{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "https://github.com/sgugger/Adam-experiments" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from fastai.conv_learner import *\n", "from fastai.models.cifar10.wideresnet import wrn_22\n", "from torchvision import transforms, datasets\n", "\n", "torch.backends.cudnn.benchmark = True\n", "PATH = Path(\"../data/cifar10\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')\n", "stats = (np.array([ 0.4914 , 0.48216, 0.44653]), np.array([ 0.24703, 0.24349, 0.26159]))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[8.325000000000001, 8.325000000000001, 1.3499999999999999]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sz = 32\n", "bs = 128\n", "\n", "m = wrn_22()\n", "base_lr = 3e-3\n", "lr_div = 10\n", "wd = 0.1\n", "cyc_len = 18 # lenght of the cycle expressed in epochs\n", "ann_len = 0.075 # length of the annealing phase expressed as a fraction of cycle_len\n", "\n", "moms = (0.95,0.85)\n", "beta2=0.99\n", "\n", "phase_lengths = [cyc_len * (1-ann_len) / 2, cyc_len * (1-ann_len) / 2, cyc_len * ann_len]; phase_lengths" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "tfms = tfms_from_stats(stats, sz, aug_tfms=[RandomCrop(sz), RandomFlip()], pad=sz//8)\n", "data = ImageClassifierData.from_paths(PATH, val_name='test', tfms=tfms, bs=bs)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "learn = ConvLearner.from_model_data(m, data)\n", "learn.crit = nn.CrossEntropyLoss()\n", "learn.metrics = [accuracy]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def adam(params): return optim.Adam(params, betas=(moms[0], beta2))\n", "learn.opt_fn = adam" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "training_phases = [\n", " TrainingPhase(phase_lengths[0], adam, lr=(base_lr/lr_div, base_lr), lr_decay=DecayType.LINEAR,\n", " momentum=moms, momentum_decay=DecayType.LINEAR, wds=wd, wd_loss=False),\n", " TrainingPhase(phase_lengths[1], adam, lr=(base_lr, base_lr/lr_div), lr_decay=DecayType.LINEAR,\n", " momentum=(moms[1], moms[0]), momentum_decay=DecayType.LINEAR, wds=wd, wd_loss=False),\n", " TrainingPhase(phase_lengths[2], adam, lr=(base_lr/lr_div, base_lr/(lr_div*100)), lr_decay=DecayType.LINEAR,\n", " momentum=moms[0], wds=wd, wd_loss=False)\n", "]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fba82b3463384441b963a7bdeab7cf2e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, description='Epoch', max=19), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "epoch trn_loss val_loss accuracy \n", " 0 1.112043 1.345067 0.5328 \n", " 1 0.831825 0.942278 0.6832 \n", " 2 0.686862 0.82179 0.7301 \n", " 3 0.588 0.666054 0.7756 \n", " 4 0.547755 0.675355 0.7729 \n", " 5 0.489622 0.846058 0.7413 \n", " 6 0.470558 0.732024 0.758 \n", " 7 0.441935 0.556813 0.8094 \n", " 8 0.407183 0.53978 0.817 \n", " 9 0.368785 0.427846 0.8583 \n", " 10 0.310193 0.355229 0.878 \n", " 11 0.261422 0.379379 0.8748 \n", " 12 0.209452 0.307924 0.897 \n", " 13 0.189456 0.263173 0.9136 \n", " 14 0.140466 0.246966 0.9203 \n", " 15 0.099081 0.24333 0.9245 \n", " 16 0.070481 0.215673 0.932 \n", " 17 0.048581 0.2096 0.9376 \n", "CPU times: user 48min 57s, sys: 13min 20s, total: 1h 2min 18s\n", "Wall time: 52min 11s\n" ] }, { "data": { "text/plain": [ "[array([0.2096]), 0.9376]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%time learn.fit_opt_sched(training_phases)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " \r" ] }, { "data": { "text/plain": [ "'Final loss: 0.176131471991539, Final accuracy: 0.9424999952316284'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "preds, targs = learn.TTA()\n", "probs = np.exp(preds)/np.exp(preds).sum(2)[:,:,None]\n", "probs = np.mean(probs,0)\n", "acc = learn.metrics[0](V(probs), V(targs)).data[0]\n", "loss = learn.crit(V(np.log(probs)), V(targs)).data[0]\n", "f'Final loss: {loss}, Final accuracy: {acc}'" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPW9//HXJxuEsJOIbEJARFARMEUtLuCCIFau1dsLtpZaLbXVX9W2V7Gt2qK11NpWq96q1+LSR92KG9cFRAV3xaCsAoIQZU8gbGEJJPn8/piTOIQsA5lkJjPv5+Mxj5zzPd9zzmd0+MyZ7/me79fcHRERSR4psQ5ARESalhK/iEiSUeIXEUkySvwiIklGiV9EJMko8YuIJBklfhGRJKPELyKSZJT4RUSSTFqsA6hJdna29+rVK9ZhiIg0G/Pmzdvs7jmR1I3LxN+rVy/y8/NjHYaISLNhZl9GWldNPSIiSUaJX0QkySjxi4gkGSV+EZEko8QvIpJklPhFRJKMEr+ISJJJqMT/tzdW8NbnRbEOQ0QkriVU4n/wrS94W4lfRKROCZX4MzPS2L2vPNZhiIjEtYRK/K0yUtmzryzWYYiIxLWES/y64hcRqVtCJf7MjFT27FfiFxGpS72J38x6mNlsM1tqZkvM7Noa6piZ/c3MVprZQjMbErZtgpmtCF4Tov0GwumKX0SkfpEMy1wG/MLdPzGzNsA8M5vl7p+F1RkN9A1eJwN/B042s47ArUAe4MG+0919a1TfRSAzPY3iXXsa49AiIgmj3it+d9/g7p8EyzuBpUC3atXGAo97yIdAezPrApwHzHL34iDZzwJGRfUdhMnUzV0RkXodUhu/mfUCBgMfVdvUDVgTtr42KKutvFG0SldTj4hIfSJO/GbWGngWuM7dd1TfXMMuXkd5TcefaGb5ZpZfVHR4D2G1aqHELyJSn4gSv5mlE0r6/3L352qoshboEbbeHVhfR/lB3P0hd89z97ycnIimjTxI25bplJSWUV5R43eLiIgQWa8eA/4BLHX3v9RSbTrw/aB3zynAdnffAMwERppZBzPrAIwMyhpFm5ahe9Ule9XOLyJSm0h69QwDLgMWmdn8oOxXwFEA7v4A8ApwPrAS2A1cHmwrNrPbgI+D/Sa7e3H0wj9Q25bpAOzYu592rdIb6zQiIs1avYnf3d+l5rb68DoOXF3LtqnA1MOK7hC1zQy9nZ264hcRqVVCPbnbJuyKX0REapZQib+yqUdX/CIitUusxB809Wzfoyt+EZHaJFTi79S6BQBbSkpjHImISPxKqMSflZFKy/QUNivxi4jUKqESv5mR06YFRTuV+EVEapNQiR8gu3ULNpfsi3UYIiJxK+ESf05rXfGLiNQl4RJ/dpsWauMXEalDwiX+nNYtKN69j7LyiliHIiISlxIu8Xdp1xJ32LB9b6xDERGJSwmX+HOzswBYtXlXjCMREYlPCZf4u7bPBGDjds29KyJSk4RL/DltQk/vqmePiEjNEi7xt0xPpW3LNAqV+EVEalTvePxmNhW4ACh09+Nr2P7fwHfDjtcfyAkmYSkAdgLlQJm750Ur8Lp0bZ/J+m26uSsiUpNIrvgfBUbVttHd/+Tug9x9EHAT8Fa1WbZGBNubJOlDZeJXG7+ISE3qTfzu/jYQ6XSJ44EnGxRRFHRt35L1urkrIlKjqLXxm1krQr8Mng0rduA1M5tnZhOjda76dGvfim2797OrVBOyiIhUF82bu98C3qvWzDPM3YcAo4GrzeyM2nY2s4lmlm9m+UVFRQ0KpGv7lgBq7hERqUE0E/84qjXzuPv64G8h8DwwtLad3f0hd89z97ycnJwGBdIt6Ms/78utDTqOiEgiikriN7N2wJnAi2FlWWbWpnIZGAksjsb56tP3iDYAFGzZ3RSnExFpViLpzvkkMBzINrO1wK1AOoC7PxBUuwh4zd3Dx0noDDxvZpXnecLdZ0Qv9Nq1a5VOl3Yt9RCXiEgN6k387j4+gjqPEur2GV62CjjxcANrqNzsLFYWlcTq9CIicSvhntytdFTHVrq5KyJSg4RN/Ee2a8nmklL2lWlcfhGRcAmb+CvH5d+0Q0M3iIiES9jEf2S7YHhmJX4RkQMkbOLv0k4PcYmI1CRhE3/3DpmYQcFm9eUXEQmXsIm/VUYaPTu2YtnGHbEORUQkriRs4gfo36UtyzbujHUYIiJxJaET/7FHtqVgyy5279MonSIilRI78Xdpgzus2KQneEVEKiV04u/ZqRUAa7bqBq+ISKWETvyVwzOv3aounSIilRI68bdpmU6nrAwKNu+qv7KISJJI6MQP0Dsni1VK/CIiVRI+8edmZ7GqSIlfRKRSwif+3jmt2VxSyo69+2MdiohIXKg38ZvZVDMrNLMap000s+Fmtt3M5gevW8K2jTKz5Wa20swmRTPwSOVmZwGwWlf9IiJAZFf8jwKj6qnzjrsPCl6TAcwsFbgfGA0MAMab2YCGBHs4+uQEiV/t/CIiQASJ393fBooP49hDgZXuvsrd9wFPAWMP4zgN0qNjK1IMVmkaRhERIHpt/Kea2QIze9XMjgvKugFrwuqsDcpqZGYTzSzfzPKLioqiFBa0SEulR8dW6tkjIhKIRuL/BOjp7icC9wIvBOVWQ12v7SDu/pC757l7Xk5OThTC+pp69oiIfK3Bid/dd7h7SbD8CpBuZtmErvB7hFXtDqxv6PkOR+/s1ny2YQf7yzX/rohIgxO/mR1pZhYsDw2OuQX4GOhrZrlmlgGMA6Y39HyHo3LMnqUbNDa/iEhafRXM7ElgOJBtZmuBW4F0AHd/ALgE+ImZlQF7gHHu7kCZmV0DzARSganuvqRR3kU9hh2dDcCS9TsY2L19LEIQEYkbFsrR8SUvL8/z8/Ojdrz95RX0/fWrABRMGRO144qIxAszm+fueZHUTfgndwHSU1PISAu91fKK+PuiExFpSkmR+AHuvHgggObgFZGklzSJ/xu5HQH4ePXhPIsmIpI4kibxd2ufSbf2mcwtUOIXkeSWNIkf4OTcjsxdXUw83tAWEWkqSZX4v5Hbkc0l+1i0bnusQxERiZnkSvy9Qu38bywtjHEkIiKxk1SJv09OFi3SUijcWRrrUEREYiapEr+ZMbB7O1Zs2hnrUEREYiapEj9A385tWLZxp27wikjSSrrEn9O6BSWlZbwwf12sQxERiYmkS/yXD+sFwPVPL4htICIiMZJ0ib99qwxSU0JzxDw196sYRyMi0vSSLvEDvPKz0wGY/NJnMY5ERKTp1TsefyLqd2Qb2rRMq5qgRUQkmdR7xW9mU82s0MwW17L9u2a2MHi9b2Ynhm0rMLNFZjbfzKI3wH4UXDykO18U7qJCwzSLSJKJpKnnUWBUHdtXA2e6+0DgNuChattHuPugSCcIaCpHH9GaPfvLWbZRffpFJLnUm/jd/W2g1iEt3f19d98arH5IaFL1uDeoR2gKxnvfXBHjSEREmla0b+5eAbwatu7Aa2Y2z8wm1rWjmU00s3wzyy8qKopyWAc7vls7AN7/Ykujn0tEJJ5ELfGb2QhCif/GsOJh7j4EGA1cbWZn1La/uz/k7nnunpeTkxOtsOr0k+F92FVaxv7yiiY5n4hIPIhK4jezgcDDwFh3r7qEdvf1wd9C4HlgaDTOFy0DurSlrMJZrGGaRSSJNDjxm9lRwHPAZe7+eVh5lpm1qVwGRgI19gyKldOOziY91Xh18cZYhyIi0mTq7cdvZk8Cw4FsM1sL3AqkA7j7A8AtQCfgf8wMoCzowdMZeD4oSwOecPcZjfAeDluHrAz6d2mrK34RSSr1Jn53H1/P9iuBK2soXwWcePAe8eWYzm2YNm8tZeUVpKUm5YPMIpJkkj7TVT7AdfOLcdUKJSLSaJI+8d/x7RMAeHLumhhHIiLSNJI+8bdMT+WYzq0BNDmLiCSFpE/8AKOP7wLA/DXbYhyJiEjjU+IHxg7qCsCKwpIYRyIi0viU+IGenbIAuGHaQjX3iEjCU+KHqhm5AP71kWblEpHEpsQfWPK78wD4zQuLKdPYPSKSwJT4A1kt0ugVzMg16blFMY5GRKTxKPGHmf7/TgNg2ry1MY5ERKTxKPGHadsynaG5HQEoLSuPcTQiIo1Dib+a75/aE4Bn562LcSQiIo1Dib+aAV3aAvCr5xdRronYRSQBKfFX0zunNVkZqQBMm6fxe0Qk8Sjx12DOf48A4MZn1btHRBJPRInfzKaaWaGZ1Th2sYX8zcxWmtlCMxsStm2Cma0IXhOiFXhjymnTgvOO6wzAE3qgS0QSTKRX/I8Co+rYPhroG7wmAn8HMLOOhGbsOpnQfLu3mlmHww22KV0+LBcItfVrGAcRSSQRJX53fxsorqPKWOBxD/kQaG9mXYDzgFnuXuzuW4FZ1P0FEjdO6d2pavmTrzRqp4gkjmi18XcDwu+Erg3KaitvFt65IdTWf/Hf32eBhmwWkQQRrcRvNZR5HeUHH8Bsopnlm1l+UVFRlMJqmB4dW5GeGnoLY+9/L8bRiIhER7QS/1qgR9h6d2B9HeUHcfeH3D3P3fNycnKiFFbDrfj9+VXLlz8yl8Ide2MYjYhIw0Ur8U8Hvh/07jkF2O7uG4CZwEgz6xDc1B0ZlDUrv7/oeABmLy9i6B1vxDgaEZGGibQ755PAB0A/M1trZleY2VVmdlVQ5RVgFbAS+F/gpwDuXgzcBnwcvCYHZc3K2cd2PmD92qc+jVEkIiINZ/HYVTEvL8/z8/NjHcYBVm/exfw1W7n+6QUAFEwZE+OIRES+Zmbz3D0vkrp6cjdCudlZXDS4O/2DsXx0s1dEmisl/kM0IRi9c8GabTyTr7F8RKT5UeI/RP/1jR6M6BfqdaTJ2UWkOVLiP0RmxiOXD61af+S9gtgFIyJyGJT4D9Pnt48GYPJLn/HMx2ryEZHmQ4n/MGWkpXDBwC4A3PDsQnbs3R/jiEREIqPE3wD3XTqE3jlZAFz5WHx1PxURqY0SfwPNuPYMAOauLqaktCzG0YiI1E+Jv4Ey0lIYc0Koyef4W2eyZP32GEckIlI3Jf4ouOPbJ1Qtj/nbu+zZVx7DaERE6qbEHwXtMtP55OZzq9b73zKDigr17xeR+KTEHyUdszJ4auIpVevLNu6MYTQiIrVT4o+iU3p34tVrTwfgg1VbYhyNiEjNlPijrH+XtmSkpXDbS5+xdde+WIcjInIQJf5GcMlJ3QEYfNssek16OcbRiIgcKNKJWEaZ2XIzW2lmk2rY/lczmx+8PjezbWHbysO2TY9m8PHqtrHHH7D+4vx1MYpERORg9SZ+M0sF7gdGAwOA8WY2ILyOu1/v7oPcfRBwL/Bc2OY9ldvc/cIoxh63UlOMgiljuOOiUDfPa5+az9INO2IclYhISCRX/EOBle6+yt33AU8BY+uoPx54MhrBNXfjh349z/zoe95h4uP5lJSWqauniMRUJIm/GxA+/OTaoOwgZtYTyAXeDCtuaWb5Zvahmf3HYUfaDJkZM687o2r9tc82cfytM/nzrOUxjEpEkl0kid9qKKvtknUcMM3dwx9dPSqYB/JS4G4z61PjScwmBl8Q+UVFRRGE1Tz0O7INBVPG8Jsx/avK7p/9hUbzFJGYqXeydTM7Ffitu58XrN8E4O5/qKHup8DV7v5+Lcd6FHjJ3afVdc54nGw9Wn76r3m8smhj1XqPjpls27Wf+747hDOPyYlhZCLSnEV7svWPgb5mlmtmGYSu6g/qnWNm/YAOwAdhZR3MrEWwnA0MAz6LJLBEdf+lQw5YX1O8h52lZUyYOpeinaUxikpEkkm9id/dy4BrgJnAUuAZd19iZpPNLLyXznjgKT/wJ0R/IN/MFgCzgSnuntSJ38w477jOABx7ZJsDtp1+55s17SIiElX1NvXEQiI39VRX2cOn969eAaBgyhg+37STru0zad0iLZahiUgzcihNPcosMZaSErp3/psx/bn95aUHPOn7zg0j6NGxVaxCE5EEpSEb4sQpvTsdVHb6nbP5+5wvYhCNiCQyJf44cVzXtgzt1ZFBPdqz+g/nV5X/ccYyek16mTeWbophdCKSSJT444SZ8cxVp/LC1cMwM5ZOHsW4b3z95O8Vj+Xz5rJQ8r9/9kqG/2k2+8srYhWuiDRjSvxxKjMjlSkXD+RHp+dWlf3w0XwKd+7lTzOXU7BlNz/+57wYRigizZUSf5z79ZgBzP7l8Kr1ob9/o2r5zWWFPPHRVwC88Ok6ek16mWUbNRiciNRNib8ZyM3O4r1JZx1Qdtt/hIZ+/ve80DBK1z09H4BRd7/D4nXbmzZAEWlWlPibiW7tM7n+nGMAuO/SwVx2Sk+G98vh06+2cd5f3z6g7gX3vks8Pp8hIvFBib8ZufacvhRMGcMFA7sC8MuR/QBYvik0sfv/XXNaVd1vTnmTzSUaAkJEDqbE34wd361d1fKZx+RwQvd2VfcDNmzfS97tr8coMhGJZ0r8zdwXd5zPsz85lcd+OBQI3Q+4ZsTRVdv/9dGXavYRkQNorJ4E9ccZyw566rdtyzQW3DoSs5qmWDjY4x8UMHZQN9plpjdChCISTdEellmaoRtHHcvpfbMPKNuxt4w7Z4Zm/3p3xWZ6TXqZFz5dx92vf84zH685oO6L89dxy4tLuOj+95osZhFpGrriT3DTF6znH++som/nNkybtxaAK0/L5eF3V9dY/5HLv8GZfXOqRgvtk5PFG78Y3lThishhOpQrfiX+JPKPd1dz20v1T4cwol8Os5d/Pf3lPybkcXb/zo0Zmog0UNSbesxslJktN7OVZjaphu0/MLMiM5sfvK4M2zbBzFYErwmRvw2JtitOy2XUcUcCcOGJXSmYMoYv7jifxb8774B6lUn/nnGDQvs9ls8fXlnatMGKSKOJZM7dVOBz4FxgLaGpGMeHz6RlZj8A8tz9mmr7dgTygTxCE7TPA05y9611nVNX/I3L3Q+6wbt3fzlm0O83M6rKCqaM4ay75rBq8y4gdN9g+oL1/Megrixev4MbzuvHn19bzsUndef0vqH5glcVlXDWn99i3Dd6MOXigU33pkSSXFSbeiKZbL2OxD8eGO7uPw7WHwTmuPuTdZ1TiT92yiuch95exY9OzyUtNfSD8Km5XzHpuUWHfKzVfzg/4h5EItIw0W7q6QaEd/lYG5RVd7GZLTSzaWZWOZ5wpPtKnEhNMX4yvE9V0gcYN/SowzrW3a+voP/NMzR2kEiciWTqxZou2ar/TPg/4El3LzWzq4DHgLMi3Dd0ErOJwESAo446vEQjjadgypgD1nfvK+POGcsZO6grg4/qwJRXl/HAW6HnBmZdfwbn/vVt7nljBQC/en4RC9dup1v7TP591al8c0poUvlbvzWAy4flIiJNKypNPdXqpwLF7t5OTT3J68ZpC3k6f039FQP3jh/Mt07sWuO28gpnz/5yTT4vUodot/GnEbq5ezawjtDN3UvdfUlYnS7uviFYvgi40d1PCW7uzgOGBFU/IXRzt7iucyrxJ4Y9+8pZs3U3I6uNHlqXbu0zWbdtD7OuP4O+ndsAcMG977B43Q4+uflcOmZlNFa4Is3aoST+ei+h3L3MzK4BZgKpwFR3X2Jmk4F8d58O/MzMLgTKgGLgB8G+xWZ2G6EvC4DJ9SV9SRyZGakc07lN1U3e0rJyduwpI6dNCyB0Jd8neFCs0rptewA4969vc1LPDvzlOyeyeF1ocpnnPlnLlaf3Pug8//yggDeXFZKemsJrn4Wmp5zzy+HsL6+o+vIQka/pAS6Jud37ynh54Qb+e9rCeusuuGUk7Vqlc+eMZfxPtbGIanPVmX144K0vmH7NMAZ2b9/QcEXikp7clWZp8brtdMzKoGv7TL4oKuHsP79Vte3CE7syfcH6eo8x8YzePPT2qlq3h9+kdndOuv11duzZz8LfjqRVhu4hSPOlxC8Jqdeklw9Yv2fcIJ746Cu+Kt7Nm78YTmZGKgC7SssY99CH/Or8/tz84mJWFpZU7XNO/yNokZbKD4b14v8WrOfxD7484JhjBnbhghO6MPqELo3/hkSiSIlfEtL23fuZv3YbA7q0ZcP2PRE320x9dzVlFRXc8cqyiM81sHs78np2ZGVRCTeO6sdxXdvVv5NIDCnxi9Sg+i8GgIe/n8c5AzqzsnAn5/yl/t5HN40+lh+f2acxwhNpECV+kRpUVDj7yitomZ5aZ72r/jmPGUs21rq9+sNsIvEgqt05RRJFSorRMqXupA/wwGUnVS0v3bCD0fe8c8D2Ddv30KVdZtTjE2kqmoFLpA79u7SlYMoYCqaM4fWfnwHA/74dmsSmYPMuRtw1h5cXbuDqJz4h7/bX653feNvufZoDWWJOTT0iEXJ3cm96pd56lQ+s7Sur4KviXRTv2k9meioX//199pVXMDS3I8/8+NQmiFiSiZp6RBqBmXHLBQOYXM8sZvV9OcxdXVzjnAgiTUWJX+QQ/PC0XHKzs5j63mreWbGZOb8cTuHOUlYU7qRPTmvGPfRhnfsf17UtS9bv4Kvi3fTslNVEUYscSE09IlG0qqiEUXe/Q2qK8c6NI2iVkXrAE8HLN+7kvLvf5ttDutGxVQYTz+jNEW1bxjBiSRTqzikSpyoqnN7VBqa7d/xg3lxWSGlZOT87uy8dW2Xoy0AOmRK/SBx7/tO1XP/0gnrrXT2iD1ePOJrM4LkDM+PBt75g6+79XHPW0ZqfQA6gxC8S5wo27yIt1Tjtj7MP+xia01jCqVePSJzrlR26sVv9KeCN2/dyyh/e4PhubavmIajNB19s4ZtHZzdajJK4dMUvEqf2lVWwfc9+infto0NWOisLSxjcowNlFRWc8NvXAFjx+9Gkp6bw1NyvyGqRxpgTupCSol8BySjqTT1mNgq4h9AMXA+7+5Rq238OXEloBq4i4Ifu/mWwrRxYFFT9yt0vrO98Svwidbv8kbnMXl5U47YHvncSv/z3AkpKy1h22ygq3GmZllr1hVC0s5TXl25i/NCjmjJkaWTRnnM3ldCcu+cCawlNozje3T8LqzMC+Mjdd5vZTwhNsP5fwbYSd299KG9AiV+kbqVl5Vz2j7nMXX34M5kOO7oT/7rylChGJbEU7Tb+ocBKd18VHPwpYCxQlfjdPfwO1YfA9yIPV0QOVYu01KphH26ctpARxx7BqOOP5K6Zy7lv9sqIjvHeyi1sKSmlU+sWjRmqxKFIrvgvAUa5+5XB+mXAye5+TS317wM2uvvtwXoZMJ9QM9AUd3+hlv0mAhMBjjrqqJO+/PLLmqqJSIS27d7HoMmzGHNCF+67dDDu8N2HP+LUPp3o1j6TX/w71KX0F+cew59nfQ6Eniw+pXcnbr5gQCxDl8MQ7aae/wTOq5b4h7r7/6uh7veAa4Az3b00KOvq7uvNrDfwJnC2u9c5S7aaekQaX59fvUJ5Re3//ru1z+TBy07i+G5fzz62ffd+slqkkpaqgX3jzaEk/kj+760FeoStdwcOmvXazM4Bfg1cWJn0Adx9ffB3FTAHGBxJYCLSuFbcPpq6OgCt27aHC+59lz+8upTNJaWc+5e3OHHyaxz961cp3LG36QKVqIvkij+N0M3ds4F1hG7uXuruS8LqDAamEWoSWhFW3gHY7e6lZpYNfACMDb8xXBNd8YvEVll5Bb9/ZSmPvFdQZ73ZvxxObrYGm4sHUb3id/cyQs03M4GlwDPuvsTMJptZZdfMPwGtgX+b2Xwzmx6U9wfyzWwBMJtQG3/dY9qKSMylpaZw67eOY8Z1px9Qvui3Iw9o/x9x1xxufmFx1Xp5hbO5pJRp89Zy03MLKSuvqPH4Kzbt5NVFGxoneKmXHuASkUNWXuGMvudtPt9UUm/dk3M7cve4QaSlpJDTJtSDqHLi+9QU4/1JZ9FZg9I1mMbqEZFG5+488l5BvRPTRGLZbaNomV7/fMhSu2jf3BUROYiZ8cPTcll22yimfPsEAKZ8+4SqOYoLpozhtrHH1br/q9eeXjXC6LE3z2Dmko1NErfoil9EmtCa4t2YQfcOrarKRtw1h9WbdwGQm53F6s27uGFUP76T14Ps4OGy4l37KNlbxqdrtjJ2ULeYxB7v1NQjIs3Kjx7PZ9Znmw5pn9QU40+XDGTMwC60SFMzkZp6RKRZ+d/v5/HcT78JwNnHHsGwozvVu095hfPzZxbQ7zczeE3NRIdEV/wi0qyUlpXz+cYSXlq0ngffWlVV/tr1Z3BM5zYxjCy21NQjIklj9rJCLn/046r11i3SKCkt467/PJFLTuoOhOY6TvR5CpT4RSSprN68ixF3zam33nfyunPVmX3ISEvhOw98wPrtezmnf2fuu3Rws+9OqsQvIkmpcMdeJv5zHlt2lbKmeM8h7XvR4G7c9Z8nktpMfxko8YuIEHrIrHJC+v3lFVz39HxeXhgaKuLn5x7DvC+30iIthdeq9ShacMtILAWyMtKazReBEr+IyCFwd26dvoTHPzh4HpAUgwFd23LskW1pmZ5CihkFW3bTKj2VGUs20jErgzYt0/jeyT350Rm9YxB9iBK/iMhhyi8o5pIHPjjs/S8Y2IUbRx1Lt/aZ7K+oqHrGYPe+MlLMGu1eghK/iEgUbSkp5ZVFG3Bg3dY9ZKSlULijlLxeHfjm0dls3bWPC+59t6p+eqphGPvKKxh13JF0bZ/J1PdWk5pilFc4E07tyQUndsWAvp3bkJpirCws4ZjOrWmVEcmMuAdT4hcRiQF3581lhby+tJDS/eXM+byI4l37qrZXDklRm4y0FD773XmHNcNZtCdbFxGRCJgZZ/fvzNn9O1eVrd+2hznLi/j2kG5VzTzrt+3hjzOW0SmrBZ1aZ/D60k2kmnHxSd2bZFrLiK74zWwUcA+QCjzs7lOqbW8BPA6cBGwB/svdC4JtNwFXAOXAz9x9Zn3n0xW/iMihiepYPWaWCtwPjAYGAOPNbEC1alcAW939aOCvwB+DfQcA44DjgFHA/wTHExGRGInkN8VQYKW7r3L3fcBTwNhqdcYCjwXL04CzLdR5dizwlLuXuvtqYGVwPBERiZFIEn83YE3Y+tqgrMY6wRy924FOEe4LgJlNNLN8M8svKiqKLHoRETlkkST+mh5bq35joLY6kewbKnR/yN3z3D2buFsgAAAFb0lEQVQvJycngrBERORwRJL41wI9wta7A+trq2NmaUA7oDjCfUVEpAlFkvg/BvqaWa6ZZRC6WTu9Wp3pwIRg+RLgTQ91F5oOjDOzFmaWC/QF5kYndBERORz19uN39zIzuwaYSag751R3X2Jmk4F8d58O/AP4p5mtJHSlPy7Yd4mZPQN8BpQBV7t7eSO9FxERiYCe3BURSQDNfsgGMysCDh4mr37ZwOYoh9OYmlO8irXxNKd4FWvjaWi8Pd09op4xcZn4D5eZ5Uf6jRcPmlO8irXxNKd4FWvjacp4G39QCBERiStK/CIiSSbREv9DsQ7gEDWneBVr42lO8SrWxtNk8SZUG7+IiNQv0a74RUSkHgmT+M1slJktN7OVZjYpRjFMNbNCM1scVtbRzGaZ2Yrgb4eg3Mzsb0G8C81sSNg+E4L6K8xsQk3nikKsPcxstpktNbMlZnZtnMfb0szmmtmCIN7fBeW5ZvZRcO6ng6fLCZ4WfzqI9yMz6xV2rJuC8uVmdl5jxBucJ9XMPjWzl+I5VjMrMLNFZjbfzPKDsrj8HATnaW9m08xsWfD5PTUe4zWzfsF/08rXDjO7Li5idfdm/yL0RPEXQG8gA1gADIhBHGcAQ4DFYWV3ApOC5UnAH4Pl84FXCQ1kdwrwUVDeEVgV/O0QLHdohFi7AEOC5TbA54TmW4jXeA1oHSynAx8FcTwDjAvKHwB+Eiz/FHggWB4HPB0sDwg+Hy2A3OBzk9pIn4efA08ALwXrcRkrUABkVyuLy89BcK7HgCuD5QygfTzHG5wvFdgI9IyHWBvlTTb1CzgVmBm2fhNwU4xi6cWBiX850CVY7gIsD5YfBMZXrweMBx4MKz+gXiPG/SJwbnOIF2gFfAKcTOiBl7TqnwNCQ4ycGiynBfWs+mcjvF6UY+wOvAGcBbwUnDteYy3g4MQfl58DoC2wmuD+ZLzHG3b8kcB78RJrojT1RDzufwx0dvcNAMHfI4Ly2mJu8vcSNC0MJnQVHbfxBk0n84FCYBahK+BtHpoDovq5GzxHRAPdDdwAVATrneI4VgdeM7N5ZjYxKIvXz0FvoAh4JGhGe9jMsuI43krjgCeD5ZjHmiiJP+Jx/+NIg+cwiEoQZq2BZ4Hr3H1HXVVrKGvSeN293N0HEbqaHgr0r+PcMYvXzC4ACt19XnhxHeeN9X/bYe4+hND0qleb2Rl11I11rGmEmlP/7u6DgV2EmktqE+t4Ce7lXAj8u76qNZQ1SqyJkvjjedz/TWbWBSD4WxiU1xZzk70XM0snlPT/5e7PxXu8ldx9GzCHUDtoewvNAVH93LGcI2IYcKGZFRCaqvQsQr8A4jFW3H198LcQeJ7Ql2q8fg7WAmvd/aNgfRqhL4J4jRdCX6ifuPumYD3msSZK4o9kzoBYCZ+rYAKhtvTK8u8Hd/JPAbYHP/tmAiPNrENwt39kUBZVZmaEhtNe6u5/aQbx5phZ+2A5EzgHWArMJjQHRE3xxmSOCHe/yd27u3svQp/FN939u/EYq5llmVmbymVC//8WE6efA3ffCKwxs35B0dmEhn2Py3gD4/m6macyptjG2lg3M5r6ReiO+OeE2n1/HaMYngQ2APsJfUtfQait9g1gRfC3Y1DXgPuDeBcBeWHH+SGhielXApc3UqynEfq5uBCYH7zOj+N4BwKfBvEuBm4JynsTSoYrCf2UbhGUtwzWVwbbe4cd69fB+1gOjG7kz8Rwvu7VE3exBjEtCF5LKv/txOvnIDjPICA/+Cy8QKinS1zGS6gjwhagXVhZzGPVk7siIkkmUZp6REQkQkr8IiJJRolfRCTJKPGLiCQZJX4RkSSjxC8ikmSU+EVEkowSv4hIkvn/m4t8eZI9gKsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "learn.sched.plot_loss()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvIAAAELCAYAAAC77mIAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VFX6wPHvm0YKIUASWkKT3iEJiIgrKCCwIKKoSFFAfwqKa9+FdXWVXXRta0fFFZAuVQEBFcQOQkLvLQESSkIaJYSQ5Pz+mAFCDGQgk9yZyft5nvtk5s49975z79yTM3fOPa8YY1BKKaWUUkq5Fy+rA1BKKaWUUkpdPW3IK6WUUkop5Ya0Ia+UUkoppZQb0oa8UkoppZRSbkgb8koppZRSSrkhbcgrpZRSSinlhixtyItITxHZJSJ7RWRMEa9XEJEv7K//LiL1Crw21j5/l4jcZp/nLyJrRWSTiGwTkZcLLD9FROJFZKN9alsW71EppZRSSqnS4GPVhkXEG/gQ6A4kAutEZJExZnuBxR4E0o0xDUVkIPAacK+INAcGAi2AWsAKEWkMnAVuMcacEhFf4BcRWWaMWWNf33PGmHll8w6VUkoppZQqPVZeke8A7DXG7DfG5ACzgX6FlukHfG5/PA+4VUTEPn+2MeasMSYe2At0MDan7Mv72ifNeKWUUkoppTyOlQ35COBQgeeJ9nlFLmOMyQUygdArlRURbxHZCCQD3xljfi+w3HgR2Swib4tIBWe+GaWUUkoppcqSZV1rACliXuGr55db5rJljTF5QFsRqQwsFJGWxpitwFjgKOAHTAT+Boz7Q1AiDwMPAwQFBUU3bdrUsXejlFIuJi4u7rgxJtzqOMpKWFiYqVevntVhKKXUNbmWOtvKhnwiULvA80jg8GWWSRQRHyAESHOkrDEmQ0R+AHoCW40xR+wvnRWRycCzRQVljJmIraFPTEyMiY2Nvfp3ppRSLkBEDlgdQ1mqV68eWmcrpdzVtdTZVnatWQc0EpH6IuKH7ebVRYWWWQQ8YH88APjeGGPs8wfaR7WpDzQC1opIuP1KPCISAHQDdtqf17T/FeAOYGupvjullFJKKaVKkWVX5I0xuSIyGvgG8AYmGWO2icg4INYYswj4DJgmInuxXYkfaC+7TUTmANuBXOAxY0yevbH+uX1EHC9gjjFmiX2TM0QkHFu3nI3AyLJ7t0oppZRSSjmXlV1rMMYsBZYWmvdigcfZwN2XKTseGF9o3mag3WWWv6Wk8SqllFJKKeUqNLOrUkoppZRSbkgb8koppZRSSrkhbcgrpZQqNSLSU0R2icheERlTxOt1RWSlPcfHDyISWeC1OiLyrYjsEJHtIlKvLGNXSilXpw15pZRSpcI+8MCHQC+gOXCfiDQvtNibwFRjTGtsuT1eLfDaVOANY0wzbNnAk0s/aqWUch/akFdKKVVaOgB7jTH7jTE5wGygX6FlmgMr7Y9XnX/d3uD3McZ8B2CMOWWMySqbsJVSyj1oQ14ppVRpiQAOFXieaJ9X0CbgLvvj/kCwiIQCjYEMEVkgIhtE5A37FX6llFJ22pBXSilnWbHCNqnzpIh5ptDzZ4GbRWQDcDOQhC0/iA9wk/319sB1wLA/bEDkYRGJFZHYlJQUJ4aulPJ4HlBnWzqOvFJKeZR//9v2t1s3a+NwHYlA7QLPI4HDBRcwxhwG7gQQkYrAXcaYTBFJBDYYY/bbX/sS6IgtUWDB8hOBiQAxMTGFvyQopdTleUCdrVfklVJKlZZ1QCMRqS8iftiycy8quICIhInI+f9FY4FJBcpWsWfkBrgFWzZvpZRSdtqQV0opVSqMMbnAaOAbYAcwxxizTUTGicjt9sW6ALtEZDdQHXvGbmNMHrZuNStFZAu2bjqflvFbUEopl6Zda5RSSpUaY8xSYGmheS8WeDwPmHeZst8BrUs1QKWUcmN6RV4ppZRSSik3pFfklVLKWT75xOoIlFJKOcoD6mxtyCullLM0aWJ1BEoppRzlAXW2dq1Rypm6dLFNqnxavNg2KaXcg9bZ5ZsH1Nl6RV4ppZzlrbdsf/v2tTYOpZRSxfOAOluvyCullFJKKeWGtCGvlFJKKaWUG7K0IS8iPUVkl4jsFZExRbxeQUS+sL/+u4jUK/DaWPv8XSJym32ev4isFZFNIrJNRF4usHx9+zr22NfpVxbvUSmllFJKqdJgWR95EfEGPgS6A4nAOhFZZIwpmIL7QSDdGNNQRAYCrwH3ikhzbKm+WwC1gBUi0hg4C9xijDklIr7ALyKyzBizxl72bWPMbBH52L7uj8ro7aryYl6ReW2UUkq5Iq2zlZuz8mbXDsBeY8x+ABGZDfQDCjbk+wEv2R/PAz4QEbHPn22MOQvEi8heoIMxZjVwyr68r30y9jK3AIPsr31uX6825JVzhYVZHYGy0rRpVkeglLoaWmeXbx5QZ1vZkI8ADhV4nghcf7lljDG5IpIJhNrnrylUNgIuXOmPAxoCHxpjfheRMCDDGJNbeHmlnCl9wkTO5eVT7fGRVoeirFC7ttURqKuUdjqH73cmMyA60upQlBWmTLH9HTbMyiiURXJqRvD9zmTOpiY5db3hwRXo1KBsviRa2ZCXIuYZB5e5bFljTB7QVkQqAwtFpCVwzIFt2TYo8jDwMECdOnWKjlypIiSmZ3H49Q/Izzck33kfLSNCrA5JlbUvvrD9vfdea+NQDvv05/189MM+Kvn70KNFDavDUWVNG/LlljGGWc+8wbqENJY0+5NT131z4/By0ZBPBApevooEDl9mmUQR8QFCgDRHyhpjMkTkB6An8BZQWUR87Ffli9rW+XITgYkAMTExRTb2lSos88w5hk9ex7/ybR+ZEVPWsfCxG4moHGBxZKpMfWTvracNebfxxK2N+HXvcZ6Zs4mvRlfkuvCKVoeklCoD09YcoMnC6XStHMDT/3vBqesO8PN26vquxMqG/DqgkYjUB5Kw3bw6qNAyi4AHgNXAAOB7Y4wRkUXATBH5L7abXRsBa0UkHDhnb8QHAN2A1+xlVtnXMdu+zq9K/y2q8iAnN5+R0+JISD1Ns5qV8PX24sy5PEZMXsfcUTdQyd/X6hCVUpfh7+vNR0Oi6fPez4ycHsfCR28kqILmSlTKk8UdSGPc4u0sCfSjdtVAxI2/wFs2/KT9yvho4BtgBzDHGLNNRMaJyO32xT4DQu03sz4NjLGX3QbMwXZj7HLgMXuXmprAKhHZjO2LwnfGmCX2df0NeNq+rlD7upUqEWMMY+ZvZvX+VF4f0JqQAF8C/bz5ZEg0+4+fYtT0OHJy860OUyl1BRGVA3j/vij2Jp/ib/M3Y4z+GKuUp0o+mc2o6euJqBJAw2oVi+yr7U4svexgjFkKLC0078UCj7OBuy9TdjwwvtC8zUC7yyy/H9tIOUo5zTsr9rBgQxLPdG9M/3YXb5br1DCM/9zZmmfmbmLsgi28eXdrbIMnKaVcUedGYTx7WxNeX76LdnWq8GDn+laHpJRysnN5+YyesYET2ef4fEQHfL52///L+vuhUtdobuwh3l25h3tiIhl9S0PbzKUXv5feFR3JofQs3lmxh9pVA3iyW2OLIlVKOWLUzQ3YdCiDV5buoGWtSlx/XajVIanStnRp8csoj/GfZTtZm5DGO/e2pVnNSlaH4xSWZnZVyl39suc4YxdsoXPDMMb3b3XxantgoG2ye+LWRgyIjuSdFXuYF5doUbSqzMybpwlm3JiI8ObdbahbNZDHZm7g2Ilsq0NSpa1Qna0816JNh/nsl3iGdarHHe3sI5B7QJ2tDXmlrtKuoycZNT2OhtUqMmFIFL7eBU6jCRNsk52I8Er/VtzYMJQx8zfz297jFkSsykxYmCaYcXPB/r58PDSarJxcHp2xXu9x8XSF6mzlmXYdPcnf5m0mpm4V/t672cUXPKDO1oa8Ulfh2Ilshk9eS2AFbyYNa//HEWnmzLFNBfj5ePHRkGgahFfkkelx7D52sgwjVmVqypSL41Irt9W4ejCvD2hN3IF0xn+9vfgCyn0VUWcrz3Ii+xwjp8dR0d+HCYOj8PMp0PT1gDpbG/JKOej02VxGTFlH5plzTBrWnlpXMUZ8JX9fJg1vT4CvN8MnryNZf7L3TB7wT0HZ9Gldi4c61+fz1QdYuEG7xSnljvLzDc/M2cShtCwmDI6iWiX/SxfwgDpbG/JKOSA3L5/RM9ez8+hJPhgcRYtaV5+1NaJyAJOGtSc9K4cRn6/j9NncUohUKeUsY3o15fr6VRm7YAvbD5+wOhyl1FX66Md9fLf9GH/v3Yz29apaHU6p0Ia8UsUwxvDPRdtYtSuFf/VrSdcm1a55XS0jQvhwUBQ7jpzk8VkbyM3T/rdKuSofby8+GBRFSIAvI6fHkZl1zuqQlFIO+ml3Cm9+u4t+bWsx/MZ6VodTarQhr1QxJv60nxm/H2RUlwYMur5OidfXtWk1xvVrwfc7k3lp8TZNPqOUCwsPrsCEwdEcyTzDU3M2kp+v56tSru5QWhZ/mb2BJtWDefXOVh6dx0Ub8kpdwZLNh3l12U76tqnFcz2aFF/ghx9sUzEGX1+XkTc3YPqag0z8aX+J41TKVYlITxHZJSJ7RWRMEa/XFZGVIrJZRH4QkchCr1cSkSQR+aDsor5UdN0qvNCnOd/vTOb97/daFYYqDQ7W2cp9ZJ/LY9SMOPLyDR8PiSbQz7NTJnn2u1OqBGIT0nh6ziba16vCGwNa4+Xl3G/0f72tCYnpWby6bCcRVQLo07qWU9evLKDJZS4hIt7Ah0B3IBFYJyKLjDEFh4J5E5hqjPlcRG4BXgWGFnj9X8CPZRXz5QztWJeNBzN4Z+VuWtcOKVEXO6VU6TDG8OJXW9madIL/3R9DvbCgKxfwgDpbr8grVYT446d5aGoskZUDmDg0Bn9fb8cKvvmmbXKAl5ct+Uz7elV4es4mYhPSShCxcgmaXKawDsBeY8x+Y0wOMBvoV2iZ5sBK++NVBV8XkWigOvBtGcR6RSLC+P6taFqjEk/O3sjB1CyrQ1LOcBV1tnJ9s9YeYk5sIo/f0pBuzasXX8AD6mxtyCtVSOqpswybvBZvESYPb0+VID/HCy9ZYpsc5O/rzcShMURWDuD/psYSf/z0NUSsXIYmlyksAjhU4HmifV5Bm4C77I/7A8EiEioiXsBbwHOlHqWDAvy8+XhIFMYYRk6P40xOntUhqZK6yjpbua6NhzJ4adE2/tQ4nCe7NXaskAfU2dqQV6qA7HN5/N/UWI5mZvPpAzHUDS3mZzknqBLkx+Th7fESYdjktaSeOlvq21SlRJPLFFZUf7TCd4s+C9wsIhuAm4EkIBd4FFhqjDnEFYjIwyISKyKxKSkpzoj5iuqGBvHuwHbsOHqC57/cojerK+UCUk+dZdT0OKpVqsB7A9vi7WhXWA+os7Uhr5Rdfr7hqS82suFQBu8ObEtUnSpltu26oUF8+kAMRzOzeWhqLNnn9Eqf8giJQO0CzyOBwwUXMMYcNsbcaYxpBzxvn5cJ3ACMFpEEbP3o7xeR/xTegDFmojEmxhgTEx4eXkpv41Jdm1bjiVsbsWB9EtN/P1gm21RKFS03L5/HZ20g7XQOHw+JpnLgVfyK7gG0Ia+U3avLdrBs61Ge792Mni1rlvn2o+pU4d2Bbdl4KIOnvtBh7pRHWAc0EpH6IuIHDAQWFVxARMLs3WgAxgKTAIwxg40xdYwx9bBdtZ9qjPnDqDdW+cstjejaJJxxi7cRdyDd6nCUKrfe+HYXv+1L5d93tKRlxNUna3R32pBXCpi6OoFPf47ngRvq8mDn+te+ooAA23SNerasyfO9m7Fs61FeXbbj2uNQygUYY3KB0cA3wA5gjjFmm4iME5Hb7Yt1AXaJyG5sN7aOtyTYq+TlJbxzbztqhgTw6Iw4Uk5qlzi3VMI6W1lr2ZYjfPLjfgZfX4e7Y2oXX8AD6fCTqtxbsf0YLy3aRrdm1Xmxb4uSJY5YtqzE8TzYuT6J6Wf49Od4alcN5P4b6pV4nUpZxRizFFhaaN6LBR7PA+YVs44pwJRSCK9EQgJ9+WhIFHdO+I3HZ61n+oPX4+Ot18fcihPqbGWNvcmneHbuJtrWrsyLfZtbHY5ltMZR5drmxAwen7WBlhEhvHffVdwgU4pEhBf6NKd78+q8tGgbK7Yfszok5ShNLlPutKgVwqt3tmLN/jRe/2aX1eEoVS6cOpvLI9Ni8ff15qMhUVTwcXCI6MI8oM7WhrwqtxLTsxgxJZaqQX7874EY52R/+9e/bFMJeXsJ7w5sS6uIEB6ftYHNiRklj00pVSrujIrk/hvqMvGn/Xy9+YjV4air4aQ6W5UdYwzPzd1E/PHTvD/I1r2tPLO0Ie9A6u4KIvKF/fXfRaRegdfG2ufvEpHb7PNqi8gqEdkhIttE5IkCy79kT/O90T71Lov3qFxT5plzDJ+8jpzcPD4f0Z5qwf7OWfHKlbbJCQL9fPjfA+0JrejHiCmxHErTBDQuT5PLlFv/+HNzoupU5rl5m9hz7KTV4ShHObHOVmXj05/3s2zrUcb0akqnBmElW5kH1NmWNeQLpO7uhS2z330iUriT04NAujGmIfA28Jq9bHNsox+0AHoCE+zrywWeMcY0AzoCjxVa59vGmLb2yf3z8qprkpObz8hpcSSknubjodE0rBZsdUiXFR5cgSnD25OTm8fwKevIzDpndUjqSjS5TLnl5+PFhMHRBPp588j0OE5m67mqlLP9tu84/1m2k96tavB/N11X8hV6QJ1t5RV5R1J39wM+tz+eB9wqtjsR+wGzjTFnjTHxwF6ggzHmiDFmPYAx5iS2URIKZxFU5ZgxhjHzN7N6fyqvD2hd8m/zZaBhtWAm3h/DwdQsHpkey9lcHWNeKVdUI8SfDwZFcSA1i+fmbtZkUUo50eGMMzw+cwPXhVfk9QFtSjYwhQexsiHvSOruC8vYhzHLBEIdKWvvhtMO+L3A7NEisllEJolI2WX7US7j7RV7WLAhiWe6N6Z/u0irw3FYx+tCeePu1qzZn8aY+ZpNUilX1fG6UMb2asrybUf5+Mf9VoejlEc4m5vHqBnrOZubz8dDoqlYQQddPM/Khrwjqbsvt8wVy4pIRWA+8KQx5oR99kdAA6AtcAR4q8igyjjdtyo7c2MP8d7KPdwTE8noWxqWzkZCQ21TKejXNoJnezRm4YYk/vvd7lLZhlKq5B7sXJ8/t67JG9/s5Ne9x60OR11JKdbZynnGLd7OpkMZvHl3axpWq2h1OC7Fyq80xabuLrBMooj4ACFA2pXKiogvtkb8DGPMgvMLGGMujOEnIp8CRXaKMsZMBCYCxMTE6GVPD/HLnuOMXbCFzg3DGN+/Ven9JDd/fums1+6xrg1JTD/D+9/vpXaVQO5pXz4TYLgsTSyjsA0h+/pdrdl99CSPz9rA4sc7E1FZPxsuqZTrbFVyc2MPMeP3g4y8uYHzs657QJ1t5RX5YlN3258/YH88APje2PoULAIG2ke1qQ80Atba+89/Buwwxvy34IpEpODR7w9sdfo7Ui5p19GTjJoeR8NqFZkwJApfN07YIiL8646W/KlxOH9fuIWf9+ivRi5l2TJNMKMACKrgw8dDo8nJzefR6XF6b4tS12BrUibPf7mVTg1CebZHY+dvwAPqbMtaNA6m7v4MCBWRvcDTwBh72W3AHGA7sBx4zBiTB9wIDAVuKWKYyddFZIuIbAa6Ak+VzTtVVjp2Ipvhk9cSWMGbScPaU8nft3Q3OHasbSpFvt5efDioHQ2rVWTU9PXsOHKi+EJKqTLXILwib97dhk2Jmby0aLvV4aiilEGdra5N+ukcHpkWR1iQH+/f106zJl+GpXcLOJC6Oxu4+zJlxwPjC837haL7z2OMGVrSeJV7OX02lxFT1pF55hxzRt5ArbL4aXv16tLfBhDs78vk4e3p/+FvDJ+8ji8fu5EaIU4aC19du/OJZV54wdo4lMvo2bIGo7o04KMf9tGudmXtDudqyqjOVlcnL9/wxBcbSTl5lrkjbyC0YoXS2ZAH1Nn69UZ5pNy8fEbPXM/Ooyf5YHAULWqFWB2S09UMCWDSsPacOpvL8CnrdNxqV6DJZVQRnu3RhM4Nw/jHV1vZkphpdThKubx3Vuzmp90pvNyvBW1qVy69DXlAna0NeeVxjDH8c9E2Vu1K4V/9WtK1STWrQyo1zWtV4sPBUew+dpLHZm7gXF6+1SEppQrx9hLeHdiWsCA/Rk6PI/10jtUhKeWyvtt+jPe/38s9MZEM1F+wiqUNeeVxPvlpPzN+P8ioLg0YdH0dq8MpdTc3DueV/i35aXcKL361VceYV8oFhVaswEdDokk5eZa/zN5AXr6ep0oVFn/8NE9/sZFWESGM69dSkz45QBvyyqMs2XyY/yzbSd82tXiuR5OyDyAy0jaVsXvb12F014bMWnuICT/sK/PtK6WK16Z2Zcb1a8HPe47ztuaCcA0W1dnqj7Jychk5LQ4fb+GjIVH4+3pbHZJb0NRYymPEJqTx9JxNtK9XhTcGtMbLy4Jv8tOnl/027Z7p0ZhD6Vm88c0uIqsE0K9t4UTJqtRpYhlVjIEd6rDhYAYfrNpL68gQerSoYXVI5ZuFdba6yBjDmPlb2J18kqkjOhBZJbBsNuwBdbY25JVHiD9+moemxhJZOYCJQ2PK5Td5EeH1Aa05mpnNc3M3U6OSP9df5/6VlFvR5DLKAS/3a8GOoyd4Zs4mFj0eTP2wIKtDUspSk39NYNGmwzx3WxNuahRedhv2gDpbu9Yot5d66izDJq/FW4TJw9tTJcjPumCefNI2WaSCjzcTh8ZQu2oAD0+LY2/yKctiUUoVzd/XmwmDo/DxFkZOiyMrJ9fqkMovi+tsBWvj03hl6Q66N6/OqJsbWB2O29GGvHJr2efyeGhqLEczs/n0gRjqhlp8ZWvjRttkoZBAX6YM74CvtzB8ylpSTp61NJ5yRZPLKAdFVgnkvfvasSf5JH+bv0VvUreKC9TZ5VnyiWwem7meOlUDeeueNmXfJdYD6mxtyCu3lZ9veOqLjWw8lMG7A9sSVaeK1SG5jNpVA/nsgfaknDzLQ1NjOZOj6eHLxOrVmmBGOeymRuE806MJizcdZvKvCVaHo1SZysnN59EZ6zmVncvHQ6NLP/N6UTygztaGvHJbry7bwbKtR3m+dzN6tqxpdTgup03tyrw3sB2bEzN0uDulXNSomxvQvXl1Xlm6g7XxaVaHo1SZeWXpDmIPpPP6gNY0rh5sdThuSxvyyi1NXZ3Apz/H88ANdXmwc32rw3FZPVrU4J99mvPd9mP8++vtVoejlCrEy0t465421KkayGMz15N8ItvqkJQqdQs3JDLltwQe7Fyfvm1qWR2OW9OGvHI7K7Yf46VF2+jWrDov9m3hWgkjGje2TS5k2I31ebBzfSb/msCkX+KtDkcpVUglf18+HhrNqexcHp2xnpxczdBcZlywzvZ0O46cYOyCLXSoX5UxvZpaHY7b04a8ciubEzN4fNYGWkaE8N59bfG2Yqz4K5k40Ta5mOd7N6Nnixr86+vtLN961OpwPJcml/kDEekpIrtEZK+IjCni9boislJENovIDyISaZ/fVkRWi8g2+2v3ln30Zadx9WBeH9Ca2APpvLJ0h9XhlB8uWmd7qswz5xg5PY6QAF8+HBSFr7fFzVAPqLO1Ia/cRmJ6FiOmxFI1yI//PRBDoJ+mQXCUl5fwzsC2tK1dmSdmb2DDwXSrQ/JM06drgpkCRMQb+BDoBTQH7hOR5oUWexOYaoxpDYwDXrXPzwLuN8a0AHoC74hI5bKJ3Bp929Tiwc71mfJbAl9uSLI6HKWcKj/f8PQXGzmccYYJg6MID65gdUgeUWdrQ165hcwz5xg+eR05uXl8PqI91YL9rQ6paA8/bJtckL+vN5/eH0P1Sv489HksB1JPWx2S8nwdgL3GmP3GmBxgNtCv0DLNgZX2x6vOv26M2W2M2WN/fBhIBsowU4w1xvRqautysGAzO46csDocz+fCdbanef/7vazcmcwLfZoTXbeq1eF4DG3IK5eXk5vPyGlxJKSe5uOh0TSs5sJ3t+/ebZtcVFjFCkwZ3p48Yxg+eR0ZWTlWh+RZNLlMYRHAoQLPE+3zCtoE3GV/3B8IFpFLUhKLSAfAD9hXSnG6DF9vLz4Y1I6QAF9GTo8j88w5q0PybC5eZ3uKVbuSeWflbu5sF8HQjnWtDuciD6iztSGvXJoxhjHzN7N6fyqvD2hNpwZhVofk9q4Lr8in98eQmHGGh6fGkX1Ox5h3Gk0uU1hRN7EUHgf1WeBmEdkA3AwkARdSnYpITWAaMNwY84e7QEXkYRGJFZHYlJQU50VuoWrB/kwYHEVS+hme/mIj+Tp0rHJjB1OzeHL2RprWqMT4/q1ca4AKD6izHW7Ii4jFKTNVefT2ij0s2JDEM90b07+de9+Q4kra16vKW3e3YW1CGs/N26wNBVVaEoHaBZ5HAocLLmCMOWyMudMY0w543j4vE0BEKgFfA/8wxqwpagPGmInGmBhjTEx4uOf0vImuW5UX+jRn5c5kPli11+pwlLomZ3LyGDk9DmMMHw+JIsDP2+qQPE6xDXkR6SQi24Ed9udtRGSCMzbuwGgGFUTkC/vrv4tIvQKvjbXP3yUit9nn1RaRVSKywz7SwRMFlq8qIt+JyB77X00D6uLmxh7ivZV7uCcmktG3NLQ6HI/Tt00t/tazKYs3HeaNb3dZHY7yTOuARiJSX0T8gIHAooILiEiYiJz/XzQWmGSf7wcsxHYj7NwyjNll3H9DXfq3i+DtFbv5YVey1eEodVWMMTz/5RZ2HD3BuwPbUTdUrweXBkeuyL8N3AakAhhjNgF/KumGHRzN4EEg3RjT0B7Ha/ayzbH9Qzg/msEE+/pygWeMMc2AjsBjBdY5BlhpjGmE7caqP3xxUK7jlz3HGbtgC50bhrneT3FX0ratbXITI2++jkHX1+GjH/Yx8/eDVoejPIwxJhcYDXyD7WLQHGPMNhEZJyK32xfrAuwSkd1AdWC8ff492P7XDBORjfbJfU4uJxARXunfiibVg3li9kYOpWVZHZLncbM6251M//0gC9Yn8cStjejatJrV4XiECD9bAAAgAElEQVQsh8bvM8YcKtSQckan2gujGQCIyPnRDAqmn+wHvGR/PA/4QGyB9ANmG2POAvEishfoYIxZDRyxx3xSRHZgu7Fqu71MF/u6Pgd+AP7mhPehnGzn0ROMmh5Hw2oVmTDEBcaZvRrvvGN1BFdFRBh3ewuOZJzhha+2UrOyP12baIV7zTSxzB8YY5YCSwvNe7HA43nY6vfC5aYD7j0unBME+HnzydBo+r7/C49Mi2PBo53w99XuCU7jZnW2u4g7kM64xdvo2iScv9zSyOpwLs8D6mxHWkiHRKQTYETET0Sexd7NpoQcGc3gwjL2KzuZQKgjZe3dcNoBv9tnVTfGnG/kHwG0teKCjp3IZsTkdQRW8GbSsPZU8ve1OiSP5+PtxQeDomhaI5jRM9az7XCm1SG5L00uo0pB3dAg3hnYlu1HTvD8wq0Yo/e0KNeVcvIsj86Io2ZIAO/c2w4vV0vcWJAH1NmONORHAo9haygnAm2BR52wbUdGM7jcMlcsKyIVgfnAk8aYqxqI1xNHQHAXp8/mMmLKOjLPnGPSsPbUqhxgdUhXb8gQ2+Rmgir4MGlYe0ICfBkxZR2HM85YHZJSqoBbmlbniVsbMX99IjO0G5zzuGmd7apy8/IZPXM9mWfO8fGQaEIC9WJcaXOkId/EGDPYGFPdGFPNGDMEaOaEbRc7mkHBZUTEBwgB0q5UVkR8sTXiZxhjFhRY5ph9GLPzw5kVeeeQp46A4OrOn/w7j57kg8FRtKgVYnVI1yYx0Ta5oeqV/Jk8vANZZ/MYPnkdJ7J1/Oqr5sHJZUQkRkQWish6EdksIltEZLPVcZUnT9zaiC5Nwnl58TbNzuwsblxnu6LXlu/k9/g0Xr2zFc1rVbI6nOJ5QJ3tSEP+fQfnXa1iRzOwP3/A/ngA8L2x/aa4CBhoH9WmPtAIWGvvP/8ZsMMY898rrOsB4CsnvAflBMYY/rloG6t2pfCvfi21j7aFmtQI5uOh0exLOcWj09dzLu8Pw3arK/Hs5DIzgMnYkjf1BfrY/6oy4uUlvHNvW2qE+DNq+nqOnzprdUhKXbBk82E+/TnePtqSmwwX7QF19mUb8iJyg4g8A4SLyNMFppeAEt9p4+BoBp8BofabWZ/GPtKMMWYbMAfbTazLgceMMXnAjcBQ4JYCoxz0tq/rP0B3EdkDdLc/Vy7gk5/2M+P3g4zq0oBB19exOpxy78aGYfznrtb8svc4f1+wRfvjqvNSjDGLjDHxxpgD5yergypvKgf68dHgaNKzchg9cz25+mVbuYDdx07y13mbia5bhX/8ufAAhKo0XWnUGj+gon2Z4ALzT2C7Ol5iDoxmkA3cfZmy47k4TNn5eb9QdP95jDGpwK0lDFk52ZLNh/nPsp30bVOL53o0sTocZTcgOpJDaVm8u3IPtasG8pdbXXjUAVVW/iki/8M2fO+FS8GFujCqMtAyIoRX+rfimbmbeOObXYzt7YzerkpdmxPZ5xg5LY5APx8mDI7Cz8eNRprzAJdtyBtjfgR+FJEpetVFlYbYhDSenrOJ9vWq8MaA1q59Z7ujbrjB6gic5slujTiUnsV/v9tNZJUA7oxyk59KVWkZDjQFfIHzl4ENoA15C9wVHcnGQxl88tN+2tSuTO9WNa0OyT15UJ1tBWMMz87ZxIG0LGY+dD3VK/lbHVK548g48lki8ga25EsXjpAx5pZSi0p5vP0pp3hoaiyRlQOYODTGc8ZFfvVVqyNwGhHhP3e25mhmNn+bv5kalfzp1DDM6rBcm2cnlmljjGlldRDqohf6NGfr4Uyem7uJxtUr0rBacPGF1KU8qM62wkc/7uPb7cf4x5+bcf11oVaHc/U8oM525PePGcBOoD7wMpCA7UZVpa5J6qmzDJ+yDm8RJg9vT5UgP6tDUpfh5+PFR0OiqR8WxCPT49hz7KTVIbm2d97x5AQza4rIvq0s5OfjxYTBUQT4efPwtDhO6khTqgz9suc4b36ziz6ta/Jg5/pWh3NtPKDOdqQhH2qM+Qw4Z4z50RgzAuhYynEpD5V9Lo+HpsZyNDObTx+IoW5okNUhOdddd9kmDxIS4MukYe3x9/Vm2OR1JJ/MtjokZY3OwEYR2aXDT7qOmiEBvH9fFAdSs/jrvM16c/rV8sA6uywkpmfx+Kz1NKxWkdfuao1t0EBlBUca8ue/4h8RkT+LSDts47YrdVXy8w1PfbGRjYcyeHdgW6LqVLE6JOdLTbVNHiaySiCTh7UnPSuHB6fEcvpsrtUhuSbPTi7TE9tQvz3Q4Sddyg0NQhnTsynLth5l4k/7rQ7HvXhonV2ass/l8eiM9eTmGT4eEk1QBUd6absoD6izHWnI/1tEQoBngGeB/wFPlWpUyiO9umwHy7Ye5fnezejZUm/McjctI0J4/752bDucyV9mbdBh74ri2cllzGUm5QIeuqk+f25Vk9eW7+S3vcetDkd5sJcWbWNzYiZv3dOG68IrWh1OyXhAnX3FhryIeAONjDGZxpitxpiuxphoY0zhxE1KXdHU1Ql8+nM8D9xQ13370ilubVadl/u1ZOXOZF5evF1/xi9fvgaW2P+uBPYDyyyNSF0gIrw2oDXXhVdk9KwNHM44Y3VIygPNXnuQ2esO8VjXBvRoUcPqcBTFNOTtSZZuv9IyqvzKysripZdeIiEh4YrLrdh+jJcWbaNbs+q82LeF9qVzc0M71uWRP13H5z/v4vYRTxZ7/Ms7R88TV2eMaWWMaW3/2wjoAPxidVzqoooVfPhkaDQ5ufmMmrGes7l5l7zuKZ9FdW1Kevw3Hcrgxa+2cVOjMJ7u7tl5X9zpXHGka81vIvKBiNwkIlHnp1KPTHmEzYkZPD5rAy0jQnjvvrZ4e8JY8Vdy6622ycP9rWdTeraswc97Uli1M9nqcJQFjDHrgfZWx6Eu1SC8Im/e3YZNhzJ4efF2q8NxfeWkzi6ptNM5jJoeR3hwBd4b2M7z/5e7EUfuUOhk/zuuwDwD6Djy6ooS07MYMSWWqkF+/O+BGAL93PiGGEe98ILVEZQJLy/bGPM/zwtg3JLttG7WkOi6Va0Oy3oenFxGRJ4u8NQLiAJSLApHXUHPljUYeXMDPv5xH21rV+aemNpWh+S6ykmdXRJ5+Ya/zNrA8dM5zB/ZybOGjPaAOrvYlpUxpmtZBKKst3fvXn766SeSk5MREWrVqkXPnj0JDw8HICkpiSVLlpCSkkJYWBi33HLpd7n8/HwWL15MfHw8x9Mzmbs5ldwq9Vj+6kNUC7blEvvyyy/JysqiTp06rFmzhnPnztG+fXtuvfVWfvzxR9atW4eI0LFjRzp37lzm+6A8u5bjf3ubWvyIPw99Hsu8kTewdfX3xMfHc+rUKSpVqkR0dDSdOnW60J3KE47/FffTq6/a9tMnnzh0nrjZfiqYbSgXW1/5+WW1cfVHV/osPtujMb9v3c3jL77Ozy1DaHFdpCd9FhXO/Z99peP/xeq9rErKp3voCZZM28gxNzz+l91X9oRgztpXVpwr5eASqXJUTk4OHTt2pHr16uTm5vLTTz8xa9YsHnvsMfLy8pg5cyZ169alf//+nDhxguXLl19S3hhDpUqV6Nf/Lp5duJMz4Xv5c8hhTibtheoXe2MdOHCASpUqMWzYMI4cOcKCBQs4evQoNWrUYMSIEcTHx7NkyRKuu+46atWqVda7oWR69bL9XeZ+9wBey/EP8PPmzdtb85evkxgx+XeebhXA3XffTVBQEElJSSxevJiAgACiojzn+DvrPHHD/bTdGDO34AwRuRuYe5nlVSm70mcxPy+PNme3sS2kMmv82jKsUzO+/fbbS8q78WfRecpZnV2QI8d//YF0lq/ZQrcb2/P20yPc9vh7cr3tSB95VU40b96c5s2bExoaSvXq1enXrx/p6ekkJSWxZcsW8vLyuOOOO6hWrRoNGzbkT3/60yXlvb296dKlC++vSSXuaA7vjurLXbfdzNatWy9ZrkKFCvTu3ZuwsDBatWpFzZo1OXnyJN26dSM0NJSYmBgqV67sFjeZ/MGZM7bJDV3r8Y+sGsin98dw9OQ5ph6oSGi1GlSuXJkWLVoQExPjccf/ivupZ0/yPv+82POka9euREREuNt+GuvgPFVGijtn/X2Emf9+nEwTyLuxp7ix802XlHfjz6LzlMM6+7zijv++lFNM+S2BiNBgpr70iFsf/8vuqz59bPV2CffVeVacK3pFXl2QlpbGqlWrSExMJCsrC2MMxhgyMzNJSUmhevXq+Pld7BsXGfnHvGBPT1jA1MU/0LlOADuWbSIvL4/KlStfskx4eDheXhe/QwYFBeHv73/JMkFBQZw+fdrJ71BdSUmOf3TdKrxzb1sefOsLesYupVfjYPLy8jzy+F9xPx0/TvXc3GLPk9jYWNavX09GRga5ubkuvZ9EpBfQG4gQkfcKvFQJWxcbZRFHztmYBtV4uV8Lxi7YQqNKYX9Yhzt9FtWlnPE/+3LH//TZXEZOi8PHW3i4azsC/HwvlHHH43/ZfZWSQkpOTon2VUFWnCvFNuRF5M4iZmcCW4wxOlyFB5k1axbBwcH07duX4OBgvLy8+PDDD8nLyyu+MPDm7BVM/uJL+va6jdceuAV/f3/Wrl3Lzp07L1nO29v7kuciUuQ8HaO8bJX0+NeWVDr4HOT3nEg6RsTw194tPfL4l3Q/bd26leXLl9OjRw9q165NhQoVXH0/HQZisQ1FHFdg/kk0OaClHP0sDmxfmw0H05n48w665J66MN8NP4uqgNKqi3bs2MFf521mX8opHr7pOsIqXdpUdMfjf9l95WB5Vz5XHLki/yBwA7DK/rwLsAZoLCLjjDHTnBaNskxWVhYpKSn07t2b+vVtCZuOHDlCfr4te2d4eDgbN24kJyfnwrfWxALZ0H7Zc5y3FvxKswb1mPTXQfh6276Rpqenl/E7UdeipMcf4ODBg9zeqSWtQzswdfUBWjQ4gY+HHf9i95OvLxtPnSp2P0VERNChQ4cL81z5PDHGbAI2ichMY8w5q+NRNld7zo7r15LfYzfwzeqjPJyWRb167vdZVBc5q84u6vj/vj+NNceOMKZXU2qkbyErK6uM3lXpcKjePnbMbettR/rI5wPNjDF3GWPuApoDZ4Hrgb+VZnCq7AQEBBAYGMj69etJS0sjISGBJUuWXPiJqFWrVnh5efHVV1+RnJzMvn37+PnnnwHYl3KSUdPjqBtRne71/UjYv4/U1FR+/PFHl+4zVyr69LFNbqYkx/+80NBQjh49yqCmfnSu7cdfP5jNirVbi9qc2yp2PwUF4QXF7qcjR46wZ88edztPOojIdyKyW0T2i0i8iOy3Oqjy6mrP2aSDCXQPTcfLS3h+4RaycnLd+bPoPOW8zi58/H+K286KHcfo2aIGj/zpOivemtM5VG9fw75ylXPFkYZ8PWPMsQLPk4HGxpg0QK/OeAgR4e677+bYsWNMmDCBpUuX0rVrV3x8bD/a+Pn5MWjQINLS0vjkk0/49ttv6datG6fO5vLc3M0EVvBm7j+GEN2mNfPnz+fTTz8lIyODTp06FbNlD/Pss7bJzVzr8S8oJiaGFi1a8OXCBTTOWEftIMOK1BCPShVf7H7q3p1Bd97p0H5yw/PkM+C/QGdsiaBi0IRQlrmWc/bu23vTq2UN9h8/zdgFW4iOjnbXz6LzaJ194fjvTzrG9+mVqRrkxxt3t/aYLOxX3FcdOtjq7avcV650rkhx/XREZAJQh4tDjN0FJALPAUtKMs68iPQE3gW8gf8ZY/5T6PUKwFQgGkgF7jXGJNhfG4ut208e8BdjzDf2+ZOAPkCyMaZlgXW9BPwfFxOY/N0Ys/RK8cXExJjY2NhrfXse7/TZXO75ZDUJx08zZ+QNtKgVYnVIyoUkn8ym/4e/kZOXz8JHOxFZJdDqkModEYkzxsQ4aV2/G2Ouv4ZyxdXzdYFJQDiQBgwxxiTaX3sA+Id90X8bYz6/0ra0znbMh6v28sY3u/hn3+YMv7G+1eEoF3A2N4+BE9ew++hJvhp9Iw2rBRdfSDndtdTZjlyRfwyYArQF2mFrWD9mjDldwka8N/Ah0Atbd537RKR5ocUeBNKNMQ2Bt4HX7GWbAwOBFkBPYIJ9fdhj7XmZzb5tjGlrn67YiFdXlpuXz+iZ69l59CQfDI7SRvx5XbrYJkW1YH+mDG9P9rk8hk9eR+YZ/QHPza0SkTdE5AYRiTo/XamAg/X8m8BUY0xrbBnEX7WXrQr8E1s3zg7AP0WkinPfUvk06uYGdGtWnfFf72BdQprV4VhL62wA/r1kBxsOZvDG3W20Ee9mim3IG5t5xpinjDFP2h8743bbDsBeY8x+Y0wOMBvoV2iZfsD5KzDzgFvF9ltPP2C2MeasMSYe2GtfH8aYn7Bd1VGlxBjDPxdtY9WuFP7VryVdm1SzOiTlohpVD+aTodEkpJ5m5LQ4cnLzrQ6pdPXqdTHBjOe5Hlt3mleAt+zTm8WUcaSebw6stD9eVeD124DvjDFpxph04Dsuf5FGXQUvL+G/97ahdtVAHp2xnuQT2VaHpCw0Py6RaWsO8MifrqN3q5pWh1O2PKDOLrYhLyJ3isgeEckUkRMiclJETjhh2xHAoQLPE+3zilzGGJOLbdjLUAfLFmW0iGwWkUl6ZefaffLTfmb8fpBRXRow6Po6VoejXFynBmG8PqA1q/enMmb+ZpceoqzE3Di5THGMMV2LmG4pppgjdfUmbF02AfoDwSJSknpeOaCSvy8fD4nmVHYuj81cz7k8D/+SrYq0NSmTvy/cwg3XhfLcbU2sDqfseUCd7UjXmteB240xIcaYSsaYYGNMJSdsu6i7KAr/h7/cMo6ULewjoAG2LkJHsF1N+mNQIg+LSKyIxKakpBS1SLm2ZPNh/rNsJ33b1OK5HuXwpFfXpH+7SJ7p3pgFG5J4e8Ueq8NR10BEqovIZyKyzP68uYg8WFyxIuYVrqufBW4WkQ3AzUAStkRTDtXzWmdfuyY1gnltQGvWJaQz/usdVoejylhGVg6jZsRRNciP9we1w8fbkSahcjWOHLVjxpjSOMMTgdoFnkdiSzxS5DIi4gOEYOs240jZSxhjjhlj8owx+cCn2LviFLHcRGNMjDEmJjw8/Crejuc5fPgwL730EhkZGQDEJqTx9JxNtK9XhTcGtMbLyzPuaFdFK3z8S2r0LQ25JyaS91buYU7soeILuAln7ycXNgX4Bqhlf74beLKYMsXW1caYw8aYO40x7YDn7fMyHSlrX1brbLtr+Sze3qYWI26sz5TfEvhqY1IpRqdK29Uc//x8wxOzN3Is8ywTBkcRVrFCGUToGjytznYkIVSsiHwBfIlt/HgAjDELSrjtdUAjEamP7QrMQGBQoWUWAQ8Aq4EBwPfGGCMii4CZIvJfbP9UGgFrr7QxEalpjDlif9of8KwBrkvZ/pRTPDQ1lsjKAUwcGoO/r3fxhYqRmZnJ119/TXx8PL6+vrRq1YoePXr8IQtaQXFxcWzZsoWjR4+SnZ3Nk08++YcUyZa65x6rI3BZIsL4/q04kpnN3xdsoZLXOdJ2rvGs418KSnKeADXsI3a9Y4wp6X+tMGPMHPuIYRhjckWkuMSIxdbzIhIGpNkvsozFNoIN2L40vFKgG2QP++vKycb2bsrWpEzGzN9CkxrBNK1R9I/uWmd7jndW7uHH3SmM79+SdnUc62nskce/FJR1ne1IQ74SkIWtEj3PACVqyNv/CYzGVll7A5OMMdtEZBwQa4xZhG3c4mkishfblfiB9rLbRGQOsB3bT7CPGWPyAERkFrbss2Eikgj80xjzGfC6iLS1x54APFKS+MuTtFNnGT5rA94iTB7enipBfiVeZ35+PjNmzCAwMJARI0aQlZXFl19+iTGG3r17X7bcuXPnaNCgAU2bNmX58uUljsPpHn3U6ghcmq+3FxMGRzFgwq+M+Md/efy2Fp51/J2cWKak5wlw0onhnLb3XTcAItIR231Ll+VgPd8FeFVEDPATtpHSMMakici/sH0ZABhnz1+inMzX24sPBrejz3u/MHJaHF+N7kxIgO8ly2id7TlW7jjGeyv3MCA6kkEdHLvPzWOPvwfU2cU25I0xw692pY6yDwG5tNC8Fws8zgbuvkzZ8cD4Iubfd5nlh5YoWDe0Z88e5s6dy5gxY/Dy8iI1NZX333+fmJgY+tg/vCtXriQpKYn777+fvXv3snz5cjIyMqhVqxbt27cnNy+fx2dv4GimYcr9bYn78Rvm7NvH2bNnCQ4O5vrrr6djx45XHdu+fftISUnhySefJCTENnRl9+7dWbRoEbfeeisVKhT9M9/5bR0+fMWeVNY5n8o60Pox051x/AvKzs5m6dKl7Cvh8Q/29+XFLqHc+/VJFqbVYkRQFRrUrGnZ8Xfqfnr2Wdt+WrCgxPsJSn6eADlXvdHLexrbr6QNRORXbOO+DyiukAP1/Dxso5IVVXYSF6/Qezwrz9lqwf5MGBzFwIlreGbORiYOjbmk+6TW2aWvLI5/nSateXFNDi0jKvHvO1o6nPTJlY6/1tmXumxDXkT+aox5XUTep4gbjIwxf7najamyVbduXXJzczl8+DCRkZEkJCQQGBh4SVrhhIQEGjVqRGZmJrNnzyYqKooOHTpw7Ngxli9fzvJtR0mum8nEB/9E+t4NJCcnM2jQIIKCgsjIyOD06dMX1jV9+nQOHjx4xZj+/ve/A5CYmEhYWNiFDzpAgwYNLsRbv76bJik5/437hx8sDQNKfvy/+eabS9b3/fffO+3452QeZ9itrViYXYHhk9cxZ+QNlh1/V95PrnSeGGPWi8jNQBNsN6LuMsZocgAncoXPYtvUNOZPSuHYT6Hc0CDMJT+LTlWO6uyjyak89NkveAfV5KPB0cz7YpZb1kWucJ4UZuV+utIV+fM3uGqaPDfl5+dHzZo1iY+Pv/Bh79ChA7/88gsnT57E39+fw4cP0717d2JjYwkJCaFXr16ICGFhYby9JI69yXGMe6gJPVvWZNaWH6hRowYREbYR4Ar3c7v99tvJzc11KLZTp05RsWLFS+YFBgbi5eXFqVOnnLMDyrmSHv/U1FS+//77C+vLzMx06vFvFBHOhx2jePDzWB6bsZ7/3R9tyfF36n7q0oXM5GRqvPKKx50n9uROvYF62P539BARjDH/LdNAPJgrnLPGGJ5fuIWlW4/ycLeL+b5c6bPoqUrz+BtjeGl5PEleYUwZ2I7aVQPdti7SOvtSl23IG2MW2/9eMSW2cm316tUjISGBm266iQMHDtCxY0fi4+MvfIP18vIiIiKC3377jcjIyAs/s01dncCy+HO0iazM0BvqAhATE8OcOXM4cuQIDRo0oHHjxtSrV+/CtipVcsaopDj8U58q3rUef4DIyMhL1lUax79Lk2r8+46WjF2whRe+2kaAMZYcf6fup4oVmbNtmyeeJ4uBbGALoIOOlxJXOGffvv8mEib8ygvLE2jbMJLaVa/c7UTrbOcpreO/LzuIebtz+duAm7i5sW10Jzeui7TOLqDYPvIi0hjbOL/1Ci7vQCIQ5QLq1avHunXrSElJ4ezZs9SsWfPCCRAYGEjt2rX/cCf1iu3HeGnRNm5sEErTU+EXPnyNGjXiqaeeYs+ePcTHxzNz5kyaN2/OHXfcAVzdz08VK1b8w7JZWVnk5+cTFBTkrLdf7l3L8b+c0jr+93Wow6G0LD74dhut0lK534Lj79T9FBjoqedJpDGmdVlvtLxxlXO21ekcNqw5wMjKAcwf1cnVPoseqzSO/8IfYpkx6TsiSCUiswq2gf7cui7SOrsAR0atmQt8DPwPKG6oMeVizvcl+/XXX6lTpw5eXl7Uq1ePxYsXExQURKNGthM6PDyc7du3s+lQOo/P2kDLiBAeanaO336+9BtkYGAgbdq0oU2bNjRs2JD58+fTp08ffHx8rurnp8jISH766SdOnDhx4dvu/v378fHxoVatWsWUVo662uNvClwRT0xM/MP6Suv4P9ujCRs3bWZpbDrrj0NZd7d1l/0Elp4ny0SkhzHm27LecHniSp/FTruSeeqrffzjy6083CbClT6LHsvZx/9UrhfvbMihyfW38GrXynz79SJuv72vu9dFLnWeFGTFfnKkIZ9rjPmoVLauSt35vmSbN2+mW7duANSuXZsTJ06QkZFB9+7dAdtPcMtW/siA5z+iSt1mPHd9ddb9vOqSda1atYqaNWsSHh5Ofn4+O3bsoEqVKvj42D5GV/PzU4MGDQgPD2fhwoX06NGDM2fO8O233xIVFXXhru6kpCQWLlxI//79L/RdO3XqFKdOnSI1NRWAlJQUsrOzCQkJISAgoGQ7yxmGDbM6gktczfH/7bffWL58Oe3btyc5OZnY2Etvjynt49/G6wCHWrdl7Jc7qR0WQoTfmTI7/k7dT+np1Ny50yXOEy7W8eEi4g9kGmOuNR/5GmChiHgB57Dd8GqclOlb2bnSOdv/hqrEnxTe+34vbSKba51dBpx5/L9bsZK3fkkm86Q37w6PIXFHnMf8z9Y6+yJHGvKLReRRYCGXJoTS8XzdRP369UlKSrrQ58vHx4fIyEiSkpIufIjwC+Q305jTKb/Rp9YZdm9Oo1u3bixYcDFdgLe3NytXriQjI+PCOu67r8jRPovl5eXF4MGD+frrr5k0aRI+Pj4Xkiacd+7cOY4fP865cxcHxoiNjeWHAqMLzJgxA4A77riDtm3bXlMsTuVi/xTAseMfEhLCvffeyzfffENcXBw1a9a05Pg/+EgX7vl0Lf83NZb3+kSU6fF3yn665x689+xxpfPkfKaXwfa/XwIbrykYeAu4AdhijPnDSGbKeVzpnH2iW2M2JWYybskOPrvvzyRu/lXr7FLmrOM/c10i635bQ6/Glfj563ir6yJA62xwfp0txdXHIhJfxGxjjLmuuDfk7mJiYkzhb26eKCc3nwcmrSX2QBqfj+hApxuy4CwAACAASURBVAZhVofkvo4ft/0N0314rQ6mZtF/wq8EVfBhwaOdylXqcGcTkThjTIyT1vUN0MuegdUllZc6u6xlZOXQ5/1fyMs3LH68s2edkx5aZ3+1MYknZm9k+I31+GffFlaHoxx0LXW2VzEr9AKGGGPqF5o8vhFfXhhjGDN/M6v3p/L6gNbaiC+pAQNsk7pmdUID+WxYe5JPZvPQ57GcyXGjW3Oysi4mmPE8R4AfRGSsiDx9frI6KFX6Kgf68fGQaNJO5/D4zA3k5rnsd7mr54F19s6jJxgzfwsd6lXl772bWR2Oa/OAOvuKDXn7lZc3yygWZYG3V+xhwYYknunemP7tIosvoFQZaFu7Mu8NbMemxAye/GIDeflu0pOjd++LCWY8TzywEvADggtMqhxoGRHC+P6tWL0/lTe+3WV1OOoyMs+cY+S0OIL9ffhgcDt8va/YzFMeUGc70kf+WxG5C1ig/SI9y5zYQ7y3cg/3xEQy+paGVoej1CV6tKjBi32a8/Li7Yz/egcv9m1udUjlmjHmZQARCbY9NZoFqJwZEB3JxkPpfPLjftpGVqZXq5pWh6QKyM83PDNnI4npZ5j9cEeqBftbHZIqA4405J8GgoBcEclGRyrwCL/sOc7fF2yhc8MwxvdvpQk9lEsafmN9DqZlMenXeGpXDWD4jW6aBt4DiEhLYBpQ1f78OHC/MWabpYGpMvVCn+ZsTTrBs3M30ah6RRpW0x9lXMWHq/ayYkcyL/VtTky9qlaHo8pIsb+5GGOCjTFexhg/Y0wl+3NtxLuxnUdPMGp6HA2rVWTCkCj96U25tH/8uTm3tajOuCX/396dh0dRpXsc/74khLDv+64ssggBAgoy6ggqMiLqqICAgCsojAs64nLVq+MMMzruIqgjKIuAqAN6cUHEnRESCDuByBr2fQ9L8t4/qtCekECTdKequ9/P89ST6uqqU79Ow8np6lPnLOfLZVu9jhPL3gQeUNX6qlofGA685XEmU8RKxMfxRr+2JBaP467xqRw8Gtz42ia8vl21gxe+WsW1SbUY0KmB13FMEQqqBSciFUWkg4hcfHIJdzATHtv2Z3Hr2PmUKhHHOwPbUy6xuNeRosuQIc5iQiaumPBSrza0rlOBP01eSNrGvV5HilWlVfXXySVU9Rucb2tNjKlZviSv3tyGtTsP8dAHi4joXrdRUGdv3H2YeycvpGn1svzt+lb2DXuMOWPXGhG5HbgXqIMzluWFwFzgsvBGM6F28OgJBo2dz74jx5k6uCO1KvhgMo5o06uX1wmiUsmEON4ekMx1o37k9nfn8/HdF1G3UimvY53Kh2NSh9AaEfkfnO41AP1wboA1MajTuVUYcdV5/HXmSt76fg13Xnyu15EKJsLr7Kzj2QyekEp2jjK6XztKJsR5HSmyREGdHcwV+XuB9sB6Vf090AbYEdZUJuROZOcwbNIC0rcd4LW+bWlRq7zXkaLTxo3OYkKuSpkSjBvUgePZyoCx89h7+JjXkU41cGBU/GHIx61AVeBD4COgCjDQy0DGW3f87hy6n1+DkZ+t5Kdfdnodp2AiuM5WVR7/91KWbd7PS72SaFDFviA7a1FQZwfTkM9S1SwAESmhqiuBpuGNZUJJVXlyxjLmpO/gmZ4t+X3Tal5Hil79+zuLCYtzq5bhrVuSydx9hDvHp3L0hM/GmN+587cJZqLPuUBdnL8bxYEuwHeeJjKeEhH+cUNrzqlahmGTFrJ572lnkvenCK6zJ83bwLTUTP7UpTFdmlX3Ok5kioI6O5iGfKaIVMCZJnaWiEwHNoc3lgmlMd+tYeLPGxhy6bncfEE9r+MYUygdGlbi+ZtaM2/tbv48bTE5fhpjPgonlwkwEXgHuB642l16eJrIeK5MiXhG92tH1vFs7p64wH8frqPUwg17eGrGMi5pUpV7uzT2Ok7kioI6O5hRa65T1b2q+hTwP8C/gGvDHcyExieLNjPys5X0aF2Lh66wL1JMdLimdS3+3K0p09M2889ZNjlNEdmhqp+o6lpVXX9y8TqU8V6jamV4/sbWpG3cy9OfLPc6TtTbefAoQyYsoEb5RF7unURcMbu5NZYFO2pNZxEZpKrf4tzoWjsUJxeRbiKSLiIZIjIij+dLiMgU9/mfRaRBwHOPuNvTReTKgO3viMh2EVmaq6xKIjJLRFa7PyuG4jX42fx1uxn+wSLaN6jIcze0opj9ZzdRZMgl59KnQz1en/ML78/b4HWcWPCkiLwtIn1E5PqTi9ehjD9cdX5N7rrkHCb+vIEPUiKzz3kkOJGdw9BJC9hz+Bhv9G1HhVIJXkcyHjtjQ15EngQeBh5xNxUHJhT2xCISB7wOXAU0B/qISO6pG28D9qhqI+BF4O/usc2B3kALoBswyi0PYJy7LbcRwGxVbYwzzfgpHxyiyZodB7njvRTqVCjJm/2TSSxud7Kb6CIiPNOzBZc0qcrj/17KN+nbvY4U7QYBSTj1aw93udrTRMZXHrqiKZ3Orczj/17K0k37vI4TlZ77Ip3/rNnNX687n5a1bdAKE9wV+euAa4BDAKq6GQjFVG4dgAxVXaOqx4DJQM9c+/QE3nXXpwFdxBkgtScwWVWPqupaIMMtD1X9Dtidx/kCy3qXKO4etOvgUQaNm0+cCGMHtadiafvEXmSGD3cWUyTi44rxet+2NK1elnsmLmD55v1eR4pmrVU1WVUHqOogd7nV61DGP+LjivFKnzZUKp3A4Amp7Dnkw5GlcougOnvmki2M+W4N/S6sxx/b1fE6jvGJYBryx9SZ7UEBRCRU4xvVBgK/f8vk1C47v+6jqieAfUDlII/NrbqqbnHL2gLkOXSLiNwpIikikrJjR+SNspl1PJvb30th674s3hqQTP3KNhxVkerRw1lMkSlTIp6xg9pTrmRxbh03ny37PBw5IwomlzmN/+Txrakx/6VKmRK80a8d2/cf5d4paWT76Wb0vERInZ2x/QAPfbCINvUq8MTVLbyOEz2ioM4OpiE/VUTGABVE5A7gK0IzLXdeHbZz/4/Pb59gji0QVX3TveqUXLVq1VAUWWRycpT7p6SRtnEvL/dOom29qL8NwH/S053FFKnq5RIZO6g9h9xJzw5kHfcmSK9eET/BzGl0BtLc+5IWi8gSEVnsdSjjP0l1K/DUNS34btUOXv5qlddxTi8C6uwDWce5c3wqJRPieKNvOxLig7q90QQjCursYEateR6nW8uHOOPHP6Gqr4bg3Jk4YxKfVIdTh7X8dR8RiQfK43SbCebY3LaJSE23rJpA1HWo/dtnK/hs6VYe696Mbi1reh0nNt11l7OYIndejXK80a8dGdsPcvfEBRzPzin6EBE8uUwQugGNgSv4rX/8GS9lBjGoQT0RmSMiC90PCN3d7cVF5F33A8MKEXnk1NKNX/XpUJcb29Xhla8z+Gr5Nq/j5M/ndbaq8tAHi1m/6zCv9mlLjfKJXkeKLlFQZwf1sU5VZ6nqQ6r6oKrOCtG55wONRaShiCTg3Lw6I9c+M4AB7voNwNduN58ZQG93VJuGOH9c5p3hfIFlDQCmh+A1+MZ7c9fx1vdrGdCxPrd1buh1HGM80blxFf56/fl8v3onj328BKe6KEIRPLnMmQQOORns8JNBDmrwODBVVdvg/B0Y5W6/ESihqucD7YC7AkcuM/4mIjxzbUta1i7H/VPTWLfzkNeRItKY79bw+bKtjOh2Hh3Prex1nOgTBXV2vg15ETkgIvvzWA6ISKHvKHP7vA8FvgBW4FTky0TkaRG5xt3tX0BlEckAHsAdaUZVlwFTgeXA58A9qprt5n4fZ4jMpiKSKSK3uWWNBC4XkdXA5e7jqPDV8m08NWMZXZtV54keLXDuBzYmNt2UXJc/XdaIqSmZvD4nw+s4sS6YQQ0UKOeul+e3b1cVKO1+G1sSOAbY3cwRJLG40xUkrpgweEIqh4+d8DpSRPkxYyf/+Hwlf2hVk9t/ZxfoTN7i83tCVUMxMs1pqepMYGaubU8ErGfhXJXJ69hngWfz2N4nn/134UwpHlUWZ+5l2PsLaVm7PK/0sYkhjAG4//ImZO45wvNfrqJOxVJc2yYkU1+Ys5fXwAQX5NrnKeBLERkGlAa6utun4TT6twClgPtVNa8RyYyP1a1Uild6t2HA2Hk88tESXuqVZBebgrBp7xGGvb+Qc6uW4R9/bGW/M5Mvu2Migm3cfZhbx6VQqXQCbw9IplRCvp/LjIkpIsLIP7ai4zmVeWjaIub+ssvrSLEqmIEJ+gDjVLUO0B0YLyLFcK7mZwO1gIbAcBE555QTRPhIY7Hg4iZVGX55E6anbebdn9Z5Hcf3jp7I5u4JqRw7kcPo/u0oXcL+tpv8WUM+Qu07cpxB4+Zz7EQ2797anmpl7QYYX3j8cWcxnkuIL8bofu2oX7k0d41PIWP7Aa8jxaJgBia4DaerJKo6F0gEqgA3A5+r6nFV3Q78CCTnPkEkjzQWS+6+tBFdm1XjL/+3gvnrfPTFig/r7KdmLGdR5j6ev7E151Yt43Uc43PWkI9Ax07kMHh8Kut3HWJ0/3Y0qhb2XlAmWF27OovxhfKlijN2YHsS4uMY8M58th/ICu8JI2hymSISzKAGG3C7PYpIM5yG/A53+2XiKA1cCKwssuQmpIoVE/55UxJ1Kpbk7okL2L4/zP8Xg+WzOnvq/I28P28DQy49l24ta3gdJ/pFQZ1tDfkIo6qM+HAxc9fs4h83tKLTuVW8jmQCpaU5i/GNupVK8c7AZHYfOsbt76aE94a7CJlcpqgEOajBcOAOEVkEvA8MdEcnex0oAyzF+UAwVlVt3PoIVr5kcUb3b8fBrBMMnbTQmyFic/NRnb04cy+PT19K50ZVePCKpl7HiQ1RUGdLkQ/PFkGSk5M1JSXF6xj/5YVZq3hl9mqGX96EYV0aex3H5Hbppc7Pb77xMoXJw+wV27jjvRQuO68aY/onh+fG8JMTyzT1xx9hEUlV1VO6o0QrP9bZ5lTT0zZx7+Q0Bl3UgCd7eDxLqU/q7N2HjtHj1R8A+GRYZyqVTvA0T8yIgjrbrshHkKkpG3ll9mpuSq7D0MsaeR3HmIjSpVl1/veaFny1YjtPf7IsPGPM+3xyGWP8oGdSbQZd1ICxP65jetomr+N4LjtHuXfyQnYcOMqovm2tEV+UoqDOtluhI8QPq3fy6EdL6NyoCs9ed74NRWVMAfTv2IANuw/z1vdrqVupFLf/7pRBUIwxReDR7s1YumkfIz5cQtMaZTmvRrkzHxSlXpiVzverdzLy+vNpXbeC13FMhLEr8hFg5db9DJmQSqNqZRjVry3F4+xtM6agHrmqGd3Pr8GzM1fw2ZItXscxJiYVjyvG6ze3pUxiPIPHp7I/67jXkTzx5bKtvD7nF3q3r0vvDvW8jmMikLUIfW7b/ixuHTufUiXieGdge8olFvc6kjERrVgx4YWbkmhTtwL3TUkjdf0eryMZE5OqlUtkVN+2ZO45wgNTFpGTE1v37K3ZcZDhUxfRqk55nrrG43sFTMSyhryPHTx6gkFj57PvyHHeGdieWhVKeh3JnMlf/+osxtcSi8fx9oD21CyfyB3vpbBu5yGvIxkTk9o3qMRjf2jGVyu2MeqbjKIP4FGdfejoCQZPSCU+ThjVty2JxeOKPIOJDtZH3qdOZOcwbNIC0rcd4O0BybSoVd7rSCYYnTp5ncAEqVLpBMYO6sD1o35k0Lj5fDikU+FvMvPZxDLGRIKBnRqQtnEv/5y1ilZ1KnBxkyKc2MuDOltVefjDxWRsP8h7t15AnYqlijyDcUVBnW1X5H1IVXlixjLmpO/gmZ4t+X3Tal5HMsH66SdnMRGhYZXSvD0gmU17j3DneylkHc8uXIE+m1zGmEggIvzt+vNpWr0sf5q8kI27DxfdyT2os9/5cR2fLt7Cg1c2pXNjmwvGU1FQZ1tD3ofGfLeGST87M7vdfIHd/BJRHn3UWUzEaFe/Ei/elETK+j0M/6CQ/XR9NLmMMZGkVEI8o/u1IztHGTIxtfAfqoNVxHX2z2t28deZK7iyRXWGXHJukZ3X5CMK6mxryPvMJ4s2M/KzlfRoXYuHbGY3Y4rEH1rV5NHu5/F/i7fw9y9WFryg++5zFmPMWWtQpTQv3pTE0k37eWL60vDM9eChbfuzuGfSQupXKsXzN7a2YaT9IArqbGvI+8j8dbsZ/sEi2jeoyHM3tKJYOGaeNMbk6Y7fnUP/C+sz5ts1TPjPeq/jGBOTujavzrDLGjE1JZP35230Ok7IHDuRw5AJqRw+doIx/dtR1kagMyFiDXmfWLPjIHe8l0KdCiV5s3+y3cFuTBETEZ7s0ZzLzqvGE9OX8vXKbV5HMiYm3de1CRc3qcpTM5aRtnGv13FC4tn/W86CDXt57obWNK5e1us4JopYQ94Hdh08ysCx84kTYeyg9lS06ZmN8UR8XDFe7dOG5rXKMXTSQpZu2ud1JGNiTlwx4ZXeSVQrV4K7J6Sy6+BRryMVyscLM3l37nru+F1D/tCqptdxTJSxhrzHso5nc/t7KWzbn8VbA5KpX7m015FMYbz0krOYiFW6RDzvDGhPxVIJDBo3n017j3gdyZiYU6FUAqP7tWPXoWMMe38hJ7JzwnOiMNfZyzfv55GPlnBBw0o83O28sJ3HxC5PG/Ii0k1E0kUkQ0RG5PF8CRGZ4j7/s4g0CHjuEXd7uohceaYyRWSciKwVkTR3SQr36zuTnBzl/ilppG3cy8u9k2hbr6LXkUxhJSU5i4lo1colMnZQe7KOZzNo7Dz2HQly+nibEMyYkGlZuzx/ubYlP/2yi+e/XBWek4Sxzt53+DiDJ6RSoWQCr93clvg4u3bqO1FQZ3v2r0pE4oDXgauA5kAfEWmea7fbgD2q2gh4Efi7e2xzoDfQAugGjBKRuCDKfEhVk9zF8/GG/vbZCj5bupXHujejW0v7ui0qfPWVs5iI16R6Wcb0a8fanYcYMiGVYyeCuCLYqZNNCmZMCN2YXJebL6jH6G9/4fOlW0J/gjDV2Tk5yn1TFrJl3xFG9WtL1bIlQn4OEwJRUGd7+fGwA5ChqmtU9RgwGeiZa5+ewLvu+jSgizjjNfUEJqvqUVVdC2S45QVTpi+8N3cdb32/lgEd63Nb54ZexzGh8pe/OIuJCp0aVWHk9a346ZddjPho8ZmHw7MJwYwJuSd7NCepbgUe/MCZDTWkwlRnv/L1auak7+CJHi3s23Y/i4I628uGfG0gcGypTHdbnvuo6glgH1D5NMeeqcxnRWSxiLwoIp59PP5q+TaemrGMrs2q80SPFjaWrDE+9sd2dbi/axM+WrCJl2evPv3ONiGYMSFXIj6ON/q1pUR8MQZPSOXg0RNeRzqtOSu38/Ls1Vzftjb9bFJHf4uCOtvLhnxerdfcl7vy2+dstwM8ApwHtAcqAQ/nGUrkThFJEZGUHTt25LVLoSzO3Muw9xfSsnZ5XumTRJyNFW+M7/2pSyNuaFeHl75azbTUTK/jGBNzapYvyat92rBmx0H+PG2RbyeLWr/rEPdOXkizGuX463Xn24U6E3ZeNuQzgboBj+sAm/PbR0TigfLA7tMcm2+ZqrpFHUeBsTjdcE6hqm+qarKqJletWrWALy1vG3cf5tZxKVQqncDbA5IplRAf0vKNMeEhIvzt+vPp3KgKIz5czI8ZO72OZEzM6dSoCg93O4+ZS7by9vdrvY5ziiPHshk8YQEiwpj+7Ww+GFMkvGzIzwcai0hDEUnAuXl1Rq59ZgAD3PUbgK/V+Rg+A+jtjmrTEGgMzDtdmSJS0/0pwLXA0rC+ulz2HT7OoHHzOXYim3dvbU+1solFeXpjTCEVjyvGqH5tObdqGQaPTyV96wGvIxkTc+68+ByualmDkZ+vZO4vu7yO8ytV5bGPl7By635e6p1E3UqlvI5kYoRnDXm3z/tQ4AtgBTBVVZeJyNMico2727+AyiKSATwAjHCPXQZMBZYDnwP3qGp2fmW6ZU0UkSXAEqAKUGR3JB47kcNdE1JYv+sQo/u3o1E1m9Utao0Z4ywmKpVLLM7YQe0pmRDHoLHz2LY/y+tIxsQUEeG5G1vToHIphk5awJZ9hZznIUR19vj/rOejhZu4r0sTft+0WqHLMyZY4td+Zn6QnJysKSkphSpDVRk+dREfLdzEi71ac12bOiFKZ4zxytJN++g1Zi4NqpRm6l0dKV3C7SaX5o5q65O5BEQkVVWTvc5RVEJRZ5vIkLH9AD1f+5HG1csy5a4LKRHvXTeW1PW76TXmP1zSpCpv3ZJMMbv3LXJEQZ1tsxOE2YtfreajhZsYfnkTa8THgk8+cRYT1VrWLs9rfduycusBhk5a8NuskzYhmDFFolG1sjx3Y2vSNu7lmU+XF7ygQtbZ2w9kcffEBdSuWJIXeiVZIz7SREGdbQ35MJqaspFXZq/mpuQ6DL2skddxTFH45z+dxUS93zetxjM9WzInfQdPzljmjKJhE4KdIogZvOuJyBwRWegOD9w94LlWIjJXRJaJyBIRsZuLzK+6n1+Tuy4+hwn/2VDw0aQKUWcfz85h6KSF7DtynNH92lG+ZPGCZTDeiYI624ZNCZMfVu/k0Y+W0LlRFZ61IaiMiUo3X1CPDbsPM/rbX6hbqRSDT04s07Wrt8F8ImC27ctxRhWbLyIzVDXwEurjOPczveHOxD0TaOCOVDYB6K+qi0SkMnC8iF+C8bmHrmzK4sx9PPbxEs6rUZaWtcsX2blHfraSeWt381KvJJrVLFdk5zUhFAV1tl2RD4OVW/czZEIqjaqVYVS/thSPs1+zMdHqz1c2pUfrWoz8bCW7Dh3zOo7fBDPbtgInW0Hl+W0Y4iuAxaq6CEBVd6lqdhFkNhEkPq4Yr97chkqlExgyMZW9h4vm/+CMRZv51w9rGdipAde2yT2XpTFFx1qYIbZtfxa3jp1PqRJxvDOwPeUS7as2Y6JZsWLCcze0on2DimRsP8iBLH/POlnEgpnB+ymgn4hk4lyNH+ZubwKoiHwhIgtE5M/hDmsiU5UyJRjVty3b9h3l3slp5OSEdxCPVdsO8PC0xSTXr8ij3ZuF9VzGnIk15ENIVRk6aQH7jhznnYHtqVWhpNeRjDFFILF4HG/2T6ZEfDHStx1gwYY9Xkfyi2Bm8O4DjFPVOkB3YLyIFMPp+tkZ6Ov+vE5EupxygjDPxm0iQ5t6FXnymuZ8u2oHL81eHbbz7M86zl3jUymTGM+ovm1JiLdmlPGW9ZEPIRHhiatbsOfwMVrUKrp+esZHxo/3OoHxSMXSCZSsUY4VW/dz05i5PHF1c/pdWD/W748JZgbv24BuAKo6172htYp77LequhNARGYCbYHZgQer6pvAm+AMPxmG12AixM0d6rFww15emb2a1nXK06VZ9TMfdBZ1dk6OM5z0xt2HmXTHhVQrZ/deG+/ZR8kQO79OeS5uUtXrGMYrdes6i4lJie+8RaMPJ/C7xlX5n+nLGD51EUeOxXS37mBm8N4AdAEQkWZAIrADZ2K/ViJSyr3x9RKcSQCNyZOI8JdrW9KiVjnun5LG+l2HznzQWdTZb3z7C7OWb+PR7s3o0LBSIdMaX4iCSRytIW9MKE2Z4iwmNjVtStmklrx9SzIPXN6Ej9M2cd2oH4NrUEShIGfwHg7cISKLgPeBgerYA7yA82EgDVigqv9X9K/CRJLE4nGM7tcOEeGu8aln/iAdZJ393aodPP9lOj2TajHoogahCWu817Sps0Qwm9n1NGyWQHPWLr3U+fnNN16mMF45ObFMjx4AfJO+3bn5TpUXb0qia/MgvuoPIZvZ1cSqb1ftYODYeVybVJsXbmqdfxe3IOrszD2H6fHqD1Qrm8jH93SiVIL1So4auepsr9nMrsYY46Vck8tc2rQanw7rTP3Kpbj9vRT++WU62WEeUcMYA5c0qcoDXZvw8cJNvDd3fYHLyTqezZAJCziRrYzu384a8dEmCiZxtIa8McaEUd1KpZg2uBM3Jdfh1a8zGDh2HntsvHljwu6e3zeia7NqPPPpclLW7T7r41WVJ6YvZcmmfbzYK4mGVUqHIaUxhWMNeWOMCbPE4nH844bWjLz+fH5es5urX/2BxZl7vY5lTFQrVkz4501J1K5YkrsnLmD7gayzOn7y/I1MTclk2GWNirxbnDHBsoa8McYUkd4d6vHB4I4A3PDGXCbP2+BxImOiW/mSxRndrx37s44zdOJCjmfnBHVc2sa9PDl9GRc3qcp9XZuEOaUxBWcNeWNCado0ZzEmH63rVuCTYZ254JxKjPhoCQ9PW0zW8ZgeotKYsGpWsxx//2Mr5q3bzcjPVv73k3nU2bsOHuXuCalUK1eCl3slEVcspueCMD5nd20YE0pVqnidwHgpyMllKpVOYNygDrw4axWvzclg2ZZ9vNG3HXUrlQpzQGNiU8+k2izcsJd//bCW1nUrcE3rWs4TuersE9k5DHt/IbsOHePDIZ2oWDrBg7SmyETBJI52Rd6YUBo3zllMbDqLyWXiigkPXtmUt29JZv2uw/R47Qe+Sd8e5oDGxK5HuzcjuX5FHp62mPStB5yNuers579cxU+/7OIv17akZW2boT3qRcEkjtaQNyaUrCEf2wowIVjX5tX5ZGhnapRLZNC4+bwyezU5NkSlMSGXEF+MUX3bUiYxnsETUtmfdfy/6uzPl25h9Le/cPMF9bgxObIbdyZIUTCJo6cNeRHpJiLpIpIhIiPyeL6EiExxn/9ZRBoEPPeIuz1dRK48U5nuFOE/i8hqt0z7vswYE1pvvOEsZ6lBldJ8fPdFzuQ1s1Zx+3sp7Dt8PAwBjYlt1colMqpvWzbuPszwqYs4+ZE5Y/tBhk9dRFLdCjzZo7mnGU0RKmCd7SeeNeRFJA54HbgKaA70EZHc/3tuA/aoaiPgReDv7rHNgd5AC6AbMEpE4s5Q5t+BF1W1MbDHLdsYY3yhZEIcL9zUmqd7Ek/jRwAADyJJREFUtuD71Tvo8doPLNu8z+tYxkSd9g0q8Wj3Zsxavo3Ne4+QnaPcNT6FxOJxvNGvLSXi47yOaEzQvLwi3wHIUNU1qnoMmAz0zLVPT+Bdd30a0EWceZZ7ApNV9aiqrgUy3PLyLNM95jK3DNwyrw3jazPGmLMmItzSsQFT7urIsRM5XD/qJz5MzfQ6ljFRZ9BFDbimdS027j7Mgg17WLvzEK/e3Iaa5Ut6Hc2Ys+JlQ742sDHgcaa7Lc99VPUEsA+ofJpj89teGdjrlpHfuYwxxhfa1qvIp3/qTNt6FRn+wSJen5PhdSRjooqIMPKP55MQH0d2jvJwt/PodK6NOmYij5fDT+Y1MGvuO7zy2ye/7Xl9MDnd/qeGErkTuBOgXr16ee1iTP5mzvQ6gYkSVcqUYPxtHXjpq9Vc2aKG13GMiTqlEuKp+eNsfl6zmzs7neN1HGMKxMuGfCYQeFt4HWBzPvtkikg8UB7YfYZj89q+E6ggIvHuVfm8zgWAqr4JvAmQnJxsQ0eYs1PKxgGPaSGeDCw+rhgPXtk0pGUaY35Ts2Zlrq1Z2esYxitRMIGjl11r5gON3dFkEnBuXp2Ra58ZwAB3/Qbga1VVd3tvd1SbhkBjYF5+ZbrHzHHLwC1zehhfm4lVo0Y5i4lNVarYpGDGRBKrs2NbFNTZnjXk3SvjQ4EvgBXAVFVdJiJPi8g17m7/AiqLSAbwADDCPXYZMBVYDnwO3KOq2fmV6Zb1MPCAW1Zlt2xjQmvqVGcxscnmETAmslidHduioM72smsNqjoTmJlr2xMB61nAjfkc+yzwbDBlutvX4IxqY4wx4XHyD8LAgV6mMMYYE4woqLNtZldjjDHGGGMikDXkjTHGGGOMiUDWkDfGGGOMMSYCedpH3pio8803XicwxhgTLKuzTYSzhrwxxoSKTQhmjDGRIwrqbGvIG2NMqNiEYMYYEzmioM62PvLGGBMqNrmMMcZEjiios60hb4wxoWKTy5xCRLqJSLqIZIjIiDyerycic0RkoYgsFpHueTx/UEQeLLrUxpiYEAV1tjXkjTHGhIWIxAGvA1cBzYE+ItI8126P48zC3QboDeS+PPYi8Fm4sxpjTCSyhrwxxphw6QBkqOoaVT0GTAZ65tpHgXLuenlg88knRORaYA2wrAiyGmNMxLGGvDHGmHCpDWwMeJzpbgv0FNBPRDKBmcAwABEpDTwM/G/4YxpjTGSyhrwxxphwkTy2aa7HfYBxqloH6A6MF5FiOA34F1X14GlPIHKniKSISMqOHTtCEtoYYyKFDT9pjDGhYpPL5JYJ1A14XIeArjOu24BuAKo6V0QSgSrABcANIvIPoAKQIyJZqvpa4MGq+ibwJkBycnLuDwnGGJO/KKizrSFvjDEmXOYDjUWkIbAJ52bWm3PtswHoAowTkWZAIrBDVX93cgcReQo4mLsRb4wxsc661hhjjAkLVT0BDAW+AFbgjE6zTESeFpFr3N2GA3eIyCLgfWCgqtqVdWOMCYJdkTfGGBM2qjoT5ybWwG1PBKwvBy46QxlPhSWcMcZEOLsib4wxxhhjTASyhrwxxhhjjDERyJOGvIhUEpFZIrLa/Vkxn/0GuPusFpEBAdvbicgSd8rvV0RETleuiFwqIvtEJM1dnsjrfMYYY4wxxkQKr67IjwBmq2pjYLb7+L+ISCXgSZwhyDoATwY0+N8A7gQau0u3IMr9XlWT3OXpMLwmY4wxxhhjioxXDfmewLvu+rvAtXnscyUwS1V3q+oeYBbQTURqAuVUda47ssF7AccHU64xxhhjjDERz6uGfHVV3QLg/qyWxz75Te1d213Pvf1M5XYUkUUi8pmItAjNyzDGGGOMMcYbYRt+UkS+Amrk8dRjwRaRxzY9zfbTWQDUV9WDItId+DdOl5xTTypyJ063HYCDIpIeZN5AVYCdBTiuKPg5G/g7n2UrOD/ni+Zs9UMVJBKkpqbuFJH1BTjUz/8GwN/5LFvB+TmfZSuYIq+zw9aQV9Wu+T0nIttEpKaqbnG7ymzPY7dM4NKAx3WAb9ztdXJtPznld57lqur+gFwzRWSUiFRR1VN+2YHTfReUiKSoanJhyggXP2cDf+ezbAXn53yWLXqoatWCHOf337Of81m2gvNzPstWMF5k86przQzg5Cg0A4DpeezzBXCFiFR0b3K9AvjC7TJzQEQudEeruSXg+DzLFZEaASPbdMB53btC/7KMMcYYY4wpGl7N7DoSmCoitwEbgBsBRCQZGKyqt6vqbhF5BpjvHvO0qu5214cA44CSwGfukm+5wA3AEBE5ARwBetsU4MYYY4wxJpJ50pBX1V1Alzy2pwC3Bzx+B3gnn/1ankW5rwGvFS71WSlU15ww83M28Hc+y1Zwfs5n2Yzff89+zmfZCs7P+SxbwRR5NrEL08YYY4wxxkQer/rIG2OMMcYYYwrBGvIhJCLdRCRdRDJE5JTZasN43ndEZLuILA3YVklEZonIavdnRXe7iMgrbsbFItI24JgB7v6rRWRAXucqQLa6IjJHRFaIyDIRudcv+UQkUUTmufMLLBOR/3W3NxSRn93zTBGRBHd7Cfdxhvt8g4CyHnG3p4vIlYXNFlBunIgsFJFPfZhtnYgsEZE0EUlxt3n+vrplVhCRaSKy0v2319EP2USkqfv7OrnsF5H7/JAtVokH9bZYnV3QbFZnFy6b1dkFy+bveltVbQnBAsQBvwDnAAnAIqB5EZ37YqAtsDRg2z+AEe76CODv7np3nJuDBbgQ+NndXglY4/6s6K5XDEG2mkBbd70ssApo7od87jnKuOvFgZ/dc07FuSEaYDQwxF2/GxjtrvcGprjrzd33uwTQ0P13EBei9/YBYBLwqfvYT9nWAVVybfP8fXXLfRe43V1PACr4JVtAxjhgK864wb7KFisLHtXbWJ1d0GxWZxcu2zqszg5FneGrejtkLy7WF6AjzvCYJx8/AjxShOdvwH//UUgHarrrNYF0d30M0Cf3fkAfYEzA9v/aL4Q5pwOX+y0fUApn4rALcCZziM/9vuIMidrRXY9395Pc73XgfoXMVAeYDVwGfOqeyxfZ3LLWceofBc/fV6AcsBb3HiA/ZcuV5wrgRz9mi5UFD+ttrM4ubC6rs88+3zqszi7s79B39bZ1rQmd2sDGgMeZ7javVFdnzH3cn9Xc7fnlDHt+96vDNjhXUXyRz/0aNA1n8rBZOFc/9qrqiTzO82sG9/l9QOVwZQNeAv4M5LiPK/soGzgzKn8pIqnizIgM/nhfzwF2AGPdr7jfFpHSPskWqDfwvrvut2yxwk+/R9/9G7A6+6xZnV0wkVJngw/rbWvIh47ksU2LPMWZ5ZczrPlFpAzwIXCfBsy0m9eu+eQISz5VzVbVJJwrKR2AZqc5T5FlE5Grge2qmhq42Q/ZAlykqm2Bq4B7ROTi0+xblPnicbotvKGqbYBDOF97+iGbc0Knn+w1wAdn2jWfDJFS3/hdJPwerc4OLMDq7MKwOrsQ/FpvW0M+dDKBugGP6wCbPcoCsE1EagK4P7e72/PLGbb8IlIc5w/CRFX9yG/5AFR1L/ANTn+2CiJyco6FwPP8msF9vjywO0zZLgKuEZF1wGScr2pf8kk2AFR1s/tzO/Axzh9VP7yvmUCmqv7sPp6G80fCD9lOugpYoKrb3Md+yhZL/PR79M2/AauzC8Tq7IKLhDobfFpvW0M+dOYDjcW5Qz0B5+uXGR7mmQEMcNcH4PRzPLn9Fveu6guBfe5XQl8AV4hIRffO6yvcbYUiIgL8C1ihqi/4KZ+IVBWRCu56SaArsAKYgzMbcF7ZTma+AfhanY5uM4De4oxC0BBoDMwrTDZVfURV66hqA5x/S1+ral8/ZAMQkdIiUvbkOs77sRQfvK+quhXYKCJN3U1dgOV+yBagD799PXsyg1+yxRI/1du++DdgdXbBWJ1dcBFSZ4Nf6+1Q3gQQ6wvOncqrcPrsPVaE530f2AIcx/nEdxtOX7vZwGr3ZyV3XwFedzMuAZIDyrkVyHCXQSHK1hnnq6PFQJq7dPdDPqAVsNDNthR4wt1+Dk7FmYHzFVoJd3ui+zjDff6cgLIeczOnA1eF+P29lN9GQPBFNjfHIndZdvLfux/eV7fMJCDFfW//jTNCgF+ylQJ2AeUDtvkiWywueFBvY3V2QbNZnV3wTFZnFy6fb+ttm9nVGGOMMcaYCGRda4wxxhhjjIlA1pA3xhhjjDEmAllD3hhjjDHGmAhkDXljjDHGGGMikDXkjTHGGGOMiUDWkDfmDETkJ/dnAxG5OcRlP5rXuYwxxhSM1dkmltjwk8YESUQuBR5U1avP4pg4Vc0+zfMHVbVMKPIZY4z5jdXZJhbYFXljzkBEDrqrI4HfiUiaiNwvInEi8pyIzBeRxSJyl7v/pSIyR0Qm4UwGgYj8W0RSRWSZiNzpbhsJlHTLmxh4LndGuOdEZKmILBGRXgFlfyMi00RkpYhMdGdiRERGishyN8vzRfk7MsYYv7A628SSeK8DGBNBRhBwdcet3PepansRKQH8KCJfuvt2AFqq6lr38a2qutudVny+iHyoqiNEZKiqJuVxrutxZrprDVRxj/nOfa4N0ALYDPwIXCQiy4HrgPNUVcWdxtwYY2KY1dkm6tkVeWMK7grgFhFJA37Gma65sfvcvIA/CAB/EpFFwH+AugH75acz8L6qZqvqNuBboH1A2ZmqmoMzfXoDYD+QBbwtItcDhwv96owxJrpYnW2ijjXkjSk4AYapapK7NFTVk1d3Dv26k9NPsyvQUVVbAwuBxCDKzs/RgPVsIF5VT+BcUfoQuBb4/KxeiTHGRD+rs03UsYa8McE7AJQNePwFMEREigOISBMRKZ3HceWBPap6WETOAy4MeO74yeNz+Q7o5fbprApcDMzLL5iIlAHKq+pM4D6cr3iNMSaWWZ1top71kTcmeIuBE+7XreOAl3G+Il3g3ry0A+fKSm6fA4NFZDGQjvNV7UlvAotFZIGq9g3Y/jHQEVgEKPBnVd3q/lHJS1lguogk4lwZur9gL9EYY6KG1dkm6tnwk8YYY4wxxkQg61pjjDHGGGNMBLKGvDHGGGOMMRHIGvLGGGOMMcZEIGvIG2OMMcYYE4GsIW+MMcYYY0wEsoa8McYYY4wxEcga8sYYY4wxxkQga8gbY4wxxhgTgf4fOQb1q6rU6IcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "learn.sched.plot_lr()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "learn.save('cifar10_adamw_aws_p2_xlarge')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }