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Resumo

As zonas homogêneas de manejo (ZHMs) referem-se à subdivisão de um talhão em algumas zo-
nas homogêneas contíguas para orientar aplicações de taxa variável. A delimitação das ZHMs
pode ser baseada em abordagens geoestatísticas ou em clusterização. Aqui, ambas as técni-
cas são usadas conjuntamente. O problema de pesquisa é modelar a dependência espacial dos
fatores que influenciam a produtividade de cafés especiais de forma acurada, uma vez que se
trata de uma cultura assíncrona que tende a apresentar outliers quando é pouco amostrada. A
hipótese da pesquisa é que o uso de técnicas de fusão de dados integradas à geoestatística mul-
tivariada fornece modelos capazes de delinear satisfatoriamente ZHMs sobre lavouras de cafés
especiais, além de ajudar a aumentar a precisão da interpolação da produtividade. Portanto, o
principal objetivo da pesquisa é delinear ZHMs para lavouras de cafés especiais e avaliar se
a incorporação de dados fusionados tem um impacto positivo (melhoria) no mapeamento da
produtividade do café na área de estudo. Compõem a metodologia duas tarefas principais: (1)
comparar diferentes procedimentos para a criação de zonas de manejo e (2) determinar a relação
das ZHMs delineadas com i) mapas de produtividade do café e ii) a capacidade de sintetização
de cada método com relação às variáveis de entrada dentro das ZHMs delineadas. As técnicas
comparadas para resumir os dados espaciais foram: (1) sintetizar as variáveis em um índice de
fertilidade do solo (SFI), (2) a técnica MULTISPATI-PCA e (3) a abordagem multivariada por
fatores de autocorrelação Min/Max (MAF). Em seguida, foram aplicados métodos de clusteri-
zação para realizar a divisão de talhão em ZHMs binárias (agrupando os valores mais baixos
e mais altos das variáveis de entrada). A abordagem MAF obteve a melhor divisão de talhão
em termos de métricas de agrupamento (teste de McNemar, coeficiente de silhueta e redução de
variância). Neste artigo, não usamos a produtividade como uma variável de entrada, mas como
uma métrica de avaliação. Neste trabalho, 40 amostras de variáveis químicas do solo seleciona-
das foram analisadas em conjunto com dados de sensoriamento remoto para o delineamento de
ZHMs em dois anos (2022-23). O estudo de caso foi realizado em uma lavoura de café arábica
de 4 ha localizada em Minas Gerais, no sudeste do Brasil. O MAF também foi o melhor para
diferenciar áreas de baixa e alta produtividade nas ZHMs. Essa abordagem flexível pode orien-
tar o manejo preciso de nutrientes em áreas com baixa amostragem, permitindo o uso conjunto
de ferramentas de ciência de dados e conhecimento agronômico para delinear estratégias de
aplicação de taxa variável.
Palavras-chave: Café - Cultivo. Agricultura de precisão. Coffea arabica L.. Krigagem. Mape-
amento digital.



Abstract

Homogeneous management zones (HMZs) are the subdivision of a field into a few contiguous
homogeneous zones to guide variable-rate application. Delineating HMZs can be based on geo-
statistical or clustering approaches. The research problem is to model the spatial dependence
of the factors influencing the coffee yield of specialty coffees in an accurate way, since it is an
asynchronous crop that tends to have outliers when is low sampled. The research hypothesis is
that the use of data fusion techniques integrated with multivariate geostatistics provides mod-
els capable of successfully delineating HMZs over specialty coffee crops, as well as helping
to increase the accuracy of yield interpolation. Therefore, the main objective of the research
is to delineate HMZs for specialty coffee crops and assess whether the incorporation of fused
data has a positive impact (improvement) on mapping the coffee yields of the areas under study.
Here, both techniques are joint-used. There are two main tasks in the methodology: (1) com-
pare different procedures for creating management zones and (2) determine the relation of the
HMZs delineated with i) coffee yield maps and ii) the summarizing power of each method for
each input variable inside the HMZs delineated. The techniques compared to summary spatial
data were: (1) the soil fertility index (SFI), (2) the MULTISPATI-PCA technique, and (3) the
multivariate Min/Max autocorrelation factors (MAF) approach. Then, clustering methods were
applied to perform field partition into binary HMZs (grouping lower and higher values of input
variables). MAF approach achieved the best field partition in terms of clustering metrics (Mc-
Nemar’s test, Silhouette Score Coefficient, and variance reduction). In this paper we did not
use yields as a cluster variable but as a measure of success. In this work, 40 samples of selected
soil chemical variables were jointly analyzed with remotely sensed data for HMZ delineation
in two years (2022-23). The case study was performed in a 4-ha arabica coffee crop located
in Minas Gerais, Southeast Brazil. MAF also was the best one for separating low- from high-
yielding areas over the HMZs. This flexible approach can guide precision nutrient management
in low sampled areas, allowing the joint use of data science tools and agronomical knowledge
to delineate variable rate application strategies.
Keywords: Coffee - Crop. Precision agriculture. Coffea arabica L.. Kriging. Digital mapping
.



List of Figures

1 Coffee-producing municipalities in Brazil according to PAM/IBGE (2023) . . . 25
2 Most local cited journals regarding articles of geostatistics in PA in Brazil

(2002-2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Word cloud of author’s keywords plot from 20-year peer-reviewed journal arti-

cles of geostatistics in PA in Brazil (2002-2022). Terms “geostatistics”, “krig-
ing”, “precision agriculture”, “brazil” were considered redundant and were ex-
cluded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Words’ frequency over time from peer-reviewed journal articles about geostatis-
tics in PA in Brazil. The focused period for this analysis is the second part
(2007-2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Co-occurrence of author’s keywords network from 20-year peer-reviewed jour-
nal articles of geostatistics in PA in Brazil (2002-2022) . . . . . . . . . . . . . 33

6 Flowchart for choosing the most suitable method for spatially interpolating a
given dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 UAV image of the study area with soil and yield sampling points in May 2022
and May 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Hitorical climatic conditions (Rainfall and average air temperature) of Paraguaçu
municipality (Minas Gerais state, southeast Brazil) . . . . . . . . . . . . . . . 45

9 Biennial yield highlighted by neighboring coffee trees full of fruit (A) and
empty (B) separated by 5 meters in December 2023 . . . . . . . . . . . . . . . 46

10 Overview of the methodology for summarizing several soil chemical variables
and producing binary HMZs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11 Example of a variogram model . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12 Heatmap of correlation between soil chemical variables in 2022 and 2023 . . . 64
13 Gaussian anamorphosis of selected input variables . . . . . . . . . . . . . . . . 66
14 Maps of selected input variables after BCOK regularization . . . . . . . . . . . 67
15 HMZs from different approaches in 2022 and 2023 . . . . . . . . . . . . . . . 75
16 Boxplots of coffee yield over HMZs from different methods in 2022 and 2023 . 77



List of Tables

1 Ranges of sample amounts from the collected peer-reviewed papers considering
its spacing and the study area size

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Cutoff thresholds for soil chemical attributes under coffee cultivation . . . . . . 53
3 Clustering algorithms for the delineation of HMZs . . . . . . . . . . . . . . . 58

4 Descriptive statistics of soil chemical variables in the coffee crop (n = 40 in both
years) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Performance evaluation of BCOK regularization interpolation of transformed
variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Clustering metrics for SFI-based HMZ delineation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Loadings of soil variables and vegetation index in the first two principal com-

ponents of MULTISPATI-PCA principal components (PCs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Clustering metrics for MULTISPATI-PCA-based HMZ delineation . . . . . . . 71
9 Correlation between the soil variables and vegetation index and the Min/Max

Autocorrelation Factors (MAF) based on the Sphering transformed PCs which
eigenvalues are higher than one

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10 Clustering metrics for MAF-based HMZ delineation . . . . . . . . . . . . . . 73
11 Average values of soil properties, vegetation (NDVI), terrain (slope), and coffee

yield (kg . tree−1) over HMZs . . . . . . . . . . . . . . . . . . . . . . . . . . 76



List of symbols

B block
C point-to-block covariance
C0 nugget effect
C+C0 sill
|B| volume of the block which is called spatial support
Cov point-to-point covariance
F binary indicator of fertility status
Hi(Y ) Hermite polynomials
M variance-covariance matrix
N number of observed values in-situ
R range
Q orthogonalisation of variance-covariance matrix
yi observed value in-situ at a position i
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Chapter 1

Introduction

This thesis addresses issues related to precision agriculture (PA), particularly coffee precision

agriculture (CPA), with a focus on the contributions of geostatistical modeling, under different

approaches, to the applicability of information technologies in improving the management of

specialty coffee crops.

1.1 Context

Coffee is part of the Rubiaceae family, in the genus Coffea, in which more than 90 species have

already been described. Of these, around 25 are commercially exploited, of which only four are

of significant importance on the world market: Coffea arabica, known as arabica coffee; Coffea

canephora, known as robusta coffee or conilon coffee, and to a lesser extent: Coffea liberica

and Coffea dewevrei, which produce libérica coffee and excelsa coffee, respectively.

Arabica coffee (Coffea arabica L.) is the most important species of the genus Coffea and

accounts for around 70% of the coffee sold worldwide. It is native to the highlands of Ethiopia,

formerly Abyssinia, and is currently grown on the American continent, in Africa and Asia. It is

a superior quality beverage, with a striking aroma and a sweet taste, and is widely distributed

around the world, consumed pure or in blends with other types of coffee (MOREIRA SILVA;

ALVES, 2013).

Robusta or conilon coffee is the name used for varieties of the species Coffea canephora

Pierre ex Froehner. It is native to the lowland forests of Equatorial Africa, in the Congo River

basin, and is currently cultivated in some Central and West African countries, Southeast Asia

and South America. It is most commonly used in the preparation of blends, in which it is mixed
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with arabica coffee and can make up to 30% of the final product. Because it has a higher soluble

solids content than arabica coffee and a higher yield after the roasting process, robusta coffee

is an essential component of soluble coffees. The C. canephora beans have a high caffeine

content, are less aromatic and produce a differentiated drink when roasted (VIEIRA, 2017).

Coffee is one of the most important crops of the Brazilian economy. According to PAM/IBGE

(2023), Brazil is the major coffee producer of the world and accounts for 35.7% of the world

production. The total physical volume of Brazilian coffee exports in 60-kg bags between April

2023 and March 2024 amounted to 42.80 million bags. The average price of each bag of coffee

was 204.10 dollars, which made it possible to collect 8.73 billion dollars in foreign exchange

revenue, which converted into the country’s currency was equivalent to 43.12 billion Brazil-

ian reals at the time. Of this volume exported, 39.16 million bags were green coffee, which

corresponded to 91.5% of the overall total purchased by importers, with 32.83 million bags of

arabica coffee, which represented 83.8% of the total green coffee sold, as well as 6.32 million

bags of robusta+conilon coffee, which corresponded to 16.2% of the total green coffee exported

(OIC, 2024).

As coffee is such an important crop in Brazil, it is necessary to study the factors involved in

its production to reduce costs and increase yield. Coffee yield is affected by climate (VIEIRA,

2017), the occurrence of pests (ALVES et al., 2009), plant physiology, tillage system, plant

density and population (VIEIRA, 2017), slope and topography (GUIMARÃES et al., 1999) and

other factors (FERRAZ et al., 2012b). As a result of the diversity of factors that affect coffee

yield, uniform field management based on assumed homogeneity of the total area can decrease

farmers’ profits.

According to the Specialty Coffee Association (SCAA) (SCA, 2021) definitions, specialty

coffee “refers to the highest quality green coffee beans roasted to their greatest flavor potential

by true craftspeople and then properly brewed to well-established SCAA developed standards.”

These standards include scoring higher than 80 points on the quality scale and excellent or

outstanding quality in fragrance, aroma, flavor, aftertaste, acidity, body, uniformity, balance,

clean cup, sweetness, and overall better taste (SCA, 2021). Specialty coffee refers to a modern

demand for exceptional quality coffee, both farmed and brewed to a significantly higher than

average standard, and is related to the farmers and the brewer in what is known as the third wave

of coffee (ALMEIDA; SPERS, 2019). Over the last 20 years, the specialty coffee segment has
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seen a significant increase in demand worldwide, averaging 12% per year, while traditional

(commodity) coffees have grown at an annual rate of 2% (SILVA et al., 2021).

From this perspective, spatial analysis can maximize the economic returns by making farm

management more efficient and the PA principles meet the reality of managing coffee crops. PA

is not a single technology but a toolkit from which farmers choose what they need (LOWENBERG-

DEBOER; ERICKSON, 2019). Pierce (1999) considered precision agriculture (commonly also

known as “precision farming” or “site-specific management”) as a win–win solution both for

improving crop yield and environmental quality of agriculture. Farmers usually manage their

crop productivity and soil fertility using fixed-rate applications, through which fixed amounts of

fertilizers, amendments, and water are applied. This approach considers an area homogeneous,

disregarding soil, relief, and plant variations. From the farmers’ point of view, it is a practical

and convenient method to manage the farm, as it simplifies the management process. However,

this approach may overestimate the fertilizer input over the crops, causing negative environ-

mental impacts as erosion and lixiviation, while underestimate them in other areas, leading to

suboptimal production (LOWENBERG-DEBOER; ERICKSON, 2019).

The site-specific management of coffee crops requires continuous maps of land properties.

Consequently, soil sampling is required to better understand the variations across the field for

PA applications (TRANGMAR; YOST; UEHARA, 1986; GOOVAERTS, 1999). However, soil

properties present a continuum in their spatial variations, it is difficult to categorize soil samples

without introducing errors or over-simplifications (CASTRIGNANÒ; BUTTAFUOCO, 2020).

Also, soil properties have been traditionally measured with costly soil sampling and laboratory

analyses (SILVA; MANZIONE; OLIVEIRA, 2023; SILVA et al., 2024b), the requested infor-

mation at high spatial and temporal resolution can often be a limitation to adopt PA practices.

These maps usually are produced using spatial interpolation, especially by using geostatistical

approaches (CASTRIGNANO; BUTTAFUOCO, 2004; CASTRIGNANÒ; BUTTAFUOCO,

2020; SILVA et al., 2024b; SILVA; MANZIONE; OLIVEIRA, 2023).

Geostatistics is defined as a field of statistics focused on analyzing and interpreting the

spatial dependence within a certain area, and the difference between the values of a particular

property can be expressed as a function of the distance of separation between the sampled

points, which is called semivariance modeling (GOOVAERTS, 1997; GOOVAERTS, 1999). It

involves the estimation and modeling of spatial correlation taking into account the heterogeneity

and spatial variability. To perform a reliable semivariance modeling, some authors recommend
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different minimum sample points, from at least 30 pairs of points (YOST; UEHARA; FOX,

1982; LEGENDRE; FORTIN, 1989) to 100–140 sampled points (WEBSTER; OLIVER, 2007).

In general, the better the semivariance model, the better the quality of the kriging inter-

polation (PEREIRA et al., 2022). The presence of a single influential outlier can distort the

variogram estimates (CRESSIE, 1985). An outlier is an observation that lies an abnormal dis-

tance from other values in a random sample from a population. In a sense, this definition leaves

it up to the analyst (or a consensus process) to decide what will be considered abnormal. An

outlier may be due to a variability in the measurement, an indication of novel data, or it may be

the result of experimental error (CHILES; DELFINER, 2012). Low-sampled areas may present

outliers, that make spatial modeling with ordinary kriging (OK) problematic. Therefore, it is

common practice to immediately exclude any outlying observations, assuming that they are

influential (DRIEMEIER et al., 2016; SANCHES et al., 2018). This practice ignores that out-

liers are not necessarily influential observations(KUTNER et al., 2004) and might result from a

secondary, either deterministic or random, process of soil spatial variation (LARK, 2000).

Delineation of homogeneous management zones (HMZ) can aid site-specific applications of

farm inputs. HMZs are defined as “the sub-regions within the same piece of land showing sim-

ilar yield influencing factors within which different crop management practices are carried out

at the right time and place to optimize crop productivity and minimize adverse environmental

impact” (KHOSLA et al., 2002). Variable-rate application of fertilizers can follow the HMZs

to improve its management, since fertilizer use efficiency is quite low under uniform crop man-

agement practices (BASSO et al., 2011; SU; ZHAO; DONG, 2018). According to Schepers

et al. (2004), HMZs should follow the same yield trend across years and different cultivated

crops, for this reason HMZ boundaries may change over the time.

Separating the contribution of each soil property from soil fertility is very difficult, for this

reason, delineating HMZs is challenging (MOHARANA et al., 2020). Diverse techniques to

delineate HMZs are proposed in the literature, mostly based on geostatistical approaches (CAS-

TRIGNANÒ et al., 2018; CASTRIGNANÒ et al., 2009; CASTRIGNANÒ; BUTTAFUOCO,

2020; BUTTAFUOCO et al., 2010; BUTTAFUOCO et al., 2017, 2021; CASTRIGNANÒ et

al., 2000; AGGELOPOOULOU et al., 2013) or clustering based approaches (GAVIOLI et al.,

2019; MARTÍNEZ-CASASNOVAS; ESCOLÀ; ARNÓ, 2018; GEORGI et al., 2018; OHANA-

LEVI et al., 2019; SCUDIERO et al., 2018; ZERAATPISHEH et al., 2020; MIAO; MULLA;

ROBERT, 2018). However, joint using these two approaches is not usual. Most of the re-
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search focuses on using OK to interpolate variables to use them as input for clustering such as

fuzzy k-means cluster analysis (GILI et al., 2017; METWALLY et al., 2019), fuzzy c-means

clustering algorithm (BANSOD; PANDEY, 2013; MARTÍNEZ-CASASNOVAS; ESCOLÀ;

ARNÓ, 2018), or apply a dimensionality reduction tool over these interpolated maps as the

principal components analysis (PCA) (ORTEGA; SANTIBANEZ, 2007; JIANG et al., 2012;

METWALLY et al., 2019), spatially-weighting PCA (ARROUAYS et al., 2011; GAVIOLI et

al., 2019), or factorial kriging (CASTRIGNANÒ et al., 2018, 2019; CASTRIGNANÒ et al.,

2009).

We consider that these approaches can be successful for field partition into HMZs, however,

a lack of interpretability and applicability can happen, since the final decision to delineate HMZs

is: what is supposed to explain this field partition? HMZs has already being delineated by

using the principal components (PCs) scores to perform the clustering analysis based on usual

PCA (LI et al., 2007) or spatially-weighted (ARROUAYS et al., 2011; GAVIOLI et al., 2019).

Following the idea of soft computing as the combination of diverse methodologies to exploit

tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and

low solution cost, we consider delineating HMZs as a challenging to be dealt with combining

dimensionality reduction and unsupervised learning (clustering) in different ways, guided by

the needs and possibilities on each study case but with the same “toolkit”.

1.2 Research problem

Geostatistics refers to the statistical analysis of phenomena that change in a continuous spatial

manner. It can be defined as the tools that study and predict the spatial structure of georeferenced

variables. Geostatistics has been widely applied in agricultural science to solve the problem of

estimating soil and plant properties in unsampled locations from sample data (GOOVAERTS,

1997; GOOVAERTS, 1999). Measurement techniques hardly work on the same scale as the pro-

cess of interest. Therefore, some small-scale variability may be lost because sampling at a lower

scale is necessary and can rarely be achieved. However, when a field is low-sampled, outliers

may occur, making the performance of univariate kriging techniques problematic (CRESSIE,

1985).

In some situations, the information is multivariate: samples are collected from several loca-

tions, and several measurements are taken for each one. The tools used in multivariate geosta-
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tistical analysis are analogous to those in univariate analysis and include intrinsic hypothesis,

covariance, and cokriging (OLIVER; WEBSTER, 2015). In addition, multivariate geostatistical

methods are suited for Big Data applications, since this allows for the use of auxiliary datasets

for improving interpolation over unsampled areas, especially when dealing with the presence

of outliers and irregular grids (SILVA; MANZIONE; OLIVEIRA, 2023). More sophisticated

geostatistical models, like cokriging (WEBSTER; OLIVER, 2007), can include auxiliary data.

Big Data are massive volumes of unstructured and structured datasets considered difficult to

process, analyze, and manage using traditional data-processing techniques (RHIF et al., 2020;

HU et al., 2022). The increasing number of remotely sensed data provided by sensors coupled

on orbital satellites at various spatial and temporal resolutions, the number of data generated has

grown exponentially, making multispectral imagery for calculating vegetation indices (RHIF et

al., 2020; RHIF; ABBES; FARAH, 2019) and SAR satellite imagery (ZHANG et al., 2022;

LIU et al., 2022; ROZNIK; BOYD; PORTH, 2022) significant sources of Big Data (HU et al.,

2022).

The research problem is to model the spatial dependence of the factors influencing the

coffee yield of specialty coffees in an accurate way, since it is an asynchronous crop that tends

to have outliers when is low sampled.

1.3 Research hypothesis

The research hypothesis is that the use of data fusion techniques integrated with multivari-

ate geostatistics provides models capable of successfully delineating management zones over

specialty coffee crops, as well as helping increase the accuracy of yield interpolation.

1.4 Main objective

The main objective of the research is to delineate management zones for specialty coffee crops

and assess whether the incorporation of fused data has a positive impact (improvement) on

mapping the coffee yields of the areas under study.
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1.5 Specific objectives

• To understand the state-of-art of the use of geostatistics in precision agriculture in the

Brazilian scientific community;

• To evaluate the existence of spatial dependence in the yield of specialty coffees when

there is a low amount of data (less than 50 samples) and, consequently, outliers;

• To evaluate the potential for combining spectral response via vegetation index and soil

chemistry attributes in the process of delineating management zones and interpolating

yield;

• To develop a model combining data fusion and geostatistics capable of delineating man-

agement zones consistent with the yield map obtained by interpolation.

1.6 Journal articles published from this research

The bibliometric study presented in chapter 2 of this thesis was published in the journal Pre-

cision Agriculture (with an impact factor of 6.2) under the title “Exploring 20-year applica-

tions of geostatistics in precision agriculture in Brazil: what’s next?” (SILVA; MANZIONE;

OLIVEIRA, 2023).

The soil fertility index (SFI) approach for management zones delineation was published in

the journal Smart Agricultural Technology (with an CiteScore of 2.6) using data from other

coffee crop in the same farm from the present thesis. The article title is “Summarizing soil

chemical variables into homogeneous management zones – case study in a specialty coffee

crop” (SILVA et al., 2024c).

The block cokriging interpolation of coffee yield is presented in a detailed manned under

the title “Improving coffee yield interpolation in the presence of outliers using multivariate

geostatistics and satellite data” (SILVA et al., 2024b) in the journal AgriEngineering (with an

impact factor of 2.8).

The management zones delineation using the three approaches (SFI, MULTISPATI-PCA,

and MAF) under review the journal Precision Agriculture (with an impact factor of 6.2) under

the title “Combining geostatistical and clustering modeling strategies for delineating specialty

coffee management zones under low sampling” (SILVA et al., 2024a).
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1.7 Thesis layout

This thesis is structured as follows:

a) Chapter 2 presents an in-depth literature review about specialty coffees, PA, and geo-

statistics based on bibliometric techniques;

b) Chapter 3 presents the characterization of the study area and datasets, the methodology

with data fusion, dimensionality reduction, HMZs delineation by clustering, and its vali-

dation.

c) Chapter 4 presents the analysis of the results (sections 4.1 to 4.5) and the discussion

connecting it with state-of-art (sections 4.6 to 4.8)

d) Chapter 5 presents the conclusions of this thesis, recommendations, and suggestions for

future research.
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Chapter 2

Literature review

2.1 Coffee farming in Brazil

Coffee is an exotic plant that has significant socioeconomic importance for Brazil, due to its

significant capacity for generating jobs and distributing income in rural areas. The coffee plant

was introduced to Brazil in 1727, in the city of Belém, Pará State, brought from French Guiana

by Sergeant Major Francisco de Mello Palheta, at the request of the governor of Maranhão

and Grão-Pará. Even then, coffee had great commercial value (FRAGA, 1963; DIAS; SILVA,

2015). From then on, with increased demand from consumer markets in Europe and the United

States, coffee growing expanded to the south of the country, where it benefited from the cli-

mate and soil conducive to growing the Coffea arabica species. Coffee soon became the leading

agricultural export product, initially accounting for more than 70% of Brazil’s export revenues.

Currently, coffee accounts for around 4% of Brazilian agricultural exports, but even with this

smaller share in the generation of foreign exchange in the balance of trade, coffee is an ex-

tremely important crop both economically and socially.

Total world coffee production for season 2023-2024 has been estimated at 178 million bags.

The world crop of Coffea arabica will be 102.2 million bags (57.4%) and Coffea canephora

75.8 million bags (42.6%) in the period from October 2023 to September 2024 (OIC, 2024).

According to data from the Brazilian National Supply Company or Companhia Nacional de

Abastecimento (CONAB) (COMPANHIA NACIONAL DE ABASTECIMENTO, 2023), 2023

production of the Brazilian crop is estimated at 62.3 million processed bags of coffee, including

Arabica and Conilon (CONAB, 2023). Of these, arabica would be responsible for the produc-

tion of 48.77 million bags (79%), while robusta would reach 13.53 million bags (21%). The
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total area planted with coffee in Brazil is 2,161,942 ha, with 1,759,906 ha (81.4%) of arabica

and 402,036 ha (18.6%) of robusta. Brazil’s overall average yield for the 2020/2021 harvest

was estimated in 33.48 bags ha−1. Arabica productivity was 32.18 bags ha−1, while robusta

yield was 24.28 bags ha−1 (COMPANHIA NACIONAL DE ABASTECIMENTO, 2023).

In Brazil, coffee grows in a variety of forms due to the great diversity of climates, altitudes,

and types of soil throughout the country (VIEIRA, 2017). Fig. 1 shows the spatial distribution

of yearly coffee production in 2022 at Brazilian municipalities (PAM/IBGE, 2023). The state

of Minas Gerais is particularly noteworthy, accounting for around 65% of Brazil’s production,

with the majority of award-winning properties located in the south of the state at altitudes of

over 1000 meters, with a predominance of small, semi-mechanized properties or those managed

manually (MOREIRA SILVA; ALVES, 2013, p. 20).

Minas Gerais was responsible for 54.9% of national coffee production in 2020, with an

estimation of 34.65 million bags (or 60 kg) of processed coffee, corresponding to an increase of

41.1% compared to the previous year’s harvest. For Arabica coffee only, Minas Gerais produced

34.34 million bags of processed coffee, which represents 70.4% of Brazil’s production of this

type of bean. The Matas de Minas region produced 8,589.6 thousand bags of arabica coffee,

accounting for approximately 25% of the state’s total arabica coffee production. The total area

planted with arabica coffee in Minas Gerais is 1,235,477 ha (99%); of these, 1,032,280 ha were

occupied by coffee trees in production in 2020. The productivity of this type of coffee was

estimated for the 2020/2021 agricultural year in 33.26 bags ha−1 in the state (COMPANHIA

NACIONAL DE ABASTECIMENTO, 2023).

MapBiomas (2021) mapped land use across the country on an annual basis (1985-2020) and

included coffee crops as one of its land use classes. Using geospatial analysis of these mappings,

804,000 hectares of coffee were identified throughout the country. In the state of Minas Gerais,

there are 578,000 hectares of coffee, allocated to approximately 102,000 plots, with an average

size of 5.5 hectares (MAPBIOMAS, 2021). These plots presented areas ranging from 0.5 to

1453 hectares.

Soil fertility management is crucial to improving coffee yield and quality in the context of

specialty coffees, however, uniform management may be unrealistic. For example, Corrêa et

al. (1983) proposed nutrient demand amounts based on the expected coffee yield: 4.5 kg N

per bag, 0.5 kg P2O5 per bag and 4.3 kg of K2O per bag. This uniform management recom-

mendation is unrealistic as this does not take into account any vegetation variation due to fruit
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load (SOUZA, 2022). In this sense, including more information on the management decision

is crucial. Spatial and temporal variation in soil properties and meteorological conditions may

affect coffee growth, grain development, quality, and final yield (ALVES et al., 2009; SILVA et

al., 2010; FERRAZ et al., 2017; FERRAZ et al., 2012a; SILVA; LIMA, 2013; FERRAZ et al.,

2014; BARROS et al., 2022; ARAÚJO et al., 2017, 2018; LIMA et al., 2016; ANDRADE et

al., 2018). To increase farmers’ profitability and environmental protection, management prac-

tices need to adapt to variable site conditions (FLEMING et al., 2000; COLAÇO; BRAMLEY,

2018). In this manner, specialty coffee management is potentially a precision agriculture appli-

cation in itself.

2.2 Precision agriculture

The International Society of Precision Agriculture (ISPAG) defined PA as “a management strat-

egy that gathers, processes and analyses temporal, spatial and individual data and combines

them with other information to support management decisions according to estimated variabil-

ity for improved resource use efficiency, productivity, quality, profitability and sustainability of

agricultural production” (ISPAG, 2019). According to PA principles, the inherent spatial vari-

ability generated by external factors across the croplands needs to be taken into account in such

a way that both farmers’ profitability and environmental stewardship turn out to be increased

(MCBRATNEY et al., 2005; LOWENBERG-DEBOER; ERICKSON, 2019). In this manner,

understanding spatially the surface phenomena is fundamental for PA applications.

A relevant topic on PA is the use of HMZs, which are defined as sub-regions of a field

and within which the effects on the crop of seasonal differences in weather, soil, management,

etc. are expected to be uniform (PERALTA; COSTA, 2013; CASTRIGNANÒ et al., 2018).

HMZs delineation is important for the application of PA because farm management decisions

are based on it to make decisions on where and how much to apply when scheduling fertiliza-

tion strategies. For this purpose, it is often useful to define classes from a set of multivariate

spatial and temporal data that include properties believed to influence crop yield, such as land-

scape factors that control water distribution (i.e. elevation and slope) (JACINTHO et al., 2017;

DE BENEDETTO et al., 2013), soil physical properties that affect water-holding capacity (i.e.

texture and bulk density) (MANZIONE; SILVA; CASTRIGNANÒ, 2020; CID-GARCIA et

al., 2013), satellite-based vegetation indices (BASSO et al., 2001; OLDONI et al., 2020) and
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soil chemical properties that affect fertility (i.e. pH, electrical conductivity and organic matter)

(MOORE et al., 1993; GESSLER et al., 2000; AGGELOPOOULOU et al., 2013; CÓRDOBA

et al., 2016).

The delineation of HMZs is based on the spatial variability of the crop in its natural physic-

ochemical characteristics, not taking into account the variability of anthropic actions (such as

tillage and fertilization), thus only the effects of this management on the chemical and physical

variables sampled can be captured, in other words, in an indirect way (PERALTA; COSTA,

2013; BUTTAFUOCO et al., 2010). The recognition of spatial patterns of soil attributes across

the field is essential to the feasibility of applying different and localized management practices

in the context of PA. However, the high heterogeneity between different soil chemical vari-

ables in the soil makes summarizing it into unique zones a challenge that involves agronomical,

mathematical, and computational aspects (CÓRDOBA et al., 2016). Also, developing rational,

replicable strategies is crucial for bringing PA to the field (CÓRDOBA et al., 2016).

Synthesizing different chemical variables is a challenge because when adding high variabil-

ity to a model, the interpretation of the model becomes more complex (GUASTAFERRO et al.,

2010). Addressing this challenge leads to a gain of knowledge and applicability of HMZs maps

because usually, HMZs have an arbitrary number of zones, decided by the agronomical expert

together with the farmer (JACINTHO et al., 2017).

Spatial heterogeneity of soil characteristics is an inevitable problem and represents one of

the intrinsic characteristics of soil properties (ELBASIOUNY et al., 2014; SHE et al., 2016).

Ignoring the heterogeneity may result in the under application or over application of fertilizers

at specific sites (FU; TUNNEY; ZHANG, 2010; BUTTAFUOCO et al., 2010).

Most properties in an agricultural field show spatial dependence at many scales, there-

fore geostatistics is usually preferred to describe spatial variation (CASTRIGNANO; BUTTA-

FUOCO, 2004; BOLUWADE; MADRAMOOTOO, 2013; BERNARDI et al., 2017; PARIS

et al., 2019). According to the geostatistical paradigm, any soil or crop attribute is considered

a random regionalized variable that varies continuously and its variation can be described by a

spatial covariance function (MATHERON, 1970). The kriging-based technique can provide the

best linear unbiased estimation for the soil properties at unsampled locations (ISAAKS; SRI-

VASTAVA, 1989; EMADI et al., 2016). Nevertheless, in PA it may be sensible to divide the

field into a few practical management zones. To ensure spatial contiguity because of spatially

continuous variation (ORTEGA; SANTIBÁÑEZ, 2007; SCUDIERO et al., 2013; CÓRDOBA
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et al., 2016), a probability-based approach in a smoothed manner may be used to make HMZs

more useful and applicable in the field.

2.3 State-of-art of geostatistics for precision agriculture ap-

plications in Brazil

2.3.1 Bibliometric research questions (RQs) for state-of-art analysis

Bibliometric analysis is an approach for analyzing and examining the evolution of literature

in a particular field, allowing insights into its articles, authors, subjects, sources, and intra-

relationships from a set of documents based on citations rather than content (PALLOTTINO

et al., 2018). Bibliometric analysis aptly summarizes the bibliographic materials and provides

an efficient quantifiable analysis. According to Donthu et al. (2021), it helps and empowers

researchers to get a broad overview, discover knowledge gaps, develop fresh research ideas,

position their planned contributions to the field, and promote multidisciplinary research.

In this context, we have attempted to address this bibliometric study by answering the fol-

lowing underlying research questions (RQ):

1. RQ1: What have been the main keywords from peer-reviewed papers on geostatistics for

PA applications from Brazilian researchers?

2. RQ2: What are the past perspectives indicated by the peer-reviewed papers on geostatis-

tics for PA applications from Brazilian researchers?

3. RQ3: What are the trends and contexts being followed by the peer-reviewed papers pre-

viously analyzed?

We give a historic account of perspectives for geostatistics advances from the 2000s to

2020s connecting it with the use of geostatistics for PA in Brazil. We mention their successes

in the past, we identify their merits and weaknesses in the present, and we conjecture on future

developments. To address this goal, we have based on the hypothesis that a bibliometric analysis

will be able to outline the current state of using geostatistical tools for PA applications in Brazil

in the last twenty years (2002-2022) to reveal their current research trends and hotspots.
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2.3.2 Bibliometric state-of-art analysis

For the bibliometric analysis with Scopus-indexed peer-reviewed journal articles, we searched

for “Precision Agriculture” together with “Geostatistics” under the heading ‘Article title, Ab-

stract, Keywords’ in the Scopus database in early April 2023. 144 peer-reviewed documents

were identified. The actual search coding was “( TITLE-ABS-KEY ( “precision agriculture”)

AND TITLE-ABS-KEY ( “geostatistics” ) ) AND PUBYEAR > 2001 AND PUBYEAR <

2023 AND ( LIMIT-TO ( AFFILCOUNTRY , “Brazil” ) ) AND ( LIMIT-TO ( DOCTYPE ,

“ar” ) )”. As a comparison, the same search was performed using “machine learning”, “data

science”, and “artificial intelligence” instead of “geostatistics”.

We have chosen this search coding after testing using "Brazil" as a keyword instead of the

authors’ country, where we found that the amount of articles is smaller (only 52) and all of them

can be captured using the author’s country. The reason is the absence of mentioning the country

of the study area in the title nor the abstract or keywords in most of the articles (92 articles).

In terms of descriptive analysis, the study analyzed the author’s keywords in perspective of

proceedings papers and peer-reviewed journal articles using word cloud, relevance accounting,

and co-occurrence networks.

We used keyword analysis tools to identify the most frequently used author’s keywords. The

author’s keywords represent the theme of the research articles and provide a direction to scale

the issues involved in the articles (COMERIO; STROZZI, 2019). The co-occurrence network

is represented through nodes and links, where the node’s size represents the keyword’s degree

of connectiveness with other keywords. For reducing redundancy in these analyses, the terms

“geostatistics”, “kriging”, “precision agriculture”, and “brazil” were excluded. Here we unify

the terms “semivariogram” and “variogram” for the convenience of organizing the keywords

and also because the use of these terms reflects the confusing situation in geostatistical litera-

ture (BACHMAIER; BACKES, 2008). Some authors write “variogram” (WACKERNAGEL,

2003), while others write “semivariogram” (OLEA, 1991; CRESSIE, 2015) considering that

the “semivariogram” is half the variance of the difference of two random variables, which is

the actual “variogram” (ISAAKS; SRIVASTAVA, 1989). Another correct alternative term to

"variogram" could be “semivariance", which is quite unusual in agronomical studies.

Among the 144 articles analyzed, 125 recorded a total of 1,479 citations, while the others

did not record any citations. All articles have either PhD or MSc as first authors. 93.75% of the

corresponding authors were the first author based on a Brazilian institution (135 articles). When
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performing the same search using the terms “machine learning”, “data science”, and “artificial

intelligence” instead of “geostatistics”, 61, 16, and 23 documents were returned, respectively.

Fig. 2 shows the most cited journals regarding the 144 articles of geostatistics in PA in

Brazil retrieved between 2002-2022. “Revista Brasileira de Ciência Solo” (“Brazilian Journal of

Soil Science”, in English), “Geoderma”, “Soil Science Society of America Journal”, “Precision

Agriculture”, and “Engenharia Agrícola” (“Agricultural Engineering”, in English) contain the

articles with the highest number of citations.

Figure 2: Most local cited journals regarding articles of geostatistics in PA in Brazil (2002-
2022).

Fig. 3 shows the word cloud of keywords listing the most relevant keywords plot from

144 peer-reviewed articles on geostatistics for PA. Word Cloud is a visual representation of

keywords giving greater prominence to the words that appear most frequently. The number

of keywords was restricted to 25. We considered “precision agriculture”, “geostatistics”, and

"brazil” as redundant. “Spatial variability”, “ordinary kriging”, “soil management”, “semivari-

ogram”, and “soil fertility” are the most frequent keywords. The Trend Topics plot from 20-year

peer-reviewed journal articles is shown in Fig. 4, revealing the predominance over time of the

most relevant keywords.

The co-occurrence of the author’s keywords plot from articles is shown in Fig. 5. We have

chosen five as the minimum number of keyword occurrences to enable the presentation of 25

keywords on the map (see Fig. 5).
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The first research question (RQ1) aimed to introspect the pattern of main keywords from

144 peer-reviewed papers on geostatistics for PA applications from Brazil-based researchers.

Besides redundant terms, the most relevant ones were ‘spatial variability”, “ordinary kriging”,

and “soil management”. There is notably a similar predominance of interpolation and mapping

studies based on OK for PA. Multivariate geostatistics, data fusion, and disruptive combinations

of ML with geostatistics had no participation.

The second research question (RQ2) dealt with the past perspectives detected. The successes

of geostatistics for PA applications from Brazil-based researchers were their predominance over

other methodologies (machine learning (ML), data science, or artificial intelligence (AI)) while

their main weaknesses in the present are the lack of innovation since most of the studies present

the same basis (univariate OK for soil variables interpolation) over the last 20 years.

The third research question (RQ3) addressed the associations we can make by combining

the insights from the previous research questions. Summing up, studies present similar trends

in terms of what kind of geostatistical methodology they are using: OK for interpolation of

univariate data. Based on RQ3, we conjecture on future developments, especially regarding

geostatistics for PA in Brazil, more exploration on data fusion and multivariate geostatistics is

highly recommended.

The next sections of this chapter presents the conjectures developed from the RQ3.

2.4 Geostatistics theory

From the bibliometric analysis, it is notable there is a predominance of interpolation and map-

ping studies based on OK for PA on both undergraduate and graduate studies detected by ana-

lyzing proceeding papers and peer-reviewed articles, respectively. This predominant approach

considers only a little portion of the potential approaches under the geostatistical umbrella.

There is a wide range of geostatistical methods. For univariate spatial modeling, the most usual

method is OK, while for multivariate spatial modeling, the most usual methods are cokriging

(COK) (WEBSTER; OLIVER, 2007), and kriging with external drift (KED) (XU et al., 1992).

Geostatistics is widely used for PA applications because of the need for spatially continuous

data of agricultural variables (BASSO et al., 2001; CASTRIGNANO; BUTTAFUOCO, 2004).

Geostatistics is defined as a field of statistics focused on analyzing and interpreting the spatial

dependence (i.e. spatial covariance) within a certain area, and the difference between the values
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of a particular property can be expressed as a function of the distance and direction in 2D of

separation between the sampled points, which is called semivariance or variogram modeling

(GOOVAERTS, 1997; GOOVAERTS, 1999). It involves the estimation and modeling of spatial

correlation taking into account the heterogeneity and spatial variability.

Crop field and soil is a continuum that generally follows Tobler’s first law of Geography,

namely “Everything is related to everything else, but near things are more related than distant

things” (TOBLER, 1970). This is supported by several studies that have shown that the vari-

ability of soil properties is spatially dependent within a certain area, and the difference between

the values of a particular property can be expressed as a function of the distance of separation

between the sampled points (JUANG; LEE, 2000; LLOYD; ATKINSON, 2001; CASTRIG-

NANO; BUTTAFUOCO, 2004; CRESSIE, 2015; WEBSTER; OLIVER, 2007; MORARI;

CASTRIGNANÒ; PAGLIARIN, 2009; SILVA; LIMA, 2012; ELBASIOUNY et al., 2014;

OLIVER; WEBSTER, 2015; EMADI et al., 2016; CASTRIGNANÒ et al., 2018). Notably,

this spatial dependence presents uncertainties (MANZIONE; CASTRIGNANÒ, 2019). For

this reason, this spatial dependence could be not stationary, and hence change from “place to

place” due to external forcing even in relatively small areas or into zones inside the study area

(GOOVAERTS, 1998, 2001; BOGUNOVIC et al., 2018).

Choosing the most suitable method for a given dataset has been summarized in Fig. 6.

Notably, OK is not the only geostatistical option available. Kriging methods rely on the no-

tion of spatial autocorrelation while ML and other types of modeling do not explicitly (splines,

triangulated irregular network, TIN, natural neighbor and inverse distance weighting, IDW).

Autocorrelation is a function of distance. In classical statistics, observations are assumed inde-

pendent, that is, there is no correlation between observations.

In geostatistics, the information on spatial locations allows you to compute distances be-

tween observations and to model autocorrelation as a function dependent on the distance and

direction of separation in 2D. For this reason, most of the papers use the keywords “spatial

variability” and “spatial dependence” to name the results from the kriging analysis. In addi-

tion, data transformation is highly recommended for geostatistics analysis. According to Oliver

(2015), the geostatistical analysis does not require data to follow a normal distribution. How-

ever, variograms comprise sequences of variances, and these can be unstable where data are

strongly skewed and contain outliers. If data do not have a near-normal distribution and have

a skewness coefficient outside the limits ± 1, because of a long tail, data transformation should
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be considered in this case. Unfortunately, data transformation was rarely used in the collected

papers (14 articles).

Also, it is important to highlight geostatistics analysis needs well-structured variograms

which are not always achieved, even when some spatial autocorrelation is found. A variogram

measures the mean degree of dissimilarity (semivariance) between samples separated by a given

distance and directions, and thus can describe autocorrelation among observations at specified

distances (OLIVER; WEBSTER, 2015).

In general, the semivariance increases with increasing distance between observations until

an upper bound is achieved. The value of semivariance at which the variogram plateaus is called

the sill, the distance at which the sill is reached is called range, and the semivariance at zero

distance is called nugget. The nugget is an estimate of the residual error or spatially uncorrelated

error. The observations located within the range are spatially dependent or autocorrelated, while

observations away from this distance are not. Sill, nugget, and range are crucial parameters to

be met before applying any type of geostatistical method.

Fig. 6 highlights the need to take into account if the dataset is multivariate or not since

bi-or-multivariate methods (COK and KDE) are available. Also, the support of data needs to be

checked, and applying data fusion should be considered. Fig. 6 outlines a basic initial frame-

work for strategizing applications of geostatistics for spatial analysis. Applications that also use

explicit temporal components are possible (MANZIONE et al., 2019; TAKAFUJI; ROCHA;

MANZIONE, 2020, 2019; VAROUCHAKIS et al., 2021; BIVAND et al., 2008; SEKULIĆ

et al., 2020; GRÄLER; PEBESMA; HEUVELINK, 2016; HENGL et al., 2012; HIEMSTRA

et al., 2009; DE IACO; POSA, 2016; DE IACO; MYERS; POSA, 2002) but are not covered by

this flowchart.

2.5 Moving from interpolation to uncertainty modeling

Interpolation (spatial prediction) is the process of estimating a target variable at unsampled

locations and can be realized by applying a wide range of models. For an unsampled point in

a spatial position, the closer it is to the sampled point, the more likely the attribute value is

similar, and this is the most basic assumption of spatial interpolation methods.

Reliably performing a semivariance analysis is highly dependent on the sampling data avail-

able. Yost et al. (1982) and Legendre (1989) recommend at least 30 pairs of points to perform
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Figure 6: Flowchart for choosing the most suitable method for spatially interpolating a given
dataset
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a reliable semivariance modeling, while Webster (2007) sets 100–140 sampled points as a min-

imum sample amount. Regarding the bibliometric analysis, Table 1 summarizes the sample

number ranges on which the articles based their geostatistical analysis.

Over the 144 peer-reviewed articles retrived by bibliometric analysis, sampling was done un-

der regular (80 articles), quasi-regular (35 articles) or irregular (29 articles) grids. Notably, most

of the research was based on low-sampled studies. This is potentially a weakness because em-

pirically semivariance seems to be better structured on normal or quasi-normal datasets without

outliers. Little datasets are less able to well-capture heterogeneity, especially when the differ-

ence between the average and extreme values are higher than the standard deviation, trending to

be a sparse dataset. Nevertheless, geostatistical methods still achieve reliable results even under

low sampling, which is not achieved in machine learning methods, which require datasets with

at least hundreds of points (HASTIE et al., 2009).

Considering the amount of research with a small number of sample points, the occurrence of

data sets with very low or no spatial autocorrelation can occur, but even in these cases attempts

are made to obtain maps from these samplings, hence splines, TIN or IDW have been used in

these cases (BERNARDI et al., 2017; BERNARDI et al., 2018). This approach is not justified
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Table 1: Ranges of sample amounts from the collected peer-reviewed papers considering its
spacing and the study area size

Number of sample Spacing (m) Average area (ha) Number of articles

≤ 50

0-5 1-5 24

5-10
1-5 4
5-10 8

10-25 5-10 6

51-100

0-5 1-5 30

5-10
5-20 8
20-50 12

10-50 20-100 5

101-200
0-5 1-20 18
5-10 20-100 12
10-35 100-500 4

201-1000 5-10 100-500 11
≥ 1000 0-10 200-250 2

in terms of spatial statistics strictly, since there is no effective gain of information with this

interpolation based on weights without spatial correlation. In practical terms, this approach just

creates a poor visualization without spatial dependence.

The challenge of modeling for PA, especially under low-sampled situations, is an oppor-

tunity for moving from interpolation studies to uncertainty-based analysis. Uncertainty mod-

eling is a sophisticated statistical approach to data analytics that enables managers to identify

key parameters associated with data generation to reduce the uncertainty around the predictive

value of that data. A simple interpolation of such relatively sparse spatial data always involves

large uncertainties (FOUEDJIO; KLUMP, 2019). Assessing the uncertainty around the pre-

dictive value at target locations, and incorporating this assessment to support decision-making

is becoming increasingly important (AGGELOPOOULOU et al., 2013; CASTRIGNANÒ et

al., 2017; COULSTON et al., 2016; VAYSSE; LAGACHERIE, 2017), however, still very lit-

tle attention has been paid to their ability to provide reliable prediction uncertainties for PA

applications in Brazil.

Uncertainty can be modeled by a probability distribution of an unknown value based on the

available related information (MANZIONE; CASTRIGNANÒ, 2019). Geostatistical models

have been used widely because of their capacity to provide unbiased estimation of a spatial

variable and its uncertainty involved (MANZIONE; CASTRIGNANÒ, 2019; BUTTAFUOCO
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et al., 2021; MORARI; CASTRIGNANÒ; PAGLIARIN, 2009), even though technically com-

plex and based on strict assumptions. One advantage of using geostatistics for heterogeneous

datasets is the possibility to treat different support data inside a common prediction model

(CASTRIGNANÒ; BUTTAFUOCO, 2020). The challenge is to apply the integrated approach

to a variety of practical situations, in which it is required to combine spatial data in many forms,

from sparse sampling to exhaustive remote/proximal sensing, but crucially providing a measure

of prediction uncertainty (MANZIONE et al., 2019).

2.6 Data fusion

To increase the effectiveness of PA in the field it is necessary to improve the accuracy of map-

ping, interpolation, and estimating the relevant agronomic variables, which could be achieved

by intensifying sampling. However, due to the high costs, sampling can never be exhaustive and

so a large portion of the field will remain unexplored. For example, Buttafuoco et al. (2017)

argue that only using direct soil sampling cannot perform an effective delineation of a field into

management zones at the scale required by PA. In this way, combining datasets with different

sampling configurations and different supports can be useful (ROSSEL et al., 2011; CASTRIG-

NANÒ et al., 2017; CASTRIGNANÒ et al., 2018; RODRIGUES et al., 2021). However, the

relationship between these different datasets often is not direct nor linear, requiring complex

manipulations (CASTRIGNANÒ et al., 2017; CASTRIGNANÒ et al., 2018; RODRIGUES et

al., 2021).

In this context, data fusion may be crucial for improving mapping for PA. Data fusion refers

to the set of algorithms, processes, and protocols that combine different datasets into a single

model that provides complementary views of the same phenomenon. Correlating and fusing

information from multiple sources allows more accurate and complete inferences than those that

are derived from any single source alone (HALL; MCMULLEN, 2004). Rigorously, data fusion

may assume different meanings such as information fusion, sensor fusion, or image fusion.

Information fusion is the process of merging information from different sources (ROGOVA;

NIMIER, 2004); sensor fusion is the combination of data from different sensors (SASIADEK,

2002) and image fusion is the fusion of two or more images into one, which should be a more

useful image (ZHANG, 2004).
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Regarding the sensor data fusion, multi-source data can be collected for a variety of spatial

scales more often than one of interest and most environmental variables display spatial struc-

tures, such as gradients, patches, trends, and complex spatial autocorrelation, which may exist

at many scales (ANASTASIOU et al., 2019; CAO; YOO; WANG, 2014; CHANG; BAI, 2018;

MANZIONE; CASTRIGNANÒ, 2019; CASTRIGNANÒ et al., 2018; CASTRIGNANÒ et al.,

2017, 2021, 2020; MANZIONE; SILVA; CASTRIGNANÒ, 2020; RODRIGUES et al., 2021).

Moreover, the assessment of spatial variations strongly depends on the size of the sampling

unit or measurement unit of the sensor. Therefore, the size of the sampling/measurement unit

is quite important in the process of investigation because it can critically influence our percep-

tion of environmental phenomena (CASTRIGNANÒ et al., 2021; RODRIGUES et al., 2021).

Summing up, together with the opportunity of using data from more than one source, there is

a challenge of dealing with the difference between them looking for gaining information while

understanding the uncertainty involved when combining multi-sensor data. For this reason,

sensor data fusion and support analysis are an always-together challenge for applying it in PA.

Data fusion is still little used by Brazil-based researchers in PA. Only one peer-reviewed

article dealing with this subject (VASQUES et al., 2020) discuss this topic using multiple linear

regression of kriged maps in a case study located in Brazil, the other one presented a case study

using factorial kriging (FK) but from a field from Italy (RODRIGUES et al., 2021). FK is a

widely used geostatistical approach for fusing multivariate data (BOCCHI et al., 2000; MA et

al., 2014; LV et al., 2013; GOOVAERTS, 1992), but still not widely used in Brazil. FK utilizes

linear coregionalization model (LMC) fitting, i.e. all experimental simple and cross-variograms

are modeled with a linear combination of basic variogram functions to examine the spatial

relationship of given variables at multiple scales, and provides a partition of the total variation

into various spatial components separately. This partition is provided by principal component

analysis of LMC matrices. These components are named “regionalized factors”, and reflect the

main features of the multivariate data for each spatial scale and whose scores are interpolated

by cokriging. These factors (or loading coefficients) correspond to the covariances between the

variables and principal components. Usually, the cokriged regionalized factors are related to

short and long-range variation. Regionalized factors can be used as a field partition to guide

site-specific management (BUTTAFUOCO et al., 2021, 2017; CASTRIGNANÒ et al., 2018;

CASTRIGNANÒ et al., 2017; BUTTAFUOCO et al., 2015; BUTTAFUOCO et al., 2010).
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2.7 The problem of change of support

The need for more and better information in PA can be met by wider use of multi-sensor plat-

forms, both ground- and air-based, effectively integrated (BUTTAFUOCO et al., 2017). Fur-

thermore, the data may have different spatial resolutions (support sizes), shapes, and configu-

rations, and their combination results in the problem of change of support (WEBSTER, 1991;

RIVOIRARD, 1994; CRESSIE, 1996; GELFAND; ZHU; CARLIN, 2001; EMERY, 2007).

Not considering the problem of change of support when combining data from different sources

might result in misdiagnosis and misclassification (EMERY, 2007).

Merging data from different sources and sensors are often done by using geographic infor-

mation systems (GIS) software like ArcGIS (ESRI, 2022) and QGIS (QGIS DEVELOPMENT

TEAM, 2023). For example, this software performs union, intersection, zonal averaging, and

pixel-by-pixel computations between two raster images with different supports. Despite being

fast and scalable, these operations do not treat the change of support problem. Consequently,

there is ambiguity about the support of the output and there is no measure of uncertainty asso-

ciated with input or prediction (NGUYEN et al., 2014).

One of the possible approaches to the problem of change of support from a geostatistical

point of view is the block cokriging (BCOK) (BURGESS; WEBSTER, 1980; CRESSIE, 2006;

CHILÈS; DELFINER, 2012). BCOK is a kriging method in which the average expected value

in an area around an unsampled point is generated rather than the estimated exact value of an

unsampled point. BCOK can be used to provide better variance estimates and smooth interpo-

lated results (BORÉM et al., 2021) to effectively upscale point-scale observations to the “block”

scale.

Often, a data transformation is needed before applying BK. The Gaussian Anamorphosis ap-

proach has been widely used for it (CHILÈS; DELFINER, 2012; BUTTAFUOCO et al., 2017;

CASTRIGNANÒ et al., 2020). In this method, each variable is transformed into a normally dis-

tributed variable beforehand if it shows a large departure from the Gaussian distribution. If the

predictions are produced on a block instead of a point support, a coefficient is needed to obtain

an anamorphosis on a block support (CHILÈS; DELFINER, 2012), which will be later used to

back-transform block Gaussian estimates into the original distribution from raw data. A support

correction coefficient r is determined from the variance of blocks, and the punctual variance is

calculated as the sill of the variogram assumed stationary. The variogram based on a point

support is calculated on the smallest support, whereas a variogram on a given block support
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requires a process of regularization, consisting of discretizing the blocks into equal cells after

which a pseudo-experimental variogram is calculated in the fictitious cell centers, and then the

point variograms are averaged over the block. Summing up, the BCOK can be used to predict

the average values of a multi-variate process at a larger scale, accounting for the size, shape,

and orientation of the blocks (CASTRIGNANÒ et al., 2017; RODRIGUES et al., 2021).

Support change and uncertainty go together and special attention is needed when applying

BCOK (KANG et al., 2016). Following Tobler’s first law of geography, sampling points located

closer to a predicted location contribute more strongly than more remote points. However, if the

nearer samples have larger uncertainties, samples with smaller uncertainties but at greater dis-

tances from the prediction block may be more beneficial for spatial inference (CRESSIE, 2015).

Researchers have been working on decomposing the kriging coefficient matrix to incorporate

uncertainty. Among the first ones in this task, Watson et al.(1984) modified the observation

covariance matrix by adding heterogeneous error terms to the diagonal. This modification was

used to predict groundwater levels (SAVELYEVA et al., 2010) and soil salinity (HAMZEH-

POUR et al., 2013). However, Christensen et al. (2011) proposed another modification, based

on the “right-hand side” vector of the kriging equations using the error terms arguing the mod-

ification proposed by Watson et al.(1984) is appropriate for point-to-point estimation, but they

cannot be used to upscale a spatial variable to the pixel scale in remote sensing, which can be

an example of “block” scale. In this respect, Kang et al. (2016) proposed a BCOK modification

using homogeneous or heterogeneous error terms to upscale soil moisture data for interpolation,

achieving a decrease in prediction uncertainty by considering heterogeneous error terms.
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Chapter 3

Material and Methods

3.1 Description of the study site and agronomic practices

This study was conducted in a specialty coffee crop in the municipality of Paraguaçu, southern

Minas Gerais, Brazil, where most of Brazil’s coffee crops are concentrated. The coffee crop plot

consisted of 3500 trees (Fig. 7). The coffee cultivation (Coffea arabica L.), cultivar Catucai

Amarelo SL 134, was transplanted in 2012, at a spacing of 3.8 m between rows and 0.75 m

between plants. The maximum altitude of this area is 894.3 m. Fig. 7 shows the study area and

soil and yield sampling distribution in May 2022 and May 2023, overlapping an image taken

on September 29 2021 by an original non-interchangeable camera onboard an unmanned aerial

vehicle (UAV) model DJI Mavic 2 Pro, using an interface software “DJI Ground Station Pro”.

The mosaic building software was the OpenDroneMap (OPENDRONEMAP, 2020) with the

flight at 40 m height. The image has a ground sample distance of 0.94 cm/pixel−1.

Uniform fertilization over the entire coffee plot was done directly on the soil in 2021 by

applying 42, 10, and 42 kg.ha−1 of N, P, K and in 2022 and 2023 by using organic compost

produced by aerial composting in an area of the farm near to the coffee plots.

In this area, soil is classified as Argisols. This is characterized as a soil with higher natural

fertility (eutrophic), good physical conditions and more gentle terrain have greater potential for

agricultural use. Their limitations are more related to their low fertility, acidity, high aluminum

content and susceptibility to erosion processes, especially when they occur on rougher terrain

(SANTOS et al., 2006).

Climatic conditions of Paraguaçu municipality are shown in Fig. 8 in terms of monthly

accumulated rainfall and average monthly air temperature. According to data from the National
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Figure 7: UAV image of the study area with soil and yield sampling points in May 2022 and
May 2023
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Meteorological Institute (INMET) (MACHADO et al., 2019), since 1961 the absolute minimum

temperature recorded was on June 9, 1985, with a minimum of -1.8 oC, followed by -0.8 °C on

July 21, 1981 and -0.6 oC on July 18, 2000. The historical maximum is 37.1 oC on October 3,

2020, with the previous record being October 2014, on the 14th and 15th, when the maximum

reached 37 oC. The record for accumulated rainfall in 24 hours was 140 millimeters (mm)

on November 8, 1970. The region is characterized by a mild, tropical altitude climate, with

moderate temperatures, and a hot and rainy summer, classified as Cwa according to Köppen’s

classification (REBOITA et al., 2015).
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Figure 8: Hitorical climatic conditions (Rainfall and average air temperature) of Paraguaçu
municipality (Minas Gerais state, southeast Brazil)

3.2 Soil and yield sampling and remotely-sensed covariates

Forty composite topsoil samples (0–0.2 m) were collected from each grid point using a 5 ×

5 m grid map and handheld GNSS unit (GARMIN GPS Map 62s, USA). The composite soil

samples were collected in polythene bags and transported to the laboratory. Soil samples were

then air-dried, thoroughly mixed, ground gently by a wooden mortar, and finally passed through

a 2-mm sieve and stored in plastic bottles for soil analysis. In both years, 40 point samples were

performed.

Soil samplings were performed by collecting subsamples under the crown projection in the

layer of 0-20 cm, using a Dutch auger, in each plant composing the sampling point. These sub-

samples were homogenized to form a composite sample representative of the point in question

and sent to the Laboratory of Soil Analysis. The following soil chemical attributes were evalu-

ated: pH (CaCl2 extractor), availability of phosphorus (P) (Mehlich), availability of potassium

(K) (Mehlich 1 extractor), availability of sodium (Na) (Mehlich 1 extractor), availability of iron

(Fe) (Mehlich 1 extractor), availability of manganese (Mn) (Mehlich 1 extractor), availability of

zinc (Zn) (Mehlich 1 extractor), availability of boron (B) (wet extractor), exchangeable calcium

(Ca2+) (1 mol L−1 KCL extractor), exchangeable magnesium (Mg2+) (1 mol L−1 KCL extrac-

tor), sulfur (S) (phosphate extractor), cation exchange capacity (CEC), base saturation (V), and

organic matter (OM), following the methodology described by (ALVAREZ et al., 1999).

Samples of coffee yield were collected in May 2022 and May 2023 by getting subsamples

around in each group of 2 coffee trees composing the sampling point following the grid shown

in Fig. 7. The coffee plot presents higher and lower yield levels in different locations over
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the plot in alternated years, a characteristic named ’biennial yield’ (CAMARGO; CAMARGO,

2001). As an example of this biennality of coffee crops, Fig. 9A shows a coffee tree full of

fruit, while Fig. 9B shows an empty one separated by 5 meters. Therefore, there is a high short-

range spatial variability of coffee yield characterized by the bienniality of coffee yield. This

scenario highlights the challenge involved in the spatial modeling of coffee yield since there is

potentially an inescapable occurrence of outliers.

Figure 9: Biennial yield highlighted by neighboring coffee trees full of fruit (A) and empty (B)
separated by 5 meters in December 2023

A) B)

The data sampling was conducted by the Embrapa researcher, Célia Regina Grego, as part of

the project ”Environmental characterization of specialty coffee production systems as a function

of spatial variability and its relationship with production and quality in regions of southern

Minas Gerais” within the Coffee Research Consortium (ConCafé).

The normalized difference vegetation index (NDVI) from Sentinel-2 satellite imagery as the

auxiliary variable. NDVI was calculated using Eq. 3.1:



CHAPTER 3. MATERIAL AND METHODS 47

NDV I =
NIR− red
NIR+ red

(3.1)

where NIR is the percent near infrared reflectance (0.83 to 0.88 µm) and red is percent red

reflectance (0.64 to 0.67 µm). Both are bands from Sentinel-2 satellite imagery.

NDVI values range from -1 to 1, and areas occupied by denser vegetation tend to present

NDVI close to 1 (higher vegetative vigor). NDVI has been applied to detect seasonality effects,

phenological stage of vegetation, length of the growing season, peak greenness, and physiolog-

ical variations of leaves. Higher values correspond to healthy vegetation, with a higher density

of green biomass (between 0.10 and 1). In exposed soil or less dense vegetation, positive values

close to zero are obtained because under this condition there is higher absorption of radiation in

the near-infrared band, which explains the low values of NDVI.

Slope over the coffee crops were retrieved from ALOS World 3D (AW3D30) with a horizon-

tal resolution of approximately 30 meters (1 arcsec mesh) (TAKAKU; TADONO; TSUTSUI,

2014).

A step-by-step flowchart (Fig. 10) synthesizes the different approaches to delineate HMZs.

The Sections which explain each step are highlighted inside this flowchart. Three approaches

for HMZ delineation were applied, referencing to the dimensionality reduction of several fused

variables into a single final interpolated map. This final interpolated map obtained from each

approach is partitioned into two clusters using various methods, and the best one is chosen to

represent the two management zones, according to the validation metrics. We chose these three

combinations because they have different but comparable premises: in the SFI method, the

dimensionality reduction is performed deterministically, in the MULTISPATI-PCA method the

dimensionality reduction is performed by a spatially weighted PCA, while in the MAF method,

the PCA is decomposed based on a geostatistical analysis.
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3.3 Data fusion by multivariate geostatistics modeling

To jointly analyze the heterogeneous data set, including data from the different sensors mostly

not collocated and with different support and level of uncertainty, a complex but well integrated

approach of multivariate geostatistical procedures was defined. A previous support check is

needed (CASTRIGNANÒ; BUTTAFUOCO, 2020), followed by a support regularization if the

variables have different supports (CASTRIGNANÒ et al., 2019). Here, we performed descrip-

tive and exploratory statistics over all variables. We want to regularize the variables in a manner

that presents mean zero and unit standard deviation. To achieve this distribution, we performed

Gaussian anamorphosis transformation (CASTRIGNANO; BUTTAFUOCO, 2004), then fitted

the LMC and used it for the BCOK interpolation.

3.3.1 Sampled data migration

To perform multivariate analysis on different sensor data, the raw data from soil sampling and

from satellite collocated into the less numerous file containing chemical soil attributes measure-

ments by migrating them to the nearest NDVI sample point up to a maximum distance of 10 m

(basically the satellite grid).

3.3.2 Variable selection

Moran’s bivariate spatial autocorrelation statistic (CZAPLEWSKI, 1993) and Pearson corre-

lation were calculated among all the variables. Variables were selected after the removal of

variables with no significant spatial autocorrelation at 95% significance and the removal of vari-

ables that are highly correlated with each other (> 0.7). We consider this procedure to reduce

the redundancy between less influential variables. The variables are not assumed as linearly

correlated with coffee yield a priori. When two or more variables present a high correlation,

their direct variogram is analyzed to check if some of them show a nugget effect. In this case,

the variables with a more structured variogram will be chosen.

3.3.3 Preprocessing by Gaussian anamorphosis transformation

The Gaussian anamorphosis transformation is used to convert skewed and non-Gaussian statis-

tically distributed variables into a new one with mean zero and unit standard deviation (LAJAU-

NIE, 1993). The BCOK variance and standard deviation using transformed variables instead
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of the original ones are closer to the linear and optimal situation (GOOVAERTS, 1997). This

transformation is based on the fitting of a polynomial expansion, as defined in Eq. 3.2, named

Hermite polynomials:

Φ = ∑ΨiHi(Y ) (3.2)

where Hi(Z) are the Hermite polynomials, Ψi are the Hermite coefficients. In practice, this

polynomial expansion is stopped to a given order. Instead of being strictly increasing, the

function consequently shows maxima and minima outside an interval of interest, that is for very

low probability of Y . The modeling of the anamorphosis starts with the discrete version of the

curve on the true data set;

The function Φ is reversible and able to convert the non-Gaussian variable into a new vari-

able with mean zero and unit standard deviation in Eq. 3.3:

Y = Φ
−1(Z) (3.3)

Then, we performed the geostatistical analysis with the new standardized variables. After

that, we back-transformed the predictions into the raw distribution by using the same reversible

anamorphosis function. In practice, an anamorphosis will be fitted to the data and a check

will have to be made whether at least the bivariate distribution of the Gaussian transform is

bi-Gaussian for all spatial distance dasses. Wackernagel (2003, p.248-253) demonstrates the

bijectivity of Gaussian anamorphosis, thus the function Φ is reversible.

3.3.4 Fitting of linear model of coregionalization (LMC)

LMC is an unified model which considers the direct and cross experimental variograms of all

the n variables followed by a weighted least-squares (WLS) over the pairs of samples at each

lag (JOURNEL; HUIJBREGTS, 1976). To well perform WLS the variables need to be highly

correlated. The n (n+1)/2 direct and cross experimental variograms of all the n variables are

fitted by a linear combination of the NS standardized variograms of unit sill, gu(u). Under a

matrix notation, the LCM follows Eq. 3.4:

ΓΓΓ(((hhh))) =
NS

∑
u=1

BBBugu(hhh) (3.4)
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where ΓΓΓ(((hhh))) = [γi j(hhh)] is a symmetric matrix (order n × n) where diagonal elements con-

tains direct variograms and out-of-diagonal elements contains cross variograms; BBBu = [bu
i j] (the

coregionalization matrix) is a symmetrical semi-definite matrix (order n × n) containing the

sampled values bu
i j at spatial support u (CASTRIGNANÒ et al., 2000; CASTRIGNANÒ et al.,

2017).

3.3.5 Block cokriging (BCOK)

The basis for a geostatistical modeling is the variogram (GOOVAERTS, 1997; WEBSTER;

OLIVER, 2007; OLIVER; WEBSTER, 2015; GOOVAERTS, 1999). This is the mathematical

description of the spatial autocorrelation (or spatial dependence) between a sampled value and

its neighboring sampled values. Eq. 3.5 shows the empirical variogram, γ(h), which is a discrete

variation based on the difference between sampled values separated by a distance h.

P(B) =
N

∑
i=1

λiZi (3.5)

where Zi is the observed value at location i, P(B) is the predicted values at a block, N is the

number of pairs of observations, B is the block, and λ are the weights.

A variogram shows the spatial structure and variability of a variable over an area. High

spatial dependence means that spatial similarity can be found by analyzing the sampled values

by Eq. 3.6:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(B)−Z(B+h)]2 (3.6)

where γ(h) is the experimental variogram; Z(B) and Z(B+h) are the observed values at blocks

B and B+h; N(h) is the number of observation pairs separated by distance h.

Variograms have three main parameters to consider when evaluating the spatial structure

of samples: nugget (C0), sill (C +C0), and range (R) (Fig. 11). The variance increases with

distance and stabilizes at a constant value (C+C0) at a given separation distance, the so-called

range of spatial dependence (or range, R). The sill approximates the variance of the samples

for stationary data. Samples separated by distances greater than the range are not spatially

autocorrelated, because the variance is equal to a random variation with no spatial correlation.

If the variogram reaches a plateau (sill) at a distance, the variable is stationary. If the variance

increases continuously, without reaching a plateau, it indicates the presence of trend effects and
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non-stationarity. Ideally, the experimental variogram should pass through the origin and then the

variation is zero. However, many soil properties have non-zero variance when h tends to zero.

This discontinuity at the origin is called the nugget effect and is represented by unexplained

spatial variation (microvariability at a shorter distance than the shortest sampling distance) or

purely random variance (such as measurement or sampling error).

Figure 11: Example of a variogram model

The experimental variogram must be calculated over different angles to check the existence

of anisotropy. If there is no sign of anisotropy (different behaviors over different directions), an

“omnidirectional” empirical variogram is calculated (usually over the angle 0o) (GOOVAERTS,

1997). Then, a theoretical continuous model of the variogram is fitted over the discrete empirical

variogram. The most common models are the spherical, Gaussian, exponential, power-law, and

linear functions (BERNARDI et al., 2017).

When using BCOK, the main difference consists in the calculation of the point-to-block

covariance (CASTRIGNANÒ et al., 2017), following Eq. 3.7:

Cov(B,xxxiii) = cov(Z(B),Z(xxxiii)) =
∫

B

Cov(v,xxxiii)

|B|
du′ (3.7)

where Cov is point-to-block covariance, |B| is the volume of the block which is called spatial

support and Cov is point-to-point covariance (CASTRIGNANÒ et al., 2017).

The punctual LMC for different combinations of variables requires regularization over the

same block support that in this study was 10 m by 10 m by 0.2 m by applying block cokriging

(BCOK) over the selected block grid. BCOK method can be understood as the summation of
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points into the block grid, for this reason the coarser pixel size will be the final spatial res-

olution. We considered the depths (0.2 m) of soil samples when designing the block grid.

In other words, applying BCOK is a solution for the problem of change of support (SILVA;

MANZIONE; OLIVEIRA, 2023; CHILES; DELFINER, 2012; ARMSTRONG, 1998; JOUR-

NEL; HUIJBREGTS, 1976).

3.4 Dimensionality spatial reduction

3.4.1 Soil fertility index (SFI) technique

Each soil variable observed value was converted into a binary new variable Fi, which is equal to

0 if this soil variable value indicates bad conditions of soil, otherwise is equal to 1, indicating

good conditions of soil.

F =

 0, i f Z is classi f ied as “bad′′

1, i f Z is classi f ied as “good′′

 (3.8)

where F is the binary indicator of fertility status and Z is the observed values of each variable.

This binary conversion is based on cutoff thresholds according to Table 2. These cutoffs

are consistent with arabica coffee, can be considered in the context of specialty coffee and the

references are indicated beside each cutoff.

Table 2: Cutoff thresholds for soil chemical attributes under coffee
cultivation

Attributes Condition Attributes Condition
V (%) > 50.00 a m (%) < 50.00 a

pH (CaCl2) > 5.40 a OM (g dm−3) > 4.00 a

CEC > 80.00 b TOC (g dm−3) > 15.00 c

H (mmolc dm−3) > 36.00 b Zn (mg dm−3) > 3.00 c

P (mmolc dm−3) > 50.00 b Mn (mg dm−3) > 20.00 c

K (mmolc dm−3) > 4.00 b Fe (mg dm−3) > 1.50 c

Ca (mmolc dm−3) > 30.00 b B (mg dm−3) > 1.00 c

Mg (mmolc dm−3) > 10.00 b S (mmolc dm−3) > 10.00 c

Na (mmolc dm−3) > 0.50 c NDVI > 0.50 b

a Alvarez et al. (1999)
b Vieira (2017)
c Guimarães et al. (1999)
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After the conditional cutoff coding for the soil chemical variables, the converted binary

values were inserted into the Soil fertility index (SFI), the higher this percentage, the higher the

number of variables classified as “higher fertilization need”, following Eq. 3.9:

SFI = 100
N

∑
i=1

Fi

N
(3.9)

where Fi is the binary indicator of fertilization needs for each soil variable observed value, N is

the number of variables.

3.4.2 MULTISPATI-PCA technique

Given a matrix X (n× p) of data containing several (p) measurements at each of n data points,

the MULTISPATI-PCA algorithm introduces a spatial weighting matrix W in the PCA of the

standardized X. The matrix W is a row-sum standardized connectivity matrix. If W = [ci j]

is the connectivity matrix indicating the strength of interactions between points i and j, then

W = [ci j/Σci j].

By extension of the lag vector, a lag matrix
−→
X = WX can be defined. The two tables

−→
X

and X are fully matched, i.e., they have the same columns (variables) and rows (observations).

MULTISPATI-PCA aims to identify multivariate spatial structures by studying the link between
−→
X and X using the coinertia analysis (DRAY; SAID; DEBIAS, 2008).

The lag matrix
−→
X is composed of the averages of neighboring values weighted by the spatial

connection matrix (i.e., that only the neighboring points are taken into account). The row scores

of this analysis maximize the scalar product between a linear combination of the original vari-

ables and a linear combination of the lagged variables. (ARROUAYS et al., 2011) evidenced

that MULTISPATI-PCA overcomes PCA to detect and map trends in the multivariate distri-

bution of topsoil characteristics. MULTISPATI PCs are therefore “smooth” and show strong

spatial structures on the first few axes, while PCA scores can be rough, smooth, or mixed and

can show spatial structures on any axis (even distant ones).

3.4.3 Multivariate Min/Max autocorrelation factors (MAF)

The method of minimum/maximum autocorrelation factors (MAF) is a multivariate transforma-

tion based on PCA that spatially orthogonalizes the attributes into uncorrelated factors for all

lag spacings. MAF is similar to FK approach (DESBARATS; DIMITRAKOPOULOS, 2000).
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PCA technique is performed on correlated attributes and provides uncorrelated factors by or-

thogonalisation of variance-covariance matrix M following Eq. 3.10:

M = QT
Λ Q (3.10)

Matrix Q is orthogonal and describes eigenvector of matrix M. Also Λ is a diagonal matrix

and describes eigenvalue of matrix M. The PCA decorrelated factors are just defined in lag

equal to zero (h = 0), following Eq. 3.11:

YPCA(u) =
√

Λ Q Z(u) = A Z(u) (3.11)

The distribution of factors is normal because the assumption of normal distribution of mul-

tivariate and multiplication by
√

Λ, so the variogram matrix will be given by Eq. 3.12:

ΓYPCA(h) = A ΓZ(h) AT =
s

∑
s=1

A Ms AT
γs(t) (3.12)

Then, decorrelated components are achieved to have fewer dimensions. Based on Eq. 3.11,

A is achieved by multiplying eigenvector by inverse square root of eigenvalue since, A−1 =

QT
√

Λ.

MAF can then be modeled and simulated independently, thus avoiding the inherent diffi-

culties associated with joint simulation. The simulated MAF scores are back-transformed to

the simulations of the original attributes. The MAF transformation technique was developed

by Switzer and Green (1985). Their method is a data-based approach and was originally used

for multivariate spatial imaging but was later applied within a geostatistical context by Des-

barats and Dimitrakopoulos (2000), which is the main difference between this method and

MULTISPATI-PCA. Once the theoretical covariance function is known and is modeled by a

two-structure LMC, the MAF can be derived from the model coregionalization matrices.

The main steps of MAF methods are i) performing a normal score transformation of the

attributes (sphering transformation) and then ii) calculating the MAF transformation coefficients

assuming a two-structure LMC of the normal scores and two successive principal component

decompositions. These coefficients are then used to transform transform the normal scores into

MAF scores.

The correlation between MAF and PCA factors as shown in Eq. 3.13 is Q1 matrix.
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FMAF(u) = Q1 YPCA(u) = Q1
√

Λ Q Z(u) = M Z(u) (3.13)

The matrix of eigenvalues L is diagonal hence the elements Y (u) and Y (u+ h) are orthog-

onal at lag to lag 0, regardless of the coregionalization model. Eq. 3.14 shows that more

eigenvalue results in less correlation between Y (u) and Y (u+ h) than the uncorrelated factors

specified accordingly. It is interesting to note that MAF factors which are more decorrelated,

have larger eigenvalues in comparison with those factors which have smaller one. MAF factors

associated with larger eigenvalues are chosen to simulate and make data reduction to continue

(DESBARATS; DIMITRAKOPOULOS, 2000). For the two-structure LMC for Z(u), it is read-

ily shown that orthogonality has been ensured at all lags.

corr[Y (u),Y (u+h)] = I +
Λ

2
(3.14)

Finally, based on LMC and decomposition of covariance-variance B, matrix V = AB1AT

is achieved. Then, in a second rotation, orthogonally diagonalized matrix V = QT
1 Λ1 Q1 is

achieved. In this step MAF factors, which are calculated by eigenvector matrix and reduced the

dimension by eigenvalue matrix whereas the database dose not lose.

3.5 Homogeneous zones delineation by clustering

Clustering methods can provide field partition based on the evaluation of similarity between

spatial points, grouping them into more similar points, therefore splitting the field into groups

with more similarity. Clustering methods are more complex than the empirical methods and

enable greater differentiation between classes using less-subjective criteria (GAVIOLI et al.,

2019).

Clustering can be a solution for the key task of HMZ delineation in PA: given a data set

of georeferenced data records with high spatial resolution, we would like to discover spatially

mostly contiguous zones on the field which exhibit similar characteristics within the zones and

different characteristics between zones (RUSS; KRUSE, 2011).

Several clustering methods were applied to each summarizing approach to find the best

field partition for each approach. We followed the list of clustering methods suggested by

Gavioli et al. (2019). The clustering methods used can be divided into hierarchical methods
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and partitioning methods. Hierarchical clustering methods split the dataset into several groups

in two or more steps. They define a series of nested batches starting with a group with all n

values to form n groups with one value in each. The starting point is named divisive hierarchical

clustering, while if the clustering procedure starts in the other extreme it is named agglomerated

hierarchical clustering (JAIN; DUBES, 1988).

According to Jain and Dubes (1988), agglomerated hierarchical methods are more com-

mon because it has a lower computation cost. Partitioning clustering methods split the dataset

into several n groups without a hierarchical structure but grouping by the similarity between

the values. These methods only split the dataset seeking to find groups naturally present in

this dataset (JAIN; DUBES, 1988). These methods optimize the partition evaluation function,

i.e., they seek to organize a set of n elements into k groups, G1, ..., Gk, while maximizing or

minimizing a pre-established evaluation function. 7 hierarchical clustering algorithms and 10

non-hierarchical clustering algorithms (partitioning methods) were implemented and evaluated

(Table 3).

We clustered the PCs from MULTISPATI-PCA and MAF methods with eigenvalues higher

than one and accumulated variance higher than 80%. We have not tested simply performing the

clustering with the regularized variable maps since we consider the innovation of the present

methodology is adding spatial autocorrelation indices into before clustering the maps.
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3.6 Evaluation and analysis of results

3.6.1 Performance evaluation

Different variogram models were evaluated: mean error (ME) (Eq. 3.15), mean squared error

(MSE) (Eq. 3.16), kriged reduced mean error (KRME) (Eq. 3.17), and kriged reduced mean

squared error (KRMSE) (Eq. 3.18):

ME =
1
N

N

∑
i=1

(Z(xi)−Z(B,xxxiii)) (3.15)

MSE =
1
N

N

∑
i=1

(Z(xi)−Z(B,xxxiii))
2 (3.16)

KRME =
1
N

N

∑
i=1

Z(xi)−Z(B,xxxiii)

s
(3.17)

KRMSE =
1
N

N

∑
i=1

[
Z(xi)−Z(B,xxxiii))

s

]2

(3.18)

where Z(xi) is the sampled value at location i, Z ∗ (xi) is the predicted value at location i, N

is the number of pairs of sampled and predicted values, and s is the standard deviation of the

sampled values.

The ME and KRME values close to zero indicates a good model performance (CASTRIG-

NANÒ; BUTTAFUOCO, 2020). MSE indicates good model performance when their values is

lower than the variance of the sample values (ADHIKARY et al., 2011). KRMSE should inside

the range 1 ± (2
√

2)/N (ADHIKARY et al., 2011).

3.6.2 Validation of management zones

To assess whether our method of using soil and crop attributes to delineate HMZs could char-

acterize the spatial variation in crop yield, the map of clustering from MULTISPATI-PCA, SFI,

and MAF method were compared with the available yield maps from two seasons by computing

tests and measures of agreement in two-way contingency tables. The tests and measures of the

agreement include:



CHAPTER 3. MATERIAL AND METHODS 60

• McNemar’s test (MN) (MCNEMAR, 1947), which is appropriate when the data come

from matched pairs of grid nodes with a dichotomous response. It tests the null hypothesis

of marginal homogeneity and is an asymptotic chi-square test with one degree of freedom;

• the Silhouette Score Coefficient (SSC), which is derived from the silhouette coefficient,

an evaluation criterion that measures the quality of the internal formation and the external

separation between groups;

• the variance reduction (VR), which is the sum of the variances of the variables within

each HMZ. The expectation is that the sum of the variances of the sub-areas will be less

than the original variance of the area. Therefore, the higher the VR value, the better the

HMZs have been defined in terms of variance reduction;

Descriptive statistics of the soil chemical variable samples in each HMZ were generated to

evaluate each variable individually. It could indicate the ability of the methodology to summa-

rize and generalize several soil chemical variables without losing local information, crucial for

the actual application of fertilizers.

Boxplots of coffee yield in each HMZ was generated to assess the ability of the methodology

to significantly separate higher from lower yields following the soil fertility.

3.7 Analysis tools

All clustering analysis were performed with the R software (R DEVELOPMENT CORE TEAM,

2022) using the following packages: the package ’cluster’ (MAECHLER et al., 2013) for per-

forming PAM, AL, CEL, CLA, COL, HCL, and calculating SSC; the package ’e1071’ (DIM-

ITRIADOU et al., 2006) for performing BCL, FCM, FCS, and UFCL; the package ’cclust’

(DIMITRIADOU; DIMITRIADOU, 2007) for performing FAC, FCM, FCS, NG, and HCL;

the package ’skmeans’ (HORNIK et al., 2017) for performing SKM; the package ’fastcluster’

(MÜLLNER, 2013) for the other clustering methods. Also the MULTISPATI-PCA calculation

was performed with R by using the package ’adespatial’ (DRAY et al., 2018). The geosta-

tistical analyses were performed with Isatis.neo version 2023.08 (GÉOVARIANCES, 2023).

Remotely-sensed covariates were retrieved by using Google Earth Engine.



61

Chapter 4

Results and discussion

4.1 Plot characterization and variable selection for data fu-

sion LMC regularization

The descriptive statistical parameters of all the analyzed variables are presented in Table 4.

The higher the CV, the more heterogeneous the data set. Soil P, K, Na, B, Zn, Fe, and yield

presented high variability, with a coefficient of variation (CV) higher than 30% in 2022. On

the other hand, in 2023 only Soil P, K, S, B, Zn, and yield CV were high. Soil pH was low

(less than 10%) in both years. All other soil chemical variables had medium variability, with a

coefficient of variation (CV) between 10% and 30%.

According to Ronquim et al. (2010), pH is an indicator of the biological-physical-chemical

condition of the soil. An excessively acidic soil (pH very low) or excessively alkaline soil

(pH very high) is less favorable for agriculture because there will be less oxygen, less organic

matter, less water retention and infiltration, and more toxic ions. High soil acidity can generate

high levels of Ca while Mg deficiency, which affects the full development of plants and the

achievement of high yields since the low pH reduces the availability of some nutrients and

increases the toxic effect of aluminum on plants (VIEIRA, 2017; RONQUIM, 2010).
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V represents the percentage of CEC occupied by bases (Ca2+, Mg2+, K+, and Na+) in

relation to the exchange capacity determined at pH 7. At pH 7 soils were considered 100%

base-saturated and had zero base saturation at pH 4. Soils with V equal to or greater than 50%

are denominated eutrophic soils (tending to present higher fertility). Soil with base saturation

values less than 50% are denominated dystrophic soils (tending to present lower fertility). Base

saturation (V) can indicate the amount of cations, such as Ca, Mg, K, and identify if the soil is

acidic at a level that is harmful to the crop. The soil OM contributes to an increase in soil CEC

which can serve to retain and increase the reserve of soil cations and improves soil structure

physics and soil water relations. Soils with higher OM content are associated with increased

population and diversity of microorganisms (NÚÑEZ et al., 2011).

Liming is important for reducing soil acidity, increasing the Ca and Mg content, and neu-

tralizing Al3+ (VIEIRA, 2017). However, it should be done according to the interpretation of

the soil analysis and before fertilization, because in excess, liming can cause a deficiency of B,

Zn, Fe, and Mn (ALVAREZ et al., 1999; PABON et al., 2020).

pH values showed a trend in soil acidity, presenting an average pH of 5.71 in both years.

Considering the high variability of almost all soil chemical variables, the study area can be

considered suitable for receiving different and localized management practices as long the soil

samples show different chemical behaviors in different spatial positions of the coffee crop. As

there are heterogeneous variables that generate variability in crop yields, the most used tech-

niques in data analysis for developing HMZs are clustering and geostatistical models (BAZZI

et al., 2013).

Eight variables were chosen: pH, Fe, Ca, Na, K, P, Mg, and NDVI for both years. These

macro- and micronutrients showed high correlation with other chemical variables and indica-

tors, such as the CEC, base saturation (V), sum of bases (BS), organic matter (OM), total organic

carbon (TOC), S, B, Mn, and Zn. Heat maps with the correlation matrix over the variables in

2022 and 2023 are shown in Fig 12. Also, OM, TOC, S, B, and Zn showed pure nugget effects

on their variograms. All these variables showed Moran’s Index equal to - 0.05 ± 0.0002 (p-value

≤ 0.05), indicating there is spatial autocorrelation, even in the presence of outliers and under

low sampling.
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Fig. 13 shows the transformed values by Gaussian Anamorphosis (x-axis) against original

values (y-axis). The larger the dataset, the lower the sinuosity of the Hermite Polynomials on

the extreme sides. Skewed distributions could be more controlled after this data transformation.

One can see how different distributions could be squeezed into a Gaussian distribution centered

on zero. Of course, this transformation was performed before calculating experimental vari-

ograms and fitting its theoretical models and it was back-transformed after finishing the geosta-

tistical modeling. Considering that several authors showed how data transformation improves

the variogram modeling (CASTRIGNANÒ et al., 2000; CASTRIGNANÒ; BUTTAFUOCO,

2020; MANZIONE; CASTRIGNANÒ, 2019; MANZIONE; SILVA; CASTRIGNANÒ, 2020;

CASTRIGNANÒ et al., 2018; BUTTAFUOCO et al., 2010; SHADDAD; BUTTAFUOCO;

CASTRIGNANÒ, 2020; CASTRIGNANÒ et al., 2019; BUTTAFUOCO et al., 2021), we did

not test without data transformation.

Anisotropic variograms were simultaneously calculated for four directions with 45o (not

shown) angular increments and ± 22.5o angular tolerance. No sign of relevant anisotropy was

found in the observations. A relevant anisotropy sign could be found when the sill, range, and

nugget are different in different directions.

For 2022, an isotropic LMC was fitted to all experimental variograms (considering the eight

selected variables) including the following spatial structures: nugget effect = 0.02, cubic model

with range = 32.3 m, and spherical model with range = 78.8 m. For 2023, the isotropic LMC was

fitted to all experimental variograms including the following spatial structures: nugget effect =

0.02, cubic model with range = 28.19 m, and spherical model with range = 88.10 m. Long

ranges were achieved indicating a good spatial variability explainability by using the isotropic

LMC for regularization.

Selected variable’s regularized maps are shown in Fig. 14A-P. Because of the outliers, we

plotted each map with an individual legend instead of using a single legend for different maps

of the same variable. Slope map (Fig. 14T) were retrieved by using OK (nugget effect = 0.05,

spherical model with range = 53.7 m) to help the distinction between intrinsic soil and terrain

effects, since it was not effective for the regularizing LMC (not shown here), for this reason it

was interpolated separately.
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The yield maps over the 2 years are presented in Fig. 14Q,R. They look quite different and

show low-yielding zones near the plot borders while the high-yielding zones are in the central

area of the plot around outliers. In this paper we did not use yields as a cluster variable but as a

measure of success.

The error statistics such as ME, MSE, KRME, and KRMSE were estimated and presented

in Table 5. As expected, the maps with outliers in their input datasets showed the worst metrics,

as Fe, Na, K, and coffee yield in 2022, and P in 2023. However, these error statistics values are

satisfactory since ME and KRME values were close to zero, while MSE values were lower than

SD of the sample values and KRMSE were inside the range 1 ± (2
√

2)/N. SD of the sample

values can be found in Table 3. All MSE values are lower than SD, except for pH.

Table 5: Performance evaluation of BCOK regularization interpolation of transformed variables

2022 2023
Variable ME MSE KRME KRMSE ME MSE KRME KRMSE

pH (CaCl2) 0.83 0.75 0.75 0.984 0.81 0.74 0.72 0.971
Fe (mg dm−3) 2.98 2.63 2.49 0.914 1.41 1.28 1.16 0.949
Ca (mmolc dm−3) 2.36 1.99 1.74 0.974 2.29 2.18 1.86 0.927
Na (mmolc dm−3) 3.71 3.54 3.48 0.877 0.09 0.08 0.08 0.921
K (mmolc dm−3) 3.88 3.59 3.18 0.827 1.15 0.88 0.56 0.934
P (mmolc dm−3) 3.08 2.91 1.42 0.984 3.51 3.14 3.08 0.894
Mg (mmolc dm−3) 1.48 1.26 1.24 0.977 1.31 1.29 1.11 0.931
NDVI 0.09 0.08 0.04 0.984 0.09 0.08 0.07 0.989
Yield (kg . tree−1) 1.58 1.49 1.31 0.984 1.34 1.41 1.45 0.987

4.2 Homogeneous management zones from SFI approach

The soil chemical variables were transformed into binary values, if values were below a cutoff

threshold, it was coded with a value of 0; if values were above, it was coded with a value of

1. After performing the coding step, the SFI (Eq. 3.9) was calculated. The cutoff thresholds

of all variables were presented in Table 2. Here, we applied the binary conversion only for the

selected variables (pH, Na, P, Ca, K, Fe, Mg, and NDVI).

Notably, the SFI technique is a binary coding that does not explicitly capture spatial auto-

correlation like MULTISPATI-PCA and MAF. Table 6 shows the clustering metrics over SFI

maps for field binary partition. SL clustering method was the best one for 2022, achieving a
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variance reduction of 10.12% with a statistically significant departure from the hypothesis of

full agreement between the two HMZs at p-value < 0.01 according to the the McNemar’s test.

WAR method was the best one for 2023 with a variance reduction of 9.23% with a statistically

significant adherence at p-value < 0.05 according to the the McNemar’s test.

Table 6: Clustering metrics for SFI-based HMZ delineation

2022 2023
Method VR SSC MN VR SSC MN
AL 3.71 0.298 0.08 3.77 0.335 0.09
CEL 3.55 0.499 0.12 3.92 0.388 0.12
CLA 2.98 0.312 0.10 3.12 0.351 0.09
COL 2.23 0.453 0.18 2.67 0.211 0.16
FAC 3.39 0.518 0.07 4.01 0.498 0.13
FCM 2.99 0.567 0.12 3.34 0.312 0.16
FCS 4.31 0.290 0.11 4.62 0.348 0.07
HCL 5.21 0.298 0.11 5.98 0.367 0.06
KME 8.21 0.431 0.02* 7.98 0.310 0.03*
ML 7.23 0.342 0.13 7.02 0.356 0.15
MCA 3.78 0.441 0.18 3.03 0.237 0.17
WAR 8.91 0.423 0.01* 9.23 0.501 0.001*
NG 5.33 0.439 0.09 5.45 0.445 0.09
PAM 5.23 0.387 0.13 4.99 0.227 0.17
SL 10.12 0.512 0.002** 7.21 0.450 0.12
SKM 2.82 0.142 0.19 3.12 0.251 0.17
UFCL 3.89 0.234 0.15 4.01 0.256 0.15
** McNemar’s Test is significant at p < 0.01
* McNemar’s Test is significant at p < 0.05

Bold method name indicates it was the best one
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4.3 Homogeneous management zones from MULTISPATI-PCA

approach

The dimensionality reduction for correlated variables and identification of spatially weighted

orthogonal linear recombination among variables and PCs were analyzed using the selected

variables. To aggregate and summarise the individual maps produced by BCOK into HMZs,

the first two sPCs were used to be clustered. They retained 85.44% in 2022 and 83.56% in 2023

of the total variance and all of them presented eigenvalues higher than one.

In the analysis of the coefficients of sPCs, which act as weights for the original variables

in those components (Table 7), the first component (sPC1) had higher weighting coefficients,

in absolute values, for the Mg, Na, and P for both years, with NDVI and K only for 2022,

and with Ca, Fe, and pH only for 2023. This indicates high spatial and temporal mobility

of nutrients, showing that adding an autocorrelation component can improve the ability of the

HMZ delineation to be more effective in capturing soil fertility. However, loadings with a strong

correlation to PCs were rare, indicating a limited capture of spatial variability.

Table 8 shows the clustering metrics over sPC1 and sPC2 maps for field binary partition.

WAR clustering method was the best one for 2022, achieving a variance reduction of 10.77%

with a statistically significant departure from the hypothesis of full agreement between the two

HMZs at p-value < 0.01 according to the the McNemar’s test. KME method was the best one

for 2023 with a variance reduction of 10.23% with a statistically significant adherence at p-value

< 0.01 according to the the McNemar’s test.

Table 7: Loadings of soil variables and vegetation index in the first two principal
components of MULTISPATI-PCA principal components (PCs)

Year sPC NDVI Mg Ca K Fe Na P pH

2022
sPC1 0.595 0.414 0.514 0.652 0.224 0.619 0.651 0.300
sPC2 -0.146 0.157 -0.590 0.052 0.799 0.232 0.097 -0.813

2023
sPC1 -0.319 0.646 0.510 0.145 0.566 0.583 0.660 0.578
sPC2 0.620 -0.375 -0.027 0.636 0.411 0.214 -0.215 0.177

Bold method name indicates this loading is medium to highly correlated (> |0.5|)
with this PC
Italic and bold method name indicates this loading is strongly correlated (> |0.7|)
with this PC
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Table 8: Clustering metrics for MULTISPATI-PCA-based HMZ
delineation

2022 2023
Method VR SSC MN VR SSC MN
AL 4.16 0.480 0.09 3.99 0.580 0.11
CEL 3.99 0.569 0.09 4.24 0.381 0.09
CLA 6.13 0.465 0.09 5.89 0.401 0.08
COL 4.29 0.580 0.09 4.21 0.520 0.08
FAC 9.65 0.568 0.004* 9.01 0.521 0.001*
FCM 3.39 0.197 0.17 3.67 0.201 0.12
FCS 3.99 0.369 0.11 2.67 0.201 0.16
HCL 9.26 0.576 0.05 8.26 0.523 0.06
KME 10.23 0.580 0.002* 10.23 0.578 0.001**
ML 10.23 0.580 0.002* 9.34 0.590 0.01*
MCA 3.39 0.518 0.07 4.01 0.498 0.06
WAR 10.77 0.565 0.0002** 10.01 0.580 0.002*
NG 6.33 0.5385 0.09 7.45 0.345 0.10
PAM 6.14 0.469 0.12 7.34 0.378 0.09
SL 10.12 0.718 0.001** 9.01 0.456 0.01*
SKM 5.29 0.476 0.08 6.01 0.473 0.02
UFCL 5.29 0.369 0.09 6.10 0.401 0.10
** McNemar’s Test is significant at p < 0.01
* McNemar’s Test is significant at p < 0.05

Bold method name indicates it was the best one
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4.4 Homogeneous management zones from MAF approach

To aggregate and summarise the individual maps produced by BCOK into HMZs, the first three

PCs were used to be clustered. They retained 91.18% in 2022 and 89.16% in 2023 of the total

variance and all of them presented eigenvalues higher than one. Compared with MULTISPATI-

PCA loadings (Table 7), there were several loadings with a strong correlation to the PCs, indi-

cating a greater ability to capture spatial variability within the PCs.

In the analysis of the correlation coefficients of MAF (Table 9), the first factor (MAF1) had

a high correlation with NDVI for both years, as expected, since this is the most populated input

dataset. In 2022, this first factor was more correlated with soil variables (Mg, Ca, Na, and pH)

than was in 2023 (K only). In other words, the NDVI was the most relevant variable to explain

spatial variability in both years. Variables with outliers tend to be less explanatory and thus are

more related to MAF2 and MAF3.

Table 10 shows the clustering metrics over MAF1, MAF2, and MAF3 maps for field binary

partition. HCL clustering method was the best one for 2022, achieving a variance reduction of

12.09% with a statistically significant departure from the hypothesis of full agreement between

the two HMZs at p-value < 0.01 according to the the McNemar’s test. KME method was the

best one for 2023 with a variance reduction of 12.67% with a statistically significant adherence

at p-value < 0.01 according to the the McNemar’s test.

Furthermore, MAF yielded usually the best results in terms of the VR index (Table 10),

in other words, this approach identified classes with larger differences between the respective

normalized average and lower internal residual values. Differences in the normalized average

yield between classes indicate that soil conditions influence the crop response (GAVIOLI et al.,

2016).
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Table 9: Correlation between the soil variables and vegetation index and the
Min/Max Autocorrelation Factors (MAF) based on the Sphering transformed
PCs which eigenvalues are higher than one

Year MAF NDVI Mg Ca K Fe Na P pH

2022
MAF1 -0.78 -0.77 0.77 0.13 0.26 0.21 0.31 0.59
MAF2 -0.23 0.21 -0.23 -0.11 0.99 -0.12 -0.21 0.57
MAF3 -0.68 -0.67 -0.11 0.95 0.09 0.057 -0.43 -0.02

2023
MAF1 -0.71 0.25 0.61 0.41 0.07 0.29 -0.09 0.16
MAF2 -0.41 0.66 0.50 -0.06 0.82 0.65 0.64 0.06
MAF3 0.09 -0.75 -0.91 -0.58 -0.08 -0.59 -0.91 0.49

Bold method name indicates this loading is medium to highly correlated (>
|0.5|) with this PC
Italic and bold method name indicates this loading is strongly correlated (>
|0.7|) with this PC

Table 10: Clustering metrics for MAF-based HMZ delineation

2022 2023
Method VR SSC MN VR SSC MN
AL 4.25 0.345 0.10 4.01 0.421 0.09
CEL 4.01 0.290 0.11 4.12 0.378 0.08
CLA 6.12 0.456 0.08 5.77 0.412 0.09
COL 4.12 0.342 0.09 4.23 0.453 0.08
FAC 7.21 0.290 0.01 7.88 0.250 0.02
FCM 3.91 0.298 0.02 3.86 0.345 0.03
FCS 2.90 0.190 0.12 3.01 0.201 0.11
HCL 12.09 0.578 0.0002** 9.21 0.451 0.001**
KME 10.32 0.498 0.01* 12.67 0.567 0.0002**
ML 8.21 0.431 0.02 7.98 0.310 0.03
MCA 9.21 0.399 0.01* 8.12 0.410 0.02*
WAR 10.34 0.488 0.009** 9.81 0.419 0.01*
NG 7.01 0.478 0.09 6.89 0.456 0.02*
PAM 6.90 0.345 0.12 6.12 0.341 0.05
SL 8.90 0.432 0.09 5.23 0.321 0.04*
SKM 5.03 0.47 0.12 5.67 0.347 0.02*
UFCL 4.98 0.41 0.10 5.12 0.451 0.09
** McNemar’s Test is significant at p < 0.01
* McNemar’s Test is significant at p < 0.05

Bold method name indicates it was the best one
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4.5 Homogeneous management zones final maps

To obtain a delineation of the field into homogeneous areas, the best clustering application for

each dimensionality reduction approach in each year was considered for the final HMZ map,

shown in Fig. 15. For SFI, the SL clustering method was used for 2022, and the WAR method

for 2023. For MULTISPATI-PCA, the WAR clustering method was used for 2022, and the

KME method for 2023. For MAF, the HCL clustering method was used for 2022, and the KME

method for 2023. We named the zone which groups the lower values of input variables as "Zone

1" and the other one, with higher values, as "Zone 2".

Summing up, these maps graphically realize the fusion of several soil chemical variables and

remotely sensed data into a partition of the field into zones with different chemical properties of

the soil which can provide insights about the fertility of the soil and its impacts on coffee yield,

even under a biennial behavior. This can be summarized by checking the boxplots of coffee

yield over the zones delineated from the different approaches in Fig. 16. We set zone 1 as the

low-yielding zone and zone 2 as the high-yielding one even before plotting the boxplot because

zone 1 groups the low values of the chemical variables while zone 2 groups the higher ones, as

shown in Table 11.

MAF-based HMZ presented the best coffee yield differentiation for both years according to

the boxplots (Fig. 16), even in the presence of outliers. By visual inspection, when comparing

the slope map (Fig. 14T) with the HMZs (Fig. 15), it is notable that slope controlled the fertility

zoning in 2022, while in 2023 this does not happen, mostly because the field is more controlled

by agronomical reasons (homogeneous fertilization and crop management) than by the terrain

when the spatial autocorrelation is considered. SFI-based HMZs look more related to slope

for both years. However, SFI showed the worst results in terms of clustering metrics and yield

differentiation in both years. Notably, MAF’s zone 2 in 2023 was quite reduced compared with

other techniques, however showed the best clustering metrics values and yield differentiation,

indicating that using this zoning could reduce the fertilization application in a more precise way.

The combined analysis of MN, SSC, and VR results confirms the recommendation of the

field partition into two classes. Gavioli et al. (2016) assessed the field partition into 2, 3, and

4 HMZs using MULTISPATI-PCA method and found the split into 2 zones obtained smoother

boundaries with the best multidimensional variance reduction. Córdoba et al. (2016) and Peralta

et al. (2013) also considered two classes HMZs as the best choice because is a easier field

operations choice.
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Figure 16: Boxplots of coffee yield over HMZs from different methods in 2022 and 2023

B) 2023A) 2022

4.6 Incorporating soil chemical summarized information into

precision agriculture

Research in PA has focused on dividing a field into a few relatively uniform management zones,

as a practical and cost-effective approach for variable application of agronomical procedures. In

this study, different types of data, including soil, coffee yield, and remotely sensed parameters,

were used to delineate HMZs in a specialty coffee crop. Since spatial–temporal variability in

specialty coffee production depends on many factors, multivariate approaches were preferred

through the effective integration of different informative layers. The achievement of compact

classes within a coffee crop, which are both contiguous in geographic space and relatively

homogeneous in attribute space, is quite difficult to reach, nevertheless highly desirable in PA.

By identifying fields where the relationship between soil and yields is fundamentally differ-

ent from others, unique management areas could be delineated. Usually, HMZs are delineated

from a single variable, such as altitude (JACINTHO et al., 2017) or soil apparent electrical

conductivity (PERALTA; COSTA, 2013; SCUDIERO et al., 2013). However, multivariate ap-

proaches for delineating HMZs are needed for a more general and comprehensive application

of PA (ORTEGA; SANTIBÁÑEZ, 2007; MORARI; CASTRIGNANÒ; PAGLIARIN, 2009;

CÓRDOBA et al., 2016). Also, making HMZ a brief spatial summary of several characteristics

from the field is a challenge, because both spatial and intrinsic heterogeneity make HMZs too
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general for real applications (CÓRDOBA et al., 2016). Reducing the scope of the HMZs into a

group of variables like soil fertility, weather drivers, yield factor, etc, could make multivariate

approaches easier to understand in the field and more appropriate for farmers to use in the field.

In the multivariate approach, the most commonly used methodologies are the joint use of

dimensionality reduction techniques such as principal component analysis (PCA) and clustering

techniques such as c-means or k-means. When applying a PCA, the research objective usually

is to find the key loading factors to explain a main independent factor. Peralta et al. (2013)

found that soil properties and nutrient concentrations were compared with apparent electrical

conductivity (ECa) using principal components (PC)-stepwise regression and ANOVA. The di-

mensionality reduction in this case means using fewer variables to explain another one with

regression modeling. In a second moment, clustering is applied to group the principal compo-

nents into groups (HMZs).

The results indicate that clustering methods extensively used for delineating HMZs, such as

fuzzy methods (FAC, FCS, or FCM) and KME (K-means), may not be adequate to accomplish

this task every time. Gustaferro et al. (2010), Dobermann et al. (2003) and Gavioli et al.

(2019) already pointed out that FCM performs poorly compared with others clustering methods.

Dobermann et al. (2003) also found good performances using WAR (as we found when using

SFI and MULTISPATI-PCA for delineating HMZs).

The values of VR, SSC, and MN varied when applying clustering into different dimensionality-

reduced maps, showing that a single clustering method cannot be considered as a universal

method for any situation. The best algorithms according to the VR index formed groups with

high internal similarity and adequate inter-group separation (high external dissimilarity) (GAVI-

OLI et al., 2019). Notably, not all clustering methods achieved reasonable results. Usually, a

single clustering method is used for delineating an HMZ map using several interpolated maps

as input (SILVA; MANZIONE; OLIVEIRA, 2023), without applying a dimensionality reduc-

tion step as done here. Nowadays, a wide range of clustering approaches are available and also

more sophisticated spatial modeling techniques can make the HMZ delineation more accurate.

Also, greater computing capacity is available on personal computers or in cloud servers, en-

abling multiple methodologies to be used and tested to use the one with the best results, making

methodologies more agnostic and less dependent on a single technique.
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4.7 Applicability of HMZs

In the present research, the methodology is focused on converting the relevant variables on soil

fertility based on agronomical knowledge. The results of the present methodology (Fig. 10)

showed a good summarizing ability, which produced HMZs that separated several soil chemi-

cal variables into two zones and the information was well preserved as shown by the boxplots

(Fig. 16). A smoothed zoning as presented here, without fragmented spatial distribution, is

highly desirable, because usually highly accurate classifications and clustering methods pro-

duce unrealistic maps for site-specific management, with isolated pixels and corners which are

ignored in real applications. Also, a smoothed zoning does not need to be redesigned by hand

at the end of modeling, just needs a threshold to separate different zones.

The question of the best way to integrate different types of data to derive the most informa-

tion is a common problem in PA. As long as there is still no universal protocol for delineating

HMZs (MARTÍNEZ-CASASNOVAS; ESCOLÀ; ARNÓ, 2018), delineating HMZs may have

different approaches and consequently different solutions using different input variables consid-

ered for clustering. At present, agricultural and agronomical collections of data often include

the outcomes from different sensors, characterised by various spatial resolutions and degrees of

uncertainty. This study has demonstrated that combining multivariate geostatistics with clus-

tering approaches can provide useful means for automatically delineating management zones,

joint-using data science, and agronomical knowledge to support HMZ interpretation.

4.8 Temporal instability of HMZs and nutrient mobility on

soil

Temporal stability of the HMZs is another important issue in site-specific agriculture, which

might require the extension of the current methodology for new experiments with the same

sampling design over different periods. Several authors have shown the inconsistency over time

of spatial variability patterns of important crop and soil properties such as yield, protein content,

and plant available N (PERALTA; COSTA, 2013; MORARI; CASTRIGNANÒ; PAGLIARIN,

2009; CÓRDOBA et al., 2016; AGGELOPOOULOU et al., 2013; BERNARDI et al., 2017;

PARIS et al., 2019; SILVA; MANZIONE; OLIVEIRA, 2023; ROBERT, 2002; THOMAS,

1970). A common finding is that temporal variability is generally much higher than spatial
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variability and the definition of stable low- and high-yielding potential zones is very uncertain.

Also, Dobermann et al. (2003) and Gavioli et al. (2019) report the reduction of spatial frag-

mentation by using PCA-based methods and kriging interpolation (when using the appropriate

grid and theoretical model) as advantages of these approaches. Smooth HMZs are better for

practical use for site-specific applications.

The instability of spatial variability is due to the mobility of soil nutrients. which are trans-

ferred from year to year, and nutrient transport rates depend on local conditions (LAMBERT;

LOWENBERG-DEBOER; MALZER, 2007; THOMAS, 1970). The most mobile nutrients

usually are phosphorus (P), potassium (K), and nitrogen (N) (THOMAS, 1970). For example,

Lambert, Lowenberg-Deboer, and Malzer (2007) found that P transport rates were heteroge-

neous due to local topographic and chemical variations in the soil.

Another example is the “antagonism” between nutrients in the soil. Fe is considered not

very mobile in the plant, however, it is one of the micronutrients most accumulated by the

coffee tree, not because of its metabolic demand, but because of the high availability of Fe

in soils (PRIMAVESI, 2002). The availability of Fe to the plant is associated with the clay

content and OM content of the soil, as clay soils tend to retain Fe, making it unavailable for

absorption. On the other hand, adequate OM levels enable plants to better use this nutrient due

to its acidifying and reducing characteristics, as well as its ability to form chelates in adverse

soil pH conditions (VIEIRA, 2017; MOREIRA SILVA; ALVES, 2013; BORÉM et al., 2021).

In soils with high acidity, Fe deficiency can occur due to an excess of Mg, which reduces its

absorption through antagonism. This antagonism can be seen in the maps in Fig. 14.

Checking the plot characterization shown in Table 4, it is clear the relevant differences in

the chemical soil variables over time. For example, the mobility of Na can be detected by the

decreasing of CV from 87.03% to 34.69%. Ca, Na, K, and V had a CV difference between 2022

and 2023 around 15-30%. On the other hand, OM, CEC, and TOC are highly sensible to tillage

and fertilization (using single rate application for this case). Consequently, HMZs can change

from year to year.

Knowing the mobility of nutrients in the soil is intrinsic to the dynamics of the soil-water-

plant interface (THOMAS, 1970) makes the PA paradigm even more important, as it demon-

strates the need for periodic mapping, and consequently the possibility of rethinking the rec-

ommendations made and changing strategies, as well as detecting more complex problems that

will require further studies.
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Chapter 5

Conclusions

5.1 Concluding remarks and contributions of this thesis

Firstly, from the bibliometric study for understanding the state-of-art of the use of geostatistics

in PA in the Brazilian scientific community, we detected using geostatistics for PA has been

limited, mostly for univariate interpolation purposes. In this manner, our proposed methodology

is innovative, considering the multivariate geostatistics for PA is still not widely used. From a

statistical point of view, disregarding the heterogeneity of data and merging all data together

might lead to considerable estimation errors and bias. Geostatistics can produce a satisfactory

solution to this common problem by taking the change of support into account.

Then, delineating HMZs and interpolating coffee yield even with the presence of outliers,

ranking the effects of using different dimensionality reduction approaches followed by different

clustering methods, are proposed to facilitate the evaluation of innovative approaches over hard-

to-deal spatial modeling scenarios like a low-sampled field with outliers.

A data fusion approach based on multivariate geostatistics, for combining spatial data of

different types from soil sampling and remotely sensed retrieving was described and applied

over a specialty coffee plot. In summary, this work reported the following findings:

• There is generally high spatial variability of soil chemical attributes and coffee yield after

performing Gaussian anamorphosis transformation and LMC regularization;

• High temporal variability was observed over the 2 years while the spatial patterns re-

mained quite unstable;
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• Spatial variability were found and modeled even with the presence of outliers by using

BCOK interpolation with LMC regularization;

• Management zones can be delineated by adopting a combination of multivariate geo-

statistics with different clustering approaches;

• MAF approach provided the best coffee yield differentiation between zones.

In this research, data fusion allowed the use of spatial information from different sources.

After detecting the current state-of-art of the use of geostatistics to PA, it was clean the main

current use is limited to univariate modeling. In this manner, a data fusion flexible approach is

a contribution to the PA community in Brazil.

The joint use of geostatistics and clustering methods (from data science) is another important

point, since previous studies use them separated for the same goal, delineating HMZs. Data

science and agronomical knowledge supported HMZ delineation. Summing up, a heterodox

combination of tools allowed us to deal with heterogeneous datasets for a challenging research

problem.

5.2 Future research

Future research might focus on new experiments with the same sampling design along different

periods, looking to find more evidence about the robustness of the methodology to ensure the

assurance of the farmers in its application. Farmers can focus on managing the variation within

the coffee complete cycle (around 2 years), and a better strategy might be to combine the use of

HMZs with crop-based in-season remote sensing. The latter information could be incorporated

efficiently into a decision support system (DSS) software aimed at supporting farmers in their

agricultural management.

Future studies may focus on smallholder farmers, more specifically on farmers’ social and

economic behavior towards the adoption of PA practices as the use of HMZs and whether the

adopters have a competitive advantage compared to non-adopters. Also, a better understanding

of how the new generation, according to the level of connectivity in the rural environment.
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