Verification Continuum™

VCS®

Unified Command Line
Interface User Guide

Q-2020.03-SP2, September 2020

SYNOPSYS

Copyright Notice and Proprietary Information

© 2019 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys,
Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Third-Party Software Notices

VCS® and configurations of VCS includes or is bundled with software licensed to Synopsys under free or open-
source licenses. For additional information regarding Synopsys's use of free and open-source software, refer to the
third_party_notices.txt file included within the <install_path>/doc directory of the installed VCS software.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

WWW.SyNnopsys.com

Contents

1. Unified Command-line Interface (UCLI)

Running UCLI e 1-2
UCLIWith VCS. e 1-2
How to Enable UCLI Debugging 1-3
Debugging During Initialization of SystemVerilog Static Functions and

Tasks 1-4

UCLICommands.t e 1-8

Using a UCLI Command Alias File 1-11
DefaultAlias File 1-12

Customizing Command Aliases and Settings 1-13
Creating Custom Command Aliases 1-13
Operating System Commands. 1-14
Configuring End-of-Simulation Behavior 1-15

UsingKeyand LogFiles 1-15
Log Files 1-16
Key Files 1-16

Current Scope and Active Scope 1-17

Feedback

Capturing Output of Commands and Scripts. 1-18
Command-line Editing in UCLI 1-18

Keeping the UCLI Prompt Active After a Runtime Error 1-19

UCLI Interface Guidelines

Numbering Conventions 2-1
VHDL Numbering Conventions 2-1
Verilog Numbering Conventions 2-3

Hierarchical Path Names. 2-4
Multiple LevelsinaPathName 2-5
Absolute PathNames 2-5
Relative PathNames. 2-6

bit_select/index 2-6

part_select/slice. 2-7

Naming Fields in Records or Structures 2-7

Generate Statements 2-7

More Exampleson PathNames 2-8

Name Case Sensitivity 2-9

Extended/Escaped Identifiers 2-10
Verilog escape name VHDL Extended Identifier 2-10

Wildcard Characters i 2-11

Tcl Variables 2-11

Simulation Time Values. 2-12

Feedback

3. Commands

Feedback

restart

start verdi

loadd|

3-2
3-3

3-7
3-8
3-9

3-13
3-13
3-14

3-17
3-17
3-20
3-23
3-28

3-29
3-29
3-31
3-34

3-36
3-37
3-39
3-45
3-47
3-48

Vi

Ip_show ... 3-52
release 3-56
SO P o e e 3-57
call ... 3-60
search 3-63
virtual bus (Vbus) 3-64
Viewing Values in Symbolic Format. 3-67
Simulation Environment Array Commands 3-70
SNV L . e 3-70
BreakpointCommands 3-73
SIOP ot 3-73
Timing Check Control Command 3-84
tcheck 3-85
report_timingo oot 3-88
Signal Value and Memory Dump Specification Commands 3-90
UMD .. 3-91

1] =T 3-117
MEMOIY . . o e e e e e e e e e 3-117
Design Query Commands.u ... 3-128
Search 3-128
find_forces. 3-129
find_identifier 3-130
SNOW .. 3-133
CONSHIaINtSo 3-139
Feedback

loads e 3-146
Macro Control Routines. 3-149
AO. . 3-149
onbreak 3-153
(0] TS 0] 3-155
onfail 3-156
FESUM . . o it e et e e e e e e e e 3-158
PAUSE . . . o 3-159
AbOrt. . . 3-161
StAtUS 3-162
Coverage Command. 3-164
COVEIAQE . . i ottt e e e e e e e 3-165
Assertion Command 3-166
ASSEItION 3-166
Helper Routine Commands. 3-174
help ... 3-174
AllaS . . . 3-176
UNalias e 3-177
IStingo 3-177
CONfIg . . . 3-179
Multi-level Mixed-signal Simulation. 3-187
ACE . . 3-187
Specman Interface Command. 3-188
oY 1 1 3-188
Feedback

VI

Expression Evaluation for stop/sexpr Commands. 3-190

4. Using the C, C++, and SystemC Debugger

Getting Started 4-2
Using a Specificgdb Version. 4-2
Starting UCLI With the C-Source Debugger 4-3

C Debugger Supported Commands 4-4
Changing Values of SystemC and Local C Objects With

synopsys:.change. i i 4-11
Using Line Breakpoints 4-16
Deleting a Line Breakpoint. 4-17
Stepping Through C Source Code. 4-18
Directgdb Commands. 4-23
Add Directories to Search for Source Files 4-24

Common Design Hierarchy 4-25
Post-Processing Debug Flow. 4-28

Interaction With the Simulator. 4-30
Prompt Indicates Current Domain 4-30
Commands Affectingthe CDomain. 4-30
Combined ErrorMessage 4-31
Update of Time, Scope,and Traces 4-31

Configuring CBuUgo 4-32
StartupMode 4-32
AttachMode. 4-33
cbug::config add_sc_source_info auto|always|explicit 4-33

Feedback

Vil

STL Types Variables for Improved CBug Flow 4-34

Using a Differentgdb Version 4-35
Supported Platforms 4-36
CBug Stepping Features. 4-36

Using Step-OutFeature. 4-37

Automatic Step-Through for SystemC. 4-37
Specifying Value-Change Breakpoint on SystemC Signals. 4-39

Capabilities forAllData Types. 4-40

Capabilities for Single-Bit Objects 4-41

Capabilities for Bit-Slices. 4-43

PointstoNote i, 4-43

Limitations e 4-44
Driver/Load Support for SystemC Designs in Post-Processing Mode

4-44
Dumping Source Names of Ports and Signalsin VPD 4-44
Dumping Plain Members of SystemCinVPD............... 4-46
Supported and Unsupported UCLI and CBug Features 4-46
UCLI Save Restore Support for SystemC-on-top and Pure-SystemC

DeSIgNS . .. 4-47

SystemC with UCLI Save and Restore Use Model 4-48

SystemC with UCLI Save and Restore Coding Guidelines . . 4-48

Saving and Restoring Files During Save and Restore. 4-49

Restoring the Saved Files from the Previous Saved Session 4-50

Limitations of UCLI Save Restore Support 4-51

Feedback

5. Interactive Rewind

Interactive Rewind Vs Save and Restore 5-2
UseModel i 5-3
Additional Configuration Options 5-6
Creating Checkpoints on Breakpoint Hits 5-7

6. Support for Reverse Debug in UCLI

Enabling Reverse Debug. 6-3
Keep Future. 6-4
Virtual Checkpoints 6-5
Using Reverse Simulation Control Commands 6-5
Limitations 6-7

7. Debugging Transactions

Introduction 7-1
Transaction Debugin UCLI 7-2

8. Debugging Virtual Interface Arrays and Queues in UCLI

Example. 8-2
LImItations 8-3

9. Debugging Mixed-Signal Designs

Support for Top Spice Module 9-1
Using UCLI showCommands for SPICE 9-2
Support for the UCLI f or ce or r el ease Command on SPICE Ports

9-4
Feedback

Limitationso 9-4
Usage Example 9-5

Appendix A. Examples

Verilog Example A-2
Compiling the VCS Design and Starting Simulation A-4
Running SimulationonaVCS Design. A-4

VHDL Example A-9
Compiling the VHDL Design and Starting Simulation A-12
Simulating the VHDL the Design A-12

SystemVerilog Example A-16
Compiling the SystemVerilog Design and Starting Simulation ~ A-19
Simulating the SystemVerilog Design A-19

Native Testbench OpenVera (OV) Example A-21
Compiling the NTB OpenVera Testbench Design and Starting

Simulation. A-23
Simulating the NTB OpenVera Testbench Design......... A-23

Appendix B. SCL and UCLI Equivalent Commands
SCL and UCLI Equivalent Commands B-2

Feedback
Xl

Feedback
Xl

1

Unified Command-line Interface (UCLI)

The Unified Command-line Interface (UCLI) provides a common set
of commands for Synopsys verification products.

UCLI is compatible with Tcl 8.6. You can use any Tcl command with
UCLI. Tcl 8.6 supports 64-bit integer. VCS simulation in 32-bit mode
uses the 32-bit version of Tcl to support UCLI, while VCS simulation
in 64-bit mode uses the 64-bit version of Tcl to support UCLI.
Supporting the 64-bit integer arithmetic in UCLI is possible only with
the 64-bit version of Tcl.

Feedback Unified Command-line Interface (UCLI)
1-1

Running UCLI

You can use UCLI for debugging your design in either of the two
following modes:

* Innon-graphical mode, UCLI can be invoked at the prompt during
runtime.

* Ingraphical mode, UCLI can be invoked at the command console
of Verdi in interactive mode only (not in post-processing). UCLI
commands are interspersed with GUI commands when running
in graphical mode. For additional information, see Verdi User
Guide and Tutorial.

UCLI with VCS

UCLI is always enabled at runtime, but what UCLI commands are
available depends on what debug capability si mv is compiled with.

simv compiled with: UCLI commands available:
No - debug_access option run, quit

- debug_access run, dunp, qui t

Global ‘read’ debug capability. For example: All UCLI commands

- debug_access+r, - debug_access+al |

A UCLI command prompt is printed to the terminal under the
following conditions:

* Running si mv and using Ctrl+c
* Running si nv and a $st op statement is executed

* Runningsinmv -ucli

Unified Command-line Interface (UCLI) Feedback
1-2

Feedback

How to Enable UCLI Debugging

Compile-time Options

- debug_access

The - debug_access option enables the dumping of the FSDB
and VPD files for post-process debug. It gives best performance
with the ability to generate the FSDB/VPD/VCD files for post-
process debug. It is the recommended option for post-process
debug.

- debug_access+al |

Gives the most visibility/control and you can use this option
typically for debugging with interactive simulation. This option
allows you to track the simulation line-by-line and setting
breakpoints within the source code. With this option, you can set
all types of breakpoints (line, time, value, event, and so on).

- debug_access(+<opti on>)

Allows you to have more granular control over the debug
capabilities in a simulation.

You can specify additional options with the - debug_access
option to selectively enable the required debug capabilities. You
can optimize the simulation performance by enabling only the
required debug capabillities.

For more information on - debug_access, see VCS User Guide.

Unified Command-line Interface (UCLI)
1-3

Runtime Options

-ucli

If issued at runtime, invokes the UCLI debugger command line.
For more information, see the previous section, “Compile-time
Options” .

-1 | ogFi | enane

Captures simulation output, such as user input UCLI commands
and responses to UCLI commands.

-a | ogFi | enane

Captures simulation output and appends the log information in
the existing log file. If the log file doesn’t exist, then this option
would create a log file.

-i I nputFil enane

Reads interactive UCLI commands from a file, then switches to
reading from standard command-line input.

-k keyFi | enane

Writes interactive commands enteredto i nput Fi | enane, which
can be used by a later simvas-i i nputFil enane.

Debugging During Initialization of SystemVerilog Static
Functions and Tasks

You can make VCS to enable UCLI debugging when initialization
begins for static SystemVerilog tasks and functions in module

definitions by using the - ucl i =i ni t runtime option and keyword
argument.
Unified Command-line Interface (UCLI) Feedback

1-4

Feedback

This debugging capability enables you to set breakpoints during
initialization, among other things.

If you omit the =i ni t keyword argument and enter the - ucl i
runtime option, then UCLI begins after initialization and you cannot
debug inside static initialization routines during initialization.

Note:

- Debugging static SystemVerilog tasks and functions in program
blocks during initialization does not require the =i ni t keyword
argument.

- This feature does not apply to VHDL or SystemC code.

When you enable this debugging, VCS displays the following prompt
indicating that the UCLI is in the initialization phase:

init%
When initialization ends, the UCLI returns to its usual prompt:

ucl i %

During initialization, the r un UCLI command with the O argument
(run 0), orthe - nba or - del t a options runs VCS until initialization
ends. As usual, after initialization, the r un 0 command and
argument runs the simulation until the end of the current simulation
time.

During initialization, the following restrictions apply:

e« UCLI commands that alter the simulation state, suchas af or ce
command, create error conditions.

» Attaching or configuring Cbug, or in other ways enabling C, C++,
or SystemC debugging during initialization is an error condition.

Unified Command-line Interface (UCLI)
1-5

e The following UCLI commands are not allowed during
initialization:

- Session management commands: save and r est ore
- Signal and variable commands: f or ce, r el ease, and cal |

- The signal value and memory dump specification commands:
menory -read/-witeanddunp

- The coverage commands: cover age and asserti on

Consider the code shown in Example 1-1.

Example 1-1 Verilog Module

nmodul e nod1;
class C
static int |I=F();
static function int F();
| ogi c | 0gl;
begi n
logl = 1;
$di spl ay("%n | 0og1=%0b", | ogl);
$di splay("In function F");
F = 10;
end
endf uncti on
endcl ass
endnodul e

If you simulate the code shown in Example 1-1 using just the - ucl i
runtime option, you see the following:

Command: ./simv =ucli

Chr onol ogi ¢ VCS si nul ator copyright 1991-year

Cont ai ns Synopsys proprietary information.

Conpi | er version version-nunber; Runtinme version version-
nunber; sinulation-start-date-tine

nodl.\C. : F | ogl=1

Unified Command-line Interface (UCLI) Feedback
1-6

Feedback

In function F

VCS Simul ati on Report
Time: O
CPU Ti ne: 0. 510 seconds; Data structure size: 0.0M
si mul ati on- ends- day-date-tine

Here, VCS executed the $di spl ay tasks right away and the
simulation immediately ran to completion.

If you simulate this same example (Example 1-1) using just the

-ucl i =i ni t runtime option and keyword argument, you see the
following:
Command: ./simv -ucli=init

Chr onol ogi ¢ VCS si nul ator copyright 1991-year

Cont ai ns Synopsys proprietary information.

Conpi |l er version version-nunber; Runtinme version version-
nunber; sinulation-start-date-tine

init%

Notice that VCS has not executed the $di spl ay system tasks yet
and the promptisi nit %

You can now set a breakpoint. For example:

init%stop -in \C:F
1

When you attempt to run through the initialization phase:

inft%run O

Stop point #1 @O0 s;
init%

the breakpoint halts VCS.

Unified Command-line Interface (UCLI)
1-7

If you run the simulation to the end of the initialization phase with the
run 0 UCLI command again, you see the following:

init%run O
nodl.\C : F | ogl=1
In function F
ucl i %

Now VCS executes the $di spl ay system tasks and changes the
prompt to ucl i %

UCLI Commands

The following briefly describes the UCLI commands.

Note:

In the following table, command names are the default alias
commands supplied by Synopsys.

Command Description

abort Halts evaluation of a macro file.

ace Executes an AMS command.

alias Creates an alias for a UCLI command.

cal | Provides a unified interface to call Verilog/VHDL
or PLI tasks/functions/methods.

cbug Enables debugging of VCS a designs thatinclude
C, C++, and SystemC modules.

checkpoi nt Snapshot of the current state of the simulator.

config Displays default settings for user’s variables.

constraints Send commands to the constraint solver engine.

cover age Send commands to the coverage engine.

Unified Command-line Interface (UCLI) Feedback

1-8

do

Evaluates a macro script

drivers

Displays a list of signals that drive the indicated
signal.

dunmp

Specifies value dump information (files, scopes/
variables, depth to dump, enable/disable
dumping, and so on.) over the course of the
simulator’s processing.

find_forces

Print currently active force in design/scope.

find_ identifier

Search simv and shared objects for symbols.

finish

Finishes/ends processing in the simulator.

force

Forces a value onto a variable. Activity in the
simulator does not override this value (deposit,
freeze, clock generation).

get

Returns the current value of the specified
variable.

hel p

Displays information on all commands or the
specific command requested.

initreg

Initialize Verilog Variables, Registers, and
Memories based on a configuration file.

listing

Lists n lines of source on either side of the
simulation’s active location. If no number is
entered, listing shows five lines on either side of
the active location.

| oaddl

Loads/unloads a user's shared library in the
simulator or UCLI.

| oads

Displays the loads for the indicated signal for
VCS only (no VHDL support).

| p_show

Native Low Power (NLP) related command.

menory

Loads or writes memory type values from or to
files.

negl og

Design and testbench static and dynamic data
recording.

next

For VHDL code, next steps over tasks and
functions. For Verilog, next =st ep.

Feedback

Unified Command-line Interface (UCLI)

1-9

Unified Command-line Interface (UCLI)

1-10

onbr eak

Specifies a script to run when a macro hits a stop-
point

onerror Specifies ascriptto runwhenamacro encounters
an error.

onf ai | Specify a script to run when a macro encounters
a failure.

pause Interrupts the execution of a macro file.

power Power statistics related commands (SAIF).

rel ease Releases a variable from the value assigned

previously using a f or ce command.

report _timng

Allows you to get the information of the SDF
(Standard Delay Format) values annotated for a
specific instance.

report_violations

Set various xprop related report violations.

restart Restarts the simulation and stop at time zero.

restore Restores simulation state previously saved to a
file using the save command.

resune Restarts execution of a paused macro file from
the point where it stopped.

run Advances the simulation to a specific point. If
some other event fires first then the ‘r un’ point is
ignored.

saif Switching Activity Interchange Format (SAIF)
related command.

save Saves the current simulation state in a specified
file.

scope Shows or sets the current scope to the specified
instance. With no arguments the current scope is
returned.

search Search for design objects whose names match
the specified pattern.

show Shows information about your design. You can

specify multiple arguments.

Feedback

senv Displays the environment array or query of an
individual array element.

sexpr Evaluate an expression and display the result.

sn Executes a Specman command.

st ack Displays stack information for the NTB OpenVera
or SystemVerilog testbench process/thread.

start Starts the simulation from within the Tcl shell.

start_verdi Start Verdi from UCLI prompt.

stat us Displays the macro file stack.

step Moves the simulation forward by stepping one
line of code. The st ep command will step into
task and functions.

st op Sets a stop point in the simulator.

t check Enable/disable timing checks for a specified
instance/port.

tcl Help for Tcl built-in commands.

t hread Displays information regarding the current
SystemVerilog testbench threads running in the
simulator.

unal i as Remove one or more aliases.

virtual Create, delete, or display a virtual object.

Xprop Set or query xprop merge mode.

You can use the default alias file supplied with your installation or

Using a UCLI Command Alias File

create a file containing aliases for UCLI commands.

This section describes the use of aliases.

Feedback

Unified Command-line Interface (UCLI)

Default Alias File

The . synopsys_ucli _prefs.tcl fileinyour VCS installation
directory contains default aliases for UCLI commands. You can edit
this file to create custom aliases for UCLI commands. By default,
.synopsys_ucli _prefs.tcl looks for the alias file in the
following order:

» UCLI installation directory (for system-wide configuration)
» User’s home directory (for user-specific configuration)
» Current working directory (for design-specific configuration)

You can create custom aliases:

* For all users by editing the file in the VCS installation directory

» For your own use by copying the file and editing it in your home
directory

» For a project by copying the file and editing it in your current
working directory

Once the file is located, UCLI loads the file.

All UCLI commands are of the form synopsys: : <conmand> and
have a default alias of <conmand>. For example,
synopsys: : abort is the command and abort is the alias.

Unified Command-line Interface (UCLI) Feedback

1-12

Customizing Command Aliases and Settings

Feedback

You can customize the UCLI command name aliases and UCLI
settings using the . synopsys_ucli _prefs.tcl resource filein
the following ways:

* Modify aliases and settings for all UCLI users by changing default
aliases and adding or removing settings in the resource file in the
UCLI installation directory.

* Modify the aliases and settings for use in all of your projects by
creating a. synopsys_ucli _prefs.tcl resource file
containing new aliases and settings in your home directory.

* Modify the aliases for use in a specific project by creating a
.synopsys_ucli _prefs.tcl resource file containing new
aliases and settings in your working directory.

When you open UCLI, it first looks in the installation directory and
loads the . synopsys_ucli _prefs.tcl resource file containing
command aliases and UCLI settings. UCLI then looks in your home
directory ($HOVE), and finally in your current directory. If a resource
file is found in either or both directories, itis loaded. Each file will add
to or modify the previous file's definitions. You only need to enter
changes to aliases or new or revised settings to customize your
UCLI installation.

Creating Custom Command Aliases
To create an alias command file:

1. Create afile named . synopsys_ucli _prefs.tcl inyour
home directory or working directory.

Unified Command-line Interface (UCLI)
1-13

2. Enter an al i as_name for each command you wish to customize
as follows:

synopsys::alias alias_name UCLI _conmmand_nane
For example, some default aliases are entered as:

synopsys::alias fetch synopsys: : get
synopsys::alias run_again synopsys::.restart

Note that you only need to enter those commands you want to
customize.

3. Save the file.

If you have saved the file in your home directory, the file contents
will add to or subtract from the installation directory file's
definitions.

Ifyou have saved the file in your working directory, the file contents
are added or subtracted from the definitions of the installation
directory file and the modifications in the home directory.

Operating System Commands

To run an OS command from UCLI in post-processing mode to
capture the output for processing by Tcl, enter the following:

exec OS_conmand

In interactive mode, OS commands are run automatically. For
example, entering | s will produce a listing of the current directory.

Unified Command-line Interface (UCLI) Feedback
1-14

Setting the "aut o_noexec" variable in the

. synopsys_ucli _prefs.tcl resource file tells Tcl not to run a
UNIX command when it receives an unknown command. However,
at the UCLI command-line prompt, you can still use the following
command to run UNIX commands during a session:

exec OS_conmand

Configuring End-of-Simulation Behavior

The default end-of-simulation behavior is to exit UCLI. That means
the UCLI process exits when the simulator runs to the end of
simulation, hits $f i ni sh, or terminates unexpectedly.

To configure UCLI to remain open at end of simulation, add the
following to your . synopsys_ucli _prefs.tcl resource file:

config endofsimtool exit

Using Key and Log Files

Use key and log files when debugging a design to:

e Record a session
e Create a command file of the session

 Run acommand file created in a previous session

Feedback Unified Command-line Interface (UCLI)
1-15

Log Files

You can record an interactive session in a log file. A log session
records both commands entered, command results, and simulator
messages. To create a log file, use the -1 fil enane command-
line option.

Example

To record interactive command input and simulation response in a
log file, enter the following:

simv -ucli -1 filename.!log

Key Files

When you enter UCLI commands, you can record these commands
in a key file by specifying the - k fil enane. key runtime option. If
this option is not specified, by default, VCS records commands in the
ucl i . key file.

You can rerun the session using the -i fil enane. key runtime
option.

Note:

If a key file containing errors is replayed, UCLI stops execution at
the line containing the error. To proceed, you must fix the errors
in the key file and run simv again.

Example

To get the output commands entered in a session to a key file, enter
the following command:

Unified Command-line Interface (UCLI) Feedback

1-16

% sinmv -ucli -k output.key

To rerun the session again, enter the following command:

% sinmv -ucli -1 output.key

Current Scope and Active Scope

When debugging a design, you can use UCLI to display information
about the current scope in the design and the active scope in the
simulation.

* The current scope is the scope in the design to which you have
navigated using UCLI commands.

» The active scope is the place where the VCS simulator has
stopped.

Note:

- You can change the current scope by using the UCLI scope
command, but you cannot change the active scope.

- Active scope can be changed only by the commands st ep,
next, orrun.

- If you do not use the scope command, then the current scope
will be the same as the active scope, provided that the config
option f ol | owact i vescope is set to ON.

Feedback Unified Command-line Interface (UCLI)
1-17

Capturing Output of Commands and Scripts

Use echo and r edi r ect commands to capture the output of
commands and scripts to a file. For example:

ucl i % exec echo [show -variabl es] > vars.|list
ucli%redirect vars.list {show -vari abl es}

Command-line Editing in UCLI

You can use the up and down arrow keys to access previously
entered commands in UCLI. You can also edit the command-line
entries using the <Ct r | >-character.

Ctrl-character Action

@ Mark cursor position

a Go to beginning of line

b Move backward a character

c Sends an interrupt signal to the simulator

d Delete the character underneath the cursor
e Move to the end of the line

f Move forward a character

h Delete previous character

i Automatic completion (tab)

j Insert a newline character

k Kill the text from point to the end of the line
I Clear the screen, reprinting the current line at the top

Unified Command-line Interface (UCLI)

1-18

Feedback

Insert a newline character

History - next event

Terminal flush

History - previous event

Reverse incremental search

Toggle last two characters

Kill the current line

Kill the current line

W
y

Yank the top of the kill ring into the buffer at point

z

Terminal suspend

Backspace (no
arl -

Delete previous character
prefix)

Keeping the UCLI Prompt Active After a Runtime Error

Feedback

VCS allows you to debug an unexpected error condition by not

exiting UCLI. The UCLI command prompt remains active when there
is an error condition, allowing you to examine the current simulation
state (the simulation stack, variable values, and so on). This allows

you to debug the error condition.

For more information, refer to the Keeping the UCLI Prompt Active
After a Runtime Error section of the VCS User Guide category in the

VCS Online Documentation.

Unified Command-line Interface (UCLI)
1-19

Unified Command-line Interface (UCLI) Feedback
1-20

2

UCLI Interface Guidelines

This chapter describes the general guidelines for specifying
arguments to simulator commands in UCLI.

Numbering Conventions

You can express numbers in UCLI commands in either VHDL or
Verilog style. Numbers can be used interchangeably, for VHDL and
Verilog parts of the simulated design.

VHDL Numbering Conventions
The first of two VHDL number styles is as follows:

[-1 [radix #] value [#]

Feedback UCLI Interface Guidelines
2-1

Indicates a negative number; optional.

radi x

Can be any base in the range 2 through 16 (2, 8, 10, or 16). By
default, radix is omitted and the numbers are assumed to be
decimal. This parameter is optional.

val ue

Specifies the numeric value, expressed in the specified radix. This
parameter is mandatory.

A delimiter between the radix and the value. The first # sign is
required if a radix is used, the second is always optional.

Example

16#FFca23#
2#1111_1110#
-23749
8#7650

- 10#23749

The second VHDL number style is as follows:

base "val ue"

base

Specifies the base. Binary: B, octal: O, hex: X. This parameter is
mandatory.

val ue

UCLI Interface Guidelines Feedback

2-2

Feedback

Specifies digits in the appropriate base with optional underscore
separators. The default value is decimal. This parameter is
mandatory.

Example

B"11111110"
B"1111_1110"
"11111110"
X' FFca23"
orrr

Verilog Numbering Conventions
Verilog numbers are expressed in the following style:

[-] [size] [base] value

Indicates a negative number. This parameter is optional.

si ze

Specifies the number of bits in the number. This parameter is
optional.

base

Specifies the base. Binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or
‘D, hex: ‘*h or ‘H. This parameter is optional.

val ue

Specifies digits in the appropriate base with optional underscore
separators. The default value is decimal. This parameter is
mandatory.

UCLI Interface Guidelines
2-3

Example

' 11111110

8 b11111110

' Hf f ca23

21’ H1f ca23

- 23749

27 195 000

16' b0011_0101 0001 1111
32' h 12ab_f001

Hierarchical Path Names

Each of the following HDL objects create a new level in the hierarchy:

« VHDL
- component instantiation statement
- block statement
- package

* Verilog

module instantiation

named fork

named begin
- task
- function

Each level in the hierarchy is also known as a region.

UCLI Interface Guidelines Feedback
2-4

Feedback

Multiple Levels in a Path Name

Multiple levels in a path name are separated by the character
specified in the path separator variable that can be set by the user.
Allowed path separators are as follows:

", " for Verilog naming conventions.
":" for VHDL IEEE 1076-1993 naming conventions.
The default for VHDL and mixed designis "/ ".

The default for Verilog designis " . ".

Absolute Path Names

In VHDL, absolute path names begin with the path separator "/ ",
however, in Verilog, absolute path names begin with the top module
name. For more flexibility, you can use either way to specify the
hierarchical name.

Example

top_ nod.il.i2 or top_nod/il/i2 or top nod:il:i2
.top_nod.il.i2 or /top _nod/il/i2 or :top_nod:il:i2
/top_entity/il/li2or .top entity.il.i2or :top_entity:il:i2
top_entity/il/i2 or top_ entity.il.i2 or top entity:il:i2

UCLI Interface Guidelines
2-5

Note:
Since Verilog designs may contain multiple top-level modules, a
path name may be ambiguous if you leave off the top-level module
name.

Relative Path Names

Relative path names do not start with the path separator and are
relative to the current UCLI scope (the result of a scope command).

A path name may also contain a VHDL generate, V2k generate (both
FORand | F generate), array instance, and so on.

bit_select/index

VHDL array signals and Verilog memories and vector nets can be
indexed or bit selected.

For bit _sel ect, Verilog uses [<i ndex>] , while VHDL uses

(<i ndex>) . VCS allows both ways to specify index or bit select for
a Verilog or VHDL object. Note index must be a locally static
expression.

Example

vl Obj [0], vl Obj(0), vhoj(0), vhnj[O]

UCLI Interface Guidelines Feedback

2-6

part_select/slice

VHDL array signals and Verilog memories and vector nets can be
sliced or part_selected. Slice ranges may be represented in either
VHDL or Verilog syntax, irrespective of the setting of the path
separator.

For slice, Verilog uses [<l eft _range>: <ri ght _range>] for
part _sel ect, while VHDL uses (<l eft_range> TQ DOANTO
<ri ght range>).VCS should allow both syntax forms for either a
Verilog or VHDL object.

Example

vl Qbj[0:5], vIObj(0:5), viOhj(0 TO5), vlObj(5 dowmto 0),
vhQbj (0 TO 5), vhObj (5 downto 0), vhObj[0:5], vhObj(0:5)
vhQbj (0 downto 5) is a NULL range

vl Qbj (0 downto 5) is equivalent to vl Qoj[0:5]

Naming Fields in Records or Structures

For fields in VHDL record signals or SystemVerilog structures, " . "
is used as the separator irrespective of whatever path separator is
used. Therefore, it will have the following form:

obj ect _nane. field_name

Generate Statements

VHDL and SystemVerilog generate statements are referenced in a
similar way to index/bit-select arrays.

Feedback UCLI Interface Guidelines
2-7

Example

vlgen[0], vligen(0), vhgen(0), vhgen|[O]

Note:

Mixing VHDL syntax with Verilog syntax is allowed as long as the
“[" and "]",and" (" and ")" are used in pairs. If not
specified in pairs, it is an error.

Example
vij[0:5), vioj(0:5], vliObj (0 TO 5], vij[5 downto 0)

The usage of " (", "and",and "] " are not legal.

More Examples on Path Names

cl k

Specifies the object cl k in the current region.

/top/clk

Specifies the object cl k in the top-level design unit.

/ top/ bl ock1l/ u2/cl k

Specifies the object cl k, two levels down from the top-level
design unit.

bl ock1/ u2/ cl k

Specifies the object cl k, two levels down from the current region.

array_sig(4)

UCLI Interface Guidelines Feedback

2-8

Specifies an index of an array object.

{array sig(l to 10)}

Specifies a slice of an array object in VHDL syntax.

{mysi gnal [31: 0] }
Specifies a slice of an array object in Verilog syntax.

record sig.field

Specifies a field of a record.

{bl ockl/gen(2)/control[1]/nmem(7:0)}

Specifies a slice of an array object with mixed VHDL and Verilog
syntax, three levels down from the current region as part of a
nested generate statement.

Note the braces added to the path; square brackets are not
recognized as Tcl commands.

Name Case Sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL
names are not case sensitive, except for extended identifiers in
VHDL 1076-1993. In contrast, all Verilog names are case sensitive.

Feedback UCLI Interface Guidelines
2-9

Extended/Escaped Identifiers

The Verilog escaped identifier starts with "\ " and ends with a
space" ". The VHDL ext ended identifier starts and ends with "\ .
Therefore, both” " and "\ " is allowed as delimiters, which implies
that the VHDL extended identifier cannot have space.

You can also specify a Verilog escaped identifier in VHDL style
(ext ended identifier), and vice versa.

Verilog escape name VHDL Extended ldentifier
Suppose you have a declaration in Verilog:

reg \ext123%$$% ; /'l note: mandatory space character at
the end of identifier

If you put this identifier in any UCLI command, it would look like:

{\ext 123%3%' }// Note: nandatory space character at the end
of identifier.

Suppose you have a declaration in VHDL.:

signal \nyvhdl 123@¥\ : std_ | ogic;

In UCLI command, it would look like:

\\ myvhdl 123@A \

UCLI Interface Guidelines Feedback
2-10

Wildcard Characters

You can use wildcard characters in HDL object names with some
simulator commands.

Conventions for wildcards are as follows:

*

Matches any sequence of characters.

Matches any single character.

Tcl Variables

Feedback

Global Tcl variables for simulator control variables and user-defined
variables, can be referenced in simulator commands by preceding
the name of the variable with the dollar sign ($) character. The
variable needs to be expanded first before passing it along to the
simulator.

To resolve the conflict with referencing Verilog system tasks that also
use ($) sign, you must specify Verilog system tasks with "\ " or
enclosed in{}.

Example
ucli> call {$readmenb("l2v_input", init_pat);}

Note:
In SystemVerilog, $r oot is a keyword.

UCLI Interface Guidelines
2-11

Simulation Time Values

Time values can be specified as <nunber ><uni t >, where unit can

be sec, ns, us, ns, ps, orf s. Awhite space is allowed between the
number and unit.

You can specify the time unit for delays in all simulator commands
that have time arguments. For example:

run 2ns
stop -relative 10 ns

Unless you explicitly specify timebase using confi g -ti nebase,
simulation time is based on simulator time precision.

Note:

UCLI does not read the synopsys_si m set up file in VCS to
obtain the value of timebase.

By default, the specified time values are assumed to be relative to
the current time, unless the absolute time option is specified which
signifies an absolute time specification.

UCLI Interface Guidelines Feedback

2-12

Commands

Feedback

This chapter contains UCLI command definitions. It includes the
following sections:

e Simulation Invocation Commands

e Session Management Commands

e Simulation Advancing Commands

* Navigation Commands

» Signal/Variable/Expression Commands

e Simulation Environment Array Commands
* Breakpoint Commands

* Timing Check Control Command

» Signal Value and Memory Dump Specification Commands

Commands

3-1

Design Query Commands
Macro Control Routines
Coverage Command
Assertion Command

Helper Routine Commands
Specman Interface Command

Expression Evaluation for stop/sexpr Commands

Note:

Command names used are the default aliases supplied by
Synopsys.

Simulation Invocation Commands

Commands

3-2

This section describes the following simulation invocation
commands used for invoking the simulation:

“start”
‘restart”
“start_verdi”
“loadd!”
“cbug”

Feedback

start

Use this command to start a new simulation from the UCLI command
prompt. You can use this command to start the simulation (see the
example following this section). This command starts the simulation
from time ' 0' . The optional simulator-specific command-line
arguments can be given after the simulator’'s name.

To go to UCLI prompt from Unix prompt you have to run:

>tclsh # you will get TCL pronpt %
% append auto_path $env(VCS HOVE)/ et c/ ucli

%ackage require ucli # you got ucli pronpt "ucli %
ucli%start sinv <sinulation options> # start VCS si nul at or

When executed, this command:

* Resets all the UCLI configuration values to their default state.
* Removes all previously set breakpoints.
* Resets all the previously forced variables to default values.

Note:

The default end-of-simulation behavior is to exit the UCLI shell.
For example, the UCLI process will exit when the simulator (that
is, si nv) reaches end-of-simulation, $f i ni sh (in Verilog), or if
the simulator dies (simulation crashes or segmentation fault). To
prevent this, you need to set the ' endof si mi configuration
parametertonoexi t . Formore information, see the configuration
commands.

Syntax
start <simul ator_name> [simnmulator rel ated argunent s]

Feedback Commands

3-3

Commands

3-4

si mul at or

This is typically a VCS executable name (that is, si nv). This
option is mandatory.

[simul ator related argunents]

All the arguments which the simulator supports.

Examples

ucli%start sinv
Starts si mv from simulationtime ' 0' . This command displays no
output.

ucli%start sinmv -1 sinv.log
Starts si mv from simulation time ' 0' with the argument' -1 ' .

This command displays no output.

/[Flow Example ...

/1 To start another simulator while already in the UCLI Tcl
shel | of another sinmulator

ucli % confi g endof si m noexit
ucli % run

ucli%start sim_1

ucli % config endof si m noexit

ucli % run

ucli%start ../sinv

ucli % confi g endof si m noexit
ucli % run

ucli % start sinv

ucli % run

Related Commands

“restart”

Feedback

Feedback

“restore”

restart

Use this command to restart the existing simulator (that is, si nmv)
from simulation time ' 0" . This command does not take any
arguments. This command always restarts the simulator with the
same set of command-line arguments which it included when it was
originally invoked. This command can be executed at any time
during simulation.

When executed, this command:

* Retains all the previous UCLI configuration values.
» Retains all previously set breakpoints.

Note:
The default end-of-simulation behavior is to exit the UCLI shell.
For example, the UCLI process will exit when the simulator (that
IS, si nv) reaches end-of-simulation, $f i ni sh (in Verilog), or if
the simulator dies (simulation crashes or segmentation fault). To
prevent this, you need to set endof si mconfiguration parameter
to noexi t.

Syntax
“restart”

Examples

ucli%restart
Starts si mv from simulationtime ' 0' . This command displays no

output.

//[Flow Example ...

Commands
3-5

/[To restart simulation multiple times ...

ucli % confi g endof si m noexit
Sets end of simulation criterionto noexi t . Forexample, the UCLI

Tcl shell is not exited after reaching end of simulation. The output
of this command is the value of configuration endof si mvariable,
which in this case is noexi t ..

Noexi t

i % run
May display simulation output. Once the simulation is stopped,

the UCLI Tcl shell is not exited and you may give additional
debugging commands and restart the simulation.

uc

ucli%restart

Starts sinv fromsimulation tine '0".
ucli % confi g endof si m noexit
ucli % run

ucli%restart

You can use the UCLI commands save/r est or e during the same
simulation session (in the same UCLI script) or in separate
simulation sessions.

For example, same simulation session:

simv -ucli -i run.tcl

where run.tcl has both commands:

save saved_sn_shot
restore saved sn_shot

Separate simulation sessions: first simulation session:

Commands Feedback

3-6

simv -ucli -i runl.tcl

where runl.tcl has save command:

save saved_sn_shot
second simulation session:

simv -ucli -i run2.tcl

where run2.tcl has restore command:

restore saved_sn_shot

Related Commands

“start”

start_verdi

Use this command to start the Verdi GUI from UCLI. You must set
VERDI _HOVE.

Syntax
start_verdi [-verdi_opts <verdi _opts_str>]

verdi _opts_str

Specifies list of arguments that the Verdi executable supports
when starting the executable from an xterm.

Feedback Commands

3-7

loaddl

Use this command to load or unload your shared libraries in the
simulator or UCLI memory space.

Loading Shared Libraries
Following is the syntax to load shared library:

Syntax
| oaddl <shared-obj ect> <synbol s> [-debug] [-sinmv|-ucli]

shar ed- obj ect

Full path name of the shared library being loaded.

synbol s

List of function names to be loaded.
-Sinv
Loads the shared library into simv memory.

-ucli

Loads the shared library into UCLI memory (when running UCLI
in two process mode).

- debug

Prints debug information in case of an error.

Loading Packages
Following is the syntax to load packages:

Commands Feedback

3-8

Feedback

Syntax

| oaddl <package- nane>[: <versi on>] <synbol s> [-debug] |-
simv|-ucli]

package- nane

Name listed in the pkgl ndex. t cl file.

ver si on

The version to be loaded, or the latest version if not specified.

Unloading Previously Loaded Shared Library

Following is the syntax to unload the previously loaded shared
library:

Syntax

| oaddl -unl oad <shar ed-obj ect >| <package- nane><synbol s> | -
debug] [-sinmv|-ucli]

cbug

Use this command to enable debugging C, C++, or SystemC
modules included in the VCS designs. Alternately, the C Debugger
starts automatically when a breakpoint is set in a C/C++/SystemC
source code file.

For more information, see the chapter entitled, “Using the C, C++,
and SystemC Debugger” .

Note:

The simulator (that is, si nv) should be started before starting C
Debugger.

Commands

3-9

Syntax

ucli % cbug
This command attaches (enables) C Debugger.

ucli % cbug -detach
This command detaches (Disables) C Debugger. This command

displays the following output.

CBug det aches
St opped

ucli2Proc

You need to use the - ucl i 2Pr oc runtime option to debug SystemC
designs.

Note:

- For designs containing both SystemC and VERA modules, you
must use - ucl i 2Pr oc to enable UCLI prompt or to use UCLI
input Tcl file.

- The -ucl i 2pr oc mode is compatible with Tcl 8.5.

Example
“define W31

nmodul e ny_top();

paranet er PERI CD = 20;
reg cl ock;

reg [WO] val uel,;

reg [WO0] val uez;
wire [WO] add_wi re;

i nt eger counter;
i nteger direction;
i nt eger cycle;

Commands Feedback

3-10

/1 SystenC nodel
adder addl(val uel, value2, add wre);

initial begin
val uel = 32'b010; // starts at
val ue2 = 32'b000; // starts at
counter = 0,
direction = 1;
cycle = 0;

end

onN

/1 clock generator
al ways begin
clock = 1'bO;
#PERI OD
forever begin

#(PERI OO/ 2) clock = 1'b1;
#(PERI OO 2) clock = 1'bO0;
end

end

/1l stinmulus generator
al ways @ posedge cl ock) begin
val uel <= counter+2;
val ue2 <= 32'b010; // stays at 2 after

if (direction == 1) // increnenting...
if (counter == 9) begin
counter = counter - 1;
direction = 0;
end
el se
counter = counter + 1,
el se // decrenenting...
if (counter == 0) begin
counter = counter + 1;
direction = 1,
end
el se
counter = counter - 1;
end

Feedback

here.

Commands

3-11

/1 display generator
al ways @ posedge cl ock) begin

$display("%d + %d = %", valuel, value2, add wire);

/1 end after 100 cycles are executed
cycle = cycle + 1;
if (cycle == 20)

$f i ni sh;

end

With this example, you get the following warning message when you
use SystemC designs without - ucl i 2Pr oc:

./simv -ucl

War ni ng- [UCLI - 131] Debuggi ng SystenC not possi bl e.
SystenC was detected in this flow Interactive debuggi ng of
SystentC, C or C++ source code using the 'cbug’ conmand is
not possible in the current situation. For exanple, setting
breakpoints in SystenC, C or C++ source files will not be
possi bl e.

To enabl e interactive debuggi ng of SystenC, C or

C++ source files, quit the sinmulation and start it again
with the additional runtime argunment '-ucli2Proc'.

With - ucl i 2Pr oc, SystemC debugging is enabled.

./simv -ucli -ucli2Proc
ucli % next -lang C
Information: CBug is automatically attaching.

This can be disabled with command "cbug::config attach
explicit".

CBug - Copyright Synopsys |Inc 2003-2009

wait while CBug is |oading synmbolic information ..
done. Thanks for being patient!

adder. h, 34 : sc_|v<32> val;

CBug%

Commands Feedback

3-12

Session Management Commands

Feedback

This section describes the following commands:

e ‘“save”
e ‘“restore”
save

Use this command to store the current simulation snapshot in a
specified file. This command saves the entire simulation state
including breakpoints set at the time of saving the simulation.
Relative or absolute path can be given where you want the specified
file to be kept (see the example that follows). This command also
creates (along with the specified file) a file named fi | enane. ucl i
in the directory where the specified file is saved. This file has the
record of all the commands that have been executed (including this
command). Multiple simulation snapshots can be created by using
this command repeatedly.

Before executing this command, you need to perform the following:

» Detach the UCLI C Debugger (if attached)
* Close any open files in PLI or VPI

The following use models are supported for saving and restoring:

e Save using UCLI and restore using UCLI

e Save using UCLI and restore using Verdi

Commands

3-13

Syntax
save <fil ename>

filenane

The name of the file to which simulation snapshot is written.

Example

ucli % save sim st
Saves current state of simulation in file si m_st . This command
displays the following output.

$save: Creating simst fromcurrent state of./sinv...

ucli % save /tnp/scratchl/sim st
Saves current state of simulation in the file called:

/tnp/ scratchl/sim st
This command displays the following output:

$save: Creating /tnp/scratch/simst fromcurrent state
of ./sinv...

Related Commands

“restore”

restore

Use this command to restore the saved simulation state from a
specified file. This command restores the entire simulation state
including breakpoints set at the time of saving the simulation.
Relative or absolute path can be given from where you want the

Commands Feedback

3-14

Feedback

specified file to be read. A simulation can be restored multiple times
by using different (or same) simulation snapshots (of same
simulator).

Before executing this command, you need to perform the following
tasks:

* Detach the UCLI C Debugger (if attached)
» Close any open files in PLI or VPI.

The following use models are supported for saving and restoring:

e Save using UCLI and restore using UCLI
» Save using UCLI and restore using Verdi
Syntax

restore <fil ename>

filenane

The name of the file from which to restore the simulation state.

Example

ucli%restore simst
Restores state of simulation from the snap shot stored in the file

sim_st. This command displays the following output.

Restart of a saved sinulation
ucli%restore /tnp/scratchl/sim st

Restores state of simulation from the snapshot stored in the file:

/tnp/ scratchl/sim st

Commands

3-15

Commands

3-16

This command displays the following output:

Restart of a saved simul ation

Related Commands

“save”

Restrictions for Save and Restore Commands

« You must not save state after $st op.

e save/r est or e is not supported if —R option is used at the vcs
command-line.

» Detach CBug — CBug has to be detached before using save or
r est or e command. CBug can be attached again after the
command is completed.

* |PC (inter-process communication) — If the simulation has
spawned other processes, or is connected to other processes by
the C code, then you must reestablish these connections yourself
after a restore.

» SystemC specific restrictions — If the simulation contains
SystemC modules, then the following restrictions apply for save/
restore:

- The simulation must have been elaborated with option " vcs
-sysc=newsync ...".Thisimplies that SystemC 2.2
IS used.

- SC_THREADs implemented by POSIX threads (by setting
environment variable SYSC_USE_PTHREADS) are not
supported.

Feedback

- SC_THREADs implemented by Quick threads (default) are
supported.

- A'save' directly after the simulation has been started may not
be possible. Advance the simulation with "r un 0" and then try
again.

Simulation Advancing Commands

This section describes the following commands:

° “Step”
e “next’
° Hrunﬂ

e “finish”
step

Use this command to move the simulation forward by one
executable line of code irrespective of the language of the code. This
st ep command steps into tasks functions and VHDL Procedures
when called. That is, it steps through the executable lines of code in
the task/function/VHDL Procedure.

Upon execution, this command displays the:

* Source file name
e Line number

e Source code at that line

Feedback Commands

3-17

Note:

- If the source code is encrypted, only the source file name is
displayed.

- Simulation stops before the displayed source code is executed.

- Ifthe displayed source code contains multiple statements, simv
stops only once before the first statement is executed.

Syntax

step [-reverse]
step [-thread [thread id]]
step [-tb [instanceFul | Nane]]

-reverse

This option, if specified, goes back to the previous statement
dictated by any additional options.

-thread [thread id]

This option is used for testbench debugging. When this option is
specified, st ep stops at the next executable statement in the
thread specified by t hread i d. Ift hread_i d is not specified,
then the simulator stops at the next executable statement in the
current thread. If the t hr ead_i d does not exist when st ep is
executed, the simulator reports an error. You can determine the
t hr ead_i d using the UCLI commands senv t hr ead or

t hr ead.

-tb [instanceFul | Nane]

Commands Feedback

3-18

This option is used for testbench debugging. The option

I nst anceFul | Nane is optional. When this option is specified,
simulator steps into the specified testbench instance. The

I nst anceFul | Nane option should be a program or any module
instance that contains testbench constructs. If

I nst anceFul | Nane is not specified, then simulator steps into
any of the program or module instance that contain testbench
constructs.

Stepping Into Constraints Solver
Following is the syntax to step into the constraints solver:

step [-solver [-re_random ze [-dist_num <N> |-
dist _cont]]]]
-sol ver

Specifies that simv steps into the constraint debug mode. The
current line on which simv has stopped must have a randomize
call.

-re_randoni ze

Re-enter constraint debug mode.

-di st _num <N>

Used for distribution analysis, where N specifies the number of
re-randomize calls.

-di st _cont

Continues from the last distribution analysis.

Feedback Commands

3-19

Example

ucli % step
Stops at the next executable line in the source code. This

command displays source file name, line number and source code
at that line number as output.

tl.v, 12 : $displ ay("66666666");

ucli% step -thread 1
Stops at the next executable line of thread 1 in the testbench

source code. This command displays source file name, line
number and source code at that line number as output.

step2.vr, 14 : del ay(10);

Note:

If you put this command in a script, not typing it directly in the UCLI
command prompt, to get this printing you have to use the Tcl put s
command:

puts [step]

Related Commands

“run

“next”

next

Use this command to move the simulation forward by one
executable line of code irrespective of the language of the code. The
next command is similar to the st ep command, but next steps
over calls to tasks and functions (that is, simv do not stop on the
source code inside task/functions).

Commands Feedback

3-20

Feedback

When executed, this command displays the:

e Source file name
* Line number
e Source code at that line

Note:
- If the source code is encrypted, only the source file name is
displayed.
- Simulation stops before the displayed source code is executed.

- Ifthe displayed source code contains multiple statements, simv
stops only once before the first statement is executed.

If the simulator is already executing a statement inside task or
function, the next command does not step over, that is, it behaves
the same as st ep.

Syntax

next [-reverse]

next [-reverse] [-end]

next [-reverse] [-thread <thread_id>]
next [-hdl]

next [-language <simnul ator_| ang>]
-reverse

This option, if specified, goes back to the previous statement
dictated by any additional options.

-end

This option is used for debugging testbenches only. When this
option is specified, the next command finishes the execution of
task/function and returns to caller.

Commands

3-21

Commands

3-22

-thread [thread_id]

When you specify this option, next stops at the next executable
statement in the thread specified byt hread_i d.Ifthread_id
IS not specified, then the simulator stops at the next executable
statement in the current thread. If the t hr ead i d does not exist
inthe simulation, the simulator reports an error. You can determine
the t hr ead i d using the UCLI commands senv t hr ead or

t hr ead.

- hdl

When currently stopped in CBug, this option forces simulation to
stop on the next HDL statement to execute.

-1 anguage <si nul ator | ang>

When you specify this option, the simulator stops at the next
executable line in the language specified by the

si mul at or _| ang option. You can use this option to change the
control of execution from one language to another. Currently only
VHDL (- | anguage VHDL) is supported.

Example
ucl i % next

Stops at the next executable line in the source code. This command
displays the source file name, line number and source code at that
line number as output.

asb_core.v, 7 : if(cmd == 4' ha)
Note:

If you put this command in a script, not typing it directly in the UCLI
command prompt, to get this printing you have to use the Tcl put s
command:

Feedback

Feedback

Related Commands

“Stop”

“Step”

run

run

This command advances the simulation to a specific time, signal
event, line of code in afile, instance, or thread. The simulation stops
if any other event like UCLI breakpoint or $st op occurs first.

This command must be reissued if the UCLI command like st art or
restart isissued.

If this command is issued without any arguments, simulation runs till
a breakpoint in the code is hit, a $st op or $f i ni sh statement is
executed, or Ctrl+c is given. If the code contains none of these,
simulation runs to completion.

Syntax

run [-reverse]
run [-reverse]
run [-reverse]
run [-reverse]
run [-reverse]
run [-reverse]
<tid>]

run [-reverse]
falling <nid>]
run [-reverse]

[time]

[time [unit]]

[-absolute|relative tinme [unit]]

[-lTne <lineno> [-file <file>]

[-lTne <lineno>] [-file <file>] [-thread

[-posedge | rising <nid>] run [-negedge
run [-change | event <nid>]
[- br eakpoi nt <bpi d>]

run [-breakpoint { <bpidl> <bpid2> ...}]

run [-delta]
run [0]

Commands

3-23

run [-nba]

<ni d>, <lineno> <lineno>

For a description of these options, see the “stop” command
section.

<tid>

Thread id. If not specified, the current thread is assumed.

<uni t >

This is the time unit. This could be:
[s| msB | us | ns | ps | fs]

By default, this unit is the time unit of simulation.

<-del ta>

Runs one delta time and stops before the next delta. The
simulation advances to the next delta and return to UCLI soon
after the signal update phase (before running next delta). You can
inspect values of newly deposited signals/variables at that time.
If there are no more events for this particular time step, the
simulation advances to the next time step and stops at the end of
the first delta of the new time step.

This ensures all deltas are executed and all blocking assignments
are completed.

<0>

Commands Feedback

3-24

Feedback

Runs all of the deltas of a particular simulation time and stops just
before the end of that simulation time. The simulation stops after
signal update phase, before process execution for the last delta.
If UCLI generates more events by forces, release, and so on, all
such events are processed until things stabilizes at the end of
currenttime. Secondr un 0 does not run next time step, you have
to somehow advance the simulation to next step by other means
(for example, by run -del t a).

[- nba]

Runs all deltas and stops before a new NBA (non-blocking
assignments). The simulation goes into interactive mode right
before the NBA queue starts executing. This ensures all deltas
are executed by then and all blocking assignments are completed.

[- breakpoi nt bpi d]
[- breakpoi nt {bpidl bpid2 .}]

Runs until one of the breakpoints corresponding to the listed
breakpoint IDs is triggered. Breakpoints not listed are temporarily
be disabled.

Example

ucli % run
Runs until a breakpointis reached or end of simulationis reached.

This command's output varies depending on the simulation.

ucli % run 10ps
Runs the simulation 10ps relative to the current simulation time.

If the current simulation stops at 1390ps, this command runs the
simulation 10ps more and stops at 1400ps the end of simulation
time. Thiscommand isthe sameasrun -rel ati ve 10ps. The
output of this command indicates the time at which simulation is
stopped:

Commands
3-25

1400 PS

ucli%run -relative 10ps

Runs the simulation 10ps relative to the current simulation time.
If the current simulation stops at the end of simulation time

1400ps, this command runs the simulation 10ps more and stops
at 1410ps. This command is the same asr un 10ps. The output
of this command indicates the time at which simulation is stopped:

1410 PS

ucli % run -absolute 10ps

Runs the simulation 10ps relative to the simulationtime ' 0' . The
time specified should be greater than the current simulation time.
In this example, the time specified is greater than the current
simulation time. The output of this command indicates the time at
which simulation is stopped:

10 PS

ucli % run -absol ute 10ps

Runs the simulation 10ps relative to the simulation time ' 0' .
The time specified should be greater than the current simulation
time. In this example, the time specified is less than the current
simulation time. The output of this command indicates that the
time specified is less than the current simulation time:

the absolute time specified '1" is less than or equal to
the current simulation tinme '210 ps’

ucli%run -line 15

Commands Feedback

3-26

Feedback

Runs the simulation until line number 15 in the current file is
reached. The output of this command indicates the time at which
simulation is stopped:

1576925000 PS

ucli%run -line 15 -file level 9.v

Runs the simulation until line number 15 infile | evel 9. v is
reached. The output of this command indicates the time at which
simulation is stopped:

1476925000 PS

ucli % run -change clk

Runs the simulation until posedge or negedge of signal cl k event
occurs. The output of this command indicates the time at which
simulation is stopped:

500000 ps

ucli % run -event clk

Runs the simulation until posedge or negedge of signal cl k event
occurs. The output of this command indicates the time at which
simulation is stopped:

600000 ps

Related Commands
“Stop”

Commands

3-27

Commands

3-28

finish
Use this command to end processing in the simulator.

Syntax
finish

Note:

The default end-of-simulation behavior is to exit the UCLI shell.
That is, the UCLI process exits when the simulator (for example,
si mv) reaches the end of simulation, or $f i ni sh (in Verilog), or
dies (simulation crashes or segmentation fault). To prevent this,
you need to setthe conf i g endof si m noexi t parameter. The
UCLI command qui t will exit the UCLI prompt.

Example

ucli%finish
Finishes the simulation. The VCS banner is displayed as output
of this command:

VCS Simul ati on Report

Time: 00 ps

CPU Ti ne: 0. 040 seconds; Dat a structure si ze:
2. 4Mo

Mon Mar 17 16:10: 45 2008

Related Commands
“start”

Feedback

Navigation Commands

This section describes the following commands:

° “Scope”
e ‘“thread”
e ‘“stack”
scope

Use this command to display the current scope or set the current
scope to a specified instance. Remember, that “current scope” is the
scope relative to UCLI (not the simulator). This is important because
other UCLI commands can use relative hierarchical names in
accordance to the current scope.

Current scope can be different with "active scope" where simulation
stops. To make "current scope" to be the same as "active scope" run
the UCLI command confi g fol | owacti vescope on.

Syntax

scope
scope [nid]

scope [-up [nunber _of | evel s]
scope [-active]

scope

With no options, this displays the current scope in UCLI.

Feedback Commands

3-29

scope [nid]

Sets the current scope to the hierarchical instance specified by
ni d. Hierarchical name can be absolute hierarchical name or
relative to the "current scope".

scope [-up [nunber of | evel s]

Moves the current scope up by nunber of | evel s. If
nunber _of | evel sisnotspecified, the current scope is moved
up' 1l | evel. The nunber of | evel s mustbe an integer
greater than O.

scope [-active]

Displays active scope of simulated Design. The active scope is
the scope in which the simulator is currently stopped.

For more information, see the section entitled, “Current Scope and
Active Scope” .

Example

ucl i % scope
Returns the current scope. This command displays the current

scope in the design:

T. t
ucli%scope T.t1.t2.t3.dig

Sets the current scopeto T. t 1. t 2. t 3. di g. This command
displays the scope to which the UCLI interpreter moved. In this
example, the output is:

T.t1.t2.t3.dig

ucli % scope -up 2

Commands Feedback

3-30

Feedback

Moves the current scope up by 2 levels. This command displays
the new scope:

T.t1

ucli % scope -active
Sets the current scope to active scope. This command displays

the new scope:

T.t1

thread
Use this command to perform the following tasks:

» Display current thread information
* Move thread in the current scope to active scope
» Attach a new thread to the current thread

The thread information displayed includes:

e Thread id (#<number>)

* File name and line number in which this particular thread is
present

» State of the thread (current or running)
* Scope of the thread

Note:
This command is used for testbench debugging.

Commands

3-31

Syntax

t hr ead

thread [-attach [tid]]

thread [-active]

thread [<tid>] [-all] [-blocked | -running | -current |
-wai ting]

t hread

Displays detailed information of the threads and their state.

thread [tid]
Displays all the details of a particular thread specified by t i d.
This command is the same ast hread <tid> -all.

thread [-attach [tid]]
Changes the current scope of the thread (witht hread i d ti d)
to active scope.

thread [-active]

Resets the simulator's current thread to active point.

thread -all

Displays all threads with detailed information.

thread [-current | -blocked | -running | -waiting]

Displays thread by their state.

Examples

ucli %t hread
Displays information about all the threads. The output of this

command includes:

Commands Feedback

3-32

Feedback

uc

uc

uc

- Thread id
- State of the thread
- Scope of the thread

- File name and line number in the file in which this particular
thread is present

thread #1 : (parent: #<root>) RUNN NG
1: -line 6 -file t2.vr -scope
{test _2.test_2.unnaned$$ 1}
thread #2 : (parent: #1) CURRENT
O: -line 7 -file t2.vr -scope
{test 2.test_ 2.unnaned$$_1.unnaned$$ 2}

i%thread 1
Displays information about t hr ead 1. This command displays
the following output.

thread #1 : (parent: #<root>) CURRENT
O: -line 6 -file t2.vr -scope test_2.test_2

i%thread -attach 2
Changed current scope of t hr ead 2 to active scope. This
command displays a positive integer for successful execution:

2

i % thread -al
Displays all threads with full thread information. This command

displays the following output:

thread #1 : (parent: #<root>) RUNNI NG
O: -line 6 -file t2.vr -scope test _2.test 2
1: -line 6 -file t2.vr -scope

{test _2.test_2.unnaned$$ 1}

thread #2 : (parent: #1) CURRENT
O: -line 7 -file t2.vr -scope

{test _2.test_2.unnaned$$_1.unnaned$$ 2}

Commands

3-33

ucli % thread -current
Displays all threads that are currently being executed. This

command displays the following output:

thread #2 : (parent: #1) CURRENT
O0: -line 7 -file t2.vr -scope
{test_2.test_2.unnaned$$_ 1. unnaned$$ 2}
Related Commands

“stack”

stack

Use this command to display the current call stack information; it lists
the threads that are in the CURRENT state. The stack information
displayed includes:

» Scope of the thread
* File name
* Line number in the file in which this particular thread is present

Note:
This command is used for testbench debugging only.

Syntax

stack
stack [-up | -down [nunber]]
stack [-active]

st ack
Displays all NTB-OV or SystemVerilog threads that are in the
CURRENT state.
Commands Feedback

3-34

Feedback

stack [-active]

Moves current point to active point within the simulator.

stack [-up | -down [intnbr]]

This command is useful only if stack contains more than one
thread. This command moves the stack pointer up or down by

I nt nbr of locations. If number is not specified, then stack pointer
is moved up or down by '1'. The number has to be a positive
integer.

Examples

ucl i % st ack
Lists all threads that are in the CURRENT state. The output of this
command includes:

e Threadid
* Scope of the thread

* File name and line number in the file in which this particular thread

IS present

O: -line 13 -file t2.vr -scope

{test _2.test_2.unnaned$$_1.unnaned$$_4}

1: -line6-filet2.vr -scope {test_2.test_2.unnaned$$_1}

ucli % stack -active
This command sets the stack pointer to active thread in the stack.

The output of this command is the id of the thread present at the
location pointed to by the stack pointer:

0

ucli%stack -up 1

Commands

3-35

This command moves the stack pointer up by 1. The output of
this command is ID of the thread present at the location pointed

by stack pointer.

1

Related Commands
“thread”

Signal/Variable/Expression Commands

This section describes the following commands:

Commands

3-36

11

get”

“force”

“Xprop”
“report_violations”
“power”

“saif”

“Ip_show”

“sexpr”

“call”

“search”

“virtual bus (vbus)”

“Viewing Values in Symbolic Format”

Feedback

Feedback

get

Use this command to return the current value of a signal, variable,
net or reg. The default radix used to display the value is symbolic.
Use the conf i g command to change the default radix.

Syntax

get <nid>[-radix string] [-tool _first | -tool | -cbug_first
| -cbug] [-current] [-pretty]

<ni d>

Nested hierarchical identifier of the signal, variable, net or reg.

-radi x <hexadeci nmal | bi nary| deci mal | octal | synbol i c>

Specifies the radix in which the values of the objects must be
displayed. Default radix is symbolic (or set by ‘confi g radi x").
You can use shorthand notations h (hex), b (binary), and d
(decimal).

-tool first

When running with CBug, first send the command to simv. If the
command fails, send the command to CBug.

-t ool

When running with CBug, send the command to simv.

-cbug_first

When running with CBug, first send the command to CBug, and
if the command fails, send the command to simv.

- cbug

Commands

3-37

When running with CBug, send the command to CBug.

-current

When running with AMS and <ni d> is an AMS port, the current
through the port is displayed. If - cur r ent is not specified, the
voltage on the port is displayed.

-pretty

When <ni d> is an array, class variable or structure, the result is
displayed in a more readable output format.

Examples

ucli%get T.t.tsdat
Displays currentvalue of T. t . t sdat in the decimal radix. In this

example, t sdat is integer, hence the symbolic radix will select
decimal. This command displays the following output:

16

ucli % get tsdat -radix hex
Displays the current value of t sdat in hexadecimal radix. This
command displays the following output:

'h10

Related Commands
“config”

“show”

Commands Feedback

3-38

Feedback

force

Use this command to force a value onto an HDL object (signal or
variable). This command takes precedence over all other drivers of
the HDL object being forced. You can control the force on an HDL
object by applying at a particular time, multiple times or repeating a
desired sequence. By default, no other activity in the simulation
(some other driver applying a new value to the forced HDL object)
can override this value.

The effect of this command on an HDL object can be canceled with
the following commands:

* Arel ease command
* Another f or ce command
» Specifying the - cancel option with the f or ce command

Note:

This command is not supported for NTB-OV and SystemVerilog
testbench objects.

Syntax

force <nid> <val ue>
[<time> {, <value> <tine>}* [-repeat <tinme>]]
[-cancel <tine>]
[-freeze|-deposit] [-drive][-frame_id <fid>]
[-object id <oid>]

Note:

The order in which value-time pairs and options are specified is
arbitrary; there is no strict ordering rule to be followed.

ni d

Commands

3-39

Nested identifier (hierarchical path name) of HDL objects that
must be forced.

val ue

Specifies the value to be forced on the HDL object. The value
could be of any radix, such as binary, decimal, hexadecimal, or
octal decimal. The default radix is decimal. Only literal values of
appropriate type can be specified for a given HDL object.

The supported data types are as follows:

integer

- real number

- enumeration

- character

- character string

- bit

- bit vector

- 4-value logic

- 9-value logic

- 9-value and 4-value logic vector
- array

- VHDL and Verilog syntax for literals is accepted

VHDL 9-value logic is converted into Verilog 4-value logic when
it is forced on a Verilog object. The conversion is as follows.

Commands Feedback

3-40

Feedback

u -> X
w -> X

L -> 0
H -> 1
- -> X

Similarly, 9-value or 4-value logic is converted to 2-value logic
whenitis forced on a VHDL object of the predefined type BIT. The
following table and the table above define the conversion.

X -> 1
Z -> 0

You must specify character string literals within double quotes
(" ") and enclosed in curly braces; for example: {"Hel | 0"} .

time

Expressed as:

- [@ nunber

nunber

nunber [uni t]
[@ nunber [unit]

- ' @ is optional and implies absolute time

uni t is one of the following:
[s| msB | us | ns | ps | fs]

nunber is any integer number.

Commands

3-41

If no unit is specified, then the time precision of the simulator
(configtinebase command orsenv tinme precision
command provides the time precision of the simulator) is used.

-freeze

If you specify this option, no other activity in the simulator (some
other driver applying value to a forced signal or variable) can
override applied value. This is the default option. This option is
useful after the - deposi t option is used.

- deposi t

If you specify this option, some other activity in the simulator
(some other driver applying a new value to the forced HDL object)
can override a previously forced value.

-drive

This option is for VHDL only. This option attaches a new driver
with the specified value to the signal. For the same signal, next
force -drive command does not create additional driver, but
overrides the value of the existing driver.

Limitations
- Signal value must be resolved either by a user-defined
resolution function (see VHDL LRM for details) or
VHDL_STD LOd C(including STD_LOGd C_VECTOR) which
has a predefined resolution function.

- Resolved records are not currently supported because the
whole record needs to be forced at once. (You cannot execute
only part of the record level resolution function).

Commands Feedback

3-42

- Forcing input ports that already have a driver may lead to
unexpected results. This is not allowed in the VHDL LRM and
it is not clear what should happen to other inputs connect to the
same signal. The correct thing to do is to force the signal
connected to the input.

-cancel <time>

This option is used to cancel the effect of the f or ce command
after a specified time.

-repeat (-r) <tine>

This option is used to repeat a sequence after a specified interval.

-frame_id <fid>

The <ni d> is looked up based on frame ID <f i d>.

-obj ect _id <oid>

The <ni d> is looked up based on object ID <oi d>.

The following are the limitations of the f or ce command:

f or ce on entire record is not supported.

f or ce on bit or part select is not supported.

- If you use f or ce on arithmetic operand, then the result is
'X(es).

- f or ce on ports and variables of procedure and functions is not
supported.

- force onany VHDL data type by default decimal notation is
not supported.

Example

Feedback Commands

3-43

ucli % force probe 4'h8
This command forces the value of an HDL object probe to hold

value 4' h8. The above command is the same as
force -freeze probe 4'h8. This command displays no
output.

ucli% force probe 4'h9 @ons
This command forces the value of an HDL object probe to hold
value 4' h9 at 10ns absolute simulation time. This command
displays no output.

ucli % force probe 4'h9 10ns
This command forces the value of an HDL object probe to hold

value 4' h9 at 10ns relative to the current simulation time. This
command displays no output.

ucli % force probe 4'h9 10
This command forces the value of an HDL object probe to hold

value4' h9 at10 time units relative to the current simulation time.
This command displays no output.

ucli% force probe 4'h9 -deposit
This command forces the value of an HDL object probe to 4' h9.

This command displays no output.

ucli%force top.clk 1 10, 0 20
Assuming that the current simulationtimeisat' 0' , thiscommand

forcesthe HDL objectt op. cl kto ' 1' at10ps and' 0' at20ps.
This command displays no output.

ucli% force top.clk 1 10, 0 20 -repeat 30

Commands Feedback

3-44

Feedback

This command generates 20ps period clock, thatis, t op. cl k is
clocked with 20ps period and 50% duty cycle. After 30ps, the
seqguence (of applying 1 and holding it for 10ps more and
applying 0 and holding it for 10ps more) repeats and this will
continue forever. This command displays no output.

ucli%force top.clk 1 10, 0 20 -repeat 30 -cancel 1sec
See the above explanation. This command cancels effect of force

after 1 sec of simulation time. This command displays no output.

The following provides different ways in which you can use the
f or ce command:

ucli % force var 10

ucli % force var 'h20 10ns, 'o07460 20ns

ucli % force var 4'b1001 10ns, 5 D 37ns, 3'b01x 10
ucli % force var 12' hx 100, 16'hz 200

ucli% force var 27_195 000

ucli% force var '16'b00 111 0011 1 11111 O
ucli%force var 32'h 1_23 456_7_8

ucli % force var 1.23

ucli % force var 1.2E12

ucli % force var 236.123 763 _e-12

ucli% force var 2#1101 1001 10, 16#FA 20, 16#E#El1l 30
ucli% force var B"1110 1100 _1000" 1, X"F77" 3

ucli% force var '0" 50ps, 1 60ps, 1'bl 70 ps, 1' b0 1ns
ucli%force str {"Hello"} @1us, ("H, L, L) @{2us}

Related Commands

“release”

11 7

get

Xprop

Use this command to control X-Propagation in merge mode.

Commands

3-45

Syntax

Xprop -is_active [inst_nane] | -nerge_node
{vmer ge| t mer ge| xner ge| xpr op}

This command is equivalent to the Verilog $set _x_prop() and
$i s_xprop_active() system task calls and the VHDL built-in
package subprograms XPROPUSER. set x_prop() and
XPROP_USER. i s_xprop_active().

For example,

Xprop -is_active top.dut.core0.dff
Xprop -nerge_node vnerge
Xprop -mnerge_node Xxprop

Note:

For a non-Xprop simulation, the command returns False, and
if the option - mer ge_node is present, a warning message is
generated.

You must use eitherthe-i s_act i ve optionor- nmer ge_node
option. If neither or both options are provided, or if the value of
the option - ner ge_node is not valid, a help message is
generated.

This command allows you to provide both relative (to the current
scope) instance name and absolute instance name. If no
instance name is provided for the option-i s_acti ve, the
command uses the current scope.

Ifthe[i nst _nane] option does not exist, a warning message
is generated and the UCLI command returns False.

Related Commands

“report_violations”

Commands

3-46

Feedback

Feedback

report_violations

Use this command to control what X-Propagation violations are
enabled.

Syntax

report _violations -type { oob_index rd |
oob_index w | x_index_rd | x_index w |

| ossy _conversion | enumcast | ffdcheck }* | -
severity { warn | error } | -on | -off
oob_index_rd

Enables reporting if out-of-bounds index read.

oob_i ndex_wr

Enables reporting if out-of-bounds index write.

X_index_rd

Enables reporting if X index read.

X_index_w

Enables reporting if X index write.

| ossy_conver si on

Enables reporting of conversion from 4-state to 2-state.

This command is equivalent to
$xprop_assert _{on, of f,warn, fatal }() or

XPROP_USER. xprop_assert _{on,of f,warn,fatal }()
Verilog system task calls and VHDL XPROP_USER built-in package
sub-programs.

Commands

3-47

Note:
- Multiple options are allowed. However, at least one option must
be provided. If no option is provided, or illegal options or option
values are provided, a help message is generated.

- Ifboth- on and- of f options are provided, a warning message
Is generated. The command returns False and the violation
reporting state is not changed.

- Multiple options are allowed to the (singular) - t ype switch, if
presented in a TCL list (enclosed in braces and separated by
spaces).

- For pure VHDL in non-Xprop mode, this command is not
relevant under any circumstances. Hence, this command
always generates a warning message and returns False.

Related Commands
“Xprop”

power

Use this command to enable, disable, or reset power measure.

Syntax
power [-enable] [-disable] [-reset]
[-report <filenanme> <tinmeunit> <nodul enane>]

[-gate_level <on | off | rtl _on | all> [nda] [sv]]

[-lib_saif <fil enane>]

Commands Feedback

3-48

[<region|signal > [<region|signal > ...]

-enabl e

Enables power measure.

-di sabl e

Disables power measure.

-reset

Resets power measure.

-report <filenanme> <tineunit> <nodul enane>

Generates the report, where:

- fil enane - Specifies the report file name.
- ti meunit - Specifies the time unit.
- nodul enane - Specifies the module name.

-gate_level <on | off | rtl_on | all> [nda] [sv]

Sets gate_level monitor policy, where

on - Specifies on, means ports + signals.

- of f - Specifies off, means ports only.

- rtl _on - Specifies rtl_on, means ports + signals.

- al | - Specifies all, means ports + signals.

- nda - Specifies mda, means monitor v2k memories in Verilog.

- sv - Specifies sv, means monitor SystemVerilog objects.

Feedback Commands

3-49

-lib _saif <filenane>

Reads the library forward SAIF file, where:

- fil enane - Specifies the forward SAIF file name.
<regi on| si gnal > [<region|signal> ...]

Specifies regions or signals to be monitored, where

- regi on| si gnal - Specifies the region or signal name.

saif

Use this command to query a design compiled with the Switching
Activity Interchange Format (SAIF).

Syntax
sai f <option>
The following options are supported:

* [-region <nane> -dept h <dept h> <scopes> [- excl ude
<ex_scopes>]

Specify instances to be monitored, where

nane

Specifies the region name.

depth

Specifies the depth of the instance hierarchy for monitoring.

Commands Feedback

3-50

Feedback

scopes

Whitespace separated list of instances to be monitored.

ex_scopes

Whitespace separated list of instances to be exclude from being
monitored.

-start <regi on>

Start SAIF monitoring on the specified region.
-stop <regi on>
Stop SAIF monitoring on the specified region.

-reset <region>

Reset SAIF monitoring counters on the specified region.

-report <filenanme> -region <region> -tres
<tinmeunit>

Generates a SAIF report, where:

filenane
Name of the report file.
timeunit
Time unit used in generating the report.

regi on

Limits the report to the specified region.

Commands

3-51

e -lib saif <filenane>

Reads the library forward SAIF file.

» -diag <filenanme>

Writes various diagnostics to a text file.

Ip_show

Use this command to query the status of a Native Low Power (NLP)
design.

Syntax
| p_show <option>

The following options are supported:

e -power_top

Lists the power top for the design.

-al | _power domai ns [-scope <Power ScopeNane>]

Lists all power domains. If a power scope is specified, lists all
the power domains in the given power scope.

-al | _power _scopes

Lists all power scopes present in the design.

-all _isolations

Lists all isolation strategies present in the design.

Commands Feedback

3-52

e -all _retentions

Lists all retentions present in the given design.

-all _level _shifters

Lists all level shifters present in the given design.

-al |l _power _sw tches

Lists all power switches present in the given design.

- power _ground -el enent <obj ect Nane>

Lists the power and ground for the obj ect Nanme which could
be an instance name or a hode name.

-isolation -domai n <Power Domai n Nane>

Lists all the isolation strategies for the given power domain.

-retention -donmai n <Power Donai n Nanme>

Lists all the retention strategies for the given power domain.

-l evel _shifter -domain <Power Domai n Nane>

Lists all the level shifter strategies for the given power domain.

e -power_switch -domain <Power Donai n Nanme>

Lists all the power switches for the given power domain.

-all _psts [-scope <ScopeNane>]

Lists all the power state tables. If - scope is provided, displays
all power state tables under that scope.

Feedback Commands

3-53

-all _supply sets [-inplicit|-explicit] -scope
<Power ScopeNanme>

Lists all the supply sets (implicit, explicit, or the default is both)
for the given power scope.

e -power _state -supply_set <SupplySet Nane>

Lists the power state for the given supply set.

-sinstate -domai n <Domai nNane>

Lists the simstate for the given power domain.

-sinstate -supply_set <Suppl ySet Nanme>

Lists the simstate for the given supply set.

-cur_pst _state -pst <PSTNane>

Lists the current state of the given power state table.

-all _port_states -port <Suppl yPort Nane>

Lists all the port states defined for the supply using the
add _port st at e command.

-info -pst <PSTNane>

Lists the supply nets and PST states for the specified power
state table.

-info -pst_state <PSTSt at eNane> - pst <PSTNane>

Lists the supply ports versus the port state information for the
specified PST state.

Commands Feedback

3-54

-info -port_state <Suppl yPort St at eNane> - port
<Suppl yPor t Nane>

Lists the port state and voltage for the specified port state and
port combination.

-info -domai n <Domai nNane>

Lists the primary supplies, simstate, and top-level design
elements for the power domain.

-info -psw <Sw t chNanme> [- psw_st at e]

Lists the input/output supply ports, control ports, ack ports,
switch states of a power switch. Specifying the optional -
psw_st at e option will also list the current switch state for the
power switch.

-info -iso_strategy <lsoStrategyNane>

Lists the information for the isolation strategy.

-info -ret_strategy <Ret StrategyNanme>

Lists the information for the retention strategy.

-info -supply_set <SupplySet Nane>

Lists the information for the supply set.

-info -cell <Cel |l Nane>

Lists the information for the cell.

-suppl y_on <Suppl yPadNanme> <vol t age>

Sets the given supply pad to the given voltage.

Feedback Commands

3-55

e -supply_ off <SupplyPadNanme>

Resets the supply voltage for the given supply pad.

« -mode <TCL_LIST || DEFAULT>

Sets the mode to return results of the | p_showcommand in
the form of a Tcl list.

release

Use this command to release the value forced to a signal, variable,
net or reg previously by the f or ce command. After this command is
executed, the drivers of signal, variable, net, or reg are original
drivers.

Note:

If the net type is reg, then it retains the value until the original
driver forces a new value.

This command is not supported in NTB-OV and SystemVerilog
testbench variables.

Syntax
rel ease <ni d>
<ni d>

Nested hierarchical identifier of the signal, variable, net or reg.

Example

ucli%release T.t.tsdat
Releases the current value of T. t . t sdat .

Commands Feedback

3-56

Feedback

Related Commands

“force”

get”

sexpr

Use this command to display the result of an expression. The
expression can contain a mix of SystemVerilog and VHDL syntax. If
there is only one operand and no operation to be performed on the
operand, then this command returns the current value of operand.

The expression can also contain references to Tcl variables. For
example, sexpr {x + $tclvar}.The value of $t cl var must be

a syntactically correct SystemVerilog literal constant.

The supported data types are:

e bit and Boolean

 VHDL data types:

std_logic
std_logic_vector
std_ulogic

std_ulogic_vector

» Verilog data types:

- wire

- wire vectors

reg, bit

Commands

3-57

Commands

3-58

- reg, bit, vectors
- integer types

- real types

- time

- string (only comparison operators are allowed)

This command supports the following operators:

Unary operator + and -

Binary operators +, -, * and // (Note: division requires two forward
slashes, //)

Concatenation operator &
Logical operators and, or, nand, xor, nor and or

Relation operators =, <, <=, > and >=

Limitations

Unsupported data types will cause an error message.
Function calls within expression are not supported.

Expression operands should be type consistent; no type casting
Is done by this command. For example, an integer type can't be
added to a non-integer type.

Hierarchical path delimiters are respective to the HDL language.
For Verilog path delimiters, use '."' (dot) and for VHDL path
delimiter, use '/' (forward slash).

Example

Feedback

Feedback

Consider vhdl _t op is VHDL, vl og_i nst is Verilog module
instance inside vhdl _top and vl og_var is a Verilog variable
I nsi de vl og_i nst. The way to reference vl og_var is:

/vhdl _top/vlog_ inst.vlog var

Instead of '.', you can use '/ (that is, in the previous example,
vl og_var can also be referenced like / vhdl _t op/
vl og_inst/vlog var.

» Absolute and relative paths are supported.

Syntax
sexpr [-radi x] expression
-radi x

The default radix is symbolic. The supported radices are:
[binary | decimal | octal | hexadeci mal |
synbol i c]

Examples

ucli % sexpr T.t.tsdat
Displays the current value of T. t . t sdat in decimal radix. For

example, 6.

ucli % sexpr {periodl = 10 and period2 =10}
This command checks if both variables peri od1l and peri od2

have values 10. If yes, returns 1 (Boolean TRUE) and O (Boolean
FALSE). In this case, returns 1, that is, both have values 10. For
example, 1.

ucli % sexpr {periodl + period2}

Commands

3-59

This command adds variables peri odl, peri od2 and returns a
result. In this case, the result is 20, so 20 is displayed as output.
For example, 20.

call

Use this command to call SystemVerilog class methods (functions or
tasks with no delays) Verilog tasks or functions, PLI tasks or
functions, VHDL procedures, and VHDL foreign procedures. It
executes the called method or procedure. Hierarchical referencing is
not allowed for method or procedure.

Note:

This command does not advance simulation time, if you call tasks
with delay. Executable statements after delay elements in the
routine will not be executed and call returns to UCLI.

Since UCLI is Tcl based, curly braces' {* and '}' are needed
as special characters like ' $' are interpreted as variables in Tcl.
Instead of curly braces, ' \' (backslash) can also be used.

Curly braces are not needed if there are no special characters.

Calling PLI tasks or functions implies there is some degree of
debug capability required. If the design is not compiled with that
debug capability, the cal | command fails.

Syntax
call {cnd(.)}

Commands

3-60

Where, cnd is a task or function along with the properly formatted
argument list.

Feedback

Feedback

Examples

ucli%call {$display("Hello Wrld")}
Executes Verilog predefined function $di spl ay(..) . This

command displays the following output:

Hello Wrld

ucli%call verilog_task(a, b)
Executes the veri | og_t ask defined in the current scope. The

output of this command depends on the task veri | og_t ask.

ucli%call vhdl _proc(a, b)
ucli%call verilog function(a, b)

For example,

ucli%call {nyfunc(reg_rl, a, b)}

where,
nmyf unc - name of the function

reg_r 1 - Verilog signal in which to store the return value. This
signal must be declared in the Verilog code.

a, b - Function inputs.

Example for Calling SystemVerilog Class Methods
Consider the following example testcase cal | . sv:

program P1;
i nteger i=1;
cl ass c;
task prg_tsk int(int nl1 = 10);
$di splay("prg_tsk_int nl = 9%9d", nl);

Commands

3-61

end

ccC
i ni

end
end

1.

Commands

3-62

endt ask

function int prg_func_int(int n2 = 12);
$di splay("prg_func_int n2 = %9d", n2);
return 1,

endf uncti on
cl ass

1=new);
tial begin
#2
cl.prg_tsk int(i);
cl.prg_func_int(i);
program
Compile the above example code

% vcs -debug _access+all -sverilog call.sv

Open UCLI

% sinmv -ucli

ucli%run 1 // run the exanple

Output: 1s

ucli%call {P1l.cl.prg_tsk int(100)}// calling
SystenVeril og task

Output: prg tsk _int nl = 100

ucli%call {P1.cl.prg func_int(100)} // calling
SystenWVeril og function

Output: prg_func_int n2 = 100

1

Feedback

Feedback

6. ucli% quit

Note:

You cannot call SystemVerilog task or function, if the class object
IS uninitialized.

search

Use this command to search the design for objects whose names
match the pattern specified.

Syntax

search [-<filter>] [-scope <scope>] [-depth
<l evel >] [-nodul e <nbdul e_pattern>] [-limt
<limt>] [<nane_pattern>]

filter
Is any one of these keyword types: i n i nout out ports,
instances, signals, variables. The results are one of the types.
scope

Scope in which to start the search. The default is current scope.

| evel
Number of scope levels to search relative to the specified/current
scope. The default is value is 0 (search all hierarchy).

nodul e_pattern

Module name to search, which can have either *' or *?' for pattern
matching.

Commands

3-63

limt
Specifies the limit for the maximum number of matched items. The
default limit for matched items is 1024. VCS truncates the results
exceeding this limit, and issues a warning message.
nane_pattern

Is the name to search, which can have ™' or '?" in the pattern to
match multiple characters or one character.

Commands

3-64

virtual bus (vbus)

Use this command to create, delete or query a virtual bus. The vbus
command allows you to:

 Create a new bus that is a concatenation of buses and sub-
elements.

» Delete the created virtual bus.
* Query the expression of the created virtual bus.

The elements used to create virtual buses could be different data
types, elements of different scope or different language. Virtual
buses can also be used as elements to create new virtual buses.
Hierarchical referencing is allowed.

Note:

The actual commandisvi rt ual bus. This command has been
aliased to vbus. You can use both vi rt ual bus and vbus.
Alternatively, you can also use vi rt ual .

Forward slash '/ ' is used as path delimiter. The Verilog path
delimiter '. ' (dot) is not supported.

Feedback

Feedback

Syntax

vbus

vbus[-install <scope>] [-env <scope>] [-delay <dly>]
<expressi on> <vb_nane>

vbus[-del ete] <vb_nane>

vbus[- expand] <vb_nane>

vbus

Lists all the created virtual buses in all scopes. You can execute
this command from any scope.

-env <scope>

Defines the scope from which vbus elements are used to create
virtual bus. This is useful if you want virtual bus to be created in
the current scope by using elements from a different scope.

-install <scope>

Specifies the scope in which the vbus must be created.

-del ay <dly>

Delays the value changes of the vbus.

vbus -del ete <vb nane>

Deletes virtual bus vb_namne. You must execute this command
from the same scope where vb_nane was created.

vbus -expand <vb_nane>

Expands virtual bus vb_nane. You must execute this command
from the same scope where vb_nane was created. This
command recursively expands the elements (that is, if there are
virtual buses in vb_nane, they are also expanded).

Commands

3-65

Limitations
The following commands/operations are not supported on vbus:

« force
* loads
o drivers
e dunp
Examples

ucl i % vbus
Lists all virtual buses from all scopes. This command displays the

following output:

tbTop.vb_1
tbTop. 1 ST1.vb_2
tbTop. | ST1.vb_3

ucli% vbus {/tbTop/clk & /tbTop/1ST1l/rst} vb_1
Creates virtual bus vb_1 in the current scope. This command

displays no output.

ucli % vbus -env /tbTop/IST1/1ST2 {a & b & c} vb_2
Creates virtual bus vb_2 in current scope. Elements a, b and ¢

are defined in scope t bTop. | ST1. | ST2. This command
displays no output.

ucli %vbus -install /tbTop {/tbTop/vb_1 & /tbTop/|ST1/vb_2}
vb_ 3
Creates virtual bus vb_3 in scope /t bTop. Elementvb_1isin
scopet bTop and element vb_2isinscopet bTop. | ST1. This

command displays no output.

ucli% vbus -install /tbTop -env /tbTop/IST1/1ST2 {/tbTop/
vb 1 & /tbTop/IST1/vb 2 & vb_3} vb_ 4

Commands Feedback

3-66

Feedback

Creates virtual bus vb_4 in scope t bTop. Elementvb_1is
definedint bTop, elementvb_2 isdefinedin t bTop. | ST1 and
elementvb_3isdefinedint bTop. | ST1. | ST2. This command
displays no output.

ucli % vbus -expand vb_4
Expands virtual bus vb_4. This command displays following

output:

t bTop. cl k

t bTop. reset
tbTop. | ST1. TWMP
tbTop. | ST1. TMP1

ucli % vbus -delete vb 4
Deletes virtual bus vb_4. This command displays no output.

Viewing Values in Symbolic Format

You can view the values of signals/variables in the same radix as
specified in the source code. In addition to existing radixes decimal,
hexadecimal, binary, and octal, UCLI supports the symbolic radix
that will enable you to view the values in the same radix. The default
radix will hence be symbolic.

To change the default radix from symbolic to any other (binary,
hexadecimal, octal, and decimal), use the following command
option:

ucli> config -radi x hexadeci nal
This will set the radix format to hexadecimal.

Commands

3-67

If the default radix is changed to any other, you can still view the
values with the default symbolic radix by passing symbolic argument

to —r adi Xx.

-radi x synbolic
Example:

ucli> show —val ue top.dut.x —radi x synbolic

The following tables list various data types, use model, and illustrate
the output format for the symbolic radix.

Table 3-1 Verilog/SystemVerilog Data Types

Example

Symbolic output

wire [3:0] wire4_1 = 4'b01xz;

reg [15:0] regl6_1 =15'h8001;"

logic [15:0] logicl6_1='n8001,;
typedef struct

{ bit [7:0] opcode; bit [15:0] addr; }
structl_type;

structl_type structl="{1, 16'h123f};"

enum {red, yellow, green}
light=yellow;

integer int_vec [1:0]='{15, -21};

string string_sig="verilog_string";

wired4_1 'b01xz
regl6_1
'b1000000000000001

logicl6 1
'b1000000000000001

structl {(opcode => 'b00000001,addr =>
'b0001001000111111)}

light 1

int_vec (15,-21)

string_sig verilog_string

Commands

3-68

Feedback

Table 3-2 VHDL Data Types

Example Symbolic output
signal stdl : std_logic :='H'; STDL 'bH

signal stdl_vec : std_logic_vector (Oto 8) := STDL_VEC 'bUX01ZWLHH
"UX01ZWLHH";

signal real_sig:real := 2.2000000000000002; REAL_SIG 2.200000e+00
type bit_array_type is array (0 to 1) of BIT_ARRAY_SIG ('b00,'b01)
bit_vector (0 to 1);

signal bit_array_sig: bit_array_type :=(("00"),
("01"));

signal char_sig : character ;= 'P’; CHAR_SIG P

signal string_sig : STRING(1 to 17) :="THIS STRING_SIG {THIS IS A MESSAGE}
IS AMESSAGE";

signal time_sig : time := 5 ns; TIME_SIG 5ns

Feedback Commands

3-69

Simulation Environment Array Commands

This section describes the following command:

° “Se nv”

senv

Use this command to display the simulator environment array. You
can also query individual elements of the simulator environment
array. For UCLI interpreter there are two scopes:

“current scope”, where UCLI interpreter stops and “active scope”,
where simulation control stops for now. Environment array elements
with the names starting from “active” describe active scope details,
while others describe current scope or information independent on
scopes. If you want, that “current scope” be always the same as
“active scope” - run UCLI command confi g

fol |l owacti vescope on.

The simulation environment array contains the following elements:

Name

Description

acti veDomai n

Language Domain, for example, Verilog

activeFile

Source file the simulator is executing

acti veFrane

Active frame being executed.

acti velLi ne

Line number in the activeFile being executed

acti vescope

Active scope

activeThr ead

Thread ID in which simulation has stopped

endCol

For macro debugging, the ending column/character of the
statement (relative to the beginning of the line).

file

File name you are currently navigating

franme

Current frame

f sdbFi | enane

Debussy f sdb file name

Commands

3-70

Feedback

Feedback

Name

Description

hasTB

If design loaded has testbench constructs, this value is
Illll’ eISe II2II

i nput Fi | enane

UCLI input commands file name

keyFi | ename

UCLI commands entered are stored in this file; the default
isucli.key

line Line number in the file you are currently navigating
| ogFi | ename Simulation log file name; specified with the - | option
pid Process ID of UCLI
scope Current scope
startCol For macro debugging, the start column/character of the
statement (relative to the beginning of the line).
state State of the simulation
thread Current thread ID
time Absolute simulation time
timePrecision Time precision of the simulation
vcdFilename VCD file name
vpdFilename VPD file name
Note:

This is a read-only array (that is, no element in the environment
array is writable by the user).

Syntax

senv [el ement]

senv

Lists all elements in the environment array.

senv [el enent]

Displays the current value of the elementin the environment array.
The argument element is case sensitive.

Examples
ucli % senv

Commands

3-71

Commands

3-72

uc

Displays all elements and their values in the current environment
array. This command displays the following output:

activeDomai n: Veril og
activeFile: tbTop.v
acti veFrane:
activeLine: 1
activeScope: tbTop
activeThread:

endCol : O
file: tbTop.v
frame:

f sdbFi | enane:
hasTB: O

i nput Fi | enane:
keyFi | enane: ucli. key
line: 19

| ogFi | enane:
macr ol ndex: -1
macroCOf fset: -1

pi d: 59424

scope: tbTop.IST1
startCol: O

state: stopped

t hr ead:

time: O
timePrecision: 1 PS
vcdFi | enane:
vpdFi | enane:

i % senv acti veDomai n

Displays the current value of act i veDomai n in the environment
array. This command displays the following output:

ucli%uts “time=[senv tine]”

Di spl ays:
ti me=200 NS

ucl i %uts “instance=[senv activeScope],

file=[senv

Feedback

activeFile], line=[senv activelLine]”

Di spl ays:
instance /TB1, file=tbl.vhd, |ine=91

Related Commands

HS hOWH

“config”

Breakpoint Commands

Feedback

This section describes the following command:

“Stop”

stop

Use this command to set breakpoints in the simulation. The
simulation can be stopped based on certain condition(s) or certain
event(s). You can use this command to specify an action to be taken
after the simulation has stopped.

UCLI provides many ways to stop the simulation:

On an event (that is, change in value of a signal)
At a particular time during simulation
At a particular executable line in the source code

In task or function

Commands

3-73

Commands

3-74

* On assertion trigger, by using the asser ti on command. For
more information, see the “assertion” command.

Syntax
stop [argunents]

Different ways in which the simulation can be stopped are as follows:

There are many different combinations of arguments to the stop
command. Some combinations create a breakpoint for which a
unique stop-id is assigned. Other combinations operate against
existing breakpoints by referencing the stop-id. The following
combinations can be used to create breakpoints:

- The thread ID (tid) must exist at time the breakpoint is set or
modified. The thread ID can be obtained from the Verdi Stack
pane or the UCLI t hr ead command.

- Multiple combinations of - posedge, - negedge, and - event
are treated as an OR condition.

stop -line <linenune -file <filenane> -instance
<nid>[-thread <tid>| -allthreads] [-cond <expr>]

Creates a breakpoint at the line number specified by linenum in
the file specified by filename. If no filename is specified, then
breakpoint is set at lineno in the current file. However, it is
recommended that you use the - fi | e option.

You can restrict the breakpoint triggering for only a specified
module instance containing the filename and line number, or if -
I nst ance is not present (this is the default) the breakpoint
applies to all instances.

Feedback

Feedback

You can restrict the break point triggering for only a specified
module thread, orif- t hr ead is not present the breakpointapplies
to all threads (- al | t hr eads which is the default).

You can restrict the break point triggering only when the condition
expression evaluates to true.

When the break point triggers, simulation stops before the
statement corresponding to the filename and line number is
executed.

stop -absolute | -relative <tinme>

Creates a breakpoint at absolute time (from simulation time '0")
or relative time (from the current simulation time). Absolute time
should be more than the current simulation time. When the
breakpoint triggers, simulation stops when the specified time is
reached, but before any statements at that time are executed.

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

stop [-thread <tid> | -allthreads]

This optionis supported only for SystemVerilog designs. It creates
a break point on the thread specified by tid or, if - al | t hr eads
is specified, sets a breakpoint on all threads. The breakpoint
triggers when the state of the thread changes value. Simulation
stops before the next statement in the thread executes (in the
case of a thread unblocking), or after the last statement executes
(in the case of a thread terminating).

Commands

3-75

Note:
If you alter the design or stimulus and re-run the simulation,
thread IDs may change and simulation may stop at a different
location.

stop -in <task/function/nethod> [thread <tid>]][-

cond <expr>] [-end]

This option is supported only for SystemVerilog designs. It creates
a breakpoint onthe specified task, function, or method. The syntax
to use when specifying a method is as follows:

\ cl assnane: : net hodnane

You can restrict the breakpoint triggering for only a specified
thread, or if - t hr ead is not present (this is the default), the
breakpoint applies to all threads.

You can restrict the break point triggering only when the condition
expression evaluates to true.

When the breakpoint triggers, simulation stops before the first
statement in the task, function, or method is executed. If the - end
option is specified, the breakpoint triggers right before the task,
function, or method returns.

stop -posedge | -rising <nid>

Commands

3-76

This is not supported when the ni d is an automatic variable. It
creates a breakpoint on the posedge or the rising (low -> high)
transition of the signal specified by ni d.

Note that where the simulation will stop is indeterminate.

Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

Feedback

stop -negedge | -falling <nid>

This is not supported when the ni d is an automatic variable.
Creates a breakpoint on the negedge or the falling (high -> low)
transition of the signal specified by ni d.

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

stop -change | -event <nid>

This is not supported when the ni d is an automatic variable. It
creates a breakpoint on the signal specified by ni d. The
breakpoint triggers when the signal changes value (that is, there
is an event on the signal.)

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

stop -mail box <md> | -allthreads]

Creates a breakpoint on the specified mailbox, where mid is the
integer value returned from the alloc function. You can restrict the
breakpoint triggering for only a specified thread, orif - t hr ead is
not present (this is the default) the breakpoint applies to all
threads.

The breakpoint triggers whenever data is put into or gotten from
the specified mailbox.

stop -semaphore <sid>[-thread <tid> | -allthreads]

Feedback Commands

3-77

Creates a breakpoint on the specified semaphore, where si d is
the integer value returned from the alloc function. You can restrict
the breakpoint triggering for only a specified thread, orif- t hr ead
Is not present (this is the default) the breakpoint applies to all
threads. The breakpoint triggers whenever a key is put into or
gotten from the specified semaphore.

stop -assert <assert_id> [-start]|-success]|-
failure|-end| -any]

Use this option to create a breakpoint on SV assertions.

Where, assert i d is the assertion identifier on which to place
the breakpoint.

Note that - end is the same as - success -fail ure,and-any
(default) is same as - start -end.

stop -solver [-once|-serial <nunp| -skip <snunp |
-condi tion {<expr>}]

stop -solver [-class <name>] [-random objects] |-
sol ver _cond {<expr>}]

stop -solver [-object _id <id>] [-solver_cond
{<expr>}]

stop -solver -inconsistency

stop -solver -tineout
Use this option to create a breakpoint within the constraint solver.
The breakpoint triggers on a randomize() method.
num

Serial number of a randomize call.

Commands Feedback

3-78

Feedback

snum
Number of times to skip this breakpoint before the breakpoint
IS triggerred.

name
Class name the randomize() method belongs to.

i d
Class object ID the randomize() method belongs to.

expr
Expression that when evaluated to true allows the breakpoint
to trigger.

-random obj ect s

Allows you to check the active object set.

-i nconsi st ency
Allows you to set a breakpoint that triggers whenever a solver
inconsistency occurs.

-ti meout

Allows you to set a breakpoint that triggers whenever the solver
times out.

stop -cov_defn <name> | -cov_inst <inst_nane> |-

dunpdb]

Use this option to create a breakpoint within the coverage engine.
The breakpoint triggers whenever sampling is finished.

Commands

3-79

name
Coverage definition name. The breakpoint is applied to all
instances of the coverage definition.
I nst _nane
Name of one coverage definition instance. The breakpoint is
applied to only this instance.
- dunpdb
Causes the coverage database to be dumped whenever the
breakpoint triggers.
stop -uvmerror]|fatal
Use this option to create a breakpoint that triggers whenever UVM
issues an error or fatal message.
stop -file [-object <classVar> | -object _id <oid>]
stop -in [-object <classVar> | -object _id <oid>]

Ifthefil e/l i ne andi n breakpoints are relative to class
definitions, then you can further restrictthe fil e/l ine and i n
breakpoints so that they trigger only a specified class object. The
default is the breakpoint triggers for all objects.

You can specify which object to trigger on by using the - obj ect
or - obj ect _i d options. If you use the - obj ect option, then
object ID of the object pointed to by the classVar is extracted at
the time the breakpoint is created.

For example, consider the option specified with - obj ect is

-object c1

Commands Feedback

3-80

Feedback

Here, when the breakpoint is triggered, the st op command
matches the object pointed to by c1 when the breakpoint was
created with the object associated with the triggering statement
or method. If the objects match, then simulation is halted. If the
objects do not match, then simulation is automatically resumed.

The object for which the breakpoint is set is determined only at
the time the breakpoint is created. If the <classVar> changes (to
point to a different object) at a later time in the simulation, the
breakpoint is not affected. You can specify the - obj ect
argument only in conjunction with file and line, or method
breakpoints.

Note:
Usage of - obj ect with System-C code is not supported.

When the simulation stops, you can perform the following actions
against existing breakpoints:

stop -show <stop-id>
Use this command to display the breakpoint command associated
with a specified st op- i d. You can specify one or more stop-ids.
The stop command by itself will show all the breakpoint
commands and their associated st op-i ds.

stop -del ete <stop-id>
Use this command to delete a breakpoint with id, st op-i d. You
can specify one or more st op-1i ds.

stop -enable | -disable <stop-id>
Use this command to enable or disable a breakpoint. By default,
a breakpoint is enabled when it is created. You can specify one
or more stop-ids.

Commands

3-81

The following operations can be performed against existing
breakpoints or used with a breakpoint creation command:

stop -once | -repeat <stop-id>|<stop-specification>
Use this command to control how often breakpoints are triggered.
By default, all the breakpoints points are triggered repeatedly. If
you specify the - once option, then the simulation stops only once
for the breakpoint with stop id, st op-i d.

stop -halt | -continue <stop-id>|<stop-specification>
You can use this option to continue simulation even after a
breakpoint is triggered. By default, all the breakpoints are in halt
state (that is, simulation stops after the breakpoint is triggered)
when the breakpoint is triggered.

stop -quiet | -verbose <stop-id>| <stop-specification>
Use this option to turn on or off the verbose information associated
with breakpoint (specified by st op- i d). By default, the verbose
information is ON when the breakpoint is created.

stop -command {tcl _script} <stop-id>|<stop-specification>
Use this option to execute a Tcl script (which may contain
additional UCLI commands) when the breakpoint associated with
id, st op-i d,istriggered. To access the breakpoint ID within the
command, use synEnv: : get Val ue st opl D. You should not
use the simulation advancement commands r un, st ep, and
next in the command.

stop -condition { condition } <stop-specification>
Use this option to add conditional expression to an existing
breakpoint. Only one condition per breakpoint is supported. The
expression cannot reference dynamic or automatic data, and can
be written in VHDL/Verilog syntax. When a breakpoint triggers,
the expression is evaluated. If the resulting value is a logical false,
the simulation automatically continues.

Commands Feedback

3-82

Feedback

stop -nane <string> <stop-id>| <stop-specification>
Use this option to give a name to breakpoint. The name is printed
when the breakpoint triggers and simulation stops.

stop -skip <nunk <stop-id>|<stop-specification>
Use this option to skip the next num of times the breakpoint with
the specified st op-i d is triggered.

stop -checkpoi nt <stop-specification>
Use this option to automatically create a checkpoint when the
breakpoint is triggered.

Examples

ucli % stop
This command displays active breakpoints and displays the
following output:

1: -change tbTop.I1ST1. CLK -condition {TMP1 = 0 }
2: -change tbTop.|ST1. CLK -once -condition {TMP = 0 }

ucli%stop -line 10 -file tbTop.vVv
This command creates a breakpoint at line number 10 in the file

t bTop. v. The output of this command is the st op-i d of this
particular breakpoint: 4

ucli%stop -line 11 -file level 9.v -instance
t bTop. | NST1. | NST2

This command creates a breakpoints at line number 11 in the file
| evel 9. v. The source code at line 11 inthe | evel 9. v fileis
an instance of t bTop. | NST1. | NST2. The output of this
command is the st op-i d of this particular breakpoint: 5

ucli % stop -absol ute 1000ns

Commands

3-83

This command creates a breakpoint at absolute time 1000ns. The
output of this command is the st op- i d of this particular
breakpoint: 6

ucli% stop -thread 1
This command creates a breakpoint on thread 1. The output of

this command is the st op- i d of this particular breakpoint: 7

ucli%stop -in hwtask -thread 1
This command creates a breakpointonthread 1 oftask hw _t ask.

The output of this command is the st op- i d of this particular
breakpoint: 2

ucli % stop -change CLK -condition {TMP = 0}
This command creates a breakpoint on a change in value of CLK
and value of TMP equals to '0'. The output of this command is the
st op- i d of this particular breakpoint: 1

Related Commands

Hrun”

Timing Check Control Command

This section describes the following command:

e “tcheck”

Commands Feedback

3-84

Feedback

tcheck

Use this command to disable or enable timing checks on a specified
instance or port. By default, all timing checks are enabled. You can
also use this command to query the timing check control status.

Note:
This command is used for Verilog designs only.

The source code should contain timing related checks inside
specify blocks for this command to work. If timing related checks
are not found on a specified instance or port, then a warning is
displayed.

Syntax

t check <instance|port> <tcheck type> <-nsg|-xgen>
[-disabl e|]-enable] [-r]

t check <instance|port> -query
| nst ance| port

tcheck -file fil enane

| nst ance| port

A hierarchical full name of an instance or port.

t check type

The type of timing check to be enabled or disabled. Valid timing
check types are as follows:

[al | | HOLD| SETUP| SETUPHOLD| W DTH| RECOVERY| REMOVA
L| RECREM PERI OD| SKEW

HOLD

Commands

3-85

Enables or disables HOLD timing check.

SETUP
Enables or disables SETUP timing check.

SETUPHOLD
Enables or disables SETUPHOLD timing check.

W DTH

Enables or disables W DTH time timing check.

RECOVERY
Enables or disables RECOVERY timing check.

REMOVAL
Enables or disables REMOVAL timing check.

RECREM
Enables or disables RECREMtiming check.

PERI CD
Enables or disables PERI OD timing check.

SKEW
Enables or disables SKEWtiming check.

-di sabl e| -enabl e

Enables or disables particular timing check specified by
t check type.

Commands Feedback

3-86

-msg| - Xxgen

Controls simulation behavior when a particular timing related
violation is detected, such as:

- disable/enable timing violation warning on the specified
instance or port

- disable/enable notifier toggling on the specified instance or port

Enables or disables timing checks for a specified instance and all
sub-instances below it recursively.

filenane

The name of a file containing multiple t check commands.

Examples

ucli % tcheck {TEST_ top. C$0010001} W DTH -nmsg -di sabl e
This command disables pulse width timing check on instance

TEST t op. C$0010001. This command displays no output.

ucli % tcheck {TEST_ top.C$0010001} -query
This command displays status timing checks on instance

TEST _t op. C$0010001. This output of this command contains
the file name and line number along with the status of timing
check(s).

Ti m ng Check for : TEST top. TEST shel|l. TEST. C$0010001
File : noTcTest5.v

Li ne | Tim ng Check | nmsg | xgen

L223 . SETUP ON ON

L226 . HOLD ON ON

L233 : WDTH ON OFF

L235 : PERI OD ON ON
Feedback Commands

3-87

report_timing

The report timing feature allows you to get the information of the SDF
(Standard Delay Format) values annotated for a specific instance.
The feature is useful when debugging timing based simulations.
Typically, SDF files are very large and because of this, when a
violation occurs, it is difficult to get the delay values for the specific
instance because you need to browse through these large files.

With the report _ti m ng command, you can specify the instance
path, which shows the violation and the simulation prints all the
IOPATH and Timing Check delay values for that instance.

This feature is also helpful for debugging NTC issues (Negative
Timing Check Convergence). When negative timing-checks do not
converge, VCS rounds the negative delay values to 0. The

report ti m ng command always shows you the delay values
applied by the simulation after SDF annotation instead of the original
values, thereby making it easier to debug timing failures.

The syntax of the report _ti m ng command is as follows:

report _timng [-recursive] [-file <filename> | -stdout]
[<i nst ance_namel><i nst ance_nane2>. .. <i nst ance_nanmeN>]

-recursive

(Optional). Generates timing information for the specified
instance and all instances underneath it in the design hierarchy.

-file <fil ename>

Specifies the name of the output file where the data is written.

- st dout

Commands Feedback

3-88

Feedback

Reports timing information to the console.

<i nst ance_nane>

Identifies the name(s) of the instance(s) for which timing
information is written. If the - r ecur si ve option is given, only
one instance name is allowed. If multiple names are given, the
timing information of the first instance is reported; others are
ignored. The timing information of duplicated instances is
reported only once.

The format of the timing information is Standard Delay Format
(SDF). For example:

(CELL
(CELLTYPE "and2x1")
(1 NSTANCE
T.t.dig.a_top.apb. mpeg top.npeg clk rst_1.u_npeg _cl k)
(DELAY
(ABSOLUTE
(TOPATH A Y (10)(10))
(IOPATH B Y (10)(10))
)
)
)
Examples

ucli%report timng -r T.t.dig -stdout
This command generates timing report to instance T. t . di g and
all the sub-instances underneath it, and redirects the output to
standard output. This command displays the following output:

(CELL

(CELLTYPE "and2x1")

(1 NSTANCE

T.t.dig.a_top.apb. npeg top.nmpeg clk rst_1.u_ntlk_en)
(DELAY
(ABSOLUTE

Commands

3-89

(1OPATH A Y (10)(10))
(1OPATH B Y (10)(10))

Signal Value and Memory Dump Specification
Commands

This section describes the following commands:

e “dump”

* “initreg”

* “memory”
« ‘“search”

e “find_forces”

o “find_identifier”
e “show”

» “constraints”

e ‘“drivers”

e ‘“loads”

Commands Feedback

3-90

dump

Use this command to dump the design or the specified scope or
signal value change information to a file during simulation. This
command is currently supported for FSDB, EVCD, and VPD formats
only. The following objects can be dumped using this command:

» Verilog and VHDL scopes, variables

e Complex data structures like VHDL aggregates, VHDL records,
and Verilog multi-dimensional arrays

Syntax

dunp [-file <filename>] [-type FSDB| EVCD| VPD] [-1 ocki ng]

dunp -add <list_of _nids> [-fid <fid>] [-depth <l evel s>]
[-aggregates] [-ports|-in|-out]-inout] [-filter=<filter

string>] [-nmev on|off] [-i<N>|-iall] [-isub][-v<N>|-vall]
[-val -vai | -vav]

dunp -close [<file_| D]

dunp -flush <fid> [-fid <fid>]

dunp -autoflush <on | off> [-fid <fid>]

dunp -interval <seconds> [-fid <fid>]

dunp -interval _sinlinme <time> [-fid <fid>]

dunp -deltaCycle <on | off> [-fid <fid>]

dunp -switch [<newNane>] [-fid <fid>]

dunp -forceEvent <on | off> [-fid <fid>]

dunp -filter [=<filter list>] [-fid <fid>]

dunp -showfilter [-fid <fid>]

dunp -power <on | off> [-fid <fid>]

dunp -powerstate <on | off> [-fid <fid>]

dunp -suppress_file <file_nane>

dunp -suppress_instance <list_of instances>

dunp -enable [-fid <fid>]

dunp -disable [-fid <fid>]

dunp -glitch <on|off> [-fid <fid>]

dunp -opened

dunp -nsv[on|of f]

Feedback Commands

3-91

-file <fil enane>

(Optional) Specifiesa VPD, EVCD, or FSDB file name and returns
afile handle, f i d. If this argument is not specified, the default ID
is VPDO and the information is dumped to filei nter. vpd. In
the current implementation, only 1 VPD file can be opened for
dumping during simulation. You can simultaneously open single
VPD, EVCD, and FSDB dump files and manage them individually.

-t ype FSDB| EVCD| VPD

(Optional) This argument specifies the dump file format. The
following dump types are supported:

- FSDB
- EVCD
- VPD

-1 ocki ng

This option ensures that the VPD file is not being read while it is
written or not being written while it is being read.

-add <list_of nids>

Commands

3-92

Specifies signals, scopes, or instances to be dumped. This
command returns an integer value which increments after each
call. The default dump type is VPD.

Note:

- FSDB is the default dump type when the VERDI _ HOVE
environment variable is set.

- You must specify the - f i d argument if multiple dump files are
open.

Feedback

Feedback

For the dump file of type FSDB,

- VCSissues awarning message if the port direction is specified
with the -fi | t er argument

- The - aggr egat es argument dumps both SVA and MDA
signals. This option combines the functionality of the
$f sdbDunpSVA and $f sdbDunpMDA system tasks

If no dumpfileis opened usingdunp —fi | e,aVPDfileis opened,
and its file ID is returned.

Example:

ucli % dunp -file test.fsdb -type FSDB

ucli % dunp -add top.a -aggregates -fid FSDBO
Support for the $fsdbDumpvars Options

The dunp - add command supports the $f sdbDunpvar s
system task options using the - f sdb_opt argument, as shown

in the following command:

dunp -add <object> -fsdb_opt <+option> [-fid
<fid>]

The - f i d argument must specify a valid FSDB ID, else VCS
issues an error message.

Example:

ucl i %dunp -add . -fsdb_opt +nda+packednda+struct
-fid FSDBO

Commands

3-93

Table 3-3 lists the options supported for the - f sdb_opt
argument. For more information on these options, see the Linking
Novas Files with Simulators and Enabling FSDB Dumping User

Guide.

Table 3-3 Supported Options

Option Description

+nmda Dumps memory and MDA signals in all scopes. This
does not apply to VHDL

+packednda Dumps packed signals

+struct Dumps structs

+ski p_cel | _i nst ance=npde | Enables or disables cell dumping

+strength Enables strength dumping

+par anet er Dumps parameters

+power Dumps power-related signals

+trace_process

Dumps VHDL processes

+f sdb+<fi | enane>

Specifies the dump file name. The default name is
novas. f sdb
Note: This option is ignored if the file ID is present

+sva Dumps assertions
+Reg_Only Dumps only reg type signals
+1 0O Only Dumps only IO port signals

+by file=<fil enane>

File to specify objects to add

+al | Dumps memories, MDA signals, structs, unions,
power, and packed structs

+f uncti on Enables dumping of functions in the design using
$f sdbDunpvar s

+vans Enables dumping of wreal variables using
$f sdbDunpvar s

+string Enables dumping of string variables using

$f sdbDunpvar s

Commands

Feedback

Option Description

+nBV Enables dumping of the analog signals into the FSDB
file using $f sdbDunpvar s. This option is ignored if
dunmp -add -nsv of f is specified.

+v Enables dumping of the voltage on the node in the
design using $f sdbDunpvar s

+i Enables dumping of the current on the node in the
design using $f sdbDunpvar s

+v=al | | +v=<N> Enables dumping of the voltage on specific MOS
terminal using $f sdbDunpvar s

+i=all | +i=<N> Enables dumping of the current on specific MOS
terminal using $f sdbDunpvar s

+i sub Enables dumping of the current on the sub-circuit port
using $f sdbDunpvar s

+va | +vaVv | +val Enables dumping of the Verilog-A objects using
$f sdbDunpvar s

-dept h <l evel s>

(Optional) Specifies the number of levels to be dumped. If the
- add argument is specified, depth is calculated from the scope
specified by the - add argument. If - add is not specified, depth
Is calculated from the current scope. The default value is 0,
which means the entire design is down to the specified scope.
Value 1 enables dumping only to the specified scope.

-fid <fid>

This argument specifies the file ID of the dump file to which the
information must be dumped. The file ID, <f i d>, is returned

bythedunp - fi | e command. Ifthis argumentis not specified,
dump information is written to the VPD file that is currently open.

- aggr egat es

Feedback

Commands
3-95

This argument enables dumping complex data structures, such
as VHDL records and arrays of records, and Verilog multi-
dimensional arrays. You must use this argument along with the
- add option.

-ports|-in|-out]|-inout
This argument enables dumping only (in/out/-inout) ports. You
must use this argument along with the - add option.

-MBV 0N
This argument enables dumping of the analog signals into the
FSDB file using the $f sdbDunpvar s system task.

-msv of f
This argument disables dumping of the analog signals into the
FSDB file.

-1 <N>| -iall
This argument enables dumping of current to a specific MOS
terminal using the $f sdbDunpvar s system task.

-isub
This argument enables dumping of the sub-circuit ports using
the $f sdbDunpvar s system task.

-v<N>| -val |
This argument enables dumping of voltage to a specific MOS

terminal using the $f sdbDunpvar s system task.

-val -vai | -vav

Commands Feedback

3-96

This argument enables dumping of the Verilog-A objects using
the $f sdbDunpvar s system task.

-close <file I D>

Closes an open dump file.
Here, <f i | e_I| D> specifies the file ID and follows the below rules:

- If the file ID is VPD or EVCD, this command closes the dump
file with the corresponding file ID

- Ifthefile ID is FSDB, VCS issues a warning message indicating
that FSDB is not supported for the dunp - cl ose command

- Ifthefile ID is not specified, this command closes all open dump
files

VCS issues a warning message if the file ID is specified, but the
corresponding file does not exist or is not currently open.

Note:
The FSDB API does not support closing of the specific open
FSDB files. You can use the dunp - ¢l ose command to close
all the opened dump files.

-flush <fid> [-fid <fid>]

Forces VCS to flush dump data to the dump file irrespective of
any value change. If - i nt er val is specified, the dump interval
Is determined by the value specified with the - i nt er val
argument. If interval is not specified, data is flushed immediately.
The argument <f i d> is optional.

Here, <f i d> specifies the file ID and follows the below rules:

Feedback Commands
3-97

- If the file ID is VPD, EVCD, or FSDB this option forces the
contents of the dump file corresponding to the file ID

- Ifthe file ID is not specified and there is only one open file, this
option forces the contents of the open dump file

-aut of lush <on|off> [-fid <fid>]

Forces the contents of the value change buffer to be written to the
dump file, if the simulator stops due to any of the following
reasons:

- The $st op statement is used in the design
- Ctrl+C is used to break the simulation
- The simulation stops at a user-defined breakpoint

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message and this option is ignored

- This command is not supported for the FSDB dump files

-interval <seconds> [-fid <fid>]
Specifies a specific time interval to force the contents of the value
change buffer to the dump file.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is not supported for the FSDB dump files

-interval _sinlinme <tinme>

Commands Feedback

3-98

Tells the simulator how often to flush VPD information in the
simulation time. This command does not automatically enable
flushing. To enable flushing, use the - f | ush option. Use zero to
disable flushing.

ti meis <nunber >[. <nunber >] [<uni t >]
unitis[s | ms | us | ns | ps | fs]

-deltaCycle <on|off> [-fid <fid>]
Turns on dumping delta cycle information. By default, delta cycle
dumping is disabled.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- For FSDB dumpfiles, you must execute this command before
dumping is started

-swi tch <newNanme> [-fid <fid>]

Dumps simulation data to a new dump file specified by
<newNane> argument. This option is used to switch the dump file
to dump the data.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- The new file inherits the file ID of the closed file

-forceEvent <on | off> [-fid <fid>]

Turns on or off force event dumping (VPD only).

Feedback Commands

3-99

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is not supported for the FSDB dump files
-filter [=<filter list>] [-fid <fid>]
Controls VPD dumping.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is supported only for VPD dump files. It is not
supported for the EVCD and FSDB dump files

<filter |ist>isacomma separated list of the following
arguments:

[Vari abl e| Generi c| Const ant | Package| Par anet er]

Variable — will not dump VHDL variables.

Generic — will not dump VHDL generics.

Constant — will not dump VHDL constants.
Package — will not dump VHDL package internals.
Parameter — will not dump Verilog Parameters.

Separate the arguments by comma without spaces. The
arguments can be in upper or lower case.

-showfilter [-fid <fid>]

Commands Feedback

3-100

Feedback

Allows you to view the objects that are filtered using the
dunp -filter command.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is supported only for VPD dump files. It is not
supported for the EVCD and FSDB dump files

For more information about the usage of -fi | t er and
-showf i | t er options, see the section “Filtering Data in the VPD
Dump File” on page 107

-power <on|off> [-fid <fid>]

Globally enables or disables the dumping of the low power scopes
and nodes.

You must specify the file ID if multiple dump files are open, else
VCS issues an error message.

For FSDB dumping, the dunp - power on command uses the
$f sdbDunpvar s +power system task. There is no
corresponding procedure used to stop FSDB dumping, that is,
you cannot stop the dumping of the power signals into the FSDB
dump file after it has started.

-powerstate <on|off> [-fid <fid>]

Globally enables or disables the dumping of the low power domain
state signals, PST signals, and PST supply signals.

You must specify the file ID if multiple dump files are open, else
VCS issues an error message.

Commands

3-101

For FSDB dumping, the dunp - power st at e on command uses
the $f sdbDunpvar s +power system task. There is no
corresponding procedure used to stop FSDB dumping, that is,
you cannot stop the dumping of the power signals into the FSDB

dump file after it has started.

-suppress file <file_nane>

Specifies the scopes in a file that are not dumped into the FSDB
file. This command returns a string.

Note:
- You must use this command before dumping the file. VCS
issues an error message if this command is specified after

the dunp - add command

- This command is supported only for the FSDB dump file, and
is global to all FSDB files. It is not supported for the VPD and

EVCD dump files

-suppress_instance <list_of instances>

Specifies the list of instances that are not dumped into the FSDB
file. This command returns a string.

Note:
- You must use this command before dumping the file. VCS
iIssues an error message if this command is specified after

the dunp - add command

- This command is supported only for the FSDB dump file, and
Is global to all FSDB files. It is not supported for the VPD and

EVCD dump files
-enable [-fid <fid>]

Feedback

Commands

3-102

Enables dumping again, if it is disabled. This command returns
the state as on or of f.

The functionality of the dunp - enabl e command is similar to
the $f sdbDunpon system task.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is supported only for the FSDB dump files

- This command has more precedence over the
$f sdbDunpvar s system task

-disable [-fid <fid>]
Disables the dumping of all dumped signals. This command
returns the state as on or of f .

The functionality of the dunp - di sabl e command is similar to
the $f sdbDunpof f system task.

Note:

- You must specify - f i d if multiple dump files are open, else
VCS issues an error message

- This command is supported only for the FSDB dump files

- This command has more precedence over the
$f sdbDunpvar s system task

-glitch<on|off> [-fid <fid>]

Enables or disables the dumping of glitches. This command
returns the state as on or of f . By default, it is set to of f .

Feedback Commands

3-103

The functionality of the dunp - gl i t ch command is similar to
the $f sdbDunpon(+gl i t ch) system task.

Note:

- You must set the environment variable
NOVAS_FSDB ENV_MAX_ GLI TCH_NUMto O to enable
dumping of glitches in the FSDB file

- This command is supported only for the FSDB dump files.
The VPD dump files are not supported

- opened

Commands

3-104

Displays all opened dump files and their file type.
The output format of this command is FI D Nane NBV.

The dunp - nsv option is supported only for the FSDB files. It is
not supported for VPD and EVCD files.

Following is a sample output when three dump files of different
types are open:

Fi d Nane VBV

EVCDO test. evcd unset
VPDO test.vpd unset
FSDBO test.fsdb unset

-nmsv[on| of]

Enables dumping of the analog signals in the FSDB file.

Syntax:

Feedback

Feedback

dunp -nsv[on]| of f]
dunp -file anal og _m xed _signal.fsdb -type fsdb

For more information, see “Dumping Analog Signals in FSDB File
in VCS-CustomSim Cosimulation Flow” section.

Limitations

FSDB Limitations
Following are the limitations for the FSDB file type:

The dunp - cl ose command does not work on the specified
FSDB file ID. You can only close all the FSDB files

The dunp - power onanddunp - power st at e on commands
use the $f sdbDunpvar s +power system task for FSDB
dumping with no corresponding procedure to stop the dumping.
That s, you cannot stop the dumping of the power signals into the
FSDB dump file after it has started

The dunp - enabl e and dunp - di sabl e commands does not
support time unit arguments

VPD Limitations

The dunp - enabl e and dunp - di sabl e commands does not
support time unit arguments

Examples

ucli%dunp -file dunp.vpd -type vpd

Opens a file by name dump.vpd with File ID VPDO. However, this
command does not record any signals.

Commands

3-105

ucli % dunp -switch dunp. vpdl
Dumps the simulation data to a new VPD file dunp. vpd1. After

a certain time during the simulation, if you want to dump the data
to another VPD file, use the - swi t ch option. In the previous
example, the data is dumped to the dunp. vpd file. When you
specify the - swi t ch option, the data gets dumped to the new file
dunp. vpd1l file.

ucli % dunp -add [senv scope] -fid VPDO -depth 2
Adds current scope and one level of hierarchies underneath it to

the file with File ID VPDO. This command displays the following
output.

1

ucli % dunp -autoflush on -fid VPDO
Turns autoflush on using - f i d.

ucli % dunp -deltaCycle on
Turns dumping delta cycle information without using - f i d. This
command displays the following output.

on

ucli % dunp -add / -aggregates
Dumps everything from root including complex data types. This

command displays the following output.

2

ucli%dunmp -interval 1 -flush VPDO
Flushes VPD information every second to the file with File ID

VPDO.

ucli % dunp -cl ose VPDO
Closes the dump file with - fi d VPDO

Commands Feedback

3-106

Feedback

ucli % dunp -forceEvent ON.

Filtering Data in the VPD Dump File

Use the dunp -filter command to control the VPD dumping.
VPD Dump Filtering allows you the flexibility to eliminate similar
types of objects from the VPD dump file. This is useful in cases
where VPD file size, runtime, and run memory are critical, as it allows
you to reduce the VPD file size.

ucli % dunmp -filter
Case 1: Without specifying any option:

When you do not specify any options, all the following group of
objects are filtered.

[Variable, Generic, Constant, Package, Parameter]
Case 2: Specifying the filter options as follows:

ucli%dunp -filter [=<filter |ist>]

where <filter list>is a coma separated |ist wthout
spaces of the follow ng argunents:

[Vari abl e| Generi c| Const ant | Package| Par anet er]

Adding the -fi | t er argument to dunp - add command:

dunp - add <obj ect toadd>[-filter=<filter string>] <ot her
opti ons>

ucli % dunp -add tb.dut -depth O -filter=Paraneter

Commands

3-107

Note:

The dunp -filter optionwhen used with the dunp - add
option, applies only to that dump object.

The dunp -showfilter option shows only the global view
for the filters applicable to all dump commands once

dunp -fil ter isused. It does notretrieve filter settings used
In conjunction with the

dunp - add option. See the example Example 3-2 on page 111
that illustrates this behavior.

Example 3-1 This example contains VHDL variable and generic:

top.vhd

library ieee;
use ieee.std logic_1164. all
use wor k. constants. all

entity test is
generic (a_int:integer:=1; stringl: string:="0ne");
port (al: in std_|ogic;

a2 : in std_|ogic;

a3 : out std_logic);

end test;

architecture test _ar of test is
conmponent veri
port(x,y:in bit;z:out bit);
end conponent;
conmponent andl
port(a:in bit;b:out bit);
end conponent;
constant PERIOD : tine := 1000 ns;
signal a,b,c,d:bit;
begi n
x1l:veri port map(a,b,c);
x2:andl port map(a,d);

Commands Feedback

3-108

Feedback

process
vari able asd : std_| ogic;
vari able vce : std _|logic_vector(0 to 5);
begi n
a<='0";b<="0";
wait for 5 ns;
a<='0";b<="1";
wait for 5 ns;
a<='1";b<='0";
wait for 5 ns;
a<="1";b<="1";
wait for 5 ns;
end process;
end test_ar;

The following example contains VHDL package.

constants.vhd

package CONSTANTS is
constant PERIOD : tinme := 1000 ns;
constant HALF PERICD : tine := PERIOD / 2;
constant SETTLING TIME : tinme := PERIOD / 1000;
end CONSTANTS;

The following Verilog example includes * cel | def i ne module and
parameters.

Test.v

nmodul e veri(x,Yy, z2);
par aneter aa =5;
paranmeter bb = 6;
i nput Xx;
i nput vy;
out put z;
reg z,we;
al wvays @x,y)
begi n
Z<=X&Y;

Commands

3-109

#100 $fi ni sh;
end

specify
(x =>2) =(1,1);
endspeci fy

endnodul e

“cel | defi ne
nodul e andl1(a, b);
I nput a;
out put b;
assi gn b=a& bil;
endnodul e
“endcel | defi ne

To filter generic and variable, use the following commands:

synopsys_sim set up:
WORK > DEFAULT
DEFAULT : work

ti mebase = ps

Generic Filter:

nkdir -p work

vl ogan test.v

vhdl an constants. vhd

vhdl an top. vhd

vcs -debug_access+al |l test
./sim -ucl

ucli%dunp -file filter_generic.vpd -type VPD
ucli % dunp -add / -filter=Ceneric

ucli % run

Variable Filter:

./simv -ucl

dunp -file filter_variable.vpd -type VPD

dunp -add / -filter=Variable

Commands

3-110

Feedback

run

Example 3-2 Example to show usage of dump -filter with dump -add

Feedback

command

addr4.v

nodul e addr4 (inl, in2, sum zero);
input [3:0] inl, in2;

out put [4:0] sum

out put zero;

reg [4:0] sum
reg zero;

initial begin
sum = 0;

zero = 0;
end

al ways @inl or in2) begin

sum=inl + in2;
if (sum == 0)
zero = 1;
el se
zero = 0;
end
endnodul e

nmodul e sim

reg [3:0] a, b;
wire [4:0] c;
wre carry;

addr4 a4 (a, b, c, carry);
parameter d = 10;
initial

begi n

Commands

3-111

repeat (16*1000)

begi n
#d a = atl;
#d b = b+1;
end
$strobe($stine,,"a % b % c %
c, carry);
#1
$fini sh(2);
end
endnodul e

dump_filter.ucli

dunp -add . -depth O
dunp -filter=Paraneter
dunp -showfilter
qui t

dump_add filter.ucli

dunp -add . -depth O -filter=Paraneter
dunp -showfilter
qui t

Steps to compile the example

vcs ./addr4.v -debug _access+al
simv -ucli -i dunp_filter. ucl
simv -ucli -i dunp_add filter. ucl

Following are the outputs of these commands:

ucli%dunp -add . -depth O

1

ucli% dunp -filter=Paraneter
New Default VPD Filter: Paraneter
ucli % dunp -showfilter

Default VPD Filter: Paraneter
ucli% quit

Commands

3-112

carry %",

Feedback

Feedback

ucli % dunp -add . -depth O -filter=Paraneter
1
ucli% dunp -showfilter

No Default Filters Set
ucli% quit

Dumping Analog Signals in FSDB File in VCS-
CustomSim Cosimulation Flow

UCLI dunp command is enhanced to dump analog signals in the
FSDB file in the VCS-CustomSim cosimulation environment.

You can now use the —nsv, UCLI dunp option, to enable dumping of
the analog signals in the FSDB file.

With this enhancement, for an object specified in the design, the
UCLI dunp command supports dumping of the hierarchy scope with
mixed digital and analog modules.

Use Model

Use Model for FSDB Dumping
The following steps describe the use model for FSDB dumping:

1. Setthe VERDI HOVE variable as follows:
% set env VERDI HOVE <verdi pat h>

2. Compile your designwiththe - debug_access option, as follows:

% vcs -debug_access <fil e _nane>

Commands

3-113

Enabling Dumping of the Analog/Digital Signals in the FSDB

File

The following steps describe the use model to dump the digital
signals, analog signals, or both analog and digital signals in the
FSDB file:

1. You can use one of the following ways to invoke Verdi dumper on
analog signals:

ucli % dunp -nsv|[on| of f]

ucli %dunp -fil e anal og_m xed_signal . fsdb-type
f sdb

OR

ucl i %dunp -fil e anal og_m xed_si gnal . fsdb -type
fsdb -nmsv[on| of f]

Note:

Commands

3-114

You can use the - nsv option to enable (on) or disable (of f)
dumping of analog signals throughout the simulation. By
default, this option is enabled if on or of f is not specified.

The analog targets are ignored if the - nsv option is not
specified.

Once an analog scope is enabled with the dunp - nsv on
command, it cannot be disabled for dumping throughout the
simulation using the dunp -nsv of f command.

If - t ype is not specified, you can use the following command
to set the default dump type as FSDB:

% set env. SNPS_SI M DEFAULT GUl ver di

Feedback

2. Use the dunp -add UCLI command to dump analog signals,
digital signals, or both analog and digital signals in the FSDB file.

Example-1: dunp - nsv on| of f is not specified

The - nsv option is enabled by default when on or of f is not
specified. Consider the following example:

ucli % dunp -nsv -type fsdb -file
anal og_m xed_si gnal . f sdb
ucli % dunp -add top.a -fid FSDBO

This example dumps all the analog and digital signals of the
t op. a scope.

Note:

You must specify the - f i d argument if multiple dump files are
open, else VCS issues an error message.

Example-2: dunp - nsv of f is specified

ucli % dunp -nsv off -type fsdb -file
anal og_m xed_si gnal . f sdb

ucl i % dunmp -add top. U0 -fid FSDBO

This example dumps all the digital signals of the t op. U0 scope
and all the hierarchies under it, excluding all analog signals in the
hierarchy.

Enabling Merge Dumping
e For the CustomSim simulator:

Use the set _wavef or m opt i on CustomSim configuration file
command, as shown below, to enable merge dumping:

Feedback Commands

3-115

set _waveformoption -format fsdb -file nmerge

This command dumps all the digital and analog signals in the
target FSDB file. If the target FSDB file is not specified, then both
analog and digital signals are dumped in the default FSDB file
novas. f sdb.

Ifthe -fil e nmerge option is not used in the

set _wavef or m opti on command, the analog signals are
dumped in a separate file called xa. f sdb, digital signals are
dumped in the default FSDB file novas. f sdb.

Note:

If any CustomSim probe command is invoked on a SPICE
signal, its wave is dumped in the target FSDB file. For more
information on the CustomSim configuration commands, refer
to the CustomSim Command Reference User Guide.

e For the FineSim simulator:

Usethe . opti on finesi moutput=fsdband. option
finesi m nmerge_fsdb=1 commands to enable merge
dumping.

For more information on the FineSim configuration commands,
refer to the FineSim User Guide.

Usage Example

If the - sV option is set to on, the dunp -add a.b.c-type
command exhibits the following behavior:

* |Ifa. b. cis an analog net, dumps its voltage.

Commands Feedback

3-116

Feedback

* Ifa. b. cisan analog sub-circuit, dumps all the ports and internal
nets of the sub-circuit.

* Ifa. b. cis adigital net, dumps its digital value.
* Ifa. b. cis adigital instance, dumps the signal inside this scope.

 Ifa. b. cis adigital or analog instance where ¢ contains mixed-
signal hierarchies, then both digital and analog signals of ¢ and
its hierarchies are dumped.

initreg

Use this command to initialize Verilog variables, registers and
memories based on a configuration file. This command is equivalent
to the VCS compile option

+vcs+ini treg+config+config file.For more information,
please see Initializing Verilog Variables, Registers and Memories
section in VCS User Guide.

Syntax

initreg <config fil enanme>

memory

Use this command to load memory type variables in HDL from a file
or to write the contents of memory type variables to a file. You can
use this command for both VHDL and Verilog memories.

Note:

The menory command does not support octal radix for Verilog
objects.

Commands

3-117

Syntax

menory -read|-wite <nid> -file <fname> [-radi x <radi x>]
[-type <l anguage>] [-start start _address]|[-end end_address]

-r ead
Reads values from the file specified by the - f i | e argument and
writes into memory type variable.
-write
Reads values from the memory type variable and writes into the
file specified by the - fi | e argument.
<ni d>
Nested identifier (hierarchical path) of the memory type variable.
You do not need to specify the hierarchy if the variable is in the
current scope. You can specify relative or absolute hierarchy.
-file <fnane>
Specifies the file from which values must be read for memory:
- r ead, or written for memory: - wr i t e. You can specify the file
name with relative or absolute hierarchy.
-radi x <hexadeci mal | bi nary| deci mal >

This argument specifies the radix of the values. Default radix is
hexadecimal. Shorthand notation h (hexadecimal), b (binary) and
d (decimal) can also be used.

-type <l anguage>

Allows VHDL object to read and write a Verilog memory file format.

<l anguage>canbevhdl orveri | og,andisnotcase sensitive.
Shorthand notation vh (VHDL), ve (Verilog) can also be used.

Commands Feedback

3-118

VCSissues awarning message ifyou do notusethe - t ype option
to read and write a Verilog memory file format into the VHDL
object.

The -t ype option is not required to read and write a Verilog
memory file format into the Verilog object.

For more information, see “Support for VHDL Object to Read and
Write Verilog Memory File Format” .

-start <start address>

Starting address of the memory type variable to write or read.

Default is the beginning of the memory type variable defined in
HDL.

-end <end_addr ess>

End address of the memory type variable to write or read. Default
Is end of the memory type variable defined in HDL.

Note:
Applicable only for Verilog memories.

Starting Address (SA) can be greater than End Address (EA).
Memory access (read or write) progresses from SA to EA
regardless of whether SA is greater or less than EA.

The file <f nane> should not have more than the absolute value
of (SA-EA)+1 elements.

Example

SA =1, EA = 10. File <fnanme> should not have nore than
abs(SA - EA) + 1
i.e. abs(1l -10) + 1 =9 + 1 = 10 el enents.

Feedback Commands

3-119

Note:

For VHDL memories, Start and End addresses and radix are only
applicable with the - wr i t e option. For - r ead option, input file
has all information about address/data in it (see input file format
below).

Data Format for Input file
For VHDL
The following shows the data format for the input file. There are three

variables to which you can set a default value that applies to the
entire file.

ADDRESSFMI

This variable sets the default radix for the address value.

DATAFMT

This variable sets the default radix for the data value.

DEFAUL TVALUE

This sets the default value for unspecified address locations of
the memory. For example, if you do not specify any value to
address 1, then this default value is loaded into that address. Also,
you can specify the addresses in three different formats:

- You can directly specify value to a single address:
addr ess / data

- You can specify the start address with multiple values. The
address is incremented for each data value:
addr ess / addrl data; addr2_ dat a;

Commands Feedback

3-120

Feedback

- You can specify the address range and the unique data. All the
addresses is loaded with the specified single data:
address range / data

Note:

The address must be in increasing order. Do not mix the above
specifications.

Syntax for Memory File Format

#coment s

$ADDRESSFMT radix (H| O] B)
$DATAFMT radix (H| O] B)
$DEFAULTVALUE val ue

addr ess / data

addr ess / addr1l data; addr2_dat a;
addr _start:addr_end /| data

Example: (mem.dat)

#RAMBX 8

$ADDRESSFMI H

$DATAFMI H

$DEFAULTVALUE 0

0000 /| E2; C6; 00:; 30; 15; 23; 7F; 7F:;8E
0009 /[90

O0O0A: OOOE / 28

O00F / 33

For Verilog

The following two formats are supported:

Format 1. (mem dat). In this format, Start and End addresses are
given by -start and-end options to load the data into memory.

Commands

3-121

Commands

3-122

ah~rNEFLO

Format 2: (mem dat). This format is the same as the Verilog
$r eamemformat.

Example

ucli% nmenory -read signal _nmem-file input.nmem
Reads data in hexadecimal format from the i nput . nemfile and

writes to the memory variable, si gnal _nmem inthe current scope.

ucli% menory -wite signal _nem-file output.nem
Reads data from the memory variable, si gnal _nmem in the

current scope, and writes into the out put . memfile in
hexadecimal format.

ucli% menory -wite signal_ mem-file ../out.nmem-radix b
Reads data from the memory variable, si gnal _nem in the
current scope and writes to the out . nemfile (relative path) in
binary format.

ucli % nmenory -read top.dl.d2.signal_nmem-file /root/xyz/

Feedback

Feedback

in.mem-radi x deci ma
Reads data (in decimal format) fromthe/ r oot / xyz/ i n. memfile

and writes to the memory variable, t op. d1. d2. si gnal _nem
from the current scope.

ucli% nmenory -wite signal_nmem-file output.nmem-start 5 -
end 10

Writes data (in hexadecimal format) from the out put . nemfile
and writes to the memory variable, si gnal _nem in the current
scope.

Support for VHDL Object to Read and Write Verilog
Memory File Format

Reading Verilog Memory File Format into VHDL Object

You must specify the -t ype veri | og option to read Verilog
memory file format into VHDL object. Following is the syntax for
reading Verilog memory file format into VHDL object:

ucli % nmenory -read <hierarchical _path_to_nenory>
-file <file_name> -radi x <type> -type verilog [-
start <start_address>][-end <end_ address>]

Note:
To enable read memory in UCLI, you must specify

- debug_access+wat compile time, else VCS issues an error
message.

The supported - r adi x values are hexadecimal and binary. The
legal value for the - st art or - end option is an integer in the
address range of given VHDL object.

Commands

3-123

Writing Verilog Memory File Format From VHDL Object into a
File

Following is the syntax to write Verilog memory file format from
VHDL object into a file:

ucli % nmenory -wite <hierarchical path to nmenory>
-file <file_name> -radix <type> -type verilog |[-
start <start_address>][-end <end_address>]

The supported - r adi x values are hexadecimal and binary. The
legal value for the - st art or - end option is an integer in the
address range of given VHDL object.

Example

Consider the following VHDL code where variable MEMreads the
Verilog memory file format:

Example 3-3 Counter.vhd

LI BRARY | EEE;

USE | EEE. STD LOGE C_1164. ALL;

USE | EEE. STD_LOGE C_UNSI GNED. ALL,;
USE | EEE. STD_LOGE C_ARI TH. ALL;

ENTI TY Counter IS

PORT

(
d k . IN STD LOG C
Reset : IN STD LCd C ;
UpDown : IN STD LOAQ C ;
Done . QUT STD LOG C

)

END Count er;

ARCHI TECTURE Rt1 OF Counter |S

Commands Feedback
3-124

Feedback

TYPE MEM ARRAY |'S ARRAY (0 TO 15) OF STD LOG C VECTOR(31
DOMNTO 0) ;

SI GNAL Count : STD LOG C VECTOR(2 DOMTO 0);
SIGNAL MEM : MEM_ARRAY
begi n

PROCESS (d k, Reset)
BEG N
IF (Reset = '0') THEN
Count <= "000";
ELSIF (O k ="1" AND d k' EVENT) THEN
IF (UpDown = "1') THEN
Count <= Count + 1;
ELSE
Count <= Count - 1;
END | F;
END | F;
END PROCESS;

Done <= "1'" VWHEN UpDown
"1" VWHEN UpDown
IOI;

1" AND Count
1" AND Count

"111" ELSE
"001" ELSE

END Rt ;

Compilation steps:

%vhdl an Counter. vhd

%/cs -debug_access+w Count er
Following is the Verilog memory file format:

% cat nmem | oad_vl og. bin
@ dead0000
@ beef 0000
@ dead0000
@ beef 0000

Commands

3-125

Reading or loading the above Verilog memory file format into VHDL
object:

ucli% menory -read / COUNTER MEM -file mem| oad_vl og. bin -
radix h -type verilog

ucli % get / COUNTER/ MEM -r adi x hex

27?)

Writing Verilog memory file format from VHDL object into a file:

ucli%menory -wite /COUNTER/ MEM-file nemwite_vhdl.bin -
radi x hex -type verilog

% cat memwite vhdl.bin
DEADOOOO
BEEF0000
DEADOOOO
BEEF0000
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

Handling of Verilog Memory File Formats

Table 3-4 describes how UCLI handles various Verilog memory file
formats.

Commands Feedback

3-126

Table 3-4 Verilog File Format

Verilog File Format

UCLI Read and Write Behavior

0000abcd 0000ef gh
0000abcd 0000ef gh

If no address is mentioned, UCLI starts with the lowest
address and writes it with data. If the memory file address
is greater than the object address, then the additional data
is ignored.

2/ 0000ef gh

000abcd Ifthe data does not have the required number of bits, UCLI
automatically writes the highest bit with O.

00000ef gh If the data length is longer than the memory length, UCLI
issues an error message.

@ 0000abcd UCLI will first write the address with the specified value,

@ O0O0O0OEFGH then writes unspecified address with XXXXXXXX. If the
address is out of range, a warning message is issued.

@ 0000abcd Mixed (VHDL and Verilog) memory file format is not

supported. Here, 2/ 0000ef gh is the VHDL file format.

Limitations

* Reading or writing of VHDL memory file format by Verilog object

IS not supported.

» Reading or writing of Verilog multi-dimension array memory
format is not supported in Verilog object.

@0

w005 wO0O0e WOOT wOOSB
w0l5 w0le w017 wO1lS8
w025 w026 w027 w028
w035 w036 w037 w038
w045 w046 w047 w048
wl05 wl0é wl07 wlo08
wlls wlle wll7 wlls
W1l25 wl2é wl27 wl2s
W1li5 wl3ie wli7 wlis
Wld5 wlde Wl4a7T wl4Ss

* Reading or writing of X or Z value into VHDL object is not

supported.

Feedback

Commands

3-127

* The data width in VHDL cannot be longer than 256 bits.

Designh Query Commands

search

Searches for a design object whose name matches the specified

pattern.
Syntax
search [-<filter>] [-scope <scope>] [-depth <level>] [-
nodul e <nodul e_pattern>] [-limt <limt>] [<nanme_pattern>]
filter
Identifies any of i n, i nout , or out ports, instances, signals, or
variables.
scope

Identifies the starting scope to search. The default value is the
current scope.

| evel
Identifies the number of scope levels to search. The default value
is O (searches all hierarchies).

nodul e_pattern

Identifies the module name to search, which can have * ' or '?' for
pattern matching.

Commands Feedback

3-128

limt
Specifies the limit for the maximum number of matched items. The

default limit for matched items is 1024. VCS truncates the results
exceeding this limit, and issues a warning message.

nane_pattern

Identifies the name to search, which can have *' or '?' for pattern
matching.

Example

ucli % search as*
test.asiml
t est. asinR

ucli % search a* -depth 2
test.asinl

t est. asink
test.riscl.accum
test.riscl. address
test.riscl.alul
test.riscl.al u_ out
test.riscl. al ureg
test.risc2.accum
test.risc2. address
test.risc2.alul
test.risc2.alu_out
test.risc2.alureg

find_forces

This command prints the currently active forces.

Syntax

find_forces <nid>
find_forces -scope <scope_nane> [-|evel <level nunber>] [-

Feedback Commands

3-129

file <file_name>]
ni d

Hierarchical path to a nested identifier. Only forces on the
specified signal is searched.

scope_nane

Hierarchical path to a scope. Only the forces on signals declared
in the scope are searched.

| evel nunber

Only forces on signals in the instance hierarchy (defined by
scope_nane) are searched. The search depth in the instance
hierarchy is controlled by | evel _nunber . The default

| evel _nunber is 0, which means search the entire instance
hierarchy.

file_nane

The default is to write the command results to the terminal. The
size of the results can be large, so this option allows you to write
the results to a file that is relative to the current working directory.

Commands
3-130

find_identifier

Searches for the identifiers in your design. The location of the
identifier search database is automatically added, but can be
explicitly specified

Syntax

synopsys::find_identifier [<options> --]
[<identifier>] [(+/-)<search group>]+

Feedback

opti ons

Search options (see Table 3-5). These options must be separated
by a “- - ” from the search query.

Table 3-5 Supported Search Options

Search Option

Description

--version Displays program's version number and exits
-h, --help Displays help message and exits
- b, Highlights with bold and underline only, no colors.

--bw(Bl ack and Wi te)

-d N, --dir_level s=N

Prints n directory levels for every matching line. Default
is 0.

-f DB-FI LE,
--file=DB-Fl LE

Specifies the database file. Default is vesfi nd. db

-H, --gui-help

Prints help for GUI use.

-IN, --limt=N

Limits search to the first n matches. 0 means no limit.
Default is 1000.

-m --match_only

Matches the query pattern only. Does not display scope
information.

-0 QUTPUT- FI LE,
- - out put =QUTPUT- FI LE

Outputsintoafile. Defaultisst dout /st der r . This option
bundles st dout andst derr,so- o - willredirecterrors
to st dout .

-p, --plain Does not highlight matches in bold.

-r, --regexp Regular expression search pattern. The pattern is
interpreted as “<pat t er n>$, so . * may be desired at
the beginning and end of the pattern.

-t, --translate Translation mode. Prints only the translation of the query
pattern into the internal SQL query string.

-u, --uclinpde Enables UCLI mode. This option is used for interaction
with UCLL.

-v, --verbose Enables verbose mode.

Feedback

Commands

3-131

i dentifier
Identifier string to be searched.

search group

The name of the group to be included to search or excluded from
search. The following search groups are supported:

Packages, Modul es, Ports, Paraneters, Vars,
Functions, Assertions, Types, Menbers, |Instances

You can also use Verdi to search for the identifiers in your design.
For more information, refer to the Verdi and Siloti Command
Reference Guide.

Examples

Example-1:

Specify option - mto show only matches and to skip scopes
ucli % synopsys::find_identifier -m-- Top
Below is the sample output:

Mat chi ng nodul es:
top.v:11 nodul e Top

Mat chi ng i nst ances:
top.v:11 inst Top of nodule Top

Total: 2 results found in 0.043 seconds

Example-2:

ucli % synopsys::find_identifier Top

Commands Feedback

3-132

Below is the sample output:

Mat chi ng nodul es:
top.v:11 nodul e Top
scope: Top

Mat chi ng i nst ances:

top.v:11 inst Top of nodule Top
scope: Top

Total: 4 results found in 0.270 seconds

show
Use this command to show (display) HDL objects, such as:

e |nstances

e Scopes

* Ports

* Signals

» Variables

* Virtual buses in a design

You can use this command to display object attributes, such as:

e domain (Verilog or VHDL)

o fullname (full hierarchy name)

4 pare nt
4 type
 where
Feedback Commands

3-133

» value
e strength

If no objects are given, the show command assumes all the objects
in the current scope. If the hierarchical path of an instance is not
given, then show assumes the current scope.

This command supports wildcard (*).

Syntax

show [nid] [object(s)] [attribute(s)] [-radix <radix>]
NTB Only:

show -mai | box [<m d>]

show - semaphore [<si d>]

<ni d>

Nested identifier (hierarchical path) of scopes, instances, or
signals in the HDL. If this argument is not specified, the current
scope is used as reference.

obj ect (s)
(Optional) This argument specifies the object type. Objects can
be instances, scopes, ports, signals, variables and virtual types.

If this argument is not specified, all object types are displayed.
Object(s) can be any one of the following:

-1 nst ances

Shows all the instance(s) in the current scope or in the hierarchy
specified by ni d.

-ports

Commands Feedback

3-134

Shows all the port(s) of the current scope or in the hierarchy
specified by ni d.
-signal s

Shows all the objects defined as regs, wires in the current scope
or in the hierarchy specified by ni d.

- scopes

Shows all tasks and functions defined in the current scope or
in the hierarchy specified by ni d.

-vari abl es

Shows all the objects defined as integer, real in the current
scope or in the hierarchy specified by ni d.

-virtual [<instance(s)>]

Displays virtual signals which are created by using the
vi rtual (orvbus)command.

-attribute(s)

(Optional). The attributes can be domai n, f ul | nane, par ent,
t ype,wher e,val ue,andst r engt h.Ifnoobject(s) is given after
the attribute(s), then the selected attribute(s) is displayed for all
object(s). By default, no attributes are displayed.

-domai n

Displays the domain of the objects. Domain can be Verilog or
VHDL.

-ful | nanme

Displays the full hierarchical name of the object(s).

Feedback Commands
3-135

- par ent

Displays the scope where the object is defined.

-type
Displays the object type. Type can be reg, wire, integer, real,
IN, OUT, INOUT, or instance. For arrays and multi-dimensional
arrays, the array bounds are also displayed.

- wher e
Displays the name of the design file and line number in which
the object is defined.

-val ue
Displays the current simulation value of the object.

The value can be displayed in radix (hex|dec|bin|oct) by using
the - r adi x option.

-strength

Displays the strength value of the object.

Note:

The show - strengt h command is supported only for the
Verilog object(s). The result is same as $di spl ay(“w”, ...
It is not supported for the VHDL object(s).

-radi x <hexadeci mal | bi nary| deci nal | oct al | synbol i ¢c>

Specifies the radix in which the values of the objects must be
displayed. Default radix is symbolic (or set by ‘conf i g r adi x).
You can use shorthand notations h (hex), b (binary), and d
(decimal).

Commands Feedback

3-136

Feedback

-mai | box [<mi d>]

Shows a mailbox or all mailboxes and shows the data or blocked
threads.

Mailbox ID, <m d>, is optional. If this argument is not specified,
all mailboxes are displayed. It is only applicable for NTB-OV or
SVTB.

-semaphore [<si d>]

Shows a semaphore or all semaphores and shows the number of
keys (#keys) and/or blocked threads. Semaphore ID, <si d>, is
optional. If this argument is not specified, all semaphores are
displayed. It is only applicable for NTB-OV or SVTB.

Example

ucl i % show
Displays all the objects in the current scope. Same as 'show *'
(using wildcard). This command displays the following output:

pr obe
clk
reset
| ST1

ucli % show I ST 1

Displays all objects in scope | ST_1. This command displays the
following output:

TVP
TWVP1
RESET
CLK
QUTTOP
| ST1

Commands

3-137

_PO
_P1

ucli% show I ST_1 -domain -fullname -parent -type -val ue
-where

Displays attributes of instance | ST_1. This command displays
the following output:

| ST1 tbTop. | ST1 t bTop { BASE {} { COVPONENT | NSTANTI ATl ON
STATEMENT}} {} {tbTop.v 18}

i % show - mai | box

Display all mailboxes in the current scope, the data in those mail
boxes and the blocked threads. This command displays the
following output:

uc

mai | box 1: data (2): -->5 -->15.
mai | box 2: bl ocked threads: 3, 4.

ucl i % show - semaphor e
Display all semaphores in the current scope, the number of keys

and blocked threads. This command displays the following output:

semaphore 1. keys (2): bl ocked threads: 3, 4.

ucl i % show - semaphore

Display all semaphores in the current scope, the number of keys
and blocked threads. This command displays the following output:

semaphore 1: keys (2): blocked threads: 3, 4.

ucli % show -strength
Displays the strength value of all the objects in the current scope.

This command displays the following output:

a 35X
b St X
c StX

Commands Feedback

3-138

Feedback

ucli % show -strength a
Displays the strength value of the specified object. This command
displays the following output:

a 35X

Related Commands
“search”

“get”

constraints

This command prints constraint-related design information, disable,
enable, add, delete, change constraints, or extract testcase(s) for
separate constraint debugging.

Syntax
constraints <option_sets>

Where, the following opti on_set s are supported:

show -where [-verbosity <l evel >]

Where <| evel >is any of [hi gh| nedi un{ | ow] . The verbosity
level is set as medium by default.

show -where [-<npbde>] [-<type>] [-soft
[<softnode>]] [-overwitten] [-dropped] |-
partition <n>] [-solved_var <varnane>] |-
original] [-inconsistent] [-file <filenanme>] |-
verbosity <l evel >]

Where,

Commands

3-139

<node> is any of [on| of f] for constraint mode.

<t ype>is any of [bl ock| vi ew| or der] for constraint type.
<sof t node>is any of [honor ed| dr opped] for soft constraint.
<n> is the number of a certain partition.

<var nane> is the rand variable name.

<f i | enanme> is the specified file that output data is dumped into.

<| evel >isany of [hi gh| medi uni | ow] . The verbosity level is
set as medium by default.

show -vars <nanel, nane2, ..., nameN> [-<node>] |-

Commands

3-140

<type>] [-soft [<softnpde>]] [-overwitten] |-
I nconsistent] [-file <filenanme>] [-verbosity
<| evel >]

Where,

<nanel, nane2, ..., naneN> is the rand variable name list.
<npde> is any of [on| of f] for constraint mode.

<t ype>is any of [bl ock| vi ew| or der] for constraint type.
<sof t node>is any of [honor ed| dr opped] for soft constraint.
<f i | ename> is the specified file that output data is dumped into.

<| evel >isany of [hi gh| medi uni | ow] . The verbosity level is
set as medium by default.

Feedback

Feedback

show -object <full hierarchical _nanme> [-file

<filename>] [-verbosity <l evel >]
Where,

<full _hi erarchi cal _nane> is the hierarchical object of a
class.

<| evel >isany of [hi gh| medi uni | ow] . The verbosity level is
set as medium by default.

show -variables [-partition <n>] [-<npnde>] [-file

<filename>] [-verbosity <l evel >]
Where,

<n> is the number of a certain partition.
<node>is any of [rand| st at e] .
<f i | ename> is the specified file that output data is dumped into.

<| evel >isany of [hi gh| medi uni | ow] . The verbosity level is
set as medium by default.

show -variables -inconsistent [-<node>] [-file

<filename>] [-verbosity <l evel >]
Where,

<node>is any of [rand| st at e] .
<f i | enanme> is the specified file that output data is dumped into.

<| evel >isany of [hi gh| medi uni | ow] . The verbosity level is
set as medium by default.

Commands

3-141

show -var _stats [-related] [-sol ved together] [-
i nconsistent] [-file <filenane>] [-verbosity
<| evel >] <var_nane>

Where,

<f i | enanme> is the specified file that output data is dumped into.
<| evel >is any of [hi gh| medi um | ow] .

<var _nanme> is the variable name for related variable.

show-stats [-partition <n>] [-inconsistent] [-file
<filename>] [-verbosity <l evel >]

Where,
<n> is the number of a certain partition.
<fi | ename> is the specified file that output data is dumped into.

<| evel >isany of [hi gh| medi uni | ow] . The verbosity level is
set as medium by default.

extract [-all] [-partition <n>] [-dir <dirnanme>] |-
file <fil enane>]

Where,
<n> is the number of a certain partition.
<di r > is the specified directory where files are generated.

<f i | enanme> is the specified file that output data is dumped into.

Commands Feedback

3-142

Feedback

dunpdi st -file <fil enane>

Where,

<f i | ename> is the specified file that output data is dumped into.

add - obj ect <obj ect nane> - bl ock <bl ock_nane> - expr

{ <constraint_expression> }
Where,

<obj ect _nane> is the hierarchical class object name in which
constraints are added.

<bl ock_nane> is the constraint block name.

<constrai nt _expressi on>is one or multiple constraint
expressions.

di sabl e| enabl e| del et e - obj ect <obj ect _nane> - bl ock

<bl ock_nane> -id <no>
Where,

<obj ect _nane> is the hierarchical class object name in which
constraints are enabled.

<bl ock_nane> is the constraint block name. Only runtime
constraint block is allowed.

<no> is the ID number of given constraint expression. Only
runtime constraint expression is allowed.

Commands

3-143

change -object <object nanme> - bl ock <bl ock _nanme> -
I d <no> -expr <constraint_expression>

Where,

<obj ect _nane> is the hierarchical class object name in which
constraints are enabled.

<bl ock_nane> is the constraint block name. Only runtime
constraint block is allowed.

<no> is the ID number of given constraint expression. Only
runtime constraint expression is allowed.

<constrai nt _expressi on>is one or multiple constraint
expressions.

savechange [-file <fil enane>]
Where,

<fi | ename> is the specified file that output data is dumped into.

settinmeout [-tinme <limt>]
Where,

<l i m t > is the specified number that analysis will stop if it takes
longer than this number of seconds.

getti meout

drivers

Use this command to display driver(s) of a port, signal, or variable.

Commands Feedback

3-144

Feedback

Note:

This command is not supported for NTB-OV and SystemVerilog
testbenches.

Syntax
drivers <nid> [-full]

<ni d>

Nested identifier (hierarchical path) of a single signal, port, or
variable. Multiple objects cannot be specified. For vectors, drivers
for all bits are displayed.

-full

Crosses hierarchies to display the drivers of the specified signal.
By default, only drivers from the local scope are displayed.

Example

ucli%drivers clk
Displays driver(s) of the object cl k in the current scope. This
command displays the following output:

1 - port T.host.clk
NA - port T. host
pci _host tokens.v 1584: pci_host host(clk, rst

ucli%drivers clk -full
Displays full driver(s) information of the object cl k by crossing

the module boundary. This command displays the following
output:

1 - port T.host.clk
1 - primermT.clk _pci.clk
nand tokens.v 1598: nand # (15.000) clk_pci (clKk,

ucli%drivers cbe_

Commands

3-145

Displays full driver(s) information of the vector object cbe . This
command displays the following output:

1001 - net T.cbe_
1 T.t.zpl 44. PAD tokens.v 11280
1001 T. host.cbe_ tokens.v 4934

Related Commands
“loads”

loads

Use this command to display load(s) information of a signal or
variable.

Syntax

| oads <nid> [-verbose] [-local] [-stopatcell] [-stopatliDb]
[- nowar n]

<ni d>
Nested identifier (hierarchical path) of a signal or variable. Multiple
objects cannot be specified.

-ver bose

Displays complete filename for loads.

-| ocal

Displays loads in the local scope.

- st opat cel |

Stops at the specified cell define module.

Commands Feedback

3-146

-stopatlib

Stops at the specified library define module.

- nowar n

Suppresses warning messages.

Example
Consider the following test case (t est . sv):

Example 3-4 test.sv

1 nodul e t op;

2 wire a,b;

3 dut dt(a,b); // cell defined in nodul e
4 dit fg(a,b);

5 initial

6 begi n

7 $vcdpl uson();

8 end

9

10 endnodul e

11

12 “cel |l define

13 nodul e dut (i nput a, out put b);
14 assi gn b=a;

15

16 endnodul e

17 “endcel | defi ne

Consider the following library file (di t . v):

Example 3-5 Library file: dit.v

1 nodul e dit (i nput a, output b);
2 assi gn b=a;
3 endnodul e

Consider the following Tcl file (I oad. t cl):

Feedback Commands

3-147

Example 3-6 load.tcl

| oads top. a

| oads top.a -loca

| oads top.a -stopatcel
| oads top.a -stopatlib
| oads top.a -verbose

Compile t est . sv, as shown below:

% vcs -debug_access+pp -sverilog test.sv -y |ib/
+l i bext +. v

Run the simulation:
% ./simv -ucli -i |oad.tcl
Following is the output:

ucli % | oads top.a
z - net top.a
X top.dt.b test.sv 14
x top.fg.b dit.v 2
ucli %1 oads top.a -1oca
z - net top.a
z top.dt.a test.sv 3
z top.fg.a test.sv 4
ucli %1 oads top.a -stopatcel
z - net top.a
ztop.dt.atest.sv 3//load wthinthe cell is not listed
x top.fg.b dit.v 2
ucli %1l oads top.a -stopatlib
z - net top.a
ztop.fg.atest.sv4//loadwthinthelibraryis not |isted
X top.dt.b test.sv 14
ucli %1 oads top.a -verbose
z - net top.a
X top.dt.b /hone/test.sv 14 : assign b=a;
x top.fg.b /hone/dit.v 2 : assi gn b=a;

Commands Feedback

3-148

Related Command

HS hOWH

Macro Control Routines

Feedback

do

This command reads a macro file into the simulator. Macro files are
similar to source command files except that additional commands
are enabled that provide more control over the following:

e Simulation breakpoints (onbr eak)
» Error conditions (onerror)

» Failure conditions (onf ai |)

* User input (pause)

The do command can be called recursively (that is, one macro file
can load another macro file). Each macro file can have its own local
onbr eak, onerror, and onf ai | scripts.

You can switch to interactive mode using pause and then resume
execution of the macro file by using r esumnre or abort the execution
of the remaining commands in the macro file by using abort .

There are two ways in which you can read a macro file into the
simulator:

1. From the command line using the - do option:
simv -ucli -do onbreak.tcl

Commands

3-149

2. From the UCLI shell using the do command:
ucl i % do onbreak. tcl

Syntax of do command running from UCLI shell

do [-trace [on|off]] [-echo [on|off]]
<fil ename> [<macr o par anet er s>]

filenane

The UCLI macro file name. If the do command is run from the
command line, then the filename should be specified to the current
working directory. If the do command is called from another macro
file, then this new macro file is sought relative to the directory of
the other macro file.

macr o paraneters

The optional parameter values that can be passed to the macro
file. These parameters can be accessed in Tcl/UCLI script using
variables $1, $2, etc. The $ar gc variable contains the total
number of actual variables.

-trace [on|off]

Tracing is used to display the commands being executed from the
macro file. By default, trace is off (that is, no commands in the
macro file are displayed during execution). To display each
command, use the -trace on option.

-echo [on]| of f]

Displays output of the evaluated command. By default, echo is
off (that is, no output of the evaluated command is not displayed).
To display the output, use the - echo on option.

Commands Feedback

3-150

Feedback

Example
For example, assume the following:

The// onbreak.tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; run}
stop -once -change RESET
run

The // onerror.tcl filecontains the following code:

onerror {puts "SNPS: Error occurred"; resune}
show -type error_sigl
puts "SNPS: After Error, other conmmands executed"

The // onerror_main.tcl filecontains the following code (this
file calls onerror _sub. tcl):

onerror {puts "SNPS: Error occurred"; do
onerror_sub.tcl}

show -type error_sigl

puts "SNPS: In Main Scr: After Error, other conmmands

execut ed"

run

The // onerror_sub.tcl file contains the following code:

onerror {puts "SNPS: Error occurred in sub do script"”;
resune}

force error_sig2

puts "SNPS: I n Sub Scr: After Error, other commands execut ed"

ucli % do onbreak. tcl
This command reads the macro file, onbr eak. t cl . This

command displays the following output while the breakpoint is hit
during simulation:

Commands

3-151

SNPS: Breakpoint on reset hit

ucli % do onerror.tcl

uc

uc

Commands

3-152

This command reads the macro file, onerror.tcl. This
command displays the following output when the specified object
is incorrect with the show command:

file onerror.tcl, line 2: Error: Unknown object:
error_sigl

SNPS: Error occurred

SNPS: After Error, other conmands executed

i% do -trace on -echo on onerror.tcl
This command reads the macro file, onerror.tcl. This

command displays the following output:

1 onerror {puts "SNPS: Error occurred"; resune}
puts "SNPS:. Error occurred"; resune

2 show -type error_sigl

Error: Unknown object: error_sigl

file onerror.tcl, line 2: Error: Unknown object:
error_sigl

SNPS: Error occurred

3 puts "SNPS: After Error, other comrands executed"
SNPS: After Error, other commands executed

i % do onerror_main.tcl
This command reads the macro file, onerror_nmain. tcl.The

file,onerror_mai n.tcl ,inturncallsonerror _sub. tcl.This
command displays the following output:

file onerror_main.tcl, line 2: Error: Unknown object:
error_sigl

SNPS: Error occurred

file ./onerror_sub.tcl, line 2: Error: Illegal usage, at
| east two argunents expected

usage: force <nane> <val ue>

SNPS: Error occurred in sub do script

Feedback

SNPS: In Sub Scr: After Error, other commands executed
SNPS: In Main Scr: After Error, other conmmmands executed

Related Commands
“onbreak”

“‘onerror”
‘pause”
‘resume”
“abort”

“status”

onbreak

Use this command to specify an action to execute when a stop-point,
$stop task or CTRL-C is encountered while executing a macro file.

Each macro file can define its own local onbr eak script. The script
can contain any command. The script is not re-entrant (that is, a
command (for example: r un) which causes another breakpoint will
not rerun the onbr eak script).

If an onbr eak script is not defined in a macro file, then a breakpoint
will cause the macro to enter pause mode.

Syntax
onbr eak [{conmands}]
commands
Feedback Commands

3-153

Any UCLI command can be specified. Multiple commands should
be specified with a semicolon.

Example
For example, assume the following:

The // onbr eak. t cl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; run}
stop -once -change RESET
run

ucli % do onbreak. tcl
This command reads the macro file, onbr eak. t cl , into the

simulator. This command displays the following output:

SNPS: Breakpoint on reset hit

ucli % do onbreak nocrmand. t cl
This command reads the macro file,

onbr eak_nocommand. t cl , into the simulator. This script
defines no commands to be executed when simulator stops.
Therefore, the simulator pauses. This command displays the
following output:

Pause in file onbreak.tcl, line 4
pause%

Related Commands
Hdoﬂ

“‘onerror”

“onfail”

Commands Feedback

3-154

Feedback

Hpause”
“resume”
“abort”

“status”

onerror

Use this command to specify an action to execute when an error is
encountered while executing a macro file.

Each macro file can define its own local oner r or script. The script
can contain any command. The script is not re-entrant (that is, a
command (for example: r un) which causes another error will not
rerun the oner r or script, rather this will cause the macro to abort.

If an oner r or scriptis not defined in the macro file, then the default
error script is used. If no default script exists, an error causes the
macro to abort.

Syntax
onerror [{conmands}]

comands

Any UCLI command can be specified. Multiple commands should
be specified with a semicolon.

Examples
For example, assume the following:

The// onerror.tcl filecontains the following code:

Commands

3-155

onerror {puts “SNPS. Error occurred”; resune}
show -type error_sigl
puts “SNPS: After Error, other conmands executed”

ucli % do onerror.tcl
This command reads the macro file, onerror. t cl , into the
simulator. This command displays the following output:

file onerror.tcl, line 2: Error: Unknown object:
error_sigl

SNPS: Error occurred

SNPS: Error is resuned and ot her comrands execut ed

Related Commands
“doﬂ

“onbreak”
“onfail”
‘pause”
‘resume”
“abort”

“status”

onfail

Use this command to specify an action to execute when a failure is
encountered while executing a macro file.

Commands Feedback

3-156

Feedback

Each macro file can define its own local oner r or script. The script
can contain any command. The script is not re-entrant (that is, a
command (for example: r un) which causes another error will not
rerun the onf ai | script, rather this causes the macro to abort.

If an onf ai | script is not defined in the macro file, then the default
error script is used. If no default script exists, a failure causes the
macro to abort.

Syntax
onfail [{comuands}]

commands

Any UCLI command can be specified. Multiple commands should
be specified with a semicolon.

Examples
For example, assume the following:

The//onfail.tcl filecontains the following code:

onfail {puts “SNPS. Failure occurred”; resune}
show -type error_sigl
puts “SNPS: After Failure, other conmands executed”

ucli % do onfail.tc
This command reads the macro file, onfai |l . t cl , into the

simulator. This command displays the following output:

file onfail.tcl, line 2: Failure: Unknown object:
error_sigl

SNPS: Failure occurred

SNPS: Fail is resuned and ot her conmands executed

Commands
3-157

Related Commands
Hdoﬂ

“onbreak”
“onfail”
‘pause”
‘“resume”
“abort”

“status”

resume

Use this command to resume execution of a macro file after the
simulator encounters a breakpoint, error, or pause.

Syntax
resune

Examples
For example, assume the following:

The// onbreak.tcl file contains the following code:

onbreak {puts "SNPS:. Breakpoint on reset hit"; resune}
stop -once -change RESET
run

ucl i % do onbreak. tcl

Commands Feedback

3-158

This command reads the macro file, onbr eak. t cl , into the
simulator. After the breakpointis hit, the simulation waits for user
input. This command displays the following output:

SNPS: Breakpoint on reset hit

Related Commands
Hdoﬂ

“onbreak”
“‘onerror”
‘pause”
“abort”

“status”

pause

This command interrupts execution of the macro file. In pause mode,
the prompt is displayed as pause%and the simulator will accept
input from the command line. In this mode, you can execute any
UCLI command. Also, in this mode, st at us can be used to display
the stack of macro files, r esune can be used to resume execution
of macro files or abor t can be used to abort the execution of macro
file.

Syntax
pause

Feedback Commands
3-159

Examples
For example, assume the following:

The// onbreak.tcl filecontains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; pause}
stop -once -change RESET
run

ucli % do onbreak. tcl
This command reads the macro file, onbr eak. t cl , into the

simulator. After the breakpoint is hit, the simulation pauses. This
command displays the following output:

SNPS: Breakpoint on reset hit
Pause in file onbreak.tcl, line 4
pause%

Related Commands
Hdoﬂ

“onbreak”
“onerror”
“resume”

“abort”

“status”

Commands Feedback

3-160

Feedback

abort

Use this command to stop execution of a macro file and discard any
remaining commands in the macro file. After execution of this
command, you will return to the UCLI prompt. You can use this
command in the onbr eak or oner r or scripts, at the pause prompt
(pause%, or in a macro file.

Syntax

abort [n | all]
n

Stops executing n levels of macro files. The default is 1. This
argument should be an integer. Additionally, this argument is
useful for nested macro files.

al |

Stops executing all macro files.

Examples
For example, assume the following:

The // onbreak. tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; abort}
stop -once -change RESET
run

ucli % do onbreak. tcl
This command reads the macro file, onbr eak. t cl , into the

simulator. When the breakpoint is hit, the simulation stops
executing the remaining commands in the macro file and returns
to the UCLI prompt. This command displays the following output:

Commands

3-161

SNPS: Breakpoint on reset hit
ucli %

Related Commands
“doﬂ

“onbreak”
“‘onerror”
“resume”
‘pause”

“status”

status

This command displays the stack of nested macro files being
executed. By default, the following information is displayed:

* Macro file name

* Line number being executed in the macro file

* The command which caused the macro file to pause
» The onbr eak script (if present) or the default script
Syntax

status [file | line]

file

Returns the name of the macro file currently being executed.

Commands Feedback

3-162

Feedback

i ne

Returns the line number being executed in the current macro file.

Examples
For example, assume the following:

The// onerror_main.tcl file contains the following code (this
file calls onerror _sub. tcl):

onerror {puts "SNPS: Error occurred"; do
onerror_sub.tcl}

show -type error_sigl

puts "SNPS: After Error, other conmmands executed"

run

The// onerror_sub. tcl file contains the following code:

onerror {puts "SNPS: Error occurred in sub do script";
pause}

force error_sig2

puts "SNPS: After Error, other conmmnds executed"

ucli % do onerror_nmain.tcl
This command reads the macro file, onbr eak_mai n. t cl , into

the simulator. After the breakpoint is hit, the simulation pauses.
At the pause prompt (pause%, the st at us command is issued.
This command displays the following output:

file onerror_main.tcl, line 2: Error: Unknown object:
error_sigl

SNPS: Error occurred

file ./onerror_sub.tcl, line 2: Error: Illegal usage, at
| east two argunents expected

usage: force <nane> <val ue>

SNPS: Error occurred in sub do script

Pause in file ./onerror_sub.tcl, line 2

pause% st at us

Commands

3-163

Macro 2: file ./onerror_sub.tcl, line 2
executing command: "force error_sig2"
onerror script: {puts "SNPS: Error occurred in sub
do script"; pause}

Macro 1. file onerror_main.tcl, line 2
executing command: "show -type error_sigl"
onerror script: {puts "SNPS: Error occurred"; do
onerror_sub.tcl}

pause% status file
./ onerror_sub. tcl

pause% status |ine
2

Related Commands
“doﬂ

“onbreak”
“‘onerror”
“resume”
‘pause”

“abort”

Coverage Command

This section describes the following command:

* ‘“coverage”

Commands Feedback

3-164

Feedback

coverage

Use this command to enable/disable toggle or line coverage on any
coverage watch point(s) during simulation. Coverage watch points
are those portions of source code on which coverage is enabled. For
more information about coverage and coverage metrics, see the
VCS Coverage Metrics User Guide.

Note:

- Coverage must be enabled (using-cmtgl | |ine |
t gl +l i ne) during compile time.

- Default status of toggle or line coverage is on at the beginning
of simulation.

- This command is supported only in pure VHDL and MixedHDL
(with VHDL top) flows.

Syntax

coverage -tgl on|off

coverage -line on|off

coverage -tgl on|off -line on|off

coverage -tgl on|off

Turns on/off toggle coverage.

coverage -line on|off

Turns on/off line coverage.

coverage -tgl on|off -line on|off

Turns on/off toggle and line coverage.

Commands

3-165

Examples

ucli % coverage -tgl on -line off
Enables toggle coverage and disables line coverage. This

command displays no output.

Assertion Command

assertion

Use this command to display statistical information like pass, fail, or
fail attempts of SystemVerilog Assertions (SVA) or PSL assertions.

This command can also be used to perform the following tasks:

e Set a breakpoint on an assertion failure
» Display existing assertions in the source code

» Enable/disable assertions according to the precedence levels.
For more information on precedence levels, see “Precedence
Levels for Controlling Assertions” .

Note:

- This command currently supports SystemVerilog Assertions
(SVA) and PSL assertions only.

- Terms falil, failattempts, and pass have been derived from SVA.
For additional information, refer to the sva_qui ckr ef . pdf
file under VCS documentation.

- The source code must be compiled with the - sveri | og
switch.

Commands Feedback

3-166

- Wildcard support inside the hierarchical path specification
(<pat h>/ <asserti on>) is not supported yet.

- Theoption[-r /| <pat h>/ <asserti on>] in the following
syntax should always exist at the end of the command. The
-r option must always be followed by a scope name. The - r
option indicates recursive visits to every sub-scope under a
given scope. The forward slash, "/ ", indicates root.

- When the assertion name or scope name is specified in the
command, the path name delimiters are based on language
domains.

For example:

» For Verilog only and Verilog top designs, the assertion name or
scope name should be specified astest 1. t est 2. al.

 For VHDL only and VHDL top designs, the assertion hame or
scope name should be specified ast est 1/t est 2/ al.

Syntax
You can use the asser ti on command using one of the following:
1. assertion count <-fails|-failattenpts>

<-r |/ | <path>/<assertion>>

Use this command to find fails or failattempts of:

- asingle assertion (by specifying the hierarchical path of the
assertion)

or...

- all assertions in a particular scope and all sub-scopes below it
(by specifying the option, -r / or -r /<scope>).

Feedback Commands

3-167

Commands

3-168

The number returned indicates whether a particular assertion (or
all assertions) has failed or not. It does not indicate how many
times a particular assertion (or all assertions) has failed.

. assertion report [-v] [-file <filename>] [-xm]

<-r /| <path>/<assertion>>

Use this command to generate statistical report. Usingthe-fi | e
option, this report can be redirected to a file, which is the name
givenbyf i | enane. By default, the information reported contains
the number of successes and failures. Using the - v option, the
number of attempts and incompletes can also be reported.

Note:
Currently, the - xm option is not supported.

. assertion <pass|fail >

[-enabl e[-disable|-limt [<count>]]
-l og <on|off> <-r /| <pat h>/ <assertion>>

Use this command to turn on or off information to be reported (to
stdout or to a file). By default, log is on so the asserti on report
command reports information.

Note:

Currently, [pass|fail][-enable|-disable|-limt]
options are not supported.

assertion fail -action <continue|break]|exit>

[-r /]| <path>/<assertion>]

Feedback

Feedback

Use this command to set a breakpoint on an assertion failure. The
br eak option is used to set a breakpoint, whereas the cont i nue
option is used to delete a breakpoint.

Note:
Currently, the exi t option is not supported.

. assertion nane [-r] <ScopeNane>

This command returns the hierarchical name of all the assertions
present in a particular scope. If the - r option is used, then this
command displays hierarchical references of all the assertions
present in a particular scope and all sub-scopes below it.

assertion [on|off] [-force] [-r] [-scope ScopeNane]

assertionfon|off] [-force] [-r] [-nodul e Modul eNane]
assertion [on|off] [-force] [-assert assertion]

These commands allow you to enable/disable assertions from the
UCLI prompt with two levels of precedence (3 and 4). For more
information on precedence levels, see “Precedence Levels for
Controlling Assertions” . Assertions disabled using controlling
mechanism with precedence level 4 can be enabled either by
controlling mechanism with precedence level 3 or 4. Whereas,
assertions disabled using controlling mechanism with precedence
level 3 can only be enabled by controlling mechanism with
precedence level 3.

Note:

Assertions disabled using - assert hi er at compile-time or
by passing options - assert di sabl e_assert, -assert
di sabl e,or-assert di sabl e_cover cannotbe controlled
from UCLLI.

Commands

3-169

Options

on| of f

Allows you to enable/disable assertions.

-force

Sets the precedence level to 3. The default precedence is 4.

-r

Applies the command hierarchically to a scope or a module.

- scope ScopeNanme

Applies the command to assertions within the scope
ScopeNane. If —r is specified, then the command is applied to
assertions in the entire hierarchy under ScopeNane.

- nodul e Mbdul eNane

Applies the command to assertions contained in the module
Modul eNane. If —r is specified, then the command is applied
to assertions contained in the module and its children instances.

—assert assertion

Applies the command to the specified assertion. You can
specify full or relative path name.

Examples

ucli % assertion nane /m
This command displays the hierarchical references of assertions

present in the scope, / m This command displays the following
output:

Commands Feedback

3-170

Feedback

m Al
m A2

ucli % assertion count -fails mAl
This command returns 1 if assertion m Al fails, else returns O.

This command displays the following output: 0

ucli % assertion count -fails -r /m
This command returns the number of times all assertions from

scope mand below have failed. This command displays the
following output: 0O

ucli % assertion fail -action break mAl
This command sets a breakpoint on failure of assertion m Al.

This command displays the breakpoint id: 2

ucli % assertion report mAl
This command displays a statistical report of assertionm Al. This

command displays the following output.

"m Al", 7 successes, 2 failures

ucli % assertion report -v -r /
This command generates a statistical report and redirects to

stdout. The report contains number of attempts, successes,
failures, and incompletes.

"m Al", 2 successes, 2 inconpletes
"mA2", 1 failures, 2 inconpletes

ucli % assertion report mAl
This command enables all assertions that are disabled with

precedence level 4 int op. nl.

Commands

3-171

ucli % assertion on —r —scope top.nl
This command enables all assertions that are disabled with

precedence level 4 in t op. ml and under its instance hierarchy.

ucli % asserti on on —nodul e nodl
This command enables all assertions that are disabled with

precedence level 4 in the module nod1.

ucli % asserti on on —r —nodul e nodl
This command enables all assertions that are disabled with

precedence level 4 in the module nod1 and under its instance
hierarchy.

ucli % assertion off -assert top.nml. Al
This command disables assertion t op. mL. Al, if it is disabled

with precedence level 4.

ucli % assertion on —force —scope top.nl
This command enables all assertions that are disabled with

precedence level 3or4intop. ml.

Precedence Levels for Controlling Assertions

VCS has several mechanisms to control assertions, and uses the
following four precedence levels in applying these controls:

* Precedence Level 1

Compile-time option based global control using —assert
di sabl e_assert/ di sabl e/ di sabl e_cover.

 Precedence Level 2

Configuration-based control using —assert hi er at compile
time

Commands Feedback

3-172

 Precedence Level 3

Configuration-based control using —assert hi er atruntime

e Precedence Level 4

$assert of f/ on through Verilog code

$assert of f/ on through UCLI

Use of categories, severities, and related system tasks

Assert enable and disable commands by means of VPI

The controlling mechanisms with the same precedence level do not
block each other, but are applied according to the order in which they
are invoked.

Feedback Commands

3-173

Helper Routine Commands

This section describes the following commands:

* “help”

« ‘“alias”

e ‘“unalias”
e ‘“listing”

» “config”
help

Use this command to display usage information of a specific
command or to display all UCLI commands.

Syntax
help [[-text]|-info|-full] <cnd>]

-text <cnd>
This option is used to display one line descriptions of any UCLI
command given by cnd.

-info <cmd>

This option is same as the - t ext option and also displays the
command-line options of the UCLI command, cnd. Thiscommand
Is the same as the hel p command.

-full <cmd>

Commands Feedback

3-174

Feedback

This option is used to display complete usage information of the
UCLI command, cnd.

Examples

ucli % hel p
This command displays one line usage information of all the UCLI
commands.

ucli%help -text start
This command displays one line usage information of the
command start. This command displays the following output:

start Start sinmv execution

ucli%help -info start
This command displays one line usage information and
command-line options of the command st ar t . This command

displays the following output:

start Start sinmv execution

usage:

start <sinulatorname> [cnd |ine options] ;# start sinv
execution

ucli%help -full start
This command displays complete usage information of the

command st ar t . This command displays the following output:

start Start sinmv execution
usage:
start <sinulatornanme> [cnd |ine options] ;# start

si my execution

Normally, the st ar t command resets configuration valuesto their
default state. Use "confi g reset off"to preventthe start
command from resetting your configuration.

Commands

3-175

Examples

start sinv

start simv -a simlog ;#append to log file "simlog
start sinv -1 simlog ;#create log file "simlog
start simv -k simkey ;#create command file'simkey'

alias
Use this command to create an alias for a UCLI command.

Note:
There are many default aliases in UCLI.

Examples

get is aliased as synopsys::get.
scope is aliased as synopsys::scope.

Syntax
al i as [<nanme> <comand>]

nane

This argument specifies the alias name.

command

This argument specifies the alias name for the UCLI command.
Examples
ucli%alias

This command displays all the commands that are currently

aliased.

ucli%alias ny_start start

Commands Feedback

3-176

Feedback

This command creates an alias, ny_st art , for the UCLI
command, st ar t . This command displays the new alias as:

nmy_start

unalias

Use this command to remove the alias you have specified for a UCLI
command.

Syntax
unal i as [<name>]

nanme
Specifies the name of the alias that you want to remove.
Examples

ucli%unalias ny_start
This command would remove the alias ny_start.

listing
Use this command to display source code on either side of the

executable line from the simulation’s current or active scope.

For more information, see the section “Current Scope and Active
Scope”.

Syntax

listing [-nodisplay] [-active|-current] [-up|-down]
[<nLi nes>]

Commands

3-177

listing [-nodisplay] [-file <fname>] -line <lineno>
[<nLi nes>]

-active|-current

Use this option to display code from either the active point or the
current point. By default, the source code is displayed from the
active point. This is referred to as the listing point.

nLi nes

Use this option to display nLi nes above and below the listing
point. This number is sticky (thatis, subsequent calls to command
listing will use this value). The default value of nLi nes is 5.

- up| - down

Use this option to move the listing point up or down by a page and
display code. A page is defined as 2 * nLi nes. However, this
does not move the current or active point.

-l1ine <linenunber>

This option is used to move the listing point line number specified
by | i nenunber and display text. However, this does not move
the current or active point.

-file <filename> -line <l|inenunber>

Use this option to move the listing point to the line number
specified by | i nenunber in the file specified by filename and
display text. However, this does not move the current or active
point.

- nodi spl ay

Commands Feedback

3-178

Feedback

Use this option to turn the display of text off. This option can be
used together with any of the previously mentioned options to
move the listing point.

Examples

ucli % listing
This command displays 5 lines above and 5 lines below the listing
point in the current scope. The output of this command depends
on the source code.

ucli%Ilisting -nodisplay 10
This command sets the number of lines of source code displayed
(on subsequent call to command listing) to 10. This command
displays no output.

Related Commands
“scope”

config

Use this command to display or change the current configuration
settings.

Syntax
config [var] [val ue]

var

This argument is any configuration variable. The following table
describes all the configuration variables, their default values,
allowed values, and a brief description on what the variable is
used for:

Commands

3-179

Variable Name

Default
Value

Allowed
Values

Description

aut ocheckpoi nt

of f

on | off

When on, a new checkpoint is
automatically created before or after
every command in the pre-
checkpoint and post-checkpoint list.

aut odunphi er ar chy

of f

on | off

When on, all VPD dump commands
are reissued after the rewind
operation, so that the signals added
after the checkpoint stay in VPD.

aut onxf orce

on

on| off |
ps

Enables propagating forces across
mixed signal boundary. Value ps
enables for cases where the vector is
mapped to smaller sizes.

checkpoi nt conpr essi
on

| ow

| ow |
medi um |
hi gh

Specify the checkpoint compression
level when saving session.

A lower compression level implies
much faster runtime.

checkpoi nt dept h

10

<N>

The number of checkpoints that can
be created using the checkpoi nt -
add command. If the number of
existing checkpoints reaches this
level, oldest checkpoint is deleted
automatically to create space for the
new one.

checkpoi nt di stri but
i on

hybri d

| og |
hybri d

Specify the desired checkpoint
distribution by auto-checkpointing.

| og - increasingly more checkpoints
are kept towards the current
simulation execution position.

hybri d - half of the checkpoints are
reserved to create alinear distribution
and other half is used as by log.

Commands

3-180

Feedback

Variable Name

Default
Value

Allowed
Values

Description

checkpoi nt generat e

0

<N>

Set the maximum number of
automatic checkpoint generation to
<N>, where <N> is an integer. The
default is don't create checkpoints
automatically.

checkpoi nti nterval

1000

<N>

Set the time interval to <N> at which
automatic checkpoints are to be
generated, where <N> is an integer
(in milliseconds).

ckpt f sdbcheck

of f

on | off

Controls whether UCLI checkpoint
feature is enabled when FSDB user
tasks are detected.

crmdecho

on

on | off

Controls whether UCLI commands/
results are echoed forsimv - i/-
do.

debugpoi nti nt er val

10

<N>

Specify debug range in seconds
which should be provided before
debug point.

debugpoi nt s

<N>

Specify the maximum number of
debug point checkpoints to be
created.

dover bose

of f

on | off

Controls whether flat trace is created
for synopsys: : do. Default is of f .

endof sim

exit

exit |
noexit |
t ool exit

Controls the behavior after the
simulation’s event queue is empty.
The options are as follows:

noexi t - the simulation remains
active and connected to the
debugger.

t ool exi t - the simulation exits but
UCLI remains active.

exi t - the simulation and UCLI exit.

Feedback

Commands

3-181

Variable Name Default | Allowed Description
Value Values
expandvect ors of f on | off Controls whether Verilog wire type
vectors are bit-blasted or not. Bit
blasting vectors allows strength
information to be dumped, but comes
with a performance cost.
foll owacti vescope auto auto | on | Controls whether the current scope
| off should follow the active scope. Value
aut o means: if there is testbench in
the design then it is on.
ignore_run_in_proc |off on | off Used for ignoring run commands in a
breakpoint’s command script.
keepfuture of f on | off See “Keep Future” .
onerror {} UCLI / Tcl If a do macro does not define a local
script onerror script, this script is used.
(Local onerror scripts are only
enabled when processing macros).
The config oner r or script also runs
if an error occurs in an -i file. If the
onerror script reports a Tcl error,
execution of the - do or - i file aborts.
onf ai | {} UCLI / Tcl Seeoner ror, but applies to failures.
scri pt
post checkpoi nt {} Tcllistofany | Creates a checkpoint immediately
UCLI after any command in the list is
command executed.
pr echeckpoi nt {synops | Tcllistofany | Creates a checkpoint immediately
ys::run | UCLI after any command in the list is
synopsy | command executed.
s::step
synopsy
S:: next
}

Commands

3-182

Feedback

Variable Name Default | Allowed Description
Value Values
printreal asdoubl e of f on | off When of f , UCLI prints real numbers
using the % f format specifier. When
on, UCLI prints real numbers using
the % format specifier.
printreal asdoubl epr | 6 <N> The number of decimal places in the
eci sion mantissa that are printed.
pr onpt default | scope | Changes the command prompt. If
default | | scope is specified, the prompt
<user - displays the current scope (or active
def i ned- scope if config follow activescope is
proc> on). If def aul t is specified, the
prompt is reset to the default string,
whichis ucl i % If a value other than
scope ordef aul t is specified, the
value is expected to be the name of
a user-defined proc, which would
return a string to use as the prompt.
radi x synboli | synmbolic | The default radix used for values
c | binary| | returned by UCLI commands.
deci mal |
octal |
hexadeci m
al
reset on on | off Specify on to have the startcommand
reset configuration variables to their
default state. Specify of f to keep the
current configuration state after a
start.
restorecheckpoints |2 <N> Set the number of most recently

restored checkpoint images to be
kept in memory. 0 means unlimited.

Feedback

Commands

3-183

Variable Name

Default
Value

Allowed
Values

Description

resultlimt

1024

<N>

Sets the maximum number of items

returned by a command, where <N>

is aninteger. Forexample, ifthe show
command has more than 1024 items
to be displayed, it displays only 1024
items and the simulator provides the
following warning message:

War ni ng: The nunber of
results has reached the
maxi num(1024). Moreresults
are omtted.

resultlimtnsg

on

Controls whether the message is
displayed when result limit is
exceeded.

reverse_cbreakpoi nt
s

of f

When on, stops the simulation at C/
C++ breakpoints while running
reverse debug.

rever sedebug

of f

When on, enables reverse debug.
Reverse debugging goes back to the
point where confi g reverse
debug on is executed.

shownet t yper esol ved
type

of f

on | off

Appliesto show -t ype for nettypes.
When on, also show the definition
name and resolution function.

sourcedirs

sdirl
sdir2 ...

A space-separated list of directories
to be searched when looking for
source files. The list given on the
command line replaces the existing
search list. Use an empty string to
delete the entire list.

stepintotblib

on

on | off

When of f , the step command do not
enter UVM code.

Commands

3-184

Feedback

Variable Name Default | Allowed Description
Value Values
st opcheckpoi nts 0 <N> Set the maximum number of
checkpoints which are created by the
UCLI st op commands, where <N> is
an integer. The default is don't create
any checkpoints.
syscaddpl ai nnenbers | of f on| off | | Enable VPD dumping for SystemC
dont care plain members.
syscaddsour cenanes |dontcar [on| off | | Enable VPD dumping for SystemC
e dont care | source names.
syscaddstructtypes |off on| off | | Enable VPD dumping SystemC plain
dont care | members that are struct types.
ti mebase Time [nunber] < | Overrides the time precision of the
precision | unit> simulator and is used for setting the
of the time unit for UCLI commands. The
simulator optional number is 1, 10 or 100, and
unit is one of fs, ps, ns, us, ms or s.
Seeti mePreci si on in the “senv”
command section.
ucl i sourceretvalue |off on | off Controls the return value (0 | 1) of the

Tcl cat ch command when an
erroneous Tcl file is sourced. The
default return value is 0. Returns 1
when enabled.

Feedback

Commands

3-185

Variable Name Default | Allowed Description
Value Values
uvncheckpoi nts of f on | off Creates checkpoints for UVM runand
build phases.
uvndebugpoi nt's of f on | off Creates debug points on UVM errors.
vhdl assertexit of f of f | UCLI exits when the assertion
war ni ng | | severity level is greater than or equal
error | to what is specified.
failure
vhdl asserti gnore not set not set | Ignores VHDL assert message with
noi gnor e lower than or equal to severity:
| note | not set or noi gnor e - no assert
war ni ng | | message is ignored, not e - any
error | assert message with severity of note
failure is ignored, war ni ng - any assert
message with severity of note/
warning is ignored, error - any
message with severity of note/
warning/error is ignored, f ai | ur e -
any message with severity of note/
warning/error/failure is ignored.
vi rtual checkpoints |on on | off See the section “Virtual Checkpoints”

Commands

3-186

Examples
ucli % confi

g

This command displays the current configuration settings and
their values, and displays the following output:

aut onxf orce: on
cndecho: on
dover bose: off

endof sim exit
expandvect ors:

fol | owacti vescope:

of f

i gnore_run_in_proc:

onerror:
pronpt :

{}

def aul t

aut o

of f

Feedback

radi x: synbolic
reset: on
resultlimt: 1024
resultlimtnsg: on
sourcedirs: {}

ti mebase: 1NS

i % config radix binary
This command changes the default radix to binary for all values

returned from the simulation. This command displays the value
of the changed variable.

uc

bi nary

Related Command

“senv”

Multi-level Mixed-signal Simulation

Feedback

This section describes the following command:

° ace

ace

ACE (Analog Circuit Engine) Commands Interface. Use this
command to send arguments ‘as an interactive command string' to
the transistor-level simulators such as TimeMill or PowerMill.

Note:
This command can be used only with Analog Co-simulation.

Commands

3-187

Syntax
ace <anal og_cnd> [options]

anal og_cnd

Any transistor-level simulator command.

opti ons

Any options to the above anal og_cnd command.

Examples

ucli % ace help
This command displays all transistor-level simulator commands,
and displays the following output:

Anal ysi s and Trace

get _inst_paramget_simtine |list_el emnane

Specman Interface Command

This section describes the following command:

° sn

SN
You can use this command to perform the following tasks:

* Execute Specman e-code while still in the UCLI shell.

* Go to the Specman prompt, execute e-code and return to UCLI.

Commands Feedback

3-188

Feedback

You can return to the UCLI prompt from the Specman prompt by
issuing the r est or e command at Specman prompt.

Note:

All Specman related environmental settings needs to be set
before executing this command.

For more information on how to set your environment and run
Specman, see the chapter entitled, Integrating VCS with
Specman, in the VCS User Guide.

Syntax
sn [Specman_Conmands]

Specman_Conmmands

Specman-related commands.

Examples

ucli% sn
This command displays the Specman prompt. All Specman

related e-code commands can be executed at this prompt. This
command displays the following output:

Specman>

ucli%sn | oad test.e
This command executes the Specman e-code inthefile,t est . e,

without leaving the UCLI prompt. The output of this command
depends on the e-code in the t est . e file.

Commands

3-189

Expression Evaluation for stop/sexpr Commands

This section describes the following topics:

» “Extended the Expression Grammar”

* “Verilog Array and Bit Select Indexing Syntax Support”

Extended the Expression Grammar

The Verilog operators that are equivalent to the existing VHDL
operators are supported. The following list maps Verilog operators to

the existing VHDL operators:

e Itonot

* 9 to mod

e <<togll

e >>toosrl

e ==to=

e I=to/=

+ &&toand
 |[toor

Verilog Array and Bit Select Indexing Syntax Support

Following Verilog operators are supported:

» case equal "==="

Commands

3-190

Feedback

Feedback

case not equal "'=="
~& bitwise nand

~| bitwise nor

A bitwise xor

~N bitwise xnor

N~ bitwise xnor

Commands

3-191

Commands Feedback

3-192

A

Using the C, C++, and SystemC Debugger

Feedback

This chapter describes debugging VCS designs that include C, C++,
and SystemC modules with UCLI. This chapter includes the
following sections:

Getting Started

C Debugger Supported Commands

Common Design Hierarchy

Interaction With the Simulator

Configuring CBug

Supported Platforms

CBug Stepping Features

Specifying Value-Change Breakpoint on SystemC Signals

Using the C, C++, and SystemC Debugger
4-1

» Driver/Load Support for SystemC Designs in Post-Processing
Mode

* Dumping Source Names of Ports and Signals in VPD
e Dumping Plain Members of SystemC in VPD
* Supported and Unsupported UCLI and CBug Features

» UCLI Save Restore Support for SystemC-on-top and Pure-
SystemC Designs

Getting Started

This section describes how to get started for using CBug with UCLI.

Important:

You need to add the - ucl i 2Pr oc command when you want to
enable debugging of SystemC designs before you call cbug in

the batch mode (ucli). A warning message appears if you do not
add this command.

For more information about the - ucl i 2Pr oc command, see the
section “ucli2Proc” .

Using a Specific gdb Version

Debugging of C, C++, and SystemC source files relies upon a gdb
installation with specific patches. This gdb is shipped as part of the
VCS image and is used, by default, when CBug is attached. The
manual setup or installation of gdb is not required.

Using the C, C++, and SystemC Debugger Feedback
4-2

Feedback

Starting UCLI With the C-Source Debugger

The following procedure outlines the general flow for using UCLI to
debug VCS (Verilog, VHDL, and mixed) simulations containing C,
C++, and SystemC source code.

Note that the - debug_acccess+al | option enables line
breakpoints for the HDL (Verilog, VHDL) parts only. It does not
enable line breakpoints for C files. You must compile C files with the
- g C compiler option, as follows:

* When invoking the C/C++ compiler directly:

gcc ... -9 ...
g++ ... -g ...

* When invoking the simulator:
VCS ... -CFLAGS -g ...
syscan ... -CFLAGS -g ...
syscsim... -CFLAGS -g ...

The following procedure describes attaching the C-source debugger
to run Verdi to debug VCS (Verilog, VHDL, and mixed) simulations
containing C, C++, and SystemC source code:

1. Compile VCSwith C, C++, or SystemC modules normally, making
sure to compile all C files you want to debug.

For example, with a design with Verilog on top of a C or C++
module:

gcc -g [options] -c ny_pli_code.c

vcs +vc -debug_acccess+all -P ny_pli _code.tab
my_pli _code.o

Or, with a design with Verilog on top of a SystemC model:

syscan -cpp g++ -cflags "-g" ny_nodul e. cpp: ny_nodul e
VCS -cpp g++ -sysc -debug acccess+all top.v

Using the C, C++, and SystemC Debugger
4-3

Note that you must use the - debug_acccess+al | option to
enable debugging.

2. Start UCLI as follows:
simv -ucli

3. Start the C Debugger as follows:
ucli % cbug

The command, synopsys: : cbug explicitly starts the C
Debugger. The C Debugger starts automatically when a
breakpoint is set in a C source code file.

Detaching the C-Source Debugger

You can detach and re-attach the C-source debugger at any time
during your session.

To detach the C-source debugger, enter cbug - det ach on the
console command line.

C Debugger Supported Commands

C Debugger supports the following commands:

e continue
e run
e next

e next -end

Using the C, C++, and SystemC Debugger Feedback
4-4

Feedback

e step

« finish

e get -values

 stack

e dunp (of SystemC objects)
 cbug

Note:

Save/restore is supported for simulations that contain SystemC
or other user-written C/C++ code (for example, DPI, PLI, VPI,
VhPI, DirectC), however, there are restrictions. See the
description of the 'save' and 'restore' command in the UCLI User
Guide for complete details. CBug must be detached during a
'save' or 'restore' command but can be re-attached afterwards.

C Debugger does not support the following commands:

 force (applied to C or SystemC signals)
* rel ease (applied to C or SystemC signals)
 drivers (applied to C or SystemC signals)
* | oads (applied to C or SystemC signals)

Note:
This section uses the complete UCLI command names. If you are

using a command alias file such as the Synopsys-supplied alias
file, enter the alias on the UCLI command line.
cbug

Enables debugging of C, C++, and SystemC source code.

Using the C, C++, and SystemC Debugger
4-5

cbug -detach

Disables debugging of C, C++, and SystemC source code.

scope

The scope command is supported for SystemC instances.

show

show [-i nstances| - si gnal s| - ports] is supported for
SystemC instances, for example, show - ports top.inst1l.
Any other type, such as, - scopes, -vari abl es,-virtual is
not supported for SystemC instances. A radix is ignored.

change

The change command is supported in the following two
limitations:

- Only variables that are visible in the current scope of the C
function (such as, local variables, global variables, class
members) can be changed. Hierarchical path names such as,
top.instl. myport are not supported.

- The type must be a simple ANSI type such asi nt, char, or
bool . Changing SystemC bit-vector types suchas sc_i nt <>
or user-defined types is not supported. Any attempt to set an
unsupported data type issues the following error message:

"Unsupported type for setting variable."

st ack

Using the C, C++, and SystemC Debugger Feedback
4-6

Feedback

You can see the stack list when you are stopped in C code. Each
entry of the list indicates source file, line number, and function
name. The function where you are currently stopped appears at
the top of the list. If the source code for a given functionis compiled
without the - g compiler flag, then the file/line number information
Is not available. In this case, CBug selects wi t hout - g. t xt .

The st ack -up| - down command moves the active scope up
or down. The source file corresponding to the active scope is
shown and the get command applies to this scope.

Using the get Command to Access C/C++/SystemC Elements
Note:

When you use the "get" command for SystemC variables, the
value of radix types hex and bin is represented with a prefix '0'
and optionally with a '0x' or 'Ob' format specifier. The prefix '0' is
added if the value field does not start with a '0'. This is visible in
the UCLI get output and in Verdi.

For example, a 16bit value of ('C' notation) 0x8888 appears as
(SystemC notation) 0x08888, and a decimal '3' (11) in a two bit
variable appears as '0b011' in binary radix.

When stopped at a C source location, certain elements are visible
and can be queried with the ucl i : : get command:

Function arguments
Global variables
Local variables

Class members (if the current scope is a method)

Using the C, C++, and SystemC Debugger
4-7

* Ports, sc_si gnal , and plain members of SystemC modules
anywhere in the combined HDL+SystemC instance hierarchy.

» Arbitrary expressions, including function calls, pointers, array
indices, and so on. Note that some characters suchas’[] 'need
to be enclosed with '{ } ' or escaped with '\ ’, otherwise, Tcl
interprets them.

Examples

e ucli::get nyint

e wucli::get this->mcounters
e ucli::get {this->mcounters|?2]}
e wucli::get strlen(this->nane)

The nane specified with the synopsys: : get <nane> argument
refers to the scope in the C source where the simulation stopped (the
active scope). This is important because C source may have multiple
objects with the same name, but in different scopes and which one
Is visible depends on the active scope. That is, <nane> may no
longer be accessible once you step out of a C/C++ function.

Using the get Command through a Hierarchical Path Name to
Access SystemC Elements

The argument of synopsys: : get may refer to an instance within
the combined HDL/SystemC instance hierarchy. All ports,

sc_si gnal s, and all plain member variables of a SystemC instance
can be accessed at any time with the synopsys: : get argument.
Access is possible independent of where the simulation is currently
stopped, even if it is stopped in a different C/C++ source file, or not
in C/C++ at all.

For example, assume the following instance hierarchy:

Using the C, C++, and SystemC Debugger Feedback

4-8

top (Veril og)
m ddl e (Veril og)
bottonD (SystenC)

Where, bot t onD is an instance of the following SC module:

SC MODULE(Bottom {

sc_in<int>1; // SC port

sc_signal<sc_logic>S; // SC signa

int PML; // "plain" nenber variable, ANSI type

str PM2; // "plain" menber variable, user-def type
1
struct str {

int a;

char* b;

3
The following accesses are possible:

synopsys: :get top.m ddl e. bottonD. |
synopsys: :get top.mddl e. bottonD. S
synopsys: :get top.m ddl e. botton0. PML
synopsys: :get top.mddle. bottonD. PM2
synopsys: :get top.mddle. bottonD. PM2. a

Access is possible at any point in time, independent of where the
simulation stopped. Note that this is different from accessing local
variables of C/C++ functions. They can only be accessed if the
simulation is stopped within that function.

Also note that accessing plain member variables of SystemC
instances is only possible with the synopsys: : get argument and
not with the synopsys: : dunp argument.

Feedback Using the C, C++, and SystemC Debugger
4-9

Format/Radix

The C Debugger ignores any implicitly or explicitly specified radix.
The format of the value returned is exactly as it is given by gdb (only
SystemC data types are dealt with in a special manner). Besides
integers, you can also query the value of pointers, strings, structures,
or any other object that gdb can query.

SystemC Datatypes

The C Debugger offers specific support for SystemC datatypes, for
example,sc_si gnal <sc_bv<8>>. Whenyou pri nt suchavalue,
gdb usually returns the value of the underlying SystemC data
structure that is used to implement the data type. Normally, this is not
what you require and is considered ineffectual. The C Debugger
recognizes certain native SystemC data types and prints the value in
an intuitive format. For example, it prints the value of the vector in
binary format for sc_si gnal <sc_bv<8>>.

The following native SystemC types are recognized:

* Templatized channel types C<T1>:

C:={ sc_in_clk, sc_in, sc_inout, sc_out, sc_signal,
ccss_param }

Tl :={ bool, [[un]signed] char, [unsigned][l|ong|short]
i nt,

[[long] double] float, sc_logic, sc_|lv, sc_bit,
sc_bv,
sc_[u]int, sc_int_base, sc_big[u]int,
sc_[un] si gned,
sc_fxval[_fast], sc_[u]fix[ed][_fast], sc_string,
char*, void*, struct X* }

When the value of an object Oof such a type Cis to be printed,
then the C Debugger prints the value of O. r ead() instead of O
itself.

Using the C, C++, and SystemC Debugger Feedback
4-10

Feedback

* Native SystemC data types:

T2 :={ sc_logic, sc_lv, sc _bit, sc_bv,
sc_[u]int, sc_int_base, sc_big[u]int,
sc_[un] si gned,

sc_fxval[_fast], sc_[u]fix[ed][_fast], sc_string }

The C Debugger prints the values of these data types in an
intuitive format. Decimal format is taken for sc_[u] i nt,

sc_int_base,sc_bhig[u]int,sc _[un]signed, and binary

format is taken for sc_|1 ogic,sc_|v,sc_bit,andsc_bv.

Example:

SystemC source code:

sc_inint A
sc_out <sc_bv<8>>B
sc_signal <voi d*>;
int D
synopsys::get A
17

synopsys::getB
01100001
synopsys::getC
0x123abc

synopsys: :getD

12

Changing Values of SystemC and Local C Objects Wi
synopsys::change

CBug supports changing the values of C variables and SystemC
sc_si gnal using the UCLI change command.

Example:

th

Using the C, C++, and SystemC Debugger

4-11

change ny_var 42
change top.inst0.signal 0 "1100zzzz"

Changing SystemC Objects

The value change on any SystemC sc_si gnal , either from C++
code or using the change command, modifies only the next value,
but not the current value.

The current value is updated only with the next SystemC delta cycle.
Therefore, you may not view the effect of the change command
directly. If you query the value with the UCLI get command, then you
can see the next value because the get command retrieves the next
value, but not the current value for sc_si gnal .

However, accessing sc_si gnal withread() inside the C++ code,
displays the current value until the next SystemC delta cycle occurs.
CBug generates a message explaining that the assignment is
delayed until the next delta cycle.

Note:

A change may compete with other accesses inside the C++ code.
If a signal is first modified by the change command, and then if
awrite() happens within the same delta-cycle, thenw it e()
cancels the effect of the earlier change command.

The format of the value specified with the change command is
defined with the corresponding SystemC datatype. ANSI integer
types expect decimal literals. Native SytemC bit-vector types accept
integer literal and bit-string literals.

Examples
SystenC nodul e '"top.inst_0" has
sc_signal <int> sig_int
Using the C, C++, and SystemC Debugger Feedback

4-12

Feedback

sc_signal <sc_int<8> > sig_sc_int
sc_signal <sc_lv<40> > sig_sc_|lv

change

change
change
change
change
change

change
change
change
change
change

t op

t op.
t op.
t op.
t op.
t op.

t op.
t op.
t op.
t op.
t op.

.inst_0.

i nst_0.
i nst_0.
i nst_0.
i nst_0.
i nst_0.

i nst_0.
i nst_0.
i nst_0.
i nst_0O.
i nst_0O.

sig_int

sig_sc_int
sig_sc_int
sig_sc_int

sig_sc_int
sig_sc_int
sig_sc_lv
sig_sc_lv
sig_sc_lv
sig_sc_lv
sig_sc_lv

Supported Datatypes

42 /1l assign deci mal 42

0d015 // assign deciml 15
0b0111ZzzXX [/ / assign bin val ue
OxOf fab // assign hex val ue
15 /| assign decimal 15
-15 /1l assign decimal -15

0d015 /1l assign decimal 15
-0d015 // assign decinmal -15
0b01117zXX // assign bin val ue
OxOf fab // assign hex val ue
0011zzXX [/ assign bin val ue

The following datatypes are supported:

» All types of ANSI integer types, for example, i nt, 1 ong | ong,
unsi gned char, bool , and so on.

» Native SystemC bit-vector types: sc_| ogi ¢c,sc_|v,sc_bv,
sc_int,sc_uint,sc_bigint,andsc_biguint.

Limitations of Changing SystemC Objects

The following are the limitations with this feature:

* Only SystemC objects sc_si gnal and sc_buf f er can be
changed. Changing the value of ports, sc_fi f o, or any other
SystemC object is not supported.

* Youmustaddress SystemC objects by their complete hierarchical
path name or by a name relative to the current scope.

Example:

Using the C, C++, and SystemC Debugger
4-13

scope top.instl.sub inst

change top.inst0O.signal _0 42 // correct

change signal _0 42 // wong, |ocal path not supported
for SystenC

scope top.inst0
change signal 0 43 // correct, scope + |ocal

» User-defined datatypes are not supported.

* Apermanent change (f or ce - freeze) is not supported.

Changing Local C Variables

Local C variables are the variables that are visible within the current
C/C++ stack frame. This is the location where the simulation stops.
However, you can change the frame by using the UCLI st ack - up

or st ack- down command, or by double-clicking on a specific frame
in the Verdi stack pane.

Local C variables are the:

* Formal arguments of functions or methods.
* Local variables declared inside a function or method.

« Member variables visible in the current member function and
global C variables.

Example:

100 void int 1)

101 {

102 char* S = strdup("abcdefg");
103

104 }

105

106 void F()

107 {

Using the C, C++, and SystemC Debugger Feedback

4-14

Feedback

108 int |=42;
109 G 100);
110 ...

111 }

Assume that the simulation stops in function G at line 103.

change | 102 //change formal argl fromGdefinedinline 100
change | OxFF

change S "hij kI™

change {S[1]} "I

scope -up

change | 42 // change variable | fromF defined in |ine 108

Limitations of Changing Local C Variables

The following are the limitations with this feature:

You must attach CBug.

You can change only simple ANSI types like: bool, all kinds of
integers (for example, signed char, int, long long), char *, and
pointers. Arrays of these types are supported if only a single
element is changed.

The format of the value is defined by gdb, for example, 42, 0x2a,
'a ,"this is a test".

SystemC types are not supported, forexample,sc_int, sc_|v
IS not supported.

STLtypessuchasstd::string,std::vector,andsoon,are
not supported.

Using the full path name (for example,t op. i nst _0. ny_int)is
not supported. You can use only local names (for example,
ny_int orthis->ny_int).

Using the C, C++, and SystemC Debugger
4-15

Using Line Breakpoints

You can set line breakpoints on C/C++/SystemC source files using
the Breakpoints dialog box or the command line.

Set a Breakpoint

To create a line breakpoint from the command line, enter the st op
command using the following syntax:

stop -file filenanme -1line |inenunber

Example:

stop -file B.c -line 10
stop -file nodule.cpp -line 101

Instance Specific Breakpoints

Instance specific breakpoints are supported with respect to SystemC
instances only. Specifying no instance means to always stop, no
matter what the current scope is.

If the debugger reaches a line in C, C++, SystemC source code, for
which an instance-specific breakpoint has been set, it stops only if
the following two conditions are met:

* The corresponding function was called directly or indirectly from
a SystemC SC_METHOD, SC_THREAD or SC_CTHREAD process.

* Thename ofthe SystemC instance to which the SystemC process
belongs matches the instance name of the breakpoint.

Using the C, C++, and SystemC Debugger Feedback
4-16

Feedback

Note that C functions called through the DPI, PLI, DirectC, or VhPI
interface never stop in an instance-specific breakpoint, because
there is no corresponding SystemC process.

You must use the name of the SystemC module instance and not the
name of the SystemC process itself.

Breakpoints in Functions

You can also define a breakpoint by its C/C++ function name using
the following command line:

stop -in function

Examples:

stop -in my_c_function
stop -in stimuli::clock_action()
Restriction

If multiple active breakpoints are set in the same line of a C, C++, or
SystemC source code file, then the simulation stops only once.

Deleting a Line Breakpoint

To delete a line breakpoint, enter st op - del et e <i ndex> and
press Enter.

Using the C, C++, and SystemC Debugger
4-17

Stepping Through C Source Code

Stepping within, into, and out of C sources during simulation is
accomplished using the st ep and next commands. Extra
arguments used with either the st ep or next command, such as
-t hread is not supported for C code.

Important: ONLY next -end IS ALLOWED.

Stepping within C Sources

You can step over a function call with the next command, or step
into a function with the st ep command.

Note:
Stepping into a function that was not compiled with the - g option
is generally supported by gdb and CBug. However, in some cases,
gdb becomes confused where to stop next, and may proceed
further than anticipated. In such cases, you should set a
breakpoint on a C source that should be reached soon after the
called function finishes and then issue the cont i nue command.

Use the st ack - up command to open the source code location
where you want to stop, set a breakpoint, and then continue.

Cross-stepping Between HDL and C code

Cross-stepping is supported in many, but not all cases, where C
code is invoked from Verilog or VHDL code. The following cases are
supported:

Using the C, C++, and SystemC Debugger Feedback

4-18

Feedback

From Verilog caller into a PLI C function. Note that this is only
supported for the cal | function, and not supported for the m sc
or check function, and also only if the PLI function was statically
registered.

From the PLI C function back into the Verilog caller.
From Verilog caller into DirectC function and also back to Verilog.

From VHDL caller into a VhPI f or ei gn C function that mimics a
VHDL function, and also back to VHDL. Note that the cross-step
Is not supported on the very first occasion when the C function is
executed. Cross-steppingis possible for the 2nd, 3rd and any later
call of that function.

From Verilog caller into an import DPI C function, and also back
to Verilog.

At the end of a Verilog export DPI task or function back into the
calling C function. Note that the HDL- >C cross-step is only
possible if the Verilog code was originally reached through a
cross-step from C- >HDL.

All cross-stepping is only possible if the C code has been compiled
with debug information (gcc - g).

Cross-stepping in and out of Verilog PLI Functions

When you step through HDL code and reach user-provided C
function call, such as a PLI function like $nypri nt f, then the next
command steps over this function. However, the st ep command
steps into the C source code of this function. Consequently, st ep/
next commands walk through the C function and finally you return
to the HDL source. Thus, seamless HDL- >C- >HDL stepping is
possible. This feature is called cross-stepping.

Using the C, C++, and SystemC Debugger
4-19

Cross-stepping is supported only for functions that meet the
following criteria:

e PLI function
» Statically registered through a tab file
« Thecal | call only (but not m sc or check)

Cross-stepping into other Verilog PLI functions is not supported.
However, an explicit breakpoint can be set into these functions which
achieves the same effect.

Cross-Stepping In and Out of VhPI Functions

Cross-stepping from VHDL code into a C function that is mapped
through the VhPI interface to a VHDL function, is supported with
certain restrictions: a cross-step in is not possible on the very first
occasion when the C function is executed. Only later calls are
supported. A cross-step out of C back into VHDL code is always
supported.

Cross-stepping is not supported for C code mapped through the
VhPI interface onto a VHDL entity.

Cross-Stepping In and Out of DirectC Functions

Cross-stepping from Verilog into a DirectC function is supported, as
Is cross-step back out. There are no restrictions.

Cross-Stepping In and Out of DPI Code

Cross-stepping between SystemVerilog and import/export DPI
functions is supported with the following restrictions:

Using the C, C++, and SystemC Debugger Feedback
4-20

e Cross-step from Verilog into an import DPI function is always
supported.

» Cross-step from an import DPI function back into the calling
Verilog source code is supported only if this DPI function was
originally entered with a cross-step. That is, performing
continuous st ep commands leads from the Verilog caller into and
through the import DPI function and back to the Verilog
caller.statementinto the import DPI function, through that function
and finally back into the calling Verilog statement.

However, if the DPI function was entered through a r un
command, and the simulation stopped in the import C function
due to a breakpoint, then the cross-step out of the import DPI
function into the calling Verilog statement is not supported. The
simulation advances until the next breakpoint is reached.

» Cross-step from C code into an export Verilog task or function is
always supported.

» Cross-step from an export DPI task/function back into the calling
C source code is supported only if this DPI task/function was
originally entered with a cross-step. That is, performing
continuous st ep commands leads from the C caller, into and
through the import DPI task/function, and back to the C caller.

However, if the export DPI task/function was entered through a
r un command, and the simulation stopped in the export task/
function due to a breakpoint, then the cross-step out of the export
DPI function into the calling C statement is not supported. The
simulation advances until the next breakpoint is reached.

Feedback Using the C, C++, and SystemC Debugger
4-21

Cross-Stepping from C into HDL.:

Stepping from C code (thatis called as a PLI /. . . function) into
HDL code is generally supported. This is accomplished using one of
the following methods:

» If the C function was reached by previously cross-stepping from
HDL into C, then CBug is able to automatically transfer control
back to the HDL side once you step out of the C function. In this
case, type st ep or next in C code.

* Inall other cases, CBug is not able to detect that the C domain is
exited and needs an explicit command to transfer control back to
the HDL side. When you use st ep or next command that leaves
the last statement of a C function called from HDL, then the
simulation stops in a location that belongs to the simulator kernel.
Usually, there is no source line information available since the
simulator kernel is generally not compiled with the -g option.
Therefore, you do not see specific line/file information. Instead, a
file without - g. t xt is displayed.

If this occurs, you can proceed as follows:
sSynopsys: : conti nue orrun

or

synopsys: : next -end

Thecont i nue command brings you to the next breakpoint, which
can either bein HDL or C source code. The next - end command
stops as soon as possible in the next HDL statement, or the next
breakpoint in C code, whichever comes first.

Using the C, C++, and SystemC Debugger Feedback
4-22

Feedback

Cross-Stepping In and Out of SystemC Processes
The C Debugger offers specific support for the SystemC kernel.

If you step out of a SC_METHQOD process, then st ep or next
statement stops in the next SystemC or HDL process that is
executed.

If youstepintoa’wait(...)’ statementofa SC [C] THREAD
process, then st ep or next statement stops in the next SystemcC or
HDL process that is executed. Continuously including st ep or next
statements eventually comes back to the next line located after the
wai t(...) statement.

If stopped in SystemC source code, st ep or next command stops
at the next statement exactly the way it does with gdb.

Direct gdb Commands

You can send certain commands directly to the underlying gdb
through the cbug: : gdb UCLI command. The command is
immediately executed and the UCLI command returns the response
from gdb.

The command is as follows:
cbug: : gdb gdb-cnd

gdb- cnd is an arbitrary command accepted by gdb including an
arbitrary number of arguments, for example, info sources.
Performing cbug: : gdb automatically attaches CBug, sends
<gdb- cnd> to gdb, and returns the response from gdb as the return
result of the Tcl routine. The result may have one or multiple lines.

Using the C, C++, and SystemC Debugger
4-23

In most cases, the routine successfully returns, even if gdb itself
issues an error response. The routine issues a Tcl error response
only when gdb- cnd has the wrong format, for example, if it is empty.

Only a small subset of gdb commands are always allowed. These
are commands that positively do not change the state of gdb or simv
(for example, commands show, i nf o, di sassenbl e, x, and so
on). Other commands force cbug: : gdb return an error that cannot
execute this gdb command because it breaks CBug.

Example:

ucl i % cbug: : gdb i nfo sources
Source files for which synbols have been read in:
../ pythag.c, rmapats.c, ctype-info.c, C-ctype.c,
C nane.c, ../../lgcc/libgcc2.c

Source files for which synbols will be read in on demand:
ucli % cbug: : gdb whati s pythag
type = int (int, int, int)
ucli %

Add Directories to Search for Source Files

Use the gdb di r di r- name command to add directories to search
for source files.

Example:

ucli%gdb dir /u/joelproj/abc/src

Use the following command to check which directories are searched:

ucli % gdb show dir
Source directories searched:
/uljoel proj/abc/src: $cdir: $cwd

Using the C, C++, and SystemC Debugger Feedback

4-24

Adding directories may be needed to locate the absolute location of
some source files.

Example:

ucl i % cbug: : expand_pat h_of source file foo.cpp

Coul d not locate full path nane, try "gdb |i st
sc_fxval.h:1" followed by "gdb info source" for nore
details. Add directories

to search path with "gdb dir <src-dir>".
ucli%gdb dir /u/joel/proj/abc/src

ucl i % cbug: : expand_pat h_of _source_file foo.cpp
[uljoel proj/abc/src/foo.cpp

Note that, partially adding a directory invalidates the cache used to
store absolute path names. Files for which the absolute path name
has already been successfully found and cached are not affected.
However, files for which the path name cannot be located, are tried
again the next time a new directory is added.

Common Design Hierarchy

Feedback

An important part of debugging simulations containing SystemC and
HDL is the ability to view the common design hierarchy and common
VPD trace file.

The common design hierarchy shows the logical hierarchy of
SystemC and HDL instances in the way it is specified by you. See
the VCS / DKI documentation for more information on how to add
SystemC modules to a simulation.

Using the C, C++, and SystemC Debugger
4-25

The common hierarchy shows the following elements for SystemC
objects:

* Modules (instances)
* Processes:
- SC _METHOD, SC THREAD, SC CTHREAD

e Ports:sc_in, sc_out, sc_inout,

sc_I n<T>

- sc_out <T>

- SC_i hout <T>

- sc_in_clk (= sc_in<bool >)
- sc_in_resol ved

- sc_in_rv<N>

- sc_out _resol ved

- sc_out _rv<N>

- sc_inout _resol ved

sc_inout rv<N>

e Channels:

sc_si gnal <T>

sc_signal resolved

sc_signal _rv<N>

sc_buffer<T>

Using the C, C++, and SystemC Debugger Feedback
4-26

Feedback

With datatype T being one of the following:

sc_cl ock
rvm sc_si g<T>
rvmsc_var<T>

rvm sc_event

bool

si gned char

[unsi gned] char
si gned short
unsi gned short
si gned i nt
unsi gned i nt
si gned | ong
unsi gned | ong
sc_logic
SCc_i nt <N>
SC_ui nt <N>
sc_bi gi nt <N>
sc_bi gui nt <N>
sc_bv<N>

sc_| v<N>

Using the C, C++, and SystemC Debugger

4-27

- sc_string

All of these objects can be traced in the common VPD trace file. Port
or channels that have a different type, for example, a user-defined
struct, are shown in the hierarchy, but cannot be traced.

The common design hierarchy is generally supported for all
combinations of SystemC, Verilog, and VHDL.The pure-SystemC
flow (the simulation contains only SystemC, but neither VHDL nor
Verilog modules) is also supported.

Post-Processing Debug Flow

There are different ways to create a VPD file, however, not all
methods are supported for common VPD with SystemC. The
following is a list of the supported methods:

* Run the simulation in - ucl i mode and apply the
synopsys: : dunp command.

* Interactive, using Verdi and the Add to Waves... command.

The following s a list of the unsupported methods:

* With $vcdpl uson() statement(s) in Verilog code.
* With the VCS +vpdfi | e option.

If you create a VPD file using one of the unsupported methods, you
do not see SystemC objects at all. Instead, you can find dummy
Verilog or VHDL instances in the location where the SystemC
instances were expected. The simulation prints a warning that
SystemC objects are not traced.

Using the C, C++, and SystemC Debugger Feedback

4-28

Feedback

Use the following commands to create a VPD file when SystemC is
part of the simulation:

Create file dunpall. ucl

cbug: : config add_sc_source_i nfo al ways <-- this line
is optional, *1
synopsys: : cbugsynopsys: : cbug <-- this line

is optional, *1
Synopsys: : scope .
set fid [synopsys::dunp -file dunp.vpd -type VPD
puts "Creating VPD file dunp.vpd"
synopsys: :dunp -add "." -depth 0 -fid $fid
synopsys: : conti nue

Then, run the simulation as follows:

simv -ucli < dunpall. ucl

The synopsys: cbug line is optional. If specified, CBug attaches
and stores the source file/line information for SystemC instances that
are dumped in the VPD file. This is convenient for post-processing;
a double-click on a SystemC instance or process opens the source-
code file.

Note that, all source code must be compiled with the - g compiler
flag that slows down the simulation speed (how much varies with
each design). Furthermore, attaching CBug consumes additional
CPU time, during which the underlying gdb reads all debug
information. This seconds runtime overhead is constant. Lastly,
attaching CBug creates a gdb process that may require a large
amount of memory if the design contains many C/C++ files compiled
with the - g compiler flag. In summary, adding synopsys: cbugisa
tradeoff between better debugging support and runtime overhead.

Using the C, C++, and SystemC Debugger
4-29

Interaction With the Simulator

Usually, CBug and the simulator (for example, si mv) work together
unnoticed. However, there are a few occasions when CBug and the
simulator cannot fully cooperate, and this is visible. These cases
depend on whether the active point (the point where the simulation
stopped, for example, due to a breakpoint) is in the C domain or the
HDL domain.

Prompt Indicates Current Domain

The appearance of the prompt changes if the simulation is stopped
in HDL or in C domain.

In HDL domain, the prompt appears as follows:

e ucli %

In C domain, the prompt appears as follows:

« CBug%

Commands Affecting the C Domain

Commands that apply to the C domain, for example, setting a BP in
C source code, can always be issued, no matter which domain the
current point lies.

Most commands that apply to the C domain, for example, setting a
breakpoint in C source code, can always be issued, no matter which
domain the current point lies. Some commands, however, can only
be applied when the simulation is stopped in the C domain:

Using the C, C++, and SystemC Debugger Feedback

4-30

Feedback

e The st ack command to show which C/C++ functions are
currently active.

* Reading a value from C domain (such as, a class member) with
the synopsys: : get command is sensitive to the C function
where the simulation is currently stopped. Only variables visible
in this C scope can be accessed. That is, it is not possible to
access, for example, local variables of a C/C++ function or C++
class members when stopped in HDL domain. Only global C
variables can always be read.

Combined Error Message

When CBug is attached and you enter a command such as get
xyz, then UCLI issues the command to both the simulator and the C
Debugger (starting with the one where the active point is available,
for example, starting with simv in case the simulation is stopped in
the HDL domain). If the first one responds without an error, then the
command is not issued again to the second one. However, if both
simv and CBug issue an error message, UCLI combines both the
error messages into a new message which is then displayed.

Example:

Error: {
{tool: Error: Unknown object}
(cbug: Error: No synbol "xyz" in current context.;}

Update of Time, Scope, and Traces

Anytime, when simulation is stopped in C code, the following
information is updated:

Using the C, C++, and SystemC Debugger
4-31

e Correct simulation time.

» Scopevariable (accessible withsynopsys: : env scope)is either
setto avalid HDL scope ortothe <cal I i ng- G- donmai n> string.

- If you stop in C/C++ code while executing a SystemC process,
then the scope of this process is reported.

- String <cal | i ng- G- domai n> is reported when the HDL
scope that calls the C function is not known. This occurs, for
example, in case of DPI, PLI, VhPI, or DirectC functions.

» All traces (VPD file) are flushed.

Configuring CBug

Use the cbug: : confi g UCLI command to configure the CBug
behavior. The modes listed below are supported.

Startup Mode

When CBug attaches to a simulation, you can choose from two
different modes. To select the mode before attaching CBug, enter
the following UCLI command:

cbug: :config startup fast_and_sl oppy| sl ow_and_t hor ough

The default mode is sl ow_and_t hor ough and may consume
much CPU time and virtual memory for the underlying gdb in case of
large C/C++/SystemC source code bases with many 1000 lines of C/
C++ source code.

Using the C, C++, and SystemC Debugger Feedback
4-32

Feedback

The f ast _and_sl| oppy mode reduces the CPU and memory
needed, however, all the debug information is not available to CBug.
Most debugging features still work fine, but there may be occasional
problems, for example, setting breakpoints in header files may not
work.

Attach Mode

cbug: :config attach auto|al ways|explicit

The at t ach mode defines when CBug attaches. The default value
is aut o and attaches CBug in some situations, for example, when
you set a breakpoint in a C/C++ source files and when double-
clicking a SystemC instance. The al ways value attaches CBug
whenever the simulation starts. If the expl i ci t value is selected,
CBug is never automatically attached.

cbug::config add_sc_source_info auto|always|explicit

The cbug: : add_sc_sour ce_i nf o command stores source file/
line information for all SystemC instances and processes in the VPD
file. Using this command may take time, but is useful for post-
processing a VPD file after the simulation ends. The aut o value
invokes cbug: : add_sc_sour ce_i nf o automatically when CBug
attaches and the simulation executes without the Verdi GUI; the

al ways value invokes cbug: : add _sc_source_info
automatically whenever CBug attaches; the expl i ci t value never
invokes it automatically. The default value is aut o.

Using the C, C++, and SystemC Debugger
4-33

STL Types Variables for Improved CBug Flow

The CBug command is used to enable debugging C, C++, or
SystemC modules that are included in VCS designs. Alternatively,
the CBug starts automatically when a breakpoint is set in a C/C++/
SystemC source code file.

STL types, such as array, list, vector, and string are supported to
generate readable format content in the CBug output.

For example,

CBug% get ny_vec
my_vec : {[0] = 100, [1] = 200, [2] = 300}

Use Model

To use STL types in CBug command, specify the command as
follows:

cbug: : config enabl e_python on

Usage Example
The following example illustrates the usage of STL types:

Example 4-1 CBug flow with supported STL type variables:

#i ncl ude <systent. h>
#1 ncl ude <vector>

int sc_main(int argc, char **argv)

{
std::vector<int> ny_vec;
ny_vec. push_back(100);
ny_vec. push_back(200);
my_vec. push_back(300);
Using the C, C++, and SystemC Debugger Feedback

4-34

Feedback

my_vec. push_back(400);
nmy_vec. pop_back();
sc_start();

sc_stop();

return O;

}

The following are the commands to run the test case:
cbug: : config enabl e_python on
synopsys::stop -file vector.cpp -line 15

run
get ny_vec

The following output is generated:

CBug% get ny_vec
{[0] = 100, [1] = 200, [2] = 300}

Limitations

The following are the limitations for this feature:

* The FSDB file dumping is not supported for the STL types.

 The STL types on native SystemC data types are not supported.

Using a Different gdb Version

Debugging of C, C++, and SystemC source files relies upon gdb
version 6.1.1 with specific patches. This gdb is shipped as part of the
VCS image and is used by default when CBug is attached. No
manual setup or installation of gdb is necessary.

Using the C, C++, and SystemC Debugger
4-35

However, it is possible to select a different gdb installation by setting
the CBUG_DEBUGGER environment variable before starting the
simulation or Verdi.

Supported Platforms

Interactive debugging with CBug is supported on the following
platforms:

 RHEL32/Suse, 32-bit
 RHEL64/Suse, 64-bit (VCS option - f ul | 64 or - node64)

An explicit error message is printed when you try to attach CBug on
a platform that is not supported.

CBug Stepping Features

This section describes the enhancements made to CBug to make
stepping smarter in the following topics:

* “Using Step-Out Feature” on page 37
e “Automatic Step-Through for SystemC” on page 37

Using the C, C++, and SystemC Debugger Feedback

4-36

Feedback

Using Step-Out Feature

You can use the step-out feature to advance the simulation to leave
the current C stack frame. If a step-out leaves the current SystemC
process and returns into SystemC or HDL kernel, then simulation
stops on the next SystemC or HDL process activation, as usual, with
a sequence of next command.

CBug currently supports the existing next - end UCLI command.
This command is used to advance the simulation until you reach the
next break point or exit the C domain, and then you are back into the
HDL domain.

The behavior of this command is changed to support the step-out
functionality. This command is now equivalent to the gdb f i ni sh
command. This feature is continued under a new UCLI command
next —hdl .

Note:
The step-out feature does not apply in an HDL context.

Automatic Step-Through for SystemC

The following are some of the typical scenarios where you can step
into SystemC kernel functions:

« Read()orWite() functions for ports or signals.
» Assignment operator gets into the overloaded operator call.

e sc_fifo,tImfifo,sc_tinmeandother built-in data type
member functions or constructors.

 wait () calls and different variants of wai t () calls.

Using the C, C++, and SystemC Debugger
4-37

» Performing addition or other operations on ports gets inside the
kernel function when you perform a step. This occurs if you have
a function call as part of one of its arguments to the add function.

A st ep should step-through to the next line in the user code or at
least outside the Standard Template Library (STL), but should not
stop within the STL method. CBug does a step-through for any
method of the following STL classes:

e STL containers for example, st d: : stri ng, std: : hash

* Other STL classes for example, vect or , dequeue, | i st ,
st ack, queue, priority queue,set,nultiset, map,
mul t i map, and bi t set

Enabling and Disabling Step-Through Feature
Use the following command to enable the step-through feature:

cbug: : config step_through on

Use the following command to disable the step-through feature:

cbug: :config step_through off

If step-through is disabled and UCLI st ep ends in a SystemC kernel
or STL code, then an information message is generated if you use
next -end (=gdb fi ni sh). This message states that

cbug: : confi g enabl e stepover exists, and may be useful.
This message is generated only once when CBug is attached.

Using the C, C++, and SystemC Debugger Feedback

4-38

Recovering from Error Conditions

In some cases, it is possible that an automatic step-through does not
quickly stop at a statement, but triggers another step-through,
followed by another step-through, and so on. In this case, you notice
that Verdi or UCLI hangs, but may not be aware that the step-through
Is still active.

CBug must recognize this situation and take action. This happens if
a step-through does not stop on its own after 10 consecutive
iterations of internal f i ni sh or st ep.

CBug can either stop the chain of internal f i ni sh or st ep
sequences on its own, and report a warning which states that the
automatic step-through is aborted and how to disable it.

Specifying Value-Change Breakpoint on SystemC
Signals

Feedback

CBug supports value-change breakpoints on Verilog, VHDL, and
SystemC signals. You can set value-change breakpoints on the
following types of SystemC objects:

* Channels
- sc_signal <T>
- sc_buffer<T>
- sc_signal resol ved
- sc_signal _rv<N>

- sc_cl ock

Using the C, C++, and SystemC Debugger
4-39

 Ports

sc_I n<T>
- sc_out<T>
- ScC_i nout <T>

- Resolved ports (sc_i n_resol ved, sc_i nout _resol ved,
sc_out _resolved,sc_in_rv,sc_inout _rv,
sc_out _rv)

Note:

Thesc_fifo,tl mfifo channels and associated ports, also
named sc_event s (SystemC 2.3) are not supported.

Capabilities for All Data Types

You can set a value-change breakpoint on a SystemC signal using
the following UCLI command:

stop -change|-event <SC signal >

Example:

stop -change sc_inst.nyPort //stop at any val ue change
stop -event sc_inst.nyPort /lidentical to -change

In the above example, simulation stops any time that the value of the
sc_si gnal changes. The stop happens at the begin of the next
SystemC delta cycle (not at the statement doing the write operation),
after the channel is updated.

In case of sc_buf f er, the simulation stops when the corresponding
sc_event triggers, which is also the case when the same value is
written again. As with sc_si gnal , the simulation stops only at the

Using the C, C++, and SystemC Debugger Feedback

4-40

Feedback

next delta cycle, not at the statement doing the write operation.
However, a single-bit or bit-slices of sc_buf f er stop only when the
selected bits show a real change.

Example:

sc_buffer<int> A

stop -change A /'l stop when the sc_event triggers
stop -change {A[1]} //stop only when bit no 1 changes
stop -change {A[3:2} //stop only when either bit 3 or 2
changes

sc_buffer<bool > B
stop -change B [/ stop when the sc_event triggers
stop -change {B[O0]} //stop only when the val ue changes

Note:

There is no limitation on the data type T. The data type can be
I nt,sc_int,sc_fix oreven a user-defined struct.

Capabilities for Single-Bit Objects

If the SystemC object is a single-bit entity (T=bool or T=sc_| ogi c
or T=sc_cl ock), then you can also specify whether to stop on a
rising edge or a falling edge.

You can set a value-change breakpoint on a single-bit object using
the following commands:

st op -posedge|-negedge|-rising|-falling <SC bit-
si gnal >

stop -change| - event <SC bit-signal >

Using the C, C++, and SystemC Debugger
4-41

Example:

stop -posedge top.sc_inst.bool _sig /| T=bool
stop -negedge top.sc_inst.reset /1 T=sc_l ogic
stop -falling top.sc_inst.reset /| sanme as negedge

stop -change top.sc_inst.reset /'l stop at any val ue change

Note:
The - posedge condition indicates to stop only if the value
changes from 0 to 1. It does not indicate to stop on transitions of
Z-->1 or X-->1. Similarly, the - negedge condition indicates to
stop only on transition from 1 to O.

You can also select a single-bit of a bit-vector type (sc_| v, sc_bv,
sc_[u]int,sc_big[u]int)oran integer type that can be
expressed as a bit-vector (such as, i nt, unsi gned | ong and so
on).

Example:

sc_signal <sc_i nt<10>> S;

sc_in<int> A

stop -posedge {9 2] }
stop -falling {Al 20] }
Note:

You need to escape the square brackets in the UCLI command
(as usual) because TCL interprets them.

Using the C, C++, and SystemC Debugger Feedback

4-42

Feedback

Capabilities for Bit-Slices

If the SystemC object is a bit-vector type (sc_I| v, sc_bv,
sc_[u]int,sc_big[u]int)oran integer type that can be
expressed as a bit-vector (such as, i nt, unsi gned | ong and so
on), then you can set a value-change breakpoint on a bit-slice of this
object.

Example:
sc_signal <sc_i nt <10>> S;
stop -change {S[3:2]}

The breakpoint gets triggered if either the second bit or the third bit
changes. Other bits in the bit-vector are irrelevant.

Note:
Posedge/negedge/falling/rising is not allowed for bit-slices.

Points to Note

» CBug must be attached, if not the following error is observed:

Error-[UCLI - WATCH UNSUPP- SYSC] St op on SystentC obj ect
Unabl e to set break point on SystenC object(s). In the
Cdonmin, it is only supported to set break point with
‘stop -file ... -line .., with "stop -in <function-

name>' or with 'stop -change| posegde| negedge <ni d>'.
Attach CBug with command ' cbug' and try again. You may
need to restart the sinulation w th additional runtine

argunent ' -ucli2Proc’.

» Setting a condition in combination with a value-change breakpoint
on a SystemC object is not supported. It triggers the following
error message:

Error-[CBUG BP- 10] SystentC val ue-change BP fail ed

Using the C, C++, and SystemC Debugger
4-43

Setting a val ue-change breakpoint for SystenC object
"top.sctop.sig_bool' failed: User-defined conditions
are not supported for SystenC objects.

Limitations
The following are the limitations with this feature:

* Plain members are not supported because they have no
sc_event associated to them.

» This feature is partially supported in combination with Virtualizer
(- sysc=i nnoor-sysc=snps_vp). Selecting a slice or a single-
bit of a bit-vector is not supported in combination with Virtualizer.

Driver/Load Support for SystemC Designs in Post-
Processing Mode

This feature enables you to view the driver or load on Verilog signals
in post-processing mode. This enables you to understand from
where the Verilog signal is being driven so that you can back trace
the signal easily in the post-processing mode.

Dumping Source Names of Ports and Signals in VPD

You can view the source names of the SystemC ports and signals in
VPD which makes it easy to identify the port while debugging.

Example:

SC_MODULE(t op)

Using the C, C++, and SystemC Debugger Feedback
4-44

Feedback

{

sc_in<int>p_AA; // Constructor calledw th adifferent nane
sc_in<int> p_BB; // Constructor not called explicitly
sc_in<int>p_CC; // Constructor called w th same nane as port

{ éb_CT(R(top): p_AA(“AA"), p_CC(“p_CC)

};

For the port p_AA, the ‘source name’is ‘p_AA and the ‘OSCI name’
is ‘AA

For the port p_BB, the ‘source name’is ‘p_BB’ and the ‘OSCI name’
is ‘port_0".

For the port p_CC, both the ‘source name’ and ‘OSCI name’ are
same, that is, ‘p_CC..

With this feature enabled, the source names are also shown along
with the OSCI names in the Verdi post-processing mode. (This is
already supported in the Verdi interactive mode.)

The port names in Verdi appear as follows:
AA(P_AA)

port O(p_BB)

p_CC

If the OSCI name is same as the source name, itis shown as “p_CC’
in Verdi.

Using the C, C++, and SystemC Debugger
4-45

Dumping Plain Members of SystemC in VPD

You can dump plain members (members of SystemC modules other
than ports and signals) of SystemC modules into VPD for better
debugging. You can view plain members in the data pane and also
load into the waveform window. This is also supported in the
interactive mode.

Example:

SC_MODULE(stin) {
sc_i n<bool > CLK
sc_out<int> X;
sc_signal <sc_i nt<10> > §;
SC CTOR(stim ...
int mcycl e _no;
sc_int<10> mvar1;
}s
Member variables m cycl e_no and m var 1 are plain members.
They can be dumped in the VPD file along with the ports CLK, X, and

sc_signal S.

Supported and Unsupported UCLI and CBug Features

You can use UCLI commands to debug the pure SystemC design.
The list of supported features in UCLI are as follows:

* View SystemC design hierarchy
» VPD tracing of SystemC objects
» Set breakpoints, stepping in C, C++, and SystemC sources

* Get values of SystemC (or C/C++ objects)

Using the C, C++, and SystemC Debugger Feedback

4-46

e stack [-up]|-down]

e continue/step/next/finish

e run [tine]

The following UCLI features are not supported for SystemC objects:

* Viewing schematics

» Using force, release commands

» Tracing [active] drivers, and loads

« Commands that apply to HDL objects only

In case of a Cont r ol - C(thatis, SI G NT), CBug always takes over
and reports the current location.

When the simulation stops somewhere in System C or VCS kernel,
between execution of user processes, then a dummy file is reported
as the current location. This happens, for example, immediately after
the i ni t phase. This dummy file contains a description about this

situation and the instructions about how to proceed (that is, Set BP
I n SystenC source file, click continue).

UCLI Save Restore Support for SystemC-on-top and
Pure-SystemC Designs

VCS provides the UCLI save and r est or e commands to save the
state of a simulation and to resume the simulation from a given
saved state.

Feedback Using the C, C++, and SystemC Debugger
4-47

The following sections explain usage, coding guidelines, and
limitations of using the UCLI save and r est or e commands with
SystemC-on-top and pure SystemC designs.

» “SystemC with UCLI Save and Restore Use Model”

o “SystemC with UCLI Save and Restore Coding Guidelines”

» “Saving and Restoring Files During Save and Restore”

* “Restoring the Saved Files from the Previous Saved Session”

e “Limitations of UCLI Save Restore Support”

SystemC with UCLI Save and Restore Use Model

UCLI save and r est or e commands work only with the SystemC
del t async flow for SystemC-on-top and pure SystemC designs.

For more information about the UCLI save and restore commands,
see the Unified Command-line Interface User Guide.

SystemCwith UCLI Save and Restore Coding Guidelines

For SystemC-on-top or pure SystemC designs, you must write the
entry point function sc_mai n() .This sc_mai n() function is not
part of the SystemC kernel, and therefore needs to adhere to the
following guidelines to function in the save and rest or e
environment.

* Allocate all SystemC module instances and objects dynamically
using the mal | oc() / newfunction. This is necessary because
the UCLI save and r est or e commands can only save and
restore the heap memory.

Using the C, C++, and SystemC Debugger Feedback
4-48

Do not call constructors for SystemC modules again when the
sc_mai n() functionis called during the restore process. You can
meet this requirement by guarding the code appropriately with a
static variable.

Similarly, functions like sc_set tinme_resol uti on() should
not be called again during the restore process.

The sc_start () call starts the simulation and continues until
simulation terminates. Control never comes back to the

sc_mai n() function aftersc_start () is called. Therefore, do
not place any statements after the sc_start () call (these
statements are never executed).

Example 4-2 shows the supported coding style.

Example 4-2 Supported SystemC Coding Style for Save and Restore

Feedback

int sc_main(int argc, char* argv[])

{
static int isRestore = O;
if (isRestore == 0) {
i sSRestore = 1;
sc_core::sc_set _time_resolution(100, SC PS);
Stinmuli* stiminst = new Stinmuli("stiminst");
CPU BFMF dut = new CPU BFM "stim.inst");
}
sc_start();
return O;
}

Saving and Restoring Files During Save and Restore

You can save all files that are open in read or write mode at the time
of save using the following runtime options. All these files are saved
in the directory named:

Using the C, C++, and SystemC Debugger
4-49

<nane_of the_saved_ i mage>. FlI LES.
- save

Saves all open files in writable mode.

-save file <file nanme> | <directory nane>

Saves all open files in writable mode, and all files that open in
read-only mode, depending on the option you specify:

- With<fi | e nane>, saves the specified open file in read/write
mode.

- With <di rect ory nane>, saves all files in the specified
directory open in read/write mode.

-save file skip <file nane> | <directory nanme>

This allows you to skip saving one or more files depending on the
option:

- With<fi | e name>, skips saving the specified file that is open
in read/write mode.

- With <di rect ory nane>, skips all files in the specified
directory that are open in read/write mode.

Restoring the Saved Files from the Previous Saved
Session

At restore time, you can remap any old path where files were open
at the time of save to the new place where restore searches using
the —pat hrmap option.

Using the C, C++, and SystemC Debugger Feedback

4-50

Example:

% sim -pathmap <file_w th_pat hmaps>

where,

<file w th_pat hmaps>:

<ol d_directory_path_name>: <new _di rectory_pat h_nane>

Limitations of UCLI Save Restore Support

The following are the limitations with this feature:

Feedback

SC_THREADS must be implemented using quick threads, which
are enabled by default. Do not enable POSIX threads using the
SYSC USE PTHREADS environment variable.

The save operation is not allowed when simulation is stopped
inside the C domain.

Cbug needs to be disabled before invoking save and r est or e
commands. You can re-enable it later, when needed.

The save operation just after the simulation starts is not allowed.
Advance the simulation with r un 0 command and then try saving.

Using the C, C++, and SystemC Debugger
4-51

Using the C, C++, and SystemC Debugger Feedback
4-52

Interactive Rewind

Feedback

You can create multiple simulation snapshots using the UCLI
checkpoint feature during an interactive debug session. In the same
debug session, you can go back to any of those previous snapshots,
by using the UCLI rewind feature and do “What if” analysis.

When you create multiple checkpoints, say attimest 1, t2, t 3,
... tn, and want to rewind from your current simulation time to a
previous simulation time say t 2, then all the checkpoints that follows
t2 (t3, t4, and so on.) gets deleted. This is intentional, because
when you go back to history using the rewind operation, you are
given an option to force/release the signal values and continue with
a different simulation path until you get the desired results. This is
called as “What if” analysis. Hence, you can save time by not
repeating the simulation from the start.

Following are the advantages of the Checkpoint and Rewind feature:

Interactive Rewind

5-1

Checkpoint directly saves multiple simulation states and you can
rewind to any of those saved states using rewind.

Checkpoint and Rewind are done by the simulator.
More user friendly, and very quick in performance.

Lists all the checkpoints, within a session, with respective
simulation time.

Interactive Rewind Vs Save and Restore

Interactive rewind seems similar to Save and Restore operation.
Even though there are similarities, there are also differences.

Similarities between Save/Restore and Checkpoint/Rewind

You can save a snapshot at a particular simulation time, when the
simulator is in a Stop State.

You can go back to the previously saved state.

You can remove the intermediate saved data. In Save-Restore,
you delete the saved data. In checkpoint/rewind, you needto issue
the checkpoint -kill or-joi ncommands.

Interactive Rewind Feedback

5-2

Differences between Save/Restore and Checkpoint/Rewind:

Save/Restore Checkpoint/Rewind

Persistent across different simv runs. | Not persistent across simv runs. As soon as
simv quits, all the checkpoint data is lost.

Doesn’t describe saved state. Describes various checkpoint state using the
checkpoint -1ist command. You can
also see the list of checkpoints in the tooltip.

Save/Restore operation is slow. Faster than Save/Restore for the same
simulation run.

Not supported in SystemC Supported for SystemC designs.

Use Model

You can use the Interactive Rewind feature with UCLI only with
the - ucl i 2Pr oc command. For more information about the -
ucl i 2Pr oc command, see the VCS User Guide under the
Simulation category in the VCS Online Documentation.

Use the following command in UCLI to create the simulation
checkpoint.

checkpoint [-list] [-add [<desc>]] [-kill <checkpoint _id>]
[-join [checkpoint id]]

where,

-11 st

Displays all the checkpoints that are set until this time.

-add <desc>

(Optional) Creates a checkpoint with description text <desc>.

Feedback Interactive Rewind

5-3

-ki Il <checkpoint id>

Kills a particular checkpoint state. You cannot kill the 1st
checkpoint, as it is the parent checkpoint.

Example,
-ki I'l O - This option kills all the checkpoints.
-ki I'l 1 -This option Kills the first checkpoint.
- ki I'l 2 -This option kills the second checkpoint.
-joi n <checkpoint id>
Rewinds to a particular checkpoint ID. By default, it rolls back to

the previous checkpoint if no checkpoint ID is specified.

Example

The following example shows how you can create several
checkpoints and then rewind to a specific checkpoint in UCLI.

1. Run the following command to get the ucl i prompt.
simv -ucli -ucli2Proc
2. Add a checkpoint using the command:

ucl i % checkpoi nt —add siml
1
3. Run the simulation using the next , r un, or st ep command.

4. Add another checkpoint using the command:

ucl i % checkpoi nt —add sinR
2

Interactive Rewind Feedback

5-4

5. Run the following command to display the list of checkpoints at
any time.

ucl i % checkpoint -1i st

Li st OF Checkpoints:
1: Tinme : O NS Descr : sinl
2. Tinme : 10 NS Descr : sinR
3: Time : 20 NS Descr : sinB
4: Time : 30 NS Descr : simt
5. Time : 40 NS Descr : sinb

6. Check the time as follows:

ucli % senv tine
40 NS

7. Rewind to a checkpoint using the command:

ucl i % checkpoint —join 3
Al'l the checkpoints created after checkpoint 3 are

renoved.

3

ucli % senv tine

20 NS

ucl i % checkpoi nt —li st

Li st OF Checkpoints:

1: Tinme : O NS Descr : sinl
2. Time : 10 NS Descr : sin?
3: Time : 20 NS Descr : sin8

8. To kill a checkpoint,

ucl i % checkpoint -kill 2
Killed checkpoint Id 2

ucl i % checkpoint -1i st

List O Checkpoints:

1: Time : O NS Descr : sinl
3: Tinme : 20 NS Descr : sinB

Feedback Interactive Rewind

5-5

Limit for Checkpoint Depth

By default, only 10 checkpoints can be created. If you create more
than 10 checkpoints, then the first, second, and further checkpoints
are deleted to accommodate the newly created checkpoints.

However, you can increase the checkpoint depth to a maximum of
50 using the UCLI option checkpoi nt dept h.

Additional Configuration Options

Following are some additional UCLI configuration variables to
control the simulation checkpoint default behavior:

autocheckpoint — Set with the UCLI command

confi g -autocheckpoi nt on/ of f.By default, this switch is
off. When you switch it on, a new checkpoint is automatically
created before or after every command in the pre-checkpoint and
post-checkpoint list (as explained in the following points).

autodumphierarchy — Set with the UCLI command

confi g -aut odunphi erarchy on/ of f. By default, this
switch is off. When you switch it on, the VPD dump commands
are reissued after the rewind operation, so that the signals added
after the checkpoint stay in VPD.

checkpointdepth — Choose the number of checkpoint that could
be created usingthe checkpoi nt - add command. Ifthe number
of existing checkpoints reaches this level, oldest checkpoint will
be deleted automatically to create space for the new one.

precheckpoint — You can configure any UCLI command with
precheckpoint as follows:

config -precheckpoint -add {force}

Interactive Rewind Feedback

5-6

Feedback

As a result, everytime before the command (force) is executed,
a checkpoint is created. You can add or remove the commands
from this list.

» postcheckpoint — You can configure any UCLI command with
precheckpoint as follows:

config -postcheckpoint -add {force}

As a result, everytime after the command (force) is executed, a
checkpointis created. You can add or remove the commands from
this list.

Creating Checkpoints on Breakpoint Hits

The - checkpoi nt option of the UCLI st op command allows you to
create a checkpoint when the specified breakpoint is hit during the
simulation.

- checkpoi nt <nunber >

Creates a new checkpoint when the specified breakpoint is
reached. This option creates the checkpoint label in the following
format:

“BP <br eakpoi nt _nunber > (breakpoi nt _hit_nunber)”
(breakpoi nt <breakpoi nt_nunber>, hits
<br eakpoi nt _hit _nunber >)

For example, “BP 3 (4)” (breakpoint 3, hits 4)

Example:
ucli % stop —in file.v —line 42
4

Interactive Rewind

5-7

ucli % stop —checkpoint 4
4

Interactive Rewind Feedback

5-8

Support for Reverse Debug in UCLI

The reverse debug feature includes the capability that supports
debugging with running the simulation backwards.

Note:
This is a Limited Customer Availability (LCA) feature. To enable
LCA features, use the - | ca compile-time option. Limited
Customer Availability (LCA) features are features available with
select functionality. These features will be ready for a general
release, based on customer feedback and meeting the required
feature completion criteria. LCA features do not need any
additional license keys.

You can start debugging at the symptom of the problem and
systematically go back in time along the bug propagation cause-
effect chain. Divide and conquer debugging method is much more
efficient with reverse debugging.

Feedback Support for Reverse Debug in UCLI
6-1

For example, if the simulation is stopped before some function call
and when you are not sure whether the function returns the correct
value or not, then you can step over this function call and check the
returned result. If the result is wrong, you can perform next —
rever se command, step into the function and identify the cause of
the wrong result. Without reverse debugging, this would require very
costly restart of debugging and playing with breakpoints to reach the
same simulation state.

Following are the simulation control commands for reverse
executing simulation:

e run —-reverse

e sStep -reverse

e step -reverse -thread
e sStep -reverse -tb

e next -reverse

e next -reverse -thread
* next -reverse -end

You can also easily reverse the simulation to the previous value
assignment of a signal or variable by setting a value change
breakpoint on this variable and executing the run -reverse
command.

Furthermore, you can keep the future (for example, while reversing
a simulation, the time and information generated from an active
point, Point A, to a previous point, Point B, is termed as future) when
going back in simulation time during reverse debugging. The
following are the benefits of keeping the future:

Support for Reverse Debug in UCLI Feedback
6-2

e Better performance during the rewinding operation and reverse
debugging.

» During debugging, you can bookmark interesting points using
checkpoints and later quickly return to them even after reverse
executing to time before these checkpoints. The checkpoints (in
the future) are preserved, and you can easily go to the recorded
future checkpoint from the past.

Enabling Reverse Debug

You must use the - debug_access+r ever se compile-time option,
as shown below, to enable reverse debug feature.

% vcs -sverilog exanpl e.sv -debug_access+reverse
<conpi | ati on_opti ons>

% sinv -ucli -ucli2Proc

You must run the confi g rever sedebug on UCLI command, as
shown below, to use this feature in UCLI:

ucli % config reversedebug on

You must run the confi g reversedebug on command
immediately after the simulation start. If you run this command in the
middle of the simulation, reverse debug commands goes back only
until the point where confi g rever sedebug on is executed.

Feedback Support for Reverse Debug in UCLI
6-3

Keep Future

You can keep the future (for example, while reversing a simulation,
the time and information generated from an active point, Point A, to
a previous point, Point B, is termed as future) when going back in
simulation time during reverse debugging. The following are the
benefits of keeping the future:

» Better performance during the rewinding operation and reverse
debugging.

* During debugging, you can bookmark interesting points using
checkpoints and later quickly return to them even after reverse
executing to time before these checkpoints. The checkpoints (in
the future) are preserved, and you can easily go to the recorded
future checkpoint from the past.

You can enable/disable “keep future” mode using the following UCLI
command:

config keepfuture [on]off]

By default, this setting is on when running under Verdi and of f when
running in batch mode (si nv -ucli -ucli 2Proc).

If the option is on and simulation went back by rewind or reverse
execution command, some UCLI commands are not allowed. This
includes f or ce and dunp commands, constrained randomization
change commands, and so on. That is, all commands which can
change simulation state are not allowed, and an error message is
displayed when you try to execute them. In this case, you can
temporarily switch off the “keep future” mode and repeat the
command, for example:

config keepfuture off

Support for Reverse Debug in UCLI Feedback

6-4

config keepfuture on
force foo 1

Note:

The confi g keepfuture off command discards the
simulation state in the future (including all checkpoints in the
future).

Virtual Checkpoints

When reverse debug is enabled, you can use the following config
command to create a new checkpoint:

config virtual checkpoints [on|of f]

When this command is on (default), the checkpoi nt - add
command creates virtual checkpoints instead of real ones. Virtual
checkpoints have less memory overhead at the expense that rewind
to them might take some more time.

Using Reverse Simulation Control Commands

The - r ever se option of the st ep, next , and r un UCLI commands
provides the ability to move to an earlier simulation state from the
current simulation debug state. All commands bring the simulation
back in time to the completely functional execution state.

Feedback Support for Reverse Debug in UCLI
6-5

Run/Continue Reverse Simulation Control Command

You can use the run —r ever se command to allow the simulation
to go back in time (reverse the simulation) for the specified amount
of time. All the current breakpoints are respected and the simulation
stops at the most recent (considered back from the current execution
state) breakpoint hit.

Following are the various options you can use with the
run -reverse command:
run —reverse [tinme [unit]]

Specifies the time units for the simulation to go back in time.

run -reverse -absolute | relative <tine>
Specifies the relative or absolute time units for the simulation to
go back in time.

run -reverse -line <line_nunber> [-file <file>] [-
I nstance <nid>] [-thread <thread i d>]

Specifies the source code line to which the simulation needs to
go back.

Support for Reverse Debug in UCLI Feedback

6-6

Step and Next Reverse Simulation Control Commands

The following reverse commands are available to reverse the

simulation:
Command Description
step -reverse Goes back one SystemVerilog source code line.

step -reverse -thread Goes back one source code line in the current thread.

step -reverse -tb Goes back one source code line in the testbench code.

next -reverse Goes back one SystemVerilog line which steps over
task/function calls. Eventually, it might stop on a
breakpoint inside the task/function called at the
previous line.

next -reverse -thread Goes back one source code line in the current thread
which steps over task/function calls.

next -reverse -end Goes back to the source code line where the current
function has been called.

Limitations
The following are the limitations with Reverse Debug feature:

* VCS Design Level Parallelism (DLP) is not supported

» The following actions of PLI code are not supported:
- IPC communication using sockets, pipes or shared memory
- Multi-threading

- Performing the file seeking operations, and then writing at a
new position (that is, it is assumed that the simulation only
appends data to the output files)

e Simulation with Specman is not supported

Feedback Support for Reverse Debug in UCLI
6-7

Analog-digital co-simulation (using NanoSim) is not supported

Thereverse debug commands are not supported for VHDL source
code. For example, using the st ep -r ever se command moves

to previous Verilog source code line, ignoring all VHDL code in
between

Reverse debug is not supported when the design is compiled with
the - si npr of i | e option for simulation profiling

Support for Reverse Debug in UCLI Feedback

6-8

Debugging Transactions

Feedback

This chapter contains the following sections:

e Introduction

* Transaction Debug in UCLI

Introduction

Productive system-level debug requires you to keep a history of the
system evolution that covers the varied modeling abstraction and
encapsulation constructs used in both the design and testbench.

Moreover, given the mix of abstraction layers and the wealth of data
sources in modern SoC design with IP reuse including user-added
messaging, a flexible recording mechanism with an easy to control
use-model and sampling mechanism is required.

Debugging Transactions
7-1

To address these needs, VCS provides the $vcdpl usnsgl og
system task which is called from SystemVerilog. This task can be
applied in many contexts to record data directly into the VPD file. The
$vcdpl usnsgl og system task is based on the transaction
abstraction.

The $vcdpl usnsgl og system task, is intended primarily for
recording messages, notes, and transactions. These transactions
include definition, creation, and relationships on multiple streams.
$vcdpl usnsgl og forms the basis of transaction modeling and
debug.

Transaction Debug in UCLI

Use the following UCLI commands for transaction level debugging:

nsgl og [-st[trean] <streanp]
[-sc[cope] <stream scope>]
-type < MG T>
[-n[anme] <nsg_nane>]
-sev[erity] < MSG S>
[- h[eader] <msg_header >]
[-b[ody] <msg_body>]
-r[elation] < M5G R>
[-rel nanme <rel ati on>]
[-target <target>]

You can use these commands instead of using the UCLI cal |
command for debugging with transactions.

Example
msglog.v

package pkg;
class C
int i;

Debugging Transactions Feedback
7-2

i nt eger p;

i nt al=5;

task main(int x = 0);
int f = x;
int a=1;
bit c=1'hoO;
bit [2:0] cc = 3" hi;
byte bytel= 1;
| ogic | og="hl
begi n

$di spl ay(" Message") ;

end

endt ask

endcl ass

endpackage // pkg

progr am pr og;

i mport pkg::*;
C inst = new,
initial
begi n
int inti =12;
inst.main();
#1,
inst.main(l);
#1:

inst.main(2);

end
endpr ogr am

Run the following commands to use the nsgl og UCLI command:

one.tcl
Line BP at {\$display\("Mssage");}
stop -file nmeglog.v -line 16
run
Feedback Debugging Transactions

7-3

nmsglog -type 1 -n {"Failure"} -severity 1 -b {"Failure"} -
relation 1 {a} {log}

run

nmsglog -type 1 -n {"Failure"} -severity 1 -b {"Failure"} -
relation 2

run

Debugging Transactions Feedback
7-4

Debugging Virtual Interface Arrays and
Queues in UCLI

You can use the UCLI showand get commands to view the values
of the virtual interface arrays and queues:

Syntax:

show -type <vari abl e>
show -val ue <vari abl e>
get <vari abl e>

This feature is supported for the following:

* One-dimensional unpacked array
e Queues in class or module

» UCLIforce andvalue change callbacks (value change breakpoint)
on a virtual interface variable

Feedback Debugging Virtual Interface Arrays and Queues in UCLI
8-1

If the breakpoint is set on an entire array, VCS issues the following
error message:

Error-[UCLI - STOP- UNABLE- SET- PO NT] Cannot set breakpoi nt
Setting of breakpoint due to conmand 'stop' was not
successful. Registering a val ue change cal |l back was not
successful. Please refer to the UCLI User Quide.

Example
Consider Example 8-1,

Example 8-1 test.sv

cl ass base;
virtual intf vitf[O:1];
function new (virtual intf itf[0:1]);
this.vitf = itf;
endf uncti on
endcl ass
interface intf;
| ogi ¢ dat a;
endi nterface
nodul e tb;
intf itf[0:1]();
base obj;
initial begin
obj = new(itf);
#1 obj.vitf[0].data
#1 obj.vitf[1l].data
#1 obj.vitf[0].data
#1 obj.vitf[1l].data
#5 $fini sh;
end
endnodul e

POoOOR

Execute the following commands:

% vcs -debug_access+all -sverilog test.sv

Debugging Virtual Interface Arrays and Queues in UCLI Feedback
8-2

% ./simv -ucli

Execute the following commands at UCLI prompt:

ucli%run 1

1ls

ucli % stop -event {obj.vitf[O].data} // call back on virtual
interface variable

1

ucli % run

Stop point #1 @1 s; tb.itf[0].data = 'bx

ucli % show -type -val

obj {CLASS base { {vitf ARRAY {} {{0 1}} RefQbj}}} {(vitf
=> ((data => 'bx),(data => "bx)))}

{itf[1]} {INSTANCE intf interface} {(data => 'bx)}
{itf[0]} {INSTANCE intf interface} {(data => 'bx)}
ucli % get obj.vitf

((data => 'bx), (data => 'bx))

ucl i %force -deposit {obj.vitf[0].data} O// force on virtual
interface variable

ucli % step

test.sv, 16 : #1 obj.vitf[1l].data = O;

Limitations

» Setting value change breakpoint on an entire virtual interface
array is not supported.

Feedback Debugging Virtual Interface Arrays and Queues in UCLI
8-3

Debugging Virtual Interface Arrays and Queues in UCLI Feedback
8-4

Debugging Mixed-Signal Designs

Feedback

UCLI allows you to reuse the existing digital testbench when digital
modules are replaced with SPICE modules in a mixed-signal
environment. This following topics describe the UCLI support for
debugging Mixed-Signal (VCS-CustomSim) designs.

* Support for Top Spice Module

e Using UCLI show Commands for SPICE

e Support for the UCLI f or ce or r el ease Command on SPICE
Ports

Support for Top Spice Module

For a SPICE top design, where spice sub-circuit is the only top
scope, UCLI stops at the top spice module when it is invoked first
with si mv -ucli.

Debugging Mixed-Signal Designs
9-1

Using UCLI show Commands for SPICE
The following topics describe the UCLI show commands for SPICE:

 Using show - donmai n Command
 Using show -type Command

* Using show -val ue Command

Using show - domai n Command

The UCLI show - domai n command displays SPI CE for a SPICE

instance and node to distinguish analog and digital objects (modules
or nodes) in your design. Table 9-1 describes the usage of show -
domai n.

Table 9-1 Distinguishing Analog and Digital Objects Using show -domain

Digita

Analog

ucl i % show -domain top

top Verilog

ucl i % show - domai n spice-top

top SPI CE

Using show -t ype Command

The UCLI show -t ype command displays subckt for a SPICE
module and anal og- node for a SPICE node. Table 9-2 describes

the usage of show -t ype.

Debugging Mixed-Signal Designs

9-2

Feedback

Table 9-2 Usage of show -type

Digital Analog

Top module SPICE module

ucli % show -type top ucli % show -type spice-top

top {1 NSTANCE t op nodul e} top {I NSTANCE t op subckt}

VHDL/Verilog module instantiated by the SPICE moduleinstantiated by VHDL/

Verilog module Verilog module

ucli % show -type il ucli % show -type i1l

i 1 {1 NSTANCE VEC nodul e} i1 {1 NSTANCE VEC subckt}

Verilog node SPICE node

ucli % show -type y ucli % show -type y

y {BASE {} wire} y {BASE {} anal og- node}
Note:

Although SPICE is not case-sensitive, the UCLI commands must
be case-sensitive (as the SPICE shadow modules are
SystemVerilog modules, and are case-sensitive).

Using show -val ue Command

The UCLI show - val ue command displays voltage value of the
SPICE node.

Note:

The show - val ue <anal og_node>command works only after
successful convergence of the analogue engine DC. The
following message is issued during the simulation once the DC is
successfully converged.

DC has successfully converged with nethod 1 (0 sec)

Feedback Debugging Mixed-Signal Designs
9-3

If show - val ue <anal og_node> is invoked before DC
convergence, then the following error message is issued:

Error-[UCLI - GET- ERR- MG get command error

The execution of get command fai | ed, Node Vol t age
not avail abl e before DC.

Support for the UCLIf orce or rel ease Command on
SPICE Ports

UCLI supports force/release on SPICE ports. Below is the syntax of
the UCLI f or ce command for SPICE ports:

force <anal og_node> <value> [<tinme> {, <val ue>
<time>}* [-repeat <tinme>]] [-cancel <tine>]

Where, anal og_node is the hierarchical path name of the SPICE
port that must be forced.

Note:
- The - deposi t option is not supported on the SPICE port.

- Only real and logic values are allowed when read/write is
performed on the SPICE port.

Limitations

* UCLI st op command for SPICE: Value change breakpoint is not
allowed on the SPICE port

* SPICE node is not supported in the UCLI expression evaluator

Debugging Mixed-Signal Designs Feedback
9-4

Feedback

Usage Example

Consider the following files:

Verilog testcase (test.v)

nodul e top();

supply0 [2:0][2:0][2:0] pattern;
wre [2:0][2:0][2:0] out;

m ddl el VLOG M DDLE1l (pattern, out);
al wvays @pattern) begin

#3;
if ($tinme > 0) begin

$display ("TIME % | input: % | output:

$tinme, pattern, out);
end
end
al ways begin
if ($tinme > 500) $finish(2);
#1:
end
endnodul e

|| =========== VERI LOG M DDLE =============
nodul e mi ddl el (inout supplyO [26:0] nilPattern
output wire [26: 0] nlQut);

nmyspi ce MY_SPI CE_ARRAY [0: 26] (nilPattern, nilQut);

m ddl e2 VLOG M DDLE2(nmLPattern);
endnodul e

nodul e m ddl e2 (output reg [26:0] vec);
initial begin
vec = 27'b111111121112112112211111112111
end

%")

Debugging Mixed-Signal Designs

9-5

al ways begin
#40 vec = ~vec;
end
endnodul e

|| ========= SPI CE BOTTOM MULTI PLE VI EW =========
nodul e spicelnv (out, in);

out put wire out;

input wre in;

assign out = ~in;
endnodul e

nmodul e nyspice (input wire x, output reg y);
spicelnv SP1 1 (y, X);
endnodul e

VHDL testcase (test.vhd)

entity vhd is

port(outp:out bit;inp:in bit);
end vhd;

architecture behv of vhd is
begi n

out p<=NOT(i np) ;

end behv;

SPICE file (test.spi)

si mul ator | ang=spectre
i ncl ude "spiceinv.spi"
si mul ator | ang=spectre

subckt nyspice x y
SP1_ 1 y x vhd
ends nyspi ce

Debugging Mixed-Signal Designs Feedback
9-6

Feedback

CustomSim file (xa.init)

use_spice -cell nyspice ;
choose xa -nspectre test.spi;
set print_thru_net d2d,

resi stance_map -from anal og 90000. 2-1e32 -to verilog O ;
resi stance_map -fromanal og 70000. 2-90000.1 -to verilog 1 ;
resi stance_map -fromanal og 50000. 2- 70000.1 -to verilog 2 ;
resi stance_map -from anal og 5000. 2-50000.1 -to verilog 3 ;
resi stance_map -from anal og 4000. 2-5000.1 -to verilog 4 ;
resi stance_map -from anal og 3000. 2-4000.1 -to verilog 5 ;
resi stance_map -fromanalog 1.2-3000.1 -to verilog 6

resi stance_map -fromanalog 0-1.1 -to verilog 7 ;

resi stance_map -to anal og 90000. 2-1e32 -fromverilog O ;
resi stance_nap -to anal og 70000. 2-90000.1 -fromverilog 1 ;
resi stance_nap -to anal og 50000. 2- 70000. 1 -fromverilog 2 ;
resi stance_nmap -to anal og 5000. 2-50000.1 -fromverilog 3 ;
resi stance_map -to anal og 4000. 2-5000.1 -fromverilog 4 ;
resi stance_map -to anal og 3000.2-4000.1 -fromverilog 5 ;
resi stance_map -to analog 1.2-3000.1 -fromverilog 6 ;
resi stance_map -to analog 0-1.1 -fromverilog 7 ;

Perform the following elaboration commands:

% vl ogan -sverilog test.v -full 64
% vhdl an -full 64 test.vhd
% vcs +ad=xa.init top -debug access+all -full 64

Perform the following simulation command:

% sim/ -ucli

Perform the following commands at the UCLI prompt:

scope

Debugging Mixed-Signal Designs
9-7

show

scope top. VLOG M DDLEL. M¥_SPI CE_ARRAY\ [0\]

show

show -type X
show -type y

run 1

show -val ue x
show -val ue y
scope SP1_1
show -type OUTP
show -type | NP
force INP O
show -val ue QUTP
show -val ue | NP

VCS generates the following output:

ucl i % scope

t op

ucl i % show

pattern
out

VLOG_M DDLE1L
ucl i % scope top. VLOG M DDLEL. MY_SPI CE_ARRAY\ [O\]
t op. VLOG_M DDLEL. MY_SPI CE_ARRAY[0]

ucl i % show

X

y
SP1_1

ucli % show -type x

x {BASE {} anal og-node I N PORT}

ucli % show -type vy

y {BASE {} anal og-node OUT PORT}

ucli % run

Entering DC

nmet hod
nmet hod
nmet hod
nmet hod
nmet hod
met hod

388888

1

1

N

nmet hod 1
progress
progress
progress
progress
progress
progr ess

Debugging Mixed-Signal Designs

9-8

10% done
20% done
30% done
40% done
50% done
60% done

Feedback

DC nethod 1 progress 70% done

DC net hod 1 progress 80% done

DC net hod 1 progress 90% done

DC nethod 1 progress 100% done

DC has successfully converged with nethod 1 (0 sec)
1 PS

ucl i % show -val ue x

x 0. 000000

ucl i % show -val ue y

y 3.300000

ucli % scope SP1 1

t op. VLOG_M DDLEL1. MY_SPI CE_ARRAY[0] . SP1_1
ucli % show -type OUTP

OUTP {BASE {} BIT OUT PORT}

ucli % show -type I NP

| NP { BASE {} BIT I N PORT}

ucli%force INP O

Noti ce [MSV- RT- D2A]

rt _d2a hiv=3.300000v | ov=0.000000v
node=t op. VLOG_M DDLEL1. M¥_SPI CE_ARRAY[0] . x;
ucl i % show -val ue QUTP

QUTP ' bl

ucli % show -val ue I NP

| NP ' bO

Feedback Debugging Mixed-Signal Designs
9-9

Debugging Mixed-Signal Designs Feedback
9-10

Examples

This appendix provides examples of various designs and explains
how you can use the UCLI commands on those designs. This
appendix includes the following sections:

Feedback

Verilog Example
VHDL Example
SystemVerilog Example

Native Testbench OpenVera (OV) Example

Examples
A-1

Verilog Example

Following is a Verilog example to show the usage of UCLI

commands:

counter.v
nodul e t op;

reg clk, reset;
wire [1:0] z;

count cl(clk,reset, z);

initial
begi n
clk = 1'bO;
reset =
#5 reset
end
al ways
#10 cl k
al ways
begi n
#100 reset
#5 reset
end
initial

#1000 $fi ni sh;

endnodul e

nodul e count (cl k, reset, z);
i nput cl k, reset;
out put [1:0]z;

reg [1:0] z;

al wvays @cl k or

begi n

Examples
A-2

Feedback

Feedback

i f(reset)
z = 2'b0;
el se if(clk)
z =z + 1;
end
initial

$nonitor("Value of z is %", z);

endnodul e

input.ucli

scope
show -type

show -val ue

show -i nstances
listing

stop -line 11

st op

drivers clk
drivers -full clk
| oads z

| oads cl k

scope cl

show - par ent
scope -up

run

show -val ue reset
config

config radi x binary
show -val ue reset
run 2

scope

show -val ue
force clk 1'bl
step

step

show -val ue cl k
rel ease clk

next

next

next

run

Examples
A-3

Compiling the VCS Design and Starting Simulation

In this example, the - debug_access+al | option is used in the vcs
command line to specify UCLI as the default command-line
interface:

% vcs -debug_access+all counter.v -1 conp.|og

Running Simulation on a VCS Design

To run the simulation, enter the following commands in the vcs
command prompt:

./simv -ucli -1 input.ucli -1 run.log

Simulation Output

ucli %
ucl i % scope
top

ucl i % show -type

z {VECTOR {} {{1 0}} wre}
clk {BASE {} reg}

reset {BASE {} reg}

cl {I NSTANCE count nodul e}
ucli % show -val ue

z ' bxx

clk 'bx

reset ' bx

cl {}

ucl i % show -i nst ances

cl

ucli%listing

File: counter.v

1: =>nodul e top;

2: reg clk,reset;

Examples Feedback

A-4

Feedback

3: wire [1:0] z;

4:

5: count cl(clk,reset, z);
6:

7: initial

8: begi n

9: clk = 1'bO;

10: reset = 1'bil;
11: #5 reset = 1' bO;
ucli%stop -line 11

1

ucli % stop

1: -line 11 -file counter.v

ucli%drivers clk
X - reg top.clk

x top.clk counter.v 9

x top.clk counter.v 15

ucli%drivers -full clk
X - reg top.clk

x top.clk /renote/ 0lhonme8/ user 1/ Veril og/ counter.v 9
x top.clk /renote/ 0lhonme8/ user 1/ Veril og/ counter.v 15

ucli % | oads z

Warni ng: Cannot find any | oad for signal

ucli % | oads clk

X - reg top.clk
X top.clk counter.v
NA top.cl counter.v
NA top.cl counter.v

ucl i % scope c1

top.cl

ucl i % show - par ent

clk top.cl

reset top.cl

z top.cl

ucl i % scope -up

t op

ucli % run

Value of z is 00

Stop point #1 @5 s;
ucl i % show -val ue reset

15
37
33

Examples
A-5

Examples
A-6

reset 'bl

ucli % config

aut ocheckpoi nt: off

aut odunphi erarchy: off
aut onxforce: on
checkpoi ntdept h: 10
ckpt f sdbcheck: on
cndecho: on

dover bose: off
endofsim exit
expandvectors: off

fol |l owacti vescope: auto
ignore_run_in_proc: off
onerror: {}

post checkpoint: {}

precheckpoi nt: {synopsys::run synopsys::step

synopsys: : next}
pronpt: default
radi x: synbolic
reset: on
resultlimt: 1024
resultlimtnsg: on
sourcedirs: {}

ti mebase: 1s
ucli % config radi x binary
bi nary

ucl i % show -val ue reset
reset 'bil

ucli%run 2

7 s

ucl i % scope

top

ucl i % show -val ue

z ' b00

clk 'b0

reset 'bo0

cl {}

ucli%force clk 1'bl
ucli % step

counter.v, 35 : I f(reset)
ucli % step
counter.v, 37 : el se if(clk)

Feedback

Feedback

ucl i % show -val ue cl k
clk '"bl

ucli % rel ease clk

ucl i % next
counter.v,
ucl i % next
Val ue of z
counter.v,
ucl i % next
counter.v,

ucli % run

Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

N NN NNNNINNINN NN NN NNNNNNNNNNNNNNNINNNINNNNN

38 :

is

01

15 :

w
w

n uounnmunnnmunnnmunnomunnomunnnunnnmunnnunnonuonon

10
11
00
01
00
01
10
11
00
01
10
00
01
10
11
00
01
00
01
10
11
00
01
00
01
10
11
00
01
00
01

z =z + 1;

#10 cl k = ~cl k;

al ways @cl k or

reset)

Examples
A-7

Value of z is 10

Value of z is 11

Val ue of z is 00

Value of z is 01

Val ue of z is 10

Val ue of z is 00

Value of z is 01

Val ue of z is 10

Value of z is 11

Value of z is 00

Value of z is 01

Value of z is 00

Value of z is 01

Value of z is 10

Value of z is 11

Val ue of z is 00

Value of z is 01

Val ue of z is 00

Value of z is 01

Val ue of z is 10

Value of z is 11

Value of z is 00

Value of z is 01

Value of z is 00

Value of z is 01

Value of z is 10

Value of z is 11

$finish called fromfile "counter.v", |ine 24.

$finish at sinmulation tine 1000
VCS Simul ati on Report

Ti me: 1000

CPU Ti ne: 0. 510 seconds; Data structure size: 0.0M

Wed Aug 4 21:48:56 2010

Examples Feedback

A-8

VHDL Example

Following is a VHDL example that shows the usage of UCLI
commands with VCS.

alltypes.vhd

LI BRARY i eee;
USE i eee.std |ogic_1164. al |

entity tb is
end entity;

architecture archi of tbis
type level is range 5 downto O;
type level _array is array(0 to 2) of |evel
type level _array2 is array(0 to 2) of |evel _array;
type country is (HK, PRC, CA)
type std_arraylis array(0Oto 2) of std | ogic_vector(3
downto 0);
type stdu _arraylisarray(0Oto2) of std ul ogic_vector(3
downto 0);
type int_array is array(2 downto 0) of integer;

type REC is record
country : country;
| evel : level;
end record REC;
type REC array is array(0 to 2) of REC,

type REC RECORD i s record

info : REC
newguy : |level _array;
nane : string(l to 8);

end record REC RECORD;
type REC_ RECORD ARRAY is array(0 to 2) of REC RECORD

signal sigl REC array : REC array :=
((HK 4), (PRC 4), (CA 2));

Feedback Examples

A-9

signal sig2 REC array : REC array;
signal sigl REC record : REC record
:=((HK, 4), (1, 2, 3), "Hongkong") ;

signal sigl_arrayl : level _array := (2,3, 2);

signal sigl array2 : level _array2 :=
((0,0,0),(1,1,1),(2,2,2));

signal sigl level : level := 3;

signal sigl real : real := 2.2;

signal sigl std : std logic :="'2Z";
signal sigl std vec : std |ogic_vector(3 downto 0)
;= "1100";
signal sig2 std vec : std logic vector(0 to 3) :=
"1100";
signal sigl ustd : std ulogic_vector(3 downto 0) : =
"XZ-
signal sigl std_arrayl : std_ arrayl :=
("010z","0011","1101");
signal sigl stdu_ arrayl : stdu_ arrayl := ("0-Z1","0-
z7" , X"F");
signal sigl bool : boolean := FALSE;

signhal sigl int : integer := 11,

signhal sigl intarray : int_array := (33, 45, -77);
signal aa, bb, ee : std_|ogic;

signal zz : std_logic_vector(0 to 3);

signal sigl tinme : tine := 102 ns;

function add_I evel (signal RECL, REC2, REC3 :
REC) return level is
begi n
return RECL. | evel ;
end function add_|evel;

procedur e change(signal sigl REC array : in REC array;
signal sig2 REC array : out REC array) is
begi n
--sig2(0 to 1) <= sigl(2 downto 1);
sig2_REC array(0to 1) <=sigl REC array(1lto 2);
--sig2(1 to 2) <= sigl(1l dowto 0);
sig2_REC array(1to 2) <=sigl REC array(0Oto 1l);
end procedure change;

Examples Feedback

A-10

Feedback

begi n

Mypr ocess: process is

--variable pos : integer := 2;
variable charl : character :="'& ;
variable char2 : character := cr
variable char3 : character := cl158;
vari able char4 : character := bel;
constant pos :integer := 2;

begi n

wait for 1 ns;
change(si gl REC array, sig2 REC array);

sigl level <=

add_l evel (sigl_REC array(0),sigl REC array(1),sigl REC arr

ay(pos));

wait for 1 ns;

sigl_std_vec

<= "0000";

wait for 3 ns;

sigl std vec <= "0001";

wait for 3 ns;

sigl std vec <= "0011";

wait for 3 ns;

sigl std vec <= "0101";
end process myprocess;

end architecture;

input.ucli

senv

config

scope

dunp -file dunp.vpd
dunp -depth O
show - domai n

show -type

show -val ue sigl _arrayl
listing

stop -line 68

stop

step

next

run

scope

Examples

A-11

show -val ue sigl_arrayl
force sigl_arrayl {(0, 0, 0)}
show -val ue sigl_arrayl

run 10

show -val ue sigl _arrayl

run 100

qui t

Note:
You may add additional commands to the input.ucli file.

Compiling the VHDL Design and Starting Simulation
This example shows the commands for compiling VHDL design:

% vhdlan all types.vhd

Simulating the VHDL the Design

The st ep command moves the simulation forward by stepping one
line of code:

% sim/ -ucli -i input.ucl

Simulation Output

ucl i % senv

acti veDomai n: VHDL
activeFile: all_types.vhd
activeFrane: 0O
activeLine: 72
activeScope: /TB
activeThr ead:

file: all _types.vhd
frame: O

f sdbFi | ename:

Examples Feedback

A-12

hasTB: 2

i nput Fi | enane: i nput. ucl
keyFi | enane: ucli . key
line: 72

| ogFi | enane:

scope: /TB

state: stopped

t hr ead:

time: O

ti meBase: NS

ti mePrecision: 1 NS
vcdFi | enane:
vpdFi | enane:
ucli%config

aut ocheckpoi nt: off

aut odunphi erarchy: off
aut onxforce: on
checkpoi ntdept h: 10
ckpt f sdbcheck: on
cndecho: on

dover bose: off

endof sim exit
expandvectors: off

fol |l owacti vescope: auto
ignore_run_in_proc: off
onerror: {}

post checkpoint: {}
precheckpoi nt: {synopsys::run synopsys::step
synopsys: : next}

pronpt: default

radi x: synbolic

reset: on

resultlimt: 1024
resultlimtnsg: on
sourcedirs: {}

ti mebase: NS

ucl i % scope

/ TB
ucli%dunp -file dunp.vpd
VPDO
ucli % dunp -depth O
1
Feedback Examples

A-13

Examples
A-14

ucl i % show - domai n

SI G1_REC _ARRAY VHDL

SI @_REC _ARRAY VHDL

SI G1_REC RECORD VHDL

SI G1_ARRAY1 VHDL

SI G1_ARRAY2 VHDL

SI G1_LEVEL VHDL

S| G1_REAL VHDL

S| G1_STD VHDL

S| G1_STD_VEC VHDL

S| G_STD_VEC VHDL

SI G1_USTD VHDL

SI G1_STD _ARRAY1 VHDL

SI G1_STDU_ARRAY1 VHDL

SI G1_BOOL VHDL

SI G1_| NT VHDL

SI G1_| NTARRAY VHDL

AA VHDL

BB VHDL

EE VHDL

ZZ VHDL

SI G1_TI ME VHDL

MYPROCESS VHDL

ADD_LEVEL VHDL

CHANGE VHDL

ucl i % show -type

SI G1_REC _ARRAY { ARRAY REC ARRAY {{0 2}} { RECORD REC {
{ COUNTRY BASE COUNTRY {HK PRC CA }} {LEVEL BASE {} LEVEL}}}}
SI @_REC ARRAY { ARRAY REC ARRAY {{0 2}} { RECORD REC {
{ COUNTRY BASE COUNTRY {HK PRC CA }} {LEVEL BASE {} LEVEL}}}}

SI GL_REC_RECORD { RECORD REC_RECORD { {I NFO RECORD REC {

{ COUNTRY BASE COUNTRY { HK PRC CA }} {LEVEL BASE {} LEVEL}}}
{NEWGUY ARRAY LEVEL_ARRAY {{0 2}} {BASE {} LEVEL}} {NAME
ARRAY {} {{1 8}} STRING}}

SI GL_ARRAY1 {ARRAY LEVEL ARRAY {{0 2}} {BASE {} LEVEL}}

SI GL_ARRAY2 { ARRAY LEVEL_ARRAY2 {{0 2}} {ARRAY LEVEL_ARRAY
{{0 2}} {BASE {} LEVEL}}}

SIGl_LEVEL {BASE {} LEVEL}

SI GI_REAL {BASE {} REAL}

SI GL_STD {BASE {} STD LOG C

SI GL_STD_VEC {VECTOR {} {{3 0}} STD LOG C_VECTOR}
SI G2_STD_VEC {VECTOR {} {{0 3}} STD LOG C_VECTOR}

Feedback

Feedback

SI G1_USTD {VECTOR {} {{3 0}} STD ULOG C VECTOR}

S| GL_STD_ARRAY1 { ARRAY STD ARRAY1 {{0 2}} {VECTOR{} {{3 0}}
STD LOG C_VECTOR} }

S| G1L_STDU ARRAY1 { ARRAY STDU ARRAY1 {{0 2}} {VECTOR {} {{3
0}} STD ULOG C_VECTOR}}

SI G1_BOOL {BASE {} BOOLEAN}

SI GL_I NT {BASE {} | NTEGER}

S| GL_I NTARRAY { ARRAY | NT_ARRAY {{2 0}} {BASE {} | NTEGER}}
AA {BASE {} STD LC4G C}

BB {BASE {} STD LOd C

EE {BASE {} STD LOd C

ZZ {VECTOR {} {{0 3}} STD LCAQ C_VECTOR}

SIGL_TIME {BASE {} TI ME}

MYPROCESS {BASE {} {PROCESS STATEMENT}}

ADD LEVEL {1 NSTANCE {} {FUNCTI ON}}

CHANGE {BASE {} {PROCEDURE}}

ucli % show -val ue sigl_arrayl

sigl arrayl {(2, 3, 2)}

ucli%listing

File: all _types.vhd

67: --sig2(1l to 2) <= sigl(1l downto 0);
68: sig2 REC array(l1to 2) <=sigl REC array(0
to 1);

69: end procedure change;

70:

71: begin

72: => nMypr ocess: process i s

73: --variable pos : integer := 2;

74: vari able charl : character :="'&
75: variable char2 : character := cr;
76: vari able char3 : character := c158;
77: vari abl e char4 : character := bel;
ucli% stop -line 68

1

ucli % stop

1. -line 68 -file all _types.vhd

ucli % step

all _types.vhd, 80 : wait for 1 ns;

ucl i % next
all _types.vhd, 81 :
change(si gl _REC array, sig2 _REC array);

Examples
A-15

ucli % run

Stop point #1 @1 NS;

ucl i % scope

/ TB

ucli % show -val ue sigl _arrayl
sigl arrayl {(2, 3, 2)}
ucli% force sigl _arrayl {(0, 0, 0)}
ucli % show -val ue sigl _arrayl
sigl arrayl {(0, 0, 0)}

ucli % run 10

11 NS

ucli % show -val ue sigl_arrayl
sigl arrayl {(0, 0O, 0)}

ucli % run 100

Stop point #1 @12 NS;
ucli % quit

SystemVerilog Example

Following is an SV example to show the usage of UCLI commands:

interfaces.v
| ocal param i nt bitmax=31;
typedef |ogic [bitmax: 0] data_type;

interface parallel (input bit clk);

| ogic [3:0] data;
| ogic valid;
| ogi ¢ ready;

nmodport rtl _receive(input data, valid, output ready),
rtl_send (out put data, valid, input ready);

task wite(input data_type d);
@ posedge cl k) ;

Examples Feedback

A-16

while (ready !'== 1) @ posedge cl k)

data = d;
$display("in wite task, data is %9h", data);
valid = 1;
@ posedge cl k) data = 'x;
valid = 0;
endt ask

task read(output data type d);
ready = 1;
while (valid !'== 1) @negedge cl k)
ready = 0;
d = data;
@ negedge cl k)
endt ask

endi nterface

interface serial (input bit clk);
| ogi c dat a;
logic valid; //
| ogi c ready; //

nmodport rtl _receive(input data, valid, output ready),
rtl_send (out put data, valid, input ready);

task wite(input data_type d);
@ posedge cl k) ;

while (ready !'== 1) @ posedge clk) ;
for (int i =0; i <= bitmax; i++)
begi n
data = d[i];
valid = 1;
@ posedge cl k) data = 'x;
end
valid = 0;
endt ask

task read(output data type d);
ready = 1;
while (valid !== 1) @negedge clk) ;

Feedback Examples

A-17

Examples

A-18

ready = 0O;
for (int i =0; i <= bitmax;
begi n
d[i] = data;
@ negedge cl k) ;
end
endt ask

endi nterface
top_s.v

nodul e t op;

bit clKk;
al ways #100 clk = !clk;

serial channel (cl k) ;
test t (channel, channel);
endnodul e

test_serial.v
nodul e test(serial in, out);

data_type data out, data_in;
int errors=0;

initial
begi n
repeat (10)
begi n
data_out = $random();
out.wite(data_out);
end
$di spl ay(" Found %l Errors",
$fini sh(0);
end

al ways
begi n
in.read(data_in);

I ++)

errors);

Feedback

Feedback

$di spl ay(" Recei ved %", data_in);
end

endnodul e

input.ucli

show

show -type
show -val ue
scope

show -donai n
listing

st op

run

show -val ue i
step

show -val ue i
next

run

Compiling the SystemVerilog Design and Starting
Simulation

Enter the following commands in the vcs command prompt to
compile the design:

%vcs interfaces.v top_s.v test_serial.v -sverilog
-debug_access+all -R

Simulating the SystemVerilog Design

% sinv -ucli -i input.ucl

Examples
A-19

Examples
A-20

Simulation Output

ucl i % show

cl k
channel
t

ucli% show -type
clk {BASE {} bit}

channel

{1 NSTANCE seri al

t {1 NSTANCE test nodul e}
ucli % show -val ue

clk '"bO

i nterface}

channel {(clk =>"'b0,data => "'bx,valid =>"bx, ready =>"'bx)}

t {}

ucli % scope

t op

ucli % show -domain .

Veril og

ucli% listing

File: top_s.v

1

2: =>nodul e top;

3 .

4 bit clk;

5 al ways #100 clk = !clk;
6:

7 serial channel (cl k);

8

9 test t (channel, channel);
10:

11: endnodul e

ucli% stop

No stop points are set

ucli % run

Recei ved
Recei ved
Recei ved
Recei ved
Recei ved
Recei ved

12153524
c0895e81
8484d609
b1f 05663
06b97b0d
46df 998d

Feedback

Recei ved b2c28465

Recei ved 89375212
Recei ved 00f 3e301
Found O Errors
VCS Simul ati on Report
Ti ne: 65900
CPU Ti ne: 0. 470 seconds; Data structure size: 0.0M

Thu Aug 5 01:18:55 2010

Native Testbench OpenVera (OV) Example

Following is an OV example that shows the usage of UCLI
commands in a Native Testbench design:

test.vr
extern bit [15:0] i;

task foo()
{

case (i*2)

{
3'b110 : printf("hello\n");
default : printf("hello\n");

}
repeat (i*2)
{
printf("hello\n");
}
if (i*3)
{
printf("Boo\n");
fork
{
printf("hello\n");
}
join all
Feedback Examples

A-21

}

el se
{
printf("Mo\n");
}
fork
{
printf("hello\n");
}
join all
}
program | f El sel
{
bit [15:0] i;
i = 2'bl1;
foo();
}
input.ucli
show
show -type
show -val ue
scope
show -domain .
listing
stop -line 41
st op
run
show -val ue i
step
show -val ue i
next
run
Examples Feedback

A-22

Feedback

Compiling the NTB OpenVera Testbench Design and
Starting Simulation

Enter the following commands in the vcs command prompt to
compile the design:

% vcs -debug _access+all -ntb test.vr

Simulating the NTB OpenVera Testbench Design

Enter the following commands to simulate your Vera design:

%sim/ -ucli -i input.ucli

Simulation Output

ucl i % show

i

f oo

| f El sel

ucli % show -type

i {VECTOR {} {{15 0O}} reg}

foo {I NSTANCE foo task}

| f El sel {I NSTANCE |fEl sel task}

ucli % show -val ue

I BXXXX XXX XXX XXX XXX

foo {}

| fEl sel {}

ucli % scope

| f El sel

ucli % show -donmain .
Veri |l og

ucli% Ilisting

File: test.vr

32: printf("hello\n");
33: }
34: join all

Examples

A-23

Examples
A-24

35: }

36:

37:=>program | f El sel
38: {

39: bit [15:0] i;
40:

41: i = 2'bl1;

42:

ucli % stack
ucli % thread

ucli% stop -line 41

1

ucli% stop

1. -line 41 -file test.vr

ucli % run

Stop point #1 @O0 s;
ucli % show -val ue i

I BXXXXXXXXXXXXXXXX

ucli% step

test.vr, 43 : foo();

ucli % show -val ue i

i ' b0000000000000011

ucli % next

hel |l o

hel |l o

hell o

hell o

hell o

hel |l o

hel |l o

Boo

test.vr, 21 : printf("hello\n");

ucli% run

hel |l o

hel |l o

$finish at sinmulation tine 0
VCS Simul ati on Repor't

Time: O

CPU Ti ne: 0. 490 seconds; Data structure size: 0.0M

Thu Aug 5 00:17:37 2010

Feedback

Feedback Examples

A-25

Examples Feedback

A-26

B

SCL and UCLI Equivalent Commands

This appendix lists equivalent SCL UCLI commands. It is intended
for users migrating to UCLI from the VCS Command Language
Interface and the Scirocco Command Language.

This appendix includes the following sections:

 SCL and UCLI Equivalent Commands

Feedback SCL and UCLI Equivalent Commands
B-1

SCL and UCLI Equivalent Commands

The following table lists SCL commands with their UCLI equivalents.
Note that not all UCLI commands are listed. Only those UCLI
commands that are equivalent to SCL command functionality are

listed.

TableO-1.

SCL Command

Equivalent UCLI Command

Simulator Invocation Commands

exe_name

start exe_nane [options]

restart

Sessi on Managenent Conmands

checkpoint file_nane

save file_nane

restore file_nane

restore file_nane

Si nul ati on Advanci ng Conmands

run [relative tine]

run [-relative

-absol ute tine]

[-posedge | -negedge | -change]
pat h_nane
Navigation Commands
I s path_nane, cd path_nane scope [-up [level] | active] path_nane

Signal/Variable/Expression Commands

I's -v path_nane get path_nane [-radi x radix]
assign [val ue] signal/variabl e _nane change [path_nane val ue]
force val ue [options] path_nane force path_nanme val ue
[time { , value tine }*
[-repeat delay]]
[-cancel tine][-deposit]
[-freeze]
rel ease pat h_nane rel ease path_nane
call procedure_nane call [$cmd(...)]
Simulation Environment Array Commands
env | environnent senv <el enent >
Feedback

SCL and UCLI Equivalent Commands

B-2

TableO-1.

SCL Command Equivalent UCLI Command

Breakpoint Commands

nmoni tor -s|-c [options] stop [-file file_name] [-line num |-
i nstance path_nane]

[-thread thread_ id]

[-condi ton expression]

Signal Value and Memory Dump Specification Commands

dunmp -o file_name -vcd|-vpd|-evcd - dump [-file file_nane] [-type VPD|
a! || deep [depth depth] region/object/ |-add [list_of path_nanes
file_name -fid fid -depth levels |

obj ect -aggregates -cl ose]
[-file file_nane] [-autoflush on] |-
filefile_nanme][-interval <seconds>] [-

fid fid]
dunmp_nenory [-ascii_h | -ascii_o | - menory [-read|-wite nid]
ascii_b] [-start start_address] [-file file_nanme] [-radix radix] [-
[-end end_address] start start_address]
nmenor yNane [dat aFi | eNane] [-end end_address]
Desigh Query Commands
I's -v path_nane show <-options> pat h_nane
drivers [-d | -e] signal _nanme_li st drivers path_nane [-full]
Helper Routine Commands
hel p or [conmand_nane] -help help -full conmmand
alias alias_nane scl_conmand alias alias UCLI_conmand
Feedback SCL and UCLI Equivalent Commands

B-3

SCL and UCLI Equivalent Commands Feedback
B-4

Index

A

active point in design 1-17
alias file 1-11

alias file, default 1-12
aliases, customizing 1-13

automatic step-through
Systemc 4-37

B

bit_select 2-6
Breakpoint Commands B-3

C

case sensitivity, names 2-9
CBug 4-34, 4-51

command alias file 1-11
commands, list of 1-8
current point in design 1-17
customizing aliases 1-13

D

debug_all, option 1-3
debug_pp, option 1-3

Feedback

default alias file 1-12

-delta 1-5

Design Query Commands B-3
do 3-149

dump 3-91

E

escape name 2-10
extended identifier 2-10

F

field, names 2-7
finish 3-28

G

Generate Statements 2-7
get 3-37

F+

help 3-174
Helper Routine Commands B-3
Hierarchical Pathnames 2-4

IN-1

identifiers, extended or escaped 2-10

index 2-6
interface guidelines 2-1

K

key files 1-15

L

levels in a pathname 2-5
log files 1-15

N

name case sensitivity 2-9
naming fields 2-7

Native TestBench Example A-21
Navigation Commands 3-29, B-2
-nba 1-5

next 3-20

Numbering Convention 2-1

P

part_select/slice 2-7
—pathmap 4-50
pathnames 2-8
POSIX 4-51

R

Relative pathnames 2-6
restart 3-5

restore 3-14

run 3-23

IN-2

S

save 3-13

sc_buffer 4-40

SC_THREADS 4-51

SCL command equivalents B-2

scope 3-29

search 3-128

senv 3-70

Session Management 3-13

Session Management Commands B-2
show 3-133

Signal Value and Memory Dump Specification
Commands B-3

Signal Value Dump Specification 3-90
Signal/Variable/Expression Commands B-2
Simulation Time Values 2-12
sn 3-188
Specman Interface Command 3-188
stack 3-34
Standard Template Library 4-38
start 3-3
step-out feature

using 4-37
STL 4-38
stop 3-73
Stop Points 3-73
SYSC_USE_PTHREADS 4-51

SystemC
automatic step-throug 4-37

SystemVerilog Example A-16

T

TCL Variables 2-11

thread 3-31

time values in simulation 2-12

Tool Advancing 3-17

Tool Environment Array Commands B-2

Feedback

Tool Invocation Commands B-2
-type 8-1

U

UCLI 1-4, 4-51

command line 1-18

save and restore 4-47
UCLI commands, list 3-67
UCLI with VCS example A-2
UCLI with VHDL example A-9
-ucli=init 1-4

Feedback

UNABLE-SET-POINT 8-2

V

-value 8-1

Variable/Expression Manipulation 3-36
VCS 1-2

Verilog escape name 2-10

VHDL extended identifier 2-10

W

wildcards 2-11

IN-3

Feedback
IN-4

	Contents
	Unified Command-line Interface (UCLI)
	Running UCLI
	UCLI with VCS
	How to Enable UCLI Debugging
	Compile-time Options
	Runtime Options

	Debugging During Initialization of SystemVerilog Static Functions and Tasks

	UCLI Commands
	Using a UCLI Command Alias File
	Default Alias File

	Customizing Command Aliases and Settings
	Creating Custom Command Aliases
	Operating System Commands
	Configuring End-of-Simulation Behavior

	Using Key and Log Files
	Log Files
	Key Files

	Current Scope and Active Scope
	Capturing Output of Commands and Scripts
	Command-line Editing in UCLI
	Keeping the UCLI Prompt Active After a Runtime Error

	UCLI Interface Guidelines
	Numbering Conventions
	VHDL Numbering Conventions
	Verilog Numbering Conventions

	Hierarchical Path Names
	Multiple Levels in a Path Name
	Absolute Path Names
	Relative Path Names

	bit_select/index
	part_select/slice
	Naming Fields in Records or Structures
	Generate Statements
	More Examples on Path Names
	Name Case Sensitivity
	Extended/Escaped Identifiers
	Verilog escape name VHDL Extended Identifier

	Wildcard Characters
	Tcl Variables
	Simulation Time Values

	Commands
	Simulation Invocation Commands
	start
	restart
	“start”

	start_verdi
	loaddl
	cbug
	ucli2Proc

	Session Management Commands
	save
	restore
	Restrictions for Save and Restore Commands

	Simulation Advancing Commands
	step
	next
	run
	finish

	Navigation Commands
	scope
	thread
	stack

	Signal/Variable/Expression Commands
	get
	force
	xprop
	report_violations
	power
	saif
	lp_show
	release
	sexpr
	call
	search
	virtual bus (vbus)
	Viewing Values in Symbolic Format

	Simulation Environment Array Commands
	senv

	Breakpoint Commands
	stop

	Timing Check Control Command
	tcheck
	report_timing

	Signal Value and Memory Dump Specification Commands
	dump
	Limitations
	Examples
	Filtering Data in the VPD Dump File
	Dumping Analog Signals in FSDB File in VCS- CustomSim Cosimulation Flow

	initreg
	memory
	Support for VHDL Object to Read and Write Verilog Memory File Format

	Design Query Commands
	search
	find_forces
	find_identifier
	show
	constraints
	drivers
	loads

	Macro Control Routines
	do
	onbreak
	onerror
	onfail
	resume
	pause
	abort
	status

	Coverage Command
	coverage

	Assertion Command
	assertion
	Precedence Levels for Controlling Assertions

	Helper Routine Commands
	help
	alias
	unalias
	listing
	config

	Multi-level Mixed-signal Simulation
	ace

	Specman Interface Command
	sn

	Expression Evaluation for stop/sexpr Commands
	Extended the Expression Grammar
	Verilog Array and Bit Select Indexing Syntax Support

	Using the C, C++, and SystemC Debugger
	Getting Started
	Using a Specific gdb Version
	Starting UCLI With the C-Source Debugger
	Detaching the C-Source Debugger

	C Debugger Supported Commands
	SystemC Datatypes
	Changing Values of SystemC and Local C Objects With synopsys::change
	Changing SystemC Objects
	Changing Local C Variables

	Using Line Breakpoints
	Set a Breakpoint

	Deleting a Line Breakpoint
	Stepping Through C Source Code
	Stepping within C Sources
	Cross-stepping Between HDL and C code
	Cross-stepping in and out of Verilog PLI Functions
	Cross-Stepping In and Out of VhPI Functions
	Cross-Stepping from C into HDL:
	Cross-Stepping In and Out of SystemC Processes

	Direct gdb Commands
	Add Directories to Search for Source Files

	Common Design Hierarchy
	Post-Processing Debug Flow

	Interaction With the Simulator
	Prompt Indicates Current Domain
	Commands Affecting the C Domain
	Combined Error Message
	Update of Time, Scope, and Traces

	Configuring CBug
	Startup Mode
	Attach Mode
	cbug::config add_sc_source_info auto|always|explicit
	STL Types Variables for Improved CBug Flow
	Use Model
	Usage Example
	Limitations

	Using a Different gdb Version

	Supported Platforms
	CBug Stepping Features
	Using Step-Out Feature
	Automatic Step-Through for SystemC
	Enabling and Disabling Step-Through Feature
	Recovering from Error Conditions

	Specifying Value-Change Breakpoint on SystemC Signals
	Capabilities for All Data Types
	Capabilities for Single-Bit Objects
	Capabilities for Bit-Slices
	Points to Note
	Limitations

	Driver/Load Support for SystemC Designs in Post- Processing Mode
	Dumping Source Names of Ports and Signals in VPD
	Dumping Plain Members of SystemC in VPD
	Supported and Unsupported UCLI and CBug Features
	UCLI Save Restore Support for SystemC-on-top and Pure-SystemC Designs
	SystemC with UCLI Save and Restore Use Model
	SystemC with UCLI Save and Restore Coding Guidelines
	Saving and Restoring Files During Save and Restore
	Restoring the Saved Files from the Previous Saved Session
	Limitations of UCLI Save Restore Support

	Interactive Rewind
	Interactive Rewind Vs Save and Restore
	Use Model
	Additional Configuration Options
	Creating Checkpoints on Breakpoint Hits

	Support for Reverse Debug in UCLI
	Enabling Reverse Debug
	Keep Future
	Virtual Checkpoints
	Using Reverse Simulation Control Commands
	Limitations

	Debugging Transactions
	Introduction
	Transaction Debug in UCLI

	Debugging Virtual Interface Arrays and Queues in UCLI
	Example
	Limitations

	Debugging Mixed-Signal Designs
	Support for Top Spice Module
	Using UCLI show Commands for SPICE
	Using show -domain Command
	Using show -type Command
	Using show -value Command

	Support for the UCLI force or release Command on SPICE Ports
	Limitations
	Usage Example

	Examples
	Verilog Example
	Compiling the VCS Design and Starting Simulation
	Running Simulation on a VCS Design

	VHDL Example
	Compiling the VHDL Design and Starting Simulation
	Simulating the VHDL the Design

	SystemVerilog Example
	Compiling the SystemVerilog Design and Starting Simulation
	Simulating the SystemVerilog Design

	Native Testbench OpenVera (OV) Example
	Compiling the NTB OpenVera Testbench Design and Starting Simulation
	Simulating the NTB OpenVera Testbench Design

	SCL and UCLI Equivalent Commands
	SCL and UCLI Equivalent Commands

	Index

