
Unit Testing of COOLAPS Applications

Camilo Correa Restrepo, Jacques Robin∗

December 17, 2021

Contents

1 Introduction 1

2 Tooling and Preparation 2

3 Writing the test suite 3

4 Finding bugs 5

5 QuickCheck 6

6 Conclusion 11

1 Introduction

Experience has shown that, as with most engineered artifacts, systematically
testing software is incredibly important in ensuring both its quality at a given
instant and its ability to evolve without regressing as new features are added.
To do this, several techniques have emerged in recent years to address these
needs. Of particular importance to us is the notion of unit testing. This type
of testing focuses on creating collections of tests for each individual “unit”
within a particular application. Depending on the particular characteristics
of one’s programming environment, these “units” may be as high as the
component level or may be as low as the individual functions (or in our case
predicates) that build up the application.

Unit testing is a very powerful idea that allows one to:
∗camilo.correa-restrepo@univ-paris1.fr, jacques.robin@univ-paris1.fr

1

1. test every single component of the application systematically and en-
sure that as the application evolves, the rest of the application remains
stable;

2. document the intended use of a given “unit” in a more powerful and
illustrative way than comments or other documentation can.

This makes it essentially indispensable in modern software development, and
rarely will one ever see a commercial or production system that has not un-
dergone rigorous unit testing. This, however, does not mean that these tests
in themselves guarantee the quality of a software system: being programmed
artifacts themselves, they are as prone to bugs as the original system, so care
must be taken to not put blind faith in them. Furthermore, unit testing im-
plies a considerable investment of time and effort that do not directly increase
a given application capabilities whilst taking a comparable amount of code
to produce. Another important question is the degree of coverage of the
underlying system by the tests and, furthermore, the degree to which they
indeed cover the possible cases that can arise for each “unit” (which may well
be infinite).

With all that said, it remains a fantastically useful tool for engineering
complex systems, and must be used whenever possible - to the furthest degree
possible.

2 Tooling and Preparation

The underlying technologies of COOLAPS applications, notably Logtalk and
SWI-Prolog, both include fairly robust testing libraries with almost all mod-
ern features one would expect from a testing framework. We will make use of
Logtalk’s “lgtunit” testing library, which, thankfully, requires no installation
or special configuration on our part to use (assuming one has duly installed
Logtalk).

To enable unit testing in a Logtalk environment, one needs, at a minimum
the creation of two files. The first of these is a so-called tester file that will
load all required libraries and enable necessary flags and then will invoke
your test suites. It’s structure is very similar to a Logtalk loader file, with
exception that the final invocation of the initialization procedure is the run
message on your loaded test files.

We will be testing our Wumpus world simulator available here: https:
//github.com/kaiser185/wumpus_simul_ai4eu. We will not go into details
here as to how it functions: to make sense of all that is to follow it is

2

https://github.com/kaiser185/wumpus_simul_ai4eu
https://github.com/kaiser185/wumpus_simul_ai4eu

REQUIRED to at the very least familiarize oneself with the README
and the basic idea of the Wumpus world.

The basic structure of our tester file is as follows (with explanatory com-
ments):

:- initialization((
%These first two lines enables verbose compilation
%and load the testing library itself
set_logtalk_flag(report, warnings),
logtalk_load(lgtunit(loader)),
%This line loads our application with debugging information
logtalk_load(loader, [debug(on)]),
%This line loads our test suite specification, ensuring it is treated as such
logtalk_load(tests, [hook(lgtunit)]),
%This line automatically executes our test suite after all compilation is done
tests::run

)).

This is essentially all that is needed to begin performing tests. Executing
this is as simple as running the following command:

$ swilgt tester.lgt

3 Writing the test suite

A Logtalk test suite is nothing more than an object that extends the lgtunit
base object exposed by the library with the same name. While Logtalk
includes several test dialects to define unit tests, for our purposes the simplest
suffices. The basic structure of a test suite object is written as follows:

:- object(tests, extends(lgtunit)).

%This is the actual unit test
%It calls the goal(s) in the body of the predicate
%and checks that some_predicate/1 succeeds in order to consider
%that the test has been passed.
test(my_test_id) :- some_predicate(’some input’).

:- end_object.

3

Now, let’s examine a specific unit we would like to test within the applica-
tion. In this case, we are going to examine the breeze_percept/3 predicate
within the src/wwpercept.lgt file. The code for this predicate is as follows:

:- object(wwpercept).

% <Dependencies and other stuff>
:- private(breeze_percept/3).
breeze_percept(CurrentState, Percepts0, [breeze|Percepts0]) :-

CurrentState::holds(at(agent,Position)),
adjacent(CurrentState)::adjacent(Position, AdjacentPlaces),
member(pit(_,_), AdjacentPlaces).

breeze_percept(CurrentState, Percepts, Percepts) :-
CurrentState::holds(at(agent,Position)),
\+ (adjacent(CurrentState)::adjacent(Position, AdjacentPlaces),
member(pit(_,_), AdjacentPlaces)).

:- end_object.

Admittedly, this is a rather complex predicate whose use and meaning
is perhaps not immediately obvious, and whose comments I’ve omitted for
reasons that will become clear further on. Before we dive deeper into it, let’s
examine two test cases written for it:

:- object(tests, extends(lgtunit)).
% <Dependencies and other stuff>

test(breeze_percept_present) :-
user::tiny_pit(S),
wwpercept<<breeze_percept(S, [], [breeze]).

test(breeze_percept_not_present) :-
user::tiny_no_pit(S),
wwpercept<<breeze_percept(S, [], []).

% <Other tests>
:- end_object.

With both the tests and the code in view, it becomes far easier to analyze
what the meaning of the arguments is and what the intended use of the

4

predicate is. If we observe the first test, we see that the first line of the
body calls the tiny_pit/1 predicate with some variable S as the argument.
Considering both the code and the tests, it is clear that this corresponds to
the CurrentState variable in the original code, which tells us that this goal
is most likely a setup call. Indeed, it is; in fact, it simply unifies the variable
with a predefined state (defined elsewhere) whose characteristics are known
so the tests can be fully controlled, and the behavior easily predicted. If we
look at what the test tells us, breeze_percept/3 describes a relation between
a given state and two lists of percepts. The crucial observation is that if the
state so determines it, the second list will contain a breeze atom, and not
otherwise. This begins to tell us far more about the predicate, than merely
observing the code itself. One could even argue that the implementation of
the predicate is itself irrelevant and that the crucial aspect is the interface it
exposes, which is precisely what the unit tests document. The fundamental
idea behind this is that tests aren’t only tests, they are also documentation.

4 Finding bugs

Let’s imagine we’ve made a simple mistake in our definition of breeze_percept/3
and instead of adding the breeze atom, we are instead adding the breze
atom to the list. While this is clearly a simple bug, it could break other
parts of our application that depend on this particular predicate. If we run
our test suite we would then observe the following:

This would immediately indicate to us that something has indeed gone
wrong with our test, and we would rather quickly discover our typo and
correct our predicate definition. The one, rather large, drawback to our test
framework as we are currently using it is that the information it can give as
to WHY the test failed is limited. This can be combated to some degree
through setting more the more complex test/2 and test/3 test dialects, in
particular by using assertions in addition to seeing the test succeed (or fail
if that’s the expected outcome). The test/2 and test/3 dialects have the
following structure:

test(Name, Outcome) :- Goal.
test(Name, Outcome, Options) :- Goal.

5

Please see https://logtalk.org/manuals/devtools/lgtunit.html for de-
tails on the details and possible values for these arguments; for our purposes
it suffices to say that (a) Name is the test identifier, (b) Outcome being true
tells the test library that the test must succeed, and (c) Options is a list
with which we can parameterize the test (the setup(Goal) option simply
is a goal that must be used for setting up the test and can share variables
with the actual test body). A word of warning, however, is in order before
we continue: a test should be as simple as possible (besides the necessary
setup conditions) because otherwise the cause of failures become very hard
to determine.

To illustrate what being explicit about the expectation of seeing breeze
would look like, we could rewrite the test as follows:

test(breeze_percept_present, true((BreezeAtom = breeze))) :-
user::tiny_pit(S),
wwpercept<<breeze_percept(S, [], [BreezeAtom]).

The expression true((BreezeAtom = breeze)) within the test predicate
tells the test framework that you expect the test to succeed and that the
goal within the parenthesis must succeed after the test body has succeeded.
This would give us the following output:

Notice that here there is an EXTREMELY important difference be-
tween these two test results: the former fails because the predicate call to
breeze_percept/3 failed due to having a different result in the third argu-
ment, whilst the latter does not have such a failure, it is the assertion itself
which failed. One must tread quite carefully to avoid confusing these two,
since they mean very different things.

5 QuickCheck

QuickCheck is an automatic test case generation method originally developed
by the functional programming community. It has been subsequently been
ported over to the Logtalk programming language and is an integral part
of the lgtunit library. The fundamental idea behind it is that writing unit
tests to cover large amounts of possible cases for given function (or predicate
in our case) is rather laborious in the best of circumstances. To combat

6

https://logtalk.org/manuals/devtools/lgtunit.html

this, it is possible to automatically generate large amount of individual test
instances with a single test definition.

A couple things must be noted about QuickCheck. The first of these is
that it is not a replacement for unit tests, rather a complement to them.
This is due to the fact that QuickCheck only works if you can identify a
property to test that should hold across your entire range of test values
and not for a single isolated instance. Thus, QuickCheck is an instance of
what is termed property-based testing. The second is that determining
these properties is not necessarily straightforward, and requires care to do
correctly. A third and final note is that the values QuickCheck generates are
random in nature, and care must be taken to avoid running into the pitfalls
that random generation of instances can present.

With that said, let us first examine the predicate we are going to test
with QuickCheck within our application:

:- category(sflux).

%%More predicates to test
:- public(holds/2).
holds(F, [F|_]).
holds(F, Z) :- Z=[F1|Z1], F\==F1, holds(F, Z1).
%%More predicates

:- end_category.

Now, this predicate, in essence, does something very simple, it recursively
checks for the presence of an element in a list. Its semantics (and origin) are
within the Special Flux Kernel (and thus Special Fluent Calculus) described
by Michael Thielscher in his book Reasoning Robots (2005) to which readers
are referred for details. What’s important to our discussion here is that we
want to be able to test some property that holds across large amounts of
instances and that is independent of the implementation details. We, of
course, are aware that the predicate looks recursively through the list to do
so, but the points to be outlined in this section apply far more generally.

Logtalk’s QuickCheck implementation relies very heavily on the type
system withing Logtalk, specifically the user-extensible type (https://logtalk.
org/manuals/libraries/types.html) and arbitrary (https://logtalk.
org/manuals/libraries/arbitrary.html) libraries that respectively im-
plement functionality to perform type checking and and generate arbitrary
terms of a given type. Since we will be testing a predicate whose semantics

7

https://logtalk.org/manuals/libraries/types.html
https://logtalk.org/manuals/libraries/types.html
https://logtalk.org/manuals/libraries/arbitrary.html
https://logtalk.org/manuals/libraries/arbitrary.html

indicate to us that it is defined for fluents and states (represented as lists of
fluents), we must create our own definitions of what a fluent type is and
represents. To do this, we must extend the definitions of the type::type/1
and type::check/2 predicates. We will create a dedicated object where we
will define both the types and where, further on, we will define the arbitrary
term generation that we will use to run our QuickCheck tests. To begin
with, let’s define the object with our fluent type:

:- object(wwtypes).

:- use_module(lists, [member/2]).

:- multifile(type::type/1).
type::type(fluent).
:- multifile(type::check/2).
type::check(fluent, Fluent) :-

type::check(term, Fluent),
functor(Fluent, Functor, _),
member(Functor,[at, out, carries, alive, dead]).

:- end_object.

As it can be seen, we are defining fluents, within our application, to
essentially be valid prolog terms (the call to type::check(term,Fluent)
is in essence asking the system to determine that the Fluent variable is
indeed a term as defined by the backend Prolog interpreter) whose functors
are within those defined for our Wumpus world case. The type::type/1
predicate we define is simply the declaration that fluent is one of the types
that can be used by the Logtalk type system. These predicates will be used
indirectly by the QuickCheck implemenation to check that the generated
types correspond to our definition.

Now, with our fluent type defined, we must be able to generate arbi-
trary terms that conform to our type specification. To do so, we must extend
the arbitrary category’s arbitrary::arbitray/1 and arbitrary::arbitrary/2
predicates that will allow us to both define the types that can be generated
arbitrarily and the actual generation of terms of that type. In so doing, we
will arrive at the following version of our earlier object:

:- object(wwtypes, imports(functor_handling)).

8

:- use_module(lists, [member/2]).

:- multifile(type::type/1).
type::type(fluent).
:- multifile(type::check/2).
type::check(fluent, Fluent) :-

type::check(term, Fluent),
functor(Fluent, Functor, _),
member(Functor,[at, out, carries, alive, dead]).

:- multifile(arbitrary::arbitrary/1).
arbitrary::arbitrary(fluent).
:- multifile(arbitrary::arbitrary/2).
arbitrary::arbitrary(fluent, Arbitrary) :-

random::member(Functor, [at, out, carries, alive, dead]),
::handle_functor(Functor, Arbitrary).

:- end_object.

We have also augmented this code with a category that defines how the
terms are created depending on the functor at hand, as follows (though it
must be noted we only show the first of the clauses for the handle_functor
predicate for the sake of brevity; all the others are much the same):

:- category(functor_handling).

:- private(handle_functor/2).
handle_functor(at, at(Entity, Place)) :-

random::member(EntityBase, [agent, wumpus]),
random::member(PlaceBase, [exit, wwplace, pit]),
type::arbitrary(list(positive_integer,3),[X,Y,Id]),
Entity=..[EntityBase, Id],
Place=..[PlaceBase, X, Y].

%Other clauses for the other possible functors%
:- end_category.

With these definitions in place, it is now finally possible to begin defining
our QuickCheck tests. To begin with, we must identify a property that must
hold for the holds/2 predicate. The simplest property that is invariant to

9

the amount of fluents in the state is the fact that every single member of
the list representing the state must hold. The triviality of this property
notwithstanding, it faithfully reflects the intended semantics of the holds/2
predicate, and, moreover, is completely independent of the implementation,
that while known a priori, should not be a relevant factor for the property
itself. We can express such a property with following predicate (note that
we import the sflux category where the holds/2 predicate is defined into
our test suite object to be able to call the predicate directly without an
intermediary object):

holds_prop(Fluents) :-
forall(member(Fluent, Fluents),::holds(Fluent, Fluents)).

With this property duly defined, all that remains is to include within
our test suite a QuickCheck test definition. This is accomplished through
the use of the quick_check/2 and quick_check/3 test dialects. These test
definitions have the following form:

quick_check(Test, Template, Options).
quick_check(Test, Template).

The Test and Options variables are much the same as they were for the
test/2-3 definitions above, with some further specific options of QuickCheck
tests. However, we will only require the simpler of the two, namely quick_check/2
for the purposes of this tutorial. The Template is a predicate template
as described in https://logtalk.org/manuals/devtools/lgtunit.html?
highlight=template#quickcheck, where one utilizes mode declarations to
control which terms are to be generated automatically as “input” to the prop-
erty predicate. Putting it all together, we will add the following to our test
suite:

quick_check(holds_prop, holds_prop(+non_empty_list(fluent))).

Here we make use of the parametric type non_empty_list from the
arbitrary library mentioned above, which in turn internally uses our type
definition to generate the list of fluents we need to test our desired property.
This is, then, the basic operation of the QuickCheck.

10

https://logtalk.org/manuals/devtools/lgtunit.html?highlight=template#quickcheck
https://logtalk.org/manuals/devtools/lgtunit.html?highlight=template#quickcheck

6 Conclusion

We have seen that unit tests within COOLAPS applications are a very pow-
erful tool to both ensure the quality of the individual units within our ap-
plication and to ensure that our application is stable as it evolves. It is
an indispensable part of software development, and should accompany all
steps of the development process. It is our hope that this tutorial will prove
valuable in testing COOLAPS applications moving forward.

11

	Introduction
	Tooling and Preparation
	Writing the test suite
	Finding bugs
	QuickCheck
	Conclusion

