{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Time Series Sample" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: daltoolbox\n", "\n", "Registered S3 method overwritten by 'quantmod':\n", " method from\n", " as.zoo.data.frame zoo \n", "\n", "\n", "Attaching package: ‘daltoolbox’\n", "\n", "\n", "The following object is masked from ‘package:base’:\n", "\n", " transform\n", "\n", "\n" ] } ], "source": [ "# DAL ToolBox\n", "# version 1.0.777\n", "\n", "source(\"https://raw.githubusercontent.com/cefet-rj-dal/daltoolbox/main/jupyter.R\")\n", "\n", "#loading DAL\n", "load_library(\"daltoolbox\") " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Series for studying" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data(sin_data)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deYBN5f8H8M+d1b4vEVqVkr6K\ntGcp7ceMJJUxJEKJJGtCRCo/oUWlsldKJZXK0qqUJSESQsiarGPMmLn3N3PunX3u3HPPeZ7n\n83nO/bz+ubnOPM+7mXmbO+ee8zzgY4w5BtgBGHMDLhJjAnCRGBOAi8SYAFwkxgTgIjEmABeJ\nMQFkFOnnQYxFhukyizTvrd2MRYK1/aQW6UMJgzJGz34uEmPOcZEYE4CLxJgAXCTGBOAiMSYA\nF4kxAbhIjAnARWJMAC4SYwJwkRgTgIvEmABcJMYE4CIxJgAXiTEBuEiMCcBFYkwALhJjAnCR\nGBOAi8SYAFwkxgTgIjEmABeJMQG4SIwJ4LBIi3aW+NdcJBYhnBVpp7GowJ/Xj0nqMelQ3p+5\nSCxCOCpSxsiCRVqSmDCgp9F5R+4TXCQWIRwU6fvXuhgFipTSocN2n2+h0deb8wwXiUUIB0Xq\nbRgFi/SR8UH2w1BjY84zXCQWIRwUKTMz890CRepn7M5+WGDMznmGRpHWPXDtPQuxQzB3c3ay\nYW7+InnbtTUf1xpjc54iUaSFcZDlGewYLKTNPa5v/zF2CJsEFinVSDYftxmDsx8+HTRo0DAC\nRUo/A0ybsIOwEH4slf11Gogdwx6BRTpm9PQPaZhj/l+TJk26ESjSb/4ewWvYQVjJvPX9X6hV\neU99enWlC0edxIsUBpEv7RK6mI/bjRE5T1F4afdroEh1Bi09lfvkIW8JH8FQ7Ah8oYz3f9yZ\nbj7zrvnnu5BzWSOwSL7kdubDOmNSzjMUinSqov/rEwNQ9o7J2S/wMp6rBmV7HcYOxgr6C/J4\najVt88jo8v4/fIWdzAqRRepv7M9+WGjMyXmGQpFWljW/GgOPzX/4vKzHsx+aN9h84nb+oURL\nZh1/b0aOf6z9NXVj81o1GjuZFSKLNM9YkP0w0tiW+wx+kVZUihrc9qLW75i12fpqQvncr89S\n7GisoNbml6W7/w/ePSvfDnyhxuPGskZMkdK2bMn0+Y4kJh/0+Za3GZD79/hF+qVS1FsFnkj/\nrmvg6zMpyIcwHKPggoQGLadm5j1zmfl1it+Al8k6MUXabRgpWQ+LE+4fP7xtMqFr7ZZXjJpW\n+LnNgSLNRMjDgprtqbO70FPrKmV/nS7W4jW40CL5VoxO6jFxb97fYxdpVeXo6UWfbWr2qPIB\n9XlYUN/Hl19T5MkDT3d4tClMRIgTNlff2PdjhegZxTy9qW52kToqj8OC21o9ekHxf7O7Wvxq\ntVlscXORsnpU/Mu3lLcHPls9br3iOCy4f+vDy8H+7nPP+UdVZrHHxUVaVj56VvC//QCaZajL\nwkqUeg0MCP63j0Kyuih2ubdIP5TYI5+vnR6nVSOB935olxn8r09dpsGJIdcWKatHs0s84ED1\n0psVZWElGwhNU0r6+y3ly5K/5NitRfq+XPScEIfMhOZanFh1vTfhnH0lHzENLk1Vk8U2FxZp\nYcvazR4vF/1OyAMT4FUFcVgIX8ZUDHneJwkeUxHFAfcVabr5LlGUhZn/qVT2L/l5WMl+rxS7\nJORBxy/0zFeQxQHXFelkBf91C79aOPY1uJFf3CHbU89T3Ht9ha2Kq/y39CxOuK5IqwIXAL1i\n4VhvS5gmOw8rwaGM45fBSEuHToAWpN+ucF2R1gWKNNXKwX+VrbxHdiAWhHdSTShVF5KtvSjw\n3g6jJAdyxHVFyqhn9qjUttCHZnkRDMl5WDATzC9UxRJPfOdzoHbU11LzOOO6Ivm+jQnjHonM\n6+A9uXFYEKnl/C8dLC8b9G10nX9lBnLGfUU6Wr70Ld1/tHr0xlI1DspMw4LZFPb9r09CIt1z\nQ+4r0niLv70GjIX7ZSVhJdkXKFLQi1WLOH1tGAer5roipdcrE9aPmNNNrb+4YCK1MntULoyz\n2jurxnW67YFFoQ9E4LoizYSHw/uAtbG1/pMThZXo76pZPSoT1q+oz5vdGyEpkCOuK1LjqHAv\nRX0KHpSShJXsdJ24xyaG9y5rQ/+rwaK30uJzW5EWhb+e4KmGnsUyorCSzctZMMiynYFfq56X\nkscZtxXpZvgp7I/5Ofrs43tPSwjDStIC1ob5ETlLSI6RkscZlxVpnec6Gx/VD+Ihvtuh0Acy\ncX73tAj3QzJr+4v0jYQ4TrmsSEm2TsENNb88N5dwkyYTrjvMC/tjFphfqCQJaRxzV5F2x11g\now2HA8vj0jyv6lKHy56ZHv5HfX9bndhSR8Sncc5dRXoCptj4qJWBl95arJ/mFuPt/qYzAKzc\ndqGcq4p0tGJ1O5vpbOWlV5XLPLeUzQU6/7T1a7B0rirS8/C0rY+70uxRFV56VZ1PoIvdD70B\nKC4G7qYihXt1UK4t52T1KO5zwXFYCVrDSrsfOgv6i0wiiJuKNCPcq4Nypc4aWrGCHlssusNm\nzzW2Pza1ctVToY9SzU1Fahy1xf4H94d3xSVhITwCoRd5Cqo3zBWXRBQXFekraOfgo3+HW4Ul\nYSEcq1Arzf5Hr4PW4qKI4qIitbZxdVA+l0ftEpWEhTApvHvGCmvm2SoqiTDuKdJah6dFJ8Fz\ngpKwELwXxhbeUywsU+FJUVGEcU+RksDZEoL/xl0sKAkL4QuHdyUfr3CGjasi5HJNkexdHZRf\nov0zsiwsd8ByZwN0h0/EJBHHNUXqD685HOFj6C0kCQtha9RlDkf4Be4UkkQgtxTpaMUaTt8H\nSq9eheD7Ey7UD4rZ2Dc8jaN3ikgikFuKZPfqoPz6APYm7BEhpUo1x3u0vBTGKl5quKRI6XVt\nXh2U32poIyAKC2EKDHU8xpEy9YitBO6SItm/Oii/S2P2ChiFlaxRjICXZZ3gK+eDiOSSIjm6\nOijXC/CigFFYiZbC3QJG+U7IKAK5o0hfOro6KNe+mEYihmElaQvfiRjmorj9IoYRxh1Fcnh1\nUK7b4Tch47Cg/o5pKGQB7xfgBRHDCOOKIjm9OijXXOgX+iDmxCB4Q8g4B+MvILWivv5FOvXe\n01c5vDooV1rVGuSuPXGXUzUqnRAzUnsxLxFF0b5IW88HgGhRCwD1hAWCRmLFegueEDTSV7SW\n5dK+SFeZ6y3UELS643IxZy1YME2iRG0k7z2vFKXND3Qv0ubACkBzBI3XII7wrnD6WyZwq9HR\nMFnYWM7pXqSfA0V6SdB4YwnvZeUC9wp8H3V3zKXCxnJO9yIdivEXaamg8XZHXyFoJFbUntj6\nAk+1GfCLuMGc0r1IvkFmj1oLW7e7NawTNRQrZO+TQn/efwLdBI7mkPZFSu8AENtF3C82s2Gg\nsLFYPpnjq4AnVsSVXDlOn1numMDhnNG+SL5u8J6DFWmKOFmxNrHril3Cv23ltSL3oXoSpgoc\nzRnti5R5RhWxe4Q9CF8IHY+ZUsv6f5kV+R2xLaqZwNGc0b5Iyx0upFHE93Cv2AFZtk2B06tC\nb8hrTefaSO2LNATC2hc7NO95pQ+LHZFl2R8o0isiB32fzjIb2hepYazob/uR8LrgEZkv+6dH\ntvJCV+FMq1ExReR4DuhepK1ws+ghd0TZX+CdBbUr+6LIcuFvd1mi/mQ2tdK9SP8n4UqE5rBJ\n+JjMNxVavepogdVibPLcIHhEu3QvUgvYLnzMt2GY8DGZ725YK37Qa6Hb/20XP2z4NC/SoRin\naw0W40S5OvxWknDpleqKvxNvZ42s14ulZwsfN3yaF2kmjJAwaidhl+6xXEuhp/hBbzTPYJTd\nJn7kcGlepHtglYRRl0InCaNGuP4S7pk8QGc/er2LlFahjowb9zPPKkvnIi63aFBK/JnqLYEi\nOV9l1zG9i/SlkHUhi3oSpkkZN4L9BbeLHzStgvjrjmzSu0gPw5dSxt3saSFl3Ag2Uew1DQGT\nzR5dT+DckNZF8tYtJ2n/iKs9w94/KmfoCNVawvsUWd8Br5wJ0PiAhJHDpXWRVkN7OQPvqpP1\n71wtUss9ae54/CWSRt4eQ+KeZq2LNAJmyRm4lfmKoRZfvCrMRzBY1tDXRFFYvFjrIl0WLWfJ\nnx2ClyZivgfhB1lDPw38hqwzOz3N5Qy8ks7bEy7hrS349st8VpBYKVLnIr0ME+QM/G+0v0gL\n5QwfgVaJvv0yn8wa1YUtfWOfzkW6GTZLGvkxs0fXSPtHNOKMlPky+X4pl7eESeMiHY9vKGvo\nU4/HAlz2j6zhI88Vkn6bNc2AZ+QNbpXGRZoLQ+QNnvoh3CNv9EizP0rQvjvF2ue5XuLoFmlc\npI6wXOLo3lqVCbxf7hJvw7Myh788Bv+NCn2LlFG1htTfMZNghczhI0o7ucvXDgXBd7DboG+R\nvpa8YC2JV97ukF5Rwj19+XwH3WUOb4m+ReoHn8gbPMteWe9SRZ4l0Evq+Kcr1pE6vhX6Fql+\nackrMTWKOy53gojRDz6TO8Fd8LvcCULTtkjrIUHa2H794VPJM0SKC2T/m/c6jJc7QWjaFmkM\nvCltbL8voY/kGSLEVrhD8gy7oLXkGULStkhXRu2VNrZfaumLJM8QIV6EV2VPcXE89stwXYu0\nT8FyqDfB39LniAQ3Sbmnr4DHZf8WFpKuRXpD7lt8pufgLelzRIDj8Y2kz/EVPCp9jpLpWiQD\nNsgaOtca3uBFhA9lXsoVkFqmvvQ5SqZpkVLKnCdp5Hy8Z1QlcH2+9rrCMvmT3A5b5U9SEk2L\n9DH0lzRyfh0pXJ+vO5n39OWZJGEzhbBoWqSu8K2kkfObDmMVzOJyK6Gjgln+BEPBLCXQs0jC\nN44t3l5PSwWzuNwIeEfFNOeVlbQym0V6FulHRYtzX8JXCTnWVOY9fXkehiUqpglKzyINgg/k\nDFxIP/hcyTwutj9KzV13n8AAJfMEo2eRLopXs8j9QnhMyTwu9haMUzLPCQXvVpVEyyJthVul\njFtESvzFaiZyr7tgvZqJWsFONRMVT8sijZd/8VYA8ldHf+kV6yma6TnpVzGXSMsi3eARusl8\nCZ6FtxXN5FKLJW28U9RaWQvBW6NjkQ7FNJExbHFWw32qpnKnx5SdrvGeWQlzHUIdizRD3Q5t\n3hrV+CohJ6Tfx5xHyaVIQelYpHawRsawxboPViuby4W2wp3K5poLTymbqygNi3SqfD2pa9IU\n8Lais7cuNQGmKJvrP9SNkrQr0sJWVaGFupdbu+FGZXO50I2wQ91kqBsl6Vak6eby9grv4ro4\n7oS6ydzmePylCmdD3ShJsyKdDGxjre6XpMfgC2Vzuc48Bff05flF0RWYxdKsSDlbgKl6Q9bn\n+xz6hT6IFa+rvH36ipFZrSbeKVbNivRboEjq3sQ+IW/zGNfznlFF6UYEmBslaVak03XNHpXa\nJnjcErQEVZdRuM4KJff05cFcrl2zIvm+LpVdpEmihy3BWJiucDZXUXRPXy7MjZJ0K1LW7yy1\nu/8ofNQSqLlV2pUU3dOXB3GjJO2K9LLCt/hMmdVrqHv/1002TfPI3KevOIgbJWlXpA7KNx7o\noPBku3scb5f1Ery64uurEDdK0q5Itaup/vnwJjyneEY36GqeFTrriNJJETdK0q1Im6Gt6CFD\n2QU3qZ5Sf4ej/e9TKD5Rg7dRkm5FegsmiB4ypItKKbsVwDU2Bt7wG6122jfQNkrSrUidEd5z\n6wNfKp9Td0di/EWaqXZavI2SdCvSueXV3wb5qZL1kV2mh9mjc9Ws9pQHbaMkzYq0G24TPKIF\nJ5Rew+wSKfdl9ejStaqnRdsoSbMizUFZjbu5Zw/CrJpbBTf+qvRKOxPaRkmaFamn0suJczyj\n+qW+G7wIbyDMirZRkmZFurhUquARrViBeaOLrtrBHxjTYm2UpFeRDnpaiB3QmsxqNfkqoXDV\nUv7OuWkSjEvHmFevIn0Iw8UOaNE9oPy3Zt1thkSMab1DAOI67lM/sV5FegwWix3QoqnwAsq8\nGnsb563RCeZZ96vVv0eiV5GaxOC8S7ADbkaZV2Nd4ReEWU+V978PrGbXn/y0KtLR6CuFjmfd\nhaVPIs2sqwvKYvyqsiVwZdJI5TNrVaSFaJtJ9YZFSDNrah+0wpj2YKBIk5XPrFWRhsACoeNZ\nh70fnHbmwQiUeW8xe1Tub+UTa1Wka6MOCR3PumOx/0OaWVNYp4V2N8heG2eu+ol1KtLJeLzv\n5uv5KqGwNIlRfblqQPp7CTAUYV6divQ11nVUWUbBLLS5NXQ8pina3H9BG4RZdSrS0/C+yOHC\nMhpi6o85hTa9bhZhrk+Lck2FTkW6CdBeXk0xf4dNwppeO8NB0n72VrSDTeon1ahIp8tdKHC0\nsKSU859VVbqgns5awl68ySdgbPyrUZF+hm4CRwvLr4G3J1Su8Kqz9LIXIM7+CzyoflKNivQ8\nzBA4Wlj+CBRpKlYAzfwMXRFnTy/TQP2kGhXpTtgucLSweC80e1RG4fZzWhuP8eIqT3PPAeVz\n6lOkzCpoi//5fCsrZvUoln8gWZQIWzCnx7gCRp8irUE9abbv6cYoy0VoyVujJur8n8Eg5XPq\nU6TJ8Lq4wWz4Dh5BnV8jG+Fu1Pn/i1K/vYs+RWqPswZArpNxl6HOr5E3YCJugIvjlb93rk+R\nalVHXjehWTTS2oPaSQbFu1AU1h2Wq55SmyJtQn654PP1haXICXRxTjn1t3oXMF39fe7aFOkN\n9HdD31O9Iryu/kG/MR9hzxJtitQJfhU2lj274XbkBJp4D0ZhRzijhuoZtSnSWRXVr39bSJ3K\nmdgRtNAbvsGOoP6NLF2KtBPuEDWUbffARuwIWvhfLPp+Ui8o34pelyLNhHGihrLtRXgLO4IO\njkZfhR3B9xM8pHhGXYrUHX4SNZRtv+Bdfq4TvLWe8pwq1VDxjLoUqUGZNFFD2ZZe5mLsCDoY\nCvOxI/h813kUr5OjSZEOeG4UNJIT16v+6mjpBoRrr4sYBJ+rnVCTIn2AsHZmUYNgIXYE+k6V\novBz+xPVSwlpUqQ+JK4qmA9PYUegb5ny3/OLc9DTXO2EmhSpMf4Z1Sz7gcILTOLG0dje8MLS\nan+p1qNIR6KvETOQQ+eXRb6ITAOINzLn1xVWKJ1PjyJ9CoPFDORQMqzBjkCdt8qZ2BFMb8GL\nSufTo0gDVZ+DCWIKvIIdgbp1cC92BJPquwX0KNLV0YfFDOTQb7xGZCivwsvYEUze6mconU+L\nIqXEXS5kHMcyK56LHYG6+6lst2vANpXTaVGkJdBXyDjO3YS5gqgW6uFfpe83Tu22B1oUaQTM\nEzKOc8PhI+wItO0gc9PWD9BL5XRaFKmlZ7+QcZz7gsAFmaTNJrNo2an4S1VO56RI68ck9ZiU\n/+qzpwy/3Jc/YoqUVuYiEcOIcDjqOuwItPWE77Ej5Lg66ojC2RwUaUliwoCeRud8y/g+mPiQ\nKfeiRTFFWgY9RAwjREP1Cz1ppWF8KnaEHE/Alwpns1+klA4dtvt8C42+uatknW5T+G1TMUV6\nFmaLGEYIhIWedPIfoZ/YHym9MtJ+kT4yPsh+GGrk3n+9yyi8K7uYIt0O6jepDuZtmIAdgbIF\nRC5BybYfWqmczXaR+hm7sx8WGLk/LlYYhXsjpEgZlc4RMIogm6A9dgTKBsJn2BHyKL0y0naR\nvO38S4etNXJP08w3Zo5KShq2LO8gIUVaDckCRhHEW602dgTKrokidOtjZ1ilbjLbRUo1/N/e\n24zcH+avGkbSsL4Jxkvmn+b16tVrkIgivUhqf687Cb3OJOek2lPOIbwBhX/VkMh2kY4ZPf0D\nGLkjjEic5vX5/nrAMNcpeaVly5a9RBTpLvhTwCiijIF3sSPQ9S08jB0hnw3QQd1k9l/aJXQx\nH7cbIwr9zQ/GMzn/KeKlnbeG2qsPQ/gG+mBHoOsZeAc7Qj5K7+iwf7IhuZ35sM4ovCb3MSN3\nL1wRRdoA9zgfRJwTMU2xI9B1K+zEjpDfHQpfhtsvUn/DvG5noTEn8IQ33X+5YoqRe4mp8yId\nf6M1PBP6MIWaxJzAjkBVRsWzsSMUMEbhD0j7RZpnmBt1jjRyrlY/aPi3tFth5N6b6LhIG84E\ngLKfOhxFqN7wLXYEqn4ldrvWtwo3WbRfpCOJyQd9vuVtsq/iTNuyJdPnG2zM8fp8O7sn5t4I\n4rRI3sbmbuJVCCyUlmsOmcsyyZkMr2FHKEDlJosOrrVbnHD/+OFtk7OvtdttGClZY/Uxuo3u\nn5iQt6W00yJtBD86lwj5fNvBwI5A1T2wATtCQc2ij6qaysnV3ytGJ/WYaF7p7S+SL232kA7d\nn823oYbTIv0cKBKplRJqV0Peg5Os2lWIfWb6wWJVU9G+H+m/WH+RvhMTR4x2pN7XImQrtMGO\nUMg8dQv00i6Sb4TZowRS/9CNh2nYEWiaDs9jRyhkH7RWNRXxImU864HyfZS90LVE/d47muhG\nYOudQs4pr2oFCeJF8q2ETqR+HPmyV4lvhB2BpgaKVwm2IEnZip7Ui/QKsTOq2a5Reg+zNg56\nWmBHKGKKslX2qBepC/pm5kU9AV9hRyBo4yAYgp2hiHVwv6KZqBfp4lLpIoII9SGMwI5AzrFE\nAKij8P4fazIrn6VoJuJFOhZFYxuKAvbBzdgRyOlsnl49i9xr3lthl5qJiBdpKTwmJIhY51Qg\nspooGf9F+9/wm44dpLBRMFfNRMSLNA7mhD5IuY6wDjsCMRsCl6DQulDfl/0vsaLbx4gX6S7Y\nEvog5V4meCoR1+EYf5GULrdtxYmYJmomIl6kOtSu3jKths7YEajpYfbo/OPYOYpoEqMmE+0i\n7YFbxQQRK6NcfewI1KR0zOpRY4KvePvA10rmoV2kj2G4mCCCtfJQukOKhANw+W+Z2CGKMRdG\nK5mHdpGGAqmbY3M9CZ9gR6DmMxiKHaFY/yh6UUO7SDfBPjFBBPuM0Mq8RIyAj7EjFO8sNe9V\nkC6StxKtxTRy/Rd1A3YEam6Df7AjFO8+Ne9VkC7SJlorceVD8EJnZDVqYScI4mWYomIa0kWa\nCS8ICiJaV1iBHYGW7ZCAHSGINXBXioJpSBfpUVr3mOczFQovixnh5tK7qMEvc7QHohLlX3BH\nukhXRh0TFES0DXAvdgRanoBF2BGKN858p7iJ9FfilIuUFk/2VlRvlXrYEWhp7vkXO0KxUsv6\nr12SvvMB5SKthK6iggh3m6rL8/WQWf587AjF2xq4mnaE7IkoF4nytaGj4H3sCJT8ruxO1DAd\n8viL9JLsiSgXqTPB28xzLIF+oQ+KHNPgxdAHoWhj9qiC9NcPlIt0EcHbzHMcj7kSOwIlD8Oy\n0Aeh2J+9fHw5+VddEC7SsahrhQURr3HsSewIhFwRTXavm4wFd6h4r4JwkWi/enoYfsCOQEda\n/P+wI5TgBxW7uxAu0lhS+ygWNguew45Axwrohh2hBCkxzeRPQrhIbWGrsCDirYf6k3Zjh6Di\nFXgdO0JJGsXLvzKScJHOJHmbecCf9bJ/h52PHYMIist45vMArJY+B90i7YHbxAUR7grzrGql\nvdg5aGhI+PyqT82613SL9DHl9Uxz3jB/GzsICcejr8aOUCIVv8LRLRLV28xNqwNFmoAdhITv\n4FHsCCU6FddY+hx0i3QT7BcXRLSj8f4iKdtZkbTn6a1nV1CTGOlv+pEtEtnbzP1Gmz26lfDp\nEIXawybsCCXrKX8LNLJF+oPsbeamjBdqANx9GDsGDWdXpLgQVz5vwmTZU5At0gyyt5nneA6m\nYkeg4SDciB0hhN8gWfYUZIvUm+xt5jmWQ0/sCDR8Tn5xsoyyF8megmyRmkXTW0e6oNTYptgR\naBgJjveTk+2aKNkbelMtUlr8pSKDSNE47hR2BBLuoH+3cF/4VvIMVIv0C+nLIP26wUrsCCTU\nPAM7QUizpP/GTbVIL9G+DNI0Rc3Sg9TtAAM7Qkh/QAfJM1AtUjKsERlEipUa/NRU4AMYhR0h\nJG+l8yTPQLVIDUqTvgzSlBYv/8oTDQyEL7EjhNZS9nJhRIt0JOo6oUHkaCr/yhMNSP8eFWEA\nfCV3AqJFWgKPCw0iR09Yjh0Bn7fSudgRLJC+pDLRIo2VvzSmAFPlL5dG30YtVm/eBolyJyBa\npLbwl9AgcqyBLtgR8M2A/8OOYEX1OnLHJ1ok0reZ5zpd+hLsCPh6w/fYEay4BfZIHZ9mkWjf\nZp7nqijq1zHJdyX5a7lMw2CB1PFpFukjyreZ59ObF7dLL0V2y5AC5sNwqePTLNIQ+ExsEEno\nLnmtzCrCW4bktxtulzo+zSLdSPk283zWQxJ2BGzaXCdVu7rU4UkWyVvpHMFBJMko2wA7Arau\nsAo7gjVtYIfM4UkWaaP0SwxFuc5zBDsCskviNbmXZBTMkzk8ySJNh/GCg8jyGHyDHQFXijbb\n2yyUex8vySI9osdbEz4V97kQ9z30xo5gkeSVJUgWifBuO4X8ocX1MRKNhxnYEaw6u6LMN/kp\nFukU6d12CvBWJLoJsSodYCN2BKvuhs0SR6dYpF+gu+gg0rTwHMKOgOrc8sSXtMvzHMyRODrF\nIr0Eb4gOIs0Tkb1q8SFPS+wIli2VugMkxSIlw2+ig0jzLjyLHQHTFzAQO4JlR6Kulzg6xSI1\nKHNadBBptsDd2BEwjYIPsCNYd6HM7yuCRdLjNvMAbxXSa/3LZsDf2BGs6wjr5Q1OsEiLtbjN\nPMdNcAA7AqJaci9gE+tFmfvCESzSGC1uM88xGL7AjoBnJ9yBHSEMy+BheYMTLFKiFreZ5/gA\nRmNHwPMhjMSOEIaUmGbyBidYpNpVdbjNPMd22atqUDYYFmJHCEcjiRfY0ivSLsl3YIkme1UN\nynS5byxA5i0f9Ir0oSa3mee4VfKqGoQR3560iFfhNWlj0yvSYPhcfBCJhlHefV2uTbS3Jy1i\nhcTF2ukVqZVeLxd8H2v2E1Qg3W4iSZN4NTS5IumxAm4+u+BO7AhY+kjfvkuwptEpsoYmV6QN\n2t3hU6smdgIsV0vfUFKwnvCTrKHJFWm6Hivg5nMn/Z0f5Ugv3RA7QpjehEmyhiZWpGVtq2iw\nbVVBI+Bj7Ag4ftVu6fO10MrFJ/gAACAASURBVEnW0LSKNBeyPSkhiUSfwjDsCDheh1ewI4Qp\no+xFsoYmVaTUymaR9Ll72bQPbsWOgKMbrMCOEK5rpP1WR6pIK/090ugGWVOdatgJcDSO02RJ\nuzx9pS2fRqpIqwJFelNCFIkSYTt2BAwpMU2xI4RN3jtfpIqUVsPsUfwWCVEkGg3vY0fAIPWu\nBEk2SVvDl1SRfAvMIo2VkESmL2AQdgQME2AadoSwyXu7n1aRfCuiyrbX7kY5yWt4UnUf/I4d\nIXzStmAnVqSVGi1pl0fuGp5UnV8uAztC+AbCV3IGJlak13TZbacAuWt4EvWfpzl2BBveh2fk\nDEysSA/BLxJiyPYsvIMdQb2v4AnsCDZsk3VDM7EiNY05KSGGbIuhP3YE1Y5ObAYTsEPYUf1M\nOePSKlJ6KW2Wz8/viJavcpzYdAYAxL2FHcMGWTc00yrSr5rs7FvY+eW0WUpejGbm+xRldFru\nKWAYLJAyLq0iTYWXJaSQ717NLg90alfgEpTJ2EHCNx+GSxmXVpEehh8lpJBvPMzCjqDUH4Ei\n6fbWeZZ/4DYp49Iq0pXabNVX0DfQFzuCUqcq+Iuk3XvnWWrLucSYVJFOl75EQggFjkVdix1B\nrdfMHt2u4/vQbWCHjGFJFWktJEsIoYJOO9EIMSMGavY/hp3CDkk70ZAq0jR5t9RLlgTrsCOo\ntQ9uwY5gk6RLjEkV6VH4QUIIFaTuGELR57otCJBL0iXGpIp0TZSWLxay/ACPYEdQaxTY2oyR\ngrMrynjTj1KRJC5NIVtKzJXYEdRqq+9dwe3hTwmjUirS79BRQgY1LimVjh1BqXqVdTxjZ3oO\n5kgYlVKRZmq3NmSeLvArdgSV/oWbsCPY9jX0C31Q2CgV6THdlpLO5yXdlj5y5iuN764/GtVo\no/jfkigV6XrPEQkZ1FgOPbAjqDQW5mJHsOvUQwBwufB3KwgVKbP8BRIiKJIa2wQ7gkrtQbOV\nnvI8bl6Uca7o88OEirRJu30o8tNwtUQHzq2g67mGlHj/ZYKi3/cjVKR34DkJEVTpBiuxI6hz\nWN87GbcGLlx/SvC4hIrUH5ZKiKDKFHgVO4I6S/W9t/5YjL9IoneTJVSkFp5DEiKoshIexI6g\nzvNS3opRo6vZozNEL29Hp0ja7XlZkMz9Scm5D/7AjmDbcSOrR7WXiR6WTpG2QHsJCdSRuD8p\nORdovUbFuiQJ2zTQKdJ78KyEBOpI3J+UmuNR12FHcORbeEz4mHSKNBAWSUigzlQdlwKx5zvN\n76w/GnW98DHpFOlGOCghgTproDN2BFUmwAzsCM7UF//SlEyRvFXOkhBAoa+j41pM0/VtyvB0\ngvXYEZy5FzaJHpJMkbbBXRICqPOBeVZV75c8Vl1cWvMVKp4Tv1g7mSJ9IGubADXSqvrf54uE\nmylSoq/CjuDQYvEbAJAp0lD4XEIAZdbqu/Zo2H7ScM/Lgg55WokekkyRboV9EgIo83ugSJFw\nndDLuu2WXdQ5wm/wJVOk6nUkzK9ORl1/kYT/EkvQA7AGO4JT7UD0+v9UivQ3JEiYX6Gl5uX5\nY7BjqHBpXBp2BKeeEb5KJJUifQRPS5hfpU09a8NE7BAqpMY2xY7g2EIYInhEKkUaBp9KmF+t\nN+El7Agq/OKCu+r3C18olkqRbpe0kZpKum6TFqYp8Dp2BOfqiN6TgkqRzqgpYXrFIuROiu5u\nuBe4DewUOyCRIu2GOyRMr1qTmFTsCApcHuuC/8sRMF/sgESKtEDShoRqdYcV2BHkS4tvjB1B\nAOHfcESKJPwfCBRThK8EQNBqV9xTvxvuFDsgkSIZsEvC9Kq54XxWSLpumF3IGbXFjkekSJI2\n9lQsNfYK7Ajy9YLl2BFEuE3waWIaRdoHt0qYXb1L492/J0Uzd6xN8SR8JnQ8GkXSd/+3grro\nfxVaKNpumF3IhzBK6Hg0iqTx/m8FTIa3sCPIttYld9Rvh7ZCx6NRpER9938rYBn0xo4g2zS3\nXFBY7Syhw9EoUr0q7ljs4ET0NdgRZNN3w+xCboIDIocjUaSD0FrC5BguKqP5agYh6bthdiED\n4SuRw5Eo0pcwWMLkGDrC79gR5Mos1wA7giCCFyQlUaQx8L6EyTH8H8zEjiDXBo03zC5oM9wj\ncjgSRWoHWyVMjuEbKRv9EjILxmNHEMRb8TyRw5Eo0jkV3XGuwec7qu8OXNb0g2+wI4jS3POf\nwNEoFOk/8YsjoTm/gs77NIR2g+cwdgRRHoevBY5GoUgSlutDcw/8iR1BJm/F87EjCCP2VSqF\nIj0H70qYG8c4F/2/FONP6IAdQZgNcL/A0SgUyU3/ii+CgdgRZHoXxmFHEEbsmXwKRXLT7xX/\nwk3YEWQaAIuxI4hzrcj3lgkU6YirznSdJXwxXEpaab6JVQFCr3YiUKSvXfXeS1uXXH9bLG+V\ns7EjCPQ2TBI3GIEijYdZEqbGMhrmYUeQ5y9ohx1BoN9E3hFCoEj3w0YJU2Nxyz2KxdJ8E6tC\nTpduJG4wAkW6sFyGhKmx7IPbsCPIMwS+wI4gksi75vGLpPte84XVroGdQJ5b9N7EqrCe8LOw\nsfCL9D30kTAznjthN3YEaTTfxKqw1wXuC4dfpBdhuoSZ8QyHT7AjyKL9JlaFrIJuwsbCL5L2\ne80XMh9GYEeQ5WMYiR1BqLS4y4WNhV8k7feaL2QntMGOIMtTLtjEqoDL4k6JGgq9SPrvNV+Y\ny36RyOcO+Ac7glgPwmpRQ6EX6Ud4RMLEmG6BvdgRJKnlgk2sCngF3hA1FHqR3Lem4hBYiB1B\njn9csYlVfsuhl6ih0IvUBX6TMDEmd739n8+n8BR2BMFOxlwpaij0IjVy3brz7rogLZ+R8DF2\nBNEuKSXqu89JkdaPSeox6VBJz4Qukgt3QvFWOQc7ghwJ8Dd2BNGSYa2gkRwUaUliwoCeRucd\nJTwTukg/Q89w5yWvledf7AhSCN8JHN9EmCZoJPtFSunQYbvPt9Do6w3+TOgiCTxvQsYTbrqN\nNM9BuAU7gnDirk+zX6SPjA+yH4YaG4M/E6pI67rWhFfCnJe+d+A57AgyfAFDsCMIJ+6KaftF\n6meYF2cuMGYHfyZEkT6Pgyyu+67bBPdiR5DhGfgAO4J4wu7hsV0kbzv/Rk1rjbFBnwlRpLSa\n2T2CeLesV5wjs/wF2BFkaAd/YUcQ7z5Rd5XaLlKqkWw+bjMGF//MvF69eg0qsUirwe/N8Gam\n7/qoo9gRJDinkguXdXkBZoc+yArbRTpm+E+37Tf6Ff/MW23atOlTYpFWBIrkutMNfeE77Aji\nHfK0xI4gwVJ4XMxA9l/aJXQxH7cbI4I+E+KlXWolf5HctGSDaQZMwI4g3mIYgB1BgsOeFmIG\nsn+yIdn//v06Y1LwZ0KcbHjX7JFbNhnLsx46YUcQz6WLMZ9bQcwLVvtF6m/sz35YaMwJ/kyo\n09/ftWlw0zvue+WdUaYhdgTxOrhoYel82sMWIePYL9I8Y0H2w0hjWwnPWNyM2W2uij6BHUG4\n88u5Z2HpfMbCXCHj2C/SkcTkgz7f8jbZr5zTtmzJLPiMX6QW6WH4CTuCaEc9N2BHkOJLGCRk\nHAfX2i1OuH/88LbJ2VfW7TaMlILP+EVqkd6El7AjiObWTT0PQmsh4zi5+nvF6KQeE827QQNF\nyveMX6QW6Vfoih1BsEN9XLWwdD71qgoZBv1+JFdKi2+MHUGoUw9HAzQV81s5NYmwI/RBoXGR\npGgSm4odQaTHzPcpLjmJnUOGp+EjEcNwkaToDiuxIwh0NNb/zvl72EFk+BSGiRiGiyTFFHgd\nO4JAvweu5RqDHUSGPXC7iGG4SFL8Aj2wIwh00OMv0tvYQaQQs8gYF0kKly1F0d7sUa1DoY/U\nkJhlL7lIclzqqsWRDrXI6lFdgTuuUiJmIWYukhwuW64vJfq8heI25aJFzNYAXCQ5JrlrAVn3\nLSydR8xmNVwkOZZBb+wIIrlvYel8qtcVMAgXSY4T0ddgRxDJZa9UC7pZxIaeXCRJLirjpi2m\nGwlb2pegwSK2mOYiSdIRNmBHEOdkTDPsCBK9L+KdZi6SJOPddLW0wO1PCNoKdzsfhIskiavu\n33kZpmJHkOhI6fJD1jgdhIskyVFPc+wI4nSFX7EjyLPlDACIm+xwFC6SLOdXcM8aB/+LS8OO\nIM+15vVPpRwuCsdFkuUe2IwdQZTU2KbYEeTZH7i0/QWHw3CRJBnnntt3VsBD2BHk2R4oksPr\nhLhIsiyCgdgRRHnVVXdXFXK6mr9IC5wNw0WS5V+4CTuCKN1gFXYEiWaZPbrF4TqlXCRpzqrs\nljVkL4s7hR1BpvcbR8E9xxwOwkWSpi1sx44gRlrc5dgRJJvt9FQDF0miUeCS//uV0B07gmR/\nON9jkYskzefwJHYEMV6DKdgRJMuscL7TIbhI0uyDFu5Y3O4hWIEdQbYbPIcdjsBFkuX0cA9E\n37cfO4YALlvtsjj94GuHI3CRZBlqnlW9Qf+7kty2/nJxnJ9t4CJJciSwOunn2EEcWw0PYkeQ\nzvnZBi6SJL8Grjz5P+wgjk2Fl7EjSJdZvr7DEbhIkuwIFGk6dhDHesDP2BHkc3y2gYskS3Oz\nR9UOYudw7IoYV+5CUZDjsw1cJFn+viirR5W+wo7hWHqpS7EjKDAbnnc2ABdJmvQPW8Js7BDO\nrYEHsCMosAk6OBuAiyTRJzAcO4JzLtwPtxiOr23gIkm0G+7AjuBcL/ft0F4cp2cbuEgyidl6\nB9eV0SewI6jg9GwDF0mmO2EXdgSnTpe+BDuCEk7PNnCRZBoBH2NHcGotdMaOoITTsw1cJJkE\nbfSL6W2YhB1BCadnG7hIMu2F27AjOPUILMOOoIbDsw1cJKlqV8NO4NTVUcexI6jh8GwDF0mq\nNvA3dgRnMspejB1BEYdnG7hIUj2t+7oN66ETdgRFHJ5t4CJJ9RkMxY7gzHR4ETuCIg7PNnCR\npNoHt2BHcOZR+B47girOzjZwkeSqUxU7gTPXRjldOVEbzs42cJHkStR7lcjMcg2wIyjj7GwD\nF0mu0TAPO4ITG6AjdgRlnJ1t4CLJtRCGYEdwYqYL1pywytnZBi6SXAehNXYEJ/rCt9gR1HF0\ntoGLJFm9KjrvSXG95wh2BHUcnW3gIkl2F/yFHcG+zPIXYEdQyNHZBi6SZGPgfewI9v0B92FH\nUMjR2QYukmRfwiDsCPYJ2DdII96KDs42cJEk+xduxI5gn/O15bXi5GwDF0m2syvqe7ahuePd\nTrTi5N8NLpJs7WArdgS7HL3W0ZCTsw1cJNnGwnvYEez60+mqiZpxcraBiyTbIhiAHcGud+A5\n7AhKOfkJzEWS7ZCnJXYEu/rDEuwIajk428BFku7cipnYEWxq6TmEHUGtx2Gp3Q/lIknXHjZj\nR7DHW+lc7AiKzbF/toGLJN04eAc7gj1boD12BMUcnG3gIkm3BPpjR7DnPXgWO4JiDs42cJGk\nO+JpgR3BngGwCDuCavbPNnCR5DuvvJ5nG1qB/vt2hsn+2QYuknwdYBN2BDu8Vc7GjqCc/bMN\nXCT5ntdzB8y/oB12BOXsn23gIsn3NfQLfRA978MY7AjK2T/bwEWS70jUDdgR7BgEX2JHUM/2\n2QYukgL1y+l4tuEmOIAdQT3bZxu4SArcBxuxI9hQtR52AgS2zzZwkRQYDzOxI4RvO7TFjoDA\n9tkGLpIC30Bf7AjhmwejsSMgsH22gYukwLGo67AjhG8ILMSOgMHu2QYukgoXlsnAjhC2m2Ev\ndgQMds82cJFU6Ai/Y0cIW/U62AlQ2D3bwEVSYQLMwI4Qrr8hATsCCrtnG7hIKnwHfbAjhOsj\nGIUdAYXdsw1cJBWOR12DHSFcT8Jn2BFw2DzbwEVS4qIyp7EjhOlW2IMdAYfNsw1cJCU6wTrs\nCGGqWRs7ARKbZxu4SEpMhGnYEcKzCwzsCEhsnm3gIinxA/TGjhCe+TASOwISm2cbuEhKpERf\nhR0hHClvXAlvYIfAcoPnPxsfxUVSo2GpdOwI1m2tBwCl5mDHQGLvbAMXSY1kWIsdwbprIVu5\nv7Fz4LB3toGLpMYkeAs7gmW7we8V7CA47J1t4CKp8SM8jB3Bso2BIkXa8pABmRXsnG3gIqmR\nEtMMO4JlqeX8RfocOwiS5nb2DuAiKdJIo7MNE80etdZxoQkRbJ1t4CIp0gXWYEewzPtqFFTo\nFVHbx+Zn62wDF0mRl2AqdgTrNsDd2BEQ2TrbwEVSZDn0xI5g3dswATsCIlvXNnCRFEmNvQI7\ngnU94EfsCJjsnG3gIqlyadwp7AiWXRZ7EjsCJjtnG7hIqnSF1dgRrDoZ2wQ7Aio7Zxu4SKq8\nAq9jR7DqB+iFHQGVnbMNXCRVfoGHsCNYNR6mY0dAdbRUhSfDvTSSi6RKqj6vl+7Rcq1yYbbW\nAoD4l8L7IC6SMo21OdtwVsVIvajBdL15YUep8P4x4SIp0w1WYkewZj/chB0B04HANbvhnXDg\nIikzBV7DjmDNpzAUOwKm7YEijQjro7hIyqyAbtgRrHkSPsGOgOl0NX+R5of1UVwkZdLiL8OO\nYE3rSF3SLmCmnYvfuUjqXB6bih3BCm/ls7AjIJt7aRS0ORrex3CR1HkIfsGOYMUf0B47Arov\nYFCYH8FFUud1eBU7ghXTYTx2BHSHo5qH+RFcJHVWwYPYEax4GL7HjoCvQbiLtXOR1NkYXb6z\nzc3nVWoSfQI7Ar7O4d7QzEVS5rtS2SeDxmHHCCU1rjF2BAJehSnhfQAXSZXMs8yzqvGbsIOE\n8BP0wI5AwK/QJbwP4CKpkrNaHPVlFyfCm9gRCDhdtkF4H8BFUmVdoEiTsIOEcD+sx45AQbhL\n6XORVEmr6i/SKuwgIZxbPgM7AgUD4cuwjuciKTPX7BH1lYv/9bTEjkDCh2FuEMVFUufrWyvC\nI9Tv9PkMBmNHIGEP3BbW8VwklRbAk9gRQhkOH2NHoKFuFW84h3ORVDroaYUdIZRb4B/sCDS0\nhz/DOZyLpNT5ZcO88kQ1b9U62BGIGA8zwjmci6RUJ+ob922GdtgRiFgW3nkhLpJSr1C/3XwW\nPIcdgYiTcWGt+sRFUirsK09UexS+xY5ARdPYlDCO5iIplVHuQuwIJWsWfQw7AhW94YcwjuYi\nqdXccxA7QklOxV+KHYGMWfBCGEdzkdQaTHtn1p91WelIgc1h7bbGRVJrPjyFHaEkk3XaV1Ay\nb7XaYRzNRVKL+CqmHamfnlfpdtht/WAukmK0L66uT/0NY5WehnnWD+YiKdYR1mFHCO6Qpzl2\nBEK+ggHWD+YiKfYSvIEdIbgvYCB2BEKORF1v/WAukmKr4AHsCMGNDOfFjPtdVDrd8rFcJMVO\nl70IO0Jwt8Mu7AiUPBDGtr9cJNVusLH3vCLearWwI5DyWhgr1XCRVBsIX2BHCGYrJGJHIOU3\nSLZ8LBdJtY/D3MFKoXfgWewIpIRzZSQXSbX9cDN2hGD6ggYrKqvUwvOv1UO5SMqdXYHqAihX\nRYW5KZDbDYaFVg/lIil3H/yOHaF46aUbYkcgJoyX4Vwk5SZRXRN4JXTFjkDMHrjV6qFcJOVW\nUN0m6WXq98Grd1Ylqy/DuUjKpZch+goqOdw9gdyvA1jdPISLpN51Ya7PrsqF4e5S534TYLrF\nI7lI6j0BX2FHKM7hqOuwI5DzI/SyeCQXSb1w12dX5Cvojx2BnFPxl1k8koukXhjnglQaDXOx\nI9BzhdUNdblICOpZPhek0p2wAzsCPY/Cd9YO5CIh6AAbsSMUo2YN7AQEzba68iwXCcGL8DZ2\nhKK2QxvsCARthbusHchFQvAzdMeOUNR78Ax2BIpqWLxFi4uEIL10I+wIRT0Oi7EjUHQn7LR0\nHBcJwzVRR7AjFHGt5zB2BIpGw/uWjuMiYSD4r396mQbYEUhabPHdNS4Shg9gFHaEwlZDZ+wI\nJB2zeL0HFwnDP3A7doTCpoSx0EdEaVgqzcphXCQUdSqHtWW2Al1gFXYEmh6ElVYO4yKhaG/5\n8nxVLrb2D2/keQNetnIYFwnFBJiGHaGgY1HXYEcgai10snKYkyKtH5PUY1L+1Q6fMvz25jzB\nRQriJ+iBHaGgJfAYdgSiMivUt3KYgyItSUwY0NPonO9KxwcTHzIdyHmCixQEuS0mx8C72BGo\namVpt1L7RUrp0GG7z7fQ6Jv7a/PpNoMLHcNFCobaylcJsA07AlVDLO1War9IHxkfZD8MNXKv\nZN5lTC50DBcpmH7E1mKsXR07AVnzYbiFo+wXqZ9hbgy4wJid88wKo3BvuEjBzKV1iejfcAd2\nBLKsLY1ru0jedm3Nx7XG2Jyn5hszRyUlDVuWdxAXKZidcCd2hPwIXmpBx9kVLdyHabtIqYZ/\npf5tRu4vRq8aRtKwvgnGS+afZiclJT3ORQrmzKp03pKdf1U8dEnFTkHWvVbuw7RdpGNGT/8A\nRu4IIxKnZX1z/PWA8VP2n7hIJWoHm7Ej5JgJ2TpgxyDL0n2Y4RcpY0a2096ELuYftxsjCh3w\ng5H78p9f2gU1HmZgRwhIq2wWCb7BDkLVcitv+oVfpHTzPddUX3I784/rjEmFDjhm5C7Jy0UK\napnlFdNk2+jvkdXFCSLPqfj/hT7I/lm7/sb+7IeFxpzAE970DPMxxeibcwwXKajUuMbYEQK2\nBYpU+L0LluPK6OMhj7FfpHnGguyHkUbOO3kHjUfMxxXGi7nHcJGCambhq6PGJWaPSv2JnYOs\nvhZe9tov0pHE5INZrx/bDMj677QtWzJ9vsHGHK/Pt7N7Yu6b5Fyk4Kx8ddRYUzG7SIVfobNc\n78C4kMc4uNZuccL944e3Tc6+1m63YaRkjdXH6Da6f2LCgtxDuEjBvQtjQx+kxndQt+8K7BCE\nbYO2IY9xcvX3itFJPSaaV3r7i+RLmz2kQ/dnt+QdwUUKbgeddeResXbLTeSqGXpNLr4fCU3t\nalTekr2H6macVLQJvZozFwlNW9iKHSGgdnUqlSZqTOj9BbhIaJ6HWdgR/P6AdtgRiFsCj4c6\nhIuE5nt4BDuC3xR+CymEQ1F1Xw2x4CoXCc3JuMuxI/jdC2uxI9C2tyEAlH2vxGO4SHiaxljc\nxEqy2lUobtdEyB3mO9bltpd0DBcJj+VNrOT608K7JBHtP4//GqoXSzqIi4RnjoU3zBV4o+Tv\nEJZzMeJTJR3ERcKzDRKwI2TrCGuwI9CWVsFfpBJ/SeIiITqDxGaTdSvzr0glm2j2qFl6Scdw\nkRCRWANrC42fi5R5X6wGsR32lHgMFwnROJgT+iDZ3oQJ2BE0sCfUyuhcJETfwaPYEXy+TrAa\nO4IbcJEQve+JafQ89iYQ9SpmICdwBS4Snunm77DJuCH+orXAnra4SGhOVfSfVf0RNcXb8ALq\n/G7BRUKzDiy8YS5dZ+B7Y0XgIqH5M1CkKagpzq5wGnV+t+AiofFe4F+9B/X2vp30toXWExcJ\nzy/lsov0EmqG6bwupBhcJET/PHkldMON8AD8jBvALbhIqP6NuhY3wLnlSryCjFnFRcJ1eQzq\nFpi74FbM6V2Ei4RrAHyKOf0seBZzehfhIuH6Eh7DnL4b/IQ5vYtwkXClxF+COf35ZbAv9XML\nLhKyFp6S73ORag+0xpvcXbhIyEZj3pM0h9be6jrjIiFbDl3xJn8IloU+iFnBRUKWUake3uQX\nlDmFN7m7cJGwtcHb3nwv3Ig1tetwkbBNwrv8+10YhTW163CRsG2Au7Gm7gnfY03tOlwkdGdW\nxlo04aJSqUgzuw8XCV0SrMKZeL+nJc7EbsRFQjcNawnwuTASZ2I34iKh2411ecHD8A3OxG7E\nRcJ3YamTKPM2jMeZ15W4SPgega8xpj3gaY4xrUtxkfB9BE9iTDsPhmNM61JcJHyHo6/EmPZR\nWIoxrUtxkQi4Ivo/hFkbxaUgzOpWXCQChsB89ZMeirpO/aTuxUUiYAnG9i4fwTD1k7oXF4mA\n1NIXqZ+0LyxWP6l7cZEouBF2KZ/zf7EnlM/pYlwkCsbCDNVT/hd1jeopXY2LRMEK9duNzYeh\nqqd0NS4SBRlVaquesh98pXpKV+MikXAX/KF4xstjjime0d24SCS8onp3lyPRV6md0O24SCRs\ngkS1Ey6AQWondDsuEg11K6m937w/LFQ6n+txkWjoAr8ona8p7nYy7sNFomEWjFE53dHoZiqn\niwBcJBr2elqpnO5zGKByugjARSLiYqX3fQ+EzxTOFgm4SET0gUUKZ2sWfVjhbJGAi0TEJyrP\nRx+PbaJussjARSLiWGxTZXNtHA79Qh/FwsFFouLqqINqJjqaAAB1f1UzWcTgIlExDOapmagT\nZDuHL7UTiotExTfQS8k8/0aZRYJZSmaLGFwkKk6Vra9knnX+HsGzSmaLGFwkMm6BHSqmORTt\nL9I7KiaLHFwkMp6Ht5XM86DZo/q8YoNQXCQyVkNHJfOcaJXVo8vWK5krcnCRyMisVtOrZKI+\nMPK3TCUzRRAuEh3tQcmPCW+9crzjpXBcJDpeg4kqplkJ96iYJsJwkejYCoaKaYbCuyqmiTBc\nJELOKZ+uYJYG8XxzrHhcJEIehB/lT/In3CF/ksjDRSLkHRglf5Jn4E35k0QeLhIh+1Xs6tok\n+oD8SSIPF4mSS+OkX2+wy9NC9hQRiYtEST/4QvYUE2GS7CkiEheJkvlw7ZuSX3g19/wtd4II\nxUUi5O8LAKDS5zKnOBij7o72iMJFIqSFeV12lf0Sp5iqdiHKyMFFomNn4JY7mXdT3K58/5gI\nwUWi47dAkV6QN8Wx+AbyBo9oXCQ6jsb5iyRxEdR34El5g0c0LhIhw80eXS9xg5f2sEre4BGN\ni0TI6afLA9SWeK7hVPk6au4djDxcJFIy/24YI7FIC6CvvMEjGxeJmDHwqrzBH4Bv5Q0e2bhI\nxOzwXCdt7Ixq1U5LGzzCcZGoucazTdbQS6GbrKEjHheJmpdhrKyhe4PUy48iGheJmgOxF0sa\n2Vu3PC8fJAsXiZzbNaStzgAAC6FJREFUYa2cgX+G++QMzLhIBM2WtXffIHhfzsCMi0TQiXJ1\n5ayDemE874kkDReJnvvhexnD/q5m2bwIxUWi5zPoKWPYUYp2u4hMXCR6TteokiZh2MuiFW1S\nG5G4SAT1ggXiB93uaSV+UJaDi0TQD3Cv+EEnwEviB2U5uEgEec8pI/782vWencLHZLm4SBQN\ngZmih9wXfaXoIVk+XCSKNsCtood8HcaJHpLlw0Ui6dKYfYJHvBU2CR6R5cdFImmc6DMDR+Ia\nih2QFcRFImln1NViB5wNT4kdkBXERaLpetgsdLx28KvQ8VghXCSaXoPRIoc7WfZsXj5IKi4S\nTf/FCV0SdT70C30Qc4CLRJQh9LVYZzkXlLNcXCSi3oUnxA12ulpNicu3Mh8XiayU8rXFfe8v\nhoeEjcWKxUWiqhN8I2ysh+VvqRnpuEhUfQHdRQ3lrVNRxg1OLB8uElWna1Y+JWSgD5qWhktP\nChmKBcVFIqs3fCximLfNvWLaixiKBcdFIusnId/9pyr5dy/7WsBYLDguElne80oddT7KhsB+\nms87H4qVgItE1zCY5nyQbYEivex8KFYCLhJdf0BrAaM0MntUeouAoVhwXCTCLov6x/kgv5lb\nPL/ifCBWEi4SYS/AROeDbI2pft8TfA+FbFwkwv6JbuZ8kK4wy/kgLBQuEmUt4U+nQ/wddx5v\nd6kAF4myqTDS6RA9ecVvJbhIlB2OP9/hCHtK1ePL7FTgIpGWAIM+Pu5kgEfhNVFZWEm4SJTt\nqw8AZzq4uXVf6TpirnxlIXCRKLvDfDO11n+2B+gPkwXGYcFxkQj7J3B5zwy7AxwsewbfP6EG\nF4mw35xecDoExovMw4LjIhF2OMZfJLv3JR2pVNXRmQpmHReJsn5mjy6zewJ7BDwrNA4LjotE\n2am+2T+T+tj86KOVKx0RGocFx0Wi7fiav2rF21wG/Bl4WmwYFhwXibzp0MbWx52oXsH+eXMW\nJi4Sed7r4XM7H/c8PCk6CguKi0Tfr9Hn27g8IbVW2QPis7AguEga6GHn7NtEGCg+CQuGi6SB\nQ9XK7Aj3Y06dWWqPjCyseFwkHbwK94b7Ia/AYzKSsCC4SDrIvCLcBR7Tz47fLScLKxYXSQs/\nehqmh/UBU+FhSVFYsbhIeugEk8I5PKN+7HZJSVixuEh62FexQjjnDmZAN2lRWHG4SJoYD12t\nH5xxYbTNy4qYTVwkTZxuFLXc8sHvQmd5SVhxuEi6WAJNMi0e6m0UvUlqFlYEF0kb7WCqpeNO\nrp8O90nOwgrjImljZ9mq/4Y+Kv2JWABYJD8OK4CLpI+noXfogwaaN9U25VUhFeMi6SP13Ojf\nQh1zNNa/zMNHKgKxPFwkjXwC13tDHLIusPDQOCWBWC4ukk5ug9khjtgTKNI0FXFYHi6STrbE\nnxFif+bN5cwe1bBwWoKJxEXSymBodmePH4L//ZeVoHpWj2ouVReJmbhIWvnGk/3zJujyqa/H\nxL2VuWji+7wKl3JcJJ1465sv3EoVf91CWleo+o3aQCwHF0knmwOnEl4q7i/3XQv/C/uOdCaI\nwyIt2lniX3ORxPo9UKRBxfzdmnrQllf6RuOsSDuNgteirB+T1GPSobw/c5HESqviL5LnpgWF\n31D6rIJnkNWLWpl4joqUMbJgkZYkJgzoaXTOe33BRRLsHbNHN10F8L/XU/M97x0XVWomWirm\nqEjfv9bFKFCklA4dtvt8C42+uf9acpFE+7LlGZdPPO1b1Skaao4w3yzK2H7Sl5oEtVdgR4ts\nDorU2zAKFukj44Psh6HGxpxnuEjS/NWnLMR32nB6RFmIMhrDZSX/sspkc1CkzMzMdwsUqZ9h\nrgC1wMi9joWLJNHRiXUh6hz/L0338A6XyJydbJibv0jedm3Nx7XG2JynuEhSpc/6X+A03ifY\nUSKewCKlGsnm4zZjcPbDW23atOnDRZJrbaBIz2EHiXgCi3TM6Okf0jDHnNerV69BXCS5dgeK\n9BZ2kIgXfpEyZmQ7bf53wZd2CV3Mx+3GiJyn+KWdbDeaPaq6HztHxAu/SOnZJ+sM/5sYBYrk\nS25nPqwzchcF5SLJtqthVo+qLMSOwQS+tPP1N8x/GBcac3Ke4SJJd/rjMdP55iN8Ios0z1iQ\n/TDS2Jb7DBeJRQYxRUrbsiXT5zuSmHzQ51veZkDu33ORWIQQU6TdhpGS9bA44f7xw9sm87V2\nLOIILZJvxeikHhP35v09F4lFCL6xjzEBuEiMCcBFYkwALhJjAnCRGBOAi8SYAFwkxgTgIjEm\nABeJMQG4SIwJwEViTAAuEmMCcJEYE4CLxJgAXCTGBOAiMSYAF4kxAbhIjAnARWJMAC4SYwJw\nkRgTgIvEmABcJMYE4CIxJgAXiTEBJBdp2IeMRYLpUou0LdT0b3V7UcX/pQDTuv0fdgSLZnQb\njx3BopndnseOYNGcbuNCHfKTzCKF9HuTeRjT2vBnk3exI1j0V5OZ2BEs2tlEly079zZ53fKx\nXKQScZHE4yIJw0USj4skHvki7Zu8HmNaGw5MXosdwaJDk1djR7DoyOSV2BEsOjb5F8vHohSJ\nMbfhIjEmABeJMQG4SIzlWbTT5gcqLNL6MUk9Jh0q+RkaFvXrcP+Axd68J54y/PYG/xgUxeQi\n+TlNN3Idy3mO5Od0Z2B75PC/W9UVaUliwoCeRucdJT1DgvdNI/GJoe2MZ/OeejDxIdMBvFTF\nKpqL5uf09EMBCXedzHmO4uc0Y2ROkcL+blVWpJQOHbb7fAuNvt7gz9DwnfHgfp/vwCPG4pxn\nTrcZjBkoqKK5qH5OA1YZH+f8J8HP6fevdTECRQr/u1VZkT4yPsh+GGpsDP4MDSOMddkPa43R\nOc/sMibjxSlB0VxUP6d+KV0G534bEvyc9s5+pekvUvjfrcqK1M/Ynf2wwJgd/BkaerRJz344\nZvTMeWaFQfPGkKK5qH5O/Sa135f73wQ/p5mZme8GihT+d6uqInnbtTUf1xpjgz5DxJbN5sMa\n4+mcZ+YbM0clJQ1bhhYpiCK5yH5OTWuN9/P+QPNzOtdfJBvfraqKlGokm4/bjMFBnyFld3dj\nRc5/v2oYScP6JhgvYQYqRpFcpD+n3seST+X9iebnNFAkG9+tqoqU80Jpv9Ev6DOU/HC/MS33\nDyMSp2W9tv/rAeOn4B+AoUgu0p/Tb40v8v2J5uc0UCQb363KXtoldDEftxsjgj5Dx7aBxn1L\nizz7g/EMQpbQ8nJR/px6uydnFH2W2Oc056Vd+N+tyk42JLczH9YZk4I/Q0TG7MS73jpW9Plj\nxoPqw1iQLxfZz6nPt9KYXsyzxD6ngSLZ+G5VVqT+xv7sh4XGnODP0OCdYAzeU+CJdP8/pSlG\nX5RAwRSTi+rnNMto/2mvAKKf05wihf/dqqxI84wF2Q8jjW3Bn6FhoTGu4GuQg8Yj5uMK40WM\nPEEVk4vq59Tn+y+hf/4/Ev2c5hQp/O9WZUU6kph80Odb3mZA1n+nbdmSWfAZSnq1PZH73/6k\ng405Wb8Y7+yeSOzbM38u2p9Tn2+JMSPwX5Q/pzlFCv+7Vd21dosT7h8/vG1y9rVKuw0jpeAz\nhBw12vb2G5+TdH8fo9vo/okJC7CzFZI/F+nPaZYXjJz7Yil/TnOKFP53q8Krv1eMTuox0bzW\nNxAt3zOE/Jl7ofITuUnTZg/p0P3ZLdjRisiXi/TnNOt3oo5tcn7OU/6c5hYp7O9Wvh+JMQG4\nSIwJwEViTAAuEmMCcJEYE4CLxJgAXCTGBOAiMSYAF4kxAbhIjAnARWJMAC4SYwJwkRgTgIvE\nmABcJMYE4CIxJgAXiTEBuEiMCcBFYkwALhJjAnCRGBOAi8SYAFwkxgTgIjEmABeJMQG4SIwJ\nwEViTAAuEmMCcJEYE4CLxJgAXCTGBOAiMSYAF4kxAbhIjAnARWJMAC4SYwJwkRgTgIvEmABc\nJMYE4CIxJgAXiTEBuEiMCcBFYkwALhJjAvw/OxPlNFYmIDcAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 420, "width": 420 } }, "output_type": "display_data" } ], "source": [ "library(ggplot2)\n", "plot_ts(x=sin_data$x, y=sin_data$y) + theme(text = element_text(size=16))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### sliding windows" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\n", "
A matrix: 3 × 5 of type dbl
t4t3t2t1t0
0.00000000.24740400.47942550.68163880.8414710
0.24740400.47942550.68163880.84147100.9489846
0.47942550.68163880.84147100.94898460.9974950
\n" ], "text/latex": [ "A matrix: 3 × 5 of type dbl\n", "\\begin{tabular}{lllll}\n", " t4 & t3 & t2 & t1 & t0\\\\\n", "\\hline\n", "\t 0.0000000 & 0.2474040 & 0.4794255 & 0.6816388 & 0.8414710\\\\\n", "\t 0.2474040 & 0.4794255 & 0.6816388 & 0.8414710 & 0.9489846\\\\\n", "\t 0.4794255 & 0.6816388 & 0.8414710 & 0.9489846 & 0.9974950\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 5 of type dbl\n", "\n", "| t4 | t3 | t2 | t1 | t0 |\n", "|---|---|---|---|---|\n", "| 0.0000000 | 0.2474040 | 0.4794255 | 0.6816388 | 0.8414710 |\n", "| 0.2474040 | 0.4794255 | 0.6816388 | 0.8414710 | 0.9489846 |\n", "| 0.4794255 | 0.6816388 | 0.8414710 | 0.9489846 | 0.9974950 |\n", "\n" ], "text/plain": [ " t4 t3 t2 t1 t0 \n", "[1,] 0.0000000 0.2474040 0.4794255 0.6816388 0.8414710\n", "[2,] 0.2474040 0.4794255 0.6816388 0.8414710 0.9489846\n", "[3,] 0.4794255 0.6816388 0.8414710 0.9489846 0.9974950" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sw_size <- 5\n", "ts <- ts_data(sin_data$y, sw_size)\n", "ts_head(ts, 3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### projection" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "io <- ts_projection(ts)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A matrix: 6 × 4 of type dbl
t4t3t2t1
0.00000000.24740400.47942550.6816388
0.24740400.47942550.68163880.8414710
0.47942550.68163880.84147100.9489846
0.68163880.84147100.94898460.9974950
0.84147100.94898460.99749500.9839859
0.94898460.99749500.98398590.9092974
\n" ], "text/latex": [ "A matrix: 6 × 4 of type dbl\n", "\\begin{tabular}{llll}\n", " t4 & t3 & t2 & t1\\\\\n", "\\hline\n", "\t 0.0000000 & 0.2474040 & 0.4794255 & 0.6816388\\\\\n", "\t 0.2474040 & 0.4794255 & 0.6816388 & 0.8414710\\\\\n", "\t 0.4794255 & 0.6816388 & 0.8414710 & 0.9489846\\\\\n", "\t 0.6816388 & 0.8414710 & 0.9489846 & 0.9974950\\\\\n", "\t 0.8414710 & 0.9489846 & 0.9974950 & 0.9839859\\\\\n", "\t 0.9489846 & 0.9974950 & 0.9839859 & 0.9092974\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 6 × 4 of type dbl\n", "\n", "| t4 | t3 | t2 | t1 |\n", "|---|---|---|---|\n", "| 0.0000000 | 0.2474040 | 0.4794255 | 0.6816388 |\n", "| 0.2474040 | 0.4794255 | 0.6816388 | 0.8414710 |\n", "| 0.4794255 | 0.6816388 | 0.8414710 | 0.9489846 |\n", "| 0.6816388 | 0.8414710 | 0.9489846 | 0.9974950 |\n", "| 0.8414710 | 0.9489846 | 0.9974950 | 0.9839859 |\n", "| 0.9489846 | 0.9974950 | 0.9839859 | 0.9092974 |\n", "\n" ], "text/plain": [ " t4 t3 t2 t1 \n", "[1,] 0.0000000 0.2474040 0.4794255 0.6816388\n", "[2,] 0.2474040 0.4794255 0.6816388 0.8414710\n", "[3,] 0.4794255 0.6816388 0.8414710 0.9489846\n", "[4,] 0.6816388 0.8414710 0.9489846 0.9974950\n", "[5,] 0.8414710 0.9489846 0.9974950 0.9839859\n", "[6,] 0.9489846 0.9974950 0.9839859 0.9092974" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#input data\n", "ts_head(io$input)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A matrix: 6 × 1 of type dbl
t0
0.8414710
0.9489846
0.9974950
0.9839859
0.9092974
0.7780732
\n" ], "text/latex": [ "A matrix: 6 × 1 of type dbl\n", "\\begin{tabular}{l}\n", " t0\\\\\n", "\\hline\n", "\t 0.8414710\\\\\n", "\t 0.9489846\\\\\n", "\t 0.9974950\\\\\n", "\t 0.9839859\\\\\n", "\t 0.9092974\\\\\n", "\t 0.7780732\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 6 × 1 of type dbl\n", "\n", "| t0 |\n", "|---|\n", "| 0.8414710 |\n", "| 0.9489846 |\n", "| 0.9974950 |\n", "| 0.9839859 |\n", "| 0.9092974 |\n", "| 0.7780732 |\n", "\n" ], "text/plain": [ " t0 \n", "[1,] 0.8414710\n", "[2,] 0.9489846\n", "[3,] 0.9974950\n", "[4,] 0.9839859\n", "[5,] 0.9092974\n", "[6,] 0.7780732" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#output data\n", "ts_head(io$output)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.3.3" } }, "nbformat": 4, "nbformat_minor": 4 }