
VCS®

Unified Command Line
Interface User Guide
Q-2020.03-SP2, September 2020

Verification ContinuumTM

ii

Copyright Notice and Proprietary Information
© 2019 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys,
Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Third-Party Software Notices
VCS® and configurations of VCS includes or is bundled with software licensed to Synopsys under free or open-
source licenses. For additional information regarding Synopsys's use of free and open-source software, refer to the
third_party_notices.txt file included within the <install_path>/doc directory of the installed VCS software.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

 III

Feedback

Contents

1. Unified Command-line Interface (UCLI)

Running UCLI . 1-2

UCLI with VCS. 1-2

How to Enable UCLI Debugging . 1-3

Debugging During Initialization of SystemVerilog Static Functions and
Tasks . 1-4

UCLI Commands. 1-8

Using a UCLI Command Alias File . 1-11

Default Alias File . 1-12

Customizing Command Aliases and Settings 1-13

Creating Custom Command Aliases 1-13

Operating System Commands. 1-14

Configuring End-of-Simulation Behavior 1-15

Using Key and Log Files . 1-15

Log Files . 1-16

Key Files . 1-16

Current Scope and Active Scope . 1-17

IV

Feedback

Capturing Output of Commands and Scripts. 1-18

Command-line Editing in UCLI . 1-18

Keeping the UCLI Prompt Active After a Runtime Error 1-19

2. UCLI Interface Guidelines

Numbering Conventions . 2-1

VHDL Numbering Conventions . 2-1

Verilog Numbering Conventions . 2-3

Hierarchical Path Names. 2-4

Multiple Levels in a Path Name . 2-5

Absolute Path Names . 2-5

Relative Path Names . 2-6

bit_select/index . 2-6

part_select/slice. 2-7

Naming Fields in Records or Structures 2-7

Generate Statements . 2-7

More Examples on Path Names . 2-8

Name Case Sensitivity . 2-9

Extended/Escaped Identifiers . 2-10

Verilog escape name VHDL Extended Identifier 2-10

Wildcard Characters . 2-11

Tcl Variables . 2-11

Simulation Time Values . 2-12

 V

Feedback

3. Commands

Simulation Invocation Commands. 3-2

start . 3-3

restart. 3-5

start_verdi . 3-7

loaddl . 3-8

cbug . 3-9

Session Management Commands . 3-13

save . 3-13

restore . 3-14

Simulation Advancing Commands. 3-17

step . 3-17

next . 3-20

run . 3-23

finish . 3-28

Navigation Commands . 3-29

scope . 3-29

thread. 3-31

stack . 3-34

Signal/Variable/Expression Commands 3-36

get . 3-37

force. 3-39

xprop . 3-45

report_violations . 3-47

power . 3-48

VI

Feedback

saif . 3-50

lp_show . 3-52

release . 3-56

sexpr . 3-57

call . 3-60

search . 3-63

virtual bus (vbus) . 3-64

Viewing Values in Symbolic Format. 3-67

Simulation Environment Array Commands 3-70

senv . 3-70

Breakpoint Commands . 3-73

stop . 3-73

Timing Check Control Command . 3-84

tcheck . 3-85

report_timing . 3-88

Signal Value and Memory Dump Specification Commands 3-90

dump . 3-91

initreg . 3-117

memory . 3-117

Design Query Commands . 3-128

search . 3-128

find_forces . 3-129

find_identifier . 3-130

show . 3-133

constraints . 3-139

 VII

Feedback

drivers . 3-144

loads . 3-146

Macro Control Routines. 3-149

do. 3-149

onbreak . 3-153

onerror . 3-155

onfail . 3-156

resume. 3-158

pause . 3-159

abort. 3-161

status . 3-162

Coverage Command . 3-164

coverage . 3-165

Assertion Command . 3-166

assertion . 3-166

Helper Routine Commands . 3-174

help . 3-174

alias . 3-176

unalias . 3-177

listing . 3-177

config . 3-179

Multi-level Mixed-signal Simulation . 3-187

ace . 3-187

Specman Interface Command. 3-188

sn . 3-188

VIII

Feedback

Expression Evaluation for stop/sexpr Commands. 3-190

4. Using the C, C++, and SystemC Debugger

Getting Started . 4-2

Using a Specific gdb Version . 4-2

Starting UCLI With the C-Source Debugger 4-3

C Debugger Supported Commands . 4-4

Changing Values of SystemC and Local C Objects With
synopsys::change. 4-11

Using Line Breakpoints . 4-16

Deleting a Line Breakpoint. 4-17

Stepping Through C Source Code. 4-18

Direct gdb Commands . 4-23

Add Directories to Search for Source Files 4-24

Common Design Hierarchy . 4-25

Post-Processing Debug Flow. 4-28

Interaction With the Simulator . 4-30

Prompt Indicates Current Domain . 4-30

Commands Affecting the C Domain. 4-30

Combined Error Message . 4-31

Update of Time, Scope, and Traces 4-31

Configuring CBug . 4-32

Startup Mode . 4-32

Attach Mode. 4-33

cbug::config add_sc_source_info auto|always|explicit 4-33

 IX

Feedback

STL Types Variables for Improved CBug Flow 4-34

Using a Different gdb Version . 4-35

Supported Platforms . 4-36

CBug Stepping Features . 4-36

Using Step-Out Feature. 4-37

Automatic Step-Through for SystemC 4-37

Specifying Value-Change Breakpoint on SystemC Signals. 4-39

Capabilities for All Data Types . 4-40

Capabilities for Single-Bit Objects . 4-41

Capabilities for Bit-Slices . 4-43

Points to Note . 4-43

Limitations . 4-44

Driver/Load Support for SystemC Designs in Post-Processing Mode
4-44

Dumping Source Names of Ports and Signals in VPD 4-44

Dumping Plain Members of SystemC in VPD 4-46

Supported and Unsupported UCLI and CBug Features 4-46

UCLI Save Restore Support for SystemC-on-top and Pure-SystemC
Designs . 4-47

SystemC with UCLI Save and Restore Use Model 4-48

SystemC with UCLI Save and Restore Coding Guidelines . . 4-48

Saving and Restoring Files During Save and Restore. 4-49

Restoring the Saved Files from the Previous Saved Session 4-50

Limitations of UCLI Save Restore Support 4-51

X

Feedback

5. Interactive Rewind

Interactive Rewind Vs Save and Restore 5-2

Use Model . 5-3

Additional Configuration Options . 5-6

Creating Checkpoints on Breakpoint Hits 5-7

6. Support for Reverse Debug in UCLI

Enabling Reverse Debug. 6-3

Keep Future . 6-4

Virtual Checkpoints . 6-5

Using Reverse Simulation Control Commands 6-5

Limitations . 6-7

7. Debugging Transactions

Introduction . 7-1

Transaction Debug in UCLI . 7-2

8. Debugging Virtual Interface Arrays and Queues in UCLI

Example. 8-2

Limitations . 8-3

9. Debugging Mixed-Signal Designs

Support for Top Spice Module . 9-1

Using UCLI show Commands for SPICE 9-2

Support for the UCLI force or release Command on SPICE Ports
9-4

 XI

Feedback

Limitations . 9-4

Usage Example . 9-5

Appendix A. Examples

Verilog Example . A-2

Compiling the VCS Design and Starting Simulation A-4

Running Simulation on a VCS Design A-4

VHDL Example . A-9

Compiling the VHDL Design and Starting Simulation A-12

Simulating the VHDL the Design . A-12

SystemVerilog Example . A-16

Compiling the SystemVerilog Design and Starting Simulation A-19

Simulating the SystemVerilog Design A-19

Native Testbench OpenVera (OV) Example A-21

Compiling the NTB OpenVera Testbench Design and Starting
Simulation. A-23

Simulating the NTB OpenVera Testbench Design A-23

Appendix B. SCL and UCLI Equivalent Commands

SCL and UCLI Equivalent Commands . B-2

XII

Feedback

1-1

Unified Command-line Interface (UCLI)FeedbackFeedback

1
Unified Command-line Interface (UCLI) 1

The Unified Command-line Interface (UCLI) provides a common set
of commands for Synopsys verification products.

UCLI is compatible with Tcl 8.6. You can use any Tcl command with
UCLI. Tcl 8.6 supports 64-bit integer. VCS simulation in 32-bit mode
uses the 32-bit version of Tcl to support UCLI, while VCS simulation
in 64-bit mode uses the 64-bit version of Tcl to support UCLI.
Supporting the 64-bit integer arithmetic in UCLI is possible only with
the 64-bit version of Tcl.

1-2

Unified Command-line Interface (UCLI) FeedbackFeedback

Running UCLI

You can use UCLI for debugging your design in either of the two
following modes:

• In non-graphical mode, UCLI can be invoked at the prompt during
runtime.

• In graphical mode, UCLI can be invoked at the command console
of Verdi in interactive mode only (not in post-processing). UCLI
commands are interspersed with GUI commands when running
in graphical mode. For additional information, see Verdi User
Guide and Tutorial.

UCLI with VCS

UCLI is always enabled at runtime, but what UCLI commands are
available depends on what debug capability simv is compiled with.

A UCLI command prompt is printed to the terminal under the
following conditions:

• Running simv and using Ctrl+c

• Running simv and a $stop statement is executed

• Running simv -ucli

simv compiled with: UCLI commands available:

No -debug_access option run, quit
-debug_access run, dump, quit
Global ‘read’ debug capability. For example:
-debug_access+r, -debug_access+all

All UCLI commands

1-3

Unified Command-line Interface (UCLI)FeedbackFeedback

How to Enable UCLI Debugging

Compile-time Options

-debug_access
The -debug_access option enables the dumping of the FSDB
and VPD files for post-process debug. It gives best performance
with the ability to generate the FSDB/VPD/VCD files for post-
process debug. It is the recommended option for post-process
debug.

-debug_access+all
Gives the most visibility/control and you can use this option
typically for debugging with interactive simulation. This option
allows you to track the simulation line-by-line and setting
breakpoints within the source code. With this option, you can set
all types of breakpoints (line, time, value, event, and so on).

-debug_access(+<option>)
Allows you to have more granular control over the debug
capabilities in a simulation.

You can specify additional options with the -debug_access
option to selectively enable the required debug capabilities. You
can optimize the simulation performance by enabling only the
required debug capabilities.

For more information on -debug_access, see VCS User Guide.

1-4

Unified Command-line Interface (UCLI) FeedbackFeedback

Runtime Options

-ucli
If issued at runtime, invokes the UCLI debugger command line.
For more information, see the previous section, “Compile-time
Options” .

-l logFilename
Captures simulation output, such as user input UCLI commands
and responses to UCLI commands.

-a logFilename
Captures simulation output and appends the log information in
the existing log file. If the log file doesn’t exist, then this option
would create a log file.

-i inputFilename
Reads interactive UCLI commands from a file, then switches to
reading from standard command-line input.

-k keyFilename
Writes interactive commands entered to inputFilename, which
can be used by a later simv as -i inputFilename.

Debugging During Initialization of SystemVerilog Static
Functions and Tasks

You can make VCS to enable UCLI debugging when initialization
begins for static SystemVerilog tasks and functions in module
definitions by using the -ucli=init runtime option and keyword
argument.

1-5

Unified Command-line Interface (UCLI)FeedbackFeedback

This debugging capability enables you to set breakpoints during
initialization, among other things.

If you omit the =init keyword argument and enter the -ucli
runtime option, then UCLI begins after initialization and you cannot
debug inside static initialization routines during initialization.

Note:

- Debugging static SystemVerilog tasks and functions in program
blocks during initialization does not require the =init keyword
argument.

- This feature does not apply to VHDL or SystemC code.

When you enable this debugging, VCS displays the following prompt
indicating that the UCLI is in the initialization phase:

init%

When initialization ends, the UCLI returns to its usual prompt:

ucli%

During initialization, the run UCLI command with the 0 argument
(run 0), or the -nba or -delta options runs VCS until initialization
ends. As usual, after initialization, the run 0 command and
argument runs the simulation until the end of the current simulation
time.

During initialization, the following restrictions apply:

• UCLI commands that alter the simulation state, such as a force
command, create error conditions.

• Attaching or configuring Cbug, or in other ways enabling C, C++,
or SystemC debugging during initialization is an error condition.

1-6

Unified Command-line Interface (UCLI) FeedbackFeedback

• The following UCLI commands are not allowed during
initialization:

- Session management commands: save and restore
- Signal and variable commands: force, release, and call
- The signal value and memory dump specification commands:
memory -read/-write and dump

- The coverage commands: coverage and assertion
Consider the code shown in Example 1-1.

Example 1-1 Verilog Module
module mod1;
class C;
 static int I=F();
 static function int F();
 logic log1;
 begin
 log1 = 1;
 $display("%m log1=%0b",log1);
 $display("In function F");
F = 10;
 end
 endfunction
endclass
endmodule

If you simulate the code shown in Example 1-1 using just the -ucli
runtime option, you see the following:

Command: ./simv =ucli
Chronologic VCS simulator copyright 1991-year
Contains Synopsys proprietary information.
Compiler version version-number; Runtime version version-
number; simulation-start-date-time
mod1.\C::F log1=1

1-7

Unified Command-line Interface (UCLI)FeedbackFeedback

In function F
 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.510 seconds; Data structure size: 0.0Mb
simulation-ends-day-date-time

Here, VCS executed the $display tasks right away and the
simulation immediately ran to completion.

If you simulate this same example (Example 1-1) using just the
-ucli=init runtime option and keyword argument, you see the
following:

Command: ./simv -ucli=init
Chronologic VCS simulator copyright 1991-year
Contains Synopsys proprietary information.
Compiler version version-number; Runtime version version-
number; simulation-start-date-time
init%

Notice that VCS has not executed the $display system tasks yet
and the prompt is init%.

You can now set a breakpoint. For example:

init% stop -in \C::F
1

When you attempt to run through the initialization phase:

init% run 0

Stop point #1 @ 0 s;
init%

the breakpoint halts VCS.

1-8

Unified Command-line Interface (UCLI) FeedbackFeedback

If you run the simulation to the end of the initialization phase with the
run 0 UCLI command again, you see the following:

init% run 0
mod1.\C::F log1=1
In function F
ucli%

Now VCS executes the $display system tasks and changes the
prompt to ucli%.

UCLI Commands

The following briefly describes the UCLI commands.

Note:

In the following table, command names are the default alias
commands supplied by Synopsys.

Command Description

abort Halts evaluation of a macro file.

ace Executes an AMS command.

alias Creates an alias for a UCLI command.

call Provides a unified interface to call Verilog/VHDL
or PLI tasks/functions/methods.

cbug Enables debugging of VCS a designs that include
C, C++, and SystemC modules.

checkpoint Snapshot of the current state of the simulator.

config Displays default settings for user’s variables.

constraints Send commands to the constraint solver engine.

coverage Send commands to the coverage engine.

1-9

Unified Command-line Interface (UCLI)FeedbackFeedback

do Evaluates a macro script

drivers Displays a list of signals that drive the indicated
signal.

dump Specifies value dump information (files, scopes/
variables, depth to dump, enable/disable
dumping, and so on.) over the course of the
simulator’s processing.

find_forces Print currently active force in design/scope.

find_identifier Search simv and shared objects for symbols.

finish Finishes/ends processing in the simulator.

force Forces a value onto a variable. Activity in the
simulator does not override this value (deposit,
freeze, clock generation).

get Returns the current value of the specified
variable.

help Displays information on all commands or the
specific command requested.

initreg Initialize Verilog Variables, Registers, and
Memories based on a configuration file.

listing Lists n lines of source on either side of the
simulation’s active location. If no number is
entered, listing shows five lines on either side of
the active location.

loaddl Loads/unloads a user's shared library in the
simulator or UCLI.

loads Displays the loads for the indicated signal for
VCS only (no VHDL support).

lp_show Native Low Power (NLP) related command.

memory Loads or writes memory type values from or to
files.

msglog Design and testbench static and dynamic data
recording.

next For VHDL code, next steps over tasks and
functions. For Verilog, next=step.

1-10

Unified Command-line Interface (UCLI) FeedbackFeedback

onbreak Specifies a script to run when a macro hits a stop-
point

onerror Specifies a script to run when a macro encounters
an error.

onfail Specify a script to run when a macro encounters
a failure.

pause Interrupts the execution of a macro file.

power Power statistics related commands (SAIF).

release Releases a variable from the value assigned
previously using a force command.

report_timing Allows you to get the information of the SDF
(Standard Delay Format) values annotated for a
specific instance.

report_violations Set various xprop related report violations.

restart Restarts the simulation and stop at time zero.

restore Restores simulation state previously saved to a
file using the save command.

resume Restarts execution of a paused macro file from
the point where it stopped.

run Advances the simulation to a specific point. If
some other event fires first then the ‘run’ point is
ignored.

saif Switching Activity Interchange Format (SAIF)
related command.

save Saves the current simulation state in a specified
file.

scope Shows or sets the current scope to the specified
instance. With no arguments the current scope is
returned.

search Search for design objects whose names match
the specified pattern.

show Shows information about your design. You can
specify multiple arguments.

1-11

Unified Command-line Interface (UCLI)FeedbackFeedback

Using a UCLI Command Alias File

You can use the default alias file supplied with your installation or
create a file containing aliases for UCLI commands.

 This section describes the use of aliases.

senv Displays the environment array or query of an
individual array element.

sexpr Evaluate an expression and display the result.

sn Executes a Specman command.

stack Displays stack information for the NTB OpenVera
or SystemVerilog testbench process/thread.

start Starts the simulation from within the Tcl shell.

start_verdi Start Verdi from UCLI prompt.

status Displays the macro file stack.

step Moves the simulation forward by stepping one
line of code. The step command will step into
task and functions.

stop Sets a stop point in the simulator.

tcheck Enable/disable timing checks for a specified
instance/port.

tcl Help for Tcl built-in commands.

thread Displays information regarding the current
SystemVerilog testbench threads running in the
simulator.

unalias Remove one or more aliases.

virtual Create, delete, or display a virtual object.

xprop Set or query xprop merge mode.

1-12

Unified Command-line Interface (UCLI) FeedbackFeedback

Default Alias File

The .synopsys_ucli_prefs.tcl file in your VCS installation
directory contains default aliases for UCLI commands. You can edit
this file to create custom aliases for UCLI commands. By default,
.synopsys_ucli_prefs.tcl looks for the alias file in the
following order:

• UCLI installation directory (for system-wide configuration)

• User’s home directory (for user-specific configuration)

• Current working directory (for design-specific configuration)

You can create custom aliases:

• For all users by editing the file in the VCS installation directory

• For your own use by copying the file and editing it in your home
directory

• For a project by copying the file and editing it in your current
working directory

Once the file is located, UCLI loads the file.

All UCLI commands are of the form synopsys::<command> and
have a default alias of <command>. For example,
synopsys::abort is the command and abort is the alias.

1-13

Unified Command-line Interface (UCLI)FeedbackFeedback

Customizing Command Aliases and Settings

You can customize the UCLI command name aliases and UCLI
settings using the .synopsys_ucli_prefs.tcl resource file in
the following ways:

• Modify aliases and settings for all UCLI users by changing default
aliases and adding or removing settings in the resource file in the
UCLI installation directory.

• Modify the aliases and settings for use in all of your projects by
creating a .synopsys_ucli_prefs.tcl resource file
containing new aliases and settings in your home directory.

• Modify the aliases for use in a specific project by creating a
.synopsys_ucli_prefs.tcl resource file containing new
aliases and settings in your working directory.

When you open UCLI, it first looks in the installation directory and
loads the .synopsys_ucli_prefs.tcl resource file containing
command aliases and UCLI settings. UCLI then looks in your home
directory ($HOME), and finally in your current directory. If a resource
file is found in either or both directories, it is loaded. Each file will add
to or modify the previous file's definitions. You only need to enter
changes to aliases or new or revised settings to customize your
UCLI installation.

Creating Custom Command Aliases

To create an alias command file:

1. Create a file named .synopsys_ucli_prefs.tcl in your
home directory or working directory.

1-14

Unified Command-line Interface (UCLI) FeedbackFeedback

2. Enter an alias_name for each command you wish to customize
as follows:

synopsys::alias alias_name UCLI_command_name

For example, some default aliases are entered as:

synopsys::alias fetch synopsys::get
synopsys::alias run_again synopsys::restart

Note that you only need to enter those commands you want to
customize.

3. Save the file.

If you have saved the file in your home directory, the file contents
will add to or subtract from the installation directory file's
definitions.

If you have saved the file in your working directory, the file contents
are added or subtracted from the definitions of the installation
directory file and the modifications in the home directory.

Operating System Commands

To run an OS command from UCLI in post-processing mode to
capture the output for processing by Tcl, enter the following:

exec OS_command

In interactive mode, OS commands are run automatically. For
example, entering ls will produce a listing of the current directory.

1-15

Unified Command-line Interface (UCLI)FeedbackFeedback

Setting the "auto_noexec" variable in the
.synopsys_ucli_prefs.tcl resource file tells Tcl not to run a
UNIX command when it receives an unknown command. However,
at the UCLI command-line prompt, you can still use the following
command to run UNIX commands during a session:

exec OS_command

Configuring End-of-Simulation Behavior

The default end-of-simulation behavior is to exit UCLI. That means
the UCLI process exits when the simulator runs to the end of
simulation, hits $finish, or terminates unexpectedly.

To configure UCLI to remain open at end of simulation, add the
following to your .synopsys_ucli_prefs.tcl resource file:

config endofsim toolexit

Using Key and Log Files

Use key and log files when debugging a design to:

• Record a session

• Create a command file of the session

• Run a command file created in a previous session

1-16

Unified Command-line Interface (UCLI) FeedbackFeedback

Log Files

You can record an interactive session in a log file. A log session
records both commands entered, command results, and simulator
messages. To create a log file, use the -l filename command-
line option.

Example

To record interactive command input and simulation response in a
log file, enter the following:

simv -ucli -l filename.log

Key Files

When you enter UCLI commands, you can record these commands
in a key file by specifying the -k filename.key runtime option. If
this option is not specified, by default, VCS records commands in the
ucli.key file.

You can rerun the session using the -i filename.key runtime
option.

Note:

If a key file containing errors is replayed, UCLI stops execution at
the line containing the error. To proceed, you must fix the errors
in the key file and run simv again.

Example

To get the output commands entered in a session to a key file, enter
the following command:

1-17

Unified Command-line Interface (UCLI)FeedbackFeedback

% simv -ucli -k output.key

To rerun the session again, enter the following command:

% simv -ucli -i output.key

Current Scope and Active Scope

When debugging a design, you can use UCLI to display information
about the current scope in the design and the active scope in the
simulation.

• The current scope is the scope in the design to which you have
navigated using UCLI commands.

• The active scope is the place where the VCS simulator has
stopped.

Note:

- You can change the current scope by using the UCLI scope
command, but you cannot change the active scope.

- Active scope can be changed only by the commands step,
next, or run.

- If you do not use the scope command, then the current scope
will be the same as the active scope, provided that the config
option followactivescope is set to ON.

1-18

Unified Command-line Interface (UCLI) FeedbackFeedback

Capturing Output of Commands and Scripts

Use echo and redirect commands to capture the output of
commands and scripts to a file. For example:

ucli% exec echo [show -variables] > vars.list
ucli% redirect vars.list {show -variables}

Command-line Editing in UCLI

You can use the up and down arrow keys to access previously
entered commands in UCLI. You can also edit the command-line
entries using the <Ctrl>-character.

Ctrl-character Action

@ Mark cursor position

a Go to beginning of line

b Move backward a character

c Sends an interrupt signal to the simulator

d Delete the character underneath the cursor

e Move to the end of the line

f Move forward a character

h Delete previous character

i Automatic completion (tab)

j Insert a newline character

k Kill the text from point to the end of the line

l Clear the screen, reprinting the current line at the top

1-19

Unified Command-line Interface (UCLI)FeedbackFeedback

Keeping the UCLI Prompt Active After a Runtime Error

VCS allows you to debug an unexpected error condition by not
exiting UCLI. The UCLI command prompt remains active when there
is an error condition, allowing you to examine the current simulation
state (the simulation stack, variable values, and so on). This allows
you to debug the error condition.

For more information, refer to the Keeping the UCLI Prompt Active
After a Runtime Error section of the VCS User Guide category in the
VCS Online Documentation.

m Insert a newline character

n History - next event

o Terminal flush

p History - previous event

r Reverse incremental search

t Toggle last two characters

u Kill the current line

w Kill the current line

y Yank the top of the kill ring into the buffer at point

z Terminal suspend

Backspace (no
Ctrl- prefix)

Delete previous character

1-20

Unified Command-line Interface (UCLI) FeedbackFeedback

2-1

UCLI Interface GuidelinesFeedbackFeedback

2
UCLI Interface Guidelines 2

This chapter describes the general guidelines for specifying
arguments to simulator commands in UCLI.

Numbering Conventions

You can express numbers in UCLI commands in either VHDL or
Verilog style. Numbers can be used interchangeably, for VHDL and
Verilog parts of the simulated design.

VHDL Numbering Conventions

The first of two VHDL number styles is as follows:

[-] [radix #] value [#]

2-2

UCLI Interface Guidelines FeedbackFeedback

-
 Indicates a negative number; optional.

radix
Can be any base in the range 2 through 16 (2, 8, 10, or 16). By
default, radix is omitted and the numbers are assumed to be
decimal. This parameter is optional.

value
Specifies the numeric value, expressed in the specified radix. This
parameter is mandatory.

#
A delimiter between the radix and the value. The first # sign is
required if a radix is used, the second is always optional.

Example

16#FFca23#
2#1111_1110#
-23749
8#7650
-10#23749
The second VHDL number style is as follows:

base "value"

base

Specifies the base. Binary: B, octal: O, hex: X. This parameter is
mandatory.

value

2-3

UCLI Interface GuidelinesFeedbackFeedback

Specifies digits in the appropriate base with optional underscore
separators. The default value is decimal. This parameter is
mandatory.

Example

B"11111110"
B"1111_1110"
"11111110"
X"FFca23"
O"777"

Verilog Numbering Conventions

Verilog numbers are expressed in the following style:

[-] [size] [base] value

-
Indicates a negative number. This parameter is optional.

size

Specifies the number of bits in the number. This parameter is
optional.

base

Specifies the base. Binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or
‘D, hex: ‘h or ‘H. This parameter is optional.

value

Specifies digits in the appropriate base with optional underscore
separators. The default value is decimal. This parameter is
mandatory.

2-4

UCLI Interface Guidelines FeedbackFeedback

Example

’b11111110
8’b11111110
’Hffca23
21’H1fca23
-23749
27_195_000
16'b0011_0101_0001_1111
32'h 12ab_f001

Hierarchical Path Names

Each of the following HDL objects create a new level in the hierarchy:

• VHDL

- component instantiation statement

- block statement

- package

• Verilog

- module instantiation

- named fork

- named begin

- task

- function

Each level in the hierarchy is also known as a region.

2-5

UCLI Interface GuidelinesFeedbackFeedback

Multiple Levels in a Path Name

Multiple levels in a path name are separated by the character
specified in the path separator variable that can be set by the user.
Allowed path separators are as follows:

"/"
"."
":"

"." for Verilog naming conventions.

":" for VHDL IEEE 1076-1993 naming conventions.

The default for VHDL and mixed design is "/".

The default for Verilog design is ".".

Absolute Path Names

In VHDL, absolute path names begin with the path separator "/",
however, in Verilog, absolute path names begin with the top module
name. For more flexibility, you can use either way to specify the
hierarchical name.

Example

top_mod.i1.i2 or top_mod/i1/i2 or top_mod:i1:i2
.top_mod.i1.i2 or /top_mod/i1/i2 or :top_mod:i1:i2
/top_entity/i1/i2 or .top_entity.i1.i2 or :top_entity:i1:i2
top_entity/i1/i2 or top_entity.i1.i2 or top_entity:i1:i2

2-6

UCLI Interface Guidelines FeedbackFeedback

Note:
Since Verilog designs may contain multiple top-level modules, a
path name may be ambiguous if you leave off the top-level module
name.

Relative Path Names

Relative path names do not start with the path separator and are
relative to the current UCLI scope (the result of a scope command).

A path name may also contain a VHDL generate, V2k generate (both
FOR and IF generate), array instance, and so on.

bit_select/index

VHDL array signals and Verilog memories and vector nets can be
indexed or bit selected.

For bit_select, Verilog uses [<index>], while VHDL uses
(<index>). VCS allows both ways to specify index or bit select for
a Verilog or VHDL object. Note index must be a locally static
expression.

Example

vlObj[0], vlObj(0), vhObj(0), vhObj[0]

2-7

UCLI Interface GuidelinesFeedbackFeedback

part_select/slice

VHDL array signals and Verilog memories and vector nets can be
sliced or part_selected. Slice ranges may be represented in either
VHDL or Verilog syntax, irrespective of the setting of the path
separator.

For slice, Verilog uses [<left_range>:<right_range>] for
part_select, while VHDL uses (<left_range> TO|DOWNTO
<right_range>). VCS should allow both syntax forms for either a
Verilog or VHDL object.

Example

vlObj[0:5], vlObj(0:5), vlObj(0 TO 5), vlObj(5 downto 0),
vhObj(0 TO 5), vhObj(5 downto 0), vhObj[0:5], vhObj(0:5)
vhObj(0 downto 5) is a NULL range
vlObj(0 downto 5) is equivalent to vlObj[0:5]

Naming Fields in Records or Structures

For fields in VHDL record signals or SystemVerilog structures, "."
is used as the separator irrespective of whatever path separator is
used. Therefore, it will have the following form:

object_name.field_name

Generate Statements

VHDL and SystemVerilog generate statements are referenced in a
similar way to index/bit-select arrays.

2-8

UCLI Interface Guidelines FeedbackFeedback

Example

vlgen[0], vlgen(0), vhgen(0), vhgen[0]

Note:
Mixing VHDL syntax with Verilog syntax is allowed as long as the
"[" and "]", and "(" and ")" are used in pairs. If not
specified in pairs, it is an error.

Example

vlObj[0:5), vlObj(0:5], vlObj(0 TO 5], vlObj[5 downto 0)

The usage of "(", "and", and "]" are not legal.

More Examples on Path Names

clk

Specifies the object clk in the current region.

/top/clk

Specifies the object clk in the top-level design unit.

/top/block1/u2/clk

Specifies the object clk, two levels down from the top-level
design unit.

block1/u2/clk

 Specifies the object clk, two levels down from the current region.

array_sig(4)

2-9

UCLI Interface GuidelinesFeedbackFeedback

Specifies an index of an array object.

{array_sig(1 to 10)}
Specifies a slice of an array object in VHDL syntax.

{mysignal[31:0]}

Specifies a slice of an array object in Verilog syntax.

record_sig.field

Specifies a field of a record.

{block1/gen(2)/control[1]/mem(7:0)}

Specifies a slice of an array object with mixed VHDL and Verilog
syntax, three levels down from the current region as part of a
nested generate statement.

Note the braces added to the path; square brackets are not
recognized as Tcl commands.

Name Case Sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL
names are not case sensitive, except for extended identifiers in
VHDL 1076-1993. In contrast, all Verilog names are case sensitive.

2-10

UCLI Interface Guidelines FeedbackFeedback

Extended/Escaped Identifiers

The Verilog escaped identifier starts with "\" and ends with a
space " ". The VHDL extended identifier starts and ends with "\".
Therefore, both " " and "\" is allowed as delimiters, which implies
that the VHDL extended identifier cannot have space.

You can also specify a Verilog escaped identifier in VHDL style
(extended identifier), and vice versa.

Verilog escape name VHDL Extended Identifier

Suppose you have a declaration in Verilog:

reg \ext123$$%^ ; // note: mandatory space character at
the end of identifier

If you put this identifier in any UCLI command, it would look like:

{\ext123$$%^ }//Note: mandatory space character at the end
of identifier.

Suppose you have a declaration in VHDL:

signal \myvhdl123@#\ : std_logic;

In UCLI command, it would look like:

\\myvhdl123@#\\

2-11

UCLI Interface GuidelinesFeedbackFeedback

Wildcard Characters

You can use wildcard characters in HDL object names with some
simulator commands.

Conventions for wildcards are as follows:

*
Matches any sequence of characters.

?
Matches any single character.

Tcl Variables

Global Tcl variables for simulator control variables and user-defined
variables, can be referenced in simulator commands by preceding
the name of the variable with the dollar sign ($) character. The
variable needs to be expanded first before passing it along to the
simulator.

To resolve the conflict with referencing Verilog system tasks that also
use ($) sign, you must specify Verilog system tasks with "\" or
enclosed in {}.

Example

ucli> call {$readmemb("l2v_input", init_pat);}

Note:

In SystemVerilog, $root is a keyword.

2-12

UCLI Interface Guidelines FeedbackFeedback

Simulation Time Values

Time values can be specified as <number><unit>, where unit can
be sec, ms, us, ns, ps, or fs. A white space is allowed between the
number and unit.

You can specify the time unit for delays in all simulator commands
that have time arguments. For example:

run 2ns
stop -relative 10 ns

Unless you explicitly specify timebase using config -timebase,
simulation time is based on simulator time precision.

Note:

UCLI does not read the synopsys_sim.setup file in VCS to
obtain the value of timebase.

By default, the specified time values are assumed to be relative to
the current time, unless the absolute time option is specified which
signifies an absolute time specification.

3-1

CommandsFeedbackFeedback

3
Commands 3

This chapter contains UCLI command definitions. It includes the
following sections:

• Simulation Invocation Commands

• Session Management Commands

• Simulation Advancing Commands

• Navigation Commands

• Signal/Variable/Expression Commands

• Simulation Environment Array Commands

• Breakpoint Commands

• Timing Check Control Command

• Signal Value and Memory Dump Specification Commands

3-2

Commands FeedbackFeedback

• Design Query Commands

• Macro Control Routines

• Coverage Command

• Assertion Command

• Helper Routine Commands

• Specman Interface Command

• Expression Evaluation for stop/sexpr Commands

Note:

Command names used are the default aliases supplied by
Synopsys.

Simulation Invocation Commands

This section describes the following simulation invocation
commands used for invoking the simulation:

• “start”

• “restart”

• “start_verdi”

• “loaddl”

• “cbug”

3-3

CommandsFeedbackFeedback

start

Use this command to start a new simulation from the UCLI command
prompt. You can use this command to start the simulation (see the
example following this section). This command starts the simulation
from time '0'. The optional simulator-specific command-line
arguments can be given after the simulator’s name.

To go to UCLI prompt from Unix prompt you have to run:

>tclsh # you will get TCL prompt %
%lappend auto_path $env(VCS_HOME)/etc/ucli

%package require ucli # you got ucli prompt "ucli%"
ucli% start simv <simulation options> # start VCS simulator

When executed, this command:

• Resets all the UCLI configuration values to their default state.

• Removes all previously set breakpoints.

• Resets all the previously forced variables to default values.

Note:
The default end-of-simulation behavior is to exit the UCLI shell.
For example, the UCLI process will exit when the simulator (that
is, simv) reaches end-of-simulation, $finish (in Verilog), or if
the simulator dies (simulation crashes or segmentation fault). To
prevent this, you need to set the 'endofsim' configuration
parameter to noexit. For more information, see the configuration
commands.

Syntax
start <simulator_name> [simulator related arguments]

3-4

Commands FeedbackFeedback

simulator
This is typically a VCS executable name (that is, simv). This
option is mandatory.

[simulator related arguments]
All the arguments which the simulator supports.

Examples
ucli% start simv

Starts simv from simulation time '0'. This command displays no
output.

ucli% start simv -l simv.log
Starts simv from simulation time '0' with the argument '-l'.
This command displays no output.

//Flow Example …

//To start another simulator while already in the UCLI Tcl
shell of another simulator …
ucli% config endofsim noexit
ucli% run
ucli% start simv_1
ucli% config endofsim noexit
ucli% run
ucli% start ../simv
ucli% config endofsim noexit
ucli% run
ucli% start simv
ucli% run

Related Commands

“restart”

3-5

CommandsFeedbackFeedback

“restore”

restart

Use this command to restart the existing simulator (that is, simv)
from simulation time '0'. This command does not take any
arguments. This command always restarts the simulator with the
same set of command-line arguments which it included when it was
originally invoked. This command can be executed at any time
during simulation.

When executed, this command:

• Retains all the previous UCLI configuration values.

• Retains all previously set breakpoints.

Note:

The default end-of-simulation behavior is to exit the UCLI shell.
For example, the UCLI process will exit when the simulator (that
is, simv) reaches end-of-simulation, $finish (in Verilog), or if
the simulator dies (simulation crashes or segmentation fault). To
prevent this, you need to set endofsim configuration parameter
to noexit.

Syntax
“restart”

Examples
ucli% restart

Starts simv from simulation time '0'. This command displays no
output.

//Flow Example …

3-6

Commands FeedbackFeedback

//To restart simulation multiple times …

ucli% config endofsim noexit
Sets end of simulation criterion to noexit. For example, the UCLI
Tcl shell is not exited after reaching end of simulation. The output
of this command is the value of configuration endofsim variable,
which in this case is noexit.

Noexit

ucli% run
May display simulation output. Once the simulation is stopped,
the UCLI Tcl shell is not exited and you may give additional
debugging commands and restart the simulation.

ucli% restart
Starts simv from simulation time '0'.
ucli% config endofsim noexit
ucli% run
ucli% restart

You can use the UCLI commands save/restore during the same
simulation session (in the same UCLI script) or in separate
simulation sessions.

For example, same simulation session:

simv -ucli -i run.tcl

where run.tcl has both commands:

save saved_sn_shot
restore saved_sn_shot
Separate simulation sessions: first simulation session:

3-7

CommandsFeedbackFeedback

simv -ucli -i run1.tcl

where run1.tcl has save command:

save saved_sn_shot
second simulation session:

simv -ucli -i run2.tcl

where run2.tcl has restore command:

restore saved_sn_shot

Related Commands

“start”

start_verdi

Use this command to start the Verdi GUI from UCLI. You must set
VERDI_HOME.

Syntax
start_verdi [-verdi_opts <verdi_opts_str>]

verdi_opts_str
Specifies list of arguments that the Verdi executable supports
when starting the executable from an xterm.

3-8

Commands FeedbackFeedback

loaddl

Use this command to load or unload your shared libraries in the
simulator or UCLI memory space.

Loading Shared Libraries

Following is the syntax to load shared library:

Syntax
loaddl <shared-object> <symbols> [-debug] [-simv|-ucli]

shared-object
Full path name of the shared library being loaded.

symbols
List of function names to be loaded.

-simv
Loads the shared library into simv memory.

-ucli
Loads the shared library into UCLI memory (when running UCLI
in two process mode).

-debug
Prints debug information in case of an error.

Loading Packages

Following is the syntax to load packages:

3-9

CommandsFeedbackFeedback

Syntax
loaddl <package-name>[:<version>] <symbols> [-debug] [-
simv|-ucli]

package-name
Name listed in the pkgIndex.tcl file.

version
The version to be loaded, or the latest version if not specified.

Unloading Previously Loaded Shared Library

Following is the syntax to unload the previously loaded shared
library:

Syntax
loaddl -unload <shared-object>|<package-name><symbols> [-
debug] [-simv|-ucli]

cbug

Use this command to enable debugging C, C++, or SystemC
modules included in the VCS designs. Alternately, the C Debugger
starts automatically when a breakpoint is set in a C/C++/SystemC
source code file.

For more information, see the chapter entitled, “Using the C, C++,
and SystemC Debugger” .

Note:

The simulator (that is, simv) should be started before starting C
Debugger.

3-10

Commands FeedbackFeedback

Syntax
ucli% cbug

This command attaches (enables) C Debugger.

ucli% cbug -detach
This command detaches (Disables) C Debugger. This command
displays the following output.

CBug detaches
Stopped

ucli2Proc

You need to use the -ucli2Proc runtime option to debug SystemC
designs.

Note:

- For designs containing both SystemC and VERA modules, you
must use -ucli2Proc to enable UCLI prompt or to use UCLI
input Tcl file.

- The -ucli2proc mode is compatible with Tcl 8.5.

Example

`define W 31

module my_top();

parameter PERIOD = 20;
reg clock;
reg [`W:0] value1;
reg [`W:0] value2;
wire [`W:0] add_wire;

integer counter;
integer direction;
integer cycle;

3-11

CommandsFeedbackFeedback

// SystemC model
adder add1(value1, value2, add_wire);

initial begin
 value1 = 32'b010; // starts at 2
 value2 = 32'b000; // starts at 0
 counter = 0;
 direction = 1;
 cycle = 0;
end

// clock generator
always begin
 clock = 1'b0;
 #PERIOD
 forever begin
 #(PERIOD/2) clock = 1'b1;
 #(PERIOD/2) clock = 1'b0;
 end
end

// stimulus generator
always @(posedge clock) begin
 value1 <= counter+2;
 value2 <= 32'b010; // stays at 2 after here.

 if (direction == 1) // incrementing...
 if (counter == 9) begin
 counter = counter - 1;
 direction = 0;

end
 else
 counter = counter + 1;
 else // decrementing...
 if (counter == 0) begin
 counter = counter + 1;
 direction = 1;
 end
 else
 counter = counter - 1;
end

3-12

Commands FeedbackFeedback

// display generator
always @(posedge clock) begin

 $display("%d + %d = %d", value1, value2, add_wire);

 // end after 100 cycles are executed
 cycle = cycle + 1;
 if (cycle == 20)
 $finish;

end

With this example, you get the following warning message when you
use SystemC designs without -ucli2Proc:

./simv -ucli

Warning-[UCLI-131] Debugging SystemC not possible.
SystemC was detected in this flow. Interactive debugging of
SystemC, C or C++ source code using the 'cbug' command is
not possible in the current situation. For example, setting
breakpoints in SystemC, C or C++ source files will not be
possible.
To enable interactive debugging of SystemC, C or
C++ source files, quit the simulation and start it again
with the additional runtime argument '-ucli2Proc'.

With -ucli2Proc, SystemC debugging is enabled.

./simv -ucli -ucli2Proc
ucli% next -lang C
Information: CBug is automatically attaching.
This can be disabled with command "cbug::config attach
explicit".

CBug - Copyright Synopsys Inc 2003-2009
wait while CBug is loading symbolic information ...
... done. Thanks for being patient!
adder.h, 34 : sc_lv<32> val;
CBug%

3-13

CommandsFeedbackFeedback

Session Management Commands

This section describes the following commands:

• “save”

• “restore”

save

Use this command to store the current simulation snapshot in a
specified file. This command saves the entire simulation state
including breakpoints set at the time of saving the simulation.
Relative or absolute path can be given where you want the specified
file to be kept (see the example that follows). This command also
creates (along with the specified file) a file named filename.ucli
in the directory where the specified file is saved. This file has the
record of all the commands that have been executed (including this
command). Multiple simulation snapshots can be created by using
this command repeatedly.

Before executing this command, you need to perform the following:

• Detach the UCLI C Debugger (if attached)

• Close any open files in PLI or VPI

The following use models are supported for saving and restoring:

• Save using UCLI and restore using UCLI

• Save using UCLI and restore using Verdi

3-14

Commands FeedbackFeedback

Syntax
save <filename>

filename
The name of the file to which simulation snapshot is written.

Example
ucli% save sim_st

Saves current state of simulation in file sim_st. This command
displays the following output.

$save: Creating sim_st from current state of./simv...

ucli% save /tmp/scratch1/sim_st
Saves current state of simulation in the file called:

/tmp/scratch1/sim_st

This command displays the following output:

$save: Creating /tmp/scratch/sim_st from current state
of./simv...

Related Commands

“restore”

restore

Use this command to restore the saved simulation state from a
specified file. This command restores the entire simulation state
including breakpoints set at the time of saving the simulation.
Relative or absolute path can be given from where you want the

3-15

CommandsFeedbackFeedback

specified file to be read. A simulation can be restored multiple times
by using different (or same) simulation snapshots (of same
simulator).

Before executing this command, you need to perform the following
tasks:

• Detach the UCLI C Debugger (if attached)

• Close any open files in PLI or VPI.

The following use models are supported for saving and restoring:

• Save using UCLI and restore using UCLI

• Save using UCLI and restore using Verdi

Syntax
restore <filename>

filename
The name of the file from which to restore the simulation state.

Example
ucli% restore sim_st

Restores state of simulation from the snap shot stored in the file
sim_st. This command displays the following output.

Restart of a saved simulation

ucli% restore /tmp/scratch1/sim_st

Restores state of simulation from the snapshot stored in the file:

/tmp/scratch1/sim_st

3-16

Commands FeedbackFeedback

This command displays the following output:

Restart of a saved simulation

Related Commands

“save”

Restrictions for Save and Restore Commands

• You must not save state after $stop.

• save/restore is not supported if –R option is used at the vcs
command-line.

• Detach CBug — CBug has to be detached before using save or
restore command. CBug can be attached again after the
command is completed.

• IPC (inter-process communication) — If the simulation has
spawned other processes, or is connected to other processes by
the C code, then you must reestablish these connections yourself
after a restore.

• SystemC specific restrictions — If the simulation contains
SystemC modules, then the following restrictions apply for save/
restore:

- The simulation must have been elaborated with option "vcs
... -sysc=newsync ...". This implies that SystemC 2.2
is used.

- SC_THREADs implemented by POSIX threads (by setting
environment variable SYSC_USE_PTHREADS) are not
supported.

3-17

CommandsFeedbackFeedback

- SC_THREADs implemented by Quick threads (default) are
supported.

- A 'save' directly after the simulation has been started may not
be possible. Advance the simulation with "run 0" and then try
again.

Simulation Advancing Commands

This section describes the following commands:

• “step”

• “next”

• “run”

• “finish”

step

Use this command to move the simulation forward by one
executable line of code irrespective of the language of the code. This
step command steps into tasks functions and VHDL Procedures
when called. That is, it steps through the executable lines of code in
the task/function/VHDL Procedure.

Upon execution, this command displays the:

• Source file name

• Line number

• Source code at that line

3-18

Commands FeedbackFeedback

Note:
- If the source code is encrypted, only the source file name is

displayed.

- Simulation stops before the displayed source code is executed.

- If the displayed source code contains multiple statements, simv
stops only once before the first statement is executed.

Syntax
step [-reverse]
step [-thread [thread_id]]
step [-tb [instanceFullName]]

-reverse
This option, if specified, goes back to the previous statement
dictated by any additional options.

-thread [thread_id]
This option is used for testbench debugging. When this option is
specified, step stops at the next executable statement in the
thread specified by thread_id. If thread_id is not specified,
then the simulator stops at the next executable statement in the
current thread. If the thread_id does not exist when step is
executed, the simulator reports an error. You can determine the
thread_id using the UCLI commands senv thread or
thread.

-tb [instanceFullName]

3-19

CommandsFeedbackFeedback

This option is used for testbench debugging. The option
instanceFullName is optional. When this option is specified,
simulator steps into the specified testbench instance. The
instanceFullName option should be a program or any module
instance that contains testbench constructs. If
instanceFullName is not specified, then simulator steps into
any of the program or module instance that contain testbench
constructs.

Stepping Into Constraints Solver

Following is the syntax to step into the constraints solver:

step [-solver [-re_randomize [-dist_num <N> [-
dist_cont]]]]

-solver
Specifies that simv steps into the constraint debug mode. The
current line on which simv has stopped must have a randomize
call.

-re_randomize
Re-enter constraint debug mode.

-dist_num <N>
Used for distribution analysis, where N specifies the number of
re-randomize calls.

-dist_cont
Continues from the last distribution analysis.

3-20

Commands FeedbackFeedback

Example
ucli% step

Stops at the next executable line in the source code. This
command displays source file name, line number and source code
at that line number as output.

t1.v, 12 : $display("66666666");

ucli% step -thread 1
Stops at the next executable line of thread 1 in the testbench
source code. This command displays source file name, line
number and source code at that line number as output.

step2.vr, 14 : delay(10);
Note:

If you put this command in a script, not typing it directly in the UCLI
command prompt, to get this printing you have to use the Tcl puts
command:

puts [step]

Related Commands

“run”

“next”

next

Use this command to move the simulation forward by one
executable line of code irrespective of the language of the code. The
next command is similar to the step command, but next steps
over calls to tasks and functions (that is, simv do not stop on the
source code inside task/functions).

3-21

CommandsFeedbackFeedback

When executed, this command displays the:

• Source file name

• Line number

• Source code at that line

Note:
- If the source code is encrypted, only the source file name is

displayed.

- Simulation stops before the displayed source code is executed.

- If the displayed source code contains multiple statements, simv
stops only once before the first statement is executed.

If the simulator is already executing a statement inside task or
function, the next command does not step over, that is, it behaves
the same as step.

Syntax
next [-reverse]
next [-reverse] [-end]
next [-reverse] [-thread <thread_id>]
next [-hdl]
next [-language <simulator_lang>]

-reverse
This option, if specified, goes back to the previous statement
dictated by any additional options.

-end
This option is used for debugging testbenches only. When this
option is specified, the next command finishes the execution of
task/function and returns to caller.

3-22

Commands FeedbackFeedback

-thread [thread_id]
When you specify this option, next stops at the next executable
statement in the thread specified by thread_id. If thread_id
is not specified, then the simulator stops at the next executable
statement in the current thread. If the thread_id does not exist
in the simulation, the simulator reports an error. You can determine
the thread_id using the UCLI commands senv thread or
thread.

-hdl
When currently stopped in CBug, this option forces simulation to
stop on the next HDL statement to execute.

-language <simulator_lang>
When you specify this option, the simulator stops at the next
executable line in the language specified by the
simulator_lang option. You can use this option to change the
control of execution from one language to another. Currently only
VHDL (-language VHDL) is supported.

Example
ucli% next
Stops at the next executable line in the source code. This command
displays the source file name, line number and source code at that
line number as output.

asb_core.v, 7 : if(cmd == 4'ha)
Note:

If you put this command in a script, not typing it directly in the UCLI
command prompt, to get this printing you have to use the Tcl puts
command:

3-23

CommandsFeedbackFeedback

Related Commands

“stop”

“step”

“run”

run

This command advances the simulation to a specific time, signal
event, line of code in a file, instance, or thread. The simulation stops
if any other event like UCLI breakpoint or $stop occurs first.

This command must be reissued if the UCLI command like start or
restart is issued.

If this command is issued without any arguments, simulation runs till
a breakpoint in the code is hit, a $stop or $finish statement is
executed, or Ctrl+c is given. If the code contains none of these,
simulation runs to completion.

Syntax
run [-reverse]
run [-reverse] [time]
run [-reverse] [time [unit]]
run [-reverse] [-absolute|relative time [unit]]
run [-reverse] [-line <lineno> [-file <file>]
run [-reverse] [-line <lineno>] [-file <file>] [-thread
<tid>]
run [-reverse] [-posedge | rising <nid>] run [-negedge |
falling <nid>] run [-change | event <nid>]
run [-reverse] [-breakpoint <bpid>]
run [-breakpoint { <bpid1> <bpid2> … }]
run [-delta]
run [0]

3-24

Commands FeedbackFeedback

run [-nba]

<nid>, <lineno>, <lineno>
For a description of these options, see the “stop” command
section.

<tid>
Thread id. If not specified, the current thread is assumed.

<unit>

This is the time unit. This could be:
[s | ms | us | ns | ps | fs]

By default, this unit is the time unit of simulation.

<-delta>
Runs one delta time and stops before the next delta. The
simulation advances to the next delta and return to UCLI soon
after the signal update phase (before running next delta). You can
inspect values of newly deposited signals/variables at that time.
If there are no more events for this particular time step, the
simulation advances to the next time step and stops at the end of
the first delta of the new time step.

This ensures all deltas are executed and all blocking assignments
are completed.

<0>

3-25

CommandsFeedbackFeedback

Runs all of the deltas of a particular simulation time and stops just
before the end of that simulation time. The simulation stops after
signal update phase, before process execution for the last delta.
If UCLI generates more events by forces, release, and so on, all
such events are processed until things stabilizes at the end of
current time. Second run 0 does not run next time step, you have
to somehow advance the simulation to next step by other means
(for example, by run -delta).

[-nba]
Runs all deltas and stops before a new NBA (non-blocking
assignments). The simulation goes into interactive mode right
before the NBA queue starts executing. This ensures all deltas
are executed by then and all blocking assignments are completed.

[-breakpoint bpid]
[-breakpoint {bpid1 bpid2 …}]

Runs until one of the breakpoints corresponding to the listed
breakpoint IDs is triggered. Breakpoints not listed are temporarily
be disabled.

Example
ucli% run

Runs until a breakpoint is reached or end of simulation is reached.
This command's output varies depending on the simulation.

ucli% run 10ps
Runs the simulation 10ps relative to the current simulation time.
If the current simulation stops at 1390ps, this command runs the
simulation 10ps more and stops at 1400ps the end of simulation
time. This command is the same as run -relative 10ps. The
output of this command indicates the time at which simulation is
stopped:

3-26

Commands FeedbackFeedback

1400 PS

ucli% run -relative 10ps
Runs the simulation 10ps relative to the current simulation time.
If the current simulation stops at the end of simulation time
1400ps, this command runs the simulation 10ps more and stops
at 1410ps. This command is the same as run 10ps. The output
of this command indicates the time at which simulation is stopped:

1410 PS

ucli% run -absolute 10ps
Runs the simulation 10ps relative to the simulation time '0'. The
time specified should be greater than the current simulation time.
In this example, the time specified is greater than the current
simulation time. The output of this command indicates the time at
which simulation is stopped:

10 PS

ucli% run -absolute 10ps
Runs the simulation 10ps relative to the simulation time '0'.
The time specified should be greater than the current simulation
time. In this example, the time specified is less than the current
simulation time. The output of this command indicates that the
time specified is less than the current simulation time:

the absolute time specified '1' is less than or equal to
the current simulation time '210 ps'

ucli% run -line 15

3-27

CommandsFeedbackFeedback

Runs the simulation until line number 15 in the current file is
reached. The output of this command indicates the time at which
simulation is stopped:

1576925000 PS

ucli% run -line 15 -file level9.v
Runs the simulation until line number 15 in file level9.v is
reached. The output of this command indicates the time at which
simulation is stopped:

1476925000 PS

ucli% run -change clk
Runs the simulation until posedge or negedge of signal clk event
occurs. The output of this command indicates the time at which
simulation is stopped:

500000 ps

ucli% run -event clk
Runs the simulation until posedge or negedge of signal clk event
occurs. The output of this command indicates the time at which
simulation is stopped:

600000 ps

Related Commands

“stop”

3-28

Commands FeedbackFeedback

finish

Use this command to end processing in the simulator.

Syntax
finish

Note:
The default end-of-simulation behavior is to exit the UCLI shell.
That is, the UCLI process exits when the simulator (for example,
simv) reaches the end of simulation, or $finish (in Verilog), or
dies (simulation crashes or segmentation fault). To prevent this,
you need to set the config endofsim noexit parameter. The
UCLI command quit will exit the UCLI prompt.

Example
ucli% finish

Finishes the simulation. The VCS banner is displayed as output
of this command:

V C S S i m u l a t i o n R e p o r t
Time: 00 ps
CPU Time: 0.040 seconds; Data structure size:
2.4Mb
Mon Mar 17 16:10:45 2008

Related Commands

“start”

3-29

CommandsFeedbackFeedback

Navigation Commands

This section describes the following commands:

• “scope”

• “thread”

• “stack”

scope

Use this command to display the current scope or set the current
scope to a specified instance. Remember, that “current scope” is the
scope relative to UCLI (not the simulator). This is important because
other UCLI commands can use relative hierarchical names in
accordance to the current scope.

Current scope can be different with "active scope" where simulation
stops. To make "current scope" to be the same as "active scope" run
the UCLI command config followactivescope on.

Syntax
scope
scope [nid]
scope [-up [number_of_levels]
scope [-active]

scope
With no options, this displays the current scope in UCLI.

3-30

Commands FeedbackFeedback

scope [nid]
Sets the current scope to the hierarchical instance specified by
nid. Hierarchical name can be absolute hierarchical name or
relative to the "current scope".

scope [-up [number_of_levels]
Moves the current scope up by number_of_levels. If
number_of_levels is not specified, the current scope is moved
up '1' level. The number_of_levels must be an integer
greater than 0.

scope [-active]
Displays active scope of simulated Design. The active scope is
the scope in which the simulator is currently stopped.

For more information, see the section entitled, “Current Scope and
Active Scope” .

Example
ucli% scope

Returns the current scope. This command displays the current
scope in the design:

T.t
ucli% scope T.t1.t2.t3.dig

Sets the current scope to T.t1.t2.t3.dig. This command
displays the scope to which the UCLI interpreter moved. In this
example, the output is:

T.t1.t2.t3.dig

ucli% scope -up 2

3-31

CommandsFeedbackFeedback

Moves the current scope up by 2 levels. This command displays
the new scope:

T.t1

ucli% scope -active
Sets the current scope to active scope. This command displays
the new scope:

T.t1

thread

Use this command to perform the following tasks:

• Display current thread information

• Move thread in the current scope to active scope

• Attach a new thread to the current thread

The thread information displayed includes:

• Thread id (#<number>)

• File name and line number in which this particular thread is
present

• State of the thread (current or running)

• Scope of the thread

Note:

This command is used for testbench debugging.

3-32

Commands FeedbackFeedback

Syntax
thread
thread [-attach [tid]]
thread [-active]
thread [<tid>] [-all] [-blocked | -running | -current |
 -waiting]
thread

Displays detailed information of the threads and their state.

thread [tid]
Displays all the details of a particular thread specified by tid.
This command is the same as thread <tid> -all.

thread [-attach [tid]]
Changes the current scope of the thread (with thread id tid)
to active scope.

thread [-active]
Resets the simulator's current thread to active point.

thread -all
Displays all threads with detailed information.

thread [-current | -blocked | -running | -waiting]
Displays thread by their state.

Examples
ucli% thread

Displays information about all the threads. The output of this
command includes:

3-33

CommandsFeedbackFeedback

- Thread id

- State of the thread

- Scope of the thread

- File name and line number in the file in which this particular
thread is present

thread #1 : (parent: #<root>) RUNNING
 1 : -line 6 -file t2.vr -scope
{test_2.test_2.unnamed$$_1}
thread #2 : (parent: #1) CURRENT
 0 : -line 7 -file t2.vr -scope
{test_2.test_2.unnamed$$_1.unnamed$$_2}

ucli% thread 1
Displays information about thread 1. This command displays
the following output.

thread #1 : (parent: #<root>) CURRENT
 0 : -line 6 -file t2.vr -scope test_2.test_2

ucli% thread -attach 2
Changed current scope of thread 2 to active scope. This
command displays a positive integer for successful execution:

2

ucli% thread -all
Displays all threads with full thread information. This command
displays the following output:

thread #1 : (parent: #<root>) RUNNING
 0 : -line 6 -file t2.vr -scope test_2.test_2
 1 : -line 6 -file t2.vr -scope
{test_2.test_2.unnamed$$_1}
thread #2 : (parent: #1) CURRENT
 0 : -line 7 -file t2.vr -scope
{test_2.test_2.unnamed$$_1.unnamed$$_2}

3-34

Commands FeedbackFeedback

ucli% thread -current
Displays all threads that are currently being executed. This
command displays the following output:

thread #2 : (parent: #1) CURRENT
 0 : -line 7 -file t2.vr -scope
{test_2.test_2.unnamed$$_1.unnamed$$_2}

Related Commands

“stack”

stack

Use this command to display the current call stack information; it lists
the threads that are in the CURRENT state. The stack information
displayed includes:

• Scope of the thread

• File name

• Line number in the file in which this particular thread is present

Note:
This command is used for testbench debugging only.

Syntax
stack
stack [-up | -down [number]]
stack [-active]

stack
Displays all NTB-OV or SystemVerilog threads that are in the
CURRENT state.

3-35

CommandsFeedbackFeedback

stack [-active]
Moves current point to active point within the simulator.

stack [-up | -down [intnbr]]
This command is useful only if stack contains more than one
thread. This command moves the stack pointer up or down by
intnbr of locations. If number is not specified, then stack pointer
is moved up or down by '1'. The number has to be a positive
integer.

Examples
ucli% stack

Lists all threads that are in the CURRENT state. The output of this
command includes:

• Thread id

• Scope of the thread

• File name and line number in the file in which this particular thread
is present

0 : -line 13 -file t2.vr -scope
{test_2.test_2.unnamed$$_1.unnamed$$_4}
1 : -line 6 -file t2.vr -scope {test_2.test_2.unnamed$$_1}

ucli% stack -active
This command sets the stack pointer to active thread in the stack.
The output of this command is the id of the thread present at the
location pointed to by the stack pointer:

0

ucli% stack -up 1

3-36

Commands FeedbackFeedback

This command moves the stack pointer up by 1. The output of
this command is ID of the thread present at the location pointed
by stack pointer.

1

Related Commands

“thread”

Signal/Variable/Expression Commands

This section describes the following commands:

• “get”

• “force”

• “xprop”

• “report_violations”

• “power”

• “saif”

• “lp_show”

• “sexpr”

• “call”

• “search”

• “virtual bus (vbus)”

• “Viewing Values in Symbolic Format”

3-37

CommandsFeedbackFeedback

get

Use this command to return the current value of a signal, variable,
net or reg. The default radix used to display the value is symbolic.
Use the config command to change the default radix.

Syntax
get <nid> [-radix string] [-tool_first | -tool | -cbug_first
| -cbug] [-current] [-pretty]

<nid>
Nested hierarchical identifier of the signal, variable, net or reg.

-radix <hexadecimal|binary|decimal|octal|symbolic>
Specifies the radix in which the values of the objects must be
displayed. Default radix is symbolic (or set by 'config radix').
You can use shorthand notations h (hex), b (binary), and d
(decimal).

-tool_first
When running with CBug, first send the command to simv. If the
command fails, send the command to CBug.

-tool
When running with CBug, send the command to simv.

-cbug_first
When running with CBug, first send the command to CBug, and
if the command fails, send the command to simv.

-cbug

3-38

Commands FeedbackFeedback

When running with CBug, send the command to CBug.

-current
When running with AMS and <nid> is an AMS port, the current
through the port is displayed. If -current is not specified, the
voltage on the port is displayed.

-pretty
When <nid> is an array, class variable or structure, the result is
displayed in a more readable output format.

Examples
ucli% get T.t.tsdat

Displays current value of T.t.tsdat in the decimal radix. In this
example, tsdat is integer, hence the symbolic radix will select
decimal. This command displays the following output:

16

ucli% get tsdat -radix hex
Displays the current value of tsdat in hexadecimal radix. This
command displays the following output:

'h10

Related Commands

“config”

“show”

3-39

CommandsFeedbackFeedback

force

Use this command to force a value onto an HDL object (signal or
variable). This command takes precedence over all other drivers of
the HDL object being forced. You can control the force on an HDL
object by applying at a particular time, multiple times or repeating a
desired sequence. By default, no other activity in the simulation
(some other driver applying a new value to the forced HDL object)
can override this value.

The effect of this command on an HDL object can be canceled with
the following commands:

• A release command

• Another force command

• Specifying the -cancel option with the force command

Note:
This command is not supported for NTB-OV and SystemVerilog
testbench objects.

Syntax
force <nid> <value>
 [<time> {, <value> <time>}* [-repeat <time>]]
 [-cancel <time>]
 [-freeze|-deposit] [-drive][-frame_id <fid>]
 [-object_id <oid>]
Note:

The order in which value-time pairs and options are specified is
arbitrary; there is no strict ordering rule to be followed.

nid

3-40

Commands FeedbackFeedback

Nested identifier (hierarchical path name) of HDL objects that
must be forced.

value
Specifies the value to be forced on the HDL object. The value
could be of any radix, such as binary, decimal, hexadecimal, or
octal decimal. The default radix is decimal. Only literal values of
appropriate type can be specified for a given HDL object.

The supported data types are as follows:

- integer

- real number

- enumeration

- character

- character string

- bit

- bit vector

- 4-value logic

- 9-value logic

- 9-value and 4-value logic vector

- array

- VHDL and Verilog syntax for literals is accepted

VHDL 9-value logic is converted into Verilog 4-value logic when
it is forced on a Verilog object. The conversion is as follows.

3-41

CommandsFeedbackFeedback

 U -> X
 W -> X
 L -> 0
 H -> 1
 - -> X

Similarly, 9-value or 4-value logic is converted to 2-value logic
when it is forced on a VHDL object of the predefined type BIT. The
following table and the table above define the conversion.

X -> 1
Z -> 0

You must specify character string literals within double quotes
(" ") and enclosed in curly braces; for example: {"Hello"}.

time
Expressed as:

- [@]number
- number
- number[unit]
- [@]number[unit]
- '@' is optional and implies absolute time
unit is one of the following:

[s | ms | us | ns | ps | fs]

number is any integer number.

3-42

Commands FeedbackFeedback

If no unit is specified, then the time precision of the simulator
(config timebase command or senv time precision
command provides the time precision of the simulator) is used.

-freeze
If you specify this option, no other activity in the simulator (some
other driver applying value to a forced signal or variable) can
override applied value. This is the default option. This option is
useful after the -deposit option is used.

-deposit
If you specify this option, some other activity in the simulator
(some other driver applying a new value to the forced HDL object)
can override a previously forced value.

-drive
This option is for VHDL only. This option attaches a new driver
with the specified value to the signal. For the same signal, next
force -drive command does not create additional driver, but
overrides the value of the existing driver.

Limitations
- Signal value must be resolved either by a user-defined

resolution function (see VHDL LRM for details) or
VHDL_STD_LOGIC (including STD_LOGIC_VECTOR) which
has a predefined resolution function.

- Resolved records are not currently supported because the
whole record needs to be forced at once. (You cannot execute
only part of the record level resolution function).

3-43

CommandsFeedbackFeedback

- Forcing input ports that already have a driver may lead to
unexpected results. This is not allowed in the VHDL LRM and
it is not clear what should happen to other inputs connect to the
same signal. The correct thing to do is to force the signal
connected to the input.

-cancel <time>
This option is used to cancel the effect of the force command
after a specified time.

-repeat (-r) <time>
This option is used to repeat a sequence after a specified interval.

-frame_id <fid>
The <nid> is looked up based on frame ID <fid>.

-object_id <oid>
The <nid> is looked up based on object ID <oid>.

The following are the limitations of the force command:

- force on entire record is not supported.

- force on bit or part select is not supported.

- If you use force on arithmetic operand, then the result is
'X'(es).

- force on ports and variables of procedure and functions is not
supported.

- force on any VHDL data type by default decimal notation is
not supported.

Example

3-44

Commands FeedbackFeedback

ucli% force probe 4'h8
This command forces the value of an HDL object probe to hold
value 4'h8. The above command is the same as
force -freeze probe 4'h8. This command displays no
output.

ucli% force probe 4'h9 @10ns
This command forces the value of an HDL object probe to hold
value 4'h9 at 10ns absolute simulation time. This command
displays no output.

ucli% force probe 4'h9 10ns
This command forces the value of an HDL object probe to hold
value 4'h9 at 10ns relative to the current simulation time. This
command displays no output.

ucli% force probe 4'h9 10
This command forces the value of an HDL object probe to hold
value 4'h9 at 10 time units relative to the current simulation time.
This command displays no output.

ucli% force probe 4'h9 -deposit
This command forces the value of an HDL object probe to 4'h9.
This command displays no output.

ucli% force top.clk 1 10, 0 20
Assuming that the current simulation time is at '0', this command
forces the HDL object top.clk to '1' at 10ps and '0' at 20ps.
This command displays no output.

ucli% force top.clk 1 10, 0 20 -repeat 30

3-45

CommandsFeedbackFeedback

This command generates 20ps period clock, that is, top.clk is
clocked with 20ps period and 50% duty cycle. After 30ps, the
sequence (of applying 1 and holding it for 10ps more and
applying 0 and holding it for 10ps more) repeats and this will
continue forever. This command displays no output.

ucli% force top.clk 1 10, 0 20 -repeat 30 -cancel 1sec
See the above explanation. This command cancels effect of force
after 1 sec of simulation time. This command displays no output.

The following provides different ways in which you can use the
force command:

ucli% force var 10
ucli% force var 'h20 10ns, 'o7460 20ns
ucli% force var 4'b1001 10ns, 5'D 37ns, 3'b01x 10
ucli% force var 12'hx 100, 16'hz 200
ucli% force var 27_195_000
ucli% force var '16'b00_111_0011_1_11111_0
ucli% force var 32'h 1_23_456_7_8
ucli% force var 1.23
ucli% force var 1.2E12
ucli% force var 236.123_763_e-12
ucli% force var 2#1101_1001 10, 16#FA 20, 16#E#E1 30
ucli% force var B"1110_1100_1000" 1, X"F77" 3
ucli% force var '0' 50ps, 1 60ps, 1'b1 70 ps, 1'b0 1ns
ucli% force str {"Hello"} @ 1us, ('H', L, L) @ {2us}

Related Commands

“release”

“get”

xprop

Use this command to control X-Propagation in merge mode.

3-46

Commands FeedbackFeedback

Syntax

xprop -is_active [inst_name] | -merge_mode
{vmerge|tmerge|xmerge|xprop}

This command is equivalent to the Verilog $set_x_prop() and
$is_xprop_active() system task calls and the VHDL built-in
package subprograms XPROPUSER.set_x_prop() and
XPROP_USER.is_xprop_active().

For example,

xprop -is_active top.dut.core0.dff
xprop -merge_mode vmerge
xprop -merge_mode xprop

Note:

- For a non-Xprop simulation, the command returns False, and
if the option -merge_mode is present, a warning message is
generated.

- You must use either the -is_active option or -merge_mode
option. If neither or both options are provided, or if the value of
the option -merge_mode is not valid, a help message is
generated.

- This command allows you to provide both relative (to the current
scope) instance name and absolute instance name. If no
instance name is provided for the option -is_active, the
command uses the current scope.

- If the [inst_name] option does not exist, a warning message
is generated and the UCLI command returns False.

Related Commands

“report_violations”

3-47

CommandsFeedbackFeedback

report_violations

Use this command to control what X-Propagation violations are
enabled.

Syntax

report_violations -type { oob_index_rd |
oob_index_wr | x_index_rd | x_index_wr |
lossy_conversion | enum_cast | ffdcheck }* | -
severity { warn | error } | -on | -off

oob_index_rd
Enables reporting if out-of-bounds index read.

oob_index_wr
Enables reporting if out-of-bounds index write.

x_index_rd
Enables reporting if X index read.

x_index_wr
Enables reporting if X index write.

lossy_conversion
Enables reporting of conversion from 4-state to 2-state.

This command is equivalent to
$xprop_assert_{on,off,warn,fatal}() or
XPROP_USER.xprop_assert_{on,off,warn,fatal}()
Verilog system task calls and VHDL XPROP_USER built-in package
sub-programs.

3-48

Commands FeedbackFeedback

Note:
- Multiple options are allowed. However, at least one option must

be provided. If no option is provided, or illegal options or option
values are provided, a help message is generated.

- If both -on and -off options are provided, a warning message
is generated. The command returns False and the violation
reporting state is not changed.

- Multiple options are allowed to the (singular) -type switch, if
presented in a TCL list (enclosed in braces and separated by
spaces).

- For pure VHDL in non-Xprop mode, this command is not
relevant under any circumstances. Hence, this command
always generates a warning message and returns False.

Related Commands

“xprop”

power

Use this command to enable, disable, or reset power measure.

Syntax

power [-enable] [-disable] [-reset]

[-report <filename> <timeunit> <modulename>]

[-gate_level <on | off | rtl_on | all> [mda] [sv]]

[-lib_saif <filename>]

3-49

CommandsFeedbackFeedback

[<region|signal> [<region|signal> ...]

-enable
Enables power measure.

-disable
Disables power measure.

-reset
Resets power measure.

-report <filename> <timeunit> <modulename>
Generates the report, where:

- filename - Specifies the report file name.

- timeunit - Specifies the time unit.

- modulename - Specifies the module name.

-gate_level <on | off | rtl_on | all> [mda] [sv]
Sets gate_level monitor policy, where

- on - Specifies on, means ports + signals.

- off - Specifies off, means ports only.

- rtl_on - Specifies rtl_on, means ports + signals.

- all - Specifies all, means ports + signals.

- mda - Specifies mda, means monitor v2k memories in Verilog.

- sv - Specifies sv, means monitor SystemVerilog objects.

3-50

Commands FeedbackFeedback

-lib_saif <filename>
Reads the library forward SAIF file, where:

- filename - Specifies the forward SAIF file name.

 <region|signal> [<region|signal> ...]
Specifies regions or signals to be monitored, where

- region|signal - Specifies the region or signal name.

saif

Use this command to query a design compiled with the Switching
Activity Interchange Format (SAIF).

Syntax

saif <option>

The following options are supported:

• [-region <name> -depth <depth> <scopes> [-exclude
<ex_scopes>]

Specify instances to be monitored, where

name
Specifies the region name.

depth
Specifies the depth of the instance hierarchy for monitoring.

3-51

CommandsFeedbackFeedback

scopes
Whitespace separated list of instances to be monitored.

ex_scopes
Whitespace separated list of instances to be exclude from being
monitored.

• -start <region>
Start SAIF monitoring on the specified region.

• -stop <region>
Stop SAIF monitoring on the specified region.

• -reset <region>
Reset SAIF monitoring counters on the specified region.

• -report <filename> -region <region> -tres
<timeunit>

Generates a SAIF report, where:

filename
Name of the report file.

timeunit
Time unit used in generating the report.

region
Limits the report to the specified region.

3-52

Commands FeedbackFeedback

• -lib_saif <filename>
Reads the library forward SAIF file.

• -diag <filename>
Writes various diagnostics to a text file.

lp_show

Use this command to query the status of a Native Low Power (NLP)
design.

Syntax

lp_show <option>

The following options are supported:

• -power_top
Lists the power top for the design.

• -all_power_domains [-scope <PowerScopeName>]
Lists all power domains. If a power scope is specified, lists all
the power domains in the given power scope.

• -all_power_scopes
Lists all power scopes present in the design.

• -all_isolations
Lists all isolation strategies present in the design.

3-53

CommandsFeedbackFeedback

• -all_retentions
Lists all retentions present in the given design.

• -all_level_shifters
Lists all level shifters present in the given design.

• -all_power_switches
Lists all power switches present in the given design.

• -power_ground -element <objectName>
Lists the power and ground for the objectName which could
be an instance name or a node name.

• -isolation -domain <Power Domain Name>
Lists all the isolation strategies for the given power domain.

• -retention -domain <Power Domain Name>
Lists all the retention strategies for the given power domain.

• -level_shifter -domain <Power Domain Name>
Lists all the level shifter strategies for the given power domain.

• -power_switch -domain <Power Domain Name>
Lists all the power switches for the given power domain.

• -all_psts [-scope <ScopeName>]
Lists all the power state tables. If -scope is provided, displays
all power state tables under that scope.

3-54

Commands FeedbackFeedback

• -all_supply_sets [-implicit|-explicit] -scope
<PowerScopeName>

Lists all the supply sets (implicit, explicit, or the default is both)
for the given power scope.

• -power_state -supply_set <SupplySetName>
Lists the power state for the given supply set.

• -simstate -domain <DomainName>
Lists the simstate for the given power domain.

• -simstate -supply_set <SupplySetName>
Lists the simstate for the given supply set.

• -cur_pst_state -pst <PSTName>
Lists the current state of the given power state table.

• -all_port_states -port <SupplyPortName>
Lists all the port states defined for the supply using the
add_port_state command.

• -info -pst <PSTName>
Lists the supply nets and PST states for the specified power
state table.

• -info -pst_state <PSTStateName> -pst <PSTName>
Lists the supply ports versus the port state information for the
specified PST state.

3-55

CommandsFeedbackFeedback

• -info -port_state <SupplyPortStateName> -port
<SupplyPortName>

Lists the port state and voltage for the specified port state and
port combination.

• -info -domain <DomainName>
Lists the primary supplies, simstate, and top-level design
elements for the power domain.

• -info -psw <SwitchName> [-psw_state]
Lists the input/output supply ports, control ports, ack ports,
switch states of a power switch. Specifying the optional -
psw_state option will also list the current switch state for the
power switch.

• -info -iso_strategy <IsoStrategyName>
Lists the information for the isolation strategy.

• -info -ret_strategy <RetStrategyName>
Lists the information for the retention strategy.

• -info -supply_set <SupplySetName>
Lists the information for the supply set.

• -info -cell <CellName>
Lists the information for the cell.

• -supply_on <SupplyPadName> <voltage>
Sets the given supply pad to the given voltage.

3-56

Commands FeedbackFeedback

• -supply_off <SupplyPadName>
Resets the supply voltage for the given supply pad.

• -mode <TCL_LIST || DEFAULT>
Sets the mode to return results of the lp_show command in
the form of a Tcl list.

release

Use this command to release the value forced to a signal, variable,
net or reg previously by the force command. After this command is
executed, the drivers of signal, variable, net, or reg are original
drivers.

Note:
If the net type is reg, then it retains the value until the original
driver forces a new value.

This command is not supported in NTB-OV and SystemVerilog
testbench variables.

Syntax
release <nid>

<nid>
Nested hierarchical identifier of the signal, variable, net or reg.

Example

ucli% release T.t.tsdat
Releases the current value of T.t.tsdat.

3-57

CommandsFeedbackFeedback

Related Commands

“force”

“get”

sexpr

Use this command to display the result of an expression. The
expression can contain a mix of SystemVerilog and VHDL syntax. If
there is only one operand and no operation to be performed on the
operand, then this command returns the current value of operand.

The expression can also contain references to Tcl variables. For
example, sexpr {x + $tclvar}. The value of $tclvar must be
a syntactically correct SystemVerilog literal constant.

The supported data types are:

• bit and Boolean

• VHDL data types:

- std_logic

- std_logic_vector

- std_ulogic

- std_ulogic_vector

• Verilog data types:

- wire

- wire vectors

- reg, bit

3-58

Commands FeedbackFeedback

- reg, bit, vectors

- integer types

- real types

- time

- string (only comparison operators are allowed)

This command supports the following operators:

• Unary operator + and -

• Binary operators +, -, * and // (Note: division requires two forward
slashes, //)

• Concatenation operator &

• Logical operators and, or, nand, xor, nor and or

• Relation operators =, <, <=, > and >=

Limitations
• Unsupported data types will cause an error message.

• Function calls within expression are not supported.

• Expression operands should be type consistent; no type casting
is done by this command. For example, an integer type can't be
added to a non-integer type.

• Hierarchical path delimiters are respective to the HDL language.
For Verilog path delimiters, use '.' (dot) and for VHDL path
delimiter, use '/' (forward slash).

Example

3-59

CommandsFeedbackFeedback

Consider vhdl_top is VHDL, vlog_inst is Verilog module
instance inside vhdl_top and vlog_var is a Verilog variable
inside vlog_inst. The way to reference vlog_var is:

/vhdl_top/vlog_inst.vlog_var

Instead of '.', you can use '/' (that is, in the previous example,
vlog_var can also be referenced like /vhdl_top/
vlog_inst/vlog_var.

• Absolute and relative paths are supported.

Syntax
sexpr [-radix] expression
-radix

The default radix is symbolic. The supported radices are:
[binary | decimal | octal | hexadecimal |
symbolic]

Examples
ucli% sexpr T.t.tsdat

Displays the current value of T.t.tsdat in decimal radix. For
example, 6.

ucli% sexpr {period1 = 10 and period2 =10}
This command checks if both variables period1 and period2
have values 10. If yes, returns 1 (Boolean TRUE) and 0 (Boolean
FALSE). In this case, returns 1, that is, both have values 10. For
example, 1.

ucli% sexpr {period1 + period2}

3-60

Commands FeedbackFeedback

This command adds variables period1, period2 and returns a
result. In this case, the result is 20, so 20 is displayed as output.
For example, 20.

call

Use this command to call SystemVerilog class methods (functions or
tasks with no delays) Verilog tasks or functions, PLI tasks or
functions, VHDL procedures, and VHDL foreign procedures. It
executes the called method or procedure. Hierarchical referencing is
not allowed for method or procedure.

Note:

• This command does not advance simulation time, if you call tasks
with delay. Executable statements after delay elements in the
routine will not be executed and call returns to UCLI.

• Since UCLI is Tcl based, curly braces '{' and '}' are needed
as special characters like '$' are interpreted as variables in Tcl.
Instead of curly braces, '\' (backslash) can also be used.

• Curly braces are not needed if there are no special characters.

• Calling PLI tasks or functions implies there is some degree of
debug capability required. If the design is not compiled with that
debug capability, the call command fails.

Syntax
call {cmd(…)}

Where, cmd is a task or function along with the properly formatted
argument list.

3-61

CommandsFeedbackFeedback

Examples
ucli% call {$display("Hello World")}

Executes Verilog predefined function $display(…). This
command displays the following output:

Hello World

ucli% call verilog_task(a, b)
Executes the verilog_task defined in the current scope. The
output of this command depends on the task verilog_task.

ucli% call vhdl_proc(a, b)

ucli% call verilog_function(a, b)

For example,

ucli% call {myfunc(reg_r1, a, b)}

where,

myfunc - name of the function

reg_r1 - Verilog signal in which to store the return value. This
signal must be declared in the Verilog code.

a, b - Function inputs.

Example for Calling SystemVerilog Class Methods

Consider the following example testcase call.sv:

program P1;
 integer i=1;
class c;
 task prg_tsk_int(int n1 = 10);
 $display("prg_tsk_int n1 = %0d",n1);

3-62

Commands FeedbackFeedback

 endtask

 function int prg_func_int(int n2 = 12);
 $display("prg_func_int n2 = %0d",n2);
 return 1;
 endfunction
endclass

c c1=new();
initial begin
 #2
 c1.prg_tsk_int(i);
 c1.prg_func_int(i);
end
endprogram

1. Compile the above example code

% vcs -debug_access+all -sverilog call.sv

2. Open UCLI

% simv -ucli

3. ucli% run 1 // run the example
Output: 1s

4. ucli% call {P1.c1.prg_tsk_int(100)}// calling
SystemVerilog task

Output: prg_tsk_int n1 = 100

5. ucli% call {P1.c1.prg_func_int(100)} // calling
SystemVerilog function

Output: prg_func_int n2 = 100

 1

3-63

CommandsFeedbackFeedback

6. ucli% quit
Note:

You cannot call SystemVerilog task or function, if the class object
is uninitialized.

search

Use this command to search the design for objects whose names
match the pattern specified.

Syntax
search [-<filter>] [-scope <scope>] [-depth

<level>] [-module <module_pattern>] [-limit
<limit>] [<name_pattern>]

filter
Is any one of these keyword types: in inout out ports,
instances, signals, variables. The results are one of the types.

scope
Scope in which to start the search. The default is current scope.

level
Number of scope levels to search relative to the specified/current
scope. The default is value is 0 (search all hierarchy).

module_pattern
Module name to search, which can have either '*' or '?' for pattern
matching.

3-64

Commands FeedbackFeedback

limit
Specifies the limit for the maximum number of matched items. The
default limit for matched items is 1024. VCS truncates the results
exceeding this limit, and issues a warning message.

name_pattern
Is the name to search, which can have '*' or '?' in the pattern to
match multiple characters or one character.

virtual bus (vbus)

Use this command to create, delete or query a virtual bus. The vbus
command allows you to:

• Create a new bus that is a concatenation of buses and sub-
elements.

• Delete the created virtual bus.

• Query the expression of the created virtual bus.

The elements used to create virtual buses could be different data
types, elements of different scope or different language. Virtual
buses can also be used as elements to create new virtual buses.
Hierarchical referencing is allowed.

Note:

The actual command is virtual bus. This command has been
aliased to vbus. You can use both virtual bus and vbus.
Alternatively, you can also use virtual.

Forward slash '/' is used as path delimiter. The Verilog path
delimiter '.' (dot) is not supported.

3-65

CommandsFeedbackFeedback

Syntax
vbus
vbus[-install <scope>] [-env <scope>] [-delay <dly>]
 <expression> <vb_name>
vbus[-delete] <vb_name>
vbus[-expand] <vb_name>

vbus
Lists all the created virtual buses in all scopes. You can execute
this command from any scope.

-env <scope>
Defines the scope from which vbus elements are used to create
virtual bus. This is useful if you want virtual bus to be created in
the current scope by using elements from a different scope.

-install <scope>
Specifies the scope in which the vbus must be created.

-delay <dly>
Delays the value changes of the vbus.

vbus -delete <vb_name>
Deletes virtual bus vb_name. You must execute this command
from the same scope where vb_name was created.

vbus -expand <vb_name>
Expands virtual bus vb_name. You must execute this command
from the same scope where vb_name was created. This
command recursively expands the elements (that is, if there are
virtual buses in vb_name, they are also expanded).

3-66

Commands FeedbackFeedback

Limitations

The following commands/operations are not supported on vbus:

• force
• loads

• drivers

• dump
Examples

ucli% vbus
Lists all virtual buses from all scopes. This command displays the
following output:

tbTop.vb_1
tbTop.IST1.vb_2
tbTop.IST1.vb_3

ucli% vbus {/tbTop/clk & /tbTop/IST1/rst} vb_1
Creates virtual bus vb_1 in the current scope. This command
displays no output.

ucli% vbus -env /tbTop/IST1/IST2 {a & b & c} vb_2
Creates virtual bus vb_2 in current scope. Elements a, b and c
are defined in scope tbTop.IST1.IST2. This command
displays no output.

ucli% vbus -install /tbTop {/tbTop/vb_1 & /tbTop/IST1/vb_2}
vb_3

Creates virtual bus vb_3 in scope /tbTop. Element vb_1 is in
scope tbTop and element vb_2 is in scope tbTop.IST1. This
command displays no output.

ucli% vbus -install /tbTop -env /tbTop/IST1/IST2 {/tbTop/
vb_1 & /tbTop/IST1/vb_2 & vb_3} vb_4

3-67

CommandsFeedbackFeedback

Creates virtual bus vb_4 in scope tbTop. Element vb_1 is
defined in tbTop, element vb_2 is defined in tbTop.IST1 and
element vb_3 is defined in tbTop.IST1.IST2. This command
displays no output.

ucli% vbus -expand vb_4
Expands virtual bus vb_4. This command displays following
output:

tbTop.clk
tbTop.reset
tbTop.IST1.TMP
tbTop.IST1.TMP1

ucli% vbus -delete vb_4
Deletes virtual bus vb_4. This command displays no output.

Viewing Values in Symbolic Format

You can view the values of signals/variables in the same radix as
specified in the source code. In addition to existing radixes decimal,
hexadecimal, binary, and octal, UCLI supports the symbolic radix
that will enable you to view the values in the same radix. The default
radix will hence be symbolic.

To change the default radix from symbolic to any other (binary,
hexadecimal, octal, and decimal), use the following command
option:

ucli> config -radix hexadecimal
This will set the radix format to hexadecimal.

3-68

Commands FeedbackFeedback

If the default radix is changed to any other, you can still view the
values with the default symbolic radix by passing symbolic argument
to –radix.

-radix symbolic
Example:

ucli> show –value top.dut.x –radix symbolic
The following tables list various data types, use model, and illustrate
the output format for the symbolic radix.

Table 3-1 Verilog/SystemVerilog Data Types

Example Symbolic output

wire [3:0] wire4_1 = 4'b01xz;

reg [15:0] reg16_1 =15'h8001;"

wire4_1 'b01xz
reg16_1
'b1000000000000001

logic [15:0] logic16_1='h8001; logic16_1
'b1000000000000001

typedef struct
{ bit [7:0] opcode; bit [15:0] addr; }
struct1_type;
 struct1_type struct1= '{1, 16'h123f};"

struct1 {(opcode => 'b00000001,addr =>
'b0001001000111111)}

enum {red, yellow, green}
light=yellow;

light 1

integer int_vec [1:0]='{15, -21}; int_vec (15,-21)

string string_sig="verilog_string"; string_sig verilog_string

3-69

CommandsFeedbackFeedback

Table 3-2 VHDL Data Types

Example Symbolic output

signal stdl : std_logic := 'H';

signal stdl_vec : std_logic_vector (0 to 8) :=
"UX01ZWLHH”;

STDL 'bH

STDL_VEC 'bUX01ZWLHH

signal real_sig:real := 2.2000000000000002;

type bit_array_type is array (0 to 1) of
bit_vector (0 to 1);
signal bit_array_sig : bit_array_type := (("00"),
("01"));

REAL_SIG 2.200000e+00

BIT_ARRAY_SIG ('b00,'b01)

signal char_sig : character := 'P'; CHAR_SIG P

signal string_sig : STRING(1 to 17) := "THIS
IS A MESSAGE";

STRING_SIG {THIS IS A MESSAGE}

signal time_sig : time := 5 ns; TIME_SIG 5ns

3-70

Commands FeedbackFeedback

Simulation Environment Array Commands

This section describes the following command:

• “senv”

senv

Use this command to display the simulator environment array. You
can also query individual elements of the simulator environment
array. For UCLI interpreter there are two scopes:

 “current scope”, where UCLI interpreter stops and “active scope”,
where simulation control stops for now. Environment array elements
with the names starting from “active” describe active scope details,
while others describe current scope or information independent on
scopes. If you want, that “current scope” be always the same as
“active scope” - run UCLI command config
followactivescope on.

The simulation environment array contains the following elements:

Name Description
activeDomain Language Domain, for example, Verilog
activeFile Source file the simulator is executing
activeFrame Active frame being executed.
activeLine Line number in the activeFile being executed
activescope Active scope
activeThread Thread ID in which simulation has stopped
endCol For macro debugging, the ending column/character of the

statement (relative to the beginning of the line).
file File name you are currently navigating
frame Current frame
fsdbFilename Debussy fsdb file name

3-71

CommandsFeedbackFeedback

Note:
This is a read-only array (that is, no element in the environment
array is writable by the user).

Syntax
senv [element]

senv
Lists all elements in the environment array.

senv [element]
Displays the current value of the element in the environment array.
The argument element is case sensitive.

Examples
ucli% senv

hasTB If design loaded has testbench constructs, this value is
"1", else "2"

inputFilename UCLI input commands file name
keyFilename UCLI commands entered are stored in this file; the default

is ucli.key
line Line number in the file you are currently navigating
logFilename Simulation log file name; specified with the -l option
pid Process ID of UCLI
scope Current scope
startCol For macro debugging, the start column/character of the

statement (relative to the beginning of the line).
state State of the simulation
thread Current thread ID
time Absolute simulation time
timePrecision Time precision of the simulation
vcdFilename VCD file name
vpdFilename VPD file name

Name Description

3-72

Commands FeedbackFeedback

Displays all elements and their values in the current environment
array. This command displays the following output:

activeDomain: Verilog
activeFile: tbTop.v
activeFrame:
activeLine: 1
activeScope: tbTop
activeThread:
endCol: 0
 file: tbTop.v
frame:
fsdbFilename:
hasTB: 0
inputFilename:
keyFilename: ucli.key
line: 19
logFilename:
macroIndex: -1
macroOffset: -1
pid: 59424
 scope: tbTop.IST1
startCol: 0
state: stopped
thread:
time: 0
timePrecision: 1 PS
vcdFilename:
vpdFilename:

ucli% senv activeDomain
Displays the current value of activeDomain in the environment
array. This command displays the following output:

ucli%puts “time=[senv time]”

Displays:
time=200 NS

ucli%puts “instance=[senv activeScope], file=[senv

3-73

CommandsFeedbackFeedback

activeFile], line=[senv activeLine]”

Displays:
instance /TB1, file=tb1.vhd, line=91

Related Commands

“show”

“config”

Breakpoint Commands

This section describes the following command:

• “stop”

stop

Use this command to set breakpoints in the simulation. The
simulation can be stopped based on certain condition(s) or certain
event(s). You can use this command to specify an action to be taken
after the simulation has stopped.

UCLI provides many ways to stop the simulation:

• On an event (that is, change in value of a signal)

• At a particular time during simulation

• At a particular executable line in the source code

• In task or function

3-74

Commands FeedbackFeedback

• On assertion trigger, by using the assertion command. For
more information, see the “assertion” command.

Syntax
stop [arguments]

Different ways in which the simulation can be stopped are as follows:

There are many different combinations of arguments to the stop
command. Some combinations create a breakpoint for which a
unique stop-id is assigned. Other combinations operate against
existing breakpoints by referencing the stop-id. The following
combinations can be used to create breakpoints:

- The thread ID (tid) must exist at time the breakpoint is set or
modified. The thread ID can be obtained from the Verdi Stack
pane or the UCLI thread command.

- Multiple combinations of -posedge, -negedge , and -event
are treated as an OR condition.

stop -line <linenum> -file <filename> -instance
<nid> [-thread <tid>| -allthreads] [-cond <expr>]
Creates a breakpoint at the line number specified by linenum in
the file specified by filename. If no filename is specified, then
breakpoint is set at lineno in the current file. However, it is
recommended that you use the -file option.

You can restrict the breakpoint triggering for only a specified
module instance containing the filename and line number, or if -
instance is not present (this is the default) the breakpoint
applies to all instances.

3-75

CommandsFeedbackFeedback

You can restrict the break point triggering for only a specified
module thread, or if -thread is not present the breakpoint applies
to all threads (-allthreads which is the default).

You can restrict the break point triggering only when the condition
expression evaluates to true.

When the break point triggers, simulation stops before the
statement corresponding to the filename and line number is
executed.

stop -absolute | -relative <time>
Creates a breakpoint at absolute time (from simulation time '0')
or relative time (from the current simulation time). Absolute time
should be more than the current simulation time. When the
breakpoint triggers, simulation stops when the specified time is
reached, but before any statements at that time are executed.

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

stop [-thread <tid> | -allthreads]
This option is supported only for SystemVerilog designs. It creates
a break point on the thread specified by tid or, if -allthreads
is specified, sets a breakpoint on all threads. The breakpoint
triggers when the state of the thread changes value. Simulation
stops before the next statement in the thread executes (in the
case of a thread unblocking), or after the last statement executes
(in the case of a thread terminating).

3-76

Commands FeedbackFeedback

Note:
If you alter the design or stimulus and re-run the simulation,
thread IDs may change and simulation may stop at a different
location.

stop -in <task/function/method> [thread <tid>][-
cond <expr>] [-end]
This option is supported only for SystemVerilog designs. It creates
a breakpoint on the specified task, function, or method. The syntax
to use when specifying a method is as follows:

\classname::methodname

You can restrict the breakpoint triggering for only a specified
thread, or if -thread is not present (this is the default), the
breakpoint applies to all threads.

You can restrict the break point triggering only when the condition
expression evaluates to true.

When the breakpoint triggers, simulation stops before the first
statement in the task, function, or method is executed. If the -end
option is specified, the breakpoint triggers right before the task,
function, or method returns.

stop -posedge | -rising <nid>
This is not supported when the nid is an automatic variable. It
creates a breakpoint on the posedge or the rising (low -> high)
transition of the signal specified by nid.

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

3-77

CommandsFeedbackFeedback

stop -negedge | -falling <nid>
This is not supported when the nid is an automatic variable.
Creates a breakpoint on the negedge or the falling (high -> low)
transition of the signal specified by nid.

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

stop -change | -event <nid>
This is not supported when the nid is an automatic variable. It
creates a breakpoint on the signal specified by nid. The
breakpoint triggers when the signal changes value (that is, there
is an event on the signal.)

Note that where the simulation will stop is indeterminate.
Therefore, you cannot count on the location being the same when
you alter the design or stimulus and re-run the simulation.

stop -mailbox <mid> | -allthreads]
Creates a breakpoint on the specified mailbox, where mid is the
integer value returned from the alloc function. You can restrict the
breakpoint triggering for only a specified thread, or if -thread is
not present (this is the default) the breakpoint applies to all
threads.

The breakpoint triggers whenever data is put into or gotten from
the specified mailbox.

stop -semaphore <sid> [-thread <tid> | -allthreads]

3-78

Commands FeedbackFeedback

Creates a breakpoint on the specified semaphore, where sid is
the integer value returned from the alloc function. You can restrict
the breakpoint triggering for only a specified thread, or if -thread
is not present (this is the default) the breakpoint applies to all
threads. The breakpoint triggers whenever a key is put into or
gotten from the specified semaphore.

stop -assert <assert_id> [-start|-success|-
failure|-end|-any]
Use this option to create a breakpoint on SV assertions.

Where, assert_id is the assertion identifier on which to place
the breakpoint.

Note that -end is the same as -success -failure, and -any
(default) is same as -start -end.

stop -solver [-once|-serial <num>| -skip <snum> |
-condition {<expr>}]

stop -solver [-class <name>] [-random_objects] [-
solver_cond {<expr>}]

stop -solver [-object_id <id>] [-solver_cond
{<expr>}]

stop -solver -inconsistency
stop -solver -timeout

Use this option to create a breakpoint within the constraint solver.
The breakpoint triggers on a randomize() method.

num
Serial number of a randomize call.

3-79

CommandsFeedbackFeedback

snum
Number of times to skip this breakpoint before the breakpoint
is triggerred.

name
Class name the randomize() method belongs to.

id
Class object ID the randomize() method belongs to.

expr
Expression that when evaluated to true allows the breakpoint
to trigger.

-random_objects
Allows you to check the active object set.

-inconsistency
Allows you to set a breakpoint that triggers whenever a solver
inconsistency occurs.

-timeout
Allows you to set a breakpoint that triggers whenever the solver
times out.

stop -cov_defn <name> | -cov_inst <inst_name> [-
dumpdb]
Use this option to create a breakpoint within the coverage engine.
The breakpoint triggers whenever sampling is finished.

3-80

Commands FeedbackFeedback

name
Coverage definition name. The breakpoint is applied to all
instances of the coverage definition.

inst_name
Name of one coverage definition instance. The breakpoint is
applied to only this instance.

-dumpdb
Causes the coverage database to be dumped whenever the
breakpoint triggers.

stop -uvm error|fatal
Use this option to create a breakpoint that triggers whenever UVM
issues an error or fatal message.

stop -file [-object <classVar> | -object_id <oid>]
stop -in [-object <classVar> | -object_id <oid>]

If the file/line and in breakpoints are relative to class
definitions, then you can further restrict the file/line and in
breakpoints so that they trigger only a specified class object. The
default is the breakpoint triggers for all objects.

You can specify which object to trigger on by using the -object
or -object_id options. If you use the -object option, then
object ID of the object pointed to by the classVar is extracted at
the time the breakpoint is created.

For example, consider the option specified with -object is

-object c1

3-81

CommandsFeedbackFeedback

Here, when the breakpoint is triggered, the stop command
matches the object pointed to by c1 when the breakpoint was
created with the object associated with the triggering statement
or method. If the objects match, then simulation is halted. If the
objects do not match, then simulation is automatically resumed.

The object for which the breakpoint is set is determined only at
the time the breakpoint is created. If the <classVar> changes (to
point to a different object) at a later time in the simulation, the
breakpoint is not affected. You can specify the -object
argument only in conjunction with file and line, or method
breakpoints.

Note:

Usage of -object with System-C code is not supported.

When the simulation stops, you can perform the following actions
against existing breakpoints:

stop -show <stop-id>
Use this command to display the breakpoint command associated
with a specified stop-id. You can specify one or more stop-ids.
The stop command by itself will show all the breakpoint
commands and their associated stop-ids.

stop -delete <stop-id>
Use this command to delete a breakpoint with id, stop-id. You
can specify one or more stop-ids.

stop -enable | -disable <stop-id>
Use this command to enable or disable a breakpoint. By default,
a breakpoint is enabled when it is created. You can specify one
or more stop-ids.

3-82

Commands FeedbackFeedback

The following operations can be performed against existing
breakpoints or used with a breakpoint creation command:

stop -once | -repeat <stop-id>|<stop-specification>
Use this command to control how often breakpoints are triggered.
By default, all the breakpoints points are triggered repeatedly. If
you specify the -once option, then the simulation stops only once
for the breakpoint with stop id, stop-id.

stop -halt | -continue <stop-id>|<stop-specification>
You can use this option to continue simulation even after a
breakpoint is triggered. By default, all the breakpoints are in halt
state (that is, simulation stops after the breakpoint is triggered)
when the breakpoint is triggered.

stop -quiet | -verbose <stop-id>|<stop-specification>
Use this option to turn on or off the verbose information associated
with breakpoint (specified by stop-id). By default, the verbose
information is ON when the breakpoint is created.

stop -command {tcl_script} <stop-id>|<stop-specification>
Use this option to execute a Tcl script (which may contain
additional UCLI commands) when the breakpoint associated with
id, stop-id, is triggered. To access the breakpoint ID within the
command, use synEnv::getValue stopID. You should not
use the simulation advancement commands run, step, and
next in the command.

stop -condition { condition } <stop-specification>
Use this option to add conditional expression to an existing
breakpoint. Only one condition per breakpoint is supported. The
expression cannot reference dynamic or automatic data, and can
be written in VHDL/Verilog syntax. When a breakpoint triggers,
the expression is evaluated. If the resulting value is a logical false,
the simulation automatically continues.

3-83

CommandsFeedbackFeedback

stop -name <string> <stop-id>|<stop-specification>
Use this option to give a name to breakpoint. The name is printed
when the breakpoint triggers and simulation stops.

stop -skip <num> <stop-id>|<stop-specification>
Use this option to skip the next num of times the breakpoint with
the specified stop-id is triggered.

stop -checkpoint <stop-specification>
Use this option to automatically create a checkpoint when the
breakpoint is triggered.

Examples
ucli% stop

This command displays active breakpoints and displays the
following output:

1: -change tbTop.IST1.CLK -condition {TMP1 = 0 }
2: -change tbTop.IST1.CLK -once -condition {TMP = 0 }

ucli% stop -line 10 -file tbTop.v
This command creates a breakpoint at line number 10 in the file
tbTop.v. The output of this command is the stop-id of this
particular breakpoint: 4

ucli% stop -line 11 -file level9.v -instance
tbTop.INST1.INST2

This command creates a breakpoints at line number 11 in the file
level9.v. The source code at line 11 in the level9.v file is
an instance of tbTop.INST1.INST2. The output of this
command is the stop-id of this particular breakpoint: 5

ucli% stop -absolute 1000ns

3-84

Commands FeedbackFeedback

This command creates a breakpoint at absolute time 1000ns. The
output of this command is the stop-id of this particular
breakpoint: 6

ucli% stop -thread 1
This command creates a breakpoint on thread 1. The output of
this command is the stop-id of this particular breakpoint: 7

ucli% stop -in hw_task -thread 1
This command creates a breakpoint on thread 1 of task hw_task.
The output of this command is the stop-id of this particular
breakpoint: 2

ucli% stop -change CLK -condition {TMP = 0}
This command creates a breakpoint on a change in value of CLK
and value of TMP equals to '0'. The output of this command is the
stop-id of this particular breakpoint: 1

Related Commands

“run”

Timing Check Control Command

This section describes the following command:

• “tcheck”

3-85

CommandsFeedbackFeedback

tcheck

Use this command to disable or enable timing checks on a specified
instance or port. By default, all timing checks are enabled. You can
also use this command to query the timing check control status.

Note:

This command is used for Verilog designs only.

The source code should contain timing related checks inside
specify blocks for this command to work. If timing related checks
are not found on a specified instance or port, then a warning is
displayed.

Syntax
tcheck <instance|port> <tcheck_type> <-msg|-xgen>
 [-disable|-enable] [-r]

tcheck <instance|port> -query
instance|port
tcheck -file filename

instance|port
A hierarchical full name of an instance or port.

tcheck_type
The type of timing check to be enabled or disabled. Valid timing
check types are as follows:
[all|HOLD|SETUP|SETUPHOLD|WIDTH|RECOVERY|REMOVA
L|RECREM|PERIOD|SKEW]

HOLD

3-86

Commands FeedbackFeedback

Enables or disables HOLD timing check.

SETUP
Enables or disables SETUP timing check.

SETUPHOLD
Enables or disables SETUPHOLD timing check.

WIDTH
Enables or disables WIDTH time timing check.

RECOVERY
Enables or disables RECOVERY timing check.

REMOVAL
Enables or disables REMOVAL timing check.

RECREM
Enables or disables RECREM timing check.

PERIOD
Enables or disables PERIOD timing check.

SKEW
Enables or disables SKEW timing check.

-disable|-enable
Enables or disables particular timing check specified by
tcheck_type.

3-87

CommandsFeedbackFeedback

-msg|-xgen
Controls simulation behavior when a particular timing related
violation is detected, such as:

- disable/enable timing violation warning on the specified
instance or port

- disable/enable notifier toggling on the specified instance or port

-r
Enables or disables timing checks for a specified instance and all
sub-instances below it recursively.

filename
The name of a file containing multiple tcheck commands.

Examples
ucli% tcheck {TEST_top.C$0010001} WIDTH -msg -disable

This command disables pulse width timing check on instance
TEST_top.C$0010001. This command displays no output.

ucli% tcheck {TEST_top.C$0010001} -query
This command displays status timing checks on instance
TEST_top.C$0010001. This output of this command contains
the file name and line number along with the status of timing
check(s).

 Timing Check for : TEST_top.TEST_shell.TEST.C$0010001
 File : noTcTest5.v
 Line | Timing Check | msg | xgen
 L223 : SETUP ON ON
 L226 : HOLD ON ON
 L233 : WIDTH ON OFF
 L235 : PERIOD ON ON

3-88

Commands FeedbackFeedback

report_timing

The report timing feature allows you to get the information of the SDF
(Standard Delay Format) values annotated for a specific instance.
The feature is useful when debugging timing based simulations.
Typically, SDF files are very large and because of this, when a
violation occurs, it is difficult to get the delay values for the specific
instance because you need to browse through these large files.

With the report_timing command, you can specify the instance
path, which shows the violation and the simulation prints all the
IOPATH and Timing Check delay values for that instance.

This feature is also helpful for debugging NTC issues (Negative
Timing Check Convergence). When negative timing-checks do not
converge, VCS rounds the negative delay values to 0. The
report_timing command always shows you the delay values
applied by the simulation after SDF annotation instead of the original
values, thereby making it easier to debug timing failures.

The syntax of the report_timing command is as follows:

report_timing [-recursive] [-file <filename> | -stdout]
[<instance_name1><instance_name2>...<instance_nameN>]

-recursive
(Optional). Generates timing information for the specified
instance and all instances underneath it in the design hierarchy.

-file <filename>
Specifies the name of the output file where the data is written.

-stdout

3-89

CommandsFeedbackFeedback

Reports timing information to the console.

<instance_name>
Identifies the name(s) of the instance(s) for which timing
information is written. If the -recursive option is given, only
one instance name is allowed. If multiple names are given, the
timing information of the first instance is reported; others are
ignored. The timing information of duplicated instances is
reported only once.

The format of the timing information is Standard Delay Format
(SDF). For example:

(CELL
(CELLTYPE "and2x1")
(INSTANCE
T.t.dig.a_top.apb.mpeg_top.mpeg_clk_rst_1.u_mpeg_clk)
 (DELAY
 (ABSOLUTE
 (IOPATH A Y (10)(10))
 (IOPATH B Y (10)(10))
)
)
)

Examples
ucli% report_timing -r T.t.dig -stdout

This command generates timing report to instance T.t.dig and
all the sub-instances underneath it, and redirects the output to
standard output. This command displays the following output:

(CELL
(CELLTYPE "and2x1")
(INSTANCE
T.t.dig.a_top.apb.mpeg_top.mpeg_clk_rst_1.u_mclk_en)
 (DELAY
 (ABSOLUTE

3-90

Commands FeedbackFeedback

 (IOPATH A Y (10)(10))
 (IOPATH B Y (10)(10))
)
)
)
… more

Signal Value and Memory Dump Specification
Commands

This section describes the following commands:

• “dump”

• “initreg”

• “memory”

• “search”

• “find_forces”

• “find_identifier”

• “show”

• “constraints”

• “drivers”

• “loads”

3-91

CommandsFeedbackFeedback

dump

Use this command to dump the design or the specified scope or
signal value change information to a file during simulation. This
command is currently supported for FSDB, EVCD, and VPD formats
only. The following objects can be dumped using this command:

• Verilog and VHDL scopes, variables

• Complex data structures like VHDL aggregates, VHDL records,
and Verilog multi-dimensional arrays

Syntax
dump [-file <filename>] [-type FSDB|EVCD|VPD] [-locking]
dump -add <list_of_nids> [-fid <fid>] [-depth <levels>]
 [-aggregates] [-ports|-in|-out|-inout] [-filter=<filter
string>] [-msv on|off] [-i<N>|-iall] [-isub][-v<N>|-vall]
[-va|-vai|-vav]
dump -close [<file_ID>]
dump -flush <fid> [-fid <fid>]
dump -autoflush <on | off> [-fid <fid>]
dump -interval <seconds> [-fid <fid>]
dump -interval_simTime <time> [-fid <fid>]
dump -deltaCycle <on | off> [-fid <fid>]
dump -switch [<newName>] [-fid <fid>]
dump -forceEvent <on | off> [-fid <fid>]
dump -filter [=<filter list>] [-fid <fid>]
dump -showfilter [-fid <fid>]
dump -power <on | off> [-fid <fid>]
dump -powerstate <on | off> [-fid <fid>]
dump -suppress_file <file_name>
dump -suppress_instance <list_of_instances>
dump -enable [-fid <fid>]
dump -disable [-fid <fid>]
dump -glitch <on|off> [-fid <fid>]
dump -opened
dump -msv[on|off]

3-92

Commands FeedbackFeedback

-file <filename>
(Optional) Specifies a VPD, EVCD, or FSDB file name and returns
a file handle, fid. If this argument is not specified, the default ID
is VPD0 and the information is dumped to file inter.vpd. In
the current implementation, only 1 VPD file can be opened for
dumping during simulation. You can simultaneously open single
VPD, EVCD, and FSDB dump files and manage them individually.

-type FSDB|EVCD|VPD
(Optional) This argument specifies the dump file format. The
following dump types are supported:

- FSDB

- EVCD

- VPD

-locking
This option ensures that the VPD file is not being read while it is
written or not being written while it is being read.

-add <list_of_nids>
Specifies signals, scopes, or instances to be dumped. This
command returns an integer value which increments after each
call. The default dump type is VPD.

Note:

- FSDB is the default dump type when the VERDI_HOME
environment variable is set.

- You must specify the -fid argument if multiple dump files are
open.

3-93

CommandsFeedbackFeedback

For the dump file of type FSDB,

- VCS issues a warning message if the port direction is specified
with the -filter argument

- The -aggregates argument dumps both SVA and MDA
signals. This option combines the functionality of the
$fsdbDumpSVA and $fsdbDumpMDA system tasks

If no dump file is opened using dump –file, a VPD file is opened,
and its file ID is returned.

Example:

ucli% dump -file test.fsdb -type FSDB

ucli% dump -add top.a -aggregates -fid FSDB0

Support for the $fsdbDumpvars Options

The dump -add command supports the $fsdbDumpvars
system task options using the -fsdb_opt argument, as shown
in the following command:

dump -add <object> -fsdb_opt <+option> [-fid
<fid>]

The -fid argument must specify a valid FSDB ID, else VCS
issues an error message.

Example:

ucli% dump -add . -fsdb_opt +mda+packedmda+struct
-fid FSDB0

3-94

Commands FeedbackFeedback

Table 3-3 lists the options supported for the -fsdb_opt
argument. For more information on these options, see the Linking
Novas Files with Simulators and Enabling FSDB Dumping User
Guide.

Table 3-3 Supported Options
Option Description

+mda Dumps memory and MDA signals in all scopes. This
does not apply to VHDL

+packedmda Dumps packed signals

+struct Dumps structs

+skip_cell_instance=mode Enables or disables cell dumping

+strength Enables strength dumping

+parameter Dumps parameters

+power Dumps power-related signals

+trace_process Dumps VHDL processes

+fsdb+<filename> Specifies the dump file name. The default name is
novas.fsdb
Note: This option is ignored if the file ID is present

+sva Dumps assertions

+Reg_Only Dumps only reg type signals

+IO_Only Dumps only IO port signals

+by_file=<filename> File to specify objects to add

+all Dumps memories, MDA signals, structs, unions,
power, and packed structs

+function Enables dumping of functions in the design using
$fsdbDumpvars

+vams Enables dumping of wreal variables using
$fsdbDumpvars

+string Enables dumping of string variables using
$fsdbDumpvars

3-95

CommandsFeedbackFeedback

-depth <levels>
(Optional) Specifies the number of levels to be dumped. If the
-add argument is specified, depth is calculated from the scope
specified by the -add argument. If -add is not specified, depth
is calculated from the current scope. The default value is 0,
which means the entire design is down to the specified scope.
Value 1 enables dumping only to the specified scope.

-fid <fid>
This argument specifies the file ID of the dump file to which the
information must be dumped. The file ID, <fid>, is returned
by the dump -file command. If this argument is not specified,
dump information is written to the VPD file that is currently open.

-aggregates

+msv Enables dumping of the analog signals into the FSDB
file using $fsdbDumpvars. This option is ignored if
dump -add -msv off is specified.

+v Enables dumping of the voltage on the node in the
design using $fsdbDumpvars

+i Enables dumping of the current on the node in the
design using $fsdbDumpvars

+v=all | +v=<N> Enables dumping of the voltage on specific MOS
terminal using $fsdbDumpvars

+i=all | +i=<N> Enables dumping of the current on specific MOS
terminal using $fsdbDumpvars

+isub Enables dumping of the current on the sub-circuit port
using $fsdbDumpvars

+va | +vaV | +vaI Enables dumping of the Verilog-A objects using
$fsdbDumpvars

Option Description

3-96

Commands FeedbackFeedback

This argument enables dumping complex data structures, such
as VHDL records and arrays of records, and Verilog multi-
dimensional arrays. You must use this argument along with the
-add option.

-ports|-in|-out|-inout
This argument enables dumping only (in/out/-inout) ports. You
must use this argument along with the -add option.

-msv on
This argument enables dumping of the analog signals into the
FSDB file using the $fsdbDumpvars system task.

-msv off
This argument disables dumping of the analog signals into the
FSDB file.

-i<N>|-iall
This argument enables dumping of current to a specific MOS
terminal using the $fsdbDumpvars system task.

-isub
This argument enables dumping of the sub-circuit ports using
the $fsdbDumpvars system task.

-v<N>|-vall
This argument enables dumping of voltage to a specific MOS
terminal using the $fsdbDumpvars system task.

-va|-vai|-vav

3-97

CommandsFeedbackFeedback

This argument enables dumping of the Verilog-A objects using
the $fsdbDumpvars system task.

-close <file_ID>
Closes an open dump file.

Here, <file_ID> specifies the file ID and follows the below rules:

- If the file ID is VPD or EVCD, this command closes the dump
file with the corresponding file ID

- If the file ID is FSDB, VCS issues a warning message indicating
that FSDB is not supported for the dump -close command

- If the file ID is not specified, this command closes all open dump
files

VCS issues a warning message if the file ID is specified, but the
corresponding file does not exist or is not currently open.

Note:

The FSDB API does not support closing of the specific open
FSDB files. You can use the dump -close command to close
all the opened dump files.

-flush <fid> [-fid <fid>]
Forces VCS to flush dump data to the dump file irrespective of
any value change. If -interval is specified, the dump interval
is determined by the value specified with the -interval
argument. If interval is not specified, data is flushed immediately.
The argument <fid> is optional.

Here, <fid> specifies the file ID and follows the below rules:

3-98

Commands FeedbackFeedback

- If the file ID is VPD, EVCD, or FSDB this option forces the
contents of the dump file corresponding to the file ID

- If the file ID is not specified and there is only one open file, this
option forces the contents of the open dump file

-autoflush <on|off> [-fid <fid>]
Forces the contents of the value change buffer to be written to the
dump file, if the simulator stops due to any of the following
reasons:

- The $stop statement is used in the design

- Ctrl+C is used to break the simulation

- The simulation stops at a user-defined breakpoint

Note:
- You must specify the file ID if multiple dump files are open,

else VCS issues an error message and this option is ignored

- This command is not supported for the FSDB dump files

-interval <seconds> [-fid <fid>]
Specifies a specific time interval to force the contents of the value
change buffer to the dump file.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is not supported for the FSDB dump files

-interval_simTime <time>

3-99

CommandsFeedbackFeedback

Tells the simulator how often to flush VPD information in the
simulation time. This command does not automatically enable
flushing. To enable flushing, use the -flush option. Use zero to
disable flushing.

time is <number>[.<number>][<unit>]

unit is [s | ms | us | ns | ps | fs]

-deltaCycle <on|off> [-fid <fid>]
Turns on dumping delta cycle information. By default, delta cycle
dumping is disabled.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- For FSDB dump files, you must execute this command before
dumping is started

-switch <newName> [-fid <fid>]
Dumps simulation data to a new dump file specified by
<newName> argument. This option is used to switch the dump file
to dump the data.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- The new file inherits the file ID of the closed file

-forceEvent <on | off> [-fid <fid>]
Turns on or off force event dumping (VPD only).

3-100

Commands FeedbackFeedback

Note:
- You must specify the file ID if multiple dump files are open,

else VCS issues an error message

- This command is not supported for the FSDB dump files

-filter [=<filter list>] [-fid <fid>]
Controls VPD dumping.

Note:

- You must specify the file ID if multiple dump files are open,
else VCS issues an error message

- This command is supported only for VPD dump files. It is not
supported for the EVCD and FSDB dump files

<filter list> is a comma separated list of the following
arguments:

[Variable|Generic|Constant|Package|Parameter]

Variable — will not dump VHDL variables.

Generic — will not dump VHDL generics.

Constant — will not dump VHDL constants.

Package — will not dump VHDL package internals.

Parameter — will not dump Verilog Parameters.

Separate the arguments by comma without spaces. The
arguments can be in upper or lower case.

-showfilter [-fid <fid>]

3-101

CommandsFeedbackFeedback

Allows you to view the objects that are filtered using the
dump -filter command.

Note:
- You must specify the file ID if multiple dump files are open,

else VCS issues an error message

- This command is supported only for VPD dump files. It is not
supported for the EVCD and FSDB dump files

For more information about the usage of -filter and
-showfilter options, see the section “Filtering Data in the VPD
Dump File” on page 107

-power <on|off> [-fid <fid>]
Globally enables or disables the dumping of the low power scopes
and nodes.

You must specify the file ID if multiple dump files are open, else
VCS issues an error message.

For FSDB dumping, the dump -power on command uses the
$fsdbDumpvars +power system task. There is no
corresponding procedure used to stop FSDB dumping, that is,
you cannot stop the dumping of the power signals into the FSDB
dump file after it has started.

-powerstate <on|off> [-fid <fid>]
Globally enables or disables the dumping of the low power domain
state signals, PST signals, and PST supply signals.

You must specify the file ID if multiple dump files are open, else
VCS issues an error message.

3-102

Commands FeedbackFeedback

For FSDB dumping, the dump -powerstate on command uses
the $fsdbDumpvars +power system task. There is no
corresponding procedure used to stop FSDB dumping, that is,
you cannot stop the dumping of the power signals into the FSDB
dump file after it has started.

-suppress_file <file_name>
Specifies the scopes in a file that are not dumped into the FSDB
file. This command returns a string.

Note:

- You must use this command before dumping the file. VCS
issues an error message if this command is specified after
the dump -add command

- This command is supported only for the FSDB dump file, and
is global to all FSDB files. It is not supported for the VPD and
EVCD dump files

-suppress_instance <list_of_instances>
Specifies the list of instances that are not dumped into the FSDB
file. This command returns a string.

Note:

- You must use this command before dumping the file. VCS
issues an error message if this command is specified after
the dump -add command

- This command is supported only for the FSDB dump file, and
is global to all FSDB files. It is not supported for the VPD and
EVCD dump files

-enable [-fid <fid>]

3-103

CommandsFeedbackFeedback

Enables dumping again, if it is disabled. This command returns
the state as on or off.

The functionality of the dump -enable command is similar to
the $fsdbDumpon system task.

Note:
- You must specify the file ID if multiple dump files are open,

else VCS issues an error message

- This command is supported only for the FSDB dump files

- This command has more precedence over the
$fsdbDumpvars system task

-disable [-fid <fid>]
Disables the dumping of all dumped signals. This command
returns the state as on or off.

The functionality of the dump -disable command is similar to
the $fsdbDumpoff system task.

Note:

- You must specify -fid if multiple dump files are open, else
VCS issues an error message

- This command is supported only for the FSDB dump files

- This command has more precedence over the
$fsdbDumpvars system task

-glitch <on|off> [-fid <fid>]
Enables or disables the dumping of glitches. This command
returns the state as on or off. By default, it is set to off.

3-104

Commands FeedbackFeedback

The functionality of the dump -glitch command is similar to
the $fsdbDumpon(+glitch) system task.

Note:
- You must set the environment variable
NOVAS_FSDB_ENV_MAX_GLITCH_NUM to 0 to enable
dumping of glitches in the FSDB file

- This command is supported only for the FSDB dump files.
The VPD dump files are not supported

-opened
Displays all opened dump files and their file type.

The output format of this command is FID Name MSV.

The dump -msv option is supported only for the FSDB files. It is
not supported for VPD and EVCD files.

Following is a sample output when three dump files of different
types are open:

Fid Name MSV

EVCD0 test.evcd unset

VPD0 test.vpd unset

FSDB0 test.fsdb unset

-msv[on|off]
Enables dumping of the analog signals in the FSDB file.

Syntax:

3-105

CommandsFeedbackFeedback

dump -msv[on|off]

dump -file analog_mixed_signal.fsdb -type fsdb

For more information, see “Dumping Analog Signals in FSDB File
in VCS-CustomSim Cosimulation Flow” section.

Limitations

FSDB Limitations

Following are the limitations for the FSDB file type:

• The dump -close command does not work on the specified
FSDB file ID. You can only close all the FSDB files

• The dump -power on and dump -powerstate on commands
use the $fsdbDumpvars +power system task for FSDB
dumping with no corresponding procedure to stop the dumping.
That is, you cannot stop the dumping of the power signals into the
FSDB dump file after it has started

• The dump -enable and dump -disable commands does not
support time unit arguments

VPD Limitations
• The dump -enable and dump -disable commands does not

support time unit arguments

Examples

ucli% dump -file dump.vpd -type vpd
Opens a file by name dump.vpd with File ID VPD0. However, this
command does not record any signals.

3-106

Commands FeedbackFeedback

ucli% dump -switch dump.vpd1
Dumps the simulation data to a new VPD file dump.vpd1. After
a certain time during the simulation, if you want to dump the data
to another VPD file, use the -switch option. In the previous
example, the data is dumped to the dump.vpd file. When you
specify the -switch option, the data gets dumped to the new file
dump.vpd1 file.

ucli% dump -add [senv scope] -fid VPD0 -depth 2
Adds current scope and one level of hierarchies underneath it to
the file with File ID VPD0. This command displays the following
output.

1

ucli% dump -autoflush on -fid VPD0
Turns autoflush on using -fid.

ucli% dump -deltaCycle on
Turns dumping delta cycle information without using -fid. This
command displays the following output.

on

ucli% dump -add / -aggregates
Dumps everything from root including complex data types. This
command displays the following output.

2

ucli% dump -interval 1 -flush VPD0
Flushes VPD information every second to the file with File ID
VPD0.

ucli% dump -close VPD0
Closes the dump file with -fid VPD0

3-107

CommandsFeedbackFeedback

ucli% dump -forceEvent ON.

Filtering Data in the VPD Dump File

Use the dump -filter command to control the VPD dumping.
VPD Dump Filtering allows you the flexibility to eliminate similar
types of objects from the VPD dump file. This is useful in cases
where VPD file size, runtime, and run memory are critical, as it allows
you to reduce the VPD file size.

ucli% dump -filter

Case 1: Without specifying any option:

When you do not specify any options, all the following group of
objects are filtered.

[Variable, Generic, Constant, Package, Parameter]

Case 2: Specifying the filter options as follows:

ucli% dump -filter [=<filter list>]
where <filter list> is a comma separated list without
spaces of the following arguments:
[Variable|Generic|Constant|Package|Parameter]

Adding the -filter argument to dump -add command:

dump -add <object to add> [-filter=<filter string>] <other
options>

ucli% dump -add tb.dut -depth 0 -filter=Parameter

3-108

Commands FeedbackFeedback

Note:
The dump -filter option when used with the dump -add
option, applies only to that dump object.

The dump -showfilter option shows only the global view
for the filters applicable to all dump commands once
dump -filter is used. It does not retrieve filter settings used
in conjunction with the
dump -add option. See the example Example 3-2 on page 111
that illustrates this behavior.

Example 3-1 This example contains VHDL variable and generic:
top.vhd

library ieee;
use ieee.std_logic_1164.all;
use work.constants.all;

entity test is
 generic (a_int:integer:=1; string1: string:="One");
port (a1: in std_logic;
 a2 : in std_logic;
 a3 : out std_logic);

end test;

architecture test_ar of test is
component veri
 port(x,y:in bit;z:out bit);
end component;
component and1
 port(a:in bit;b:out bit);
end component;
constant PERIOD : time := 1000 ns;
signal a,b,c,d:bit;
begin
 x1:veri port map(a,b,c);
 x2:and1 port map(a,d);

3-109

CommandsFeedbackFeedback

 process
 variable asd : std_logic;
 variable vce : std_logic_vector(0 to 5);
 begin
 a<='0';b<='0';
 wait for 5 ns;
 a<='0';b<='1';
 wait for 5 ns;
 a<='1';b<='0';
 wait for 5 ns;
 a<='1';b<='1';
 wait for 5 ns;
 end process;
end test_ar;

The following example contains VHDL package.

constants.vhd

package CONSTANTS is
 constant PERIOD : time := 1000 ns;
 constant HALF_PERIOD : time := PERIOD / 2;
 constant SETTLING_TIME : time := PERIOD / 1000;
end CONSTANTS;

The following Verilog example includes ‘celldefine module and
parameters.

Test.v

module veri(x,y,z);
parameter aa =5;
parameter bb = 6;
input x;
input y;
output z;
reg z,we;
always @(x,y)
begin
 z<=x&y;

3-110

Commands FeedbackFeedback

 #100 $finish;
end

 specify
 (x => z) = (1,1);
 endspecify

endmodule

`celldefine
module and1(a,b);
 input a;
 output b;
 assign b=a&'b1;
endmodule
`endcelldefine
To filter generic and variable, use the following commands:

synopsys_sim.setup:
WORK > DEFAULT
DEFAULT : work
timebase = ps

Generic Filter:

mkdir -p work
vlogan test.v
vhdlan constants.vhd
vhdlan top.vhd
vcs -debug_access+all test
./simv -ucli
ucli% dump -file filter_generic.vpd -type VPD
ucli% dump -add / -filter=Generic
ucli% run

Variable Filter:

./simv -ucli
dump -file filter_variable.vpd -type VPD
dump -add / -filter=Variable

3-111

CommandsFeedbackFeedback

run

Example 3-2 Example to show usage of dump -filter with dump -add
command

addr4.v

module addr4 (in1, in2, sum, zero);
input [3:0] in1, in2;
output [4:0] sum;
output zero;

reg [4:0] sum;
reg zero;

initial begin
 sum = 0;
 zero = 0;
end

always @(in1 or in2) begin
 sum = in1 + in2;
 if (sum == 0)
 zero = 1;
 else
 zero = 0;
end

endmodule

module sim;

reg [3:0] a, b;
wire [4:0] c;
wire carry;

addr4 a4 (a, b, c, carry);

parameter d = 10;
initial
 begin
 a = 0; b = 0;

3-112

Commands FeedbackFeedback

 repeat (16*1000)
 begin
 #d a = a+1;
 #d b = b+1;
 end
 $strobe($stime,,"a %b b %b c %b carry %b", a, b,
c, carry);
 #1
 $finish(2);
 end

endmodule

dump_filter.ucli

dump -add . -depth 0
 dump -filter=Parameter
 dump -showfilter
 quit

dump_add_filter.ucli

dump -add . -depth 0 -filter=Parameter
 dump -showfilter
 quit

Steps to compile the example

vcs ./addr4.v -debug_access+all
simv -ucli -i dump_filter.ucli
simv -ucli -i dump_add_filter.ucli
Following are the outputs of these commands:

ucli% dump -add . -depth 0

1
ucli% dump -filter=Parameter
New Default VPD Filter: Parameter
ucli% dump -showfilter
Default VPD Filter: Parameter
ucli% quit

3-113

CommandsFeedbackFeedback

ucli% dump -add . -depth 0 -filter=Parameter

1
ucli% dump -showfilter
No Default Filters Set
ucli% quit

Dumping Analog Signals in FSDB File in VCS-
CustomSim Cosimulation Flow

UCLI dump command is enhanced to dump analog signals in the
FSDB file in the VCS-CustomSim cosimulation environment.

You can now use the –msv, UCLI dump option, to enable dumping of
the analog signals in the FSDB file.

With this enhancement, for an object specified in the design, the
UCLI dump command supports dumping of the hierarchy scope with
mixed digital and analog modules.

Use Model

Use Model for FSDB Dumping

The following steps describe the use model for FSDB dumping:

1. Set the VERDI_HOME variable as follows:

% setenv VERDI_HOME <verdi_path>

2. Compile your design with the -debug_access option, as follows:

% vcs -debug_access <file_name>

3-114

Commands FeedbackFeedback

Enabling Dumping of the Analog/Digital Signals in the FSDB
File

The following steps describe the use model to dump the digital
signals, analog signals, or both analog and digital signals in the
FSDB file:

1. You can use one of the following ways to invoke Verdi dumper on
analog signals:

ucli% dump -msv[on|off]

ucli% dump -file analog_mixed_signal.fsdb -type
fsdb

 OR

ucli% dump -file analog_mixed_signal.fsdb -type
fsdb -msv[on|off]

Note:
- You can use the -msv option to enable (on) or disable (off)

dumping of analog signals throughout the simulation. By
default, this option is enabled if on or off is not specified.

- The analog targets are ignored if the -msv option is not
specified.

- Once an analog scope is enabled with the dump -msv on
command, it cannot be disabled for dumping throughout the
simulation using the dump -msv off command.

- If -type is not specified, you can use the following command
to set the default dump type as FSDB:

% setenv SNPS_SIM_DEFAULT_GUI verdi

3-115

CommandsFeedbackFeedback

2. Use the dump -add UCLI command to dump analog signals,
digital signals, or both analog and digital signals in the FSDB file.

Example-1: dump -msv on|off is not specified

The -msv option is enabled by default when on or off is not
specified. Consider the following example:

ucli% dump -msv -type fsdb -file
analog_mixed_signal.fsdb
ucli% dump -add top.a -fid FSDB0

This example dumps all the analog and digital signals of the
top.a scope.

Note:
You must specify the -fid argument if multiple dump files are
open, else VCS issues an error message.

Example-2: dump -msv off is specified

ucli% dump -msv off -type fsdb -file
analog_mixed_signal.fsdb
ucli% dump -add top.U0 -fid FSDB0

This example dumps all the digital signals of the top.U0 scope
and all the hierarchies under it, excluding all analog signals in the
hierarchy.

Enabling Merge Dumping
• For the CustomSim simulator:

Use the set_waveform_option CustomSim configuration file
command, as shown below, to enable merge dumping:

3-116

Commands FeedbackFeedback

set_waveform_option -format fsdb -file merge

This command dumps all the digital and analog signals in the
target FSDB file. If the target FSDB file is not specified, then both
analog and digital signals are dumped in the default FSDB file
novas.fsdb.

If the -file merge option is not used in the
set_waveform_option command, the analog signals are
dumped in a separate file called xa.fsdb, digital signals are
dumped in the default FSDB file novas.fsdb.

Note:
If any CustomSim probe command is invoked on a SPICE
signal, its wave is dumped in the target FSDB file. For more
information on the CustomSim configuration commands, refer
to the CustomSim Command Reference User Guide.

• For the FineSim simulator:

Use the .option finesim_output=fsdb and .option
finesim_merge_fsdb=1 commands to enable merge
dumping.

For more information on the FineSim configuration commands,
refer to the FineSim User Guide.

Usage Example

If the -msv option is set to on, the dump -add a.b.c -type
command exhibits the following behavior:

• If a.b.c is an analog net, dumps its voltage.

3-117

CommandsFeedbackFeedback

• If a.b.c is an analog sub-circuit, dumps all the ports and internal
nets of the sub-circuit.

• If a.b.c is a digital net, dumps its digital value.

• If a.b.c is a digital instance, dumps the signal inside this scope.

• If a.b.c is a digital or analog instance where c contains mixed-
signal hierarchies, then both digital and analog signals of c and
its hierarchies are dumped.

initreg

Use this command to initialize Verilog variables, registers and
memories based on a configuration file. This command is equivalent
to the VCS compile option
+vcs+initreg+config+config_file. For more information,
please see Initializing Verilog Variables, Registers and Memories
section in VCS User Guide.

Syntax

initreg <config_filename>

memory

Use this command to load memory type variables in HDL from a file
or to write the contents of memory type variables to a file. You can
use this command for both VHDL and Verilog memories.

Note:

The memory command does not support octal radix for Verilog
objects.

3-118

Commands FeedbackFeedback

Syntax
memory -read|-write <nid> -file <fname> [-radix <radix>]
[-type <language>] [-start start_address][-end end_address]

-read
Reads values from the file specified by the -file argument and
writes into memory type variable.

-write
Reads values from the memory type variable and writes into the
file specified by the -file argument.

<nid>
Nested identifier (hierarchical path) of the memory type variable.
You do not need to specify the hierarchy if the variable is in the
current scope. You can specify relative or absolute hierarchy.

-file <fname>
Specifies the file from which values must be read for memory:
-read, or written for memory: -write. You can specify the file
name with relative or absolute hierarchy.

-radix <hexadecimal|binary|decimal>
This argument specifies the radix of the values. Default radix is
hexadecimal. Shorthand notation h (hexadecimal), b (binary) and
d (decimal) can also be used.

-type <language>
Allows VHDL object to read and write a Verilog memory file format.

<language> can be vhdl or verilog, and is not case sensitive.
Shorthand notation vh (VHDL), ve (Verilog) can also be used.

3-119

CommandsFeedbackFeedback

VCS issues a warning message if you do not use the -type option
to read and write a Verilog memory file format into the VHDL
object.

The -type option is not required to read and write a Verilog
memory file format into the Verilog object.

For more information, see “Support for VHDL Object to Read and
Write Verilog Memory File Format” .

-start <start_address>
Starting address of the memory type variable to write or read.
Default is the beginning of the memory type variable defined in
HDL.

-end <end_address>
End address of the memory type variable to write or read. Default
is end of the memory type variable defined in HDL.

Note:

Applicable only for Verilog memories.

Starting Address (SA) can be greater than End Address (EA).
Memory access (read or write) progresses from SA to EA
regardless of whether SA is greater or less than EA.

The file <fname> should not have more than the absolute value
of (SA-EA)+1 elements.

Example
SA = 1, EA = 10. File <fname> should not have more than
abs(SA - EA) + 1
i.e. abs(1 -10) + 1 = 9 + 1 = 10 elements.

3-120

Commands FeedbackFeedback

Note:

For VHDL memories, Start and End addresses and radix are only
applicable with the -write option. For -read option, input file
has all information about address/data in it (see input file format
below).

Data Format for Input file

For VHDL

The following shows the data format for the input file. There are three
variables to which you can set a default value that applies to the
entire file.

ADDRESSFMT
This variable sets the default radix for the address value.

DATAFMT
This variable sets the default radix for the data value.

DEFAULTVALUE
This sets the default value for unspecified address locations of
the memory. For example, if you do not specify any value to
address 1, then this default value is loaded into that address. Also,
you can specify the addresses in three different formats:

- You can directly specify value to a single address:
address / data

- You can specify the start address with multiple values. The
address is incremented for each data value:
address / addr1_data; addr2_data; ...

3-121

CommandsFeedbackFeedback

- You can specify the address range and the unique data. All the
addresses is loaded with the specified single data:
address range / data

Note:

The address must be in increasing order. Do not mix the above
specifications.

Syntax for Memory File Format
#comments
$ADDRESSFMT radix (H | O | B)
$DATAFMT radix (H | O | B)
$DEFAULTVALUE value

address / data
address / addr1_data; addr2_data; ...
addr_start:addr_end / data

Example: (mem.dat)
#RAM8x8
$ADDRESSFMT H
$DATAFMT H
$DEFAULTVALUE 0

0000 / E2; C6; 00; 30; 15; 23; 7F; 7F;8E
0009 / 90
000A:000E / 28
000F / 33

For Verilog

The following two formats are supported:

Format 1: (mem.dat). In this format, Start and End addresses are
given by -start and -end options to load the data into memory.

3-122

Commands FeedbackFeedback

0
1
2
4
5
Format 2: (mem.dat). This format is the same as the Verilog
$reamem format.

@0
0
1
2
4
5
@10
10
11
12

Example
ucli% memory -read signal_mem -file input.mem

Reads data in hexadecimal format from the input.mem file and
writes to the memory variable, signal_mem, in the current scope.

ucli% memory -write signal_mem -file output.mem
Reads data from the memory variable, signal_mem, in the
current scope, and writes into the output.mem file in
hexadecimal format.

ucli% memory -write signal_mem -file ../out.mem -radix b
Reads data from the memory variable, signal_mem, in the
current scope and writes to the out.mem file (relative path) in
binary format.

ucli% memory -read top.d1.d2.signal_mem -file /root/xyz/

3-123

CommandsFeedbackFeedback

in.mem -radix decimal
Reads data (in decimal format) from the /root/xyz/in.mem file
and writes to the memory variable, top.d1.d2.signal_mem,
from the current scope.

ucli% memory -write signal_mem -file output.mem -start 5 -
end 10

Writes data (in hexadecimal format) from the output.mem file
and writes to the memory variable, signal_mem, in the current
scope.

Support for VHDL Object to Read and Write Verilog
Memory File Format

Reading Verilog Memory File Format into VHDL Object

You must specify the -type verilog option to read Verilog
memory file format into VHDL object. Following is the syntax for
reading Verilog memory file format into VHDL object:

ucli% memory -read <hierarchical_path_to_memory>
-file <file_name> -radix <type> -type verilog [-
start <start_address>][-end <end_address>]

Note:

To enable read memory in UCLI, you must specify
-debug_access+w at compile time, else VCS issues an error
message.

The supported -radix values are hexadecimal and binary. The
legal value for the -start or -end option is an integer in the
address range of given VHDL object.

3-124

Commands FeedbackFeedback

Writing Verilog Memory File Format From VHDL Object into a
File

Following is the syntax to write Verilog memory file format from
VHDL object into a file:

ucli% memory -write <hierarchical_path_to_memory>
-file <file_name> -radix <type> -type verilog [-
start <start_address>][-end <end_address>]

The supported -radix values are hexadecimal and binary. The
legal value for the -start or -end option is an integer in the
address range of given VHDL object.

Example

Consider the following VHDL code where variable MEM reads the
Verilog memory file format:

Example 3-3 Counter.vhd
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY Counter IS
 PORT
 (
 Clk : IN STD_LOGIC ;
 Reset : IN STD_LOGIC ;
 UpDown : IN STD_LOGIC ;
 Done : OUT STD_LOGIC
);

END Counter;

ARCHITECTURE Rtl OF Counter IS

3-125

CommandsFeedbackFeedback

TYPE MEM_ARRAY IS ARRAY (0 TO 15) OF STD_LOGIC_VECTOR(31
DOWNTO 0);

SIGNAL Count : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL MEM : MEM_ARRAY;
begin

 PROCESS (Clk, Reset)
 BEGIN
 IF (Reset = '0') THEN
 Count <= "000";
 ELSIF (Clk = '1' AND Clk'EVENT) THEN
 IF (UpDown = '1') THEN
 Count <= Count + 1;
 ELSE
 Count <= Count - 1;
 END IF;
 END IF;
 END PROCESS;

 Done <= '1' WHEN UpDown = '1' AND Count = "111" ELSE
 '1' WHEN UpDown = '1' AND Count = "001" ELSE
 '0';

END Rtl;

Compilation steps:

%vhdlan Counter.vhd

%vcs -debug_access+w Counter

Following is the Verilog memory file format:

% cat mem_load_vlog.bin
@0 dead0000
@1 beef0000
@2 dead0000
@3 beef0000

3-126

Commands FeedbackFeedback

Reading or loading the above Verilog memory file format into VHDL
object:

ucli% memory -read /COUNTER/MEM -file mem_load_vlog.bin -
radix h -type verilog

ucli% get /COUNTER/MEM -radix hex
('hDEAD0000,'hBEEF0000,'hDEAD0000,'hBEEF0000,'h????????,'h
????????,'h????????,'h????????,'h????????,'h????????,'h???
?????,'h????????,'h????????,'h????????,'h????????,'h??????
??)

Writing Verilog memory file format from VHDL object into a file:

ucli% memory -write /COUNTER/MEM -file mem_write_vhdl.bin -
radix hex -type verilog
% cat mem_write_vhdl.bin
DEAD0000
BEEF0000
DEAD0000
BEEF0000
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

Handling of Verilog Memory File Formats

Table 3-4 describes how UCLI handles various Verilog memory file
formats.

3-127

CommandsFeedbackFeedback

Table 3-4 Verilog File Format

Limitations
• Reading or writing of VHDL memory file format by Verilog object

is not supported.

• Reading or writing of Verilog multi-dimension array memory
format is not supported in Verilog object.

• Reading or writing of X or Z value into VHDL object is not
supported.

Verilog File Format UCLI Read and Write Behavior

0000abcd 0000efgh
0000abcd 0000efgh

If no address is mentioned, UCLI starts with the lowest
address and writes it with data. If the memory file address
is greater than the object address, then the additional data
is ignored.

000abcd If the data does not have the required number of bits, UCLI
automatically writes the highest bit with 0.

00000efgh If the data length is longer than the memory length, UCLI
issues an error message.

@1 0000abcd
@2 0000EFGH

UCLI will first write the address with the specified value,
then writes unspecified address with XXXXXXXX. If the
address is out of range, a warning message is issued.

@1 0000abcd
2/ 0000efgh

Mixed (VHDL and Verilog) memory file format is not
supported. Here, 2/ 0000efgh is the VHDL file format.

3-128

Commands FeedbackFeedback

• The data width in VHDL cannot be longer than 256 bits.

Design Query Commands

search

Searches for a design object whose name matches the specified
pattern.

Syntax
search [-<filter>] [-scope <scope>] [-depth <level>] [-
module <module_pattern>] [-limit <limit>] [<name_pattern>]

filter
Identifies any of in, inout, or out ports, instances, signals, or
variables.

scope
Identifies the starting scope to search. The default value is the
current scope.

level
Identifies the number of scope levels to search. The default value
is 0 (searches all hierarchies).

module_pattern
Identifies the module name to search, which can have '*' or '?' for
pattern matching.

3-129

CommandsFeedbackFeedback

limit
Specifies the limit for the maximum number of matched items. The
default limit for matched items is 1024. VCS truncates the results
exceeding this limit, and issues a warning message.

name_pattern
Identifies the name to search, which can have '*' or '?' for pattern
matching.

Example
ucli% search as*
test.asim1
test.asim2

ucli% search a* -depth 2
test.asim1
test.asim2
test.risc1.accum
test.risc1.address
test.risc1.alu1
test.risc1.alu_out
test.risc1.alureg
test.risc2.accum
test.risc2.address
test.risc2.alu1
test.risc2.alu_out
test.risc2.alureg

find_forces

This command prints the currently active forces.

Syntax
find_forces <nid>
find_forces -scope <scope_name> [-level <level_number>] [-

3-130

Commands FeedbackFeedback

file <file_name>]

nid
Hierarchical path to a nested identifier. Only forces on the
specified signal is searched.

scope_name
Hierarchical path to a scope. Only the forces on signals declared
in the scope are searched.

level_number
Only forces on signals in the instance hierarchy (defined by
scope_name) are searched. The search depth in the instance
hierarchy is controlled by level_number. The default
level_number is 0, which means search the entire instance
hierarchy.

file_name
The default is to write the command results to the terminal. The
size of the results can be large, so this option allows you to write
the results to a file that is relative to the current working directory.

find_identifier

Searches for the identifiers in your design. The location of the
identifier search database is automatically added, but can be
explicitly specified

Syntax
synopsys::find_identifier [<options> --]
[<identifier>] [(+/-)<search group>]+

3-131

CommandsFeedbackFeedback

options
Search options (see Table 3-5). These options must be separated
by a “--” from the search query.

Table 3-5 Supported Search Options
Search Option Description

--version Displays program's version number and exits

-h, --help Displays help message and exits

-b,
--bw(Black and White)

Highlights with bold and underline only, no colors.

-d N, --dir_levels=N Prints n directory levels for every matching line. Default
is 0.

-f DB-FILE,
--file=DB-FILE

Specifies the database file. Default is vcsfind.db

-H, --gui-help Prints help for GUI use.

-l N, --limit=N Limits search to the first n matches. 0 means no limit.
Default is 1000.

-m, --match_only Matches the query pattern only. Does not display scope
information.

-o OUTPUT-FILE,
--output=OUTPUT-FILE

Outputs into a file. Default is stdout/stderr. This option
bundles stdout and stderr, so -o - will redirect errors
to stdout.

-p, --plain Does not highlight matches in bold.

-r, --regexp Regular expression search pattern. The pattern is
interpreted as ^<pattern>$, so .* may be desired at
the beginning and end of the pattern.

-t, --translate Translation mode. Prints only the translation of the query
pattern into the internal SQL query string.

-u, --uclimode Enables UCLI mode. This option is used for interaction
with UCLI.

-v, --verbose Enables verbose mode.

3-132

Commands FeedbackFeedback

identifier
Identifier string to be searched.

search group
The name of the group to be included to search or excluded from
search. The following search groups are supported:

Packages, Modules, Ports, Parameters, Vars,
Functions, Assertions, Types, Members, Instances

You can also use Verdi to search for the identifiers in your design.
For more information, refer to the Verdi and Siloti Command
Reference Guide.

Examples

Example-1:

Specify option -m to show only matches and to skip scopes

ucli% synopsys::find_identifier -m -- Top

Below is the sample output:

Matching modules:
top.v:11 module Top

Matching instances:
top.v:11 inst Top of module Top

Total: 2 results found in 0.043 seconds

Example-2:

ucli% synopsys::find_identifier Top

3-133

CommandsFeedbackFeedback

Below is the sample output:

Matching modules:
top.v:11 module Top
 scope: Top

Matching instances:
top.v:11 inst Top of module Top
 scope: Top

Total: 4 results found in 0.270 seconds

show

Use this command to show (display) HDL objects, such as:

• Instances

• Scopes

• Ports

• Signals

• Variables

• Virtual buses in a design

You can use this command to display object attributes, such as:

• domain (Verilog or VHDL)

• fullname (full hierarchy name)

• parent

• type

• where

3-134

Commands FeedbackFeedback

• value

• strength

If no objects are given, the show command assumes all the objects
in the current scope. If the hierarchical path of an instance is not
given, then show assumes the current scope.

This command supports wildcard (*).

Syntax
show [nid] [object(s)] [attribute(s)] [-radix <radix>]
NTB Only:
show -mailbox [<mid>]
show -semaphore [<sid>]

<nid>
Nested identifier (hierarchical path) of scopes, instances, or
signals in the HDL. If this argument is not specified, the current
scope is used as reference.

object(s)
(Optional) This argument specifies the object type. Objects can
be instances, scopes, ports, signals, variables and virtual types.

If this argument is not specified, all object types are displayed.
Object(s) can be any one of the following:

-instances
Shows all the instance(s) in the current scope or in the hierarchy
specified by nid.

-ports

3-135

CommandsFeedbackFeedback

Shows all the port(s) of the current scope or in the hierarchy
specified by nid.

-signals
Shows all the objects defined as regs, wires in the current scope
or in the hierarchy specified by nid.

-scopes
Shows all tasks and functions defined in the current scope or
in the hierarchy specified by nid.

-variables
Shows all the objects defined as integer, real in the current
scope or in the hierarchy specified by nid.

-virtual [<instance(s)>]
Displays virtual signals which are created by using the
virtual (or vbus) command.

-attribute(s)
(Optional). The attributes can be domain, fullname, parent,
type, where, value, and strength. If no object(s) is given after
the attribute(s), then the selected attribute(s) is displayed for all
object(s). By default, no attributes are displayed.

-domain
Displays the domain of the objects. Domain can be Verilog or
VHDL.

-fullname
 Displays the full hierarchical name of the object(s).

3-136

Commands FeedbackFeedback

-parent
Displays the scope where the object is defined.

-type
Displays the object type. Type can be reg, wire, integer, real,
IN, OUT, INOUT, or instance. For arrays and multi-dimensional
arrays, the array bounds are also displayed.

-where
Displays the name of the design file and line number in which
the object is defined.

-value
Displays the current simulation value of the object.

The value can be displayed in radix (hex|dec|bin|oct) by using
the -radix option.

-strength
Displays the strength value of the object.

Note:

The show -strength command is supported only for the
Verilog object(s). The result is same as $display(“%v”,…).
It is not supported for the VHDL object(s).

-radix <hexadecimal|binary|decimal|octal|symbolic>
Specifies the radix in which the values of the objects must be
displayed. Default radix is symbolic (or set by 'config radix').
You can use shorthand notations h (hex), b (binary), and d
(decimal).

3-137

CommandsFeedbackFeedback

-mailbox [<mid>]
Shows a mailbox or all mailboxes and shows the data or blocked
threads.

Mailbox ID, <mid>, is optional. If this argument is not specified,
all mailboxes are displayed. It is only applicable for NTB-OV or
SVTB.

-semaphore [<sid>]
Shows a semaphore or all semaphores and shows the number of
keys (#keys) and/or blocked threads. Semaphore ID, <sid>, is
optional. If this argument is not specified, all semaphores are
displayed. It is only applicable for NTB-OV or SVTB.

Example
ucli% show

Displays all the objects in the current scope. Same as 'show *'
(using wildcard). This command displays the following output:

probe
clk
reset
IST1

ucli% show IST_1

Displays all objects in scope IST_1. This command displays the
following output:

TMP
TMP1
RESET
CLK
OUTTOP
IST1

3-138

Commands FeedbackFeedback

_P0
_P1

ucli% show IST_1 -domain -fullname -parent -type -value
-where

Displays attributes of instance IST_1. This command displays
the following output:

IST1 tbTop.IST1 tbTop {BASE {} {COMPONENT INSTANTIATION
STATEMENT}} {} {tbTop.v 18}

ucli% show -mailbox
Display all mailboxes in the current scope, the data in those mail
boxes and the blocked threads. This command displays the
following output:

mailbox 1: data (2): -->5 -->15.
mailbox 2: blocked threads: 3, 4.

ucli% show -semaphore
Display all semaphores in the current scope, the number of keys
and blocked threads. This command displays the following output:

semaphore 1: keys (2): blocked threads: 3, 4.

ucli% show -semaphore
Display all semaphores in the current scope, the number of keys
and blocked threads. This command displays the following output:

semaphore 1: keys (2): blocked threads: 3, 4.

ucli% show -strength
Displays the strength value of all the objects in the current scope.
This command displays the following output:

a 35X
b StX
c StX

3-139

CommandsFeedbackFeedback

ucli% show -strength a
Displays the strength value of the specified object. This command
displays the following output:

a 35X

Related Commands

“search”

“get”

constraints

This command prints constraint-related design information, disable,
enable, add, delete, change constraints, or extract testcase(s) for
separate constraint debugging.

Syntax
constraints <option_sets>

Where, the following option_sets are supported:

show -where [-verbosity <level>]
Where <level> is any of [high|medium|low]. The verbosity
level is set as medium by default.

show -where [-<mode>] [-<type>] [-soft
[<softmode>]] [-overwritten] [-dropped] [-
partition <n>] [-solved_var <varname>] [-
original] [-inconsistent] [-file <filename>] [-
verbosity <level>]
Where,

3-140

Commands FeedbackFeedback

<mode> is any of [on|off] for constraint mode.

<type> is any of [block|view|order] for constraint type.

<softmode> is any of [honored|dropped] for soft constraint.

<n> is the number of a certain partition.

<varname> is the rand variable name.

<filename> is the specified file that output data is dumped into.

<level> is any of [high|medium|low]. The verbosity level is
set as medium by default.

show -vars <name1,name2,...,nameN> [-<mode>] [-
<type>] [-soft [<softmode>]] [-overwritten] [-
inconsistent] [-file <filename>] [-verbosity
<level>]
Where,

<name1,name2,...,nameN> is the rand variable name list.

<mode> is any of [on|off] for constraint mode.

<type> is any of [block|view|order] for constraint type.

<softmode> is any of [honored|dropped] for soft constraint.

<filename> is the specified file that output data is dumped into.

<level> is any of [high|medium|low]. The verbosity level is
set as medium by default.

3-141

CommandsFeedbackFeedback

show -object <full_hierarchical_name> [-file
<filename>] [-verbosity <level>]
Where,

<full_hierarchical_name> is the hierarchical object of a
class.

<level> is any of [high|medium|low]. The verbosity level is
set as medium by default.

show -variables [-partition <n>] [-<mode>] [-file
<filename>] [-verbosity <level>]
Where,

<n> is the number of a certain partition.

<mode> is any of [rand|state].

<filename> is the specified file that output data is dumped into.

<level> is any of [high|medium|low]. The verbosity level is
set as medium by default.

show -variables -inconsistent [-<mode>] [-file
<filename>] [-verbosity <level>]
Where,

<mode> is any of [rand|state].

<filename> is the specified file that output data is dumped into.

<level> is any of [high|medium|low]. The verbosity level is
set as medium by default.

3-142

Commands FeedbackFeedback

show -var_stats [-related] [-solved_together] [-
inconsistent] [-file <filename>] [-verbosity
<level>] <var_name>
Where,

<filename> is the specified file that output data is dumped into.

<level> is any of [high|medium|low].

<var_name> is the variable name for related variable.

show -stats [-partition <n>] [-inconsistent] [-file
<filename>] [-verbosity <level>]
Where,

<n> is the number of a certain partition.

<filename> is the specified file that output data is dumped into.

<level> is any of [high|medium|low]. The verbosity level is
set as medium by default.

extract [-all] [-partition <n>] [-dir <dirname>] [-
file <filename>]
Where,

<n> is the number of a certain partition.

<dir> is the specified directory where files are generated.

<filename> is the specified file that output data is dumped into.

3-143

CommandsFeedbackFeedback

dumpdist -file <filename>
Where,

<filename> is the specified file that output data is dumped into.

add -object <object_name> -block <block_name> -expr
{ <constraint_expression> }
Where,

<object_name> is the hierarchical class object name in which
constraints are added.

<block_name> is the constraint block name.

<constraint_expression> is one or multiple constraint
expressions.

disable|enable|delete -object <object_name> -block
<block_name> -id <no>
Where,

<object_name> is the hierarchical class object name in which
constraints are enabled.

<block_name> is the constraint block name. Only runtime
constraint block is allowed.

<no> is the ID number of given constraint expression. Only
runtime constraint expression is allowed.

3-144

Commands FeedbackFeedback

change -object <object_name> -block <block_name> -
id <no> -expr <constraint_expression>
Where,

<object_name> is the hierarchical class object name in which
constraints are enabled.

<block_name> is the constraint block name. Only runtime
constraint block is allowed.

<no> is the ID number of given constraint expression. Only
runtime constraint expression is allowed.

<constraint_expression> is one or multiple constraint
expressions.

savechange [-file <filename>]
Where,

<filename> is the specified file that output data is dumped into.

settimeout [-time <limit>]
Where,

<limit> is the specified number that analysis will stop if it takes
longer than this number of seconds.

gettimeout

drivers

Use this command to display driver(s) of a port, signal, or variable.

3-145

CommandsFeedbackFeedback

Note:
This command is not supported for NTB-OV and SystemVerilog
testbenches.

Syntax
drivers <nid> [-full]

<nid>

Nested identifier (hierarchical path) of a single signal, port, or
variable. Multiple objects cannot be specified. For vectors, drivers
for all bits are displayed.

-full
Crosses hierarchies to display the drivers of the specified signal.
By default, only drivers from the local scope are displayed.

Example
ucli% drivers clk

Displays driver(s) of the object clk in the current scope. This
command displays the following output:

1 - port T.host.clk
 NA - port T.host
 pci_host tokens.v 1584: pci_host host(clk, rst

ucli% drivers clk -full
Displays full driver(s) information of the object clk by crossing
the module boundary. This command displays the following
output:

1 - port T.host.clk
 1 - primterm T.clk_pci.clk
 nand tokens.v 1598: nand # (15.000) clk_pci (clk,

ucli% drivers cbe_

3-146

Commands FeedbackFeedback

Displays full driver(s) information of the vector object cbe_. This
command displays the following output:

1001 - net T.cbe_
 1 T.t.zpl44.PAD tokens.v 11280
 1001 T.host.cbe_ tokens.v 4934

Related Commands

“loads”

loads

Use this command to display load(s) information of a signal or
variable.

Syntax
loads <nid> [-verbose] [-local] [-stopatcell] [-stopatlib]
[-nowarn]

<nid>

Nested identifier (hierarchical path) of a signal or variable. Multiple
objects cannot be specified.

-verbose
Displays complete filename for loads.

-local
Displays loads in the local scope.

-stopatcell
Stops at the specified cell define module.

3-147

CommandsFeedbackFeedback

-stopatlib
Stops at the specified library define module.

-nowarn
Suppresses warning messages.

Example

Consider the following test case (test.sv):

Example 3-4 test.sv
1 module top;
2 wire a,b;
3 dut dt(a,b); // cell defined in module
4 dit fg(a,b);
5 initial
6 begin
7 $vcdpluson();
8 end
9
10 endmodule
11
12 `celldefine
13 module dut(input a,output b);
14 assign b=a;
15
16 endmodule
17 `endcelldefine

Consider the following library file (dit.v):

Example 3-5 Library file: dit.v
1 module dit(input a,output b);
2 assign b=a;
3 endmodule

Consider the following Tcl file (load.tcl):

3-148

Commands FeedbackFeedback

Example 3-6 load.tcl
loads top.a
loads top.a -local
loads top.a -stopatcell
loads top.a -stopatlib
loads top.a -verbose

Compile test.sv, as shown below:

% vcs -debug_access+pp -sverilog test.sv -y lib/
+libext+.v

Run the simulation:

% ./simv -ucli -i load.tcl

Following is the output:

ucli% loads top.a
z - net top.a
 x top.dt.b test.sv 14
 x top.fg.b dit.v 2
ucli% loads top.a -local
z - net top.a
 z top.dt.a test.sv 3
 z top.fg.a test.sv 4
ucli% loads top.a -stopatcell
z - net top.a
 z top.dt.a test.sv 3//load within the cell is not listed
 x top.fg.b dit.v 2
ucli% loads top.a -stopatlib
z - net top.a
 z top.fg.a test.sv 4//load within the library is not listed
 x top.dt.b test.sv 14
ucli% loads top.a -verbose
z - net top.a
 x top.dt.b /home/test.sv 14 : assign b=a;
 x top.fg.b /home/dit.v 2 : assign b=a;

3-149

CommandsFeedbackFeedback

Related Command

“show”

Macro Control Routines

do

This command reads a macro file into the simulator. Macro files are
similar to source command files except that additional commands
are enabled that provide more control over the following:

• Simulation breakpoints (onbreak)

• Error conditions (onerror)

• Failure conditions (onfail)

• User input (pause)

The do command can be called recursively (that is, one macro file
can load another macro file). Each macro file can have its own local
onbreak, onerror, and onfail scripts.

You can switch to interactive mode using pause and then resume
execution of the macro file by using resume or abort the execution
of the remaining commands in the macro file by using abort.

There are two ways in which you can read a macro file into the
simulator:

1. From the command line using the -do option:
simv -ucli -do onbreak.tcl

3-150

Commands FeedbackFeedback

2. From the UCLI shell using the do command:
ucli% do onbreak.tcl

Syntax of do command running from UCLI shell
do [-trace [on|off]] [-echo [on|off]]
 <filename> [<macro parameters>]

filename
The UCLI macro file name. If the do command is run from the
command line, then the filename should be specified to the current
working directory. If the do command is called from another macro
file, then this new macro file is sought relative to the directory of
the other macro file.

macro parameters
The optional parameter values that can be passed to the macro
file. These parameters can be accessed in Tcl/UCLI script using
variables $1, $2, etc. The $argc variable contains the total
number of actual variables.

-trace [on|off]
Tracing is used to display the commands being executed from the
macro file. By default, trace is off (that is, no commands in the
macro file are displayed during execution). To display each
command, use the -trace on option.

-echo [on|off]
Displays output of the evaluated command. By default, echo is
off (that is, no output of the evaluated command is not displayed).
To display the output, use the -echo on option.

3-151

CommandsFeedbackFeedback

Example

For example, assume the following:

The // onbreak.tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; run}
stop -once -change RESET
run

The // onerror.tcl file contains the following code:

onerror {puts "SNPS: Error occurred"; resume}
show -type error_sig1
puts "SNPS: After Error, other commands executed"

The // onerror_main.tcl file contains the following code (this
file calls onerror_sub.tcl):

onerror {puts "SNPS: Error occurred"; do
 onerror_sub.tcl}
show -type error_sig1
puts "SNPS: In Main Scr: After Error, other commands
executed"
run

The // onerror_sub.tcl file contains the following code:

onerror {puts "SNPS: Error occurred in sub do script";
 resume}
force error_sig2
puts "SNPS: In Sub Scr: After Error, other commands executed"

ucli% do onbreak.tcl
This command reads the macro file, onbreak.tcl. This
command displays the following output while the breakpoint is hit
during simulation:

3-152

Commands FeedbackFeedback

SNPS: Breakpoint on reset hit

ucli% do onerror.tcl
This command reads the macro file, onerror.tcl. This
command displays the following output when the specified object
is incorrect with the show command:

file onerror.tcl, line 2: Error: Unknown object:
error_sig1
SNPS: Error occurred
SNPS: After Error, other commands executed

ucli% do -trace on -echo on onerror.tcl
This command reads the macro file, onerror.tcl. This
command displays the following output:

1 onerror {puts "SNPS: Error occurred"; resume}
puts "SNPS: Error occurred"; resume
2 show -type error_sig1
Error: Unknown object: error_sig1
file onerror.tcl, line 2: Error: Unknown object:
error_sig1
SNPS: Error occurred
3 puts "SNPS: After Error, other commands executed"
SNPS: After Error, other commands executed

ucli% do onerror_main.tcl
This command reads the macro file, onerror_main.tcl. The
file, onerror_main.tcl, in turn calls onerror_sub.tcl. This
command displays the following output:

file onerror_main.tcl, line 2: Error: Unknown object:
error_sig1
SNPS: Error occurred
file ./onerror_sub.tcl, line 2: Error: Illegal usage, at
least two arguments expected
usage: force <name> <value>
SNPS: Error occurred in sub do script

3-153

CommandsFeedbackFeedback

SNPS: In Sub Scr: After Error, other commands executed
SNPS: In Main Scr: After Error, other commands executed

Related Commands

“onbreak”

“onerror”

“pause”

“resume”

“abort”

“status”

onbreak

Use this command to specify an action to execute when a stop-point,
$stop task or CTRL-C is encountered while executing a macro file.

Each macro file can define its own local onbreak script. The script
can contain any command. The script is not re-entrant (that is, a
command (for example: run) which causes another breakpoint will
not rerun the onbreak script).

If an onbreak script is not defined in a macro file, then a breakpoint
will cause the macro to enter pause mode.

Syntax
onbreak [{commands}]

commands

3-154

Commands FeedbackFeedback

Any UCLI command can be specified. Multiple commands should
be specified with a semicolon.

Example

For example, assume the following:

The //onbreak.tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; run}
stop -once -change RESET
run

ucli% do onbreak.tcl
This command reads the macro file, onbreak.tcl, into the
simulator. This command displays the following output:

SNPS: Breakpoint on reset hit

ucli% do onbreak_nocmmand.tcl
This command reads the macro file,
onbreak_nocommand.tcl, into the simulator. This script
defines no commands to be executed when simulator stops.
Therefore, the simulator pauses. This command displays the
following output:

Pause in file onbreak.tcl, line 4
pause%

Related Commands

“do”

“onerror”

“onfail”

3-155

CommandsFeedbackFeedback

“pause”

“resume”

“abort”

“status”

onerror

Use this command to specify an action to execute when an error is
encountered while executing a macro file.

Each macro file can define its own local onerror script. The script
can contain any command. The script is not re-entrant (that is, a
command (for example: run) which causes another error will not
rerun the onerror script, rather this will cause the macro to abort.

If an onerror script is not defined in the macro file, then the default
error script is used. If no default script exists, an error causes the
macro to abort.

Syntax
onerror [{commands}]

commands
Any UCLI command can be specified. Multiple commands should
be specified with a semicolon.

Examples

For example, assume the following:

The // onerror.tcl file contains the following code:

3-156

Commands FeedbackFeedback

onerror {puts “SNPS: Error occurred”; resume}
show -type error_sig1
puts “SNPS: After Error, other commands executed”

ucli% do onerror.tcl
This command reads the macro file, onerror.tcl, into the
simulator. This command displays the following output:

file onerror.tcl, line 2: Error: Unknown object:
error_sig1
SNPS: Error occurred
SNPS: Error is resumed and other commands executed

Related Commands

“do”

“onbreak”

“onfail”

“pause”

“resume”

“abort”

“status”

onfail

Use this command to specify an action to execute when a failure is
encountered while executing a macro file.

3-157

CommandsFeedbackFeedback

Each macro file can define its own local onerror script. The script
can contain any command. The script is not re-entrant (that is, a
command (for example: run) which causes another error will not
rerun the onfail script, rather this causes the macro to abort.

If an onfail script is not defined in the macro file, then the default
error script is used. If no default script exists, a failure causes the
macro to abort.

Syntax
onfail [{commands}]

commands
Any UCLI command can be specified. Multiple commands should
be specified with a semicolon.

Examples

For example, assume the following:

The //onfail.tcl file contains the following code:

onfail {puts “SNPS: Failure occurred”; resume}
show -type error_sig1
puts “SNPS: After Failure, other commands executed”

ucli% do onfail.tcl
This command reads the macro file, onfail.tcl, into the
simulator. This command displays the following output:

file onfail.tcl, line 2: Failure: Unknown object:
error_sig1
SNPS: Failure occurred
SNPS: Fail is resumed and other commands executed

3-158

Commands FeedbackFeedback

Related Commands

“do”

“onbreak”

“onfail”

“pause”

“resume”

“abort”

“status”

resume

Use this command to resume execution of a macro file after the
simulator encounters a breakpoint, error, or pause.

Syntax
resume

Examples

For example, assume the following:

The // onbreak.tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; resume}
stop -once -change RESET
run

ucli% do onbreak.tcl

3-159

CommandsFeedbackFeedback

This command reads the macro file, onbreak.tcl, into the
simulator. After the breakpoint is hit, the simulation waits for user
input. This command displays the following output:

SNPS: Breakpoint on reset hit

Related Commands

“do”

“onbreak”

“onerror”

“pause”

“abort”

“status”

pause

This command interrupts execution of the macro file. In pause mode,
the prompt is displayed as pause% and the simulator will accept
input from the command line. In this mode, you can execute any
UCLI command. Also, in this mode, status can be used to display
the stack of macro files, resume can be used to resume execution
of macro files or abort can be used to abort the execution of macro
file.

Syntax
pause

3-160

Commands FeedbackFeedback

Examples

For example, assume the following:

The // onbreak.tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; pause}
stop -once -change RESET
run

ucli% do onbreak.tcl
This command reads the macro file, onbreak.tcl, into the
simulator. After the breakpoint is hit, the simulation pauses. This
command displays the following output:

SNPS: Breakpoint on reset hit
Pause in file onbreak.tcl, line 4
pause%

Related Commands

“do”

“onbreak”

“onerror”

“resume”

“abort”

“status”

3-161

CommandsFeedbackFeedback

abort

Use this command to stop execution of a macro file and discard any
remaining commands in the macro file. After execution of this
command, you will return to the UCLI prompt. You can use this
command in the onbreak or onerror scripts, at the pause prompt
(pause%), or in a macro file.

Syntax
abort [n | all]
n

Stops executing n levels of macro files. The default is 1. This
argument should be an integer. Additionally, this argument is
useful for nested macro files.

all
Stops executing all macro files.

Examples

For example, assume the following:

The // onbreak.tcl file contains the following code:

onbreak {puts "SNPS: Breakpoint on reset hit"; abort}
stop -once -change RESET
run

ucli% do onbreak.tcl
This command reads the macro file, onbreak.tcl, into the
simulator. When the breakpoint is hit, the simulation stops
executing the remaining commands in the macro file and returns
to the UCLI prompt. This command displays the following output:

3-162

Commands FeedbackFeedback

SNPS: Breakpoint on reset hit
ucli%

Related Commands

“do”

“onbreak”

“onerror”

“resume”

“pause”

“status”

status

This command displays the stack of nested macro files being
executed. By default, the following information is displayed:

• Macro file name

• Line number being executed in the macro file

• The command which caused the macro file to pause

• The onbreak script (if present) or the default script

Syntax
status [file | line]

file
Returns the name of the macro file currently being executed.

3-163

CommandsFeedbackFeedback

line
Returns the line number being executed in the current macro file.

Examples

For example, assume the following:

The // onerror_main.tcl file contains the following code (this
file calls onerror_sub.tcl):

onerror {puts "SNPS: Error occurred"; do
 onerror_sub.tcl}
show -type error_sig1
puts "SNPS: After Error, other commands executed"
run

The // onerror_sub.tcl file contains the following code:

onerror {puts "SNPS: Error occurred in sub do script";
 pause}
force error_sig2
puts "SNPS: After Error, other commands executed"

ucli% do onerror_main.tcl
This command reads the macro file, onbreak_main.tcl, into
the simulator. After the breakpoint is hit, the simulation pauses.
At the pause prompt (pause%), the status command is issued.
This command displays the following output:

file onerror_main.tcl, line 2: Error: Unknown object:
error_sig1
SNPS: Error occurred
file ./onerror_sub.tcl, line 2: Error: Illegal usage, at
least two arguments expected
usage: force <name> <value>
SNPS: Error occurred in sub do script
Pause in file ./onerror_sub.tcl, line 2
pause% status

3-164

Commands FeedbackFeedback

Macro 2: file ./onerror_sub.tcl, line 2
executing command: "force error_sig2"
onerror script: {puts "SNPS: Error occurred in sub
do script"; pause}

Macro 1: file onerror_main.tcl, line 2
executing command: "show -type error_sig1"
onerror script: {puts "SNPS: Error occurred"; do
onerror_sub.tcl}

pause% status file
./onerror_sub.tcl

pause% status line
2

Related Commands

“do”

“onbreak”

“onerror”

“resume”

“pause”

“abort”

Coverage Command

This section describes the following command:

• “coverage”

3-165

CommandsFeedbackFeedback

coverage

Use this command to enable/disable toggle or line coverage on any
coverage watch point(s) during simulation. Coverage watch points
are those portions of source code on which coverage is enabled. For
more information about coverage and coverage metrics, see the
VCS Coverage Metrics User Guide.

Note:

- Coverage must be enabled (using -cm tgl | line |
tgl+line) during compile time.

- Default status of toggle or line coverage is on at the beginning
of simulation.

- This command is supported only in pure VHDL and MixedHDL
(with VHDL top) flows.

Syntax
coverage -tgl on|off
coverage -line on|off
coverage -tgl on|off -line on|off

coverage -tgl on|off
Turns on/off toggle coverage.

coverage -line on|off
Turns on/off line coverage.

coverage -tgl on|off -line on|off
Turns on/off toggle and line coverage.

3-166

Commands FeedbackFeedback

Examples
ucli% coverage -tgl on -line off

Enables toggle coverage and disables line coverage. This
command displays no output.

Assertion Command

assertion

Use this command to display statistical information like pass, fail, or
fail attempts of SystemVerilog Assertions (SVA) or PSL assertions.

This command can also be used to perform the following tasks:

• Set a breakpoint on an assertion failure

• Display existing assertions in the source code

• Enable/disable assertions according to the precedence levels.
For more information on precedence levels, see “Precedence
Levels for Controlling Assertions” .

Note:

- This command currently supports SystemVerilog Assertions
(SVA) and PSL assertions only.

- Terms fail, failattempts, and pass have been derived from SVA.
For additional information, refer to the sva_quickref.pdf
file under VCS documentation.

- The source code must be compiled with the -sverilog
switch.

3-167

CommandsFeedbackFeedback

- Wildcard support inside the hierarchical path specification
(<path>/<assertion>) is not supported yet.

- The option [-r /|<path>/<assertion>] in the following
syntax should always exist at the end of the command. The
-r option must always be followed by a scope name. The -r
option indicates recursive visits to every sub-scope under a
given scope. The forward slash, "/", indicates root.

- When the assertion name or scope name is specified in the
command, the path name delimiters are based on language
domains.

For example:

• For Verilog only and Verilog top designs, the assertion name or
scope name should be specified as test1.test2.a1.

• For VHDL only and VHDL top designs, the assertion name or
scope name should be specified as test1/test2/a1.

Syntax

You can use the assertion command using one of the following:

1. assertion count <-fails|-failattempts>
<-r / | <path>/<assertion>>
Use this command to find fails or failattempts of:

- a single assertion (by specifying the hierarchical path of the
assertion)

or...

- all assertions in a particular scope and all sub-scopes below it
(by specifying the option, -r / or -r /<scope>).

3-168

Commands FeedbackFeedback

The number returned indicates whether a particular assertion (or
all assertions) has failed or not. It does not indicate how many
times a particular assertion (or all assertions) has failed.

2. assertion report [-v] [-file <filename>] [-xml]
<-r /| <path>/<assertion>>
Use this command to generate statistical report. Using the -file
option, this report can be redirected to a file, which is the name
given by filename. By default, the information reported contains
the number of successes and failures. Using the -v option, the
number of attempts and incompletes can also be reported.

Note:

Currently, the -xml option is not supported.

3. assertion <pass|fail>
[-enable|-disable|-limit [<count>]]
-log <on|off> <-r /|<path>/<assertion>>
Use this command to turn on or off information to be reported (to
stdout or to a file). By default, log is on so the assertion report
command reports information.

Note:
Currently, [pass|fail][-enable|-disable|-limit]
options are not supported.

4. assertion fail -action <continue|break|exit>
[-r /|<path>/<assertion>]

3-169

CommandsFeedbackFeedback

Use this command to set a breakpoint on an assertion failure. The
break option is used to set a breakpoint, whereas the continue
option is used to delete a breakpoint.

Note:

Currently, the exit option is not supported.

5. assertion name [-r] <ScopeName>
This command returns the hierarchical name of all the assertions
present in a particular scope. If the -r option is used, then this
command displays hierarchical references of all the assertions
present in a particular scope and all sub-scopes below it.

6. assertion [on|off] [-force] [-r] [-scope ScopeName]
assertion [on|off] [-force] [-r] [-module ModuleName]

assertion [on|off] [-force] [-assert assertion]

These commands allow you to enable/disable assertions from the
UCLI prompt with two levels of precedence (3 and 4). For more
information on precedence levels, see “Precedence Levels for
Controlling Assertions” . Assertions disabled using controlling
mechanism with precedence level 4 can be enabled either by
controlling mechanism with precedence level 3 or 4. Whereas,
assertions disabled using controlling mechanism with precedence
level 3 can only be enabled by controlling mechanism with
precedence level 3.

Note:

Assertions disabled using -assert hier at compile-time or
by passing options -assert disable_assert, -assert
disable, or -assert disable_cover cannot be controlled
from UCLI.

3-170

Commands FeedbackFeedback

Options

on|off
Allows you to enable/disable assertions.

-force
Sets the precedence level to 3. The default precedence is 4.

-r
Applies the command hierarchically to a scope or a module.

-scope ScopeName

Applies the command to assertions within the scope
ScopeName. If –r is specified, then the command is applied to
assertions in the entire hierarchy under ScopeName.

-module ModuleName
Applies the command to assertions contained in the module
ModuleName. If –r is specified, then the command is applied
to assertions contained in the module and its children instances.

–assert assertion

Applies the command to the specified assertion. You can
specify full or relative path name.

Examples
ucli% assertion name /m

This command displays the hierarchical references of assertions
present in the scope, /m. This command displays the following
output:

3-171

CommandsFeedbackFeedback

m.A1
m.A2

ucli% assertion count -fails m.A1
This command returns 1 if assertion m.A1 fails, else returns 0.
This command displays the following output: 0

ucli% assertion count -fails -r /m
This command returns the number of times all assertions from
scope m and below have failed. This command displays the
following output: 0

ucli% assertion fail -action break m.A1
This command sets a breakpoint on failure of assertion m.A1.
This command displays the breakpoint id: 2

ucli% assertion report m.A1
This command displays a statistical report of assertion m.A1. This
command displays the following output.

"m.A1", 7 successes, 2 failures

ucli% assertion report -v -r /
This command generates a statistical report and redirects to
stdout. The report contains number of attempts, successes,
failures, and incompletes.

"m.A1", 2 successes, 2 incompletes
"m.A2", 1 failures, 2 incompletes

ucli% assertion report m.A1
This command enables all assertions that are disabled with
precedence level 4 in top.m1.

3-172

Commands FeedbackFeedback

ucli% assertion on –r –scope top.m1
This command enables all assertions that are disabled with
precedence level 4 in top.m1 and under its instance hierarchy.

ucli% assertion on –module mod1
This command enables all assertions that are disabled with
precedence level 4 in the module mod1.

ucli% assertion on –r –module mod1
This command enables all assertions that are disabled with
precedence level 4 in the module mod1 and under its instance
hierarchy.

ucli% assertion off -assert top.m1.A1
This command disables assertion top.m1.A1, if it is disabled
with precedence level 4.

ucli% assertion on –force –scope top.m1
This command enables all assertions that are disabled with
precedence level 3 or 4 in top.m1.

Precedence Levels for Controlling Assertions

VCS has several mechanisms to control assertions, and uses the
following four precedence levels in applying these controls:

• Precedence Level 1

Compile-time option based global control using –assert
disable_assert/disable/disable_cover.

• Precedence Level 2

Configuration-based control using –assert hier at compile
time

3-173

CommandsFeedbackFeedback

• Precedence Level 3

Configuration-based control using –assert hier at runtime

• Precedence Level 4

- $assertoff/on through Verilog code

- $assertoff/on through UCLI

- Use of categories, severities, and related system tasks

- Assert enable and disable commands by means of VPI

The controlling mechanisms with the same precedence level do not
block each other, but are applied according to the order in which they
are invoked.

3-174

Commands FeedbackFeedback

Helper Routine Commands

This section describes the following commands:

• “help”

• “alias”

• “unalias”

• “listing”

• “config”

help

Use this command to display usage information of a specific
command or to display all UCLI commands.

Syntax
help [[-text|-info|-full] <cmd>]

-text <cmd>
This option is used to display one line descriptions of any UCLI
command given by cmd.

-info <cmd>
This option is same as the -text option and also displays the
command-line options of the UCLI command, cmd. This command
is the same as the help command.

-full <cmd>

3-175

CommandsFeedbackFeedback

This option is used to display complete usage information of the
UCLI command, cmd.

Examples
ucli% help

This command displays one line usage information of all the UCLI
commands.

ucli% help -text start
This command displays one line usage information of the
command start. This command displays the following output:

start Start simv execution

ucli% help -info start
This command displays one line usage information and
command-line options of the command start. This command
displays the following output:

start Start simv execution
usage:
start <simulatorname> [cmd line options] ;# start simv
execution

ucli% help -full start
This command displays complete usage information of the
command start. This command displays the following output:

start Start simv execution
usage:
 start <simulatorname> [cmd line options] ;# start
simv execution

Normally, the start command resets configuration values to their
default state. Use "config reset off" to prevent the start
command from resetting your configuration.

3-176

Commands FeedbackFeedback

Examples
start simv
start simv -a sim.log ;#append to log file 'sim.log'
start simv -l sim.log ;#create log file 'sim.log'
start simv -k sim.key ;#create command file'sim.key'

alias

Use this command to create an alias for a UCLI command.

Note:

There are many default aliases in UCLI.

Examples
get is aliased as synopsys::get.
scope is aliased as synopsys::scope.

Syntax
alias [<name> <command>]

name
This argument specifies the alias name.

command
This argument specifies the alias name for the UCLI command.

Examples

ucli% alias
This command displays all the commands that are currently
aliased.

ucli% alias my_start start

3-177

CommandsFeedbackFeedback

This command creates an alias, my_start, for the UCLI
command, start. This command displays the new alias as:

my_start

unalias

Use this command to remove the alias you have specified for a UCLI
command.

Syntax
unalias [<name>]

name
Specifies the name of the alias that you want to remove.

Examples

ucli% unalias my_start
This command would remove the alias my_start.

listing

Use this command to display source code on either side of the
executable line from the simulation’s current or active scope.

For more information, see the section “Current Scope and Active
Scope” .

Syntax
listing [-nodisplay] [-active|-current] [-up|-down]
[<nLines>]

3-178

Commands FeedbackFeedback

listing [-nodisplay] [-file <fname>] -line <lineno>
[<nLines>]

-active|-current
Use this option to display code from either the active point or the
current point. By default, the source code is displayed from the
active point. This is referred to as the listing point.

nLines
Use this option to display nLines above and below the listing
point. This number is sticky (that is, subsequent calls to command
listing will use this value). The default value of nLines is 5.

-up|-down
Use this option to move the listing point up or down by a page and
display code. A page is defined as 2 * nLines. However, this
does not move the current or active point.

-line <linenumber>
This option is used to move the listing point line number specified
by linenumber and display text. However, this does not move
the current or active point.

-file <filename> -line <linenumber>
Use this option to move the listing point to the line number
specified by linenumber in the file specified by filename and
display text. However, this does not move the current or active
point.

-nodisplay

3-179

CommandsFeedbackFeedback

Use this option to turn the display of text off. This option can be
used together with any of the previously mentioned options to
move the listing point.

Examples
ucli% listing

This command displays 5 lines above and 5 lines below the listing
point in the current scope. The output of this command depends
on the source code.

ucli% listing -nodisplay 10
This command sets the number of lines of source code displayed
(on subsequent call to command listing) to 10. This command
displays no output.

Related Commands

“scope”

config

Use this command to display or change the current configuration
settings.

Syntax
config [var] [value]

var
This argument is any configuration variable. The following table
describes all the configuration variables, their default values,
allowed values, and a brief description on what the variable is
used for:

3-180

Commands FeedbackFeedback

Variable Name Default
Value

Allowed
Values

Description

autocheckpoint off on | off When on, a new checkpoint is
automatically created before or after
every command in the pre-
checkpoint and post-checkpoint list.

autodumphierarchy off on | off When on, all VPD dump commands
are reissued after the rewind
operation, so that the signals added
after the checkpoint stay in VPD.

automxforce on on | off |
ps

Enables propagating forces across
mixed signal boundary. Value ps
enables for cases where the vector is
mapped to smaller sizes.

checkpointcompressi
on

low low |
medium |
high

Specify the checkpoint compression
level when saving session.
A lower compression level implies
much faster runtime.

checkpointdepth 10 <N> The number of checkpoints that can
be created using the checkpoint -
add command. If the number of
existing checkpoints reaches this
level, oldest checkpoint is deleted
automatically to create space for the
new one.

checkpointdistribut
ion

hybrid log |
hybrid

Specify the desired checkpoint
distribution by auto-checkpointing.

log - increasingly more checkpoints
are kept towards the current
simulation execution position.

hybrid - half of the checkpoints are
reserved to create a linear distribution
and other half is used as by log.

3-181

CommandsFeedbackFeedback

checkpointgenerate 0 <N> Set the maximum number of
automatic checkpoint generation to
<N>, where <N> is an integer. The
default is don't create checkpoints
automatically.

checkpointinterval 1000 <N> Set the time interval to <N> at which
automatic checkpoints are to be
generated, where <N> is an integer
(in milliseconds).

ckptfsdbcheck off on | off Controls whether UCLI checkpoint
feature is enabled when FSDB user
tasks are detected.

cmdecho on on | off Controls whether UCLI commands/
results are echoed for simv - i/-
do.

debugpointinterval 10 <N> Specify debug range in seconds
which should be provided before
debug point.

debugpoints 5 <N> Specify the maximum number of
debug point checkpoints to be
created.

doverbose off on | off Controls whether flat trace is created
for synopsys::do. Default is off.

endofsim exit exit |
noexit |
toolexit

Controls the behavior after the
simulation’s event queue is empty.
The options are as follows:
noexit - the simulation remains
active and connected to the
debugger.
toolexit - the simulation exits but
UCLI remains active.
exit - the simulation and UCLI exit.

Variable Name Default
Value

Allowed
Values

Description

3-182

Commands FeedbackFeedback

expandvectors off on | off Controls whether Verilog wire type
vectors are bit-blasted or not. Bit
blasting vectors allows strength
information to be dumped, but comes
with a performance cost.

followactivescope auto auto | on
| off

Controls whether the current scope
should follow the active scope. Value
auto means: if there is testbench in
the design then it is on.

ignore_run_in_proc off on | off Used for ignoring run commands in a
breakpoint’s command script.

keepfuture off on | off See “Keep Future” .

onerror {} UCLI/Tcl
script

If a do macro does not define a local
onerror script, this script is used.
(Local onerror scripts are only
enabled when processing macros).

The config onerror script also runs
if an error occurs in an -i file. If the
onerror script reports a Tcl error,
execution of the -do or -i file aborts.

onfail {} UCLI/Tcl
script

See onerror, but applies to failures.

postcheckpoint {} Tcl list of any
UCLI
command

Creates a checkpoint immediately
after any command in the list is
executed.

precheckpoint {synops
ys::run
synopsy
s::step
synopsy
s::next
}

Tcl list of any
UCLI
command

Creates a checkpoint immediately
after any command in the list is
executed.

Variable Name Default
Value

Allowed
Values

Description

3-183

CommandsFeedbackFeedback

printrealasdouble off on | off When off, UCLI prints real numbers
using the %lf format specifier. When
on, UCLI prints real numbers using
the %g format specifier.

printrealasdoublepr
ecision

6 <N> The number of decimal places in the
mantissa that are printed.

prompt default scope |
default |
<user-
defined-
proc>

Changes the command prompt. If
scope is specified, the prompt
displays the current scope (or active
scope if config follow activescope is
on). If default is specified, the
prompt is reset to the default string,
which is ucli%. If a value other than
scope or default is specified, the
value is expected to be the name of
a user-defined proc, which would
return a string to use as the prompt.

radix symboli
c

symbolic
| binary |
decimal |
octal |
hexadecim
al

The default radix used for values
returned by UCLI commands.

reset on on | off Specify on to have the start command
reset configuration variables to their
default state. Specify off to keep the
current configuration state after a
start.

restorecheckpoints 2 <N> Set the number of most recently
restored checkpoint images to be
kept in memory. 0 means unlimited.

Variable Name Default
Value

Allowed
Values

Description

3-184

Commands FeedbackFeedback

resultlimit 1024 <N> Sets the maximum number of items
returned by a command, where <N>
is an integer. For example, if the show
command has more than 1024 items
to be displayed, it displays only 1024
items and the simulator provides the
following warning message:

Warning: The number of
results has reached the
maximum (1024). More results
are omitted.

resultlimitmsg on on | off Controls whether the message is
displayed when result limit is
exceeded.

reverse_cbreakpoint
s

off on | off When on, stops the simulation at C/
C++ breakpoints while running
reverse debug.

reversedebug off on | off When on, enables reverse debug.
Reverse debugging goes back to the
point where config reverse
debug on is executed.

shownettyperesolved
type

off on | off Applies to show -type for nettypes.
When on, also show the definition
name and resolution function.

sourcedirs sdir1
sdir2 …

A space-separated list of directories
to be searched when looking for
source files. The list given on the
command line replaces the existing
search list. Use an empty string to
delete the entire list.

stepintotblib on on | off When off, the step command do not
enter UVM code.

Variable Name Default
Value

Allowed
Values

Description

3-185

CommandsFeedbackFeedback

stopcheckpoints 0 <N> Set the maximum number of
checkpoints which are created by the
UCLI stop commands, where <N> is
an integer. The default is don't create
any checkpoints.

syscaddplainmembers off on | off |
dontcare

Enable VPD dumping for SystemC
plain members.

syscaddsourcenames dontcar
e

on | off |
dontcare

Enable VPD dumping for SystemC
source names.

syscaddstructtypes off on | off |
dontcare

Enable VPD dumping SystemC plain
members that are struct types.

timebase Time
precision
of the
simulator

[number]<
unit>

Overrides the time precision of the
simulator and is used for setting the
time unit for UCLI commands. The
optional number is 1, 10 or 100, and
unit is one of fs, ps, ns, us, ms or s.
See timePrecision in the “senv”
command section.

uclisourceretvalue off on | off Controls the return value (0 | 1) of the
Tcl catch command when an
erroneous Tcl file is sourced. The
default return value is 0. Returns 1
when enabled.

Variable Name Default
Value

Allowed
Values

Description

3-186

Commands FeedbackFeedback

Examples
ucli% config

This command displays the current configuration settings and
their values, and displays the following output:

automxforce: on
cmdecho: on
doverbose: off
endofsim: exit
expandvectors: off
followactivescope: auto
ignore_run_in_proc: off
onerror: {}
prompt: default

uvmcheckpoints off on | off Creates checkpoints for UVM run and
build phases.

uvmdebugpoints off on | off Creates debug points on UVM errors.

vhdlassertexit off off |
warning |
error |
failure

UCLI exits when the assertion
severity level is greater than or equal
to what is specified.

vhdlassertignore notset notset |
noignore
| note |
warning |
error |
failure

Ignores VHDL assert message with
lower than or equal to severity:
notset or noignore - no assert
message is ignored, note - any
assert message with severity of note
is ignored, warning - any assert
message with severity of note/
warning is ignored, error - any
message with severity of note/
warning/error is ignored, failure -
any message with severity of note/
warning/error/failure is ignored.

virtualcheckpoints on on | off See the section “Virtual Checkpoints”
.

Variable Name Default
Value

Allowed
Values

Description

3-187

CommandsFeedbackFeedback

radix: symbolic
reset: on
resultlimit: 1024
resultlimitmsg: on
sourcedirs: {}
timebase: 1NS

ucli% config radix binary
This command changes the default radix to binary for all values
returned from the simulation. This command displays the value
of the changed variable.

binary

Related Command

“senv”

Multi-level Mixed-signal Simulation

This section describes the following command:

• “ace”

ace

ACE (Analog Circuit Engine) Commands Interface. Use this
command to send arguments 'as an interactive command string' to
the transistor-level simulators such as TimeMill or PowerMill.

Note:

This command can be used only with Analog Co-simulation.

3-188

Commands FeedbackFeedback

Syntax
ace <analog_cmd> [options]

analog_cmd
Any transistor-level simulator command.

options
Any options to the above analog_cmd command.

Examples
ucli% ace help

This command displays all transistor-level simulator commands,
and displays the following output:

Analysis and Trace
==================
get_inst_param get_sim_time list_elem_name

Specman Interface Command

This section describes the following command:

• “sn”

sn

You can use this command to perform the following tasks:

• Execute Specman e-code while still in the UCLI shell.

• Go to the Specman prompt, execute e-code and return to UCLI.

3-189

CommandsFeedbackFeedback

You can return to the UCLI prompt from the Specman prompt by
issuing the restore command at Specman prompt.

Note:
All Specman related environmental settings needs to be set
before executing this command.

For more information on how to set your environment and run
Specman, see the chapter entitled, Integrating VCS with
Specman, in the VCS User Guide.

Syntax
sn [Specman_Commands]

Specman_Commands
Specman-related commands.

Examples
ucli% sn

This command displays the Specman prompt. All Specman
related e-code commands can be executed at this prompt. This
command displays the following output:

Specman>

ucli% sn load test.e
This command executes the Specman e-code in the file, test.e,
without leaving the UCLI prompt. The output of this command
depends on the e-code in the test.e file.

3-190

Commands FeedbackFeedback

Expression Evaluation for stop/sexpr Commands

This section describes the following topics:

• “Extended the Expression Grammar”

• “Verilog Array and Bit Select Indexing Syntax Support”

Extended the Expression Grammar

The Verilog operators that are equivalent to the existing VHDL
operators are supported. The following list maps Verilog operators to
the existing VHDL operators:

• ! to not

• % to mod

• << to sll

• >> to srl

• == to =

• != to /=

• && to and

• || to or

Verilog Array and Bit Select Indexing Syntax Support

Following Verilog operators are supported:

• case equal "==="

3-191

CommandsFeedbackFeedback

• case not equal "!=="

• ~& bitwise nand

• ~| bitwise nor

• ^ bitwise xor

• ~^ bitwise xnor

• ^~ bitwise xnor

3-192

Commands FeedbackFeedback

4-1

Using the C, C++, and SystemC DebuggerFeedbackFeedback

4
Using the C, C++, and SystemC Debugger4

This chapter describes debugging VCS designs that include C, C++,
and SystemC modules with UCLI. This chapter includes the
following sections:

• Getting Started

• C Debugger Supported Commands

• Common Design Hierarchy

• Interaction With the Simulator

• Configuring CBug

• Supported Platforms

• CBug Stepping Features

• Specifying Value-Change Breakpoint on SystemC Signals

4-2

Using the C, C++, and SystemC Debugger FeedbackFeedback

• Driver/Load Support for SystemC Designs in Post-Processing
Mode

• Dumping Source Names of Ports and Signals in VPD

• Dumping Plain Members of SystemC in VPD

• Supported and Unsupported UCLI and CBug Features

• UCLI Save Restore Support for SystemC-on-top and Pure-
SystemC Designs

Getting Started

This section describes how to get started for using CBug with UCLI.

Important:

You need to add the -ucli2Proc command when you want to
enable debugging of SystemC designs before you call cbug in
the batch mode (ucli). A warning message appears if you do not
add this command.

For more information about the -ucli2Proc command, see the
section “ucli2Proc” .

Using a Specific gdb Version

Debugging of C, C++, and SystemC source files relies upon a gdb
installation with specific patches. This gdb is shipped as part of the
VCS image and is used, by default, when CBug is attached. The
manual setup or installation of gdb is not required.

4-3

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Starting UCLI With the C-Source Debugger

The following procedure outlines the general flow for using UCLI to
debug VCS (Verilog, VHDL, and mixed) simulations containing C,
C++, and SystemC source code.

Note that the -debug_acccess+all option enables line
breakpoints for the HDL (Verilog, VHDL) parts only. It does not
enable line breakpoints for C files. You must compile C files with the
-g C compiler option, as follows:

• When invoking the C/C++ compiler directly:
gcc ... -g ...
g++ ... -g ...

• When invoking the simulator:
vcs ... -CFLAGS -g ...
syscan ... -CFLAGS -g ...
syscsim ... -CFLAGS -g ...

The following procedure describes attaching the C-source debugger
to run Verdi to debug VCS (Verilog, VHDL, and mixed) simulations
containing C, C++, and SystemC source code:

1. Compile VCS with C, C++, or SystemC modules normally, making
sure to compile all C files you want to debug.

For example, with a design with Verilog on top of a C or C++
module:

gcc -g [options] -c my_pli_code.c
vcs +vc -debug_acccess+all -P my_pli_code.tab
my_pli_code.o

Or, with a design with Verilog on top of a SystemC model:

syscan -cpp g++ -cflags "-g" my_module.cpp:my_module
vcs -cpp g++ -sysc -debug_acccess+all top.v

4-4

Using the C, C++, and SystemC Debugger FeedbackFeedback

Note that you must use the -debug_acccess+all option to
enable debugging.

2. Start UCLI as follows:

simv -ucli

3. Start the C Debugger as follows:

ucli% cbug

The command, synopsys::cbug explicitly starts the C
Debugger. The C Debugger starts automatically when a
breakpoint is set in a C source code file.

Detaching the C-Source Debugger

You can detach and re-attach the C-source debugger at any time
during your session.

To detach the C-source debugger, enter cbug -detach on the
console command line.

C Debugger Supported Commands

C Debugger supports the following commands:

• continue
• run
• next
• next -end

4-5

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• step
• finish
• get -values

• stack
• dump (of SystemC objects)

• cbug
Note:

Save/restore is supported for simulations that contain SystemC
or other user-written C/C++ code (for example, DPI, PLI, VPI,
VhPI, DirectC), however, there are restrictions. See the
description of the 'save' and 'restore' command in the UCLI User
Guide for complete details. CBug must be detached during a
'save' or 'restore' command but can be re-attached afterwards.

C Debugger does not support the following commands:

• force (applied to C or SystemC signals)

• release (applied to C or SystemC signals)

• drivers (applied to C or SystemC signals)

• loads (applied to C or SystemC signals)

Note:

This section uses the complete UCLI command names. If you are
using a command alias file such as the Synopsys-supplied alias
file, enter the alias on the UCLI command line.

cbug
Enables debugging of C, C++, and SystemC source code.

4-6

Using the C, C++, and SystemC Debugger FeedbackFeedback

cbug -detach
Disables debugging of C, C++, and SystemC source code.

scope
The scope command is supported for SystemC instances.

show
show [-instances|-signals|-ports] is supported for
SystemC instances, for example, show -ports top.inst1.
Any other type, such as, -scopes, -variables, -virtual is
not supported for SystemC instances. A radix is ignored.

change
The change command is supported in the following two
limitations:

- Only variables that are visible in the current scope of the C
function (such as, local variables, global variables, class
members) can be changed. Hierarchical path names such as,
top.inst1.myport are not supported.

- The type must be a simple ANSI type such as int, char, or
bool. Changing SystemC bit-vector types such as sc_int<>
or user-defined types is not supported. Any attempt to set an
unsupported data type issues the following error message:

"Unsupported type for setting variable."
stack

4-7

Using the C, C++, and SystemC DebuggerFeedbackFeedback

You can see the stack list when you are stopped in C code. Each
entry of the list indicates source file, line number, and function
name. The function where you are currently stopped appears at
the top of the list. If the source code for a given function is compiled
without the -g compiler flag, then the file/line number information
is not available. In this case, CBug selects without-g.txt.

The stack -up|-down command moves the active scope up
or down. The source file corresponding to the active scope is
shown and the get command applies to this scope.

Using the get Command to Access C/C++/SystemC Elements

Note:
When you use the "get" command for SystemC variables, the
value of radix types hex and bin is represented with a prefix '0'
and optionally with a '0x' or '0b' format specifier. The prefix '0' is
added if the value field does not start with a '0'. This is visible in
the UCLI get output and in Verdi.

For example, a 16bit value of ('C' notation) 0x8888 appears as
(SystemC notation) 0x08888, and a decimal '3' (11) in a two bit
variable appears as '0b011' in binary radix.

When stopped at a C source location, certain elements are visible
and can be queried with the ucli::get command:

• Function arguments

• Global variables

• Local variables

• Class members (if the current scope is a method)

4-8

Using the C, C++, and SystemC Debugger FeedbackFeedback

• Ports, sc_signal, and plain members of SystemC modules
anywhere in the combined HDL+SystemC instance hierarchy.

• Arbitrary expressions, including function calls, pointers, array
indices, and so on. Note that some characters such as ’[]’ need
to be enclosed with ’{ }’ or escaped with ’\’, otherwise, Tcl
interprets them.

Examples

• ucli::get myint
• ucli::get this->m_counters
• ucli::get {this->m_counters[2]}
• ucli::get strlen(this->name)
The name specified with the synopsys::get <name> argument
refers to the scope in the C source where the simulation stopped (the
active scope). This is important because C source may have multiple
objects with the same name, but in different scopes and which one
is visible depends on the active scope. That is, <name> may no
longer be accessible once you step out of a C/C++ function.

Using the get Command through a Hierarchical Path Name to
Access SystemC Elements

The argument of synopsys::get may refer to an instance within
the combined HDL/SystemC instance hierarchy. All ports,
sc_signals, and all plain member variables of a SystemC instance
can be accessed at any time with the synopsys::get argument.
Access is possible independent of where the simulation is currently
stopped, even if it is stopped in a different C/C++ source file, or not
in C/C++ at all.

For example, assume the following instance hierarchy:

4-9

Using the C, C++, and SystemC DebuggerFeedbackFeedback

top (Verilog)
middle (Verilog)
 bottom0 (SystemC)

Where, bottom0 is an instance of the following SC module:

SC_MODULE(Bottom) {
 sc_in<int> I; // SC port
 sc_signal<sc_logic> S; // SC signal
 int PM1; // "plain" member variable, ANSI type
 str PM2; // "plain" member variable, user-def type
};
struct str {
 int a;
 char* b;
};
The following accesses are possible:

 synopsys::get top.middle.bottom0.I
 synopsys::get top.middle.bottom0.S
 synopsys::get top.middle.bottom0.PM1
 synopsys::get top.middle.bottom0.PM2
 synopsys::get top.middle.bottom0.PM2.a

Access is possible at any point in time, independent of where the
simulation stopped. Note that this is different from accessing local
variables of C/C++ functions. They can only be accessed if the
simulation is stopped within that function.

Also note that accessing plain member variables of SystemC
instances is only possible with the synopsys::get argument and
not with the synopsys::dump argument.

4-10

Using the C, C++, and SystemC Debugger FeedbackFeedback

Format/Radix

The C Debugger ignores any implicitly or explicitly specified radix.
The format of the value returned is exactly as it is given by gdb (only
SystemC data types are dealt with in a special manner). Besides
integers, you can also query the value of pointers, strings, structures,
or any other object that gdb can query.

SystemC Datatypes

The C Debugger offers specific support for SystemC datatypes, for
example, sc_signal<sc_bv<8>>. When you print such a value,
gdb usually returns the value of the underlying SystemC data
structure that is used to implement the data type. Normally, this is not
what you require and is considered ineffectual. The C Debugger
recognizes certain native SystemC data types and prints the value in
an intuitive format. For example, it prints the value of the vector in
binary format for sc_signal<sc_bv<8>>.

The following native SystemC types are recognized:

• Templatized channel types C<T1>:

C := { sc_in_clk, sc_in, sc_inout, sc_out, sc_signal,
ccss_param }
T1 := { bool, [[un]signed] char, [unsigned][long|short]
int,
 [[long] double] float, sc_logic, sc_lv, sc_bit,
sc_bv,
 sc_[u]int, sc_int_base, sc_big[u]int,
sc_[un]signed,
 sc_fxval[_fast], sc_[u]fix[ed][_fast], sc_string,
 char*, void*, struct X* }

When the value of an object O of such a type C is to be printed,
then the C Debugger prints the value of O.read()instead of O
itself.

4-11

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• Native SystemC data types:

 T2 := { sc_logic, sc_lv, sc_bit, sc_bv,
 sc_[u]int, sc_int_base, sc_big[u]int,
sc_[un]signed,
 sc_fxval[_fast], sc_[u]fix[ed][_fast], sc_string }

The C Debugger prints the values of these data types in an
intuitive format. Decimal format is taken for sc_[u]int,
sc_int_base, sc_big[u]int,sc_[un]signed, and binary
format is taken for sc_logic, sc_lv, sc_bit, and sc_bv.

Example:

SystemC source code:

sc_in int A
sc_out<sc_bv<8>>B;
sc_signal <void*>;
int D;
synopsys::get A
17
synopsys::getB
01100001
synopsys::getC
0x123abc
synopsys::getD
12

Changing Values of SystemC and Local C Objects With
synopsys::change

CBug supports changing the values of C variables and SystemC
sc_signal using the UCLI change command.

 Example:

4-12

Using the C, C++, and SystemC Debugger FeedbackFeedback

change my_var 42
change top.inst0.signal_0 "1100ZZZZ"

Changing SystemC Objects

The value change on any SystemC sc_signal, either from C++
code or using the change command, modifies only the next value,
but not the current value.

The current value is updated only with the next SystemC delta cycle.
Therefore, you may not view the effect of the change command
directly. If you query the value with the UCLI get command, then you
can see the next value because the get command retrieves the next
value, but not the current value for sc_signal.

However, accessing sc_signal with read() inside the C++ code,
displays the current value until the next SystemC delta cycle occurs.
CBug generates a message explaining that the assignment is
delayed until the next delta cycle.

Note:

A change may compete with other accesses inside the C++ code.
If a signal is first modified by the change command, and then if
a write() happens within the same delta-cycle, then write()
cancels the effect of the earlier change command.

The format of the value specified with the change command is
defined with the corresponding SystemC datatype. ANSI integer
types expect decimal literals. Native SytemC bit-vector types accept
integer literal and bit-string literals.

Examples
SystemC module 'top.inst_0' has
sc_signal<int> sig_int

4-13

Using the C, C++, and SystemC DebuggerFeedbackFeedback

sc_signal<sc_int<8> > sig_sc_int
sc_signal<sc_lv<40> > sig_sc_lv

change top.inst_0.sig_int 42 // assign decimal 42

change top.inst_0.sig_sc_int 0d015 // assign decimal 15
change top.inst_0.sig_sc_int 0b0111ZZXX //assign bin value
change top.inst_0.sig_sc_int 0x0ffab // assign hex value
change top.inst_0.sig_sc_int 15 // assign decimal 15
change top.inst_0.sig_sc_int -15 // assign decimal -15

change top.inst_0.sig_sc_lv 0d015 // assign decimal 15
change top.inst_0.sig_sc_lv -0d015 // assign decimal -15
change top.inst_0.sig_sc_lv 0b0111ZZXX // assign bin value
change top.inst_0.sig_sc_lv 0x0ffab // assign hex value
change top.inst_0.sig_sc_lv 0011ZZXX // assign bin value

Supported Datatypes

The following datatypes are supported:

• All types of ANSI integer types, for example, int, long long,
unsigned char, bool, and so on.

• Native SystemC bit-vector types: sc_logic, sc_lv, sc_bv,
sc_int, sc_uint, sc_bigint, and sc_biguint.

Limitations of Changing SystemC Objects

The following are the limitations with this feature:

• Only SystemC objects sc_signal and sc_buffer can be
changed. Changing the value of ports, sc_fifo, or any other
SystemC object is not supported.

• You must address SystemC objects by their complete hierarchical
path name or by a name relative to the current scope.

Example:

4-14

Using the C, C++, and SystemC Debugger FeedbackFeedback

 scope top.inst1.sub_inst
 change top.inst0.signal_0 42 // correct
 change signal_0 42 // wrong, local path not supported
 for SystemC

 scope top.inst0
 change signal_0 43 // correct, scope + local

• User-defined datatypes are not supported.

• A permanent change (force -freeze) is not supported.

Changing Local C Variables

Local C variables are the variables that are visible within the current
C/C++ stack frame. This is the location where the simulation stops.
However, you can change the frame by using the UCLI stack -up
or stack-down command, or by double-clicking on a specific frame
in the Verdi stack pane.

Local C variables are the:

• Formal arguments of functions or methods.

• Local variables declared inside a function or method.

• Member variables visible in the current member function and
global C variables.

Example:
 100 void G(int I)
 101 {
 102 char* S = strdup("abcdefg");
 103 ...
 104 }
 105
 106 void F()
 107 {

4-15

Using the C, C++, and SystemC DebuggerFeedbackFeedback

 108 int I=42;
 109 G(100);
 110 ...
 111 }

 Assume that the simulation stops in function G at line 103.

 change I 102 //change formal arg I from G defined in line 100
 change I 0xFF
 change S "hij kl"
 change {S[1]} 'I'
 scope -up
 change I 42 // change variable I from F defined in line 108

Limitations of Changing Local C Variables

The following are the limitations with this feature:

• You must attach CBug.

• You can change only simple ANSI types like: bool, all kinds of
integers (for example, signed char, int, long long), char*, and
pointers. Arrays of these types are supported if only a single
element is changed.

• The format of the value is defined by gdb, for example, 42, 0x2a,
’a’, "this is a test".

• SystemC types are not supported, for example, sc_int, sc_lv
is not supported.

• STL types such as std::string, std::vector, and so on, are
not supported.

• Using the full path name (for example, top.inst_0.my_int) is
not supported. You can use only local names (for example,
my_int or this->my_int).

4-16

Using the C, C++, and SystemC Debugger FeedbackFeedback

Using Line Breakpoints

You can set line breakpoints on C/C++/SystemC source files using
the Breakpoints dialog box or the command line.

Set a Breakpoint

To create a line breakpoint from the command line, enter the stop
command using the following syntax:

stop -file filename -line linenumber

Example:

stop -file B.c -line 10
stop -file module.cpp -line 101

Instance Specific Breakpoints

Instance specific breakpoints are supported with respect to SystemC
instances only. Specifying no instance means to always stop, no
matter what the current scope is.

If the debugger reaches a line in C, C++, SystemC source code, for
which an instance-specific breakpoint has been set, it stops only if
the following two conditions are met:

• The corresponding function was called directly or indirectly from
a SystemC SC_METHOD, SC_THREAD or SC_CTHREAD process.

• The name of the SystemC instance to which the SystemC process
belongs matches the instance name of the breakpoint.

4-17

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Note that C functions called through the DPI, PLI, DirectC, or VhPI
interface never stop in an instance-specific breakpoint, because
there is no corresponding SystemC process.

You must use the name of the SystemC module instance and not the
name of the SystemC process itself.

Breakpoints in Functions

You can also define a breakpoint by its C/C++ function name using
the following command line:

stop -in function

Examples:

stop -in my_c_function
stop -in stimuli::clock_action()

Restriction

If multiple active breakpoints are set in the same line of a C, C++, or
SystemC source code file, then the simulation stops only once.

Deleting a Line Breakpoint

To delete a line breakpoint, enter stop -delete <index> and
press Enter.

4-18

Using the C, C++, and SystemC Debugger FeedbackFeedback

Stepping Through C Source Code

Stepping within, into, and out of C sources during simulation is
accomplished using the step and next commands. Extra
arguments used with either the step or next command, such as
-thread is not supported for C code.

Important: ONLY next -end IS ALLOWED.

Stepping within C Sources

You can step over a function call with the next command, or step
into a function with the step command.

Note:

Stepping into a function that was not compiled with the -g option
is generally supported by gdb and CBug. However, in some cases,
gdb becomes confused where to stop next, and may proceed
further than anticipated. In such cases, you should set a
breakpoint on a C source that should be reached soon after the
called function finishes and then issue the continue command.

Use the stack -up command to open the source code location
where you want to stop, set a breakpoint, and then continue.

Cross-stepping Between HDL and C code

Cross-stepping is supported in many, but not all cases, where C
code is invoked from Verilog or VHDL code. The following cases are
supported:

4-19

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• From Verilog caller into a PLI C function. Note that this is only
supported for the call function, and not supported for the misc
or check function, and also only if the PLI function was statically
registered.

• From the PLI C function back into the Verilog caller.

• From Verilog caller into DirectC function and also back to Verilog.

• From VHDL caller into a VhPI foreign C function that mimics a
VHDL function, and also back to VHDL. Note that the cross-step
is not supported on the very first occasion when the C function is
executed. Cross-stepping is possible for the 2nd, 3rd and any later
call of that function.

• From Verilog caller into an import DPI C function, and also back
to Verilog.

• At the end of a Verilog export DPI task or function back into the
calling C function. Note that the HDL->C cross-step is only
possible if the Verilog code was originally reached through a
cross-step from C->HDL.

All cross-stepping is only possible if the C code has been compiled
with debug information (gcc -g).

Cross-stepping in and out of Verilog PLI Functions

When you step through HDL code and reach user-provided C
function call, such as a PLI function like $myprintf, then the next
command steps over this function. However, the step command
steps into the C source code of this function. Consequently, step/
next commands walk through the C function and finally you return
to the HDL source. Thus, seamless HDL->C->HDL stepping is
possible. This feature is called cross-stepping.

4-20

Using the C, C++, and SystemC Debugger FeedbackFeedback

Cross-stepping is supported only for functions that meet the
following criteria:

• PLI function

• Statically registered through a tab file

• The call call only (but not misc or check)

Cross-stepping into other Verilog PLI functions is not supported.
However, an explicit breakpoint can be set into these functions which
achieves the same effect.

Cross-Stepping In and Out of VhPI Functions

Cross-stepping from VHDL code into a C function that is mapped
through the VhPI interface to a VHDL function, is supported with
certain restrictions: a cross-step in is not possible on the very first
occasion when the C function is executed. Only later calls are
supported. A cross-step out of C back into VHDL code is always
supported.

Cross-stepping is not supported for C code mapped through the
VhPI interface onto a VHDL entity.

Cross-Stepping In and Out of DirectC Functions

Cross-stepping from Verilog into a DirectC function is supported, as
is cross-step back out. There are no restrictions.

Cross-Stepping In and Out of DPI Code

Cross-stepping between SystemVerilog and import/export DPI
functions is supported with the following restrictions:

4-21

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• Cross-step from Verilog into an import DPI function is always
supported.

• Cross-step from an import DPI function back into the calling
Verilog source code is supported only if this DPI function was
originally entered with a cross-step. That is, performing
continuous step commands leads from the Verilog caller into and
through the import DPI function and back to the Verilog
caller.statement into the import DPI function, through that function
and finally back into the calling Verilog statement.

However, if the DPI function was entered through a run
command, and the simulation stopped in the import C function
due to a breakpoint, then the cross-step out of the import DPI
function into the calling Verilog statement is not supported. The
simulation advances until the next breakpoint is reached.

• Cross-step from C code into an export Verilog task or function is
always supported.

• Cross-step from an export DPI task/function back into the calling
C source code is supported only if this DPI task/function was
originally entered with a cross-step. That is, performing
continuous step commands leads from the C caller, into and
through the import DPI task/function, and back to the C caller.

However, if the export DPI task/function was entered through a
run command, and the simulation stopped in the export task/
function due to a breakpoint, then the cross-step out of the export
DPI function into the calling C statement is not supported. The
simulation advances until the next breakpoint is reached.

4-22

Using the C, C++, and SystemC Debugger FeedbackFeedback

Cross-Stepping from C into HDL:

Stepping from C code (that is called as a PLI/... function) into
HDL code is generally supported. This is accomplished using one of
the following methods:

• If the C function was reached by previously cross-stepping from
HDL into C, then CBug is able to automatically transfer control
back to the HDL side once you step out of the C function. In this
case, type step or next in C code.

• In all other cases, CBug is not able to detect that the C domain is
exited and needs an explicit command to transfer control back to
the HDL side. When you use step or next command that leaves
the last statement of a C function called from HDL, then the
simulation stops in a location that belongs to the simulator kernel.
Usually, there is no source line information available since the
simulator kernel is generally not compiled with the -g option.
Therefore, you do not see specific line/file information. Instead, a
file without -g.txt is displayed.

If this occurs, you can proceed as follows:

synopsys::continue or run

or

synopsys::next -end

The continue command brings you to the next breakpoint, which
can either be in HDL or C source code. The next -end command
stops as soon as possible in the next HDL statement, or the next
breakpoint in C code, whichever comes first.

4-23

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Cross-Stepping In and Out of SystemC Processes

The C Debugger offers specific support for the SystemC kernel.

If you step out of a SC_METHOD process, then step or next
statement stops in the next SystemC or HDL process that is
executed.

If you step into a ’wait(...)’ statement of a SC_[C]THREAD
process, then step or next statement stops in the next SystemC or
HDL process that is executed. Continuously including step or next
statements eventually comes back to the next line located after the
wait(...) statement.

If stopped in SystemC source code, step or next command stops
at the next statement exactly the way it does with gdb.

Direct gdb Commands

You can send certain commands directly to the underlying gdb
through the cbug::gdb UCLI command. The command is
immediately executed and the UCLI command returns the response
from gdb.

The command is as follows:

cbug::gdb gdb-cmd

gdb-cmd is an arbitrary command accepted by gdb including an
arbitrary number of arguments, for example, info sources.
Performing cbug::gdb automatically attaches CBug, sends
<gdb-cmd> to gdb, and returns the response from gdb as the return
result of the Tcl routine. The result may have one or multiple lines.

4-24

Using the C, C++, and SystemC Debugger FeedbackFeedback

In most cases, the routine successfully returns, even if gdb itself
issues an error response. The routine issues a Tcl error response
only when gdb-cmd has the wrong format, for example, if it is empty.

Only a small subset of gdb commands are always allowed. These
are commands that positively do not change the state of gdb or simv
(for example, commands show, info, disassemble, x, and so
on). Other commands force cbug::gdb return an error that cannot
execute this gdb command because it breaks CBug.

Example:

ucli% cbug::gdb info sources
Source files for which symbols have been read in:
../pythag.c, rmapats.c, ctype-info.c, C-ctype.c,
C_name.c, ../../gcc/libgcc2.c

Source files for which symbols will be read in on demand:

ucli% cbug::gdb whatis pythag
type = int (int, int, int)
ucli%

Add Directories to Search for Source Files

Use the gdb dir dir-name command to add directories to search
for source files.

Example:

ucli% gdb dir /u/joe/proj/abc/src

Use the following command to check which directories are searched:

ucli% gdb show dir
Source directories searched:
 /u/joe/proj/abc/src:$cdir:$cwd

4-25

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Adding directories may be needed to locate the absolute location of
some source files.

Example:

ucli% cbug::expand_path_of_source_file foo.cpp
Could not locate full path name, try "gdb list
sc_fxval.h:1" followed by "gdb info source" for more
details. Add directories
to search path with "gdb dir <src-dir>".

ucli% gdb dir /u/joe/proj/abc/src

ucli% cbug::expand_path_of_source_file foo.cpp
/u/joe/proj/abc/src/foo.cpp

Note that, partially adding a directory invalidates the cache used to
store absolute path names. Files for which the absolute path name
has already been successfully found and cached are not affected.
However, files for which the path name cannot be located, are tried
again the next time a new directory is added.

Common Design Hierarchy

An important part of debugging simulations containing SystemC and
HDL is the ability to view the common design hierarchy and common
VPD trace file.

The common design hierarchy shows the logical hierarchy of
SystemC and HDL instances in the way it is specified by you. See
the VCS / DKI documentation for more information on how to add
SystemC modules to a simulation.

4-26

Using the C, C++, and SystemC Debugger FeedbackFeedback

The common hierarchy shows the following elements for SystemC
objects:

• Modules (instances)

• Processes:

- SC_METHOD, SC_THREAD, SC_CTHREAD
• Ports: sc_in, sc_out, sc_inout,

- sc_in<T>
- sc_out<T>
- sc_inout<T>
- sc_in_clk (= sc_in<bool>)
- sc_in_resolved
- sc_in_rv<N>
- sc_out_resolved
- sc_out_rv<N>
- sc_inout_resolved
- sc_inout_rv<N>

• Channels:

- sc_signal<T>
- sc_signal_resolved
- sc_signal_rv<N>
- sc_buffer<T>

4-27

Using the C, C++, and SystemC DebuggerFeedbackFeedback

- sc_clock
- rvm_sc_sig<T>
- rvm_sc_var<T>
- rvm_sc_event

• With datatype T being one of the following:

- bool
- signed char
- [unsigned] char
- signed short
- unsigned short
- signed int
- unsigned int
- signed long
- unsigned long
- sc_logic
- sc_int<N>
- sc_uint<N>
- sc_bigint<N>
- sc_biguint<N>
- sc_bv<N>
- sc_lv<N>

4-28

Using the C, C++, and SystemC Debugger FeedbackFeedback

- sc_string
All of these objects can be traced in the common VPD trace file. Port
or channels that have a different type, for example, a user-defined
struct, are shown in the hierarchy, but cannot be traced.

The common design hierarchy is generally supported for all
combinations of SystemC, Verilog, and VHDL.The pure-SystemC
flow (the simulation contains only SystemC, but neither VHDL nor
Verilog modules) is also supported.

Post-Processing Debug Flow

There are different ways to create a VPD file, however, not all
methods are supported for common VPD with SystemC. The
following is a list of the supported methods:

• Run the simulation in -ucli mode and apply the
synopsys::dump command.

• Interactive, using Verdi and the Add to Waves... command.

The following s a list of the unsupported methods:

• With $vcdpluson() statement(s) in Verilog code.

• With the VCS +vpdfile option.

If you create a VPD file using one of the unsupported methods, you
do not see SystemC objects at all. Instead, you can find dummy
Verilog or VHDL instances in the location where the SystemC
instances were expected. The simulation prints a warning that
SystemC objects are not traced.

4-29

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Use the following commands to create a VPD file when SystemC is
part of the simulation:

 Create file dumpall.ucli :
 cbug::config add_sc_source_info always <-- this line
 is optional, *1
 synopsys::cbugsynopsys::cbug <-- this line
 is optional, *1
 synopsys::scope .
 set fid [synopsys::dump -file dump.vpd -type VPD]
 puts "Creating VPD file dump.vpd"
 synopsys::dump -add "." -depth 0 -fid $fid
 synopsys::continue

Then, run the simulation as follows:

simv -ucli < dumpall.ucli

The synopsys:cbug line is optional. If specified, CBug attaches
and stores the source file/line information for SystemC instances that
are dumped in the VPD file. This is convenient for post-processing;
a double-click on a SystemC instance or process opens the source-
code file.

Note that, all source code must be compiled with the -g compiler
flag that slows down the simulation speed (how much varies with
each design). Furthermore, attaching CBug consumes additional
CPU time, during which the underlying gdb reads all debug
information. This seconds runtime overhead is constant. Lastly,
attaching CBug creates a gdb process that may require a large
amount of memory if the design contains many C/C++ files compiled
with the -g compiler flag. In summary, adding synopsys:cbug is a
tradeoff between better debugging support and runtime overhead.

4-30

Using the C, C++, and SystemC Debugger FeedbackFeedback

Interaction With the Simulator

Usually, CBug and the simulator (for example, simv) work together
unnoticed. However, there are a few occasions when CBug and the
simulator cannot fully cooperate, and this is visible. These cases
depend on whether the active point (the point where the simulation
stopped, for example, due to a breakpoint) is in the C domain or the
HDL domain.

Prompt Indicates Current Domain

The appearance of the prompt changes if the simulation is stopped
in HDL or in C domain.

In HDL domain, the prompt appears as follows:

• ucli%

In C domain, the prompt appears as follows:

• CBug%

Commands Affecting the C Domain

Commands that apply to the C domain, for example, setting a BP in
C source code, can always be issued, no matter which domain the
current point lies.

Most commands that apply to the C domain, for example, setting a
breakpoint in C source code, can always be issued, no matter which
domain the current point lies. Some commands, however, can only
be applied when the simulation is stopped in the C domain:

4-31

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• The stack command to show which C/C++ functions are
currently active.

• Reading a value from C domain (such as, a class member) with
the synopsys::get command is sensitive to the C function
where the simulation is currently stopped. Only variables visible
in this C scope can be accessed. That is, it is not possible to
access, for example, local variables of a C/C++ function or C++
class members when stopped in HDL domain. Only global C
variables can always be read.

Combined Error Message

When CBug is attached and you enter a command such as get
xyz, then UCLI issues the command to both the simulator and the C
Debugger (starting with the one where the active point is available,
for example, starting with simv in case the simulation is stopped in
the HDL domain). If the first one responds without an error, then the
command is not issued again to the second one. However, if both
simv and CBug issue an error message, UCLI combines both the
error messages into a new message which is then displayed.

Example:

 Error: {
 {tool: Error: Unknown object}
 (cbug: Error: No symbol "xyz" in current context.;}
 }

Update of Time, Scope, and Traces

Anytime, when simulation is stopped in C code, the following
information is updated:

4-32

Using the C, C++, and SystemC Debugger FeedbackFeedback

• Correct simulation time.

• Scope variable (accessible with synopsys::env scope) is either
set to a valid HDL scope or to the <calling-C-domain> string.

- If you stop in C/C++ code while executing a SystemC process,
then the scope of this process is reported.

- String <calling-C-domain> is reported when the HDL
scope that calls the C function is not known. This occurs, for
example, in case of DPI, PLI, VhPI, or DirectC functions.

• All traces (VPD file) are flushed.

Configuring CBug

Use the cbug::config UCLI command to configure the CBug
behavior. The modes listed below are supported.

Startup Mode

When CBug attaches to a simulation, you can choose from two
different modes. To select the mode before attaching CBug, enter
the following UCLI command:

cbug::config startup fast_and_sloppy|slow_and_thorough

The default mode is slow_and_thorough and may consume
much CPU time and virtual memory for the underlying gdb in case of
large C/C++/SystemC source code bases with many 1000 lines of C/
C++ source code.

4-33

Using the C, C++, and SystemC DebuggerFeedbackFeedback

The fast_and_sloppy mode reduces the CPU and memory
needed, however, all the debug information is not available to CBug.
Most debugging features still work fine, but there may be occasional
problems, for example, setting breakpoints in header files may not
work.

Attach Mode

cbug::config attach auto|always|explicit

The attach mode defines when CBug attaches. The default value
is auto and attaches CBug in some situations, for example, when
you set a breakpoint in a C/C++ source files and when double-
clicking a SystemC instance. The always value attaches CBug
whenever the simulation starts. If the explicit value is selected,
CBug is never automatically attached.

cbug::config add_sc_source_info auto|always|explicit

The cbug::add_sc_source_info command stores source file/
line information for all SystemC instances and processes in the VPD
file. Using this command may take time, but is useful for post-
processing a VPD file after the simulation ends. The auto value
invokes cbug::add_sc_source_info automatically when CBug
attaches and the simulation executes without the Verdi GUI; the
always value invokes cbug::add_sc_source_info
automatically whenever CBug attaches; the explicit value never
invokes it automatically. The default value is auto.

4-34

Using the C, C++, and SystemC Debugger FeedbackFeedback

STL Types Variables for Improved CBug Flow

The CBug command is used to enable debugging C, C++, or
SystemC modules that are included in VCS designs. Alternatively,
the CBug starts automatically when a breakpoint is set in a C/C++/
SystemC source code file.

STL types, such as array, list, vector, and string are supported to
generate readable format content in the CBug output.

For example,

CBug% get my_vec
my_vec : {[0] = 100, [1] = 200, [2] = 300}

Use Model

To use STL types in CBug command, specify the command as
follows:

cbug::config enable_python on

Usage Example

The following example illustrates the usage of STL types:

Example 4-1 CBug flow with supported STL type variables:
#include <systemc.h>
#include <vector>

int sc_main(int argc, char **argv)
{
 std::vector<int> my_vec;
 my_vec.push_back(100);
 my_vec.push_back(200);
 my_vec.push_back(300);

4-35

Using the C, C++, and SystemC DebuggerFeedbackFeedback

 my_vec.push_back(400);
 my_vec.pop_back();
 sc_start();
 sc_stop();

 return 0;
}

The following are the commands to run the test case:

cbug::config enable_python on
synopsys::stop -file vector.cpp -line 15
run
get my_vec

The following output is generated:

CBug% get my_vec
{[0] = 100, [1] = 200, [2] = 300}

Limitations

The following are the limitations for this feature:

• The FSDB file dumping is not supported for the STL types.

• The STL types on native SystemC data types are not supported.

Using a Different gdb Version

Debugging of C, C++, and SystemC source files relies upon gdb
version 6.1.1 with specific patches. This gdb is shipped as part of the
VCS image and is used by default when CBug is attached. No
manual setup or installation of gdb is necessary.

4-36

Using the C, C++, and SystemC Debugger FeedbackFeedback

However, it is possible to select a different gdb installation by setting
the CBUG_DEBUGGER environment variable before starting the
simulation or Verdi.

Supported Platforms

Interactive debugging with CBug is supported on the following
platforms:

• RHEL32/Suse, 32-bit

• RHEL64/Suse, 64-bit (VCS option -full64 or -mode64)

An explicit error message is printed when you try to attach CBug on
a platform that is not supported.

CBug Stepping Features

This section describes the enhancements made to CBug to make
stepping smarter in the following topics:

• “Using Step-Out Feature” on page 37

• “Automatic Step-Through for SystemC” on page 37

4-37

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Using Step-Out Feature

You can use the step-out feature to advance the simulation to leave
the current C stack frame. If a step-out leaves the current SystemC
process and returns into SystemC or HDL kernel, then simulation
stops on the next SystemC or HDL process activation, as usual, with
a sequence of next command.

CBug currently supports the existing next -end UCLI command.
This command is used to advance the simulation until you reach the
next break point or exit the C domain, and then you are back into the
HDL domain.

The behavior of this command is changed to support the step-out
functionality. This command is now equivalent to the gdb finish
command. This feature is continued under a new UCLI command
next –hdl.

Note:

The step-out feature does not apply in an HDL context.

Automatic Step-Through for SystemC

The following are some of the typical scenarios where you can step
into SystemC kernel functions:

• Read()or Write()functions for ports or signals.

• Assignment operator gets into the overloaded operator call.

• sc_fifo, tlm_fifo, sc_time and other built-in data type
member functions or constructors.

• wait() calls and different variants of wait() calls.

4-38

Using the C, C++, and SystemC Debugger FeedbackFeedback

• Performing addition or other operations on ports gets inside the
kernel function when you perform a step. This occurs if you have
a function call as part of one of its arguments to the add function.

A step should step-through to the next line in the user code or at
least outside the Standard Template Library (STL), but should not
stop within the STL method. CBug does a step-through for any
method of the following STL classes:

• STL containers for example, std::string, std::hash
• Other STL classes for example, vector, dequeue, list,

stack, queue, priority_queue, set, multiset, map,
multimap, and bitset

Enabling and Disabling Step-Through Feature

Use the following command to enable the step-through feature:

cbug::config step_through on

Use the following command to disable the step-through feature:

cbug::config step_through off

If step-through is disabled and UCLI step ends in a SystemC kernel
or STL code, then an information message is generated if you use
next -end (=gdb finish). This message states that
cbug::config enable stepover exists, and may be useful.
This message is generated only once when CBug is attached.

4-39

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Recovering from Error Conditions

In some cases, it is possible that an automatic step-through does not
quickly stop at a statement, but triggers another step-through,
followed by another step-through, and so on. In this case, you notice
that Verdi or UCLI hangs, but may not be aware that the step-through
is still active.

CBug must recognize this situation and take action. This happens if
a step-through does not stop on its own after 10 consecutive
iterations of internal finish or step.

CBug can either stop the chain of internal finish or step
sequences on its own, and report a warning which states that the
automatic step-through is aborted and how to disable it.

Specifying Value-Change Breakpoint on SystemC
Signals

CBug supports value-change breakpoints on Verilog, VHDL, and
SystemC signals. You can set value-change breakpoints on the
following types of SystemC objects:

• Channels

- sc_signal<T>
- sc_buffer<T>
- sc_signal_resolved
- sc_signal_rv<N>
- sc_clock

4-40

Using the C, C++, and SystemC Debugger FeedbackFeedback

• Ports

- sc_in<T>
- sc_out<T>
- sc_inout<T>
- Resolved ports (sc_in_resolved, sc_inout_resolved,
sc_out_resolved, sc_in_rv, sc_inout_rv,
sc_out_rv)

Note:

The sc_fifo, tlm_fifo channels and associated ports, also
named sc_events (SystemC 2.3) are not supported.

Capabilities for All Data Types

You can set a value-change breakpoint on a SystemC signal using
the following UCLI command:

stop -change|-event <SC signal>

Example:

stop -change sc_inst.myPort //stop at any value change
stop -event sc_inst.myPort //identical to -change
In the above example, simulation stops any time that the value of the
sc_signal changes. The stop happens at the begin of the next
SystemC delta cycle (not at the statement doing the write operation),
after the channel is updated.

In case of sc_buffer, the simulation stops when the corresponding
sc_event triggers, which is also the case when the same value is
written again. As with sc_signal, the simulation stops only at the

4-41

Using the C, C++, and SystemC DebuggerFeedbackFeedback

next delta cycle, not at the statement doing the write operation.
However, a single-bit or bit-slices of sc_buffer stop only when the
selected bits show a real change.

Example:

sc_buffer<int> A
stop -change A //stop when the sc_event triggers
stop -change {A[1]} //stop only when bit no 1 changes
stop -change {A[3:2} //stop only when either bit 3 or 2
changes

sc_buffer<bool> B
stop -change B //stop when the sc_event triggers
stop -change {B[0]} //stop only when the value changes

Note:
There is no limitation on the data type T. The data type can be
int, sc_int, sc_fix or even a user-defined struct.

Capabilities for Single-Bit Objects

If the SystemC object is a single-bit entity (T=bool or T=sc_logic
or T=sc_clock), then you can also specify whether to stop on a
rising edge or a falling edge.

You can set a value-change breakpoint on a single-bit object using
the following commands:

stop -posedge|-negedge|-rising|-falling <SC bit-
signal>

stop -change|-event <SC bit-signal>

4-42

Using the C, C++, and SystemC Debugger FeedbackFeedback

Example:

stop -posedge top.sc_inst.bool_sig //T=bool
stop -negedge top.sc_inst.reset //T=sc_logic
stop -falling top.sc_inst.reset //same as negedge
stop -change top.sc_inst.reset //stop at any value change

Note:
The -posedge condition indicates to stop only if the value
changes from 0 to 1. It does not indicate to stop on transitions of
Z-->1 or X-->1. Similarly, the -negedge condition indicates to
stop only on transition from 1 to 0.

You can also select a single-bit of a bit-vector type (sc_lv, sc_bv,
sc_[u]int, sc_big[u]int) or an integer type that can be
expressed as a bit-vector (such as, int, unsigned long and so
on).

Example:

sc_signal<sc_int<10>> S;
sc_in<int> A;
stop -posedge {S[2]}
stop -falling {A[20]}

Note:

You need to escape the square brackets in the UCLI command
(as usual) because TCL interprets them.

4-43

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Capabilities for Bit-Slices

If the SystemC object is a bit-vector type (sc_lv, sc_bv,
sc_[u]int, sc_big[u]int) or an integer type that can be
expressed as a bit-vector (such as, int, unsigned long and so
on), then you can set a value-change breakpoint on a bit-slice of this
object.

Example:

sc_signal<sc_int<10>> S;
stop -change {S[3:2]}
The breakpoint gets triggered if either the second bit or the third bit
changes. Other bits in the bit-vector are irrelevant.

Note:

Posedge/negedge/falling/rising is not allowed for bit-slices.

Points to Note

• CBug must be attached, if not the following error is observed:

Error-[UCLI-WATCH-UNSUPP-SYSC] Stop on SystemC object
 Unable to set break point on SystemC object(s). In the
 C domain, it is only supported to set break point with
 'stop -file ... -line …', with 'stop -in <function-
name>' or with 'stop -change|posegde|negedge <nid>'.
 Attach CBug with command 'cbug' and try again. You may
 need to restart the simulation with additional runtime
argument '-ucli2Proc'.

• Setting a condition in combination with a value-change breakpoint
on a SystemC object is not supported. It triggers the following
error message:

Error-[CBUG-BP-10] SystemC value-change BP failed

4-44

Using the C, C++, and SystemC Debugger FeedbackFeedback

 Setting a value-change breakpoint for SystemC object
 'top.sctop.sig_bool' failed: User-defined conditions
 are not supported for SystemC objects.

Limitations

The following are the limitations with this feature:

• Plain members are not supported because they have no
sc_event associated to them.

• This feature is partially supported in combination with Virtualizer
(-sysc=inno or -sysc=snps_vp). Selecting a slice or a single-
bit of a bit-vector is not supported in combination with Virtualizer.

Driver/Load Support for SystemC Designs in Post-
Processing Mode

This feature enables you to view the driver or load on Verilog signals
in post-processing mode. This enables you to understand from
where the Verilog signal is being driven so that you can back trace
the signal easily in the post-processing mode.

Dumping Source Names of Ports and Signals in VPD

You can view the source names of the SystemC ports and signals in
VPD which makes it easy to identify the port while debugging.

Example:

SC_MODULE(top)

4-45

Using the C, C++, and SystemC DebuggerFeedbackFeedback

{
 sc_in<int> p_AA; // Constructor called with a different name
 sc_in<int> p_BB; // Constructor not called explicitly
 sc_in<int> p_CC; // Constructor called with same name as port
 …
 SC_CTOR(top): p_AA(“AA”), p_CC(“p_CC”)
{
 …
 }
};

For the port p_AA, the ‘source name’ is ‘p_AA’ and the ‘OSCI name’
is ‘AA’.

For the port p_BB, the ‘source name’ is ‘p_BB’ and the ‘OSCI name’
is ‘port_0’.

For the port p_CC, both the ‘source name’ and ‘OSCI name’ are
same, that is, ‘p_CC’.

With this feature enabled, the source names are also shown along
with the OSCI names in the Verdi post-processing mode. (This is
already supported in the Verdi interactive mode.)

The port names in Verdi appear as follows:

AA(p_AA)

port_0(p_BB)

p_CC

If the OSCI name is same as the source name, it is shown as “p_CC”
in Verdi.

4-46

Using the C, C++, and SystemC Debugger FeedbackFeedback

Dumping Plain Members of SystemC in VPD

You can dump plain members (members of SystemC modules other
than ports and signals) of SystemC modules into VPD for better
debugging. You can view plain members in the data pane and also
load into the waveform window. This is also supported in the
interactive mode.

Example:

SC_MODULE(stim) {
 sc_in<bool> CLK;
 sc_out<int> X;
 sc_signal<sc_int<10> > S;
 SC_CTOR(stim) ...
 int m_cycle_no;
 sc_int<10> m_var1;
};
Member variables m_cycle_no and m_var1 are plain members.
They can be dumped in the VPD file along with the ports CLK, X, and
sc_signal S.

Supported and Unsupported UCLI and CBug Features

You can use UCLI commands to debug the pure SystemC design.
The list of supported features in UCLI are as follows:

• View SystemC design hierarchy

• VPD tracing of SystemC objects

• Set breakpoints, stepping in C, C++, and SystemC sources

• Get values of SystemC (or C/C++ objects)

4-47

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• stack [-up|-down]
• continue/step/next/finish
• run [time]
The following UCLI features are not supported for SystemC objects:

• Viewing schematics

• Using force, release commands

• Tracing [active] drivers, and loads

• Commands that apply to HDL objects only

In case of a Control-C (that is, SIGINT), CBug always takes over
and reports the current location.

When the simulation stops somewhere in System C or VCS kernel,
between execution of user processes, then a dummy file is reported
as the current location. This happens, for example, immediately after
the init phase. This dummy file contains a description about this
situation and the instructions about how to proceed (that is, Set BP
in SystemC source file, click continue).

UCLI Save Restore Support for SystemC-on-top and
Pure-SystemC Designs

VCS provides the UCLI save and restore commands to save the
state of a simulation and to resume the simulation from a given
saved state.

4-48

Using the C, C++, and SystemC Debugger FeedbackFeedback

The following sections explain usage, coding guidelines, and
limitations of using the UCLI save and restore commands with
SystemC-on-top and pure SystemC designs.

• “SystemC with UCLI Save and Restore Use Model”

• “SystemC with UCLI Save and Restore Coding Guidelines”

• “Saving and Restoring Files During Save and Restore”

• “Restoring the Saved Files from the Previous Saved Session”

• “Limitations of UCLI Save Restore Support”

SystemC with UCLI Save and Restore Use Model

UCLI save and restore commands work only with the SystemC
deltasync flow for SystemC-on-top and pure SystemC designs.

For more information about the UCLI save and restore commands,
see the Unified Command-line Interface User Guide.

SystemC with UCLI Save and Restore Coding Guidelines

For SystemC-on-top or pure SystemC designs, you must write the
entry point function sc_main().This sc_main() function is not
part of the SystemC kernel, and therefore needs to adhere to the
following guidelines to function in the save and restore
environment.

• Allocate all SystemC module instances and objects dynamically
using the malloc()/new function. This is necessary because
the UCLI save and restore commands can only save and
restore the heap memory.

4-49

Using the C, C++, and SystemC DebuggerFeedbackFeedback

• Do not call constructors for SystemC modules again when the
sc_main() function is called during the restore process. You can
meet this requirement by guarding the code appropriately with a
static variable.

Similarly, functions like sc_set_time_resolution() should
not be called again during the restore process.

• The sc_start() call starts the simulation and continues until
simulation terminates. Control never comes back to the
sc_main() function after sc_start() is called. Therefore, do
not place any statements after the sc_start() call (these
statements are never executed).

Example 4-2 shows the supported coding style.

Example 4-2 Supported SystemC Coding Style for Save and Restore
int sc_main(int argc, char* argv[])
 {
 static int isRestore = 0;
 if (isRestore == 0) {
 isRestore = 1;
 sc_core::sc_set_time_resolution(100, SC_PS);
 Stimuli* stim_inst = new Stimuli("stim_inst");
 CPU_BFM* dut = new CPU_BFM("stim_inst");
 }
 sc_start();
 return 0;
 }

Saving and Restoring Files During Save and Restore

You can save all files that are open in read or write mode at the time
of save using the following runtime options. All these files are saved
in the directory named:

4-50

Using the C, C++, and SystemC Debugger FeedbackFeedback

<name_of_the_saved_image>.FILES.

-save

Saves all open files in writable mode.

-save_file <file name> | <directory name>

Saves all open files in writable mode, and all files that open in
read-only mode, depending on the option you specify:

- With <file name>, saves the specified open file in read/write
mode.

- With <directory name>, saves all files in the specified
directory open in read/write mode.

-save_file_skip <file name> | <directory name>

This allows you to skip saving one or more files depending on the
option:

- With <file name>, skips saving the specified file that is open
in read/write mode.

- With <directory name>, skips all files in the specified
directory that are open in read/write mode.

Restoring the Saved Files from the Previous Saved
Session

At restore time, you can remap any old path where files were open
at the time of save to the new place where restore searches using
the –pathmap option.

4-51

Using the C, C++, and SystemC DebuggerFeedbackFeedback

Example:

% simv -pathmap <file_with_pathmaps>

where,

<file_with_pathmaps>:

<old_directory_path_name>:<new_directory_path_name>

Limitations of UCLI Save Restore Support

The following are the limitations with this feature:

• SC_THREADS must be implemented using quick threads, which
are enabled by default. Do not enable POSIX threads using the
SYSC_USE_PTHREADS environment variable.

• The save operation is not allowed when simulation is stopped
inside the C domain.

• Cbug needs to be disabled before invoking save and restore
commands. You can re-enable it later, when needed.

• The save operation just after the simulation starts is not allowed.
Advance the simulation with run 0 command and then try saving.

4-52

Using the C, C++, and SystemC Debugger FeedbackFeedback

 5-1

Interactive RewindFeedbackFeedback

5
Interactive Rewind 1

You can create multiple simulation snapshots using the UCLI
checkpoint feature during an interactive debug session. In the same
debug session, you can go back to any of those previous snapshots,
by using the UCLI rewind feature and do “What if” analysis.

When you create multiple checkpoints, say at times t1, t2, t3,
...tn, and want to rewind from your current simulation time to a
previous simulation time say t2, then all the checkpoints that follows
t2 (t3, t4, and so on.) gets deleted. This is intentional, because
when you go back to history using the rewind operation, you are
given an option to force/release the signal values and continue with
a different simulation path until you get the desired results. This is
called as “What if” analysis. Hence, you can save time by not
repeating the simulation from the start.

Following are the advantages of the Checkpoint and Rewind feature:

5-2

Interactive Rewind FeedbackFeedback

• Checkpoint directly saves multiple simulation states and you can
rewind to any of those saved states using rewind.

• Checkpoint and Rewind are done by the simulator.

• More user friendly, and very quick in performance.

• Lists all the checkpoints, within a session, with respective
simulation time.

Interactive Rewind Vs Save and Restore

Interactive rewind seems similar to Save and Restore operation.
Even though there are similarities, there are also differences.

Similarities between Save/Restore and Checkpoint/Rewind
• You can save a snapshot at a particular simulation time, when the

simulator is in a Stop State.

• You can go back to the previously saved state.

• You can remove the intermediate saved data. In Save-Restore,
you delete the saved data. In checkpoint/rewind, you need to issue
the checkpoint -kill or -join commands.

 5-3

Interactive RewindFeedbackFeedback

Differences between Save/Restore and Checkpoint/Rewind:

Use Model

You can use the Interactive Rewind feature with UCLI only with
the -ucli2Proc command. For more information about the -
ucli2Proc command, see the VCS User Guide under the
Simulation category in the VCS Online Documentation.

Use the following command in UCLI to create the simulation
checkpoint.

checkpoint [-list] [-add [<desc>]] [-kill <checkpoint_id>]
[-join [checkpoint_id]]
where,

-list
Displays all the checkpoints that are set until this time.

-add <desc>
(Optional) Creates a checkpoint with description text <desc>.

Save/Restore Checkpoint/Rewind

Persistent across different simv runs. Not persistent across simv runs. As soon as
simv quits, all the checkpoint data is lost.

Doesn’t describe saved state. Describes various checkpoint state using the
checkpoint -list command. You can
also see the list of checkpoints in the tooltip.

Save/Restore operation is slow. Faster than Save/Restore for the same
simulation run.

Not supported in SystemC Supported for SystemC designs.

5-4

Interactive Rewind FeedbackFeedback

-kill <checkpoint_id>

Kills a particular checkpoint state. You cannot kill the 1st
checkpoint, as it is the parent checkpoint.

Example,

-kill 0 - This option kills all the checkpoints.

-kill 1 - This option kills the first checkpoint.

-kill 2 - This option kills the second checkpoint.

-join <checkpoint_id>

Rewinds to a particular checkpoint ID. By default, it rolls back to
the previous checkpoint if no checkpoint ID is specified.

Example

The following example shows how you can create several
checkpoints and then rewind to a specific checkpoint in UCLI.

1. Run the following command to get the ucli prompt.

simv -ucli -ucli2Proc

2. Add a checkpoint using the command:

ucli% checkpoint –add sim1
1

3. Run the simulation using the next, run, or step command.

4. Add another checkpoint using the command:

ucli% checkpoint –add sim2
2

 5-5

Interactive RewindFeedbackFeedback

5. Run the following command to display the list of checkpoints at
any time.

ucli% checkpoint -list
List Of Checkpoints:
 1: Time : 0 NS Descr : sim1
 2: Time : 10 NS Descr : sim2
 3: Time : 20 NS Descr : sim3
 4: Time : 30 NS Descr : sim4
 5: Time : 40 NS Descr : sim5

6. Check the time as follows:

ucli% senv time
40 NS

7. Rewind to a checkpoint using the command:

ucli% checkpoint –join 3
All the checkpoints created after checkpoint 3 are
removed.
3
ucli% senv time
20 NS
ucli% checkpoint –list

List Of Checkpoints:
1: Time : 0 NS Descr : sim1
2: Time : 10 NS Descr : sim2
3: Time : 20 NS Descr : sim3

8. To kill a checkpoint,

ucli% checkpoint -kill 2
Killed checkpoint Id 2
ucli% checkpoint -list
List Of Checkpoints:
1: Time : 0 NS Descr : sim1
3: Time : 20 NS Descr : sim3

5-6

Interactive Rewind FeedbackFeedback

Limit for Checkpoint Depth

By default, only 10 checkpoints can be created. If you create more
than 10 checkpoints, then the first, second, and further checkpoints
are deleted to accommodate the newly created checkpoints.

However, you can increase the checkpoint depth to a maximum of
50 using the UCLI option checkpointdepth.

Additional Configuration Options

Following are some additional UCLI configuration variables to
control the simulation checkpoint default behavior:

• autocheckpoint — Set with the UCLI command
config -autocheckpoint on/off. By default, this switch is
off. When you switch it on, a new checkpoint is automatically
created before or after every command in the pre-checkpoint and
post-checkpoint list (as explained in the following points).

• autodumphierarchy — Set with the UCLI command
config -autodumphierarchy on/off. By default, this
switch is off. When you switch it on, the VPD dump commands
are reissued after the rewind operation, so that the signals added
after the checkpoint stay in VPD.

• checkpointdepth — Choose the number of checkpoint that could
be created using the checkpoint -add command. If the number
of existing checkpoints reaches this level, oldest checkpoint will
be deleted automatically to create space for the new one.

• precheckpoint — You can configure any UCLI command with
precheckpoint as follows:

config -precheckpoint -add {force}

 5-7

Interactive RewindFeedbackFeedback

As a result, everytime before the command (force) is executed,
a checkpoint is created. You can add or remove the commands
from this list.

• postcheckpoint — You can configure any UCLI command with
precheckpoint as follows:

config -postcheckpoint -add {force}

As a result, everytime after the command (force) is executed, a
checkpoint is created. You can add or remove the commands from
this list.

Creating Checkpoints on Breakpoint Hits

The -checkpoint option of the UCLI stop command allows you to
create a checkpoint when the specified breakpoint is hit during the
simulation.

-checkpoint <number>
Creates a new checkpoint when the specified breakpoint is
reached. This option creates the checkpoint label in the following
format:

“BP <breakpoint_number> (breakpoint_hit_number)”
(breakpoint <breakpoint_number>, hits
<breakpoint_hit_number>)

For example, “BP 3 (4)” (breakpoint 3, hits 4)

Example:

ucli %> stop –in file.v –line 42
4

5-8

Interactive Rewind FeedbackFeedback

ucli %> stop –checkpoint 4
4

 6-1

Support for Reverse Debug in UCLIFeedbackFeedback

6
Support for Reverse Debug in UCLI 1

The reverse debug feature includes the capability that supports
debugging with running the simulation backwards.

Note:

This is a Limited Customer Availability (LCA) feature. To enable
LCA features, use the -lca compile-time option. Limited
Customer Availability (LCA) features are features available with
select functionality. These features will be ready for a general
release, based on customer feedback and meeting the required
feature completion criteria. LCA features do not need any
additional license keys.

You can start debugging at the symptom of the problem and
systematically go back in time along the bug propagation cause-
effect chain. Divide and conquer debugging method is much more
efficient with reverse debugging.

6-2

Support for Reverse Debug in UCLI FeedbackFeedback

For example, if the simulation is stopped before some function call
and when you are not sure whether the function returns the correct
value or not, then you can step over this function call and check the
returned result. If the result is wrong, you can perform next –
reverse command, step into the function and identify the cause of
the wrong result. Without reverse debugging, this would require very
costly restart of debugging and playing with breakpoints to reach the
same simulation state.

Following are the simulation control commands for reverse
executing simulation:

• run –reverse
• step -reverse
• step -reverse -thread
• step -reverse -tb
• next -reverse
• next -reverse -thread
• next -reverse -end

You can also easily reverse the simulation to the previous value
assignment of a signal or variable by setting a value change
breakpoint on this variable and executing the run -reverse
command.

Furthermore, you can keep the future (for example, while reversing
a simulation, the time and information generated from an active
point, Point A, to a previous point, Point B, is termed as future) when
going back in simulation time during reverse debugging. The
following are the benefits of keeping the future:

 6-3

Support for Reverse Debug in UCLIFeedbackFeedback

• Better performance during the rewinding operation and reverse
debugging.

• During debugging, you can bookmark interesting points using
checkpoints and later quickly return to them even after reverse
executing to time before these checkpoints. The checkpoints (in
the future) are preserved, and you can easily go to the recorded
future checkpoint from the past.

Enabling Reverse Debug

You must use the -debug_access+reverse compile-time option,
as shown below, to enable reverse debug feature.

% vcs -sverilog example.sv -debug_access+reverse
<compilation_options>

% simv -ucli -ucli2Proc

You must run the config reversedebug on UCLI command, as
shown below, to use this feature in UCLI:

ucli% config reversedebug on

You must run the config reversedebug on command
immediately after the simulation start. If you run this command in the
middle of the simulation, reverse debug commands goes back only
until the point where config reversedebug on is executed.

6-4

Support for Reverse Debug in UCLI FeedbackFeedback

Keep Future

You can keep the future (for example, while reversing a simulation,
the time and information generated from an active point, Point A, to
a previous point, Point B, is termed as future) when going back in
simulation time during reverse debugging. The following are the
benefits of keeping the future:

• Better performance during the rewinding operation and reverse
debugging.

• During debugging, you can bookmark interesting points using
checkpoints and later quickly return to them even after reverse
executing to time before these checkpoints. The checkpoints (in
the future) are preserved, and you can easily go to the recorded
future checkpoint from the past.

You can enable/disable “keep future” mode using the following UCLI
command:

 config keepfuture [on|off]

By default, this setting is on when running under Verdi and off when
running in batch mode (simv -ucli -ucli2Proc).

If the option is on and simulation went back by rewind or reverse
execution command, some UCLI commands are not allowed. This
includes force and dump commands, constrained randomization
change commands, and so on. That is, all commands which can
change simulation state are not allowed, and an error message is
displayed when you try to execute them. In this case, you can
temporarily switch off the “keep future” mode and repeat the
command, for example:

config keepfuture off

 6-5

Support for Reverse Debug in UCLIFeedbackFeedback

config keepfuture on
force foo 1

Note:

The config keepfuture off command discards the
simulation state in the future (including all checkpoints in the
future).

Virtual Checkpoints

When reverse debug is enabled, you can use the following config
command to create a new checkpoint:

 config virtualcheckpoints [on|off]

When this command is on (default), the checkpoint -add
command creates virtual checkpoints instead of real ones. Virtual
checkpoints have less memory overhead at the expense that rewind
to them might take some more time.

Using Reverse Simulation Control Commands

The -reverse option of the step, next, and run UCLI commands
provides the ability to move to an earlier simulation state from the
current simulation debug state. All commands bring the simulation
back in time to the completely functional execution state.

6-6

Support for Reverse Debug in UCLI FeedbackFeedback

Run/Continue Reverse Simulation Control Command

You can use the run –reverse command to allow the simulation
to go back in time (reverse the simulation) for the specified amount
of time. All the current breakpoints are respected and the simulation
stops at the most recent (considered back from the current execution
state) breakpoint hit.

Following are the various options you can use with the
run -reverse command:

run –reverse [time [unit]]
Specifies the time units for the simulation to go back in time.

run -reverse -absolute | relative <time>
Specifies the relative or absolute time units for the simulation to
go back in time.

run -reverse -line <line_number> [-file <file>] [-
instance <nid>] [-thread <thread_id>]
Specifies the source code line to which the simulation needs to
go back.

 6-7

Support for Reverse Debug in UCLIFeedbackFeedback

Step and Next Reverse Simulation Control Commands

The following reverse commands are available to reverse the
simulation:

Limitations

The following are the limitations with Reverse Debug feature:

• VCS Design Level Parallelism (DLP) is not supported

• The following actions of PLI code are not supported:

- IPC communication using sockets, pipes or shared memory

- Multi-threading

- Performing the file seeking operations, and then writing at a
new position (that is, it is assumed that the simulation only
appends data to the output files)

• Simulation with Specman is not supported

Command Description

step -reverse Goes back one SystemVerilog source code line.

step -reverse -thread Goes back one source code line in the current thread.

step -reverse -tb Goes back one source code line in the testbench code.

next -reverse Goes back one SystemVerilog line which steps over
task/function calls. Eventually, it might stop on a
breakpoint inside the task/function called at the
previous line.

next -reverse -thread Goes back one source code line in the current thread
which steps over task/function calls.

next -reverse -end Goes back to the source code line where the current
function has been called.

6-8

Support for Reverse Debug in UCLI FeedbackFeedback

• Analog-digital co-simulation (using NanoSim) is not supported

• The reverse debug commands are not supported for VHDL source
code. For example, using the step -reverse command moves
to previous Verilog source code line, ignoring all VHDL code in
between

• Reverse debug is not supported when the design is compiled with
the -simprofile option for simulation profiling

 7-1

Debugging TransactionsFeedbackFeedback

7
Debugging Transactions 1

This chapter contains the following sections:

• Introduction

• Transaction Debug in UCLI

Introduction

Productive system-level debug requires you to keep a history of the
system evolution that covers the varied modeling abstraction and
encapsulation constructs used in both the design and testbench.

Moreover, given the mix of abstraction layers and the wealth of data
sources in modern SoC design with IP reuse including user-added
messaging, a flexible recording mechanism with an easy to control
use-model and sampling mechanism is required.

7-2

Debugging Transactions FeedbackFeedback

To address these needs, VCS provides the $vcdplusmsglog
system task which is called from SystemVerilog. This task can be
applied in many contexts to record data directly into the VPD file. The
$vcdplusmsglog system task is based on the transaction
abstraction.

The $vcdplusmsglog system task, is intended primarily for
recording messages, notes, and transactions. These transactions
include definition, creation, and relationships on multiple streams.
$vcdplusmsglog forms the basis of transaction modeling and
debug.

Transaction Debug in UCLI

Use the following UCLI commands for transaction level debugging:

msglog [-st[tream] <stream>]
[-sc[cope] <stream_scope>]
-type <_MSG_T>
[-n[ame] <msg_name>]
-sev[erity] <_MSG_S>
[-h[eader] <msg_header>]
[-b[ody] <msg_body>]
-r[elation] <_MSG_R>
[-relname <relation>]
[-target <target>]

You can use these commands instead of using the UCLI call
command for debugging with transactions.

Example
msglog.v

package pkg;
class C;
 int i;

 7-3

Debugging TransactionsFeedbackFeedback

 integer p;
 int a1=5;

 task main(int x = 0);
 int f = x;
 int a=1;
 bit c=1'h0;
 bit [2:0] cc = 3'h1;
 byte byte1= 1;
 logic log='h1;

 begin
 $display("Message");
 end
 endtask
endclass
endpackage // pkg

program prog;
 import pkg::*;

 C inst = new;
 initial
 begin
 int inti =12;
 inst.main();
 #1;
 inst.main(1);
 #1;
 inst.main(2);

 end
endprogram

Run the following commands to use the msglog UCLI command:

one.tcl

Line BP at {\$display\("Message");}
stop -file msglog.v -line 16
 run

7-4

Debugging Transactions FeedbackFeedback

 msglog -type 1 -n {"Failure"} -severity 1 -b {"Failure"} -
relation 1 {a} {log}
 run
 msglog -type 1 -n {"Failure"} -severity 1 -b {"Failure"} -
relation 2
 run

 8-1

Debugging Virtual Interface Arrays and Queues in UCLIFeedbackFeedback

8
Debugging Virtual Interface Arrays and
Queues in UCLI 1

You can use the UCLI show and get commands to view the values
of the virtual interface arrays and queues:

Syntax:

show -type <variable>
show -value <variable>
get <variable>

This feature is supported for the following:

• One-dimensional unpacked array

• Queues in class or module

• UCLI force and value change callbacks (value change breakpoint)
on a virtual interface variable

8-2

Debugging Virtual Interface Arrays and Queues in UCLI FeedbackFeedback

If the breakpoint is set on an entire array, VCS issues the following
error message:

Error-[UCLI-STOP-UNABLE-SET-POINT] Cannot set breakpoint
 Setting of breakpoint due to command 'stop' was not
 successful. Registering a value change callback was not
 successful. Please refer to the UCLI User Guide.

Example

Consider Example 8-1,

Example 8-1 test.sv
class base;
 virtual intf vitf[0:1];
 function new (virtual intf itf[0:1]);
 this.vitf = itf;
 endfunction
endclass
interface intf;
 logic data;
endinterface
module tb;
 intf itf[0:1]();
 base obj;
 initial begin
 obj = new(itf);
 #1 obj.vitf[0].data = 1;
 #1 obj.vitf[1].data = 0;
 #1 obj.vitf[0].data = 0;
 #1 obj.vitf[1].data = 1;
 #5 $finish;
 end
endmodule

Execute the following commands:

% vcs -debug_access+all -sverilog test.sv

 8-3

Debugging Virtual Interface Arrays and Queues in UCLIFeedbackFeedback

% ./simv -ucli

Execute the following commands at UCLI prompt:

ucli% run 1
1 s
ucli% stop -event {obj.vitf[0].data} // callback on virtual
interface variable
1
ucli% run
Stop point #1 @ 1 s; tb.itf[0].data = 'bx
ucli% show -type -val
obj {CLASS base { {vitf ARRAY {} {{0 1}} RefObj}}} {(vitf
=> ((data => 'bx),(data => 'bx)))}
{itf[1]} {INSTANCE intf interface} {(data => 'bx)}
{itf[0]} {INSTANCE intf interface} {(data => 'bx)}
ucli% get obj.vitf
((data => 'bx),(data => 'bx))
ucli% force -deposit {obj.vitf[0].data} 0 // force on virtual
interface variable
ucli% step
test.sv, 16 : #1 obj.vitf[1].data = 0;

Limitations

• Setting value change breakpoint on an entire virtual interface
array is not supported.

8-4

Debugging Virtual Interface Arrays and Queues in UCLI FeedbackFeedback

 9-1

Debugging Mixed-Signal DesignsFeedbackFeedback

9
Debugging Mixed-Signal Designs 1

UCLI allows you to reuse the existing digital testbench when digital
modules are replaced with SPICE modules in a mixed-signal
environment. This following topics describe the UCLI support for
debugging Mixed-Signal (VCS-CustomSim) designs.

• Support for Top Spice Module

• Using UCLI show Commands for SPICE

• Support for the UCLI force or release Command on SPICE
Ports

Support for Top Spice Module

For a SPICE top design, where spice sub-circuit is the only top
scope, UCLI stops at the top spice module when it is invoked first
with simv -ucli.

9-2

Debugging Mixed-Signal Designs FeedbackFeedback

Using UCLI show Commands for SPICE

The following topics describe the UCLI show commands for SPICE:

• Using show -domain Command

• Using show -type Command

• Using show -value Command

Using show -domain Command

The UCLI show -domain command displays SPICE for a SPICE
instance and node to distinguish analog and digital objects (modules
or nodes) in your design. Table 9-1 describes the usage of show -
domain.

Table 9-1 Distinguishing Analog and Digital Objects Using show -domain

Using show -type Command

The UCLI show -type command displays subckt for a SPICE
module and analog-node for a SPICE node. Table 9-2 describes
the usage of show -type.

Digital Analog

ucli% show -domain top

top Verilog

ucli% show -domain spice-top

top SPICE

 9-3

Debugging Mixed-Signal DesignsFeedbackFeedback

Table 9-2 Usage of show -type

Note:

Although SPICE is not case-sensitive, the UCLI commands must
be case-sensitive (as the SPICE shadow modules are
SystemVerilog modules, and are case-sensitive).

Using show -value Command

The UCLI show -value command displays voltage value of the
SPICE node.

Note:

The show -value <analog_node> command works only after
successful convergence of the analogue engine DC. The
following message is issued during the simulation once the DC is
successfully converged.

DC has successfully converged with method 1 (0 sec)

Digital Analog

Top module
ucli% show -type top

top {INSTANCE top module}

VHDL/Verilog module instantiated by the
Verilog module
ucli% show -type i1

i1 {INSTANCE VEC module}

SPICE module
ucli% show -type spice-top

top {INSTANCE top subckt}
SPICE module instantiated by VHDL/
Verilog module
ucli% show -type i1

i1 {INSTANCE VEC subckt}
Verilog node
ucli% show -type y

y {BASE {} wire}

SPICE node
ucli% show -type y

y {BASE {} analog-node}

9-4

Debugging Mixed-Signal Designs FeedbackFeedback

If show -value <analog_node> is invoked before DC
convergence, then the following error message is issued:

Error-[UCLI-GET-ERR-MSG] get command error

The execution of get command failed, Node Voltage
not available before DC.

Support for the UCLI force or release Command on
SPICE Ports

UCLI supports force/release on SPICE ports. Below is the syntax of
the UCLI force command for SPICE ports:

force <analog_node> <value> [<time> {, <value>
<time>}* [-repeat <time>]] [-cancel <time>]

Where, analog_node is the hierarchical path name of the SPICE
port that must be forced.

Note:

- The -deposit option is not supported on the SPICE port.

- Only real and logic values are allowed when read/write is
performed on the SPICE port.

Limitations

• UCLI stop command for SPICE: Value change breakpoint is not
allowed on the SPICE port

• SPICE node is not supported in the UCLI expression evaluator

 9-5

Debugging Mixed-Signal DesignsFeedbackFeedback

Usage Example

Consider the following files:

Verilog testcase (test.v)

module top();

 supply0 [2:0][2:0][2:0] pattern;
 wire [2:0][2:0][2:0] out;

 middle1 VLOG_MIDDLE1 (pattern, out);

 always @(pattern) begin
 #3;
 if ($time > 0) begin
 $display ("TIME: %t | input: %b | output: %b",
$time, pattern, out);
 end
 end
 always begin
 if ($time > 500) $finish(2);
 #1;
 end
endmodule

// =========== VERILOG MIDDLE =============
module middle1 (inout supply0 [26:0] m1Pattern,
 output wire [26:0] m1Out);
 myspice MY_SPICE_ARRAY [0:26] (m1Pattern, m1Out);

 middle2 VLOG_MIDDLE2(m1Pattern);

endmodule

module middle2 (output reg [26:0] vec);
 initial begin
 vec = 27'b111111111111111111111111111;
 end

9-6

Debugging Mixed-Signal Designs FeedbackFeedback

 always begin
 #40 vec = ~vec;
 end
endmodule

// ========= SPICE BOTTOM: MULTIPLE VIEW =========
module spiceInv (out, in);
 output wire out;
 input wire in;
 assign out = ~in;
endmodule

module myspice (input wire x, output reg y);
 spiceInv SP1_1 (y, x);
endmodule

VHDL testcase (test.vhd)

entity vhd is
port(outp:out bit;inp:in bit);
end vhd;
architecture behv of vhd is
begin
outp<=NOT(inp);
end behv;

SPICE file (test.spi)

simulator lang=spectre
include "spiceinv.spi"
simulator lang=spectre

subckt myspice x y
 SP1_1 y x vhd
ends myspice

 9-7

Debugging Mixed-Signal DesignsFeedbackFeedback

CustomSim file (xa.init)

use_spice -cell myspice ;

choose xa -nspectre test.spi;

set print_thru_net d2d;

resistance_map -from analog 90000.2-1e32 -to verilog 0 ;
resistance_map -from analog 70000.2-90000.1 -to verilog 1 ;
resistance_map -from analog 50000.2-70000.1 -to verilog 2 ;
resistance_map -from analog 5000.2-50000.1 -to verilog 3 ;
resistance_map -from analog 4000.2-5000.1 -to verilog 4 ;
resistance_map -from analog 3000.2-4000.1 -to verilog 5 ;
resistance_map -from analog 1.2-3000.1 -to verilog 6 ;
resistance_map -from analog 0-1.1 -to verilog 7 ;

resistance_map -to analog 90000.2-1e32 -from verilog 0 ;
resistance_map -to analog 70000.2-90000.1 -from verilog 1 ;
resistance_map -to analog 50000.2-70000.1 -from verilog 2 ;
resistance_map -to analog 5000.2-50000.1 -from verilog 3 ;
resistance_map -to analog 4000.2-5000.1 -from verilog 4 ;
resistance_map -to analog 3000.2-4000.1 -from verilog 5 ;
resistance_map -to analog 1.2-3000.1 -from verilog 6 ;
resistance_map -to analog 0-1.1 -from verilog 7 ;

Perform the following elaboration commands:

% vlogan -sverilog test.v -full64
% vhdlan -full64 test.vhd
% vcs +ad=xa.init top -debug_access+all -full64

Perform the following simulation command:

% simv -ucli

Perform the following commands at the UCLI prompt:

scope

9-8

Debugging Mixed-Signal Designs FeedbackFeedback

show
scope top.VLOG_MIDDLE1.MY_SPICE_ARRAY\[0\]
show
show -type x
show -type y
run 1
show -value x
show -value y
scope SP1_1
show -type OUTP
show -type INP
force INP 0
show -value OUTP
show -value INP

VCS generates the following output:

ucli% scope
top
ucli% show
pattern
out
VLOG_MIDDLE1
ucli% scope top.VLOG_MIDDLE1.MY_SPICE_ARRAY\[0\]
top.VLOG_MIDDLE1.MY_SPICE_ARRAY[0]
ucli% show
x
y
SP1_1
ucli% show -type x
x {BASE {} analog-node IN PORT}
ucli% show -type y
y {BASE {} analog-node OUT PORT}
ucli% run 1
Entering DC method 1
DC method 1 progress 10% done
DC method 1 progress 20% done
DC method 1 progress 30% done
DC method 1 progress 40% done
DC method 1 progress 50% done
DC method 1 progress 60% done

 9-9

Debugging Mixed-Signal DesignsFeedbackFeedback

DC method 1 progress 70% done
DC method 1 progress 80% done
DC method 1 progress 90% done
DC method 1 progress 100% done
DC has successfully converged with method 1 (0 sec)
1 PS
ucli% show -value x
x 0.000000
ucli% show -value y
y 3.300000
ucli% scope SP1_1
top.VLOG_MIDDLE1.MY_SPICE_ARRAY[0].SP1_1
ucli% show -type OUTP
OUTP {BASE {} BIT OUT PORT}
ucli% show -type INP
INP {BASE {} BIT IN PORT}
ucli% force INP 0
Notice [MSV-RT-D2A]
rt_d2a hiv=3.300000v lov=0.000000v
node=top.VLOG_MIDDLE1.MY_SPICE_ARRAY[0].x;
ucli% show -value OUTP
OUTP 'b1
ucli% show -value INP
INP 'b0

9-10

Debugging Mixed-Signal Designs FeedbackFeedback

A-1

ExamplesFeedbackFeedback

A
Examples A

This appendix provides examples of various designs and explains
how you can use the UCLI commands on those designs. This
appendix includes the following sections:

• Verilog Example

• VHDL Example

• SystemVerilog Example

• Native Testbench OpenVera (OV) Example

A-2

Examples FeedbackFeedback

Verilog Example

Following is a Verilog example to show the usage of UCLI
commands:

counter.v

module top;
 reg clk,reset;
 wire [1:0] z;

 count c1(clk,reset,z);

 initial
 begin
 clk = 1'b0;
 reset = 1'b1;
 #5 reset = 1'b0;
 end

 always
 #10 clk = ~clk;

 always
 begin
 #100 reset = 1'b1;
 #5 reset = 1'b0;
 end

 initial
 #1000 $finish;
endmodule

module count(clk,reset,z);
 input clk,reset;
 output [1:0]z;
 reg [1:0]z;

 always @(clk or reset)
 begin

A-3

ExamplesFeedbackFeedback

 if(reset)
 z = 2'b0;
 else if(clk)
 z = z + 1;
 end
initial
 $monitor("Value of z is %b",z);
endmodule

input.ucli

scope
show -type
show -value
show -instances
listing
stop -line 11
stop
drivers clk
drivers -full clk
loads z
loads clk
scope c1
show -parent
scope -up
run
show -value reset
config
config radix binary
show -value reset
run 2
scope
show -value
force clk 1'b1
step
step
show -value clk
release clk
next
next
next
run

A-4

Examples FeedbackFeedback

Compiling the VCS Design and Starting Simulation

In this example, the -debug_access+all option is used in the vcs
command line to specify UCLI as the default command-line
interface:

%> vcs -debug_access+all counter.v -l comp.log

Running Simulation on a VCS Design

To run the simulation, enter the following commands in the vcs
command prompt:

./simv -ucli -i input.ucli -l run.log

Simulation Output

ucli%
ucli% scope
top
ucli% show -type
z {VECTOR {} {{1 0}} wire}
clk {BASE {} reg}
reset {BASE {} reg}
c1 {INSTANCE count module}
ucli% show -value
z 'bxx
clk 'bx
reset 'bx
c1 {}
ucli% show -instances
c1
ucli% listing
File: counter.v
1:=>module top;
2: reg clk,reset;

A-5

ExamplesFeedbackFeedback

3: wire [1:0] z;
4:
5: count c1(clk,reset,z);
6:
7: initial
8: begin
9: clk = 1'b0;
10: reset = 1'b1;
11: #5 reset = 1'b0;

ucli% stop -line 11
1
ucli% stop
1: -line 11 -file counter.v
ucli% drivers clk
x - reg top.clk
 x top.clk counter.v 9
 x top.clk counter.v 15
ucli% drivers -full clk
x - reg top.clk
 x top.clk /remote/01home8/user1/Verilog/counter.v 9
 x top.clk /remote/01home8/user1/Verilog/counter.v 15
ucli% loads z
Warning: Cannot find any load for signal : 'z'
ucli% loads clk
x - reg top.clk
 x top.clk counter.v 15
 NA top.c1 counter.v 37
 NA top.c1 counter.v 33
ucli% scope c1
top.c1
ucli% show -parent
clk top.c1
reset top.c1
z top.c1
ucli% scope -up
top
ucli% run
Value of z is 00

Stop point #1 @ 5 s;
ucli% show -value reset

A-6

Examples FeedbackFeedback

reset 'b1
ucli% config
autocheckpoint: off
autodumphierarchy: off
automxforce: on
checkpointdepth: 10
ckptfsdbcheck: on
cmdecho: on
doverbose: off
endofsim: exit
expandvectors: off
followactivescope: auto
ignore_run_in_proc: off
onerror: {}
postcheckpoint: {}
precheckpoint: {synopsys::run synopsys::step
synopsys::next}
prompt: default
radix: symbolic
reset: on
resultlimit: 1024
resultlimitmsg: on
sourcedirs: {}
timebase: 1s
ucli% config radix binary
binary
ucli% show -value reset
reset 'b1
ucli% run 2
7 s
ucli% scope
top
ucli% show -value
z 'b00
clk 'b0
reset 'b0
c1 {}
ucli% force clk 1'b1
ucli% step
counter.v, 35 : if(reset)
ucli% step
counter.v, 37 : else if(clk)

A-7

ExamplesFeedbackFeedback

ucli% show -value clk
clk 'b1
ucli% release clk
ucli% next
counter.v, 38 : z = z + 1;
ucli% next
Value of z is 01
counter.v, 15 : #10 clk = ~clk;
ucli% next
counter.v, 33 : always @(clk or reset)
ucli% run
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01

A-8

Examples FeedbackFeedback

Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
Value of z is 00
Value of z is 01
Value of z is 00
Value of z is 01
Value of z is 10
Value of z is 11
$finish called from file "counter.v", line 24.
$finish at simulation time 1000
 V C S S i m u l a t i o n R e p o r t
Time: 1000
CPU Time: 0.510 seconds; Data structure size: 0.0Mb
Wed Aug 4 21:48:56 2010

A-9

ExamplesFeedbackFeedback

VHDL Example

Following is a VHDL example that shows the usage of UCLI
commands with VCS.

alltypes.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity tb is
end entity;

architecture archi of tb is
 type level is range 5 downto 0;
 type level_array is array(0 to 2) of level;
 type level_array2 is array(0 to 2) of level_array;
 type country is (HK,PRC,CA);
 type std_array1 is array(0 to 2) of std_logic_vector(3
downto 0);
 type stdu_array1 is array(0 to 2) of std_ulogic_vector(3
downto 0);
 type int_array is array(2 downto 0) of integer;

 type REC is record
 country : country;
 level : level;
 end record REC;
 type REC_array is array(0 to 2) of REC;

 type REC_RECORD is record
 info : REC;
 newguy : level_array;
 name : string(1 to 8);
 end record REC_RECORD;
 type REC_RECORD_ARRAY is array(0 to 2) of REC_RECORD;

 signal sig1_REC_array : REC_array :=
((HK,4),(PRC,4),(CA,2));

A-10

Examples FeedbackFeedback

 signal sig2_REC_array : REC_array;
 signal sig1_REC_record : REC_record
:=((HK,4),(1,2,3),"Hongkong");
 signal sig1_array1 : level_array := (2,3,2);
 signal sig1_array2 : level_array2 :=
((0,0,0),(1,1,1),(2,2,2));
 signal sig1_level : level := 3;
 signal sig1_real : real := 2.2;
 signal sig1_std : std_logic := 'Z';
 signal sig1_std_vec : std_logic_vector(3 downto 0)
:= "1100";
 signal sig2_std_vec : std_logic_vector(0 to 3) :=
"1100";
 signal sig1_ustd : std_ulogic_vector(3 downto 0) :=
"XZ--";
 signal sig1_std_array1 : std_array1 :=
("010Z","0011","1101");
 signal sig1_stdu_array1 : stdu_array1 := ("0-Z1","0-
ZZ",X"F");
 signal sig1_bool : boolean := FALSE;

 signal sig1_int : integer := 11;
 signal sig1_intarray : int_array := (33, 45, -77);
 signal aa, bb, ee : std_logic;
 signal zz : std_logic_vector(0 to 3);
 signal sig1_time : time := 102 ns;

 function add_level(signal REC1,REC2,REC3 :
 REC) return level is
 begin
 return REC1.level ;
 end function add_level;

 procedure change(signal sig1_REC_array : in REC_array;
 signal sig2_REC_array : out REC_array) is
 begin
 --sig2(0 to 1) <= sig1(2 downto 1);
 sig2_REC_array(0 to 1) <= sig1_REC_array(1 to 2);
 --sig2(1 to 2) <= sig1(1 downto 0);
 sig2_REC_array(1 to 2) <= sig1_REC_array(0 to 1);
 end procedure change;

A-11

ExamplesFeedbackFeedback

begin
 myprocess:process is
 --variable pos : integer := 2;
 variable char1 : character := '&';
 variable char2 : character := cr;
 variable char3 : character := c158;
 variable char4 : character := bel;
 constant pos :integer := 2;
 begin
 wait for 1 ns;
 change(sig1_REC_array,sig2_REC_array);
 sig1_level <=
add_level(sig1_REC_array(0),sig1_REC_array(1),sig1_REC_arr
ay(pos));
 wait for 1 ns;
 sig1_std_vec <= "0000";
 wait for 3 ns;
 sig1_std_vec <= "0001";
 wait for 3 ns;
 sig1_std_vec <= "0011";
 wait for 3 ns;
 sig1_std_vec <= "0101";
 end process myprocess;
end architecture;

input.ucli

senv
config
scope
dump -file dump.vpd
dump -depth 0
show -domain
show -type
show -value sig1_array1
listing
stop -line 68
stop
step
next
run
scope

A-12

Examples FeedbackFeedback

show -value sig1_array1
force sig1_array1 {(0, 0, 0)}
show -value sig1_array1
run 10
show -value sig1_array1
run 100
quit

Note:

You may add additional commands to the input.ucli file.

Compiling the VHDL Design and Starting Simulation

This example shows the commands for compiling VHDL design:

%> vhdlan all_types.vhd

Simulating the VHDL the Design

The step command moves the simulation forward by stepping one
line of code:

% simv -ucli -i input.ucli

Simulation Output

ucli% senv
activeDomain: VHDL
activeFile: all_types.vhd
activeFrame: 0
activeLine: 72
activeScope: /TB
activeThread:
file: all_types.vhd
frame: 0
fsdbFilename:

A-13

ExamplesFeedbackFeedback

hasTB: 2
inputFilename: input.ucli
keyFilename: ucli.key
line: 72
logFilename:
scope: /TB
state: stopped
thread:
time: 0
timeBase: NS
timePrecision: 1 NS
vcdFilename:
vpdFilename:
ucli% config
autocheckpoint: off
autodumphierarchy: off
automxforce: on
checkpointdepth: 10
ckptfsdbcheck: on
cmdecho: on
doverbose: off
endofsim: exit
expandvectors: off
followactivescope: auto
ignore_run_in_proc: off
onerror: {}
postcheckpoint: {}
precheckpoint: {synopsys::run synopsys::step
synopsys::next}
prompt: default
radix: symbolic
reset: on
resultlimit: 1024
resultlimitmsg: on
sourcedirs: {}
timebase: NS
ucli% scope
/TB
ucli% dump -file dump.vpd
VPD0
ucli% dump -depth 0
1

A-14

Examples FeedbackFeedback

ucli% show -domain
SIG1_REC_ARRAY VHDL
SIG2_REC_ARRAY VHDL
SIG1_REC_RECORD VHDL
SIG1_ARRAY1 VHDL
SIG1_ARRAY2 VHDL
SIG1_LEVEL VHDL
SIG1_REAL VHDL
SIG1_STD VHDL
SIG1_STD_VEC VHDL
SIG2_STD_VEC VHDL
SIG1_USTD VHDL
SIG1_STD_ARRAY1 VHDL
SIG1_STDU_ARRAY1 VHDL
SIG1_BOOL VHDL
SIG1_INT VHDL
SIG1_INTARRAY VHDL
AA VHDL
BB VHDL
EE VHDL
ZZ VHDL
SIG1_TIME VHDL
MYPROCESS VHDL
ADD_LEVEL VHDL
CHANGE VHDL
ucli% show -type
SIG1_REC_ARRAY {ARRAY REC_ARRAY {{0 2}} {RECORD REC {
{COUNTRY BASE COUNTRY {HK PRC CA }} {LEVEL BASE {} LEVEL}}}}
SIG2_REC_ARRAY {ARRAY REC_ARRAY {{0 2}} {RECORD REC {
{COUNTRY BASE COUNTRY {HK PRC CA }} {LEVEL BASE {} LEVEL}}}}
SIG1_REC_RECORD {RECORD REC_RECORD { {INFO RECORD REC {
{COUNTRY BASE COUNTRY {HK PRC CA }} {LEVEL BASE {} LEVEL}}}
{NEWGUY ARRAY LEVEL_ARRAY {{0 2}} {BASE {} LEVEL}} {NAME
ARRAY {} {{1 8}} STRING}}}
SIG1_ARRAY1 {ARRAY LEVEL_ARRAY {{0 2}} {BASE {} LEVEL}}
SIG1_ARRAY2 {ARRAY LEVEL_ARRAY2 {{0 2}} {ARRAY LEVEL_ARRAY
{{0 2}} {BASE {} LEVEL}}}
SIG1_LEVEL {BASE {} LEVEL}
SIG1_REAL {BASE {} REAL}
SIG1_STD {BASE {} STD_LOGIC}
SIG1_STD_VEC {VECTOR {} {{3 0}} STD_LOGIC_VECTOR}
SIG2_STD_VEC {VECTOR {} {{0 3}} STD_LOGIC_VECTOR}

A-15

ExamplesFeedbackFeedback

SIG1_USTD {VECTOR {} {{3 0}} STD_ULOGIC_VECTOR}
SIG1_STD_ARRAY1 {ARRAY STD_ARRAY1 {{0 2}} {VECTOR {} {{3 0}}
STD_LOGIC_VECTOR}}
SIG1_STDU_ARRAY1 {ARRAY STDU_ARRAY1 {{0 2}} {VECTOR {} {{3
0}} STD_ULOGIC_VECTOR}}
SIG1_BOOL {BASE {} BOOLEAN}
SIG1_INT {BASE {} INTEGER}
SIG1_INTARRAY {ARRAY INT_ARRAY {{2 0}} {BASE {} INTEGER}}
AA {BASE {} STD_LOGIC}
BB {BASE {} STD_LOGIC}
EE {BASE {} STD_LOGIC}
ZZ {VECTOR {} {{0 3}} STD_LOGIC_VECTOR}
SIG1_TIME {BASE {} TIME}
MYPROCESS {BASE {} {PROCESS STATEMENT}}
ADD_LEVEL {INSTANCE {} {FUNCTION}}
CHANGE {BASE {} {PROCEDURE}}
ucli% show -value sig1_array1
sig1_array1 {(2, 3, 2)}
ucli% listing
File: all_types.vhd
67: --sig2(1 to 2) <= sig1(1 downto 0);
68: sig2_REC_array(1 to 2) <= sig1_REC_array(0
to 1);
69: end procedure change;
70:
71: begin
72:=> myprocess:process is
73: --variable pos : integer := 2;
74: variable char1 : character := '&';
75: variable char2 : character := cr;
76: variable char3 : character := c158;
77: variable char4 : character := bel;

ucli% stop -line 68
1
ucli% stop
1: -line 68 -file all_types.vhd
ucli% step
all_types.vhd, 80 : wait for 1 ns;
ucli% next
all_types.vhd, 81 :
change(sig1_REC_array,sig2_REC_array);

A-16

Examples FeedbackFeedback

ucli% run

Stop point #1 @ 1 NS;
ucli% scope
/TB
ucli% show -value sig1_array1
sig1_array1 {(2, 3, 2)}
ucli% force sig1_array1 {(0, 0, 0)}
ucli% show -value sig1_array1
sig1_array1 {(0, 0, 0)}
ucli% run 10
11 NS
ucli% show -value sig1_array1
sig1_array1 {(0, 0, 0)}
ucli% run 100

Stop point #1 @ 12 NS;
ucli% quit

SystemVerilog Example

Following is an SV example to show the usage of UCLI commands:

interfaces.v

localparam int bitmax=31;
typedef logic [bitmax:0] data_type;

interface parallel(input bit clk);

 logic [3:0] data;
 logic valid;
 logic ready;

 modport rtl_receive(input data, valid, output ready),
 rtl_send (output data, valid, input ready);

 task write(input data_type d);
 @(posedge clk) ;

A-17

ExamplesFeedbackFeedback

 while (ready !== 1) @(posedge clk) ;
 data = d;
 $display("in write task, data is %0h", data);
 valid = 1;
 @(posedge clk) data = 'x;
 valid = 0;
 endtask

 task read(output data_type d);
 ready = 1;
 while (valid !== 1) @(negedge clk) ;
 ready = 0;
 d = data;
 @(negedge clk) ;
 endtask

endinterface

interface serial(input bit clk);

 logic data;
 logic valid; //
 logic ready; //

 modport rtl_receive(input data, valid, output ready),
 rtl_send (output data, valid, input ready);

 task write(input data_type d);
 @(posedge clk) ;
 while (ready !== 1) @(posedge clk) ;
 for (int i = 0; i <= bitmax; i++)
 begin

data = d[i];
 valid = 1;
 @(posedge clk) data = 'x;
 end
 valid = 0;
 endtask

 task read(output data_type d);
 ready = 1;
 while (valid !== 1) @(negedge clk) ;

A-18

Examples FeedbackFeedback

 ready = 0;
 for (int i = 0; i <= bitmax; i++)
 begin

d[i] = data;
 @(negedge clk) ;
 end
 endtask

endinterface
top_s.v

module top;

bit clk;
always #100 clk = !clk;

serial channel(clk);

test t (channel, channel);

endmodule

test_serial.v

module test(serial in, out);

data_type data_out, data_in;
int errors=0;

initial
 begin
 repeat(10)
 begin
 data_out = $random();

out.write(data_out);
 end
 $display("Found %d Errors", errors);
 $finish(0);
 end

always
 begin
 in.read(data_in);

A-19

ExamplesFeedbackFeedback

 $display("Received %h", data_in);
 end

endmodule

input.ucli

show
 show -type
 show -value
 scope
 show -domain .
 listing
 stop
 run
 show -value i
 step
 show -value i
 next
 run

Compiling the SystemVerilog Design and Starting
Simulation

Enter the following commands in the vcs command prompt to
compile the design:

% vcs interfaces.v top_s.v test_serial.v -sverilog
-debug_access+all -R

Simulating the SystemVerilog Design

% simv -ucli -i input.ucli

A-20

Examples FeedbackFeedback

Simulation Output

ucli% show
clk
channel
t
ucli% show -type
clk {BASE {} bit}
channel {INSTANCE serial interface}
t {INSTANCE test module}
ucli% show -value
clk 'b0
channel {(clk => 'b0,data => 'bx,valid => 'bx,ready => 'bx)}
t {}
ucli% scope
top
ucli% show -domain .
. Verilog
ucli% listing
File: top_s.v
1:
2:=>module top;
3:
4: bit clk;
5: always #100 clk = !clk;
6:
7: serial channel(clk);
8:
9: test t (channel, channel);
10:
11: endmodule

ucli% stop
No stop points are set
ucli% run
Received 12153524
Received c0895e81
Received 8484d609
Received b1f05663
Received 06b97b0d
Received 46df998d

A-21

ExamplesFeedbackFeedback

Received b2c28465
Received 89375212
Received 00f3e301
Found 0 Errors
 V C S S i m u l a t i o n R e p o r t
Time: 65900
CPU Time: 0.470 seconds; Data structure size: 0.0Mb
Thu Aug 5 01:18:55 2010

Native Testbench OpenVera (OV) Example

Following is an OV example that shows the usage of UCLI
commands in a Native Testbench design:

test.vr

extern bit [15:0] i;

task foo()
{
 case (i*2)
 {
 3'b110 : printf("hello\n");
 default : printf("hello\n");
 }
 repeat (i*2)
 {
 printf("hello\n");
 }

 if (i*3)
 {
 printf("Boo\n");
 fork
 {
 printf("hello\n");
 }
 join all

A-22

Examples FeedbackFeedback

 }
 else
 {
 printf("Moo\n");
 }

 fork
 {
 printf("hello\n");
 }
 join all
}

program IfElse1
{
 bit [15:0] i;

 i = 2'b11;

 foo();
}

input.ucli

show
 show -type
 show -value
 scope
 show -domain .
 listing
 stop -line 41
 stop
 run
 show -value i
 step
 show -value i
 next
 run

A-23

ExamplesFeedbackFeedback

Compiling the NTB OpenVera Testbench Design and
Starting Simulation

Enter the following commands in the vcs command prompt to
compile the design:

%> vcs -debug_access+all -ntb test.vr

Simulating the NTB OpenVera Testbench Design

Enter the following commands to simulate your Vera design:

% simv -ucli -i input.ucli

Simulation Output

ucli% show
i
foo
IfElse1
ucli% show -type
i {VECTOR {} {{15 0}} reg}
foo {INSTANCE foo task}
IfElse1 {INSTANCE IfElse1 task}
ucli% show -value
i 'bxxxxxxxxxxxxxxxx
foo {}
IfElse1 {}
ucli% scope
IfElse1
ucli% show -domain .
. Verilog
ucli% listing
File: test.vr
32: printf("hello\n");
33: }
34: join all

A-24

Examples FeedbackFeedback

35: }
36:
37:=>program IfElse1
38: {
39: bit [15:0] i;
40:
41: i = 2'b11;
42:

ucli% stack
ucli% thread
ucli% stop -line 41
1
ucli% stop
1: -line 41 -file test.vr
ucli% run

Stop point #1 @ 0 s;
ucli% show -value i
i 'bxxxxxxxxxxxxxxxx
ucli% step
test.vr, 43 : foo();
ucli% show -value i
i 'b0000000000000011
ucli% next
hello
hello
hello
hello
hello
hello
hello
Boo
test.vr, 21 : printf("hello\n");
ucli% run
hello
hello
$finish at simulation time 0
 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.490 seconds; Data structure size: 0.0Mb
Thu Aug 5 00:17:37 2010

A-25

ExamplesFeedbackFeedback

A-26

Examples FeedbackFeedback

B-1

SCL and UCLI Equivalent CommandsFeedbackFeedback

B
SCL and UCLI Equivalent Commands B

This appendix lists equivalent SCL UCLI commands. It is intended
for users migrating to UCLI from the VCS Command Language
Interface and the Scirocco Command Language.

This appendix includes the following sections:

• SCL and UCLI Equivalent Commands

B-2

SCL and UCLI Equivalent Commands FeedbackFeedback

SCL and UCLI Equivalent Commands

The following table lists SCL commands with their UCLI equivalents.
Note that not all UCLI commands are listed. Only those UCLI
commands that are equivalent to SCL command functionality are
listed.

Table 0-1.

SCL Command Equivalent UCLI Command

Simulator Invocation Commands

exe_name start exe_name [options]
restart
Session Management Commands
checkpoint file_name save file_name
restore file_name restore file_name
Simulation Advancing Commands
run [relative time] run [-relative | -absolute time]

[-posedge | -negedge | -change]
path_name

Navigation Commands

ls path_name, cd path_name scope [-up [level] | active] path_name
Signal/Variable/Expression Commands

ls -v path_name get path_name [-radix radix]
assign [value] signal/variable_name change [path_name value]
force value [options] path_name force path_name value

[time { , value time }*
[-repeat delay]]
[-cancel time][-deposit]
[-freeze]

release path_name release path_name
call procedure_name call [$cmd(...)]
Simulation Environment Array Commands

env | environment senv <element>

B-3

SCL and UCLI Equivalent CommandsFeedbackFeedback

Breakpoint Commands

monitor -s|-c [options] stop [-file file_name] [-line num] [-
instance path_name]
[-thread thread_id]
[-conditon expression]

Signal Value and Memory Dump Specification Commands

dump -o file_name -vcd|-vpd|-evcd -
all|deep [depth depth] region/object/
file_name

dump [-file file_name] [-type VPD]
-add [list_of_path_names
-fid fid -depth levels |
object -aggregates -close]
[-file file_name] [-autoflush on] [-
file file_name][-interval <seconds>] [-
fid fid]

dump_memory [-ascii_h | -ascii_o | -
ascii_b] [-start start_address]
[-end end_address]
memoryName [dataFileName]

memory [-read|-write nid]
[-file file_name] [-radix radix] [-
start start_address]
[-end end_address]

Design Query Commands

ls -v path_name show <-options> path_name
drivers [-d | -e] signal_name_list drivers path_name [-full]
Helper Routine Commands

help or [command_name] -help help -full command
alias alias_name scl_command alias alias UCLI_command

Table 0-1.

SCL Command Equivalent UCLI Command

B-4

SCL and UCLI Equivalent Commands FeedbackFeedback

IN-1

Feedback

Index

A
active point in design 1-17
alias file 1-11
alias file, default 1-12
aliases, customizing 1-13
automatic step-through

Systemc 4-37

B
bit_select 2-6
Breakpoint Commands B-3

C
case sensitivity, names 2-9
CBug 4-34, 4-51
command alias file 1-11
commands, list of 1-8
current point in design 1-17
customizing aliases 1-13

D
debug_all, option 1-3
debug_pp, option 1-3

default alias file 1-12
-delta 1-5
Design Query Commands B-3
do 3-149
dump 3-91

E
escape name 2-10
extended identifier 2-10

F
field, names 2-7
finish 3-28

G
Generate Statements 2-7
get 3-37

H
help 3-174
Helper Routine Commands B-3
Hierarchical Pathnames 2-4

IN-2

Feedback

I
identifiers, extended or escaped 2-10
index 2-6
interface guidelines 2-1

K
key files 1-15

L
levels in a pathname 2-5
log files 1-15

N
name case sensitivity 2-9
naming fields 2-7
Native TestBench Example A-21
Navigation Commands 3-29, B-2
-nba 1-5
next 3-20
Numbering Convention 2-1

P
part_select/slice 2-7
–pathmap 4-50
pathnames 2-8
POSIX 4-51

R
Relative pathnames 2-6
restart 3-5
restore 3-14
run 3-23

S
save 3-13
sc_buffer 4-40
SC_THREADS 4-51
SCL command equivalents B-2
scope 3-29
search 3-128
senv 3-70
Session Management 3-13
Session Management Commands B-2
show 3-133
Signal Value and Memory Dump Specification

Commands B-3
Signal Value Dump Specification 3-90
Signal/Variable/Expression Commands B-2
Simulation Time Values 2-12
sn 3-188
Specman Interface Command 3-188
stack 3-34
Standard Template Library 4-38
start 3-3
step-out feature

using 4-37
STL 4-38
stop 3-73
Stop Points 3-73
SYSC_USE_PTHREADS 4-51
SystemC

automatic step-throug 4-37
SystemVerilog Example A-16

T
TCL Variables 2-11
thread 3-31
time values in simulation 2-12
Tool Advancing 3-17
Tool Environment Array Commands B-2

IN-3

Feedback

Tool Invocation Commands B-2
-type 8-1

U
UCLI 1-4, 4-51

command line 1-18
save and restore 4-47

UCLI commands, list 3-67
UCLI with VCS example A-2
UCLI with VHDL example A-9
-ucli=init 1-4

UNABLE-SET-POINT 8-2

V
-value 8-1
Variable/Expression Manipulation 3-36
VCS 1-2
Verilog escape name 2-10
VHDL extended identifier 2-10

W
wildcards 2-11

IN-4

Feedback

	Contents
	Unified Command-line Interface (UCLI)
	Running UCLI
	UCLI with VCS
	How to Enable UCLI Debugging
	Compile-time Options
	Runtime Options

	Debugging During Initialization of SystemVerilog Static Functions and Tasks

	UCLI Commands
	Using a UCLI Command Alias File
	Default Alias File

	Customizing Command Aliases and Settings
	Creating Custom Command Aliases
	Operating System Commands
	Configuring End-of-Simulation Behavior

	Using Key and Log Files
	Log Files
	Key Files

	Current Scope and Active Scope
	Capturing Output of Commands and Scripts
	Command-line Editing in UCLI
	Keeping the UCLI Prompt Active After a Runtime Error

	UCLI Interface Guidelines
	Numbering Conventions
	VHDL Numbering Conventions
	Verilog Numbering Conventions

	Hierarchical Path Names
	Multiple Levels in a Path Name
	Absolute Path Names
	Relative Path Names

	bit_select/index
	part_select/slice
	Naming Fields in Records or Structures
	Generate Statements
	More Examples on Path Names
	Name Case Sensitivity
	Extended/Escaped Identifiers
	Verilog escape name VHDL Extended Identifier

	Wildcard Characters
	Tcl Variables
	Simulation Time Values

	Commands
	Simulation Invocation Commands
	start
	restart
	“start”

	start_verdi
	loaddl
	cbug
	ucli2Proc

	Session Management Commands
	save
	restore
	Restrictions for Save and Restore Commands

	Simulation Advancing Commands
	step
	next
	run
	finish

	Navigation Commands
	scope
	thread
	stack

	Signal/Variable/Expression Commands
	get
	force
	xprop
	report_violations
	power
	saif
	lp_show
	release
	sexpr
	call
	search
	virtual bus (vbus)
	Viewing Values in Symbolic Format

	Simulation Environment Array Commands
	senv

	Breakpoint Commands
	stop

	Timing Check Control Command
	tcheck
	report_timing

	Signal Value and Memory Dump Specification Commands
	dump
	Limitations
	Examples
	Filtering Data in the VPD Dump File
	Dumping Analog Signals in FSDB File in VCS- CustomSim Cosimulation Flow

	initreg
	memory
	Support for VHDL Object to Read and Write Verilog Memory File Format

	Design Query Commands
	search
	find_forces
	find_identifier
	show
	constraints
	drivers
	loads

	Macro Control Routines
	do
	onbreak
	onerror
	onfail
	resume
	pause
	abort
	status

	Coverage Command
	coverage

	Assertion Command
	assertion
	Precedence Levels for Controlling Assertions

	Helper Routine Commands
	help
	alias
	unalias
	listing
	config

	Multi-level Mixed-signal Simulation
	ace

	Specman Interface Command
	sn

	Expression Evaluation for stop/sexpr Commands
	Extended the Expression Grammar
	Verilog Array and Bit Select Indexing Syntax Support

	Using the C, C++, and SystemC Debugger
	Getting Started
	Using a Specific gdb Version
	Starting UCLI With the C-Source Debugger
	Detaching the C-Source Debugger

	C Debugger Supported Commands
	SystemC Datatypes
	Changing Values of SystemC and Local C Objects With synopsys::change
	Changing SystemC Objects
	Changing Local C Variables

	Using Line Breakpoints
	Set a Breakpoint

	Deleting a Line Breakpoint
	Stepping Through C Source Code
	Stepping within C Sources
	Cross-stepping Between HDL and C code
	Cross-stepping in and out of Verilog PLI Functions
	Cross-Stepping In and Out of VhPI Functions
	Cross-Stepping from C into HDL:
	Cross-Stepping In and Out of SystemC Processes

	Direct gdb Commands
	Add Directories to Search for Source Files

	Common Design Hierarchy
	Post-Processing Debug Flow

	Interaction With the Simulator
	Prompt Indicates Current Domain
	Commands Affecting the C Domain
	Combined Error Message
	Update of Time, Scope, and Traces

	Configuring CBug
	Startup Mode
	Attach Mode
	cbug::config add_sc_source_info auto|always|explicit
	STL Types Variables for Improved CBug Flow
	Use Model
	Usage Example
	Limitations

	Using a Different gdb Version

	Supported Platforms
	CBug Stepping Features
	Using Step-Out Feature
	Automatic Step-Through for SystemC
	Enabling and Disabling Step-Through Feature
	Recovering from Error Conditions

	Specifying Value-Change Breakpoint on SystemC Signals
	Capabilities for All Data Types
	Capabilities for Single-Bit Objects
	Capabilities for Bit-Slices
	Points to Note
	Limitations

	Driver/Load Support for SystemC Designs in Post- Processing Mode
	Dumping Source Names of Ports and Signals in VPD
	Dumping Plain Members of SystemC in VPD
	Supported and Unsupported UCLI and CBug Features
	UCLI Save Restore Support for SystemC-on-top and Pure-SystemC Designs
	SystemC with UCLI Save and Restore Use Model
	SystemC with UCLI Save and Restore Coding Guidelines
	Saving and Restoring Files During Save and Restore
	Restoring the Saved Files from the Previous Saved Session
	Limitations of UCLI Save Restore Support

	Interactive Rewind
	Interactive Rewind Vs Save and Restore
	Use Model
	Additional Configuration Options
	Creating Checkpoints on Breakpoint Hits

	Support for Reverse Debug in UCLI
	Enabling Reverse Debug
	Keep Future
	Virtual Checkpoints
	Using Reverse Simulation Control Commands
	Limitations

	Debugging Transactions
	Introduction
	Transaction Debug in UCLI

	Debugging Virtual Interface Arrays and Queues in UCLI
	Example
	Limitations

	Debugging Mixed-Signal Designs
	Support for Top Spice Module
	Using UCLI show Commands for SPICE
	Using show -domain Command
	Using show -type Command
	Using show -value Command

	Support for the UCLI force or release Command on SPICE Ports
	Limitations
	Usage Example

	Examples
	Verilog Example
	Compiling the VCS Design and Starting Simulation
	Running Simulation on a VCS Design

	VHDL Example
	Compiling the VHDL Design and Starting Simulation
	Simulating the VHDL the Design

	SystemVerilog Example
	Compiling the SystemVerilog Design and Starting Simulation
	Simulating the SystemVerilog Design

	Native Testbench OpenVera (OV) Example
	Compiling the NTB OpenVera Testbench Design and Starting Simulation
	Simulating the NTB OpenVera Testbench Design

	SCL and UCLI Equivalent Commands
	SCL and UCLI Equivalent Commands

	Index

