
The Berkeley Out-of-Order Machine (BOOM) Design Specification

Christopher Celio, David Patterson, and Krste Asanović
University of California, Berkeley, California 94720–1770

celio@eecs.berkeley.edu

December 4, 2016

This draft is a work-in-progress.

The information in this publication is subject to change without notice.
This document is available at: https://ccelio.github.io/riscv-boom-doc.

Copyright c© 2016 Christopher Celio

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY
4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

https://ccelio.github.io/riscv-boom-doc
http://creativecommons.org/licenses/by/4.0/

Contents

1 Introduction & Overview 5
1.1 The BOOM Pipeline . 5
1.2 The RISC-V ISA . 7
1.3 The Chisel Hardware Construction Language . 7
1.4 Quick-start . 8
1.5 The BOOM Repository . 8
1.6 The Rocket-chip Repository Layout . 9

1.6.1 The Rocket Core - a Library of Processor Components! 10

2 Instruction Fetch 11
2.1 The Rocket I-Cache . 11
2.2 The Fetch Buffer . 12

3 Branch Prediction 13
3.1 The Rocket Next-line Predictor (NLP) . 13

3.1.1 NLP Predictions . 14
3.1.2 NLP Updates . 14

3.2 The Backing Predictor (BPD) . 16
3.2.1 Making Predictions . 16
3.2.2 Updating the Backing Predictor . 18
3.2.3 Managing the Global History Register . 18
3.2.4 The Branch Reorder Buffer (BROB) . 19
3.2.5 Rename Snapshot State . 20
3.2.6 The Abstract Branch Predictor Class . 20
3.2.7 The Two-bit Counter Tables . 21
3.2.8 The GShare Predictor . 22
3.2.9 The TAGE Predictor . 22
3.2.10 Other Predictors . 25

3.3 Branch Prediction Configurations . 26
3.3.1 GShare Configuration Options . 26
3.3.2 TAGE Configurations . 26

4 The Decode Stage 27

2

5 The Rename Stage 28
5.1 The Purpose of Renaming . 28
5.2 The Explicit Renaming Design . 28
5.3 The Rename Map Table . 28

5.3.1 Resets on Exceptions and Flushes . 29
5.4 The Busy Table . 30
5.5 The Free List . 30
5.6 Stale Destination Specifiers . 31

6 The Reorder Buffer (ROB) and the Dispatch Stage 32
6.1 The ROB Organization . 32
6.2 ROB State . 33

6.2.1 Exception State . 33
6.2.2 PC Storage . 34

6.3 The Commit Stage . 34
6.4 Exceptions and Flushes . 34

6.4.1 Parameterization - Rollback versus Single-cycle Reset 35
6.4.2 Causes . 35

7 The Issue Unit 36
7.1 Speculative Issue . 36
7.2 Issue Slot . 36
7.3 Issue Select Logic . 36
7.4 Un-ordered Issue Window . 37
7.5 Age-ordered Issue Window . 37
7.6 Wake-up . 38

8 The Register File and Bypass Network 39
8.1 Register Read . 40

8.1.1 Dynamic Read Port Scheduling . 40
8.2 Bypass Network . 40

9 The Execute Pipeline 41
9.1 Execution Units . 42

9.1.1 Scheduling Readiness . 42
9.2 Functional Units . 43

9.2.1 Pipelined Functional Units . 44
9.2.2 Un-pipelined Functional Units . 44

9.3 Branch Unit & Branch Speculation . 44
9.4 Load/Store Unit . 46
9.5 Floating Point Units . 46
9.6 Floating Point Divide and Square-root Unit . 47
9.7 Parameterization . 47
9.8 Control/Status Register Instructions . 48

3

10 The Load/Store Unit (LSU) 49
10.1 Store Instructions . 49

10.1.1 Store Micro-ops . 49
10.2 Load Instructions . 50
10.3 The BOOM Memory Model . 50

10.3.1 Ordering Loads to the Same Address . 50
10.4 Memory Ordering Failures . 51

11 The Memory System and the Data-cache Shim 53

12 Micro-architectural Event Tracking 54
12.1 Reading HPM Counters in Software . 54

13 Verification 56
13.1 RISC-V Tests . 56
13.2 RISC-V Torture Tester . 56

14 Debugging 57

15 Pipeline Visualization 58

16 Physical Realization 60
16.1 Register Retiming . 60
16.2 Pipelining Configuration Options . 61

A Future Work 62
A.1 The Rocket Custom Co-processor Interface (ROCC) 62

A.1.1 The Demands of the ROCC Interface . 62
A.1.2 A Simple One-at-a-Time ROCC Implementation 63
A.1.3 A High-performance ROCC Implementation Using Two-Phase Commit . . . 63
A.1.4 The BOOM Custom Co-processor Interface (BOCC) 63

A.2 The Vector (“V”) ISA Extension . 63
A.3 The Compressed (“C”) ISA Extension . 64

A.3.1 Challenging Implementation Details . 65

B Parameterization 66
B.1 Rocket Parameters . 66
B.2 BOOM Parameters . 66
B.3 Uncore Parameters . 66

C Frequently Asked Questions 67

D Terminology 68

4

Chapter 1

Introduction & Overview

The goal of this document is to describe the design and implementation of the Berkeley Out–of–
Order Machine (BOOM).

BOOM is heavily inspired by the MIPS R10k and the Alpha 21264 out–of–order processors[5,
10]. Like the R10k and the 21264, BOOM is a unified physical register file design (also known as
“explicit register renaming”).

The source code to BOOM can be found at (https://ucb-bar.github.io/riscv-boom).

1.1 The BOOM Pipeline

Branch
Prediction

Fetch

Fetch
Buffer

Decode Register
Rename

Dispatch Issue

Issue Window

ALUUnified
Register

File

Execute

Data
Mem

addr

wdata
rdata

LAQ

SAQ

SDQ

Memory WB

ROB

RenameDecodeFetch RegisterRead

Commit

Br
Logic

Resolve
BranchBP

Figure 1.1: The Berkeley Out of Order Machine Processor.

Commentary on design decisions and justifications can be found in paragraphs like this one.

5

https://ucb-bar.github.io/riscv-boom

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch,
Issue, Register Read, Execute, Memory, Writeback, and Commit. However, many of those stages
are combined in the current implementation, yielding six stages: Fetch, Decode/Rename/Dispatch,
Issue/RegisterRead, Execute, Memory, and Writeback (Commit occurs asynchronously, so I’m not
counting that as part of the “pipeline”).

Fetch Instructions are fetched from the Instruction Memory and pushed into a FIFO
queue, known as the fetch buffer.1

Decode Decode pulls instructions out of the fetch buffer and generates the appropriate
“micro-op” to place into the pipeline.2

Rename The ISA, or “logical”, register specifiers are then renamed into “physical”
register specifiers.

Dispatch The micro-op is then dispatched, or written, into the Issue Window.

Issue Micro-ops sitting in the Issue Window wait until all of their operands are ready,
and are then issued.3 This is the beginning of the out–of–order piece of the pipeline.

RF Read Issued micro-ops first read their operands from the unified physical register
file (or from the bypass network)...

Execute ... and then enter the Execute stage where the functional units reside. Issued
memory operations perform their address calculations in the Execute stage, and
then store the calculated addresses in the Load/Store Unit which resides in the
Memory stage.

Memory The Load/Store Unit consists of three queues: a Load Address Queue (LAQ),
a Store Address Queue (SAQ), and a Store Data Queue (SDQ). Loads are fired to
memory when their address is present in the LAQ. Stores are fired to memory at
Commit time (and naturally, stores cannot be committed until both their address
and data have been placed in the SAQ and SDQ).

Writeback ALU operations and load operations are written back to the physical reg-
ister file.

Commit The Reorder Buffer, or ROB, tracks the status of each instruction in the
pipeline. When the head of the ROB is not-busy, the ROB commits the instruction.
For stores, the ROB signals to the store at the head of the Store Queue that it can
now write its data to memory.

BOOM supports full branch speculation and branch prediction. Each instruction, no matter
where it is in the pipeline, is accompanied by a branch tag that marks which branches the instruction
is “speculated under”. A mispredicted branch requires killing all instructions that depended on
that branch. When a branch instructions passes through Rename, copies of the Register Rename
Table and the Free List are made. On a mispredict, the saved processor state is restored.

1While the fetch buffer is N-entries deep, it can instantly read out the first instruction on the front of the FIFO.
Put another way, instructions don’t need to spend N cycles moving their way through the fetch buffer if there are no
instructions in front of them.

2Because RISC-V is a RISC ISA, currently all instructions generate only a single micro-op. More details on how
store micro-ops are handled can be found in Chapter 11.

3More precisely, uops that are ready assert their request, and the issue scheduler chooses which uops to issue that
cycle.

6

Although Figure 1.1 shows a simplified pipeline, BOOM implements the RV64G and privileged
ISAs, which includes single- and double-precision floating point, atomic memory support, and
page-based virtual memory.

1.2 The RISC-V ISA

BOOM implements the RV64G variant of the RISC-V ISA. This includes the MAFD extensions
and the privileged specification (multiply/divide, AMOs, load-reserve/store-conditional, single- and
double-precision IEEE 754-2008 floating point). More information about the RISC-V ISA can be
found at (http://riscv.org).

RISC-V provides the following features which make it easy to target with high-performance
designs:

Relaxed memory model This greatly simplifies the Load/Store Unit, which does not
need to have loads snoop other loads nor does coherence traffic need to snoop the
LSU, as required by sequential consistency.

accrued floating point exception flags The fp status register does not need to be
renamed, nor can FP instructions throw exceptions themselves.

no integer side-effects All integer ALU operations exhibit no side-effects, save the
writing of the destination register. This prevents the need to rename additional
condition state.

no cmov or predication Although predication can lower the branch predictor com-
plexity of small designs, it greatly complicates OoO pipelines, including the addi-
tion of a third read port for integer operations.

no implicit register specifiers Even JAL requires specifying an explicit rd. This
simplifies rename logic, which prevents either the need to know the instruction first
before accessing the rename tables, or it prevents adding more ports to remove the
instruction decode off the critical path.

rs1, rs2, rs3, rd are always in the same place This allows decode and rename to
proceed in parallel.

BOOM (currently) does not implement the “C” compressed extension nor the “V” vector ex-
tension.

1.3 The Chisel Hardware Construction Language

BOOM is implemented in the Chisel hardware construction language. More information about
Chisel can be found at (http://chisel.eecs.berkeley.edu).

7

http://riscv.org
http://chisel.eecs.berkeley.edu

1.4 Quick-start

To build a BOOM C++ emulator and run BOOM through a couple of simple tests:

$ git clone https://github.com/ucb-bar/rocket-chip.git

$ cd rocket-chip

$ git checkout boom

$ git submodule update --init

$ cd emulator; make run CONFIG=BOOMConfig

Note: this assumes you have already installed the riscv-tools toolchain. If not, visit (https:
//github.com/riscv/riscv-tools).

1.5 The BOOM Repository

The BOOM repository holds the source code to the BOOM core; it is not a full processor and
thus is NOT A SELF-RUNNING repository. To instantiate a BOOM core, the Rocket chip
generator found in the rocket-chip git repository must be used (https://github.com/ucb-bar/
rocket-chip), which provides the caches, uncore, and other needed infrastructure to support a
full processor.

The BOOM source code can be found in boom/src/main/scala.
The code structure is shown below:

• boom/src/main/scala/

– bpd pipeline.scala branch prediction stage.

– brpredictor.scala abstract branch predictor.

– configs.scala BOOM configurations.

– consts.scala constant definitions.

– core.scala the top-level of the processor core.

– dcacheshim.scala the shim between the the core and the dcache.

– decode.scala decode stage.

– execute.scala high-level execution units (made up of FUs).

– fpu.scala floating point unit.

– functional unit.scala low-level functional units.

– gshare.scala gshare branch predictor.

– imul.scala integer multiplier.

– issue ageordered.scala age-ordered (collasping-queue) issue window implementation.

– issue.scala abstract issue window.

– issue slot.scala An issue window slot.

– issue unordered.scala un-ordered issue window implementation.

– lsu.scala load/store unit.

– package.scala

– parameters.scala knobs/parameters.

8

https://github.com/riscv/riscv-tools
https://github.com/riscv/riscv-tools
https://github.com/ucb-bar/rocket-chip
https://github.com/ucb-bar/rocket-chip

– prefetcher.scala data prefetcher.

– regfile.scala register file.

– registerread.scala registerRead stage and bypassing.

– rename.scala register renaming logic.

– rob.scala re-order buffer.

– tile.scala top-level tile.

– util.scala utility code.

1.6 The Rocket-chip Repository Layout

As BOOM is just a core, an entire SoC infrastructure must be provided. BOOM was developed
to use the open-source Rocket-chip SoC generator (https://github.com/ucb-bar/rocket-chip).
The Rocket-chip generator can instantiate a wide range of SoC designs, including cache-coherent
multi-tile designs, cores with and without accelerators, and chips with or without a last-level shared
cache.

Emulated DRAM

Coherence Hub

Core (BOOM)

I$

dcshim

Arbiter

Chisel

C++ Test Harness
(emulator.cpp)

ptw
D$ (HC)

darb

io.mem
requestor/ptw

requestor/ptw

io.memdp/status

csr

imem
dmem

tlb
LSU

BOOMTile

Figure 1.2: A single-core “BOOM-chip”, with no L2 last-level cache.

To manage the wide array of actively developed projects that encompass Rocket-chip, the
Rocket-chip repository makes heavy use of git submodules. The directory structure of the Rocket-
chip repository is shown below.

• rocket-chip/

– boom/ Git submodule of the Chisel source code for the BOOM core.

– chisel The source code to the Chisel language itself.

9

https://github.com/ucb-bar/rocket-chip

– firrtl The source code to the FIRRTL project.

– csrc/ Utility C/C++ source code.

– emulator/ Verilator simulation tools and support.

∗ generated-src/Auto-generated Verilog code.

∗ Makefile Makefile for Verilator simulation.

∗ output/Output files from Verilator simulation runs.

– riscv-tools/Git submodule that points to the RISC-V toolchain.

∗ riscv-tests/ Source code for benchmarks and tests.

· riscv-bmarks/ Benchmarks written in C.

· riscv-tests/ Tests written in assembly.

– Makefrag The high-level Makefile fragment.

– src/ Chisel source code for rocket-chip.

∗ rocket/ Git submodule of the Chisel source code for the Rocket core (used as a library

of processor components).

∗ junctions/ Git submodule of the Chisel source code for the uncore and off-chip network.

∗ uncore/ Git submodule of the Chisel source code for the uncore components (including

LLC).

– sbt/ Chisel/Scala voodoo.

– vsim/ The ASIC Verilog simulation and build directories.

1.6.1 The Rocket Core - a Library of Processor Components!

Rocket is a 5-stage in-order core that implements the RV64G ISA and page-based virtual memory.
The original design purpose of the Rocket core was to enable architectural research into vector
co-processors by serving as the scalar Control Processor. Some of that work can be found at
(http://hwacha.org).[2]

Rocket has been taped out at least thirteen times in three different commercial processes, and
has been successfully demonstrated to reach over 1.65 GHz in IBM 45 nm SOI.[9] As its namesake
suggests, Rocket is the baseline core for the Rocket-chip SoC generator. As discussed earlier,
BOOM is instantiated by replacing a Rocket tile with a BOOM tile.

However, from BOOM’s point of view, Rocket can also be thought of as a “Library of Processor
Components.” There are a number of modules created for Rocket that are also used by BOOM
- the functional units, the caches, the translation look-aside buffers, the page table walker, and
more. Thus, throughout this document you will find references to these Rocket components and
descriptions on how they fit into BOOM.

The source code to Rocket can be found at (https://github.com/ucb-bar/rocket).[3]

10

http://hwacha.org
https://github.com/ucb-bar/rocket

Chapter 2

Instruction Fetch

Figure 3.1 shows the Fetch Unit organization used by BOOM.

Branch
Prediction

I$

Fetch
Buffer

Fetch1

 μDec
PC1

Fetch2

NLP

ExeBrTarget

NPC

BPD

PC2

Front-end

TakePC?

BPD
Target

Figure 2.1: The Fetch Unit. The grey box is the front-end instantiated from the Rocket code base.

BOOM instantiates the Rocket core’s Front-end (highlighted in grey in Fig 3.1), which fetches
instructions and predicts every cycle where to fetch the next instructions using a “next-line predic-
tor” (NLP). If a misprediction is detected in BOOM’s backend, or BOOM’s own predictor wants to
redirect the pipeline in a different direction, a request is sent to the Front-End and it begins fetching
along a new instruction path. See Chapter 3 for more information on how branch prediction fits
into the Fetch Unit’s pipeline.

Since superscalar fetch is supported, the Front-end returns a fetch packet of instructions. The
fetch packet also contains meta-data, which includes a valid mask (which instructions in the packet
are valid?) and some branch prediction information that is used later in the pipeline.

2.1 The Rocket I-Cache

BOOM instantiates the i-cache found in the Rocket processor source code. The i-cache is a virtually
indexed, physically tagged set-associative cache.

11

To save power, the i-cache reads out a fixed number of bytes (aligned) and stores the instruction
bits into a register. Further instruction fetches can be managed by this register. The i-cache is
only fired up again once the fetch register has been exhausted (or a branch prediction directs the
PC elsewhere).

The i-cache does not (currently) support fetching across cache-lines, nor does it support fetching
unaligned relative to the superscalar fetch address.1

The i-cache does not (currently) support hit-under-miss. If an icache miss occurs, the icache
will not accept any further requests until the miss has been handled. This is less than ideal for
scenarios in which the pipeline discovers a branch mispredict and would like to redirect the icache
to start fetching along the correct path.

The front-end (currently) only handles the RV64G ISA, which uses fixed-size 4 bytes instruc-
tions.

2.2 The Fetch Buffer

Fetch packets coming from the i-cache are placed into a Fetch Buffer. The Fetch Buffer helps to
decouple the instruction fetch front-end from the execution pipeline in the back-end.

The instructions within a fetch packet are not collapsed or compressed - any bubbles within a
fetch packet are maintained.

The Fetch Buffer is parameterizable. The number of entries can be changed and whether the
buffer is implemented as a “flow-through” queue2 or not can be toggled.

1This constraint is due to the fact that a cache-line is not stored in a single row of the memory bank, but
rather is striped across a single bank to match the refill size coming from the uncore. Fetching unaligned would
require modification of the underlying implementation, such as banking the i-cache such that consecutive chunks of
a cache-line could be accessed simultaneously.

2A flow-through queue allows entries being enqueued to be immediately dequeued if the queue is empty and the
consumer is requesting (the packet “flows through” instantly).

12

Chapter 3

Branch Prediction

This chapter discusses how BOOM predicts branches and then resolves these predictions.
BOOM uses two levels of branch prediction- a single-cycle “next-line predictor” (NLP) and a

slower but more complex “backing predictor” (BPD).1

Branch
Prediction

I$

Fetch
Buffer

Fetch1

 μDec
PC1

Fetch2

NLP

ExeBrTarget

NPC

BPD

PC2

Front-end

TakePC?

BPD
Target

Figure 3.1: The Fetch Unit.

3.1 The Rocket Next-line Predictor (NLP)

BOOM instantiates the Rocket core’s Front-End, which fetches instructions and predicts every
cycle where to fetch the next instructions. If a misprediction is detected in BOOM’s backend, or

1Unfortunately, the terminology in the literature gets a bit muddled here in what to call different types and levels
of branch predictor. I have seen “micro-BTB” versus “BTB”, “NLP” versus “BHT”, and “cache-line predictor”
versus “overriding predictor”. Although the Rocket code calls its own predictor the “BTB”, I have chosen to refer
to it in documentation as the “next-line predictor”, to denote that it is a combinational predictor that provides
single-cycle predictions for fetching “the next line”, and the Rocket BTB encompasses far more complexity than just
a “branch target buffer” structure. Likewise, I have chosen the name “backing predictor” as I believe it is the most
accurate name, while simultaneously avoiding being overly descriptive of the internal design (is it a simple BHT? Is
it tagged? Does it override the NLP?). But in short, I am open to better names!

13

BOOM’s own backing predictor wants to redirect the pipeline in a different direction, a request is
sent to the Front-End and it begins fetching along a new instruction path.

The next-line predictor (NLP) takes in the current PC being used to fetch instructions (the
Fetch PC) and predicts combinationally where the next instructions should be fetched for the next
cycle. If predicted correctly, there are no pipeline bubbles.

The next-line predictor is an amalgamation of a fully-associative branch target buffer (BTB),
a gshare branch history table (BHT), and a return address stack (RAS) which work together to
make a fast, but reasonably accurate prediction.

3.1.1 NLP Predictions

The Fetch PC first performs a tag match to find a uniquely matching BTB entry. If a hit occurs,
the BTB entry will make a prediction in concert with the BHT and RAS as to whether there is a
branch, jump, or return found in the fetch packet and which instruction in the fetch packet is to
blame. The BTB entry also contains a predicted PC target, which is used as the Fetch PC on the
next cycle.

BTB
valPC tags targetret jmp bidx

PC

hit?

Figure 3.2: The Next-line Predictor (NLP) Unit. The Fetch PC scans the BTB’s “PC tags” for a match.
If a match is found (and the entry is valid), the BHT and RAS are consulted for the final verdict. If the entry
is a “ret” (return instruction), then the target comes from the RAS. If the entry is a unconditional “jmp”
(jump instruction), then the BHT is not consulted. The “bidx”, or branch index, marks which instruction
in a superscalar fetch packet is the cause of the control flow prediction. This is necessary to mask off the
other instructions in the fetch packet that come over the taken branch.

The hysteresis bits (governed by a gshare predictor) are only used on a BTB entry hit and if
the predicting instruction is a branch.

If the BTB entry contains a return instruction, the RAS stack is used to provide the predicted
return PC as the next Fetch PC. The actual RAS management (of when to pop or push the stack)
is governed externally.

For area-efficiency, the high-order bits of the PC tags and PC targets are stored in a compressed
file.

3.1.2 NLP Updates

Each branch passed down the pipeline remembers not only its own PC, but also its Fetch PC (the
PC of the head instruction of its fetch packet).2

2In reality, only the very lowest bits must be saved, as the higher-order bits will be the same.

14

BTB Updates

The BTB is updated only when the Fetch Unit is redirected to take a branch or jump by either
the Branch Unit (in the Execute stage) or the Backing Predictor (in the Branch Predict stage).3

If there is no BTB entry corresponding to the taken branch or jump, an new entry is allocated
for it.

BHT Updates

The BHT is composed of two parts that require updates - a global history (ghistory) register and a
table of history counters.

The ghistory register tracks the outcomes of the last N branches that have been fetched. It
must be updated:

• in the Branch Predict stage - once we have decoded the instruction fetch bundle, know if any
branches are present, and which direction the branch predictors have chosen to direct the
Fetch Unit.

• in the Execute stage - if and only if a misprediction occurs, the ghistory register must be reset
with the correct outcome of the branch history.

The history counter table is updated when the ghistory register is updated. Because the counters
are read out and passed down the pipeline with the branch instruction, there is not a problem with
having updated the counters incorrectly in the earlier Branch Predict stage. If a misprediction
occurs, the counters will be reset and incremented to the proper value.

Notice that by updating the history counters in the Branch Predict stage, the updates are being
performed in-order! However, it is possible for a branch to update the history counters before later
being found to have been misspeculated under a previous branch. We suspect that this is a fairly
benign scenario.4

RAS Updates

The RAS is updated during the Branch Predict stage once the instructions in the fetch packet have
been decoded. If the taken instruction is a call5, the Return Address is pushed onto the RAS. If
the taken instruction is a RETURN, then the RAS is popped.

3Rocket’s BTB relies on a little cleverness - when redirecting the PC on a misprediction, this new Fetch PC is the
same as the Update PC that needs to be written into a new BTB entry’s Target PC field. This “coincidence” allows
the PC compression table to use a single search port - it is simultaneously reading the table for the next prediction
while also seeing if the new Update PC already has the proper high-order bits allocated for it.

4Likewise, the BHT does not keep track of a commit copy of the ghistory register. This means that any sort of
exceptions or pipeline replays will leave the ghistory register in an incoherent state. However, experiments showed
that this had no noticeable effect on performance on real benchmarks. This is probably because the BHT’s ghistory
register is fairly small and can quickly re-learn the history in only a few cycles.

5While RISC-V does not have a dedicated CALL instruction, it can be inferred by checking for a JAL or JALR

instruction with a writeback destination to x1 (aka, the return address register).

15

Superscalar Predictions

When the NLP makes a prediction, it is actually using the BTB to tag match against the predicted
branch’s Fetch PC, and not the PC of the branch itself. The NLP must predict across the entire
fetch packet which of the many possible branches will be the dominating branch that redirects the
PC. For this reason, we use a given branch’s Fetch PC rather than its own PC in the BTB tag
match.6

3.2 The Backing Predictor (BPD)

When the next-line predictor (NLP) is predicting well, the processor’s backend is provided an
unbroken stream of instructions to execute. The NLP is able to provide fast, single-cycle predictions
by being expensive (in terms of both area and power), very small (only a few dozen branches can
be remembered), and very simple (the gshare hysterisis bits are not able to learn very complicated
or long history patterns).

To capture more branches and more complicated branching behaviors, BOOM provides support
for a “Backing Predictor”, or BPD (see Figure 3.3).

The BPD’s goal is to provide very high accuracy in a (hopefully) dense area. To make this
possible, the BPD will not make a prediction until the fetch packet has been decoded and the
branch targets computed directly from the instructions themselves. This saves on needing to store
the PC tags and branch targets within the BPD.7

The BPD is accessed in parallel with the instruction cache access (See Fig. 3.1). This allows
the BPD to be stored in sequential memory (i.e., SRAM instead of flip-flops). With some clever
architecting, the BPD can be stored in single-ported SRAM to achieve the density desired [7].

3.2.1 Making Predictions

When making a prediction, the backing predictor must provide the following:

• is a prediction being made?

• a bit-vector of taken/not-taken predictions

As per the first bullet-point, the BPD may decide to not make a prediction. This may be because
the predictor uses tags to inform whether its prediction is valid or there may be a structural hazard
that prevented a prediction from being made.

The BPD provides a bit-vector of taken/not-taken predictions, the size of the bit-vector match-
ing the fetch width of the pipeline (one bit for each instruction in the fetch packet). The Branch
Prediction stage will decode the instructions in the fetch packet, compute the branch targets, and
decide in conjunction with the BPD’s prediction bit-vector if a front-end redirect should be made.

6Each BTB entry corresponds to a single Fetch PC, but it is helping to predict across an entire fetch packet.
However, the BTB entry can only store meta-data and target-data on a single control-flow instruction. While there
are certainly pathological cases that can harm performance with this design, the assumption is that there is a
correlation between which branch in a fetch packet is the dominating branch relative to the Fetch PC, and - at least
for narrow fetch designs - evaluations of this design has shown it is very complexity-friendly with no noticeable loss
in performance. Some other designs instead choose to provide a whole bank of BTBs for each possible instruction in
the fetch packet.

7It’s the PC tag storage and branch target storage that makes the BTB within the NLP so expensive.

16

holds both rename-table
snapshots, and bpd

snapshot information that
can be released once a

branch is resolved.

npc

hash

paddr

NPC (BP0)

uDec

predictions

BTB

valid
mask
insts

IC-Access (BP1) IC-Resp (BP2)

FetchBuffer

I$

 ghistory

w
predict

S1

prediction
tables

addr

data

allocate
resources

B-ROB

Commit,
update predictor

branch
rename

snapshots
imem

req

pred_resp
(1 per packet)

predictions
(1 per inst)ras_update

predictor pipeline

br_unit

update

ROB

kill

predictor

Decode/Rename/Dispatch

req_pc

resp

predictor (base)

ghist

brUnitResp
commit

S2

Figure 3.3: The Backing Branch Predictor (BPD) Unit. The front-end sends the “next PC” (npc) to
the BPD (BP0 stage). A hash of the npc and the global history is used to index the predictor tables. The
predictor tables (ideally stored in SRAM) are accessed in parallel with the instruction cache (BP1 stage).
The BPD then returns a prediction for each instruction in the fetch packet. The instructions returning from
the instruction cache are quickly decoded; any branches that are predicted as taken will redirect the front-
end from the BP2 stage. Prediction snapshots and metadata are stored in the branch rename snapshots (for
fixing the predictor after mispredictions) and the Branch Re-order Buffer (for updating the predictor in the
Commit stage).

17

Jump and Jump-Register Instructions

The BPD makes predictions only on the direction (taken versus not-taken) of conditional branches.
Non-conditional “jumps” (JAL) and “jump-register” (JALR) instructions are handled separately
from the BPD.8

The NLP learns any “taken” instruction’s PC and target PC - thus, the NLP is able to predict
jumps and jump-register instructions.

If the NLP does not make a prediction on a JAL instruction, the pipeline will redirect the Fetch
Unit in the Fetch2 Stage (see Fig. 3.1).9

Jump-register instructions that were not predicted by the NLP will be sent down the pipeline
with no prediction made. As JALR instructions require reading the register file to deduce the jump
target, there’s nothing that can be done if the NLP does not make a prediction.

3.2.2 Updating the Backing Predictor

Generally speaking, the BPD is updated during the Commit stage. This prevents the BPD from
being polluted by wrong-path information.10 However, as the BPD makes use of global history,
this history must be reset whenever the Fetch Unit is redirected. Thus, the BPD must also be
(partially) updated during Execute when a misprediction occurs to reset any speculative updates
that had occurred during the Fetch stages.

When making a prediction, the BPD passes to the pipeline a “response info packet”. This
“info packet” is stored in a “branch re-order buffer” (BROB) until commit time.11 Once all of
the instructions corresponding to the “info packet” is committed, the “info packet” is set to the
BPD (along with the eventual outcome of the branches) and the BPD is updated. Section 3.2.4
covers the BROB, which handles the snapshot information needed for update the predictor during
Commit. Section 3.2.5 covers the BPD Rename Snapshots, which handles the snapshot information
needed to update the predictor during a misspeculation in the Execute stage.

3.2.3 Managing the Global History Register

The global history register is an important piece of a branch predictor. It contains the outcomes of
the previous N branches (where N is the size of the global history register).12

When fetching branch i, it is important that the direction of the previous i − N branches is
available so an accurate prediction can be made. Waiting till the Commit stage to update the

8JAL instructions jump to a PC+Immediate location, whereas JALR instructions jump to a PC+Register[rs1]+
Immediate location.

9Redirecting the Fetch Unit in the Fetch2 Stage for JAL instructions is trivial, as the instruction can be decoded
and its target can be known.

10In the data-cache, it can be useful to fetch data from the wrong path- it is possible that future code executions
may want to access the data. Worst case, the cache’s effective capacity is reduced. But it can be quite dangerous to
add wrong-path information to the BPD - it truly represents a code-path that is never exercised, so the information
will never be useful in later code executions. Worst, aliasing is a problem in branch predictors (at most partial tag
checks are used) and wrong-path information can create deconstructive aliasing problems that worsens prediction
accuracy. Finally, bypassing of the inflight prediction information can occur, eliminating any penalty of not updating
the predictor until the Commit stage.

11These info packets are not stored in the ROB for two reasons - first, they correspond to fetch packets, not
instructions. Second, they are very expensive and so it is reasonable to size the BROB to be smaller than the ROB.

12Actually, the direction of all conditional branches within a fetch packet are compressed (via an OR-reduction)
into a single bit, but for this section, it is easier to describe the history register in slightly inaccurate terms.

18

global history register would be too late (dozens of branches would be inflight and not reflected!).
Therefore, the global history register must be updated speculatively, once the branch is fetched and
predicted in the BP2 stage.

If a misprediction occurs, the global history register must be reset and updated to reflect the
actual history. This means that each branch (more accurately, each fetch packet) must snapshot
the global history register in case of a misprediction.13

There is one final wrinkle - exceptional pipeline behavior. While each branch contains a snapshot
of the global history register, any instruction can potential throw an exception that will cause a
front-end redirect. Such an event will cause the global history register to become corrupted. For
exceptions, this may seem acceptable - exceptions should be rare and the trap handlers will cause a
pollution of the global history register anyways (from the point of view of the user code). However,
some exceptional events include “pipeline replays” - events where an instruction causes a pipeline
flush and the instruction is refetched and re-executed.14 For this reason, a commit copy of the
global history register is also maintained by the BPD and reset on any sort of pipeline flush event.

3.2.4 The Branch Reorder Buffer (BROB)

The Reorder Buffer (see Chapter 6) maintains a record of all inflight instructions. Likewise, the
Branch Reorder Buffer (BROB) maintains a record of all inflight branch predictions. These two
structure are decoupled as BROB entries are incredibly expensive and not all ROB entries will
contain a branch instruction. As only roughly one in every six instructions is a branch, the BROB
can be made to have fewer entries than the ROB to leverage additional savings.

Each BROB entry corresponds to a single superscalar branch prediction. Said another way,
there is a 1:1 correspondence between a single fetch cycle’s prediction and a BROB entry. For each
prediction made, the branch predictor packs up data that it will need later to perform an update.
For example, a branch predictor will want to remember what index a prediction came from so it
can update the counters at that index later. This data is stored in the BROB.

When the last instruction in a fetch group is committed, the BROB entry is deallocated and
returned to the branch predictor. Using the data stored in the BROB entry, the branch predictor
can perform any desired updates to its prediction state.

There are a number of reasons to update the branch predictor after Commit. It is crucial that
the predictor only learns correct information. In a data cache, memory fetched from a wrong path
execution may eventually become useful when later executions go to a different path. But for a
branch predictor, wrong path updates encode information that is pure pollution – it takes up useful
entries by storing information that is not useful and will never be useful. Even if later iterations
do take a different path, the history that got it there will be different. And finally, while caches
are fully tagged, branch predictors use partial tags (if any) and thus suffer from deconstructive
aliasing.

Of course, the latency between Fetch and Commit is inconvenient and can cause extra branch

13Notice that there is a delay between beginning to make a prediction in the BP0 stage (when the global history is
read) and redirecting the front-end in the BP2 stage (when the global history is updated). This results in a “shadow”
in which a branch beginning to make a prediction in BP0 will not see the branches (or their outcomes) that came a
cycle (or two) earlier in the program (that are currently in BP1 or BP2 stages). It is vitally important though that
these “shadow branches” be reflected in the global history snapshot.

14An example of a pipeline replay is a memory ordering failure in which a load executed before an older store it
depends on and got the wrong data. The only recovery requires flushing the entire pipeline and re-executing the load.

19

mispredictions to occur if multiple loop iterations are inflight. However, the BROB could be used to
bypass branch predictions to mitigate this issue. Currently, this bypass behavior is not supported
in BOOM.

The BROB is broken up into two parts: the prediction data and the branch execution metadata.
The metadata tracks which instructions within the fetch packet where branches, which direction
they took, and which branches were mispredicted (this requires random access). The prediction
data is written once into the BROB upon instruction Dispatch and read out (and deallocated)
during Commit.

3.2.5 Rename Snapshot State

The BROB holds branch predictor data that will be needed to update the branch predictor during
Commit (for both correct and incorrect predictions). However, there is additional state needed for
when the branch predictor makes an incorrect prediction and must be updated immediately. For
example, if a misprediction occurs, the speculatively-updated global history must be reset to the
correct value before the processor can begin fetching (and predicting) again.

This state can be very expensive but it can be deallocated once the branch is resolved in the
Execute stage. Therefore, the state is stored in parallel with the Rename Snapshots. During Decode
and Rename, a branch tag is allocated to each branch and a snapshot of the rename tables are
made to facilitate single-cycle rollback if a misprediction occurs. Like the branch tag and rename
maptable snapshots, the corresponding branch predictor “rename” snapshot can be deallocated
once the branch is resolved by the Branch Unit in Execute.

3.2.6 The Abstract Branch Predictor Class

To facilitate exploring different global history-based BPD designs, an abstract “BrPredictor” class
is provided. It provides a standard interface into the BPD, the control logic for managing the global
history register, and contains the branch reorder buffer (BROB) (which handles the inflight branch
prediction checkpoints). This abstract class can be found in Figure 3.3 labeled “predictor (base)”.

Global History

As discussed in Section 3.2.3, global history is a vital piece of any branch predictor. As such,
it is handled by the abstract BranchPredictor class. Any branch predictor extending the abstract
BranchPredictor class gets access to global history without having to handle snapshotting, updating,
and bypassing.

Very Long Global History (VLHR)

Some branch predictors (see Section 3.2.9) require access to incredibly long histories – over a thou-
sand bits. Global history is speculatively updated after each prediction and must be snapshotted
and reset if a misprediction was made. Snapshotting a thousand bits is untenable. Instead, VLHR
is implemented as a circular buffer with a speculative head pointer and a commit head pointer.
As a prediction is made, the prediction is written down at V LHR[spec head] and the speculative
head pointer is incremented and snapshotted. When a branch mispredicts, the head pointer is reset
to snapshot + 1 and the correct direction is written to V LHR[snapshot]. In this manner, each
snapshot is on the order of 10 bits, not 1000 bits.

20

Operating System-aware Global Histories

Although the data on its benefits are preliminary, BOOM does support OS-aware global histories.
The normal global history tracks all instructions from all privilege levels. A second user-only global
history tracks only user-level instructions.

3.2.7 The Two-bit Counter Tables

The basic building block of most branch predictors is the “Two-bit Counter Table” (2BC). As a
particular branch is repeatedly taken, the counter saturates upwards to the max value 3 (0b11) or
strongly taken. Likewise, repeatedly not-taken branches saturate towards zero (0b00). The high-
order bit specifies the prediction and the low-order bit specifies the hysteresis (how “strong” the
prediction is).

global history

PC
XOR

2b counter table

prediction
hysteresis

Figure 3.4: A gshare predictor uses the global history hashed with the PC to index into a table of 2-bit
counters. The high-order bit makes the prediction.

These two-bit counters are aggregated into a table. Ideally, a good branch predictor knows
which counter to index to make the best prediction. However, to fit these two-bit counters into
dense SRAM, a change is made to the 2bc finite state machine – mispredictions made in the weakly
not-taken state move the 2bc into the strongly taken state (and vice versa for weakly taken being
mispredicted). The FSM behavior is shown in Figure 3.5.

Although it’s no longer strictly a “counter”, this change allows us to separate out the read
and write requirements on the prediction and hystersis bits and place them in separate sequential
memory tables. In hardware, the 2bc table can be implemented as follows:

The P-bit:

• read - every cycle to make a prediction

• write - only when a misprediction occurred (the value of the h-bit).

The H-bit:

• read - only when a misprediction occurred.

• write - when a branch is resolved (write the direction the branch took).

21

11 10

0100

T

T
TN

N

N

T

N

strongly
not-taken

weakly
not-taken

strongly
taken

weakly
taken

Figure 3.5: Two-bit counter state machine.

By breaking the high-order p-bit and the low-order h-bit apart, we can place each in 1 read/1 write
SRAM. A few more assumptions can help us do even better. Mispredictions are rare and branch
resolutions are not necessarily occurring on every cycle. Also, writes can be delayed or even dropped
altogether. Therefore, the h-table can be implemented using a single 1rw-ported SRAM by queue-
ing writes up and draining them when a read is not being performed. Likewise, the p-table can be
implemented in 1rw-ported SRAM by banking it – buffer writes and drain when there is not a read
conflict.

A final note: SRAMs are not happy with a “tall and skinny” aspect ratio that the 2bc tables
require. However, the solution is simple – tall and skinny can be trivially transformed into a
rectangular memory structure. The high-order bits of the index can correspond to the SRAM row
and the low-order bits can be used to mux out the specific bits from within the row.

3.2.8 The GShare Predictor

Gshare is a simple but very effective branch predictor. Predictions are made by hashing the
instruction address and the global history (typically a simple XOR) and then indexing into a table
of two-bit counters. Figure 3.4 shows the logical architecture and Figure 3.6 shows the physical
implementation and structure of the gshare predictor. Note that the prediction begins in the BP0
stage when the requesting address is sent to the predictor but that the prediction is made later in
the BP2 stage once the instructions have returned from the instruction cache and the prediction
state has been read out of the gshare’s p-table.

3.2.9 The TAGE Predictor

BOOM also implements the TAGE conditional branch predictor. TAGE is a highly-parameterizable,
state-of-the-art global history predictor [8, 6]. The design is able to maintain a high degree of ac-
curacy while scaling from very small predictor sizes to very large predictor sizes. It is fast to
learn short histories while also able to learn very, very long histories (over a thousand branches of
history).

TAGE (TAgged GEometric) is implemented as a collection of predictor tables. Each table entry
contains a prediction counter, a usefulness counter, and a tag. The prediction counter provides the
prediction (and maintains some hysteresis as to how strongly biased the prediction is towards taken

22

npc

hash

paddr

NPC (BP0)

uDec

predictions

BTB

valid
mask
insts

IC-Access (BP1) IC-Resp (BP2)

FetchBuffer

I$

p-table

ghistory

w
predict

h-tablebr_unit_pc
+ ghistory

S1 S2

write-buffer

h-table only touched on branch-updates (in Commit)
* write to h-table on every branch-update
* read from h-table when BPD mispredicts

p-table
* read every cycle (for predictions)
* write on BPD mispredict (in Commit)

h_out

global history register
* update at end of BP2 stage
 - it contains the branch prediction history
 of the fetch unit (including BTB
 decisions)
 - compresses entire fetch-packet decision
* reset on fetch unit redirect (misprediction)
 - new prediction must use the new history

addr

data

take
branch

2bit Counter
Table

Figure 3.6: The GShare predictor pipeline.

or not-taken). The usefulness counter tracks how useful the particular entry has been in the past
for providing correct predictions. The tag allows the table to only make a prediction if there is a
tag match for the particular requesting instruction address and global history.

Each table has a different (and geometrically increasing) amount of history associated with it.
Each table’s history is used to hash with the requesting instruction address to produce an index
hash and a tag hash. Each table will make its own prediction (or no prediction, if there is no tag
match). The table with the longest history making a prediction wins.

On a misprediction, TAGE attempts to allocate a new entry. It will only overwrite an entry
that is “not useful” (ubits == 0).

TAGE Global History and the Circular Shift Registers (CSRs)15

Each TAGE table has associated with it its own global history (and each table has geometrically
more history than the last table). As the histories become incredibly long (and thus too expensive
to snapshot directly), TAGE uses the Very Long Global History Register (VLHR) as described in
Section 3.2.6. The histories contain many more bits of history that can be used to index a TAGE

15No relation to the Control/Status Registers.

23

pred tags u

Table 1

idx_hash tag_hash

=?

valid

pred tags u

Table 2

idx_hash tag_hash

=?

valid

pred tags u

Table 3

idx_hash tag_hash

=?

valid

prediction!

ghist[L(1):0] ghist[L(2):0] ghist[L(3):0]

Figure 3.7: The TAGE predictor. The requesting address (PC) and the global history are fed into each
table’s index hash and tag hash. Each table provides its own prediction (or no prediction) and the table
with the longest history wins.

table; therefore, the history must be “folded” to fit. A table with 1024 entries uses 10 bits to index
the table. Therefore, if the table uses 20 bits of global history, the top 10 bits of history are XOR’ed
against the bottom 10 bits of history.

Instead of attempting to dynamically fold a very long history register every cycle, the VLHR
can be stored in a circular shift register (CSR). The history is stored already folded and only the
new history bit and the oldest history bit need to be provided to perform an update. Code 3.2.9
shows an example of how a CSR works.

1 Example:

2 A 12 bit value (0b_0111_1001_1111) folded onto a 5 bit CSR becomes

3 (0b_0_0010), which can be found by:

4
5
6 /-- history[12] (evict bit)

7 |

8 c[4], c[3], c[2], c[1], c[0]

9 | ^

10 | |

11 _______________________/ \---history[0] (newly taken bit)

12
13
14 (c[4] ^ h[0] generates the new c[0]).

15 (c[1] ^ h[12] generates the new c[2]).

Code 3.1: The circular shift register. When a new branch outcome is added, the register
is shifted (and wrapped around). The new outcome is added and the oldest bit in the
history is “evicted”.

24

Each table must maintain three CSRs. The first CSR is used for computing the index hash and
has a size n = log(num table entries). As a CSR contains the folded history, any periodic history
pattern matching the length of the CSR will XOR to all zeroes (potentially quite common). For
this reason, there are two CSRs for computing the tag hash, one of width n and the other of width
n− 1.

For every prediction, all three CSRs (for every table) must be snapshotted and reset if a branch
misprediction occurs. Another three commit copies of these CSRs must be maintained to handle
pipeline flushes.

Usefulness counters (u-bits)

The “usefulness” of an entry is stored in the u-bit counters. Roughly speaking, if an entry provides
a correct prediction, the u-bit counter is incremented. If an entry provides an incorrect prediction,
the u-bit counter is decremented. When a misprediction occurs, TAGE attempts to allocate a new
entry. To prevent overwriting a useful entry, it will only allocate an entry if the existing entry has
a usefulness of zero. However, if an entry allocation fails because all of the potential entries are
useful, then all of the potential entries are decremented to potentially make room for an allocation
in the future.

To prevent TAGE from filling up with only useful but rarely-used entries, TAGE must provide
a scheme for “degrading” the u-bits over time. A number of schemes are available. One option is
a timer that periodically degrades the u-bit counters. Another option is to track the number of
failed allocations (incrementing on a failed allocation and decremented on a successful allocation).
Once the counter has saturated, all u-bits are degraded.

TAGE Snapshot State

For every prediction, all three CSRs (for every table) must be snapshotted and reset if a branch
misprediction occurs. TAGE must also remember the index of each table that was checked for a
prediction (so the correct entry for each table can be updated later). Finally, TAGE must remember
the tag computed for each table – the tags will be needed later if a new entry is to be allocated.16

3.2.10 Other Predictors

BOOM provides a number of other predictors that may provide useful.

The Null Predictor

The Null Predictor is used when no BPD predictor is desired. It will always predict “not taken”.

The Random Predictor

The Random Predictor uses an LFSR to randomize both “was a prediction made?” and “which
direction each branch in the fetch packet should take?”. This is very useful for both torturing-testing
BOOM and for providing a worse-case performance baseline for comparing branch predictors.

16There are ways to mitigate some of these costs, but this margin is too narrow to contain them.

25

3.3 Branch Prediction Configurations

There are a number of parameters provided to govern the branch prediction in BOOM.

3.3.1 GShare Configuration Options

Global History Length

How long of a history should be tracked? The length of the global history sets the size of the branch
predictor. An n-bit history pairs with a 2n entry two-bit counter table.

3.3.2 TAGE Configurations

Number of TAGE Tables

How many TAGE tables should be used?

TAGE Table Sizes

What size should each TAGE table be?

TAGE Table History Lengths

How long should the global history be for each table? This should be a geometrically increasing
value for each table.

TAGE Table Tag Sizes

What size should each tag be?

TAGE Table U-bit Size

How many bits should be used to describe the usefulness of an entry?

26

Chapter 4

The Decode Stage

The decode stage takes instructions from the fetch buffer, decodes them, and allocates the necessary
resources as required by each instruction. The decode stage will stall as needed if not all resources
are available.

27

Chapter 5

The Rename Stage

The rename stage maps the ISA (or logical) register specifiers of each instruction to physical register
specifiers.

5.1 The Purpose of Renaming

Renaming is a technique to rename the ISA (or logical) register specifiers in an instruction by
mapping them to a new space of physical registers. The goal to register renaming is to break the
output- (WAW) and anti-dependences (WAR) between instructions, leaving only the true depen-
dences (RAW). Said again, but in architectural terminology, register renaming eliminates write-
after-write (WAW) and write-after-read (WAR) hazards, which are artifacts introduced by a) only
having a limited number of ISA registers to use as specifiers and b) loops, which by their very
nature will use the same register specifiers on every loop iteration.

5.2 The Explicit Renaming Design

BOOM is an “explicit renaming” or “physical register file” out-of-order core design. A physical
register file, containing many more registers than the ISA dictates, holds both the committed
architectural register state and speculative register state. The rename map tables contain the
information needed to recover the committed state. As instructions are renamed, their register
specifiers are explicitly updated to point to physical registers located in the physical register file.1

This is in contrast to an “implicit renaming” or “data-in-ROB” out-of-order core design. The
Architectural Register File (ARF) only holds the committed register state, while the ROB holds
the speculative write-back data. On commit, the ROB transfers the speculative data to the ARF.
2

5.3 The Rename Map Table

The Rename Map Table holds the speculative mappings from ISA registers to physical registers.

1The MIPS R10k[10], Alpha 21264[5], Intel Sandy Bridge, and ARM Cortex A15 cores are all example of explicit
renaming out-of-order cores.

2The Pentium 4 and the ARM Cortex A57 are examples of implicit renaming designs.

28

Fetch

Decode &
Rename

Issue
Window

Physical
Register

File
(PRF)

FU

ROB

Commit
wakeup

uop tags

Fetch

Decode &
Rename

Issue
Window

FU

ROB

Commit

data bus

uop tags data

inst

datainst

ISA
Register

File
(ARF)

i+1

w

w

w

w

w

w

w

i

i

i+1

w

w w
w

w

Figure 5.1: A PRF design (left) and a data-in-ROB design (right).

Each branch gets its own copy of the rename map table.3 On a branch mispredict, the map
table can be reset instantly from the mispredicting branch’s copy of the map table.

As the RV64G ISA uses fixed locations of the register specifiers (and no implicit register speci-
fiers), the map table can be read before the instruction is decoded!

5.3.1 Resets on Exceptions and Flushes

An additional, optional “Committed Map Table” holds the rename map for the committed archi-
tectural state. If enabled, this allows single-cycle reset of the pipeline during flushes and exceptions
(the current map table is reset to the committed map table). Otherwise, pipeline flushes require
multiple cycles to “unwind” the ROB to write back in the rename state at the commit point, one
ROB row per cycle.

3An alternate design for wider pipelines may prefer to only make up to one snapshot per cycle, but this comes
with additional complexity to deduce the precise mappings for any given instruction within the fetch packet.

29

Map table

rd

lrd lrs1 lrs2

stale pdst(1)

rs1

rs2

lrd lrs1 lrs2

stale
bypass

Freelist
pdst(0)

pdst(1)

pdst prs1 prs2

Inst(0)

Inst(1)

=

stale

pdst prs1 prs2 stale

stale pdst(0)

uop(0).ldst
?= uop(1).ldst

map table

rd

reg src
bypasses

uop(0).ldst
?= uop(1).lrs2

uop(0).ldst
?= uop(1).lrs1

p0
p0

ldst
 renamed
and !x0

Vec(ready)

Vec(requests)

map table

freelist empty

busy table

=
=

Figure 5.2: The Rename Stage. Logical register specifiers read the map table to get their physical specifier.
For superscalar rename, any changes to the map tables must be bypassed to dependent instructions. The
physical source specifiers can then read the Busy Table. The Stale specifier is used to track which physical
register will be freed when the instruction later commits. P0 in the Physical Register File is always 0.

5.4 The Busy Table

The Busy Table tracks the readiness status of each physical register. If all physical operands are
ready, the instruction will be ready to be issued.

5.5 The Free List

The free-list tracks the physical registers that are currently un-used and is used to allocate new
physical registers to instructions passing through the Rename stage.

The Free List is implemented as a bit-vector. A priority decoder can then be used to find the
first free register. BOOM uses a cascading priority decoder to allocate multiple registers per cycle.4

On every branch (or jalr), the rename map tables are snapshotted to allow single-cycle recovery
on a branch misprediction. Likewise, the Free List also sets aside a new “Allocation List”, initialized
to zero. As new physical registers are allocated, the Allocation List for each branch is updated to
track all of the physical registers that have been allocated after the branch. If a misspeculation
occurs, its Allocation List is added back to the Free List by OR’ing the branch’s Allocation List
with the Free List.5

4A two-wide rename stage could use two priority decoders starting from opposite ends.
5Conceptually, branches are often described as “snapshotting” the Free List (along with an OR’ing with the

30

5.6 Stale Destination Specifiers

For instructions that will write a register, the map table is read to get the stale physical destination
specifier (“stale pdst”). Once the instruction commits, the stale pdst is returned to the free list, as
no future instructions will read it.

current Free List at the time of the misprediction). However, snapshotting fails to account for physical registers that
were allocated when the snapshot occurs, then become freed, then becomes re-allocated before the branch mispredict
is detected. In this scenario, the physical register gets leaked, as neither the snapshot nor the current Free List know
that it had been freed. Eventually, the processor slows as it struggles to maintain enough inflight physical registers,
until finally the machine comes to a halt. If this sounds autobiographical because the author may have trusted
computer architecture lectures, well...

31

Chapter 6

The Reorder Buffer (ROB) and the
Dispatch Stage

The ROB tracks the state of all inflight instructions in the pipeline. The role of the ROB is to
provide the illusion to the programmer that his program executes in-order. After instructions are
decoded and renamed, they are then dispatched to the ROB and the issue window and marked
as busy. As instructions finish execution, they inform the ROB and are marked not busy. Once
the “head” of the ROB is no longer busy, the instruction is committed, and it’s architectural state
now visible. If an exception occurs and the excepting instruction is at the head of the ROB, the
pipeline is flushed and no architectural changes that occurred after the excepting instruction are
made visible. The ROB then redirects the PC to the appropriate exception handler.

6.1 The ROB Organization

The ROB is, conceptually, a circular buffer that tracks all inflight instructions in-order. The oldest
instruction is pointed to by the commit head, and the newest instruction will be added at the rob
tail.

To facilitate superscalar Dispatch and Commit, the ROB is implemented as a circular buffer
with W banks (where W is the dispatch and commit width of the machine1). This organization is
shown in Figure 6.1.

At dispatch, up to W instructions are written from the fetch packet into an ROB row, where
each instruction is written to a different bank across the row. As the instructions within a fetch
packet are all consecutive (and aligned) in memory, this allows a single PC to be associated with
the entire fetch packet (and the instruction’s position within the fetch packet provides the low-order
bits to its own PC). While this means that branching code will leave bubbles in the ROB, it makes
adding more instructions to the ROB very cheap as the expensive costs are amortized across each
ROB row.

1This design sets up the Dispatch and Commit widths of BOOM to be the same. However, that is not necessarily
a fundamental constraint, and it would be possible to orthogonalize the Dispatch and Commit widths, just with more
added control complexity.

32

PC

rob_head

rob_tail

0x2000

addw bne11
dis_mask dis_uops

add mul11
com_mask com_uops

0x2008
0x2010
0x2048
0x2040

Execution Units

wb_valids

wb_uops
(clears busy bit)

div -01Instruction Bank(0)
val bsy exc uopc brmask

1
1 1
1

1
1

ADD
SUB
LD
SW

-

0000
0000
0000
0001

Instruction Bank(1)
val bsy exc uopc brmask

1
1 1

MUL
BNE

1
1

ADD
ADD

1 1 DIV

0001
0001

0000
0000
0000

1 bne

(updates rename state)

Figure 6.1: The Reorder Buffer for a two-wide BOOM with three-issue. Dispatched uops (dis uops) are
written at the bottom of the ROB (rob tail), while committed uops (com uops) are committed from the top,
at rob head, and update the rename state. Uops that finish executing (wb uops) clear their busy bit. Note:
the dispatched uops are written into the same ROB row together, and are located consecutively in memory
allowing a single PC to represent the entire row.

6.2 ROB State

Each ROB entry contains relatively little state:

• is entry valid?

• is entry busy?

• is entry an exception?

• branch mask (which branches is this entry still speculated under?

• rename state (what is the logical destination and the stale physical destination?)

• floating-point status updates

• other miscellaneous data (e.g., helpful for statistic tracking)

The PC and the branch prediction information is stored on a per-row basis (see Sec 6.2.2). The
Exception State only tracks the oldest known excepting instruction (see Sec 6.2.1).

6.2.1 Exception State

The ROB tracks the oldest excepting instruction. If this instruction reaches the head of the ROB,
then an exception is thrown.

33

Each ROB entry is marked with a single-bit to signify whether or not the instruction has
encountered exceptional behavior, but the additional exception state (e.g., the bad virtual address
and the exception cause) is only tracked for the oldest known excepting instruction. This saves
considerable state by not storing this on a per entry basis.

6.2.2 PC Storage

The ROB must know the PC of every inflight instruction. This information is used in the following
situations:

• Any instruction could cause an exception, in which the “exception pc” (epc) must be known.

• Branch and jump instructions need to know their own PC for for target calculation.

• Jump-register instructions must know both their own PC and the PC of the following
instruction in the program to verify if the front-end predicted the correct JR target.

This information is incredibly expensive to store. Instead of passing PCs down the pipeline,
branch and jump instructions access the ROB’s “PC File” during the Register-read stage for use
in the Branch Unit. Two optimizations are used:

• only a single PC is stored per ROB row.2

• the PC File is stored in two banks, allowing a single read-port to read two consecutive entries
simultaneously (for use with JR instructions).

6.3 The Commit Stage

When the instruction at the commit head is no longer busy (and it is not excepting), it may
be committed, i.e., its changes to the architectural state of the machine are made visible. For
superscalar commit, the entire ROB row is analyzed for not busy instructions (and thus, up to the
entire ROB row may be committed in a single cycle). The ROB will greedily commit as many
instructions as it can per row to release resource as soon as possible. However, the ROB does not
(currently) look across multiple rows to find commit-able instructions.

Only once a store has been committed may it be sent to memory. For superscalar committing
of stores, the LSU is told “how many stores” may be marked as committed. The LSU will then
drain the committed stores to memory as it sees fit.

When an instruction (that writes to a register) commits, it then frees the stale physical desti-
nation register. The stale pdst is then free to be re-allocated to a new instruction.

6.4 Exceptions and Flushes

Exceptions are handled when the instruction at the commit head is excepting. The pipeline is
then flushed and the ROB emptied. The rename map tables must be reset to represent the true,

2Because instructions within an ROB row are consecutive in the program, the instruction’s ROB bank implicitly
provides the lower PC bits.

34

non-speculative committed state. The front-end is then directed to the appropriate PC. If it is
an architectural exception, the excepting instruction’s PC (referred to as the exception vector) is
sent to the Control/Status Register file. If it is a micro-architectural exception (e.g., a load/store
ordering misspeculation) the failing instruction is refetched and execution can begin anew.

6.4.1 Parameterization - Rollback versus Single-cycle Reset

The behavior of resetting the map tables is parameterizable. The first option is to rollback the
ROB one row per cycle to unwind the rename state (this is the behavior of the MIPS R10k[10]).
For each instruction, the stale physical destination register is written back into the map table for
its logical destination specifier.

A faster single-cycle reset is available. This is accomplished by using another rename snapshot
that tracks the committed state of the rename tables. This committed map table is updated as
instructions commit.3

6.4.2 Causes

The RV64G ISA provides relatively few exception sources:

Load/Store Unit - page faults

Branch Unit - misaligned fetches

Decode Stage - all other exceptions and interrupts can be handled before the instruc-
tion is dispatched to the ROB

Note that memory ordering speculation errors also originate from the Load/Store Unit, and are
treated as exceptions in the BOOM pipeline (actually they only cause a pipeline “retry”).

3The tradeoff here is between longer latencies on exceptions versus an increase in area and wiring.

35

Chapter 7

The Issue Unit

The issue window holds dispatched micro-ops that have not yet executed. When all of the operands
for the micro-op are ready, the issue slot sets its “request” bit high. The issue select logic then
chooses to issue a slot which is asserting its “request” signal. Once a micro-op is issued, it is
removed from the issue window to make room for more dispatched instructions.

BOOM uses a “unified” issue window - all instructions of all types (integer, floating point,
memory) are placed into a single issue window.

7.1 Speculative Issue

Although not yet supported, future designs may choose to speculatively issue micro-ops for im-
proved performance (e.g., speculating that a load instruction will hit in the cache and thus issuing
dependent micro-ops assuming the load data will be available in the bypass network). In such a
scenario, the issue window cannot remove speculatively issued micro-ops until the speculation has
been resolved. If a speculatively-issued micro-op failure occurs, then all issued micro-ops that fall
within the speculated window must be killed and retried from the issue window. More advanced
techniques are also available.

7.2 Issue Slot

Figure 7.1 shows a single issue slot from the Issue Window.1

Instructions are dispatched into the Issue Window. From here, they wait for all of their operands
to be ready (“p” stands for presence bit, which marks when an operand is present in the register
file).

Once ready, the issue slot will assert its “request” signal, and wait to be issued.

7.3 Issue Select Logic

Each issue select logic port is a static-priority encoder that picks that first available micro-op in the
issue window. Each port will only schedule a micro-op that its port can handle (e.g., floating point

1Conceptually, a bus is shown for implementing the driving of the signals sent to the Register Read Stage. In
reality BOOM actually uses muxes.

36

ready

UOP Code BrMask RS1 p1RDstCtrl...

WD
es
t0

WD
es
t1

=
=

RS2 p2

=
=

(From the register file's two write ports)

Resolve
or Kill

Br
Logic

Val

Issue
Select
Logic

request
issue slot is valid

ready

issue

Issued to the Register Read stage

Control Signals
Physical

Destination
Register

Physical Source
Registers

Figure 7.1: A single issue slot from the Issue Window.

micro-ops will only be scheduled onto the port governing the Floating Point Unit). This creates a
cascading priority encoder for ports that can schedule the same micro-ops as each other.

If a functional unit is unavailable, it de-asserts its available signal and instructions will not be
issued to it (e.g., an un-pipelined divider).

7.4 Un-ordered Issue Window

There are two scheduling policies available in BOOM.
The first is a R10K-style un-ordered issue window.[10] Dispatching instructions are placed into

the first available issue window slot and remain there until they are issued. This can lead to
pathologically poor performance, particularly in scenarios where unpredictable branches are placed
into the lower priority slots and are unable to be issued until the ROB fills up and the issue
window starts to drain. Because instructions following branches are only implicitly dependent on
the branch, there is no other forcing function that enables the branches to issue earlier, except the
filling of the ROB.

7.5 Age-ordered Issue Window

The second available policy is an age-ordered issue window. Dispatched instructions are placed
into the bottom of the issue window (at lowest priority). Every cycle, every instruction is shifted
upwards (the issue window is a “collapsing queue”). Thus, the oldest instructions will have the
highest issue priority. While this increases performance by scheduling older branches and older loads

37

as soon as possible, it comes with a potential energy penalty as potentially every issue window slot
is being read and written to on every cycle.

7.6 Wake-up

There are two types of wake-up in BOOM - fast wakeup and slow wakeup. Because ALU micro-ops
can send their write-back data through the bypass network, issued ALU micro-ops will broadcast
their wakeup to the issue-window as they are issued.

However, floating-point operations, loads, and variable latency operations are not sent through
the bypass network, and instead the wakeup signal comes from the register file ports during the
write-back stage.

38

Chapter 8

The Register File and Bypass
Network

BOOM is a unified, physical register file (PRF) design. The register file holds both the committed
and speculative state. The register file also holds both integer and floating point register values.
The map tables track which physical register corresponds to which ISA register.

BOOM uses the Berkeley hardfloat floating point units which use an internal 65-bit operand
format (https://github.com/ucb-bar/berkeley-hardfloat). Therefore, all physical registers
are 65-bits.

Issue
Select
(1 port)

Regfile
Writeback
(2 Write Ports)

Single-issue with FPU (3r,2w)

bypass
network

Regfile
Read

(3 Read Ports)

bypassing

LSU D$

ALU

Mul/Div

Agen

Execute Unit

 FPU-lat3

Figure 8.1: An example single-issue pipeline. The register file needs 3 read ports to satisfy FMA operations
and 2 write ports to satisfy the variable latency operations without interfering with the fixed latency ALU
and FP write-backs. To make scheduling of the write port trivial, the ALU’s pipeline is lengthened to match
the FPU latency. The ALU is able to bypass from any of these stages to dependent instructions in the
Register Read stage.

39

https://github.com/ucb-bar/berkeley-hardfloat

8.1 Register Read

The register file statically provisions all of the register read ports required to satisfy all issued
instructions. For example, if issue port #0 corresponds to an integer ALU and issue port #1
corresponds to a FPU, then the first two register read ports will statically serve the ALU and the
next three register read ports will service the FPU for five total read ports.

8.1.1 Dynamic Read Port Scheduling

Future designs can improve area-efficiency by provisioning fewer register read ports and using
dynamically scheduling to arbitrate for them. This is particularly helpful as most instructions need
only one operand. However, it does add extra complexity to the design, which is often manifested
as extra pipeline stages to arbitrate and detect structural hazards. It also requires the ability to
kill issued micro-ops and re-issue them from the issue window on a later cycle.

8.2 Bypass Network

ALU operations can be issued back-to-back by having the write-back values forwarded through the
bypass network. Bypassing occurs at the end of the Register Read stage.

40

Chapter 9

The Execute Pipeline

The Execution Pipeline covers the execution and write-back of micro-ops. Although the micro-ops
will travel down the pipeline one after the other (in the order they have been issued), the micro-ops
themselves are likely to have been issued to the Execution Pipeline out-of-order. Figure 9.1 shows
an example Execution Pipeline for a dual-issue BOOM.

Issue
Select

Regfile
Writeback
(3 write)

dual-issue
(5r,3w Regfile)

bypassing

ALU

div

LSUAgen D$

bypassing

ALU

FPU

bypass
network

Regfile
Read
(5 read)

imul

Regfile

Execute Unit #0

Execute Unit #1

Figure 9.1: An example pipeline for a dual-issue BOOM. The first issue port schedules micro-ops onto
Execute Unit #0, which can accept ALU operations, FPU operations, and integer multiply instructions.
The second issue port schedules ALU operations, integer divide instructions (unpipelined), and load/store
operations. The ALU operations can bypass to dependent instructions. Note that the ALU in EU#0 is
padded with pipeline registers to match latencies with the FPU and iMul units to make scheduling for the
write-port trivial. Each Execution Unit has a single issue-port dedicated to it but contains within it a number
of lower-level Functional Units.

41

9.1 Execution Units

Op1 Data

Op2 Data

req.valid
Pi

pe
IO

req.uop

Parameters
num_read_ports = 2
num_write_ports =1
num_bypass_ports = 1

is_branch_unit = false
is_mem_unit = false
is_bypassable = true

Pi
pe

IO

resp.valid

WB Data

fu_types

(val, pdst, data)
BYPASSES

Br
Logic

kill
(flush_pipeline)

busy

Figure 9.2: An example Execution Unit. This particular example shows an integer ALU (that can bypass
results to dependent instructions) and an unpipelined divider that becomes busy during operation. Both
functional units share a single write-port. The Execution Unit accepts both kill signals and branch resolution
signals and passes them to the internal functional units as required.

An Execution Unit is a module that a single issue port will schedule micro-ops onto and contains
some mix of functional units. Phrased in another way, each issue port from the Issue Window talks
to one and only one Execution Unit. An Execution Unit may contain just a single simple integer
ALU, or it could contain a full complement of floating point units, a integer ALU, and an integer
multiply unit.

The purpose of the Execution Unit is to provide a flexible abstraction which gives a lot of
control over what kind of Execution Units the architect can add to their pipeline

9.1.1 Scheduling Readiness

An Execution Unit provides a bit-vector of the functional units it has available to the issue scheduler.
The issue scheduler will only schedule micro-ops that the Execution Unit supports. For functional
units that may not always be ready (e.g., an un-pipelined divider), the appropriate bit in the
bit-vector will be disabled (See Fig 9.2).

42

9.2 Functional Units

Functional units are the muscle of the CPU, computing the necessary operations as required by the
instructions. Functional units typically require a knowledgable domain expert to implement them
correctly and efficiently.

Op1 Data

Op2 Data

req.valid

FI
FO

IO

req.uop.brmask

Parameters
num_stages = 4
is_var_latency = false
is_pipelined = true
shares_writeport= false

earliest_bypass_stage=1

is_branch_unit = true

FI
FO

IO

resp.valid

resp.ready

WB Data

(val, pdst, data)

req.ready

Br
Logic

Speculative Pipeline

Res Res Res ResRes

function code

branch
resolution

info
kill

(flush_pipeline)

(val, pdst, data)

(val, pdst, data)

(val, pdst, data)

BYPASSES

Figure 9.3: The abstract Pipelined Functional Unit class. An expert-written, low-level functional unit
is instantiated within the Functional Unit. The request and response ports are abstracted and bypass and
branch speculation support is provided. Micro-ops are individually killed by gating off their response as they
exit the low-level functional unit.

For this reason, BOOM uses an abstract Functional Unit class to “wrap” expert-written, low-
level functional units from the Rocket repository (see Section 1.6.1). However, the expert-written
functional units created for the Rocket in-order processor make assumptions about in-order issue
and commit points (namely, that once an instruction has been dispatched to them it will never
need to be killed). These assumptions break down for BOOM.

However, instead of re-writing or forking the functional units, BOOM provides an abstract Func-
tional Unit class (see Fig 9.3) that “wraps” the lower-level functional units with the parameterized
auto-generated support code needed to make them work within BOOM. The request and response
ports are abstracted, allowing Functional Units to provide a unified, interchangeable interface.

43

9.2.1 Pipelined Functional Units

A pipelined functional unit can accept a new micro-op every cycle. Each micro-op will take a
known, fixed latency.

Speculation support is provided by auto-generating a pipeline that passes down the micro-op
meta-data and branch mask in parallel with the micro-op within the expert-written functional unit.
If a micro-op is misspeculated, it’s response is de-asserted as it exits the functional unit.

An example pipelined functional unit is shown in Fig 9.3.

9.2.2 Un-pipelined Functional Units

Un-pipelined functional units (e.g., a divider) take an variable (and unknown) number of cycles to
complete a single operation. Once occupied, they de-assert their ready signal and no additional
micro-ops may be scheduled to them.

Speculation support is provided by tracking the branch mask of the micro-op in the functional
unit.

The only requirement of the expert-written un-pipelined functional unit is to provide a kill
signal to quickly remove misspeculated micro-ops.1

9.3 Branch Unit & Branch Speculation

The Branch Unit handles the resolution of all branch and jump instructions.
All micro-ops that are “inflight” in the pipeline (have an allocated ROB entry) are given a

branch mask, where each bit in the branch mask corresponds to an un-executed, inflight branch
that the micro-op is speculated under. Each branch in Decode is allocated a branch tag, and all
following micro-ops will have the corresponding bit in the branch mask set (until the branch is
resolved by the Branch Unit).

If the branches (or jumps) have been correctly speculated by the front-end, then the Branch
Unit’s only action is to broadcast the corresponding branch tag to all inflight micro-ops that the
branch has been resolved correctly. Each micro-op can then clear the corresponding bit in its branch
mask, and that branch tag can then be allocated to a new branch in the Decode stage.

If a branch (or jump) is misspeculated, the Branch Unit must redirect the PC to the correct
target, kill the front-end and fetch buffer, and broadcast the misspeculated branch tag so that
all dependent, inflight micro-ops may be killed. The PC redirect signal goes out immediately, to
decrease the misprediction penalty. However, the kill signal is delayed a cycle for critical path
reasons.

The front-end must pass down the pipeline the appropriate branch speculation meta-data, so
that the correct direction can be reconciled with the prediction. Jump Register instructions are
evaluated by comparing the correct target with the PC of the next instruction in the ROB (if not
available, then a misprediction is assumed). Jumps are evaluated and handled in the front-end (as
their direction and target are both known once the instruction can be decoded).

BOOM (currently) only supports having one Branch Unit.

1This constraint could be relaxed by waiting for the un-pipelined unit to finish before de-asserting its busy signal
and suppressing the valid output signal.

44

Functional Unit

Pipelined
(req.ready==true)

UnPipelined

ALU
(w/ optional

Br Unit)

iMul/iDiv/
iRemMemAddrCalc

FPU

iMul fDiv/fSqrt

ALU

DFMA SFMA FPTo
Int

FPTo
FP

IntTo
FP

FPU

divSqrt
RecF64

MulAdd
RecFN

MulAdd
RecFN

RecFN
ToRecFN

Figure 9.4: The dashed ovals are the low-level functional units written by experts, the squares are
concrete classes that instantiate the low-level functional units, and the octagons are abstract classes that
provide generic speculation support and interfacing with the BOOM pipeline. The floating point divide
and squart-root unit doesn’t cleanly fit either the Pipelined nor Unpipelined abstract class, and so directly
inherits from the FunctionalUnit super class.

45

9.4 Load/Store Unit

.
The Load/Store Unit (LSU) handles the execution of load, store, atomic, and fence operations.
BOOM (currently) only supports having one LSU (and thus can only send one load or store

per cycle to memory).2

See Chapter 10 for more details on the LSU.

9.5 Floating Point Units

Functional Unit

Pipelined
Functional Unit

FPU Unit

DFMA

mulAddSubRecodedFloatN

FPU

hardfloat

Rocket

BOOM

Figure 9.5: The class hierarchy of the FPU is shown. The expert-written code is contained within
the hardfloat and rocket repositories. The “FPU” class instantiates the Rocket components, which itself
is further wrapped by the abstract Functional Unit classes (which provides the out-of-order speculation
support).

2Relaxing this constraint could be achieved by allowing multiple LSUs to talk to their own bank(s) of the data-
cache, but the added complexity comes in allocating entries in the LSU before knowing the address, and thus which
bank, a particular memory operation pertains to.

46

The low-level floating point units used by BOOM come from the Rocket processor (https://
github.com/ucb-bar/rocket) and hardfloat (https://github.com/ucb-bar/berkeley-hardfloat)
repositories. Figure 9.5 shows the class hierarchy of the FPU.

To make the scheduling of the write-port trivial, all of the pipelined FP units are padded to
have the same latency.3

9.6 Floating Point Divide and Square-root Unit

BOOM fully supports floating point divide and square-root operations using a single “FDiv/Sqrt”
(or fdiv for short). BOOM accomplishes this by instantiating a double-precision divSqrtRecF64

unit from the hardfloat repository. The divSqrtRecF64 unit comes with the following features/-
constraints:

• expects 65-bit recoded double-precision inputs

• provides a 65-bit recoded double-precision output

• can execute a divide operation and a square-root operation simultaneously

• operations are unpipelined and take an unknown, variable latency

• provides an unstable FIFO interface

Single-precision operations have their operands upscaled to double-precision (and then the out-
put downscaled).4

Although the fdiv unit is unpipelined, it does not fit cleanly into the Pipelined/Unpipelined
abstraction used by the other functional units (Fig 9.4). This is because the divSqrtRecF64 unit
provides an unstable FIFO interface: although the fdiv unit may provide a ready signal on Cycle
i, there is no guarantee that it will continue to be ready on Cycle i + 1, even if no operations
are enqueued. This proves to be a challenge, as the issue window may attempt to issue an fdiv

instruction but cannot be certain the fdiv unit will accept it once it reaches the fdiv unit on a
later cycle.

The solution is to add extra buffering within the fdiv unit to hold instructions until they can
be released directly into the divSqrtRecF64 unit. If the buffering of the fdiv unit fills up, back
pressure can be safely applied to the issue window.5

9.7 Parameterization

BOOM provides flexibility in specifying the issue width and the mix of functional units in the
execution pipeline. Code 9.7 shows how to instantiate an execution pipeline in BOOM.

3Rocket instead handles write-port scheduling by killing and refetching the offending instruction (and all instruc-
tions behind it) if there is a write-port hazard detected. This would be far more heavy-handed to do in BOOM.

4It is cheaper to perform the SP-DP conversions than it is to instantiate a single-precision fdivSqrt unit.
5It is this ability to hold multiple inflight instructions within the fdiv unit simultaneously that breaks the “only

one instruction at a time” assumption required by the UnpipelinedFunctionalUnit abstract class.

47

https://github.com/ucb-bar/rocket
https://github.com/ucb-bar/rocket
https://github.com/ucb-bar/berkeley-hardfloat

1 val exe_units = ArrayBuffer[ExecutionUnit]()

2
3 if (ISSUE_WIDTH == 2)

4 {

5 exe_units += Module(new ALUExeUnit(is_branch_unit = true

6 , has_mul = true

7))

8 exe_units += Module(new ALUMemExeUnit(has_div = true

9))

10 }

11 else if (ISSUE_WIDTH == 3)

12 {

13 exe_units += Module(new ALUExeUnit(is_branch_unit = true

14 , has_mul = true

15))

16 exe_units += Module(new ALUExeUnit(has_div = true))

17 exe_units += Module(new MemExeUnit())

18 }

Code 9.1: Instantiating the Execution Pipeline (in dpath.scala).
Adding execution units is as simple as instantiating another
ExecutionUnit module and adding it to the exe units
ArrayBuffer.

Additional parameterization, regarding things like the latency of the FP units can be found
within the Configuration settings (configs.scala).

9.8 Control/Status Register Instructions

A set of Control/Status Register (CSR) instructions allow the atomic read and write of the Con-
trol/Status Registers. These architectural registers are separate from the integer and floating
registers, and include the cycle count, retired instruction count, status, exception PC, and excep-
tion vector registers (and many more!). Each CSR has its own required privilege levels to read and
write to it and some have their own side-effects upon reading (or writing).

BOOM (currently) does not rename any of the CSRs, and in addition to the potential side-
effects caused by reading or writing a CSR, BOOM will only execute a CSR instruction
non-speculatively.6 This is accomplished by marking the CSR instruction as a “unique” (or
“serializing”) instruction - the ROB must be empty before it may proceed to the Issue Window
(and no instruction may follow it until it has finished execution and been committed by the ROB).
It is then issued by the Issue Window, reads the appropriate operands from the Physical Register
File, and is then sent to the CSRFile.7 The CSR instruction executes in the CSRFile and then
writes back data as required to the Physical Register File. The CSRFile may also emit a PC
redirect and/or an exception as part of executing a CSR instruction (e.g., a syscall).

6There is a lot of room to play with regarding the CSRs. For example, it is probably a good idea to rename the
sscratch register (dedicated for use by the supervisor) as it may see a lot of use in some kernel code and it causes
no side-effects.

7The CSRFile is a Rocket component.

48

Chapter 10

The Load/Store Unit (LSU)

The Load/Store Unit is responsible for deciding when to fire memory operations to the memory
system. There are three queues: the Load Address Queue (LAQ), the Store Address Queue (SAQ),
and the Store Data Queue (SDQ). Load instructions generate a “uopLD” micro-op. When issued,
“uopLD” calculates the load address and places its result in the LAQ. Store instructions (may)
generate two micro-ops, “uopSTA” (Store Address Generation) and “uopSTD” (Store Data Gen-
eration). The STA micro-op calculates the store address and places its result in the SAQ queue.
The STD micro-op moves the store data from the register file to the SDQ. Each of these micro-ops
will issue out of the Issue Window as soon their operands are ready. See Section 10.1.1 for more
details on the store micro-op specifics.

10.1 Store Instructions

Entries in the Store Queue1 are allocated in the Decode stage (the appropriate bit in the stq entry val
vector is set). A “valid” bit denotes when an entry in the SAQ or SDQ holds a valid address or
data (saq val and sdq val respectively). Once a store instruction is committed, the corresponding
entry in the Store Queue is marked as committed. The store is then free to be fired to the memory
system at its convenience. Stores are fired to the memory in program order.

10.1.1 Store Micro-ops

Stores are inserted into the issue window as a single instruction (as opposed to being broken up into
separate addr-gen and data-gen micro-ops). This prevents wasteful usage of the expensive issue
window entries and extra contention on the issue port to the LSU. A store in which both operands
are ready can be issued to the LSU as a single micro-op which provides both the address and
the data to the LSU. While this requires store instructions to have access to two register file read
ports, this is motivated by a desire to not cut performance in half on store-heavy code. Sequences
involving stores to the stack should operate at IPC=1!

However, it is common for store addresses to be known well in advance of the store data. Store
addresses should be moved to the SAQ as soon as possible to allow later loads to avoid any memory
ordering failures. Thus, the issue window will emit uopSTA or uopSTD micro-ops as required, but
retain the remaining half of the store until the second operand is ready.

1When I refer to the Store Queue, I really mean both the SAQ and SDQ.

49

10.2 Load Instructions

Entries in the Load Queue (LAQ) are allocated in the Decode stage (laq entry val). In Decode,
each load entry is also given a store mask (laq st mask), which marks which stores in the Store
Queue the given load depends on. When a store is fired to memory and leaves the Store Queue,
the appropriate bit in the store mask is cleared.

Once a load address has been computed and placed in the LAQ, the corresponding valid bit is
set (laq val).

Loads are optimistically fired to memory on arrival to the LSU (getting loads fired early is a
huge benefit of out–of–order pipelines). Simultaneously, the load instruction compares its address
with all of the store addresses that it depends on. If there is a match, the memory request is killed.
If the corresponding store data is present, then the store data is forwarded to the load and the load
marks itself as having succeeded. If the store data is not present, then the load goes to sleep. Loads
that have been put to sleep are retried at a later time.2

10.3 The BOOM Memory Model

Currently, as of October 2016, the RISC-V memory model is underspecified and will take some
time to settle on an exact specification. However, the current RISC-V specification describes as
relaxed consistency model [4] in which stores and loads may be freely re-ordered.

BOOM currently exhibits the following behavior:

1. Write-¿Read constraint is relaxed (newer loads may execute before older stores).

2. Read-¿Read constraint is currently relaxed (loads to the same address may be reordered).

3. A thread can read its own writes early.

10.3.1 Ordering Loads to the Same Address

The RISC-V memory model is expected to strengthen the requirement that loads to the same
address be ordered.3 This requires loads to search against other loads for potential address conflicts.
If a younger load executes before an older load with a matching address, the younger load must be
replayed and the instructions after it in the pipeline flushed. However, this scenario is only required
if a cache coherence probe event snooped the core’s memory, exposing the reordering to the other
threads. If no probe events occurred, the load re-ordering may safely occur.

2Higher-performance processors will track why a load was put to sleep and wake it up once the blocking cause
has been alleviated.

3Technically, a fence.r.r could be used to provide the correct execution of software on machines that reorder
dependent loads. However, there are two reasons for an ISA to disallow re-ordering of dependent loads: 1) no other
popular ISA allows this relaxation, and thus porting software to RISC-V could face extra challenges, and 2) cautious
software may be too liberal with the appropriate fence instructions causing a slow-down in software. Thankfully,
enforcing ordered dependent loads may not actually be very expensive. For one, load addresses are likely to be known
early - and are probably likely to execute in-order anyways. Second, misordered loads are only a problem in the cache
of a cache coherence probe, so performance penalty is likely to be negligible. The hardware cost is also negligible
- loads can use the same CAM search port on the LAQ that stores must already use. While this may become an
issue when supporting one load and one store address calculation per cycle, the extra CAM search port can either
be mitigated via banking or will be small compared to the other hardware costs required to support more cache
bandwidth.

50

10.4 Memory Ordering Failures

The Load/Store Unit has to be careful regarding store→load dependences. For the best perfor-
mance, loads need to be fired to memory as soon as possible.

sw x1 → 0(x2)

ld x3 ← 0(x4)

However, if x2 and x4 reference the same memory address, then the load in our example depends
on the earlier store. If the load issues to memory before the store has been issued, the load will
read the wrong value from memory, and a memory ordering failure has occurred. On an ordering
failure, the pipeline must be flushed and the rename map tables reset. This is an incredibly
expensive operation.

To discover ordering failures, when a store commits, it checks the entire LAQ for any address
matches. If there is a match, the store checks to see if the load has executed, and if it got its data
from memory or if the data was forwarded from an older store. In either case, a memory ordering
failure has occurred.

See Figure 10.1 for more information about the Load/Store Unit.

51

LAQ
val addr st_maskA E R F forward_

std_idx

SAQ
addrvalA

Address
Calculation

ROB
com_st_mask
com_ld_mask

1. Incoming loads are immediately issued to datacache
 - must search SAQ for matches
 - kill mem request on SAQ match or TLB miss
 - forward store data if available

2. If load is killed or nacked (but no store data is
forwarded) load is put to sleep.
 - reissue "sleeper" load at a later time

3. incoming store addresses...
 - search LAQ for matches (ordering failures)
 - failed loads require pipeline flush

4. issue stores to memory at commit

5. addresses requiring translations are re-issued on free
cycles
 - stores can't clear ROB busy-bit until valid translation

address valid
entry allocated
address is virtual (translation retry required)
load executed (sent to mem)
load requesting wakeup
load failed (detected mem ordering failure)
bit mask of dependee stores
index of store the load got its data from (if any)

assoc
search

fwd_std_idx

Age
Logic

fwd_std_val

SDQ
dataval

NACK

addrmatches

rs1 imm

Adder

Store Address Load Address

LOAD/STORE
UNIT

youngest store idx
load depends on

Writeport

Register
File

br
kill

br
kill

Data
Array

Data nack

kill request

TLB

vaddr

paddr

store address
woken-up load address

assoc
search

woken-up load address

TLB load address

ECC/
Fmt

Mem Stage

Exe Stage

LAQ information

LSU Behavior

Data
cache

exceptions**

page fault

AddrDataAddrxcpt

ordering failures
from store search

retry load address (needs translation)

retry store address (needs translation)

V V

miss

TLB miss or !ready

kill*

Store
unbusy†

ROB

br
kill

nack

xcpt
st->ld addr match

TLB miss

WB Stage

kill* - on TLB miss, kill the memory request (if a load) and
mark the address as still "virtual". The LSU will retry the TLB
lookup when able.

exceptions** - we only have one port to the ROB, so pick the
oldest excepting instruction

store unbusy† - when a store-address enters the SAQ or a
store-data enters the SDQ it checks if the other store half is
present and if so, tells the ROB to unbusy the store.

Figure 10.1: The Load/Store Unit.

52

Chapter 11

The Memory System and the
Data-cache Shim

BOOM uses the Rocket non-blocking cache (“Hellacache”). Designed for use in in-order vector
processors, a “shim” is used to connect BOOM to the data cache. The source code for the cache
can be found in nbdcache.scala in the Rocket repository (github.com/ucb-bar/rocket).

The contract with the cache is that it may execute all memory operations sent to it (barring
structural hazards). As BOOM will send speculative load instructions to the cache, the shim
(dcacheshim.scala) must track all “inflight load requests” and their status. If an inflight load is
discovered to be misspeculated, it is marked as such in the shim. Upon return from the data cache,
the load’s response to the pipeline is suppressed and it is removed from the inflight load queue.

The Hellacache does not ack store requests; the absence of a nack is used to signal a success.
All memory requests to the Hellacache may be killed the cycle after issuing the request (while

the request is accessing the data arrays).
The current data cache design accesses the SRAMs in a single-cycle.

53

github.com/ucb-bar/rocket

Chapter 12

Micro-architectural Event Tracking

Version 1.9.1 of the RISC-V Privileged Architecture adds support for Hardware Performance Mon-
itor (HPM) counters.1 The HPM support allows a nearly infinite number of micro-architectural
events to be multiplexed onto up to 29 physical counters. The privilege access levels can also be
set on a per-counter basis.

Table 12.1: Uarch Events

Number Event

1 Committed Branches

2 Committed Branch Mispredictions

... and many more (see core.scala)

The available events can be modified in core.scala as desired.2 It is then up to machine-level
software to set the privilege access level and the event selectors for each counter as desired.

1 static void mstatus_init()

2 {

3 // Enable user/supervisor use of perf counters

4 write_csr(mucounteren, -1);

5 write_csr(mscounteren, -1);

6
7 // set events 1 and 2 to counters 3 and 4.

8 write_csr(mhpmevent3, 1);

9 write_csr(mhpmevent4, 2);

Code 12.1: Setting the privilege level and event selectors for the
HPM counters.

12.1 Reading HPM Counters in Software

The Code Example 12.1 demonstrates how to read the value of any CSR register from software.

1Future efforts may add some counters into a memory-mapped access region. This will open up the ability to
track events that, for example, may not be tied to any particular core (like last-level cache misses).

2Note: io.events(0) will get mapped to being Event #1 (etc.) from the point of view of the RISC-V software.

54

1 #define read_csr_safe(reg) ({ register long __tmp asm("a0"); \

2 asm volatile ("csrr %0, " #reg : "=r"(__tmp)); \

3 __tmp; })

4
5 long csr_cycle = read_csr_safe(cycle);

6 long csr_instr = read_csr_safe(instret);

7 long csr_hpmc3 = read_csr_safe(hpmcounter3);

8 ...

9 long csr_hpmc31 = read_csr_safe(hpmcounter31);

Code 12.2: Reading a CSR register.

55

Chapter 13

Verification

This chapter covers the current recommended techniques for verifying BOOM. Although not pro-
vided as part of the BOOM or rocket-chip repositories, it is also recommended that BOOM be
tested on “hello-world + riscv-pk” and the RISC-V port of Linux to properly stress the processor.

13.1 RISC-V Tests

A basic set of functional tests and micro-benchmarks can be found at (https://github.com/
riscv/riscv-tests). These are invoked by the “make run” targets in the emulator, fsim, and
vsim directories.

13.2 RISC-V Torture Tester

Berkeley’s riscv-torture tool is used to stress the BOOM pipeline, find bugs, and provide small
code snippets that can be used to debug the processor. Torture can be found at (https://github.
com/ucb-bar/riscv-torture).

Quick-start

compile the BOOM C++ emulator

$ cd rocket-chip/emulator; make run CONFIG=BOOMCPPConfig

check out and run the riscv-torture repository

$ cd ../ # top-level rocket-chip directory

$ git clone https://github.com/ucb-bar/riscv-torture.git

$ cd riscv-torture

$ git submodule update --init

$ vim Makefile # change RTL_CONFIG=BOOMCPPConfig

$ make igentest # test that torture works, gen a single test

$ make cnight # run C++ emulator overnight

56

https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture

Chapter 14

Debugging

57

Chapter 15

Pipeline Visualization

“Pipevew” is a useful diagnostic and visualization tool for seeing how instructions are scheduled on
an out-of-order pipeline.

Pipeview displays every fetched instruction and shows when it is fetched, decoded, renamed,
dispatched, issued, completed, and committed (“retired”). It shows both committed and misspecu-
lated instructions. It also shows when stores were successfully acknowledged by the memory system
(“store-completion”). It is useful for programmers who wish to see how their code is performing
and for architects to see which bottlenecks are constricting machine performance.

1 [......f.di.c..............r..s..........]-(33320000) 0x00000018a0.0 sw a0, 220(gp)

2 [......f.d...i...c.........r.............]-(33320000) 0x00000018a4.0 blt s1, a2, pc + 52

3 [.......f.d..i.c............r............]-(33320000) 0x00000018a8.0 slliw a5, a2, 2

4 [.......f.d...i...c.........r............]-(33320000) 0x00000018ac.0 addw a5, a5, a2

5 [........f.d...i...c.........r...........]-(33320000) 0x00000018b0.0 addiw a5, a5, -3

6 [........f.d..i.c............r...........]-(33320000) 0x00000018b4.0 mv a0, a2

7 [.........f.d..i.c............r..........]-(33320000) 0x00000018b8.0 li a1, 3

8 [.........f.d...i...c.........r..........]-(33320000) 0x00000018bc.0 addi a2, s0, -184

9 [..........f.di...c............r..s......]-(33320000) 0x00000018c0.0 sw a5, -184(s0)

10 [..........f.d...i...c.........r.........]-(33320000) 0x00000018c4.0 jal pc - 0x1284

11 [...........f.d.i.c.............r........]-(33320000) 0x0000000640.0 addiw a0, a0, 2

12 [...........f.d..i.c............r........]-(33320000) 0x0000000644.0 addw a1, a0, a1

13 [............f.d.i..c............r...s...]-(33320000) 0x0000000648.0 sw a1, 0(a2)

14 [............f.d......i...c......r.......]-(33320000) 0x000000064c.0 ret

15 [.............f.d..i..c...........r......]-(33320000) 0x00000018c8.0 lw a2, -188(s0)

16 [.............f.d......i...c......r......]-(33320000) 0x00000018cc.0 addiw a2, a2, 1

17 [..............f.d..i.....c........r..s..]-(33320000) 0x00000018d0.0 sw a2, -188(s0)

18 [..............f.d......i...c......r.....]-(33320000) 0x00000018d4.0 bge s1, a2, pc - 44

19 [...............f.d..i..c...........r....]-(33320000) 0x00000018d8.0 lw a3, -184(s0)

20 [...............f.d...i..c..........r....]-(33320000) 0x00000018dc.0 ld a0, -200(s0)

21 [................f.di...c............r...]-(33320000) 0x00000018e0.0 addi a1, gp, 256

22 [................f.d.i...c...........r...]-(33320000) 0x00000018e4.0 jal pc - 0x1294

23 [.................f.d...i.c...........r..]-(33320000) 0x0000000650.0 addiw a6, a2, 5

24 [.................f.d....i...c........r..]-(33320000) 0x0000000654.0 mv a5, a6

Code 15.1: Pipeview out (without color).

To display the text-based pipeline visualizations, BOOM generates traces compatible with the
O3 Pipeline Viewer included in the gem5 simulator suite.[1]

To enable pipeline visualization, first set O3PIPEVIEW PRINTF in boom/src/main/scala/consts.scala
to true:

58

val O3PIPEVIEW_PRINTF = true // dump trace for O3PipeView from gem5

Rebuild and rerun BOOM. You should find the traces (*.out) in emulator/output/. To generate
the visualization, first download and install gem5[1], and then run:

$ boom/util/pipeview-helper.py -f <TRACE_FILE> > clean_trace.out

$ gem5/util/o3-pipeview.py --color --store_completions -o pipeview.out clean_trace.out

You can view the visualization by running:

$ less -r pipeview.out

To learn more about o3-pipeview.py and to download gem5 visit http://www.m5sim.org/

Visualization.

59

http://www.m5sim.org/Visualization
http://www.m5sim.org/Visualization

Chapter 16

Physical Realization

This chapter provides information useful for physically realizing the BOOM processor. Although
BOOM VLSI work is very preliminary, it has been synthesized at 1 GHz on a high-end mobile
28 nm process. Unfortunately, while VLSI flows are difficult to share or make portable (and
encumbered with proprietary libraries and tools), an enterprising individual may want to visit the
https://github.com/ucb-bar/plsi portable “Palmer’s VLSI Scripts” repository which describes
one way to push BOOM through a VLSI flow.

16.1 Register Retiming

Many VLSI tools require the designer to manually specify which modules need to be analyzed for
retiming.

In BOOM, the floating point units and the pipelined integer multiply unit are described com-
binationally and then padded to the requested latency with registers. In order to meet the desired
clock frequency, the floating point units and the pipelined integer multiply unit must be
register-retimed.

1 val mul_result = lhs.toSInt * rhs.toSInt

2
3 val mul_output_mux = MuxCase(

4 UInt(0, 64), Array(

5 FN(DW_64, FN_MUL) -> mul_result(63,0),

6 FN(DW_64, FN_MULH) -> mul_result(127,64),

7 FN(DW_64, FN_MULHU) -> mul_result(127,64),

8 FN(DW_64, FN_MULHSU) -> mul_result(127,64),

9 FN(DW_32, FN_MUL) -> Cat(Fill(32, mul_result(31)), mul_result(31,0)),

10 FN(DW_32, FN_MULH) -> Cat(Fill(32, mul_result(63)), mul_result(63,32)),

11 FN(DW_32, FN_MULHU) -> Cat(Fill(32, mul_result(63)), mul_result(63,32)),

12 FN(DW_32, FN_MULHSU) -> Cat(Fill(32, mul_result(63)), mul_result(63,32))

13))

14
15 io.out := ShiftRegister(mul_output_mux, imul_stages, io.valid)

Code 16.1: Pipelined integer multiply unit requires register retiming to be realized
properly.

60

https://github.com/ucb-bar/plsi

16.2 Pipelining Configuration Options

Although BOOM does not provide high-level configurable-latency pipeline stages, BOOM does
provide a few configuration options to help the implementor trade off CPI performance for cycle-
time.

EnableFetchBufferFlowThrough

The front-end fetches instructions and places them into a fetch buffer. The back-end pulls instruc-
tions out of the fetch buffer and then decodes, renames, and dispatches the instructions into the
issue window. This fetch buffer can be optionally set to be a flow-through queue – instructions
enqueued into the buffer can be immediately dequeued on the other side on the same clock cycle.
Turning this option off forces all instructions to spend at least one cycle in the queue but decreases
the critical path between instruction fetch and dispatch.

EnableBrResolutionRegister

The branch unit resolves branches, detects mispredictions, fans out the branch kill signal to all
inflight micro-ops, redirects the PC select stage to begin fetching down the correct path, and sends
snapshot information to the branch predictor to reset its state properly so it can begin predicting
down the correct path. Turning this option on delays the branch resolution by a cycle. In particular,
this adds a cycle to the branch misprediction penalty (which is hopefully a rare event).

Functional Unit Latencies

The latencies of the pipelined floating point units and the pipelined integer multiplier unit can be
modified. Currently, all floating point unit latencies are set to the latency of the longest floating
point unit (i.e., the DFMA unit). This can be changed by setting the dfmaLatency in the FPUConfig
class. Likewise, the integer multiplier is also set to the dfmaLatency.1

1The reason for this is that the imul unit is most likely sharing a write port with the DFMA unit and so must
be padded out to the same length. However, this isn’t fundamental and there’s no reason an imul unit not sharing a
write port with the FPUs should be constrained to their latencies.

61

Appendix A

Future Work

This chapter lays out some of the potential future directions that BOOM can be taken. To help
facilitate such work, the preliminary design sketches are described below.

A.1 The Rocket Custom Co-processor Interface (ROCC)

The Rocket in-order processor comes with a ROCC interface that facilitates communication with
co-processor/accelerators. Such accelerators include crypto units (e.g., SHA3) and vector processing
units (e.g., the open-source Hwacha vector-thread unit[2]).

The ROCC interface accepts co-processor commands emitted by committed instructions run on
the “Control Processor” (e.g., a scalar Rocket core). Any ROCC commands will be executed by
the co-processor (barring exceptions thrown by the co-processor); nothing speculative can be issued
over ROCC.

Some ROCC instructions will write back data to the Control Processor’s scalar register file.

A.1.1 The Demands of the ROCC Interface

The ROCC interface accepts a ROCC command and up to two register inputs from the Control
Processor’s scalar register file. The ROCC command is actually the entire RISC-V instruction
fetched by the Control Processor (a “ROCC instruction”). Thus, each ROCC queue entry is at
least 2*XPRLEN + 32 bits in size (additional ROCC instructions may use the longer instruction
formats to encode additional behaviors). [TODO: draw a diagram showing this]

As BOOM does not store the instruction bits in the ROB, a separate data structure (A “ROCC
Reservation Station”) will have to hold the instructions until the ROCC instruction can be com-
mitted and the ROCC command sent to the co-processor.

The source operands will also require access to BOOM’s register file. Two possibilities are
proposed:

• ROCC instructions are dispatched to the Issue Window, and scheduled so that they may
access the read ports of the register file once the operands are available. The operands
are then written into the ROCC Reservation Station, which stores the operands and the
instruction bits until they can be sent to the co-processor. This may require significant state.

62

• ROCC instructions, when they are committed and sent to the ROCC command queue, must
somehow access the register file to read out its operands. If the register file has dynamically
scheduled read ports, this may be trivial. Otherwise, some technique to either inject a ROCC
micro-op into the issue window or a way to stall the issue window while ROCC accesses the
register file will be needed.

A.1.2 A Simple One-at-a-Time ROCC Implementation

The simplest way to add ROCC support to BOOM would be to stall Decode on every ROCC
instruction and wait for the ROB to empty. Once the ROB is empty, the ROCC instruction can
proceed down the BOOM pipeline non-speculatively, and get sent to the ROCC command queue.
BOOM remains stalled until the ROCC accelerator acknowledges the completion of the ROCC
instruction and sends back any data to BOOM’s register file. Only then can BOOM proceed with
its own instructions.

A.1.3 A High-performance ROCC Implementation Using Two-Phase Commit

While some of the above constraints can be relaxed, the performance of a decoupled co-processor
depends on being able to queue up multiple commands while the Control Processor runs ahead
(prefetching data and queueing up as many commands as possible). However, this requirement
runs counter to the idea of only sending committed ROCC instructions to the co-processor.

BOOM’s ROB can be augmented to track commit and non-speculative pointers. The commit
head pointer tracks the next instruction that BOOM will commit, i.e., the instruction that will
be removed from the ROB and the resources allocated for that instruction will be de-allocated for
use by incoming instructions. The non-speculative head will track which instructions can no longer
throw an exception and are no longer speculated under a branch (or other speculative event), i.e.,
which instructions absolutely will execute and will not throw a pipeline-retry exception.

This augmentation will allow ROCC instructions to be sent to the ROCC command queue
once they are deemed “non-speculative”, but the resources they allocate will not be freed until the
ROCC instruction returns an acknowledgement. This prevents a ROCC instruction that writes a
scalar register in BOOM’s register file from overwriting a newer instruction’s writeback value, a
scenario that can occur if the ROCC instruction commits too early, followed by another instruction
committing that uses the same ISA register as its writeback destination.

A.1.4 The BOOM Custom Co-processor Interface (BOCC)

Some accelerators may wish to take advantage of speculative instructions (or even out-of-order
issue) to begin executing instructions earlier to maximize de-coupling. Speculation can be handled
by either by epoch tags (if in-order issue is maintained to the co-processor) or by allocating mask
bits (to allow for fine-grain killing of instructions).

A.2 The Vector (“V”) ISA Extension

Implementing the Vector Extension in BOOM would open up the ability to leverage performance
(or energy-efficiency) improvements in running data-level parallel codes (DLP). While it would be

63

relatively easy to add vector arithmetic operations to BOOM, the significant challenges lie in the
vector load/store unit.

Perhaps unexpectedly, a simple but very efficient implementation could be very small. The
smallest possible vector register file (four 64-bit elements per vector) weighs in at 1024 bytes. A
reasonable out-of-order implementation could support 8 elements per vector and 16 inflight vector
registers (for a total of 48 physical vector registers) which would only be 3 kilobytes. Following
the temporal vector design of the Cray I, the vector unit can re-use the expensive scalar functional
units by trading off space for time. This also opens up the vector register file to being implemented
using 1 read/1 write ports, fitting it in very area-efficient SRAMs. As a point of comparison, one of
the most expensive parts of a synthesizable BOOM is its flip-flop based scalar register file. While
a 128-register scalar register file comes in at 1024 bytes, it must be highly ported to fully exploit
scalar instruction-level parallelism (a three-issue BOOM with one FMA unit is 7 read ports and 3
write ports).

A.3 The Compressed (“C”) ISA Extension

This section describes how to approach adding the Compressed ISA Extension to BOOM. The
Compressed ISA Extension, or RVC (http://riscv.org/download.html#spec_compressed_isa)
enables smaller, 16 bit encodings of common instructions to decrease the static and dynamic code
size. “RVC” comes with a number of features that are of particular interest to micro-architects:

• All 16b instructions map directly into a longer 32b instruction.

• 32b instructions have no alignment requirement, and may start on a half-word boundary.

Branch
Prediction

I$

Fetch
Buffer

Fetch1

 μDec
PC1

Fetch2

NLP

ExeBrTarget

NPC

BPD

PC2

Front-end

TakePC?

BPD
Target

Figure A.1: The Fetch Unit. The grey box encompasses the Rocket front-end, which is re-used by BOOM.

BOOM re-uses the front-end design from Rocket, a 5-stage in-order core. BOOM then takes
instructions returning (the fetch packet) from the Rocket front-end, quickly decodes the instructions
for branch prediction, and pushes the fetch packet into the Fetch Buffer.

The C Extension provides the following challenges to micro-architects, a few include:

64

http://riscv.org/download.html#spec_compressed_isa

• Increased decoding complexity (e.g., operands can now move around).

• Finding where the instruction begins.

• Tracking down +4 assumptions throughout the code base, particularly with branch handling.

• Unaligned instructions, in particular, running off cache lines and virtual pages.

The last point requires some additional “statefulness” in the Fetch Unit, as fetching all of the
pieces of an instruction may take multiple cycles.

The following describes the proposed implementation strategy of RVC in BOOM:

• Implement RVC in the Rocket in-order core. Done properly, BOOM may then gain RVC
support almost entirely for free (modulo any +4 assumptions in the code base).

• Move BOOM’s Fetch Buffer into Rocket’s front-end. Rocket will need the statefulness to
handle wrap-around issues with fetching unaligned 32 bit instructions. A non-RVC Rocket
core can optionally remove this buffer.

• Expand 16-bit instructions as they enter (or possibly exit) the Fetch Buffer.

• Minimize latency by placing 16b→32b expanders at every half-word start.

A.3.1 Challenging Implementation Details

There are many challenging corner cases to consider with adding RVC support to BOOM. First,
although all 16 bit encodings map to a 32b version, the behavior of some 16b instructions are
different from their 32b counterparts! A JAL instruction writes the address of the following
instruction to rd - but whether that is PC + 2 or PC + 4 depends on whether it’s the 16b JAL or
a 32b JAL! Likewise, a mispredicted not-taken branch redirects the fetch unit to PC + 2 or PC + 4
depending on whether the branch was the compressed version or not. Thus, the pipeline must
track whether any given instruction was originally a compressed 16b instruction or
not.

The branch prediction units will also require a careful rethink. The BTB tracks which in-
structions are predicted-taken branches and redirects the PC as desired. For a superscalar fetch
packet, the BTB must help denote which instruction is to be blamed for the taken prediction to
help mask off any invalid instructions that come afterward within the fetch packet. RVC makes
this much more difficult, as some predicted-taken branches can wrap around fetch groupings/cache
lines/virtual page boundaries. Thus, the “taken” prediction must be attached to a tag-hit on the
end of the branch instruction. This handles fetching the first part of the branch (and predicting
“not-taken”), then fetching the second part (which hits in the BTB and predicts “taken”), and
only then redirecting the front-end to the predicted-taken PC target.

65

Appendix B

Parameterization

B.1 Rocket Parameters

B.2 BOOM Parameters

B.3 Uncore Parameters

66

Appendix C

Frequently Asked Questions

To be filled in as questions are asked!

67

Appendix D

Terminology

[TODO: To be filled in as needed.]
[TODO: come up with a better format...]

fetch packet - A bundle returned by the front-end which contains some set of consecutive
instructions with a mask denoting which instructions are valid, amongst other meta-data related
to instruction fetch and branch prediction. The Fetch PC will point to the first valid instruction
in the fetch packet, as it is the PC used by the Front End to fetch the fetch packet.

fetch PC - The PC corresponding to the head of a fetch packet instruction group.
PC - A.k.a, the Program Counter. A weird, terrible, anachronistic term to describe the address

in memory of an instruction.

68

Br
an

ch

Pr
ed

ict
io

n

I$

Fe
tc

h
Bu

ffe
r

D
ec

od
e

R
eg

is
te

r
R

en
am

e

Di
sp

at
ch

Is
su

e

Is
su

e
W

in
do

w

AL
U

U
ni

fie
d

R
eg

is
te

r
Fi

le
2R

,2
W

Ex
ec

ut
e

D
at

a
M

em
ad

dr

w
da

ta
rd

at
a

LA
Q

SA
Q

SD
QM

em
or

y
W

B

RO
B

Re
na

m
e

De
co

de
Fe

tc
h1

Re
gi

st
er

Re
ad

Co
m

m
it

Br Lo
gi

c
R

es
ol

ve

Br
an

ch
 μ

D
ec

PC
1

Fe
tc

h2

BT
B

Ex
eB

rT
ar

ge
t

NP
C

Fr
on

t-e
nd

B
ac

k-
en

d

M
ul

/D
iv

va
ria

bl
e,

 m
ul

ti-
cy

cl
e

Lo
ad

-S
to

re

U
ni

t

ad
dr

da
ta

BH
T

PC
2

Fr
on

t-e
nd

Ta
ke

PC

BH
T

Ta
rg

et

Figure D.1: A more detailed diagram of BOOM, for a single-issue RV32IM design.69

Bibliography

[1] Gem5 Visualization, 2014. http://www.m5sim.org/Visualization.
[2] The Hwacha Project, 2015. http://hwacha.org.
[3] Rocket Microarchitectural Implementation of RISC-V ISA, 2016. https://github.com/ucb-

bar/rocket.
[4] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory con-

sistency and event ordering in scalable shared-memory multiprocessors. SIGARCH Comput.
Archit. News, 18(2SI):15–26, May 1990.

[5] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36, 1999.
[6] A. Seznec. A new case for the tage branch predictor. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 117–127. ACM, 2011.
[7] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design tradeoffs for the alpha ev8 conditional

branch predictor. In Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on, pages 295–306. IEEE, 2002.

[8] A. Seznec and P. Michaud. A case for (partially) tagged geometric history length branch
prediction. Journal of Instruction Level Parallelism, 8:1–23, 2006.

[9] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M.
Shainline, R. R. Avizienis, S. Lin, et al. Single-chip microprocessor that communicates directly
using light. Nature, 528(7583):534–538, 2015.

[10] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–41, 1996.

70

	Introduction & Overview
	The BOOM Pipeline
	The RISC-V ISA
	The Chisel Hardware Construction Language
	Quick-start
	The BOOM Repository
	The Rocket-chip Repository Layout
	The Rocket Core - a Library of Processor Components!

	Instruction Fetch
	The Rocket I-Cache
	The Fetch Buffer

	Branch Prediction
	The Rocket Next-line Predictor (NLP)
	NLP Predictions
	NLP Updates

	The Backing Predictor (BPD)
	Making Predictions
	Updating the Backing Predictor
	Managing the Global History Register
	The Branch Reorder Buffer (BROB)
	Rename Snapshot State
	The Abstract Branch Predictor Class
	The Two-bit Counter Tables
	The GShare Predictor
	The TAGE Predictor
	Other Predictors

	Branch Prediction Configurations
	GShare Configuration Options
	TAGE Configurations

	The Decode Stage
	The Rename Stage
	The Purpose of Renaming
	The Explicit Renaming Design
	The Rename Map Table
	Resets on Exceptions and Flushes

	The Busy Table
	The Free List
	Stale Destination Specifiers

	The Reorder Buffer (ROB) and the Dispatch Stage
	The ROB Organization
	ROB State
	Exception State
	PC Storage

	The Commit Stage
	Exceptions and Flushes
	Parameterization - Rollback versus Single-cycle Reset
	Causes

	The Issue Unit
	Speculative Issue
	Issue Slot
	Issue Select Logic
	Un-ordered Issue Window
	Age-ordered Issue Window
	Wake-up

	The Register File and Bypass Network
	Register Read
	Dynamic Read Port Scheduling

	Bypass Network

	The Execute Pipeline
	Execution Units
	Scheduling Readiness

	Functional Units
	Pipelined Functional Units
	Un-pipelined Functional Units

	Branch Unit & Branch Speculation
	Load/Store Unit
	Floating Point Units
	Floating Point Divide and Square-root Unit
	Parameterization
	Control/Status Register Instructions

	The Load/Store Unit (LSU)
	Store Instructions
	Store Micro-ops

	Load Instructions
	The BOOM Memory Model
	Ordering Loads to the Same Address

	Memory Ordering Failures

	The Memory System and the Data-cache Shim
	Micro-architectural Event Tracking
	Reading HPM Counters in Software

	Verification
	RISC-V Tests
	RISC-V Torture Tester

	Debugging
	Pipeline Visualization
	Physical Realization
	Register Retiming
	Pipelining Configuration Options

	Future Work
	The Rocket Custom Co-processor Interface (ROCC)
	The Demands of the ROCC Interface
	A Simple One-at-a-Time ROCC Implementation
	A High-performance ROCC Implementation Using Two-Phase Commit
	The BOOM Custom Co-processor Interface (BOCC)

	The Vector (``V") ISA Extension
	The Compressed (``C") ISA Extension
	Challenging Implementation Details

	Parameterization
	Rocket Parameters
	BOOM Parameters
	Uncore Parameters

	Frequently Asked Questions
	Terminology

