--- title: "A penguin story" date: "2024-07-08" output: html_document --- ## Data For this analysis, we'll use the penguin dataset in the R package `palmerpenguins` (). ```{r load-packages, message=FALSE} library(tidyverse) library(palmerpenguins) library(gt) ``` The `penguins` dataset contains the following elements: ```{r} glimpse(penguins) ``` ## Species We have `r length(unique(penguins$species))` species in this dataset: `r knitr::combine_words(unique(penguins$species))` that are not evenly distributed. ```{r} penguins |> count(species) |> knitr::kable() ``` ```{r, echo = FALSE, out.width='75%', fig.align = 'center', fig.alt="Illustration of penguin culmen length and depth"} knitr::include_graphics("https://allisonhorst.github.io/palmerpenguins/reference/figures/culmen_depth.png") ``` The figure below shows the differences in culmen by species. ```{r species, warning=FALSE, fig.width=5} ggplot( penguins, aes( x = bill_length_mm, y = bill_depth_mm, color = species, shape = species ) ) + geom_point() + labs(x = "Culmen length (mm)", y = "Culmen depth (mm)") ``` ## Penguins The table below shows the top 10 penguins in the dataset. ```{r top10} penguins |> slice_head(n = 10) |> select(species, island, bill_length_mm, bill_depth_mm) |> gt() ``` ## To find out more about this dataset See the R **palmerpenguins** package vignette available at