1CNN+DwIX5RQZbjTJ8vkwXbNG87l8W53k511YB1eMUMIzLquzs0a/mGow+HCooWv2gZ1h2Vr6n1kLCakgdb2Of9w4UALUCD9hWjQDNdFkwFTCKPpOrwihYXa/LI0BrZP5Bc33b9PZT7tPVjsm6GUB6BPF8db3Qlje9zPNwh9obQdTjbQdf2X0ohfQ+UQiiDuGRQz1rHYlVykjc4rfhoGPJr+wnfGnlvJF87/zRbquqQtKmJwxtE5uKJZl7Or80KrvlGoT2FF2iKtCEaem91cXQ6z9PNqwv5PM9zKzb8nW9v8g/vp/zeScF2oAgvK2ac6y9iWva21m+IVrLXUPsfIEIYH3zFsDkkC5JLLn4BziXkzZS6W5E3x/DcNbocBAzaMQM7wOskImuoOsekdfyFOyHN/Eu6MCP51neRL8hkuPAnNx3yOn/nmtfA8zbJ8y/XmTzvRz7dd3cOUSrEmGtH0rdNNBqTnhxTlwVe8LQQeWpPfXlA6WUoIRhpxYmxDAp7JmsLPU0S32ZV/piiuEccf/K1MpSEEHxnHPDtkc/nq4Z/crDiR2mDEoJNX1GFGtlZhAXhHHI939MaeancTdkFxj7GioRG3cTVFRQrSMaI0ziW2MBx0a81ty9/HipvxGL7IzazP2B88H2OP/6llxqFmbWZwWJVMV+WRHVK4gpEMn7zYqfpIGvQ5vLC7+vwjSh4SGd9yvdok2BxTLKaUWzukZ3Oy7wtGtu3x1oLRuC3C7wupd7cPKdVB0AIyshQBZogb/GrFmnH+NWSEU+YjfZfagOtpWA78MhOMupZCbFHHft9V+clNoQCGPg3WFaWVf0EIRT+uvWtuoqomjGLblOJjkhLlPd6xUJed9yb5jSd5bPNiN/4aMKnQ+/lO8hfg7qZktdLWpWwd0kH59SsYD+81jFf880iGnrMD3OqrH06R/OWuMo8z9lxaMnf+GDIt0Ye/8NXS1bNU3vTM1Zr44LJWw6yE4La3EbstUQHj4gOvqTYuUMzHD33a5LY2yJmC+s6WlvSdiVSKDyVnKVmF+sv13YcLVv+/Z8ZEYkFaf4F3s0bBJMXyyeexdnesECGb/d1ueanG6USpPRompP3VvA0zQxra6Log/fy+D/thIMh2XzGajpl4+bTdYWQEi8MqfKMwebVZWhbnmHWdixFS7iWtQFsxCEPqpsU9RFS3iMMP/jaG2NCCD4eeHw82OBR3vDPj0v++UlBYx2hEow8+Uq5v+pm62Inolb7/XUgnfVdneSZ83Wo+jWw4KV5jVm0h7f9AaODH9Ie/pD57svnlZSSjBOP9OCAfJXTDEeMB2PeSJflHCwbgnZJoo7e5J7O8d4LHldXffsrHlKPNhnfP8TMl6R6DxF3F+zxvjbFup0nBCJRhPMnqDKnHm9SbW6/+PikoEgMVagICoVfD5nMZohmQO0HdFr2SbACnBCozqJah+r6NlwSejwxLV9JGBpBcAXPdSEEQ/8mi/I+afUYKTRGhcTFIQhBm3wE1X2KZt4bHLyCxjrmdceqbGnKml+aBPybH0z4cPRy69evi3MddXXEquswenxpvs61WcE131S8UKOMJE/rt17wwNXmeU4RQvALGyG3Y8Pf+yrlh8ua7UASKNlv3BRtb1TwLuZZhKb27iJudARPjgkP7yHaGxc3h9b0RU6Mpy7vyjvneFQ7/sLthJ8NW9If/CvkIGZw5xcuhBG/iKfzO9cdnmuujhACY8ZU1SHW1j/x7BvnLHV9hFLR9ezOO0JISTQas5qeXOzyRDHpyTFt06DN1c7pkZIkSjI3gknZnsnaRqHhQEUUdgu/PaEo7hGGd954LXUzMvzGHcOv7cf8cFnzfx3l/DhtcPTW/WMjUc+bA3THaHuEFcm62JG4IoOqgOHmWaA8ALXtHT0FULbwEifM2da3MOmS8dGPaOOYVfLijWnXtYjpIUPZ4u3tkHaG6bxguM7r+VqsGuLVEyJ/QeO/vc/Ley14nHOwOOkr0cGEsDyG2HAS/TnEoiZ+8CXF7s3Lw0mv/iCQNv3CwFPIwBIdPkB0HcXOTdorOndYJckTjyK8wc50hXYnNG4fr+rnZU7fhk4IOi0oPU2rJa2RRA6atGSxKmlbjzh69YzMqSPSvLjHsnrIlt4mqOdk4Q7oEL8bULULIm8T+VxL1TlH1jpWjcUCCrjrwc2Jx6eTIR9vxZh3aP1XVU9obUWBx6Y/vrBDcWpWsBFsXJsVXPONJBp6pCclVdHiv6VcnlOuOs/zLJt+b2/6L6clv3svZVG37ORNfx55B0XZKU54VN4HsCfwj04ITiyybfuMste8wB9XljuR4de2PbI/+ac4DYOPfwkprz4rdW1YcM3XxZgJVXVI08zw/besHnkFTTNdd3euFQ3vkmgdRJrNpng3nj7XXhTDyTF1nqFHVx+i3zKaRdCyLBsGa1mbVpJhYFhVCbsDj6o6oCwfEAS33soGsq8kPzsJ+NlJQNpYvlzV/P605PuL6iwRJTaCsThGu+l6ZqePUXHOwXIG2kD8XKGQNU9lz6um7/K86HiF4Hj/u+z8+J8yOvwRSHnp7LqrSpgd9uvsyTZhGGNay2LV5/UEvmYQ+a/MLXoWWZYkR/cwuiQf7rxVpdf77fCsFtBUMN5G25okf0xlBqwGHyCTiujxQ6JH96kmm725gXzNxXFnYb6WsEUa06YEByc4pcj272D9158dccqQJtskxWPKuKExz+janbv0DSQFjIcBaVaTlTVl3TJK/FemyEqhGQb7LIp7dPPfpzVb5H6/uxroMVW7pGwXGDUhby156/pOk4PdQPPLmyG7GlTbIYDNxGNvGLzToc2uK6jrEwqnQYpLDQlm5QyHY/yOrcavuebrEsS9RXU2q956wQOvN89zdhsh+OXNkE8HHr/7gyk/OGwIJj7D17iYfB2cCKjMh7gdjT89wl8cIJuacnsX612tWFk1Fi3gt/YDmi/+kK5NiX/mlzDe680y2KpDeArxjv/ma376kNJD6wF1M8Pzdn5i5gX9POsRWido/eIh8GveHCEl8XhyocujjUEZQ5VnRK9R8Ay1IvQUc1Gz9YysbRwbFkVDaUcEvqOqHgOS8C1L9AdG8nOTgJ+bBFSd46Bo+CKt+OHJVxzlJzRiRM4Onu6ItcQvlsiugY298+/veu3ONlgb28wrKLqXzn1a32e+9S3Gxz8kTg+QtiWNbp6ZiLnVEpZTUBo2d86MsbTu83qyvCErG+o6v3K3JyiOCQ+eIHCkO3eog7e7RnxvBY9rakjnEESIMGa0/BFOKJbxLaB/sle37hIePcafHeMt51QbWzSD0dV2Flvbv6gOtKkJpo8RbU0XxhQ7N95IKpcHm4TVCUnxhNmzBc9LjksIsX7RFctVxXRZEgfmld0eLX12nU/ZZvzY20Y0jsq2tE6T1z7H1THb0YC7ic8Hiced2LAfaVxnOViUFHVH5Cv2xyHBKwqst0FZHoBQrKwk1gG+Or8gss4yLacMzODarOCabyxCCOKxz/K4oMwagvgdSNteY57nWRIl+PWhz3c/9fg/ioYHecuWv5a5vSOc8Kj0XdgQGDPFzI5R9wvqyWZvOvOSzah6Lan9W5sW/fn/Q93O8T/4lCB5vbgBZx2utsh32NG65qcbYzZoi69+ouYFdX2Ccy2ed7WQ8GvejBd1efwoJl/MsbZDXtH5VwjBlqdZ+JJ5XjPsAv5/9u40xpI1Tez6/4094uwn96qs5S7dPTMe28z01YxhDB55DB5sg80gwP5kYyHLQiD8AWFGIyELf8EYI4EQZpEsgWRhENhYAix5LFsGGbrtnrHHs3i6b997a8/t5NlP7PG+fIis7KrKzMqsyrWqnp+Uqso8ceJEZpwTEU+8z/s8lm3R8h0cWzGOc+4trQB1kSbQBMHtM6fovgnfVtwJDctqm282DMr5ISamz05S8tWi4MEkZn8wxHg+WrvouMS1wLcUwSzHU6BCp75O9ax6xCewXzsXPesvs1jMcJMFvjvBLRdMotsUi7QuihBE0F15OXXu4O/WbHj4fn29O56l+K5Tl7M+prqmXWW0Fk+xx3NyFRKv36YKzpHZdYLrG+EZD+qTZGeJZrKNU6WMm/cwL/ZqsW2S9dvYSYw/HBDsbeONhxTtLmXYOLYxEgClRu3NsdMEVyU4VVo3Ot24QxVdQNU3ZbEI12gvnuDnE7I3uEvpew79jsU0zhkvckZJju85OJ6DUYpCG0pdvwcV4OiUlemIuX2XubJZtwZ8c+kuG5GDr3wW+RM+7bgshT2MMUySgmfDmCSvsC3FZi+k17iafOWiGFFVCwqrTWHmrB0zujPOxpSmZDl8sxr2Qly1w1GecYYfOZdyR/j5fJ5qlKJWXj+f57nZfgoofvRugx+1LX5pmPB/PpkzzEqWAxvvskY/lEPm3MO0bexwijuc4g8z3NmUrNenDBuYV/Lj00oznCb8q86I5f1tysgi/Pi3ErbevCyvKer04bMGhkK8ynFaKMulKIZXEvBonZPnuzhOC8e54Iqz4lgvjvIUaYob1DdW/UYd8ORxcqR09ev0XYdngcMwzliLS8JWXb2zF3nszTLyUh+kSFpk2TZVlRCG97Dti2trAFAUE9L0CWARRfdxnBYt6oqe31wOme6lzBtd7JXbTLAZZhW7acnOrGCUa3Y9iyqp6vjGtrBnGdVegm55OBY4Sh20jFTY1sG/tk3a6cGoYuEs0ci26T36Ngu7w2LpU1T79S1FXKeu4hanBYukYH8SE3gOjYM+PpYuiNIBYbpPVSjm1ipZfwkuqSjN9QQ8VcXeLKbqLOMu5ljzHXa9PuMygrI8srjBhd4G3mJOON7HefoMAG07FGED89LErAp/GGNXBTqCyvdJustkzTagIK5L3B20qTlQXyC8ej2jeN770xwuc/hz02S1cLGHj9lr+VSWc/BzXlrXy69Tr88AnusSWjZVUWIVFb7RrDQDlhse65FLw7MJLUVn+gWNjSXCjR9hmE/YiXdYCRNWo1Ug5PvjIY8mu2RZyDQtKUqD71rc6gb0Iu+NcifPw5iKNN3GtiP2ihLf8ml77VeWMQySAaETHlumWoibptHzmezGpIviMJ3hIr3pfJ50XpAnJc1egHMwYvuTyxE/2g34//Zi/s72glLDSmDjXsZnX9nkzj1sa4xZ3cVOFjjDfcLdGKMctOvVcy4N5EmKmS/4w2uGu94ca32ZaO0buO7bpSmYTObviPNRSuEdzOW5iuIFaboFQBBcYvN0ccTzUZ75aJ/ewSiP6wdYtk26mL9RwGMrxUrk8cU4ZTbPCQ/Sj3sNl71ZxijOWWsH+P4Kth2SJI+J4+8TBLff+lj3Iq0zsmyHophg2w3CcPPI+7bIUpLZlGanS7sd8eKsl+kgIWt69G5FZCgWpWZRaIbDhPk4p+z6LCzFoqhYVIak1CSVISkNuTbkXptusY/68hFPmg06VZPAMxA/ZV6lLPw+Rtn1VbIB88K1r1LPr4EttO+RpgWDaY49ntI3Y/rMqWzFrtshTvtUjlt3NliU1FfKBy5oyOxaAp6Obfhd95YJ+ss0Rt/DtHrEvU/rxpmv1QI2oChQiwUqnqOSBGVKlAJdGtJcw6023kYb1WmD5/HiaV8B6vlP1A/CGKXUD/7//Eu98P3B489/bgFW+SMEo++DP6PsfYSFwnoeISuwrR9EzO7B945S1L2ifrBVaVGxN8uYJEX9JilLGjY00hFOHlP27hKXisju4piYzwfbDH1NYLcYLiKezSek4ZD1do9bXY92cPUpH1m2gzEludUnrQZsNo9O4JvmUwpdsN5Yv/LtE+Jt+KGD69ssxjlB5F7K3JGX5vPMc+wTAquq1MxGKV7gELVfXqbhWPyejSY/uRzx/+7F/N3tBZUxLPk2/iWkulVWl0q1cBsDqnCElWfYSYqTGNzxHomuqFTJ7/8kYrPXwO1+StS+/0YFCl4l83fERXDdHlm+R54PLjUQKYopZTnFDzauvCrch+6luTxJ3X9HKYXfaJDMZhitj6Rhvc6S5/AodNiJc5YKje1a+I5NM3AYLnJWW3XFW8dp0mh8SpI8JkkeUxRjPG/lrUb3tC7J813yYohC4ftreN7KsZkG00HdgL7Zf7n3TVVqsrgkbLk4jo1Dfa4ggPsNl6GzqEerNqITMxiyJGbQ7BI/nBLe6RJ9/BOU6YxktEUWj4mLMTO7Q+W2UF7d5N62LZq+i+0oMKCNQeUxKk/RyYR4NmORlSTeMlmwjJM5OJGitR7hh25dfOGAAf7z6fBCalNfS8ATOhY/80P3sCcPoefC8tfBe9M7/i9HzlWhGe3UO6+7FmFfSRfuAMJ7MH0K9gwab5emFbg2d/oRt7RhnpUsspLFYsHO3ha4EcQ+xAsADG0WScxwvsWdtmKz0yXw5wRewv3e7WvpIl1VMXm+j+ct8Sxd4FnekdEdgEEyOHbkR4ibrNH1Ge/EJPPiSKBxUeymh04rqkmO5duoY+bbzfZTMNDqnzz3reVa/N5bTf6ZlZB/MEj5uzsLBllJ27VouRd8TFQ2hb1GafWwrAWWn6A6CZMsRSmLn7u/xt1WB9uOsO3GuY5NMn9HXBTL8vDcPnm+j+v2se2Ln0tqTEWaPcOyAzx36cLXL04XtTvE0wmz/QH923fqgCdqkkynZElMcKSR8sl8y2K16fNkNmc+z+n06vdMv+HxaD9mmpZ0DtKwLMslij4izwfk+YA4/hLHaeJ5y9h287XHQWMMVTWnLGcUxRhjKly3j++vntiYOZ5OKLOM9srqkblJ8TQHOByVepGyFM2ez2QvOWy0/SJdVcyH+ySzKV4jov3xx1h5wWQeM8xtjLeJspbplvtsVFO0nlMmhiKxKJQPxtDyFd3QIbI1GF1HHP0G3FrHhH3mpWJ7Z8FgL8Zru3jKYOU5vmNjW/UAgqUUOp7Pz7yzXuNaAh7bcbHTEWRTaG++RbDzsqrSjHdjADqr4RUFOweaq5DN6qDHa4L79gdP21J0QpeOB2Q76LWAsv8p2nIotUEbg2tZfEM1eLJ4RKFH9JsdGuEqT+ZPmObTY3veXCZjNEnyGMvyyFVEUo243TgaeM3zOWmVcrshZTnFu8ULHLzAIZ5mBA0H65KKAzg9n2Kn7s/jrEQvjWQks5w8LWktBdhnCFxars3v3mjwU6sRvz5O+dtbC57GJbaCvn+x83yM8qhsj0nRYZRrflvP5fff6bB0gXNtZP6OuEiet0pRjMmyLaLoowtff5btYHRB1Dh/fxbxdpRl0eovM9ndJplNidodvDBEWRbZYvFGAQ/ARuTzzEt4Oklpd+sRnXZQFy8YLfLDgAfqDB7fX8HzliiKIVk+II4foJSFZYXYdoBl1deKxlQYKowuKMsZxlQoZeE4bTxv5bUBeVWWzIf7uEFI+EqLFV1p0nmBHzknXhP7kYsfFYfzVJ8vl8ymzPYHGK2JOl0a3R6DacLer/4T9PwR3a9/Qq/hEbltLGsNdAVFUn+VCUWWMElLRknFdAaBF7C2vEzY6tZtaDjof1qUdLBYudsl6PkkeUVcVOSlptKG0hiqV+eFnMO1BDxKUQcIfhuaJzf9PAutDZPdBF0ZumvRYV77lerehb3fhNGDerTqTctnv0hrGH4JusRa+hresWVfbe627vLl5EsezR5xv30f3/IZJIMrD3iybPugv8BHPFrs4lrusdswSAYnPibETdfs+4y2YmbDjM7K6X1z3oayLZx+QDlIqKY5Trf+7Jd5xXyU4QXOG88j8m3Fjy+F/Fg/4Elc8g/3607emTZ4FnRcG+8MhRJeJy41o0zT8Sz+rU87fOMSGhrL/B1xkSzLwfdXSdMtynJ2oc1An7dm8LwlbFvmql6noNkkngbMh/sEzSaWZeNHDbJ4gTHmjY5ToW2x1vZ5Noi5F5c0GnWF3X7DY3daFy/wnFerlVl43jKuu0RZTqiqmKpKKYoRxugXF0QpB8dp47qdgxHx068jnwcl7ZWjFQCTWYExhqjz+nNGsxcwTBbM9lMaXZvZ/oAiTXB8n/bKKpVy+HwvJi81jY11lhYjmnaB7b/w3rZs8Jv1F+ACy0BfG0Zxzu4s44u5Yd0uWW7Wx/Cq0EwGCY5r01kOUZYicG1eLYOwlxen/h3O6pqKFuRgOdC9d67VGGOY7iVUhaa9EuJe190/262DnuGXMHlU/15vc8I3BkZfQRFD/+PXjny5tsvd9l0eTB7wZP6EpXCJZ4tnTLLJlQUVZTk/PLCnGpIyYaOxceQgEhcxi3LBWrQmd7vEO8lxbaKOx2KckS6cSylTDWAFDlbTQ89zdGCDZzPZS1CWorX89qPHSinuNFzuNFx+drPJF7OcXx9n/OooJc3qxsm+rYgchW+pU9MuUm0Y57ruN+fZ/P47TX7Hcngp84VA5u+Ii+e6S+T5kDTdotF4farRWWldkiSPUJZ75c1NxfFaS8sMnz5hMRrRWlrGbzRI5zPyJMGP3iwg3WwHPN1PeDJJ+MbBOaAX1QHP8+IFx1FK4brdwyIGxhiMyQELpey3mpOfxQuyxZxGr4/zSnVMow3xLMePnFMHAWzHotF12Xu4x3h7QdQ9tRifAAAgAElEQVTxaC2vELU7zNKCR8M5llLcX45o+m3yL3OK7W2sZhNln9JL0lIsNX06ocuTUcLWOGWeltzuBMz2UpSCzkp44nHdGMNefrSQ2du6noDHaOjdqxsWncN8lJGnJe2l8EKaAz5/Exqj62FGo+tiBcp54euEg2LQgdYGzLbq4b3eR28+0jN5Uqf5de7U6ztF6ITcbt3m8ewxruUSOiHbi21aXgvrEurAv6iuyvYUy/Lx/XW2pg9xLZee33tlOcP2YhvXcukH/RPWJsTNF7U9srhkPkrxAvvSUtvstofJSsphykIpdGXqVN0Lej3PUvxwx+eHOz4/d7fFVlLy1Szny3nBk0XJVlbV92ueF6c0P/gvCrSBrmvzu9cb/GjXZyO8nJLdz8n8HXEZlFIEwQZx/ICi2MfzztcqwRhDmj5Gm4JG9DFKyWjkTeD6AWGrTTwZE7Y7+GEESpHF8zcOeELHZq3lsT3LuV9qfMfCcyxarxQvOE19Xfn2BVyM1kwHezieR6N7tDR0Mi8w2hC1T3+NLI6Jx7tUZQoqoLW0QdjyGcwztsYpgWtxb6lxOHrlbmyQffkV5fY27u2zTVFwbIv7yw0G84ztScqvfj5k1XdZvdV8bYr2qKwo3vWUNiwX/PMNISeznGSWE7V9grc8EWpdUFVzqiqpv3RytI70i5TCUh623cBxGth29HL1ldZ6PXI1eQz7369Hac4S1JV5/ZxsCo3VNyp+0PbarEVr7MQ7NJwGpSnZi/dYa1zu3aU03To8sE/zGXEZHzu6M8kmJFXCZnPz0oMwIS6TUor2UsBoO2Y+ymifUkL6rV/HUjj9gOmXE/KsonW/gxdczqHaUorbkcvtyOV3Hhwy0kozzCqyylAYQ6HrKjsNx6LjWbTcS+z1cwyZvyMuS90fp0mW7eI4XSzr7T9nWbZFWc4Jw01JZbthGr0+6WLObH+P3vqtOq1tscAsvVlaG8CdbsjONOPxOOHT5br6Wr/p8XAQM01KOtHl35iZDQfosqRz6+h8aaMN8TTHC5zXZj1VZclsf0C2mGO7Lre/fofFFObjnL2sZJKWtEOHO73opfYmVhThLC9RDvax2m3s1tmv5ZebPiwqvkhiBo7F0inp1Lt5QXCeKSKvuJ6Axz7fGyJPy8Oc9kb3zXLajdGU5ZSiGFNWczAGpSxsO6qraFg+UA8x1ndoDFqXGFOgTYGuUspyQlEMAbDsANfp4rqdOvhpLNdBz/ghDL4HvfuvL8oQD+uRHUw9svMWld6Ww2XyKmeUjVAo9tN9ekEPz76cilJ5PqQoRvj+Kiif7cVjQjs8MrpT6YqdeIfQCWXujngvON4PUtv8yMG/pJNbXtZpY56l8K/4PkFgW9yKbs7NCZm/Iy6T728Qx1+QJA+Ioo/eamQmz/fr9G5/Bdd9fTNGcfVsxzksU53MZ/iNBtliTpGleMGb3bhqBi7Lvsv2LOVuP8SzLFq+g+soBovs0gOeLF6QTKdEne6x257MC3SliV6TAh1PJ8yH+xitafT6NLq9uqy2r/ne94ZMBiV377e51Tv+2tVZXUXP5xTPnmF98gnKOVsoMR+l6LTk07tt9qqKLwdz7i81aPhHnz8pSjJtuHuBbVauJ+A5h6rUTAcJlq1or4Rnjs61LsjzwcFksaouTekt4zodLCt47XpeTVM0xqB1SlktKIspWbZNlm3jOE1ct48TdFD9T+r5OIPvghNC2Ku/lDqoZJHW1d2yKbiNOsXPefshzo3GBqUuGWUjyqpkZ7HDnfadt17fScpyQZo9OyizuMpOvENpSu407hz5G+6n+/Vj0cVvhxDX5Xlq22yYYrvWhRdKKbKK6SDB7QY0HfXaUtUfApm/Iy6TbQeE4V3i5CFx/DzoOXvAXxRT0mwLx2nhezJv56aKOt16lGewR+9WnYqVzudvHPAAbHZCBrtTns4zPmrX16HLTZ+tcUqcl0Te5VxaV2XJZHcHx/No9o+WO39xdOe4rICqLJjs7lKkCV4Y0lpefWn+zyDOSX2LlraJinp9xx13lWXh3r5N9uWXFNvbeJubp277bJiSzOrGra1+QLvSfDVY8NVgwb2liNYrgc1uXuIpRde5uPPezbmNdwZGGyZ7CcbU5aetM5wAtS5I0y0Wi++R5wMcp0UUfUSz+Q0Cfx3bPnvQ9JxSCtsO8b1lGo2PaTa/ju+vonVOkjyqX0tlmJVv1KM2yoLZM9j9ddj5NRh+UVepKxJo3YLlr50r2Hm+TZutTVpei1zn7Ca7zPMLKV1+SOuCJH2MpVzC8C5plbKf7tP3+0Tuy3cCiqqoq8Z5nSOPCfEuU0rRWQ4BxWQ3oSr1qc85qzwtGe/GWJaisxLi9EOwFOUwxeiLy2V+Vzyfv6MknU1cIsdpEQZ3qXRCkjx8uYLWCeo5O1skyUNsKyAMj970EzeHUorOyhrGGObDfbwoIjvob/im2i2XZcdhZ5YxL+sR6H7kYVkwmOUXudkvme7tYIyhs7p+7HvtcHTnmMpsyWzK/pPHFFlKa3mF3sbtl4KdvVnG7jRjpR/w8f0OeVKfi3R1/GfBCkOclRWq8YRqMnntdr8a7AC4tsXHyw0C1+Lhfsw8+0FxgkVZEWvNiude6GfqnQp4ZsOUMq9oL4en3lU1RpNluy8EOh2aza8ThndwnDerv36aeuL+Go3G1wnDeyjlkKbPmMdfkDkGs/wprP5IHdy0N2HpU1j7rbD+o9Bae7uKbsdth7K427pLP+izn+zzaPoIfYYD91kYY0iSR2AqwvAeYLG12MJRDqvR0ZKI2/E2CsVaJHe8xPvHdi26qyFaG8Y7J58U3kSelkx269Hr7nrdPFnZCqfnYwpNNb28E+lNJfN3xFVx3TZhsElZzkmSh2h98udN64w4/oI8H+B5S0TRJ1Kk4B3geB6t/hJ5HNeZOmVJnsRvvB7Ltths+eik5FGSoY2pK5I1fCZJQXYQBF2keDImTxJaS8s43tGAph7dyY6M7mhdMd7ZZrq3i+N5LG3eJWq/PMVguMjZnqR0Qpfb3ZCw6dFZCSlzzWgnPvGmnrOyghWFFFtbmOJo+ejnPTJfDXYOn29bfLTcxHcsHgwWJHn9d9vNSxyl6F9wVsM7E/DE05x0UdDo+qdWZCvLGYvF52TZDo7TOgh0NrGs842inKYuPdim0fiEKPoY2w7Jsm3mi++R6zmmuVr3HfJb565QdxLHcvio8xEr4QoPZw95NHt0IetN06dUVUwQ3MG2A0bZiKRMWG+sY7/S3XeaT5nmU5bCJdxzztcS4qZyPJvOSoiuDOPdBH2OEZjDYMdRdNeilyqyvVSqOr24Ep3vAp1WdY8Kmb8jroDrdgmC25TlnPn8u8TxVxTFBGM0VZWS50OS5CmLxRdonROG9wiCWzKy8w6JOl3cICSPY7TWJLPZW62n0fFZtx1m84Ldg9LJS00PpWAwv9ibU0WWMtsf4EXRkWDluXp05+W+O0WeMXzymGwxp9lfon9r80gJ63lW8myc0Awc7vR/kPHkRy6d1fr8NtqOyY859yil6kptWpM/fox5oehXuigYPltQpBXNXnAk2HnOthT3lxs4tuKrwYJxWjCtKpZdB+uCP1fvRMCTJ3UpWD9yaXRODlq0LojjOg8XFFH0EWF499IDneM4ToMouk8UfYylPNL0GYvF9yiK8aW/tmd7/NDSD9HxO/zm/m+yu9g91/rS9NlhkQLXbZOWKbvxLk23eaQYQVEVPJs/I7RDVsLzNZUV4qbzAofOSkhVaMY7MWX+Znf2jDYsxhmT3QTbsY4EO8/ZbQ/lWpSjDFN9OKltJinr+Usyf0dcEc/rH6apVzojSR4xm/06i8XnpOlTynKCbTdoND7Fddunr1DcOJ3VVSzbpkgT0vkMo998hN71bPqRR5BpdrKctNK4tkU3chktcsoLGPWHet7OeGcby7bprByfMXPc6E4ynzF8+gRjDL1bt48tX52VFY/2YzzH4m4/OhK4e4FDb62ekjDeiRnvHA18LN/HvX0bHSeUz55RZBWTvYTpIMFxLXobEVH79QW0XNvio4OKd7+8O6WqDEvuxQ8K3PiApyyqw26s7aWTq04UxYjF4nOqao7vr9NofO3CU9fehuM0aDQ+Joruo5RNkjxmsfiCsny73NGzCp2Q37782/Ftn1/e/WVm+dvdxUjTrYPmosv4/hqFLng0e4RCcatx66VljTE8nj8GYLO1KXe9xAfBCx3aKyG60oclq88y3yZPS4bbCxaTuuJbd+3kXjvPS1WjDdU4vehf4UYyhcaUGhXI6I64Ws/T1JuNbxBF9/H8FcLwDs3m12m1foQouvdySwrxTrEdl9byCpbtMB8PSRdvN985bHusYFFlmidZPaqz3PQxpk4TOy+jNeOdLXRV0V3fwDqh0Wc8y9GVodH1McYwHewx3d3B9QP6t+8cW5ih0oZH+zEGw72lCPuEm0qOZ7N0q0GzF1Ae3Ngb78Qsxtlh5lXpRqRum93P9xh8b4s8KWl0fbpr0ZmL+viOzUYvZFJWJPP89S1i3tKNDnj0QZECpeoiBcfd5atHdR6QJE+wrIBG41N8f+XGXWw7TotG41PCcBNtCuL4S+L4IVpnl/aaDa/BZ2ufoZTi21vfJimTN3p+mm0f5igHwQbaaB5PH1Ppirvtu0fS1XbiHZIyYaOxcWklsYW4ifzQob/RwG84xNOM4daCZJ5T5NVLw/xVoUnnBZO9hPFODAa6qxHt5fDURqbKtbHbHjopqRZH86XfN8/T96xL6kEkxGmUUjhOi8Bfx3W715ItIi5H2GzRWV2jTDNGW8/eah1+6OB7Np3UsKg0g7wkcG1agcNgnp8rzRlgOtilzDI6q2u4/vE3/KtK15XZQgfHVUx2tkmmE8J2h97GLewTSkY/GcVkpeZuP8I/pRKashRR2zsMfKpSs5hkzEcp00HCZC+hCDv43SZhPqLXUzQ6Z2vC+tLvi2azG9JE8XAYn/vv96obfSaZDhJ0edBl3Dl6MVAUY9L0GWAIgo1zd0q+Cq7bw3E65PmAPN9jvvgcz+3jeavnanp2kpbf4pur3+Tb29/m72//fX5i/ScIndPLMKbZNnm2dxDs3MIYw9PZU5Iq4W7r7pF1TPPpYcU26bkjPkSWbdFeCgkaLrNhymy/HolRSmE7Flqbw+IGlq2I2j6NjvdG6Vp2y0OnJdU4q1O9jjkuvi90WtblqN/j31EIcX2a/SWaS0uMd7bort8iar95imLU9qj2U8rS8Iyc0FastHy+3FswjPO62eZbmI+GpPN67k3QODlbaTHOwEDUdhhuPaXMMlpLy0Sd7onP2ZmmTJOSjW5wpBz06zwPfKK2hzEGow1aG4wGx7XgdoPsiy8onz3F+ugjrGOKK5wkrjTjsuJOIyAM4NEw5vEo5m7/4qr83tgzyWKcHQ6LvVpPXOuSOH5IkjzGsnyi6NN3Ith5TikL31+l0fg6rtMjz/dZLL5Hlg9euht8UZajZX5s9cdYFAv+3tO/xygZnbisMRVx/JA828N1+4fBzvZim2kxZT1ap+W93Fk3LuLDeTtrDanKJj5sXlCP9vRvNWgvh4QtD8tRuL5Nqx/Q32iwvNmi2fPfam6K0wtAUZeqvoTjxU1gKoPJKixJZxNCXBKlFKsffYztuOw++IIyf/M0tCBysWyLpRxcpXiY5HiuTcO32Z1mVG8xShFPJyxGQ4Jm69i5N88VeUU6L/ACmO4+o8xzOmvrrw12JnHB7jSjG7lvHYxB/bez7LoPnXswz1LZNt69e3URg68eoN/g77mbF9jAiufQiVw2ugHTpGRrcnEp3Dcy4EkXBYtJRtB0j0x2KooJi8XnlNUMP9g4qIb2bg4zW5ZLGN6m0fhaXdHtsF/Q8MIvZG41b/E71n8HBsO3tr7F09nTI8tUVVbPL6pmBMEGYXibtEz5avIVw2zIUrDEUvhys6tZPuPh9CG2srnTuoP1Bg3bhHhfKaVwXJug4dLs+XRXIzordfDjnLPimHIsnK6PySv07P1MbXuezqYknU0IcYlcL2Bpc5MsXjDafkZ5THnl11GWImy56LRi03aojOFBkrHW9qm0YTB/s2kL8XTCbLCHF4a0V462/HjRfJhidEG62ENrTX/j9mtHg5K84vEoJvRsNntv3nD1LCzfx7t/H4wm/+ordHb67x9XmklZseK52AdpcMtNn+WWx/4FVry7cVenZV4x208P74Y+p3VJkjwmSR5hWS6N6Gv43vKNm6vzNmw7IIo+Oihs4JCmTw8rul1k4NMP+/zUrZ+i4Tb4h7v/kF8b/NrhvJ6imBDHX2BMRRTex3WXGCQDvpx8SaEL7rTusN5Yf2l943TM49ljfNvno85HUoJaiCtiRS5W5FLNcvQbVoZ7F5i0BNvCknLUQohL1uj2aXZ75EnC6NkTivzNgpSwWTfI1POSO4FHrDVDY+hGLnuzjOKMFdsW4xGzwR5+1KC7/vpy5+miIJ0n5Mk+SkHv1m3c4OTCXmWleThc4NiKe0tHK7JdJCsMD4IeQ/7gwalBz05W4CjFsvfyDa6NTkgnvLjrSnUdKRGfffaZ+c53vnPk51WlGW/HGAO9jR+UZy3LGUn6FGNKfG8Vz7t5RQkuUlFMyfIddJViWR6et4Tr9i6ssVlZlfzK4Fd4Nn+GRcWK57Hut/C9Fjir5LoiqRIKXdB222w0N3BemF+kjWaQDNhL9mi6TTabm0d68QghLpfRhnK3bprnrEbvTelmow3F1gKr4eB0Tz6BCyHERdC6Yu/hAxzfQxdlXcp5/dZrA4hXLSYZi3FGdy1iqAw7eUHftpiM6vSxzd7r56LMR0MWoyF+o0lnde2117hGG3YfjpgNtmivhHV/ndfMlzHG8OVBY89PVpqEV3QjSWcZ+YMHYAzu5iZ28+jo06Kq+H6cseG5rPpHgxtjDJZl/ZIx5rPzbs+NGeEx2jDZTdCVobNSl2fVuiBJnhDHD1DKphF9iu+vvtfBDtQdn5uNrxGG91DKJU23mM+/S5puUVXnz2d0bIcfW/lt/OTyp/Ssgr3FFr8x2+VBkrGb7pNVGaETstnc5E77zmGwU+mKQTLg89Hn7CV7dLwOd1t3JdgR4hooS2H3fEypqSaXV+3xqpm8AmOkOpsQ4kpYlk3QaFJmOZ31DSzLYrj1lCyOz7yOqOVhOxbzYcaqa9N1bIaVpvQUo0VBWhw/Em+0ZrK7czhn57RgB2A6mDHafkrU8U8NdgCejhPirGKzF15ZsAM/SG9Ttk3+4CHF06eY6uW/w7O0wD1mdOe5i7zevxFnFGMMk0FCmVd0ViMcT5Fle+T5LgaD76/iee9/oPMq123jum2qKq6ruhX75PkAy/Jx3Q6O08G2z34HwhhNWU4oijFlOSewFD++8VOkJuDpYousyrCwcG33sArbMB1S6YpSl0zyCZWpaLpNlsNlGm7jsn51IcQZWL6D3fLq1LbAwQpvxCH9XHRaglIoSWcTQlyRqNslnc8okoTerU3G288Ybz8j6nRp9voo65S2AZai2fOZ7CWk85J7bR8nzdmpNPtxSnOc8NHKyyMcRZYy2dmmKksa3R6NXv/U69x4GrP1xUP8yGX1o3s47utTvvZmGaNFwUrLpxtdfbsQy/fxPvmEcm+Pcm9ANV/g3trAbrUYFiWx1twJPKxjfm+T55Sjk4tsvakbcXacDVPypKTZ87GcOYvFDlrnOE4b319/Z4sSXBTbjgjDu/i6pCwnlOWULNsly3ZRysKyQmw7wLKCg7Q3dfihqXSG0TlaZ1RVjDEay/Lw/dXDvgIB0Al6LIoF82LOPJ+zU+y8vA3KpuE0WAqXiNyLKxMohDgfq+2hs4pylOJ6EeqUfj43nUnr6mzvS4qeEOLmcz0fLwyJJ2Oidof+rU1mwwHxZEwWL17bC+c5P3LxgoOiWw2H24GHoxTTtOS7s5R+06MT1iWdk+mE2f4Ay7bpbdzCC0+/rirynGfffYBtW9z+xkenBjvTtGB7ktIOHdY715cerCwLd20Nu9WiePqU/OEjtOPwJIgImk16zfoGu9EatEYnCdVwSDV7u4awJ27Hdc/hqZsXxbhhgteYoXWOZQcE/gaOc3K1iQ+d1gVVNaeqEqoqQesUY46fGKeUg2X52HaA43RwnNNHZoqqoDIVtmXjKOeDG10T4l1iCk2xG2P5Ns7y5VTfuQo6ryh3Y+xegN2QIihCiKuTJzGjrWe0lleI2nU/wSyOme7toKuKqNMl6nSwnZOPTWVRMdqK8RsO7aX6WLyXFnxre4JlDD/edXHnE6qiwIsiOitrWPbpo9lVWfL4N74gXWTc+ZFPaHRefx2X5BVf7M0JXIuPl5tYN+QGktGaajLh6XDMzmzBJzZEloJXQhHlOtjdHk6vi+X7FzKH59pGeKoqZTYaMxtOsfyEMLSwrCa+v4HjtOQC+xSW5WJZPVy3rtFujMGY4qCqm8YYjVIKpby3amjq2i4ucsEhxLtAuRZ2x6MaZ1TzHLt59akLF0HHdTqbzN8RQlw1L4xwPP9wlAfAjyKW7txlNqhHe+LJGL/RpNHpHlvUwHFtwpZLPM0Jmx6ub7PkWvxTDcX/82CXv7uv+S1LDT5eWaPRah15/nF0VbHz5SPSecb6x3dPDXaKg4pstqW4t9S4McEO1KM9ZbvDxPFZX1d0iwydpqCselTfslCui9W6+DjgWs4qWqfsbf0myVTjNzx6q8t43vIHn7p2Hs+DGyHEh8lueui0oprkWL6Dct+t1DZjDDou6nQ2++acoIUQH46o22W6u0O6mB/2tLEsm87qGs1+n3gyIZlNyRZzLMfB9QNc38fxfCzLwmCwXU2Zp2x9f0LYNOgqxwN+vO3xwARMGi0eKoeVvKDvOoe9Z45jtGb/6VOm+3N6tzborHVeu/1lpXkwWFBWhk9Wmrg3MMV5KyuwgI0wwG6EXNVszesJeCoLna3SW2nSWZbRHCGEuAhOz6fYiSlHKc5K+E4dW01SgjZYksomhLgmQaPJ3NknnoyPNPG0HZfW0jLNXp9kPiNPEsosJVscnWtitCaellRlwPJmj6DRYC0I8PbmDNMC4xueZQU7WR30LHsO3iuFEYwx7D99yvDZmNbSKsu3l157TC8rzYP9BVmpubcUXWlFtrOaFCXTquKW7+Je8cjT9eQNGJtmp0drKXinTshCCHGTKdvC6QWU+wl6mmN33p1R8youUY6F8m/eSVoI8WFQStHodJntDyjS9Ni0NWVZRO3OYdqbriqKLANMfU2r6sJRS5sW00FKVTk4fn0svtOPSHfmeFnF/X7IoKgYFCV7RUnDtug4Nm3HxlOK4bNn7D8dEXWXWb23gv2aUftKGx7sL0iLOthpBTfvxlGhDU+ygtCyWHavPvy4loBHWYr2OzyxVgghbiordLCaLtUsR/n2OzEfxpQak5bYbU9uggkhrlXYajMfDZmPh/TWb526vGXb+NHRKmuuD0bXlYjno4xWP8C1LW73Qh7tx+yNM+72IzZ8w7ComJQVz7KCZ1lBtr9PtjVkqdVj5aNV3NfcCKq04avBnLTQ3L2hwQ7A4zRHG8Pd0L+W4/y1JPfZzs3LKRRCiPeF3fZRrkU5yjDV8dUbbxKdlABY0c08UQshPhzKsmh0e+RxTBYvzrWusOURtT2SWc50kFBVmk7ocqsbMEtLHuwvsFGs+y7faAT8UCMgHI2YPhsSB02SW32+l+d8vkjZzgrmZYV+obpyWtTV2J4HO+0bGuzs5QWzquKW7xFc07yim3/rTwghxBtRlsLpBxS7CeUow73hI+p6UaB8GyU3w4QQN0DU6ZLMpswGe3ib4amNR1+n2aunb8TTnCwuiToe/baHbSmejBK+Giy4vxRhSsP+w22qvT2+1u6y/vVNClsxqyrmpWY3L9ihHqlo2DZVXjGf5wS2xf3lBk3/Zl7Sx5VmKyvoODZL3vVt48386wghhDgX5do/KFU9y7FbN7OKo84qTKmxW9fXGE8IIV6klKK9vMJo6xmL8Yhmf+lc62t0fYKGy3ycshhnpPMC27XoasXWbsx8LyEsFpBM6G0ss3b/NspS+EDTscGHyhgWlWacFXw5jtmPCyLf5l7TY4HB0/pI4YPrpo3hUZrhKMWmf73nIAl4hBDiPWU3PUxWUU0P5vPcwKo9elGApbBCOR0JIW4OL4wImi0W4xFBs4Xjne+C3XYtOisReVIST3N0ZQhti/WGz+OtAeN0RG+1y/rGat2T5hVpXjFZ5EyTgiVj8clyEz90mZQV23nBdl7QtC16rkPXsbGueT6kMYYHSU6mDZ+EPs419wOSM4wQQrzH7F6A2Y0p91Pc1ehG9bgx2qCTEityjj3BCyHEdWr2l8jiBdPBHv1bty9knV7o4L1wgyeaz3C0JjZL5FGPR/sJnpPh2ApFPdpUVJqs0FgW9BoeSw2PwK1vYK36LrnWjIqKYVHyOM15BieWu74KxhgepjmzquJO4NWjVNfsXAGPUurPA/8SkANfAP+mMWZ8ERsmhBDi/JSlsPsB5V5COUxwlm9Ofx49L8BI7x0hxM1kOw7N/hKzwR7JfEbYbF3o+uPphNlgDz+MWFtfRymLcVwwSQq0MRjq4MG1LVaaPp3QxTrm5pBnWaz5Fmu+y7ys2D8odT0oSjqOzbLn0LCvLuh4lOZMyrrfTv8aSlAf57xb8YvAzxtjSqXUnwN+HvjT598sIYQQF8XybOyuTzVKb0x/HqMN1Tyvy2jfwFQ7IYSAukx1Mpsy3dvFdhy84GKKwMxHQxajIX7UoLO6dlgYodfw6DXePn2u6dg0HZsNrRnkJcOiZFxWRJbFiufQcexLven1JM0ZlxUbnsuKd3NuZp1rnMsY8zeNMeXBt98CNs+/SUIIIS6a3XCxGnV/nudloK+TnhegDdYNLaYghBBQp5R11zawbZvx9hZFnp1rfcYYpoM9FqMhQbNFZ239XFXgTuJZFrcCjx9uhtzyXcqDNPHGiVMAAA1PSURBVLPfXKTs5QXVC+WtL0KuNV/EKftFyarnsOrfnGAHLrYPzx8H/sZJDyql/oRS6jtKqe/s7e1d4MsKIYQ4C7vjozybcpRiiuvrz2MqGd0RQrw7bMehd+s2yrIYPXtKmedvtZ6qLBhtPSWZTgjbnXpk55JTjG2lWPFcfqgRcD/wcC3Fs6zgN+YJT9OcTJ//XDAqSr63SIkrzabvsXHNFdmOo8wpEZ5S6m8B68c89AvGmL9+sMwvAJ8BP2dOWyHw2Wefme985ztvsblCCCHOw5SaYi9BKXBWrqeIQTXNqKY57lqEciXgEUK8G8o8Z/jsCcqy6N+6je2cfRQjmU2Z7Q8AaC0tE7bal7WZp4orzV5eMCkrDNCybbquTcexsd8gAHu+nucpc3dDD/+CR6uUUr9kjPnsvOs5dQ6PMeb3nLIhfwz4A8DPnCXYEUIIcX2UY+EsHRQx2D8oYnCFFdJMZahmBVboSLAjhHinOJ5Hb+MWo61nDB4/Iup0aHR7WNbJx7IiTVlMxmSLOW4Q0F5Zw3GvN90rsi3uhT6FNuwXJaOi5HFa8YQ6+Gk6FoFVf7kvnB8qYyi0YVpWDMuSTBsUsO65rHrOjSmIc5zzVmn7WeA/AH6XMSa+mE0SQghxmSzPxukHlPsJ1SjFWbqYSbhnoec5GIPdvv7CCUII8aZcP6B/+w6L0T7xeEwyndLo9vDCEJRCqXqEI1vMSeezOv1NKRq9Po1u70YFBa6lWPdd1n2XRVUxKSomZcU0qw6XsannMZWvjGk0bIsV36Xrvtmo0HU5b5W2/wrwgV882IHfMsb8yXNvlRBCiEtlhQ52x6eaZFST7Eoqt5lSU80LrMhFuTerI7gQQpyV47p0VteJuhnz4T7z4f7xy/k+reUVgmbztaNAN0HDtmnYNreAUhtSrUm0JtN1oGMrcJTCQtF0rAtPXbts5wp4jDGfXtSGCCGEuFp2y8NUmmpW34G025c30dQYQzlMQXGpryOEEFfF9Xx667co8gxdlhhtMEbXvXOCANd7N0eyHUvRtGya3Owg7U3cjG5AQgghroXd8UHXhQTg8oKRappj8gqnH6Ccd+vOoBBCvI7r+fCOBjcfCgl4hBDiA6aUwu7VJ+o66Ln4+TU6LdGzHKvpYkU3qzeDEEKI958EPEII8YFTStVFDFQ9EoPhwub0mEpTDlOUa0mhAiGEENdCAh4hhBAAOL2AEqhmObrQOL3gXH16jD6Yt2PA6V9t+WshhBDiOUmkFkIIccjpBdhdH5NVlHsxOq9Of9IxTKkp92JMVuH0fKnKJoQQ4trIGUgIIcRL7KaHs1L35in3krrggD57X2mdlhS7MaYyOMuhzNsRQghxrSSlTQghxBGWZ6NWI6pRSjXNqOY5dtPFangnprmZUqPjgmqao1wLZymUimxCCCGunQQ8QgghjqUshbMUovMKPcuppjnVrMAKbLAtlK1QtqoDnaTEFBoAK3Kxu77M2RFCCHEjSMAjhBDitSzPxloKMUXdpNQUFSatwPwgzU35NnbXxwocGdURQghxo0jAI4QQ4kyUa+H0g8PvjTZQabCsc1VzE0IIIS6TBDxCCCHeirIUWPZ1b4YQQgjxWpJ3IIQQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4b0nAI4QQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4b0nAI4QQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4b0nAI4QQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4b0nAI4QQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4b0nAI4QQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4b0nAI4QQQgghhHhvScAjhBBCCCGEeG9JwCOEEEIIIYR4byljzNW/qFIz4LtX/sLiVcvA4Lo34gMn++BmkP1wM8h+uH6yD24G2Q83g+yH6/cNY0zrvCtxLmJL3sJ3jTGfXdNriwNKqe/Ifrhesg9uBtkPN4Psh+sn++BmkP1wM8h+uH5Kqe9cxHokpU0IIYQQQgjx3pKARwghhBBCCPHeuq6A57+7ptcVL5P9cP1kH9wMsh9uBtkP10/2wc0g++FmkP1w/S5kH1xL0QIhhBBCCCGEuAqS0iaEEEIIIYR4b11awKOU+teUUr+ulNJKqc9eeeznlVLfV0p9Vyn1e094/kdKqW8fLPc/K6W8y9rWD8XB3/EfHXw9UEr9oxOWe6CU+tWD5S6kOoaoKaX+jFLq6Qv74fedsNzPHnw+vq+U+g+vejvfd0qpP6+U+k2l1D9WSv01pVT3hOXks3DBTntvK6X8g2PV9w/OAfevfivfb0qpO0qpv6OU+o2D8/S/d8wyP62UmrxwrPqPrmNb33enHWNU7b88+Dz8Y6XUj1/Hdr6vlFLfeOE9/o+UUlOl1J96ZRn5LFwCpdRfUkrtKqV+7YWf9ZVSv6iU+vzg394Jz/2jB8t8rpT6o2d6vctKaVNK/TCggf8W+PeNMd85+PmPAP8T8BPALeBvAV83xlSvPP9/Af6qMeavKKX+G+BXjDF/8VI29gOklPoLwMQY8x8f89gD4DNjjNSev2BKqT8DzI0x/9lrlrGB7wH/PPAE+AfAHzHG/MaVbOQHQCn1LwB/2xhTKqX+HIAx5k8fs9wD5LNwYc7y3lZK/dvAbzPG/Eml1B8G/hVjzL9xLRv8nlJKbQAbxphfVkq1gF8C/tAr++Gnqc/df+CaNvODcNox5uCm2L8L/D7gJ4H/whjzk1e3hR+Og+PTU+AnjTEPX/j5TyOfhQunlPrngDnwPxpjfvTgZ/8pMDTG/CcHN8R6r56blVJ94DvAZ4ChPn590xgzet3rXdoIjzHmnxhjjmsu+geBv2KMyYwxXwHfpw5+DimlFPC7gf/14Ef/A/CHLmtbPzQHf99/nTrwFDfPTwDfN8Z8aYzJgb9C/bkRF8QY8zeNMeXBt98CNq9zez4gZ3lv/0HqYz7U54CfOThmiQtijNkyxvzywf9nwD8Bbl/vVokT/EHqC0JjjPkW0D0IWMXF+xngixeDHXF5jDH/NzB85ccvHv9Puvb/vcAvGmOGB0HOLwI/e9rrXcccntvA4xe+f8LRA+0SMH7hguS4ZcTb+2eBHWPM5yc8boC/qZT6JaXUn7jC7fpQ/DsHqQl/6YTh2rN8RsTF+ePA3zjhMfksXKyzvLcPlzk4B0yozwniEhykDP4Y8O1jHv6nlVK/opT6G0qp33KlG/bhOO0YI+eDq/OHOflGsHwWrsaaMWbr4P/bwNoxy7zVZ8I5z1Yppf4WsH7MQ79gjPnr51m3eDtn3Cd/hNeP7vxOY8xTpdQq8ItKqd88iMTFGbxuHwB/Efiz1Ce5Pwv8BeoLbnHBzvJZUEr9AlACf/mE1chnQby3lFJN4H8D/pQxZvrKw78M3DPGzA/Sqv534GtXvY0fADnG3ACqnif+LwM/f8zD8lm4BsYYo5S6sHk35wp4jDG/5y2e9hS488L3mwc/e9E+9bCtc3CH77hlxDFO2ydKKQf4OeCbr1nH04N/d5VSf406DUUOwGd01s+FUuq/B/6PYx46y2dEnOIMn4U/BvwB4GfMCZMZ5bNw4c7y3n6+zJOD41WH+pwgLpBSyqUOdv6yMeavvvr4iwGQMeb/Ukr910qpZZnPdrHOcIyR88HV+Bfh/2/vjkHkqOI4jn9/GLS4KqBgJAgW6a0kkMZCT7EIHFhcY0Ry4IWkTiCNEC3EwkYLC5MmEMVGWPAwjVpKDDGQXJIihYHE41JYxkb4W7y5uN7tnqe3twvj99PtzGP3sTPv7fx3/u8/XKuq9c07HAtTtZ7kQFWtdambD0e0eQC8PPT6IPDDP73xLFLaBsBiWiWeF2hR8pXhBt3Fx/fAm92mtwHvGE3GK8Cdqro/ameSuW4RK0nmgHng5qi2+vc25V4vMPq7/Qk4lFap8EnabfbBNPr3f5HkdeA0cLSqHo1p41iYvJ2c2wPanA/tN+C7cQGp/ptuTdR54HZVfTymzbMba6eSvES7XjDwnKAdzjED4Fiaw7RiQ2to0sZmvjgWpmp4/h937X8ZmE+yv1sWMN9t29au7vBsJ8kC8AnwDPBNkutV9VpVrXYV2G7RUklOblRoS7ICLFXVr8AZ4MskHwA/0yZn7d6WHNUkzwGfV9UbtHzJr7uxvQ+4VFXfTr2X/fVRkhdpKW2/AO/C349BVznsFG0APwFcqKrVWXW4pz4FnqKlkAD82FUFcyzsoXHndpJzwNWqGtDm+otJ7tIWtC7Orse9dQR4C7iRvx5PcBZ4HqCqPqMFmyeS/AH8DiwaeE7cyDkmyTI8Pg4rtAptd4FHwDsz6mtvdcHmq3S/x9224WPgWNgDSb6g3al5Osl94D3gQ+CrJMeBe7QCW6Q93ma5qpaq6rck79P+QAM4V1Wbix9s/TyPmSRJkqS+mkVKmyRJkiRNhQGPJEmSpN4y4JEkSZLUWwY8kiRJknrLgEeSJElSbxnwSJIkSeotAx5JkiRJvWXAI0mSJKm3/gS/equ8CmInLQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_gp_posterior(mu_y_test_post, cov_y_test_post, X_train, y_train, X_test, n_samples=25)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# In summary\n", "\n", "In this post, we've unpacked the notion of a kernel, and its ubiquitous use in Gaussian Processes. \n", "\n", "In addition, we've introduced the RBF kernel, i.e. \"squared exponential\" kernel, and motivated its widespread application in these models." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }