// Copyright (c) 2023 Cesanta Software Limited // All rights reserved #pragma once #include #include #include #include #define LED1 PIN(16, 1) #define LED2 PIN(16, 2) #define LED3 PIN(16, 3) #include "xmc7200d_e272k8384.h" #define BIT(x) (1UL << (x)) #define CLRSET(reg, clear, set) ((reg) = ((reg) & ~(clear)) | (set)) #define PIN(bank, num) ((bank << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) void hal_init(void); size_t hal_ram_free(void); size_t hal_ram_used(void); static inline void spin(volatile uint32_t count) { while (count--) (void) 0; } extern uint32_t SystemCoreClock; enum {PLL_FEEDBACK = 50, PLL_REF = 1, PLL_OUT = 4}; #define CLK_IMO 8000000UL #define SYS_FREQUENCY ((CLK_IMO * PLL_FEEDBACK) / (PLL_REF * PLL_OUT)) #ifndef UART_DEBUG #define UART_DEBUG SCB3 #endif enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; enum { GPIO_HIGHZ = 0, GPIO_PULLUP = 2, GPIO_PULLDOWN = 3, GPIO_OPENDRAIN_LOW = 4, GPIO_OPENDRAIN_HIGH = 5, GPIO_STRONG = 6, GPIO_PULLUP_DOWN = 7}; enum { GPIO_SPEED_LOW = 3, GPIO_SPEED_MEDIUM = 2, GPIO_SPEED_HIGH = 0}; #undef GPIO #define GPIO_TypeDef GPIO_PRT_Type #define GPIO(N) ((GPIO_TypeDef *) (GPIO_BASE + 0x80 * (N))) static GPIO_TypeDef *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); } static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type, uint8_t speed, uint8_t pull, uint8_t af) { (void) pin, (void) mode, (void) type, (void) speed, (void) pull, (void) af; GPIO_TypeDef *gpio = gpio_bank(pin); uint8_t pinno = PINNO(pin); uint32_t msk, pos; // configure input / output direction if (mode == GPIO_MODE_INPUT) { gpio->CFG |= 1 << (4 * pinno + 3); // enable input buffer (IN_ENx) } if (af || (mode == GPIO_MODE_AF && af)) { // configure alternate function HSIOM_PRT_Type* hsiom = ((HSIOM_PRT_Type*) HSIOM) + PINBANK(pin); volatile uint32_t *port_sel = pinno < 4 ? &hsiom->PORT_SEL0 : &hsiom->PORT_SEL1; pos = 8 * (pinno % 4), msk = 0x1f << pos; *port_sel &= ~msk, *port_sel |= af << pos; } // configure driver mode msk = 7, pos = 4 * pinno; CLRSET(gpio->CFG, msk << pos, type << pos); // configure speed msk = 3, pos = 2 * pinno + 16; CLRSET(gpio->CFG_OUT, msk << pos, speed << pos); if (mode == GPIO_MODE_OUTPUT /*&& af == 0*/) { gpio->OUT_SET = (1 << pinno); } } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 0); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_MEDIUM, 0, 0); } static inline bool gpio_read(uint16_t pin) { GPIO_TypeDef *gpio = gpio_bank(pin); uint8_t pinno = PINNO(pin); if (gpio->CFG & (1 << (4 * pinno + 3))) { // pin mode is input, reading from GPIO_PRT_IN return gpio->IN & (1 << pinno); } else { // pin mode is output, reading from GPIO_PRT_OUT return gpio->OUT & (1 << pinno); } } static inline void gpio_write(uint16_t pin, bool value) { GPIO_TypeDef *gpio = gpio_bank(pin); uint8_t pinno = PINNO(pin); if (value) { gpio->OUT_SET = 1 << pinno; } else { gpio->OUT_CLR = 1 << pinno; } } static inline void gpio_toggle(uint16_t pin) { gpio_write(pin, !gpio_read(pin)); } static inline void uart_init(volatile CySCB_Type *uart, unsigned long baud) { (void) uart, (void) baud; uint16_t rx = 0, tx = 0; if (uart == SCB3) { rx = PIN(13, 0), tx = PIN(13, 1); } else { return; // unsupported uart } // set pins gpio_init(rx, GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 17); gpio_init(tx, GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 17); // enable peripheral clock (18.6.2) // compute divider first (we choose 24 bit divider 0) unsigned long div = 0, frac = 0, ovs = 16; div = SYS_FREQUENCY / (baud * ovs); if (div == 0) div = 1; frac = SYS_FREQUENCY % (baud * ovs); frac = (frac * 100) / (baud * ovs); PERI_PCLK->GR[1].DIV_CMD = (3 << PERI_PCLK_GR_DIV_CMD_TYPE_SEL_Pos) | PERI_PCLK_GR_DIV_CMD_PA_DIV_SEL_Msk | PERI_PCLK_GR_DIV_CMD_PA_TYPE_SEL_Msk; PERI_PCLK->GR[1].DIV_CMD |= PERI_PCLK_GR_DIV_CMD_DISABLE_Msk; // disable divider PERI_PCLK->GR[1].DIV_24_5_CTL[0] = (((uint8_t) (div - 1)) << PERI_PCLK_GR_DIV_24_5_CTL_INT24_DIV_Pos) | (frac << PERI_PCLK_GR_DIV_24_5_CTL_FRAC5_DIV_Pos); PERI_PCLK->GR[1].DIV_CMD = (3 << PERI_PCLK_GR_DIV_CMD_TYPE_SEL_Pos) | PERI_PCLK_GR_DIV_CMD_PA_DIV_SEL_Msk | PERI_PCLK_GR_DIV_CMD_PA_TYPE_SEL_Msk;; PERI_PCLK->GR[1].DIV_CMD |= PERI_PCLK_GR_DIV_CMD_ENABLE_Msk; // enable divider PERI_PCLK->GR[1].CLOCK_CTL[PCLK_SCB3_CLOCK & 0xff] = 3 << PERI_PCLK_GR_CLOCK_CTL_TYPE_SEL_Pos; // connect SCB3 to div_24_5_ctl[0] // configure UART interface uart->CTRL = ((ovs - 1) << SCB_CTRL_OVS_Pos) | (2 << SCB_CTRL_MODE_Pos); uart->UART_CTRL = 0; uart->UART_RX_CTRL = 1 << SCB_UART_RX_CTRL_STOP_BITS_Pos; uart->RX_CTRL = 7 << SCB_RX_CTRL_DATA_WIDTH_Pos; uart->UART_TX_CTRL = 1 << SCB_UART_TX_CTRL_STOP_BITS_Pos; uart->TX_CTRL = 7 << SCB_TX_CTRL_DATA_WIDTH_Pos; uart->TX_FIFO_CTRL = 1 << 16; uart->TX_FIFO_CTRL = 0; uart->CTRL |= 1 << SCB_CTRL_ENABLED_Pos; } static inline void uart_write_byte(volatile CySCB_Type *uart, uint8_t byte) { (void) byte; (void) uart; while((uart->INTR_TX & SCB_INTR_TX_EMPTY_Msk) == 0) spin(1); uart->TX_FIFO_WR = byte; uart->INTR_TX |= ~SCB_INTR_TX_EMPTY_Msk; } static inline void uart_write_buf(volatile CySCB_Type *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline void rng_init(void) { } static inline uint32_t rng_read(void) { return 0; } static inline void ethernet_init(void) { gpio_init(PIN(26, 0), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_REF_CLK gpio_init(PIN(26, 1), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TX_CTL gpio_init(PIN(26, 2), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TX_CLK gpio_init(PIN(26, 3), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_0 gpio_init(PIN(26, 4), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_1 gpio_init(PIN(26, 5), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_2 gpio_init(PIN(26, 6), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_3 gpio_init(PIN(26, 7), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_0 gpio_init(PIN(27, 0), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_1 gpio_init(PIN(27, 1), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_2 gpio_init(PIN(27, 2), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_3 gpio_init(PIN(27, 3), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RX_CTL gpio_init(PIN(27, 4), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RX_CLK gpio_init(PIN(27, 5), GPIO_MODE_INPUT, GPIO_STRONG, GPIO_SPEED_LOW, 0, 27); // ETH1_MDIO gpio_init(PIN(27, 6), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_LOW, 0, 27); // ETH1_MDC //gpio_init(PIN(27, 7), GPIO_MODE_OUTPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 0); // ETH1_RST CPUSS->CM7_0_SYSTEM_INT_CTL[eth_1_interrupt_eth_0_IRQn] = 0x80000003; // assign CPU interrupt #3 NVIC->ISER[0] = 1 << 3; spin(10000000); // artificial delay to wait for PHY init } static inline void clock_init(void) { SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU asm("DSB"); asm("ISB"); // configure PLL CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_BYPASS_SEL_Msk, BIT(29)); // First bypass PLL spin(10); SRSS->CLK_PLL400M[0].CONFIG &= ~CLK_PLL400M_CONFIG_ENABLE_Msk; // disable the PLL itself // IMO source generates a frequency of 8MHz. The final frequency will be // calculated as (CLK_IMO * feedback) / (reference * output_div) CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_FEEDBACK_DIV_Msk, PLL_FEEDBACK << CLK_PLL400M_CONFIG_FEEDBACK_DIV_Pos); CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_REFERENCE_DIV_Msk, PLL_REF << CLK_PLL400M_CONFIG_REFERENCE_DIV_Pos); CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_OUTPUT_DIV_Msk, PLL_OUT << CLK_PLL400M_CONFIG_OUTPUT_DIV_Pos); CLRSET(SRSS->CLK_PLL400M[0].CONFIG2, CLK_PLL400M_CONFIG2_FRAC_DIV_Msk, 0); CLRSET(SRSS->CLK_PLL400M[0].CONFIG2, CLK_PLL400M_CONFIG2_FRAC_DITHER_EN_Msk, 0); CLRSET(SRSS->CLK_PLL400M[0].CONFIG2, CLK_PLL400M_CONFIG2_FRAC_EN_Msk, 1 << CLK_PLL400M_CONFIG2_FRAC_EN_Pos); CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_BYPASS_SEL_Msk, 0); spin(10); SRSS->CLK_PLL400M[0].CONFIG |= CLK_PLL400M_CONFIG_ENABLE_Msk; // enable the PLL while (SRSS->CLK_PLL400M[0].CONFIG & 1) spin(1); // configure PATH1 with source set to IMO SRSS->CLK_PATH_SELECT[1] = 0; // enable CLK_HFx uint8_t clocks[] = {0, 1, 2, 3, 4, 5, 6}; for (size_t i = 0; i < sizeof(clocks) / sizeof(uint8_t); i++) { CLRSET(SRSS->CLK_ROOT_SELECT[clocks[i]], SRSS_CLK_ROOT_SELECT_ROOT_MUX_Msk, 1); // choose PATH1 CLRSET(SRSS->CLK_ROOT_SELECT[clocks[i]], SRSS_CLK_ROOT_SELECT_DIRECT_MUX_Msk, 1 << SRSS_CLK_ROOT_SELECT_DIRECT_MUX_Pos); if (clocks[i] != 0) // CLF_HF0 is already enabled SRSS->CLK_ROOT_SELECT[clocks[i]] |= SRSS_CLK_ROOT_SELECT_ENABLE_Msk; // enable clock root } // set systick frequency uint32_t tenms = SYS_FREQUENCY / 100 - 1; // number of cycles executed in 10ms CPUSS->SYSTICK_CTL = tenms | (3 << CPUSS_SYSTICK_CTL_CLOCK_SOURCE_Pos); // select CLK_HF as source }