{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: daltoolbox\n", "\n", "Registered S3 method overwritten by 'quantmod':\n", " method from\n", " as.zoo.data.frame zoo \n", "\n", "\n", "Attaching package: ‘daltoolbox’\n", "\n", "\n", "The following object is masked from ‘package:base’:\n", "\n", " transform\n", "\n", "\n" ] } ], "source": [ "# DAL ToolBox\n", "# version 1.1.727\n", "\n", "source(\"https://raw.githubusercontent.com/cefet-rj-dal/daltoolbox/main/jupyter.R\")\n", "\n", "#loading DAL\n", "load_library(\"daltoolbox\") " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: ggplot2\n", "\n", "Loading required package: RColorBrewer\n", "\n" ] } ], "source": [ "load_library(\"ggplot2\")\n", "load_library(\"RColorBrewer\")\n", "\n", "#color palette\n", "colors <- brewer.pal(4, 'Set1')\n", "\n", "# setting the font size for all charts\n", "font <- theme(text = element_text(size=16))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 6 × 5
Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
<dbl><dbl><dbl><dbl><fct>
15.13.51.40.2setosa
24.93.01.40.2setosa
34.73.21.30.2setosa
44.63.11.50.2setosa
55.03.61.40.2setosa
65.43.91.70.4setosa
\n" ], "text/latex": [ "A data.frame: 6 × 5\n", "\\begin{tabular}{r|lllll}\n", " & Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species\\\\\n", " & & & & & \\\\\n", "\\hline\n", "\t1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa\\\\\n", "\t2 & 4.9 & 3.0 & 1.4 & 0.2 & setosa\\\\\n", "\t3 & 4.7 & 3.2 & 1.3 & 0.2 & setosa\\\\\n", "\t4 & 4.6 & 3.1 & 1.5 & 0.2 & setosa\\\\\n", "\t5 & 5.0 & 3.6 & 1.4 & 0.2 & setosa\\\\\n", "\t6 & 5.4 & 3.9 & 1.7 & 0.4 & setosa\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 5\n", "\n", "| | Sepal.Length <dbl> | Sepal.Width <dbl> | Petal.Length <dbl> | Petal.Width <dbl> | Species <fct> |\n", "|---|---|---|---|---|---|\n", "| 1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |\n", "| 2 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |\n", "| 3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |\n", "| 4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |\n", "| 5 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |\n", "| 6 | 5.4 | 3.9 | 1.7 | 0.4 | setosa |\n", "\n" ], "text/plain": [ " Sepal.Length Sepal.Width Petal.Length Petal.Width Species\n", "1 5.1 3.5 1.4 0.2 setosa \n", "2 4.9 3.0 1.4 0.2 setosa \n", "3 4.7 3.2 1.3 0.2 setosa \n", "4 4.6 3.1 1.5 0.2 setosa \n", "5 5.0 3.6 1.4 0.2 setosa \n", "6 5.4 3.9 1.7 0.4 setosa " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#iris dataset for the example\n", "head(iris)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: dplyr\n", "\n", "\n", "Attaching package: ‘dplyr’\n", "\n", "\n", "The following objects are masked from ‘package:stats’:\n", "\n", " filter, lag\n", "\n", "\n", "The following objects are masked from ‘package:base’:\n", "\n", " intersect, setdiff, setequal, union\n", "\n", "\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\n", "
A tibble: 3 × 2
SpeciesSepal.Length
<fct><dbl>
setosa 5.006
versicolor5.936
virginica 6.588
\n" ], "text/latex": [ "A tibble: 3 × 2\n", "\\begin{tabular}{ll}\n", " Species & Sepal.Length\\\\\n", " & \\\\\n", "\\hline\n", "\t setosa & 5.006\\\\\n", "\t versicolor & 5.936\\\\\n", "\t virginica & 6.588\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A tibble: 3 × 2\n", "\n", "| Species <fct> | Sepal.Length <dbl> |\n", "|---|---|\n", "| setosa | 5.006 |\n", "| versicolor | 5.936 |\n", "| virginica | 6.588 |\n", "\n" ], "text/plain": [ " Species Sepal.Length\n", "1 setosa 5.006 \n", "2 versicolor 5.936 \n", "3 virginica 6.588 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "load_library(\"dplyr\")\n", "\n", "data <- iris |> group_by(Species) |> summarize(Sepal.Length=mean(Sepal.Length))\n", "head(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lollipop plot\n", "\n", "The lollipop graph has the same goal as a bar graph." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nO3daZQddZ3w8ap7by/pJb0kNFnJYghZSIxIEEQETASigOA2nqPHfUFUkOXw\nwDnCKK4wM3oElEV0GGQcYTIomwhEZdiU3ZyQHRISyEqTkO6kt7vU86I19gTS3SQdiv7n83nV\nqdSt/hH+ffNN3bp14yRJIgAABr9M2gMAADAwhB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQd\nAEAghB0AQCCEHfvc9u3bW1tb054CBsxLL72Uz+fTngIGzIYNG9IegQGTS3sAwlcqlXzACSEp\nFouWNCEpFAppj8CAccYOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBC5tAcAAN5oST6f\nbN+edHYm+Xy0bl0xjpNcLlNZmampiXLaYBDzPw8A9hulUrG5ubRtW9LeXli7Ni4vj3O5qLk5\n39aW5PNJZ2duwoRMdXVcV5dtbIziOO1xed2EHQDsB5KktGVLcfPm/HPPZYcOjWtqcgcd9Lff\nKhYzw4f/ba/OzsLLL5e2bSs75JDsiBGZ+vrUBmaPCDsACF2hkF+zJv/MM5lhw3Jjx/ZyKi4u\nL48bGzMNDcVNm/LLlpW/7W25sWOjjCvyBw1hBwAhSzo68qtXF9esyY0b199Ei+NMQ0NcW9u1\naFHS1ZUbPz4uK9vHYzIwNDgABCvJ5wurVxfXrcuOHPl6T7zFuVxuzJjCc88VVq9OisV9NCED\nS9gBQKBKpcKaNYU1a7JNTXv4TohMJjNiRH7lyuILL0RJMtDzMfCEHQCEqfs6ueyIEXtzkDiT\nyY0a1bVwYWnLloEajH1H2AFAgJJ8vtjcnBk+fADe+pDNZoYNK2za5AXZNz9hBwABKm7cWFy3\nLlNVNSBHy9TWFlatKjU3D8jR2HeEHQAEp1QqbduWaWgYsAPGcVxfX9q6dcAOyL7hdicAEJrS\n9u35Z58tmzhxdzvcfffdF1988S4bL7744g984AO7e0i2pqZryZLc+PFxZeWADcpAE3YAEJqk\npSVbU9PLDu94xzuuu+667q+3bNnS0dFx+eWXH3744b0dNJOJhwxJWlqE3ZuZsAOA0CQdHVGv\n+dXY2NjY2Nj99caNGy+99NJzzjln9OjRvR82U1lZam93Fdebmf87ABCaJJ+Pcv09d3PPPfcU\ni8XTTz+9713LypJ8fq8mYx8blGfs8vl8R0dH2lPQX52dnUmStLa2pj0IDIxCobBjx47Ozs60\nB4HdKrS0RB0d/bklcXt7+y9/+cvLL7+8ra2tz52Tjo64tTXr+TxVmUymurp6d787KMOurKys\nzIfWDR5JkiRJUltbm/YgMDB27NhRXV1dXl6e9iCwW/na2mKS9OdeJzfddNMhhxxy2GGH9eew\npUIhW1NT5vn8TcxLsQAQmiSTiUqlPncrFArz58+fN29ePw8bF4txv1/hJRXCDgBCk6msjLq6\n+tztgQceiKKon6froigqdXVFzlW/uQk7AAhNXF1d2rGjz93uv//+I444IpvN9vOwSVtbxuuw\nb27CDgBCk6mrSzo6kkKhl32SJHn00UdnzZrVz2MmHR25iRPj3V+2z5uBV8oBIDRxeXn5jBml\nDRui3X+qWBzH99xzTxRFmzZt6s8xSy0tZU1Ncb9P75EKZ+wAIEDZAw8sbN2aFIsDcrSkq6vU\n0pJtahqQo7HvCDsACFCmrq58+vRk69YBOVqpubni7W+P+3H/FNLlpVgACFNu9Oios7PY2prZ\nuwvjSlu3ZseOzY4cOVCDse84YwcAYYqrqjKjRhU3biztxQelJG1tmcbG3EEHxW50MhgIOwAI\nVraxseLII4vr1vXn7ievVmxpKW7YkBs1yl1OBgthBwAhy40cOeSYYzI1NaUtW5J+fBzF35RK\nxc2bs/X1lXPmZIYN25cDMpBcYwcAgcsMG5arqCiUlRWWL88MG5aprY3ieLd7l0qlbdtKW7eW\nTZ+eGzs2rqx8Aydlbwk7AAhfpqam/JBDcgccUNy8Ob98eTxkSFRdHVdUZHK5qFRKCoWkUIi6\nukqtrUlHR/nUqeVvfWumvj7tqXndhB0A7B/iODNsWKaxMTd2bKmlpdTamnR15VesiLZsKWzf\nXjZ5clxfXzZpUmboULc1GbyEHQDsT+I4rqnJ1tRkoyhKkrIpU7a88EL1QQdF2Wxvr88ySAg7\nANhfxXFcVhaVlUU5PRAI74oFAAiEsAMACIRTrwCwnyo8+2z7PffG27a11tVVffhD2QMPTHsi\n9pawA4D9VH7p0pbvfT+OopYoqjjqSGEXAC/FAgAEQtgBAARC2AEABELYAQAEQtgBAARC2AEA\nBELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAE\nQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEA\nBELYAQAEQtgBAAQil/YAAINA0tVV2rYt6eiICoVk48bCK69kKiujiopsTU1cUxPFcdoDAkSR\nsAPoTalUbG4ubd3a9cwzcWVlXFmZKSuLXnml1N5eyGSSzs6u9vaygw+Oa2uzTU1xZWXa4wL7\nO2EH8NqKW7YUN24sPPdcpqEhN2FCnPv7E2axGA8dmikri6IoSpJSa2tp/frStm2Z+vrsiBFx\n93aANAg7gFcplQovvND59NOZYcNyBx3U2yutcRxXVWWrqpLOzq7Fi3OtrWXjxsXV1W/grAD/\nIOwA/o8kny88/3x++fLcQQf94yxdX+Ly8tyoUaXNmwulUnb06ExDwz4dEuA1eVcsQA+lUnHN\nmsJzz+XGjOl/1e2UaWwstrS0/+lPSWvrvpgOoHfCDuAfCi++2LV0aXbEiCizh0+PmZqa7PDh\nhbVrk46OgZ0NoE/CDuBvStu2dT71VG706D2uum6Z+vrC+vXFdesGajCAfhJ2AFEURVGSFDZs\nyDU0RK//FdhXyw4f3rloUamlZe8PBdB/6b95YuvWrTfddNOTTz7Z1tY2ZsyY973vfXPmzInd\n7RN4Y5W2bi0sX54bN25gDpfNZuvrixs2ZIYOHZgDAvRDymfsNmzYcMEFF9x3331VVVVTp05d\nv379FVdccf3116c7FbAfKr3ySraubi9fhO0pU1/ftXhx0t4+UAcE6FOaZ+xKpdI///M/b926\n9ZJLLjn88MOjKNq2bdtXv/rVO+644/jjj580aVKKswH7laRQKO3YEdXU9Lnn/Pnzb7nlls2b\nNx911FEXXXTR0F5OyGUycVVVqaUlO2TIQM4KsHtpnrF7+OGHN27ceOqpp3ZXXRRFdXV1Z5xx\nxuzZszds2JDiYMD+Jtm+vbB6dVxe3vtut9xyy89+9rPPfOYzl19++Zo1a77//e/3vn+mutpl\ndsAbKc0zdr/73e+iKJozZ07PjUcfffTRRx+d0kTAfqrU0RFXVPSxT6l0ww03nH/++YcddtjQ\noUMvvPDC//mf/ymVSpndv3obV1QknZ0DPSzAbqUZdqtXr87lcqNGjVq8ePHixYtfeumlcePG\nHXHEEU1NTSlOBeyP8vk+P+N12bJlmzdvPuaYY7Zv397Z2Tlz5syZM2f2/pC4rCwqlZJCYQ/u\ndQywB1J7runs7Gxraxs+fPh//Md/3HrrrTu333jjjV/60pd2OY0HsG+VSn2+baK5ubm2tvbG\nG2+86aabOjo6pk+f/o1vfOMtb3lLb4+J4/zKlWVTpw7kqAC7l9o1dp2dnVEUNTc3/+53v/vi\nF794ww033HTTTWeddVYmk7nqqqtWrVqV1mDAfijOZKJSqfd9tm/f3tra+uKLL15//fV33XXX\n2LFjzz333Hw+38tDklKp7OCD3b8JeMOkFnbZbLb7i89//vMnn3xyY2Pj0KFD586d++lPf7pY\nLPY8hwewz+VySaHQ+y719fWZTObCCy8cNmxYfX39ueeeu27dupUrV/b2mGIxiuPo7093APta\namFXWVkZx3Ecx+9+97t7bj/yyCOjKHLGDngjxRUVUVdX7/uMHz8+iqL2v9+XrvuLml7vkJJ0\ndsbl5ZEzdsAbJc0zdgceeGAcx9n/+2/ZioqKKIqSJElpLmB/FNfWljo7ez9pN2rUqBNOOOEb\n3/jGc889t2LFim9961tvf/vbx44d28tDkh074tragR4WYLfSvI/du971rlKp9Mwzz/TcuHjx\n4iiKJk6cmNJQwP4oLiurmDkz2bGj990uueSSgw466OKLLz7nnHNGjx79L//yL71dP5ckSXu7\njxQD3khpht3JJ5+czWavueaa9evXd2/ZsGHDddddF8fxvHnzUhwM2A/FQ4eWtm3rfZ/y8vKL\nLrroV7/61V133XXxxRf39rETUVRqbS075JBMdfWAjgnQmzRvrdTY2Pi1r33tyiuvPOussw4+\n+OA4jlesWNHV1fWRj3zk0EMPTXEwYD+UGT48N3FiaevWzEC8eJqUSqWXXy6bMsUFdsAbKeV7\nZr7nPe9pbGz8/e9/v3z58lKpNGPGjFNPPfVtb3tbulMB+6E4m801NXU8+2xcXR33dU+7PiWv\nvFJ2yCHZYcMGZDaAfkr/ZuizZs2aNWtW2lMARJlhw8qmTSs8+2x21Ki9OU6prS0zbFhuzBin\n64A3WJrX2AG8ucRxbty47EEHlZqb9/gYSVdXcePG3MiRca93QgHYF9I/Ywfw5hGXlZVNmJCP\nouKLL2abmvr8nLFdlHbsKG3aVHHEEZnhw/fRhAC9EHYA/0c8ZEjZpElxLpdfsSLb1BRXVvbn\nUUmplGzdmhk+vHzy5IxL64CUCDuAXcXl5WWTJsXV1aUtW4rr12caG+OKit3tnBSLSWtrccuW\n8mnTcqNHx+5vAqRH2AG8lkwmN3p0Mnx4ZujQUktLYdWqTE1NVFkZ53JRV1fS2Znk80lHR6m9\nPWlvL5s2rXzGjExDQ9pDA/s7YQewW3FFRW7cuKhYzI0dW2ppSTo6knw+amvLDBkSV1RkmprK\nqqszdXX9fLkWYF8TdgB9yWYz9fWZ+vruX8XDhuUaG8vLy9MdCuDV3O4EACAQwg4AIBDCDgAg\nEK6xA+ivpLNz2yX/XGpr215ZWXXCeyvf+960JwL4P4QdQL/l8ztu+s8oitqjKDdihLAD3my8\nFAsAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQ\nCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcA\nEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEH\nABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhh\nBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAI\nYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQiFzaAxCmUnt70tJSamuL\nurpKra2lUilfVxeVl2eqqjJDh8ZDhqQ9IAAESNgxoJKk2Nxcam7uWro0U1WVqaxMystL7e1J\nkhQLhairq9DRUWprK586NTt8eDxsWJxxzhgABoywY8CUXnmluGFDfuXKTGNj2cSJUSYTRVEc\nRXEcR0mSqanp3i1bKhVffjm/cmXZwQdnR47M1NenOjUAhEPYMRCSpLhhQ+djj2UaG3PjxkVx\n3NvOmUxm6NBMbW2xuTm/fHn57Nm5UaP6eAgA0A/Cjr1WKhXWrOlatCg7ZkxcXt7fR8Vxpq4u\nHjKk68knk87OsvHjIy/LAsDe8Vcpe6vw4otdixfnxo59HVX3d3F5eXbs2PySJYUXXtgXswHA\nfkXYsVeKmzd3PvVUduTIKJvdsyPE2Wx21KjOp58ubto0sLMBwP5G2LHnkq6u4qZN2REj4rKy\nvTlOnMtlR4wobt6cdHYO1GwAsB8Sduy54oYNxfXrM1VVe3+oTFVVcf364saNe38oANhvCTv2\nUNLR0fnkk5lhwwbqgJnhwzuffLLU3j5QBwSA/Y2wYw+Vtm2Lq6r24A0TuxOXlWWqqkrbtg3U\nAQFgf+N2J+yh0rZtcXV17/tcffXVP//5z3f+ctasWddff30v+8c1NUlLSzRixMCMCAD7GWHH\nnkjy+a5Fi3ITJvS+25o1a0455ZS5c+dGUTRkyJCav3/4xO7EVVXdh93Ld2MAwP5J2LEnks7O\nKJuNc32snzVr1nzqU5+aNWtWkiR9Vl0URXEuF2WzSUeHsAOAPeAaO/ZIodBn1SVJsnbt2nvu\nuecDH/jA6aef/q1vfaulpaXPA8e5XFIoDNCUALB/GZRn7PL5fEdHR9pT7NeS1tZCR0emra2X\nfTZt2tTZ2dnQ0HDZZZdt27btmmuuueCCC374wx/2fuRSZ2e+pSXTVzVCOnbs2PllV1dXa2tr\nirPA3sv3uBFBW1tbpyU9GGQymerdX+M+KP/6LCsrK/NSXapKxWJHRUWu1zvYjRs37v7776+p\nqdmxY0eSJE1NTZ/+9KdfeeWVUaNG9fKoQkVFZV1dprZ2oEeGAZDE8c7TzuXl5bUWKoNc+5Ah\nO8uuqqqq3JIe/LwUyx7J5ZJisfddMplMz+vqJk2aFEXR5s2b+zhyP17kBQBek7BjT2QqK8sm\nTkzy+V72+eMf/3jmmWd2dXV1/3LNmjVRFI0bN66XhySFQlIsRhUVAzgqAOw/hB17JJeLhwxJ\nelxv9GqHHnroM888893vfnfFihWLFi269NJLTznllIaGhl4ekuzYUTFzprfEAsCeEXbsoczQ\noaVew66pqenGG2/csmXLueee+93vfvcd73jHRRdd1Psxkx074qFDB3RMANiPuJiJPZSpr0/a\n25Ourl4+VWz8+PFXXnll95sn+ryPXdLVVWpry9TXD/SkALC/cMaOPRRXVFTMnl1qbh6oA5aa\nmytnz45dYAcAe0rYseeyI0bkxozp/QXZfirt2JEbMybjU2IBYC8IO/ZcXFaWHTmyuGlT8ve3\nvu6ZpKuruGlTZsQIb5sAgL0h7NgrmWHDKmfPLq5fv+efA1YsFjdsqDj88Ozw4QM6GgDsd4Qd\neys7alT5W99afOGF5PV/zlvS0VFYu7Z8xozc6NH7YjYA2K94Vyx7LY5z48bFlZWdjzySaWjI\n1NdHmX78g6FUKr3ySnHr1sp3vjN74IH7fkoACJ+wY2BkDzxwyNy5hQ0b8kuXZhsa4traKJt9\n7V2LxaS1tbh1a9mUKeWHHZZx4zoAGCDCjgET19aW1dRkhg8vNTd3LVoUV1TEVVVxeXnS0ZEk\nSalUivL5Ultb0tFRPmNG2aGHZhoaojhOe2oACIewY0DFcbaxMdvYmBs/PmlpKbW1JV1d0Suv\nxFGUra+Py8vjIUMydXW93NMYANhjwo59Ii4vj4cP777ULtfSkiRJWV1dyjMBQOi8KxYAIBDC\nDgAgEMIOACAQrrFj39r2zW+1P7M4iqLkkMn13/1O2uMAQMiEHftW18KFxccej6Io396e9iwA\nEDgvxQIABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAE\nQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEA\nBELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAATizRV2N9xww7XXXpv2FAAAg1Iu7QH+YcGCBbfeeuuY\nMWPSHgQAYFB6s5yx27hx43XXXZf2FAAAg9ibIuyKxeK//du/VVRUpD0IAMAg9qYIu1tuuWX5\n8uVnnnlm2oMAAAxi6YfdsmXLbr755nnz5h1++OFpzwIAMIilHHYdHR0//OEPR4wY8dnPfjbd\nSQAABruUw+6666576aWXzj33XBfYAQDspTTD7pFHHlmwYMFHP/rRyZMnpzgGAEAYUgu7LVu2\n/OQnPzn44IM/+tGPpjUDAEBIUrtB8WOPPdba2jpy5Mh//dd/7d5SKpWiKHr55Zcvu+yyKIrO\nOuusIUOGpDUeAMCgk/InT6xYsWLFihU9t7S3tz/88MNRFLn7CQDA65Ja2J100kknnXRSzy35\nfP5DH/rQmDFjfvrTn6Y1FQDA4JX+fewAABgQwg4AIBDCDgAgECm/eaKnsrKy22+/Pe0pAAAG\nK2fsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewA\nAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHs\nAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh\n7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAAC\nIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAA\nAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewA\nAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHs\nAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh\n7AAAAiHsAAACIewAAAIh7AAAApFLe4A9kc/nOzo60p6CfikWizu/aG1tTXcY2Fs7duz8squr\ny5JmsMu3t+/8uq2trdOSHgwymUx1dfXufndQhl1ZWVlZWVnaU9AvHdlsd9lls9na2tqUp4G9\nk8Rxy9+/Li8vt6QZ7NqHDNlZdlVVVeWW9ODnpVgAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7\nAIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAI\nOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBA\nCDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCA\nQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsA\ngEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7\nAIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAI\nOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBA\nCDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBA5NIeILrvvvvu\nvvvu9evXZ7PZ0aNHn3DCCXPmzInjOO25AAAGmTTDLkmSX/ziF7fddls2m500aVJ5efny5cuv\nuOKKJ5544sILL0xxMACAwSjNsHvwwQdvu+22pqam733ve01NTVEUvfTSS9/61rceeeSRBQsW\nzJ07N8XZAAAGnTSvsfvjH/8YRdHZZ5/dXXVRFB1wwAFf/OIXoyj6y1/+kuJgAACDUZpht3Hj\nxjiOp0yZ0nPjhAkToihat25dSkMBAAxWab4Ue/755ydJUlZW1nPjc889F0XRyJEjUxoKAGCw\nSjPsJk2atMuWdevW/fSnP42iaN68eWlMBAAwiKV/u5OdHnrooauvvrq1tfWDH/zg7Nmz0x4H\nAGCQeVOE3erVq6+55pqlS5fW1NR8/etff8973pP2RAAAg0/KYVcsFn/961/Pnz8/k8mcdtpp\nH/nIR2pra9MdCQBgkEr5BsVXXHHFn/70p+nTp5911lneMAEAsDfSDLvf//73f/rTn44++ujz\nzz8/m82mOAkAQADSvI/dHXfckcvlvvrVr6o6AIC9l9oZu5aWlhdffDGXy73mx8KOHz/+vPPO\ne+OnAgAYvFILu40bN0ZRVCgU1qxZ8+rfraysfMMnAgAY3FILu8mTJ99+++1pfXcAgPCkeY0d\nAAADSNgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2LYVzyQAABUO\nSURBVAEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAE\nQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEA\nBELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAAQil/YAe6JQKOTz+bSnoF9KpdLOL9rb29MdBvZS0mMN\nFwoFS5rBrqura+fXnZ2dRUt6MIjjuLKycne/OyjDLo7jTMa5xkHG/zUCkPRYw5Y0AYjjeOfX\nmUzGkh4Uev5fe7VBGXbZbDabzaY9Bf2y82kijuOKiop0h4G9lPR4rSCbzVrSDHalsrKdX5eV\nlZVb0oOfNgcACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMA\nCISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISw\nAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiE\nsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAI\nhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMA\nCISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISw\nAwAIhLADAAiEsAMACISwAwAIhLADAAhELu0Bomeeeeb2229funRpdXX1tGnTPvGJTzQ2NqY9\nFADA4JPyGbs//OEPF1988WOPPTZy5Mg4jhcsWHDuueeuWbMm3akAAAajNM/YtbW1/exnP6uo\nqPjBD34wfvz4KIruvvvuq6+++kc/+tGPfvSjOI5TnA0AYNBJ84zdPffc09bW9uEPf7i76qIo\nmjdv3owZM1atWrVs2bIUBwMAGIzSDLsHH3wwiqKjjjqq58YjjzwyiqKnnnoqnZkAAAat1MIu\nSZK1a9fmcrnRo0f33D5u3LgoitauXZvSXAAAg1Vq19h1dnZ2dXU1NDTssr22tjaKopaWljSG\nYuDl3vKWwo4dURTlJk1KexbYa9ls2cwZ+Xw+l8tlm5rSngb2VqauvmzmjK6urvLy8riqKu1x\nGACphV0+n4+iqOpVy6i6ujqKos7OzhRmYh9o+Nd/aWlpSZKkrq4u7Vlgb8VDhjTd/buNGzc2\nNDaWl5enPQ7srYp3H9P07mNeeOGFprFj056FgZHaS7E1NTWZTKajo2OX7W1tbVEUDR06NI2h\nAAAGsdTCLo7jurq61tbWXbZ3b3GPYgCA1yvNd8UecMABXV1dmzdv7rnxxRdfjKJo+PDhKQ0F\nADBYpRl23Tc6efTRR3tufOyxx6JX3QMFAIA+pRl2c+fOzWaz8+fPb25u7t7yl7/85amnnpoy\nZcqECRNSHAwAYDBK8yPF6urqvvKVr1x11VVnn332YYcd1tLSsmjRovr6+q985SspTgUAMEil\nGXZRFM2dO7euru6ee+7561//Wl1dfeyxx/7TP/3TiBEj0p0KAGAwSjnsoiiaPXv27Nmz054C\nAGDQS/MaOwAABpCwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMA\nCISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACISwY59ra2tra2tLewoYMC0tLYVCIe0pYMBs2bIl7REY\nMMKOfa69vV3YEZKtW7cWi8W0p4AB09zcnPYIDBhhBwAQCGEHABAIYQcAEIg4SZK0ZwAAYAA4\nYwcAEAhhBwAQCGEHABAIYQfQt6uvvvrUU09dvXr1AB7z+uuvP/XUU5cuXTqAxyR4A7UU9+A4\n++KngAEn7BhISZK0tbV1dXWlPQgA7I9yaQ9AUJ5//vmzzz77/e9//5e+9KW0Z4GB9IEPfOCY\nY44ZOXJk2oOwvxuopbgHx/FTMCgIO4C+jRo1atSoUWlPAQO2FPfgOH4KBgUvxQL7tfb29rRH\n2HODenj2hQFZEsVi0achD17O2PEPzzzzzK233rp69ert27c3NTW9853vPP3006uqqnru8+CD\nD/7hD39YtWpVsVgcP378+973vqOPPrr7t7797W8//vjjURTdddddd91115lnnnnSSSdFUZQk\nyW233fboo48+//zzNTU148ePP/3006dNm/a6vnVnZ+d///d/L1y48IUXXshms01NTccdd9zJ\nJ5+czWb3+Z8LbxpXXHHFggULvv71r7/nPe/puf2ss856/vnnf/KTn4wdOzbqdZVGUXTjjTfO\nnz//3//935ctW3bDDTeUlZX99Kc/jfpahNdee+1dd9314x//eMKECd1bisXi/Pnzn3zyybVr\n1x544IFTpkz5+Mc/PnTo0J3fqD8rfxd9PmR3wxOG/qzwXZbi7pZEsVj89a9//fjjj2/evHny\n5MmnnHLKli1brrzyyu9973uHHnpo9Kol/Z//+Z8333zzNddcc9ddd917772dnZ0NDQ2HHnro\nJz/5yQMPPLB7jD34KfDU/cYTdvzNww8/fPnll0dRdNBBB73lLW957rnnbr755mXLll166aVx\nHHfvc+WVV953333V1dWTJk0qFAorVqxYtGjRySef/MUvfjGKorlz544aNeq2226bOnXqUUcd\ndcghh0RRlM/nL7nkksWLF9fW1k6ePHn79u1PPPHEY4899pnPfOa0007r57fevn37ueeeu3Hj\nxlGjRs2YMaOrq2v58uU///nP161bd+aZZ6byx0Uqjj322AULFjz00EM9/9pbs2bN888/P2XK\nlO6q632V7vT4449fe+21M2fO7F6o/Vn/PbW3t19yySXLly9vbGycNm3ayy+/fPfddz/xxBPf\n/OY3u8foz8rfRf8fssvwBKM/K/w17bIkurq6LrnkkiVLlhxwwAFTpkxZu3btpZde2p/V8otf\n/OKJJ56YOXPmAQccsGTJkgcffHDlypVXXHFFZWXlq3fu86fAU3cqhB1/81//9V/ZbPaqq67q\nvoSiUChccMEFCxcuXLt27bhx46IoeuSRR+67777DDjvs/PPPr6mpiaKoubn5O9/5zp133jlr\n1qwjjjjiqKOOGjFixG233TZx4sSdfw/dfvvtixcvPuKII84777whQ4ZEUbRy5cpLL730xhtv\nPPLII0eMGNGfb33vvfdu3LjxlFNO+cIXvtB92NbW1rPOOuv+++8/44wzMhlXFOwvZs6c2djY\n+PTTT+/YsaO6urp74//+7/9GUXTCCSdE/VilOw/1y1/+8rLLLps8eXL3L/tchLuYP3/+8uXL\nTzzxxDPOOKP73MO999571VVX/fznP//mN78Z9W/l76L/D9lleILR5wrfnV2WxJ133rlkyZKT\nTjqp+xkySZLrr7/+jjvu6HOAp5566jvf+U73Kb1isfiNb3xj8eLFS5cufdvb3vbqnfv8KfDU\nnQp/rPxNc3NzZWVlfX199y9zudwFF1xw2WWXNTY2dm+55ZZbstnseeed1/33ZRRFw4cPP+OM\nM6IoWrBgwe4O+5vf/KaysvJrX/ta919UURQdfPDBH/vYxwqFwl133dXPb33IIYeceeaZH/7w\nh3cetra2dsSIER0dHR0dHQP1J8CbXxzH7373u4vF4l/+8pfuLUmSPPDAA5WVle9617ui17NK\njz/++J5h1Oci7Cmfz992220NDQ1f+MIXdr6idMIJJxx22GFtbW3dH8Ddn5W/i/4/ZJfhCUaf\nK3x3dlkSt956a21t7Wc/+9nueIrj+FOf+lRdXV2fA5x44ondVRdFUTabfec73xlF0datW1+9\nZ39+Cjx1p8IZO/7mXe9617333vvVr371mGOOmTZt2uTJk0eMGLHzJEGpVFq7du3QoUPvv//+\nno/K5/NRFK1ateo1j7lt27aWlpYZM2bs8oQye/bsa6+99sUXX+zPt46iaPr06dOnT0+S5KWX\nXtq8efOmTZuWL1++ePHigfuvZ9A47rjjfvvb3z700ENz5syJomjZsmWbN28+8cQTKysrX9cq\nPfjgg3v+ss9F2NP69eu7urqOPPLI8vLyntu7z1JE/V75Pb2uh+wyPCHpZYX38qieS2Lr1q0t\nLS2HH354z4eUl5dPnTp1Zy/uztSpU3v+spdv2udPQeSpOyXCjr/58pe//Ja3vGXBggW//e1v\nf/Ob30RRNGHChJNPPnnu3LlxHL/88suFQmHr1q0/+9nPXv3Y3b0Pq7m5OYqiYcOG7bK9e8vm\nzZv7862jKCoWizfffPPdd9+9bdu2KIrq6+snTpw4YsSIjRs3DtR/PoPFxIkTx44d+9e//rW1\ntbW2tra74d773vdGUfS6Vukup+L6XIQ9bdq06dVH6KmfK3+PH9LLt2aw62WF96Lnkuhen68+\nP9fQ0NDnd995qrtPff4URJ66UyLs+JtsNjtv3rx58+a1trauWLFi8eLFf/jDH6688srOzs6T\nTz65oaEhk8lMnTr1+9//fv+POXz48CiKtmzZssv27i07/w7r/VtHUfSjH/3ogQceOP744086\n6aQJEyZ0/yPy29/+tmeH/dOxxx570003Pfroo8cff/zDDz88bty47hehXtcq3SXX+lyEPXX/\nZdbS0rLL9iRJkiTJZDL9XPk9va6HvOb7OQjG7lZ4L3ouie712d1SPb3yyisDOGSfPwWRp+6U\nuMaOKIqizZs3X3/99X/84x+jKKqtrX3729/+yU9+8v/9v/8XRVH3HUxyudzIkSNXr17d1tbW\n84GrVq26+uqrH3jggdc8bF1dXW1t7cqVK1tbW3tuf/LJJ6Mo6n7bVJ/fOp/PP/roo2PHjj3n\nnHOmTp2686WBHTt2DPCfAoPEscceG8fxQw899PTTT7e0tOy8qHzPVmnUj0W4izFjxmQymWee\neWaXe32dd955H/rQh9rb2/uz8nexBw8hVLtb4f10wAEHVFZWrlixouenOxYKheXLlw/gkH3+\nFHjqTouwI4qiqKqq6o477rjhhht6vuLz/PPPR1G08z7jp512Wltb2w9+8IOdP5bbtm37wQ9+\ncPfdd+9yzr/7kqZup556ant7+1VXXbXzUtnnnnvuV7/6VS6X6z4R0ue3zmQypVJp+/btO4+Q\nJMkdd9zR/dHp7qK5H+q+XdbChQvvuOOOXC533HHH7fyt/q/Snvqz/nuqrKw88cQTN2/e/Itf\n/KJUKnVvvP/++5999tnp06d3v/Whz5X/anvwEILUywrvjziOP/zhD7e0tNxwww3db2JIkuTG\nG2989fngvdHnT4Gn7rR4KZYoiqKampr3v//9d95555e//OUpU6YMHTp0/fr1q1evbmhoOP30\n07v3OeGEEx5//PHHHnvsc5/73KRJkzo7O1euXFkqlU455ZS3vvWt3ft0/5X25z//OZPJHHvs\nsdOnTz/99NOffPLJP//5z0uWLDn44IO3b9/e/ajPfe5z3R842Oe3zmazc+bM+f3vf/+FL3xh\nxowZ5eXly5Yt6+zsnDlz5sKFC3/84x9/7GMfmzRpUkp/cqTjuOOOW7p06dNPP33MMcfU1tbu\n3N6fVfpq/Vn/u/jEJz6xZMmSO+6449FHH50wYcLWrVtXrFgxZMiQL3/5y9079LnyX20PHkKo\ndrfC++mDH/zg008/feeddz7xxBPjxo1bu3bt9u3bDz/88CeeeKKsrGyghuz9p8BTd1qyPd/A\nwv5s1qxZw4cPf/nll9etW/fiiy8OGTLk+OOPP/vssw844IDuHbrfh9/Y2Nja2vr888/v2LFj\n0qRJn/vc50499dSdl3fU1NQUCoV169atWLFi2rRp48eP7/7ZrqysbG1tXblyZbFYnDZt2lln\nndXzrft9futZs2aVl5dv2LBh5cqVhUJh1qxZF1544aGHHrp8+fLly5dPmzbtNe80RsC675iY\nJMnnP//5nu9d7c8qXbhw4ZIlS+bMmdPU1LTzgX0uwieffHLlypXz5s3rvgK9oqJi7ty5URR1\n/2UWx/ERRxxx4YUX7hymPyv/qaeeWr58+Xvf+97u79Kfh7zm8IRndys8etVSfM0lkclkjj/+\n+CRJ1q9fv27duilTppxzzjkrV65cs2bNaaed1n32epfjLFq0aPHixccdd1zPf0WsWrXqscce\nO/LII7s/auL1/hR46k5F3H2eFgAIw4oVK/L5/PTp03tuPPfcc1evXn3zzTfvcoMSAuMaOwAI\nyvz58y+66KJHHnlk55aFCxc+++yzc+bMUXXBc8YOAIKyatWqCy+8MJPJHHPMMXV1dRs2bHjk\nkUeGDh16+eWXH3jggWlPx74l7AAgNGvWrLn55puXLVu2ffv2UaNGTZky5eMf//gevA+DQUfY\nAQAEwjV2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACB\nEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAA\ngRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYA\nAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACB+P8utlt+FI+QvQAA\nAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "grf <- plot_lollipop(data, colors=colors[1], max_value_gap=0.2) + font\n", "plot(grf)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZyV9X3o8d9ZZoMZlhEQEGQRkUXR6xZjNK5FTcVIk+blvckrfbXGXPWm\nNlFfJt6beK1JW02bJlHUmhhjrV2wXKNBS6OYUrcEkSApO8qmrAIDM8MsZ845z/3jVDoiDKCD\nZ/zN+/2XPD7Pc74cj3M+85zneU4qSZIAAMBHX7rcAwAA0D2EHQBAJIQdAEAkhB0AQCSEHQBA\nJIQdAEAkhB0AQCSEHQBAJIRdb9fY2Njc3FzuKXqKpqamco/QU3R0dGzfvr3cU/QUra2t+Xy+\n3FP0FJs3by73CD1FkiR+fu7V0NDQ1tZW7il6ijK+mwi73q5YLPr2kb2KxWK5R+gpkiQpFArl\nnqKn8MLoTON25rWxV6FQ8GzsVcanQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgB\nAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELY\nAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC\n2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBE\nQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEA\nRELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgB\nAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELY\nAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC\n2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBE\nQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEA\nRELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgB\nAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARCJb\n7gEAAD76kiRpaUna25OOjqSxsdjeHrLZUFWV7tMnpFIf2hTCDgDg/UuamgoNDcWmpo5Vq1IV\nFalsNt/a2l5Tk+TzSUdH5QknpOvqUv37p/v1+xCGEXYAAO9Hsbm5sGVLbsmSdG1tura2YuzY\n0sG5dHNzprY2hBCSpLB7d2HTpkJzc+WJJ2aHDUv17XtERxJ2AACHKUnyGzfmFixI9e+fHTUq\nlcnsf7VUKt23b+jbN3XUUYUNG3K//W3Vxz6WHT78yH04K+wAAA5HPp/fsKF9yZLsyJGpyspD\n2SKVyaQGDUr165dbuDBpb88ee2wqe0QaTNgBAByyYrFj7dqO11+vOPbYkD68u4ukKiuzI0d2\nrFgRisXs2LGpw9z8ULjdCQDAocq/9VbHypXZYcMOt+r+UyaTGT68Y8WKwltvdfdoIQg7AIBD\nVNyxo/03v8kMH/4+qy6EEEIqnc4MG5b7zW8KO3d242wlH/mwu//++6+44oq1a9d++PvprocG\nAD4CisXCtm2ZQYM++OlxqYqK9KBBhS1bQrHYLaPt9ZEPOwCAD0Hh7bc73niju25Hl66ry7/x\nRnH79m7Z214f+YsnPv3pT5977rnDhg378PfTXQ8NAPR8hR070vX13ba7VCo1cGBhx470kCHd\nts8Iwm748OHDhw8vy36666EBgB4uaWnpWLEiO3bsgVaYM2fOt771rX0Wfutb3/r0pz99oE0y\ntbW55cszo0ena2q6a86PfNh1rbW1teYDP1mFQiGEkDnQvQcBgNgVm5rSffp0cYOSj33sYz/6\n0Y9K/9za2trQ0PDd73739NNP72qn6XS6T5+ksTH0krC7++67586d+9WvfvXCCy/svPyGG25Y\nt27dvffeO3LkyAceeODpp5/+4Q9/OGbMmBDCI488MmvWrJ/+9KcrVqx4+OGHKyoq7rvvvhBC\noVD4p3/6pwULFmzbtm38+PHTpk3buXPnPffc8+d//ucnnnhiCGGf/fz93//9zJkz/+Zv/ubp\np59+5pln2tvbBw4ceOKJJ37xi188+uijS2Pss0npUWbNmrVw4cINGzYcffTREyZM+PznP9+v\n04fx7e3t//zP/7x48eI333wzk8kMGTLk/PPPv/zyy1UjAPRkxZaWVHV1FyvU19fXv/NBbVNT\n09e//vWvfe1rxxxzTNe7TVVXJ62t3TZlDw+78847b+7cuS+++GLnsFu/fv26desmTJgwcuTI\nA224YMGCBx54YMqUKSeccEIIIZfL3XbbbcuWLRs8ePCECRM2bNhwxx13lP5V1x566KFXX311\nypQpgwcPXrZs2QsvvLB69eq77767en//aVtbW2+77baVK1fW19dPmjRpx44dc+bMefXVV2+/\n/fbSqM3NzTfeeOOWLVuGDx9+0kkn5XK5lStX/uQnP9m4ceP111//fp6gbtHe3nT+hc1H7LtN\nPlqSJGnxVLyjWCxuPgI3z/woSpIk5YXxjrQXRidJkuzx2gghhJAkSS6E3fE+G0mhEJJi568C\n6zP9yj7/43/sd+Wnn366UChMnz794LvNZpNcrtum7OFhN2XKlPr6+kWLFu3Zs6fvO1+a++//\n/u8hhKlTp3ax4d/93d/ddddd48ePL/3xqaeeWrZs2aWXXnrttdem0+kkSR588MHZs2cfdIDf\n/OY33/nOd0qH9AqFwje/+c2lS5cuX778v/23//belWfNmrVy5cpLLrnk2muvLR2Be+aZZ2bM\nmPGTn/zk9ttvL/1xy5Yt06ZNu+aaa0qbNDU13XDDDfPmzSsNdshPTLdKkqSxMSnPY/dEnorO\nuvkq/I8yL4zOvDA689roLOJnI0mSVOpdf8Ek17HfNVtaWh566KEf/OAHh7LbdDYbCoXuGPCd\nHXbjvrpdKpX65Cc/WSgUfv3rX5eWJEny/PPPV1dXn3POOV1seMEFF+ytuhDC448/XldX90d/\n9EeleEqlUn/wB3/Qv3//gw5wySWXlKouhJDJZM4+++wQQkNDw3vX7OjoePLJJwcOHHjNNdfs\n/Vx16tSpp556aktLS5IkIYQTTjjh+uuv/+xnP7t3q7q6uqFDh7a1tbW1tR10GACgXFIhlN7N\nD+rRRx+dMGHCpEmTDmXlJElCtx7m7NFH7EII559//hNPPPHiiy9edNFFIYQVK1Zs27btkksu\n2e+HoXsdf/zxe/+5oaGhsbHx9NNP77xJZWXlxIkT9/bigUycOLHzH7t40E2bNuVyubPOOqvy\n3V8GXDpWVzJ58uTJkycnSfL2229v27Zt69atK1euXLp0adczHGlJOl1x6aXZI/NVxB85HR0d\nFRUV5Z6iRygWi7lcruv/0XqPfD6fyWR8GlvS0tLSp0+fck/RU/ihsVd7e3s2m434lPFiU1OS\na0tl/+s/d2bUqPeuls/nZ82adcsttxzqfguF0K1PWk9/Ox87duzIkSNfe+21pqamurq6efPm\nhRB+53d+p+ut6jvdZmbr1q0hhPcenxs4cOBBH722tvYQ5yw9Sn2Xt7cpFAozZ86cM2fO7t27\nQwgDBgwYO3bs0KFDt2zZcoiPciSkKitrfvDXdXV1ZZyh59i9e/ehHMrtDXK5XENDQ/07lwr1\ncnv27KmqqvL7T8meN9+sP/Apzr1KkiRNTU39uul2tR9127dv79OnT8TRn1+/vmPNmsxRR3W9\n2vPPPx9COPPMMw91v7lcqqrqA87W2Ufg59R555336KOPzp8//4ILLnjppZdGjRrV+WPW/er8\ni3Uptkot1dmuXbu6ccjSozQ2Nu6zPEmSJElKHwF///vff/755y+44IJLL710zJgxpWMh3/72\nt8sbdgDAQaX69ElaWsLBwm7evHlnnnnmoZ83X2xpSb9zFUG36NHn2JWcd955qVTqxRdfXLRo\nUWNjY9eXTbzX4MGDq6urV61alet01Uk+n1+5cmU3DjlixIh0Or1kyZLCu0+BvOmmmz7zmc+0\ntrZ2dHTMnz9/5MiRX/va1yZOnLj3E649e/Z04xgAwJGQGTAgaWtL8vku1kmSZP78+aeccsoh\n7jPJ57PHHpvq1oO+H4GwK90QbvHixbNnz85ms+eff/5hbZ5KpT772c82NjY+/PDDpdMekyR5\n5JFHdu7c2Y1DVldXX3LJJdu2bXvooYeK73yh77x5815//fXJkyfX1NSk0+lisdjc3Lz3Ookk\nSWbPnr18+fLwzj2QAYAeqqKi8qSTkqamLlZJpVK/+MUvOl8l2bWksTFVU5Pq1tM0PwIfxYYQ\nzj///OXLly9atOjcc899H2eD/d7v/d6iRYueeuqpV199ddSoURs2bGhubj799NNfffXVbjzp\n9Qtf+MKyZctmz549f/78MWPGNDQ0rFq1qqam5rrrrgshZDKZiy666F//9V+vueaak046qbKy\ncsWKFe3t7VOmTFm8ePEPf/jDq666aty4cd01DADQvTJDhuSWLUv179/F908chmKxuGtX5f5u\noPZBfASO2IUQzjnnnNKFNge9bGK/stnsd77znc997nMVFRUrVqw47rjj7rzzztKN8brxNM+6\nurrvfe97n/vc5/r377948eLGxsYLL7xwxowZe+86fc0113zhC1+oq6tbsGDBmjVrTjvttHvv\nvffaa68dN27ca6+9tmnTpu6aBADodukBA6omT0666Rz94s6dFSeemO7uK/ZSh3hTlo+0VatW\ndXR0TJ48ufPCG2+8ce3atTNnztznBiW9za5duzKZjKtiS1wVu1fpqtijXRUbQnBV7Lu9+eab\nXXzxT6/iqtjOor8qtqTY3Nz6zDOZ4cPTXf5Nm5ubu76xRnHPnnRtbcVxx6W6+xn7aByx+4Bm\nzZp16623vvzyy3uXLF68+PXXX7/ooot6edUBAIcuXVtbfe65xS1bQsf+v3biUCS5XGHr1uzw\n4d1edeGjco7dB3TVVVe99tprd99996JFi/r377958+aXX3554MCBv//7v1/u0QCAj5LM4MFV\np5/evnBhZtiw1OHfxT1pbc1v3lx9xhnpg9055f3pFWE3duzYv/zLv5w5c+bChQubm5uHDx9+\nySWXfP7zn/f5IwBwuDIjRlRVVLS9/HJm8OD04XwWX9y9u7h9e/XZZ2eO2IkuvSLsQgijRo06\njO/3AAA4sMzRR9dceGF+48b8mjXpQYO6PuUuhJC0tBS2b8+OHVt58smH1YKHq7eEHQBAN0r3\n719ZW5upry9s355fuzZdW5vq0ydVVRX23gylWCy2tYWWlmJzc3bs2KoxY9KDBqWO8NfpCjsA\ngPclk8kMHZoZNCh7zDHF3buLzc0dK1emMplia2u+piYpFCpOOCE9dGi6f/9UXV3qQ7myXtgB\nAHwA2Wx64MD0wIEhSSrGj086OnK7dtUMHBiy2dSHfvMNYQcA0B1SqVRlZaqyMpXPH4lbmRyK\nXnEfOwCA3kDYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELY\nAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC\n2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBE\nQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEA\nRELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgB\nAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELY\nAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC\n2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBE\nQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEA\nRELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgB\nAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELY\nAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC\n2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBE\nQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEA\nRELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgB\nAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELY\nAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC\n2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBE\nQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEARELYAQBEQtgBAERC2AEA\nRCJb7gEAgI+mJElaWpLW1mIuV9y+vVBTU6irS1VWpvr2TVVVlXu4XkrYAQCHJ9mzp7BzZ9LU\n1LFqVaqqKmSzSXNzobIyV1GR5HJJe3vliSem+/fPDBoUskrjQ+XpBgAOVdLWlt+8ObdoUaZf\nv9C3b3bMmJBKhRBSVVXp6upMdXUIIRQK+bffDmvWZEaOzAwalBk8OGQyZZ671xB2AMAhKe7c\nmd+4sbBpU3bUqFRFxQHXy2Qy/fqFfv2Kzc35deuyY8dWjBmTqqn5ECftvYQdAHAwSZLftCm3\nYEH66KMzw4Yd4kbpPn3SI0cWt2zpKBazxx6b7tfviM5IEHYAwEEVNm/OvfpqZsSIVGXl4W2Z\nSqUHDSrs2hWSJDt6dLqu7sgMyH9yuxMAoCvFhoa2+fMzxxxz2FX3jky/fsWdO/MbNoRcrntn\nYx/CDgA4sFwu/9ZbmaFD33fVlaQHDixs2pTfsKG75mK/emPY3X///VdcccXatWu7cZ8PPvjg\nFVdcsXz58m7cJwCUXX7z5sKmTem+fT/4rjKDB+eWLCnu3v3Bd8WB9MawAwAORdLa2r5wYWbQ\noO7ZXTqdHjiwsHlzSJLu2SHv0Rsvnvj0pz997rnnDjvki3oAoHcq7NyZrq0NXdzZ5DCl+vfv\nWLEiO2JEqra2u/ZJZ70x7IYPHz58+PByTwEAPV3S2HgoBTZr1qzHHnts69atZ5999q233trv\nwLc1SaXTqZqaYmNjRtgdGVF9FNva2lruEd6/j/TwAMQnaW3NLV+e6tOn69Uee+yxH//4x1/6\n0pfuvPPO9evX/8Vf/EXX66dqawtOsztiynbE7u677547d+5Xv/rVCy+8sPPyG264Yd26dffe\ne+/IkSNDCC+88MJzzz23Zs2aQqEwevToT33qU5/4xCf2rvzII4/MmjXrpz/96YoVKx5++OGK\nior77rsvhLBkyZLHH3987dq1zc3NQ4YMOfvss6dPn97nnZfmAw888PTTT//whz8cM2ZMaUmh\nUJg1a9bChQs3bNhw9NFHT5gw4fOf/3znXziSJHnyySfnz5+/bt262tra0aNHT58+fdKkSV38\nBQ+6yYGGB4CeIGlrS1dWptJdHQMqFosPP/zwzTfffMYZZ1RXV3/jG9/4f//v/xWLxfSBt0pV\nV4eOjlAo+J6xI6FsYXfeeefNnTv3xRdf7Bx269evX7du3YQJE0pVd8899zz77LN9+/YdN25c\nPp9ftWrVf/zHf1x++eVf/vKXO+9qwYIFDzzwwJQpU0444YQQwksvvfTd7343hHDsscced9xx\nb7zxxsyZM1esWHHHHXekUqn3TtLa2nrbbbetXLmyvr5+0qRJO3bsmDNnzquvvnr77beXxujo\n6LjtttuWLl1aV1c3fvz45ubmV1999ZVXXvnDP/zDK6+8cr9/u0PfZJ/hy6CtrfG0MxrL89g9\nUXO5B+hRNpZ7AHqgtBfGuzWVe4AjKEmSkIROb52ZIUcf9bc/7bzKihUrtm3bdu6557a2tra3\nt0+ZMmXKlCld7zWVzXasXl0xfnxK2B0BZQu7KVOm1NfXL1q0aM+ePX3fuYj63//930MIU6dO\nDSG8/PLLzz777KmnnnrzzTfX1taGELZv3/6d73znqaeeOuWUU84888y9u/q7v/u7u+66a/z4\n8aU//uM//mMmk5kxY0bpRLp8Pn/LLbcsXrx4w4YNo0aNeu8ks2bNWrly5SWXXHLttddmMpkQ\nwjPPPDNjxoyf/OQnt99+ewjh5z//+dKlS88888ybbrqppqYmhLB69eo77rjjkUceOeuss4YO\nHfrefR76JvsMDwA9xf6Ohuxj+/btdXV1jzzyyKOPPtrW1jZ58uRvfvObxx13XNe7TWUySaFw\n8L1z+Mp2jl0qlfrkJz9ZKBR+/etfl5YkSfL8889XV1efc845IYTHHnssk8ncdNNNte+cXzlo\n0KBrr702hDB37tzOu7rgggs6h9H27durq6sHDBhQ+mM2m73lllvuuuuu+vr6947R0dHx5JNP\nDhw48Jprrsm886vD1KlTTz311JaWliRJQgg/+9nPqqur//iP/7jmnS8wPv7446+66qp8Pv/0\n00/v92936JvsMzwAfIQ0Nzc3NTW99dZbDz/88OzZs0eOHHnjjTd2dHQcZLMk2e9naHxw5bwq\n9vzzz3/iiSdefPHFiy66KLxzOPeSSy6prq4uFosbNmzo16/fvHnzOm9Seq2sWbOm88Ljjz++\n8x/POeecZ5555itf+cq55547adKk8ePHDx06dL/H1UIImzZtyuVyZ511VuW7b6hdOlYXQti9\ne3djY+NJJ53Uv3//ziucccYZDzzwwFtvvfXefR7WJvsM/+FLstmqa75U+cHuJx6N9vb2qqqq\nck/RIxQKhba2tr7dcUvSCHR0dGQymS7OGepVGhsbu7jmsbeJ+4dGsaWlsGVLutPlq6nafX8m\nDBgwIJ1Of+Mb38jlctXV1TfeeOPFF1+8evXqLk5DT4rFpFgM2d54X44PQTmf1rFjx44cOfK1\n115ramqqq6srNdzv/M7vhBB27NiRz+cbGhp+/OMfv3fDfS4g3edQ3HXXXXfcccfNnTv3iSee\n+NnPfhZCGDNmzOWXX37xxRe/9/eDrVu3vncPnW3fvj2EcNRRR+2zvLRk27ZtH3CTLh76w5HK\nZqtuurHOtzKHEELYvXt3v3fneK+Vy+VyDQ39jj663IP0CHv27Kmqqsp6HwohhLD7zTf7jRxZ\n7il6hCRJQlNTxJlbbGxs+7d/y75zoeF+jR49OoTQ2tpa+tSr9AZd2/WtTHK5ivHjU913bzw6\nK/PPqfPOO+/RRx+dP3/+BRdc8NJLL40aNar0ueTAgQPT6fTEiRMPetV0CGGfXMtkMpdddtll\nl13W1NS0atWqpUuXPvfcc/fcc097e/vll1++z7alrmps3PfigSRJkiRJp9ODBg0KIezcuXOf\nFUpL3ltvIYTD2sSxaAB6plSfPtmxY5P29i6+JXb48OFTp0795je/efXVV1dWVt53332nnXba\nyC7TP2lpyQwefCgn8PE+lPmThfPOOy+VSr344ouLFi1qbGwsXTYRQshms8OGDVu7dm1LS0vn\n9desWXP//fc///zzB9rhtm3bHnzwwV/+8pchhLq6utNOO+2LX/zi17/+9RDCggUL3rv+iBEj\n0un0kiVLCoVC5+U33XTTZz7zmdbW1v79+9fV1a1evbqp6V1XPi1cuDCEsN/X7vvYBAB6mlQ2\nm+7bN2k+yN0CbrvttmOPPfb//J//c/PNNx9zzDF/+Zd/2fUxi2Jzc8rHREdMmcOudNO4xYsX\nz549O5vNnn/++Xv/1ZVXXtnS0nLnnXfu2bOntGT37t133nnnnDlz+h/4w7I+ffrMnj374Ycf\n7vyJ57p160II+/22ierq6ksuuWTbtm0PPfRQsVgsLZw3b97rr78+efLk0qUPV1xxRWtr64wZ\nM9ra2korvPHGG//wD/+QzWbfewiw5H1sAgA9Tapfv2JTU9df7VpZWXnrrbfOnDnz5z//+be+\n9a2uP5tOcrkkl0s76eWIKf8pI+eff/7y5csXLVp07rnndj7Ta+rUqQsWLHjllVeuvvrqcePG\ntbe3r169ulgsTps27eSTTz7Q3mpra3/3d3/3qaeeuu666yZMmNCvX79NmzatXbt24MCB06dP\n3+8mX/jCF5YtWzZ79uz58+ePGTOmoaFh1apVNTU11113XWmF6dOnL1y48Fe/+tWyZcuOP/74\n5ubm0iRXX331gb5w9n1sAgA9Taa+vmLcuMKOHeluOpWwuH171RlnOMHuyCl/2J1zzjk/+tGP\nCoVC6bKJvVKp1De/+c1f/OIXzz///Nq1a9Pp9KRJk6ZNm3bWWWd1vcOrr7561KhRzzzzzPr1\n63O53ODBgz/96U9feeWV+z0fLoRQV1f3ve9977HHHlu0aNHixYsHDBhw4YUXfsSCjKgAAB0G\nSURBVP7znx88eHBphcrKyjvvvPOJJ5545ZVXli1bVltbe9ppp33mM5+ZOHHigWZ4H5sAQI+T\nTmeGDOlYtSpdWxs+8IXhSUtLdsSIzAHuU0G3SCVdHl8lert27cpkMq6KLdm9e3cXH/T3Krlc\nrqGh4WhXxYYQXBX7bm+++aZzhUuSJGmK+qrY/5QkHa+/nn/jjcz+zmjaa9euXdXV1dXV1Qdc\no1DIb9hQddZZmV7wg6WM7yZ+TgEAB5ZKZUePDvl8YevW9Pu+RVexmN+4sfLkk3tD1ZWX+20C\nAF1JVVRkR43KDB5c2Lat6wsp9ivJ5/NvvVVxwgnZY489EuPRmSN2AMBBpPr0yR53XMhkOtau\nzQwZcuhXPxT37Clu21Z5yinZkSM/+Fl6HJSwAwAOLlVdnR03LlVd3f6b32QGDEgPHBje+Y71\n/Ura24s7dmRGjKg47rjMkCEf2py9nLADAA5JKpvNjh6dGTw4v3lz7re/TdfUpPv2DdXVqYqK\nkCShWEzy+SSXC62txebm7OjRFSeemB061NfCfpg81wDAYUj17Vsxblx2xIiksbHQ2Ji0tnas\nWlVsaipUVaUmT05XV6eGDk3375+uq5N0Hz7POABw2FLV1anq6vSQISGEigkTWt9+u7JPn4ra\n2pSYKyunMQIAH0iqoiJUVqYqK1Vd2Qk7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7\nAIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgI\nOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBI\nCDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCA\nSAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsA\ngEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7\nAIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgI\nOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBI\nCDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCA\nSAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsA\ngEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7\nAIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgI\nOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBI\nCDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCA\nSAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsA\ngEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7\nAIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgI\nOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBI\nCDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCASAg7AIBICDsAgEgIOwCA\nSAg7AIBICDsAgEgIOwCASAg7AIBIZMs9AAB8dCRJ0tJSbG5Ocrkkny80N+f79QuVlemamnRd\nXchkyj0fvZ2wA4CDS9rbi2+/XWhs7Fi5MlVTk6qoCOl00traUVMTOjqStrbsmDGpvn0z9fXp\nAQPKPSy9l7ADgK4kHR2FrVuLDQ2FTZvS/ftXjBkT0ukQQpIkqZaWTN++/7lae3txx47cb39b\nOXlyZujQdF1dWaemlxJ2AHBAyZ49HevXFzZsSB91VGbYsC7WTFVWpurr0wMGFN56K7dkSfXH\nP54ZOvRDmxNKXDwBAPtXbGjIr12bbNuWGT48VVV1SNuk0+mjjsqOGNH261/n160LxeIRnhHe\nRdgBwH4UGxtb/+3fCk1Nqfr6w902VVWVPfbY3JIl+Q0bjsRscCDCDgD2lbS35998Mz14cPqd\nU+gOVyqbzR5zTPtrrxW2bu3e2aALwg4A9pVfv76weXOmf/8PtJdMJjt8eNtLLyUtLd00FxyE\nsAOAdyk2NOSWLUsPGvTBd5Wqrk7365ffvPmD7woOhbDbjyRJWlpacrlcuQcB4EOXJIUtWzL1\n9al097xFpuvrc7/9bdLU1C17g64Ju/1Yt27dVVdd9dOf/rTcgwDwYUv27OlYuTL9AT+E7SSV\nzabr6goNDd21Q+iC+9gBwH8pNjam+vQJqVQX69x///0/+clP9v7xlFNOefDBB7tYP1VbW2xq\nCknS9W7hgxN2APBfio2NqYNdCbt+/fpp06ZdfvnlbW1tNTU1tbW1Xa+frqnpWL06O2pU+mBr\nwgcUYdgtWbLk8ccfX7t2bXNz85AhQ84+++zp06f36dOn8zovvPDCc889t2bNmkKhMHr06E99\n6lOf+MQnSv/q29/+9oIFC0IITz/99NNPP3399ddfeumlIYQkSZ588sn58+evW7eutrZ29OjR\n06dPnzRp0mE9dHt7+z//8z8vXrz4zTffzGQyQ4YMOf/88y+//PJMGb83OkmKb76Vf7/X80em\n2NSU37W73FP0CIWOjmT37nxbe7kH6REKLS2Fqirf7/6fNm/OF5NyD3HEFIv59RtCPl9o3rN3\nWfqo+lRlZee11q9f/wd/8AennnpqS0tL30P5+ZlKpSork7a2IOw4wlJJEtX/ny+99NJ3v/vd\nEMKxxx579NFHv/HGGzt27Dj55JPvuOOO1DsHwO+5555nn322b9++48aNy+fzr7/+ent7++WX\nX/7lL385hPCrX/1q2bJlTz755MSJEz/+8Y+ffPLJY8aM6ejouO2225YuXVpXVzdu3Ljm5uY1\na9YUi8U//MM/vPLKKw/xoZubm2+88cYtW7YMHz585MiRuVxu5cqVLS0tl1566fXXX1+e5yuE\nXVu27DntjHI9OkBPk4R93xYHfu+vKjr9Gp8kyTnnnHPmmWcuWbIkhHDOOed87Wtf69evX9e7\nLWzZUnHSSdkuv5TsI2379u19+vTZ5zBKr7V79+7+3Xea5mGJ7YjdP/7jP2YymRkzZgwfPjyE\nkM/nb7nllsWLF2/YsGHUqFEhhJdffvnZZ5899dRTb7755tLB8+3bt3/nO9956qmnTjnllDPP\nPPPjH//40KFDn3zyybFjx+6Ntp///OdLly4988wzb7rpppqamhDC6tWr77jjjkceeeSss84a\nOnTooTz0M888s2XLlmnTpl1zzTWl3TY1Nd1www3z5s279tpr0910+RUAH0QSQtfnwW3durW9\nvX3w4MH33nvv1q1bZ8yYceutt957770H2W86nfL1Yhx5scXE9u3bq6urBwwYUPpjNpu95ZZb\n7rrrrvp3vhDmsccey2QyN910095TIgYNGnTttdeGEObOnXug3f7sZz+rrq7+4z/+41LVhRCO\nP/74q666Kp/PP/3004f40CeccML111//2c9+du9u6+rqhg4d2tbW1tbW1l3PAAAfxEGvbhgy\nZMi8efP+9//+38cff/ypp576rW99a/78+Zs2bTrIZkmSuHKCIy+2I3bnnHPOM88885WvfOXc\nc8+dNGnS+PHjhw4dWjqiFkIoFosbNmzo16/fvHnzOm/V0dERQlizZs1+97l79+7GxsaTTjpp\nn8OqZ5xxxgMPPPDWW28dykOHECZPnjx58uQkSd5+++1t27Zt3bp15cqVS5cu7b6//fuRZLNV\nN91YdYhfbh27tra26urqck/RIxQKhdbW1oOeEt5L5HK5bDbrsHpJGT9j+hAkhULHsmXpd9/E\nLnP00Z3XSafTnf/XGDduXAhh27ZtpY9rDqhQSGdje8+lB4rtRXbdddcdd9xxc+fOfeKJJ372\ns5+FEMaMGXP55ZdffPHFqVRqx44d+Xy+oaHhxz/+8Xu3bW1t3e8+t2/fHkI46qij9lleWrJt\n27ZDeegQQqFQmDlz5pw5c3bv3h1CGDBgwNixY4cOHbply5bu+uu/D6lstuqaL9XV1ZVxhp6j\nuHt3XbzvWIcll8u1NzTUvfv9rNfas2dPVVVV1rtyCCGEXW++WTdyZLmnOIJyS5cmTU2pA58r\n9stf/nLWrFk/+MEPKioqQgjr168PIZROuelC0t4e/ArNkRfbz6lMJnPZZZdddtllTU1Nq1at\nWrp06XPPPXfPPfeULo8YOHBgOp2eOHHiX/zFXxz6PgcNGhRC2Llz5z7LS0v2Bl/XDx1C+P73\nv//8889fcMEFl1566ZgxY0pHhr797W+XN+wA6Czdt29+69Yuwu7EE0+8/fbb/+zP/uyqq67a\ntWvXjBkzpk2bNnDgwC72meRy2bFj0+4/wJEX1ScL27Zte/DBB3/5y1+GEOrq6k477bQvfvGL\nX//610MIpTuYZLPZYcOGrV27tuXd38e8Zs2a+++///nnn9/vbvv3719XV7d69eqmd38hzMKF\nC0MII0eOPJSH7ujomD9//siRI7/2ta9NnDhx7+d9e/bsCQD0GOn+/YvNzV2sMGTIkEceeWTn\nzp3/63/9rz/7sz/72Mc+duutt3a9z6S5Od23b3DQlyMvqrDr06fP7NmzH3744b0fj4YQ1q1b\nF0LYe+rDlVde2dLScuedd+4tqt27d995551z5szZ56yR0ol3JVdccUVra+uMGTP2XuXwxhtv\n/MM//EM2my0djTvoQ6fT6WKx2NzcvHcPSZLMnj17+fLlIYRCodCdTwQA71eqri47Zkzx3b//\n72P06NH33HPPc889N3PmzBtuuKHy3Xe521eSFJuaUge7Hwp0i6h+e6itrf3d3/3dp5566rrr\nrpswYUK/fv02bdq0du3agQMHTp8+vbTO1KlTFyxY8Morr1x99dXjxo1rb29fvXp1sVicNm3a\nySefXFqndOnrr371q3Q6fd55502ePHn69OkLFy4s3eLu+OOPb25uLm119dVXDxs27FAeOpPJ\nXHTRRf/6r/96zTXXnHTSSZWVlStWrGhvb58yZcrixYt/+MMfXnXVVaUzcAEoo1Q2mxk0KL9h\nQ7qbbslWaGzMHndc5p07JMARlbn99tvLPUN3OuWUUwYNGrRjx46NGze+9dZbNTU1F1xwwZ/8\nyZ8MHjy4tEIqlfrkJz9ZX1/f1NS0bt26PXv2jBs37uqrr77iiiv23sG4trY2n89v3Lhx1apV\nkyZNGj16dCnLqqurm5qaVq9eXSgUJk2adMMNN5xzzjmH/tCnnHJKZWXl5s2bV69enc/nTznl\nlG984xsnnnjiypUrV65cOWnSpIOee3sktLW1pdNpV8WWtLe3uyq2pFAotLW1uSq2pKOjw1Wx\nezU2NkZ8VWxJqqYmFArFpqZU14fiQujo6DjI4bpisbhlS+XkyV2ctBeHlpaWioqK0gUllPHd\nJLZvnuBw7dq1K5PJuCq2JO77OByWXC7X0NBwtKtiQwiuin23N998c2TUV8WWFHfubHv++cyI\nEV20XZIkB/lKsSTJb95ccfzxFWPHhthvYuebJzor47uJX0ABYF/p+vrKM84obNqU5PPveyfF\n7dsrRo2qGDUq+qqj5xB2ALAf2eHDK6dMKbz5ZpLLHfbGxWJhy5b0sGHZMWNcDMuHyasNAPYn\nlcqOGpWqqmr79a8zgwen6+oO8cBb0t5e2Lq1Yvz47OjRBz1LD7qXI3YAcACpVGbYsJoLLsgc\ndVR+w4binj2hyxPTk1yusGVLqrq68pRTKsaNU3V8+ByxA4CupAcMSPfrl66vL2zf3rF6dbpP\nn1SfPqnKyiSdTvL5JJdLOjpCW1uxuTk7alTF+PGZYcNSbjVAmQg7ADiYdDpz9NGZIUOyxx5b\nbGxM9uxJ2ttDsZjq6EhVVqb79g3V1ZX9+6f79XNGHeXl9QcAhyaVStfVpd+5P1RSKLQ3NlZ2\n+S2x8CFzjh0AvC/pdMhkyj0EvIuwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCI\nhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMA\niISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLAD\nAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISw\nAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiE\nsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCI\nhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMA\niISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLAD\nAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISw\nAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiE\nsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCI\nhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsAMAiISwAwCIhLADAIiEsOvt\nWlpaWltbyz1FT1FTU1PuEXqKXC7X2NhY7il6iqqqqnTaT8v/tHPnznKP0FOkUqnq6upyT9FT\nNDc353K5ck/RU5Tx3SRbrgemh9izZ09lZWW5p+gpPBV7FQqFXbt2lXuKniKb9aPyv7z99tvl\nHqEH8UNjr8bGxj59+pR7ip6ijC8Mv4MCAERC2AEARELYAQBEIpUkSblnAACgGzhiBwAQCWEH\nABAJYQcAEAlhB8Bhe/jhhx944IFyTwHsy103e68lS5b8/Oc/X758ed++fSdNmvSFL3yhvr6+\n3ENRfs8+++ycOXM2bdqUyWSOOeaYqVOnXnTRRalUqtxz0YPMnTv38ccfHzFiRLkHoUdoaGh4\n9NFHFy5c2NLSMmLEiE996lN+aJSRq2J7qeeee27GjBlJkowfP76pqWnjxo319fV/+qd/OmrU\nqHKPRtkkSfLQQw89+eSTmUxm3LhxlZWVK1euzOVyZ5999je+8Y1yT0dPsWXLlhtuuKGtrW3E\niBH33XdfucehzDZv3nzbbbdt3bp1xIgRgwcPXrlyZUtLy7Rp06655ppyj9ZLOWLXG7W0tPz4\nxz+uqqq68847R48eHUKYM2fO/fff//3vf//73/++X7N6rRdeeOHJJ58cMmTIn//5nw8ZMiSE\n8Pbbb//pn/7pyy+/PHfu3IsvvrjcA1J+hULhe9/7XlVVVVtbW7lnofyKxeL//b//t6Gh4bbb\nbjv99NNDCLt37/7KV74ye/bsCy64YNy4ceUesDdyjl1v9Itf/KKlpeWzn/1sqepCCJdddtlJ\nJ520Zs2aFStWlHU0yumXv/xlCOFP/uRPSlUXQhg8ePCXv/zlEMKvf/3rck5Gj/HYY4+tXLny\n+uuvL/cg9AgvvfTSli1brrjiilLVhRD69+9/7bXXnnHGGZs3by7vbL2WI3a90QsvvBBC+PjH\nP9554VlnnfUf//Efv/nNbyZOnFimuSizLVu2pFKpCRMmdF44ZsyYEMLGjRvLNBQ9yIoVK2bO\nnHnZZZftfRenl/uXf/mXEMJFF13UeeEnPvGJT3ziE2WaCGHX+yRJsmHDhmw2e8wxx3ReXjq7\nbsOGDWWai/K7+eabkySpqKjovPCNN94IIQwbNqxMQ9FTtLW1/fVf//XQoUP/6I/+qNyz0FOs\nXbs2m80OHz586dKlS5cuffvtt0eNGnXmmWfuPerPh0/Y9Trt7e25XG7gwIH7LK+rqwshNDY2\nlmMoeoT3nhCzcePG0tnxl112WTkmogf50Y9+9Pbbb991111VVVUdHR3lHofya29vb2lpGTRo\n0N/+7d8+/vjje5c/8sgj//N//s99DuPxoRF2vU7pJ3KfPn32Wd63b98QQnt7exlmokd68cUX\n77///qampt/7vd8744wzyj0O5VS6gOa///f/Pn78+HLPQk9Rer/Yvn37v/zLv3z5y18+++yz\ns9nsK6+88uCDD86YMWPMmDFjx44t94y9kbDrdWpra9Pp9HuvaGtpaQkh9OvXrxxD0bOsXbv2\nb/7mb5YvX15bW/vVr371wgsvLPdElNPOnTvvvffe448//nOf+1y5Z6EHyWQypX/40pe+NHXq\n1NI/X3zxxfl8/r777nv88cdvvvnm8k3Xewm7XieVSvXv37+pqWmf5aUl7lHcyxUKhX/6p3+a\nNWtWOp2+8sorf//3f7/0GT292SuvvNLU1DRs2LC/+qu/Ki0pFoshhB07dtx1110hhBtuuKGm\npqacI1IO1dXVpdtjffKTn+y8/KyzzrrvvvvWrFlTprl6O2HXGw0ePLihoWHbtm2dz2996623\nQgiDBg0q31yUWZIkd99997/9//bukKW5KAzg+BlXUBgiWDRaBEEM2kRBkIUFtYis6DcQi34C\nv4IG8TOsWSaIS4IaRFCDt1lUxLQiqIhhMMZreZN73+f+fvFZOWn8Offec5rNycnJra0tH0zQ\nLc/zPM+7J29vb2dnZyklp58UU5ZlIyMjLy8vna27tv7+/pSS6w96RdgV0ezsbJ7nFxcXy8vL\nneHl5WX6cQYKhdJoNJrN5tzc3M7Ozh//1BRZtVqtVqvdk4+Pj9XVVTdPMD8/X6/Xb29vp6en\nO8O7u7uUkhfsesUBxUVUqVSyLKvX66+vr+3J+fn51dXVxMRE+9Ayiuno6Kivr29zc1PVAX9j\naWkpy7KDg4PHx8f25Onp6fDwsFQq+ZS+V9wVW1AnJyf7+/vlcnlmZqbVat3c3AwODu7u7ror\ntrBardb6+vrPAw7bxsbGtre3f39V/Jvs2NFxenq6t7eXZdn4+HipVMrz/P39fW1tbWNjo9dL\nKyiPYguqUqkMDQ0dHx9fX1+Xy+WFhYVarTY6OtrrddEzz8/PKaXPz8+Hh4efvw4MDPz6ioD/\nwOLi4vDwcKPRuL+///r6mpqaWllZ6X4yyy+zYwcAEIR37AAAghB2AABBCDsAgCCEHQBAEMIO\nACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgB\nAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsA\ngCCEHQBAEMIOACAIYQcAEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEMIOACAIYQcA\nEISwAwAIQtgBAAQh7AAAghB2AABBCDsAgCCEHQBAEN+PM65HWYmbwwAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "grf <- plot_lollipop(data, colors=colors[1], max_value_gap=0.1) + font + coord_flip() \n", "plot(grf)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.3.3" } }, "nbformat": 4, "nbformat_minor": 4 }