{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: daltoolbox\n", "\n", "Registered S3 method overwritten by 'quantmod':\n", " method from\n", " as.zoo.data.frame zoo \n", "\n", "\n", "Attaching package: ‘daltoolbox’\n", "\n", "\n", "The following object is masked from ‘package:base’:\n", "\n", " transform\n", "\n", "\n" ] } ], "source": [ "# DAL ToolBox\n", "# version 1.1.727\n", "\n", "source(\"https://raw.githubusercontent.com/cefet-rj-dal/daltoolbox/main/jupyter.R\")\n", "\n", "#loading DAL\n", "load_library(\"daltoolbox\") " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Discretization & smoothing\n", "Discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. \n", "\n", "Smoothing is a technique that creates an approximating function that attempts to capture important patterns in the data while leaving out noise or other fine-scale structures/rapid phenomena.\n", "\n", "An important part of the discretization/smoothing is to set up bins for proceeding the approximation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## general function to evaluate different smoothing technique" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | |
---|---|---|---|---|---|
<dbl> | <dbl> | <dbl> | <dbl> | <fct> | |
1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
2 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
5 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
6 | 5.4 | 3.9 | 1.7 | 0.4 | setosa |