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Abstract

We investigate the evolution of persistence in post-WWII US inflation. Besides stan-
dard methods, we draw cutting edge methods from deep neural networks and leverage
their flexibility in dealing with long trends and short swings to study inflation inertia.
We consistently find evidence of decreasing persistence since mid-90’s, also controlling
for trend inflation and commodities influence. The decrease pre-dates the onset of glob-
alisation forces, post-dates switches in monetary policy, and thus points to longer term
transformations unfolding the is US economy, such as structural change.
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1 Introduction

Inflation is one of the main topics in macroeconomics. Its origin, dynamic behaviour, and
control have sparked immense strands of research, from microeconomics to forecasting. In
the last decade, inflation was – and still is – part of a lively discussion on monetary policy.

During the 2010’s decade, inflation has been unexpectedly low and stable in advanced
economies. This low trend and mild volatility are even more baffling in light of the large
swings in economic activity, commodities price, monetary and fiscal policies. This recent
dynamics of inflation is puzzling both if one compares it with historical data and if one
looks at the predictions of most macroeconomic theories. From a historical perspective,
during the last two decades inflation has become at the same time harder and easier to pre-
dict (Stock and Watson, 2007): significantly less volatile than in the post-war period and yet
well modelled by a white noise rather than more structured models. Furthermore, accord-
ing to conventional theories based on simple Taylor rules, the new, unconventional tools
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adopted by central banks in response to the 2008 Global Financial Crisis could have had
small or zero effect or have generated inflation spiralling out of control, as in the late ’70s
(see, for example, Taylor (2014)). In contrast to these predictions, the US economy posted
its longest expansion since WWII, until COVID-19 upended it, in a context of moderate
inflation.

This paper presents a wide-ranging empirical analysis on the dynamics of inflation
mainly based on reduced-form models. We focus on the univariate properties of the infla-
tion series since WWII, abstracting from an analysis of its determinants. Over this period,
there were different phases characterised by various stages of structural change, varying
degrees of trade openness, and different regimes for macroeconomic policies. To capture
and exploit all information present in the data, we use five measures of price change cover-
ing consumption and production of goods and services in the US economy. Our contribu-
tion to the existing literature relates both to the sample and indicators of inflation, and on
the methodology adopted. First, we study inflation persistence using longer time periods
and several measures. Second, we implement relatively recent methodologies, including
artificial intelligence, which have not yet been fully exploited in the analysis of inflation.

Our analysis starts from simple, but reliable, autoregressive models that impose a struc-
tural straightjacket to the data. We then move to more flexible tools, such as a Bayesian
state-space autoregressive analysis and the model-free deep learning approach. While
Bayesian tools are largely common in macroeconomic analyses, machine learning is still
at an exploratory stage, although their use in macroeconomic analysis is rapidly growing
(Athey and Imbens, 2019; Varian, 2014), especially because of their excellent forecasting
performances (Almosova and Andresen, 2019; Makridakis, Spiliotis, and Assimakopoulos,
2018). In this paper we exploit the capabilities of these tools in order to identify with finer
granularity the non-linear properties of inflation. Once the neural network is presented
and trained with data, we use its forecasting properties to generate additional data points
and assess more precisely how persistence has changed over time. We restrict our atten-
tion to inflation persistence and its dynamic changes. A broad definition of persistence
relates to inertia, which is the property of an object to not deviate from its past dynamics
in absence of external shocks. A highly persistent time series posting a 5% growth rate will
likely move in such value’s neighbourhood if nothing affects it. On the other hand, when
the inertial series is hit by a shock, it will slowly incorporate and dissipate the shock over
time. Similarly, weakly persistent series will display more variability and shocks will be
depleted relatively quickly. An intuitive implication of inertia is predictability, which goes
hand in hand with persistence.

The question of inflation persistence is particularly relevant for monetary policy. As-
sessing the sensitivity of inflation to changes is crucial for central banks when planning
policy interventions: how aggressive should the intervention be to undo an inflationary
spiral? Or symmetrically, what is the optimal timing for rate increases during a recovery or
expansion? As monetary policy operates through lags, how much will it take for a shock to
be transmitted to observed inflation? The degree of persistence also influences the tradeoff
between inflation and economic activity: if inflation is persistent and far from the target,
it will require corresponding larger output gaps. Likewise, the analysis of persistence pro-
vides information on how the sectoral structure of the economy, technology, international
finance and trade affect the country’s inflation. Analysing inflation persistence also sheds
light on the process of price formation: is persistence stable? If not, how does it vary over
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time and why? Is there a mutual influence with measures of output persistence and volatil-
ity? Moreover, as shown by the large body of studies on the Taylor Rule parametrisation
and its changes over time, it is still unclear whether these changes affect in any measurable
manner the dynamics of inflation.

Understanding the dynamic properties of inflation improves the decision making of
central banks in two crucial ways: before the policy decision, an extended information set
helps to calibrate the intervention; and after the policy decision it helps to evaluate its ef-
fectiveness. Central banks need to assess whether the sources of movements in inflation
are inherited from deep, structural sources like price-setting strategies or, alternatively,
whether are due to transient shocks to commodities prices. This is in turn useful also to
evaluate the time lag between policy changes and changes in inflation, or the length of
time needed to achieve the inflation target. For governments, the knowledge of inflation
dynamics is important to design their fiscal policy. For example, with highly inertial in-
flation, a VAT increase will take several quarters to be fully transferred to final consumer
prices. Moreover, if inflation, as in a traditional Phillips Curve, inherits its inertia from
output, fiscal authorities might improve the global policy mix with the monetary authority.

Recent research highlights the interplay between trend inflation, inflation target, and
persistence, see for example Cogley and Sbordone (2009), Kurozumi and Zandweghe (2019),
and Stock and Watson (2007). To account for such interplay, throughout the paper we
control for trend inflation and for time-varying trends; nevertheless, such investigation is
outside the scope of this study.

Literature overview
Inflation is a central theme in macroeconomics. We therefore contribute to a long and rich
literature. Recent inflation dynamics in developed economies is the focus of Ciccarelli and
Osbat (2017), Coibion, Gorodnichenko, and Kamdar (2018), and Miles et al. (2017), who
apply diverse frameworks but overall report low and stable inflation rates since the 2000.
The root causes for such dynamic behaviour are studied in three complementary strands of
literature. A large number of studies focuses on the expectations in a Phillips Curve frame-
work. A comprehensive overview of empirical strategies to estimate the effects of inflation
expectations in the Phillips Curve is Mavroeidis, Plegborg-Moller, and Stock (2014), which
emphasise the uncertainty and difficulties in precisely pinning down a robust specification.
On the other hand, Coibion and Gorodnichenko (2015) and Coibion, Gorodnichenko, and
Kamdar (2018) propose mechanisms of expectations formation to explore how these affect
realised inflation.

An additional cause for inflation dynamics is found in the integration into global value
chains, which ease the transmission of foreign shocks: Auer, Borio, and Filardo (2017) and
Bianchi and Civelli (2015) fall in this line of research and find evidence of global inflation
effects. These effects generally increase with openness but are stable over time. Along
these lines, Jarociński and Bobeica (2017) augment a VAR with domestic and global factors
to solve the twin puzzle of missing both disinflation and inflation in the Euro Area during
the 2008 recession. They find that domestic factors counteracted global ones in the EA and
can explain the missing inflation leg of the twin puzzles.

More generally, a third strand of literature has focused on the interplay of monetary
policy regimes, inflation, and volatility shocks. Fernández-Villaverde, Guerrón-Quintana,
and Rubio-Ramı́rez (2010, 2015) estimate DSGE models with stochastic volatility and eval-
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uate the role of shocks and policies in setting off the Great Moderation. Their findings point
towards a minor role for policy in the steady dynamics of aggregates during the 1984-2007
period. Our approach is closely related to Pivetta and Reis (2007) and Fuhrer (2011): the for-
mer study inflation dynamics building on Cogley and Sargent (2002, 2005) with a flexible
Bayesian approach. The latter offers a review of the state of the art in terms of measures,
methods, and theories to evaluate inflation dynamics. The bottom line of both studies,
though, is that inflation persistence is relatively stable in the post-WWII period, although
both studies predate the 2008 recession and the ensuing policy innovations.

A series of interrelated studies investigated the dynamics of the inflation gap, which
is the deviation from trend. Benati and Surico (2008) and Cogley, Primiceri, and Sargent
(2008) estimate VAR models with a focus on predictability. Overall they find that US infla-
tion has become less predictable and argue that this broadly corresponds to a more aggres-
sive monetary stance or a change in the inflation target.

We extend the above analyses by using statistical learning tools such as machine learn-
ing, which are growing in empirical economic studies. Forecasting is one of the main
uses of statistical learning tools. (Jung, Patnam, and Ter-Martirosyan, 2018; Kock and
Teräsvirta, 2016; Makridakis, Spiliotis, and Assimakopoulos, 2018; McAdam and McNelis,
2005; Medeiros et al., 2019). In this respect, Nakamura (2005) employed plain neural net-
works to forecast inflation, while Almosova and Andresen (2019), in close relation to our
work, compare recurrent neural networks against workhorse forecasting models to predict
monthly inflation at several horizons. Researchers have previously ventured in adapting
artificial intelligence to macroeconomic applications (Bajari et al., 2015; Chakraborty and
Joseph, 2017; Giannone, Lenza, and Primiceri, 2018; Goulet Coulombe et al., 2019; Koro-
bilis, 2018), econometrics (Athey, 2018; Athey and Imbens, 2015, 2019; Mullainathan and
Spiess, 2017; Varian, 2014), or asset pricing (Gu, Kelly, and Xiu, 2020). Lastly, promis-
ing applications of sophisticated machine learning models have been proposed in compu-
tational economics, see for example Fernandez-Villaverde and Guerron-Quintana (2020),
Fernández-Villaverde, Hurtado, and Nuño (2020), and Maliar, Maliar, and Winant (2019)
who offer ML-based numerical solutions to DSGEs, or more generally Rackauckas et al.
(2020) who incorporates ML for numerical solution of complex dynamic systems.

The rest of the paper is organised as follows: Section (2) presents data, Section (3)
overviews the empirical tools and resulting evidence from a plain autoregressive, frequen-
tist approach, Section (4) describes the Bayesian take on persistence, Section (5) presents
the results using the machine learning tools and results; finally Section (6) concludes.

2 Data and tools

While traditionally only one series is used in analysing inflation persistence, we consider
three classes of inflation indexes for the US economy: the Consumer Price Index (CPI), the
Personal Consumption Expenditure index (PCE), and finally the Gross Domestic Product
Deflator. These three indexes are measured on different baskets of goods, hence discrepan-
cies and deviations are due to the distinct subset of goods and services each index tracks.
More precisely, the CPI mainly relates to consumers purchases, the PCE captures business
sales, while the GDP deflator is measured on the goods and services produced domesti-
cally, abstracting from ”imported” inflation. CPI and PCE also differ in the weights for
each good and are available as ”headline” and ”core”, with the latter excluding volatile
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items like food, energy, and commodities. We cover almost entirely the post-WWII period,
as series span 1948Q1:2020Q1 for CPI and GDP deflator, while PCE indexes start in 1960Q1.
All series considered are historically revised to track as closely as possible the actual change
of prices.1

Researchers interested in monetary policy usually prefer PCE and the GDP deflator, as
the former is the explicit target of the Federal Reserve Bank (Cogley and Sargent, 2005;
Cogley and Sbordone, 2009), while forecasting and statistical analyses often rely on the
CPI (Fuhrer, 2011; Pivetta and Reis, 2007). We cover the whole range of indexes to capture
common trends in the dynamics of aggregate inflation.

All the series are sourced at a quarterly frequency from the FRED database of the Fed-
eral Reserve Bank of St. Louis. We take the raw level of the indexes and compute an-
nualised quarter-on-quarter percentage change, to account for slow-moving trends in the
data.2 Throughout the analysis, our preferred measure is the GDP deflator index, since by
design it tracks closely the variation in prices of goods and services produced and supplied
within the US economy. This feature allows us to track more closely the underlying macro
dynamics. Moreover, it also provides us with more observations, which can be used for
checking the robustness of our results. Figure 1 plots all series that we will analyse.

Figure 1: US Inflation Data

−10

0

10

1960 1980 2000 2020
 

 

CPI CPI Core GDP Deflator PCE PCE Core

Inflation series: CPI, Consumer Price Index, including and excluding Food and Energy prices (starting
1947Q2, 1958Q4); PCE, Personal Consumption Expenditure index, including and excluding Food and
Energy (1959Q2, 1959Q2); US Gross Domestic Product deflator (1947Q2). All series are computed as
annualised log differences from previous quarter and end in 2020Q1.

1For Core CPI we drop the observations up until 1966, since those are interpolated from lower frequency data
and thus carry very little signal to noise ratio.

2Quarter on quarter annualized percentage changes are left to the Appendix for comparison: overall trends do
not vary significantly, whilst the levels change mildly.
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Figure 2: Headline and Core Inflation
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Top panel: full sample of headline and core series; bottom panel: headline and core series since 1990.

One stark fact emerges at a simple glimpse of the series. While for most observations
headline and core inflation measures move hand in hand, they appear to diverge in volatil-
ity after 2000. To better tell apart these discrepancies, Fig.(2) compares headline and core
measures for CPI and PCE over the whole sample and since 1990.

This difference in volatility is, at a first pass, due to commodities prices, which sharply
fluctuated after 2000. The clearest example is the oil price, which posted threefold increases
and contractions since early 2000s (Miles et al., 2017).3 Core inflation series are unaffected
by these swings, as they exclude commodity prices. Therefore, analysing both headline and
core series permits to isolate shocks, including their dynamic implications, arising from
fluctuations in food and energy prices.

Tools and methods
Distinguishing core and headline inflation does not eliminate other sources of persistence

in inflation, in particular the main channels working through forward-looking inflation ex-
pectations and the interactions with the level of economic activity, as postulated by several
Phillips curve specifications:

πt = βEt (πt+i) + ωŷt + ϵt (1)

Thus, assuming errors are a zero-mean, drift-less iid process,4 inflation inertia is fully
inherited from the dynamics of the output gap ŷ actualised at t. Several studies focus sep-
arately on expectations (Coibion and Gorodnichenko, 2015; Coibion, Gorodnichenko, and

3Fig.(10) in the Appendix plots price level and change for the West Texas Intermediate since mid-80s; Fig.(11)
plots the same metrics for a global commodities index.

4Potential measurement errors are alike, and omitted in the equation.
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Ropele, 2019) or output gap (Mavroeidis, Plegborg-Moller, and Stock, 2014) to explain in-
flation persistence. The former find that market-implied, consumers’, and professional
forecasters’ expectations drifted apart and match differently the actual value of inflation
(Mankiw, Reis, and Wolfers, 2003; Trehan, 2015). In this paper, we take a policymaker
point of view and solely assess the transmission of shocks to actual inflation, disregarding
effects on expectations or confounding sources such as movements in the output gap. This
is clearly a reduced-form approach, but still informative on the underlying dynamics of
inflation. Indeed, more general approaches are required to at least match what is observed
in simple frameworks such ours.

We employ three classes of models to analyse inflation inertia, spanning increasing lev-
els of refinement and complexity. The first step is a simple autoregressive approach with
varying lags. Then, the same structure is extended in a Bayesian framework, and finally we
fit a recurrent neural network borrowed from statistical learning. In all parts we measure
inertia as the first order serial correlation or the sum of all autoregressive coefficients. These
statistics convey enough information that allows us not only to judge inflation persistence
but also to complement other common metrics, for example, the largest autoregressive
root (LAR) or the halflife of a shock (both employed in Fuhrer (2011) and Pivetta and Reis
(2007)).5

3 Autoregressive analyses

As a first step to test whether inflation inertia has varied significantly over time, we esti-
mate a simple AR (1) model. To capture such variations, we estimate the AR (1) model on
a 56-quarter rolling window, in line with Fuhrer (2011) and Pivetta and Reis (2007). Un-
stable estimates or large swings from such exercise would substantiate further analyses,
aimed at decomposing the varying weight of past inflation on current price change. For
this purpose, we consider inflation observations as drawn from the following process:

πt = β0,t + β1,tπt−1 + εt (2)

This barebone model represents the benchmark for our analysis. In such a framework
β0 represents the steady-state or trend inflation rate, while β1 encapsulates any form of
intrinsic inflation autocorrelation. We will primarily focus on β1,t, without direct consid-
eration of the intercept. Its consideration in our exercise would require the explicit mod-
elling of trend inflation, which is out of the scope of this work.6 The error term ε, in this
case, mops up new disturbances of any sorts, from expectations to technology, mark-up,
demand shocks hitting inflation at time t.

In workhorse modern macro monetary models, the process generating inflation hinges
mainly on expected inflation and disturbances in the current output gap: the Phillips curve,
in this case, reads as in eq.(1) (Walsh, 2003; Woodford, 2003) and it is fully forward-looking
with i > 0. The only sources of persistence are the serial correlation of shock to technology
and the degree of price flexibility, both originating in the supply block of the economy

5Ideally, though, one would further add measures that are not easily summarised in one scalar, such as the vari-
ation of the autocorrelation function over time or the decomposition of permanent and transitory shocks’ variances
as presented in Stock and Watson (2007).

6Nevertheless, Appendix G complements with the full range of trend inflation estimates.
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subsumed in ŷ. This basic framework can be augmented by adding trend inflation and
fluctuations around it.7 In empirical studies this extension helps to bridge the gap between
observed and theoretical behaviour of inflation and links central banks’ inflation targeting
and short term fluctuations around such target.

Fig.(3) collects the estimates from the AR (1) process previously described, using the
GDP deflator, CPI, and PCE indexes.

Figure 3: AR (1) Persistence
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AR(1) estimates for CPI, PCE, GDP deflator series, rolling window of 56 quarters (14 years). Black
line plots β1,t point estimates over time, red lines are 5% confidence intervals, blue line is LOESS fit to
polynomially smooth out point estimates, grey bands are its 5% confidence intervals. Headline series
are on the top row, core are on the middle row.

7Cogley, Primiceri, and Sargent (2008) and Cogley and Sbordone (2009) provide a framework for modelling and
estimating time-varying trend inflation and the inflation gap, respectively. Cogley, Primiceri, and Sargent (2008)
find that the inflation gap display little persistence, while Cogley and Sbordone (2009) show that allowing trend
inflation does away with inflation indexation in NK models.
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At a first glance, some regularities emerge: for all series analysed report sensible vari-
ation in β1,t, alongside a generalised downward trend. This trend peaks roughly in the
mid-90s in all series considered before decreasing at varying speeds. A 56-quarter win-
dow implies that the estimates for this period are based on a subsample that just excluded
observations from the early 80s, a period of structural change and monetary (unexpected)
intervention, namely the Volcker policy shift. Interestingly, the mid-90s estimates show
high levels of variation, in comparison with the rest of the estimates: values for β1,t drop
significantly before climbing back on trend, common to all five panes, likely reflecting the
switch induced by Volcker. The switch takes the form of a debasing of inflation from the
previous trend, thus erasing dependence on past realisations.

Consistently with the increased variability displayed by headline series (as opposed to
core ones excluding food and energy) the CPI series (left column) display relevant differ-
ences between headline (top left) and core series (mid left). This pattern is less evident in
the PCE series, which in turn display a similar profile over time both in trend and mag-
nitude. In three cases out of five, zero is included in the confidence interval roughly from
2005, implying a white-noise process.

Overall, these estimates point to a decreased inflation inertia, with significant drops
taking place since the 2000s. This is particularly stark for CPI and PCE series but less
clear for the GDP deflator: the first autocorrelation coefficient for this latter series starts
decreasing in the mid-1990s and five years later displays a mild acceleration, with sensibly
more smoothness than other indexes.

Such widespread dynamics allows the exclusion of commodity prices as the root cause
of decreased inflation inertia, but the timing of the switches hints at factors like interna-
tional trade shocks (Autor, Dorn, and Hanson, 2016; Bianchi and Civelli, 2015). Specifically,
increasing economic integration at a global scale might foster the transmission of interna-
tional shocks into domestic inflation, as argued by Auer, Borio, and Filardo (2017). This
argument is corroborated by the fact that the GDP deflator displays a slightly different,
and slower, decrease, tracking more closely the US national production.

The evidence offered by this simple analysis begs further investigation on the behaviour
of inflation and its persistence. A more refined approach within the frequentist domain
consists in extracting more information from the inflation time series by using an optimally
chosen number of lags. This approach is applied in the next section.

3.1 Optimal lags selection

A natural step forward consists in adding more lags to the model we estimate. This addi-
tion allows a better framing of inflation persistence, since longer lags can capture depen-
dence on realisations farther in the past. Two issues arise when comparing multiple lags
estimates, though. Firstly, it is not clear whether a process with two lags like .7 and .2 is
more, equally, or less persistent than a process with three lags, like .5, .4, .3. To circumvent
this issue, we sum over the coefficients, compounding together all estimates. In this way
we can compare a measure of persistence independently of the number and magnitude of
the single parameters. Secondly, this approach allows for heterogeneity in the lags number
for each series. We exploit this feature and compute, on the whole sample, the number of
lags that minimises the Bayesian Information Criterion. Formally, the assumed process for
inflation is
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πt = β0,t +
k∗

∑
i=1

βi,tπt−i + εt with k∗ = argmink≤k̄BIC (k; 1, . . . , T) (3)

where k̄ is set to 18 quarters as an upper bound to the number of admissible lags. Con-
versely, we measure inflation persistence as follows, as presented by Fuhrer (2011) and
Pivetta and Reis (2007):

ρ (k∗) =
k∗

∑
i=1

β̂i with βi =
E (πtπt−i)

V (π)
(4)

where k∗ is computed on all available observations, at this stage. We estimate the
AR (k∗) process with a rolling window in order to study how ρ (k∗) evolves over time,
using again a width of 56 observations. Tab.(1) presents the optimal lags obtained for each
series.8

Table 1: Optimal lags selection via BIC

GDP Defl. CPI headline CPI core PCE headline PCE core
3 3 3 3 2

Fig.(4) shows that the same, generalized downward trend in persistence is found even
when more lags are included in the model for inflation dynamics. The values reported are
all in the same neighbourhood, corroborating the evidence of initially high but decreasing
persistence.

Individual profiles do not differ much from previous plots, with the GDP deflator show-
ing the slowest downward trend in the series, possibly due to slow transformations taking
place within the US economy’s composition and percolating onto prices. Although less
stable than the previous case, the sum of autoregressive coefficients still reports a relevant
drop around the mid-90s, when observations associated with Volcker’s initial period are
phased out of the rolling window.

Again, a sharp decrease in inertia takes place around the year 2000 for CPI and PCE
series (both core and headline). The sharp fall emerges from observations from the be-
ginning of the Great Moderation, but for most series is followed by a modest rebound
upwards. This last movement, though, does not fully offset the previous decrease and
sets inertia on relatively lower values. The GDP deflator, consistently, follows a smoother,
hump-shaped path, peaking during the 1970-90 period, with much less volatile point esti-
mates and tighter error bands.

According to these slightly more refined analyses, inflation has become less persistent
over the decades and has drastically accelerated this process during the last two decades.
The pattern is consistent with two simple methods and is confirmed when we exclude
volatile commodity prices, as in core series. The GDP deflator, which tracks more closely
the economic activity in the US economy, displays a much smoother dynamics of inertia.

8We propose a similar table in the Appendix, including year-on-year growth rates, Tab.3. While year-on-year
and annualised quarter-on-quarter series are computed on the same raw data and method, the former present
significantly higher levels of autocorrelation: the optimal lags numbers are in all cases between 9 and 18.
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Figure 4: AR (k∗) Persistence
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AR (k∗) estimates for ρ (k∗), on a 56-quarter rolling window. Black line plots ρ (k∗), grey bands are
sums of SEs, blue line is LOESS polynomial fit to smooth out point estimates.

All in all, there is room for deeper investigation into the behaviour of inflation dynamics
with refined methods. Next section uses a Bayesian approach to deepen the analysis and
to exploit more of the information present in the data.

4 A Bayesian estimation of inertia

Adding a layer of sophistication to our inquiry, Bayesian methods helps in efficiently use
data information, providing distributions of per-period measures of persistence. To this
end, we adapt the approach illustrated in Pivetta and Reis (2007). We build upon this
work operating on two margins: first, we use longer time series and, second, we run the
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estimations on five series rather than only one. Throughout this exercise, we set the lags to
three, consistently with frequentist analyses outlined above.

The main framework of this section dates back to Cogley and Sargent (2002, 2005), sub-
sequently extended in Pivetta and Reis (2007) to allow for degenerate, unit root draws. The
assumed state-space model consists of the following components:

πt = β0,t +
3

∑
i=1

βi,tπt−i + εt

P (βt+1|βt, V) ∝ I (βt+1) MVN (βt+1|βt, V)

=⇒ βt+1 = βt + νt+1

with var (ν) = Q

(5)

where the first equation is the measurement equation we also estimated in the previous
section, the second line is the (hidden) state evolution, evolving as a multivariate normal
distribution. βt stacks all parameters at time t, βt = [β0,t, β1,t, β2,t, β3,t, ]

′. The state equa-
tion has the density of the parameters vector β depend on two components, an indicator
function I that can be used to optionally exclude unit root draws and a multivariate normal
density conditional on past draws of β, with constant covariance matrix V. The third line,
implied by the Gaussian density, establishes that autoregressive parameters evolve over
time as driftless random walks, potentially with unit roots.9

In this framework, β values are the model parameters, while the hyper-parameters are
collected in the covariance matrix V. This latter gathers the co-variances of measurement
and state equations:

V =

σ2
ε C′

C Q

 (6)

where var (εt) = σ2
ε is the variance of innovations in the measurement equation and Q

is that for the state equation. C captures the covariance of measurement and state distur-
bances, set to zero.

To initialise β we use the first ten years of observations for each series, then the model
is estimated on the remaining observations.10 These estimates are collected in

(
β̄, P̄, V̄, T0

)
,

with β̄ and P̄ being the OLS based mean and variance of a Gaussian distribution, and V̄−1

and T0 are scale matrix and degrees of freedom of a inverse-Wishart distribution, respec-
tively. Therefore, the prior distribution on β0 is a draw from the following joint prior

P (β0, V) ∝ I (β) MVN
(

β̄, P̄
)

IW
(

V̄−1, T0

)
(7)

After initialisation, the algorithm obtains draws covering the past posterior distribution
of states and hyper-parameters. These are then used to compute conditional future paths

9Ideally, further extensions accommodating for time-varying innovations would provide additional insights on
the evolution of shocks and uncertainty in the economy. As a reference, see Bianchi (2013) and Lhuissier (2018),
who develop estimated DSGE models with regime-switching uncertainty in volatility. Cogley and Sargent (2002)
acknowledge such limitation in their work and tackle stochastic volatility in Cogley and Sargent (2005).

10Looking back at Fig.1, though, this step produces potentially biased hyperparameters, in light of the stark
heterogeneity with the rest of the sample.
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for inflation and state. The final step computes persistence measures on these simulated
paths. At each period t, conditional on past information, we simulate distributions for the
next 120 periods.

To produce such simulations, we need to draw from the following posterior distribu-
tion:

P
(

Πt+1,t+h, βt+1,t+h, βt, V|Πt
)

(8)

with Πt collecting all observations until t. This posterior density can be separated into
past and present beliefs and future uncertainty, conditional on time-t information, as fol-
lows:

P
(

Πt+1,t+h, βt+1,t+h, βt, V|Πt
)
=

beliefs on past and present︷ ︸︸ ︷
P
(

βt, V|Πt)
× P

(
Πt+1,t+h, βt+1,t+h|βt, V, Πt

)
︸ ︷︷ ︸

future uncertainty

(9)

The first block can be sampled via a Gibbs sampler. Draws from this sampler are later
used to simulate future trajectories conditional on data-informed beliefs up to time t. Ad-
ditional details on the algorithm to sample from such posterior density are presented in
Cogley and Sargent (2002) and Pivetta and Reis (2007).

We set 300 thousand total draws, with a burn-in of 150 thousand to deal with path
dependency and to ensure convergence to the posterior. Therefore, we use in our compu-
tations of persistence 150 thousand actual draws. Future paths are simulated up to a 120
quarters horizon, equivalent to thirty years of synthetic history. In line with Pivetta and
Reis (2007) but in contrast to Cogley and Sargent (2002), we do not rule out explosive roots,
so to report the complete, rather than the truncated, distribution of βs.

The results are plotted in Fig.(5) for all series in exam, together with upper and lower 5%
credibility intervals.11 The advantage of the Bayesian setup is to summarise all information
on persistence at time t from both data and prior in order to extend the sample simulating
a wealth of future, consistent paths. At any date t the state incorporates all information
available in the past observations. Consistently with this information, the space of future
realisations is duly explored far into the future and covering large swaths of the domain of
the distributions. Therefore, it pins down more precisely the measurement of inertia at time
t rather than relying on a rolling window approach with a fixed number of observations.

The output of this Bayesian exercise broadly corroborates the findings of simpler, fre-
quentist approaches, with some significant departures. Overall, swings in inflation inertia
are smoother and more gradual, unfolding over the whole length of the sample.

Scrutinising the general pattern, though, one can easily make contact with previous
results: inflation inertia decreases from relatively high levels. Point estimates report gen-
erally higher values than Fig. (3) and 4, notwithstanding a common temporal path. The
peak is generally reached in the mid-90s, which backdates slightly the onset of the decrease
and somewhat weakens the international trade cause for such decline, as China officially
entered WTO only in 2001 (Autor, Dorn, and Hanson, 2016). Moreover, this decline ap-
pears to be preceded by a phase of increase, as suggested in previous analyses. Core CPI
persistence, though, stands out: it shows a rather stable path, if not slightly increasing.

11Full draws distributions per quarter are deferred to Appendix (D).
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Figure 5: Bayesian Estimates
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A second common pattern is an increasing uncertainty around the median: in most se-
ries credibility intervals widen visibly toward the end of the period, with GDP deflator’s
and core series’ intervals covering much of the unit space, in line with the higher unpre-
dictability of inflation put forward by Stock and Watson (2007).

This unpredictability is even corroborated as credibility intervals reach zero for the
headline CPI and PCE. This levelling down corresponds to the flattening displayed in
Figs.(3) and (4), suggesting that after the Global Financial Crisis inflation is much closer
to white noise than to an autoregressive process. In turn, it is necessary to couple such re-
duced form analysis with more interactions with other economic forces to fully unbundle
the effects of economic slack, fiscal and monetary policies, international spillovers. A first
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sophisticated step towards such setup is carried out in Fernández-Villaverde, Guerrón-
Quintana, and Rubio-Ramı́rez (2010, 2015), which estimate a rich DSGE with volatility
shocks and study whether monetary policy switches had more effects than reduced vari-
ance on taming inflation.

As a side note, an advantage of this Bayesian approach is the potential to extend this
kernel to include more structured and informed models. In fact, Cogley, Primiceri, and
Sargent (2008) and Cogley and Sargent (2005) do take this approach to structural models.

5 RNN-LSTM approach to persistence

Based on our reduced form perspective, the lag structure and possible non-linearities play a
crucial role. For instance, inflation may display a slow-moving drift that affects realisations
at sensibly long horizons. To tackle this possibility, we borrow from a class of models
that are precisely designed to handle long, short, and time-varying lags in a flexible and
dynamic way.

Long Short-Term Memory models (LSTMs) are machine learning algorithms that ex-
ploit the structure and advantages of Recurrent Neural Networks (RNNs). This class of es-
sentially non-parametric models has the advantage of effectively handling a very large set
of functional forms under mild regularity requirements (Kidger and Lyons, 2019; Leshno
et al., 1993; Tabuada and Gharesifard, 2020). The downside is the infamous black-box na-
ture and the complexity of the inner mechanisms: the resulting estimated network can
hardly provide intuitive insights on the connections and relations between data points.
Conversely, though, machine learning models produce reliable results in terms of fit and
forecasts.

The broader class of neural networks (NN) does not keep up well with persistence, as
these models conserve little information about data with potentially long time dependen-
cies. This issue is known as the ”vanishing gradient” problem. It originates with the back-
propagation algorithm, which, in a nutshell, is an efficient way to minimize a loss function
evaluated on data samples by adjusting the NN parameters according to the values of the
(chained) gradient. This, coupled with parameters being typically constrained within the
[−1; 1] interval, implies that deep networks sequentially multiply small adjustment values,
quickly falling to zero. In this way, past information is lost.

Recurrent neural networks (RNN) overcome this shortcoming by explicitly carrying for-
ward relevant information through a hidden state that gates out non-relevant information.
This mechanism is reinforced in ”stateful” LSTMs, a subset of RNNs.12 The flip side of this
feature is the requirement of long series for training, so much so that the roughly 250 ob-
servations present in our quarterly series are barely sufficient.13 In informing this section
we mainly refer to Almosova and Andresen (2019), who first applied stateless RNN-LSTM
to inflation forecasting. They show that these models can outperform most traditional fore-
casting tools and thus are interesting devices to study dynamic properties.

Indeed, they find that these models outperform common forecasting tools at most hori-
zons, prevailing decidedly after the two years horizon. In their investigation, they use

12A more detailed and formal introduction to stateful RNN-LSTM is presented in the Appendix.
13Properly estimated statistical learning models require about 107 data points to train on. With macroeconomic

time series, we hardly work with series longer than 300 quarters. Quarterly series are more common in macro
applications than weekly and monthly data. The latter are often not available or highly seasonal.
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monthly raw data to let the model pick up spontaneously any non-linearities in the data –
such as seasonality.

Our approach for this application consists of two steps of increasing granularity. First
off, we simply feed the whole sample to the LSTM, let it learn freely and then produce a
sufficient number of forecasts to compute the usual statistics on inflation persistence. These
forecasts will depend on whatever the LSTM learned from the sequence and will allow for
a synthetic extension of the sample size. The output of such trained networks provides
insights on likely paths for future inflation and its inertia.

However, to assess the dynamic change of persistence we need to train the model on
sub-samples of the data. Two options lend themselves to the task: we first split by decades
the time series and repeat the analysis just outlined; secondly, we let the LSTM train on
a rolling window. This latter will output predictions that can be used to compute persis-
tence and its change over time, much in the spirit of our previous exercises. In the same
vein as the Bayesian method, we train the network on a fraction of the data and simulate
model-consistent future paths for inflation. These provide additional data points to mea-
sure variations in persistence at any given point in time over our sample.

5.1 LSTM forecasting

To produce forecasts for our analyses it is important to decide whether to use a direct or
indirect approach to forecasting. The latter consists in feeding the model with data up to
time t and subsequently with its own previous forecasts, therefore iterating on data and
forecast values. Direct forecasting, on the other hand, use specifically designed models to
produce forecasts at a given horizon. Marcellino, Stock, and Watson (2006) compares these
two approaches to time series forecasting and find that for linear specifications iterated
forecasts perform better than direct ones, and improve with longer forecasting horizons.
The case of LSTM differs from the framework of Marcellino, Stock, and Watson (2006) as
these models are not strictly linear.

To convey this idea, consider the following simplification. LSTM network links past
information to present observation through an arbitrary function F:

πt = F
(
πt−1, . . . , πt−p; W

)
+ εt (10)

with p being the lags, W collecting network’s parameters, and ε representing an arbi-
trary error, not necessarily Gaussian nor iid. Then, when the model is trained and Ŵ is
optimised, the model boils down to a possibly non-linear function F̂, which can be used to
produce forecasts. Naturally, the one period ahead forecast, conditional on time t, reads

π̂t+1|t = Et
[
F̂
(
πt; Ŵ

)]
(11)

Iterating forward, then, equates to

π̂t+2|t =Et
[
F̂
(
πt+1; Ŵ

)]
=Et

[
F̂
(

F̂
(
πt; Ŵ

)
; Ŵ

)]
=Et

[
F̂
(

F̂
(

F
(
πt−1, . . . , πt−p; W

)
+ εt; Ŵ

)
; Ŵ

)]
.

(12)
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Potential non-linearities in F and F̂ prevents from taking out ε from the expectations op-
erator directly, but rather calls for computationally intensive integration. Furthermore, no
assumption is cast upon the distribution of errors, which in turn accrue over the iterations.
A more appropriate approach would consist in fitting one model for each forecast horizon,
F̂(t+1), . . . , F̂(t+h), based only on information at time t. Such solution is more in the spirit of
direct forecasts. While more appropriate, this avenue is computationally demanding, thus
we simply assume ε to have mean zero and iterate on previous forecasts, as in Almosova
and Andresen (2019).

5.2 LSTM setup

When setting up a LSTM for training, the researcher needs to define its structure, the nodes,
and a loss function to evaluate the fit. We study models with one and two layers, and vary-
ing numbers of nodes per layer. Satisfactory results can be obtained by a one-layer LSTM
with about 75 nodes. Almosova and Andresen (2019) find that the best performance in
terms of forecast RSME is produced with 100 nodes.14 Our preferred loss function is the
mean squared error (mse) loss, computed comparing at each step the discrepancies be-
tween true and predicted values generated by the network and then used to guide further
adjustments in the network’s parameters. The choice of such loss function is useful to
make direct contact with standard econometric tools, but similar results can be achieved
with other compatible loss functions, like mean absolute error (mae).

Weights and biases of the network are optimised to minimize such loss function via the
ADAM optimizer (Kingma and Ba, 2014), which is now standard in the field of machine
learning (Schmidt, Schneider, and Hennig, 2021). LSTMs feature large numbers of parame-
ters to optimise, usually in the order of thousands if not tens of thousands, and are updated
at every iteration. The optimising algorithm explores such highly dimensional parametric
space following the gradient of the loss function for as many epochs as the researcher de-
cides to train.15 This implies that a neural network can be presented several times with
the same batch of data and incur in overfitting on the training set with poor out-of-sample
performances. We tackle the risk using the early-stopping criterion to govern the adaptive
stopping of the optimization. The network is thus shown a 90% subset of the training sam-
ple, it is fit with such subsample only. The iterations stop when the loss does not decrease
for a given number of iterations on the 10% that was left out for validation. This criterion
ensures the generalization of the resulting network. To further improve the generalisation
of the results, we impose L2 regularisation on the network parameters, nudging weights
towards zero in the vein of a Ridge regression.

5.3 Full sample: forecasting inflation and its persistence

We present here the results of a model with one and two layers, 1000 nodes per layer,
trained on the full sample of each series. These networks are then used to forecast the
inflation rates for the following ten years.Each model is trained on a variety of different

14Although it is not clearly stated, one can infer from the parameters count in footnote 8 that such model features
a single layer.

15Other tuning parameters depend largely on the algorithm of choice: with ADAM, we rely on the default values
for the perturbation of the first two moments of the stochastic gradient, namely β1 = .9, β2 = .999. We also impose
l2 (Ridge) regularisation on the deeper parameters of the network.
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periods, with varying volatility, trend, cyclicity, and monetary policy regimes. This exercise
is interesting since LSTMs are geared to capture at the same time short period swings and
dependencies that unfold on longer horizons. Extending the sample with predictions from
these trained LSMTs allows for a first assessment of the feature learnt and also to propose
possible future realisations for inflation inertia going forward.

This first set of results builds on the extension of the sample via forecasts produced by
networks trained on the full sample. Comparing models with one or two layers, both with
1000 nodes per layer, the latter does not seem to take advantage of the deeper structure,
although forecasts are qualitatively closer to past realisations and smoother overall. It is
reasonably due to a shortage of data points: deeper networks, despite the parameters reg-
ularization imposed on them, navigate a much more highly dimensional parameter space
and thus need more variation in the data as well as more observations to devise a minimum
in the loss function.

The next sections present the results of our study employing synthetic data generated
by a set of LSTMs on diverse subsamples of the data. From a technical point of view, the
LSTMs seem to attain a steady-state-like level when used to iterate forward: despite the
absence of clearly defined equilibrium linkages and structural shocks, forecasts converge
to the sample mean when iterated for sufficiently long horizons.16

5.4 Regressions on LSTM

The first approach to measure variations in inflation inertia consists in splitting the se-
ries into 10-year non-overlapping subsamples (plus optimal lags). Each subsample is used
to train a LSTM network that subsequently forecasts on a 40-quarter (ten years) horizon.
Then, we fit an autoregressive to elicit the persistence dynamics incorporated into the
LSTMs from inflation observations. Panes in the left column of Fig.(8) plot the values from
these regressions for the β1, alongside with confidence intervals. To complete the analysis,
right panes in Fig.(8) present the values for the sum of βs for AR(3) models.

Such lag length choice mirrors the optimal lags selected in Section 3 via the BIC minimi-
sation. Broadly, the downward trend for inflation inertia is confirmed, with a sharp drop in
all series except the GDP deflator series, which flattens slightly and takes a hump-shaped
profile. This holds for both the AR(1) and the AR(3) analyses.17

16See the presentation of LSTM in the Appendix to clarify the role of the sample mean.
17Appendix (F.1) presents detailed OLS regressions results behind such bar plots.
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Figure 6: Full Sample Forecasts
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Figure 7: Full Sample LSTM Predicted Persistence
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Left column: AR(k) on data and one-layer LSTM forecast (2020 onward). Right column: AR(k) on data
and two-layer LSTM forecast (2020 onward).
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Figure 8: LSTM on Decades – Persistence On Data and Forecasts
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Left column: AR (1) estimates for β1. Right column: AR (3) estimates for sum of βi. Subsamples are
non overlapping and encompass 10 years of data, plus appropriate lags. ’Time periods’ report the start-
end dates for the subsample of the actual data. Forecasts start from the end date of the sample and
run on iteratively for the following decade. Each LSTM network has one layer, 500 neurons, MSE loss
function, early-stopping, and is trained for 2000 epochs.
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5.5 Rolling LSTMs

This Section presents results from a set of networks trained on a rolling subset of data.
Each window spans ten years and is used to train a LSTM net; then, indirect forecasts
for the next 40 quarters are produced and used to compute persistence statistics.Once the
process is over, the window moves one quarter ahead, drops the oldest observations and
a new network is trained. In the same vein of the rolling window in Section (3), using
subsets of data and brand new networks allows the assessment of dynamic changes in
the underlying data generating process. The idea is to track closely different features of
inflation that LSTMs detect in the data and replicate in the forecasts. The advantage over
distinct samples is that it allows for a visual detection of such changes – smooth or abrupt
ones – at the cost of a precise timing of structural breaks. This procedure is done for AR(1)
and AR(3) models.

In general, reported persistence is significantly spikier, with large swings in both higher
and lower levels of inertia. Partly, this comes from the relatively small set of data points
used to train the networks, which in turn pick up and possibly over-represent local fea-
tures.18 Nevertheless, these analyses provide interesting insights on inflation persistence
itself, and on different properties of the series employed.

At a first pass, left panes in Fig.(9) display a higher persistence in the initial decades
of the covered period, while the scenario is more mixed for recent observations. CPI and
PCE (headline and core) show a broad decreasing trend, although the estimates for the first
lag coefficient β1t seem to rebound slightly upwards, around 2010. However, the rebound
typically starts from negative estimates of the first autocorrelation coefficient. Interestingly,
estimates for CPI and PCE display stark U-shaped dynamics in the years from the early
90s to early 00s, as is particularly clear for core PCE. The GDP deflator stands out from
the rest of the series, since it posts a decidedly downward trajectory for the last available
decade. Consistently with our previous analyses, the estimates for the deflator suggest
that some other factor came into play prior to international trade pressures or commodities
fluctuations.

A concurrent explanation for such dynamics hinges on policy interventions. With a 10-
year rolling window, though, estimates formed in the early 90s are based on a subsample
starting in the early 80s, when Volcker impulses a steep turn in the inflation processes. Al-
though appealing, this can explain only part of the dynamics in such decade. Volcker inter-
vention brought down inflation to a moderate level, thus zeroing its structural inertia until
its level was under 5%. This policy can well explain the slump and subsequent rebound,
while it gives no hints on the second and steady fall in persistence toward the end of the
90s. As previously shown, commodities’ volatility plays a minor role, as such dynamics
is observed in both core PCE and CPI. Similarly, international trade factors might come
at the right timing and act as catalysts to processes already in place. International com-
petition, especially from China, affect tradable sectors, which overlap substantially with
manufacturing, thus accelerating a process of sectoral reallocation.

The overall trend, though, can be eyeballed with the help of a polynomial smoother,
which points in all plots to a generalised decrease in inflation persistence. It must be noted
that during the last decade there seems to be a slow, gradual uptake of inertia, compatible

18The same exercise can be carried out doubling the window width to 80 quarters – or decreasing significantly
the nodes so to avoid over-parametrisation.
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with the frequentist analyses presented in Sec.(3). A notable exception is the series for
the GDP deflator, which tracks more closely the composition of the US economy: it shows
all along the sample a concave trend in persistence, and thus substantiates the claim of
structural transformation.

Looking at the right panes in Fig.(9), which depict the aforementioned procedure for the
sum of the coefficients of an AR(3) process, we can further validate our result of decreasing
inflation persistence.

A common pattern is pervasive in all estimates: since early 2000 all estimates present
higher volatility in the point estimates and higher uncertainty around these. The end of the
Great Moderation period, with fairly stable inflation, appears to set the inflation process
on a less predictable ground, with generally large swings in its persistence and basically a
quasi-white noise process at times. The root causes for such behaviour are still unclear, but
the lively debate on the Phillips Curve, consumers and financiers diverging perception of
inflation, and trends at the firm and macro levels do point to some candidate explanations.
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Figure 9: Rolling LSTM – Persistence on Data and Forecasts
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Left column: plots for AR(1) autocorrelation on a 10-year rolling window augmented with optimal lags.
Right column: plots for coefficients sum from an AR(3). Within each window a small LSTMs is trained
(2000 epochs, 1 layer, 500 nodes, MSE loss) and then used to iteratively forecast the next 40 quarters
(10 years) since last actual observation. Then an autoregressive model is estimated on this extended
window, the autocorrelation is stored and plotted as black solid line in correspondence of the last actual
data point date, with shaded areas reporting 95% confidence intervals around the point estimate. Blue
solid line represent a LOESS polynomial fit to highlight long term trends.24



6 Conclusion

Inflation behaviour has been widely investigated in recent years, within Phillips curves
and statistical frameworks, yet no conclusive consensus has emerged. Regarding inflation
dynamics, it is unclear whether inflation persistence has stabilised (Fuhrer, 2011; Pivetta
and Reis, 2007) or declined (Stock and Watson, 2007). Even less established is the debate
around the determinants of inflation dynamics (Mavroeidis, Plegborg-Moller, and Stock,
2014). Persistence, or equivalently inertia, is a fundamental property to consider when
fiscal or monetary policies are devised and evaluated, as it encapsulates how responsive
prices are to interventions.

In this work we revise and extend previous and analyses of inflation persistence for the
US macroeconomy. We extend the set of inflation measures to include GDP deflator, which
tracks closely the US economy’s structure, Consumer Price Index, and Personal Consump-
tion Expenditure index – core and headline. This extension allows the isolation of a number
of potential confounding factors: international trade effects from imported goods and ser-
vices, volatility effects from energy and food items, evolving structure of the US industrial
composition. After using autoregressive and Bayesian tools, we extend the methodological
toolkit drawing from the deep neural networks field. We adapt Long-Short Term Memory
(LSTM) recursive neural networks to leverage their predictive performance and flexible
management of nonlinearities – time-varying lag structure, seasonality, short-lived cyclical
fluctuations, and long term trends. This class of deep, recursive neural networks already
outperforms classic forecasting tools for time series (Almosova and Andresen, 2019; Ver-
styuk, 2020). We train several of these nets over the full, split, and rolling samples and
leverage their flexibility to extend observations and thus study US inflation persistence
since WWII.

We show that inflation persistence substantially decreased since the mid-’90s. This pat-
tern holds irrespective of the revised measure of inflation we use. The timing suggests that
it is not fully explained by international trade or commodities prices: Persistence peaks
around the second half of the ’90s, before China’s WTO accession and before the increase
in energy and food volatility. This is confirmed when we look at the data in a more flexible
way. We find evidence that inflation series currently behave similarly to a white noise pro-
cess, showing a decreasing connection with past values. We also report on the increased
statistical uncertainty associated with headline series: volatility in commodities prices fur-
ther decrease the predictability of overall inflation. Conversely, the GDP deflator displays a
smooth, hump-shaped decrease in persistence, suggestive of longer trends in the economy.

In light of the encouraging performance of LSTM models applied to time series econo-
metrics, a promising avenue of research is the further extension of such tools to a wider
array of methods. Furthermore, we leave for future research the investigation on the root
causes for decreasing inertia.
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Online Appendix

A A primer on the RNN-LSTM framework

In the last section we introduce RNN-LSTM models and use them to gain a deeper under-
standing of inflation dynamics. This section gives a succinct presentation of these deep-
learning tools, presents the optimisation algorithm employed and shortly discusses the hy-
perparameters tuning assumptions. These paragraphs draw from Almosova and Andresen
(2019), Greff et al. (2015), Jozefowicz, Zaremba, and Sutskever (2015), Karpathy (2015), and
Verstyuk (2020). For a thorough, formal presentation of Neural Networks within the statis-
tical learning framework, refer to Hastie, Tibshirani, and Friedman (2009).

From statistical learning to long-short term memory models Artificial Neural Net-
works (ANNs) are systems combining nodes, layers, relationships, biases, and activation
functions. By design, they mimic in their structure the human brain with interconnected
neurons (nodes) and connections thereof (layers). Recurrent Neural Networks (RNN) are
a subclass of ANN, especially devised to deal with sequences. Within the RNN class are
the Long-Short Term Memory models, which address more complex sequential structures
involving varying time dependency and indexed observations.

In a nutshell, each layer is populated with nodes (or neurons) that form a linear com-
bination of the layer’s input. Therefore a sequence of layers boils down to a sequence of
linear combinations of the original input. Such combination is flexible enough to approxi-
mate any nonlinear function with an arbitrary degree of precision.

The general structure of a neural network with M layers and Nm, m ∈ 1, . . . , M, nodes
per layer is the following, unrolling the hidden layers

h1 = g1 (b1 + W1x)

h2 = g2 (b2 + W2h1)

h3 = g3 (b3 + W3h2)

. . .

hM = gM (bM + WMhM−1)

ŷ = gM+1 (bM+1 + WM+1hM)

(13)

where x ∈ RK is a K-dimensional vector of inputs rescaled to have Ex = 0 and Vx = 1,
while gm : RNm 7→ RNm are activation function mapping layers output from one layer
to the following downstream.19 bm ∈ RNm and Wm ∈ RNm×(Nm−1) are the biases and
weights of the m-th layer. These last objects will be the target for the optimisation and will
be tuned as to minimise a loss function. Finally, ŷ is the predicted vector of the network, to
be compared and evaluated against the observed one, y.

We can roll up the network in a more succinct way by function composition

ŷ = gM ◦ · · · ◦ g1 (x) (14)

19For m ̸= 1, in such case g1 : RK 7→ RN2 .
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The general idea is that the input x is passed sequentially through the layers as a con-
veyor belt and it is transformed – possibly in nonlinear ways – by the mediation of weights,
biases and activation functions that are encapsulated in each layer gm to finally predict a
value ŷ. Tuning bm and Wm will eventually improve the predictions of the network.

While the above structure describes a generic RNN, the inner workings of each gm make
LSTMs apt to dealing with complex time series. In particular, each LSTM layer is composed
of gates, states, memory, and output cells. In short, the m-th layer, inherits state and output
from the previous one and contains

it = σ (bi + Wihm−1,t + Uiht−1)

ft = σ
(

b f + W f hm−1,t + U f ht−1

)
ot = σ (bo + Wohm−1,t + Uoht−1)

ct = ft ⊙ ct−1 + it ⊙ tanh (bc + Wchm−1,t + Ucht−1)

ht = ot ⊙ tanh (ct)

(15)

where i is the input cell fed with the output of the previous layer hm−1,t and past obser-
vations ht−1. σ (·) is a sigmoid function that squashes its inputs into the [−1, 1] interval to
avoid exploding behaviour. Then, ft is the forget gate, deciding what part of information
retain from the past. ot is the output gate, which decides upon the final output of the cell.
While these three cells produce activation vectors that signal what to retain, to forget, and
to pass on, the last two cells are more involved. ct is the cell hidden state, it is updated
upon the previous cell state and the new, retained information: this results from simul-
taneously forgetting something from the previous state: ft ⊙ ct−1; and updating from the
current input: it ⊙ tanh (·). Finally, the last cell combines all of the above in the final output
ht. In this formulation ⊙ stands for the element-wise multiplication, while, similarly to
σ (·), tanh is used to regularise values in a given space. In all of the above, Us, Ws, bs are
weights matrices and biases relative to that particular cell.

The advantage of LSTMs over other infrastructures is to be found in the additive (in-
stead of multiplicative) update of the hidden state ct, which prevents the issue of vanishing
gradient when performing backpropagation.

Lastly, the training of these networks is performed deciding a loss function L that will
be minimised by adjusting the chained weights and biases W, b so to obtain predictions
ŷ as close as possible to the observed values y. Typical loss functions are Mean Squared
Error (mse) or Mean Absolute Error (mae), which are also helpful to make direct contact to
the econometrics field. In the mse case, thus, the objective is

min
W,b

L (W, b; ŷ, y) =
1
T

T

∑
t=1

[ŷt (W, b)− yt]
2 (16)

To minimise such loss function, the full chained gradient is computed and weights and
biases are adjusted accordingly, while the networks is evaluated on a variable subset of
data (ie, batches of contiguous data points). The adjustment via the chained gradient from
the final predicted y back to the earliest layers of the network is precisely backpropagation.
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Optimiser The choice of the optimising algorithm is paramount in such framework. In
light of the wealth of parameters to fine-tune in order to minimise L, the dimensionality of
the parameters space easily scales up to orders of millions of dimensions. Therefore, the
optimisation must efficiently explore such space and avoid local minima when possible.
Nowadays, the ADAM algorithm has proven to be reliable and efficient in these terms (see
Ruder (2016) for a thorough overview of several optimisation algorithms). In a nutshell, it
is an adaptation of the stochastic gradient descent algorithm, where on top of the gradient
directions there are stochastic perturbations. From Kingma and Ba (2014), it boils down to

mt = β1mt−1 + (1 − β1) gt

vt = β2vt−1 + (1 − β2) g2
t

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

[W, b]t+1 = [W, b]t − η
m̂t√

v̂t + ϵ

(17)

Where g and g2 are the mean and uncentered variance of the gradient at the current
step, while m and v are their moving averages, and m̂, v̂ are unbiased estimates of these
two moments. Finally, the parameters θ are updated as in the last equation. The parameters
β1, β2, ϵ, η are the decay rates, a smoothing term, and the learning rate, which essentially
governs the change in the parameters.

Implementing this algorithm involves selecting a number of iterations (in ML jargon,
epochs) and let the algorithm update the parameters for long enough to explore the minima.

Batches, early stopping, validation A handful of choices completes the setup of our
exercise with LSTMs: batch size, early stopping on validation, and regularisation.

Batch size governs the subsamples that are fed to the model at once. While during each
epoch the model is shown the whole dataset, the researcher can choose to pass smaller
chunks of data in order to let the model pick up relevant patterns that are common across
batches. To grasp the idea, consider seasonality in monthly data: if every May presents a
spike and we only train the model on individual months, it will take a longer time to catch
such seasonality than if we train it on batches 12 or 24 months at once. The tradeoff in
choosing the batch size, thus, is between convergence speed and learning: if the batch size
equals the number of observations, the training is faster but less refined and eventually the
model is more exposed to overfitting. If the batch size is very small the training is slow and
the model might miss key patterns, but out-of-sample performance might benefit.

A key factor of batches is that they are drawn at random from the whole dataset, much
in the spirit of bootstrapping. This stochastic subsampling introduces a source of random-
ness that helps with the out-of-sample generalisation of the trained model.

Once the batch size is defined,20 the researcher can either set a number of epochs and
let the model train, or set a stopping rule and set an upper bound for the iterations. In this
work we adopt the Early Stopping rule on validation data. When the model starts training,

20It must be noted that, for technical reasons, the batch size must evenly divide training and test samples.
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a subsample of the training data is kept apart and not used for learning. At the end of each
epoch, the model performance is evaluated on such validation set via the loss function.
The training therefore stops when the loss stops decreasing on the validation data or the
number of epochs is reached. This procedure ensures a higher level of generalisation of the
network and might save some computational time during training.

Lastly, at the end of each epoch, during the parameters update, we impose L2 regu-
larisation on the parameters. LSTMs and RNNs in general present several thousands of
parameters, and overfitting is often a real risk. To minimise such threat, we add a pe-
nalisation to parameters, in the spirit of ridge regressions. In short, the loss function L is
augmented to nudge the optimisation to retain only relevant parameters:

min
W,b

L (W, b; ŷ, y) + λ
P

∑
i=1

||Wi, bi||2 (18)

where we take the square of the l2 norm, P is the total number of parameters, and
λ governs the penalty relevance. In particular, λ can be interpreted as the penalty given
to model complexity. It is typically set between 0 and .1: higher values nudge model’s
weights to be close (but not exactly equal) to 0. λ helps to balance the trade-off between
generalisation to new observations and overfitting the training data.

Data transformation To properly train the LSTMs, it is necessary to prepare the dataset
with some transformations. After splitting the full sample into two parts, training and test,
data must be rescaled to match zero mean and unitary standard deviation. Importantly, this
is done separately for training and test subsamples. Once the model is trained and produces
forecasts, these are still scaled to be of null mean and unitary standard deviation, hence
they must be reconverted to the original data magnitude. Interestingly, LSTMs seem to
produce forecasts similar to traditional IRFs, in such there is a mean-reversing force when
the forecast horizon is long enough.

Taking stock Finally, after reviewing these components of the LSTMs setup, we can sum
up the values for the hyperparameters used in our exercise in Tab.(2).
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Table 2: Hyperparameters

Instance Hyperparameter Value
Full sample, 1 layer nodes 1000

epochs 5000
batch size highest prime factor of sample size

lags 15
early stopping yes

trainable parameters ∼ 4mln
Full sample, 2 layers nodes per layer 750

epochs 5000
batch size highest prime factor of sample size

lags 15
early stopping yes

trainable parameters ∼ 7mln
10y subsamples, 1 layer nodes 500

epochs 2000
batch size highest prime factor of sample size

lags 10
early stopping no

trainable parameters ∼ 1mln
10y rolling window, 1 layer starting sample optimal lags + 10 years

nodes 500
epochs 2000

batch size highest prime factor of sample size
lags 10

early stopping no
trainable parameters ∼ 1mln

Common across setups
ADAM optimiser β1 .9 (def)

β2 .999 (def)
η .001 (def)
ϵ 1e − 7 (def)

early stopping validation share last 10% of batch
tolerance 1e − 5
patience 20% of epochs

forecast horizon quarters ahead 40
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B Year-on-year series

When computing the inflation rate, one can either choose to compute the annualised rate of
change between two contiguous quarters (quarter-on-quarter, qoq), or compute the change
from the corresponding quarter of the previous year (year-on-year, yoy). While in principle
these methods yield broadly the same inflation rates, yoy series display a rather different,
higher level of persistence, as found when computing the optimal lags via the BIC minimi-
sation. Formally, the two rates result from

π
qoq
t = 400 × ln (Pt/Pt−1) π

yoy
t = 100 × ln (Pt/Pt−4)

To compare the discrepancies in persistence, Tab.(3) reports the values for optimal lags
in the two sets of series.

Table 3: Optimal lags from BIC minimisation

GDP Defl. CPI headline CPI core PCE headline PCE core
k∗qoq 3 3 3 3 2
k∗yoy 9 9 18 9 18
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C Isolating oil and commodities’ inflation from headline

Figs.(10,11) present data on oil and commodities prices, along with their variations. This
allows the appreciation of the main differences between headline and core series for CPI
and PCE, with core series excluding the items included in these plots.

Figure 10: Oil Prices
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West Texas Intermediate spot price, level (top), and qoq annualized percent change (bottom). Source:
FRED, St. Louis Fed.
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Figure 11: Commodities Prices
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Commodities GPI: price change

Global Price Index for commodities, level (top), and qoq annualized percent change (bottom). This
series includes prices for oil, gas, metals, grains, among others. Source: FRED, St. Louis Fed.

Figure 12: Food Commodities Prices
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World Food Commodities Index for industrial raw materials, produce, beverage; level (top), and month
on month annualized percent change (bottom). Source: IMF.
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D Draw distributions

These plots provide further insights on the densities of persistence produced by the Bayesian
analysis presented in Sec.(4).

Figure 13: Bayesian Draws – Per Period Full Densities

−1

0

1

1960 1980 2000 2020

 

P
er

 p
er

io
d 

dr
aw

s

0.2 0.4 0.6 0.8
Median

CPI

0

1

1980 2000 2020

 

P
er

 p
er

io
d 

dr
aw

s

0.4 0.6 0.8
Median

PCE

0.0

0.5

1.0

1.5

1980 1990 2000 2010 2020

 

P
er

 p
er

io
d 

dr
aw

s

0.750 0.775 0.800 0.825
Median

CPI core

−0.5

0.0

0.5

1.0

1980 2000 2020

 

P
er

 p
er

io
d 

dr
aw

s

0.7 0.8 0.9
Median

PCE core

−0.5

0.0

0.5

1.0

1.5

1960 1980 2000 2020

 

P
er

 p
er

io
d 

dr
aw

s

0.5 0.6 0.7 0.8
Median

GDP deflator

Per-period estimated densities: sum of AR (3) draws distributions per quarter. Persistence computed
on simulated forward trajectories based on data up to t. 300k total iterations, 150k burn-in, resulting
in 150k conserved draws per period. Each density also reports 5%, 50%, and 95% percentiles. Colour
depends on median value for each time t density.
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E LSTM data and forecasts

This section collects plots for the forecasts of all LSTMs mentioned in the main body of the
paper.

E.1 LSTM predictions on non-overlapping subsamples

Figure 14: LSTM Forecasts on Decade Subsamples
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Indirect forecasts from an LSTM trained on 10 years of data, plus appropriate lags defined by BIC
minimisation. One layer, 500 nodes, early stopping criterion with 2000 epochs upperbound. Forecast
horizon is h = 40: first prediction is produced from last available data point and then iterated forward.
Dashed vertical lines mark data subsamples’ end date.
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Figure 15: LSTM Rolling Window Forecasts
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Indirect forecasts from a several LSTMs trained on a 10-year rolling window, plus appropriate lags
defined by BIC minimisation. One layer, 500 nodes, early stopping criterion with 2000 epochs upper-
bound. Forecast horizon is h = 40: first prediction is produced from last available data point and then
iterated forward.
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F LSTM analyses

F.1 OLS regressions on decades

The following tables present detailed information on the OLS regressions that produce the
results plotted in subsection 5.4. Each table’s column represents a subsample of actual data
points augmented with the forecast produced by the trained LSTM. Hence, the number of
observations results from 40 + k data points and 40 forecasts, where k is the optimal num-
ber of lags for each series. The left-most column is the oldest subsample, right-most is the
closest in time.

Table 4: CPI decades regressions with LSTM forecasts

Dependent variable:

CPI
1947Q2
1957Q4

1958Q1
1968Q3

1968Q4
1979Q2

1979Q3
1990Q1

1990Q2
2000Q4

2001Q1
2011Q3

1st lag .438∗∗∗ .277∗∗∗ .703∗∗∗ .617∗∗∗ .345∗∗∗ −.108
(.100) (.103) (.079) (.082) (.104) (.111)

Constant 1.452∗∗∗ 1.604∗∗∗ 2.050∗∗∗ 1.802∗∗∗ 1.705∗∗∗ 2.313∗∗∗

(.403) (.272) (.568) (.465) (.293) (.423)

Observations 82 82 82 82 82 82
R2 .192 .083 .496 .414 .120 .012
Adjusted R2 .182 .071 .490 .407 .109 −.001
F Statistic (df = 1; 80) 19.017∗∗∗ 7.215∗∗∗ 78.882∗∗∗ 56.537∗∗∗ 10.914∗∗∗ .932

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: PCE decades regressions with LSTM forecasts

Dependent variable:

PCE
1959Q2
1969Q4

1970Q1
1980Q3

1980Q4
1991Q2

1991Q3
2002Q1

2002Q2
2012Q4

1st lag .777∗∗∗ .541∗∗∗ .410∗∗∗ .300∗∗∗ .0004
(.071) (.093) (.093) (.106) (.112)

Constant .526∗∗∗ 3.267∗∗∗ 2.196∗∗∗ 1.174∗∗∗ 2.118∗∗∗

(.194) (.685) (.382) (.205) (.321)

Observations 82 82 82 82 82
R2 .602 .299 .197 .091 0.00000
Adjusted R2 .597 .290 .187 .080 −.012
F Statistic (df = 1; 80) 121.230∗∗∗ 34.052∗∗∗ 19.637∗∗∗ 8.005∗∗∗ .00001

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: GDP Deflator decades regressions with LSTM forecasts

Dependent variable:

GDP deflator
1947Q2
1957Q4

1958Q1
1968Q3

1968Q4
1979Q2

1979Q3
1990Q1

1990Q2
2000Q4

2001Q1
2011Q3

1st lag .467∗∗∗ .653∗∗∗ .663∗∗∗ .897∗∗∗ .582∗∗∗ .723∗∗∗

(.098) (.081) (.083) (.039) (.082) (.080)
Constant 1.466∗∗∗ .659∗∗∗ 2.171∗∗∗ .352∗∗ .854∗∗∗ .605∗∗∗

(.364) (.177) (.550) (.171) (.182) (.184)

Observations 82 82 82 82 82 82
R2 .222 .451 .442 .870 .383 .507
Adjusted R2 .212 .444 .435 .869 .376 .501
F Statistic (df = 1; 80) 22.777∗∗∗ 65.679∗∗∗ 63.292∗∗∗ 537.595∗∗∗ 49.747∗∗∗ 82.417∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Core CPI decades regressions with LSTM forecasts

Dependent variable:

CPI core
1966Q1
1976Q3

1976Q4
1987Q2

1987Q3
1998Q1

1998Q2
2008Q4

2009Q1
2019Q3

1st lag .816∗∗∗ .656∗∗∗ .828∗∗∗ .200∗ .501∗∗∗

(.064) (.084) (.061) (.110) (.097)
Constant 1.463∗∗ 1.867∗∗∗ .442∗∗ 1.773∗∗∗ .981∗∗∗

(.635) (.513) (.181) (.252) (.196)

Observations 82 82 82 82 82
R2 .672 .430 .698 .040 .249
Adjusted R2 .668 .423 .694 .028 .239
F Statistic (df = 1; 80) 163.902∗∗∗ 60.265∗∗∗ 184.684∗∗∗ 3.330∗ 26.504∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Core PCE decades regressions with LSTM forecasts

Dependent variable:

PCE core
1959Q2
1969Q3

1969Q4
1980Q1

1980Q2
1990Q3

1990Q4
2001Q1

2001Q2
2011Q3

1st lag .876∗∗∗ .733∗∗∗ .684∗∗∗ .377∗∗∗ .368∗∗∗

(.055) (.076) (.076) (.104) (.105)
Constant .368∗∗ 1.741∗∗∗ 1.323∗∗∗ .976∗∗∗ 1.185∗∗∗

(.169) (.500) (.345) (.188) (.214)

Observations 81 81 81 81 81
R2 .765 .544 .509 .143 .133
Adjusted R2 .762 .538 .503 .133 .122
F Statistic (df = 1; 79) 257.018∗∗∗ 94.107∗∗∗ 81.810∗∗∗ 13.226∗∗∗ 12.163∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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G Trend estimates

This section collects estimates on trend inflation that results from two approaches explored
in the body of the paper. For both the frequentist and the LSTM applications, a side product
of estimating autoregressive models of varying order is the intercept.
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G.1 Frequentist application

Figure 16: Trend Inflation – Frequentist Measure
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Frequentist estimates of trend inflation, computed as intercept of an autoregressive process. Left col-
umn: AR(1). Right column: AR(k∗) with lags selected by BIC minimisation.
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G.2 LSTM output: full sample

Figure 17: Trend Inflation – LSTM on Full Sample
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LSTM trained on the full sample of data and then iterated forward to forecast 40 data points. Left
column: one-layer net. Right column: two-layer net. All estimates are from an AR(k∗) with lags min-
imising BIC.
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G.3 LSTM output: subsample analysis

Figure 18: Trend Inflation – LSTM on Decade Subsamples
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LSTMs trained on ten-year subsamples, plus appropriate lags, then iterated forward to produce 40 data
points. Left column: AR(1). Right column: AR(k∗) with lags minimising BIC.
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G.4 LSTM output: rolling window

Figure 19: Trend Inflation – LSTM on Rolling Windows
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LSTMs trained on 56-quarter rolling windows, plus appropriate lags, then iterated forward to produce
40 data points. Left column: AR(1). Right column: AR(k∗) with lags minimising BIC.
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