{ "cells": [ { "cell_type": "markdown", "id": "worldwide-contact", "metadata": {}, "source": [ "\n", "\n", "#
From Maps to Models - Tutorials for structural geological modeling using GemPy and GemGIS
\n", "\n", "# Model 1 - Horizontal Layers\n", "\n", "\n", "This first notebook illustrates how to create a simple sample model of horizontal layers in `GemPy`. The model consists of four parallel layers plus basement layers and has an extent of 1000 m by 1000 m with a vertical extent of 600 m. No folded, faulted or truncated layers are present in this model.\n", "\n", "If you have not gone through the introduction notebook for the course, please check it out: [Introduction Notebook](../00_introduction_to_structural_modeling.ipynb) ([notebook on Github](https://nbviewer.org/github/cgre-aachen/gemgis_data/blob/main/notebooks/00_introduction_to_structural_modeling.ipynb))\n", "\n", "\n", "
\n", "In this tutorial, you will learn the following:
\n", "- How to import input data into GemPy via CSV-Files (comma-separated-values) and what the files have to look like
\n", "- How to build a simple model consisting of horizontal layers belonging to one Series
\n", "- How to visualize the resulting model with cross sections in 2D and the entire model in 3D\n", "\n", "
\n", "\n", "## Contents\n", "\n", "1. [Installing GemPy](#installing-gempy)\n", "2. [Importing Libraries](#importing-libraries)\n", "3. [Data Preparation](#data-preparation)\n", " 1. [Importing Interface Points](#importing-interface-points)\n", " 2. [Importing Orientations](#importing-orientations)\n", "4. [GemPy Model Calculation](#gempy-model-calculation)\n", " 1. [Creating the GemPy Model](#creating-the-gempy-model)\n", " 2. [Inspecting the Surfaces](#inspecting-the-surfaces)\n", " 3. [Inspecting the Input Data](#inspecting-the-input-data)\n", " 4. [Map Stack to Surfaces](#map-stack-to-surfaces)\n", " 5. [Plotting Input Data in 2D](#plotting-the-input-data-in-2d)\n", " 6. [Plotting Input Data in 3D](#plotting-the-input-data-in-3d)\n", " 7. [Setting the Interpolator](#setting-the-interpolator)\n", " 8. [Computing the Model](#computing-the-model)\n", "5. [Model Visualization and Post-Processing](#model-visualization-and-post-processing)\n", " 1. [Visualizing Cross Sections of the Computed Model](#visualizing-cross-sections-of-the-computed-model)\n", " 2. [Visualizing the computed model in 3D](#visualizing-the-computed-model-in-3d)\n", "6. [Conclusions](#conclusions)\n", "7. [Outlook](#outlook)\n", "8. [Licensing](#licensing)\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "id": "a4e7c892", "metadata": {}, "source": [ "The input data is provided as already prepared CSV-files (comma-separated-values) and will be loaded as Pandas `DataFrames` (see Figure below, [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html)). The first file contains the interface points, the boundaries between the four stratigraphic units. It should consist of four columns with the headers `X`, `Y`, `Z` for the location of the interface points in meter and `formation` for name of the layer the interface belongs to (see Figure below). The second file contains the orientation of the layers with the same columns as before plus three more columns, `dip`, `azimuth`, and `polarity` indicating the dip the layer and the dip direction (azimuth, see Figure below) in degrees. The dip varies from 0° for horizontal layers to 90° for vertical layers. The azimuth varies from 0° (N) via 180° (S) to 360° (N). Here, we only provide the orientations for one layer. This will be explained later on in more detail. The `polarity` value is mostly set to 1.\n", "\n", "
\n", "Important: Interface points always represent the base of the respective layer. However, orientations of layers must not be located at the location of the layer boundaries but may also be located within the layer itself as the orientations will \"only\" constrain the gradient of the scalar field interpolated by GemPy. \n", " \n", "
\n", "\n", "\n", "\n", "\n", "By CrunchyRocks, after Karla Panchuck - https://openpress.usask.ca/physicalgeology/chapter/13-5-measuring-geological-structures/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=113554289" ] }, { "cell_type": "markdown", "id": "solid-hormone", "metadata": {}, "source": [ "\n", "\n", "# Installing GemPy\n", "\n", "If you have not installed `GemPy` yet, please follow the [installation instructions](https://docs.gempy.org/installation.html). If you encounter any issues, feel free to open a new discussion at [GemPy Discussions](https://github.com/cgre-aachen/gempy/discussions). If you encounter an error in the installation process, feel free to also open an issue at [GemPy Issues](https://github.com/cgre-aachen/gempy/issues). There, the `GemPy` development team will help you out. " ] }, { "cell_type": "markdown", "id": "artificial-customs", "metadata": {}, "source": [ "\n", "\n", "# Importing Libraries\n", "\n", "For this notebook, we need the `pandas` library for the data preparation, `matplotlib` for plotting and of course the `gempy` library. The `gempy_viewer` library is used to plot the modeling results. Any warnings that may appear can be ignored for now. " ] }, { "cell_type": "code", "execution_count": 1, "id": "2f498618", "metadata": { "ExecuteTime": { "end_time": "2023-02-23T07:41:01.590117Z", "start_time": "2023-02-23T07:40:57.359047Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Setting Backend To: AvailableBackends.numpy\n" ] } ], "source": [ "import pandas as pd\n", "import gempy as gp\n", "import gempy_viewer as gpv\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "jewish-complex", "metadata": {}, "source": [ "\n", "# Data Preparation\n", "\n", "For this model, the only thing that needs to be done is loading the already created interface points and orientations. In the next tutorials, you will create the data yourself and process it further to make it usable for GemPy. \n", "\n", "\n", "## Importing Interface Points\n", "\n", "We are using the `pandas` library ([Pandas](https://pandas.pydata.org/docs/)) to load the interface points that were prepared beforehand and stored as CSV-file (comma-separated-file). The only information that is needed are the location of the interface point (`X`, `Y`, `Z`) and the `formation` it belongs to. You may have to adjust the `delimiter` (`'\\t'`, `','`, `';'`, `' '`) when loading the file." ] }, { "cell_type": "code", "execution_count": 2, "id": "9c8c178c", "metadata": { "ExecuteTime": { "end_time": "2023-02-23T07:41:01.601668Z", "start_time": "2023-02-23T07:41:01.601668Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XYZformation
0200250-150Layer1
1200500-150Layer1
2200750-150Layer1
3200250-250Layer2
4200500-250Layer2
\n", "
" ], "text/plain": [ " X Y Z formation\n", "0 200 250 -150 Layer1\n", "1 200 500 -150 Layer1\n", "2 200 750 -150 Layer1\n", "3 200 250 -250 Layer2\n", "4 200 500 -250 Layer2" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "interfaces = pd.read_csv('../../data/model1/model1_interfaces.csv', \n", " delimiter = '\\t')\n", "interfaces.head()" ] }, { "cell_type": "markdown", "id": "occupied-simulation", "metadata": {}, "source": [ "\n", "\n", "## Importing Orientations\n", "\n", "The orientations will also be loaded using `pandas`. In addition to the location and the formation the orientation belongs to, the dip value, azimuth value (dip direction) and a polarity value (mostly set to 1 by default) needs to be provided. As the model will feature horizontal layers, the dip is equal to 0. These three provided orientations belonging to `Layer1` are all the orientations that are needed to compute the model. There are no other orientations needed as the potential field approach implemented in `GemPy` allows to combine subparallel layers in on so-called `Series` where only at least one orientation is needed for the entire series." ] }, { "cell_type": "code", "execution_count": 3, "id": "bd8aa29b", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:09.081242Z", "start_time": "2022-03-27T11:06:09.055240Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XYZformationdipazimuthpolarity
0200500-150Layer1001
1800500-150Layer1001
2500500-150Layer1001
\n", "
" ], "text/plain": [ " X Y Z formation dip azimuth polarity\n", "0 200 500 -150 Layer1 0 0 1\n", "1 800 500 -150 Layer1 0 0 1\n", "2 500 500 -150 Layer1 0 0 1" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "orientations = pd.read_csv('../../data/model1/model1_orientations.csv', \n", " delimiter='\\t')\n", "orientations.head()" ] }, { "cell_type": "markdown", "id": "veterinary-acceptance", "metadata": {}, "source": [ "\n", "\n", "# GemPy Model Calculation\n", "\n", "The following part introduces the main steps of creating a model in `GemPy`. \n", "\n", "The creation of a `GemPy` Model follows particular steps which will be performed in the following:\n", "\n", "1. Create new model and data initiation: `gp.create_geomodel()`\n", "2. Map Stack to Surfaces: `gp.map_stack_to_surfaces()`\n", "3. [...]\n", "4. Computing the Model: `gp.compute_model()`\n", "\n", "\n", "\n", "## Creating the GemPy Model and Data Initiation\n", "\n", "The first step is to create a new empty `GemPy` model by providing a name for it. \n", "\n", "In addition, the `extent` of the model (`xmin`, `xmax`, `ymin`, `ymax`, `zmin`, `zmax`) and the `resolution` in `X`, `Y`and `Z` direction (`res_x`, `res_y`, `res_z`, equal to the number of cells in each direction) will be set using lists of values. If you want to provide cells with a certain size, you would have to calculate the following. It is important to convert the resulting number of cells into an `int` as only integer values for the number of cells are valid. \n", "\n", "```python\n", "res_x = int((xmax-xmin)/cell_size_x)\n", "res_y = int((ymax-ymin)/cell_size_y)\n", "res_z = int((zmax-zmin)/cell_size_z)\n", "```\n", "\n", "The interface points (`surface_points_df`) and orientations (`orientations_df`) will be passed as strings with the location of the CSV files. Please mind that you may have to edit the `pandas_reader_kwargs` by adding the `'sep'` key and the delimiter `'\\t'` as item of a dictionary." ] }, { "cell_type": "code", "execution_count": 4, "id": "eb3ec438", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:11.168832Z", "start_time": "2022-03-27T11:06:09.084241Z" } }, "outputs": [], "source": [ "geo_model: gp.data.GeoModel = gp.create_geomodel(\n", " project_name='Model1_Horizontal_Layers',\n", " extent=[0, 1000, 0, 1000, -600, 0], \n", " resolution=[100, 100, 100], # * Here we define the number of octree levels. If octree levels are defined, the resolution is ignored.\n", " importer_helper=gp.data.ImporterHelper(\n", " path_to_orientations='../../data/model1/model1_orientations.csv',\n", " path_to_surface_points='../../data/model1/model1_interfaces.csv',\n", " pandas_reader_kwargs = {'sep': '\\t'}\n", " )\n", ")" ] }, { "cell_type": "markdown", "id": "e7b16e48", "metadata": {}, "source": [ "It is possible to check out the different attributes of the `GemPy` model object using `vars()`. It is mostly empty for now but will be filled in the following steps. The most important attributes/objects of the `GemPy` model are:\n", "\n", "1. `meta`\n", "2. `structural_frame`\n", "3. `grid`\n", "4. `geophysics_input`\n", "5. `input_transform`\n", "6. `interpolation_grid`\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "c85daba5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'meta': GeoModelMeta(name='Model1_Horizontal_Layers', creation_date='2025-09-09T12:40:32.133342', last_modification_date=None, owner=None),\n", " 'structural_frame': StructuralFrame(\n", " \tstructural_groups=[\n", " StructuralGroup(\n", " \tname=default_formation,\n", " \tstructural_relation=StackRelationType.ERODE,\n", " \telements=[\n", " Element(\n", " \tname=Layer1,\n", " \tcolor=\u001b[38;2;1;84;130m#015482\u001b[0m,\n", " \tis_active=True\n", " ),\n", " Element(\n", " \tname=Layer2,\n", " \tcolor=\u001b[38;2;159;0;82m#9f0052\u001b[0m,\n", " \tis_active=True\n", " ),\n", " Element(\n", " \tname=Layer3,\n", " \tcolor=\u001b[38;2;255;190;0m#ffbe00\u001b[0m,\n", " \tis_active=True\n", " ),\n", " Element(\n", " \tname=Layer4,\n", " \tcolor=\u001b[38;2;114;143;2m#728f02\u001b[0m,\n", " \tis_active=True\n", " )\n", " ]\n", " )\n", " ],\n", " \tfault_relations=\n", " [[False]],,\n", " 'grid': Grid(values=array([[ 5., 5., -597.],\n", " [ 5., 5., -591.],\n", " [ 5., 5., -585.],\n", " ...,\n", " [ 995., 995., -15.],\n", " [ 995., 995., -9.],\n", " [ 995., 995., -3.]], shape=(1000000, 3)), length=array([], dtype=float64), _octree_grid=None, _dense_grid=RegularGrid(resolution=array([100, 100, 100]), extent=array([ 0., 1000., 0., 1000., -600., 0.]), values=array([[ 5., 5., -597.],\n", " [ 5., 5., -591.],\n", " [ 5., 5., -585.],\n", " ...,\n", " [ 995., 995., -15.],\n", " [ 995., 995., -9.],\n", " [ 995., 995., -3.]], shape=(1000000, 3)), mask_topo=array([], shape=(0, 3), dtype=bool), _transform=None), _custom_grid=None, _topography=None, _sections=None, _centered_grid=None, _transform=None, _octree_levels=-1),\n", " 'geophysics_input': None,\n", " 'input_transform': {'_cached_pivot': None,\n", " '_is_default_transform': False,\n", " 'position': array([-500., -500., 300.]),\n", " 'rotation': array([0., 0., 0.]),\n", " 'scale': array([0.00083333, 0.00083333, 0.00083333])},\n", " 'interpolation_grid': None}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vars(geo_model)" ] }, { "cell_type": "markdown", "id": "51d0e2dd", "metadata": {}, "source": [ "The attributes can easily be accessed via the `geo_model`." ] }, { "cell_type": "code", "execution_count": 6, "id": "8284ddcb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GeoModelMeta(name='Model1_Horizontal_Layers', creation_date='2025-09-09T12:40:32.133342', last_modification_date=None, owner=None)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.meta" ] }, { "cell_type": "code", "execution_count": 7, "id": "5c6a0b1c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", "
Structural Groups:\n", " \n", " \n", " \n", " \n", " \n", "
StructuralGroup:
Name:default_formation
Structural Relation:StackRelationType.ERODE
Elements:\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer1
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer2
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer3
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer4
\n", "
\n", "
Fault Relations:
default_fo...
default_formation
\n", " \n", " \n", " \n", " \n", " \n", "
True
False
\n", "
\n", " " ], "text/plain": [ "StructuralFrame(\n", "\tstructural_groups=[\n", "StructuralGroup(\n", "\tname=default_formation,\n", "\tstructural_relation=StackRelationType.ERODE,\n", "\telements=[\n", "Element(\n", "\tname=Layer1,\n", "\tcolor=\u001b[38;2;1;84;130m#015482\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer2,\n", "\tcolor=\u001b[38;2;159;0;82m#9f0052\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer3,\n", "\tcolor=\u001b[38;2;255;190;0m#ffbe00\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer4,\n", "\tcolor=\u001b[38;2;114;143;2m#728f02\u001b[0m,\n", "\tis_active=True\n", ")\n", "]\n", ")\n", "],\n", "\tfault_relations=\n", "[[False]]," ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.structural_frame" ] }, { "cell_type": "code", "execution_count": 8, "id": "1253e5f4", "metadata": {}, "outputs": [], "source": [ "geo_model.geophysics_input" ] }, { "cell_type": "code", "execution_count": 9, "id": "3bc1e8f0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_cached_pivot': None,\n", " '_is_default_transform': False,\n", " 'position': array([-500., -500., 300.]),\n", " 'rotation': array([0., 0., 0.]),\n", " 'scale': array([0.00083333, 0.00083333, 0.00083333])}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.input_transform" ] }, { "cell_type": "code", "execution_count": 10, "id": "d93cd05e", "metadata": {}, "outputs": [], "source": [ "geo_model.interpolation_grid" ] }, { "cell_type": "markdown", "id": "armed-story", "metadata": {}, "source": [ "\n", "\n", "## Inspecting the Surfaces\n", "\n", "The model consists of four different layers or surfaces now which all belong to the `Default series`. During the next step, the proper `Series` will be assigned to the surface. Using the `structural_frame`-attribute again, we can check which layers were loaded." ] }, { "cell_type": "code", "execution_count": 11, "id": "9e8519ea", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:11.756189Z", "start_time": "2022-03-27T11:06:11.542858Z" } }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", "
Structural Groups:\n", " \n", " \n", " \n", " \n", " \n", "
StructuralGroup:
Name:default_formation
Structural Relation:StackRelationType.ERODE
Elements:\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer1
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer2
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer3
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer4
\n", "
\n", "
Fault Relations:
default_fo...
default_formation
\n", " \n", " \n", " \n", " \n", " \n", "
True
False
\n", "
\n", " " ], "text/plain": [ "StructuralFrame(\n", "\tstructural_groups=[\n", "StructuralGroup(\n", "\tname=default_formation,\n", "\tstructural_relation=StackRelationType.ERODE,\n", "\telements=[\n", "Element(\n", "\tname=Layer1,\n", "\tcolor=\u001b[38;2;1;84;130m#015482\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer2,\n", "\tcolor=\u001b[38;2;159;0;82m#9f0052\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer3,\n", "\tcolor=\u001b[38;2;255;190;0m#ffbe00\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer4,\n", "\tcolor=\u001b[38;2;114;143;2m#728f02\u001b[0m,\n", "\tis_active=True\n", ")\n", "]\n", ")\n", "],\n", "\tfault_relations=\n", "[[False]]," ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.structural_frame" ] }, { "cell_type": "markdown", "id": "a2dbc68b", "metadata": {}, "source": [ "\n", "\n", "## Inspecting the Input Data\n", "\n", "The loaded interface points and orientations can again be inspected using the `surface_points`- and `orientations`-attributes. Using the `df`-attribute of this object will convert the displayed table in a `pandas` `DataFrame`." ] }, { "cell_type": "code", "execution_count": 12, "id": "2fd4f8d8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XYZidnugget
0200.0250.0-150.068087100.00002
1200.0500.0-150.068087100.00002
2200.0750.0-150.068087100.00002
3800.0250.0-150.068087100.00002
4800.0500.0-150.068087100.00002
\n", "
" ], "text/plain": [ " X Y Z id nugget\n", "0 200.0 250.0 -150.0 6808710 0.00002\n", "1 200.0 500.0 -150.0 6808710 0.00002\n", "2 200.0 750.0 -150.0 6808710 0.00002\n", "3 800.0 250.0 -150.0 6808710 0.00002\n", "4 800.0 500.0 -150.0 6808710 0.00002" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.surface_points_copy.df.head()" ] }, { "cell_type": "code", "execution_count": 13, "id": "8caf7f95", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XYZG_xG_yG_zidnugget
0200.0500.0-150.00.00.01.068087100.01
1800.0500.0-150.00.00.01.068087100.01
2500.0500.0-150.00.00.01.068087100.01
\n", "
" ], "text/plain": [ " X Y Z G_x G_y G_z id nugget\n", "0 200.0 500.0 -150.0 0.0 0.0 1.0 6808710 0.01\n", "1 800.0 500.0 -150.0 0.0 0.0 1.0 6808710 0.01\n", "2 500.0 500.0 -150.0 0.0 0.0 1.0 6808710 0.01" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.orientations_copy.df.head()" ] }, { "cell_type": "markdown", "id": "occupational-coaching", "metadata": {}, "source": [ "\n", "\n", "## Map Stack to Surfaces\n", "\n", "We want our geological units to appear in the correct order relative to age. Such order might for example be given by a depositional sequence of stratigraphy, unconformities due to erosion or other lithological genesis events such as igneous intrusions. Defining the correct order of series is vital to the construction of the model!\n", "\n", "During this step, all four layers of the model are assigned to the `Strata1` series. Per definition, only orientations for one layer are necessary to compute the model. However, it is of course possible to provide orientation measurements for the other layers as well. If the layers were not parallel as shown in the next models, multiple series would be defined. The order within one series also defines the age relations within this series and has to be according to the depositional events of the layers." ] }, { "cell_type": "code", "execution_count": 14, "id": "ca6dfa3e", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:11.992240Z", "start_time": "2022-03-27T11:06:11.760192Z" } }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", "
Structural Groups:\n", " \n", " \n", " \n", " \n", " \n", "
StructuralGroup:
Name:Strata1
Structural Relation:StackRelationType.ERODE
Elements:\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer1
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer2
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer3
\n", "
\n", " \n", " \n", " \n", "
StructuralElement:
Name:Layer4
\n", "
\n", "
Fault Relations:
Strata1
Strata1
\n", " \n", " \n", " \n", " \n", " \n", "
True
False
\n", "
\n", " " ], "text/plain": [ "StructuralFrame(\n", "\tstructural_groups=[\n", "StructuralGroup(\n", "\tname=Strata1,\n", "\tstructural_relation=StackRelationType.ERODE,\n", "\telements=[\n", "Element(\n", "\tname=Layer1,\n", "\tcolor=\u001b[38;2;1;84;130m#015482\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer2,\n", "\tcolor=\u001b[38;2;159;0;82m#9f0052\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer3,\n", "\tcolor=\u001b[38;2;255;190;0m#ffbe00\u001b[0m,\n", "\tis_active=True\n", "),\n", "Element(\n", "\tname=Layer4,\n", "\tcolor=\u001b[38;2;114;143;2m#728f02\u001b[0m,\n", "\tis_active=True\n", ")\n", "]\n", ")\n", "],\n", "\tfault_relations=\n", "[[False]]," ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gp.map_stack_to_surfaces(gempy_model=geo_model,\n", " mapping_object=\n", " {\n", " 'Strata1': ('Layer1', 'Layer2', 'Layer3', 'Layer4'), \n", " },\n", " remove_unused_series=True)\n", "geo_model.structural_frame" ] }, { "cell_type": "markdown", "id": "directed-immigration", "metadata": {}, "source": [ "\n", "\n", "## Plotting the input data in 2D using Matplotlib\n", "\n", "The input data can now be visualized in 2D using `matplotlib`. This might for example be useful to check if all points and measurements are defined the way we want them to. Using the function `plot_2d()`, we attain a 2D projection of our data points onto a plane of chosen direction (we can choose this attribute to be either `'x'`, `'y'`, or `'z'`)." ] }, { "cell_type": "code", "execution_count": 15, "id": "ee36f42b", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:12.543419Z", "start_time": "2022-03-27T11:06:12.000245Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\gempy_viewer\\API\\_plot_2d_API.py:176: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", " p.fig.show()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAYAAALBCAYAAADLZ6PvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbKhJREFUeJzt3QmYneP5P/A7+74SidgqqCUh1L7Vrqj1p6h9py3V+hVV9euGUl0oLYrY1Va1RrWqpWopqrWvESSaRGSXyGr+1/3qmX+WCRMymTnn/Xyu61xn5j3PmTwz8+bMeb7v89xPq7q6uroAAAAASql1c3cAAAAAaD6CAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAANaCurq65uwBAlRIMALBYvf/++3HrrbfGYYcdFltttVUMGjQoNttsszj22GPjz3/+82L5N1ZfffVYb7316j8fOXJkcWzXXXdt9PPzdv31139ku4MPPrho9+yzz0ZzO/XUU4u+3HvvvVEWv//974vv+Uc/+lGj2g8ZMqRof+GFF35s23/84x/158Hct4EDB8YGG2wQe+21V5x33nnx7rvvNuocbE5jxoyJb3zjG/H8889/4v8TAJRb2+buAAC144UXXigGKG+99VZ07dq1GJiss8468fbbb8cDDzxQ3Hbffff4yU9+Eq1bN382/fOf/zy22Wab6N+/f3N3hWay1FJLFcFVxQcffBATJkwozuVLLrkkbrzxxvjNb34T6667brRUJ598chF0HHXUUc3dFQCqlGAAgMVi2LBhccABBxQzBr7yla/E0UcfXYQDFXk18+tf/3rceeedxfHvf//70dymTp1a9OOyyy5r7q7QgB122CEGDx4cPXr0aLJ/Y5VVVomf/exnCxyfPn16EWD99re/ja9+9atx2223Rb9+/eofv+eee1pEuLWwJQR9+/Yt+ti+fftm6RMA1aVl/EUDoKrlwOSkk04qQoETTjghTjzxxHlCgZRTtHMA3rZt27jpppuKWQXNqV27dtGrV6/429/+Frfffnuz9oWGdevWrRi4L7300kv83+7YsWMRGm277bYxfvz4YvbA3LJfK6+8crRUeX5nH1dYYYXm7goAVUAwAMCn9sQTTxRTr/OKas4UWJgcqOyzzz7x+c9/Pt555515HsvB11lnnVUMxLIuwRZbbBHf+c53imUITTVw+u53v1t8fPbZZ8e4ceM+9Vr/hta4V9qPGDEirr766thpp51i7bXXjh133DGuvfbaok3+29lu4403jo022iiOOOKIeOWVVxr893Oqe/4722+/ffF1vvjFL8YVV1wRs2bNajCw+d3vflf8zHM9/Oc+97k46KCDGqz1UOnnU089FUceeWTxtbfccst48MEH56m3kOv+G1sbIO8zePnyl79cXPnffPPNi3oBGSBlf/PnlL/vnKafa/rn79fCagzk8/O5+TPMpSq5jr6pwp1TTjmluM8ZAzNnzlxojYFKzYKsS3DxxRcXv8f8eZ9++umf+BzP9jmb4Qtf+ELx89tuu+3maV+pI/D4448Xn3/pS18qPs/jH1Vj4LHHHotjjjmm6GP+nvOc/OUvfxnvvfdegz//W265JR599NHi3MnvOWsw5Kygl156aYGvvSjnSf4cGqrzMPctf64AND1LCQD41P7whz8U9zlY/bipyz/4wQ8WOJaD5hxQjBo1KlZaaaXYeuuti8FPDi7+8pe/xFVXXRVrrrnmYu/3brvtFkOHDo2//vWvxeAzB0dN5Yc//GE8/PDDxeA/axrk4OzMM88sljPkwGvGjBmx/vrrx/Dhw4t2Bx54YPzxj3+M3r17z/N1LrjggqJNDtAqA6ec8p7hzEUXXRStWrWqDwVy7fldd91VzN7IQWo+loPI4447rpjZkffzy4FnDhAzvMmwZ6211vrE33P+bPN7WWONNYp1/NnHLPg4ceLEYnCfg838njNQ+uc//1n058orr5xnzf/88ueUwUkGGH369CnOlRwEf/vb345VV101FrecFZDn5JtvvhlPP/10bLjhhh/ZPgOjnA2TIcjkyZPrZxUs6jme39MhhxxStFluueWKQp7Zh2yf52ueM126dCnO4UceeaQIl/J3lssuOnfuHNOmTWuwf/nvnHPOOcUyiPzZ56yZ/FnmufOnP/2pCKvmP+fuv//+oj5I9ju/rwwEsg957t1xxx2x4oorfqKfbb5eZPgxv/wZPfnkk9GpUyf1PwCWEMEAAJ9aDlRTXn38JHIZQg4GcglC7l5QGdzmICgHqnk8B5lt2rSJxS2Dihyw5oAur1jnYKUpZBBw3XXXFYOxlAPkDCPyCnNeuc2rzDmAnz17dhx++OHFAD6Dgf3333+Bn3U+Z5dddik+z6r5OYDMwWUO0vbcc8/ieC7XyFAgA4Rf//rXRZG9ygA1d4zIK+4ZUuTV37nlYPbuu+8u2ufshMo6+gwfcjC/zDLLNPp7/vvf/15ccc8ZCClnQWTxyfxd5vKA7G8ONlN+TzldPwe8HxUM5MA2B7J5tT2/r5zyn6655prianxTGDBgQDEof+ONNz42GMg2OQPlf/7nf4rP82f4Sc7xPC8zFMjfbc7mqBzP39uvfvWr4t/IwXzOKMjAIYOBDHsq/wcbCgZyd40MBXKJRi7rqRRUzLDltNNOK37v//d//1f8XOeWIcDc/c5zNGcMPPTQQ8V5lgFUxaKcJ/lvzi9Dqf3226/4+IwzzrAUAmAJsZQAgE+tsiygMvhcFDnI+/e//10MuHKwURkwpRxc5fTpHAznIKQp5NXqHLRVrupPmTKlSf6dvLJbCQXSzjvvXP9xDqwqNRmyBkN+z6mhOgz5WCUUSDnAzsFcykF1RV55z5/lT3/603l+LznQyoFozijIwfT8sl+V9nMX18srt7kUJAeVjbX88ssXV/crPvvZzxZfI2X4UQkFUk6XTzkA/yg333xz0a8cNFZCgZQD6AxYmkLld5O7FTSmbSWcSdnXRT3H//Of/xQf589v7lAgZSHE/DnmYH7OnDmL9H1kMJW/9wwQ5t5loUOHDkWokjMwMhyb/7z7zGc+M0+/8xzN5SGVoqNz+yTnyfy1Sl577bXi95n/ZwBYMgQDAHxqOVBIeSVxUVXWR+fV64bkleG52zWFHOTkoDIDjryi2hTmn02RU7hTDrZyqv3cKoOqHPzNL2sKzC9/djntOqe659r93Nc+r1znIK2hK66bbrppMWDNmRLzy0Hn4vye5x4Ez/19L+x7nnsd//xGjx5dTLHPK/gNTTGvBCqLW+W8nv97aUguZ5h/t4JFPccrv5c8Pv8smfy/ljNBss7Eos6gyen5KWszzC9Dlty6c+52FQ3NBKoUhFzYkoVP4vzzzy9mJ+QsllwaAsCSYykBAJ9aXml8+eWXG1wv/HFysJdyenTeFiYHu00lB3x5BXqPPfYoivVlwbYcPC9O82+5Vxlk5oB+/roMHzUAzfXm88uBaE7dzqvteVW78rPKqehZh2Bh8veVQUIWYqzo3r17LC4Nfa3K97awn0djZqbkVnyN/dksDpMmTSruG7NtYkPf86Ke42PHji3ul1122Vic8uvm7/rjfn65PGVuDV39r4QSDW2V+Enk1oq5lCTP46z1UQkbAVgyvOoC8KllgbpcT/7MM8/E3nvv/ZFts02ut8+K91lsrbIGO4vjfdTALqu4N6WcLn388ccXa7azknyut15UHzW1e3HVR8hp3x8lB1SVfmRgs8kmm3zs1fC5g4H5r3Z/Got7cPdx4UFT1KBIGXql1VZb7WPbNvTzW9RzvNJ+cfu4QXzl312UoGpxyCKXWW8gz8MMBZpje0qAshMMAPCp5RTkSy+9tNjaLqeCf9TOBFl0L7eWyzXVWUAtB68pi/5VitQ1l1wPnzssPP/880UxvIZUBkkNDd6aqj7B/FfN59+hIQf3ebU5Zx/kVe3Kz7Rnz55F0FErKgXtFra9X+VK++KUBfuysF/OBBg4cOAn+hqLeo5XajwsbJZMFpqcPn16sQtBpf5BY39+uRQjv25DswbysTT/rgRNKX+2uRtFFiz83ve+V4QnACx5agwA8Kll5fssZpZV17Po3cI899xz9VsbVqrtVwryLay4YA5sc4/7XFfd1PKK849//OPiymVu2/b6668v0Ca3iKsMaOaXBeaaWm7/N7+//e1vxUAxf5b5PWTRuiyqmHUGcheC+WXwkevM564mXw1yMJvb/+X3NX/Ru5TB1OKW09tTLjP5uK04F2ZRz/H8/5RyG8L5A6i86p+FAnO3h0Wdxl/pR25LOL+sZ1H5+c2/U0VTyWUsWQgxiy1mwcbcohOA5iEYAOBTy6voebUvB9R5pf2CCy6IqVOnztMmK7PnlcEcgOyzzz6xzjrrFMdzLX9O0c497XPLvrkHQjngze3pct/0T7oV4qLKonh5VTf7Mf9a67mL8+UOAHmVsyK3nWvKAokVv/3tb4ufVUVePT/zzDOLj7OSe8VBBx1UDLxy8F9Zm5+yBkEulch6BBkgNFYO3nIwviRmRXyU3JovZbX+ytr/lLNQ7r///sX272RRvdx6L6v05xX/r33ta5/4ay3qOZ7FFbMYZgYgObV+7gDgN7/5TXFlP5fiVNb+V5aX5FZ/HyXPiVzqkP8/s1BlRc7yyXMiz/ec/dNQYcemOE+yrkcWOswlFLkjCADNx1ICABaLnGade6Pn4D/3Qb/66quLN/w5nT0HODnwSVnYL0OEuUOFn//853HYYYcVVclzwJ1T5fOK/L/+9a/6Pd2zBsCSkt/Dfffd1+BV6dwqML+/XHeeW+zlTIkcZOf3l9urNfXMhqznkEsecuu7nL2Q9RpyEHvooYfGVlttVd8u2+Sg64EHHoiddtqpCGJyAJnHcgCZA8/cgq6xskp8Bh+5/CO32GsuOdMkr6TngD1nPVR2k8jZGoMHD55nwNsY+TuubFeZMkzJoow5qyLDrQwFcjD+aabXf5JzPGeu5BX0nLHwxz/+sQikcvnNK6+8UvTpRz/6UX3bfF7ORsh1+hkuZBjUUF2APAfyez333HOLn2POIMhdIrIP+TPM8CIH659GY8+TnJ1w0003FR9n3YWcBZGh4fwzJPJ33NAuCgAsXoIBABabvDKa1cVzGn5Oec9Cg/lmPwcf2267bey3336x9dZbL/C8rJyfV3xzAJYD2Rw05HNyDfVRRx210G3emkpOGc+r8Dkwm3+gkmu6b7jhhmJmRA7Gsq/Z/4suuqh4rKmDgbyymz+j3D0hr/7nnvEZCuRU9LnlkoLsUw6+brvttmLAnFeLV1xxxWJafA4MP66QYUtUueKd51gOsPPnn0sMclCc99/4xjcW6evl4Hzu31l+/fw95raDGbTkVfbG7EbwcRb1HM9tJm+99dZihkFu4Zd1BbIfOdjO77FStyB99atfLcKp3OYw/99lAdA8LxqSs2FyVswVV1xR/P/M2QL5bx1wwAHFedS5c+dYEuZeipPBx8KstNJKggGAJaBV3eLaZwYAAACoOi2+xsD//d//1a8nnFsWU8ptpXIKYd6yCE9D+2cv7nYAAABQS1r0UoKcInjzzTcXA/W55dTJnO6W099y+l3u1zxkyJBivWc+p1I1eHG3AwAAgFrTIoOBHJjnmrpf/epXDT6e1XtHjx5drAmsrKHLgkOHH354sX5v3333bZJ2AAAAUGta3FKCLFKVBZQuvPDCojhSFhKa39ChQ4tZBHMX1tlss82KvY3zsaZqBwAAALWmRQYDuY1SVnvO/YPbtp13UkPuWZz1AHJbrPnlsdxeqCnaAQAAQC1qcUsJcougP/3pTwsEAhVjxowp7huaSZBb90yZMqW4Le523bp1+9TfGwAAALQ0LS4YyP2D87YwU6dOLe47deq0wGOV/ZinTZu22NstajCwwQYbFMUM595nGAAAAOY2duzYouD9k08+Gc2lxQUDH6euru5j27Rq1Wqxt/skSyJmz55dhANQKyr/Xz7J/wloyZzb1CLnNbXIeU0tmjVrVqPGpU2p6oKBzp071w+851c5lssRFne7RbXMMssUocBDDz20yM+Flurpp5+u37UDaolzm1rkvKYWOa+pRVtuuWUxY6A5tbjigx+nf//+9dMt5vfOO+9E9+7di8H+4m4HAAAAtajqgoEcqC+//PIN7hbwwgsvxKBBg5qkHQAAANSiqgsG0o477hiPPvpoDBs2rP7YI488EsOHD49ddtmlydoBAABAram6GgPp6KOPjjvuuCMOO+ywOOKII4paAJdffnkMHDgw9thjjyZrBwAAALWmKmcM9O7dO6677rpYY4014oILLoirr746tt9++2IwP3fRhsXdDgAAAGpNi58x8Je//KXB4wMGDIjLLrvsY5+/uNsBAABALanKGQMAAABASWYMAAAA1LoPPvggJk+eXNQ7S61atWruLvEp1NXVFb/Dnj17VsXydMEAAABAM4cCY8aMKQaRPXr0EArU0O919OjR0a9fv2jdumVP1m/ZvQMAAKhxOVMgQ4FOnToJBWpI69atY6mlloqJEydGSycYAAAAaEa5fKBjx47N3Q2aQIcOHWLWrFnR0gkGAAAAmpmZAjQnwQAAAEAzEgrUtlZV8PsVDAAAAECJCQYAAACgxAQDAAAALBGnnnpqrL766jFy5MioRpdccklsu+22UWvaNncHAAAAWPwmT5sRVz/4dNz+j5dj4rTp0bNzx9hz49Xj0K0GR/fOHZq7e1XnoYceil/96lexzDLLRK0RDAAAANSYK//67zhhyL0xdca8W+X99fk34rTr/xIXHLlTHL7Nus3Wv2pz0003xRlnnFEVWw9+EoIBAACAGgsFjrzoroU+nmFB5XHhwMc74ogj4uGHH44tttgiJkyYEBMnToxao8YAAABADS0fyJkCjfGNK/5YtG+J/vCHP8RBBx0U66+/fgwaNKhY13/uuefGzJkzi8dvvPHGolbBgw8+uMBz991339h7773rP3/ttdfiuOOOiw022CAGDx4cX/7yl4tlAXM7+OCD48gjj4zzzjsv1ltvvdh0003j5ZdfLh57++234/vf/35cfvnl0aVLl6hFggEAAIAakTUF5l8+sDDvTZ8Z1zz4TLQ0t9xyS3zzm9+Mbt26xUknnRSnnHJKLLfccjFkyJA4//zzizY77bRTtGvXrggQ5jZixIh4+umnY7fddis+z8H9fvvtV4QDxx57bJx44okxe/bsOOaYY+Kee+6Z57lPPfVU8fVOPvnk2GuvvWLVVVctjt91111xwAEHRKtWraJWWUoAAABQI7LQ4CK1f/ylOH7nDaMlueKKK4qr9hdddFH9YDwH5tttt11xpT+Dgp49exZT+++///5iFkH79u2LdjnYb926dey8887F52eeeWb07t07brvttujcuXNxLGciHHrooXHWWWfF9ttvX//cadOmxU9/+tNiVsHcKo/XMjMGAAAAakTuPrBI7acuWvsl4c4774xLL710niv048aNi+7duxeD94qcFTB58uRi/X/F0KFDY8MNN4y+ffsW9QAef/zx2GqrrWL69Okxfvz44pbP2WGHHeLdd9+NZ599tv65HTt2jLXXXjvKyIwBAACAGpFbEi5S+y6L1n5JyCUCTzzxRNx9993x+uuvx1tvvVUEAymXFFRk3YGcBXDvvffGNttsE8OGDSuWDuQsgcqygnTttdcWt4aMGjWq/uOchZCzDcpIMAAAAFAj9tx49WJLwka332iNaGlyW8Drrrsu1lprrVh33XVjjz32KJYW5PG5B/KdOnUqlgJUlhPkMoIMFXbcccfi8Tlz5hT3Bx54YNGuIZU6AqlNmzZRVoIBAACAGnHoVoPjtOv/0qgChF07to9DtlonWpLcASBDgQwDcheCueXU//ntuuuuxdKDnGGQAcGWW24ZPXr0mGd2QQ74N9tss3mel8UIR44cWYQLqDEAAABQM7p37hAXHLlTo9r+8ogvFO1bkkmTJi1wJT/ltoRvvPFGsaPA3DbffPOiuGDuZPDiiy8WQUHFMsssU2x1mIUHx4wZU3981qxZcdppp8UJJ5ywwNcrKzMGAAAAasjh26xb3H/jij8WWxI2NFMgQ4FKu+Zw3nnnRZcuXRY4nkUB+/fvH5dccknMmDEj+vXrF88880wxuO/QoUNMnTp1nvZt27YtdiC4/vrri3oDWXdgbqeffnqxA8Hee+8d+++/f1FHIAsU5paG3/rWt6JXr15N/r1WA8EAAABAjclB/94brxnXPPhMsSVh7j6QhQazpkAuH2jumQJZWLAhAwYMKHYkOOecc+Kaa66Jurq6WHHFFYsr/Hl1P7cYfO6554qZAHPvTpDBQIYC8y8NyNoEN9xwQ1x44YVx5ZVXFl9j5ZVXLr7+Xnvt1eTfZ7UQDAAAANSgHPwfv/OGxa2lyAF53j7OkCFDGjx+yCGHLHCsspPA7rvv3uBzBg4cWMxA+CjXLmTXgk/artqoMQAAAEDVuvHGG4t6AltssUVzd6VqmTEAAABA1cn6ASNGjIjHHnssTj311FJvN/hpmTEAAABA1Rk3blxRmHC//fZrcIkBjWfGAAAAAFXn4osvbu4u1AwzBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAABYIk499dRYffXVY+TIkVEtnnnmmTjyyCPjc5/7XKyzzjqx3377xYMPPhi1pG1zdwAAAIDFb+bkaTHs6gfizdv+ETMnTo32PbvESnttHKscunW07965ubtXFYYPHx4HH3xw9O7dO77yla9Ehw4d4ve//30ce+yxceGFF8YOO+wQtUAwAAAAUGNevfIv8Y+vD4nZU6fPc3z0X5+Lf37n+tj4wiNjtcO3bbb+VYuf/exn0aZNm7j55pujT58+xbGcMbDbbrvFT3/605oJBiwlAAAAqLFQ4OEjfr1AKFCRx/PxbMfC1dXVxRNPPBFbbLFFfSiQOnbsGNtss028+eabMX78+KgFggEAAIAaWj6QMwUa4x8nDCnat0R/+MMf4qCDDor1118/Bg0aFNtuu22ce+65MXPmzOLxG2+8sahV0NBa/3333Tf23nvv+s9fe+21OO6442KDDTaIwYMHx5e//OV46KGH5nnOwQcfXNQROO+882K99daLTTfdNF555ZW49dZb45RTTlng35gwYUJxn7MJaoFgAAAAoEZkTYGFzRSY3+z3psewax6IluaWW26Jb37zm9GtW7c46aSTioH5csstF0OGDInzzz+/aLPTTjtFu3btigBhbiNGjIinn366mOqfXn755WLqf4YDWRfgxBNPjNmzZ8cxxxwT99xzzzzPfeqpp4qvd/LJJ8dee+0Vq666aqywwgqx/PLLz9Pu3XffjT//+c8xYMCA6NGjR9QCNQYAAABqRBYaXBRv3fZ4rHn8LtGSXHHFFcVV+4suuihatWpVHDvggANiu+22K670Z1DQs2fPYor//fffX8wiaN++fdEuB/utW7eOnXfeufj8zDPPLAoH3nbbbdG584cFF3MmwqGHHhpnnXVWbL/99vXPnTZtWlE3IGcVLEyGCt/+9reLthk01AozBgAAAGpE7j7QlO2XhDvvvDMuvfTS+lAgjRs3Lrp3714MyCtyVsDkyZPj4Ycfrj82dOjQ2HDDDaNv377FdP/HH388ttpqq5g+fXpRDyBv+ZwsGphX/p999tl5agesvfbaC+3XnDlzilDg73//e+y6666x5557Rq0wYwAAAKBG5JaETdl+ScglAln07+67747XX3893nrrrSIYSLmkoCLrDuQsgHvvvbcoBjhs2LBi6UDOEqgsK0jXXnttcWvIqFGj6j/OWQg526AhOSvhW9/6VvzpT3+KLbfcMs4+++yoJYIBAACAGrHSXhsXWxI21op7bRQtzRlnnBHXXXddrLXWWrHuuuvGHnvsUSwtyONzD+Q7depULAWoLCfIZQQZKuy44471V/jTgQceWLRrSNYRqFhYIcGcpZDFCx955JEigLjgggvqlx/UCsEAAABAjVjl0K3jn9+5vlEFCNt27RirHLJ1tCRvv/12EQpkGJC7EMwtp/7PL6f059KDnGGQAUFeza8UBKzMLsgB/2abbTbP87IY4ciRI4tw4aNkTYGvf/3rRSiQBQ9/9rOfFeFDrVFjAAAAoEa07945Nr7wyEa13fiCI4v2LcmkSZMWuJKfclvCN954oxioz23zzTcvigvmTgYvvvhiERRULLPMMsVWh1l4cMyYMfXHZ82aFaeddlqccMIJC3y9+f36178uagrkLIRf/OIXNRkKJDMGAAAAashqh29b3P/jhCHFloQNzRTIUKDSrjmcd9550aXLgvUNsihg//7945JLLokZM2ZEv3794plnnikG9x06dIipU+ctlti2bdtiB4Lrr7++qDeQdQfmdvrppxc7EOy9996x//77F3UEskBhbmmYNQN69eq10D5OnDix2CEhw4BNNtmkqHnQUH8rux1UM8EAAABAjclB/0p7bxLDrnmg2JIwdx/IQoNZUyCXDzT3TIGGBtlpwIABxY4E55xzTlxzzTVRV1cXK664YnGFP6/u5xaDzz33XDETYO7dCTIYyFBg/qUBWZvghhtuiAsvvDCuvPLK4musvPLKxdffa6+9PrKPzzzzTLGbQfrRj37UYJtcviAYAAAAoEXKwf+ax+9S3FqKHJDn7eMMGTKkweOHHHLIAscqOwnsvvvuDT5n4MCBxQyEj3JtA7sWfP7zny92OSgDNQYAAACoWjfeeGNRT2CLLbZo7q5ULTMGAAAAqDpZP2DEiBHx2GOPxamnnrrQ7Qb5eGYMAAAAUHXGjRtX1AHYb7/9GlxiQOOZMQAAAEDVufjii5u7CzXDjAEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAlohTTz01Vl999Rg5cmRUixdeeCGOOOKI2HDDDWOTTTaJ73znO/Huu+9GLWnb3B0AAACgCcyeHDH66oixt0XMnhjRtmdEn70i+h0a0bZ7c/euKrz22mtxwAEHRN++feP444+P9957L6666qp46qmn4ve//3106dIlaoFgAAAAoNaMujLi1a9HzJk67/GJf414/TsRq10YsezhzdW7qvHLX/4y2rRpE9ddd1306dOnODZo0KA45phj4o477ihCg1ogGAAAAKi1UOClIxb+eIYFlceFAx+pXbt2sccee9SHAimXFKSXX345aoVgAAAAoJaWD+RMgcZ49YSIPnu3yGUFf/jDH+L666+PF198MWbMmBHLLLNM7LTTTvHNb34z2rdvHzfeeGN8//vfj0svvTS22mqreZ677777xpw5c+LWW2+tXw5w3nnnxT/+8Y+YNWtWrLnmmnHcccfFlltuWf+cgw8+uPi6ORvgmmuuiY4dOxZLBn7xi18s0LfsU+rfv3/UCsUHAQAAakXWFJh/+cDCzHkvYvQ10dLccsstRQDQrVu3OOmkk+KUU06J5ZZbLoYMGRLnn39+0SZDgryanwHC3EaMGBFPP/107LbbbvVX9ffbb78iHDj22GPjxBNPjNmzZxdLAe655555nvvUU08VX+/kk0+OvfbaK1ZdddV5Hn/nnXfij3/8Y/F4BhVf+tKXolaYMQAAAFArstDgorZf/vhoSa644opYb7314qKLLopWrVoVx3It/3bbbRcPPfRQERT07Nkztthii7j//vtj5syZxdX+lIP91q1bx84771x8fuaZZ0bv3r3jtttui86dOxfHDjrooDj00EPjrLPOiu23377+udOmTYuf/vSnMXjw4Ab7lWHE1KlTi5oD5557biy11FJRK8wYAAAAqBW5+0BTtl8C7rzzzmKJQCUUSOPGjYvu3bsXg/eKnBUwefLkePjhh+uPDR06tKgBkLsITJgwIR5//PFiqcH06dNj/PjxxS2fs8MOOxRbDj777LP1z83lA2uvvXaDfcpZBt/73veKJQmbbrppfOtb3yqWGtQKMwYAAABqRW5J2JTtl4BcIvDEE0/E3XffHa+//nq89dZbRTCQcklBxbbbblvMArj33ntjm222iWHDhhVLB3KWQGVZQbr22muLW0NGjRpV/3HOQsjZBg1p27Zt7LnnnsXHORth//33L3YsyOUEXbt2jWonGAAAAKgVffb6cEvCRWnfwpxxxhnF9oBrrbVWrLvuusWuALm0II/PPZDv1KlTsRSgspwglxFkqLDjjjsWj2cBwnTggQcW7Roydx2BNm3aNKp/OZMhlxX861//iuHDhy90lkE1EQwAAADUin6HRrz+ncYVIGzTNaLfIdGSvP3220UokGFAruOfW079n9+uu+5aLD3IGQYZEOROAz169JhndkEO+DfbbLN5npfFCEeOHFmECwszZcqU2HvvvYugIYsgzu29996rX35QC9QYAAAAqBW59eBqFzau7WoXtLitCidNmlTcz78jwIMPPhhvvPFGsdZ/bptvvnlRXDB3MshtBDMoqMidA3L7wSw8OGbMmPrjuWXhaaedFieccMICX29uuStCFia8/fbb6/tVCQxyK8Tll19+gX5WKzMGAAAAasmyh394/+oJH25J2NBMgQwFKu2aQRbx69KlywLHsyhg//7945JLLokZM2ZEv3794plnnikG9x06dCh2BZh/7X+u+b/++uuLegNZd2Bup59+erEDQV75z7oAWUcgCxTmloZZQLBXr14f2c8sOHjYYYcVz913332LUOGmm26KsWPHxmWXXTZPgcRqJhgAAACoNTno77N3xOhrPtySMHcfyEKDWVMglw8080yBLCzYkAEDBhQ7EpxzzjlxzTXXRF1dXay44orFFf68up9bDD733HPFTIC5dyfIYCBDgfmXBmRtghtuuCEuvPDCuPLKK4uvsfLKKxdff6+9Pr6+wkYbbRRDhgwpnv+LX/yiWJaw/vrrFx+vs846USsEAwAAALUoB//LH//hrYXIAXnePk4OxhtyyCEL1kSo7CSw++67N/icgQMHFjMQPsq1C9m1IOX2hHmrZWoMAAAAULVuvPHGop7AFlts0dxdqVpmDAAAAFB1sn7AiBEj4rHHHotTTz210dsNsiAzBgAAAKg648aNKwoT7rfffg0uMaDxzBgAAACg6lx88cXN3YWaYcYAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAEvEqaeeGquvvnqMHDkyqtE777wTG220UfF91JK2zd0BAAAAFr/pMybHEy9eE8+9dnu8P2NidOrQMwatumdsuOYh0bFD9+buXlX63ve+F5MmTYpaIxgAAACoMY8/f2Xc9sA3YuasqfMcf23kX+Oeh0+Lvbb+ZWw08PBm6181uv322+Pvf/971CJLCQAAAGosFLjpvqMWCAUq8ng+nu1onLFjx8aPf/zj+NrXvha1SDAAAABQQ8sHcqZAY9z+wDeL9i3RH/7whzjooINi/fXXj0GDBsW2224b5557bsycObN4/MYbbyxqFTz44IMLPHffffeNvffeu/7z1157LY477rjYYIMNYvDgwfHlL385HnrooXmec/DBB8eRRx4Z5513Xqy33nqx6aabxssvv1z/+Pe///1Ydtll4+ijj45aJBgAAACoEVlTYGEzBeY3Y9Z78eSL10ZLc8stt8Q3v/nN6NatW5x00klxyimnxHLLLRdDhgyJ888/v2iz0047Rbt27YoAYW4jRoyIp59+Onbbbbfi8xzc77fffkU4cOyxx8aJJ54Ys2fPjmOOOSbuueeeeZ771FNPFV/v5JNPjr322itWXXXV4vidd95ZBBBnn3128W/WIjUGAAAAakQWGlwUzw67PbZY97hoSa644oriqv1FF10UrVq1Ko4dcMABsd122xVX+jMo6NmzZ2yxxRZx//33F7MI2rdvX7TLwX7r1q1j5513Lj4/88wzo3fv3nHbbbdF586di2M5E+HQQw+Ns846K7bffvv6506bNi1++tOfFrMKKt59992i3VFHHRVrrbVW1CozBgAAAGpE7j6wKKYvYvslIa/QX3rppfWhQBo3blx07969GLxX5KyAyZMnx8MPP1x/bOjQobHhhhtG3759Y8KECfH444/HVlttFdOnT4/x48cXt3zODjvsUAz6n3322frnduzYMdZee+15+vKDH/wgllpqqWIpQi0zYwAAAKBG5JaEi6LjIrZfEnK6/hNPPBF33313vP766/HWW28VwUDKJQUVWXcgZwHce++9sc0228SwYcOKpQM5S6CyrCBde+21xa0ho0aNqv84ZyHkbIO5Q4b77rsvLr744njvvffmeV7OUsiQIZc71MLyAsEAAABAjRi06p7FloSNtfYqe0ZLc8YZZ8R1111XTN1fd911Y4899iiWFuTxuQfynTp1KpYCVJYT5DKCHKTvuOOOxeNz5swp7g888MCiXUMqdQRSmzZtYm6VAoVf/epXY34ZGuTtmmuuiY033jiqnWAAAACgRmy45iFxz8OnNaoAYYd2XWODNQ+OluTtt98uQoEMA3IXgrnl1P/57brrrsXSg5xhkAHBlltuGT169JhndkEO+DfbbLN5npfFCEeOHFmECwuTdQV23333BY4ffvjhRX2D3MVgjTXWiFogGAAAAKgRHTt0j722/mXcdN9RH9t2z63PL9q3JJMmTVrgSn7KXQHeeOONonbA3DbffPOiuGDuZPDiiy/Os53gMsssU2x1mIUHc5Bfee6sWbPitNNOi5deeqnB7Q4rsg/z96OiT58+C4QN1UwwAAAAUEM2Gnh4cX/7A98stiRsaKZAhgKVds3hvPPOiy5duixwPIsC9u/fPy655JKYMWNG9OvXL5555plicN+hQ4eYOnXemRBt27YtdiC4/vrri3oDWXdgbqeffnqxA8Hee+8d+++/f1FHIJcA5JaG3/rWt6JXr15N/r1Wg6oOBp577rn4+c9/Hv/617+KIhEbbbRRsXXFgAED6ttkwYmf/OQnRTXKtPXWW8epp55apEpza2w7AACAli4H/eusunc8+eK1xZaEuftAFhrMmgK5fKC5ZwpkYcGG5FgudyQ455xzivX7dXV1seKKKxZX+GfPnl1sHZjjwJwJMPfuBBkMZCgw/9KArE1www03xIUXXhhXXnll8TVWXnnl4uvvtddeTf59VotWdfmTrkJZnTJTn/zFH3bYYcWx/EXnt3PHHXfUb0+RbbIQxSGHHFIUnxgyZEix1iSnmlT2q2xsu0WRe2zm16sUrIBakMlqmntvV6gFzm1qkfOaWlSr5/U777xTTHvnk58X++67bxEo5NaE1fb73XLLLYsxZ9ZIaC5VO2Pg6quvLvawzGQoq1WmTTbZJPbZZ5+46qqr4tvf/nZxP3r06LjrrrtilVVWqX8RyWIRt99+e3HypMa2AwAAoGW58cYbi4F3FgTkk/n/mzRWmawgmetBKqFAWmeddYo1I6+88krxea4dyeUFlcF+ygIROXUkH6tobDsAAABahkr9gN///vdxxBFHLLDdICUIBlZaaaWiYuX48ePrj02cODGmTJlSpEX5WNYNGDhw4ALPzWPPP/988XFj2wEAANByjBs3rihMuN9++xVLwinhUoLcbuKvf/1r/O///m9RJLBVq1bFPpft2rWLgw8+OMaMGVO0m387i8rWEhkg5K2x7bp167YEvisAAAAa4+KLL27uLtSMqg0GcguLY489Ns4444zYY489imM5deSCCy4olhfkTgVp/qqUKbe5SFmjoLLdxce1+yTBQBZCrBRIgVqQVVyT85pa49ymFjmvqUW1el537Ngxunbt2tzdoIlksftRo0Yt9PGWsB9A1QYD559/fpEQZW2ALA6YOwlk0YlvfvObRTiQtQY+Ts4yaMwvIdsBAABALarKYGDy5MnFdoK5d2XuKFApMvHFL34xvvSlL8X//d//FY+nGTNmLPD8yrFM5Tp37tyodp9EBgq1tpUK5VarWwSBc5ta5LymFtXqeZ3LmyvjEmpPz549G1y63pIuRFdl8cE33ngjZs6cGbvuuus8lSezvsBuu+0W7777bhEepLFjxza4j2T37t2L/3y5JKEx7QAAAJpKS5hOTnlVZTDQvn374j6XD8zvgw8+qL/Kv/zyyze4q8ALL7xQzDZIOfBvTDsAAICmkLXNpk+f3tzdoAnkLPS8gN3SVWUwsNpqqxVbEt52223zLAHIj2+//fbo1atX0WbHHXeMRx99NIYNG1bf5pFHHonhw4fHLrvsUn+sse0AAAAWt7xYmVuvv//++2YO1JA5c+bE+PHjG1X/rrlVZY2BXD7wve99L0444YSipkDecqbArbfeGq+//nr9toVHH3103HHHHXHYYYfFEUccUQQHl19+eQwcOLB+J4PU2HYAAACLW+vWrYs16LkcurIkuiWsO+eTy4Anf4dLLbVU8ftt6aoyGEg77LBDXHHFFXHRRRfFeeedVxzLbQovvfTS+PznP1983rt377juuuvi7LPPLnYqyG1Att9++zjllFPqlyMsSjsAAICmkIPHariyTG2q2mAgbbrppsXtowwYMCAuu+yyj/1ajW0HAAAAtaTlz2kAAAAAmoxgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGJtm7sDQHWYOG5Y9Oo1PmbPmRFvv/1edO86ILr1WLa5uwVUiamT34lJ770e02dMjDat20W3LitE76U/29zdAqrErFkzY8K456Jbj7ERURfvjP4gllp67WjT1nAGFgf/k4CPNOHdYTHi3UfjT0+cG6PGPV9/fI0Vt4vtNjgl+vVePzp37dWsfQRarukzpsY7Y5+Mv/7rvHj29aFRV/dBcXzpnqvGFzY4KT7TbysBAfCRxox5Kv71ym/jb89eHjNmTimOdezQI7Za59gYvOq+0bfves3dRah6lhIACzXh3dfj4ed/GVffe+g8oUB66a3746Lbdo5XRtwV70+b3Gx9BFquWTNnxPARf4wLf79jPDPsrvpQIL078bW4/s9fifue/GGMf/eVZu0n0HKNHvNUXHr3/8R9/zyvPhRI02dMij8+cW4MGbpPjHnnX83aR6gFggFgoUZPeCr++q9fL/TxfJN//Z+OinETnlmi/QKqw7vjno6r/nBwfPDB7IW2efylG+ON0Q8t0X4B1WHyxBFx29++FROnjFhom3GTh8fdj5weUyb9Z4n2DWqNYABo0KTxb8X9T53/se0+qJsTL715b8yZvfA3/kA5vTH6kZg9Z/rHtrvvnz8zawBYwIQpw+K1t//2se1efOOPMWnKsCXSJ6hVggGgQVOnvx3DRz3aqLb/eOnGmDzx9SbvE1A93ps8unhtaIx3JrwSU6aNbPI+AdVl9PjnGtWuLupi7KRXm7w/UMsEA0CD5syZ2ei2s2ZP+8ipwkD5zJk9PWbOmtro9h980PjXHKAcZsxsfA2jRXm9ARYkGAAa1KFdt2jXtlOj2vbuvlK0b9+jyfsEVI8OnZeKPj1XblTb1q3aRIf2PZu8T0B16dl1hUa37dalX5P2BWqdYABoUM9ea8amAw9pVNut1z0uuvVcrsn7BFSPjh27xWYDj2hU28Gr7B49u63a5H0CqssyvdaM9m07f2y73Lpwaa8h8KkIBoAGte/QKTZY4+Bo367LR7br03PVWLbXOkusX0D1WLr76rHiMp/7yDZt2rSPz6/3jejcbekl1i+gOvTuPTB23PDkj223y8anxVJLr71E+gS1SjAALNRyy24aR+96a5HEN6Rvr8/GYTvfEH36CgaABS3VZ83Yf/vLFhoO5HKlI3e5MfotvcES7xvQ8rVv3ykGD9gvtl3v+IW22XHDk2KtFfaMNm3bLtG+Qa3xPwj4SANW2iFO2Ou+ePvdf8UjL1wT78+YFL27LR+bDToi+vRYI5buM7C5uwi0YMsss24ctMO1MW7KK/Ho81fF2EmvFzORNllj/1hxmY2jT5/1vKEHFqp3n9Vji0HfikED9opnh90Wr7z994hoFWussFWsPWD36N5l1ejRy3JG+LT8JQY+Vt9+6xe3z/TbOT6YMz26dusTHTt3b+5uAVViqT5rFLeVlt0uZkwfH23adowu3fo0d7eAKtFjqRWLW/9+m8WmE/5TbFDYs/cKQkVYjPxvAhptxNvvFveD+67S3F0BqlCHTl2KG8An0a5d+xg5alLx8VLLGMbA4qTGAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJRYVQcD48ePj9NPPz0222yz+NznPhcHH3xw/Pvf/56nzYgRI+L444+PjTbaqLidcsopxfPm19h2AAAAUEvaRpV677334sADD4x33nknDjvssOjevXtcf/31ceihh8Ytt9wSn/3sZ2PChAnF5zNnzoyjjjoq5syZE0OGDImXX365aNO+ffviazW2HQAAANSaqg0GLrvsshg+fHhce+21seGGGxbHdtlll9h+++3j8ssvj3PPPTeuuuqqGD16dNx1112xyiqrFG0GDx4chx9+eNx+++2x7777Fsca2w4AAABqTVUuJairq4vbbrsttt566/pQIPXp06dYArDBBhsUnw8dOrRYFlAZ7KdcdrDyyisXj1U0th0AAADUmqoMBkaOHBljxowpBu+VoGDq1KnFx7m8IK/wT5o0qagbMHDgwAWen8eef/754uPGtgMAAIBaVJXBwJtvvlncL7XUUvGTn/ykmCGQxQd32GGH+Mtf/lI8lsFB6tu37wLPz5kFU6ZMKW6NbQcAAAC1qCprDEyePLm4/+Uvfxlt27aN7373u9G6deuiYOBxxx1X3Hfq1KloU7mfW4cOHYr7adOm1c80+Lh23bp1W+R+5kyGp59+epGfBy3V7Nmzi3vnNbXGuU0tcl5Ti5zX1KK6urrm7kJ1BgO5e0AlIPjjH/8YPXr0KD7fdttti1kDP//5z4uw4OO0atWqUb+EbAcAAAC1qCqDgc6dOxf3O+64Y30okHLLwgwHsjBhpc2MGTMWeH7lWNeuXRvd7pPIQCF3N4BaUUnnndfUGuc2tch5TS1yXlOLWrWAC9FVWWOgUg+gd+/eCzyWx3IWQNYfSGPHjl2gzTvvvFOECBkK9O/fv1HtAAAAoBZVZTCw2mqrRfv27eO1115rcMeCrA2QAcHyyy/f4K4CL7zwQgwaNKj4OAf+jWkHAAAAtagqg4G8gp9LBh544IF49dVX64/ntoO5K8F2220Xbdq0KZYaPProozFs2LD6No888kgMHz48dtlll/pjjW0HAAAAtaYqawykk08+OR5//PE45JBDilu7du3immuuiY4dO8b//u//Fm2OPvrouOOOO+Kwww6LI444oqgZcPnll8fAgQNjjz32qP9ajW0HAAAAtaYqZwyknP5/8803x4YbblhsT3jxxRfHmmuuGTfeeGOssMIKRZtcTnDdddfFGmusERdccEFcffXVsf322xeD/lyKUNHYdgAAAFBrqnbGQMoAIAfyH2XAgAFx2WWXfezXamw7AAAAqCVVO2MAAAAA+PQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASqxtc3cAqA7j3301evQcG7PnTI8RIydH9y6fiR69VmjubgFVYsqkMTHpvddi+owJ0bZNh+jWeYVYqs8azd0toErMnPl+jB//fHTt/k5EXcSYUbOj99JrR7t27Zu7a1CeYOCYY46JM844I/r27dv0PQJalAljX4s33vlb3PvEufHuxFfrjw/ov3l8YaPvxLK9N4wu3Zdu1j4CLdeMae/FqHGPx31PnBMvvXV//fFe3VaMHTb4VqzWf/voLSAAPsLo0U/GP168Ih59/pqYNfv94lj7dl1i80GHx4ZrHBp9+36uubsI5QgG/va3v8Vuu+0WJ598cuyzzz5N3yugRZjw7mvx4DM/i4eevSxGvFYXk8b9/8fGrfT3GP6f3WL/7S+JtVbeOzp16dWcXQVaoJkz3o/XRt4TV/3hoBg/dnaMHPb/H+va480YP/mEWP+ze8fOG54RvZcRDgALGjX6ybj0rj1j3Pj/xKvPRnww58Pjbdq+F1OnXhj/fu2OOGrXW6Nf3/Wbu6tQ+8FABgK/+tWv4nvf+1784Q9/KGYPLLfcck3fO6BZ/Wf8U0Uo8PbrdXHLr+sWePyw73wQN9z/1fjGl1aPFbps2Sx9BFquceOfiav/eGjMmD47brywVUyb/ME8j6+9SUSr/X4fa6y4vWAAWMCkCW/G7/92YkyeOiruuyXipX8u+F7kf88bEXc+/J3Yf9urolvP/s3STyhN8cEjjzwyhg4dGltttVU88sgjseuuu8Z1113X9L0Dms2k8W/E/U+dF3Uf1MVfft8qWvXqF/E/34/Y+wcROxxXtLnq7Lqoq/sgXnzjnpgze3ZzdxloYYaP+nvMmTMzHv9LXbw/NSJ2+uaHryH5WhIRzz4WMXN6Xfzpn7+I8e++0tzdBVqYie+9Hq//55H4zxt1H4YCn9v9w9eQvP13puLzj9fFy2/dHxPfm2tKEtB0uxL0798/Lrnkkjj//POja9eucdZZZ8WBBx4Yb7755qL/q0CLN3X6qHhz9OPx/BMRY9/+IOoG7xqtWreJVq1aR6sefSM6dS/avfRUXTzx8s0xacLrzd1loAV5b9KoePzlm2Py+Lp44i+tom61LaJV194fvoa0bhOxyb5Fuyt/XBfvTnwtpkwb2dxdBlqY0eOei7q6ygWKvhErf+7D15BWrSN2PL5o88cbPpxFMHaScBGW6K4EO+20U2y55ZZx4YUXFrMG9thjjzjqqKNi+eWXb7D9nnvu+ak6CDSPvMqXxoyoi1YdOkZdr2XnbbDZARH3XxIzZ0RRCOiDOjMGgP9vzpwZMXPWtHh3VMQHs+sillll3gb91yzuevb58NMPPvjwNQegYsasKUVNgXf/80HUrbLqh4HAf7Vq0y7qei4bMXFU8fmsWdOasadQ0u0Ku3TpEqeeemp89rOfjdNOOy1+/etfL9Am071WrVoJBqBKdWjXvaj4+7nPvxfPPDo94pWHI9bcuv7xVi/8Obr0ah1rbVAXS/dcJTq079ms/QValg6dloq+vVaNz6z5fCy1bOsY//yfoq7PMcV7g8LwfxZ3W+3RKlq3ahMd2itgCsyrV7eVok3bVrH+VnXx5IOPRd2qG0erzh++36ibMi5i8pjYdKcPX1O6d1FfAJZ4MPCf//wnfvaznxWFCPMPfM4aWNiMAaA69ey9Rmw28LB4YNav43Nb1cVTD/0t6jKpzzf1M6ZFjHottj6sVbRt1yq2HvxVBX+AeXTs1C02HXh4PDPszthmr7r43UVvR/x7aNR17lHsQd7q1YdirY1aRb8VW8V6q+0Vvbp/trm7DLQwy/Rco7hIsfEO78Vzj9fF+0/8Pur6rfbhg6Neii7dIzbYJqJTh56xVPf5ZiUBTRcMzJkzJ4YMGRIXX3xxvP/++7HKKqsUOxR87nP2DoVa0759p/jc6gfEoy9cE5vsMDneevWDmDTsL/WPr7xe61htnbro12uN6Ntr7WbtK9AyLdXts/GZfhtFxOMxePOIF596sv6xLj0jNt8lom2bDrHl4K9Hp65mDADz6r3U2rHzRt+JOx4+Pbbfpy7uu/mt+OC1t4rH2rSJ2OHLddGufav44ibfi6WWGtTc3YVyBANPPvlk/PCHP4zXXnst2rVrF8cff3wce+yxxcdAbVpu2U3imN1uiyuG7hcHf2vcAo/3X3rtOGiHq6LPMoIBYEFL9Vkj9tv2krjlr1+L+NJjsd2X5n28Q/vucfguv41+fTZsri4CLVi7du1j0Ge+FO/PnBgRP4vV1pn38VbROnbZ5Lux+gq7Rpu2n2giNPBfjfoflHUEbr/99vjggw9igw02iB/96EcxYMCAxjwVqHKfWWGbOH6vP8ao8c/EYy9cH+/PnBS9uy0fm6x1aCzVbbVYqs+HBcQAGrLMMoNj/22viPHvDYsnXrouxkx8PTrk1OA1vhz9l/5c9Ou3fnN3EWjBevdZLTZt+81Ya6Uvxgtv3BMvv/1QcXytFbaJNVbaKXp0WTW69ezX3N2EcgQDv//976Nbt25x8sknx777fri9EFAey/Rdr7it2HfnmDNnevTs0Tfatu/Q3N0CqkTvPqsXt8+ssENMnzY+2nXoEh06dG3ubgFVonuvZYvbCst/PjYYO7KocdZ76eWau1tQvmDgC1/4Qpx++unRp89/9xQCSumtER9uCbR0nxWbuytAFWrbtl107d63ubsBVLGR//lwaaNgAJohGPjlL3+5mP9ZAAAAoCVo3dwdAAAAAJqPYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlVjPBwEsvvRSDBg2KCy+8cJ7jI0aMiOOPPz422mij4nbKKafE+PHjF3h+Y9sBAABALWkbNWD27Nnxne98J2bNmjXP8QkTJsShhx4aM2fOjKOOOirmzJkTQ4YMiZdffjluueWWaN++/SK1AwAAgFpTE8HAb37zm3j11VcXOH7VVVfF6NGj46677opVVlmlODZ48OA4/PDD4/bbb4999913kdoBAABAran6pQR5Vf/iiy+Or33taws8NnTo0GJZQGWwnzbbbLNYeeWVi8cWtR0AAADUmta1sIRg8803j913332exyZNmlTUDRg4cOACz8tjzz///CK1AwAAgFpU1UsJLrvssnjzzTfjoosuKkKCuY0ZM6a479u37wLP69OnT0yZMqW4NbZdt27dmuz7AAAAgOZStcFA1hT49a9/Hd/73veiX79+MXLkyHkenzp1anHfqVOnBZ7boUOH4n7atGmNbvdJgoG6urp4+umnF/l50FJVAjjnNbXGuU0tcl5Ti5zX1KK6urrm7kJ1LiXIXQNOPfXUWH/99RdaGLAxP9xWrVo1uh0AAADUoqqcMVDZSvC3v/1tjB8/vjg2efLk4v79998vjnXu3Ln4fMaMGQs8v3Ksa9eujW73SWSgkLsbQK2opPPOa2qNc5ta5LymFjmvqUWtWsCF6KoMBh566KGYNWtW7LPPPg2GBnnLbQbT2LFjF2jzzjvvRPfu3YtQoH///o1qBwAAALWoKoOBb3/72/UzBCrefffdOPnkk2OPPfaIPffcMwYMGBDLL798g7sKvPDCCzFo0KDi4xz4N6YdAAAA1KKqDAYaGqxXig+usMIKsdlmmxUf77jjjnHNNdfEsGHDYpVVVimOPfLIIzF8+PA48sgj65/b2HYAAABQa6oyGGiso48+Ou6444447LDD4ogjjihqBlx++eUxcODAYmbBorYDAACAWlOVuxI0Vu/eveO6666LNdZYIy644IK4+uqrY/vtty8G/e3bt1/kdgAAAFBrambGQNYJyJ0K5pe1Bi677LKPfX5j2wEAAEAtqekZAwAAAMBHEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAibVt7g4A1WHc2JeiW49RMWfOzHhrxPjo0WXl6NH7M83dLaBKTJk4Mia+93pMnzExWrduFz26rBBLLzOoubsFVInp70+JiRNfjM7dxkTU1cXoUTOjd8+1on2nLs3dNagJggHgI40f+0q8Pvovce8T58aEyW/WH1+x34ax80bfjf5LbRhde/Rr1j4CLdf70ybGqLFPxL2PnxnD3v57/fHuXZaNHdY/MVZf4YuxVJ81mrWPQMs2evST8fdnL4rHX7qhuECR2rbpGJusdVBsOuiY6Nd3/ebuIlQ9SwmAhRo/9tX4y7/OjhvuP26eUCC9NfqJ+M2de8bzb9waU6eMa7Y+Ai3X9BlT49W3hsZFt+8yTyiQJk8dFbf+7ZS4+9FTYtzYF5utj0DL9p/Rj8fFd+wajz5/dX0okGbPmR5/f/by+M2de8ToMU82ax+hFggGgIX6z/gn49EXrvnINrf89RsxftLzS6xPQPUYP/65uO5PR0Zd3QcLbfPM60Nj2Ki/LtF+AdVh0vg34ncPfCPee3/sQttkyHjHQ9+OyRPfXqJ9g1ojGAAaNHH88Pjzkz//2HZ1URfPv3FXzJr1/1N8gPT6fx6MOR/M+th29z35ixg/9qUl0iegekyc+nq8Ofrxj233ysgHYtJ7w5ZIn6BWCQaABk2bPjpGjP1Xo9o++cqtMWXiG03eJ6B6vDdpVDzx8u8a1Xb85OEx5f3/NHmfgOoyatyzjW47dtKrTdoXqHWCAaBBc+Z8/FW+itmzp8cHdbObtD9AdZkzZ0axBrixPvjArCNgXrNmTWuStsCCBANAgzq06xYd2nVtVNtleq0WHTv0avI+AdWjY6elo2+vzzaqbevWbaNjh95N3ieguvTq3vhtkXt0Xa5J+wK1TjAANKjXUgNj87WPbFTbz6/z1ejaY9km7xNQPTp06hqbrnVYo9quv9qXomeP1Zu8T0B16dNj9ejQvtvHtuvcsXcs1W2VJdInqFWCAaBB7dq1j/VW2y86dej5ke2WW3rt6Ndr0BLrF1A9luq2Wqy63BYf2aZd206xxeCvRafOPZZYv4Dq0HupQfHFTU7/2Ha7bfrD6NN38BLpE9QqwQCwUP2X3TiO2e226Na5b4OPr7jM5+KgHa+KpZcRDAAL6t1n9fjSVhfGZ5f/fIOPZ/B49G63xrLLbLzE+wZUx0WKtVbYK764yXejVbRa4PFWrVrH7pufEZ9dbudm6R/UkrbN3QGgZVtx+c/HcXvcG2MmPh+Pv3RDTJsxMZbuvmJssPr+0bvbqtF7adN/gYXrs8w6sc/Wl8bEqcPjqVduitETXouO7brGhmvsG8v2XieW6btec3cRaMF69VklNmz3tfjsCl+IV0bcFy+N/FtGAjFwxW1i1eW3jR5dVomuPRq+gAE0nmAA+Fh9+q5T3JZbZqeo+2B69F5KPQGg8XovvVpxG7DSjjHj/cnRpn2naNumXXN3C6gS3Xr2K27LL7d5rDf+nYhWraNXr6Wbu1tQUwQDQKO99dZbxb1gAPikOnTq3txdAKrYWyNGFfeCAVi81BgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASqyqg4GHHnooDjjggBg8eHCst956cdhhh8W///3vedqMGDEijj/++Nhoo42K2ymnnBLjx49f4Gs1th0AAADUkrZRpR5//PE4+uijY7XVVosTTzwxZs+eHb/97W/joIMOKu7XWWedmDBhQhx66KExc+bMOOqoo2LOnDkxZMiQePnll+OWW26J9u3bF1+rse0AAACg1lRtMPDjH/84ll122bj55pujU6dOxbE999wzdtlllzjvvPPiyiuvjKuuuipGjx4dd911V6yyyipFm5xdcPjhh8ftt98e++67b3Gsse0AAACg1lTlUoJJkybFSy+9FDvttFN9KJCWXnrp2HDDDeNf//pX8fnQoUOLZQGVwX7abLPNYuWVVy4eq2hsOwAAAKg1VRkMdO3aNe69996ipsD8cllAmzZtivAg6wYMHDhwgTZ57Pnnny8+bmw7AAAAqEVVGQzkwP8zn/lM9O3bd57jOYvgqaeeKgoRjhkzpjg2f5vUp0+fmDJlSnFrbDsAAACoRVVbY2B+U6dOjW9/+9vFx8ccc0zxeZp7qUFFhw4divtp06Y1ul23bt0WuU91dXXx9NNPL/LzoKXKIp/JeU2tcW5Ti5zX1CLnNbWorq6uubtQnTMG5vf+++/HV7/61WLGQIYCWS+gMT/cVq1aNbodAAAA1KKqnzEwefLkOPbYY4slBHvvvXexdWHq3LlzcT9jxowFnlM5lrUKGtvuk8hAIXc3gFpRSeed19Qa5za1yHlNLXJeU4tatYAL0VU9Y2DcuHFxyCGHFKHAfvvtF2eddVb9D7V///7F/dixYxd43jvvvBPdu3cvQoHGtgMAAIBaVLUzBt5777048sgj48UXXyx2J/jOd74zz+M5oF9++eUb3FXghRdeiEGDBi1SOwAAAKhFVTtj4Ec/+lERCuSMgflDgYodd9wxHn300Rg2bFj9sUceeSSGDx8eu+yyyyK3AwAAgFpTlTMGcgB/xx13FFf711xzzeLj+e2xxx5x9NFHF4/ljIIjjjiiqBlw+eWXx8CBA4vHKxrbDgAAAGpNVQYDjz/+eH3hwYXNFsgBfe/eveO6666Ls88+Oy644ILo2LFjbL/99nHKKadE+/bt69s2th0AAADUmqoMBvbff//i1hgDBgyIyy67bLG1AwAAgFpStTUGAAAAgE9PMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoKBuYwYMSKOP/742GijjYrbKaecEuPHj2/ubgEAAECTadt0X7q6TJgwIQ499NCYOXNmHHXUUTFnzpwYMmRIvPzyy3HLLbdE+/btm7uLAAAAsNgJBv7rqquuitGjR8ddd90Vq6yySnFs8ODBcfjhh8ftt98e++67b3N3EQAAABY7Swn+a+jQocXygUookDbbbLNYeeWVi8cAAACgFgkGImLSpElFfYGBAwcu8Fgee/7555ulXwAAANDUBAMRMWbMmOK+b9++CzzWp0+fmDJlSnEDAACAWqPGQERMnTq1uO/UqdMCj3Xo0KG4nzZtWnTr1q3RX/Odd96J2bNnx5ZbbrkYewrNq66urrhv1apVc3cFFivnNrXIeU0tcl5Ti959991o27Z5h+aCgbleYD7Kor74ZKCQz7GbAQAAAAvTrl27Zh83CgYionPnzsX9jBkzFniscqxr166L9DWffPLJxdQ7AAAAaDpqDERE//79i/uxY8c2uCSge/fu9eEBAAAA1BLBQEQx8F9++eUb3H3ghRdeiEGDBjVLvwAAAKCpCQb+a8cdd4xHH300hg0bVn/skUceieHDh8cuu+zSrH0DAACAptKqrjGV90pg/Pjxseuuu0abNm3iiCOOKGoLXH755bHiiivGjTfe2OzFIAAAAKApCAbm8vrrr8fZZ59dFA7s2LFjbLXVVnHKKadE7969m7trAAAA0CQEAwAAAFBiagwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgoInY7AEAAIBqIBhYzMaOHVvct2rVqrm7AgAAQI2pa4KL0G0X+1csqfvuuy9+9atfxYwZM6Jz585xyCGHxLbbbhvdu3dv7q5Bk3nrrbfi3nvvjeWWWy5WXHHFWHvttZu7S/CpOa+pVc5tapHzmjIZM2ZM9O3bt0kuQreqM+f9U7vlllvi3HPPja222ip69eoVr7/+ejz22GOx1157xemnnx4dO3Zs7i7CYpUvG5deemn8+te/jqWXXjreeeed4gXq+OOPj3322Sd69+5dtDFzhmrivKZWObepRc5ryuSVV16JH//4xzFq1Kho3759cQH64IMPLs79xcWMgU8hX2xmzZoVd955Z6y66qrxv//7v9G/f//isR/96Edx6623Fr+4733ve83dVVisXnvttbjmmmvigAMOiP/5n/+JNm3axFVXXRWXXHJJvPHGG3H22Wf7Q0zVcV5Tq5zb1CLnNWXxzDPPxDe+8Y1YfvnlY4cddoi33347Lr/88nj++efj5JNPjtVXXz0++OCDaN3601UJEAx8Cvlik8HAc889F9/85jeLUCA/b9euXXz961+PqVOnxm9/+9vYfvvtY7PNNmvu7sJiM3To0Jg2bVocdNBBxYtUJQybPXt23HbbbbHBBhvE3nvvLamnqjivqVXObWqR85qy+POf/xzTp08vLkKvt956xbGbbropzj///OICdH78aUOBpPjgpzR+/PhiqtJLL71UfJ6hQCY2uaRg3333jZVXXrlYZpAvUlDtMvhK+Qe2Q4cOxRqnNHPmzOLY4YcfHuuvv3789Kc/LQpx+kNMNXBeU6uc29Qi5zW1rK6BVf7/+te/YuDAgfWhQNpvv/2KmnZPP/10UeducRAMfEorrLBC9OjRI1599dV488035/mF5i8v1zhlaJDLCqDa3HjjjcXtwQcfrA++Uv6RnTNnTjzyyCPzHP/sZz8bX/7yl4tU8+KLLy6OZVAGLYnzmlrl3KYWOa8pi4kTJxbBV2Usmedtzorp0qVLUUPjvffeK45XLjjvsccexcz0yy67LIYPH/6p/33BwGKQg/9cTvDvf/+7+DzXOOULVU7p2GabbWLdddct1jtBtXj00UeLoiYXXnhh/OIXv4hjjz02TjzxxPjnP/9ZPJ6PTZkypfg8//BW/jinzTffPL7whS/EDTfcEP/5z3+K/wdqnNISOK+pVc5tapHzmrKYPXt2nHnmmcVs86yX8dWvfrWooZHnbO52169fv2I3gqw1kNq2/bAaQC5jz2L3OXMmi3B+2hBMMLAY7LLLLsX2KLfffnuMGDGiOFZZ55FLCTIcGDduXNxzzz3N3FP4ePkilAVNlllmmWJqUv5RzeUwDz30UPGiNXr06Bg0aFDxRze3B8oXrkoglnJpzY477li8kGWCmUzjo7k5r6lVzm1qkfOaspg6dWqxk8Zf/vKX4pwdPHhwMdv8K1/5Stx8881Fm5wBM2nSpGJ2TLZPlRBs4403jp122inuvvvuGDZs2KcKwQQDi0EuJTjssMOKZPNvf/tb/RqnyjSPDAYy2Rk5cmRzdxU+Vs5+efjhh4vUMpfDrLLKKrH77rsXBU/yHK7ssnHEEUcUVVHzD3JlatPcL1JrrLFGvPDCC0UdDmhuWbnXeU0t8ppNLfKaTVm89NJLxRgy6wXkzgNnnXVWXH311dGtW7f42c9+Fs8++2xxHmdocNddd9XXtcsQLAOArl27xtZbbx3du3ePW2655VOFYIKBxSRfrDbccMNim5SnnnpqnlkDudapZ8+eMWHChGbuJSwoU/ac0VJJFytp+1JLLVXcz5gxo7jPqUpZ6CTDr0wlM6XP2TL5IvTkk0/WPzeDsXyR+tznPldMe6p8PViS8urS3//+93mO5R9K5zW1sJf13IOcynsN5zbVLGfcvv/++/WfVwY2zmtqVd1/33e//vrrRV2BPK+zTkZ+vNJKKxU73uXF5+9///tF27wInbMGcoZ6vm+fe9nA5z//+WJ2TS6bmfv/0aISDCwm+eLz3e9+N0aNGhWXXnppvPzyy/V/rHPaR1ZFrWylAi1Bpus777xzkVBm4ZLvfOc7xZWnTCg7deoUjz/+eNEu1y3lC08e23XXXWPttdcutkfJP7rHHXdccZ5X9lJN7du3L+7zj3Cm95XqwbAkw64f/vCHceeddxZvCCtvKrN4j/Oaat6uKgdA+Zqda6dPP/304lzv2LFjMV3auU01+uMf/1icpwceeGCxP3suG8jX7TyvvReh1oz774B+bpWt7nPngblDsRzsH3DAAcWMl2uvvbYIuTI8yGDggQceqD+/8/k5M3311VcvgoH8P/JJCQYWo5zmkX+o80Upi6P87ne/K35511xzTbF7wZZbbtncXYTiD2uGV6ecckqxPu/ggw+OL33pS/GHP/whTjjhhFh22WVjtdVWi8cee6x+p425z/HcEzin8V1//fXxmc98pgjEsvBmTnd69913iz/AL774YrFWarvttoull1662b5XyqlS6yW38KnMGsitq3JLqyeeeMJ5TdX505/+VEydztfso48+Onbbbbci3M1BVU6xXm655ZzbVJ18f3zyyScX5+mee+5ZLBnIYCBrCeR5nXW6/vGPfzivqXp33HFH8bp90EEHFeduvqZn4cyU528GXDnjPN+j5yA/l8NkQJBh2aabbhoXXXRRMRMgx5c5pvzNb34T9913X/H8DBXy/0IuOciZBumT1hj4sKQhi00Wh+jTp0/xwpZXrDKxzIqRWSglCxRCc8vtTrKYyVZbbRXf+ta3ikqnKV9ofvzjHxc7aGQ11LxlUp8zXSo7beR9TtvbYIMNivQyE/5M7jOhzD/wWU8jQ4VKOp9T/mBJyT+oedUobzmLK9ed5lTTddZZpzgvDz300GJKnvOaajqn883h73//+2JK9de//vXitTrletMssJZyFkEGB85tqsXkyZOL6f9rrbVW8V4kL0qkHPjkhYr999+/eM3+9re/7bymql155ZXFjgGVYpg5qzzP+ayf8X//93+x2Wabxaqrrlpsx5mzwgYMGFA/6zwH+rlcPWsQ5IyY/Btw9tlnF7U28mJ0vs/J5eo54zeLEub/g6TGQAuSyWQmmJnm5y8xC0Xk9A9oCXJZSyaL+YKUoUClSGYuK8hQ669//WuR0ucf6/yj/cYbbxSPV9bn5ZvSLOiTL0CVvYOz+E/uMZx/xPPFLf8P5Hm/ySabNON3StlU/pC++uqrxTmcV6IqRWHzzWRW7c3zM2dzOa+plnM6BzZ5JSmXfOV5WpkSnedhXlVNeVUpr6LedNNNzm2qQg7a87U6z+sMBfKKacoZMRmI5fKvLKiWdbq8F6Ea1dXVFednnoO5dX2GXjmYzzCrUhcjt+GsnLt5xT8LblaK2FeKaOb5m+PInGWQgVruWvCTn/ykmEnw05/+NM4444wiTMuvn6HYpyEYaCKZCOXUvpwWBS1JpWhVbmmSKlOWMhTIqXb5YpSzXLLISe6XmttsVir9Vv5w5x/yfHGae6pSpvknnXRSkWRmwp9XbGFJqpyPWUtg2rRpxXS9XIeaf3wzTc+KvfmmM5cYOK+pplleed7l9OjKtNE8f3Ov67xSmrNgstZAbneV5/nQoUOd27R4eT7me44MbueuCZDT//N4Dvyz8NoxxxxTvBdxXlNN5vx3KcD06dOLczqv+uf77Mq5m4P4DL5yaW++bufFuVzymIWTc0bB3LsOZHCWYcDEiROLWTEpZ8tkjY1cKpNfI2cb5LLgT0swACWTCXtOscvgqnLlKV98Mp3PfYEzKEg55SkTzdwy5f7775/nD3c+L1+sKn+kK8+pfC1oDpWpcxl6ZQiQbwizKFVeacrEPv8g5x/nPK9zBxnnNdUgBzp5sSFneuVrdC5VzNkwuYwgC7Ll0rAjjzyyCMMy0L3iiiuc27R4OcMllzTmMoGsKfDPf/6zKL522WWXFYP9rIN0zjnnFDMbMwDL9yJZgDM5r2mJXnjhhWJGQJ6XlfMvL8blMrC5i2LmOZvndS4/z/u8+p/FNr/yla/EW2+9VVzMyEA4VYKEnB2Q4XC2S5UwLGsnZaAw97n/aQgGoGTyRSWn2uXU07zyVJHbpWQamX+s84Ur2+WVqBxg5RvRSpGTrBZ82223FcFCrvGDlqLyhzKnX+dAKv+gZiKfSXwGA1lvIP8A5xWovBJ14YUXOq+pChlo5TTTvOU5e+qppxZXi3KwlGuqs4ZRTinNGTG5ZdUvf/lL5zYt3rHHHlsMhvL1+Wtf+1pRVyDP0yzQlldJ871KbtmWy8DyNTvXaed06uS8pqW59957i3owOaOrIpc15izGnDWQwe7cWwzmVf+8yp+FY/P1OovUZwiWwUAuC0sZ/mbQkKFYhsH53jzf63zSGgIfR/FBKKF8kaqoFPLJar75YpNVr1POIMg/xFmQ8IILLigKnmQRlNzOMNcFZnHCLHjSlC9QsCgq52H+8c1wq3JVKc/V/KP7gx/8oAjDMhg466yznNdUjQxyr7vuuqLAYA6YcguryhWpDTfcMA4//PA47bTTijePF198cfGxc5uWLgOtHPh/8YtfLGYIbLTRRsUV17wKWhloZSHvnC6dwVfOLMjdk5zXtCR1/z33sp5ADvpzOUBe4c+QNq/k544bGWplsJszBPK1O9vle5RcDpO7y+T7kXydz63Dc2lY1qjLWQNZWyBnxOQOS3mRo1IwvKkIBqDkKm8us+hgBgZZwb2SUlaKnmStjCyomVsG5QtU/uHOQirQEuWWPrn9T8rkPov75HmehTZzHXavXr2KP9p5rmcyP3z4cOc1LVqut86CsTl7K/eoznM8l8rkOZ1vPPN8znM+Z8Xss88+xVKZvOLk3KYaPPnkk8UV1QwHMhSo7DCT7z8yLMj3Hxl0ZTiWt1we5rympWjVqlWMGzeuqJeRr8/5uptLvPL9RspgIM/hO++8s3jfUQm+Us7SzYKBOfPrgQceKGY55kWMLCaYYULW1sjgIXcbyNoZTU0wABSpZO4VnC9YWQE45R/mfHHLMGDbbbctrkhJ46kGOWjK8zZnBmSF35yGnYUI801nBmBZqTqruWcQlmuyoaXLwX/WxsirRnlu53rsXJ9d2YkjZxHkFdS8ApXH8s2pc5tqkYOqlIXa5l4WljMBcllYLmnMpY5ZGDnfi0BL87e//a04j3PwnuFVhgD5XmPNNdcsimkefPDBxayAfD+d70kqFyvytT1fyzMYqBQWzCA4379koJB1BfK1vbJNbVNTYwAoKv7m0oHKOr2cip1pZRa4ynV/+WIlFKAaVNbu5R/prDGQhaxyn+Bcy5dTULO4Va5LrRT0gWqRa1UPOeSQmDJlSjFVNevCVIKBfA3PzyvBLlSTvEqaA6V8fc5ibflxrqvO6uy55WwWV5v7Kiu0tPcd1157bTF4zxoBubwl3zfnLIGUSxhzkL/66qsXxWFzZ6S55Y4DOUu3UkSz8j4mlyLk1uFLKhRIZgxAiVXWRWUV1LzPIj45pe/KK68sqlpniplrszOlh2qQA6WcGZAV3HMKaib1FTkVL8/trN4O1SZfo3PWQAYAuaQg33hmrYGUU1BzBkye41BtcsC0xx57FNuu5RXS3Xbbrbj6mktjcgZYzviyywAt+X3HoYceWn/BIWcE3HrrrcX76JwhkLcMtrL2SxbWHDJkSLF1YWXAnzMZMxTImV+Vr9dcWtXNvfknUEq5Tu93v/tdkdo/9dRTxRrsLHKl0i/VqrJGdf4QLP/42teaapczBnK66ogRI4plA3llKXeRyZkxUI1yWvW3v/3tYpCUA6y8gpqF1vK8zpAXqsnjjz9e7LqRxWFzCUFlm8EMv3ImY4YCGRLk+5I77rij2KLzkksuKV7Lm5NgACiuouY2brkLQU6BsjYVoGXLkCurYGeNmLXXXru5uwOfWgYCo0aNKpYT5Mcbb7xxc3cJFsncu2PkDgO5LDdnMVZmd1V228jtZvNcz5kwWTg2d0rKegTNTTAAxGOPPVasecqiPpUt3gAAgMarbAOeSxq//OUvF7MAcvnX3Mtys1ZMFtTMECxrDLQUggHA/r8AALAYlzNefPHFxbaDRx55ZJx44onR0tmVABAKAADAYpSBwGqrrVbsUJDbzLZ0ggEAAABYDHK2QC4pyOW5WWQw6whkYe+WzlICAAAAKDEzBgAAAGAxq6Zr8IIBAAAAKHEdL8EAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAACw2L333nux7bbbxuqrrx733XffQtudeOKJRZubb755ifYPAPj/BAMAwGLXtWvXOOuss6JVq1bxgx/8ICZMmLBAm1tvvTXuueee2H777WPfffdtln4CAIIBAKCJbLrppnHggQfGu+++G2ecccY8jw0fPjzOPPPM6NOnzwKPAQBLlmAAAGgyJ510Uqy00koxdOjQ+NOf/lQcmzVrVnzrW9+K999/P84555zo3bt3c3cTAEpNMAAANJlOnTrFj3/842jdunX88Ic/jIkTJ8avf/3reP755+Pggw+OLbbYorm7CACl16qurq6uuTsBANS2n/zkJ3HFFVcUQcBjjz0WAwYMKGoMtG/fvrm7BgClJxgAAJrcjBkzYs8994zXX3+9CAN+97vfFbsRAADNz1ICAKDJdejQIdZaa636j3v27NncXQIA/kswAAA0uXvvvTfuvvvuIhCYMmVKfPe7323uLgEA/yUYAACa1JgxY+L73/9+UYjwxhtvLOoLPPTQQ3HTTTc1d9cAAMEAANCUspTRqaeeWuxGcPLJJ8fKK68cZ599drFLQRYkHDlyZHN3EQBKTzAAADSZq666Kh555JHYfPPN44ADDiiOrbvuunH44YfH1KlT47TTTivCAwCg+diVAABoEi+//HJ86UtfKooNZn2Bfv36NbhLQdYbOOSQQ5q1rwBQZmYMAACL3cyZM+Okk04q7k8//fR5QoGUYcE555wTbdq0iV/84hfxxhtvNFtfAaDsBAMAwGL385//PF555ZXYYYcdipkBDRk8eHCxpOD9998v6hB88MEHS7yfAIClBAAAAFBqZgwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAER5/T+JVG+UCfy7SgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot = gpv.plot_2d(geo_model, \n", " direction='z', \n", " show_lith=False, \n", " show_boundaries=False)\n", "\n", "plt.grid()" ] }, { "cell_type": "markdown", "id": "objective-standard", "metadata": {}, "source": [ "\n", "\n", "## Plotting the input data in 3D using PyVista\n", "\n", "The input data can also be viszualized using the `pyvista` package. In this view, the interface points are visible as well as the orientations (marked as arrows) which indicate the normals of each orientation value. \n", "\n", "The `pyvista` package requires the Visualization Toolkit (VTK) to be installed." ] }, { "cell_type": "code", "execution_count": 16, "id": "03cfc42d", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:13.610826Z", "start_time": "2022-03-27T11:06:12.551420Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\pyvista\\jupyter\\notebook.py:56: UserWarning: Failed to use notebook backend: \n", "\n", "cannot import name 'vtk' from 'trame.widgets' (C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\trame\\widgets\\__init__.py)\n", "\n", "Falling back to a static output.\n", " warnings.warn(\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAMABAADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqrqWo2ekabcahqFwlvaW6GSWV+iqP5/QcmgC1RXD+Efir4e8Y6s+mWaX1pd+X5sMd7CE89OcshBOcYzzg88ZwcdxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmvioN458e2fgxNx0fTAl/rZBIEh6wwHjBzwxHccggrXpVeS6r4B8bJ4t8QzeH9ZsbTS/ERj+1XEoZriBVGCEGOuGYDkcY5UgGgC54XWLxn8UNQ8YQRp/ZGk2/9ladKAMTuCTJKpB+6NxUdiGB4INM8TfFy70u/1L+xPDM+r6ZpD+XqN8JvLRJOhRflOdpIyfrxjDVBN4t0/RvhLb2vgiG5Z5bv+w9KeWMJ505JXzgeFIPzNu6FjggcgVNa0KKz0nQfhHob5lvFW41e7RSClurBpJD1wzsMAEkDAU8EUAesaXqEOraTZ6lbBxBdwJPGHGG2uoYZHrg1bqK1toLK0htbaJYoIEWOONRgIqjAA9gBUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARtPEk0cLyossmSiFgGbHXA74zXn3xgv9TstC0eKy1aXSbW91WC1vb6F9jwRNn5t3G0AjJOR0x0Jrjn8DW/iT4p+NLPVr66t9eCw32i3sTuhij7MuOCEPloe/Bxg8jtPDl7H8SfAOo+HvEaeXq1sDYarF8u9Jl+7KAOOSoYHGNykDIFAEXhS/1fwn4vbwT4h1ObUoLqI3OjajcKfMlAyZIXbJ3MvUe3cAqo9Hr568TeJ408BS6J4juxa+N/C13E9jOwZmuCjLslUkfMGTrnqQGI7D3jR76TU9EsL+WAwSXVtHM0J6xllBK/hnFAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiohdW5uTbCeI3AXeYg43bc4zjrjkc0Acv488EDxjpNpBbag2l3tldreWt1FHuKSDPbI6k5yDnIBpfBfgePwqb29u9Rm1bW9QcNd6jcDDOBwqKuTtUDtn9AoHWUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVJdStodVt9NdiLm4ikmjGOCqFQ3Pr84/WrdeU6rF4im+PemzRWriygtvlImG14OkjkZ7PIBjGTtBr1aqatYmMr3CiiipKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhPiNoN/KNO8V+H7fzde0KQyxxKgLXMBGJIvclScdT1A5auL8MeKoPGXxlkvvDVvfW9le6OYdWdhsMci52P1ILj5FB54zx1r2+jGKAOW0zwTZf2Lptv4mS08Q6lZJsGoXlopkYbiVHOTwCByeSMnk11NQfbbT7d9h+1Q/bPLEv2fzB5mwkgNt64yCM+xqegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8WR6jNaWEWn3/2MSXqJO20nfGVYBMggrlynKkHjrzS6Tc2emtFYXNlBpd9OR8itmO4fGTskIHmHg8EBsAnGOa1r2xttQgSG6j8yNJY5lGSMPG6uh49GVT7454p11awXts9vdQpNC4wyOMg0ATUViRwajovEDS6jp6qoWGR91xFjOcOx/eDpw3zdfmbIFadnfW2oQmW1lEiq21hghkb+6ynlT7EA0AWKKKKACiiigAooooAQkAgEgZ4HvS14h8WfBdl9g17xT4p8QTyyBfL0W0hIjSJsDam0k7iSPmxjgM3+7tXXxXsPA2meGtI15Lu71Q2ELaoUO+W1PljmTP3mLdRnOMnuoYA9VoqppmpWesaZbajYTCa0uYxJFIARuU9DggEfjVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5wOr/ABJdBnfFpCk/R5jj/wBANdHWNBpVxH4zvdWYp9nmsILZAD825HkY5Hp84/WtmmxIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorz/xL8YvDHhbxK2h3q30s8QQ3EtvCGjt92PvHIJwCpOAevrxQB6BRUNpdwX9nBeWsqzW88ayRSIch1IyCPqDU1ABRRRQAUUUUAFFVr2/tdOt/OupRGhIVRgksx6KoHJJ9BzWe0Wo6ucTNJp1kG+5G376Zfdh9wH0Hze69KAE1Oeyv5RZx2MWpXMbE4IGy3bGcs+DsPTp83tUfhNL6HTrm3vbtrryLl4opGyTsUKCMsSzYbcMsSTjk1sWtpb2VusFrCkMS9ERcD3/ABpLSzt7GJoraJYkeWSZgvd3Yux/FmJ/GgCeiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArMv9Fhurj7bbSNZajhR9qhA3OqnIRweHXkjB6ZOCDzWnRQBjJrUlg8cGuxxWru+yO6jYm3kJOFG4/cY5Hyt3OAzVs02SNJY2jkRXRhhlYZBHoRWKmm3ui4/sh/PslDE2E7kkEnI8qQn5R1+Vsr0AKAUAblFUtP1W11IOIS6TRHEsEyFJIzkjlTzjg4PQ9QSOau0AFeYfGLxr4n8IabbtoOnN9nkU/adTaESJbnICgDPDZPVxtOQBk5x6fTZI0ljaORFdGBVlYZBB6gigDxnwnovhG9n03xZrPi5/Eeq3V19lspr0FYobk5dUEPVSOcAkLyMAErVHw5p/iDwj8Txofiq50zV7fxVFPNeylA2diO3zZUELhcbcbQGOOldX42+GzS6XpMvgu0sLG+0nUTqEMDLsikZiGbt1yqYHAAGBgAY4fxfoPiGxgTU/E+qWn/CQeJbmLRkeMHyNOtHOZNpOOT90/7LPySxNAF6/wBZ8XeI9F1XxH4W1WLQPCmhIy6bCsG37YsK8nkfdONoH3eAuMgmvXPCOrXWveEdJ1a9gWC5vLVJnjQEKCwzkZJOD1HPQ15x4ltbPXdU0b4T+HiI9KtUS41d4WB8uCMgrGT/AH2bBJxnJU8/NXSePfElz4b0/S/DfheGJdc1RxaafEseUtowAGkKgEBUGMcYHXBCkUAd5RXjXhiPxV4Q+L1p4XuvE154hsr6wa6umuQx+zY3hSNzNt+YAcHB3jI4Br2WgAooooAKKKKACiiigAorz74zaxfaT4AdNLmuYdQvruG0tpLaQpIHLbuCCDyEI/GtfVvH2i6L4j0/w473N9q93IqGCzi8xoQf45ACNqgfMcZOOcYoA6qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorD0vxdo2rvrK21yVGjztDeGVSmwquS2DztHzDJA5RscYJo+FviL4Z8ZXlzZ6LfmW4twWaN4mQsgIG9cjkZI9xkZAoA6qiiigAooooAKKKKACiioL2+tNNtJLu+uoLW2jxvmnkCIuTgZY8DkgfjQBPWN4p8Taf4Q8P3Gtan5ptoSoKRAF3LEABQSATz69Aa5Dxb4/e++G+oa94B1K0u5rQqZyYmaSKMkgsI2AKkfeywxtVuDWCumWutfDK58G6j45stY8Q3yLeWpkuQWDsFkSNSx3EHHUjOHJwBgUAdV4M+J1t4o1NtI1HSbvQ9XMfnwWt5kfaIv7yEgZPBOMdORnBxkSRx+FPjJepqMEMmjeMoUiR5EBVbiNdpibJ5DgnjHJdQBwazr66u/H/w8sfFulxNb+L/DcxaSLYyt5sePOhK9SGXDbeeu3u1bPiHVfDXxE8AaLFc3psJtckH9mSlSTBdpkYzjqGBTtuzx1BoAZ4Dlk8F+Lr/4eXjH7EQ99ocrkfNCxJeLrksp3Hpk4cnAxXp1eR6HoHxE1fx7oOoeLobCG00BJ1jubaQbrsumwtgE9cKeQvGeBnFeuUAFFFU7/VLXT/LSZi08uRDBGN0kpHUKv8z0HcigC50rJl1aW8eS30eNZ5F4a5kz5EZzgjI++w54X6Eio1sb7V0DauBbWzAg2EMm7cM8eY4xnjGVHHJGWFa8UUcESRRRrHGgCqiDAUDoAOwoApWekRW1y15NI91euMGeX+Ef3UXog+nXuSa0KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDP1LR7bUisxLwXkaMkN5BhZYs9cEg5GQCVIKnAyDVSTVrjRcjWlBslBP9pRgBEAx/rVzlD1+YZXgkleBW3R1oARWV1DKQykZBByCKWsWTSJ9O8yfQnSNmYu1lMxEEhxjC4yYunVQRkklSTmrOn6xBezyWrxyWt7F9+2nG1scfMp6OvI+ZcjscHIoA0axfFPhTSfGOjNpesQNLBvEiMjbWjcAgMp9cE+3NbDukaM7sFRRksxwAKIpY5oklidZI3UMjqchgehB7igDhNM8GzeBptI0/wZp9sLG5ui+s3l3JvlMaqdo7ZzkgY4Bxxgsa5PQ/EmjR+OPG/jLxHf24uNJmfTbG2LjzI4ULD5FJ5ZyO3cv2Ne01x2ofCzwbqniNtdvNGjlvHcSSAu3lyOMfMyZ2npyMYPOQcmgDK+Fmi3VzHfeOdZRf7X8QESxrwfItePLRT6EBT7gJnkGvRqKKACiiigAooooAKKKKAPIfizPqfiLxX4a8I+G5lGqwXH9qSyFcpa7P8AVu5wQOrcEf3f7wz2ngzwFpfg23kkiZ7zVrnm81K45luGJyxyScAnnGfTJJ5q1pHg7TNG8S6v4ghM82o6oy+bLcOHMaj+BDjKrwOMn7q+gqDxz460vwJohvr8+bcS5W1s0bElw/oPRRkZbtnuSAQC54p8V6T4O0WTVNXuPLiXiONeZJn7Ig7k/kOpIHNVPAXiqfxp4Ug12XTRYJPI6xRifzdyqdu7O1cfMGGMdvevnDXfFF/LqusX/jzSdQ/tqazMej28kflwWnmAguFbnKggqeTuHPIBHuK6n/wrD4KadefYBLLZWtv5lq0mzdJIy+YN2Dg5dj0NAHolFUYtY02bVH0tL62OoxxiWS081TKinuVBzjkfmPUVT8OeKtJ8V293PpE7TR2tw9tI/lkLvU/wt0YEYYYJ4YZxnFAG1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ2v6pHonh+/wBTlzttYHkwOpIHA/E4FAGjRWV4a1lPEHhrTtWTb/pMCu4U5Cv0Zc+zAj8K1aHoCd9QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACisnXfEWneHUsTfyMGvryKyt0Rcl5JGwPoAMkk9h3JAOtQBVs9TsNQkuY7K8guHtZTDOIpAxikHVWx0I9KwNe8eaLo8+p6at5DJrlnYyXaWDkoZdqFgobGCTjoMnHOK8TuYNb8I/FXxrqOgahELnT3/tKaym+WO6tZPnkGc4yhkQAdTk4ORg+js/hL42+CpLgQqL+2Q8E4nspSDgZHVCRx/C2OmRgAHP634k1G58O+G/G10zt4d1O1bT/EFhCWESLISjTKoycg5GSc8Ko+8azEsvHPwzs3bTNe8N3+mWFu1yls2xbi5tN5O4/KGIBcnhyMnAJyAYfh5qHiO38AafpWqeHZNd8H6ss0CNYJuuLXdI6sHA7bgzBj03A7uAo7PSfg3ZXug2lj4xEV/c6bK0NndWsjxu9oDlEk+hLcD7owAetAHo+j6lFrOiWGqQKyRXtvHcIr9QrqGAPvzV2obS1gsbOCztYlit4I1iijXoiqMAD6AVNQAUUUUAFFFFABXA/GDwxqfizwI1jpCGW7iuophAGC+cASpUkkDA3buf7td9RQB474i0PR/C/xP8KjTdNS1tPEUNxp2pWEKKsUse1AMqBgHLjJHXb9c5SfCXwRpWja3olx4gt5fElshvYrsy+RJaIFym5dxBUEZY4zhwePlNXPi54iu/D/AMTfB95b6VNfvbQzm3hUMBNLIPLCqQDkg7Dgc8j1FaunfD+58faQL/4k6XBDqxkLW72cnlyxwHpE4HHBBIyWIDdjmgDm/DGjeNNV0G08beD9Ss7TUNXtjDqlvcL8k0sTtGJxwRvONx4HJY87iK9J8DeBofDXgvS9F1RbW/ubKY3QcpvSOYsSGj3DIK7sA8HqeM10NjY6X4Z0JLW1jhsNMsoiQC21IkGSzMxP1JJPqTV2KWOeFJYZEkicbldGBDD1BHWgB9IzKilnYKoGSScAVRvtWis5Bbxo9zesu5LWLlyPU54Vfc4FVxpUt+3may6TLuDJZpnyYyPXoZDn+9x0wBjNADDqV5qxC6MqJbhwHvp0JRlB58pcjfkdG+6M5+bGKu2Gl29gWdS8tw/+suJjukfnPJ9PQDAHYVd6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVW+0601GNFuoQ5ibfE/R4mwRuRhyrYJGRzyatUUAcDpMd/G8934ggm1eCO+uYY5Su5rWJJWEbPEPlfKqp3qu4bhkcFq7i0u7e+tIrq0njnt5VDxyxMGVwe4I6021s47Rrgxsx8+YzMDjAJABAwOnGec9TVK60hxO13pdybO6J3Ou3dDOcYxIn5fMuG4HJHBANWisqx1kyXC2Wo25stQ2g+WW3Rynn/VSYAfoeMBgOSoyK1aACiiigAooooAKKKKACioby7t7CzmvLuZIbaBDJLI5wEUDJJrn/CXj7w741gZtHvg06AmS1lGyZACBkr3XkcjI5xnPFAHTVn3uh6VqV9Z317p1tcXdk++2mkjDPE3sf1+oB6gGtCigDzH4y6Hd+ILDQLRbB5dMj1FJtRu48FraEfKxx94jDMTgHGzntXn3xX+Is/jTw21voelzL4djvUifU7gbBPN8xVI1PbALHPPTIXv9H1zPjXwXa+NNGttPmuHtRb3iXiMiBgWXOQw7ghm6Ec4PPQgHnHiDRLb4d6XbaN4baa98b+JJPs51OZiZ8E5ll3c7Bk+uf4iWKZqyfjHa+G72LTP7JutQ0y1uUsL3X8iNJLkD52ChcMeC33gSOemCaniS41fwP4i1P4ieIdOhvLh79NM0yBZfkgtCrMZAcEhiAV6DBLnGGAqP4cWWnX3xJ8W6PYCDVvCAZL6MugkijuSVKhSeMjMi57iMUAe50UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXMfELRhrvgbVLRrl4AsRn3KoO7y/nCkehKiunrM8R/8AIr6v/wBeU3/oBpp2dxNXVmZXw80RdB8EabarcPOJIxcbmGMGQbiAPQZrqKzPDn/Ir6R/15Q/+gCtOhu7uCVlZBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZHie01u+0C4t/D2pQ6dqTAGK4lhEgGOcYOQM9M4bAJ4zjGvRQB84+NvHOuhNA0bxjoz2Gr6brFvd/bI8eRcxIGyynpn5lzgkdfu4xX0ajrIiujBlYZDA5BHrXkn7RKBvh5ZOQCE1SJjn08uQf1qzpXgrxh4D1iCDwpqUOp+G5XxJp+qSlTajqSjgHgnPQdWGVPLUAc/8WPCWnav8XfCX9qTNDYatG1pIYcBy8ZJXnH8RkRc+1dgnwm07SPEWlax4UvJdDktcRXUUYMqXcH8SMGPU4+8c9jjIBruLrS7C+urW6u7OCee0Ja3kljDGJjjJXPQ8Dkc1boAyvDnh7T/C2hW2j6XG6WluDt3uWYknJJJ7kknjA54ArVoooAKKKKACiiigAooooAKKKKAGNDE8yTNEjSxghHKgsoPXB7ZwPyp9FZl3q4Sc2lhAb28DbWRGwkXvI/Re3HLHsDQBfnnhtoXmnlSKJBlndgAB7k1xWox3JaC90GFtKguLqCOSQ5RrhXkVXKw/dB2liHZd2QOMc10ttpLPNHdanMLu6Qlo/l2xw5/ur6/7RyevQHFXbm0jumgMjOPJlEqhTjJAIGfbnP4CgBtnYW1hGUt4gpbBdycu56ZZjyx9zVmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhurS3vbdoLqFJom6o65Ht+NZTLqmjOXj8zU9Pyo8onNxCM8kMT+8UcHB+bg4LkgVt0UAVrHULTU7fz7K4SaMMUYqeVYHBVh1VgeCDyO9Wazb/R0u51u7aeSyvlxi4hx8wH8LqeHXtg8jJwVPNQQazNayx2mtwrazuSEuI8tby4OB85+4xyPlbHJIUtgmgDZooooAKKKKAPJvjDa+JPEGlQx6BFaX+hWhkn1OJbnBleFgTC4UhsDB4U5yOxC5zrXxF4Z0fwrpfjrRfDFtD4n1xDYWdjB8qyS+ZtYhRxjco5AycqCRnNZum+E/iTouj6p4F07TrRdNv7qQvrckqk+Q4Csduc5IHoSMnHZhpfD7R9P/AOEi1PXriURaF4QWTS9P3vwrICbi4YDu25m6fx/7IoA3PCfjjxYvjpfCXjTTLKC7urT7Xay2TZAGWyrfMw7MAeMbP4t2a9NDBs4IODg4r5t/tjXPFnin7dYSS2us+KCbTTjxu0/S0Y75fvcMxVumD8kmPvLXReH/AAzb+BvjfpWg+Gb/AFCWzlsHn1aGSUOuArhGfAAzuK4443DHDUAe40VHNPFbxmSeVIox1Z2CgfiakoAq6lptjrFhLYajaxXVpMMPFKoZT/8AX7g9qh0fQ9L8P2AsdIsILO2B3bIUxk+pPUngcnnitCigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq9/aLf6ddWbsVW4ieIsOoDAjP61YooAr2Fothp1tZoxZLeJYlZupCgDJ/KrFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuueH9L8SWAsdYs1u7USLL5bMQNy9CcEZ+nQ1pUUUAFFFFABRUbTxJNHC0qLLICUQsAzAdcDvjI/OvHrzxz8Qdc8SeIh4Ts9NNh4cuGhltZlLTXhBKkD3yjEAbeuPmNAHoHj/xRJ4N8FahrcNutxPAqrFG5O0uzBQWx2GckcZxjIzmuT8PePPFeneJdP0bx7pVnZjWBmwurRsIsnXynyx55CjBznA+bORvQXGk/Fv4ZyBWMdvqMOyRQdzW0ykHB6ZKuAe2Rg9DXHaVBP8AEH4d6j4L1dvs/ivw84jSQswIkjz5MwY9QwBUsMnBLcbhQB7JRXJfDTxU/jHwJp+qTlftgBhugv8Az0Q4J6DG4YbA6bsV1tABRRRQAVXvb62062a4upRHGOM9ST2AA5JPoKoSaw16zQaKsd043K1yT+4iYHaQWH3mBB+UemCVqay0lLef7Zcytd35XabiQY2juEXog9hye5PWgCuY9S1hmEvmadYZGFRsXEo9yP8AVj6fN7r0rTtrW3s4fKtoUijyTtQYyT1J9SfWpqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApksUc8TxSxrJG4KsjjIYHqCO4p9FAGEbG/0TdJpRa8slVmOnyvlwc5/dSMeO4CN8vQAoBWlY6lbagHELMssRAlhkG2SM+jKf59D2JFW6z9S0a21IrKWe3vY1Kw3kGFmiBwTgkEEZAJUgqcDINAGhRWIdWudIV/7cWNbVT8uoRZEYUDOZQf9X35yV4ySucVtKyuoZSGUjIIOQRQAteXan8EtM1HxHd3q61qVvpV/N9ov9LifEc8m7d1zwuecEEjnBHGPUaKAPn7RfGOh+BfHvji71+NodRhcWml2qW7DNsmRHGhA2qCoi64HAPrXoHww8PXum6ZfeJ/EQ267rcn2q6MgKmCL+CPknaAOccYyAfu12Vzomk3uoQahdaZZT3sAAhuZYFaSPByNrEZHJJ49a868faVr2ifDfxvdHWrrUZL+YSRRhMLbWzMqvGq84AQsCc4wM4ByaAMVNJtfi9rGq+J/EF1c2/g/TQ8GnRiQxrIFBMk5J6DvnHoCfkIPR/AqXUZ/hyr31xPPb/a5EsHmbJFuoVVA9AGVwB2xgcYrj5PEGneMvD+gfDbwG06W00Sf2nc+QU+zwLgyBuBlmbknoScZO+vctO0+20rTbXT7KIRWttEsMSZJ2qowBk9eB1oAs0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEhVLMQABkk9q4jSPinoXiDxsPDejrcXoEcjSX0SEwqy4wAe4PzfNwMhQN27juK8BWDxp4T8c6p4F8GxWFpHqF02qwXk0QxHCy/c53DaCpQcE5HYGgCLRPAcHjXXvG8uoanfQeMLDU2NtOJGRYVBPkuvGdpK4GOiquMcZg8JeMZtA8XJrmohYE1CcaV4khOxfs96mQlwQMBVbDE9sib0FB8Ta5aeJn8WXWkG28RaCVs/EdnABi6s3+7Mozk7cDJyR/q2zt4F+1udA+IXxiuodFje80LVNI26xlHjHmKTscA4w6kRAHHdvU0AdPpcZ8D/ABom0a250nxRE95FCG4t7lAzPgZ4VgD27qOi0258Dv8AETzNeu4NT8Ia/HLLZTNbyf8AHzCrYBOMbxjADcZx3XbWp4S+EWkeFfEMetf2jqOo3NvEYbMXcgIt0IxgYHOASOwwTxXoVAGN4V8Maf4P8P2+jab5ht4dx3ykF3YnJLEAc/h6Vs0jMqKWdgqgZJJwBWQdSutUDJo6qsQIBvplPlkd/LHV/rwvucYoAuahqlrpoiFw7GSZwkUUaF5JCfRRzj1PQDkkDmqX2K91cq+pM1ra8/6DE/Ljt5rjr/urx6lhVvT9Kt9PaSVS81zLzLcTNukf2z2HoowB2FXqAGRRRwQpFDGkcSDaqIoAUegA6U+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAOtYv9jz6bK02iSrFG7l5bGYkwvx/B/zyOcHgFevy5Oa2qKAMyz1y1uGliuA1ldQrulgufkKgAEsD0defvKSO3UEU611YX9yq2dtJLa87rs/LGeONmeXye44689qyvG+nadqGm6f/AGlB5kcepWuxhkMjtKqKVYcg7nHI/Hirf2nUNFREvRNqNmowbyNB5yAD70iKBuHHVB3HygAmgDboIBGDyKitrq3vbWK6tZ457eVQ8csTBldT0II4IqWgClp2jaXo6SJpmm2disjbnW2gWIMfU7QMmrtFFABRRRQAUUUUAFRXFzDaxrJPKsaM6RgserMwVR9SSB+NS15V8ctcl03QtLs7ad4rie784FR/DEM9fZmQ/hVRjzOxM5csWz1Wisvw3qx13w1p2qNEYmurdZGQg8Ejn8M9D3FalSUtQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5zxoviv8AsaOXwhJafb4ZlkeG6XieMZzGCeAScen1FdHRQB5f4B8OeLJvH2seMvFllbadPc2q2cVpA6uCuUO4lWbpsHU5OT0AFei2OmafpiOmn2NtaI7bnW3hWMMfU4Ayat1HPPDbQvNPKkUSDLO7AAD3JoAoXer/ANnXLC9tZYrPjbeL88YyP48cpznkjbjHI6U6fWrSPy47dvtlxNH5kMNuQxdf72egX/aJA96hW6vtXA+xB7K0OQbiWPEj+hjQ9B/tMO3AIOao+CbDT7DSr1dOiKRHUbpWLElmZJWRiSeT8yt7c8UAXv7Km1FxJrDrJHgYsY/9Sp/2ieZD9QB0+XPNa/SiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjmghuUCTxRyoHVwrqGAZWDKee4YAg9iAakoooAypdH8m5lvNLlFpdSkGRSC0MpGfvJkAE5+8uDwM5AxTrXWUkvPsF7C1nfdVjc5SUc8xvgB+hyOGHcDIzp1XvbG11G2NveQJNCSG2uM4YHII9CCAQRyCMigCxRWIRqeiAbPP1ax3chiPtMKk9jwJFA9fnwOrnitKw1C01O1FzZTpNCSV3KejA4KkdQQQQQeQetAFmiiigAooooAK4/4owGb4cauy8SQokyNgEqUkVv6V2Fc38QU8z4e6+PSxlP5Ln+lNbilszok2+WuwALgYA9KdXHeMdO1vV/BlrLoOvro11beXeGdyQjqqE7HbsnIJyCOORjNYnwu+I1/4n0HVLjxDBb28eklUk1NG2wTnDbj/AHQQApODj5xwBikM9MoqOCeG6t4ri3ljmglQPHJGwZXUjIII4II5zUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUBrmkHVzpA1SyOpgZNn9oXzgMbvuZz056dOaAL9FFFABRRRQAUUUUAFFV7y9ttPtmuLqVY417nqT6AdST2A5NZ2NQ1lW3ebp1g68AHbcyfX/nmPb73P8JoAmu9YVLh7KxiN5frjdCjYWLPQyN0Ud8ck9gabFo5nuFutUlF5Mj+ZDHtxFCe21e7D+8efTHSr9raW9lAIbaFIowScKOpPUn1J9amoAKjhghtkKQRRxIXZyqKFBZmLMeO5Ykk9ySakooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsy80aOa6N9aSvZ3+0r50X3X6f6xOjjjjPIycEZrTooAx4Nakt7lLLWYFtLhyRFMhLW83OAA5A2ucj5G564LYJrYqK5toLy2ltrmGOaCVSkkUihldSMEEHgg1kS2uo6NmXTAb2zVSTp8jfvB0wIpGOAOvyNxyMMoGKANyiqdhqlpqSy/ZpcyQtsmiYFZImxnDqeVOCDz1BBHBq5QAVS1fU9P0fSrnUNVuIrexhQmWSX7oHTGO5PQAcknAq7UN3aW1/ayWt5bxXFvKNskUyB0cehB4NAHkKjW/jXMSTcaP4FikwAPln1Eqf0QEe4B/vEfLj/ABNvoNI1DTfCcmhapaeA9MEUl6bGHC3BYkou/ONu7qSQzNuPUA17J4isbiXwbqun6SgiuX0+aG0SIiPaxjKoF6becY9K8MHjPUfGPgC3+HFhpOqzeI32W99PenKwhJAWdmJLdgCGAxnAyQAQDsdKXw58HPD9zrS67f3+jaqYn0yxA3H5l3ZQZAOQQSxC8AA5OM9T4L+I+k+NJriyhhurDVbYFprC7j2yKnHzjsR8wHqD2xgnhvAGmxeKvFS63PL53hzwnAmmaO0uNs0kaANOeeDgBs4/iTnKGtL4d+Z4t+I3iLx9Ghi0t4/7NsQUwZ1UoWk7H+Af99Efw0AesUVwnjL4teHfBeqJpl0l3e3uzzJobJFcwL1BfLAAkc4645OAQT1Wia7pviTSYtU0i6W6s5chJApXkHBBDAEHI7igDRooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqWrabo1stzqmoWtjAzhBJczLGpYgkDLEDOAePY1xesfFnSbLxfa+GNLs7rV9Qa5WC6FqpK2wzhiTg7mXjIHA5yQRiuT8QeHtO1z9oM6f4uje60+90zOlRF3VdygblypGD8szde49RQB7Fdebd6XP9guFSWWFvImGGUMV+VvcZwa+fPCHw80vxP8ADW5m07z7Tx1pd1IZJjMySJOjkqpGeAQAA3BDAnPBFdv8P7i48EeM7/4dajPJJZsDd6HNKcl4jktHnPUYPGByrnoRTfFtvffD3x2fHOlWE95o9/GIdbtLYEshH3ZwucZ46kY+9kjfkAHX/D7xavjLwnb6g6eVfRE299DtK+XOuNwwegPBA7A46g11NeR/CeabWfGni7xPY6ZPp+g6oYWhWePa00ozucEcHkuTgkZfrxXrlABRRVS/1K206NWuHO522xxopZ5G9FUcmgC3WTNq8k85tdJhF1KCVknY4hhI4+Zv4j/srk+u3rUf2K/1jDakz2dqHDJaQSkO4ByPNdf1RTjsSwOK1oYIraFIYIkiiQYVEUKqj2A6UAUbHR1t5Vury4e+vwGH2iUAbQTnCKOFHb1IAyT1rSoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigChqOkwahtk3yW12gIiuoCBJHn0yCCP8AZYEHuKppqt3pknk63GohL7Yr+BSYiMZ/ej/lkeDycrwPmBIWtuggEEEZB6igBFZXUMpDKRkEHIIpaxG0i50yXztDkRIixaWwmJ8l+Mfuz/yyPAPAKnn5cndVzT9Whvz5LRyWt6qB5LSfAkjB+hIYdtykj3oAv0EZBHrRRQB4TafDz4j6bpV14Gsr3Tk8NXMzM2p/8tRC33k25zyOox1JG7Fdrb+L/CvhT4W3N94enjutO0YNZxKvHmTg4AJwMlmYMWA5DFq9BrgfiJ8PYvEXgCTRNCgtrKWCcXdvDEoijeQbsg4GBkM3447UAc5oKx/Dj4a6n4z8RKs/iDWAbiVZhhneTJjgwcYHOWAHHzdQorp/hD4Yn8K/DyytrxDHeXTNdzxnPyF8YUggYIULkdjmuZ03wx458b+KNMv/AB/aWdjpWjnzYrGBwwupuzMFdhgEAnJxgYC/Mxr2CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTO0UMkiRPKyqWEaEBnIHQZIGT7kD3r588SeNfifd6cnjIWH9h6Bp9xE6WTsQ9xltv7zgMyknBHyggggEjNfQ1cr8StNj1X4a+IbaTJAspJ1A7tGPMX9UFAHnnja18UeHviML3wSmP+Ert44pJvKEiQzI6gyH5SFXYRknP3nPUDGPr1p4zv9Ut/CniSW3uPEtuDqXhzVrYBPMkj+Z4SdoHIXPIXDKuSQQa9G8NXGp+J/gppbaBqIsNTfT0giupUDgSRHY2cg/eKMM4OM5wcVi6D4Z8f65480nW/Gh0+3ttDWRbdbUgm5d12l+CcZ4JzjoAF5NAHK6n43k+IOueD7C00C9tvFWmanHLeNJEVS3VSPNHXcFJAJDAY2457+zaX4WtdK8T6xrsF1dtNqvl+dA7gxLsGAVGMg8seuPm6Vu0UAFISFUsxAAGST2qne6nDZyJDtee6kBMdvCMuwHU+gHuSByOaqJplxqRWbWWUpjixiOYh/vn/AJaH64X2PWgAfUrrUSYtHRfLIBN/KuYhn+4P+Wh+mF988VbsdLgsXkmBea6lx5txMdzv7Z6AewAA9KugAAADAHQUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1DS7TU40W6i3NE2+GVTtkibBG5GHKnBIyOxIq5RQByWparruhtBp+I77z1Ii1F4yWiCj5nmiQDdglPuYB3HIQDJ29Ns4Cy6iLs308iFRc7wV2Eg4QD5QMgdOTgZJxT7u2lk1XTrhFykRkEhyOAV4/UDpVe40Z4bqS90icWlzIytNGwLQTYPO5M/KxGRvXB6Z3AYoA16KzLPWUlnWzvoGsb5iwWCVgRKB1aNhww744YDqq1p0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMmhjuIJIZVDRyKUZT0IIwRT6KAOd8EeFE8FeFrbQ476W8WEs3myKF5Y5IUDoMknBJPPWuiorNvNXWKd7OyiN5fqoYwI2Amehduij9TjgGgCPVtOt2k/tP7fLp9xAgU3KSYQoGztdW+Vh1HIyNx2lSc1n2Wp6vrM01lGI7PyGXzLwRnMqHODHG33ScHliQMAjdnjRh0dp7gXWqzC7lDBoocYhhI6FV7t/tNk+m3pUtnbzR6tqU8ibY5TGI2yDuAXn6ck0AS2Gm2umxMluhBc7pJHYs8jerMeSat0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBXvbC11G2NveW8c8RYNtcZwwOQw9CCAQRyCOKy0GqaJhSZdU09QxLMc3UXPAxjEowT6NgD75NblFAFeyv7XUbYXFncRzxFiu5DnDA4Kn0IIIIPII5qxWVfaKJrlr+wnNlqWwqJlG5JPQSR5AccezAZAYZNJFrJt7lLPVohazucRzDJgmPHR/wCFiT9xsHrjcBmgDWooooAKKKKACiiigAoorl/HfjSPwLokGqz6dPe27XKQzeSQDEjZy/PB6YA4ySBkdaAOooqvYXiahp1rexxyxpcRJKqTLtdQwBww7EZ5FWKACiiigAooooAKKKKACoLu8trGAzXUyxRjjLHqewA7n2HNZ8+sPPO1ro8CXk6SBJpGfbDBz825sHLAfwjJzjO0HNS2mjpHcJeXspvL5c7ZnXAjz1Ea9EGOPUjqTQBXU6jrceSk2mWLhgQ2BcyDOB6iMEc/3uf4SK07OytrC2W3tYliiXsO57knqSe5PJqeigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorq1t721ltbqCOe3lUpJFKoZXU9QQeCKlooAxGtdR0ZXk08y6haAlvsUsg8xBj7sTtjPI+6578MoAFX9P1S01NJTay7nhfy5omG14nxna6nlTgg89QQRwauVQvtIt76aO53SQXkWfLuYW2uOCMHsy852sCM4OMgUAX6KxF1e50uRYdcjRYmbbHqEIPlNxn94P+WR69SV6fNkha2wQQCDkHoaACiiqepatpujWwudU1C1sYC2wS3MyxqWwTgFiOcA8e1AFyvJdXx8TPinDoaYk8O+GJBPqHQrcXWSFjIOQQMEHI6CQdxV34g+I9XvNS8K6F4V1q1sodfeYNqabZBsRRxG2cZO44xg52gEc1wV3qevfDDRvFPg2by5rq8t/tum39vAUMykLHMSF6Msas2eoKMSTkUAW/t/jr4neLfEyaD4n/ALO0/Q5XW0jtZNiznLLGCVI3BvLJLMSBngYNdp8NvibDrngP+1vFGoWFlPbXJs5JpJFiEzBFYNgnAYgngcZU4AHA8X1i+0zwjpOkSeDNfhWTWtIFrrEKuz+W/wAu6RhyUYksMYyoBx1qbwBovhjxB8VprVNOFz4dtLVmLzuygiNFXz35GNzDdtPA3+1AH1TBPDdW8VxbyxzQSoHjkjYMrqRkEEcEEc5qSvnrwF4ysfA+j63dWlteXen6rq7x+H9KjDGSVVJBYZBO0ho1zycqRgkGvVvBHxAtPGIurSWxuNL1mzP+labdAh4wejAkDI59AQeowQSAdfRR0rH/ALUn1JvL0ZUeIg7r6QZiU/7A4Mh+hC++eKALt/qNtp0Qe4c7mOEjQFnkPoqjkn6VS+yX2rg/by1naEgrawyfvHH/AE0cdP8AdU/8COcVas9LgtJWuCXnvHUK9zMcuwHYdlHsoA9qvUARwQRW0CQwRJFEgwqIoAUewFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAZSrAEEYIPesY6Tc6SqHQjElugwdOkGItoHAjI/1R6div+yCcjaryvWvHvinwz8R7ZNe02C08HT3BsortCGDMyqUkdyRtxzkYAAL/AHyuaALev/GC00jUjpNp4d1jUNVhiE15aRxDNqmMncV3ZIBU5GVww+auO1XVvDvj34oeE7/UvMuvDV/ZPb2sUz7EivAx3JIoPDcxjjruj5IrZ1y3j8K/GpL7UV/4lHihY4UukJR7W6jUIuGXkZ4HYHec8Ka5Hxp4SHhvxLc+H7i6VdK8SObrTLnaV+yX6Hg7U+6GLhWKrjDqQBswABvirwjL4Y1+TwrZvJDa3sv9peGbgvhre8TG6AOefm4Ucn5vKPXNXPHfjjQPGHwv0/V5LyC18W6XcRslqUAkWcMokARs/uyBv54+VQTkEU+/1Dxv8RLXw7oFx4Yu7K/sb6OebXSP3PyAgyIwUKc53fKxBKjbnIx7HJ4I8MS6+uuSaHZNqQbf55iGd2c7iOhbPO7GfegDjJPhnM9xqF5pFvpelWuq6FLaz2X2UB47mReoYDKqDjI5HynC85HC6Ppni248ND4f2PgqTQpp5BDq2uFCFlhVjk7sAOcE9HYEZA4bj6MqC9uraxsZ7u8lSG2hjZ5ZHOFVQMkn8KAPGvhZplhd3l/49uo1tNF02BrHRklxiC3jB3ynj7x+Ykg9Wl9qsfDm8XVPE2ufEK6glE2tP9l0yyhG6R4I8KWYA4HMaAsSACrc4Iry8XBlN14e0PUvFF54GkuWkdLTTA7nnOxSWBxwOuBnkpmvUX+J3hXwt4HuH8OWFxFOiTQ2qXEe0u0TJGrNuO4rlwQPRHHG0gAFjxJ8T9N03XZtL1SyvtUks1Ml5aaYm+C2THPmsSPMYAjI4QbsHkcel6HrGm69o9vqWkXCT2EwPlSKpUEAlSMEAjBBGCK8ugjT4S/CO81LUMS+JdWy8xkAZ5bqQHah/vBMknnBIcj71dn8MvDVx4U+H+maXeZ+1hDLOv8AcdyWK9/u5A46kE96AOuooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxfFnhqz8XeGb3RbzAS4T5JNuTE45Vx9D+YyO9bVFAHjvhiCP4i+AtR8B+Ki0Ou6JJ5DyHDOu3IimXgA8ZU4JyOSfnFXNE+GXiW48SaVqXjLxNHqsGiPu06GKPDMeMNI2Acgqp53E45Pr6TFpGmwatPqsVjbpqFwgSW6EY8x1GMAt1xwOPYelXaAMebRXtZDcaJLHZStIZJYCmYJyTliyjG1jz8685OSG6VJY63HcXCWV5E1hqTBiLWZgTIFPLRsOHXoeOQCNwUnFalZ+uW8Nzot4s0auFhd1yOVYAkEHsQeQRQAl7qyQTm0tYmu78ruECHAUdAXboo+vJ5wDWXq/hifxBoeo2uqXatcXlpJBGiqTBbMykBgvBcgkHceeONtauiWdtY6PbRWsKRIyCRgo+8zcsx9SSSSTySaNc1mz8PaJeavqDlLW0jMjkdT6AepJwB7kUAeY6M/xa8K6TbaHB4Z0bUreyjEMNzHdCMOgHGQzKc++B/Wq3iHRfiH8QrEaP4i0nRNE04OJVna5LyCQAhSm1iD1III6E85xW1YfETxprVlHqGk/DaebT58tBLNqsULSJnhtrLkZHPcehI5rI8R+K/tF7o0HxI8AXGnaebtTbXqal5yRTdi3l7eMZPJ6A4BwaANDQvh14p1DxPYaz4/1211NdKGbC2tV+Qyf33yi8ggHoSSByAMH1SiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqv/ACB77/r3k/8AQTVuqmq/8ge+/wCveT/0E0AO0/8A5Btr/wBcU/kKreINDs/EugXujagrG1u49jlDhl7hh7ggEe4qzp//ACDbX/rin8hVmgDyu08B/EbRbG303R/iFD9gtoxHCs+mRlkUdFyQxIHTrTn+GXiTxFdWB8b+MP7VsLO4E4sYLJIlkYDjcy447dDwTgjOa9SooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqmq/8ge+/wCveT/0E1bqpqv/ACB77/r3k/8AQTQA7T/+Qba/9cU/kKs1W0//AJBtr/1xT+QqzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTVf8AkD33/XvJ/wCgmrdVNV/5A99/17yf+gmgB2n/APINtf8Arin8hVmq2n/8g21/64p/IVV8R3d3YeF9WvLBN97b2U0tumzdukVCVGO/IHFAGnRXz94VTw/4l8PW+peIfivrNtqkpZp7f+2EtlibJ+VUcHjpyOPTHSofFd1Y+E7Wyu/BnxJ1nV9Xa6RY7BtRF6kwPGCiDHp1znoBnkAH0PRTYy5iQuArkDcB2NOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorL8S6j/AGP4W1bUs4NrZyzKfdUJH6188/Djwj8Ntd0rSo9X1WVvENzI2bSOUgZ3nauNuPugE896APpqivGfA2vadp2q/ETxtqs4jsjqX2ZJMZJWMsAqjuSGTitM/GK4s5La71jwZq2m6FcSKiajMc4DdGZMcDv1PHTNAHqdFee+J/ifLoXjRPDOn+HbrWLp7QXA+yy4bcSflK7TgYAJbPfpWPZ/Gq61FZ7Ox8Earca5bO63Ngj5EKrxln25znjG3t9MgHrVFcPoXxR0TVfAdx4ruxJYWtrI0NxFJ8zLIMfKuPvZ3Ljgde1Yh+MVxZyW13rHgzVtN0K4kVE1GY5wG6MyY4HfqeOmaAPU6K898T/FB9B8ax+GbHw9davdSWgnX7LL824k4Urt4GACWzxnpVC0+Lk2o+FfE15H4dubbV9DUefYSzDgEkFt20fdCsSMdvegD1GivA/hx4zfwN8MbUXuh3MtxqF6Rp0ccgLX7v1IGPlAwq55JJHFer+DPFVz4psLmW90K90a7tpfKkt7pTg+6sQNw/CgDpaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqmq/8ge+/wCveT/0E1brAn1mO4sL2yu4WstR+zTMLaVgfMVRgvGw4deQeORuG4KTigDW0/8A5Btr/wBcU/kKs1jJqyQWdraWsRu7426sII2A2jA5duiD68nnAOMVL4ltby98K6vaaeSt9PZTR25V9hEjIQuG7ckc9qAOd1JfheupXA1QeDxfeYfP+1fZvN3553buc565rPnXQTJbt8NU8BNrqyEksI8iLad23yfmz09sZrgvDEnhnw74fttO1/4Va3PqkQIuJjpK3AlYEjcruRwfQDA7Z61F4j0+08Yvpdr4H+H+raFqsd2sn9pS2Qso4FGTkshIyDg+vHGScUAfRFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcP8XU1Cf4aapaaXZXV5d3PlwrFbRNI20uCxwoJxtB/OuP8AAt5DawW1uvwru9PvtP09nGpz6aFeSSOPHDeWGLue2cnNe0UUAfOr/DrxFe/A7TIYbG6/tBdSk1C7sH/dTOPmTIDD720AjI6Hv0MWmeAtQ8WXsFhPpXja108sDdzavqiqiAH+FDDlz6fh0619H0UAeZeDNHvX+LvjDXLvT7m2t444bGyeeJkWRAACUJHzD92pyP71V/hrZapp1j428S3ul3kF9f3808VvNbsssiICyBVIyclyB64r1WigD51f4c+Ibz4HaZBDY3X29dSk1C7sH/dTOPmTgMPvbQCAR0PfoYtM8Bah4svYLCfSvG1rp5YG7m1fVFVEAP8AChhy59Pw6da+j6KAPMvBmj3r/F3xhrt3p9zbW8ccNjZPPEyLIgABKEj5h+7U5H96uNk0rX/+EN+JOpromp/b9b1IQW9v9kk8xoQ+dwXGSu12GcY4r3+igDxXxlo17aaB4Y0C58Ez69pFtYRo0tkXFzb3AXBwV6A/KeRg8+grs/hRo2vaH4IitvEU8z3bzNJHFNL5jQREAKhb8Ccdt2K7eigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKy/Edha6l4fvoLuFZY/IcjPBU7TggjkH3HNalVNV/5A99/17yf+gmgCLRLK2sdIt47aFY1ZFdsdWYgZJPUn3NQ+KJ7y18I61cacXF9FYTvb+Wu5vMEbFcDnJzjirun/APINtf8Arin8hUGu6n/Ynh7U9W8nzvsNpLc+Vu279iFtucHGcYzg0AfPusfFi/uvBXh7R5PENzY6vLcldauVt3jnhi3nBXCgY2nJ2kN8oHc1reLbOX4d65o0PhPxXruo6/c3aB9Kvbnz1miYH5mUKAOcDnnkkY25rptP+Jvi3XNLhvrL4Zz3VlcLujcamm1xnHQx+oq3YeJ/FE/iCG5m+FJtZ5ykE1+b6IyJFu5yQmSB1xmgD0uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx/FHiSy8I+HbrW9QWZ7a327khUF2LMFAAJA6kd62K8z+M95bDS/D2l3dxFBb32swC4klcKqwoSXJJ7D5aAO71fUJbHw3f6lDGBLBZyXCJKP4lQsAwB9Rzg14z/AMLr8Sf8+Wlf9+pP/jlXfin4ns9XudP0xNcWHw9dafdXJubWcCO8nRSEhLjjAYDI75A64rwy0trea/uktmLQLDsHzEgFvT8q68MotWaucWKlJO8ZNWR7N/wuvxJ/z5aV/wB+pP8A45R/wuvxJ/z5aV/36k/+OV4vY+ZewRAoTHZqTtP8cgzgfgKqKJLhFla5gM7t8pLv5in02jp+VbN0rJqG5zpVrtOex9P/AA9+IereLNfnsNQt7GKKO1aYGBHViwdFA5Y8fMa6bT/GtlqPjW+8LJp+pQ3tnCZ3mnhCROgYLlDuyQS3Bxg4NeHfBHSrXVPiTeXd7H5r2NsXgO4gLKCilsDrwzdfWvUvBn/Ey+KXjrVjykMlvp8J9NifOP8AvrFcle3P7qsjuw/N7P3ndnolFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1X/kD33/AF7yf+gmrdVNV/5A99/17yf+gmgB2n/8g21/64p/IVZqtp//ACDbX/rin8hVmgBsj+XE7noqk1zngHxPN4x8G2Wuz2qWz3JkHlIxYDa7L1P+7XS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVk67oVlrcMK3Wl6XfPExKDULYTKgPXbkcE4H5VrUUAcXr+gQR+BdVs7jStGFjbWNxJbwQWoCxSbWO5VIwpyScjnNfN7QgRuIdsTsMbwvT0r6s8Wf8ibrn/YPuP/AEW1fLFelgknFnk5g2pRIbS2S0tkhTnHU+p7mnLBCshkWJA56sFGfzqSiu5RSVjz3Jttt7no3wSjSPxle7EVd1hIxwMZPmR817ja6fZWBnNnaW9ubiUzTGGMJ5kh6u2Byx7k814h8FP+RyvP+we//oyOvd68nGfxT2sD/BCiiiuU7AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqv8AyB77/r3k/wDQTVuqmq/8ge+/695P/QTQA7T/APkG2v8A1xT+QqzVbT/+Qba/9cU/kKq+Ites/DHh+91q/LC2tI97BBlmOQFUe5JAH1oA06K8lsPF3xX8R2keq6N4X0S1025QSW6307PIykfeyrrwfdRTNS8d/ErwhbHVfFHhjSJ9HjIWaTT5yjxlmCg/M7Z5PTH4igD12iq2nX0GqaZaahaktb3UKTxEjBKsAw/Q1ZoAKKK47xL4/g0Hxbo/hi3064v9U1JkbZGdqxQliDITg5wFY4A6KckUAdjRXk+pfGmYajrEegeFbjWdO0gE3l8l0I0XBIJA2tleDg55AJxgZr0Pw14gs/FPh2z1uwEgtrpCyrIMMpBKkH3BBH4UAatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeXtpp1pJd311Da20eC808gRFyccseByRU9edfGVjdeFNP0NCd2s6rbWWB1ILbj+qigDq/FTq/gnW5EYMjadOQynII8tuRXyv5g9695+KHiTULaE+FdFjgW5vNOubm5mmGVhtkQ7goHVmwQOw/UfNySXou57drgPshLBggHzHpmumhVlBNI7MNl+GxSvXi3rZWZseYPejzB71iQ381xHAEfBVDJO4A6Dt9TUP9oX8q+dFHKATlUWDcpH+9W/1uRs8pyuyajJ38/wCtrntXwTYN4zvAP+ge/wD6Mjr2xNZ0uXUm02PUrN79QS1qs6mUY9Uzn9K+cfhBDqereOr+G01V9NgisH85o4lZ2B2jaCfu4Yhs/wCzjvXWaN4Z0bU/F2gW3hC18yz0C5M+peICBm6k6+UH/wCWhJ6noAePfkrTc53Zx18PRoTdOgny+Z7fRRRWRiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVNV/5A99/17yf+gmrdZ15c2974eubm1nint5bV2jlicMrqVOCCOCKALGn/wDINtf+uKfyFR6vpVnrmk3Wl6hCJrS5jMciHuD6HsR1B7EUtrPDbaPbzTypFEsCFnkYKoG0dSazPG3iGTwr4M1TW4bf7RNaxZjjOcFiwUE47AnJ9gaAOLtPhV4k0aM2mg/EfUrPTVP7m2ntVnMY9AxYDH0AFZHivwZ/ZthFe/ET4iapf6GJVQ2sNoYhI/VQ2xmyPlPbPoRWl4a0/wCIXizw7Z67/wALFt7Rb1PNW3ttKhmSIE/d3Eg5HQg9CCMnrVLxne+PvhxpMOuzeOLPWIVmWN7G602ODzc9lKncSOuARwM89KAPYLWKG3s4YbaNY4I41SNFGAqgYAA+lS1XsLr7dp1rd+TJD58SS+VIMMm4A4PuM4qxQBW1G7aw0y7vEtprlreF5RBAu6SUqpO1R3Y4wB6mvHPiFHpfixdJvtR8CeMGvZLbeJtOtiJYV3sPKkyCM8FsEZAb3r2yvIfi14kv/Ceu2mp6T4uW2vjbIi6DLA0qXQEjHfxkKTnbnCk7cBuKAOalGlt4MXwtbfD3x9Z6eZxcTNb2xElwwGP3hKkEdDjA+6MYxXtvhe1tLLwtpcFjp0mnWwtkZLSUESQ5Gdr553ZJznnOa8M1D4j+Ltd1S30TxDqA8BW80Klp2s5RLKTgfKzcou7POV29CxxXvWiQW1roGnW9ndG7tYrWJIbkuHMyBQFfcODkYOR1zQBfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuR8deD7LxVFp0l3daxA9jMZITpcio4cj7xJU9McEY6111FAHlPiTwHpd34PlaabxD9v0ixupINSurj9/ICGYxu/8AEpzjGBxkZ5OfBI7RLMTSQK8kjgcM3Uj3NfXHi7/kS9d/7B1x/wCi2r5SraktD6HJqcZQlK2qenloU9Psxa2u11HmPy/+FNTSrdGHzSsinKxs+VB+lXqK15UeysNSUYx5dtjr/hf4YtvEGra3pE93e28N7YOZZLaQJJjzYiVBIIwcYIxyCRXsvhT4dWvhC5iks/EHiG5t4o2jjsru9D26g9xGFAz/AI15r8EP+R0vP+wc/wD6Mjr3ysKnxHzGbRUcTZdkFFFFZnmBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO65pD21hqd9pDrBdS27mSFyfImO08so+63+2oz0zuAAroqqar/yB77/AK95P/QTQBnaXpTXFtZXeqOs80camGJc+VDxwQD1bB+8fwxzT/FmsaboPhXUtS1eET2EMJE0JQN5oY7QmDwdxIHPHNaGn/8AINtf+uKfyFUvE2n6Vqvhq/stceOPTJYiJ5JJAgRRzu3HgYIByfSgD5+h8CXniG2h1bSvhZaQWN0gmhEmtvllbkNjeMA+mBUi6FB4Alt9a8UfC+3/ALPSdFNxDqbT+ST3MZdg3/AgBnHIOKsWOs6TpVtcW2g/Gq8t9Otk3Q21zpTTOiDChFZ8bu3Cgcc4wCaqW2oaX4m1XTYfH3ivxO+lTlZbVL7TVsbW4bIwSySOCuD97AwD94UAfScM0dxBHPE26ORQ6MO4IyDT6RFVEVEUKqjAAGABS0ANkkSGNpJXVI1GWZjgAepNeda58TfhxomqNqb3dpqGrCERLJYRCeUpknYsg+UDJPG4V22vaFp/iXRbnSNUhM1lcBRIgcoThgwOQQeCAfwrzKL4M6j4WuZ77wH4ruNOuHj2mG9gSZJDnoWxwP8AgLGgDOuPH+tfFKC80rwz4HsryyhkVZptZlVlQMCAfLBBVuCcqzEYr17w/p8mk+G9L02Xy/MtLOKBvKJK5RAp2k8444zzXifhWy8e/Ca51V7nwodetb+ZHkuNOn3NuGckKFLEfMeqj6174DkAkY9qAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuE+Lmp3uneBmh0y6mtb+/vILO3mhco6szg8EcjhSPxoA6TxVG8vhDW440Z5HsJ1VVGSxMbYAFfMH9g6x/0Cb/AP8AAZ/8K+ifGPiu38M2NvpsVrc6lql9G8draQnLuFX5nZj0UDkk/wCOPNLfxzqEmo32nXHhyW2vbOxkvJI3ulYHbjaqsqkHOevb3rzMfmOIwkkqMFLS7u0v1PayvFKjCSfVnA/2DrH/AECb/wD8Bn/wo/sHWP8AoE3/AP4DP/hXoqeOkuLTQmtbIS3WqqZGhM+0W8a53uzbegwewzg1l3HxWtEZ57bTvP06N9rTm8iSQjOMrCTuI/KuGOeZjJ2VBff527907d+h6jzKC3/U0/g1pl/ZeL7uS6sbmCM2DqGliZQT5kfGSPY17lXlPhXxjc33j6XRdM0g3NvFBG9xemcKsSOoYEqRknoAAc8npiqOi3ut2nxrttGuPEup3p8qeS+S8jEFtMNuY1tosn7pPJz/AAn3r1sFiauJoqrVjyt9PLoeBmNVVa7kj2Siiius4AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqv8AyB77/r3k/wDQTVuqmq/8ge+/695P/QTQA7T/APkG2v8A1xT+QrN8XeHIfF3hW/0Ked4Eu0AEqDJRlYMpx3GVGRxkZGR1rS0//kG2v/XFP5CrNAHA6Z8L9Nn8OaVpniuO31mfSSUtJ1QwYj42qVUjdwoznOe+azvGegal8UntLHTNX0Y+EUlSWe6tpPOnaRdwKqRlOhHoRnv0Pp56Vzngjwhb+CPDi6NbXUlzGsry+ZIoBJb6UAdEqhFCjoBgUtFFAGP4p8SWfhHw5d65fxzyWtrs3pAoLnc6oMAkDqw71leF/iV4U8X+XHpuqRrdvj/Q7j91NnGcBT97ABztJFTfEPw3d+LvAupaHYywRXN15Wx5yQg2yo5yQCeintWXqHwn8L65olna6rpsK38NtHE17afu5CyqF3bgPm6cbgfpQBp+N/Hel+AtOtr3VYLuaO4l8pFtUVmBwTk7mXjiuorwjxR8FPF+pW9vpln4uTUNIgkMkMWqMwkg4wAGCtuG3/dHtXu9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcL8SPDeveIToMuiT6XG2m3wvWXUXdUZ1HycKpz/ABZ5Fd1SMqsMMoI9xSd+gLzPLtZ8MeML2bTfE0ep6EPENlaT293AqyG1khYkjb/EGwRnpk+w55zTtKu9Cv8AW/EfiW/tpxLbIuYkKrGigllAPbOAOST9TXtd9Gi6ddFUUHyX6D2NcNXyPEdeVOcIdGte9rp6Ppsetl8FJN9v8jzv4d+Elh8OTXl8JPM1CBoYVc/NDbMSQo9Cdxb8qi034dajbeRYz/8ACPtYwvk3Q05HupVz91t6lR9eT9a9JorwZ5piJVJzT+L527HasNBRS7GD4e8G6syeK47XVF07UNTk8y0ubVmzCiMmxTwMcAggdjxXS6F4R8RXHimy8ReL9Q0+4u9Ot3gs4dPjYIC4w0jM3JYjjAGK0vDX/ISk/wCuJ/mK6qvtMhqyq4RTlvd/hoePjYqNWyCiiivZOQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKqar/yB77/AK95P/QTVuqmq/8AIHvv+veT/wBBNADtP/5Btr/1xT+QqzVbT/8AkG2v/XFP5CoNe1P+xPDup6r5XnfYrSW58rdt37ELYzg4zjGcUAaFFeP6D/wtTxnpFvr9v4s0jSrS8QPDbW1mkwUdDksrEHI5G446cHio/El18UfAWjzeIbzxRpOsWVvtEttPZrEW3MFG3YoJOTn7w6d6APZKKz9C1P8Atrw9puq+T5P221iufK3btm9A23OBnGcZxWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFct8Q/E914R8G3Oq2MUM18JIoreKYEo7s4GCAQemT17UAdDqH/INuv8Ari/8jXCV0nizWbTQ/CN7c6pfQWpa2eNXLbd0hQ4CjqTnoBzXhMPjW1uAxh1id9kbSttMmVVepNfLcQYKpiKkJQWiXY7cLi1QTTV7nqVFeaN4oCW9rOdTuPLumCw4ZyXJ6cdahm8Z2tvd/ZZdbdZs7SPNYgH0J6D8a+dWVVnt+TOr+1Ifys9q8Nf8hKT/AK4n+Yrqq8a8A+LbKLxr/ZV5qMrXU8JjihId8uSrDsQPlBOa6OT4jve/FHT/AAnosEM9rmUX946sQGRCSkZBAyDgEnPJx2r7TI6MqOEUZd2efiayrT50rHoVFFFeuYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTVf+QPff9e8n/oJq3WXe31vdabqkMbkTQwyLJG42sODg4P8ACccHoaALen/8g21/64p/IVLcW8N1bS29xEk0EqFJI5FDK6kYIIPBBHaqUF9Ba2WnxSMTLNGixxoNzH7oJwOwyMnoBVHxvd6xYeCtWutAhMuqRwEwKF3EHIywHchckDnJAGDQByk/wL8FPKXtotQs1PWO3vG2/wDj2T+tZesfCbwt4asP7Ug8P6r4kuIpF2WT3TNnnrgDkDuDkGuN8Op8P9b0S2vfEnj7WzrDoDdJPeOmx+6rlTkD1yfw6CLxLL4S8P2CXHgXxtrtx4gMsa29tDcvKs2WGQwCYPHQE89MGgD6NsHMmnWshtjaloUJtz/yyyB8v4dPwqxVLSJL2XRbCTUo1jv3t42uUXospUbgPxzV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK81+L322SLwzHb6PqWpWsWqx3l3HYWzTN5cX8JxwM7uM46e1elVDcW/2iMIZZY8HOYn2mgDxvxxdanq95oviqXwrrE2kRWN3EbGa3/f2k53KJXiz0wAQewGfSvOtOtpb3XtTvruwe0ikt1hUSAAsp5JJ6Z4GfSvpXV7IW/h/VXFxcSZsphiWQsPuGvC7i3jureSCYFo5FKsAxGR9RzXh5rV5JJW3W/zEzjvC+nXV7ZC6mcAW0T29ke2STmT+Q/CqNnoty9smnS2msrIzYmHnKlvjP3gdpz9K9AggitoI4IUCRRqFVR2AqSuB4+XNJpaPby/q9/UVyp4G0TxDe6h4nTw/JFY6lcQfZYbm83pthVkBZSFJyR0OPftXXeCPDHirTfifB9u0zTLXTtJ0sWYktUn8l1cl8xM4+eTcfnJ7E960Phn/AMjJcf8AXo3/AKGlerV7uXVHUocz/qw0FFFFdwwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArG8R6Xb32l3M7boruG2lENzFgSRgryASDwcDKkEHAyDitmqmq/wDIHvv+veT/ANBNAFTQdMhsdOt5dzz3UkEYluZcGSTCjrjAA9gAPameLdXn0Dwjq2rWyRvPZ2rzRrKCVLAZGQCDj8a0NP8A+Qba/wDXFP5CoNdkki0K+kh0wapIsLEWRIAn4+7yCOfpQB4j4i+ImnX3gvQ76Kw8LT+JdWk8q6llijdbLJI3OrFmXsfmyOD16VZ1218UfCvSrfxMmv6DfrvWOWzGkQWplDdo3jAZsde3Azg9KzIPE2i6/qUujJ8HNMj1FCA1pJdQ2c5JGcBWjRicDPHQfWp7vW9U174qKl/8MLS81LTrBWis3vx5kSBgQxbPlMMycDZkZHPFAHvOn3f2/TbW8MMsBnhSXypRh49wB2sOxGcGrFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVjeKfE1l4R0GXV7+OeWGN0Ty7dQ0jszBQACQO+evQGgCx4g/wCRb1T/AK9Jf/QDXg9e6eJpDH4T1iQD5lsZmAPtGa+bP7buf7kX5H/GvOxuWYjGSUqKWnmJm/RWB/bdz/ci/I/40f23c/3IvyP+NcX+ruO7L7xWPUvhn/yMlx/16N/6GlerV4t8IdRmu/Fl1HIqACxdvlB/vx+9e016uEwlTC0/ZVdxoKKKK6RhRQTgZPSsbwt4ls/F2gxazp8VxHazO6x+eoVm2sVJwCeMg0AbNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1X/AJA99/17yf8AoJq3VTVf+QPff9e8n/oJoAdp/wDyDbX/AK4p/IVZqtp//INtf+uKfyFWaAMfxB4V0LxVaC21vTILxFzsZxh48kE7XGGXOBnBGcc15v8AB7RtK1HVr/xppWp6xPC8baYINWKvKuPKfPmBjlQAABjgfSvYKpaZpGm6LbNbaXYW1lAzlzFbRLGpYgAnAHXAH5UAXaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryr43Xdm1p4Z0e/vWsrW91VHnuFODHEg+Y57YLqc9sZr1Ws7VdMi1BY2NlYXEyblVryEOFRhhgO4zwD6igDxG9stFsfE18PAV3Lc2Meh30mtNFdPcQuTC3lZckguW54Pb6143I1nJpTXUtyz3zAkYkOVOemOwr611HSjpHgzXYIbLS7O1On3DeXYweUN3lnkgcdK+bfstvlj5EWW+8dg5+tduGpOcXYDnb7y4/IiLiQQRIjW+4owY919TS3bPPezpPLAscOAsdxIy8Y6jb1NdIYYmlEpiQyDo5UZH40j28Mrh5IY3YdCygkV1PDt31EWfhz4dHibxpo2lX00r2qRTXMxhkdGMeMBd3DAEkD6E11C+FNHk8I+PtQmlvm03Rry4t9HgN3J5cEigfMBnnLFBzngevNa3wXij/4TW7l2L5n9nOu/HOPMj4zXs/8AYOjnT5tP/smx+xTuZJrb7OnlyMSCWZcYJyAcn0rz8TDlqWGeAeILvW9S1LRfD+s6pplvZW2h205j1m9mtobuRkG9i8eC7A5GCex75plnpt7f+HfD3h86tFNp+seIBLa/YXuMQQRKfMEbTKGwCQQeRkdetfQl/omlaokSahplldpF/q1uLdZAn0yDipH0zT3uLS4extmnswwtpDEpaAEYIQ4yuRwcdqwA8Pn0rTPDurfEyxsRMNGtdFj822e4d1NxIm5TknOT9e5+lek/C/w7aeG/AGlw28HlTXUEd3dHJJaV0XJ56cADA44ropdD0idbxZdKsZBfFTdh7dD9o2/d8zj5sds5xV1EWNFRFCooAVVGAB6CgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1X/kD33/XvJ/6Cat1U1X/AJA99/17yf8AoJoAdp//ACDbX/rin8hT7u6gsbOe7upVit4I2llkboiqMkn2AFM0/wD5Btr/ANcU/kKi1rTE1rQtR0qSRo0vbaS2Z1GSodSpI+maAOHt/jFpmoeZJpPhjxXqtokhjW7sdM3xOR6HcD+BAPtRcfGLTdPEcureF/Fel2jSLG13e6ZsiTPcncT+ABPoKp6F4d+KXhXSotF0y+8KXmn2pK28t6k6S7M5AIQYH5n6mq3izTviJq3h+ex8Sa34N0fRpiqXd3CZgwQkcfvPl5OO4z6igD1SzvLfULKC9tJlmtp41kikXoykZBH4VPWV4Y06x0nwvplhps4uLKG2RYZwwYSrjIfI4OevHHNatABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv/kTtb/7B8//AKLavlyvqvW7KTUtB1GwhZFlubWWFC5IUMykDOO3NeNf8KX8R/8AP7pX/f2T/wCIrvwdWEIvmdgPOaK9G/4Uv4j/AOf3Sv8Av7J/8RR/wpfxH/z+6V/39k/+Irs+sUv5hB8F/wDkcbv/ALB7/wDoyOvdK82+H3w+1bwpr09/f3FlJFJatCBA7ltxZD3UcfKa9JrzcVOM6l4sYUUUVzAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUtSdJNFvmR1YCGVcqc8gEEfgQRV2sDV9FuRFeXGiukdxPG4ltZDthuGYY3EgEq/+0OufmB4wAatiypploWYKDEgGTjkgYqLXNTGi6BqWqtEZVsrWW5MYbBfYhbGe2cVR03RZ5fsV5rLK9zbxKIrWNiYYGwMkZxvfIOHIGAeAMnNnxHf6bpnhvUrzWAjadFbubhHwRIhGCmDgEtnaB3JA70AcBomufFXxRo9vrOnweEbSyuwZIIrlp2kCZ43FMjP5e4HSqfi7VPiFoXhufUfFGleDNY0WF4zdWsazMzKXAGBINvUjnBx6Vxul+G9X1CBtR8H+FPFmn6NdMXt0t/E8Vqrr0DbHQtyOeWb2JFM1TQrnRRDq3jzwp4pvdGgcLIbrxJFeLHu4DbI0U9cD7yjJA74oA+g/D93a3/hvS7yxthbWlxaRSwQBQoijZAVXA4GAQMDjitGqmlzWVzpFlPpoQWEkCPbCNNiiIqCuF4wMY47VboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsvxJaaVfeG9Qttc2f2Y8DfaWc4CoBktntjGc9sZrUqK5toLy2ltrmGOeCVSkkUihldTwQQeCKAPGL/S7rwF4T/tLS/ircQ+HAdlnH9givmY4OI0fcAc4OMbQO+Otcve6pNrSWkfjzxB40Tw9Oy5ebQUsoJD95dzo7bhxkfKfUYxmu58T/ATRNUgkGg39zoxdxI9sCZbZ2AbB2EghvmwCDgDIA5rPtdO8XfFfw8lhfeKdAk0BJRHd3GlwSmad02ttIkVVB5U5XA56HpQB7HYQ2ttp1rBYhBZxwokAQ5URgALg9xjFWKr2FlBpunWthaqUt7aJIYlJzhVAAGfoKsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=", "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAMACAIAAAA12IJaAAD4UElEQVR4AWL8//8/wygYDYHREBgNgdEQGA2B0RAYDYHREBgNgdEQGBmAaWR4c9SXoyEwGgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9OQpGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenM0BEZDYDQERkNgNARGQ2A0BEZDYDQEQGC0AwAKhVE8GgKjITAaAqMhMBoCoyEwGgKjITAaAiMEjHYARkhEj3pzNARGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenM0BEZDYDQERkNgNARGQ2A0BEZDYBSAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIDAaAcAFAqjeDQERkNgNARGQ2A0BEZDYDQERkNgNARGCBjtAIyQiB715mgIjIbAaAiMhsBoCIyGwGgIjIbAaAiAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIDAaAcAFAqjeDQERkNgNARGQ2A0BEbBaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMhsBoCIyGwGgIjBAw2gEYIRE96s3REBgNgdEQGA2B0RAYDYHREBgNgdEQAIHRDgAoFEbxaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMhsBoCIyGwGgIjBAw2gEYIRE96s1RMBoCoyEwGgKjITAaAqMhMBoCoyEAAqMdAFAojOLREBgNgdEQGA2B0RAYDYHREBgNgdEQGCFgtAMwQiJ61JujITAaAqMhMBoCoyEwGgKjITAaAqMhAAKjHQBQKIzi0RAYDYHREBgNgdEQGA2B0RAYDYHREBghYLQDMEIietSboyEwGgKjITAaAqMhMBoCoyEwGgKjIQACox0AUCiM4tEQGA2B0RAYDYHREBgNgdEQGA2B0RAYIWC0AzBCInrUm6MhMBoCoyEwGgKjITAaAqMhMBoCoyEAAqMdAFAojOLREBgNgdEQGA2B0RAYDYHREBgNgdEQGCFgtAMwQiJ61JujITAaAqMhMBoCoyEwGgKjITAaAqMhAAKjHQBQKIzi0RAYDYHREBgNgdEQGA2B0RAYDYHREBghYLQDMEIietSboyEwGgKjITAaAqMhMBoCoyEwGgKjAARGOwCgUBjFoyEwGgKjITAaAqMhMBoCoyEwGgKjITBCwGgHYIRE9Kg3R0NgNARGQ2A0BEZDYDQERkNgNARGQwAERjsAoFAYxaMhMBoCoyEwGgKjITAaAqMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkNgNARGQ2A0BEZDYDQERkMABEY7AKBQGMWjITAaAqMhMBoCoyEwGgKjITAaAqMhMELAaAdghET0qDdHQ2A0BEZDYDQERkNgNARGQ2A0BEZDAARGOwCgUBjFoyEwGgKjITAaAqMhMBoCoyEwGgKjITBCwGgHYIRE9Kg3R0NgNARGQ2A0BEZDYDQERkNgNARGQwAERjsAoFAYxaMhMBoCoyEwGgKjITAaAqMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkNgNARGQ2A0BEZDYDQERkMABEY7AKBQGMWjITAaAqMhMBoCoyEwCkZDYDQERkNghIDRDsAIiehRb46GwGgIjIbAaAiMhsBoCIyGwGgIjIYACIx2AEChMIpHQ2A0BEZDYDQERkNgNARGQ2A0BEZDYISA0Q7ACInoUW+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAiMdgBAoTCKR0NgNARGQ2A0BEZDYDQERkNgNARGQ2CEgNEOwAiJ6FFvjobAaAiMhsBoCIyGwGgIjIbAaAiMhgAIjHYAQKEwikdDYDQERkNgNARGQ2A0BEZDYDQERkNghIDRDsAIiehRb46GwGgIjIbAaAiMhsBoCIyGwGgIjIYACIx2AEChMIpHQ2A0BEZDYDQERkNgNARGQ2A0BEZDYISA0Q7ACInoUW+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAiMdgBAoTCKR0NgNARGQ2A0BEZDYDQERkNgNARGQ2CEgNEOwAiJ6FFvjoLREBgNgdEQGA2B0RAYDYHREBgNARAY7QCAQmEUj4bAaAiMhsBoCIyGwGgIjIbAaAiMhsAIAaMdgBES0aPeHA2B0RAYDYHREBgNgdEQGA2B0RAYDQEQGO0AgEJhFI+GwGgIjIbAaAiMhsBoCIyGwGgIjIbACAGjHYAREtGj3hwNgdEQGA2B0RAYDYHREBgNgdEQGA0BEBjtAIBCYRSPhsBoCIyGwGgIjIbAaAiMhsBoCIyGwAgBox2AERLRo94cDYHREBgNgdEQGA2B0RAYDYHREBgNARAY7QCAQmEUj4bAaAiMhsBoCIyGwGgIjIbAaAiMhsAIAaMdgBES0aPeHA2B0RAYDYHREBgNgdEQGA2B0RAYDQEQGO0AgEJhFI+GwGgIjIbAaAiMhsBoCIyGwGgIjIbACAGjHYAREtGj3hwNgdEQGA2B0RAYDYHREBgNgdEQGAUgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgVEwGgKjITAaAiMEjHYARkhEj3pzNARGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenM0BEZDYDQERkNgNARGQ2A0BEZDYDQEQGC0AwAKhVE8GgKjITAaAqMhMBoCoyEwGgKjITAaAiMEjHYARkhEj3pzNARGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenMUjIbAaAiMhsBoCIyGwGgIjIbAaAiAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIDAaAcAFAqjeDQERkNgNARGQ2A0BEZDYDQERkNgNARGCBjtAIyQiB715mgIjIbAaAiMhsBoCIyGwGgIjIbAaAiAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsAoAIHRDgAoFEbxaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMhsBoCIyGwGgIjBAw2gEYIRE96s3REBgNgdEQGA2B0RAYDYHREBgNgdEQAIHRDgAoFEbxaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMgtEQGA2B0RAYIWC0AzBCInrUm6MhMBoCoyEwGgKjITAaAqMhMBoCoyEAAqMdAFAojOLREBgNgdEQGA2B0RAYDYHREBgNgdEQGCFgtAMwQiJ61JujITAaAqMhMBoCoyEwGgKjITAaAqMhAAKjHQBQKIzi0RAYDYHREBgNgdEQGA2B0RAYDYHREBghYLQDMEIietSboyEwGgKjITAaAqMhMBoCoyEwGgKjIQACox0AUCiM4tEQGA2B0RAYDYHREBgNgdEQGA2B0RAYIWC0AzBCInrUm6MhMBoCoyEwGgKjITAaAqMhMBoCoyEAAqMdAFAojOLREBgNgdEQGA2B0RAYDYHREBgNgdEQGCFgtAMwQiJ61JujITAaAqMhMBoCoyEwGgKjITAaAqMhAAKjHQBQKIzi0RAYDYHREBgNgdEQGA2B0RAYDYHREBghYLQDMEIietSbo2A0BEZDYDQERkNgNARGQ2A0BEZDAARGOwCgUBjFoyEwGgKjITAaAqMhMBoCoyEwGgKjITBCwGgHYIRE9Kg3R0NgNARGQ2A0BEZDYDQERkNgNARGQwAERjsAoFAYxaMhMBoCoyEwGgKjITAaAqMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkNgNARGQ2A0BEZDYDQERkMABEY7AKBQGMWjITAaAqMhMBoCoyEwGgKjITAaAqMhMELAaAdghET0qDdHQ2A0BEZDYDQERkNgNARGQ2A0BEZDAARGOwCgUBjFoyEwGgKjITAaAqMhMBoCoyEwGgKjITBCwGgHYIRE9Kg3R0NgNARGQ2A0BEZDYDQERkNgNARGQwAERjsAoFAYxaMhMBoCoyEwGgKjITAaAqMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkNgNARGQ2A0BEZDYDQERgEIjHYAQKEwikdDYDQERkNgNARGQ2A0BEZDYDQERkNghIDRDsAIiehRb46GwGgIjIbAaAiMhsBoCIyGwGgIjIYACIx2AEChMIpHQ2A0BEZDYDQERkNgNARGQ2A0BEZDYISA0Q7ACInoUW+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAiMdgBAoTCKR0NgNARGQ2A0BEZDYDQERkNgNARGQ2CEgNEOwAiJ6FFvjobAaAiMhsBoCIyGwGgIjIbAaAiMhgAIjHYAQKEwikdDYDQERkNgNARGQ2A0BEZDYDQERkNghIDRDsAIiehRb46GwGgIjIbAaAiMhsBoCIyGwGgIjIYACIx2AEChMIpHQ2A0BEZDYDQERkNgNARGQ2A0BEZDYISA0Q7ACInoUW+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAiMdgBAoTCKR0NgNARGQ2A0BEZDYBSMhsBoCIyGwAgBox2AERLRo94cDYHREBgNgdEQGA2B0RAYDYHREBgNARAY7QCAQmEUj4bAaAiMhsBoCIyGwGgIjIbAaAiMhsAIAaMdgBES0aPeHA2B0RAYDYHREBgNgdEQGA2B0RAYDQEQGO0AgEJhFI+GwGgIjIbAaAiMhsBoCIyGwGgIjIbACAGjHYAREtGj3hwNgdEQGA2B0RAYDYHREBgNgdEQGA0BEBjtAIBCYRSPhsBoCIyGwGgIjIbAaAiMhsBoCIyGwAgBox2AERLRo94cDYHREBgNgdEQGA2B0RAYDYHREBgNARAY7QCAQmEUj4bAaAiMhsBoCIyGwGgIjIbAaAiMhsAIAaMdgBES0aPeHA2B0RAYDYHREBgNgdEQGA2B0RAYDQEQGO0AgEJhFI+GwGgIjIbAaAiMhsBoCIyGwGgIjIbACAGjHYAREtGj3hwFoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAKQGC0AwAKhVE8GgKjITAaAqMhMBoCoyEwGgKjITAaAiMEjHYARkhEj3pzNARGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenM0BEZDYDQERkNgNARGQ2A0BEZDYDQEQGC0AwAKhVE8GgKjITAaAqMhMBoCoyEwGgKjITAaAiMEjHYARkhEj3pzNARGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjYDQERkNgNARGCBjtAIyQiB715mgIjIbAaAiMhsBoCIyGwGgIjIbAaAiAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIDAaAcAFAqjeDQERkNgNARGQ2A0BEZDYDQERkNgNARGCBjtAIyQiB715mgIjIbAaAiMhsBoCIyGwGgIjIbAaAiAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmKBgNgdEQGA2B0RAYDYHREBgNgdEQAIHRDgAoFEbxaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMhsBoCIyGwGgIjBAw2gEYIRE96s3REBgNgdEQGA2B0RAYDYHREBgNgdEQAIHRDgAoFIY3/vPnz/D24KjvRkNgNARGQ2A0BEZDYDQERkNgNASIB6MdAOLDakiqtLW1ZWNjY2Rk5ODgGJIeGHX0aAiMhsBoCIyGwGgIjIbAaAiMhgBVwWgHgKrBOcgMU1VVPXLkyP///xkYGH7+/MnIyHjmzJlB5sZR54yGwGgIjIbAaAiMhsBoCIyGwGgI0BWMdgDoGtz0tCwhIeHOnTsMDAwxYACxur6+HsIYJUdDYDQERkNgNARGQ2A0BEZDYDQERiZghAwPj0zPD2Nf37t3T1lZmYGB4dy5c4aGhgwMDDIyMk+fPtXX179w4cIw9vio10ZDYDQERkNgNARGQ2A0BCgPga9fv3Jzc1NuzqgJgxOMzgAMznih1FUGBgYMDAx5eXmQ1j8DAwMbGxsDA4O1tTWlRo/qHw2B0RAYDYHREBgNgdEQGL4hANk6yMPDIyIiMjpMPFzB6AzAMIzZZcuWRUdHMzAwIOdbRkZGBgaGT58+8fLyDkM/j3ppNARGQ2A0BEZDYDQERkOAshB49eqVuLg4mhnIbQk0qVHu0AWjMwBDN+5wuhzS+r906RJcBXzpP9bW/7Nnz+AK4FpGGaMhMBoCoyEwGgKjITAaAiMqBK5evQrxb0RExIwZMyBsJqbRtuIwBKMzAMMtUvPy8iZPnox1+P/69esaGhpoHlZXV7916xZEUEJC4vnz5xD2KDkaAqMhMBoCoyEwGgKjITCiQmDGjBmZmZnMzMyQG4R+//4NWT+8dOnSqKioERUUwx6MdgCGWxRDlvq8evVKVFQU4jcHB4eDBw8qKCjcv38fIgInJSQkXr58CecyMDC4uLjs3r0bWWSUPRoCoyEwGgKjITAaAqMhMBJC4Pnz51JSUshjiHv27HF1dUUWGQnhMBLA6LTOsIplJycnBgYGHR0deOv/2rVrBw8eZGBguHjxIppXY2NjIa3/KVOm7Nq1CyJ78uRJCGOUHA2B0RAYDYHREBgNgdEQGFEhICkpCfHv3bt3IQwXFxc5OTkGBoagoCCIyCg5PMDoDMDwiEeQL/7//w9ZqPf+/XsBAQGQEAMDZEKgpKSku7sbIgIh7969q6KiwsDAcObMGWNjYwYGhvb29qqqKk5Ozm/fvkHUjJKjITAaAqMhMBoCoyEwGgLDLwTKysp0dXVjYmIgjQRkD6akpMydOxd5yP/t27ciIiIMDAzPnj2D9xCQtYyyhyIYnQEYirGG3c3Hjx9nYGBgZWWFt/6XL18OUYrW+mdgYDAxMWFgYIiMjIS0/hkYGCCr/5mZmSFaRsnREBgNgdEQGA2B0RAYDYFhFgJaWlqMjIzd3d1xcXG8vLy/fv1C8+CcOXMgIo8fP4YwhIWFExISGBgYIKuDIIKj5FAHox2AoR6DCPfPnDmTgYFBSEgIIvT371/Ilp1Dhw5BRODk8uXLP3z4wMDAsGzZMrggZOswfNc/XHyUMRoCoyEwGgKjITAaAqMhMAxCYMGCBdevX4d75OvXr+zs7HAunNHc3MzAwABZ+QMRnD9/PoRx/vx5CGOUHOpgtAMw1GMQ4X5FRUUGBoaXL1/OnDlz3759LCwsEDlbW1sIA05COgbbt2+Hi6xYsQLChhwhCmGPkqMhMBoCoyEwCkZDYDQEhk0IQNb2MDAwHDx48Pr165Blw5irgGpqaiBeXrRoEYTBwMAwb948BgYGIyMjuMgoY0iD0T0AQzr6UBx/9epVHR0dFCHUu8AgUgUFBRMnTkRe3scA2yqwefNmHx8fiLJRcjQERkNgNARGQ2A0BEZDYDiFgL6+/qVLlzQ1Na9duwbxF6T1v3z58oiICIgIhIQf/vPnzx/42mCI4suXL2M2NiC6RskhBEZnAIZQZBFwqra2dnx8PCR/QtYC/f79m4GB4evXr8g6Ia3/p0+fwgXz8vIg7NHWPyQcRsnREBgNgdEQGA2B0RAYfiGQnJzMwMCA3ADYtGkTZEMgmmddXFwgJ4W4uLjApSAHAYWEhMBFRhlDF4x2AIZu3GFx+YIFC54/f75ixYqTJ0++ffsWsgqIh4dn1qxZENWenp4MDAzCwsLwrTxfvnyBrP5HXhcIUTxKjobAaAiMhsBoCIyGwGgIDJsQyMnJYWBg+PTp0/fv3yGe8vX15ePjY2BgCAsLg4jAybNnzzIwMBw4cGDr1q0QQU5OTgYGhnfv3kG4o+SQBqNLgIZ09BF2PNrFwJD5gfv37ysoKEA06+npXb58WU1N7ebNmxCRUXI0BEZDYDQERkNgNARGQ2BYhoCiouKDBw8cHBz2798P8eD9+/eVlJQghwFKSEhABCFkeXl5V1cXAwNDdna2goJCaWkpAwODvLz8gwcPIApGyaELRjsAQzfuiHI5pMV/584dZWXlBw8eQDYK////H6L5yJEjkC3CHz9+hIwBQMRHydEQGA2B0RAYDYHREBgNgeEXAs+ePZOWlmZgYHjz5o2wsDDEg/7+/ps2bWJmZv7z5w9EBE5qaGigjQ/29vYWFRXBFYwyhigYXQI0RCOOWGf///9/9erVysrKDAwM69evh+/3ZWBg+PPnD6T1X1VVNdr6JzZAR9WNhsBoCIyGwGgIjIbAkA0BKSmpwMBABgYGyN1eEH9s3LiRgYHh79+/ly5dgojAl/rcuHHD19cXLmhtbT3a+h8eYHQGYHjEI1G+OHz4sJ2dHQMDg6urq5eXV3Fx8b9//5iYmP7+/UuU/lFFoyEwGgKjITAaAqMhMBoCQz8EIKsD7t69C1n8w8DA0NvbW1JSAj8hcOnSpTExMXAFX758uXbtmjQYDH3fj/oABEY7AKBQGCH4y5cvvLy8yJ5lZGT89+8fssgoezQERkNgNARGQ2A0BEZDYHiHQHt7e1VVFby5D/Escq8gOzt72rRpaAogykbJ4QFGlwANj3gkyhc8PDxLliyBHA3EwMDAzc39/v17onSOKhoNgdEQGA2B0RAYDYHREBguIVBZWQnxCvzOLwYGBj09PQYGBshO36lTp0IUYO4KgIiPkkMdjHYAhnoMkub+6Ojo379/nz59+vv3758/f+bn5ydN/6jq0RAYDYHREBgNgdEQGA2BoR8Ce/fuZWBgaG1tvXr1KsQ3r1+/ZmBguHHjBoR78eLF////wwcNIYKj5LABox2AYROVJHjExMSEg4MDMtlHgrZRMBoCoyEwGgIjNQQ6e6eMVK+P+nt4hoCTk5O5uTkDA4OOjk58fHxkZOTz588ZGBjY2dkhHoZMCEDYo+TwA6N7AIZfnI76aDQERkNgNARGQ4CaIfDx4ydB+/D7G2fKy8tR09xRs0ZDYEBD4P///0JCQh8+fEB2xfHjxy0sLJBFRtnDEozOAAzLaB311GgIjIbAaAiMhgDVQgDUQmJkvHXnHtVMHDVoNAQGQQgwMjK+efNGTg7areXk5KysrBxt/Y8QwDJC/DnqzdEQGA2B0RAYDYHRECAvBFas3sDAwPjy1RvytI/qGg2BQRsCzMzMDx8+/PbtGwMDAxcX16B156jDqA5GlwBRPUhHDRwNgdEQGA2B0RAYPiEAWv9jHcjAysHA8O/9gZX8/HzDx2+jPhkNgdEQGKlgdAnQSI35UX+PhsBoCIyGwGgIEBEC9+4/AKliBFWXUDaIP4pHQ2A0BEZDYAgDUIk2hJ0/6vTREBgNgdEQGA2B0RCgZQjs2nMAZDwjIwMT69Xr0BMSQSKjeDQERkNgNASGLBjtAAzZqBt1+GgIjIbAaAiMhgCNQ+Djx0+VCzYyMDJC7Dlw+CSEMUqOhsBoCIyGwJAGox2AIR19o44fDYHREBgNgdEQoH0IgNf/MDAwqCor0N6yURtGQ2A0BEZDgOZgdBMwzYN41ILREBgNgdEQGA2BoRsCHz9+mjF7fuX8jfe3LxTg5x/dBDx0o3LU5aMhMBoCcDA6AwAPiiHP+Pjx4/nz5zs7O1NSUoa8Z0Y9MBoCoyEwGgKDIwT4+fmkJcX///ohLyc72vofHHEy6gq6hgAjI2NKSsr58+fpauuoZTQGLDQ2f9R4eoTAx48fT506tXLlSgYGhvDw8PLycnrYOmrHaAiMhsBoCIyMEHj67Fmys+nI8OuoL0dDAD0E/v//v3v37qlTp0LaGK6urugqRvlDEIx2AIZgpKE6ecmSJQcOHHBwcKitrZWXl0eVHOWNhsBoCIyGwGgIjIbAaAiMhgBFIeAKBpDRRkZGxl27do12A4Y6GF0CNLRjkJGR8cCBA729vTExMaOt/6Edl6OuHw2B0RAYDYHREBgNgUEcAvz8/K6urg8ePFi5cuXoYuOhDkY7AEM9BkHuLy4ufvjwIYg1ikdDYDQERkNgNARoEAKj5//QIFBHjRx6IfDx48fm5uah5+5RF2OA0Q4ARpAMKYHk5ORsMFBQUFiyZMmQcvuoY0dDYDQERkNgaITA7bv3h4ZDR105GgI0C4GPHz/u3r27uLg4PDy8traWZvaMGkwnMNoBoFNA08gaBweHN2/eGBoafvjwQVxcPCUlZXQqgEZBPWrsaAiMhsBoCIyGwGgIjMwQOH/+fHFxMQMDQ29vr6ur661bt1RVVUdmUAwbMLoJeGhHpbi4+MuXLxkYGCAr89TU1Jqbm1VVVUcPAhra8Trq+tEQGA2BwRQCc3edWNxiPZhcNOqW0RCgUwhANv6uXLkyOzvb0NAQYuu5c+eMjIwg7FFyiILRGYAhGnFQZ4uIiDx9+hTKYWCQl5efM2eOkZERIyPj7t274eLDg/H////r168PD7+M+mI0BEZDYCiFACPjUHLtqFtHQ4AaIQBf88PAwDBnzhx46x9itpqaGoQxSg5RMNoBGKIRB3W2kpJSRUUFlAOjXF1dP3z4cO7cuZSUlI8fP8KEhzY9c+ZMNjY2LS0tRkZGLi6uoe2ZUdePhsBoCAydEICUouJiYkPHyaMuHQ0BSkPg48ePM2bMWLlyZW1tLeaJn5gND0rtG9VPdzDaAaB7kFPVQn5+fqzm8fPzl5eXh4eHCwgIDIOpgMTExIyMjD9//kA8+/37dyam0aQLCYxRcjQERkOA9iEwOgNA+zAetWGQhAB84N/IyGjOnDlYTxhPTk7GKj5IvDDqDGLAaCuKmFAa1Gr+//+Py33IUwFDd3Pw6dOnFyxYwMDAwMPDU1VVBfHs////f/z4AWGPkqMhMBoCoyEwCkZDYDQEKA+Bjx8/FhcXr1y5ErLZF5eBc+bMwSU1Kj5UwOgm4KESU2S6EzIVcP78eQUFhSF6dV9AQAADA4Odnd3BgwcZGBiio6O1tbUZGBhevnw5OgJBZrIY1TYaAqMhQHQIfPgAWkgpIiJMtI5RhaMhMPRCAL7ZNzw8HHPNz9Dzz6iLCYHRGQBCITQs5CHnhL58+XIonhP65MmTgoICSOufgYFBTk4OEidisCW5K1euZGNjgwiOkqMhMBoCoyFAgxAY3QRMg0AdpkY+fPgQz8z84PQ05JTPly9f4h/4H5yOH3UVeYBxyCVT8vw5qgsSAg8fPhzq54TW1NS0trYyMDBAku7Pnz85ODggvktNTZ01axaEPUqOhsBoCIyGALVC4PyFi0qKCrj2XFHLllFzhnoI8PDwfP36lYGBgYuL68CBA6ampoPfR6MD/yMWjHYARmLU7969e+XKlUNxmu/379+Qwf60tLSZM2cyMDAwYmzOO3r0qJWV1UiM11E/j4bAaAiMhsBoCAxQCCgoKKDttZs4cWJeXt4AOYcoa4duY4Ao740qwgtGlwDhDZ5hKunq6trb2zvkzgm9c+cOpPXPwsICaf3r6ekxMDBwcnIit/iPHz8+TONt1FujITAaAqMhMBoCgzEETp06BW/9+/j4MDMzMzAw5Ofnv337djA6l4Hh48ePnZ2duE75HJxuHnUVdcFoB4C64TlkTINsDh4q54S+fv1aU1MTfvH4qVOnGBgY1q1bd/nyZQYGhqtXrx49enTPnj2Q0IdcVw5hj5KjITAaAqMhMBoCoyFA6xC4d+8exIpjx45t3rz5z58/kO1qIiIiEPHBQxJzyufgce2oS2gHRjsAtAvbIWDyID8n9N+/f5cuXRIVFRUTE7tx4wYkQI8ePWpoaPjv37/g4GAGBoYZM2YoKioyMDA4Ozu/fv365s2bEGUMDAx79uyJiorKysqCi4wyRkNgNARGQ2A0BEZDgOohICQkBDHT0tISwoBPCMyfPx8iMhhIIk/5HAxOHXUDrcHoHgBah/DQMP/8+fNGRkaD55zQP3/+9PT01NXV/f79GxKCTExMXl5e69evZ2EBnV0LX/ovKipqb2+/evVqiDI4qaysDB+SYWJi+vv3L1xqlDEaAqMhMBoCoyEwGgLUDQFIrXTr1i34ZHVXV1d5eTkDA8Pv378hNRd1bSTJtNHNviQF10gAozMAIyGWCfsRck4oZFcAfNyCsDbaqMjLy2NjY6usrIS0/nl5eWtqar5+/bp582ZIGYp8Bcnr16/XrFmTnZ2N7BZBQUF465+BgeHfv3+MjIwPHjxAVjPKHg2B0RAYDYHREBgNAeqGgI+PD9zAsrIyCDssLAzCGChy9JTPgQr5wQxGZwAGc+wMgNsePnyooKDQ0dEBGbegvwuQj/UUFxdftWqVnZ0dmjP+///v4ODw5s0bWVnZnTt3QmT//PkD2XeVmpoK6SHk5ORERkZOnz59yZIlDAwMs2bNSk1NhSgeJUdDYDQERkNgNARGQ4CkENDV1X337p2Zmdm6desg4/3I2k+ePGlhYcHAwPDs2TNJSUmI1I4dOzw9PRkYGB4+fAjZFQARpxs5OvBPt6AecmC0AzDkooweDh7Ao8HY2NggA/8Qf65Zsway1h/CxST9/Pw2b94Mvxbgzp07kOnX/v7+goICiHomJqb///9nZGRMnz4dIjJKjobAaAiMhsBoCIyGAJEhEBgYuGHDBmTFd+/eVVJSQhZhYGAwMTE5e/YsvD6CyEKOB2VmZv7z5w9EhG7kAFbldPPjqEVkg9EOANlBN8w1QrYKMTAw9Pb20vn6G09Pzx07dsDDV0tLa9WqVdra2gwMDGJiYsuWLXNxcYHLHj161MbGhoGB4efPn2xsbPLy8o8ePUIuf////8/EBFrqtn37dg8PD7jGUcZoCIyGwGgIjIbAaAgQDIHXr1/DL57n4uL69u0bAwMDMzPzjx8/IKtS4SZ8/vyZj4+PgYHh0KFDtra2EPFHjx7Jy8szMDBg7TNA1FCd/Pjx44wZM27fvl1bWwuxnepWjBo41AGoYTTU/TDqflqEAD8//5w5cwbknNDt27d//vwZ7qlr167p6Oi8fPly3759r1+/dnV1hUsxMDCsWrUKUhazsbGtXLkS0vp/8eIFXM3atWsh7NHWPyQcRsnREBgNgdEQGA0B4kMAsqYUcujcp0+fjhw5wsDA8PfvX8wZAF5e3rS0NAYGBjs7O8hd9QwMDHJycoGBgQwMDJCLa4i3lzyVHz9+3L17d3FxsZGR0Zw5c0Zb/+QF40gAox2AkRDL5PtxoM4J5eHh+f//f1tbG8TpMjIy4uLira2tDAwM7OzsEEEIOW3aNAYGhtjYWAYGhoiICAYGBmtra3FxcYgsAwNDaGgoAwODgIAAXASN8fPnTzSRUe5oCIyGwGgIjIbASA6BZ8+ewb3Py8vLwMDAxMSUlJTEzMxsbW29fv16BgaGx48fnz9/Hq4MwoBcUsnAwJCbmwsRYWBgWL58OQMDw9evXyGzB3BxqjMgU/crV67s7e1FGyyjul2jBg51MNoBGOoxSHP3w68MU1BQ2L17N83tQ7KgsrLy////UlJSjx8/hjf9ke9VsbKygqyqnD9/PnzXMrIjFy5cCDEPcmUYhA0nX758qayszMHBwcjIKCgoCBcf0gwWFhbM3WlD2kejjh8NgdEQGA0BeoaAhYWFtLQ0vCnv5OQEOU0OvuAnICAAssLHyMgI02EQjVOnTr116xZEFrIMlYGBAS4CEaciCR/4Dw8PnzNnDp0X7lLRI6NG0Q2MdgDoFtRD26KBmgpgYGB4+vQpJOw0NDQg3OnTp9+4ccPS0vL48eMMDAwtLS0MDAxdXV0MDAyTJk3i5OSEqGdgYEhISGBgYIiMjJSRkYELQhjPnj2TkJCAnxb64cMHRkbGly9fQmSHLgm58eDMmTND1wujLh8NgdEQGA2BAQmB2bNnMzIynjx5koGBISMjA+IGLS0tCGPevHkQBgMDw7Zt2yDsBQsWQBhwMi0tDdL+1tHRgaxHPXDgAET269evEAZ1yYcPHxYXF798+XJ04J+6ATvMwf9RMBoCpIQA5DT9jo4OUjRRR+21a9cwc6Ojo+P///9DQkIgUsg2paenQwR//fqFLP7///8fP35ApBgYGCB7tiBcIyMjNJVDi3v9+nWIR96+fTu0XD7q2tEQGA2B0RAY2BCAFJ5wMjQ09M2bNxAn5eXlQcT//fsHEfn//39lZSVEELOKgV+nw8jIiDz89PfvX7h2qjA+fPiwa9eu5OTkXbt2UcXAUUNGDhidAYDk31GS2BCQl5f/8OGDkZFRSkoK8mIbYvVToE5TU9PLywvZgNDQ0H379jEwMKxZs4aBgWHx4sVw2efPn0PmYZcsWcLKygoXhzDc3d0hjHfv3n38+PHdu3eQlUU3b96EiA9REn4rwrBZ0TREI2LU2aMhMBoCQy4E4EdOc3FxHT16dNWqVcLCwhBfTJw4EcJAXtkP36UWGRkJkYWTcnJy27dvh5xH9+TJE4i4j48PfC0QRIRCcvfu3ZDtbXPmzBld8U9hYI5AMHoM6AiMdOp4GbLZSFVVNSMjAzLdSR1zCZmye/fuzZs3c3Nz5+fnS0hIMDAwXL9+HTJF+/fvX3jxqqure+XKFUj5i2bkkSNHIMs3Dx48CL9lTF9f/9KlSwNyVDOa8yjhOjk57d+/n5GR8d+/f3BzlixZAtkkDT+VAi41yhgNgdEQGA0BtBDg5+f/+PEjmmBFRYWIiEhOTg4HBwea1LDh/v79m42NjYGB4dOnT5CNv8he6+npKS0tZWBg+PDhA7zKW7t2LWT++fnz55D6iIGBYf/+/Y6OjgwMDO/fvzcxMXnx4oWgoGBAQMCUKVOQDaSEPXrKJyWhN6oXCkbOZMeoT2kRArt27WJgYBjYyccZM2ZAjmiAe3DRokWQ9H3hwgW4IJzBxcUFkYWL/P//HyLo5uaGLDjk2FJSUgwMDO7u7nCXBwQEQDzLzMx89OhRuPgoYzQERkNgNATQQuDo0aOQ4mLz5s1wqbNnzyI3+qdPnw6XGuoMFhYWHh6e7du3wz1iYGDAwMDQ1NQEEVm5cuX+/fsh7P///0POVxAVFYWL/P//H9IZ4ODg+P///9+/fzMzMxkYGDZu3AhXQ91lP6NrfuABO8qgEDBQqH9U+2gIfPjwoaOjIzk5+cGDBwMSGpCrABgYGPLz858/fw5v/aurq2O6Z9KkSZAa7tWrV3DZc+fOQQRfvnwJFxyKDMhip3Xr1kEcLysrC/GXqKgosn8hsqPkaAiMhsBoCKCFgLq6OuTEerg45KZFSEkCIT98+ACXHaIMOTk5iF8gpI2NDcQjt2/fZmBgYGFhOX36NPJ5EvX19f///9+7dy9E/aNHjyDq////v3//foggRCQ/Px+ZCxGkFvnhw4dkMBgGUTAKBhyMdgAGPAqGiQMGcCrg7du3kIEZSLELIdnZ2bGOu0Bkvby8kMNdVFQUIo4sOBTZEF98+fLl+/fv8NrLyMgIa1AMRQ+Ounk0BEZDgKYh8Pjx4z179vz////r168QiyClq4KCwunTp93d3c+dOwcRH7pkc3MzpKhEJm1tbSE+gghCfA1hQ8iUlJT///+bmJhAuBDFEBIicvDgQTiXl5cXwqYWOTrwT62QHDUHDkY3AUNy7ihJaQgM4DmhQkJC8EEXiDdYWFgePXoE3w8AEWRgYEhMTISw4dcDMzAwrFu37vXr1wwMDJcuXYLIDlESckATIyPj69ev+fj4vn//DjnJ7uzZs5hBMUT9OOrs0RAYDQGahoCMjIyzs3NCQoKgoODbt28ZGBhUVVUhp+CbmJjs2LHD0NCQpg6gg+GTJ09mYGBgY2O7c+fOnz9/oqKiGBgYDoMB/FxpyI4pPj6+iIgIyPH/c+bMWbZsGfzoC/ghofD9EvAa5OnTp58+faKiR0ZP+aRiYI4ahQDwrsAoYzQEqBICkGYo/c8Jhezo1dTUrK2thQ94t7a2/vjxA+IvSCufgYFhwYIFEBEICckMurq6EO7QJeFnVMPHro4fPz50vTPq8tEQGA0B+ofAnz9/IG1fBgYGyKA4/GwxDQ0Nc3NzOTk5DQ2NZcuW0d9t1LIRcuabhIQE3EDI0n/IDfTIJyjAV9pAxlAYGUHnptTV1UFqDWNj4+nTp0N2XjEwMOzYsQNuILUYowP/1ArJUXMwwegSIMwwGRWhNAQGSZk1BXzkgqysLKQPAD/6E9l71dXVkKL89evXyOJDkQ3f78vAwMDIyAifwSfGLx8/fiRG2aia0RAYDYHhGgKQBe6XLl36//8/fI709OnT////R1sxDykz/fz8hmhQGBsbQwpJZPdDPPX06dP///9HREQwMDAoKipiKsjOzv7//7+0tDREPTL58+dPZPWUswdwYS3ljh81YfCD0Q7A4I+joepCyHaljo4O+CAKnX0CKZrT09Mh9kK4kL1cEBH41G15eTlEZEiT8C2/Ojo6JHkEPjeCVuGRZMio4tEQGA2BIR0CkJnDlStXQnwBKTAhJyn///8fMkYOF4QwDhw4AFE8tEj4Jb7v37+Hu5yZmZmBgWH+/PkQEfg0MoT7////mJgYiK8hIq6urpAQg6wm2rBhA0ScKuSAH61BFV+MGjLIwegeAEiOHiWpHwL8/Pxz5swxMjISEBCAr5ukvjW4TayqqmJgYIAcEvrnzx+IQshyTwjb19cXwujo6IAwhi65devWx48fMzAwZGZmXr58mXiPvHjxAr4HOj4+nniNoypHQ2A0BIZTCECOwIdcrcjAwHDmzBmI71avXs3AwHD+/Pl3795dvnz55s2b9+7dk5SUZGBggN+cBVE5VEhPT08GBgYBAYHjx4/D3QzpABw7dgwiAlnzA2FDyIqKCgjj169fkMOvX79+vWTJkpUrV/78+dPf3x8iSyH58ePH3bt3FxcXGxkZzZkzR15enkIDR7WPhgBOMMg7KKPOGwYhMBgGM+B3McIPsYafB3ro0KFhEMh8fHyQTE6SX06fPg3RBSGHwTookrw/qng0BEZCCOAq4qZNm8bAwCAmJvbr16////9Dbr318PCAh4mFhQWkZICLQI66////P2R/MAMDw+/fv5Flhwr78uXL7969g7v279+/EJ+GhITABf///4+8zAmyRIqBgeHbt2/IaqjIhkybJycnD9S0ORX9MmrU4AejMwCQXD9K0jAE+Pn5y8vLw8PDFRQUBmQqgIGBAXJXC2SAvLq62sfHJy8vD+JnyK3AEPYQJYuKiiCHTty7d494L2zcuNHU1BSyFhaiC7I3DsIeJUdDYDQEhkEIMDIy2tnZrVixAtMvkIX+r169YmNjW79+vb29PQMDw4sXL+AqN2/eDGHn5uYyMDB8/vw5ICCAlZX16tWrkIN0GBgY4JOrEJVDhdTR0REUFIS7Fr6YB3KpPAMDw9+/f0VERDZt2sTCwrJ9+/YTJ05ApjsYGRkhUyVwvVRhwAf+w8PD58yZA6+wqGL4qCGjIYAVgLa0Y5UYFRwNAaqHwMDeXu7g4HDw4EE0T8HPu0ATH1pcSO3FwcEBOfqTGMf39/cXFRUxMDDw8vJaWVnt3LkTclkYMXpH1YyGwGgIDIkQuH//vpKSEsSpfX19hYWFEDac3LBhQ3BwMOTcG0FBwffv36MVIzU1Na2trQwMDE+ePPnx44eKigpcLwMDAysr68+fPyHlD7L4kGN//vwZMol66NAh+JDQmTNnIEMkyN4REBB4//49sgjl7IcPHzY3N6uqqmZkZIw2/SkPz1ETiAWDf5Ji1IXDLAQg54QuXryY/v6CzHFD8oasrOwQnbxGCzfIuB0DAwPxC3ggl9UzMDBwc3N//PgRMqAVERGBZvIod3iHwIcPo0c/De8Y/v/7929IcQchq6qqMD38+fNnCQkJiALIfCCaGogU5KDkZcuWQbgQsrm5GU3xEOXev38f4qNr164he+HUqVOQ69Uhstzc3GfOnEFWQCF7kJyYR6EvRrUPUTC6BAiSr0dJ+oWAvLz8hw8fxMXFU1JS6Lwi6M2bNwcOHFi4cOGdO3cePXoEud6Ffj6njU2WlpYMDAxRUVFELuBxdnaePn06AwMDFxfXo0eP+Pj4IHva4L0C2jhz1NRBFwIfPnx8+BC0cXzQuWzUQVQKARYWFi4uLkiznoGBoa2tDX59FdwGHh6e58+fNzY2QkT+///PxsaGPJe4fft2BgaGy5cvHzlyJDIy8unTp5WVlXl5eVevXq2pqYHoGurky5cvIV5QVFRkYGC4f/++t7d3QkKCqanpt2/fNm3aFBwcXFFR8eXLF8gRohDFFJKQzb4MDAxz5sxxdXWl0LRR7aMhQCoYXQJEaoiNqqdaCIzOe1ItKBkYfv36BRnIx2+mhobGzZs3GRgYODk579+/Ly4uvmzZsujoaAYGhk+fPvHy8sK1b968GX5KElxwlDGcQmD33gMvX72JiQwZTp4a9QtaCFhZWR0/fpyJiUlEROTVq1cMDAwhISGrVq3CXLdTWFg4YcIEuPawsLCVK1dCuBwcHD9//oQcCQoRGWbk3LlzU1JSGBkZv3//vmTJkpSUFIgHabRG9OPHj5s3bz5w4EBtbe3oOT+QoB4l6Q9GZwDoH+ajNkJDQF5efmDPCYW6Y1hQxLT+RUVFIa1/BgaG79+/nz9/noGBobu7m4GBgYmJiYeHBx4SP3/+9PPzY2RkhCwOhouPMoZTCJy7cDmua+5w8tGoXzBDoKysjIGB4d+/f48ePYJMEq5Zs8bJyQmzaaujowMZGoAMBKxatYqfnx9ypvDZs2cZGBgg2jGtGAYiJ06cgHRv1NTU4K1/BgYGqp+MDN/sKy4uPnrK5zBIOUMajHYAhnT0DQfHu7q6fvjw4dy5cykpKQ8fPhwOXhp8fvj//z8zM/ObN2+Qnebp6cnIyHjhwgUGBgZZWVnkEcEfP35AVEIqfggbjTQzM0MTGeUOoRD4+PFT5cLNDAxM5y9cGkLOHnUqWggwMhKYxnd0dIRo2b179+vXr8XFxRkYGA4cOKCjo4PWvTc0NIQMDXz48MHGxgYyK6inp5ecnKytrX337l34jYEQA4cTCa96Hj16BPfX69evFy5cCOdSzoAcg7Fy5cre3t7RNT+Uh+eoCRSC0Q4AhQE4qp0KITAYzgmlgjcGqxH///9nYmKCVPb8/PxJSUmYLk1MTEQWhHcAIG0CSIsBWcGJEydOnz7NyMgIGV9ElhplD4kQOHXmLAMjIwMT89XrN4aEg0cdiRkCkE478np9TDXwU2UgFyO+ePEC0ge4du2apKQkpFiA6IIM/EPmAw8fPrxhwwaIOGSLMPw0IYjgMCNPnTqF7KPa2tr///9TccYDPvAPud4LHinIlo6yR0OAzmC0A0DnAB+1DmcIEDkV8PHjR+Q1mjiNG5UAh8D3798hN1wyMDCIi4u/evVq7ty5R48ehZ8dBFbFEB4eDmFAyOvXr0MYkMMNrKysHB0dGRkZr127BhEPDAyEMLq6uiCMUXJohcC585cZGEHlf1zbzKHl8lHXQkIAfmUv2sweRBaZhGxsvXLlCgMDw9q1a+EbXl+9egU5+xKiGH7cDcRAf39/SPaHHAMKUTNcSXiY8PHx/f//v6mpiXifMjIy4p++/vjxY3Fx8blz50YH/okP1VGVdAAsdLBj1IrRECAyBCBTAQ8fPlRQUFi8eHFMTAxc48ePH+/du7dr167bt29DrkqBS40y8IQA5LhVBgYGZWXlO3fuQFRaWVkdOHBg5syZxcXFX79+ZWBgUFVVhUhBSPjKn2/fvgkKCkKWC7OxsX3+/Bmi4N69e6tWrYIPGUIER8mhEgKg9T8LNjKwsIEczMR8/sIlQwM9EHsUD50QgA/JE7yKq7CwMC8v7////5AZA2Qvfv36lZmZ+ffv30xMTFJSUhCp9+/fU3HwG2LmICfZ2dmzs7M9PDx8fHxIder///93797d3NzMwMCQnZ0NnzVlYGD4+PHjqVOnVq5cGR4ePrrmh9SAHVVPa0Bg+SCtrR81fzQEsIYAvNzMzs5WUlK6d+/e1KlTMYtXrHpHBTFDIDY2dvHixZjikAYBMzMzWhuioKBg4sSJrKys8HPEjYyMjh8/zsbG9vPnTyUlpdLS0oKCAkwDR0WGRAicv3DJOKaQgZWdgYmF4d/vRWWJMZFhQ8LlI9mRDx8+RD4x5tmzZ9LS0gwMDBcvXtTTw9d/+/LlC2Zfvays7MWLF4sWLYIE6adPnxgZGSHKjh07BjlcGCI1ShIZAufPn4fUU5DmPoQLYRNpwqiy0RCgJxidAaBnaI/aRWwI8PPzu7q6qqmpNTc3z507t6OjY/S4NGLDDps6rK3/L1++QNQGBARAGHASclgQvPW/fv16uJrs7Oxnz54VFha6ublpaWnBtYwyhlAI7NpzAOFaJtanT58juKOsQRkCkL56SEjI6tWrIQ6Er9i5f/8+/g4A8gFfDAwMgYGBvb29kHVBUlJSHR0dDAwMfHx8jx49MjU1RVsND7FrlCQmBAwNDefMmQPf6cvAwDBabRETbqNqBgqA1oAOlN2j9o6GAP4QgJwTysDAUFFRcevWLfyKR2VJDYEDB6CtQOQrwH7//m1tbb1jxw6IabKysv///4e3/u/cuTN3LujgSE9PT0jr//9/0G2jyFsJIRpHycEcAhmpCUl2BgwMjAwMDEmWWhGhQYPZtaNui42NhQTCmjVr2NjYICv0REVFIYJMTITrcQUFBcju3g0bNqxbtw7S+mdgYGhvb+/t7YWYw8PDM9r6hwQF2SRk7vr27dtz584dPeWT7GAc1UgfQLjgoI87Rm0ZDQE8ITB6TiiewCFbauLEiRC98IMCt27dysbGduzYMYg4AwMD8qF4DAwMnp6eECnIyoGVK1fy8vKysbFxc3NHRERApEbJwR8C/Px8c6b1JpmrJJkqzJnSIS8vO/jdPJJduHjx4tOnTwsKCjIwMPz+/dvExMTHx+fz58+QaQH4EZZ4ggiyy//fv38ODg5oyoqKis6ePfv//3+I+Wiyo1ziQwA+9l9bW0u8rlGVoyEwUGC0AzBQIT9qL2mgvLw8PDxcQUFh9+7dpOkcVY0jBOCniDAxMf38+VNYWBi+AQ4yuCggIICs9cCBA5BtxK2trSIiIgsWLIiIiIDsIf7x48fKlSuXLFmCrH6UPehD4N+gd+GoA6EhYGJi8u7du4SEBAh/69atkpKSkN35kFwJEcdF5uXlQaQuXrwIYSCTRkZGyNxRNqkhgHbKp4CAQHJyMqmGjKofDQE6g9EOAJ0DfNQ6kkMgOTn53r17DAwMRJ4TSrIFI1XD379/t23bZm9v397ezsHB8e7dOwYGBm5u7suXL8vKgoaEId0AePDAJwogB4pD7hNgZmaGn0YyadIkuOJRxmgIjIYA1UNg/vz5Hz58gKz5gfS9GRgYiJkBgJzlz8DAAFnCR3WHjWQDMU/5/PDhw0gOkFG/DxUw2gEYKjE1ct2JPGcNOSc0OztbQUFhdLyZ8jTh6el54MABSP+KgYHB2tr6y5cvOjo6d+/eZWBg+PXrF9yKyZMnQ9hbt25lYGDo6OiAjD5euHDh1q1bkKUIkIPGIcpGydEQGA0BWoQAPz//379/IafNQMzfsGHD8uXLIWxcJBMTE+SEnz179uBSMypOagjAB/7Dw8PLy8vh13vdunUL7WBlUk0eVT8aAnQAox0AOgTyqBWUhsDVq1eRjTA0NPzw4YO4uDj+61eQtYyy8YTA7Nmz////v3379iNHjkCUffv2jYGBQVhYGML9+PEjZAmBrKysl5cXAwMDfLMgDw/Pv3//4uLiGBjQbxOD6B0lR0NgNASoHgJZWVnIw8xRUVFCQkKQC7xw2WVsbMzAwGBjY4NLwag4SSFw/vz54uJiBgYGrNd7ja6qIikwRxUPCBjtAAxIsI9aSkIIaGtrY6qGnBNaW1vb3Nzc2dmJqWBUhNQQ8PDwgGiBXP/JwMCgqakJEYGs9mFgYICfDmRqagqRCgwMZGRkXLBgwa5du+CzBBCpUXI0BEZDgHYhAB9vhljx/v17UVHRvLw8XEdypaam/v//f+XKlRD1oyTZIQAZ+J86dWp2drarqytaRDAwMJw7d45sw0c1joYA3cBoB4BuQT1qEfkhAD+wEs0IyDmhRkZGjIyMo5uD0QKHbC4jIyPkXjDIuuGrV6+uW7eOgYEhMjIScvQnAwNDaWkpGxvoHtkLFy5MmDABskMD7bhxsh0wqnE0BEZDgJgQ4OPjY2BgUFNTg98yO3nyZAkJiQsXLmBqj4qKwhQcFSEpBCBNf8jA/5w5c5Av/UUzR01NDU1klDsaAoMNjHYABluMjLoHPQQgt6ugiyLxkTcHf/z4EUlmlElmCPz//19RUZGLi4uBgcHe3h5iyuzZs69cuZKWlsbAwMDCwtLS0gIRb2pqgjBGydEQGA0B+ofAixcvdu3a9eLFC0if/PXr14aGhqPNfapHBPIpn/AeF1ZbysvLke9sxqpmVHA0BAYcMEJ28g24O0YdMBoClIfA7t273dzcdu3ahb90ptyiEWLC79+/9+7dCzn7f9q0aZmZmaampmfOnFFWVr5z587fv3+5ubl//vzJwMAwWowMxSSRkpHLwMA4Z8bo2U1DMfZAbhYSEnr//j0LCwv80u7m5ua6ujqQHAODkJDQ27dvIexRkpIQgFzvtXLlyvDw8NHKhZKQHNU7qMDoDMCgio5Rx1AUAshTAcQcjUeRZfTV7OHhAV+ITzebWVlZPTw8IAP8kNuCL1++zMDA8PfvXwYGBmZmZhYWFshsAN2cNGrRaAiMhgA8BCDH9bKzs8NFamtrnz9/rq6ufvLkydHWPzxYKGFATvlcuXIl1s2+lJg8qnc0BAYWjHYABjb8R22ncgggnxM6bHYFTJkyZefOnfPnz2dkZDx69CiVg4yQcbW1tfABfgjjwYMHhw4dKikpgZxEnpGRQciMUfnREBgNAeqHAOSqPsiZXXDTJSQkbty4YWZmBhcZZZAXAvAV/+Hh4XPmzMHc7EuesaO6RkNgkIDRDsAgiYhRZ1AzBCDnhL58+XIYnBN68eLF3NxceOjY2NgICgrCuXRmmJubQ2y0t7fv7e1lYGAQFxcfPfwHEiaj5GgI0DkEvnz5MroAj0ZhDjnl8+XLl6MD/6NguILRDsBwjdmR7i9+fv6YmJihfk7onz9/LCwsGBgYzMzM4BP9Hz58WL169YBE8IIFC5CvB5aVlUW7omFAXDVq6WgIjMwQ0NfXh3gcshUHwh4lKQwByMD/1KlTw8PDY2JiRgf+KQzPUe2DFox2AAZt1Iw6jAohAD8nNCUlZSiuCNLT0/vx4wcDAwNkRW9PTw8DA4O0tHRoaCgVQod0I5SUlF69elVZWRkaGrp69eqHDx/CLwsj3bBRHaMhMBoCFIWAnJwcAwNDa2srfHSAIuNGNTMw7N69G37K5+h+39EUMbzB6ClAwzt+R30HDQHICW63b9/u7e0dKiM6aWlps2fPZmBg+PfvHyMjI8Qnt2/fZmNjg58x9/bt27Vr10KO5oQoGCVHQ4DIEBg9BYjIgBpVRkYILFq0yN7eHl5SkWECnbXA64ja2toh5Gw6h9KodcMJjHYAhlNsjvqFQAgMoXNCDx486ODgAPGPhIREYmJiW1sbhAsnra2tjx07BuGysbGNLgOABMUoSWQI7N6zT0RE2NAAuoyESF2jykZDAH8IcHNzw/clS0lJPXz4EHJcGH5dAyg7esrnAAb+qNUDCEY7AAMY+KNWD0AIDJVhHmdn53379iEH0Ny5c5FPApWRkXn69CmyAgYGhs+fP49ex4sWJqPc0RAYDQG6hYCSktL9+/fRrIOcHoYmOEi4kFM+GRgYhtDk8CAJulFnDHUw2gEY6jE46n5yQuD8+fNGRkaD+cqwr1+/ampqOjo6vn79evv27QwMDIyMjP/+/YP4NiUlZe7cuQwMDCYmJtHR0RMnTnzw4AEDA0N+fv6ECRMgakbJ0RAYDYHREKBnCLx48UJSUhJiY39//7Fjx+DHFQzCPsDowD8kpkbJEQtGOwAjNupHuseHylQAAwODqKjomzdv4Of9XblyRVdXl4GBIScnB3IE569fvyC7AN3c3Hbu3DnSo3bU/6MhMBoCAxECe/bsgWycPXz4sI2NDQMDw5w5c1JTUxkYGA4dOmRrazsQjsJu5/nz56dOnerg4ODr6ztUdoVh98mo6GgIkAtGTwEiN+RG9Q3xEIBcGVZbW6ugoNDZ2Tl4fCMsLLxy5Upk96SkpDAwMDAxMUFmALy8vCCykNY/AwMDGxsbRISbmxvC+Pv37/PnzzHXCEFkR8nREBgNgdEQoHoIKCgoQMxUV1eHMFJSUuzs7BgYGCAkRHBgydFTPgc2/EdtHzxgtAMweOJi1CUDEALy8vL///83MjIaJOeE2tvbv3v3rqioCDks1q5dC+kAMDExLVmy5PHjxwwMDA8fPkRWA2FDNglcuHCBj49PSkpKRkaGi4sLIjVKjobAaAiMhgBNQ0BFRQViPvI85MaNGyGCtbW1EMYAkqOnfA5g4I9aPdjA6BKgwRYjo+4ZmBAYJFvB+Pn5P3365O3tvWXLFnhAQM4Ara6ubmlpgbDFxMRevnwJVxASEgLpJPz////cuXPGxsZwKQhj0qRJyNcJQwRHydEQGA2B0RCgbgioqandvn0bvl4RYnhVVVV7ezsDA8ObN28G6uaQIbTmExJoo+RoCNAajHYAaB3Co+YPpRAY8HNCWVhY/v79q62tfeXKFUjA8fLyfvnyBbIDuLi4uK+vj4GB4d27d4KCghAFN2/e1NDQYGBgmDRpUlRUlIiICETc19f3y5cv+/fvh3AH4SY8iMNGydEQGAVDKAQ8PDx+/vxZXFzs4+OD6ezr169raWkxMDBs2rTJ19cXrgAycmFkZHT27Fm4IH0Yo5t96RPOo7YMOTDaARhyUTbqYNqGwMAOFFlaWp44cYKBgaGoqEhTUzMzM/PPnz8MDAzLli0LDAzk5ORkYGDIysqaOnUqPBQUFBQgy4H+//9vamp65swZ5PNAXVxc9u7dy8DA8P37dw4ODriuUcZoCIyGwGgIkBQCqqqqd+7cgWvR0NC4fv06nAtn+Pj4bN26lYGB4devX6ysrBDxNWvWQO4vv3HjBnyHAESKpuQgmdqlqR9HDR8NAfLAaAeAvHAb1TXMQ2CgpgKQ7/+CB3F6evqMGTOCg4PXrVvHwMDw588fZmZmiOymTZv8/f0ZGBhOnDjx7t07yP7gffv2OTo6QhRMmjQpPz+fgYHh9+/fg/w6HoiDR8nREBgNgUEYAgkJCQsXLkRzmIKCAuap/5AzixkYGOLi4pC1iIiIvH37Fm11EJqBVOSODvxTMTBHjRqWYHQT8LCM1lFPURoCrq6uHz58OHfuXEpKCmR8nVITidNvb2+fl5cHb98zMDB0dXXNmDGDgYEB0vpvbW1FloW0/gUFBc3NzeEz8vDWPwMDA+S6AAYGhtHWP3ExMKpqNARGQwBLCKxZswYieujQof///wcHBzMwMDx48GDmzJkQcWSypqaGgYFh0aJF7969g4vD9zV9/foVLkgjxsOHD4uLi1++fNnb2ws5mZRGFo0aOxoCQxeMzgAM3bgbdTk9QuDhw4cKCgodHR3l5eX0sA9sx+/fv/fv38/NzW1oaAg5xufevXvKyspow//Nzc11dXWQanjZsmVVVVUMDAzPnj2D38Xz588fyBR8ZGTksmXLwGaPEqMhMBoCoyFAWgj8+/ePg4Pj9+/fyDeNODg4HDx4kIGB4ePHj3x8fGgmQhb9c3Jyfvv2DS4FEWxra6usrIQLUpcxOvBP3fAcNW0Yg9EZgGEcuaNeo0IIyMvLf/jwgc7nhLKysrq5uVlbW0Na/wwMDFevXoV45uPHj3AGpPUfGRkpLy8Paf1bWFjAW/8MDAzR0dEQxbNnz4Yw0MhXr15Nnz591qxZaOKj3NEQGA2BER4C6enp8DF7JiYmyGYk5BH9AwcOQIIIsrgfwoaTkHPJvn//vnjxYrggExOoyQE3Fi5OLcbu3bsFBAQgF5CNDvxTK1RHzRm24P8oGA2B0RAgIgQ+fPiQnJzc0dHx4cMHIpRTWQm8A+Dl5fXkyZM7d+7Al/T8/PkzLCwMUkJ9/vwZbjFcS1tbG1wQmeHi4gLRBblkAFlqlD0aAqMhMGJDAPm0AC4uru/fv0MOGIAUF8jBMmXKFIjgzZs3kcUhbMiF5QwMDLNmzXrw4EFbWxtEcVVVFUQBFckPHz50dHQkJyc/ePCAisaOGjUaAsMYjC4BgpRIo+RoCBAVAgO1Ofj37988PDy/fv1Cc+W1a9f4+PhkZGQguwVKS0vhCmRlZZ88eYJry52MjAzmPcFdXV3IJsCNGmWMhsBoCIyQEICs0kHz7L9//+7duwe552vz5s3w7Ubw/b5Yy5mPHz8KCwv//fsXzbQrV65oa2ujCZLNHV3zQ3bQjWoc4QA0HzfCg2DU+6MhQHwIDNTmYFZW1rlz57KxsSE7dcOGDZqamqmpqRBB5Lb7+vXrIa3/o0ePQmSRyfnz50Na/+Li4tOnT09LS4PINjY2jl4XAAmKUXI0BEZgCBw+fBjia0ZGxmXLllVUVED6A0xMTMrKyvb29gwMDL6+vr9//4YoY2BggJwyzMDAcOjQIbgghMHPz3/79m1ubm4IF9JbSE9Pp27rv7i4eOXKlaObfeGBPMoYDQFiwTCe3Rj12mgI0C4Edu3axcDAsGvXLtpZgdVkJycnHh6egICAFy9eQBRAsrqCggKECyEhgpycnBAuGgmRlZOTg4vDJ+v//fsHFxxljIbAaAiMqBCAr9K5c+cOxOOQgo6BgaGxsRG+ASkhIQEiCyENDAwgRQqECyGnTp0KYfz69WvixImenp4pKSmPHj2CCFJOfvjwYdeuXcnJyfQvhCl3/KgJoyEwGMDoDACk4BolR0OAtBAYqKmAvXv3fv78ef369eLi4gwMDP/+/YMM0SEv6C8qKoJ45vLlyxAGMhkUFAThnjt3DsJgYGCAdwAgpsHFRxmjITAaAsM7BOB3ijMwMEhJSUE8KyYmBmG4urpGRUUxMDDU19f//v07Ly+PgYFhwYIFkBP9IWo2b94MYcyfP5+BgeHTp096enrZ2dmQyQFWVta8vLxt27bNnj1bVlYWopJCcvSUTwoDcFT7KACFwGDohYy6YTQEhi548OABAwNDR0fHgHgB3gGQlZWFzAmsX78elLEZGEJDQzGdBO8S1NbWIstKSEgwMDCoqakhC46yR0NgNASGcQiUlZVByoqKigqIN+En9G/evBkiAiEhyiwtLeFLBHl4eCBSENLW1paBgUFYWBjCtba2hmiBcKlIjg78UzEwR40a4WB0EzCkmBolR0OA/BAY2F1obm5uu3fvRnM9BwfH58+f4ScFwWWVlZXv3bvHwMDw9+9fyJF8DAwMR48etbGxYWBgQNveB9c1yhgNgdEQGE4hcOfOHVVVVWQfffv2jZOTE7JMHyIOb+szMDBMmTIlNzcXch7xyZMnk5KSGBgYrl27pqmpCVG8Zs0ayGGgEF1v374VERFpbm6G3AgGUUM5OVBnMFDu8lETRkNgEILRDsAgjJRRJw3JEPj48WNxcbGqqmpGRgY/Pz/d/PDs2TMdHZ3379/DbWRhYXn06BHyhQAQqaVLl8bExDAwMJw7d87Q0BAiyMDAwMvL++XLF6zneMDVjDJGQ2A0BIZHCJw/f97IyAjuFz09vSVLlsAXAW7atAlyv/jZs2eRlcEXB/7//x9+hhh8BrK1tRXS1od3JODmU4Xx8ePHGTNm3L59u7a2Vl5enipmjhoyGgIjHIx2AEZ4Ahj1PpVDYKDGqBQUFB4+fMjAwODj47N8+XIeHh7IrcDwRb24xvYWLVoUHx8PmQewsrKicnCMGjcaAqMhMPhCgJ+f/9OnTwwMDOvWrQsMDERzoJqa2u3bt9HmCffu3esCvjlk9+7dkpKSOjo6kCJl3bp1b9++TUlJgRjy8+dPtMPKIOJkkwM7v0q2s0c1jobA4AejHYDBH0ejLhxiITBQg1W/f/9mYWGBD9RNmzYtOzt78eLFkFH/qVOn5uTkQHoFyJMDEPV8fHzwIz6GWHCPOnc0BEZDgMQQmDlzZkZGBicn57dv3zC13rhxA7K2p6amprm5Ga7A0NDwwoULkKnC3t7ekpISuBSE4erqCj81CCJCIQmZVmVgYOjt7aXntCqFzh7VPhoCQwKMdgCGRDSNOnLohcBATQXAQwrSsjcwMDh//jwDAwMLC8vfv391dXUvXboEV5OXlzd58mQGBoY7d+4oKyvDxUcZoyEwGgLDOwQg5cOLFy/ExcWLiop27tz57du34uJiyDBBWFjY6tWrGRgYPnz4AG953717F3IX2I4dO9zd3Xt6esrLy//9+wcJKDExsZcvX0LYlJOjA/+Uh+GoCaMhgB+MdgDwh8+o7GgIkB8CAzUVwMDAcOvWLXV1dQYGhpcvX4qJib17905YWJiBgWHbtm2enp4QLz158gRyKl9oaOiqVasggqPkaAiMhsBICAHIOn51dXUZGRnIeZ0QX4uKij5+/JidnR3SQ9DU1Lx27RpEioGBgZmZ+d+/f0ZGRmfPnmVgYPj69eucOXPev39vZWXl5uYGV0Yh4+HDh83NzfTfT0Whs0e1j4bA0AKjHYChFV+jrh16IfDw4UMFBQX4Uhx6emDZsmWQM7whh3KgLfQ3MDC4ePEiAwPD58+fIXsG6Om2UbtGQ2A0BAYwBG7evKmhoYHVAUJCQm/fvoXv6920aZOvry9EJQ8Pz9evX+Xk5CA7jiCCVCRHB/6pGJijRo2GAH4wehEY/vAZlR0NAUpDQF5e/sOHD+Li4ikpKZjndVJqOl79kNY/ZDMfRGFZWdmHDx9+/foVGBgIaf0vWrRotPUPCZxRcjQERk4IqKurQ27/gHj5xo0bjx49gkwbvnv3ztLSsrq6GnJSsJ+f344dO759+7ZhwwbIRQGQhUAQjVQkd+/eXVxczMDAMGfOHFdXVyqaPGrUaAiMhgAmGJ0BwAyTUZHREKBJCAzsvDYfH9/nz5/RPDa69xctQEa5oyEwckJg165d7u7uDAwM+fn5EyZMgHgcfgTQ////4SsJIZuI/vz5A1GzZs2a4OBgCJsq5ACulqSK+0cNGQ2BoQhGZwCGYqyNunlIhoC8vPycOXOMjIwEBAToPBXAwMCwdu1atOP52NnZR0/+GZIpadTRoyFAjRBwc3MTEhIyNTU1NzeHm3fr1i3I6v+CggI1NbUtW7ZApOCtf0tLSyq2/j9+/AgZ+DcyMpozZ87oGf+Q0B4lRwEdwOgMAB0CedSK0RBACYGBGu56+fKlra3t7du3+fj4cnJyWltbUZw1yhkNgdEQGA0BBgZHR8cDBw4ICAhArhf88uVLbGzstWvXJCUl09PTIyMjqRVI8JJw9JRPagXpqDmjIUA8GO0AEB9WoypHQ4CaITBQ54T++/cPsrSXmp4ZNWs0BEZDYCiHAHKxUFBQMHHiRMh5/zTy0+hmXxoF7KixoyFAPBjtABAfVqMqR0OAyiEAHwAbvd+eyiE7atxoCIyGANEhkJSUtGfPnrt377Kysv7580dSUvLNmzdsbGw/f/4k2gwSFEKu9xo95ZOEIBtVOhoCNACjHQAaBOqokaMhQEoIDOA5oaQ4c1TtaAiMhsAwDIHVq1eHhYUxMDBwcHA4OjpeunTp6dOnDAwMqqqqt27doq6HRwf+qRueo6aNhgAlYHQTMCWhN6p3NASoEAKknhN6/vz5zs5OKlg8asRoCIyGwIgPgdDQUMhZQD9+/Ni+fTuk9c/AwLBjxw4iwyYlJQVy3Th+9efPnx895RN/EI3KjoYAPcHoDAA9Q3vUrtEQwBcCBM8JPX/+/K5du27fvp2dnW1oaIjPrFG50RAYDYHRECA6BLZu3RoZGfnly5f///8LCAj09/cnJCQQqRtScDEwMOAql+AD/6NrHYkM0lFloyFABzDaAaBDII9aMRoCJIQA1s3B8N0CuKpYEiwYmkqXLF8dExk6NN0+6urREBgCIfD///+fP3/+//+fk5OTDOfCuwHIrXx40z88PHz0bi8yQnVUy2gI0A6MdgBoF7ajJo+GAJkhAG/u19bWCggIzJgx4/bt2yO5Bv348ZOgXei/izvJDNBRbaMhMBoCdAmB3bt3r1y5koGBAbnsGj3lky5hP2rJaAiQBkY7AKSF16jq0RCgWwhApgIYGBh27do1wgfPdu/d717ad3Zeq6GBHt3Cf9Si0RAYDQHyQmDJkiWxsbHJyckjediCvKAb1TUaAnQDo5uA6RbUoxaNhgBpIeDq6rp48WIGBoaVK1c+fPiQNM3DS/W585cZGBimzlo4vLw16pvREBiGIfDx48cDBw5AzhEa4SMXwzB2R700jMDoDMAwisxRrwy7EFiyZAkDA4O2traRkdHixYtjYmKGnRcJewi0/sc6kIGdm+HPj/ub5sjLyxHWM6piFIyGAN1DAHnFP8Ty0Q4AJBxGydEQGIRgdAZgEEbKqJNGQwAaAuLi4gwMDIaGhh8+fBAXF09JSRmBUwEfPnyABgcT8+FjJ6DsUWo0BEZDYDCFAPyUz97eXldX15cvXw4m1426ZTQERkMAHbCgC4zyR0NgNAQGTQiIiIicO3eOgYGBn5/f1dVVTU2tublZVVW1vLx80LiR5g65decu1A4m1rjW6b5eHvz8fFCRUWo0BEZDYKBDAD7wj3z+z9OnT7W1tQfaaaP2j4bAaAjgBKMzADiDZlRiNAQGQwjcvn0b7gx5efk5c+YYGRkxMjLu3r0bLj68GaANAIyMUD8yMp06cxbKHqVGQ2A0BAY0BD5+/Lh792749V7y8vJw59y+fVtISAjOHWWMhsBoCAw2MLoHYLDFyKh7RkMAEQIfP34UEBD4//8/QgjMgp8TOuzP14NuAGBkZGDjAnn9z48ka5050/pA7FE8GgKjITBwIQAvhZAH/uHOYWRkfPDgAXKXAC41yhgNgdEQGAxgdAZgMMTCqBtGQwB7CPDz82OV4OfnLy8vDw8PFxAQGDlTAaCgYGLOTiP2glKQ+lE8GgKjIUDtEIAP/BsZGc2ZMwdXK19AQIDaNo+aNxoCoyFANTA6A0C1oBw1aDQEaBECjIz4Min+QThauIf+Zn78+OnUmXPuhe1JtnrZqXGGBrr0d8OojaMhMBoCkBD4+PEjZM0P/ulH/AUXxKhRcjQERkNgAAG+tsUAOmvU6tEQGA0B4kPg/PnzRkZGw/u+MEZls2RXizkzJhEfLKMqR0NgNASoGALwzb6j13tRMVRHjRoNgYECo0uABirkR+0dDQGqhQDknFAGBobhfU7o3D0nqRZkowaNhsBoCJASApBTPl++fAk55ZMUraNqR0NgNAQGIxidARiMsTLqptEQIC8EHj58OFzPCU3JyJu75+T/O6N9APKSxqiu0RAgMwRGB/7JDLhRbaMhMLjB6AzA4I6fUdeNhgApIQA/JzQlJWXYbQ5GPwqJlIAZVTsaAqMhQE4IIJ/yOXqtLzkhOKpnNAQGKxjtAAzWmBkFoyFAbgi4urr29vaeO3cuJSXl48eP5BozuPSpKisyMDAOG+8MrsAddc1oCGCEwMePHzs7O1euXFlbWzva9McInlGB0RAY8mC0AzDko3DUA6MhgBkCw/OcUMbR8gozqkdFRkOAyiFA5CmfVLZ11LjREBgNAfqC0QqVvuE9attoCNAxBFxdXT98+ACZCnj48CEdbaa+VdJSUgwMDB8+fKC+0aMmjobAaAjAQgByyufKlStHN/vCgmSUHg2B4QlYhqe3Rn01GgKjIQAOAchUwPnz5xUUFIb8OaGMjGA/jRKjITAaAtQPgdHNvtQP01ETR0NgEIPRGYBBHDmjThsNASqFAOSc0GEwFfDu3XvkIAkPD2dkZHz06BGy4Ch7NARGQ4DUEBg95ZPUEBtVPxoCQx2MzgAM9Rgcdf9oCBAVApCpgIcPHyooKHR0dJSXlxOlbdAoEhcXZfiPfhDQqlWrGBgY5OXldXR0Ll++PGgcO+qQ0RAYMiEwOvA/ZKJq1KGjIUBVMDoDQNXgHDVsNAQGdwjIy8v////fyMhoGJwTev78eXhgX7lyhZGRcfLkyXCRUcZoCIyGAMEQGD3lk2AQjSoYDYHhCkYvAhuuMTvqr9EQwBcCkK1+DAwMvb29/Pz8+JQODrnz5y8YhWXumt7i6uIMd9Hnz58nTpxYW1sLF2FgYPjx4wc7OzuyyCh7NARGQwAtBD5+/Dhjxozbt2/X1tbKy8ujyY5yR0NgNASGPRidARj2UTzqwdEQwBIC/Pz8c+bMCQ8PFxAQGFJXhqHsA+bl5a2pqbl+/bqZmRnckz9+/ICzRxmjITAaAmghMHrKJ1qAjHJHQ2BkgtEOwMiM91Ffj4YAKASG2Dmh//+/fPUK5G5UrKGhgXxREXxC49y5c6gKR3mjIUDlEHj37t2fP3+obCgtjYNM/Y2e8knLMB41ezQEhgYY3QQ8NOJp1JWjIUCjEIBsDt69e/cgPydUSEgIVwhYWVkdP34cIvsftlF4586dHh4eDAwMcBGIglFyNASoFQLc3Nzfv3////+/ubn5sWPHmJgG9YDa6GZfasX7qDmjYHiA0T0AwyMeR30xGgKUhsDgXxO8e88+M1MTfn4+uFf//fsnLy//5MkTBgYGRkbGnz9/srKyMjAwPHv2TFpaGq4sOjp6yZIlcO4oYzQEKAwBT0/PHTt2IBvCxMT09+9fZJFBxX748GFzc7ODg4Ovry98imxQuXDUMaMhMBoCdAajHQA6B/iodaMhMKhDYAidE/ru3TtFRcVPnz4xMDBISko+e/YMHrKysrKQXgFchIGB4dixY5aWlsgio+zRECAjBG7evKmhoQHR6OTkdPbs2Y8fPzIwMLCysv769QsiPnjI0YH/wRMXoy4ZDYFBBQb1lOWgCqlRx4yGwEgIAXl5+Q8fPgz+c0KPHz8uLi4Oaf27ubkht/5tbGwgrf8TJ05ERUXBY22Qr9CAu3OUMchDAH7q1Lp16/bu3fvhwwd3d3cGBobfv38fPnx4UDl+9+7dAgICDAwMc+bMQd4nM6gcOeqY0RAYDYEBAaMzAAMS7KOWjobAYA8ByGZBVVXVjIyMwbZmYN68eSkpKZDF/Z2dnWVlZfDQbG9vr6qqYmBg2Llzp5ubGwMDw8mTJ93c3GxsbLZu3QpXNsoYDQGyQyA8PHzVqlWMjIz//v2DGyIgIACZB4AkS7j4QDEG/4q+gQqZUXtHQ2A0BCBgdAYAEg6j5GgIjIYASghAzgk1MjIabOeEFhcXJycnQ5pZhw8fRm79P3r0CNL619TUFBYWhvjH3Nz85cuX69evh3AZGBhu3749ceLE+fPnw0VGGaMhQHwIQDqWkBQI17Vr1y4Iu6GhAcIYKHL0lM+BCvlRe0dDYGiB0RmAoRVfo64dDQF6h8DgGUr89++fh4cH5NYCRkbGN2/eoB0NxMiIckuAjIzM48eP0cLL2NgYfjwoMzPz0DrDEc0vo9wBCYEfP35wcnIyMDC0tbVVVlbC3eDh4bFz504GBoZXr16JiorCxenJgEzcDaEL/ugZOKN2jYbAaAggg9EZAOTQGGWPhsBoCKCHAOSc0PDwcAUFBUjjG10FXfg/fvyQk5ODOABy/CJa65+BgSE2NhZyHBDERU+ePImLi4OwIaSIiAi89c/AwPD3719GRsYBH7KFuG2UHFQh8PnzZ+QVPshu4+DgsLW1ZWBgqKqq+vr1K1xqxYoVELafnx+EQU8SPvAfHh4+Z86cwbZsj55BMWrXaAiMhgAxYLQDQEwojaoZDYGRHgIDe2XYp0+f+Pn5nz59ysDAoKSk9OHDB3Z2dswoWbRoUXt7+/fv3yH9BAYGBuTTP0tLS9++fcvAwCAjI7Nw4cKCggKICY2NjbiaehAFo+RICwE+Pj5+fn42NraWlha0pT6QoICnq6CgIIgIAwODgIBAfX09AwPDiRMnrl+/DhenA+Phw4fFxcUvX77s7e0d3exLhwAftWI0BIYBGF0CNAwicdQLoyFAvxAYqHNC6+rqmpubvb29N2/ejLbUZ/Hixerq6mZmZsihYGFhcfLkSQYGhu/fv3NwcNy/f19JSYmBgUFNTe3mzZsQlf7+/ps2bWJgYPjy5Qs3NzdEcJQcySFgYGBw8eJF5BCwt7c/cOAAsgiEnZKSMnfuXAYGhufPn0tISEAEkSegsPYc4MqoxRg95ZNaITlqzmgIjDQwOgMw0mJ81L+jIUBRCAzUOaFNTU3////fsmULWuufgYEhJSXF3Nzcx8cH2WOQG8EYGBjY2NgYGBhCQ0MhsvA7gxkYGCALORgYGAbh8e0Q146S9AyBCRMmwFv/GhoakHNjDx48mJycjOmMOXPmQAQlJSUhDAg5a9YsCAN5dRBEhOrk6CmfVA/SUQNHQ2DkgNEOwMiJ61GfjoYAdUKAn5/f1dW1t7d35cqVnZ2dkNMPqWM06ab8/fsX0nz38vJC1g1p6DMyMjIxMW3atOns2bMMDAwtLS3IOweWL18O0SIoKAhhjJIjGTQ3N0OG8I8cOXL9+vWfP3/KysoyMDDMmzfv9u3bmCEzceJEiCC828DAwJCQkAARhPcQIFzqkh8/fuzs7Fy5cuWDBw9G1/xQN2xHTRsNgRECRjsAIySiR705GgJUDoFBck4ofPk+8kDsiRMn/v79y8DAUFFRwcDAEBISAvE88pktL168gGwI1tfXh8iOkiMwBH78+AH3NWTMnpOT09ramoGBgYWF5e7duxBZQ0NDCAOZzMvLg/QnDQwMfv/+DZFiZmaGTFIdPHgQIkJdEr7Z18jIaM6cOfLy8tQ1f9S00RAYDYERAkY7ACMkoke9ORoCNAmBgd0czMDAAF9p3dzc/O3bNwYGhuvXr1tZWUEacG1tbS0tLZDG2eXLlyGLOiABERMTA2FAjm6EsNHIJ0+enDp1Ck1wlDtsQoCRkdHT0xPuHVVVVQYGBuREwsrKOmXKFAYGhq9fvx45cgSuEs7YsGEDhC0nJ/fjx4/Pnz93dXVB0qSdnR1Eiook5JTPlStXjm72pWKojho1GgIjE4xuAh6Z8T7q69EQoHII7N69283NbdeuXfRfkGBoaHjhwgWIf/j5+eFLkiCOgQzHIncVGBgYjhw5AtkAkJKSMnv2bIheZPLz58/y8vLv37+HrAmBzzMgqxllD90QyMjImDlzJsT9+/fvd3BwYGBgWLBgQWJiIqQPqaGhAZGFJAAIG9Kyh7DhZGJi4oIFCyDKkK8HfvDgARWH50c3+8IDfJQxGgKjIUAVMDoDQJVgHDVkNARGeggM4FTA1q1bITt9GRgY4K3/2bNnu7q6wu8JfvbsGXIMwTcMTJo0CVkcwv7x4wcfHx+k9Q/pOTAyMhobG0NkR8khHQIXLlxgZGSEt/4ZGBju3bsH8RHkHgkGBgYtLS2ICISEnyrb0tICEUEm58+fD78bGNJRZGRkLCkpoWLrH3LK57lz50YH/pFDfpQ9GgKjIUAR+D8KRkNgNARGQ4B6IfDgwQMGBobFixdTz0jCJj19+lRKSgpSFGpqal66dAmih4WFhYGBQV9fH8KFkPPmzYOoXLFiBUQEjYTIQm4MQD5caOnSpWgqR7lDLgR4eHjg8evp6Xn37l1kL9TV1UFkb968iSxuamoKEX/z5g2y+KdPnyDclStXampq8vLy2tnZoZkJUUAe+eHDh127diUnJ+/atYs8E0Z1jYbAaAiMhgBWMLoECFKqj5KjITAaAlQLgYFarvDnzx8mMID45NevX5D7wiZMmJCfnw8RhCzVgLCxruiIjIyEXOna0NAAudcJsrqJgYFBXl4e0r2BaB8lh2IItLa21tTUMDAwHDx4EOsyfSYmJkjC+PfvH3z9GOT6CwYGBjc3N8imkfPnz+fl5Z0/f/7Lly80Cofdu3evXLkyPDyc/svqaOSjUWNHQ2A0BAYPGF0CNHjiYtQloyEwTEIAck5obW0tnc8JZWFhQd7BCTkelIGB4fXr1/CQjY6OhrDPnz8PYSCTV65cgbT+9fT0IK1/BgYGV1dXyEwC/G4BZC2j7EEeAh8/fmRkZIyPj4e4s7CwEMKAXAvNwMDw4sWLGzdufP78GSK+evVqCKOnpwfCgPT94uLiGBgYdu3aBRE8efLkkSNHcG0Ohqghm4Sf8llbWzva+ic7GEc1jobAaAjgA1jnBUYFR0NgNARGQ4AqIQBpMA3IAoYfP37A9wbcuHHj////OTk5kNLQ1NQUq++0tbUhCt6/fw9XAFnYzcDAkJiYCBccZQyJEIDs7oXEKdzBjo6ODAwMzMzM////19XVhQ/zBwUFQdTo6elBtHz8+BEi8v///+/fv0MEb926BRGEaKyuroZwqUKOrvmhSjCOGjIaAqMhQBCMzgBAivRRcjQERkOAJiEwgJuD2dnZDQwMIL7S0NBgZGSEHOnIzc19+PBhiDgyuWLFiqtXrzIwMNTV1QkICMCl4Fs/y8vL4YKjjEEeAitXrmRkZDxw4ADcnQoKChD29u3bGRgY/v796+Pjc/nyZciCHwYGhnXr1rGxsf379w8+CeDi4gLRwsDA8OfPHwh78+bNEMa+ffv+//8PTx4QQUrIjx8/zpgxY/SUT0rCcFTvaAiMhgCRYHQPAJEBNapsNARGQ4CiEICspIcczUmRQaRo/vnzp66uLvI1rry8vBcuXFBSUsI0BjKgy8DA8Pv3b8iaHwYGhn///jEzM0MUw1uKEO4oOWhDAB6VyC5kZWWFrwoTEhKCn/LEwMCgp6d348YNiCxkp0d8fPyiRYsYGBhyc3MhR0VNmjQJspNk5syZaWlpyCZTzh6obTOUu3zUhNEQGA2BIQpGZwCGaMSNgtEQGGIhMCBTAezs7Ldu3erv77e0tFRVVa2srPzw4QOk9Q+5BhgeiJCNoQwMDGfOnIG3/hkYGDIyMiBqRm8Eg4TD4Cch18BB3CksLHzy5MmSkhJIvw5yJRwDAwM8ullZWa9evXrx4sXPnz9D1gs9fPhw2bJlCxcuhJgwefJkUVFRJSUlSOufkZERflooRAHlJOR6r9FTPikPyVETRkNgNASIB6MzAMSH1ajK0RAYDQEqhADkQJXFixfD7+KlgqEkGgG5CCwpKam3t1dAQODnz58cHBwQM5CH+W/evAm5EEpNTe3mzZsQBaPk4A8ByAzAlClTkpOTOTg4Dh06ZG9vz8DA8OTJE2lpaQYGhh8/fnBycjIwMPDz83/48AHuIwkJiZcvXwoJCb19+xZ58geuIDs7G7KQDC5CCWN04J+S0BvVOxoCoyFACRidAaAk9Eb1jobAaAiQHALy8vIfPnwQFxdPSUmBX7FEsimUaYBcBDZv3jzIYD/kJlcGBoZjx44hGxweHg7hQrYyQ9ij5OAPgalTp96+fTs7OxvSrzM0NIS4+fTp0xAGBwdHa2vr/Pnzz549CxGBkNOnT2dgYHj37t3Xr1+ZmJj+/v2rrq7OxsbGyMgoLS09c+ZMKrb+z58/X1xczMDAMGfOnNGjfiDhP0qOhsBoCNANjM4A0C2oRy0aDYHREEAJgYcPHzY3N6uqqmZkZPDz86PI0Zijra197dq1RYsWQZZz6OrqXrlyhY2N7efPn3Cbt27dCrkFLCsra+rUqXDxUcZQDAHInEBoaOiqVavwuP/379+Qk6NOnToFv/wLj3rypD5+/Lh58+YDBw7U1tZS8cJg8hwzqms0BEZDYGSC0Q7AyIz3UV+PhsBgCYEB2RzMwMBw/fp1TU1NSCjw8fF9/vyZg4Pj27dvkJYi8n1h3759gywXgSgeJYdiCMjKykLW/zx58gTN/Rs2bAgICIAI3r9/H7JFZN26dYGBgRBBKpKja36oGJijRo2GwGgIUAJGlwBREnqjekdDYDQEKA2BAdkczMDAAG/9Q655gqwL37FjB8Q/cNn169ePtv4hYTKkScgam+fPnyP74vv37/Ly8oGBgf7+/m/evLl7966vry9Ega2tLYRBRXL0lE8qBuaoUaMhMBoCFILRGQAKA3BU+2gIjIYAdUJgoKYCGBgYtm3b5u3tDfGGvr7+lStX/v79C7krCn76O0R2lByiIXDw4EHIIT///v2DT/J8+fKFj48Peds3xHdcXFxfvnyBK4MIUkKODvxTEnqjekdDYDQEaAFGZwBoEaqjZo6GwGgIkBwCAzUVwMDA4OnpCbkdloGB4eLFi5DWP/LdTyR7ZlTDIAsB+NmgkFvAIK7j4eF5/fo18qVvDAwM3NzcO3fupG7rv7i4ePSUT0iYj5KjITAaAoMEjHYABklEjDpjNARGQwB0JmN5eXl2draCgsKSJUvoFiKMjIz79u0LDQ3l5eWFtPyMjY3h3QC6OWPUItqFACsrKxMTqL6Dn/gEsUtYWPjNmzcbN240Nzfn5OSMiYn58uWLjY0NRJZC8uPHj7t37y4uLg4PDy8vL6fzTncKHT+qfTQERkNgeIPRJUDDO35HfTcaAkMyBOBLJrKzs+FnONLBJ//+/fvw4QMPDw/kKBg62DhqBd1CgJ+f/9OnT1xcXF+/fqWDpefPn586dWp4eLiZmdlo058OAT5qxWgIjIYASWC0A0BScI0qHg2B0RCgXwjAzwktLy+nn62jNg3TEDA0NLxw4QIDAwPmon/q+hjefR095ZO6ATtq2igYDQEqAtCUKBWNGzVqNARGQ2A0BKgVAvLy8nPmzDEyMmJkZCTyyrCHDx+mpKRQywGj5gynEHB3d4d45+XLlxAG8WRKSsrDhw8Jqoev+YFc7zV6xj/BEBtVMBoCoyEwUGC0AzBQIT9q72gIjIYAUSGAvDn448ePuPR8/PhxyZIlzc3N8Ot7cakcFR+ZIQA/6On48eOkhkB4eLiCgkJnZyf+FDhjxoyVK1fW1tZCTh0l1ZZR9aMhMBoCoyFANzC6BIhuQT1q0WgIjIYARSGA65xQ+IqL8PDw0YYXRUE8rDV/+PBBUFCQgYEhKCho7dq1pPoVkszc3Nx27dqFlswgUitXrhxNgaSG6qj60RAYDYGBAqMdgIEK+VF7R0NgNARIDgHIVUq3b9+GrK6GNLzc3NwWL17s6+s7utWS5AAdYRoYGRnnz5+fkJBAtr8/fvy4efPmAwcOwNv6Hz9+LC4uZmBg6O3tHU2BZAfsqMbREBgNATqD0Q4AnQN81LrREBgNAUpD4Pz580ZGRrt27Vq5ciUDAwOkM0CpoaP6R0OA6BCAd0TDw8NHB/6JDrZRhaMhMBoCgwiMdgAGUWSMOmU0BEZDgMgQgAy7zp0798GDB6NbLYkMtFFlVAwByCmfowP/VAzSUaNGQ2A0BOgJWOhp2ahdoyEwGgKjIUCVEODn51dVVV28eHFzc7OqquroOaFUCdVRQ4gJAcjCs5UrVzo4ODx9+nR02Q8xgTaqZjQERkNgsIHRU4AGW4yMumc0BEZDgNgQ0NbWhpwTmpKSQuQ5ocQaPapuNASwhQDkZl/IKZ/a2trYlIyKjYbAaAiMhsAQAKMzAEMgkkadOBoCoyGAGQLS0tJv3rxhYGBwdXU1MzODnMA4uhETM6BGRagSAvB1//A9J2/evJGWlqaK4aOGjIbAaAiMhgCdwegMAJ0DfNS60RAYDQHqhwA/P395eXl4eLiAgMDoVAD1w3dkmwi/3svIyGjOnDmje05GdnIY9f1oCAwTMNoBGCYROeqN0RAYaSEgLi6OdqUr8pVhxNzbOtJCbBSQEQKQ7eYrV67s7e1FO/7/5cuX4uLiZJg5qmU0BEZDYDQEBhyMLgEa8CgYdcBoCIyGANVCADIVcP78eQUFBcwLm6hmzahBIyAE4Jt94Uf+jwBPj3pxNARGQ2CkgNEZgJES06P+HA2BYRYCIiIiuHxkaGj44cOHly9fpqSkjE4F4AqlUXE8IXD+/Pni4uKXL19iDvzDdT19+hTOHmWMhsBoCIyGwNACozMAQyu+Rl07GgKjIYAIATwtMH5+/piYGFtbWwUFhY6OjtFzQhGhNsrCGwIkDfzj6YXitWRUcjQERkNgNAQGGIxeBDbAETBq/WgIjIYArUNg9+7do9e10jqQh4f5o0lleMTjqC9GQ2A0BAiC0Q4AwSAaVTAaAqMhMORDALKVc/Te1iEfkTTzAOYpnzSzatTg0RAYDYHREBh4MNoBGPg4GHXBaAiMhgB9QmD37t1ubm6jm4PpE9pDxRaS1vwMFU+NunM0BEZDYDQE8IPRDgD+8BmVHQ2B0RAYViEwOtA7rKKTYs+MTg1RHISjBoyGwGgIDEkw2gEYktE26ujREBgNAUpCYHQqgJLQGx56Rwf+h0c8jvpiNARGQ4A8MHoMKHnhNqprNARGQ2AIh8DolWFDOPKo4fSHDx8SPOWTGvaMmjEaAqMhMBoCgxSMzgAM0ogZddZoCIyGAB1C4OHDh6PnhNIhnAePFaMD/4MnLkZdMhoCoyEwgGB0BmAAA38UjIbAaAgMcAjIy8t/+PDByMgoJSVl9+7dA+yaUetpHAK7d+8WEBBgYGCYM2eOq6srjW0bNX40BEZDYDQEBi8YnQEYvHEz6rLREBgNAbqFAGQzqKqqakZGBj8/P93sHbWIPiEwuvmbPuE8astoCIyGwFABox2AoRJTo+4cDYHREKB5CIxuDqZ5ENPdgtE1P3QP8lELR0NgNASGABjtAAyBSBp14mgIjIYA3UJgdKiYbkFNB4sgEzujF8DRIahHrRgNgdEQGFpgtAMwtOJr1LWjITAaAvQIgdGpAHqEMi3tGB34p2Xojpo9GgKjITDkwegm4CEfhaMeGA2B0RCgegiMnhNK9SClp4Gjp3zSM7RH7RoNgdEQGIpgdAZgKMbaqJtHQ2A0BOgUAsPynNC/f/8yMzPTKQTpa83owD99w3vUttEQGA2BoQpGZwCGasyNuns0BEZDgA4hMCzPCU1ISGBkZKRD6NHZitFTPukc4KPWjYbAaAgMXTA6AzB0427U5aMhMBoC9AsByHbSYXBO6I0bNzQ1NSEB5+jouG/fPgh7SJOjW7eHdPSNOn40BEZDgP5gdAaA/mE+auNoCIyGwNALAX5+/jlz5hgZGQkICAzpK8PY2Ni0tbUhEXD48GEIY+iSHz9+3L17d3FxsZGR0Zw5c+Tl5YeuX0ZdPhoCoyEwGgJ0A6MdALoF9ahFoyEwGgJDPgSGweZgJSWl4uJiSEwsXboUwhiiJGRaZuXKlb29vaM3+w7RSBx19igYDYEBAaNLgAYk2EctHQ2B0RAY2iEwpM8J5eDg+PnzJxcX19evX4doNIxu9h2iETfq7NEQGA2BQQJGZwAGSUSMOmM0BEZDYCiFwNCdCoiNjf358ycDAwNa619XV5ednZ2fnz86OnqQxwTklM9z586NDvwP8pgadd5oCIyGwKAFozMAgzZqRh02GgKjITAEQgByTujixYtjYmKGgHMZGCDn/wgJCb19+xbiYGVl5Xv37kHYEJKRkfHfv38Q9qAiRwf+B1V0jDpmNARGQ2DogtEZgKEbd6MuHw2B0RAY+BCAnBMqLi6ekpIy+DcHW1hYQIIM3vp3dHREa/0zMDD8//+fkZFx27ZtEMWDhIRs9mVgYJgzZ87oiv9BEimjzhgNgdEQGKJgdAZgiEbcqLNHQ2A0BAZXCDx8+LC5uXkwnxN6/vx5IyMjBgaGzMzMadOmQYKPmZkZPth/+vTpX79+WVtbQ6TU1NRu3rwJYQ8sOXrK58CG/6jtoyEwGgLDD4x2AIZfnI76aDQERkNgwEJgMG8OlpGRefr0KRsbG2QPAAMDw8+fPzk4OCCBdeLECXNzcwYGhtra2paWFgYGBk5Ozm/fvkFkB4ocXfMzUCE/au9oCIyGwPAGox2A4R2/o74bDYHREKB3CAzO4ere3t6SkhIGBoYDBw7Y29tDAuX58+dSUlIMDAyioqKvXr2CCDLA9glA1gJBBN+8eXPt2jU7OzsIlz4kPCR7e3v5+fnpY+moLaMhMBoCoyEwEsBoB2AkxPKoH0dDYDQE6B0Cg20qALL3l4eH5/Pnz/CwsLOzg98F9v//f7g4RDEDA8OSJUvc3NxUVVU/fvwIkUVWBhGhBTk68E+LUB01czQERkNgNATgYHQTMDwoRhmjITAaAqMhQLUQGFTnhPr6+kI8htz637NnD7z1z8DAcPz4cYia7OxsCIOBgSEmJkZcXBze+odMDigrK8MV0IIBud5r9JRPWoTtqJmjITAaAqMhAAGjMwCQcBglR0NgNARGQ4AmITDg54Ta29t//vy5rKyssbHx+vXrcE/y8/N/+vSJgYFBXFz85cuXDAwMv3//fvz4sZKSEgMDg6mp6enTp+GKrays3NzcGhoaICKdnZ1lZWUQNhXJ0YF/KgbmqFGjITAaAqMhgAeMdgDwBM6o1GgIjIbAaAhQIQQGql0rKSn54sULuAd4eXkhLX4GBoZdu3a5u7szMDCcP3/+27dvkJN/ysrK9u7de/bsWQYGhlevXrm6ul68eJGBgWHChAn5+fkMDAxfvnzh5eVlYGAQExOD9BnghlPOOH/+/NSpU8PDw0eP+KQ8MEdNGA2B0RAYDQH8YLQDgD98RmVHQ2A0BEZDgDohQOdzQkVEROCH/cM9wMHB8f37dwYGBkFBwQ8fPsC3+bq7u+/atQuurLm5uaqqipmZGSIyderUrKwsCFtWVvbJkyeSkpLPnj2DiFBOfvz4cfPmzQcOHKitrZWXl6fcwFETRkNgNARGQ2A0BPCD0T0A+MNnVHY0BEZDYDQEqBMC8vLyc+bMMTIyEhAQoPWVYe/evYO0/hUUFB48ePD58+fAwEAGBoYfP35AlvFAWv/wsfa1a9cie7KmpiY0NBQusmXLFjgb0u6HHBjKwMCwfPlyDQ0NXl5eDw8PuBriGR8/foRc7yUuLj5nzpzR1j/xQTeqcjQERkNgNAQoAaMdAEpCb1TvaAiMhsBoCJAWAvTZHHzjxg2Is9auXSsvL8/Dw7Nu3TrILWCNjY2vXr2CnPPz5csXiDIeHh5LS0sIu66u7sKFC+vWrYNwGRgYmJigNcWMGTMgt4ZNmTKFgYHB0dExKirq5s2bX7582blzJ1wZXCN+BuSUz5UrV/b29sK7Ivi1jMqOhsBoCIyGwGgIUAWMLgGiSjCOGjIaAqMhMBoCpIUA1c8Jffnypbi4OMQRb968ERUVZWBg+Pz5Mw8PD0Tw8ePHcnJyDAwMFhYWL1++vH//PgMDw7x58yIiIqZMmYK8qZefnx/55J/58+cnJCRAjgCCGPX////Q0NA1a9ZAugfs7OyQlUUMDAwXLlzQ19eHKMNFDtSmCFzuGRUfDYHREBgNgZEGoOM6I83bo/4dDYHREBgNgYENASpOBYiIiDAyMkpISLCwsDQ3NzMwMIiIiEB8V1xcDGEwMDDIysoWFBQwMDCcOHFi48aNEPGkpCQuLi5I6x++6B+59S8jIxMfH8/AwJCRkQHRcuHChZ07d0Ja/6qqqm/evPn27duCBQsgstXV1RAGLnL0lE9cITMqPhoCoyEwGgJ0A6MzAHQL6lGLRkNgNARGQwBLCJw/f97IyGjx4sUxMTFYpAkJQRbzIKtyc3PbuXOng4PDwYMHGRhAZxDx8fHBFcDVT5kyJT8//+/fvxApdnb2c+fO/fv3T1dXFyLCwMDAzc0NWSZ09+5dFRUVyPGgp06dgh8h+uHDB/gdvaysrH/+/JGWln7y5AncBGTG6MA/cmiMskdDYDQERkNgAMHoDMAABv6o1aMhMBoCoyHAYGho+OHDB3Fx8ZSUlPPnzxMfIv///4c3vh0dHeEXeO3atevkyZPz5s2DGIW2vH7RokUQcQUFhT9//rS1tcXGxk6aNGnBggVaWlrq6uoQWXt7+2vXrkFa/wwMDPA9wZs2beru7oYcJ7p9+3a4AyC6GBgYvn79CmcjM86fPw+Zjhhd8Y8cLKPs0RAYDYHREBgQMDoDMCDBPmrpaAiMhsBoCKCHAPyc0PLycnQ5bPznz59LSUkxMDD4+/tv2LCBgYHh169fHBwc////h9zqlZKSsnDhQgYGhidPnkhLS8PNEBISev/+PQMDw79//xgZGbdt2+bt7c3AwPDy5UtOTk7IdMHMmTPT0tIgWrZs2QK5S7iqqqq1tRU+hwCxCKLm0qVLkKX/xcXFPT09EEEICR/4Hz3lExIgo+RoCIyGwGgIDDgYnQEY8CgYdcBoCIyGwGgIgEIAfk4oIyMjMeeEvnnzBqSNgQGygp+BgYGNjW3Hjh0QwYqKCvi6fBkZGYgghFy5ciWEcejQIQYG0BQEhOvv78/FxQVhz5w589evXwwMDN++fYO0/hkYGJqbm+Pi4iAKHj9+DGFAyKSkJAgDsgkBwoaf8snAwDB6yickTEbJ0RAYDYHREBgMYLQDMBhiYdQNoyEwGgKjIQANAeTNwcibcRkYGMLDw83NzSsqKiBncUKO9GFgYICs9Yfod3Nzgxzo2dvb+/Tp097eXoj4gQMHIAwGBgYnJycIe9myZQwMDJKSkiUlJSYmJsePH2dmZraysmJgYDh37hw7O7uxsTE3NzdE8fXr1+/du7d48WIGBgZ9fX3kTsWOHTsg9wfn5eVxcnJC1MNP+aytrXV1db1582ZbW9vs2bMhsqPkaAiMhsBoCIyGwACC0SVAAxj4o2A0BEZDYDQEcIYA8jmhSkpKkFM7Iao5OTmPHz+ur6+PdTXOo0ePIDdq6enpXbx4EX7pL/KGXYjGxMRE+FYBiMmQhUDa2tqQe8TggtHR0UuWLLGzszt8+DADA8P79+8FBATgshDTIBeNsbOzw9f8hIeHQ3YgyMvLP3r0CKKekZER0oGBcEfJ0RAYDYHREBgNAfqD0RkA+of5qI2jITAaAqMhQDgE4FMBEhISyK1/BgaG79+/m5iYfP36dfny5RCD4Ft7GRgY5OTk8vLyGBgYLl26dP78efgtv/Ly8jfAwN3dHaILzoBwIaS4uPibN28gXQgGBgZeXt5169YtWbKEgYEB0voPCQlBbv1PnDgRonHjxo2Q1n9xcTHy9V6cnJzw1j8DA8P///8ZGRnDwsIgukbJ0RAYDYHREBgNAfqD0RkA+of5qI2jITAaAqMhQGwIfPnyhY+P7////0xMTJcuXdLQ0Kipqeno6GBgYNDQ0Lh+/bq0tPSzZ88gx+/AV/CjXdqVkJAA2Q2MZivyLl40KYiB//794+XlhUh9+/YNshzo7NmzkEuFIV0RuKUfPnw4derUypUr4QP/DAwMxcXFfX19DAwMXFxce/bsefjwYWRkJMTAp0+fQjYxQ7ij5GgIjIbAaAiMhgDdwOgMAN2CetSi0RAYDYHRECA5BO7fvw9ppldVVfX39z958qS9vT08PJyBgeHGjRtnzpyB7+iFb8+F2DFr1iwI4+HDhwsWLICf4wkRZGdnx3VaP0QB5BIAeOufgYHh9evXEKmrV69CGAwMDFFRURD2ypUri4uLX758iXzK5+PHjyGtfw4Ojq9fv1paWkZERGzbtg2i5cKFCxDGKDkaAqMhMBoCoyFAZzA6A0DnAB+1bjQERkNgNARICIHPnz9DzuU8deqUmJhYc3OzqqpqeXk5fNn9////PTw8du7cycDA8OLFC3FxcbjpzMzM//79i42NhSwQunXrVmNj49OnTyMjI9PT0+HKiGT8+PGDi4sL0hu5e/eulJRUfn4+pJuhq6trZmaWnZ1taGiIbJqNjc3Ro0fRHPbw4UMFBQUGBgbkk0aRdY2yR0NgNARGQ2A0BGgNRjsAtA7hUfNHQ2A0BEZDgNgQOHv2rKWlJeT8TbgeJiam////BwcHr1mzhoGBYffu3StXrhQQEICc8DNv3rygoCDIonwWFpbfv3/DNULO+1dUVLx37x5ckBJGXFwc5BQgZEOYmZk3bNjg4+ODLMjAwAC/XiA8PHzFihVw2c7OzoqKCgYGhjNnzhgbG8PFRxmjITAaAqMhMBoCdAOjHQC6BfWoRaMhMBoCoyGALwREREQgZ++gtZjh4+hv374VEhJiYGCAnLBZW1sLae5/+vSpubm5u7ubgYGhqamptraWgYHh/v37SkpKDAwMKioqt2/fxmcxKXJmZmanT5+G62BlZd27d6+trS1cBM7g5+eHXBj89etX+D4BtM0JcMWjjNEQGA2B0RAYDQF6gtE9APQM7VG7RkNgNARGQwB7CHBxcUFa/wwMDPBl/RCl8LPzLSwsICL8/Pzl5eWQrcAMDAwZGRldXV0Qqbq6OmFh4YSEBEjrn4GBYdq0aRApqpCnTp06ePCgu7u7lJRUdnb2z58/Ia3/W7duIZvf2dkJaf0vXrwYufUPPzII66ZkZBNG2aMhMBoCoyEwGgK0A6MzALQL21GTR0NgNARGQ4DYEDh69KiNjQ1cNT8//4cPH+Dc6OhoyKVdDx8+hN//xcDA4ODgALkF7Nq1a6JgANcCYVhZWR05cgS+YQAiSDb57t27lJSUrVu3oi1SOnz4sK2tbXl5eUtLi4GBQWFhYUpKCsQWyJ4BCBt+jhDkMFCI4Cg5GgKjITAaAqMhQH8wOgNA/zAftXE0BEZDYDQE0EPA2tp60qRJb9++dXZ2hizyefXqFVzR0qVLIWz48fwQLnxFvpaW1vnz558/fy4sLAyR4uLiio2NPXr0KLVa/9OnTxcWFl6/fj1a65+BgcHb25uBgaGzs/PLly9Xr16FbEiA3xsAcQ8DA0NaWhqEferUKQhjlBwNgdEQGA2B0RAYEDA6AzAgwT5q6WgIjIbAaAjgDAFIk52Li+vr169wRe3t7VVVVQwMDGvWrAkODoaLs7Ky/vnzh4ODY/bs2QcOHKitrRUREfn+/buIiAhcDeWM8+fPQ87+Z2RkNDU1DQ0NVVdXhxu7evXqxYsXT5069erVq0uXLtXV1T1y5AjajuRLly7p6+szMDBoampeu3YNrneUMRoCoyEwCkZDgP5gtANA/zAftXE0BEZDYDQE8IVAeXk5ZE3/1KlTs7Ky4Ep5eXm/fPnCwMDw8uVLMTExiLiAgMDHjx9FRERev34NOWGzo6OjvLwcIks5+fHjR8j1XnPnzmVgYFi8eHFMTAx+YyUlJV+8eMHGxvbz50+4SjU1Nche5AcPHqDNY8DVjDJGQ2A0BEZDYDQE6ANGlwDRJ5xHbRkNgdEQGA0BYkOgs7NTVFSUgYEhPz8fWQ/8ME0TE5OXL18yMDBs3Ljx48ePDAwMampqDAwM8vLy////NzIySklJ2b17N7Je8ti7d+8uLi5mYGCYM2cOxAQnJycIAw+ppaXFwMDw69cvyO0EDAwMmZmZkNZ/Tk7OaOsfT9CNSo2GwGgIjIYAfcDoDAB9wnnUltEQGA2B0RAgIQTgh+g7Ojru27cPrtPf33/Tpk0MDAxMTEzs7Ozfv3+HSJ04ccLc3BzChmwhgDTce3t7+fn54eLEMyAnjd6+fbu2thbSZIcsTCooKOjv78djzq1bt379+qWrqwtR4+zsfOXKFUh3hYGB4efPn2xsbBCpUXI0BEZDYDQERkNgoMBoB2CgQn7U3tEQGA2B0RDAFwKGhoYXLlzAPDDH2tr62LFjcJ2MjIzl5eXt7e1wEThj9+7dbm5uu3btcnV1hQsSZMDX/ISHhyNrhHQAGBgY+Pj47OzsJCUlkY36////hw8fLl68CBnpT0hIWLBgAbICBgYG+D0GaOKj3NEQGA2B0RAYDQE6g9EOAJ0DfNS60RAYDYHRECAqBL58+cLLywtpcEPW+cC1LV26tKen5+HDhw4ODmvXroU3zeEK4AzMgXy4FFbGx48fcU0dXLp0yczMDHlZP1YTIIJlZWXy8vINDQ1v3rxhYGBQUFC4cuUK8oUAEGWj5GgIjIbAaAiMhsCAgNEOwIAE+6iloyEwGgKjIUA4BLy9vbdt28bAwHDp0iX4ohrC2jBUEDMVgGvgH82wtWvXdnR0vHnzBnIJMbIsExMTDw+Pt7d3Z2cnExN0g9m/f//+/v3LysqKrHKUPRoCoyEwGgKjITCwYLQDMLDhP2r7aAiMhsBoCOALAWZm5n///nFwcMCX++NTjVsO/1TAw4cPm5ubHRwcfH19ydszgNvmUZnREBgNgdEQGA2BQQdGOwCDLkpGHTQaAqMhMBoC8BDo6OiorKxkYGCoq6trbGyEi5PHwDwnlMiBf+Kte//+/c2bNxkYGCQkJBQUFIjXOKpyNARGQ2A0BEZDgG5gtANAt6AetWg0BEZDYDQEyAkBWVnZJ0+eiImJwc/SIccUmB7kFj8DAwMZu4RhJmGnV69eHRYWxsDAUF5e3tHRgV3RqOhoCIyGwGgIjIbAgAKWAbV91PLREBgNgdEQGA0BAiGwcuVKRkZGS0tLAuqIk+bn53d1dTUzM4Ns9qX6tVx///6FOISTkxPCGCVHQ2A0BEZDYDQEBhsYnQEYbDEy6p7REBgNgdEQoAdYsmSJuLg48kGf9LB11I7REBgNgdEQGA2BQQBGZwAGQSSMOmE0BEZDYDQEhlQIfPnyBfMUIFZWVm5ubjxnkg4pL446djQERkNgNASGM4Ce1DacvTjqt9EQGA2B0RAYDQGKQ+D////r169nZ2dnZGTk5eUVwgC8vLxMTEyMjIz9/f3///+n2MJRA0ZDYDQERkNgNARoBUY7ALQK2VFzR0NgNARGQ2A4hYCZmVlQUNCvX78IeqqoqEhGRma0D0AwoEYVjIbAaAiMhsBAgdEOwECF/Ki9oyEwGgKjITBkQmDjxo1nzpxhYGBgYWE5fPjwixcv3mOAN2/enDt3DnLn17Nnz9rb24eM90YdOhoCoyEwGgIjDIxuAh5hET7q3dEQGA2B0RAAhwBJm4BVVVXv3LnDwMDw+PFjGRkZsAHYie/fv3NxcTEwMEhLSz958gS7olHR0RAYDYHREBgNgQEFozMAAxr8o5aPhsBoCIyGwFAIgXfv3kGcycPDA2EQJDF3CRPUMqpgNARGQ2A0BEZDgD5gtANAn3AetWU0BEZDYDQEhnAIJCQkQFyfkpKCZ3H/v3//kpKS4CohjFFyNARGQ2A0BEZDYLCB0SVAgy1GRt0zGgKjITAaAvQIAZKWAL1//15SUvLnz59EuoyHh+f58+fETxcQaeyostEQGA2B0RAYDQGqgNEZAKoE46ghoyEwGgKjITCcQ0BQUPDZs2fKysrEeFJDQ+PVq1ejrX9iwmpUzWgIjIbAaAgMCBi9CGxAgn3U0tEQGA2B0RAYYiEgJCQE2Qd8+/btQ4cOvXnzBs0DwsLCjo6ORHYS0PSOckdDYDQERkNgNAToCUY7APQM7VEwGgKjITAaAkM+BFTBYMh7Y9QDoyEwGgKjITCCwegSoBEc+aNeHw2B0RAYDYHREBgNgdEQGA2B0RAYeWC0AzDy4nzUx6MhMBoCoyEwGgKjITAaAqMhMBoCIxiMdgBGcOSPen00BEZDYDQERkNgNARGQ2A0BEZDYOSB0Q7AyIvzUR+PhsBoCIyGwGgIjIbAaAiMhsBoCIxgMNoBGMGRP+r10RAYDYHREBgNgdEQGA2B0RAYDYGRB0Y7ACMvzkd9PBoCoyEwGgKjITAaAqMhMBoCoyEwgsFoB2AER/6o10dDYDQERkNgNARGQ2A0BEZDYDQERh4Y7QCMvDgf9fFoCIyGwGgIjIbAaAiMhsBoCIyGwAgGox2AERz5o14fDYHREBgNgdEQGA2B0RAYDYHREBh5YLQDMPLifNTHoyEwGgKjITAaAqMhMBoCo2A0BEYwGO0AjODIH/X6aAiMhsBoCIyGwGgIjIbAaAiMhsDIA6MdgJEX56M+Hg2B0RAYDYHREBgNgdEQGA2B0RAYwWC0AzCCI3/U66MhMBoCoyEwGgKjITAaAqMhMBoCIw+MdgBGXpyP+ng0BEZDYDQERkNgNARGQ2A0BEZDYASD0Q7ACI78Ua+PhsBoCIyGwGgIjIbAaAiMhsBoCIw8MNoBGHlxPurj0RAYDYHREBgNgdEQGA2B0RAYDYERDEY7ACM48ke9PhoCoyEwGgKjITAaAqMhMBoCoyEw8sBoB2Dkxfmoj0dDYDQERkNgNARGQ2A0BEZDYDQERjAY7QCM4Mgf9fpoCIyGwGgIjIbAaAiMhsBoCIyGwMgDox2AkRfnoz4eDYHREBgNgdEQGA2B0RAYDYHREBjBYLQDMIIjf9TroyEwGgKjYDQERkNgNARGQ2A0BEYeGO0AjLw4H/XxaAiMhsBoCIyGwGgIjIbAaAiMhsAIBqMdgBEc+aNeHw2B0RAYDYHREBgNgdEQGA2B0RAYeWC0AzDy4nzUx6MhMBoCoyEwGgKjITAaAqMhMBoCIxiMdgBGcOSPen00BEZDYDQERkNgNARGQ2A0BEZDYOSB0Q7AyIvzUR+PhsBoCIyGwGgIjIbAaAiMhsBoCIxgMNoBGMGRP+r10RAYDYHREBgNgdEQGA2B0RAYDYGRB0Y7ACMvzkd9PBoCoyEwGgKjITAaAqMhMBoCoyEwgsFoB2AER/6o10dDYDQERkNgNARGQ2A0BEZDYDQERh4Y7QCMvDgf9fFoCIyGwGgIjIbAaAiMhsBoCIyGwAgGox2AERz5o14fDYHREBgNgdEQGA2B0RAYDYHREBh5YLQDMApGQ2A0BEZDYDQERkNgNARGQ2A0BEZDYASB0Q7ACIrsUa+OhsBoCIyGwGgIjIbAaAiMhsBoCIyC0Q7AaBoYDYHREBgNgdEQGA2B0RAYDYHREBgNgREEWEaQX0e9OhoCoyEwGgKjIUCNEHj//v2DBw/+/fuHbBgzM7OkpKS4uDiy4Ch7NARGQ2A0BEZDYBCC0Q7AIIyUUSeNhsBoCIyGwGAMgc2bN8fFxX348AG/49jY2Do6OgoLC/ErG5UdDYHREBgNgdEQGCgwugRooEJ+1N7REBgNgdEQGEoh0NfX5+fnR7D1z8DA8OvXr6KiotTU1KHkvVG3jobAaAiMhsBIAqMdgJEU26N+HQ2B0RAYDQFyQ6C4uBiidceOHf9xg5MnT0KUzZkz5969exD2KDkaAqMhMBoCoyEwqMBoB2BQRceoY0ZDYDQERkNgUIdAe3u7u7s7HieamZktW7YMouDFixcQxig5GgKjITAaAqMhMKjAaAdgUEXHqGNGQ2A0BEZDYFCHwIMHDwi678SJExA1/Pz8EMYoORoCoyEwGgKjITCowOgm4EEVHaOOGQ2B0RAYDYFBGgLMzMx///6dOXMmFxdXTk6OqKgoMzMzslt//fr15s2bSZMmTZ48mYGBgZWVVUVFBVnBKHs0BEZDYDQERkNgkADG////DxKnjDpjNARGQ2A0BEZDgG4hsGTJEnFxcVdXVyJt3LBhQ1BQEJFVBjMz87Fjx8zMzIg0fFTZaAiMhsAoGA0BeoLRJUD0DO1Ru0ZDYDQERkNgqIZAQEDAly9f9PT0WFjwTR2zsLBYWFh8+vRptPU/VGN61N2jITAaAiMA4CvHR4D3R704GgKjITAaAqMhQGwIcHFxXbx4kVjVo+pGQ2A0BEZDYDQEBisY7QAM1pgZdddoCIyGwGgIDM0QgC8TYmRkHJo+GHX1aAiMhsBoCAxzMLoEaJhH8Kj3RkNgNARGQ4CeIfD27VsmGKCnvaN2jYbAaAiMhsBoCBAPRjsAxIfVqMrREBgNgdEQGA0BAiHw9+9fAipGpUdDYDQERkNgNAQGGowuARroGBi1fzQERkNgNASGUQiIiIi8f/9+GHlo1CujITAaAqMhMAzBaAdgGEbqqJdGQ2A0BEZDYKBCgImJSUBAYKBsH7V3NARGQ2A0BEZDgBgwugSImFAaVTMaAqMhMBoCoyHA8O/fP39/fyEhIUYcgImJSUpKqqamBr4PeDTURkNgNARGQ2A0BAYhGO0AkBMpv3//ZmNjw6wBBQUFGRgYdu7cCZFauHAhOaYPqB4lJSVGRkYLC4sBdcWo5aMhMBoCgy4ENm7cyMrKumnTJjwrfP7////8+fPW1lZubu7RPsCgi8JRB42GwGgIjIYADIwuAYKFBCn09evXf//+jalDT0+PgYEBfk42hIupbNCKfP369cGDBwwMDDo6OoPWkaMOGw2B0RAYkBAIDQ399+8fAwNDQkJCenq6iIgI2imff//+ffbsWXl5+alTp75//y4gIPDx48cBceqopaMhMBoCoyEwGgL4wWgHAH/4YJeFN/FtbW3l5eXhihwcHOAdABYWFi0tLbjUkGBcvXoVMmg32gEYEvE16sjREKAngIx6tLS0VFdX47JXTU3t5MmTJiYmZ8+e/fr1Ky5lo+KjITAaAqMhMBoCAwtGOwDkhP+lS5cg2vr7+42NjSFsOAmR1dDQYGdnhwsOCcaVK1cg7tTW1oYwRsnREBgNgdEQQA4BzBIPWRbCHnJFH8TZo+RoCIyGwGgIjBwwugeAnLiGzAAwMzNjjvH//Pnzxo0bDAwMaOt/Ll68mJiYqKCgwMXFpaOjk5mZ+erVK7jd////5+PjY2RkrKur6+zsNDQ05ObmVlVVnTx5MgMDw/379xMSErS1tXl4eHR1dSdNmoR50jaR5tfU1CxZssTc3JyXl1deXj4tLQ3uDGVl5eTkZIiT3Nzc/Pz8GBgY/vz5M3HiRDMzM15eXl1d3RUrVkAUjJKjITAaAkMoBFJSUh4+fEiMgz9+/JiSkoJHZVBQ0O3bt3Ep+P///8SJE48dO8bAwCAmJoZL2aj4aAiMhsBoCIyGwACD/6OA9BAQFxdnYGDQ0NDA1Hru3DlIjHZ2dkJk//z509LSwsrKChGHk4KCgjdu3ICogVeo/Pz8cAUQRkFBAeaZeo2NjRCN////J8l8ERERiLFw0s7O7v///x8+fEBbzltfX//7929nZ2e4SgYGBkZGxu3bt8OtHmWMhsBoCAyJEIDs7dm1axeyaxcvXows8uHDh127diUnJyMLIqv38vJCLg0Ism/duoWsfZQ9GgKjITAaAqMhMHjA6AwAwVoMXcFLMGBgYPj06VMiEpg3bx4DAwNk/Q8DA4O+vj5EZ2JiYk1Nze/fvzU0NEpKSurr611dXRkYGN6/fx8fHw9Rc+HCBQjj48ePzs7OtbW1Hh4eEJEJEyZ8+PDBxsamqqrK1tYWIjhnzhwIg4GBgSTz37x5Y2RkVFlZ6efnB2nxHzp06PHjx79+/Zo0aRILC2hJmL6+/pQpUyIjIydOnLh3714GBgZPT8/o6GgGBob///9v3LgRbvUoYzQERkNgSISAvLz8hw8fzp07h2sq4OPHj8XFxS9fvuzt7YUUUJj+2rp1a09PD6Y4poiKisr79+9VVVUxpUZFRkNgNARGQ2A0BAYFGDx9kaHikp07d2KNOciQf2FhIUT22bNn////h6+Zqaqq+vfvH9yPubm5EGXPnz////8/fFNdXl4eXI2uri5ETWZmJkTvnz9/FBUVGRgYmJiYICKkmh8ZGfn792+IFXZ2dhDzT548+f//f8gYIQMDQ0VFBUQBpB3AyMj49OnTX79+HQCD0VE9SOCMkqMhMBRDAJLNIWP8kBkAggP/mN788ePH+fPn92KAQ4cO3blzB1P9qMhoCIyGwGgIjIbAYAOgEV9IK3CUJDIEIBsAMBVDhvwhsqKiopKSkj9//szKyoKshdXU1Fy2bBlcFw8PD4R97do1CQkJyAwAExNTXV0dRJyBgQGyXIeZmbmtrQ0yWs/MzCwpKXn//n1RUVFGRkZSzWdkZOzt7YUM8zMwMKioqBw6dIiBgUFGRoaBgQHiBuS5Cy4uLsiov76+fkBAQGxsLLzPAHfkKGM0BEZDYAiFAGQqYMaMGStXrmRgYHBwcCguLlZVVe3t7cVcf4jLX+zs7AYGBnDZP3/+HDt27Pr163/+/Pny5YuUlBQnJydcdpQxGgKjITAaAqMhMAjBaAeA5EiBL/J5+PChnJwcmn6ILKQzsHfv3nfv3jEwMLx69So2NhZNJYQLaWRDGt96enrCwsIQcQYGhps3bzIwMBgaGiLvAbhz5w4DA4OmpiYDAwOp5uvr60tKSsLNf/r0KQMDAycnp4SEBHIHAF619/T0PH369MyZM2/evJkDBmlpaTNnzoSbMMoYDYHREBhyIcDPz19eXn7+/HkjIyMGBobw8HDIXB9Bj5w/f56BgYGDgwNS/jAwMPz69cvT03Pfvn1oehUUFM6cOYNcmqEpGOWOhsBoCIyGwGgIDCwY3QNAcvhDxvgFBQUxW//Pnj178+YNA+wIoFu3buE3nZWVVUdH582bN5C2uKmpKVz9q1evnj17xsDAgCz47NkzyKE9hoaGDAwMpJpvaWkJN5+BgeHatWsQpzIxgZIBpBPCyckJX7mroqJy+vTpkydPZmZmMjMzMzAwzJo169u3b8iGjLJHQ2A0BIZiCBgaGi5evJj41j8DA4MRGISGhsL9y8HBAW/98/DwQE5HYGBgePDggYSExKNHj+AqRxmjITAaAqMhMBoCgwqAWn6DykGD3DG/fv2CnPIJaYKjuRbSN4CvooGMrDMwMNTU1CCv/bp79+4JMHj8+DEPDw+k5Q2pX+EGQgbbcAlCbCfVfIguiBVv3rx5/PgxZIYBIgJxhq6uLjMz8////yPBoKKiwszMbNq0aZB+iISEBGTKAqJllBwNgdEQGGkhAF9DCNmwxMDAYGNj8/v378+fP7948eL///9dXV2QE4RxTXuOtBAb9e9oCIyGwGgIDEIwugSItEi5fv065DrMx48fJyYmwjXr6OgUFxdD1v/AOwBOTk78/PwfP35sbW09cOCAtbU1Ozv7uXPntm7d+v//f3V19RMnTiCvvUFuoMOPE8UqCFmlQ4n58A4GxPwPHz5AdgdCFi8xMDDs2LEDcjbop0+fvn79CnHqaI0Oj/FRxmgIjMwQgHcAVq9eDQmBDRs2wAUZGBhKS0vLysoYGBhOnToFUTBKjobAaAiMhsBoCAw2MNoBIA3Ax/hvgwFcM+RUH4gsKysrZI2smJjYkiVLQkJCfv78eQQM4OqdnJwWL14MWdwPGXpnZmZGvjsM0kCHrBGC64IIsrOzk2e+jo4OmlHwGQCIyxkYGCBdC0ZGxujo6KlTp/7//3/69OkQXU5OTq2trRD2KDkaAqMhMDJD4OvXr5cvX1ZXVy8tLS0uLobcVIi83P////+QkIFPUUK4o+RoCIyGwGgIjIbA4AGjHQDS4gI+xo+mDTJwDpHV0NBgY2ODKPDx8blx40Zzc/PJkyfv3bsnJiZmYGCQlJTk4+MDWXkPnwHQ0NBAPjoD0tbX0tJiZ2eHGMXAwAAR1NXVhY+3EW++pqYmBwcHmlEsLCyQw0YhnRD43AUDA0Nvb6+QkNDSpUtfvXqlp6cXHR2dkZEBdzPcnFHGaAiMhsCICoEbN24gD1VA9il9/PiRj4/v8+fPGzduTEtLgwRIVVUVhDFKjobAaAiMhsBoCAw2wAgfrRlsLht1z2gIjIbAaAiMhgDtQmDJkiXi4uJEHgHEwMCwbdu2w4cPX7p06dq1aw8fPoTXHSwsLD9//mRiYlq6dGlMTAzEwTk5OZMnT4awR8nREBgNgdEQGA2BwQZGZwAGW4yMumc0BEZDYDQEBmMIeIEBssv+//9/7dq1r1+/QuYGf/36xcjIaGNjs3jxYnl5eWSVo+zREBgNgdEQGA2BQQVGZwAGVXSMOmY0BEZDYDQE6BQCpM4A0MlZo9aMhsBoCIyGwGgI0B6MHgNK+zAetWE0BEZDYDQERkNgNARGQ2A0BEZDYDQEBg0Y7QAMmqgYdchoCIyGwGgIjIbAaAiMhsBoCIyGwGgI0B6M7gGgfRiP2jAaAqMhMBoCQz8EkI8pI8Y3e/bssba2JkblqJrREBgNgdEQGA0BOoPRDgCdA3zUutEQGA2B0RAYkiHw48cPktyNfO4wSRpHFY+GwGgIjIbAaAjQGox2AGgdwqPmj4bAaAiMhsDwCQEbG5u8vDxi/KOqqkqMslE1oyEwGgKjITAaAvQHox0A+of5qI2jITAaAqMhMFRDQFlZOTQ0dKi6ftTdoyEwCkZDYDQEwGC0AwAOhlFiNARGQ2A0BEZDAG8IwG/+wqtqVHI0BEZDYDQERkNgCIDRU4CGQCSNOnE0BEZDYDQERkNgNARGQ2A0BEZDYDQEqAVGOwDUCslRc0ZDYDQERkNgNARGQ2A0BEZDYDQERkNgCIDRJUDkRBJTaDM52ojQ8291LRGqRpWMhsBoCIyGwGAJgV+/fi1ZsoSBgSEgIEBISGiwOGvUHaMhMBoCoyEwGgK4wWgHAHfYjMqMhsBoCIyGwGgIEAqBd+/eJScnMzAw2NjYjHYACIXWqPxoCIyGwGgIDAowugQIZzQYGBgwMjIuXLgQpwoaS/T09DDCwM2bN2ls26jxoyEwGgKjIUBOCMDvB2BnZydH/6ie0RAYDYHREBgNAbqD0Q4A9iD//fv39evXGRgY9PT0sKugvejFixchlnBycqqoqEDYo+RoCIyGwGgIDKoQ+PnzJ8Q9ozd/QcJhlBwNgdEQGA2BwQ9GOwDY4+j69eu/fv1iYWHR0tLCroI2oj9//nz16hXE7IULFy5btoyBgUFHR4eZmRkiOEqOhsBoCIyGwKAKgdEOwKCKjlHHjIbAaAiMhgAxYHQPAPZQgoy+a2hooE1q//nzZ8KECf8Pzmf48JyBk5dRTv//z68Mt48zGgcwiMj93zmJgYGB0SGJQUQBZO6v7/93TGD49Z3RwItBxYLh/z+GOyf/P78J0svCxiCiwKjtzMAtwMDA8P/cZoZ7pxlkdYSFO+vr60tLSxkYGJiYmK5cucLAwKCvrw8ybRSPhsBoCIyGwOALAV1d3T9//jAwMIyOUwy+yBl10WgIjIbAaAhgB6MdAOzhAukAoLW8Hz16FBgYeO7cOZAeRiaGT6//X9nDwAQemxcQZ+AVZmDlYPj9g+HTG0gH4P+NQwy/vjMISDIomzF8eff/2DKGT+DRfUZGkPiji/9f3WV0zmDg5GP4+AJk5uMrv1hZTU1NQWwwvnTp0sAuQwK7YpQYDYHREBgNAZwhwMjIONr0xxk6oxKjITAaAqMhMCjBaAcAe7RgdgD+/fsXGxt77tw5Kyur45y6oGb95zf/jy9n+PyWgZGJgU+MgYGRQUiG4eWd/1/eMDIwMHz9wHDnJAMDI6OhD8PfP/+PL2P49JpB3YZR0ZiBW5Dh6/v/ZzYwvHnIcP8sg5YDw8eXIHdIqr+7dYaHhwfEBmNMZ4CFR4nREBgNgVEwGgKjITAaAqMhMBoCoyFAJhjtAGAPOMjQO/IMwLJlyw4dOqSkpLRz506+xH6QNj4xRnVbUDueV5iBmRUkAu4AMHx+A1rVc2U3w78/DIrGDMKyDLePM3x8BZoreHLl/xPQqh6Q4t+/QMp+/2D88p7hzy8GRiZGfQ/k1v/79+8fP348OgMACqtRPBoCoyEwGgKjITAaAqMhMBoCoyFAJTDaAcASkM+fP4fsxEXuABw8eJCBgSE6Ohq5jc7w/z9IP78EiGRgYBSWAfE/v2F4/5Th8RUGNk5GXVdQK//1fZCCf39B0wIgFgIz8olB1/8ISDLwCCMkGBggnRA5OTkBAdA+AWSpUfZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIkAdGOwBYwg2y8EYcDODSN27cYGBg4OTkhIswMPz//wi0Rp9RANoBAC0BAi/++X9xBwPDf0ZdNwY2LpB6SD9BzZpRzx3ERcX/r+0DCfCLg0gkDOkAIHdCkCRHmaMhMBoCoyEwGgKjITAaAqMhMBoCoyFADhg9BhRLqEE6AKqqqk9h4OfPn5CT+KdOnQreBPwftKn3xCoGyNC+gCTUFDYuBh4h0Gk/bx6COgOKRhBxRiFpEOP+WdCif4b/DJ9e/d878//ahv8nVoLEP4A2ADBidAAgzhjtAICCaBSPhsBoCIyGwGgIjIbAaAiMhsBoCFAJjM4AYAlISMv7yJEjMjIyEOmLFy8WFRUtW7bs6dOnxsbGoNX8//4ysLJDGbAlQCDFQjIMX96BFvQb+YK2BYOEGBhULUGbfb99/H9gLlQLAwODoDSjoS9IHnIEEHwaASQEwpAZgAG8iQzkiFE8GgKjITAaAqMhMBoCoyEwGgKjITC8wOgMAJb4hLS84RJsbGyampq6urqHDx92dnYWFBRkYOdmkNFhdM5k4JdgEFVk4ECc28Pw8xtIo7IZ6JggEAuMWdgZndIZFAwZuARAHQABCUY9d0aHZAZ2LoY/P6EbA1BnAP79+zd6CQA47EaJ0RAYDYHREBgNgdEQGA2B0RAYDQFqAsb/kOXp1DRz+JvFFNqM3ZNPr4MOBuXgYXTPA90JgF0RPtF/q2vxSY/KjYbAaAiMhgCVQmDJkiXi4uKurqCDCqhk5KgxoyEwGgKjITAaAkMDjM4AUC+e/vz6f3Eb6CZgPXfyWv/Uc8qoSaMhMBoCoyEwGgKjITAaAqMhMBoCoyGAHYzuAcAeLkvWg0/mwZCMCXTCEIMK/L9+gOHbR9AdwHL6UKFRajQERkNgNARGQ2A0BEZDYDQERkNgNAQGGRjtAGCPEHFhfuwSuEVBh37quuGWH5UZDYHREBgNgdEQGA2B0RAYDYHREBgNgYEHox0A7MDVzhi7xKjoaAiMhsBoCIyGwGgIjIbAaAiMhsBoCAxlMLoHYCjH3qjbR0NgNARGQ2A0BEZDYDQERkNgNARGQ4BEMNoBIDHARpWPhsBoCIyGwGgIjIbAaAiMhsBoCIyGwFAGox2AoRx7o24fDYHREBgNgdEQGA2B0RAYDYHREBgNARLBaAeAxAAbVT4aAqMhMBoCoyEwGgKjITAaAqMhMBoCQxmMdgCGcuyNun00BEZDYDQERkNgNARGQ2A0BEZDYDQESASjHQASA2xU+WgIjIbAaAiM1BD49+/fmTNnzM3NGXEDKSmpBQsW/Pz5c6QG0qi/R0NgNARGQ2AIgNEOwBCIpFEnjobAaAiMhsCAh8C1a9fY2NhMTU1PnTqFxzHPnz9PTEzk5OSsrKzEo4xsqUePHvn7+zMzM1+5cgViyNy5c1lYWOBdEkVFxWvXrkGkRsnREBgNgdEQGA0BrGD0HgCswTIqOBoCoyEwGgKjIYAIgQ8fPmhra0P4zMzMTk5O+vr6rKysEBEI+f///xcvXixbtuzXr1/////v6OiQkZHJzs6GyFKF3LhxY2Bg4P///xkYGDg4OBgYGMrLy7u6upANf/DggY6OzurVq4ODg5HFR9mjITAaAqMhMBoCcMAIKUnh/FEGMSHAFNpMjDIy1PxbXUuGrlEtoyEwGgKjIUBqCCxZskRcXNzV1ZUYjT4+Plu3bmVgYMjKypo6dSp+LZs2bfL392dgYFBTU7t58yZ+xSTJ8vDwfP36lYGBwcTEZPfu3f///5eQkPj16xcDA4O3t3dRUdGsWbNWrlzJwMCgqqp669YtkgwfVTwaAqMhMBoCIweMzgCMnLge9eloCIyGwGgIkBkC+/fvh+gsKSmBMPCQDg4OENmHDx9CGNQiv337BjHqyJEj7OzsPj4+kNa/goLCpk2bmJiYtLS0IB2ABw8eQFSOkqMhMApGQ2A0BDDB6B4AzDAZFRkNgdEQGA2B0RBACQEzMzMIf8aMGRAGHnLTpk0QWV1dXQiDKuT379/hU9aqqqrq6uqQSQkGBoZVq1YxMTE9e/bMxsYGYpempiaEMUqOhsBoCIyGwGgIYILRGQDMMBkVGQ2B0RAYDYHREEAJgVmzZqmpqTEwMHR1dc2cOTMlJUVXV5eFBaUG+f379+XLl+fNm/fhwweI5vb2dgiDKiQnJ+eUKVNycnIYGBgeP34MN7O2ttbU1JSBgcHIyOjly5cQ8enTp0MYo+RoCIyGwGgIjIYAJkApvjGlR0VGQ2A0BEZDYDQERkNAVVUVsgH3379/Hz9+7O3txR8mTExMs2fPdnFxwa+MVNns7GxLS8vS0tIjR44wMzNraWm1t7fDtzFAlgPp6OisXbsW0l0h1fxR9aMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkOAohDw8/P7+/fv8uXLMzMzP336hMssNja2np4eyDg9LjWUiBsZGe3duxerCe/evcMqPio4GgKjITAaAqMhgAZGOwBoATLKHQ2B0RAYDYHREMAZApFggFOaBhIbNmxgYGAQERGxsbHZv3//x48fibHExcWFh4eHGJWjakZDYDQERkNgBILRDgA5kT5vzQVytI3qGQ2B0RAYDYEREAL37t2DTBGoq6tzcnJS6OPAwEAGBgZfX18bG5u8vDz4/V/4jX379i1+BaOyoyEwGgKjITCSwegpQCM59kf9PhoCoyEwGgLUD4HU1FRDMKDiWZyQ4fw/f/4Q6VwhISEiVY4qGw2B0RAYDYERCEY7ADgj3cDAgJGRceHChThV0FhiyZIl7u7ugoKCKioq7e3t//79o7GFo8aPhsBoCIyGABVCAN5M5+Lioty4/2CwbNkyBgaG69evg3mECcrtHTVhNARGQ2A0BIYxGO0AYI/c379/X79+nYGBQU9PD7sKWor++/cvLS0tNjZ2165dnz59unv3blVVVX9/Py3tHDV7NARGQ2A0BKgTAgcPHoS00OXl5aljIswUeNcCJoCF/vv3b25uLhaJUaHREBgNgdEQGA0BGBjtAMBCApW+fv36r1+/WFhYtLS0UGVoy/v58+erV69mzZo1e/ZsSUnJU6dOvXv3ztfXl4GBYcWKFbS1e9T00RAYDYHRECAuBL58+fLmzZvXqODNmzfwm3qJM4ZkVaysrAEBAU+ePMGq8+vXr5mZmSwsLFOmTMGqYFRwNARGQ2A0BEZDAAJGNwFDwgGdvHjxIgMDg4aGBjs7O7Lcnz9/JkyYMI/h8EOGDwIMHJYMcp8Zfu5iuJPIYKTKIFzFsJuBgaGCwU6dQYSBgeErw+9yhp1fGX5FM+i7MCj/Y/i/h+HuRYYXDxk+sDMwqzOIBjFoiTCApsgXMZzfz3DfjEEmR1i4vr5+9erVDAwMHR0dkNttAgICNm/e/P37d2SXjLJHQ2A0BEYBPUPg379/ixcvTk9P//nzJ3572dnZN2/eDD+eH79iUmU3goGBgcHixYt1dHQg2t+/f19UVLRgwQIId5QcDYHREBgNgdEQwA9GOwDYwwfSAdDX10eWfvToUWBg4Llz5xgYGJgYGJ8xfF7LcJWFATSLIsfAL8HAy8XA+o3h93OGz5AOwBaGG18Zfskx8DsxKL1i+DKJ4cRTBtDh2YwMjF8Zfh1neHSV4WUDg5MgA+djBtDBdqcYnrD+YjU1NdXX1////7+dnR3E9t27Qf0Kc3NzCHeUHA2B0RAYDQE6h8CfP3+0tbVv3bpFjL0/f/50c3PT09ODFKTEaCFSjZqaGsQNFy5c0NXVZWdnP3LkSElJycGDB+EmiIqKHj16FM4dZYyGwGgIjIbAaAhgAlDjFVN0VARSbyF3AP79+xcbG3vu3DkrK6t6BsfZDAEtDC4SDDx/GP4xMTBKMfAxMjAoMYDOnXjB8IWBgeENw7c9DHcZGRhiGQx/M/ydxHDiGcMnLwa1Dga3OQwBHQxuagwinxh+HmJ48J+B4Qm4Y2DAIPnu3TsHBwc3Nzd3d3fI8XkLFy5cuXIlGxtbRUXFaLyMhsBoCIyGwICEQEtLC6Tlzc7OfvLkScgSf6zk8uXLmZmZGRgYLl26tGvXLuq69ubNmx8/fmxsbIRY8fPnT1NTU3jrPyYm5uXLl69evVJVVaWuvaOmjYbAaAiMhsAwA6MdAOwReunSJQYGBuQOwLJlyw4dOqSkpLRz504FBkEmBkZpBj4vBjUGBgYJBl42BlCFp8QgyMDA8ILhMwMDw1qGq38Y/tkyKKgwCB1kePCU4RMzA9Mphic9DEfKGXb2MBx5Bm70f2X4/Zrh6w+GP0wMjBEMupCj7iBu+v//f0tLS2JiIhMT06JFi0arNEiwjJKjITAaAvQPgZkzZ0IsvXTpkpmZGYSNlYyIiNi5cydEqr6+HsKgIsnHx1dQUJCWlgbpA8BN9vPza21tFRMTg4uMMkZDYDQERkNgNARwgdEOAJaQef78+atXr9A6AJBBpujoaJQ2Oli3HAM/mGZQhs0APGB4f5LhMTcDWygDaInqDYbXDAwMfxj+vWH4BkdfGH4xMDBIM/BB1v/IMQiIMyDurfz69WtoaGhtbS0/P//27dvDw8MhVoySoyEwGgKjIUD/EPj1C1ReMTAwoG2LwuoS+CYB5NISq0pSBa9cuaKoqMjPzz99+vS/f/8yMDCoqalBegKbNm2Sl5dXUlI6derU////STV5VP1oCIyGwGgIjCgw2gHAEt2Q9T/iYACXvnHjBgMDA2RZDkTwPwPDcYbHDAwMsrAOAGQJ0GuGr8sYLv1nYAhj0OFhYGNgYIDURR4MqvMZgtCQPYMCpAMAN4SBgeHevXuWlpZr1641MjI6d+4cjfbSQXwxSo6GwGgIDPsQYGRkhGwlwu/Tjx8/7t69OyUlBVMZ5DpeBgYGZ2fn9+/fYyqAixw7dgyuuK6uDi5OOePXr1+6urrwy8U8PDz+/Plz8+bNP3/+uLm5Qcy/f/++ubk5E9No1QYJj1FyNARGQ2A0BLCD0VISS7hAOgCqqqpPYeDnz58qKioMDAxTp049d+7cfwaGVwxfpjOchAztw2cAeBjYxBi4/zH8v83wVolByJZBAWK6AoMAAwPDQYYHtxne/mdgeMrwqYlhfwrD+mkMJxkYGGAdAD6I4r1795qaml6+fDk1NfXo0aOKiooQ8VFyNARGQ2A0BMgLgQ8fPpw7dy4lJeXjR9B5A1gN+fjxY3Fx8blz53p7ezEVdHV18fLyMjAw3L17V0hIiBE3sLa2hkwX2Nvb29raYhpFtgik48HExDRr1qw/f/5s374dMvbPwMCwc+fOz58/JyUlkW34qMbREBgNgdEQGFGAcXSqFDO+o6Kili9fjix+8eJFRkZGExMTSMXGzMD0l+EfJwPrL4a/fxn+TWDw4mfggKifxXD6OMNjJgbGOgZHeXC7n4GB4QfDn2qG3e8YQOd4QvQyMDAoMggWMVjzMLCVMex8zfC1nMFWg0E06ON8ISEhyNQ2xEAIWVpa2tXVBWGPkqMhMBoCoyFARgjs3r3bzc1t165dkEnFJUuWiIuLQ9i7d+9euXJleHg4hIvV8K9fv6anpy9duhSrLJrgvHnzEhMT0QQp5D579uz06dP+/v54zPn9+3dOTs7s2bNHr07HE0qjUqMhMBoCo2D0GFAsaQCyAxguwcbGpqmpycrKevjw4aqqKtAxoO9/qDIIBzNozWA4zcHAAm/9MzAwfAav7HdiUIK3/hkYGDgYWOoZnFYzXLnO8PoLwy8pBl4rBjlnBiVWBuYfDH/eMHxlYGCQYQBtJLh06RJm6x9tNwLcYaOM0RAYDYHRECA+BFxdXT98+DBjxoxz586Vl5dDNH78+PHUqVMrV67s7e3l5weVQhBxTJKbm3sJGHz69OnBgwefPoEONUZWxszMzM/Pr66uDh+YR5alnC0lJYW/9c/AwMDKylpQUMDKykq5daMmjIbAaAiMhsAwBqMzAORE7gLGYKzazjI8m8Jwgo+BvYPBjZOBnBoo4f9arCaPCo6GwGgIjIYAtUIAMt7PwMDg4OBw4MAB/AP/aJbevn17165dDx48+PIFdN4xsiwzM7OgoKCurm5AQAAbG2j7E7IsTdn//v27cuWKq6sr5PwGUVFRCIOmlo4aPhoCoyEwGgJDF4zOAFAt7n4y/FnGALo/OIJBl7zWP9WcMmrQaAiMhsBoCOAOAVdXVzU1NQUF0CYl4lv/R48e9fT0/PwZdMwxbrOhMqampocOHeLggK6NhIpSm/rx40djY+OiRYuePXuGbLaoqCgyd5Q9GgKjITAaAqMhgAZGOwDYwakl67BKmMUEYRVnYGDYxHDjHcN3dQYRSwY5XGpGxUdDYDQERkNgMISAvLz84sWL4XsACDrpwIEDjo6OEGXMzMzy8vKY64X+/fv37t27x49BZ6OdPn1aU1Pz3r17jIyMEF1UJE+dOjVhwoQNGzZ8/w7aWIVssp6eXlFRUUhICLLgKHs0BEZDYDQERkMADYx2ANACBMrlFReBsoimQhl0IKf+E61jVOFoCIyGwGgIDI0QKCsrgzh02rRpmZmZEDZW8v///2JiYm/evHnw4MHSpUtjYmKwKiNV8MuXL7t27Wpubr5w4QKmXlFR0c2bN5ubm2NKjYqMhsBoCIyGwGgIYILRDgBmmIBENF3tQNQoHg2B0RAYDYHREGBggByOzMDAQPBsH0ZGxkWLFnl5eUGuNKEw8N6/fz9lypSmpqY/f/4gG8XExCQkJCQiIgK5oUVOTm609Y8cPqPs0RAYDYHREMAPRu8BwB8+o7KjITAaAqMhMBoCDGJiYpBQQFttDxFEJv///9/d3Q0RUVdXhzDIJoWEhOrq6uCtf25u7t7e3jdv3vz+/fv169eenp4Qk5GvaISIjJKjITAaAqMhMBoCeMDoDACewBmVGg2B0RAYDYHREACFQGJiYnNzMwMDg7Kysrq6ellZmZaWFkgCCb98+fLQoUN9fX0QMWFh4fDwcAibWuT///83b94sJiYWHh7OxMT07t07iMm03m0MsWWUHA2B0RAYDYFhA0Y7AMMmKkc9MhoCoyEwGgK0CoGmpqYbN26sXr2agYHh5s2bycnJ+G3i5+e/c+cOfjXEyP7792/t2rXTp08/cODAv3//vn37dgAMYmNjmZmZubi4IIaMzgBAwmGUHA2B0RAYDQEiwegSICIDalTZaAiMhsBoCIzoEFi1atX////z8vIYwQASFmAm9JwfCFteXv7mzZsfPnwQEBCAqKGEZGRkDAkJ2bt379+/f+/fv+/n58fLywsx8O/fv/AzSXfu3DlhwoQXL15ApEbJ0RAYDYHREBgNAfxgtAOAP3xGZUdDYDQERkNgNAQQITBx4sR/YPAfDMDMf2Dmfwj7wYMHampqCA3UYykoKGzcuPHTp0/////v7OxEXvbz69evwsJCSUlJRkbGxMTEnz9/Us/aUZNGQ2A0BEZDYBiC0Q7AMIzUUS+NhsBoCIyGAN1CYMeOHeLi4hwcHCwsLBwcHOLi4vv27aO17WVlZd/B4MSJEyoqKsjWLViw4M2bN8gio+zREBgNgdEQGA0BNDDaAUALkFHuaAiMhsBoCIyGAJYQ+Pr1q5KSEgsLCyMjIxMTk6io6PXr121tbT09PV+9evXz58+/f//+/Pnz1atXzs7OAgIC79+/x2IKVYU4ODjMzc1v3779////s2fPpqWlQe4dG70JmKrBPGrYaAiMhsAwBKMdgGEYqaNeGg2B0RAYDQHqhsCaNWt4eXnv37//9+9fBgaG////v3nzRktL68iRIxCLDhw48PDhwx07dkD24378+FFNTQ2iGKKA1qSRkdHMmTP//fv36dMnNjY2Wls3av5oCIyC0RAY0mC0AzCko2/U8aMhMBoCoyFAjxDIy8v7//8/AwPDrl27Xr16tXHjRrit/Pz8v3//tre3l5OTc3d3//Lli6mpKQMDw5s3bx49egRXRjcGfJcw3WwctWg0BEZDYDQEhhwY7QAMuSgbdfBoCIyGwGgI0DsE3r59C7HS1dVVVFTUz88PfglXdXU1CwviRGkmJib4FQHMzMwQXaPkaAiMhsBoCIyGwKACox2AQRUdo44ZDYHREBgNgcEYAtra2hBncXFxzZ8/n4GBYdOmTT/BoLi4GCIFIQ8dOrR48WIIW0REBMIYJUdDYDQERkNgNAQGFRjtAAyq6Bh1zGgIjIbAaAgMxhA4cuSIkJAQAwPD9+/fP336xMDAwMLCwgYGTEzQeuTs2bPs7Oz29vb//v1jYGBYvHgx/KKuweilUTeNhsBoCIyGwAgGiHnbERwIo14fDYHREBgNgdEQwBcCXFxcb9++vX79+q5du/T09LAq/fTp069fvxgYGBgZGQ8cOGBnZ4dV2ajgaAiMhsBoCIyGwIAD6MjNgLtj1AGjITAaAqMhMBoCgzwENDU18/PzHR0dsbpTRUVl165dT58+/ffvH7Va/5Dbhfn5+ZcuXQrpXWC1moGBYfv27RDFkJNAcSkbFR8NgdEQGA2BUcDAwDDaARhNBqMhMBoCoyEwGgJUCAFZWVlXV1cpKSkqmIVqxKdPn2JiYtjZ2YOCgj58+IAqCeV9/foVyhqlRkNgNARGQ2A0BAiB0SVAhEIIm3zCvnXYhEfFRkNgNARGQ2AkhgBk0D09PX3GjBk09f96MODl5d25c6elpSWyXaMdAOTQGGWPhsBoCIyGAH4wOgOAP3xGZUdDYDQERkNgNASICgEODg6i1JGuyNXVdf369fz8/BCtnz9/trKy4uDgSElJ+fnzJ0RwtAMACYdRcjQERkNgNASIAaMdAJyhZGBgwMjIuHDhQpwqaCyxfPlyIyMjXl5eS0vL8+fP09i2UeNHQ2A0BEZDgJwQ+PPnD0QbOzs7hEF1kpubOyAg4MOHDzdv3vT394eY//Pnz7lz53JwcJiamp46dWq0AwAJllFyNARGQ2A0BIgBox0A7KH0+/fv69evMzAw4DrvArs26om2tbVFRUWdP3/+69evJ06cCAkJoZ7ZoyaNhsBoCIwCqoUAfAyedh0AuMlqamobNmz4//9/d3c3Hx8fxA9nzpwxNzcvKyuDcEfJ0RAYDYHREBgNAYJgtAOAPYiuX7/+69cvFhYW+JWW2NVRW/Tnz5+vXr36+PFjS0sL5FyL48ePMzAw3Lt37927d9S2bdS80RAYDYHREKA0BJiYmBrBwNXVlVKzcOjHXFxUUlLy8ePHBw8eGBsbo2ni5OREExnljobAaAiMhsBoCKCB0Q4AWoBAuRcvXmRgYNDQ0ICPPEEk/vz509PT41TMIOjHoJXI0LaUoXAqA6MTw9xtDDcegRiMTgyHLkHUMrz/zCDsDxKcvB4k8ucvw4S1DC4lIEG5CIbYdoYHL0DiDAwMmRNAyiKaGYSFhRcuXMjPz//t27f///97eHg8fPiQgYFBQkICcgsPVMMoNRoCoyEwGgKDIwQ4OTnrwMDW1pbqLhICA0FBQawmy8vLnzlz5t+/f2VlZfCyWlRUFKviUcHREBgNgdEQGA0BOBg9BQgeFCgMSAdAX18fWfTRo0eBgYHnzp1jYGBgZmL48IWhei4DGytIib4yg7osgwAPSPDGIwY78D05rUsZ3n1mMFBhyPJnuPOUIaCW4eoDkGImJpD4kt0Mu88wnJ3JIC3CcPEOSHzlfgZW1l+mpqYgDgPD/fv3/fz8rl27xszM3NfXBxEcJUdDYDQERkNg5ITA27dvCXqWkZGxEwwIqhxVMBoCoyEwGgKjIQABozMAkHBAJzE7AP/+/YuNjT137pyVldXp6Qw/dzFcnsugJsPw6zeoM6CtwMDIyGCmATLn5mMQ+eAFw5T1IMFpBQw/fjEE1jFce8hQFsFwaxHDr10g0laX4eV7hjlbGf7/Z7h8H6TF15Lh3bt3Dg4OIA4Dw6lTp65cufLv3z8+Pj4VFRWI4Cg5GgKjITAaAqMhMBoCoyEwGgKjITAaApSA0Q4A9tC7dAm0jgd5BmDZsmWHDh1SUlLauXOniTqo0a+jyFAeCdKuLsvACT79wlwTxIV0AKrmMPz8zZDsxWCpxTB7K8OV+wysLAyrDjC4lTGoxIDIa6ClPQzvvzDce87w5TvIwN5MBh4eHpARYGxra7tu3TpdXd33798nJCSAxUaJ0RAYDYHREBgNgdEQGA2B0RAYDYHREKAIjC4BwhJ8z58/f/XqFQMDA3IH4ODBgwwMDNHR0cht9H//Qdr1lUEkAwODhRaIcfMxw5mbDCv2MwjxMnSkgkQOXACRv34jFv2D+GCsrcBw8S6IZajKoCoDYsCxlJRUYGAgBweHl5fX/fv3////D7ltB65glDEaAqMhMBoCoyEwGgKjITAaAqMhMBoCpILRDgCWEIOs/xEHA7j0jRs3GBgYkM+X+P+fYekekDy8AwCZAbj/nKFwGmhhT2c6gzD4nLp//0DKisMYejJADDRcvwAkoKcEIp8/fx4XF8fAwLB06VIxMTEGBob3798zMDBALiUAqRjFoyEwGgKjITAaAqMhMBoCoyEwGgKjIUABGF0ChCXwIB0AVVXVpzDw8+dPyCr8qVOnnjt37v9/0Kbe8CYGyNC+AWx9vjAfg7IUw99/DEcuM5hrMiR7Qg03UQcx5mwFif//D9oKbJbFwOrKENYIEr90D0RCOgD8/Pz79+/fs2dPT0/Pt2/fTp8+XV5ezsDAkJoKnkoAKRzFoyEwGgKjITAaAqMhMBoCoyEwGgKjIUA+YPz/H7yKhXwThqHOqKio5cuXI3vs4sWLjIyMJiYmv379YmAAreb//YeBj4vh+y+G338Ynq9hkBCCKo9pA00LMDMxnJ7OYKgKFfz8jUE7ieExaFURVC8DA4OpBsO2dgYRfgalaIb7zxn29zE4GDAwOP6Pi4tbvHgx6KAhZua/f/8yMDDExcUN4IXEUD+MUqMhMBoCwysElixZIi4uTrvD+4dXaI36ZjQERkNgNASGFRidAcASnZAdwHAJNjY2TU1NXV3dw4cPOzs7CwoKigsyhDmATvA0UGFwNES0/hkYGN58BOnL8ke0/hkYGHi5QP2BBA8GeXEGNhYGfWXQWqBDE0Ct/8/foBsDdMFLgBgYGKZNm1ZQUCAjI8PLy+vg4LB06dLR1j8oTEfxaAiMhsBoCIyGwGgIjIbAaAiMhgA1wOgMAFlgPyNWbeuPMATVMYgLMtxcxMDPjVUJIUHH0QkZQkE0Kj8aAqMhQI0QGJ0BoEYojpoxGgKjITAaAkMSjM4AUC3avv5gyJ8CMq0ng9zWP0j3KB4NgdEQGA2B0RAYDYHREBgNgdEQGA0BGoLRU4BwBO6tJdgl1GKwizMwNC0CrfK302OIccWlZFR8NARGQ2A0BEZDYDQERkNgNARGQ2A0BAYYjHYAcEQAhzgOCZzCnWkMnWk4ZUclRkNgNARGQ2A0BEZDYDQERkNgNARGQ2AwgNEOAI5YkBsdxscRMqPCoyEwGgKjITAaAqMhMBoCoyEwGgJDGYzuARjKsTfq9tEQGA2B0RCgbwjcv3/fw8ODETfg5eUtKyt79+4dfd01attoCIyGwGgIjIYACWC0A0BCYI0qHQ2B0RAYDYERGwJv3rxhZmZWUlLauXMnnkD48uVLd3e3sLCwoqIi5CYTPIpHpUZDYDQERkNgNAQGBIwuARqQYB+1dDQERkNgNASGWAhISUn9+/ePgYGBkZHR09PTwcGBi4sLzQ9v376dN2/ew4cPGRgYHjx4IC4u/ubNGzQ1o9zREBgNgdEQGA2BAQejHYABj4JRB4yGwGgIjIbAEAiB379/MzAw+Pj4bN68GY9z6+rqfv/+LSAg8O3bt7dv3+JROSo1GgKjITAaAqMhMFBgdAnQQIX8qL2jITAaAqMhMPRCoLm5maCjWVlZIZMDjIzY70wkaMKogtEQGA2B0RAYDQGagtEOAE2Dd9Tw0RAYDYHREBhWIeDv70/QP8eOHYOM/bOzsxNUPKpgNARGwWgIjIYA/cHoEiD6h/mojaMhMBoCoyEw9EKAhYXlz58/jx49YmZmVlBQEBAQYGZmRvbG////v3z58vjx469fv0LE29raIIxRcjQERkNgNARGQ2BQgdEOwKCKjlHHjIbAaAiMhsAgDYEPHz4oKCi8efPm379/9+7dI+jKdevWBQYGElQ2qmA0BEZDYDQERkOA/mC0A0D/MB+1cTQERkNgNASGXghwc3O/fv363bt3Bw8ePHLkyPPnzzFP+eTl5dXR0bG1tTU2Nh56Phx18WgIjIbAaAiMGDDaARgxUT3q0dEQGA2B0RCgOASEhIQCwYBik0YNGA2B0RAYDYHREBgwMNoBGLCgH7V4NARGQ2A0BIZlCGzbtm3GjBkMDAwGBgZNTU3D0o+jnhoNgdEQGA2BIQ1GOwBDOvpGHT8aAqMhMBoCgy4Ebt26BbkrgIlp9KC5QRc7ow4aDYHREBgFDAwMox2A0WQwGgKjITAaAqMhQM0QUFBQgGz/tbW1paa5o2aNhsBoCIyGwGgIUAmMdgCoFJCjxoyGwGgIjIbAaAiAQyAADMDMUWI0BEZDYDQERkNgMILRDsBgjJVRN42GwGgIjIbA4AyB9+/fb9y48erVq+/fv////z+aI3l4eJSUlNzd3TU0NNCkRrmjITAaAqMhMBoCgweMdgDIiYvii7Ra2NrrSI57RvWMhsBoCIyGAK1D4NWrV0ZGRk+fPiXGIk5OzjVr1nh5eRGjeFTNaAiMhsBoCIyGAJ3BaAeAzgE+at1oCIyGwCgYeiHw9etXcXFxiLuZmJjU1NSkpaUx9/h+/vz5zJkzf/78+f79u7e39+rVq0NCQiC6RsnREBgNgdEQGA2BwQNGOwA448LAwODixYsLFiyIj4/HqYj2Ej9//nR2dj569OiaNWuCg4Npb+GoDaMhMBoCoyGAHgLJyckQoYiIiOXLl0PYuMhFixZBis2GhobRDgCuUBoVHw2B0RAYDYEBBLRayjKAXqKK1b9//75+/ToDA4Oenh5VDCTbkJSUlKNHjzIwMOjr65NtyKjG0RAYDYHREKAkBLZs2QLR3traCmHgIQMCAiCyd+7cgTBGydEQGA2B0RAYDYFBBUY7ANij4/r1679+/WJhYdHS0sKugjaiP3/+fPXqFdzs1tbWJUuWMDAw8PDwKCsrw8VHGaMhMBoCoyFAUgjs3r2bGPW4lFlYWEC0T5kyBcLAQ65duxYiOzpsAQmHUXI0BEZDYDQEBhsYXQKEPUYuXrzIwMCgoaHBzs6OrOLPnz8TJkxYPev/qyf/ufkYNE0Yv39hOHfwv1s4o5QS44L2fwwMDGE5TDLgtvqPbwzzWv/9+MbgGMRoaMv47x/DhcP/711jePXkPysbg4wKo7UnI58QyPi9q/9fPPZf3ZBxZo1wfX19aWkpAwPD6tWra2tr+fj4Pn36pKenx8jICFI6ikdDYDQERkOA9BA4Bwbl5eW4tH78+PHUqVMrV650dXXFVDNnzhxFRUUGBob+/v7Zs2f7+PgoKyszMzMjq/zz58/du3e3bt365csXiHhfXx+EMUqOhsBoCIyGwGgIDCow2gHAHh2QDgDa8NWjR48CAwPPnTvHwMDAyMTw8yXD0a3/ITWgqDSjkCgDOyfDz+8M7179l1EGNdZP7vn/4xuDqDSDgTXjhzcMG+f+e/sCZB0jI8OPbwzXz/x/ePN/TDETDz/Dq2eg0/Runv/PyvrL1NSUgYHh9OnT8fHxOjo6tra206ZNQ3MJyJRRPBoCoyEwGgJEh0B5efnu3btTUlJqa2vl5eXR9H38+LG4uDg8PHzOnDloUhCugoLCiRMnHBwcfvz48eXLlxUrVkDEcZEcHBxbtmyxtrbGpWBUfDQERkNgNARGQ2AAwWgHAHvgY3YA/v37Fxsbe+7cOSsrK0WLE2LSDG9fMmye/+/9a1BnQFiCgYGRQUKO8eHN/+/BS3g+vQON9zMyMriEMP35w7Bp3r93LxlMnRh1LBgFhBk+vGXYteLf03sMl0/8t3RjfPMc5AwlbcaLJ97x8PA8efLE39+fl5d38+bNaWlpoxsAQKEzikdDYDQEKAsBV1dXNTU1BQWFXbt2IQ/z7969e+XKleHh4ciCmFaZm5t///793LlzixYtunHjxqdPn9DuAWBkZOTm5lZRUYmOjraxscE0YVRkNARGQ2A0BEZDYJCA0Q4A9oi4dOkSWrN72bJlhw4dUlJS2rlzZ/0cfgYGBhFJBlNnxl0r/guJMbCwgsyRlGd4eJMB0gE4svX/3z8MuhaMkgqgNUJvnjMwMzPcvPD/5gXQYD8DA8PvnyAtP7+BOgO/f4J6Efb+jDw8PF+/fvX19X337t2+ffvk5eUvXLiA5hKQtlE8GgKjITAaAqSHgLy8/IcPH2bMmHHu3DlpaemXL19CWv+9vb38/KBijaCRRmBAUNmogtEQGA2B0RAYDYHBDEY3AWOJnefPn0N24iIvvDl48CADA0N0dDQPDw9cD+QeTFEp0IIfBgYGSQWQzLtX/18+Zrh5/j8HF4OtD0jqMfgkjL9/GT69Q6DvX0GKhSUYXoPX/4hJMwiKMvz79y8qKurChQuzZs2ysrKCuISJiUlXVxekehSPhsBoCIyGAGUhwM/PX15ebmRkFAsGDAwMc+bMIbL1j2nz7du3bW1tGVGBvb39zZs3MRWPioyGwGgIjIbAaAgMEjA6A4AlIiDrf8TBAC5948YNBgYGTk5OuAjDf4YbZ0E8USkQCeoAyDEyMPz/+I7hwIZ///8z2PoycnCDpCD9BGNHRns/UH8AJISEj+0AzQlAehELFizYtGkTMzNzPRj8/AmeJmBg0NHROXfunKCgIJK+UeZoCIyGwGgIkBkCrq6uixcvZmBgwL/sB2760aNHIat64uLiFi5cCBFPTk6eN28ehI1MHjp0SENDIy8vb+LEicjio+zREBgNgdEQGA2BQQJGZwCwRASkA6CqqvoUBn7+/KmiosLAwDB16lTQJuD/DB/eMGxZ9P/xHXDbXRpqCAc3g4AIw/9/DE/vMUjKM+iaQ5v7ErIgBVeO/396j4HhP8PbFwzL+v9NKP63ZSFI+5tnIFkRcC/i1KlTDAwMf//+fQAGz5+DNgf8+/fv58+fo61/UDCN4tEQGA0B6oUA/HJfgkb++fMHooaFBTpstHPnTkjrn5GRsbq6+vv37//////9+/eUKVPY2NgYGBgmTZp06NAhiK5RcjQERkNgNARGQ2BQgdEOABYA6QAcOXJEBgZu3rxZVFTExsb29OlTY2PjCaX/5rX+e3DjPxP4EDxRaWhDHzQJIA9iMzIxOIcyMYCYIPONHBh5BRh+/mBYOfnfhNJ/Czv/vXjEICbD4BwCUgFZAgSZRpgxY8Z/JBAZGcnAwNDW1vbsGbiXADJsFI+GwGgIjIYAvUPg9+/fECvhHYC2tjaIyIIFC1paWjg4OBgYGFhYWLKzs3fs2AGRgt8fDOGOkqMhMBoCoyEwGgKDBIx2ALBEBGQHMFyCjY1NU1NTV1f38OHDzs7OgoKC3LwMagaMMcVMYtIMsqqM3LxwtQyQlf0G1oxisGkBBgYGNnaG6CImbTNGPkHQVmBRKQZ7f8awXCZOboZfP0G7AhgYGEQlQZ0BhEFg1pUrVxgYGDQ1NcG8UWI0BEZDYDQEBiYE4B0AVlbwiQcMDNra2hCnYE4jwJdKMjGNVjGQQBolR0NgNARGQ2BwAUa0c9wGl+sGq2uKJ4BH/jGcd+fy/03z/nPxMiRWMbGDhsMwVBAS6C34S0jJqPxoCIyGwGgIUCEElixZIi4uTuQegM2bN/v5+cFtZWJiUlBQuHfvHgMDAzs7++bNm+HmHDp0yM/P7+PHjwwMDJcvX9bR0YHrGmWMhsBoCIyGwGgIDBIAXc05SFwzpJ3x+xfD/nWgNf32fozktf6HtPdHHT8aAqMhMIxDQEZGxsHB4eTJk9+/f2dgAJ1XBmn9MzAw/Pz5E74uSFBQ8MOHD5BwyM7OHm39Q4JilBwNgdEQGA2BwQZGOwDYY2TH4SVYJTxsY7CKMzAwnNj5//MHBhllBk0TLIt5cOkaFR8NgdEQGA2BwR8ChoaG+/fvh7vz+/fv9+/fv3fv3vnz569fv+7o6AiR+vfvHwMDg6Cg4L59+wwMDCCCo+RoCIyGwGgIjIbAYAOjHQDsMSLIJ45dAreorS+jre9o0x93AI3KjIbAaAgMlxDg5OTUAgMfHx9kP925c0dYWHh06T9ymIyyR0NgNARGQ2AQgtEOAPZIMdd3xS4xKjoaAqMhMBoCoyGALQTKy8u7uroYGBju3bunqKiITcmo2GgIjIbAaAiMhsCgAKMdgEERDaOOGA2B0RAYDYHBHAJLly4tKirC78IvX75AFJiZmUEmAV6+fAkRGSVHQ2A0BEZDYDQEBhUY7QAMqugYdcxoCIyGwGgIDMYQ+Pz586tXr4h02Zs3b4hUOapsNARGQ2A0BEZDYEDAaAdgQIJ91NLREBgNgdEQGEohkJKS8vXr15KSErijjx49inY9eWVl5caNGxkYGC5dugQ/FwiufpQxGgKjITAaAqMhMHjA6C0tgycuRl0yGgKjITAaAoM0BFhYWIqLi//9+7dr1y5mZtBFKNbW1sbGxq9fv9aEAchlwAwMDLq6uhCxQeqZUWeNhsAoGA2BEQ9GOwAjPgmMBsBoCIyGwGgIEBcCjIyMrq6uf/78effuHRMT0/fv3+3t7RkZGSdPngy5EIA4Y0ZVjYbAaAiMhsBoCAwwGO0ADHAEjFo/GgKjITAaAkMuBAQFBf/+/fv+/XsFBQUGBoa8vDxGRsYtW7YMOY+MOng0BEZDYDQERiYY7QCMzHgf9fVoCIyGwGgIUBoCAgIC9+/f//nzp7OzMyMj458/fyg1cVT/aAiMhsBoCIyGAF3A6CZgugTzqCWjITAaAqMhMExDgI2Nbc+ePQwMDGlpaVeuXBmmvhz11mgIjIbAaAgMKzDaARhW0TnqmdEQGA2B0RCgfwhcv36dgYGhpKRETU2N/raP2jgaAqMhMBoCoyFAKhjtAJAaYqPqR0NgNARGQ2A0BFBCQEtLi4GBQUxMbPTmL5RwGeWMhsBoCIyGwGAFo3sABmvMjLprNARGQ2A0BEZDYDQERkNgNARGQ2A0BGgARjsANAjUUSNHQ2A0BEZDYOSFACMj48jz9KiPR0NgNARGQ2BIgtEOwJCMtlFHj4bAaAiMhsBgC4HRDsBgi5FR94yGwGgIjIYALjC6BwBXyIyKj4bAaAiMhsBoCBAVAq9evWJgYIDcEEyUhlFFoyEwGgKjITAaAgMKRjsAAxr8o5aPhsBoCIyCoR8CoqKiQ98Toz4YDYHREBgNgREERjsA5ET2pVVt5GgjRk8BMYpG1YyGwGgIjIbAaAiMhsBoCIyGwGgIjIYAmWB0DwCZATeqbTQERkNgNARGQ2A0BEZDYDQERkNgNASGIhjtAGCPtc+fPzMxMTEyMr5+/Rq7iiEu6unpycjIOHPmzCHuj1Hnj4bAaAiMhsBoCIyGwGgIjIbAaAiQBkY7ANjD69KlS////xcFA+wqhrjoxYsXGRgY9PT0hrg/Rp0/GgKjITAaAqMhMBoCoyEwGgKjIUAaGO0AYA8vSPtYR0cHu/QQF33z5s3z588ZGRl1dXWHuFdGnT8aAqMhMBoCoyEwGgKjITAaAqMhQBoY7QBgD68LFy4wMDAoKipWV1erqqpyc3MbGhouXrwYWfX///8ePjt09trsA6cbj1/ou/90/60HW/Ycr3j26jQDA8O//3/vP9137ELPgVMNl28t+/v3J0Tv////Hj0/cu7anIOnm46cbb96Z+X3n+8hUjfubWBkZKypqfHy8hISEjI0NJwyZcq3b9/y8/M1NDR4eHisrKyOHz8OUczAwPDnz58JEya4uLgICwvLycnFxsY+ePAAIpuZmcnIyNjY2BgdHS0mJiYqKhofH//582cGBoYNGzZAjuz4//8/Ly/vvXv3IFpGydEQGA2B0RAYDYHREBgNgdEQGA2BkQAY////PxL8Saofzc3NT506xczM/PfvXyYmpn///kFMmDFjRnp6uqtV54+fHy7eXPz561MGBgZGRqb//0EKmBiZ//3/a6abw8cjc/XOyuevzzMwMDIwgEJYXspOVd7r24+3F28u+vrtJUgXA+N/sBQbK4+5Xh47G9/pK9M+fn4EsYiRERQ1jIyMSkpKd+/ehXAZGBhERUUfPXrEwcFx586dgICAq1evMjAwwF0oLi5+9uxZaWlp5K4CXLakpKS7u7urq6uuru7nz59sbGzi4uIPHz4cvb4HEuaj5GgIjKgQWLJkibi4uKur64jy9ahnR0NgNARGQ2AUgJqOo6GAGQL//v27fPkyAwODrKzs1q1bv379+vz5c3d3dwYGhqamJgZQi/7/1TsrP399ys8rb6ab42TeYqFfyMUp8u//X0ZGJh4u8Z+/PoFb/wyWBoU6qhFSosYc7AJ///26dHPx12+v5KXsrQxLnCxarQxLBPgUf/3+8vTVKQaG/1++vWBgYPDw8Hjx4sXbt2+NjIz+//9/7969qVOnfv36dcWKFQwMDK9fv75x48bXr18DAwOvXbtWVlZ269atX79+3bp1y9bW9uXLl3PmzPn//z/E/VZWVvfu3Xv9+rWtrS0DA8OpU6cYGBjKysqCgoIYGBhqamoePXo02vrHTACjIqMhMBoCoyEwGgKjITAaAqMhMIzB6D0AWCL31q1b379/Z2dn37Ztm6amJgMDg4SERHd3986dO589e/bx48cXry+8/3Sfk0PISDOZmZmNgYGBh0tcQcrh2t01XBwiTEys/xm+Qcb+bz/cLiVqpKEcxMTI/Oj5kS/fXjAxMr96e+nV20sQi/+Alwb9+fP9+493f//+YmBgmD17tri4OAMDg7m5+blz57y9vbOyshgYGIKDgyHzAFxcXLNnz75y5QobG9sqMIAYBVnh8/79+3v37n358oWBgWHRokWKiooMDAwuLi6HDx/m5+eHqLx0CWS7vr4+hDtKjobAaAiMhsBoCIyGwGgIjIbAaAiMHDDaAcAS15ANANbW1pDWP0QFZK2UgIAAPz//h0+gdfMSIoaQ1j9UAXg9Dy+3JAMDAwcbv4K0w6Pnh9+8v/7m/XVuLnEznez3YF3//v+FL/qHaGRgYODmFP/87TkDA4OGhoaMjAxE/P79+5C2O4T78OHD////s7KyKigoHDhwgIGB4devX/BF/xA1DAwM2trakB3M6urqysrKEHHIYaaQzsDPnz9v3rw5egQQJGRGydEQGA0B8kIAUiRi6h2dVMQMk1GR0RAYDYHREBhsYLQDgAVAGtAcHBzIcgsXLmRgYICsl/36HXQ5ADMTK5KC/y9AK/4ZeLikIIIqcu7yUrZPX56+82j7128vQe178HYLeSlbVXlviBpk8t7j3QwMDCYmJnBBSD8ELgJxlba2NhsbG2RPQnFxcU9PD1w9nFFfXw+ZQICLXLt2jYGBwcDAgIGB4dq1a3/+/OHj41NQUIArGGWMhsBoCIyGAMEQ+PPnj6Oj45EjRwiqVFNTu3z5MhsbaIKUoOJRBaMhMBoCoyEwGgJ0BqOnAGEJcEjLe+fOnStWrPj79++bN2/q6uomTJjAysra2trKwMDAxSHMwMDw+MUx8Cbg/99+vL18axlkgJ+XW/Lz12f7TtbsO1nz69dnIQEVRgZGyMYAXh7Q0P7Tl6c/fH7AwPD/67eXpy5P2Xui6vKtpQwMDJ/BGwAgbXQGBoaXL1++ePGCkZERflQ/pAMAUQDpFcyZM+fIkSP///+/evWqmZkZKytrWFgYAwMD5gofiI8ga34g5sCNxeL/UaHREBgNgdEQwAgBSBlITOufgYHh1q1b7Ozs5eXlGMaMCoyGwGgIjIbAaAgMPBidAcASBxcvXmRkZOTm5o6MjIyLi/v9+zcDAwM/P//q1atVVVUZGBjkpGxfvLnw89enk5cmMzIy////l4WZA8Lg5ZZkZmJnZGT++/fniYsTIOf8qMp5sDBzyEvaPHt56sevj2euzIAoZmBg4OOR0VAKYGBg+PIVtAQI0r5nYGCANNmVlZV5eXkhToSIQBQUFhbOmTPn8ePHtra2rKysEBeamppOmzaNgYEB0sSHqGRgYHjy5Mm7d+9YWFi0tbWxdg8g5o+SoyEwGgKjIYAnBAoLCyGyMTEx8+fPZ2HBXn38/fu3oKBgypQpDAwMXV1dMTExo/eNQMJtlBwNgdEQGA2BwQNGZwDQ4+Lz58/S0tJeXl47d+60tbVlY2MTFBQMCAg4fvw4ZP0PeMuvhIlOhhC/CisLJxsrj7iwnpleLi+3pCC/MhsrLzMzm756LA+XJBMTKx+PjK5alLyUPQMDAzMzu5leLvhEIEEmRmZebklVeW8T7QxWFu6/f39CNgZABunhHQB4Ix6tWc/Ly3v69OmEhAR5eXk2NjZ9ff2enp5Dhw6JiIh8/vwZsjEAzSgNDQ12dnZ4B2B0BgA94kf5oyEwGgJEhEBhYeHixYtxtf7BBR3z5MmTa2pqIIZt3LgRwhglR0NgNARGQ2A0BAYPAB02P3hcM1Rc4mrVSSOn7j42OmNOo6AdNXY0BEZDACUESL0HALK7t7CwsK+vD8UgbJy0tLTZs2czMDBMmjQpNzcXm5JRsdEQGA2B0RAYDYEBA9jncAfMOaMWj4bAaAiMhsBoCAzKEIAcQ9zf38/Ozl5VVcXBwcHEhD6H/Ad0pPH3kpKSuXPngq47ZGQMDQ0dlL4ZddRoCIyGwGgIjGgw2gHAHv2rV4LO2cSUCw13wBQcFRkNgdEQGA2BYR8CJSUlPT09////7wADgv5lYmJasWKFhIQEQZWjCkZDYDQERkNgNAToDNDHb+hs/aC1TlSUHysatA4eddhoCIyGwGgI0DQEurq6Pn36ZGBgQPBwTw4ODjc3t8+fP48O/9M0RkYNHw2B0RAYDQGywegMAPagc3AyxC4xKjoaAqMhMBoCIzUEeHh4zp8/P1J9P+rv0RAYDYHREBg+YLQDMHzictQnoyEwGgKjITAYQuDv379fv36FuISPjw/CGCVHQ2A0BEZDYDQEBg8YXQI0eOJi1CWjITAaAqMhMBxC4MKFC/wwMBz8M+qHUTAaAqMhMOzAaAdg2EXpqIdGQ2A0BEZDYEBD4M+fPwNq/6jloyEwGgKjITAaAgTA6BIgAgE0Kj0aAqMhMBoCoyFAUgiYm5v///+fJC2jikdDYDQERkNgNAToCUY7APQM7VG7RkNgNARGQ2A4hMD3798/fPiA2cpnZ2fn5+fHc0/wcPD8qB9GQ2A0BEZDYOiD0Q7A0I/DUR+MhsBoCIyGAF1CYN26dYmJiZ8+fSJom4WFxerVq2VkZAiqHFUwGgKjITAaAqMhQH8wugeA/mE+auNoCIyGwGgIDL0QsLa2Dg4OJqb1z8DAcOLECVlZ2Y0bNw49f466eDQERkNgNARGABjtAIyASB714mgIjIbAaAhQHALHjh2DmHHixIn/uMGvX7/a2togKgMCAv79+wdhj5KjITAaAqMhMBoCgweMdgAGT1yMumQ0BEZDYDQEBnsI7Nq1y9zcHI8rWVlZKysrlZSUIGqYmEZrGUhIjJKjITAaAqMhMIjAaNE8iCJj1CmjITAaAqMhQKMQ6OzsJGjyx48fd+/ejV/Zjh078CuAyL59+xbCGCVHQ2A0BEZDYDQEBiEY7QAMwkgZddJoCIyGwGgIUD8EUlJSPn78iMvcjx8/FhcXnzt3DpcCRkZGBgaGvr4+DQ2NJUuW3L59+wkqePTo0Z49e+Li4jg4OCAWycvL4zJtVHw0BEZDYDQERkNgAMHoKUADGPijVo+GwGgIjIYAnUKgvLx89+7dxcXFtbW1mO3yhw8fKigo7Nq1y9XVFZeDjh49amVlxcDAcPPmzdjYWFzK4OIyMjIPHjyAc0cZoyEwGgKjITAaAoMHjM4ADJ64GHXJaAiMhsAooGEIuLq61tbWKigooK3z2b17d3NzM/7WPwMDg6Wl5b9//w4dOiQuLo7flZGRkT9+/Hj8+DF+ZaOyoyEwGgKjITAaAgMFGDFvchkopwwhe12tCK+mJc87u4+Vk6dxVNdoCIyGwGgIEBMCHz9+nDFjBgMDg7S0NAMDg7i4+MqVK3t7e/n5+YnRDlHz//9/rMf7MDIyju76hQTRKDkaAqMhMBoCgxmMzgAM5tgZddtoCIyGwGgIUDkE+Pn5y8tBAw2xYMDAwDBnzhwiW/+3b98WFBSEtPJZsAFmZmZGMGhoaMDaQ6CyZ0aNGw2B0RAYDYHRECALjM4AkBVso5pGQ2A0BEZDYIiHAGQhEJ5F/2j+s7CwOHnyJJogHi47O/uTJ09ERETwqBmVGg2B0RAYDYHREBgQMNoBGJBgH7V0NARGQ2A0BIZYCEBOAeLm5l61apWXlxcu13/58sXd3R1ya5iOjs7ly5dxqRwVHw2B0RAYDYHREBgoMNoBGKiQH7V3NARGQ2A0BIZMCEhLSz979oyBgWH//v0ODg743f3r1y92dnYGBgZ2dvYfP37gVzwqOxoCoyEwGgKjIUB/MLoHgP5hPmrjaAiMhsBoCAyxEBAQEIC4+NatWxAGHvLLly8QWR4eHghjlBwNgdEQGA2B0RAYVGB0BmBQRceoY0ZDYDQERkNgMIbA1atXdXR0GBgYGBkZ/fz8cnNzNTQ0WFlZkd3679+/O3furFixYtasWb9//2ZgYMjMzJw2bRqymlH2aAiMhsBoCIyGwGAAox2AwRALo24YDYHREBgNgcEeAtOnT8/KyiLelQEBAevXryde/ajK0RAYDYHREBgNAbqB0SVAdAvqUYtGQ2A0BEZDYAiHQGZm5vfv32fPno3/zFAmJqbs7Ox3796Ntv6HcGSPOn00BEZDYLiD0RmA4R7Do/4bDYHREBgNgdEQGA2B0RAYDYHREBgNASQwOgMwCkZDYDQERkNgNATIDIGXL19CrgYDX/8FJdjY2DZs2DB6zTyZYTqqbTQERkNgNARoD0Y7ALQP41EbRkNgNARGQ2CIh8Djx49nzpz59+9fZH/09vZKSEh8+PABWZCBgeH379+BgYE6OjqQrcBosqPc0RAYDYHREBgNgQEHox2AAY+CUQeMhsBoCIyGwGAPgR8/fmRkZLCwsMTExLx79w7i3KamJggjMTHxPwy8f/9eV1eXgYHh2rVrVVVVEAWj5GgIjIbAaAiMhsCgAqN7AAZVdIw6ZjQERkNgNAQGYwjcuHFDU1MT7jJ9ff2lS5eampp+//6dg4Pj+/fvcCkGBoYHDx4oKioyMDAICgrCewvICkbZoyEwGgKjITAaAgMLRmcABjb8R20fDYHREBgNgSEQAhoaGj9+/IAP+V+8eFFHRwfS7se86/fBgwcQL4mIiEAYo+RoCIyGwGgIjIbAoAKjHYBBFR2jjhkNgdEQGA2BQRoC7OzstbW1//7927NnDy8vL7IrZWVlL126xMDA8OfPn4qKCldXV4jsrFmzIIxRcjQERkNgNARGQ2BQgdElQIMqOkYdMxoCoyEwGgJDIwQ+ffqkq6v76NEjXM5dvHhxTEwMLtlR8dEQGA2B0RAYDYEBBKMzAAMY+KNWj4bAaAiMhsBQDQE+Pr6HDx/+//9/yZIlvLy8rKysTExMzMzM3Nzc5eXl//79G239D9WoHXX3aAiMhsAIAKMzACMgkke9OBoCoyEwGgKjITAaAqMhMBoCoyEwGgIwwAJjjNKjITAaAqMhMBoCoyFATgh4eXkxMDBA7v8iR/+ontEQGA2B0RAYDQH6gtEZAPqG96htoyEwGgKjITDsQoCRkZGBgYGLi+vr16/DznOjHhoFoyEwGgKADcMQAABN8+I9Elk/PQAAAABJRU5ErkJggg==", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gpv.plot_3d(geo_model, \n", " image=False, \n", " show_lith=False,\n", " plotter_type='basic',\n", " kwargs_plotter= {'notebook':True},)" ] }, { "cell_type": "markdown", "id": "elementary-camping", "metadata": {}, "source": [ "\n", "## Setting the interpolator\n", "\n", "Unlike previous versions, GemPy 3 doesn’t rely on theano or asera. Instead, it utilizes numpy or tensorflow. Consequently, we no longer need to recompile all theano functions (TensorFlow uses eager execution; we found no notable speed difference after profiling the XLA compiler).\n", "\n", "The parameters used for the interpolation are stored in gempy.core.data.GeoModel.interpolation_options. These parameters have sensible default values that you can modify if necessary. However, we advise caution when changing these parameters unless you fully understand their implications.\n", "\n", "Display the current interpolation options" ] }, { "cell_type": "code", "execution_count": 17, "id": "8e27b70d", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:18.212432Z", "start_time": "2022-03-27T11:06:13.614839Z" } }, "outputs": [ { "data": { "text/plain": [ "InterpolationOptions(kernel_options=KernelOptions(range=1.7, c_o=10.0, uni_degree=1, i_res=4.0, gi_res=2.0, number_dimensions=3, kernel_function=AvailableKernelFunctions.cubic, kernel_solver=Solvers.DEFAULT, compute_condition_number=False, optimizing_condition_number=False, condition_number=None), evaluation_options=EvaluationOptions(_number_octree_levels=1, _number_octree_levels_surface=4, octree_curvature_threshold=-1.0, octree_error_threshold=1.0, octree_min_level=2, mesh_extraction=True, mesh_extraction_masking_options=, mesh_extraction_fancy=True, evaluation_chunk_size=500000, compute_scalar_gradient=False, verbose=False), debug=True, cache_mode=, cache_model_name='Model1_Horizontal_Layers', block_solutions_type=, sigmoid_slope=5000000, debug_water_tight=False)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.interpolation_options" ] }, { "cell_type": "markdown", "id": "innovative-cradle", "metadata": {}, "source": [ "\n", "\n", "## Computing the model\n", "\n", "At this point, we have all we need to compute our full model via `gp.compute_model()`. By default, this will return two separate solutions in the form of arrays. The first provides information on the lithological formations, the second on the fault network in the model, which is not present in this example. " ] }, { "cell_type": "code", "execution_count": 18, "id": "5b7b2377", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:35.778810Z", "start_time": "2022-03-27T11:06:18.217433Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Setting Backend To: AvailableBackends.numpy\n", "Chunking done: 89 chunks\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\gempy_engine\\modules\\activator\\_soft_segment.py:95: RuntimeWarning: overflow encountered in exp\n", " return 1.0 / (1.0 + bt.t.exp(x))\n" ] } ], "source": [ "sol = gp.compute_model(geo_model, \n", " compute_mesh=True)" ] }, { "cell_type": "code", "execution_count": 19, "id": "779580c4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "Solutions: 4 Octree Levels, 4 DualContouringMeshes" ], "text/plain": [ "Solutions(4 Octree Levels, 4 DualContouringMeshes)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sol" ] }, { "cell_type": "code", "execution_count": 20, "id": "ea2d8eee", "metadata": {}, "outputs": [ { "data": { "text/html": [ "Solutions: 4 Octree Levels, 4 DualContouringMeshes" ], "text/plain": [ "Solutions(4 Octree Levels, 4 DualContouringMeshes)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "geo_model.solutions" ] }, { "cell_type": "markdown", "id": "protected-parcel", "metadata": {}, "source": [ "\n", "\n", "# Model Visualization and Post-Processing\n", "\n", "\n", "\n", "## Visulazing Cross Sections of the computed model\n", "\n", "Cross sections in different `direction`s and at different `cell_number`s can be displayed. Here, we only see the horizontal layers of the model. Not very much exciting yet. " ] }, { "cell_type": "code", "execution_count": 21, "id": "eb54b87a", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:36.846561Z", "start_time": "2022-03-27T11:06:35.780806Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\gempy_viewer\\API\\_plot_2d_API.py:176: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", " p.fig.show()\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACSAAAAXkCAYAAADQdjd0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd8VeXZAPAnIey9xYm4RXGCiigOVNzWPVrrqNaqbdVq3Vqtq1br3nXvvbfi3nsiKoqKICIiGwLkfr/38CUlzBCT3Iz///vdnuSc99z75OTeT86T533eglwulwsAAAAAAAAAAIBKKKzMSQAAAAAAAAAAAIkCJAAAAAAAAAAAoNIUIAEAAAAAAAAAAJWmAAkAAAAAAAAAAKg0BUgAAAAAAAAAAEClKUACAAAAAAAAAAAqTQESAAAAAAAAAABQaQqQAAAAAAAAAACASlOABABQi+VyuXyHAAAAAAB1lvwaANQMBUgAVLkpU6bEvffeG/vtt1/0798/Vltttejbt2/88Y9/jGeeeaZKXmOllVaKtdZaq+z74cOHZ/u22267Cp+fHrfeeusCx/3ud7/Lxn300UeRb8cdd1wWyxNPPBF1xXPPPZe9D3r37p29DwYMGBBnn312jB07dq6xpb/D+T3Sz78w83uOVVddNdZee+3s/XHmmWfGd999N8/zN9tss2z8zz//HPk2bty4OPXUU+f6zMz53gcAAADqH/m16lHX8muVyZd9+eWX8Ze//CX69esXa665Zuy6667xyCOP/OrXlF8DABamaKEjAGARfPrpp/HXv/41vv3222jVqlV2M9erV6/4/vvv4/nnn88eO+ywQ/zrX/+KwsL818Gef/75semmm8biiy+e71DqnSuuuCIuvPDCKCoqitVXXz3at28fH3/8cdxwww3ZTf8dd9wRnTt3Lhs/ePDgbNuzZ8/o0aPHXM+3KEmBFi1axOabb15ullNKOHz22Wdx0003xT333BP//ve/s4Ko2uqcc86J++67LzbYYIN8hwIAAADUIPk1Kpsv++STT+K3v/1tVsCWJgS2bNkyXn/99fjb3/4Ww4YNi8MPP7zCry2/BgAsKgVIAFSZoUOHxt57753d4B5yyCFx0EEHZUmS2W+A//znP8dDDz2U7U+zT/Jt0qRJWRzXXHNNvkOpV7744ou4+OKLo3Xr1nH99ddnBUjJtGnT4oQTTshmXaWZUqlAac6Eyp/+9KfYYostftXrp2Kn8847b679M2fOjKuuuiouuuiiLPGSiqBWWWWVsuOpOGr69OnRtm3bqK2toR977LFakVwEAAAAqp78GrNblHxZyiUde+yx2Xvn0ksvLSsMSp2KUlHSZZddlj1HKmirCPk1AGBR+a8rAFV2M3f00UdnN7ipxe+RRx5ZLjlSOlMnJSJSR5w777wzm8WVT40bN85upF988cV44IEH8hpLffPggw9GSUlJliQrLT5KmjZtGqeffnp27VMXpOLi4rkSKrMnLKpao0aN4tBDD81af0+dOjX+85//lDu+9NJLx3LLLZeNq61SfMsuu2y+wwAAAACqmPwac1qUfNnLL7+cTQrcZJNNynUlWmqppeKoo47KcnULWy6vIuTXAID5UYAEQJV46623svbQiy22WFZ0sqCbu9122y023njj+PHHH8sdS+uCp644aZ3wtK59Wqf8+OOPz9pLV1eC5MQTT8y+Pvvss2PMmDG/eq34a6+9Njt2ySWXzDU+zTa68cYbY+DAgVlRzpZbbhk333xzNia9dhq33nrrRZ8+feKAAw6Izz//fJ6vn5IF6XVSIiE9z7bbbhvXXXddNrNoXomr1A45XfPUkjmt055mPM257vnscb777rtx4IEHZs+90UYbxQsvvJAdT0mFdDy1La7ItU1j11lnnbmOpdbPaem1FO8vv/xStj+1b04zo5ZccsmobqmNebNmzbLk2MiRI+e7Rn3pmvcp+Xf33Xdn78k111wzuz6zz/JLM7622mqr7Jqtv/76WZJwyJAh83ztlES88sorY/vtt8+eq3///tn42X/f6TXvv//+sljT92+88UbZsXktR1fanj21lE6fn9QiO32e5nxfp+dJz3HBBRdk56TP67rrrps957777lv2OvN6b8z+vp6XGTNmxE477ZSNnTP5lIrN0ns1HUvXEgAAAChPfm0W+bWoVL4sFSAlaTm8OaV9qeNPyoVVFfk1+TUAmJMCJACqxOOPP55t0017kyZNFjj2H//4R3aDmG7KSqXkwc4775ytH55mcKWZOqlIJd2Mp/2ls32qWrpJTTfgqRAmdeapTqeddlq27nhKIqU12NPN9xlnnJFdi9133z1LEqSCnY4dO8Yrr7wS++yzT9mN+uzS0mbnnntudOrUKUs0jRo1Kv71r39lN9mztxVOXx9zzDFZEuirr77KkiPp8eGHH8Zhhx2WtV2el5SUSsmN9Nzpd7Hqqqsu8s+abtRTK/DZf8elfvrppywpkbohpRlySVo/fsSIEbHMMstkLZy32267WGONNbLfTbpm48ePj6qUloZL1yKZV0JgTh988EGccsop2cyoXr16Rffu3bP9Y8eOjT333DMuv/zybMZXSiilY0899VSWlCpN/JRKP0dqo56SE+ncNL5bt27x5JNPZuPT76b0fZlmpyXpGqbv0+97QZ+/9B5KSbt0Xkr0FBQUZJ+n3/zmN/H111/Pdc7HH3+cxZ5mxqXEXEpkpWuRknMpSVYZ6f1y1llnZduUtEtt42d/33755ZfZZzv9rAAAAEB58msL15Dya4uaL0t5l2SFFVaY67natGmT/awpJzdx4sSoCvJr8msAMKeiufYAQCWU3oDNvtzWokgzYNINcGot/cc//jG7uUtSgiTdsKf9jz76aLW07k0JmzTDLN1cpplLs7corkqvv/563HLLLWVdgVLL45SUSTfLaVbWFVdckbXVTrNc9t9//3jzzTezG+e99tprrmudztlmm23KCnrSzJpBgwZlS5+lGTJJasP98MMPZzNvUjIkJV5Kk1H77bdfNtsm3RjPWSSUbuIfeeSRbHyaDVa6HnpKwqTZRV26dPlV1yG9bkrepGRJmiWXlCbAUoIgJWfS9ejatWt89NFHcf3112ezxG677baygqWq0KNHj3j11VfnmTyYU2pnfvjhh8ef//zn7Pt0XZJ//vOf2cyq9Ds64YQTypKDL730UtaKOr2vn3766Swhk5x//vnZrKg0m+vf//53VoQ1+/v85JNPzn6H5513XjYrKv2u0sy4NKtvflKC7Nhjj82+Tu+hlBxJZs6cmT1PSlSkNtvpNUo/V0lK3swZ90knnZTNnkqJldIEUpLOTzO5KnL9U0LtD3/4Q5b4S0nB9Fzp95riaNeuXZYUBAAAAOYmv7ZwDSm/tqj5stJuWKnobF7S/jQmFWTNubRfZcmvya8BwOx0QAKgSpTe4JbehC+KNBvk/fffz2YtHXLIIeVu4tLsrNTqNt3EppvO6pBmTKUb2STd0E2YMKFaXifNspl9SbKtt9667Os0k6r0xj/Nbkk/c+mN+ZzSsdLkSJJm7qQb62T21rspEZGuZboRn/33kmbwpJvxVASUbl7nlOIqHV+aHEkWX3zxrMV36c1+ZaSuSHfccUfWnjnNKCuVkiil69mnhEJqgZ0e6evUljnNMKvqG+vS6z37MnALkmbMlUrX5YcffshmRqVZaGkW3OwzE9PMqzT7Kc3CSj9zMm3atCz50aJFi2wWU2lypPR93rdv3+xYReMplRJh6blT6+/S5EiSkol///vfs2uakjIpQTfnUnjpfTB73KU/4+wzq5KUFEu/+w4dOlQopjQDcPnll89mfD3wwANZEiYlbFIycn5JMAAAAGjo5NcWriHl1xY1X5YKm5KUd5uX0lzU5MmTo6rIr8mvAcDsFCABUCXSTX2SZhctqjQTKUmzheYl3VDPPq46pJvZNIsoJXpSC+PqMOfstdLZLimJsfLKK5c7VpqESDe+c0rrfM8pXbvmzZtnrYzTWvVp1s6wYcOypEZpq+HZpXXM001+mpk2pxVXXDGqQ5r1lW7IkzQzLd1wl0qzkNLsuJTUSQmrUmmN+7PPPjtLHDz22GNZwqGqlL5XZ0/IzU+6qZ8zOZCuXZqplWYylXZyWtD7Ns1OS4mglCSb1yyz9LPffvvt2SymRfH2229n2y233HKuY+lnK53dVTquVForfvYkTVLahvrXJqJS0iUlgdJ7LCVHUhvq1CZ89qQgAAAAUJ782sI1pPzaoubLSjtbLSzXNfsSc7+W/Jr8GgDMzhJsAFSJdAM5ZMiQea6pvjBppkty6aWXZo/5STf91SXdSKZ2vzvuuGPcc8892c1cSiJUpZQcmPM1k5TYmH2WzOzH5mWJJZaYa1+6EU2zaL755pss6VB6rb7//vvsRnh+0u8rJVRmv8FPa8JXtRtvvDFLPKUER1rrPV3n2aUEybwSOUn6uXr27JklJNLMr6r6vYwbN26ev5d5mdc1KX3f3n///dljfkp/F6NHj862aU36qlT6vPN6X8y+v3RcqXnNtCtNVFVFImqNNdaIPfbYI0v6pPd3aj8NAAAAzJ/82sI1pPzaoubL0jVIpk6dOs9zSguxSsdVBfk1+TUAmJ0CJACqRFqXOq15ndai3mWXXRY4No1J7WpTG93UvrZ0ve8002V+N3nJaqutFtWpe/fu2TrkaV3vdDOXOvYsqtQGd35Kbz5/rTln1cxrtlxpHClxtf766y90ptLsCZLZ20L/WulGO61tn2YfpbhSW+jf/OY3i/w8pS2rS1tJV4WU0EtWWGGFhY6d1zUpfd+m2XULeo7S93Tp+Kq2sGRG6esuShKuKhQXF5fNAExfp3bae++9d7W+JgAAANRl8muzyK9VLl+WipIGDx4cP/30Uyy55JJzjS8tnint0FMV5Nfk1wBgdgqQAKgSm266aVx99dXxwgsvZDdDc96Mze7WW2/N1q1O686ndsGla1YPGDAgDjzwwMinAw44ILuR++STT+KCCy6Y55jSG8t53fBW1/r2s0ttrFNiac4kR5oJlGYwpRlHpdc0tRtOCZ98SNfn2GOPzdZoTy2hL7zwwujfv/88x1522WXZbK0jjjii3NJspdJMs6Rr165VEltKuKR121Pio3fv3pV6jtJrnFo+p65OFU0KzW+mYWolnY6lGWuLkghKyaX0WRo+fPg8r0/aP/vr15T0O/3yyy9j4403zhIl6X24ySabZG3LAQAAgLnJr80iv1a5fNnyyy+fvXeGDh0aa665Zrmx48ePzwqTUl5mXkuXVYb8WvWTXwOgrqn+EmwAGoS11loru7EdOXJk1u1mfj7++OMsAZHstddeZTeYyUsvvTTPc9KNVeqa8/DDD0d1S7Oo0traacbSzTffHF999dVcY1q2bJltx4wZM9ex999/v9pjfOWVV+ba9+KLL2btldO1TD9DmuWU1oZP69R/9913c41PCaC0pvkxxxxTbXGm65iKj1KS5oYbbphv8VHpbKmnnnoqnnzyybmOpZvslMxISYMFtbteFCmZl5JKKabKFjWVvm9fe+21rM32nG655ZbYfvvtyz4PaYZhel+9884781wD/pJLLomjjz46fvnll0WaQVUax9NPPz3P2Vul+yubCKqMNNvuv//9b/a7Tx2wDjvssJg0aVKcfPLJNRYDAAAA1DXya7PIr1UuX5a6YSWDBg2aa3zal4q9SsdUBfm16iW/BkBdpAAJgCqRbubSLJV0A5hmNl188cXZDdHs3n333exGKa03vttuu0WvXr2y/WlGSmqxm240r7jiinIzn9KNfypeSbN9Vl999Rr5WVLL3zRTLMWRZgbNacUVV8y2d999d7klwe67775slk11u+2227JrNftsp7S0WbLvvvuW7f/tb3+b3binJEia1VUqrWGfWmCn9ezn1Y55fkaMGJHNoKrILLQ02yolmNJMvXSjnNYrX5D0fkiuueaarIX47LGecMIJWcvrgw46KGt//Wuk63HttddmsaWuTL8mQbTMMstks49SEu3MM8/MZibOnoC66KKL4vPPP8/eT0maXZYSJhMnTozTTjutXFIlFWql905KGKXZaknpLMeFXe/dd989mjVrliVkZk8wpffv+eefnyUr0vOmFuyVld4/6Xf/888/L3RsSjwdf/zx2TYlfDp06BD77bdf9rlJbeTvueeeSscBAAAA9Zn8mvzar8mX9enTJ+uU9Oyzz5Zb+i4VT6X3U3p//f73v49fS36tcuTXAGgILMEGQJXp2bNndkOckiCpPeyNN96YzUpJszTSTKGU5Ei22267ci11081vupFLN1Fpma6UeEgtkNMMqPfeey8b849//CNbQ76mpJ8hzWxJN4Vz2mabbbKfL81C2mqrrbKZaSnZkH6+dANc3TPJVl111ayVdZpxk2aLvf7669mMn5RAmL3LUBrz9ttvx/PPPx8DBw7MElJpffu0L92kp6TEIYccUuHXTcuppZv41NZ75513XuDYNNsoSbOw0vtgflKyJN1Ap9lXKblz0003xZ577pnNOmrdunX2eilBkK757MmfhUmJmHRzXiolZMaNG5clLtIMqHTdUgJjXu2rF0VKTKVE1O233x7PPPNM9n5PicE0C6s0CZQSgLNfw5QwSi3S33jjjex3kmY1pn0pYZM+B6VK3+9pX5q9uP/++2czIefUrVu3bFbh3//+9/jTn/6UFXulfWkW3LfffpvN1EtJptQOu7L+85//xP333x+HH354/PnPf17o7LeUlEkJmV133TXblxKnp556anatzjnnnOz3XVXL6QEAAEB9Ir8mv1ZqUfNlqWtTKuJJOaS//e1vWZFVet+kQqv0s6V9i5ILk1+TXwOARaUACYAqlW4GH3vssWwGTGplnG780oys9u3bx2abbRZ77LFHtk71nNIMknTTeNVVV2U39KmDTjonzYD5wx/+EOutt16N/hxpdky6+d1nn33mWos+zbRJN8TppjPduKZYU/yXX355dqy6EyRpdlW6RmmmS0oEpJv8lBxJbbRnl5IOKaY777wzu7n94IMPspvkpZdeOnbcccesRXdKmFS1lID46KOPymZ1pcf8pDXsUwFScuKJJ2bJpjTTKLUST+2Ne/Tokb1n0iykirZMTlJSZfbfQzo3JUXSz55u2lNypipu0NNzpN9D6vKUWmKn93x6D6SEUHqNLbbYotz4lPRJv4+USEyt0tOMqhRXSmD95S9/KZewSYmldB2ee+657H224YYbzjNBkmy77bbZz5aSE2k9+JSgSGvBp89Omm1Yeo2rW2r/nd5zaeZdmoU2++9s3XXXza59SoCmZMmVV15ZIzEBAABAXSO/Jr9WalHzZSl3dMcdd2SFQalIKhXwpG5AqfAmFSwtCvk1+TUAWFQFufSvFQAAAAAAAAAAgEqofK/AeiqthZvaH6a2memR2i1WZD1WAAAAAEB+DQAAABoiHZBmk9ps7rLLLlFcXJy1dUytKa+99tpYYoklsnaGqV0oAAAAADBv8msAAADQMBXlO4Da5IYbbogffvghW9O2dI3YNdZYI1sbN62bnNbTBQAAAADmTX4NAAAAGiZLsM3m0UcfzdpClyZHkr59+8ayyy6bHQMAAAAA5k9+DQAAABomBUj/b9y4cdn69D179pzrWNr3ySef5CUuAAAAAKgL5NcAAACg4VKA9P9GjRqVbbt27TrXsc6dO8eECROyBwAAAAAwN/k1AAAAaLiK8h1AbTFp0qRs27x587mONW3aNNtOnjw5WrduXeHnXHfddaO4uDhLsAAAANBwjB49Opo0aRJvv/12vkMBqDHyawAAAFQlOba6RQHS/8vlcgsdU1BQsEjPOW3atJhWPD2+/vGXXxEZAAAAdU1RcXFMKZ6e7zAAapT8GgAAAFWdY6vIvSa1gwKk/9eiRYuypMacSve1atVqkZ6zS5cuWXJk2Mo7VVGUAAAA1AXdP3sg3yEA1Dj5NQAAAKo6x7ZUl3b5DoMKKqzowPpu8cUXL2vhNacff/wx2rRpU5ZEAQAAAADKk18DAACAhksB0v9LCZAll1wyPvnkk7mOffrpp7HaaqvlJS4AAAAAqAvk1wAAAKDhUoA0my233DJee+21GDp0aNm+V199Nb7++uvYZptt8hobAAAAANR28msAAADQMBXlO4Da5KCDDooHH3ww9ttvvzjggAOyten/+9//Rs+ePWPHHXfMd3gAAAAAUKvJrwEAAEDDpAPSbDp06BC33HJLrLzyynHxxRfHjTfeGAMGDMiSJE2aNMl3eAAAAABQq8mvAQAAQMOkA9IcevToEddcc02+wwAAAACAOkl+DQAAABoeHZAAAAAAAAAAAIBK0wEJAACgmhQVFsQWqy4RG624eLRo1jjf4fBr5SJGjZsU17/8Wfwwfmq+owEAAAAAqDUUIAEAAFRT8dFZu/SJjddYMQobNY4oKMh3SFSFXC5WXKx9HHTD8zGjJJfvaAAAAAAAagVLsAEAAFSD1PkoKz4qaqL4qD4pKIhVllsq9uyzXL4jAQAAAACoNRQgAQAAVIO07FrW+Yh6J/1eV1m8Q77DAAAAAACoNRQgAQAAVIMWzSy7Vp+1aKq4DAAAAACglAIkAAAAWERqywAAAAAA/kcBEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAMCvcuV/zol9ttk0Ro/6IeqiB++8Jf663575DgMAAAAAoM4qyncAAAAALJqJU4vj0Xe+iOc/+Sb7ulWzJrFJz2Vi23VWyL6m4j58582499Ybo32HjvkOBQAAAACgzlKABAAAUIc8/Pbncd5Dr8WU4hnl9r/z1ci4/Mm34+gdNojt110xb/HVJYMefzhuvOKSmDmj/LUEAAAAAGDRKEACAACoQ8VH/7znpfkeT0VJpccVIS3Y2SceEx+/93b0Wqd3jB/3S0wcPz7fIQEAAAAA1FkKkAAAAOqAtNRa6nxUEec/9Hpsulr3Wrcc2xsvPR9PPXx/fPPV0CgunhYdOnaKPv36x277HhCNGzeJZx97KK679II45rSzY83e65c795QjD41cSUn886Irs++Hfzss7r7x2vj0w/dixowZsUyP5WPnvfeNXuv0KTvnjGOPiMZNmsSyy68UTzx4TzRt2iyOP+v8WHrZHvHTqB9i/8OOiM232SHOPO5IBUgAAAAAAL9C4a85GQAAgJrx6DtfzLXs2vxMLp4ej737ZdQmzz3xaFx89mnRolWr2HP/g2PvAw+JTl26xqP33hl333RdNma9jTaJRkVF8fpLz5c798cfRsbQIYOj7yabZ99/+/VX8Y+jDo/vv/0mdth9n9h93wNj5syZce6px8drLwwqd+6QTz6K1196Lnu9jQZsFUsuvUy2/19XXBcDtt0xCgoKauwaAAAAAADUVzogAQAA1AHPf/LNIo4fFrv3XTVqi8fuvytWWKVnHHXyGWVFP1tst1Mcsf9e8eE7b2UFQq1at4k11ukT77z+SsyYPj2KGjfOxqWiooLCwlh/402z72+68uJo07ZtnHHJVdGsWfNs35Y77BxnHndU3Hz1pdG770Zl506bOjUOPfqEWH7l8tei9DgAAAAAAL+eDkgAAAB1ZAm26hxf3c6+7No45rRzynUcGv/L2GjZqnVMnTqlbF/qcjR54sT48N23y/a9/uKgWGW1NaJ9x04xYfy4GPzRB7FG7/Vi+rTimDBuXPZI5/Tu2y/GjR0bQz//rOzcJk2bRo8VV67BnxQAAAAAoOHRAQkAAKAOaNWsSbWOr25FRUXx2RdD4tUXno0R330bo0aOyAqQkrQUW6m11+sbzZo3jzdffj7WXm+DbJm1tOTaH/5ydHb8x5Ejsu1TD92fPeZlzOgfy75OXZUKC829AQAAAACoTgqQAAAA6oBNei4T73w1chHGd4/a5MYrLo6nHr4/ui+3QrYcWr/NtowVV+0ZN1x+cYwZPapsXNNmzWKd9fuVLcP2+ovPRVFR4+iz4cbZ8ZKSkrLl29bdoN88X2uJZf73sys+AgAAAACofgqQAAAA6oBt11khLn/y7ZhSPGOhY1s0aRzbrL181BajR/2QFR/122yL+NPRJ5Q7Nm7sz3ONT8uwvfLc09lSa6kQqde6vaNl69bZsU5dF8u2jRo1itXWWqfcecO/HRajfxgZTZs2rdafBwAAAACA8kwFBQAAqAPSkmpH77BBhcb+bYf1a9USbJMmTsi2SyxdvivT+2+9Hj+MGB4zZ84st3/1tdeNNm3bxXNPPhrffPVl9O2/edmx9h06Ro8VVooXn3kixo75qWz/jBkz4uoLzo2LzvrHXM8HAAAAAED10gEJAACgjth+3RWz7fkPvR6Ti6fPs/NRKj4qHVfT7rrxv9GseYu59vfu2y86du4aD955a0wvLo4OnTrH0M8Hx4vPPBmNmzSJqVOmlBufuhutt9Em8fQjD2RLsq29Xt9yx/c95M9x5vFHxUl/+WMM2HbHaNWmTbz2wqAYOmRw7LHfQdG6Tdtq/1kBAAAAAPgfBUgAAAB1SCou2nS17vHYu1/G858Mi4lTi7NuR5v07J4tu5bPzkevPv/sPPcvvtTS8ffTz45brrk8nnjo3ohcLrp0Wzz2/ePhWeeim6+6NL7+Ykgsu8JKZedsuOmArABpnfU3zIqQZrfCKj3j1PMuiXtvuSEeu/+umDljZnRbcqn441HHxsYDBlb7zwkAAAAAQHkKkAAAAOqYVGS0e99Vs0dtcMhRx2WPhTnujH/Pc//AHXeZa19BQUG23XDTLeZ5zrLLrxhH/+OsBb7eSf+6cKExLco4AAAAAADmrXA++wEAACBvnn3s4WjfsVP0WnvdfIcCAAAAAMBC6IAEAABArXHNRefF6B9GxCcfvBf7/OFPUdioUb5DAgAAAABgIXRAAgAAoNYYP25sfDlkcGy29fbzXJoNAAAAAIDaRwckAAAAao2/nXJmvkMAAAAAAGAR6YAEAAAAAAAAAABUmgIkAAAAAAAAAACg0hQgAQAAAAAAAAAAlaYACQAAAAAAAAAAqDQFSAAAAAAAAAAAQKUpQAIAAAAAAAAAACpNARIAAAAAAAAAAFBpCpAAAAAAAAAAAIBKK6r8qQAAABBx5X/OiZeeeTIuvP726Nx1sagLhg4ZHPfccn18/uknMXPmjFimx/Lxm71+F2v2Xj/foQEAAAAA1DkKkAAAAOqYmROmxC/3vxnjn/ogZo6fEo3aNI82W64R7X7TJxq1bp7v8Gq9kcO/izOOOzJat2kXO+3522jcuHG88MwTcd4/Toi/nnha9O67Ub5DBAAAAACoUxQgAQAA1CFj73k9Rp5+d5RMLi63f9LrX8So8x6KbqfsFu131cVnQe64/uooLGwUp19webTr0CHbt9nW28dxhx4Qt193lQIkAAAAAIBFVLioJwAAAJC/4qPvj7t1ruKjUml/Op7GMW+5XC4Gf/RB9Fqnd1nxUdKkadNYa72+MWrE9zF+3C95jREAAAAAoK7RAQkAAKCOLLuWOh9VxMh/3hNttlqj1i3H9sZLz8dTD98f33w1NIqLp0WHjp2iT7/+sdu+B0Tjxk3i2cceiusuvSCOOe3sWLN3+S5Opxx5aORKSuKfF12ZfT/822Fx943XxqcfvhczZsyIZXosHzvvvW/0WqdP2TlnHHtENG7SJJZdfqV44sF7omnTZnH8WefHGRdfFQUFBXPFN2HcuGzbqLBRtV8LAAAAAID6RAckAACAOuCX+9+cb+ejOZVMmpaNr02ee+LRuPjs06JFq1ax5/4Hx94HHhKdunSNR++9M+6+6bpszHobbRKNiori9ZeeL3fujz+MjKFDBkffTTbPvv/266/iH0cdHt9/+03ssPs+sfu+B8bMmTPj3FOPj9deGFTu3CGffBSvv/Rc9nobDdgqllx6meiyWLfo3HWxcuPGjf053n7tpVh8qaWjZevW1X49AAAAAADqEx2QAAAA6oDxT32waOOf/jA67ts/aovH7r8rVlilZxx18hll3Ye22G6nOGL/veLDd97KCoRatW4Ta6zTJ955/ZWYMX16FDVunI1LRUUFhYWx/sabZt/fdOXF0aZt2zjjkquiWbNZXZ623GHnOPO4o+Lmqy+N3n03Kjt32tSpcejRJ8TyK68639hS8dIV55+djd1h971r4GoAAAAAANQvOiABAADUATPHT6nW8dXt7MuujWNOO6fc0mfjfxkbLVu1jqlT/xdr6nI0eeLE+PDdt8v2vf7ioFhltTWifcdOMWH8uBj80QexRu/1Yvq04mzZtPRI5/Tu2y/GjR0bQz//rOzcJk2bRo8VV55vXCWp+Oi8s+Kjd9+ODfpvFhttvlW1/PwAAAAAAPWZDkgAAAB1QKM2zat1fHUrKiqKz74YEq++8GyM+O7bGDVyRFaAlKSl2EqtvV7faNa8ebz58vOx9nobZMuspSXX/vCXo7PjP44ckW2feuj+7DEvY0b/WPZ16qpUWDjvuTfTpxfHZf86I9569aXotU6fOOSo46r0ZwYAAAAAaCgUIAEAANQBbbZcIya9/kXFx2/RK2qTG6+4OJ56+P7ovtwK2XJo/TbbMlZctWfccPnFMWb0qLJxTZs1i3XW71e2DNvrLz4XRUWNo8+GG2fHS0pKypZvW3eDfvN8rSWW6V729fyKj1LXpQtOPzk+fv+dWKvPBvHXE/9RtmwbAAAAAACLRgESAABAHdDuN31i1HkPRcnk4oWOLWzZNBtfW4we9UNWfNRvsy3iT0efUO7YuLE/zzU+LcP2ynNPZ0utpUKkXuv2jpatW2fHOnVdLNs2atQoVltrnXLnDf92WIz+YWQ0bdp0gfHMnDkzLjrz1Kz4aL1+/ePQv5+UdWgCAAAAAKBy5j0VFAAAgFqlUevm0e2U3So0ttvJu2bja4tJEydk2yWW/l9nouT9t16PH0YMzwqCZrf62utGm7bt4rknH41vvvoy+vbfvOxY+w4do8cKK8WLzzwRY8f8VLZ/xowZcfUF58ZFZ/1jrueb0/233RgfvvNW9O67URx+7MmKjwAAAAAAfiVZVgAAgDqi/a7rZ9uR/7wnSiZNm2fno1R8VDqupt1143+jWfMWc+3v3bdfdOzcNR6889aYXlwcHTp1jqGfD44Xn3kyGjdpElOnTCk3PnU3Wm+jTeLpRx7IlmRbe72+5Y7ve8if48zjj4qT/vLHGLDtjtGqTZt47YVBMXTI4Nhjv4OidZu2841x4oTx8eh9d0WjoqLoueba8eoLg+Yas27fftGsWe0p4AIAAAAAqO0UIAEAANQhqbiozVZrxC/3vxnjn/4wZo6fEo3aNI82W/TKll3LZ+ejV59/dp77F19q6fj76WfHLddcHk88dG9ELhddui0e+/7x8Kxz0c1XXRpffzEkll1hpbJzNtx0QFaAtM76G2ZFSLNbYZWecep5l8S9t9wQj91/V8ycMTO6LblU/PGoY2PjAQMXGOPQIZ9F8bRZxVs3XH7RPMdceP3tCpAAAAAAABaBAiQAAIA6JhUZddy3f/aoDQ456rjssTDHnfHvee4fuOMuc+0rKCjIthtuusU8z1l2+RXj6H+ctcDXO+lfF861b411+8Stjz230FgBAAAAAKi4wkUYCwAAADXi2ccejvYdO0WvtdfNdygAAAAAACyEDkgAAADUGtdcdF6M/mFEfPLBe7HPH/4UhY0a5TskAAAAAAAWQgckAAAAao3x48bGl0MGx2Zbbz/PpdkAAAAAAKh9dEACAACg1vjbKWfmOwQAAAAAABaRDkgAAAAAAAAAAEClKUACAAAAAAAAAAAqTQESAAAAAAAAAABQaQqQAAAAAAAAAACASlOABAAAAAAAAAAAVJoCJAAAAAAAAAAAoNIUIAEAAAAAAAAAAJWmAAkAAAAAAAAAAKi0osqfCgAAABFX/ueceOmZJ+PC62+Pzl0Xi7pg2NAv4vbrro6vvvgsGhU2irX6bBB77n9QtG3fId+hAQAAAADUOQqQAAAA6pjCkgnRadLd0W7y49GoZHzMLGwTv7TYOn5quVuUFLbOd3i13vBvh8XpR/8l2nfsFLvs/fuYMnlyPPbA3fH5px/HmZdcHc2aN893iAAAAAAAdYoCJAAAgDqk48Q7Y+mxJ0Wj3ORy+9tMezWW+OXs+Lb9GTGm1R55i68uuOem66KwUaM4+dyLol2HWR2Pll1hxfj3qcfHy4OeigHb7pjvEAEAAAAA6hQFSAAAAHWo+GjZn4+a7/FUlFR6XBHS/BU1bhz9NtuirPgoWXn1NbLtt19/lcfIAAAAAADqJgVIAAAAdWTZtdT5qCKWHntyjG2xTa1bju2Nl56Ppx6+P775amgUF0+LDh07RZ9+/WO3fQ+Ixo2bxLOPPRTXXXpBHHPa2bFm7/XLnXvKkYdGrqQk/nnRlWXLqN1947Xx6YfvxYwZM2KZHsvHznvvG73W6VN2zhnHHhGNmzSJZZdfKZ548J5o2rRZHH/W+XH4sSfPFds3Q7/Mth07d6n26wAAAAAAUN8U5jsAAAAAFq7TpLvnWnZtfhrlJkXHSfdEbfLcE4/GxWefFi1atYo99z849j7wkOjUpWs8eu+dcfdN12Vj1ttok2hUVBSvv/R8uXN//GFkDB0yOPpusnlZl6J/HHV4fP/tN7HD7vvE7vseGDNnzoxzTz0+XnthULlzh3zyUbz+0nPZ6200YKtYcullyh0f+/OYePPlF+Lyf58Z7Tt2ik222qbarwUAAAAAQH2jAxIAAEAd0G7y44s0vv3kx2N06/2jtnjs/rtihVV6xlEnnxEFBQXZvi222ymO2H+v+PCdt7ICoVat28Qa6/SJd15/JWZMn54tlZakoqKCwsJYf+NNs+9vuvLiaNO2bZxxyVXRrFnzbN+WO+wcZx53VNx89aXRu+9GZedOmzo1Dj36hFh+5VXnGdfRB+0bU6dMjsLCwvjT0SdE23bta+iKAAAAAADUHzogAQAA1AGNSsZX6/jqdvZl18Yxp51TVnyUjP9lbLRs1TqmTp1Sti91OZo8cWJ8+O7bZftef3FQrLLaGlmHognjx8Xgjz6INXqvF9OnFceEceOyRzqnd99+MW7s2Bj6+Wdl5zZp2jR6rLjyPGNKXZP2O/Sv2ZJsPddcOy4794x4/IHa1TkKAAAAAKAu0AEJAACgDphZ2KZax1e3oqKi+OyLIfHqC8/GiO++jVEjR2QFSElaiq3U2uv1jWbNm8ebLz8fa6+3QbbMWlpy7Q9/OTo7/uPIEdn2qYfuzx7zMmb0j2Vfp65KqbvRvDRq1Cg22nzL7OvUXem0o/8cd990bWyy5TbRvEWLKvzpAQAAAADqNwVIAAAAdcAvLbaONtNerfD4sS22jtrkxisujqcevj+6L7dCthxav822jBVX7Rk3XH5xjBk9qmxc02bNYp31+5Utw/b6i89FUVHj6LPhxtnxkpKSsuXb1t2g3zxfa4llupd9Pb/iozmlzkzr9esfXwz+JEYO/y56rLjSr/yJqUm77rprfPTRR3Pt32qrreLiiy/OS0wAAAAA0JDyawqQAAAA6oCfWu4WS/xydjTKTV7o2JkFLWNMy12jthg96oes+KjfZlvEn44+odyxcWN/nmt8WobtleeezpZaS4VIvdbtHS1bt86Odeq6WFn3otXWWqfcecO/HRajfxgZTZs2nW8skydNjJP+ekhW0LTn/geXOzZlyqxr26Rpk1/x01LTcrlcDB06NAYMGBBbbjmro1WpJZZYIm9xAQAAAEBDyq8pQAIAAKgDSgpbx7ftz4hlfz5qoWO/bf/PbHxtMWnihGy7xNL/60yUvP/W6/HDiOHRvmOncvtXX3vdaNO2XTz35KPxzVdfxva77VV2rH2HjtFjhZXixWeeiO123bPs3BkzZsTVF5wb3349NC656a75xtKiZato3LhxvPTMk7H9rnuVFTalwqTnn3w8Oi/Wba44qd2GDx8ekydPjs033zx23HHHfIcDAAAAAA0yv1ZvCpC+/fbb2G677eKaa66J9dZbb67jt912W9x0000xYsSIWGaZZeKQQw6JbbfdttLjAAAAatqYVntk26XHnhyNcpPm2fkoFR+Vjqtpd93432jWvMVc+3v37RcdO3eNB++8NaYXF0eHTp1j6OeD48VnnozGTZrE1ClTyo1P3Y3W22iTePqRB7Il2dZer2+54/se8uc48/ij4qS//DEGbLtjtGrTJl57YVAMHTI49tjvoGjdpu0C49zv0L/GWcf/Lf5x9J9js623y5Z6G/T4I1k3pmNOPztbjo2648svv8y2yy23XL5DgTpPfg0AAAAani+rKL9WLwqQxo8fH4cddlhMmzZtnsevvfbaOPfcc2PgwIGx3377xdNPPx1HHXVUllTeZpttFnkcAABAvqTiorEttomOk+6J9pMfj0Yl42NmYZsY22LrbNm1fHY+evX5Z+e5f/Gllo6/n3523HLN5fHEQ/emnr7Rpdvise8fD886F9181aXx9RdDYtkVVio7Z8NNB2QFSOusv2FWhDS7FVbpGaeed0nce8sN8dj9d8XMGTOj25JLxR+POjY2HjBwoXGusvqacewZ58Z9t94Yd95wTVbwtOKqq8fhx50cy624chVcCWrSF198US5BkmZrtWgxdyEcsGDyawAAANAwfVFF+bWCXFrMrQ5L69Adfvjh8dVXX2Xfp9lVs8/QSsmT/v37x2abbRbnn39+tq+kpCR+97vfxffffx/PPvtslmyu6LhFkdpTff3jLzFs5Z2q9GcGAABqvwv33jD69lLMUllffvZpnHrUYXHMaefEmr3n7sKRb69++Fkccdsr8z3e/bMHsu1XH70T9dVvf/vbGDlyZJU8V7du3eKWW26p1LnHHHNMds++9dZbx2OPPZYlSJZaaqk48sgjdVyBCpJfAwAAoDZKObZlu7TL7ifro99WYX7t1+TYqiq/Vqc7IN1///1x8sknR+vWrWO33XaLu+++e64xgwYNyi7OXnvtVbavsLAw9t5772z21XvvvRfrrrtuhccBAABQ/Z597OFo37FT9FrbfVhtlZIjw4d/H40KW/6q55lZMvdygovaInrSpEkxYcKErOtKKoBIxRPpXn769Omx006KFmBB5NcAAACgbufXfm2Orarya3W6AGnIkCFZtVWqxnrxxRfnmSD5+OOPs23Pnj3L7V911VXLjqfER0XHAQAAUH2uuei8GP3DiPjkg/dinz/8KQoXsVMGNSslR5Zov/uveo7vx971q87ffffdsw4r++yzT9m+lCvYbrvt4t///ndsv/32i9xxBRoS+TUAAACo2/m1X5tjq6r8Wp0uQErVVk2aNFngmB9//DHatm0bzZs3L7e/c+fO2XbEiBGLNA4AAIDqM37c2PhyyODYbOvtY+COu+Q7HOqA2TutlGrWrFnsuOOOcemll2YzuFZaaaW8xAZ1gfwaAAAANGx7VVF+rdYVII0ePXqBx1u0aBEtW85qP7Ww5EiS2kSlCzOn0n1TpkxZpHEAAABUn7+dcma+Q6Ce6NChQ7ZNy0FBQyO/BgAAANR0fq3WFSD169dvgccPOeSQOPLIIyv8fLlcLgoKCuZ7vPRYRccBAAAAtcOoUaPigAMOiK233joOP/zwcse+/vrrbLvkkkvmKTrIH/k1AAAAoKbza7WuAOmMM85Y4PFVVlllkZ4vzeiaOnXqXPtL95XO9qroOAAAAKB26Nq1a4wfPz7uvvvu2G+//aJVq1Zlyzzdd999sd5665Ut/QQNifwaAAAAUNP5tVpXgLTbbrtV6fN169Ytxo0bF8XFxeVaSqc16Usv5qKMAwAAAGqPU089NQ477LDYc889s5xCWgLq1ltvjaKiouwYNETyawAAAEBN59cKo57r2bNn1v558ODB5faXfr/66qsv0jgAAACg9hgwYEBcdtll0bx58zjvvPPi+uuvjzXXXDNuv/32WG655fIdHtQL8msAAABQfw2oovxareuAVNX69+8fTZs2jZtvvjnWWGONbF9JSUncdtttscQSS2QXbVHGAQAAALUvSZIeQPWQXwMAAID6bUAV5NfqfQFS+/bt4+CDD45LLrkkm4G1/vrrx5NPPhnvvPNOXHDBBdGoUaNFGgcAAAAADYn8GgAAABANvQApSWvVpVZRaY26p59+Orp37x4XXnhhDBw4sFLjAAAAAKAhkV8DAAAAGkQB0s4775w95qWgoCAOPPDA7LEgFR0HAAAAAPWN/BoAAABQWYWVPhMAAAAi4sr/nBP7bLNpjB71Q9RFY38eEwfvvkP2cwAAAAAA0IA7IAEAADQU06dPiK+H3xPfjXwipk8fH40bt4mlug2MZZfcNRo3bp3v8Oqc6y75T0yaOCHfYQAAAAAA1FkKkAAAAOqQr769M975+JSYMXNyuf0/jnk1Phh8Tqyz2unRY+k98hZfXfPSs0/Fh++8le8wAAAAAADqNEuwAQAA1KHiozc+OHqu4qNSaX86nsaxcL/8/HPcfNWlsdNev8t3KAAAAAAAdZoOSAAAAHVk2bXU+agi3vn41Fiq2za1bjm2N156Pp56+P745quhUVw8LTp07BR9+vWP3fY9IBo3bhLPPvZQXHfpBXHMaWfHmr3XL3fuKUceGrmSkvjnRVdm3w//dljcfeO18emH78WMGTNimR7Lx8577xu91ulTds4Zxx4RjZs0iWWXXymeePCeaNq0WRx/1vmx9LI9suPXXfqf6NilS2y/215xz83X1fDVAAAAAACoP3RAAgAAqAO+Hn7PfDsfzWnGzEnx9fB7ozZ57olH4+KzT4sWrVrFnvsfHHsfeEh06tI1Hr33zrj7plnFP+tttEk0KiqK1196vty5P/4wMoYOGRx9N9k8+/7br7+Kfxx1eHz/7Texw+77xO77HhgzZ86Mc089Pl57YVC5c4d88lG8/tJz2ettNGCrWHLpZbL9rzz3dLz/1uvxxyOPjaIic3MAAAAAAH4NWVYAoFrkRg+LmDI+Cpbule9QAOqF70Y+sUjjh//wRKy47H5RWzx2/12xwio946iTz4iCgoJs3xbb7RRH7L9XfPjOW1mBUKvWbWKNdfrEO6+/EjOmT4+ixo2zcamoqKCwMNbfeNPs+5uuvDjatG0bZ1xyVTRr1jzbt+UOO8eZxx0VN199afTuu1HZudOmTo1Djz4hll951bJYxo39OW668tLYbtc9o/tyK+ThagAAACxc6gIbn70Qsfz6UdBk1r0PAEBtpQMSAFDlcuNGRbx0Y8Sb90buu4/yHQ5AvTB9+vhFGl+8iOOr29mXXRvHnHZOWfFRMv6XsdGyVeuYOnVK2b7U5WjyxInx4btvl+17/cVBscpqa0T7jp1iwvhxMfijD2KN3uvF9GnFMWHcuOyRzundt1+MGzs2hn7+Wdm5TZo2jR4rrlwulusuuzDatGsfv9l732r/uQEAACrtlZsjPn0u4pkrZhUjAQDUYjogAQBVKjejOOL5ayOKmkY0axXx1n2Ra7d4FLTumO/QAOq0xo3bLNL4Jos4vrqlZc4++2JIvPrCszHiu29j1MgRWQFSkpZiK7X2en2jWfPm8ebLz8fa622QLbOWllz7w1+Ozo7/OHJEtn3qofuzx7yMGf1j2depq1Jh4f/m3qRuSm+/+lL87dQzY+rkKTE1/lf8lLoupWKm5i1bWpYNAADIq1wqPBo1NKLr8hGjvox47faIDffJd1gAAPMlowoAVK1B10TMmBbR/4CIFm0jnr484rlrIrfN36KgaNZyOAAsuqW6DYwfx7xa4fFLLjYwapMbr7g4nnr4/mzJs7QcWr/NtowVV+0ZN1x+cYwZPapsXNNmzWKd9fuVLcP2+ovPRVFR4+iz4cbZ8ZL/n/Wblm9bd4N+83ytJZbpXvb17MVHyQfvvJltzz/txLnOS8VJ6XHiORfEqr3WrKKfHAAAYNHkUuHR4BciFlthVtHRR89EfP5y5D57OQpWnvd9EABAvilAAgCqTO7tByLGj4pYa7so6LTMrH0b7BXx4g0RL1wbsfkh+Q4RoM5adsld44PB58SMmZMXOraoUctYdsldorYYPeqHrPio32ZbxJ+OPqHcsXFjf55rfFqG7ZXnns6WWkuFSL3W7R0tW7fOjnXquli2bdSoUay21jrlzhv+7bAY/cPIaNq06Xxj2W7XPaPfplvMtf/sE4+O1ddeN7bbZc9YZtnlKv2zAgAA/Bq5qRMiXr1t1sS+PrtGQUFh5FYfEPHLiIhPnolcxyWjoPP/Jl0AANQW5aeCAgBUUm7YexHp0X3tiB69y/YXdFk2Yo2BEWNHRO69R/IaI0Bd1rhx61hntdMrNHad1U7LxtcWkyZOyLZLLF0+Sf7+W6/HDyOGx8yZM8vtT4VAbdq2i+eefDS++erL6Nt/87Jj7Tt0jB4rrBQvPvNEjB3zU9n+GTNmxNUXnBsXnfWPuZ5vdksu3T0rXJrzkbTr0DH7urTYCQAAoCblUsfXZ6+a9c2G+0RBk+bZl6kIKdbfPaJZ64hXbonc1En5DRQAYB50QAIAfrXcuFER7z4U0a5bxFrbRkFBQfkBy68fMfb7iKFvRa7TMlGw1Or5ChWgTuux9B7Z9p2PT40ZMyfNs/NRKj4qHVfT7rrxv9GseYu59vfu2y86du4aD955a0wvLo4OnTrH0M8Hx4vPPBmNmzSJqVOmlBufuhutt9Em8fQjD2RLsq29Xt9yx/c95M9x5vFHxUl/+WMM2HbHaNWmTbZ02tAhg2OP/Q6K1m3aVvvPCgAAUOVeuTliyviIDfaMgjZdyh0qaNIicmk5tkFXRwy6KnIDj4iCOZacBgDIJwVIAMCvkptRHPH8tRFFTSM23DsKGjWea0wqSMqts2PEuB8j3rovcu0Wj4LWHfMSL0Bdl4qLluq2TXw9/N4Y/sMTUTx9fDRp3CaWXGxgtuxaPjsfvfr8s/Pcv/hSS8ffTz87brnm8njioXsjcrno0m3x2PePh2edi26+6tL4+oshsewKK5Wds+GmA7ICpHXW3zArQprdCqv0jFPPuyTuveWGeOz+u2LmjJnRbcml4o9HHRsbDxhY7T8nAABAVct9+lzEqKERK/ePgiVWneeYgnaLRa73zhFv3BXx2u1ZlyQAgNpCARIA8OsMuiZixrSI/gdEQfM28x2WCpNyG+4d8fTlEc9dE7lt/hYFRXMXKwGwcKnIaMVl98setcEhRx2XPRbmuDP+Pc/9A3fcZa59pd30Ntx0i3mes+zyK8bR/zhrga930r8ujIq69bHnKjwWAACgKuVS4dHgFyIWWyGi56YLHFuw1GqRGzsi4vOXI/fZy1Gwcr8aixMAYEH0ZgQAKi339gMR40dFrLltFHRaZqHjC1q0i9hgr4jiKREvXFsjMQJQNz372MPRvmOn6LX2uvkOBQAAoNrkpk6IePW2iBZtI/rsGgUFFfjT3eoDIrr0iPjkmciNHlYTYQIALJQCJACgUnLD3otIj+5rR/ToXeHzCrosG7HGwIixIyL33iPVGiMAdc81F50XZx1/VLz4zBOxzW92i8JGjfIdEgAAQLXIlZREPHvVrG823CcKmjSv0HlZkdL6u0c0ax3xyi2RmzqpegMFAKgABUgAwCLLjRsV8e5DEe26Ray1bdkyORW2/PoRS/eKGPpW5L77qLrCBKAOGj9ubHw5ZHBstvX281yaDQAAoN545eaIKeMj+uwSBW26LNKpBU1aZEVLkYqYBl01q5gJACCPivL54gBA3ZObURzx/LURRU0jNtw7Cho1XuTnSAVLuXV2jBj3Y8Rb90Wu3eJR0LpjtcQLQN3yt1POzHcIAAAA1S736XMRo4ZGrNw/CpZYtVLPUdBuscj13jnijbsiXrt9VkESAECe6IAEACyaQddEzJgW0XevKGjeptJPkxUubbh3RNo+d03kZkyv0jABAAAAoDbKpcKjwS9ELLZCRM9Nf9VzFSy1WsSK/SJGDoncZy9XWYwAAItKARIAUGG5tx+IGD8qYs1to6DTMr/6+QpatIvYYK+I4ikRL1xbJTECAAAAQG2Vmzoh4tXbIlq0jeizaxQUVMGf6lYfENGlR8Qnz0Ru9LCqCBMAYJEpQAIAKiQ37L2I9Oi+dkSP3lX2vAVdlo1YY2DE2BGRe++RKnteAKhOuVy+IwAAAOqaXElJxLNXzfpmw32ioEnzKnnerIhp/d0jmrWOeOWWyE2dVCXPCwCwKBQgAQALlRs3KuLdhyLadYtYa9soKCio2hdYfv2IpXtFDH0rct99VLXPDZAnk6dOV6VSj02eZulQAABgEb1yc8SU8RF9domCNl2q9KkLmrTIipoiFTkNumpWsRMAQA1SgAQALFBuRnHE89dGFDWN2HDvKGjUuMpfIytoWmfHiLZdI966L3ITxlT5awDUtJc+HxElMxWp1Efp9zp4xM/5DgMAAKhDcp8+FzFqaMTK/aNgiVWr5TUK2i0W0XvniMm/RLx2e7W8BgDA/ChAAgAWbNA1ETOmRfTdKwqat6m2l8kKmzbcOyJtn7smcjP80R6o257+9Pt48YPPoyQVcuqEVH/kSmLw0O/ijjeH5jsSAACgjsilwqPBL0QstkJEz02r9bUKllotYsV+ESOHRO6zl6v1tQAAZldU7jsAgNnk3n4gYvyoiLW2i4JOy1T76xW0aBe5DfaKePGGWV2XBhxS7a8JUF1mlOTihHvfjC0Gfx8brbh4tGjaOKKKV7CkhuUiRo2bFNe99Fn2+wUAAFiY3OTxEa/eFtGibUSfXaOgoAZ6A6w+IOKXERGfPBO5jktGQefu1f+aAECDpwAJAJin3LD3ItKj+9oRPXrX2OsWdFk2cmsMjPjg8ci990gUrLVdjb02QFVLRSqPfzw8ewAAANCw5EpKIp67etY3G+4TBU2a18jrpiKn3Pq7RzxzRcQrt0Ru4JFR0Kxljbw2ANBwWYINAJhLbtyoiHcfimi/+KzuRwU13LJj+fUjll4jYuhbkfvuo5p9bQAAAACoCq/cHDFlfESfXaKgTZcafemCJi0i+u4TkYqgBl01qxgKAKAaKUACAMrJzSietfxZUdOIvntFQaOab5iYFTyts0NE264Rb90XuQljajwGAAAAAKis3KfPRYwaGrFy/yhYYtW8xFDQbrGI3jtHTP4l4rXb8xIDANBwKEACAMobdE3EjGmzio+at8lbGAWNGkdsuHdE2j53TeRmTM9bLAAAAABQUblUeDT4hYjFVojouWleYylYarWIFftFjBwSuc9ezmssAED9pgAJACiTe/uBiPGjItbcNgo6LZPvcKKgRbuIDfaKKJ4yqysTAAAAANRiucnjI169LaJF24g+u0ZBQS34U9zqAyK69Ij45JnIjR6W72gAgHqq5tdUAahme/XrGXv3Wz2mTp8ehQUF2ePcB1+L1z4fnu/QoFbLDXsvIj26rx3Ro3fUFgVdlo3cGgMjPng8cu89EgVrbZfvkKBWW65r+zh9z02iRZPGMX3mzGjZrEk89/HX8Z9HXo+SknxHBwAA1AWLtWsVZ+y1SXRq0yKmzyiJ5k2K4r2vf4h/3vNiFM9wYwHzk0s33s9dPeubDfeJgibNozZIRVC59XePeOaKiFduidzAI6OgWct8hwW12qFbrRvbrL18TC2eEQUFBTFjZkmcds+L8el3o/MdGkCtpQAJqDeW7dourv7jdnHf64NjjwvujcnTZi3X1LVdyzh8YO84Yed+sct5d0mSwDzkxo2KePehiPaLR6y1XXZDVassv37E2BERQ9+KXKdlomCp1fMdEdRK1x+2Q0wpnhGn3vlCfPnDz9m+RoUFsVOfleOJE/eJs+97OZ775Jt8hwkAANRi//7dgOjStmWc//Dr8eE3o7J9KU2wZa/l4v6/7xG3vPhh3P7yJ/kOE2qnV26OmDI+YoM9o6BNl6hNCpq0iFzffSIGXR0x6KrIDTwiCgprQXcmqGXW6dEt/vXbzeOG5z6I3/z7rqwQN1mmc9v46zbrxRIdWmd/gwJgbgqQgHohzcb67yHbxR4X3Bc/jZ9c7tioXybFyXc8H2t1XywePm7P2OqM2/IWJ9RGuRnFs5Y3K2oa0XevKGi06P88yM2cHjFpbMTEMREtO0ZB2/IJltzkcRE/D49o2SGiVYcoaNx0kZ4/FUTl1tkhIhVKvXVf5NotHgWtOy5ynFCf3XDYDvHIO1/EPa8PLrd/Zkku7n19cDzyzudx+xE7x6Rp0+PNL0fkLU4AAKD2Sn9wHT5mfBxz8zPl9udyEU9+MDSe/uirLAeXJj488OaQvMUJtVHu0+ciRg2NWLl/FCyx6qKfnz5o0yZGTBgTUTw5ottKUVDYqPyYkZ9HpH0pL9a8zSIv71bQbrHI9d454o27Il67PevSBPzPSot3zDqL73junTFp6qxJ7qW+GT0ujrrxqRjQa9m49+jdYpfz7s5bnAC1lQIkoF64aP+t4rD/PjFX8dHs3hv2Q9z16uD4w+ZrxX+ffa9G44NabdA1ETOmRfQ/IAqat6lYkVFKhEz6OWLCT7O+njrhfwM7LhWx6UHlTx7yUsTQN//3XKn9dOtOsx6pKCklTVp2XGBxUkGjxpHbcO+Ipy+PeO6ayG3ztygoalwFFwDqvlWW6BgTphbPVXw0u2nTZ8a+lzwYd/9tl9j6zNtrND4AAKD2a9OiSSzdqW0ce8uz8x1TUpKLg696NB4+bg8FSDCbXCo8GvxCxGIrRPTctGJFRllu7f+340fPyrul/FupjX4f0XW5/507bVK2fFqZtKxay/az8mutUl5tVm5tYcVJBUutFrnUafzzlyP32ctRsHK/KroKUPf9e98t4veXPjhX8dHsnvnw6+i/6jKx8SpLx4uDv63R+ABqOwVIQJ2XusS2aNo4Pvv+p4WOveWlD+P+Y3ZXgAT/L/f2AxHjR81adq3TMhUvMkq91xs1jihqFtGibWyxxRYx6PvimPnpixElM+d+obSvUZOINbaOgd2bxxMvvhaRuiKN+3FWYiVXMndxUqv0mKM4qUW7yG2wV8SLN8zq2jTgkBq6UlC7nbp7/zj+1kELHTdxanEM/WFsLNe1fQwdNbZGYgMAAOqGf+6xSVzy+P8mD83PjJkl8eKn38YWvZaNpz/8ukZig9osN3l8xKu3ZTmy6LNrSpxFLuXRKlJkVFgUkSbYNW0ZXZZfLbovv2K8+c2YiI+fKZcvy5Tm3JZaPZZdboVoOXVMfDz4s4gx30X8ODRi5oyFFyelbYs2EasPiPhlRMQnz0Su45JR0Ll7DV0tqL06tGoWYydOWeBE91IXP/ZmXHPIdgqQAOagAAmo8zZeZZl46dOK/SMvdX/4acLC//EIDUFu2PsRw96bVRg0/OPIpVlaCygyiq7LR7TrFtFpmYi2XcutEf+7w3eMZy59MOLz1yLGjojcsHfLv1gqYiooiIIe68Tav9kwfllpi3jji+//F0tKxIwelp0bE35ceHFSs1ZZkiT33iNRsNZ21XyloPZrUtQovv7xlwqNvfPVT2O/TdfIlicFAAAotdxiHeLVIcMrfF9x8i79FCDR4OVKSiKeu3pWDqtxs1kT5hZQZBSdl83yatFhyYjOy0RBkxZlw/7z553i+NsGRUz+dNaOYe/NKmQqVTxl1rZ1pxjWac149IS9Ytuz/tfhODejOOKnbyN+/i7il1GzJhjOpzgpWraLaNZ6Vt7tlVsit81R5WKBhmivfqvH/W9+VqGxo8dPjuIZ85iIC9DAKUCqZp0nTotT7nm/7PsHVl0sHlp1sbzGBPVN2xZNY/yUaRUeP3PmHDNHoKH67oNZ24JUIPTzQouMFjb7MbPKJhFv3RuROivNqUW7bDN+SnG0a9ms3KGC1OUoPWKduU6bZ3FSSqikZMnIIVn3Jmjops+o+H/bJk0rjpZNLV8I1WGHT3+InT79Ifv6iu4V//cpAIuWX0vk2KDqTZ+5aPcVzZq4r4AonhwxZcKsIqNJv0Q0W3CR0YI0a9Io+2xF6w6zJt8N/3jWY06tO2ebGTPLFz8UFDWJWGz5WY85lBUnpYKkcf9fnJQ6MjUqmpVn+3FYxJKrVvYqQL3QulnjmDCluFr+uwlULr9WlmPrkteQWAQKkIA677Pvx0TflZaq8PiWzZpUazxQVxRs9PtsllZFi4wWpNX/f64Kllkjckv1nM+oWa+z3GLt45F3Pq94nAsqTkqzzIBo2axx1rQsl1v42B5d2sewCnZLAgAAGo6iwsJo3qQophTP1illPpbu1DZ++GVijcQFtVlBs1aR2/nUKsmv/ThucizTqV2MnTg160g039csLMryAIUpEVDROBdUnFRF+UGo6z4f+XOs2K1DPPtRxbr7tfa3JoC5KECqYVsPGRWbfzk632FAvbPGbwdEYWFBlJQs+C+vS3ZsE0uMnxoXPfRRjcUGDcGSf9ohFmvXKks+piTI/DQqLIh1OrePo659uUbjg/quxXqrx5a9losnPxi60LG/67tqfDvg9LhoEbomARXTxOxHgBojxwZVr7Bdh9h349XjqmfeW+jYP22+VszY//K46MfxNRIbNATN3vk+Dr3iD3Hwfx9fYH4tOXDTNSP3n0fluaEqPfRRrPTSP+OKp95Z6NDey3WLdp8O9xmEaiC/VrcpQKphTWfmoukcbTGBXy/34FvZTdc1zy44QXL6bhvHj0fdHK2LfQ6hKv107K1x+pm7x8HXPL7AcYdssXaU3PmKzyBUsW9PvD2OfvWMePbjr/+3JOI89Fl+8ej84/gYM3l6jcYHAFDV5Nig6o3676DY50//iptf+jgmT5v/PUPqbLxyUVF8NnxstK7RCKGe+3p09GzeLLp3abfAzsWpE/muay4XXx54jc8gVLFWnwyPrdboEU9+8NV8x6TmY6f8pl98u83Z8twAc9BTEagXvj7zvth/6cVi9w3mv0712XttGt3fGBpjP/ymRmODhmDM20NjhQ+Gx+m795/vmH36rRZ7d+0UX//nkRqNDRqCkuIZMePsB+LWw3aMpo0bzXPMust1i0t23jg+3/WCGo8PAACoG8Ye+t+49687R5sWTed5fPnFOsQtB24TQ3f8d43HBg3B17/5d9x20LbRo2v7eR5v26Jp3HfEzjH2oKtrPDZoCD4/4PI4bdO1YtOe3efb4f+/B28bTa97Lop/thQpwJx0QALqjc+2PTsOv+KgOODo3eL2t4bEO1//kP1jcJs1l4stV1wqZtz4Qgy77Il8hwn11td/vzk2+Ms2Mejve8QTn30bT374VcwsyUWf5brF7uusFM3f/jKG7PCvfIcJ9dbIe1+PLr9MjqfP3DPe/GFM3PHapzF52oxYbrF2sf+Gq0e3sZNicN+TomTGjHyHCgAA1FJj3vgi2h98VTxxxUHx/tgJcdPLH8W4ydNiyQ6t48D+a0T3GSXxRf9TY/r4yfkOFeqlVNDw1ab/iNvuPTq+bhRx7Ysfxvc/T4j2LZvFvv1Wi9Xbtooffn9ZjPvku3yHCvXWp/1OjjPuPDLGbLVu3PTqJ/Hp8J+iWZNGsXPvlWLjZRaLSf96MIbf+3q+wwSolRQgAfXKl3+6Jtvuf/AW8cfey0VMnxHjb3ktvn7i8nyHBg3Cdxc/FnHxY7HZduvETtusFdG4KKa+/nkMO+zGfIcGDcKPz36YPZZbs3tcfMBmqS97lHzxQ3y5+enxS7HCIwAAYOHGvj8sxm5wYnRermtccNjAKGnXMgq+GxNDtz83PlV4BNWu+JdJ8enmp0WTdi3j9KO3i1yvFaPwl0nx7SHXxpBvRuc7PGgQhuxxQURhYfzlr9tEo9WXj8KpxfHTf56IL18bku/QAGo1BUhAvfTV1U9HpAeQFyMeeSd7AHn8g8Ffrst3GAAAQB02YeioGHyUCUWQz0Kkz066M99hQMNVUhJfXvBIvqMAqFMK8x0AAAAAAAAAAABQdylAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAFAvfPbZZ7HaaqvFJZdcku9QAAAAAKBB5dgUIAEAAAB13owZM+L444+P6dOn5zsUAAAAAGhwOTYFSAAAAECdd9VVV8UXX3yR7zAAAAAAoEHm2BQgAQAAAHXakCFD4oorrohDDz0036EAAAAAQIPMsSlAAgAAAOp8W+gNN9wwdthhh3yHAwAAAAANMsdWVOVRAQAAANSQa665Jr755pu4/PLLs0QJAAAAAFDzOTYdkAAAAIA6Ka1Hf9lll8Wxxx4biy22WL7DAQAAAIAGm2PTAQkAAAColKYtx0av3U/4Vc/x0y3LRES7RT5v5syZcdxxx8U666wTu++++6+KAQAAAADqan6ttuTYFCABAAAAdc61114bQ4YMidtuuy1+/vnnbN/48eOz7ZQpU7J97dq1i8JCzZ8BAAAAoLpzbAqQAAAAgDrnpZdeiunTp8duu+02z8RJejz77LOx5JJL5iU+AAAAAGhIOTYFSAAAAECdk9akL52NVeqnn36KY445JnbcccfYaaedonPnznmLDwAAAAAaUo5NARIAAABQ56y22mpz7Rs+fHi2XWqppaJv3755iAoAAAAAGmaObeGLtAEAAAAAAAAAAMyHAiQAAAAAAAAAAKDSLMEGAAAA1AtLLrlkDBkyJN9hAAAAAECDy7HpgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABAwyxAmjhxYpxxxhmx8cYbx2qrrRabbbZZXHDBBVFcXDzX2Ntuuy0GDhwYvXr1iu233z4effTReT5nRccBAAAAQF0nvwYAAAA06AKkXC4Xhx9+eJbQ2HzzzePEE0+M3r17x1VXXRVHHnlkubHXXnttnHbaabHSSivFCSecEF26dImjjjoqHnvssUqNAwAAAIC6Tn4NAAAAqCpFUUc9++yz8dprr8Upp5wS++yzT7Zvr732isUWWyyuvPLKeOedd2KdddaJ8ePHx6WXXhrbbbddnH/++dm43XffPX73u9/FueeeG1tttVU0atSowuMAAAAAoD6QXwMAAACioXdAevPNN7Ptb37zm3L7t95662z73nvvZdtBgwbF5MmTs+RJqcLCwth7771j5MiRizwOAAAAAOoD+TUAAAAgGnoB0qGHHhoPPPBAtGjRotz+sWPHZtuiolnNnT7++ONs27Nnz3LjVl111XLHKzoOAAAAAOoD+TUAAAAgGvoSbO3atcsec7r99tuz7VprrZVtf/zxx2jbtm00b9683LjOnTtn2xEjRizSOAAAAACoD+TXAAAAgHpbgDR69OgFHk8zslq2bDnPY2nG1pNPPhnrrbderLHGGtm+SZMmRbNmzeYaW7pvypQpizQOAAAAAGoz+TUAAAAgGnoBUr9+/RZ4/JBDDokjjzxyrv3PPvtsnHTSSdmMqnPOOadsfy6Xi4KCgvk+X+mxio4DAAAAgNpMfg0AAACIhl6AdMYZZyzw+CqrrDLXvkceeSSOO+64bObWNddcE4svvni5GV1Tp06d65zSfaWzvSo6DgAAAABqM/k1AAAAIBp6AdJuu+22SOPvuOOOOO2007L15W+44YZYeeWVyx3v1q1bjBs3LoqLi6NJkyZl+9Oa9EnXrl0XaRwAAAAA1GbyawAAAEBNK4w6LK1Jf+qpp0anTp3i1ltvnSs5kvTs2TNr/zx48OBy+0u/X3311RdpHAAAAADUF/JrAAAAQIMuQPryyy/j5JNPjg4dOsTNN98cyy233DzH9e/fP5o2bZqNKVVSUhK33XZbLLHEErHmmmsu0jgAAAAAqA/k1wAAAIB6uwRbRV166aVZO+eNNtooPvjgg+wxu5VWWimbsdW+ffs4+OCD45JLLslmYK2//vrx5JNPxjvvvBMXXHBBNGrUKBtf0XEAAAAAUB/IrwEAAADR0AuQ3nrrrWz74IMPZo85HX744WUtow877LBo3rx51kb66aefju7du8eFF14YAwcOLHdORccBAAAAQF0nvwYAAABEQy9AeuWVVyo8tqCgIA488MDsURXjAAAAAKCuk18DAAAAqkphlT0TAAAAAAAAAADQ4ChAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVVlT5UwFqpy79Vomef9s+ChoVRkEURPH4yfHeyXfExK9H5Ts0aBBaL9c11vrnXtG4VfPIpf+bURIf//vBGP3akHyHBg1Ck3Yts89gq2W7RG5mSfbfw6G3vBDD7ngl36EBAAB1RGGzJrHmqbtFh17do2TGzCgoKozvHnknPr/iyXyHBg3GyocPjCW3WSdKps+MwsaNYsw7X8UH/7w7Sopn5Ds0aBCW3H7dWPGgARG5iILCgpjywy/x7om3xdQfx+U7NIBaSwESUG807dQmNr7lrzH69SHx2sFXxtTR47P9bVZcPFY7eodo2ql1vLDHf/IdJtRfhYWxyZ1HxZRRv8R7p9wZE74cme1u1qVtrHL41lni8oU9L4jiXyblO1Kot3pfsH8079I2Pr340fjpjS+yfUUtm8Xy+20SWz5zarx19I0x9v1h+Q4TAACoxVY/7jfRqfcK8dkVT8S7x9+a7StsUhTL7tkvtnzqlPjovAdj5FMf5DtMqLeW2HadWPUv28bQm5+PQTv+K0qmz4goKIjFt+gVm9z5t/jhpU/j0/88nO8woV5PsN3gyj/G90+8Hy/99uKYPn5ytr/DmsvGOuf8NkpmzozXDroy32EC1EoKkIB6oahVs9jk7qPj5d9fEpO+HV3u2PjPR8Trh10Ti23SMzZ/6Ph4doez8xYn1GebP3RcfHTOffHjy5+V259mhLx3yh3RqnuX2OyBY+OpgWdEydTivMUJ9dV6Fx8YYz/5Lt468vpy+2dMmhqfXfZEDL3pheh/19/iraOuj3GDv89bnAAAQO0uPmrUomk8t8u55fanjitDb3o+vr7j5dj41iOiZNr0GPXCp3mLE+qrbgN6xfK/3Tie3e6sWYVHpXK5GPHUB9lj7bP3iVWP2l4RElSDFkt2jA2uOiSbzD5tzIRyx35+/+t45YDLovsefWPDGw6PV/a7NG9xAtRWhfkOAKAqrHfJH7I/qM5ZfDS7H57/JEYO+ii677lhjcYGDcFyv980hj/27lzFR7ObOOzHePvYm2O9i/av0digIWi5dKfsjwSfX/XUfMdMnzAlXtrnwuh9/n41GhsAAFB3ll1LnY/eP+WO+Y5JhUgv/e7i6HX8LjUaGzQUqx29Y7z0+0vKFx/NIXUmW2zjVaOwSI8BqGrrXfqHeHm/S+cqPprdsDtfjeIxE6Pj2j1qNDaAukABElAvNO3YKn5+7+uFjvv86qdj+d9tUiMxQUOy7J4bxpfXDVrouLQkVIslOtZITNCQrH3mPvHJvx9c6LhpP0+MScPHRPPFO9RIXAAAQN2Rlk4ffPnjCx03c2px/PTWl9F5g5VqJC5oKFIH/x9fGZwV+i3MkKufjl4n7lwjcUFDWmlj5qRpMXn4mIWO/eT8h6LXiYpxAeakAAmo87psuPICu67MbsbkaTFt7MRqjwkammk/jc8SkBWRipDMDoGqT5CMG1KxZdW+vu3lWPGgLao9JgAAoG5p32uZ+OHZjyo0Ni3HtsKBm1d7TNCQLH/AZtny6RXx/ePvRac+K1R7TNCQLLfPRvHN/W9UaOzkET9HriRX7TEB1DUKkIA6r1mXtllHh4paUPtaoHIW5XOV2tc27dymWuOBhqYisyNLFY+bFE3aNq/WeAAAgLonN31mhccWj5scRS2bVms80NAUNW8axeOnVGxwLhclMyr+mQUWrknH1lE8dlKFx/tbE8DcFCABdd6EoT9Eq+6dKzy+qIXkCFRHgqSiWnbvHBO+GlWt8UBDU9SiSYXHtlyqU0z+fmy1xgMAANQ9hU2KskdFtFi8QzbBCKg6qXN/i8XbV2hso2ZNorDIn/igKk0aNjrLXVeUvzUBzK1idxNUWqvFJ8V+191X9v2MqY1ixrRGeY0J6qNx7feq0LjmXdtF2+7TYs/7H6n2mKAhmbT4X6Jpx9YLTz4WFESX9ZeIFVa4pqZCgwZhRrcB0bX/qjHqhU8XOnb5328YXYu2i9X7Ta2R2KAhKWo6M4qazZqFfPNJ3fMdToPy2muvxcUXXxyfffZZtGrVKgYOHBhHHHFEtGzZMt+hAdWQX0vk2KDqlXRcOpbds28MvenFhY5d+dABsfTSh8ey939XI7FBg9BySOT+dE68fvj1Cx263O82ik4dr5Hnhir1SIxp+kJ8ee2zCx3ZbrWlo92Sw3wGoZrza4kcW93KrylAqmHpwzL7BwaoGrl2z0X33TaIYXe/tsBxvU7eOTo0OimibXGNxQYNQbOif0SvE46It/520wLH9dhno2jb5vFoNsNnEKrUxL9Hr+OejadfHJy1YZ+ftqssGe2WnRTNfhlfo+EBVHdy5IADDoiePXvG0UcfHSNHjoybbropPv7447j11lujsNDMcKiP5NigGky6MFY88J34+vZXF7isTOp+1GnN1tFs4tCIijdjBRbqk+jcu2M2iXbKqF/mO6pR08ax3G/Xi2aTD4toW6MBQr3Xpv130XmDFWP0a58vcNxa/9gl2kzdw9+agHrjtSrKr8nCAfVC85+PjTWP6xPdBvSa75ief9s+ltpgeMT4BRcpAZUw7vlYpv+YWOUvW893yBID14w1juwVzX4+tUZDgwahZGJ06nxt9L36oCiYz41AmxUXj41v3C/ajt+lxsMDqE7//ve/o1u3bnHLLbfEPvvskyVJjj322Hj33XfjpZdeynd4AFCndGxxYvS/4y9ZgcO8NO/WPja9+7DoULxrjccGDUHH6bvHpvcenhUhzUuj5k1ik7v+Gp1b/L3GY4OGoPXYvWODS3aJDmvOv+NK7/N/F126Px5RPKJGYwOoC/k1HZCAeqPduP6xwTl3xS/DB8SQKwfFz+8Pi4JGhbH4lmvEcnv3jrbtn4kW407Kd5hQb7Uaf2Csvu/ZsdR2x8bQW1+Pkc98FLmZJdFxnR6x0sGbRNslvo024zbLd5hQbzUdf3Usu+bEaPvc3+O7xwfHsDteixmTp0XrZbvEyodvER1XKYh2EzeOKJmc71ABqsy0adOiffv2seWWW0azZs3K9vfp0yfbDhkyJPr375/HCAGgbima8EQstXRxDHz27Bjxwjfx5fUvxPRxk6LFEh1j5cMGRKc120SHadtGFP+Q71ChfioeHl2a7BBbPHxnjH53XAy54pmYPOLnaNK+VSy/38bRbeNlomPTv0XhhJfzHSnUUzOiw8QNo/9/H4yxQ5vF4MuejXGffR+NmjWJpXdaN7r/ple0a31DNB1/Rb4DBaiV+TUFSEC90mb87tGmXbPo+q+TY+r0HaOwsCSaNXoyGo/5c4TVZqDatRh/fLQoiuh85OEx9a/bRi4aRdOi96Ppz5tFjNeOFqpb4wm3Rde4LTrvsV2stPvvoyTXLBo3/jZa/LJnxPif8h0eQJVr2rRpXHvttXPtHzx4cLZdfPHF8xAVANRthRMGRedYLzoP3DCW2+bPUVLSKoqKRkWLSYdETPgm3+FB/Vc8PDoUbxgdei0bS950csyc0SUKCydEq5kXzOruL8UG1aukONqO3zraLtYmul7yjyiesV4UFEyLFgV3RdHYg/ytCah3mlZhfk0BElD/lEyNpmNOjKb5jgMasMY/XxqN49J8hwENVuHYR6J1PJLvMABq3Pfffx9vvPFG/Otf/4oVV1wxtthii3yHBAB117hXolW8ku8ooOGa+nW0nHpAvqOAhmvm+Gg+5qhonu84AOpQfk0BEgAAAFDn/fLLL7HZZrOWe23evHmcdNJJ2QwuAAAAAKD682sKkAAAAIBK6dA0F+evUfKrnmPzu3NVEktBQUFccMEFUVxcHDfffHPsv//+2fdbbbVVlTw/AAAAANTG/FpV5dh+bX6t8FdHAAAAAJBnbdu2jW222SZ22mmnuPXWW7P16c8+++x8hwUAAAAADSK/pgAJAAAAqFeaNWsWm2yySYwcOTJ+/vnnfIcDAAAAAPU+v6YACQAAAKiThg4dmq1Ln2ZkzWnSpElZ2+gmTZrkJTYAAAAAaEj5NQVIAAAAQJ20zDLLxIQJE+KOO+7I1qYv9f3338eTTz4ZvXv3jlatWuU1RgAAAABoCPm1omqMEwAAAKDaFBUVxUknnRR///vf43e/+13ssMMOMXbs2GzGVmFhYZx88sn5DhEAAAAAGkR+TQESAAAAUGftuOOO0bhx4/jvf/8bZ599drRo0SLWX3/9OPLII2PZZZfNd3gAAAAA0CDyawqQAAAAgDptm222yR4AAAAAQH7ya4W/6mwAAAAAAAAAAKBBU4AEAAAAAAAAAABUmgIkAAAAAAAAAACg0hQgAQAAAAAAAAAAlaYACQAAAAAAAAAAqDQFSAAAAAAAAAAAQKUpQAIAAAAAAAAAACpNARIAAAAAAAAAAFBpCpAAAAAAAAAAAIBKU4AEAAAAAAAAAABUmgIkAAAAAAAAAACg0hQgAQAAAAAAAAAAlaYACQAAAAAAAAAAqDQFSAAAAAAAAAAAQKUpQAIAAAAAAAAAACpNARIAAAAAAAAAAFBpCpAAAAAAAAAAAIBKU4AEAAAAAAAAAABUmgIkAAAAAAAAAACg0hQgAQAAAAAAAAAAlaYACQAAAAAAAAAAqDQFSAAAAAAAAAAAQMMsQJo4cWKcddZZsdlmm8Waa64Ze+65Z7z88svzHHvbbbfFwIEDo1evXrH99tvHo48++qvGAQAAAEBdJ78GAAAANOgCpJKSkjj88MOzhMZWW20VxxxzTLb/D3/4Q7z44ovlxl577bVx2mmnxUorrRQnnHBCdOnSJY466qh47LHHKjUOAAAAAOo6+TUAAACgRguQHnjggfnOfJqfZ555Jo4//vioLs8//3y89tprWSLj2GOPjX322SduuOGG6NatW1xyySVl48aPHx+XXnppbLfddnHRRRdls7iuueaaWHfddePcc8+NmTNnLtI4AAAAAKiM2pZjk18DAAAAarQA6bjjjouDDjooS3ZMmTKlQk/82WefZUmV6pISGqusskrssMMOZfuaNWsWq6++egwZMqRs36BBg2Ly5Mmx1157le0rLCyMvffeO0aOHBnvvffeIo0DAAAAgMqobTk2+TUAAAAgL0uwpWTHLrvskiU+8m2nnXbK4mnVqlXZvjSL6osvvshmaZX6+OOPs23Pnj3Lnb/qqquWO17RcQAAAADwa9SWHJv8GgAAAFDjBUj77bdfbLLJJvHVV1/FHnvska0NX1ukmVUfffRRHHHEEVl8hx56aNmxH3/8Mdq2bRvNmzcvd07nzp2z7YgRIxZpHAAAAABUVm3NscmvAQAAAL9GUUUHtmzZMq644oq4/vrr4z//+U/885//jNdffz3OPPPMaN26dVSV0aNHL/B4ixYtslhml+K5+eabs6+32mqr2HLLLcuOTZo0KWsdPafSfaXtris6DgAAAAAqqyZybPJrAAAAQK0tQCq1//77R58+feKoo46Kp556Kj755JMsQbHGGmtUSUD9+vVb4PFDDjkkjjzyyHL7Nt9881h//fXjgw8+yJI3++67b9x6663RpEmTyOVyUVBQMN/nKz1W0XEAAAAA8GtVZ45Nfg0AAACo9QVIpeu4p/XhTz/99Lj//vtjn332ib/+9a9x0EEH/eqAzjjjjAUeX2WVVebat8EGG2TbAQMGxJJLLhmnnHJKPPTQQ7HrrrtmM7qmTp061zml+0pne1V0HAAAAABUherKscmvAQAAAHWiAClJa7mfffbZ2YyqU089NZuh9cYbb8S5554bHTp0qHRAu+22W/waAwcOzBIkn376afZ9t27dYty4cVFcXJzN2CqV1qRPunbtukjjAAAAAKCqVEeOTX4NAAAAqGmFv/YJtt1222ymVmoP/fLLL8eOO+6YrVtf3f75z3/GFltsESUlJeX2p7Xmk6ZNm5bNJEvtnwcPHlxuXOn3q6+++iKNAwAAAICqlo8cm/waAAAAUGsKkJLUljmtCZ/Wjx8zZkz84Q9/iCeffDKq0+KLLx7ffvttPP744+X2X3fdddl20003zbb9+/fPkiU333xz2ZiUVLnttttiiSWWiDXXXHORxgEAAABAdajpHJv8GgAAAFCjS7ClZESbNm0WOKZRo0ZxxBFHRN++feOYY46JL774IgoKCqK6/Pa3v81mhZ1wwgnx8ccfx1JLLZXNDnv22Wezten79OmTjWvfvn0cfPDBcckll2QzsNZff/0scfPOO+/EBRdckMW9KOMAAAAAoDJqW45Nfg0AAACo0QKkQYMGVfgJU2LioYceissuuywmTJgQ1SXNprrxxhvjvPPOyxIl6bWWXnrpOOmkk7LkyewOO+ywaN68eTaD7Omnn47u3bvHhRdemK1nX5lxAAAAALCoaluOTX4NAAAAqCoFuTQdiWqx+eabR0z9Kp49Y1i+QwEAAKAGbX5S92z77CtfR31VVfe82bVq1iPruAIwJ/k1AACAhqu+5402r8J73tpwrQrz9soAAAAAAAAAAECdpwAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAAAAAAAAAFSaAiQAAAAAAAAAAKDSFCABAAAAAAAAAACVpgAJAAAAAAAAAACoNAVIAAAAAAAAAABApSlAAgAAAAAAAAAAKk0BEgAAAAAAAAAAUGkKkAAAAAAAAAAAgEpTgAQAAADUWS+99FLsvffescYaa8Raa60V++23X7z//vv5DgsAAAAAGlSOTQESAAAAUCe9+eabcdBBB8WECRPiyCOPjMMOOyy+/fbb+O1vfxsffvhhvsMDAAAAgAaTYyuq1igBAAAAqslZZ50V3bp1i7vuuiuaN2+e7dtpp51im222iQsuuCCuv/76fIcIAAAAAA0ix6YDEgAAAFDnjBs3Lj777LMYOHBgWWIk6dSpU/Tu3Tvee++9vMYHAAAAAA0px6YDEgAAAFDntGrVKp544olyiZFSY8eOjUaNGuUlLgAAAABoiDk2BUgAAABAnZOSH927d59rf5qx9e6770a/fv3yEhcAAAAANMQcmwIkAAAAoFImjmgZN2y28697ju5DolWPqoln0qRJceyxx2ZfH3zwwVXzpAAAAABQi/NrtSXHVlg1Lw8AAACQP1OmTIk//elP2eyslBjp06dPvkMCAAAAgAaTY9MBCah/mq8Q0f3UiMYdZn0/+cuIr0+KmDk+35FBw1DULmLZf0Y0X27W99N/ivj61IipX+c7MmggiiKWOS6ibd+IXC6iZFrE8PMjxr2S78AAqs348ePjj3/8Y9YWepdddokjjzwy3yEBQN23xJ8jOmwdEbmI3IyIEVdH/PxovqOChqPjDhGL/yEtjBIRBRFjHokYcXm+o4KGo9XaEcscH9GoxazP4IR3I745PaKkON+RAdTaHJsCJKD+KGwR0fOOiKnfRAw7NWLK0Fn722wQseJls/4AOyTdsAHVZuXrIgoaR3x/acT4N/5XFLjU0RFNl4j4dM+Ikqn5jhLqr2VOiGjdJ+KH6yK+OSsiSiIad4lY4vCIZU6J+PwQxYBAvTNmzJg48MADY/DgwbHHHnvEaaedFgUFBfkOCwDqrsUOjOiyc8QPt0Z8vGNEbnpEUduIbn+MWOqvEV+dEDHh7XxHCfVX6/Ujepwe8fOTEZ/+dtbE2oImEV32iOj1WMSoOyJG3ZTvKKH+Srm0VW6MmPhBxJdHREz7flYBUvsBEavcEjHl64ivZi1LBFCfjKmCHJsCJKCeKIro9UjE54dFTB5c/tD412Y9Ou0SsertEZ/ula8goX7reVfED7dEjHmo/P4pX0R8cVhEy9Ujej0a8f4Ws4oigKrV/fSI3LSIj3cqv3/6jxHDTolo3HnWfwcH7xdRPDxfUQJUqYkTJ5YlRvbbb784/vjj8x0SANRt3Q6OaNUr4sPtZnU+KjVjXMR3587qvtLzzoivToyY+H4+I4X6qfW6Ed1PiPhop4iSyf/bnyuOGHVzxKhbIla8IiL9MfCHG/MZKdTf7v7pv3ODfxcxbfb8WS5i7NOzHkscGrHCxRFf/CWPgQLUzhxbYRXHBZAfK1wya4mnOYuPZvfTvRGTBkd02L4mI4OGIRX4pRa0cxYfzW7SRxHfnB2x/H9qMjJoODOzWiwf8c2Z8x8zffSs5MlKV9RkZADV6vTTT88SI/vuu6/iIwD41YoiOu0Q8cWfyxcfzW7mxIhP9ozocU5NBwcNQ48zZ02gnb34qJxcxOd/iuiyuz/xQXVY6ZqIIQfPUXw0h+8vn9WVrMUqNRkZQJ3IsemABNQPzZaKGPfSwscNvzBi1dsifn64JqKChmPxAyM+2W3h48Y+E7Hkoq0XC1QwQfntvxY+rnhkxPQxEUUdImb8XBORAVSboUOHxoMPPhht2rSJVVZZJft6TjvuuGNeYgOAOmmZ4yO+v3L+xUelZk6YNcmoZa+ISR/WVHRQ/7XuPWt5w5mTFjIwFzHyuoil/hbx3b9rKDhoAAqbzPp8pY7+C/PtORE9/hXx6R41ERlAncmxKUCqZj9PK4i/ffC/KvQtu5bEVovlNSSof1qvN2uJtYpI62WnB1C1ZoytQHLk/014J6LlahGTPq7uqKDhaNJl1rr0FTHq1oglDov45p/VHRU0OE/+EPHUqMKye0Gq15tvvpltx48fP9+ZWQqQoH7m1xI5NqgGbddfcFfV2WXFD0dFDDmouqOChiMt6/TNGRUb+9MDEas/rAAJqlLXfSNGP1CxsVOHRRT6MztUd36t9H6wQ7O8hlTvvVmFOTb/nxGo+5ouHlE8quLjS6ZVZzTQMC3K52r6DxFNllCABFWpZGrFx07/KaKofXVGA1Aj9tprr+wBAFSRkunpfyo2NnVWbdSquiOChqVRm1mfrYrIzfz/zyxQZRp3iZj6RsXHz/S3JqB+2KsKc2wWiAXqvmnfRTRdouLjC5tWZzTQMBUuQvl50yUXvIY2sOgKW1R8bJOuEdNHV2c0AABAXVTYOKKgUcXGNukcMWNcdUcEDcuMX2YVQFREQeNZn1mg6hSPjGiyeMXHN9KSBWBOOiDVsOd+LIhXfsp3FFDfvBMn7nl6VKisqKhDjC1pHRd8bEkMqEp/W7lNtE2ztCqwxOHU5mvFWW+emDIlNRIbNAR7LTY8Vm7dOwomvLXQsTO6/Db+9dBhMa3YZxCqWnEFGwYA8OvJsUHV26zZi9G/045RMPq+hY4tWewPccmgC2PML+4roKp0HXlxHLLhQdHoq2MWOjbXedd46tPH4xV5bqgyhZ/eEifuemc0HnXzwgc3XyG+nTA1/uszCFVOfq1uU4BUw6bnCmL6zHxHAfXPJyM/j7XaD4yCsU8scFzJUn+LO1+9OCbN9I9CqEr3vHll7N/rqCgc9o8Fjst13D7e//5Dn0GoYre9cHKc+psroujT3RY4LtdsmRg7s3X8PGWCIkAAoE6TY4Oq9+gb58eGv30kGo9+YMFLsRV1iIlNV45vx3zuvgKq0Fc/fhRTmq0erYrazeqGND8FjWJ619/HU09v4zMIVWnmzBgxuTiWbrlaFEz6eMFDlz4hbn7iZHlugDlYgg2oF24fdHRMWPzoyLVaZ75jSrr+Pr4q7hZffPdsjcYGDcGnXz8Ww0p6RK7L3vMdk2uzXozrenjc/cLxNRobNASTp/4cLw59K0p6nDP/QU2XiOIVb4iLHzmwJkMDAADqiJIoifvevilmrvTf+S/FVtQ+pq9ye1z++BE1HR40CJc/dXT2GYuitvMeUFAUM1e6Lu56/b81HRo0CFc++oeY2uOSyDVfbr5jSpY6Nt4ZNSp+Hv91jcYGUBcoQALqhZQg+ecd28QPXY+LGStdG7lWa2U3Y1HYNHIdto7pq94dH89cM6547A/5DhXqrcse3i8+ifWzz1uu/ZYRBU2yz2Gu9ToxY6XrY0Sno+LM27fNd5hQbz365nnx1LDhUdzzkch13TeiUctZ/9xv1iNmLndB/NLjmjjr3r2yYiUAAIB5efOzO+KO9x+PaT0fiZLFD4tInVjSfUXTJaJk2TNj4kp3xAWPHhWjf/ki36FCvTRqzKdx0ePHxqSV7oqS7v+MaLL4rC5HRe2jZIm/ZJ/NW99+IN77cuFLJQKLrnjG5Djjrt/E2KUvjJkrXB65FivPKsotbB65zrvH9J4PxstjiuLOF07Id6gAtZIl2IB6o6RkRpx33x7RqkWX2K3fqbH4kktHSa4kBn//Xjxy5+9iRklxvkOEeu/6p4+IosImsUPfk2KlFf8chQWF8f3Pw+Luh46NSVN/ynd4UO89/d7l2WOjXgfHhiveFo0aNYlfJv0U9zx3TowaOzjf4QEAAHXAu5/fmz3WXnGPGLD69dGkqFmMnzouHnj9ovj2h5PzHR7UeyPHfByn3LZ1dF+8b+zU5z/Rqlm7mDZ9Sjz1wa3xwZdp2TWgOk0tHh9n3rVjdGizbOzW78TotPRiMbNkRrzz1Qvx9DO/yXd4ALWaAiSg3pk4+ce4/qnD8h0GNFip2O++l0/JdxjQoL304dXZAwAAoLLe/fzO7AHkx7ARr8aFD7ya7zCgwUpLrF1lVQ2ARWIJNgAAAAAAAAAAoNIUIAEAAAAAAAAAAJWmAAkAAAAAAAAAAKg0BUgAAAAAAAAAAEClKUACAAAAAAAAAAAqTQESAAAAAAAAAABQaQqQAAAAAAAAAACASlOABAAAAAAAAAAAVJoCJAAAAAAAAAAAoNIUIAEAAAAAAAAAAJWmAAkAAAAAAAAAAKg0BUgAAAAAAAAAAEClKUACAAAAAAAAAAAqTQESAAAAAAAAAABQaQqQAAAAAAAAAACASlOABAAAAAAAAAAAVNr/sXcfYHJWZf+AnxRCEkpIEELv0kIvgiiC1NCk9w4iIEVAwQ+UJggKUqSICpGOUj5p0rs0EUKR3nsCCT0kJAGS//Ucv8l/U0leNpndmfu+rr02O/Pu7NnZs5P3/e3znKMACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqa6gCpIMOOigWW2yxCd532WWXRd++fWOZZZaJTTbZJG644YavdRwAAAAANBr5GgAAANDUBUi33npr3HTTTRO8r1+/fnHssceW8OSII46I2WefPQ455JC48cYbKx0HAAAAAI1GvgYAAAA0dQHShx9+GMccc0xMN9104933ySefxFlnnRUbb7xx/P73v4/tttsuzj333FhppZXipJNOii+//HKKjgMAAACARiNfAwAAAKLZC5COO+646NmzZ6y//vrj3XfnnXfGsGHDYvvttx9zW8eOHWOHHXaIgQMHxmOPPTZFxwEAAABAo5GvAQAAAE1dgHT77beXpaFPOOGECXZoPfXUU+V9nz59xrp9ySWXHOv+yT0OAAAAABqJfA0AAABo6gKkjz76KI4++ujYddddY9lll53gMYMGDYoePXpEt27dxrp9ttlmK+8HDBgwRccBAAAAQKOQrwEAAACtoXO0MYMHD57k/d27d48ZZphhzNLQ+e+DDjpooscPHTo0unbtOt7ttds+++yzKToOAAAAANoy+RoAAAAQzV6A9N3vfneS9++zzz5x8MEHxx133BE33HBDXHTRRRMMNmpGjx4dHTp0mOj9tfsm9zgAAAAAaMvkawAAAEA0ewHS8ccfP8n7l1hiifj444/L0tAbb7xxLLLIIvHBBx+U+0aOHFne58fTTz996d7Kjq7hw4eP9zi122rdXpN7HAAAAAC0ZfI1AAAAIJq9AGnrrbf+ymMeeuihspT09ddfX97G9e1vfzs233zz+M1vfhNzzjlnCVQyPOnSpcuYY3JP+tS7d+/yfnKPAwAAAIC2TL4GAAAARLMXIE2OxRdfPM4///zxbu/Xr1/cd9995b7ZZ5+93NanT5+y/POzzz4byy677Jhj8+O09NJLT9FxAAAAANDeydcAAACAaPYCpB49esRqq6023u3XXXdded/yvjXWWKMsF33xxRePCT5GjRoVl112Wcw999yx3HLLTdFxAAAAANDeydcAAACAaPYCpCnRs2fP+NGPfhRnnnlm6cBaddVV45Zbbon+/fvHaaedFp06dZqi4wAAAACgmcjXAAAAgGj2AqS03377Rbdu3eLSSy+N2267LRZYYIE4/fTTo2/fvpWOAwAAAIBmIl8DAAAAJqXD6GxHYqpYe+2144OPX421dnq93kMBAABgGrrzkvnL+8ceeSUa+Zr301fejX1fW+xrPc45CzwfMy7UO+64445WGxvQOORrAAAAzZ2x9eqxYMPmRmu3Ur7WVjK2jnX7ygAAAAAAAAAAQLunAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAACAhnHkkUfGzjvvXO9hAAAAAEBT5WsKkAAAAICGcOWVV8YVV1xR72EAAAAAQNPla51bfTQAAAAA09CXX34Z55xzTpx11ln1HgoAAAAANGW+pgAJAAAAaLdGjBgRW2+9dTz//POx2WabxYMPPljvIQEAAABA0+VrtmADAAAA2nVA8umnn8Zpp50Wv/3tb6NzZ71WAAAAADCt8zWpHAAAANBuzTjjjHHrrbcqPAIAAACAOuZr0jkAAACg3erYsWN5AwAAAADql68pQAIAAAAqGTzj9LHHVst9rcdY4LnXYsZWGxEAAAAANFe+1lYyNi2CAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqKxz9U8FAAAAaFvuvPPOeg8BAAAAAJouX7MCEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKCyztU/FaBt6tplllj/28dEr5nnj9GjR8Wb7z4cdz18UoyKUfUeGjSFjh07x1or/TzmmX2F6NChY3zw8atxy7+OieEjP6n30KBprLzkbrHkghtFp05dYuiwwXHbv38dH3zyar2HBQAAtCN9FvpBrLj4jtG5c7cYPuKjuPvRU2PA4MfrPSxoGnPPtkKsseLB0bVLj/j8i2HxyDMXx7Ov3VDvYUHT6DHjPLHut34ZPWacM7748vN46c074/7//KHewwJo0xQgAQ2jY3SMHTe4JL4Y9Xnc/8Q5MfC9J0ohxCLzrBW7bHxFvPfRS/GP+/6n3sOEhrbJ6r8rxX8PP3NR3Pv4GTFq1Bcx92zLx+bfPzM6dugUf715F8WAMBWt0ueHsfQim8ZTL18bV96xd4z8fGjM2mOhWGOFg2PWHgvGZbfsGsOGf1DvYQIAAG288Gi1ZfaJF964Pf5+9wExfMTH0WPGuePbS+8dG33nhPj7XQfE+x+/XO9hQsOaredisdmap8WAwU/EzQ8cFZ8MHRDdpp8lVlxi5/jucvvFvY+dGc+9flO9hwkNq0vn7rHjBpfGkGHvxv1P/CEGf/hCdO48ffRZcOPY4wfXxitv/zPu7n9KvYcJ0CYpQAIaxg83vzFuefCYeP2df411+9OvXFveVl1qr9h67T+VP8gCrW/bdc+LV96+N66/92dj3f7awAfK24JzfTf23Owfce41G9ZtjNDIVl/uwOg58/xx3rWbjHX7ux88G1fffWD0nGm+2HWjq+L867eI4SM/qts4AQCAtmuZb24VfRbaJPpd94PSVFTz/sevxD/u+3nM0HXW2GnDy+LK2/exyipMBbPN8s3YfM3fx8U3bh+fjfhwzO1ZCHF3/9/FvY/9PrZb74Lo1Gm6ePqV6+o6VmhEnTt3jT03vT7+984fx6APnx9z+xdfDo/+z11a3tZd5aiyC0f+PQqAsXUc52OAdmmT754U9z1+5njFRy3966lzy0XbwvOsOU3HBs1gsfnXj0+GDoyHn7lwose8OuC+8nu4wbePn6Zjg2bZfnThedaI6/7504ke8+GQN+KK238Y269//jQdGwAA0H5WF1+1z55x+a17jFV81NLQ4e/HJTftGFuudfY0Hx80g83W/H1cctMOYxUftfTlqM/jr7fuGt9Zdt9pPjZoBtuuc15c+8+fjlV8NK7bHvpV9Jp5weg50/zTdGwA7YECJKAhzPGNPvHMq1+9//Vdj5wcayx/0DQZEzST7y67X9zV/3dfedyTL10dc8++/DQZEzSTDVb7Vdz5yMlfeVx2LX/+xbDoMt2M02RcAABA+7H68gfFQ0//JUaN/nKSxw397L0Y/NGLZaUWoPXMOetS8c77T3/l1ulZINj/2UtjtaX3mWZjg2YpxJ2uc/cYMPjxrzz2jn+fEBt8R6MtwLgUIAHt3tyzrRBvvPPvyTo2u7RGfvnZVB8TNJvhIz+J4SM+nqxjB7z3RPTuucRUHxM0k14zzx9vTGIVwJYypMyiQQAAgJa+Od9a8eTLV0/WsQ89dV58b/mDp/qYoJmsvvxPyu/W5Hj8hctjyYU2nupjgmaywhI7xlMvXzNZx+YKSV06d5/qYwJobxQgAe1ez5nni48+fWuyj//icwVI0NpyD+zJ9dGQN2OWmeedquOBZjPyi8n/vy23S5yxe++pOh4AAKD9ya2dJrb12riGDHs3unWdZaqPCZpJt+lniSHDBk3B7+vnU31M0Ex6zDhPfPzp25N9/OdTkMcBNIvO9R5AoxsxtGf854q9x3zcu8/t0bvPnXUdEzSaT4e9G717Tf5qKp06TTdVxwPNqFOnLpN97Ezde8erb98/VccDzaZzp+kn+9juXWeNz0Z8OFXHA83q3afXinefXqf8e8TQK+o9HICGzdeSjA1aX6eO00WH6BCjY/RXHtt9+p4x8vOh02Rc0CxGfP5pdO/ac7Ku2Tt06BgdO05+Hgd8tdxidIbu35gqeRxQLV8bk7H1qOuQmAJWQALavdcGPhgLzPXtyTp2+i4zRdfpdWdBa+s+/ayTveTsvL1XioHv/2eqjwmaybDhH8Sc31h6so5dcYkd4oEnzpnqYwIAANqXN999JBZboO9kHbtyn93iftcV0Kr+9eSfY+Uld5usY/ss+IN4dcC9U31M0Eweee7iWHrhzSfr2J4zzz9ZBbsAzcYKSNPYoOe+F++9OHmFEsDke3up7rHAnKvFawMfmORx3132gLjqLx/G0/f+YpqNDZrBtUM+im+vsW/c8+gpkzxu4bnXiFef7RJPX+N3EFrT7+8dHAcf9/P46607feUKZF1GLxL//tvYKwgArWPUl1baBJhWZGzQ+p6/YXT85pz94rnXbprkcV2mmyF69/h23HrupxGxwTQbHzS6pyNi7XNXL01+I78YNtHjcqWyby35ozj0Rw/GqFEyNmhNW682Z8zaY6F4/+NXJnnc91c4LM458Z147RW/g9Da5GvtmwKkaWz0l13iyy8tiwmt7dTjH4nT+/0urr5vtxj84QsTPGbJBTeOWbv0jXvvuC8iZpjmY4RGdsdNr8faG20Wi8//dDz3+s0TPCa3Slxr+d/EwXvcE19+4XcQWtOggaPitadnjTVXODTufvTkCR7TvWuv2H7dv8avDvlPfDnS7yAA0L7J2KD1fTky4p4bP48frH5qXHfvIRM8Jgsjdlz/8vjDCa+4roCp4E+/ey1++LPL4pKbt4svvhw+weKjzdY4I26/9rP4fHi3uowRGtmJR/SPE8+5IP56+7bxydCBEzxmlT57xZB3FouXn/u3vzUBjMMWbEBD+GLkqDh07wdig5XOi01WPzV6zjTfmPvmmX2F2Hadi2LhWQ6JX/4ki4+AqeGI/e+Nxb5xWGyzzgUx92zLjbm918wLxKbf+32su/yf4tAf3RtffDGqruOERvWn0x6LT99aM3bZ4OpYbP71SyhZKzxae+VfxPZrXx0n/s/zMejdT+o9VAAAoI265m/PxlP3LRB7bHxTLLPIltGxQ6dy+/TTzRirL3dQ7LLBDXHuyYPjhefeqfdQoSE98+TAOP/Uj2K3DW+K7yy7f1lxLHXs2DmWW3Tb2H3jm+KRO+aMf/zv8/UeKjSkTz4ZHkf95PHY6nuXR99Vj4sZu88+1ur+O65/RXT7bKs45VdZfATAuKyABDSMz4aNjJ/tdV/Mv+Cssfv+F8VMPUZHdOgQA14fHb/92WPxySdv1XuI0PCO+/m/oscs3eJHB50W66yQ5Q+j45MPO0a/k56NN99QAAhT21/OeiI6d+kYu+x1SOy63i9iVHwRn4+YLq48/4047ZH76z08AACgHbjm8ufiuisjtt5p99h53YMiOnweX34xXfzjbwPj7LserPfwoOE9+cSAOHDnAbHmOmvGtltvGx07fx4xerp44K6P46DjH6338KDhvf/ep3HQ7vfFkkvPGzv+6Kro2v3LiNEd4+XnRsbR+z0Ww4d/Ue8hArRZCpCAhvP6q+/HMT99oN7DgKb18UefxcnHCCShnqsC/uXs/vUeBgAA0I6NGhVx+UX/icsvqvdIoHndffsL5Q2oj2eeHBC/OGBAvYcB0K7Ygg0AAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAACaswDpnnvuicUWW2yCby+88MJYx1522WXRt2/fWGaZZWKTTTaJG264YYKPObnHAQAAAEB7J18DAAAAWkPnaMdefPHF6NChQ5x44onRsePYtVRzzjnnmH/369cvTjrppBJ87LbbbnHbbbfFIYccUj53ww03nOLjAAAAAKARyNcAAACA1tDuC5Dmmmuu2HzzzSd6zCeffBJnnXVWbLzxxnHKKaeU27bZZpvYeeedSxiy/vrrR6dOnSb7OAAAAABoFPI1AAAAIJp9C7YMSBZaaKFJHnPnnXfGsGHDYvvttx9zW3Zz7bDDDjFw4MB47LHHpug4AAAAAGgU8jUAAACgqQuQRo8eHa+88kosssgi5eMRI0bEF198Md5xTz31VHnfp0+fsW5fcsklx7p/co8DAAAA2pY333wz9t9///jWt75V3g477LD44IMP6j0saPPkawAAAEBr5Wud2/M3/9lnn8Ubb7wRm2yySenW6ty5c6y77rpx5JFHRq9evcpxgwYNih49ekS3bt3G+vzZZputvB8wYMAUHQcAAAC0HR9++GHsuuuuMXLkyPjhD38YX375ZfTr1y+ef/75uPLKK6NLly71HiK0WfI1AAAA4MNWytfaXAHS4MGDJ3l/9+7dY4YZZiiBSHriiSdir732innmmSf69+8fF110Ubz00kvlSejatWsMHTq0vB9X7bYMWdLkHgcAAAC0HRdccEG88847cf3118fCCy9cblt22WVj9913j2uuuSa22Wabeg8Rpjn5GgAAADCt87U2V4D03e9+d5L377PPPnHwwQfHvPPOG/vtt1/pzlpwwQXLfeuss07MP//8cfTRR8dVV10VO+20U1lKukOHDhN9vNp9k3scAAAA0HbccMMNZVnoWjiSVltttZIV5H0KkGhG8jUAAABgWudrba4A6fjjj5/k/UsssUR5v+iii5a3cW255ZZx3HHHxUMPPVQCkuzoGj58+HjH1W7Lbq80uccBAAAAbcPHH39ctpBaf/31x7uvT58+cc8999RlXFBv8jUAAABgWudrba4Aaeutt/5anz/ddNPFzDPPHMOGDSsfzznnnOUJy73qWu5Ll3vSp969e0/RcQAAAEDb8O677070mn222WaLIUOGlLeZZpqpDqOD+pGvAQAAANM6X2tzBUiT6/TTTy/7z1177bUx44wzjrn9o48+ig8++CDmnnvuMRVZufzzs88+W/aoq8mP09JLLz1FxwEAAAD/1Xnk0FjguWu+9mNEzFLpc4cOzc+N6Nat23j3TT/99OV9FlAoQIIJk68BAABA+8/Xvk7G1pr5WrstQJprrrnirbfeKnvR77bbbmNuP/vss8v73Ls+rbHGGuVJufjii8cEH6NGjYrLLrushCjLLbfcFB0HAAAA/Helk9YxS+XHykKHr9KhQ4dKjw3NQL4GAAAAjZCvVc/YWjNfa7cFSJtvvnlcccUVcfLJJ8drr71W9qt/8MEH49Zbb41tt902Vl555XJcz54940c/+lGceeaZ5YlbddVV45Zbbon+/fvHaaedFp06dZqi4wAAAICISy65pN5DiO7du5f3I0aMGO++2m0tV3UBxiZfAwAAgPq5pMHytXZbgJR70Z933nlx6qmnxm233VY6teadd944/PDDY5dddhnr2P32268sF3XppZeWYxdYYIGyxHTfvn0rHQcAAAC0jdVb0uDBg8e7b9CgQTHzzDOPCVGA8cnXAAAAoLnN1Yr5WofRk7OeEpWsvfbaMXDARzF3z23qPRQAAACmobc/vKK8f+bZ/vUeSlNcey+44IKliKKlLHbIZafPP//8uo0N+PrkawAAAM2dsc051yxxxx131HsoDW3tVsrXOk6l8QEAAABMdeutt17ZMurll18ec9sDDzwQr776amy44YZ1HRsAAAAANEu+1m63YAMAAADYa6+94tprr43ddtst9thjj7I3fXZr9enTJzbddNN6Dw8AAAAAmiJfswISAAAA0G716tUrLrnkklh88cXjjDPOiAsvvDDWWWedEpJ06dKl3sMDAAAAgKbI16yABAAAALRrCy20UJx77rn1HgYAAAAANG2+ZgUkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAABo3gKkm266KbbYYotYZpllYu21145TTz01RowYMd5xl112WfTt27cct8kmm8QNN9wwwceb3OMAAAAAoBHI1wAAAICmLkC64oor4qCDDooePXrE4YcfHquttlr8+c9/jl/+8pdjHdevX7849thjY7HFFosjjjgiZp999jjkkEPixhtvrHQcAAAAADQC+RoAAADQGjqMHj16dLRDH374Yayzzjqx3HLLlVCkU6dO5fYTTzwxLrjggrj99ttj3nnnjU8++STWWGONWGutteKUU04px4waNSp23nnnePvtt+OOO+4onzu5x02J7BgbOOCjmLvnNlPhGQAAAKCtevvDK8r7Z57tX++hAEyUfA0AAIC2nrHNOdcs5XqStq/droB02223xaeffhoHH3zwWMHFdtttFz/+8Y/jiy++KB/feeedMWzYsNh+++3HHNOxY8fYYYcdYuDAgfHYY49N0XEAAAAA0AjkawAAAEA0ewFS//79Y5ZZZok+ffqUj4cPH15CkQUXXDB+8pOflPfpqaeeKu9rx9UsueSSY90/uccBAAAAQCOQrwEAAADR7AVIr7/+eswxxxylc2rLLbeMZZddtiwXfdhhh5XOrZpBgwaVPey7des21ufPNtts5f2AAQOm6DgAAAAAaATyNQAAAKC1dI42ZvDgwZO8v3v37jHDDDOUPeWHDBkSe+65Z2y11Vaxzz77xKOPPhoXXnhhWdL5oosuig4dOsTQoUOja9eu4z1O7bbPPvusvJ/c46ZEhi5fjvq87EsIAABA8/hy1NCI6FDvYQBNSr4GAABAo2RsgwaNrPcwaK8FSN/97ncneX8GIbkv/ciRI0sAceCBB8Z+++1X7lt33XVjxhlnjDPOOCPuueeeWHPNNWP06NElKJmY2n2Te9yUmH766cvnzTbbLFP8uQAAALRfgwd/Hl26dKn3MIAmJV8DAACgEcjY2pc2V4B0/PHHT/L+JZZYoryvLeW89dZbj3X/ZpttVgKShx56qAQk2dGV+9ePq3ZbdnulyT1uSjzyyCNT/DkAAAAA8HXI1wAAAIBo9gKkcQOPiendu3e88MIL0atXr7Fun3XWWccs+ZzmnHPO+Pjjj0tHV8vKuOzuqj3OlBwHAAAAAG2ZfA0AAACY1jpGO9WnT5/y/qWXXhrr9rfeequ8n2uuucYcl8s/P/vss2MdV/t46aWXnqLjAAAAAKARyNcAAACAaPYCpI022ig6duwY55577li3X3TRRWVf+HXWWad8vMYaa5S94i+++OIxx4waNSouu+yymHvuuWO55ZabouMAAAAAoBHI1wAAAICG3YJtci266KKx++67R79+/eKzzz6L733ve/Hwww/HP/7xj9h5551jkUUWKcf17NkzfvSjH8WZZ55ZOrBWXXXVuOWWW6J///5x2mmnRadOnaboOAAAAABoBPI1AAAAoLV0GJ1pQDuVQ88OqksvvTTefPPNmGOOOWK77baLPfbYo3RptTzuL3/5SznuvffeiwUWWCB+/OMfR9++fcd7vMk5DgAAAAAagXwNAAAAiGYvQAIAAAAAAAAAAOqrY52/PgAAAAAAAAAA0I4pQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAqSpaPTo0fUeAgAAAAC0W/I1AAAAaB8UIE0FgwcPLu87dOhQ76EAAADQTvgjO8D/J18DAABgSsnX6qvDaD+BVnPbbbfFWWedFSNGjIju3bvHLrvsEmuttVbMPPPM9R4atLo33ngjbr755ph77rljvvnmi6WXXrreQ4LKzGcaiflMozGnaQbvvvtu9O7du97DAGgT5Gs0E+e6NBLzmUZjTtNIzGeagXytbVCA1EquvPLKOOmkk2KNNdaInj17xiuvvBL/+te/YvPNN49f/vKX0bVr13oPEVpFvmT8+c9/jrPPPju+8Y1vxKBBg0o34v777x9bb7119OrVqxyjQ5H2wHymkZjPNBpzmmbwwgsvxAknnBADBw6MLl26lD+w77zzzmXOAzQj+RrNwrkujcR8ptGY0zQS85lmIF9rWzrXewDtXb4of/7553HdddfFIossEoccckjMNddc5b5f/epX8b//+79loh911FH1Hiq0ipdeeikuuuii2GGHHWKLLbaITp06xQUXXBB//OMf47XXXosTTzzRiQrthvlMIzGfaTTmNI3uP//5T/zkJz+JeeaZJ9Zdd914++2347zzzounn346Dj300FhsscVi1KhR0bGjndOBxidfo9k416WRmM80GnOaRmI+0+jka22PAqSvKV+UMyB56qmn4qCDDirhSH483XTTxQEHHBBDhw6Nyy67LNZZZ51YbbXV6j1c+NpuuOGGGDZsWOy0007lxbwWBn7xxRdx9dVXx0orrRRbbrmlimnaBfOZRmI+02jMaRrd7bffHsOHDy9/ZF9++eXLbZdffnmcfvrp5Q/s+W/hCNAs5Gs0G+e6NBLzmUZjTtNIzGcanXyt7fFst4IPPvigLFH33HPPlY8zHMlKulwqeptttokFF1ywLB+dL+bQXmXwl/IEZPrppx+zh+bIkSPLbbvvvnusuOKKcfLJJ8fgwYOdqNCmmc80EvOZRmNO04gmtPP5Y489Fn369BkTjqRtt902dtlll3jiiSfirLPOmsajBKgv+RrNwLkujcR8ptGY0zQS85lGJF9rHxQgtYJ55503evToES+++GK8/vrrY/0C5GTPPTQzPMnloqG9+Nvf/lbe7rnnnjHBX8qTkC+//DIeeOCBsW5fdNFFY7vttitVpuecc065LYNCaAvMZxqJ+UyjMadpdB999FEJ/mrXiDlfs/twhhlmiEGDBsWnn35abq/9QX3TTTctK3yce+658eqrr9Z17ADTknyNRuRcl0ZiPtNozGkaiflMo5OvtR8KkFpJhiC5TPTjjz9ePs49NPMFPZf0+v73vx/LLbdc2U8T2roHH3ww1lprrTjzzDPj1FNPjb333jsOPvjg6N+/f7k/7xsyZEj5OE9Maicv6Tvf+U6sv/768de//jUGDBhQ5v+EqlFhWjGfaSTmM43GnKbRZeBx/PHHl1U7tthii9h3333jpZdeKnO1e/fuMcccc8S7775b9qpPnTv/d4f03HZo8803Lx2KZ599drlNCAg0C/kajcK5Lo3EfKbRmNM0EvOZRidfa38UILWSDTfcMOabb7645ppr4s033yy31fYTzCWiMyR5//3348Ybb6zzSGHi8sX6vPPOi9lnn70sSZcnHbm8+b333lte3N95551YaqmlyknJzTffXF7ga4FgyqXS11tvvfKCnxWlybKN1Iv5TCMxn2k05jSNbujQobH//vvHnXfeWebqsssuW1bt2GeffeKKK64ox2Sn4ccff1y6EPP4VAsBV1lllejbt2/84x//iJdfflkICDQN+RqNwLkujcR8ptGY0zQS85lGJ19rnxQgtZJcInq33XYrlab//Oc/x+yhWVvmKwOSrLh766236j1UmKjsMrz//vtLFWkub77wwgvHD37wgzjkkEPK3D3qqKPKcXvssUe8/fbb5YSltqRdyxfzxRdfPJ555pn44IMP6vr90Nyefvpp85mG4fWZRuM1mkaXYUheG+Z+8z/5yU/i17/+dVx44YUx00wzxe9+97t48skny/zN8OT6668vx9dCwAxCZpxxxlhzzTVj5plnjiuvvLLcJwQEmoF8jUbg+o1G4tqNRuM1mkbiNZpGJ19rnxQgtaJ8UV955ZXjggsuiEcffXSsLq3cS3OWWWaJDz/8sM6jhP8vq52zc7BW7Vmrep511lnL+xEjRpT3uUTdtttuW8K/rBLNaunsSswX60ceeWTM52YwmC/mK6ywQlnurvZ4MC1kdf9999031m15ImE+0x698MILY13w1c4nzGfaq1zB4LPPPhvzce1Cz5ym0dTOq1955ZWyL33O5+mmm678e/7554+DDjqo/HH96KOPLsfmH9mzSytX+sjz8pbLQX/ve98rXYy5DHrL3x+ARidfo72Rr9FI5Gs0GhkbjUS+RrOQr7VvCpBaUb5I/+IXv4iBAwfGn//853j++efHnMzksl+DBw+OeeaZp97DhFLlvMEGG5SK0XXWWScOP/zwUvmfFaPdunWLf//73+W43BczX6Dzto033jiWXnrpOP3008tJyX777Vfmdy7vmFXWqUuXLuV9nqRkFXX+RwDTKuw79thj47rrrisnyrWT7RlmmMF8pl25/fbby8Vgvj7n/tu//OUvy/zu2rVrWQrXfKa9ueWWW8oc3XHHHWPdddcty0Hn63TOaeccNIpasNFSzskMRh577LGxQsEMPXbYYYfSWXjxxReXkC9DlAxI7r777jHzOj8/V/hYbLHFSkCSvxsAzUK+RnshX6PRyNdoJDI2Gol8jWYgX2scCpBaWS7zlScy+eJ98MEHx1VXXVUm+0UXXRTzzjtvrL766vUeIk0sTzwyvDvssMPKvq8777xzbLXVVnHTTTfFgQceGHPOOWd885vfjH/961/x+uuvjze3t9xyy7Js46WXXhoLLLBACQQff/zxsszde++9V05Qnn322bIX59prrx3f+MY36va90nyV/+mJJ54Y06W14oorRu/evePhhx82n2kXbr311rIsbr4+77XXXrHJJpuUQDsvMHP53Lnnntt8pl3J899DDz20zNHNNtusLAWdAUnuRZ9zesEFF4yHHnrInKbduvbaa8tr9U477VTmbL6ODxkypNyX8zYDvly5I8/BM+zI5c0zKMmw8Nvf/nb84Q9/KJ1Xed2Y14p/+tOf4rbbbiufn+FK/g7kUtLZ2ZXsUQ80E/kabZl8jUYlX6NRyNhoJPI1Gp18rfF0rvcAGtF2220Xs802W/kPIDsGsoJ0rrnmiuOPPz7mm2++eg+PJjZo0KC44oorYo011oif/vSnMcccc5Tb8wX5hBNOiD/+8Y+x7777lresmM6OwqwQzRfzfJ/LNK600kqlmjQrrbOCOitG8wTo+9//fglXalXSucQjTG15wpFV+/mWXbK5j3EuKbrMMsuU+bjrrruWJRjNZ9r6PM4T5r///e9ludwDDjigvC6n3Lu4V69e5d/ZsZXhiflMe/DJJ5+UZZ2XXHLJcs6Rf4RJeSGYf5jZfvvty2v0z3/+c3Oadun888+Ps88+u7xOZ/dsrs6Rc32bbbaJI488MlZbbbVYZJFF4p577ildtwsttNCY1Tsy8MjthXIP++w8zNf9E088MQ455JDyx/Y8n8nthXIFhaFDh5b5n+xRDzQb+RptlXyNRiNfo1HI2Gg08jUanXytMVkBaSrJStGsKM2q6pz0119/fVn+C+oplynPSs984c5w5Isvvii353LRGerdddddpVo6T2bypOa1114r99f2fc2T9VVWWaW8UOey52mPPfaIv/3tb+UkJ/8TyLmf833VVVet43dKs6idaLz44otl7mYnQJ5s5N7GeZLdt2/fMi+zW9Z8pi3P47zIyyr+XLY/52Ztuduce9nJkrKiPztXLr/8cvOZNi/Di3xtzjmd4Uh2qqTsPMxAMJfxX3PNNWPRRRd1zkG7kl1SOS9z7i233HIl9MtQI8O8DEJyPp966qlj5mx2WN1///3ldyADjjw/STlv8/owu7oyUFx22WXjt7/9bencOvnkk+O4444rYWI+foaCAM1KvkZbJF+j0cjXaBQyNhqNfI1GJV9rbAqQpqKs1MulHHM5PGgLPvjgg/L+5ZdfLu9rS9VlOJJLK+aLdnYT7rbbbvGf//wnbrzxxnKCk2onNnmiky/iLZeoy6rqn/3sZ6WyNCuts1MGpoXaPMy96IcNG1aWZ8x9jfPkJKuaZ5555nIynktHm8+09Q7anGu59G1tadCcs1tssUXpTslOw9ynfv/99y9z+4YbbjCfadNyLua5RQbWLfeUz2Wd8/YMQHr06BE/+tGPyjmHOU17UFviefjw4WUuZ5dVnkfX5myGGRn85ZYs+Vqdf4TMLSv++te/lg6uWgiYczqDwwxFPvroo9J9mLIr8fTTTy9Ln+djZHdXbucC0Ozka7Q18jUajXyNRiJjo5HI12hE8rXGpwAJmkhWOueSihnc1Sr/80U6q6TfeeedEpikXOouK0wvvPDCuOOOO8Y6scnPyxf12klM7XNqjwXTUm2pxAz9MgzJE+X99tuvVPpn5XSesOTJS87nCy64wHymzcqLvvzDSnbR5utxbjORHYe5NPT0009flvffc889SxCYIfZf/vIX85k2LTsJc0uKXP4596Tv379/PPbYY3HuueeW0OOwww6L3/zmN6VjPAPAPOe4/fbby+ea07QlzzzzTOnAyvlYm3f5R8dczv/pp58eM2dzruZ8zu2C8n12W3Xt2jX22WefeOONN8ofbzIIT7VAJbuxMhTP41ItDOzdu3cJVlrOeQCg7ZCv0WjkazQSGRuNRL5Go5CvNRcFSNBE8sU3l1bMJUaz8r/mlVdeKdWheTKTL/B5XHYC5AVnnqDfdttt5bh33303rr766hKw5N6xUG+1E4lcXjcvLPOEIyujsyI6A5Lcrz5PULIDIDsBzjzzTPOZNivDvFxKNN9ynv7P//xPqdTPC8fcl3u++eYry4Zm1+Hss88ev//9781n2rS99967XBzm6/GPf/zjsi99ztGddtqpdKfkOclBBx1UlvPP1+jc7zuXy03mNG1Fbvnz97//vXTM1uS2FNkdnl1aGWinXPq81mWVXVUPP/xweY1effXVSwiYAUku758y9M7AJUPBDMHz3DvPaexBDwDtg3yNRiNfo9HI2Ggk8jUagXytuSj5giaTL+Ytl7nLStPHH3+8vCgvtdRS5fbs2MoTlRNOOCHOOOOMOOCAA2L++eePmWaaqew3u++++8Yss8zihZy6q82/PDnJcK9W1Z9zNE9KjjnmmBIGZkDy61//2nymTcvw+pJLLomjjjqqXDzusMMOY7oBVl555dh9993jiCOOKCfU55xzTvm3+UxbloFeBiAbbbRR6cj61re+VTpdsvukduF57LHHluVwM/jLTq4DDzzQnKZNqM253I8+w49c5jk7qjKczs6pzTbbrIR6GWhnR1a+XudxeS6Sy5vfcsst5bwjX9sPP/zwssT/eeedV7q0cm/67Dy87777yh918vMBgPZFvkYjka/RaGRsNBL5Gu2ZfK05KUCCJlY76b7rrrtKcLLMMsuMqRpNq666aiy//PJx6aWXxuuvv15eyPPEZrnllqvruGFcn332WSywwALl31lBfeqpp5b5/cUXX5T9vHv27FlOanKOZ4X0q6++aj7T5uSe3dtss03pjO3WrVuZ17nsec7jPBnPOZzzPDsPt95667LseVb7m8+0dY888kjpZMmQJMORvIjMzto8z8jQJM8zMujLcDDfcpl/c5p6y3Dk/fffj3/+85/lNTlfa3Op/jyvSBmQ5Ny97rrryvlFLfhLuerB97///dJZe/fdd5fu8fyjzU033VRClRtuuKEEMBtvvHH87Gc/q+N3CQC0BvkajUK+RqOQsdGI5Gu0R/K15qQACZpcVok+9NBD5YV90UUXLbfliUv+J5ChyFprrVU6AlRF05blRWTO1+zEuv/++8syu1tuuWU5Gc8AcO21146FF164BIG5tze0RRmAbLjhhqViP+dz7umde3znhWTKjq3sWsnq/7wtT9jNZ9qDvMhMw4cPH2t5/+y8yuX9c0uK3KpirrnmKucc0FZkOJLzN0OMDO8yDMlziiWWWCK+8Y1vxM4771y6sPJ8Oc89an+cydfzfP3OgGTAgAFjAvA8T8lgJfelz9fzvA0AaAzyNRqBfI1GIWOjEcnXaK/ka83nv//bAk3rP//5T1kSurb/ay61m9Wjhx56aNlPNl/UhSO0ZbU9YfMkJveoP/fcc+PII48se8TmUqOPPfZY2ec474O2Lvc93mWXXWLIkCFlOdJXXnllTDiSr9f5cS3MhvYiu1PywjFfjz/44IPy79yf+/nnn48HH3wwVlxxxbG6W6CtnF9cfPHFJcTIPeZzufI8L86urJRbUGTYsdhii8Vf/vKXeOKJJ8b6/GWXXbasepDdhrXHS7nE9JJLLikcAYAGI1+jvZOv0WhkbDQa+RrtkXytOVkBCZp838033nijvJ977rnLEo7nn39+3HHHHaWqNPf4zmppaMvywjE7sd56662y1GhWTNfk0os5p4cNG1bXMcLkytfj7NDKECSXic6T8dynPuUyo9llmPMa2pO8gNx0003jz3/+c+lM2WSTTUrXSy51nh222VFb27YC2tL5xa677jrmDyzZgfW///u/5Tw5O7LyLYO9I444Inbaaafo169fzDbbbGOCj+wQz3AkO2trjwcANB75Go1CvkajkbHRaORrtEfytebUYXRtjTagKeX+r1dddVWpnn700UfLXt5HHXXUmI4taC9qex6PGwLmyUnu8Q3tTXZn5ZKkb775ZlkKOqv6jz766NJ9CO1NLpv785//vFw05gVndq7MMcccZU5nuA3twb///e/Ye++9Y+WVVy5LQ3ft2rXcnuFfdohnOJJhSZ5/XHvttfHJJ5/EH//4x/L6DQA0NvkajUK+RiOSsdEo5Gs0Avla41OABE0uu1d++9vfRo8ePcrSd/Y6Bmg7MuAbOnRoDBo0KJZeeul6Dwe+lgxGBg4cWJaJzn+vssoq9R4STJbaH13S4YcfXrZTye7wWvdsuvnmm+P0008vczw7DhdYYIH49a9/XfazBwAan3wNoG2TsdEo5Gu0V/K15qEACZrcv/71r7Kn5u677x5dunSp93AAAKDN+fLLL0vwkVtSbLfddqXrKpfxb7mdypAhQ+Kjjz4qIWDuUQ8ANA/5GgAATJp8rTkoQIIm17LiFAAAmPR2FOecc06cffbZseeee8bBBx9c72EBAG2AfA0AAL6afK3x/f/NfIGmJBwBAIDJl8HIN7/5zbj00kujf//+9R4OANAGyNcAAGDyydcalwIkAAAA+ArZnZVLRee2KjvttFPZh75nz571HhYAAAAAtAvytcZnCzYAAAAAAAAAAKAyKyABAADAFNDHAwAAAADVydcakxWQAAAAAAAAAACAyqyABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAfC0HHnhgLLbYYnH44YdP8rh+/fqV4374wx9Os7EBAAAAQHsgYwMA2rsOo0ePHl3vQQAA7degQYNiww03jE8//TQuvvjiWHnllcc75u23346NN944OnbsGP/4xz9izjnnrMtYAQAAAKAtkrEBAO2dFZAAgK9l9tlnj0MPPTSypvmYY46Jzz//fLxjjjvuuBg2bFg5TjACAAAAAGOTsQEA7Z0CJADga9tmm21ipZVWipdeeqksA93SzTffHHfddVesuuqqse2229ZtjAAAAADQlsnYAID2zBZsAECrePnll2OzzTYrS0DfcMMNMc8885QlozfYYIMYMmRIXH/99THvvPPWe5gAAAAA0GbJ2ACA9soKSABAq1h44YVj7733juHDh8fvfve7cttZZ51V9q8/+OCDBSMAAAAA8BVkbABAe2UFJACg1YwcObJ0aGWn1gknnBBHH310LLXUUnHZZZeVri0AAAAAYNJkbABAe6QACQBoVf37948dd9wx8hRj+umnj2uuuSYWWmiheg8LAAAAANoNGRsA0N4okwYAWtWKK64Ym266afn3nnvuKRgBAAAAgCkkYwMA2hsFSABAq5tnnnnKe3vSAwAAAEA1MjYAoD1RgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlHUaPHj26+qcDAAAAAAAAAADNzApIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAIA2bPTo0fUeAgAAAAC0W/I1AJg2Ok+jrwNAE/nss8/ixhtvjOuvvz5effXVeP/992PmmWeOpZdeOrbeeutYZ511vvbXWGyxxaJ79+7x2GOPlY/feuutWHvtteOb3/xm/OMf/5isz09HHXVU7LjjjhM9buedd45///vfcdVVV5Xx19P//M//xNVXXx2///3vo2/fvtEe3HXXXXHhhRfG008/XebFHHPMUX5O++yzT/Ts2XOsY2s/w4nZfPPN4ze/+c0kv97EHqNTp07RtWvXmGuuueLb3/527LLLLjHvvPOOd9xaa60Vb7/9djz44IPRq1evqKePP/44Tj311Pjud78b66677kTnPgAAANB45GtTR3vK12rP21e56KKLYpVVVin/lq+NTb4GANOWAiQAWtUzzzwTP/nJT+KNN96IGWecsVzMLbPMMuWi8+677y5vP/jBD+K3v/1tdOxY/4X4TjnllPj+979fLpxpXeecc06cfvrp0blz5xIuZcHRU089FRdccEHcfvvt8be//S1mm222Mcc/++yz5X2fPn1ioYUWGu/xll9++cn+2hkgtAxKssspA4fnnnuuhDIZeJ188smtEtZNLRkG/f3vfy+BDgAAANA85Guk1VZbLXr37j3RIqEsnsn50bIISL42NvkaAExbCpAAaDUvv/xy7LDDDqVDK1e42WuvvcpFcE2ugnPAAQfEddddV24/+uijo96GDh1axnHuuefWeygN5cUXX4wzzjgjZppppjj//PPHdLeNGDEijjjiiNJF9+tf/7oUKI0bkOy7775jdSRVkcVOv/vd78a7/csvv4w//elPpcvtpz/9aSmCWmKJJcbcn8VRn3/+efTo0SPa6tLQ2f3YFsJFAAAAoPXJ16jJjGxCRo4cGVtttVX590knnTRW4Zd8bWzyNQCYtvzvCkCrXcz97Gc/K+HIgQceGAcffPBY4Uit8yaDiFwR5/LLLy9dXPU03XTTlQvpf/7zn3HNNdfUdSyN5tprr41Ro0aVkKzl0trTTz99/OpXvyrPfa6ClIHJuAFJy8CiteVS0T/+8Y/LEtbDhw8vSzC3NN9888XCCy9cjmurcnwLLrhgvYcBAAAAtDL5GpPjtNNOi+effz623Xbb8bZKk69NHvkaAEwdCpAAaBUPP/xwWR56jjnmKEUnk7q4y33qv/e978WgQYPGuu+DDz4oq+LkPuFLLbVU2Zv78MMPL8tLT62A5Be/+EX594knnhjvv//+ZO8Vn0tf33zzzePd169fv3LfmWeeOd7xb775Zlx44YVlf/ksyllvvfXi4osvLsfk187jcr/2b33rW7HHHnvECy+8MMGvn4U9+XVyeeN8nI022ij+8pe/lM6iCQVXuRxyPue5xPIKK6wQO+20Uyn+mdj39eijj8aee+5ZHnv11VePe+65p9yfoULen8sWT85zm8euuOKK4903wwwzlK3XcrwfffTRmNtz+ebsjJpnnnliastlzHPP+gzHBg4cOOb2nHs57pyLteWs8+MM/6688soyJ5dbbrny/LTs8suOr/XXX788Z6uuumoJCTMImpAMEf/4xz/GJptsUh5rjTXWKMe3/Hnn17z66qvHjDU/fuihh8bcN6HlsmvLs+eS0vn7kwFU/j6NO6/zcfIxMqzKz8nf15VWWqk85i677DLm60xobrSc1xPy7rvvloAr5/GE5mP+zi+55JKx6aabTvJxAAAAoBnJ1/5LvjbpFbJy+7NvfOMbceihh453v3xNvgYA9aQACYBWcdNNN5X3edHepUuXSR57zDHHlAvEvCiryfBgiy22KBfQ2cG15pprliKVvBjP22vdO60tL1Jzj/oshMmVeaamY489tuw7niHSyiuvXC6+jz/++PJcbLPNNnHfffeVgp1ZZ5017r///thxxx3HXKi3lFub5fLKGTRk0JQXpb/97W/LRXbLZYXz3xlEZAj0yiuvlHAk3/7zn//EfvvtF2efffYEx5mhVIYV+dj5s8gL2imVF+q5FHjLn3HNe++9V0KJXA0pO+RS7h8/YMCAmH/++csSzhtvvHEsu+yy5WeTz9knn3wSrSm3hsvnIk0oEBjXE088EUcddVTpjFpmmWVigQUWKLd/+OGHsd1228Uf/vCH0vGVgVLed+utt5ZQKn+mLeX3kcuoZziRn5vHzznnnHHLLbeU4/NnU5uX8847b/l3Pof5cf68J/X7l3MoQ7v8vAx6OnToUH6fNt9883j11VfH+5ynnnqqjD23y8tAI4OpfC4ynMuQrIrevXvHaqutVn6fxv3eU269l8t0b7bZZpUeHwAAABqZfO2rNVO+NiE55i+++KJkb5lvtSRfk68BQL11rvcAAGgMtQuwltttTYnsgMmilFxaeu+99y4XdykDkrxgz9tvuOGGqbJ0bwY22WGWF5fZuZQhz9Twr3/9Ky655JIxqwJdeumlJZTJi+XsyjrnnHPKstoZIuy+++7x73//u1w4b7/99uM91/k5G2644ZiCnuysufPOO8vWZ7WLz1yG+/rrry+dNxmGZPBSC6N222230m2TF8bjFgnlRXxeyObx2Q1W2w89Q5jsLpp99tm/1vOQXzfDmww/sksu1QKwDAgynMnnIy+2n3zyyTj//PNLl9hll102pmCpNSy00ELxwAMPTDA8GFcuZ77//vvHAQccUD7O5yUdd9xxpbMqf0ZHHHHEmHDw3nvvLUtR57y+7bbbxgRCp5xySumKym6uk08+uRRhtZznRx55ZPkZ/u53vytdUfmzys647OqbmAzIfv7zn5d/5xzKcCRlEJGPk917hxxySPkatd+rlAHGuOP+5S9/WTrRMlipBUgpPz87uSbn+c9AMx87C9DyZ9xSfm/5O5yBDwAAADA2+dpXa+Z8LYtd7r777ph77rlL/jIu+Zp8DQDqzQpIALSK2nLPtYvwKZHdII8//njpWtpnn33GuojLi61c6jYvYvOic2rIjqm8kK11UQ0ZMmSqfJ28KGy5JdkGG2ww5t/ZSZXhSMquqNr+7XlhPq68rxaOpOzcyQvrlBe3NRks5HOZF+Itfy7ZwZMX41kElBfC48px1Y6vhSNprrnmKkt8j9tdNSXyovlvf/tbWZ45O8pqMhRJubxwBgq5BHa+5b9zWebsMMtuttZUe75bbgM3KdkxV5PPyzvvvFM6o7KrLLvgWnYmZudVdj9lF1Z+z2nEiBElIOjevXuccMIJY8KR2jzPzqa8b3LHU5NBWD52Lv1dC0dSBhGHHXZYeU4zlMmAbtyt8HIetBx37XvM5bxbylAsf/a9evX6yvFkwDjzzDOXwO7TTz8dc3sGSflzzp/npLrNAAAAoFnJ175aM+drta+TW5fl9zcu+Zp8DQDqTQESAK2idtGb3UVTKjuRUnYLTUheULU8bmrIi9nsCsqgJ5cknhrG7V6rdbtkiLH44ouPdV8thMgL33HlnvTjyueuW7duZSnj3Bs8u3Zee+21EmrUlhpuKfcxz4v87Ewb16KLLhpTQ3Z95QV5ys60vOCuyS6k7I7LUCcDq5rcs/7EE08swcGNN95YAofWUpurLQO5icnlyscNB/K5y06t7GSqreQ0qXmb3WbZ4ZYhWS2caSm/97/+9a8xyyyzTNH38cgjj5T366233nj35fdW6+6qHVeTe863DGlSLbgYNmxYVJWPmSFbLpmdAVdNhkPJ8tAAAAAwYfK1r9as+VpuI5fZWOZGW2655QSPka/J1wCg3mzBBkCryAvI559/foJ7qn+V7HRJZ511VnmbmLzon1ryQjKX+910003jqquuKnukZ4jQmvJif9yvmTLYaNkl0/K+CclllseVYUd20bz++uslRKg9V2+//Xa5EJ6Y/HlloNLyAj+7a1rbhRdeWIKn7ArLvd7zeW4pu4kmFOSk/L769OlTAons8Gmtn8vHH388wZ/LhEzoOanN26uvvrq8TUztZzF48ODyPvekb021x53QvGh5e+24mgl12tWWYM+f09eRHWe1Jco333zzEiRlAVp+zVr3IQAAADA2+dpXa9Z8LVfCya+RhTC5sviEyNeqk68BQOtQgARAq1hyySXLvtS5x/jEunBq8phcrjaX0c3la2v7fWeny8Qu8tJSSy0VU9MCCyxQ9iHPfb1zr+68oJtSuS/4xNQuPr+ucbtqJtQtVxtHBlerrrrqV3YqtQxIWi4L/XXlhXbubZ/dRzmuXOY5L5inVG3J6uxwai0Z6KVvfvObX3nshJ6T2rzN7rpJPUZtTteOb21fFWbUvu6UhHBf13LLLRcLLbRQ+T1/7733ypLTGShts802Xzl/AQAAoFnJ1/5Lvja+O+64o7xvuW3clJKvTZx8DQBahwIkAFrF97///fjzn/8c99xzT4wcOXK8i7GWLr300rjmmmvKvvO5/G9exNf2ts49zOtpjz32KPuOP/3003HaaadN8JjaheWELnin1v72LeUy1hksjRtyZCdQdntlx1HtOc3lhjPwqYd8fn7+85+XPdpziefTTz891lhjjQkee/bZZ5fuq4MOOmisrdlqstMs9e7du1XGlt1KuW97Bh8rr7xypceoPce55HOu6jS5Ic/EOg1zKem8LzvQpmQP9+xgy9+lt956a4LPT97e8utPK1lodsopp5QOvdyfPo278hUAAADw/8nX/ku+FuON68EHHyzbzU0qx5KvydcAoN5atwQbgKa1/PLLl66MgQMHltVuJuapp54qAUTafvvtx1xgpnvvvXeCn5MX+HmxlcvNTm3ZRXXCCSeUjqWLL744XnnllfGOmWGGGcr7999/f7z7Hn/88ak+xvvvv3+82/75z3+WPcHzuczvYZ555il7vec+9W+++eZ4x2cAlHuaH3rooVNtnPk8ZvFRhjQXXHDBRIuPat1St956a9xyyy3j3ffSSy+VMCNDg0ktdz0lMszL8CbHVDV0qc3bDIByCexxXXLJJbHJJpuM+X3IDsOcV/3795/gHvBnnnlm/OxnP4uPPvpoijqoauNouR98y+6t2u1Vg6CqMgzJuXj77bfHXXfdVZYAX2mllabpGAAAAKA9ka/9l3xt/GwsVy1aZpllJrmyknxNvgYA9aYACYBWkRdz2aWSF4DZ2XTGGWfE0KFDxzrm0Ucfjf322y9GjBgRW2+9dbloTtmRkkvs5oXmOeecM1bnU174Z/FKdu8svfTS0+R7ySV/s1Msx5HL245r0UUXLe+vvPLKsZYs/vvf/166bKa2yy67rDxXLbuXcmuztMsuu4y5faeddioX7hmCZFdXTe5hn0tg5372GaRMrgEDBpSlfienCy079TJgyk698847L5ZddtlJHp/zIZ177rllCfGWYz3iiCPKktd77bVXWf7668jno1+/fmVsuSrT1wmI5p9//vje975XQrRf//rXpTOxZQD1+9//vnQm5XxKM844YwlMPv300zj22GPHClWyUCvnTgZAiyyySLmt1uX4Vc93LrvctWvXEshkN1RNzt/skHr22WfL4+YS7FXl/Mmf/QcffDDZn5PB02qrrVaCz+wS22yzzSp/fQAAAGgG8jX52oRkzlTbom9S5GvyNQCoN1uwAdBq+vTpUy5wMwTJJX8vvPDC0pWSK+Bkp1CGHGnjjTcea0ndDFfyQm633XYr23Rl8JBLIGcH1GOPPVaOOeaYY8oe8tNKfg/Z2ZIXhePKvdbz+8uuovXXX790pmXYkN9fXgBP7U6yDBtyKevsuMlusdwHPDt+dt1117FWGcpjHnnkkbj77rujb9++JZDK/cHztrxI/9a3vhX77LPPZH/d3E4tL+JzWe8ttthiksdmt1HKrqqcBxOT4UevXr1i9dVXL+HORRddFNttt13pOpppppnK18uAIJ/zluHPV8lgJbudajJg+fjjj0twkR1Q+bxlgDGh5ainRAZTGUT99a9/LZ1IOd8zGMwurFqokwFgy+cwA6BcIv2hhx4qP5PsaszbMrDJ34Oa2nzP2zJk2H333Usn5LjmnHPO0lV42GGHxb777luKvfK27Gp74403SqdehpaT6pD7KqeeempcffXVsf/++8cBBxww2Z+X8yTHnr/jlocGAACAryZfk69NbOu0r9pSTL4mXwOAelOABECryovBG2+8sXTA5FLGeeGXHVm5R/laa60V2267bay55prjfV52kORF45/+9KdyQZ8r6OTnZAfMD3/4w1hllVWm6feR3TF58bvjjjuOtxd9dtrkBXFedObFX441x/+HP/yh3De1A5Lsrsrn6KqrripBQF7kZziSy2i3lMvz5pguv/zycnH7xBNPlIvk+eabr1ys5hLdGZi0tgwgnnzyyTFdXfk2MbknfRYgpV/84hclbMpOo1xKPJc3XmihhcqcyS6kyV0yOWVg1PLnkJ+boUh+71tttVUJW1pjv/t8jPw55CpPucR1zvmcAxnw5NdYd911xzo+w8L8eWSQmEulZ0dVjisDrAMPPHCswCaDonwecnnlnGff+c53JhiQpI022qh8b7n09cMPP1y6suaaa67yu5PdhrXneFqrjTefj1wiGgAAAPhq8jX5Wku1FXOymOiryNfkawBQTx1G59kHAAC0slzePTv6soNsyy23rPdwAAAAAKBdka8B0J5UXyuwQb355ptl+cNcNjPfcrnFKdmPFQCgmWVHZsrl1bNzrUePHmWJbwAAmod8DQCgOvkaAO2VLdhayGU2c4nNkSNHliUVc2/Zfv36lT2Ic7/kXC4UAICJyyWwTz755HI+lQ4//PDo1q1bvYcFAMA0Il8DAPh65GsAtFcKkMZZxvCdd94pe9rW9ohddtllY/fddy/7Juf+uAAATNyiiy4a008/fcwwwwyxww47lD8+AQDQPORrAABfj3wNgPaqw+jRo0fXexBtxTrrrBPzzDNPCUpa6tu3b/Tu3TsuvPDCuo0NAAAAANo6+RoAAAA0p471HkBb8fHHH5f96fv06TPefXnb008/XZdxAQAAAEB7IF8DAACA5qUA6f+8++675X12Yo1rttlmiyFDhpQ3AAAAAGB88jUAAABoXp3rPYC2YujQoeV9t27dxrsv91lNw4YNi5lmmmmyH3OllVaKkSNHloAFAACA5jF48ODo0qVLPPLII/UeCsA0I18DAACgNcnY2hcFSP9n9OjRX3lMhw4dpugxR4wYESNGfh6vDvroa4wMAACA9qbzyJHx2cjP6z0MgGlKvgYAAEBrZ2yTc61J26AA6f907959TKgxrtptM8444xQ95uyzz17CkdcW36yVRgkAAEB7sMBz19R7CADTnHwNAACA1s7Y5p19lnoPg8nUcXIPbHRzzTXXmCW8xjVo0KCYeeaZx4QoAAAAAMDY5GsAAADQvBQg/Z8MQOaZZ554+umnx7vvmWeeiaWWWqou4wIAAACA9kC+BgAAAM1LAVIL6623Xjz44IPx8ssvj7ntgQceiFdffTU23HDDuo4NAAAAANo6+RoAAAA0p871HkBbstdee8W1114bu+22W+yxxx5lb/rzzjsv+vTpE5tuumm9hwcAAAAAbZp8DQAAAJqTFZBa6NWrV1xyySWx+OKLxxlnnBEXXnhhrLPOOiUk6dKlS72HBwAAAABtmnwNAAAAmpMVkMax0EILxbnnnlvvYQAAAABAuyRfAwAAgOZjBSQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKhMARIAAAAAAAAAAFCZAiQAAAAAAAAAAKAyBUgAAAAAAAAAAEBlCpAAAAAAAAAAAIDKFCABAAAAAAAAAACVKUACAAAAAAAAAAAqU4AEAAAAAAAAAABUpgAJAAAAAAAAAACoTAESAAAAAAAAAABQmQIkAAAAAAAAAACgMgVIAAAAAAAAAABAZQqQAAAAAAAAAACAyhQgAQAAAAAAAAAAlSlAAgAAAAAAAAAAKlOABAAAAAAAAAAAVKYACQAAAAAAAAAAqEwBEgAAAAAAAAAAUJkCJAAAAAAAAAAAoDIFSAAAAAAAAAAAQGUKkAAAAAAAAAAAgMoUIAEAAAAAAAAAAJUpQAIAAAAAAAAAACpTgAQAAAAAAAAAAFSmAAkAAAAAAAAAAKisc/VPBQAAAKi/rbbaKp588snxbl9//fXjjDPOqMuYAAAAAKCZ8jUFSAAAAEC7NXr06Hj55ZdjnXXWifXWW2+s++aee+66jQsAAAAAmilfU4AEAAAAtFtvvfVWDBs2LNZee+3YdNNN6z0cAAAAAGjKfK1jq44KAAAAYBp66aWXyvuFF1643kMBAAAAgKbN1xqmAOmNN96IZZZZJh566KEJ3n/ZZZdF3759yzGbbLJJ3HDDDV/rOAAAAKD+XnzxxbECkuzWAqqRrwEAAEDzebGV8rWG2ILtk08+if322y9GjBgxwfv79esXJ510Ugk+dtttt7jtttvikEMOiQ4dOsSGG244xccBAABAs9tpp51i4MCBrfJYc845Z1xyySWVA5IZZpghTjzxxLjxxhtLQDLvvPPGwQcfHBtttFGrjA+agXwNAAAA2m++9nUyttbK19p9AdLLL78c+++/f7zyyisTDU/OOuus2HjjjeOUU04pt22zzTax8847lzBk/fXXj06dOk32cQAAAECUcOStt96OTh1n+FqP8+WooV97ieihQ4fGkCFDyvV7Xt9fdNFFpeDh888/j8022+xrPT40A/kaAAAAtN987etmbK2Vr7XrAqSrr746jjzyyJhpppli6623jiuvvHK8Y+68885SnbX99tuPua1jx46xww47lCfrsccei5VWWmmyjwMAAAD+K8ORuXtu87Ue4+0Pr/han5/FDaNGjYodd9xxzG3ZmZUFECeffHLZ/knBA0ycfA0AAADad772dTO21srXOkY79vzzz5dv+vrrr48VVlhhgsc89dRT5X2fPn3Gun3JJZcc6/7JPQ4AAABoO7LQoWU4krp27RqbbrppvPfee6WDC5g4+RoAAAA0t+1bKV9r1ysgZedUly5dJnnMoEGDokePHtGtW7exbp9tttnK+wEDBkzRcQAAAEDb16tXr/I+V2MBJk6+BgAAALRGvtbmCpAGDx48yfu7d+8eM8zw3/3vviocSblPXVZmjat222effTZFxwEAAABtw7vvvht77LFHbLDBBrH//v+PvTsBs7os+wd+n5lh30FANkVREZDFHdwwVzK3VFyzTMt81fdNfUvLLLMsyxYr7a3+ZosLuZThguWCaWqIiLggyOIGAsq+78z5X7/fEXQEhuHAzDkz8/lc11wHznnmnDuuy1/n3Of7PPelFR57++2309uuXbsWqDooHP01AAAAoKb7a0UXQDrkkEMqffyiiy6Kyy+/vMrPl81mI5PJbPbx9Y9VdR0AAABQHDp27BiLFy+O++67L84777xo3rz5hlNW7r///jjwwAM3nLwC9Yn+GgAAAFDT/bWiCyBdf/31lT7eq1evrXq+ZEfXypUrN7p//X3rd3tVdR0AAABQPK699tq45JJL4swzz4yhQ4emJ7DcddddUVZWlj4G9ZH+GgAAAFDT/bWiCyAl/2O2p06dOsWiRYti9erVFY6UTmbSr09zbc06AAAAoHgcddRR8etf/zp+97vfxU9/+tN01NMBBxwQV1xxRfTo0aPQ5UFB6K8BAAAANd1fK7oA0vbWp0+f9PjniRMnRv/+/Tfcn/w90bdv361aBwAAABRfkyT5AaqH/hoAAADUbUdth/5aSdRxgwcPjkaNGsUdd9yx4b7y8vIYNmxYdOnSJQYMGLBV6wAAAACgPtFfAwAAAKK+n4DUpk2buPDCC+Pmm29Od2ANHDgwHn300Rg7dmzcdNNNUVpaulXrAAAAAKA+0V8DAAAAor4HkBKXXHJJNGnSJO666654/PHHo3v37vGLX/wihgwZktc6AAAAAKhP9NcAAACAymSyyXYkqsWRRx4Zb89eGO/seXKhSwEAAKAGdX9jeHr71mtjoy5/5p01c2F0aXP6Nj3PjAX3RqfOrWPkyJHbrTag7tBfAwAAqN89tl061N2+0ZHbqb9WLD22koK9MgAAAAAAAAAAUOsJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASRgi7Ll6yI7+q+RnTq60KUAtUj2jWciO/aByGbLC10KUEtkZ02O7DO3R3bVskKXAgAA2132g6mR/fefI7tyaaFLAWqJ7LKFkX36j5GdO63QpQC1RHbd2sg+f29k33qx0KUA9ZAAErBlr/wzYvqrES8/kn4xCLAl2emvRYx/POLtsRET/lXocoBaILt4TsTo+yI+mJreJgFoAACoK7JL50U8f2/E7Dcjnr/H+11gi7Lr1kSM+kvEnLcjRt0d2RWLC10SUBu8PCLivfERLz0U2Q/eLHQ1QD0jgARUKvvOuIg3R0cM+EzEjrtHvPDXXMMEYDOyC9+PeHF4RLd+EXsdFTHx6cjOmFDosoAill2zMtdUbdoy4qCzI+a8EzH+iUKXBQAA20V27aqI//wlolGziIPPiZg3PeLVfxa6LKCIZbPZiLEPRiyZG3HI5yNKSnIhpHVrC10aUMTSU4+STcH7nBjRYdfcJr9lCwpdFlCPCCABm5WdPyNNSEf3fSJ6HBBxwKm5Rsl//pJrnAB8Qnb18lyIoEW7iH1PjOh5aESXPhFj7s+dbgLwCemYxhf+FpGMoRh0dmQ67xnR75iIyc9FdtqrhS4PAAC2PUQwZnjE8oURB50VmU49IwYcFzF1dG7jH8CmTH0+YtorEfueFJkdd4sYdFZEsulv3MO56wrAJ6SjGseNSL/Py+y6X8TAoRENGqX9+uza1YUuD6gnBJCATUpn0SchgtY7Rux9fGQymcg0bJI2StKGyZjhPugAG4cIkvFJyUkmg86KTFnD9NoR+58c0bR1xH+G5U45Afi4CU9FJCNeDzg1Mkl4MbHboIid+keMfSCyC2cVukIAAMjfpGciZrwesf8pkWnZIXffrvvnNvwlo1GSDYAAH5Od/VbEq49G7H5QZHbql96XadslYp8TIt55KSI54QTgY9IRjc/fHZFcK/oPSe/LNGyaCy8umZeeqOY7PaAmCCABG0ln0D9/T0R5ecSgMyNTWrbhsbRRsv8pucZJ0kABWO+1JyI+eCviwNMj06zNhrszZY1y4cVVy3JjHJOgEkDynmPmxIiJT0X0+VRuJ/iH0vBi0lhtsUPu5MVVywtaJwAA5CObBO3Hj4zYc3BkuvSu+H53789EtOqYO5Ug2QgIkFw3li2MeP7eiPbdI/oeXeGxTPe9I3ocGPHyI5Gd+27BagSKSzqacdTdEZmSiEFnRKbkY9/pJYcM7HdyxPRXI6b8p6B1AvWDABKwsVf+mZtFn7xRadJyo4fThsmeg9MGStpIAeq97PTXIiY/m45NynTssdHjmebtIg4cGjFrSsSEfxWkRqC4pGMZX7g/onOviD0P2+jx5BS1dJdWckT06HtzAWkAAKglskvnpZtwYsfd08D9J2VKG+Q26yQbAJ+/x/tdILLr1uSmEiSfhw8cGpmS0o0XJSebtOsaMeqe3IknAC+PiEhOEB94RmQat9jo4Uy3vhF7HBzx6mOR/eDNgpQI1B8CSEAF6ez5N0ens+gzO+y8+YVJ4yRpoCSnmSQNFaDeyibz518cHtGtX3o09OZkkmvGXkdGTHw6sjMm1GiNQHFJxzEmTdWmLXOjKJIdWpuQadY6YuDpEXPeiRj/RI3XCQAA+ciuXZWe5BmNmuVGDW/u/W6y8W/QGbmNgK/+s8brBIpHOhpp7IMRS+am4cRMcv3YhDSUNPCMiJKS9MST9OQToN7KJiMZ3x4bsfcJkWnXbfMLkxPVOuwaMfq+yC5bUJMlAvWMABKwQTpz/qWHcjPok1n0lUgbJwecmmukJKNRksYKUO9kVy/PhQhatIvY98TcMfKV6XloRJc+EWPuz51+AtQ76RjGF/4WkYyZGHR2ZBo0qnR9JmmO9DsmYvJzkZ32ao3VCQAAeYcIxgyPWL4wFyJo2KTS9ekGwAHHRUwdndsYCNRPU5+PmPZKxL4nRaZ1p0qXZho3z50YnGwKHPdw7roD1DvZudMixo2I6HFAZHbZZ8vf6Q0cGpH04ZLxr8mJ4wDVQAAJSKWz5pMQQTIPdu/jtxwiSN6wJA2U5KjopKEyZrgPOlAfQwSj74tITjIZdFZuXNIWpNeW/U+OaNo64j/DcqegAPXLhKcikhGuyU7wJLxYFbsNitipf8TYByKbHCkNAADFatIzETNez5302bJD1X4n2QiYbAh86aHcBkGgXsnOfivi1UfTk8UzO/Wr0u9k2naJ2OeEiHdeikhOQAHqlXQE4/N3RyTXgmQ0YxVkGjbNhReXzEtPXPOdHlAdBJCA3Iz55+/JzZwfdGZkSsuq/LtpI2X/U3KNlaTBAtQfrz0R8cFbEQeeHplmbar8a5myRrnw4qpluTGOSZAJqBeyMydGTHwqHeWa6dSzyr+XhheTxmqLHXInL65aXq11AgBAPrJJ0H78yIg9B0emS++te7+792ciWnXMnUqQbBQE6oXssoURz98b0b57bkTSVsh03zuix4ERLz8S2bnvVluNQHFJRy+OujuZyZiOcs2UbMV3eskhBPudHDH91Ygp/6nWOoH6SQAJyM2YT2bNJ29UktnzWyltqOw5OG2wZN+fUi0lAsUlO/21iMnPpmORMh17bPXvZ5q3izhwaMSsKRET/lUtNQLFJR27+ML9EZ17Rex52Fb/fnrKWrJLKzkievS9uQA1AAAUiezSeekmm9hx9zRwv7UypQ1ym3WSDYLP3+P9LtQD2XVrclMJks+7Bw6NTEnp1j9JcvJJu64Ro+7JnYgC1H0vPxKRnBA+8IzING6x1b+e6dY3Yo+DI159LHcCG8B2JIAE9Vw6W37q6HTWfDpzPl9JYyVpsIy+L9dwAeqsbDJf/sXhEd36pUdD5yuTXDP2OjJi4tORnTFhu9YIFJd03GLSVG3aMjeKItmhlYdMs9YRA0+PmPNOxPgntnudAACQj+zaVelJndGoWW7UcL7vd5ONgYPOyG0UTDYMAnVWOvpo7IMRS+am4cNMcv3IQxpaGnhGRElJeiJKejIKUGdlk5GLb78YsfcJkWnXLf8nSk5c67BregJbdtmC7VkiUM8JIEE9ls6Uf+mh3Iz5ZNb8NkgbKwecmmu0JKNRksYLUOdkVy/PhQhatIvY98TcMfHbouehEV36RIy5P3c6ClDnpGMWX/hbRDJGYtDZkWnQaJueL5M0R/odEzH5uchOe3W71QkAAHmHCMYMj1i+MBciaNhkm54v3SA44Lh0w2C6cRCom6Y+HzHtlYh9T4pM607b9FSZxs1zJwYnmwbHPZy7LgF1TnbutIhxIyJ6HBCZXfbZ9u/0Bg6NSPp0yfjX5MRxgO1AAAnqqXSWfBIiSOa97n38tocIkjcsSYMlOSo6abiMGe6DDtTFEMHo+yKSk0wGnZUbh7SN0mvP/idHNG0d8Z9huVNSgLplwlMRsybndoIn4cXtYbdBETv1jxj7QGSTI6cBAKBQJj0TMeP13EmfLTtsn+dMNgomGwZfeii3gRCoU9KRR68+mp4sntmp33Z5zkzbLhH7nBDxzksRyQkpQJ2Sjlh8/u6I5L/1ZPTidpBp2DQXXlwyLz2RzXd6wPYggAT1UDpD/vl7cjPlB50ZmdKy7fbcaaNl/1NyjZekAQPUHa89EfHBWxEHnh6ZZm2229NmyhrlwourlkW88Ndc0AmoE7IzJ0ZMfCod1Zrp1HO7PW8aXkwaqy12yJ28uGr5dntuAACoqmwStB8/MmLPwZHp0nv7vt/d+zMRrTrmTiVINhICdUJ22cJ05FG0754bgbQdZbrvHdHjwIiXH4ns3He363MDhZOOVhx1dzJzMR3VminZjt/pJYcU7HdyxPRXI6b8Z7s9L1B/CSBBfZTMkE9mySdvVJLZ8ttZ2nDZc3DagMm+P2W7Pz9Q87LTX4uY/Gw69ijTscd2f/5M83YRBw6NmDUlYsK/tvvzAzUvHav4wv0RnXtF7HnYdn/+9BS2ZJdWckT06HtzAWsAAKgh2aXz0k00sePuaeB+e8uUNsht1kk2ED5/j/e7UAdk163JTSVIPs8eODQyJaXb/0WSk1HadY0YdU/uxBSg9nv5kYjkBPCBZ0SmcYvt/vSZbn0j9jg44tXHcie0AWwDASSoZ9LZ8VNHp7Pk05ny1SVpvCQNmNH35RoyQK2VTebHvzg8olu/9Gjo6pJJrhl7HRkx8enIzphQba8DVL90nGLSVG3aMjeKItmhVQ0yzVpHDDw9Ys47EeOfqJbXAACAT8quXZWexBmNmuVGDVfX+91k4+CgM3IbCZMNhUCtlY42GvtgxJK5abgwk1w/qkEaahp4RkRJSXpiSnpyClBrZZORim+/GLH3CZFp1636Xig5ka3DrukJbdllC6rvdYA6TwAJ6pF0ZvxLD+VmyCez5KtR2ng54NRcIyYZjZI0ZoBaJx1rlIQIWrSL2PfE3DHw1annoRFd+kSMuT+yi2dX72sB1SIdo/jC3yKSMRGDzo5Mg0bV+nqZpDnS75iIyc9Fdtqr1fpaAACQhgjGDI9YvjAXImjYpFpfL91AOOC4dENhurEQqJ2mjoqY9krEvidFpnWnan2pTOPmuRODk02F4x7OXbeAWic7d1rEuBERPQ6IzC77VP93egOHRiR9vGT8a3LiOEAeBJCgnkhnxSchgmSe697HV3+IIHnDkjRgkqOik4bMmOE+6EBtDBGMvi9izaq0aZGOO6pm6bVp/5MjmrbOhReTU1SA2mXCUxGzJkcccFpkkvBiTdhtUMRO/SPGPhDZ5EhqAACoLpOeiZjxesT+p0amZYeaec1kI2GyofClh3IbDIFaJR1p9Opj6cnimZ361chrZtp2idjnhIh3XopITlABapV0hOLzd0ck/y0noxVrQKZh01x4ccm89MQ23+kB+RBAgnognRH//D25mfGDzoxMaVmNvXbaiNn/lFxjJmnQALXHa09EJA2SZCZ9szY19rKZska58OKqZREv/DUXhAJqhezMNyImPhXR54jIdNqjxl43DS/ue2JEix1y4cXk9DYAANjOsu9PiRg/MqLX4Mh06VWz73f3Pj63sTA5lSDZaAjUCtllC9ORRtG+e27EUQ3KdN87YrcDI15+JLJz363R1wbyl45OHHVPMlMx951eSQ1+p5e819jv5Ijpr0ZMGVVjrwvUHQJIUB8kM+KTWfGDzsjNjq9hmS69I/YcnDZo0kYNUPSy01+LmPxsOtYo07FHjb9+pnm7NPgUs6ZETPhXjb8+sPWyi+fkRq917hWx56E1/vqZ0ga5XVrJEdGj780FsAEAYDvJLp2XOyV4x90jen+qxl8/3VA46MzcBsPn7/F+F2qB7Lo1uakEyaniyQa/ktKaL6LfkIh2XdMwQ3qiClD8Xn4kYuHMiIFn5EYq1rBMt74Rexwc8dpjuRPcALaCABLUcels+Kmj01nx6cz4QunzqVyDZvR9uYYNULSyyXz4F4dHdOuXHg1dKJnkmrHXkRETn47sjAkFqwPYsnRcYtJUbdoyPfkwnRtfAJlmrSMGnh4x552I8U8UpAYAAOqe7NpV6Umb0ahZxAGnFu79brKxcNAZuY2GyYZDoGilo4vGPhixZG560ncmuX4UQBp6GnhGRElJxKi7cyerAEUrm4xMfPvFiL1PiEy7boUrJDmxrf0u6Qlu2WULClcHUOsIIEEdls6Ef+mh3Iz4ZFZ8AaWNmQNOzTVqktEoSeMGKDrp2KIkRNCiXTrOKD3mvZB6HhrRpU/EmPsju3h2YWsBNikdk5icfJSMgRh0dmQaNCpoPZkOu6ant8Xk5yI77dWC1gIAQB0JEYwZHrF8YS5E0LBJQetJNxgOOC7dcJhuPASK09RREdNeidj3pMi07lTQUtITVJITg5NNh+Mezl3XgKKTnTstYtyIiB4HRGaXfQr/nd7AoRFJny8Z/5qcOA5QBQJIUEels+CTEEEyr3Xv4wsfIkjesCQNmoPOyjVsxgz3QQeKMUSQHCe/ZlXalMgkx0MXWHrt2v/kiKatc+HF5JQVoLhMeCpi1uSIA06LTBJeLAa7DYrYqX/E2Aciu3BWoasBAKA2m/RMxIzXI/Y/NTItO0RRSDYaJhsOX3ootwERKCrpyKJXH0tPFs/s1C+KQaZtl4h9Toh456WI5IQVoKikIxKfvzsi+W+1/5AoBpmGTXPhxSXz0hPdfKcHVIUAEtRB6Qz45+/JzYQfdGZuRnyRSBs1+5+Sa9wkDRygeLz2RETSIElm0jdrE8UiU9YoF15ctSzihb/mglJAUcjOfCNi4lMRfY6ITKc9olik4cV9T4xosUMuvJic7gYAAFsp+/6UiPEjI3oNjkyXXlFU73f3Pj638TA5lSDZiAgUheyyhenIomjfPTfCqIhkuu8dsduBES8/Etm57xa6HOBD6WjEUfckMxNz3+mVFNF3esl7jf1Ojpj+asSUUYUuB6gFBJCgLkpmwCez4AedkZsNX2QyXXpH7Dk4beCkjRyg4LLTX4uY/Gw6tijTsUcUm0zzdmkwKmZNiZjwr0KXAyTXjcVzcqPXOveK2PPQKDaZ0ga5XVrJEdGj780FtAEAoIqyS+flTgnecfeI3p+KYpNuOBx0Zm4D4vP3eL8LRSC7bk1uKkFyqniywa+kNIpOvyER7bqmYYf0xBWg8F5+JGLhzIiBZ+RGJhaZTLe+EXscHPHaY7kT3gAqUTwRSmC7SGe/Tx2dG7uWzISvyu8kxyauXh6RNFaWzs8dp7hsfsSyBRE9D91oh1f2lX9GLJgRkQQCmrf98Db35yqPbOrzqYhkJMro+yJ75Fdy4QKgILLJ/PcXh0d065ceDV3l30tGtSXXjGXzPrpuJLcddo1MnyMqrn33lYg3R0c0a/ux60bbiBbtcke5VkFmx90ju9eREeOfiGzrTrkwI1AQ6TjEpKnatGV6smE6F76qO7qS9xfr33Osv03CQgedVWFkbDo67aWHIpIwdXLtSMa7rb9t3LxKr5lp1jqyA0+PeOb29NoR/Y7dpv/dAADUD9m1q9KTNKNRs4gDTq36+93y5P3uwg8/I3/sPW/y+wefU+F5sotmR4wdHtG4RcXPycltkxZVe7/bpGVkB50R8fQfcxsSB3xmm/53A/lLe+xjH4xYMjfiU1+KTHL9qNLvlUckQaAln/icnJwEfuBpFU4pTz9TP3dn7pqSfkb+2HWjWesqBZ6SNdmBZ0SM/G3EqLsjO/j8opqgAPVNNhmJ+PaLEfueHJl23ap+vUmuERuuGR9eN5YvzJ3a2KlnxfXjRkQs+qBiby29brSp+nd6yYluyfcIz9+b+06viCYoAMXFuwqoQ9KZ78kXdckM+GQWfFVCRuv/nnyR+KFW7drHopJmEYtnR8ybFvHJI6bfnxxRvi6almZj7QdvxOoVH401yW6qabKJcFLSRMkecGrEk/8vNxrliC/nxiwBNSodS5SECJIPHfueWOHL/0pDRmkj5KMj3hs3axHZZm1j1YpFER9MTccxVTD3nbQBU1JaGs2WvBdLFs7/6DUaNNnEdSN3m2n0iXBSz0MjFsyKGHN/ZFvskBvrCNSotDmanHyUjHk44iuRadCoaiGj5Hb5omRFuq6kQcNouUOnWLhqZa4Jkjxv5mPN0uS++e9FtN8l2q59M+ZPfm7D7yaBpeyGJmvl4aRMh10j2++YiFf+mQsv7tSvhv6lAACojdIe2pjhuS/xjrgwMg2bVC1klH52XvjR+92yBtGqQ+dYsGpV7gu75H3yx7/kW/zR+912i96OeVP+k7z4R+93ky/2NvE5+ZPhpGQDYnbAcRHjHo5s6865EUtAzZs6KmLaKxEHnBaZ1p2qFjJKryELIpLrSiJTEu06dop5a8si5k/PhZk+/iV/0t9PTh9p0znaLl8dC94em/sM/uHvZpu23qgnv6lwUnLCSjY5Mfip23LXjn1P2qgnCFS/7NxpEUk4qMcBkdlln6qFjNbfJmHpD7Vu1yEWljTN9dKS6SifCCCl3+llMtGsLBurZ02INStXfPQ6m9r4t4lwUvqd3sChESN/lxv/eviXqh5eAuoVASSoI9JZ70mIoFnriJ36px92spWEjDbsrmq1Y0RyisiHH0r23GO3+NKQgfH125+I7KO/2vwLdu4VK/oPieFXnh4nff+PGwebFr0f8d7rFd4EbTKclIQUxtyfNnaSEwp80IGakzY/kuPkVy7LnQry/uSPrhubCBnFx4NCHXat8N/yX675Qpzyk/tyJykl4cVNad4usoMviJ995TPxrdv/EXNmzvgo2LT+w1PSRPnYa24ynLTrfhEL3suFF5PdFg0a18C/FrDBhKciZk3KXTeWzIls8ufNhIzSk42S/3aTBkbXvSo0Mx747pfijJvuj5g8JuLFv2/+9Q49N445pF+0btwgfjv8iY0bLu+N3+g103BSeuJau9xrtuoU0aFHxNgHItuy/UbNYAAA2GDSMxEzXo/Y6+g0GJBNNtlsJmQUJWUffVbd0F/L/X34d78cn7t5eMTksbnP3ptz0Nlx2EH9ovsOzeKmex/bONg0Y0LF19xUOKnFDhE77pFuTMy27BCZtl1q5t8KSKUjiV59LPe5t1GzyL45ptKQUawPCrXfNWKXj/5b/uGXPhuPvfZOPPXiaxGP/GzzL9j7iGiw595x3wXHxmnf/8PGn5PnvBXx9tgKr7nJcFIyUumNpyPadInoUXFDM1C90hGIz9+d61t16ZObblJJyGjDCeFtOlfosQ3Yq1cMPaR/XHP3U5F95Oebf8EufWJ536PjwavOiBOuu23jYNOCmRHTx1f8Tm9T4aT0O73h6YlvySEDvtMDPkkAqZq1X7oqvvPXlzf8fXjvHePB3jsWtCbqqOTko/Uzm//9x0pDRpWNSjug1y4x7q1Zub8k4YTJz0U2SUd/XPKB6UOLVqzKHSeb/LTbadOnLn080LCZcFLa2HnnpYhd9t0+/x7Alk0ZFTH7zdyfR929xZDRRqcRfczCZR8GHJNrwfz3IvvYzRUXrFiSa4hGxOvTZ0f/3XaOkSvKI9psHALY6NSlzYSTNszH3v+Ubft3AKosm+yimvhU7i+vPrrFkFFlo9LWrCuPFas/tgv8sVsiW/Kxtas/Ck6/Om12/Pen949My/YRyc8n69rkqUvzNg4nJZ6/J7LHflWDhGpx4oT34+QJ76d//k33j73XBWC79tcSemxUh2zy5dv4kbm/jH98iyGjykalrctmY8mK1RGlH3u/W9bgowXJZ99EJvd+94T9DolM8rn5w8/OG73fTU5k+ng4ackmwkmJ5++O7Kcvr/LYOGDbZNetSUcSpb305DNo8lNJyKiyUWm7dWkfP39kTO73E8/ekW6i2aC8PHebycTsRcuiUYMG6ejxdFNyxx4V60rqWb54y+GkxMsjItthl9w1CKgZYx/InS6e/Kz/Tm8zIaPKvtMb1HvXGLv+O73kv+s3/h3ZmRMrLkp6Yx/2wRYtX5Wegpb07GKHnTZz6tInrhubCCfF9Fcjdtw9Yuf+2/WfBT7ZX9vQYzMMo9YQQIK6otteEcnupiqEjCqzcs26aNrww0vD4V+KeOOZjRd1jIj1xzl/rL/xSekXe+vDSTtsIZyUvIlJdloANScJDfY6vMoho8qs/xo/0/foyCZNkrWrN17UYZf0pkFpaaxYvWbzz5WMc0qCSZWFk9aHC1p51wk1qmmr3HUjaYisP12okpBRVa4cma59Irvvybljoj+pWavIlJSl1401a9dt/plKy3LBpC2Gk+Z91MgFAIBPSt7n9hr84fvdLYeMKrM+8J7p3DOyycaZZJz4JzVtGZmyRtGgtCTWrNvC+92qhJOS97tps07YHmpMEiba46Bc2LAKIaPKrCsvj7LSksg0aRHZwy+IeG/CxouS60G7brk/V/Kfenrdqmo4aeWSXA8fqDk79YvYoXuVQkaVWbVmbTQs+/B6c+RFEZOe23hRx91yr7fF60YmF0xKw0k7Vx5OSnptrW0GADYmgAR1RKZb3+3yPCNffSt+9oVj4s9PvZpLQQ/49GbXJh+GOrTMM6xQSTgJqBmZpFmxvmGxjTq0bv7R8+51ZKVr99+tc/z60Rfzep3KwklA9cskX8QkRy1vD9lsdG7bImbOX7LRnPtP+vTePWLES1PzepnKwkkAAPBxaS9sO73fXb1mXezcvlW8O2dRZHYeEJH8VPJ+958vf3hC8VaqLJwEVL806LPnYdvluZ6e8G4c02/XuOPfr0Um+fL/EwGAj+u7U4eYs3h5Xq9TWTgJqBmZnbbPyUH/GPdmfO+MwXHPfybk+naVfKeXBJXaNW+S1+tUFk4C+DgBpBr26UkfxJFT5xS6DKjU7hccF22aN44FSz8afbIppx64Z5Tc/Z/45YOv1VhtQHFqMqhfHN1v13j81bcqXZeEDbotWx0//uu4GqsNKE6rpi+Nr151Ylw17MlK1yX9jWP26Badz/9dfKbGqoP8NFz34UgEAKqdHhvFbtXk+XH59WfEZbd/OMqtEp/p3T0mHPrt+FSNVAYUrQdfi93//b00gLQllw3ZL8rP+7/45fvJGEagPut93rHRoknD3OjXSpx1cJ8o+cNTvtOj6Omv1W4CSDWs0bpsNKrkOF0oBnOvuD1+/4vPxxm/Gh5rN3OR79quZVx++ICYsM+V0aLGKwSKzbRvDovrXrghXn7n/c3uvmrUoDRuveDTMevzv44Wq/1/IdR3K0dPjcGtWsTA3TvH81NmbnbdjWcfGWtve9J1AwCoQI+NYrf21WlxYONGceieO8Uzb0zb7Lrrzxgc2WHPer8LpBo9+kpceeKguPHBUZtdc9zeu0XPpatj8rR5evNALPjGsLj1h2fE2bc8EOXlySjWjSWnMv7XQX1iwn9f5boBVKutH14N1Hnzx0yNJj8bEQ/979DYe5eKM1xLSzIxdGCv+NtFJ8RbQ35QsBqB4lK+em1MP+nGeOC/Pxsn7rd7lJRUHCY9aI8uMeJrp0f26rtj8aQZBasTKC5vHPuD+NVnBsVXP71/NG3UoMJju3RoHXdecmLs98r0mPG7Le8aBwCAYjNxyA/jp0fvG1ccf2A0a9xgoy8C//xfJ8TBb86J9375SMFqBIrLu9feG59ZvDp+e8Gn05PEP65V00ZxzSmHxHf27RmTT/lpwWoEisucZydGq988EQ99bWj0796xwmNlpSVx5kG9474LPxNTj/5+wWoE6g8nIAGb9P79o6PRvyfGr3/2+Vh8yiExd/mqSOIE3Zo3jezfno/X970qotwReMBHlr07Jybv/834+rdPiSv+9/SYsXR5JPstOjZrHM1emRZvfuq6WJPnbHqgbipfuzbGH/LtOOHsQ+P0S0+K91atiTXl5dGycYPosGB5vHfRbfG20CIAALVVeXm8Pvja+PTpB8WpXz0pZqxZG6vWrYuWjRpEx0UrYsb//Cnefn16oasEisybl94WnfbZNf72o7Pjg6YNY8mqNdG4rDQ6l5TEkh8/EBMeHlvoEoEiM+svz0bjka/Fb2/6Qiw85dCYt2JVlGQy0bVZ48je+3yM3/vKQpcI1BMCSMBmrZq7ON74wi0V7ptasGqA2hImmHLtvRHJz4e0UoEtmTbsmYjk50NzP/wBAIC6YPq9/4lIfj4078MfgM2Z99JbMe+Y6zf8fU1ETCpoRUCxWzl7UUw851cV7vOdHlDTjGADAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAFAnvPHGG7HXXnvFzTffXOhSAAAAAKBe9dgEkAAAAIBab+3atfHNb34z1qxZU+hSAAAAAKDe9dgEkAAAAIBa73e/+11MmTKl0GUAAAAAQL3ssQkgAQAAALXapEmT4je/+U1cfPHFhS4FAAAAAOplj00ACQAAAKj1x0IffPDBceKJJxa6HAAAAAColz22su1eFQAAAEANufXWW+Pdd9+N//u//0sbJQAAAABAzffYBJAAAACAvDRqtiD6nX71Nj3H3Dt3jojWef1uMo/+17/+dXznO9+JHXfcMd57771tqgUAAAAAalt/rVh6bEawAQAAALXOunXr4hvf+Ebsu+++cfrppxe6HAAAAACo1z02JyABAAAAtc5tt90WkyZNimHDhsX8+fPT+xYvXpzerlixIr2vdevWUVJi7xUAAAAAVPO4qvwAAF/zSURBVHePTQAJAAAAqHWeeeaZWLNmTQwdOnSTjZPkZ+TIkdG1a9eC1AcAAAAA9anHJoAEAAAA1DpXXXXVht1Y682dOze+/vWvx0knnRQnn3xytG/fvmD1AQAAAEB96rEJIAEAAAC1zl577bXRfe+99156261btzjooIMKUBUAAAAA1M8e25aHtAEAAAAAAAAAAGyGABIAAAAAAAAAAJA3I9gAAACAOqFr164xadKkQpcBAAAAAPWux+YEJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAOpnAGnp0qVx/fXXx2GHHRZ77bVXHHHEEXHTTTfF6tWrN1o7bNiwGDJkSPTr1y9OOOGEGDFixCafs6rrAAAAAKC2018DAAAA6nUAKZvNxqWXXpo2NI488sj41re+Ffvvv3/87ne/i8svv7zC2ttuuy2uu+666NmzZ1x99dXRoUOHuOKKK+KRRx7Jax0AAAAA1Hb6awAAAMD2Uha11MiRI2PUqFHxne98J84555z0vrPOOit23HHH+O1vfxtjx46NfffdNxYvXhy33HJLHH/88fGzn/0sXXf66afHueeeGzfeeGMce+yxUVpaWuV1AAAAAFAX6K8BAAAAUd9PQHrhhRfS289+9rMV7v/0pz+d3o4bNy69ffLJJ2P58uVp82S9kpKSOPvss2PWrFlbvQ4AAAAA6gL9NQAAACDqewDp4osvjuHDh0fTpk0r3L9gwYL0tqwsd7jT+PHj09s+ffpUWNe7d+8Kj1d1HQAAAADUBfprAAAAQNT3EWytW7dOfz7pL3/5S3q79957p7ezZ8+OVq1aRZMmTSqsa9++fXo7c+bMrVoHAAAAAHWB/hoAAABQZwNIc+bMqfTxZEdWs2bNNvlYsmPr0UcfjQMPPDD69++f3rds2bJo3LjxRmvX37dixYqtWgcAAAAAxUx/DQAAAIj6HkA65JBDKn38oosuissvv3yj+0eOHBnXXHNNuqPqRz/60Yb7s9lsZDKZzT7f+sequg4AAAAAipn+GgAAABD1PYB0/fXXV/p4r169Nrrv4Ycfjm984xvpzq1bb701OnfuXGFH18qVKzf6nfX3rd/tVdV1AAAAAFDM9NcAAACAqO8BpKFDh27V+rvvvjuuu+66dL78n/70p9hzzz0rPN6pU6dYtGhRrF69Oho2bLjh/mQmfaJjx45btQ4AAAAAipn+GgAAAFDTSqIWS2bSX3vttbHDDjvEXXfdtVFzJNGnT5/0+OeJEydWuH/93/v27btV6wAAAACgrtBfAwAAAOp1AGnq1Knx7W9/O9q2bRt33HFH9OjRY5PrBg8eHI0aNUrXrFdeXh7Dhg2LLl26xIABA7ZqHQAAAADUBfprAAAAQJ0dwVZVt9xyS3qc86GHHhqvvPJK+vNxPXv2THdstWnTJi688MK4+eab0x1YAwcOjEcffTTGjh0bN910U5SWlqbrq7oOAAAAAOoC/TUAAAAg6nsAacyYMentAw88kP580qWXXrrhyOhLLrkkmjRpkh4j/fjjj0f37t3jF7/4RQwZMqTC71R1HQAAAADUdvprAAAAQNT3ANJzzz1X5bWZTCYuuOCC9Gd7rAMAAACA2k5/DQAAANheSrbbMwEAAAAAAAAAAPWOABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAAAAAAAAkDcBJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5K8v/V4H6okHLptG6T7dYu2JVLHh1WkR5eaFLAopcScOyaLPXTpFpUBoLX58ea5euLHRJQC3QqleXaNS2RSyeMitWzl5U6HIAAGC7atmzSzRu3zIWT50VK99fWOhygFqgadd20bx7h1jxwcJYMmVWocsBaoGGrZtFq15dY+2ylbFg/HTf6QE1SgAJ2Kwun9479rz0uFj5wcJYNGlGlDZsEP2vGRrZdevixSvviGXvzil0iUARNlP3+eHZEevKY/6r70b5mrWx5yVDolGb5jH+pw/EB09PKHSJQJEpa9449v/5edG0c9uYP+7tWLN4eex69qHRvEfHmPb30TH5d48XukQAAMhbWdNGsd9PvxDNdtoh5r/8dqxZtDx2OfPgaNFjx3jv4RfjjV//s9AlAkVorytPjk5H9E378sumz43GO7SMNv12jsWTZsaLX78jyteuLXSJQJHpeuL+sedFx8SKWQti0aSZUdq4QQz47hmxbvXaePFrf47l780rdIlAPSCABGxS/2tPj0atm8XTZ/xso5NLmu/SMQb95sJ4+Xv3xdznJxesRqC4dDqmf/S6eEg8f+nvN/owk+y62PfH50a7vXeNCb94uGA1AsWl8Y6tY/BfroixV94ec8dMrfBYSYOyNMB4yO3/E89+/lcFqxEAAPLVaIeWcfh9/xsvXX1XzBlVsYeWKSuNnhcdE4f95bL491m/KFiNQPH51PCrYvoDY+KJ434Q2U+cXLLjEXvF0Y99O0Ye/8NYu3xVwWoEikuyKTjppT019GfpyUcf12K3TnHw7y+Ol64ZFvNefLNgNQL1Q0mhCwCKT/fTD44GzRvHC5f/cZNjk5a+/UH869SfxD7fOzPdxQXQuEOr6PPV49MPOJvaSbF64bIY9ZXfRqs9O8eOR/QtSI1A8Tnsjq/GM+f8YqPwUSI5QS0JLM564tXY54ZzClIfAABsi8Pu+mo8+4VbNgofJbJr18Ubt/wjpg0fk54ICpA46Pf/lZ4EPPWPT24UPkq8/+T4GHXR72Lwvf9bkPqA4tPj84MjshEvfv32jcJHiSVTZ6Xf6e37o3OjpKGzSYDqJYAEbGS3L34qxl3zl0rXrFuxOl75wd+i/3dPr7G6gOK1zw/OTnd0JoGByrx45Z3R54oTaqwuoLiPhZ7xj5di+cz5la578/anos1eO9VYXQAAsD10Prp/vP/067Fs2pxK171zz3PpODaAJBjQsGXT9LNyZRZPnhmLJkyPNgO611htQPHa5exDY9y191S6Jgkmvf6T4dH/mtNqrC6gfhJAAjYar7Zk8sxYt2rNFtd+8PTr0bp3txqpCyj+E5Dmv/LOFtetWbw8Vs5eFA3bNq+RuoDitceXjorJtz5RpbXv3j86djv/iGqvCQAAtpc9L/10TPrNY1Va+/bdz8aelw6p9pqA4tbvm6fElNtGVmnthF+OiP5Xn1rtNQHFrVWfbrHwtWnpyYpbMuOxV6LtvrvWSF1A/SWABFTQ4eA9Y84LG49B2ZxV85ZUaz1A7bBq7uIqr13w6jvRdsAu1VoPUPzKV6+NNUtWVGnt3NFTYof9elR7TQAAsL1k15XH6gVLq7R27gtTo+0AXwhCfdeqd9eYO/atKq1dPmN+lDZuWO01AcVtx0P23OSo103KZmP1/Kq9NwHIlwASUEF23brIlGSq/guZrVgL1F1bcy0oKanSjgyADUoyUb62vNBVAABAtUh6cUlgCajfsuVZ7XZgq5Svy0aUbs2Fw0UGqF5l1fz89V7zzsvivD/cv+Hv4/7UK165vVdBa4LKzPrX+Nj7e2fGm3c8vcW1mZKSaLxDyxqpCyj+EWxV1W6fXWPy/3u8WusBil9JWWk02qFllU5Q63RE33j/qfE1Uhdsi/6fnxh7nzcx/fMd13QvdDkAdba/ltBjo+hls9GkU5tYMWvBFpfueMRe8cGzE2qkLKB4zRvzZnQ8vE+8e9+oLa5tuXunWL14eY3UBRSvmY+/EntdeXKVrhuZ0pJo1K5FjdQF26u/ltBjq10EkGpY3zMnR6/PvlnoMqBSy3a8IMqaN461S1dWuq7LZ/aJNu0fiTP//nCN1QYUpzU7HpOOcJz93BuVrmvcvmW02aM8TrvjrzVWG1CcMm0XRa///lK8fO19W1y788l7RetFh8ZB59ZIaZC3skZO+CuUUaNGxa9+9at44403onnz5jFkyJC47LLLolmzZoUuDagmemwUvVazovdXr4ix3/jLFpfuctre0WbpYXHAKTVSGVC0Hom5DZ+sUpCgzxXHRZf2F8aZf3+7RioDitfSjl+I0iYNY92K1ZWu2/mUA6PtDvf5To+ip79Wu/trAkg1rKzxuvQHilnDsm/HoP/7Vjzzhf9Ld2ttSpKS7n/1p6PZkv0jWq2t8RqB4tJ46ddivx/9Ox4/7mexZsmKzZ6aNug350fbuCyiVeUfhoB6YO3I2Pm46+Kde7rFwgnTN7us79UnR6sWf4/G4boBbL45cv7550efPn3ia1/7WsyaNStuv/32GD9+fNx1111RUmL6PNRFemwUv1HR9agO8Vb/nWPBK+9udlXvK46P1m3+GY1Lvd8FIlq3GBO7X3BETLntyc2u6XBQz+i4f2k0XjwpouqHkgN1VFmD62PgLV+N5y74XaUTDPb62lHRdOm+Ea2MfQWqr7+mCwdspGTJk9F1z3vi8Pu+Gs27d9jo8Y6De8dRD10W7bOnJd8eFqRGoMiUL40ODc+Lox/532g/cPeNHm65R+c4YvgV0XnnX0csfakgJQLFp82yY2LwHZ+L7mcclB4D/cmw84G/PC96nrI4miz5UcFqBIrfT37yk+jUqVPceeedcc4556RNkquuuipeeumleOaZZwpdHgD1WJulR8dhfzwzdj3nkMiUlVZ4rFHb5rH/zz4fvc5eF00Wf7dgNQLFpfmSr0a//2oXe3//jGjQsmmFx0oalsXuXz4qDrrlM9F68XEFqxEoLmVLHomd+o+IwXf/TzTbqf0mR70e9eBXY4e1JyWN/ILUCNSf/poTkIBNarT0/0X3rs9E2/t/Eoveax0r5yxLvxhssXPLaNFuTDSdf3BEuRnTwMcsezU6lB0Rh//uJ7Fk7mdj6fQlkS0vj6Y7toiWnT+IFsvPiliy+V2fQD1UvjzaLDowDvrWN6LPf389lryzNNatWhsNWzeJljutizYl10UseqrQVQJFbNWqVdGmTZs45phjonHjxhvuP+CAA9LbSZMmxeDBgwtYIQD1WvnqaLPwwBh41ZXR++KvxeK3P3y/26pxtNw5ok3Z9RELHi90lUCRabH4rOh7wgnR7ZgrY/G08lizeGWUNmkQLbs3iVbN74wGcy8udIlAkWm0+FexS/eR0Xb4T2Lxey3T7/RKykqiefdW0ar1f6LxgoER5SsLXSZQD/prAkjA5i2fGC2XHx8tmydbL5JTCcojkolscwtdGFC01i6MZvO+HM0yEbFTcseH1475hS4MKF7l0XDuD6N9/DDad17/EWVtxJJC1wXUBo0aNYrbbrtto/snTpyY3nbunF5YAKCgGs69MXaIG2MH73eBKiqZ/1C0jYeibbuIaPfhdSPJDsgPAJuz/PVotfy4aPXx7/SSicXzCl0YUJ/6awJIQBU5lhHIh2sHsLWMdwXyN2PGjBg9enT8+Mc/jj322COOPvroQpcEAJ/g/S6wtVw3gK2lLw8Upr8mgAQAAADkpW2jbPys/7Y1No+8LzlmddstXLgwjjjiiPTPTZo0iWuuuSbdwQUAAAAAdbm/tr16bNvaX0vOXwMAAACo1TKZTNx0003p7qwePXrEF7/4xXj00UcLXRYAAAAA1Iv+mgASAAAAUOu1atUqjjvuuDj55JPjrrvuSufT33DDDYUuCwAAAADqRX9NAAkAAACoUxo3bhyHH354zJo1K+bPn1/ocgAAAACgzvfXBJAAAACAWunNN99M59InO7I+admyZemx0Q0bNixIbQAAAABQn/prAkgAAABArbTzzjvHkiVL4u67747Vq1dvuH/GjBnpfPr9998/mjdvXtAaAQAAAKA+9NfKqrFOAAAAgGpTVlYW11xzTVx55ZVx7rnnxoknnhgLFixId2yVlJTEt7/97UKXCAAAAAD1or8mgAQAAADUWieddFI0aNAgfv/738cNN9wQTZs2jYEDB8bll18eu+yyS6HLAwAAAIB60V8TQAIAAABqteOOOy79AQAAAAAK018r2abfBgAAAAAAAAAA6jUBJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAA9TOAtHTp0vjhD38YRxxxRAwYMCDOPPPMePbZZze5dtiwYTFkyJDo169fnHDCCTFixIhtWgcAAAAAtZ3+GgAAAFCvA0jl5eVx6aWXpg2NY489Nr7+9a+n93/pS1+Kf//73xXW3nbbbXHddddFz5494+qrr44OHTrEFVdcEY888khe6wAAAACgttNfAwAAAGo0gDR8+PDN7nzanCeeeCK++c1vRnV56qmnYtSoUWkj46qrropzzjkn/vSnP0WnTp3i5ptv3rBu8eLFccstt8Txxx8fv/zlL9NdXLfeemvst99+ceONN8a6deu2ah0AAAAA5KPYemz6awAAAECNBpC+8Y1vxJe//OW02bFixYoqPfEbb7yRNlWqS9LQ6NWrV5x44okb7mvcuHH07ds3Jk2atOG+J598MpYvXx5nnXXWhvtKSkri7LPPjlmzZsW4ceO2ah0AAAAA5KPYemz6awAAAEBBRrAlzY5TTz01bXwU2sknn5zW07x58w33JbuopkyZku7SWm/8+PHpbZ8+fSr8fu/evSs8XtV1AAAAALAtiqXHpr8GAAAA1HgA6bzzzovDDz883nrrrTjjjDPS2fDFItlZ9dprr8Vll12W1nfxxRdveGz27NnRqlWraNKkSYXfad++fXo7c+bMrVoHAAAAAPkq1h6b/hoAAACwLcqqurBZs2bxm9/8Jv74xz/Gz3/+8/j+978fzz//fPzgBz+IFi1axPYyZ86cSh9v2rRpWsvHJfXccccd6Z+PPfbYOOaYYzY8tmzZsvTo6E9af9/6466rug4AAAAA8lUTPTb9NQAAAKBoA0jrffGLX4wDDjggrrjiinjsscfi9ddfTxsU/fv33y4FHXLIIZU+ftFFF8Xll19e4b4jjzwyBg4cGK+88kravPn85z8fd911VzRs2DCy2WxkMpnNPt/6x6q6DgAAAAC2VXX22PTXAAAAgKIPIK2f457Mh//e974Xf//73+Occ86Jr371q/HlL395mwu6/vrrK328V69eG903aNCg9Paoo46Krl27xne+85148MEH47TTTkt3dK1cuXKj31l/3/rdXlVdBwAAAADbQ3X12PTXAAAAgFoRQEoks9xvuOGGdEfVtddem+7QGj16dNx4443Rtm3bvAsaOnRobIshQ4akDZIJEyakf+/UqVMsWrQoVq9ene7YWi+ZSZ/o2LHjVq0DAAAAgO2lOnps+msAAABATSvZ1if4zGc+k+7USo6HfvbZZ+Okk05K59ZXt+9///tx9NFHR3l5eYX7k1nziUaNGm3YSZYc/zxx4sQK69b/vW/fvlu1DgAAAAC2t0L02PTXAAAAgKIJICWSY5mTmfDJ/Ph58+bFl770pXj00UejOnXu3DmmTZsW//jHPyrc/4c//CG9/dSnPpXeDh48OG2W3HHHHRvWJE2VYcOGRZcuXWLAgAFbtQ4AAAAAqkNN99j01wAAAIAaHcGWNCNatmxZ6ZrS0tK47LLL4qCDDoqvf/3rMWXKlMhkMlFdPve5z6W7wq6++uoYP358dOvWLd0dNnLkyHQ2/QEHHJCua9OmTVx44YVx8803pzuwBg4cmDZuxo4dGzfddFNa99asAwAAAIB8FFuPTX8NAAAAqNEA0pNPPlnlJ0waEw8++GD8+te/jiVLlkR1SXZT/fnPf46f/vSnaaMkea2ddtoprrnmmrR58nGXXHJJNGnSJN1B9vjjj0f37t3jF7/4RTrPPp91AAAAALC1iq3Hpr8GAAAAbC+ZbLIdiWpx5JFHRqx8K0Ze/06hSwEAAKAGHXlN9/R25HNvR121vT7zpv9WjXdNT1wB+CT9NQAAgPqrrveNjtyOn3mL4d+qpGCvDAAAAAAAAAAA1HoCSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAKi1nnnmmTj77LOjf//+sffee8d5550XL7/8cqHLAgAAAIB61WMTQAIAAABqpRdeeCG+/OUvx5IlS+Lyyy+PSy65JKZNmxaf+9zn4tVXXy10eQAAAABQb3psZdVaJQAAAEA1+eEPfxidOnWKe++9N5o0aZLed/LJJ8dxxx0XN910U/zxj38sdIkAAAAAUC96bE5AAgAAAGqdRYsWxRtvvBFDhgzZ0BhJ7LDDDrH//vvHuHHjClofAAAAANSnHpsTkAAAAIBap3nz5vHPf/6zQmNkvQULFkRpaWlB6gIAAACA+thjE0ACAAAAap2k+dG9e/eN7k92bL300ktxyCGHFKQuAAAAAKiPPTYj2AAAAIA6YdmyZXHVVVelf77wwgsLXQ4AAAAA1JsemxOQAAAAgLwsndks/nTEKdv2HN0nRfNdt72WFStWxH/913+lu7O+8pWvxAEHHLDtTwoAAAAARd5fK5YemxOQgKopaxtR0rTQVQC1SXLNKGtd6CqA2qSkYUTZDoWuAqiFFi9eHOeff36MHj06Tj311Lj88ssLXRIAbEJZRIMOhS4CqFVKPrxuOE8A2Nrv9BoXugqgHvbYvGMBNq/FfhE7Xx2RXRuxamZEpkFE451yf37rqoi1CwtdIVBskobIrj+OaNguYuW03PWjUdeITES8dW3E8tcLXSFQdMoiul8b0XK/iFXTI9YtjWjYMaKsTcR7v4mY/1ChCwSK3Lx58+KCCy6IiRMnxhlnnBHXXXddZDLJmw8AKAYlETt/O6LVoA/f7y6JaNA+okHbiBm3Rcy7v9AFAsWowzkRO34uYs3ciDWzI0pb5XpsC5+MmHZjoasDilGLAyN2/mZE+eqI1TNzG/0a7xyx4t2It74RsW5xoSsE6kGPTQAJ2LQul0a02D9i8sURq9+v+FiLfSP6/DViyleFCYCPND8gosf3I6Z+LWLZaxUfa9QtosdPIuY9EvHB7YWqECg2pS0j+g6PmPaziHe+ExHZjz3WImKnb0S0OyZiyn8XskqgiC1dunRDY+S8886Lb37zm4UuCQAqngzc7+GI6b+MePd7n3i/2zyi29dy73cnX1TIKoFi0+uOiKWvRYw/JaJ8xUf3Z0oj2g+N6P9YxCvHRcTaQlYJFJOuV0Q06xMx+SsRqz+o+FjLA3P9t0lfiVgxpVAVAvWkx2YEG7CxNkMimvWNeOMLG4ePEkvGRrx+asQev8olqAGSUWs9ro947bMbh48SyS7PCWdFtD0mtxMDINHn3lzzY/6Iil/GJJKd4W9/K2LFmxE7CRQAm/a9730vbYx8/vOfFz4CoPgkG/gmXxIx74FNvN9dGvHOdyOWvhzR/bpCVQgUm91uipj3j4jpN1YMHyWy6yJm3x3x5jcj9rq3UBUCxabdyRFNdo2YdMHG4aPE4tER40+L6Pk70QCg2ntsTkACNtbtf3JvRiqzdlHEtJ9G7PStiHeuranKgGK1y/cj3v52RPnyShZlI6b8T0SvP0W8dmINFgcUpTZHRix6Zss7r977RUTfJKAEUNGbb74ZDzzwQLRs2TJ69eqV/vmTTjrppILUBgDR6uCIpWMjlk+sfN3M30b0NXYYSJTkxiVNvbzyZcm1Jdns12R3p5kAEV2+EjH+5MrXrJ0f8d6vIna6MmLaj2qqMqAe9tgEkKrZ/FWZ+N9XPkqTNshko6FwKUWsZfOucfnu70ZppSGCD83/Z6zodGncMH7rZj8Cdc+3+nSPRslOii1ZOz/WrlkYP57cKlatNnMa6rPLTv2faPvmF6u0tnzeiPjbqtPjtSn3VXtdsC1Wl0esyWY2fBaker3wwgvp7eLFize7M0sACepmfy2hx0ax++/P/m+0f6dqo9Wyc+6Ph9Z9MV6c+KdqrwsoXkfs97UYPOv2qNIniem/jOk7/iBuffjs6i8MKFptW/WI/9ltcpSUr9ry4rkPxvI+F8aPxv+4JkqD7dJfW/95sG3jgpZU572wHXtsAkg17FMdsnHsjoWuAirR4ZCIxc9VcXE2mpTPje/t9YkjpIH6Z+2cKi8tWzouvrV//4hF/67WkoAi12BNbvdVFZQsejqG7nVRDG3kiHmK26PvRzz2geBRTTnrrLPSH6B+0mOj6DWKiDWzq7Q0s+iZOLHXlXFi6R+rvSygiO26T8SUP1Rt7cq3oluLZnrzUN91OjxiYVX77OXRtHye6wZFT3+tdvfY7BMCPmFrL+j+DwBILgVbcy3IRmRkoAHvOQAAqMsy1fi5GqiTtvo64LoBuG4AxUUACagoOf2o5aCqr2/QrjqrAWqLrbkWNB8QsfSl6qwGqA0yDSLKWldtbcuDIqoy5hEAAIpGJqLBDlVbmvTiFr9Y3QUBxW7paxEtBlZtbeOdI9Ytr+6KgGKXnH7U+uAqLi6JaNC2mgsC6jvHD9Swf83OxHNzC10FVGZaXLnrrtG8pHFE+cpKV2bbHBUvvvtKPDReYhrqu7M7zYyeLfaNzJKxlS8sax0Lol3c9PIiuy2gntt9yf/FOb2/EiXTtzx3fnXbE+P6e0503aBWzKgHoGbosVHsui/4ZZw34OIoefd7W1y7eoehcf09J3m/C/VcyYQfx7dO+0s0mP/wFteWd/lq/PqJ78Wc+a4bUL9Njqt26RXNMg0jsqsrXZlte1z8581R8ajv9Chy+mu1mwBSDVuTzcSadYWuAir31xd+G58f8JMomfrfm19U2jzWdPtG/PUvJ8badd6sQH1311PXxHdOuysavH5iRPmqza5b1+PnMezZn8Qy1w2o915+67E4eeD/RvPGd0dm5bubXVfe6Ssxdto41w0AoAI9Nord69OejiUHXxUtm/SIzIo3N7uufMfz4tWZE7zfBSLWrYsp82dHrx0+G5m5f9/ssmyzvjG/dLd4Z85EwUUgHnzpj3FGnx9GyZtf2/yi0paxuusVMfyuIVFe7roBVB8j2ICNvPbmQ/H09Omxbo/fRZRtfBxjtmnvWNP7/rjln9+ItWsrPyUJqB+Wr5wfv3/qhljT++8RTXbbeEGDDrFuzz/HPyaPibdmPFuIEoEidOP9Z8XK3f8c2daHb/xgSZMo3+lb8WbJ/vHXZ79biPIAAGCb3Pi3M2PFbrelp4hvpKRxlHe7Mt5pcHj85amrC1EeUIRue/TSmNnyrCjvcmludHkFmci2OzGWdv9l/OTvZxaoQqDYvDjprzHq/UVRvvst6QSCTYUWV/e5P25+5LIoL19bkBqB+sMJSMAmPfzCT2PCjMPizIP+HK1KFkfJyrciW9Io1jXpGdMWLYw77z8vlix/v9BlAkVk6nv/jh89+Hac+6kbonOzJlG6clJE+drINukR89c2ib88dUNM+2BMocsEiiy8+N27j4uhh10fe/X5ejRcNTli7ZLINuoay0o7xYiX7ogXJ91Q6DIBACAvK1cvjuuGDYnTDrs++va5IhqsmhyZtYsi26hLLC/pEv945S8xeuJPC10mUGR+/vcz49D+X4mjez8Ujde+G5nV70e2rG2sbtQjXpr2UgwfdkyUh/k0wEfu/88P4tWuh8cZB90RLTMLo2TlOx9+p9cr3lk4N+687+xYttL8YqD6CSABm/XWjH/HD+/7d5SUlEW7lrvE6rUrYtHS9wpdFlDEFi6ZHjc/+Ln0z61bdIvSkoaxYMm7dlYAm5WcpviXJ3NHRDdv2iGaNWqXXjdWr11e6NIAAGCbrS1fHXc/dWXcHRHNGu8QzZu0934X2KJnXvld+tOwQfNo07xbLFnxQbqJB2Bzpr73VPzg3qeirKRhtGm5s+/0gIIQQAK2KAkOzFk4pdBlALUwjASwNZYun53+AABAXZScPOD0AWBrrF6zND5YMLHQZQC1LPzsOz2gUEoK9soAAAAAAAAAAECtJ4AEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAAAAAAAAkDcBJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3upUAOmyyy6Lnj17bvKxYcOGxZAhQ6Jfv35xwgknxIgRI7ZpHQAAAADUNfprAAAAQL0OID322GPxj3/8Y5OP3XbbbXHdddelzZOrr746OnToEFdccUU88sgjea0DAAAAgLpGfw0AAACo1wGkBQsWxHe/+91o0KDBRo8tXrw4brnlljj++OPjl7/8ZZx55plx6623xn777Rc33nhjrFu3bqvWAQAAAEBdo78GAAAARH0PIH3/+9+PNm3axLHHHrvRY08++WQsX748zjrrrA33lZSUxNlnnx2zZs2KcePGbdU6AAAAAKhr9NcAAACAeh1AeuKJJ9KjoX/4wx9ucofW+PHj09s+ffpUuL93794VHq/qOgAAAACoS/TXAAAAgHodQFq4cGFce+218YUvfCH69++/yTWzZ8+OVq1aRZMmTSrc3759+/R25syZW7UOAAAAAOoK/TUAAABgeyiLIjNnzpxKH2/atGk0a9Zsw9HQyZ8vu+yyza5ftmxZNG7ceKP719+3YsWKrVoHAAAAAMVMfw0AAACI+h5AOuSQQyp9/KKLLorLL788Ro4cGSNGjIjbb799k42N9bLZbGQymc0+vv6xqq4DAAAAgGKmvwYAAABEfQ8gXX/99ZU+3qtXr1i0aFF6NPTxxx8fu+22W8yfPz99bPXq1elt8vdGjRqlu7eSHV0rV67c6HnW37d+t1dV1wEAAABAMdNfAwAAAKK+B5CGDh26xTWjR49Oj5J+6KGH0p9PGjRoUHz2s5+NH/3oR9GpU6e0oZI0Txo2bLhhTTKTPtGxY8f0tqrrAAAAAKCY6a8BAAAAUd8DSFWx5557xh//+MeN7r/tttvi2WefTR/r0KFDel+fPn3S458nTpwY/fv337A2+Xuib9++W7UOAAAAAGo7/TUAAAAg6nsAqVWrVnHQQQdtdP+DDz6Y3n78scGDB6fHRd9xxx0bGh/l5eUxbNiw6NKlSwwYMGCr1gEAAABAbae/BgAAAER9DyBtjTZt2sSFF14YN998c7oDa+DAgfHoo4/G2LFj46abborS0tKtWgcAAAAA9Yn+GgAAABD1PYCUuOSSS6JJkyZx1113xeOPPx7du3ePX/ziFzFkyJC81gEAAABAfaK/BgAAAFQmk022I1EtjjzyyJi/6O044nPvFroUAAAAatCTd+6c3o578a2oy595l771QfzXOz236Xl+031SNN+1Y4wcOXK71QbUHfprAAAA9bvH1rbVLnW2b3TkduqvFUuPraRgrwwAAAAAAAAAANR6AkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAqDO+/e1vx7nnnlvoMgAAAACgXvXXBJAAAACAOuG+++6Le++9t9BlAAAAAEC966+VbfdqAAAAAGrQunXr4je/+U3ccssthS4FAAAAAOplf00ACQAAAKi1Vq1aFUOHDo1JkybFySefHKNGjSp0SQAAAABQ7/prRrABAAAAtbpBsnTp0rjpppvixz/+cZSV2WsFAAAAADXdX9OVAwAAAGqt5s2bx2OPPSZ4BAAAAAAF7K/pzgEAAAC1VklJSfoDAAAAABSuvyaABAAAAORlTvNGcf5pA7bpObq/8U40324VAQAAAED96q8VS4/NFkEAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkrSz/XwUAAAAoLk8++WShSwAAAACAetdfcwISAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAAAAAAAAkDcBJAAAAAAAAAAAIG9l+f8qUNe1btEtPn3Q9dGoQfNYsWphZDKZaNF0x5j2/gsx8oUfxtry1YUuESgyZWWN45gDvxudd9grli6fHdnIRrPG7WLZirkx4j9Xp/cBfNKgvl+JvXqcFEtXzIny8jXRqGHLKMmUxuOjfxAz5rxU6PIAAGCbHNDn/Oi/+2npZ+N15aujYYPmUVbSMEa++OOY9v7oQpcHFKFduxwWh+9zRaxZtyJWr1kWZaWNo2njNvHixDtj3KS/FLo8oAi1abFzfPrg66NhWdMPv9MriRZNO8bbs0bFk2NuiPLytYUuEagHBJCATdq755nRf4/T45Fnr47ZC97YcH8mMtGz+5D48in/jL88+oVYuGR6QesEikf7Nj3jtCP+Lx4ffX088tw3KjzWaYd+cebRt8Vzr/w2Jr4zomA1AsUl+dLlgpMeipcm3R1/eOjkWLfuo3Bzy2ad45iB30mDi/8c9Z2C1gkAAPkoKSmLC058KF578/7440OfjbXrVm14LPlC8OgDvx19e3w2RnziMzRQv51y+C1p8Oiexy+IZSvnbbg/CRUcuNeX4/wThqefoQHW26/3F6LPLsfHiOeujrkLp2y4Pwkh9ep+XFx0yuNxxyNnxZLl7xe0TqDuM4IN2MjOnQZF712Ojz8/fFqF8FEiOc3kjXf+EXc+clacdcyfosRlBPiwAXLqEb+OPz18Wkx9718bPT5r7qvxh4c+GwfudX50ardXQWoEis8Xjv9rPPzsN2LMhD9WCB8lFi+bGX8deVFks+VxUL+LClYjAADk6wufuTf+OeraeP61WyuEjxJLln8Q9//r0li5ZlEctvdlBasRKC7HDvxufLBgYjz0zNcrhI8Sq9cuj2de/mX8e9wv43ND7ipYjUBx6dHl8Ni966fi9hGnVwgfJZK+2oS3H447/3FOfO7TrhtA9ZMcADZy9AHfir89eXH6xmRzkibJs6/cEoP3+1qN1gYUp2MHfTeeGH19rFi1YLNrkiNek2vLsYOuq9HagOLUvdOgmDn3lZgxZ1yl6x59/rvRe9cTaqwuAADYHjq3HxBzFkyJ6R+8UOm6kS/cEHvsdGSN1QUUty7t+8dzr/y60jXJ5r8VqxdHq+Zda6wuoHgdsf/X42//uiQ9QGBzko1+z4//fRwy4L9rtDag/hFAAipo3rRDegTjytWLt7j29TcfjN26Hl4jdQHFrWPb3jH1vae2uC4JLya7PpMTk4D67VP7fj2effmWKq2dOu3J9HRGAACoLY4+4Op49uWbq7R24jv/iAG7n17tNQHFLQkGvDTpniqtffblX8VxB11f7TUBxS0JIi5YMi1Wr1m2xbWvTvlr9Or+6RqpC6i/BJCACnbr+ql4871/V2lteXZdLF0+u9prAorf1lwLpr8/Jrp02Kda6wGKXzbK01BiVUya9ljssfMx1V4TAABsLyUlZbFw6XtVWjt52hOx205HVHtNQPGfFDz1vSertPaD+ROjSeM21V4TUNx67nxMTJlWtevGuvI1sWzF3GqvCajfygpdQF23almbePXer2z4e8c+T0THPlX7PwIohNKSBumYJICtDRJUVXl2bZSVNqrWeoDil81u/ljoT0rem5Rk7J2g+H3w+hHxwetHpX9etezeQpcDUGf7awk9Nure+93Saq0HKH7J595s+bqq/8JWXGeAuvud3rqt+E6vsjFtUIz9tQ09tlYFLYmtoIsPVDDt/dHRreN+VV5vlwWQaNq4bZXXdtqhX8yc80q11gMUv7KyxtGwQbMqre3aYV/XDQAAat0JSI0bVe2bkuSU4Flzx1d7TUBxm7NganTeoX+V1rZs1ik9zQSo396ZOSp27nRAldc324o+PkA+nIBUw2a/cVjMnTKo0GVApU64dZ8PU9OVf4Dp3ungeOv1xvH68G/VWG1AcZq3T+vYsV2feH/e65Wua9SgeTQp3T1euLvi7mWg/hm+aFEccNj58ewrN29xbd9dz4yvXzgqIrznoLiVr2tQ6BIA6g09NordvR8siIHHfSWeGnvjFtfuvfvn4xsXjYnycu93oT57859r49qbLoopVRjDdnC//47f/3R2TJ7kugH1WdKNP+7WgelJiuXZyk9Q273rETFhbKnv9Ch6+mu1mwBSDcuuaxjr1jUsdBlQqRH3zomjj7o2/jnqms2uScYnHbX/d+MbF70S61ZX7fQCoO76zU/HxzU//3H8ecRJlX7Q+fSgH8a9v5/hugHEvx6dFqd87ox4eco9sXT57M2u67/76fHOGw1cNwCACvTYKHb/eXpmnHn+CfFSsztj8bKZm123164nxYy3msSalU1qtD6g+CxbHbF47g6xW9dPxdT3/rXZde1a7RodWx4aE197JjnPpEZrBIrP4w8uiCMGfjOeGHP9ZteUlTaOT+17TVzxxRf12IBqZQQbsJHHR0yJxdP3ieMOuiF9U/JJLZt1jnM//bf4w00zY/nS1QWpESgu8+Yujb/etiTOGXJvNG/aYaPHkzFLJx32y3jn1V1i9Kh3C1IjUHy+/7WX45yj/5qeoPZJmUxJDNzrwthth4vjVz8aW5D6AABgW1z3v+PirKPuic7t+2/y/e7+vb8Yfbr8b/z8e2MKUh9QfK6/6vk4aM/r0804mchs9PhOOw6MUwffGd/5qusGkPPw396INfMOiWMHfi89POCTWjfvGp8/7u/xuxunxerVawtSI1B/OAEJ2KTf/vzlGHxUjzj37Edj0coJ8f7816KspGHs1PHgWLO8Y/z8mgkxfdr8QpcJFJHnnn47PpjVIb502d8iGr4X02c/H+Xla6PTDntH87I94p4/vRejn32t0GUCRWT2B4vjm//1YvzPt/4v2h64JN794JlYuXpxtGu5a3RovV+MenJZ/L8//6fQZQIAQN6bdb7+ldFx2dW/jGP2Xxbvzn4mVq5aEG1b9oiOrfeLF55eEd/67rOFLhMoMl+78Om44JIL4oufuTBmzX8hFi55N5o22SF26nBIzHy7cVxx/rNCBEAFN//opTji2F5x7pmPxcIV4+OD+a/nvtPb8ZBYs7Rj/Pgbr8WsGQsLXSZQDwggAZv19BNvpj/tdmgeu+5+aKxetS4mjn87Vq+eUujSgCI1dfLs+MbFs6NJ04bRs9f+UVZWGlMnfxALF2ioApu2ePHKuP6q59I/9+7bK1q0bBLT3pkXs2aMKnRpAACwzZLTw394dS5U37vvnun73femzY8Z058vdGlAEbvt12Mjfh2x8y7tYsfOPWLhguUxacK4QpcFFLEnH52S/nz8O73Xx0+NtasnF7o0oB4RQAKqtFsr+QGoqhXLV8fLY6cVugyglpnw2sxClwAAANXG+11ga7379rz0B6CqfKcHFFJJQV8dAAAAAAAAAACo1QSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAAAAAAAAkDcBJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAqJ8BpKeffjp69uy5yZ/JkydXWDts2LAYMmRI9OvXL0444YQYMWLEJp+zqusAAAAAoLbTXwMAAAC2h7KoxaZMmRKZTCZuuOGGKCmpmKXq1KnThj/fdtttceONN6aNj/POOy8ef/zxuOKKK9LfPe6447Z6HQAAAADUBfprAAAAwPZQ6wNInTt3js9+9rObXbN48eK45ZZb4vjjj4+f/exn6X2nn356nHvuuWkz5Nhjj43S0tIqrwMAAACAukJ/DQAAAIj6PoItaZDsuuuula558sknY/ny5XHWWWdtuC/ZzXX22WfHrFmzYty4cVu1DgAAAADqCv01AAAAoF4HkLLZbLz11lux2267pX9ftWpVrF27dqN148ePT2/79OlT4f7evXtXeLyq6wAAAACgLtBfAwAAAKK+B5CmT58eK1asiGnTpsUJJ5wQ/fv3jwEDBsTll18e8+fP37Bu9uzZ0apVq2jSpEmF32/fvn16O3PmzK1aBwAAABRfj+DSSy+NAw44IP258sorK/QGgE3TXwMAAAC2V3+tLIrMnDlzKn28adOm0axZs/R46MQrr7wSX/7yl6Nr164xduzYuP3222Pq1Klx3333RePGjWPZsmXp7Setvy9psiSqug4AAAAoHgsWLIgvfOELsXr16vjSl74U69ati9tuuy0mTZqU9gYaNmxY6BKhxumvAQAAADXdXyu6ANIhhxxS6eMXXXRRugurW7ducckll6S7s3bZZZf0saOOOip23nnnuPbaa+Ovf/1rfO5zn0uPks5kMpt9vvWPVXUdAAAAUDz+9Kc/xfvvvx8PPfRQ9OjRI70vOcXli1/8YgwfPjxOP/30QpcINU5/DQAAAKjp/lrRBZCuv/76Sh/v1atXervHHnukP5906qmnxve///0YPXp02iBJdnStXLlyo3Xr70t2eyWqug4AAAAoHiNGjEiPhV7fHEkcdNBBaZgieUwAifpIfw0AAACo6f5a0QWQhg4duk2/36BBg2jZsmUsX748/XunTp1i0aJF6VFRHz8WKplJn+jYseNWrQMAAACKQ/I5PplPf+yxx270WJ8+feLpp58uSF1QaPprAAAAQE3310qilvrFL34RRx55ZCxdurTC/QsXLoz58+dHly5dNvyDJMc/T5w4scK69X/v27fvVq0DAAAAisMHH3yw2VBD+/btY8mSJekPsGn6awAAAFC/fbAd+2tFdwJSVXXu3Dnee++9dBb9eeedt+H+X//61+ltMrs+MXjw4GjUqFHccccd6Yy6RHl5eQwbNixtogwYMGCr1gEAAAA5ZauXRfc3hm/zc0S0zut3ly1LfjeiSZMmGz2WfMZPJCe4tGjRYptqhLpKfw0AAABqf39tW3ps27O/VmsDSJ/97Gfj3nvvjZ/85CfxzjvvpPPqR40aFY899licccYZsf/++6fr2rRpExdeeGHcfPPN6Q6sgQMHxqOPPhpjx46Nm266KUpLS7dqHQAAAJAbtbR9tM77uZLP71uSyWTyem6oD/TXAAAAoC701/LvsW3P/lqtDSAls+h///vfx89//vN4/PHH051a3bp1i29+85vx+c9/vsLaSy65JE1r3XXXXena7t27p0dMDxkyJK91AAAAUN/deeedhS4hmjZtmt6uWrVqo8fW39e8efMarwtqC/01AAAAKJw761h/LZOtSpyJvBx55JExa+bC6NLm9EKXAgAAQA2aseDe9HbCxLGFLqVOW7x4cXpCy0UXXRSXX355hceuuOKKeOaZZ2LMmDEFqw/YdvprAAAA9VfSY+vUuXWMHDmy0KXUWYu3Y3+tpJpqBAAAAKhWLVu2jK5du8brr7++0WMTJkyIvfbaqyB1AQAAAEB9668JIAEAAAC11jHHHBOjRo2KN998c8N9//nPf+Ltt9+O4447rqC1AQAAAEB96a+VVVN9AAAAANXuy1/+cjzwwANx3nnnxfnnn5/Opv/9738fffr0iZNOOqnQ5QEAAABAveivOQEJAAAAqLXatm0bd955Z+y5557xq1/9Kv785z/HUUcdlTZJGjZsWOjyAAAAAKBe9NecgAQAAADUarvuumvceuuthS4DAAAAAOptf80JSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAAAAAAAAkDcBJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAyJsAEgAAAAAAAAAAkDcBJAAAAAAAAAAAIG8CSAAAAAAAAAAAQN4EkAAAAAAAAAAAgLwJIAEAAAAAAAAAAHkTQAIAAAAAAAAAAPImgAQAAAAAAAAAAORNAAkAAAAAAAAAAMibABIAAAAAAAAAAJA3ASQAAAAAAAAAACBvAkgAAAAAAAAAAEDeBJAAAAAAAAAAAIC8CSABAAAAAAAAAAB5E0ACAAAAAAAAAADyJoAEAAAAAAAAAADkTQAJAAAAAAAAAADImwASAAAAAAAAAACQNwEkAAAAAAAAAAAgbwJIAAAAAAAAAABA3gSQAAAAAAAAAACAvAkgAQAAAAAAAAAAeRNAAgAAAAAAAAAA8iaABAAAAAAAAAAA5E0ACQAAAAAAAAAAqL8BpH/84x9xyimnRL9+/eLII4+Mn//857Fq1aqN1g0bNiyGDBmSrjvhhBNixIgRm3y+qq4DAAAAgLpAfw0AAACo1wGke++9Ny677LJo1apVfPOb34yDDjoo/t//+39xzTXXVFh32223xXXXXRc9e/aMq6++Ojp06BBXXHFFPPLII3mtAwAAAIC6QH8NAAAA2B4y2Ww2G7XQggUL4qijjooBAwakTZHS0tL0/htuuCH+9Kc/xRNPPBHdunWLxYsXx+DBg+OII46In/3sZ+ma8vLyOPfcc2PGjBkxcuTI9Herum5rJDvGZs1cGF3anF4N/wIAAAAUqxkL7k1vJ0wcW+hSADZLfw0AAIBi77F16tw6/TxJ8au1JyA9/vjjsXTp0rj88ssrNC7OPPPMuPjii2Pt2rXp35988slYvnx5nHXWWRvWlJSUxNlnnx2zZs2KcePGbdU6AAAAAKgL9NcAAACAqO8BpLFjx0br1q2jT58+6d9XrlyZNkV22WWX+OpXv5reJsaPH5/erl+3Xu/evSs8XtV1AAAAAFAX6K8BAAAAUd8DSO+++27suOOO6c6pU089Nfr3758eF33llVemO7fWmz17djrDvkmTJhV+v3379untzJkzt2odAAAAANQF+msAAADA9lIWRWbOnDmVPt60adNo1qxZOlN+yZIlccEFF8Rpp50WF110Ubz00kvx5z//OT3S+fbbb49MJhPLli2Lxo0bb/Q86+9bsWJFelvVdVsjabqsK1+TziUEAACg/lhXviwiMoUuA6in9NcAAACoKz222bNXF7oMamsA6ZBDDqn08aQRksylX716ddqA+J//+Z+45JJL0seOPvroaN68efzqV7+Kp59+Og4//PDIZrNpo2Rz1j9W1XVbo1GjRunvtW/feqt/FwAAgNprzpw10bBhw0KXAdRT+msAAADUBXpstUvRBZCuv/76Sh/v1atXerv+KOehQ4dWePzkk09OGySjR49OGyTJjq5kfv0nrb8v2e2VqOq6rfHiiy9u9e8AAAAAwLbQXwMAAACivgeQPtnw2JyOHTvG5MmTo23bthXub9eu3YYjnxOdOnWKRYsWpTu6Pp6MS3Z3rX+erVkHAAAAAMVMfw0AAACoaSVRS/Xp0ye9nTp1aoX733vvvfS2c+fOG9Ylxz9PnDixwrr1f+/bt+9WrQMAAACAukB/DQAAAIj6HkD6zGc+EyUlJXHrrbdWuP/2229P58IfddRR6d8HDx6czoq/4447NqwpLy+PYcOGRZcuXWLAgAFbtQ4AAAAA6gL9NQAAAKDOjmCrqj322CO++MUvxm233RYrVqyIww47LMaMGRMPP/xwnHvuubHbbrul69q0aRMXXnhh3HzzzekOrIEDB8ajjz4aY8eOjZtuuilKS0u3ah0AAAAA1AX6awAAAMD2kskm3YBaKik92UF11113xfTp02PHHXeMM888M84///x0l9bH1/3hD39I182dOze6d+8eF198cQwZMmSj56vKOgAAAACoC/TXAAAAgKjvASQAAAAAAAAAAKCwSgr8+gAAAAAAAAAAQC0mgATA/2/vXsC2nu8/gH9jOjiEJppD5dhmUhZzmlG0mTERaamIa6MRopyFUWq2rjaaRkuYIac5lIg5k2OyZXN6yLmQJklE/+vz/V/3s/rv+H88uu/7d79e19X1PN3P83T9bJ9+fX/v+/P9fBMAAAAAAAAANJQGJAAAAAAAAAAAoME0IAEAAAAAAAAAAA2mAQkAAAAAAAAAAGgwDUhfoKVLl5b7EgAAAACgasnXAAAAoDpoQPoCvP322/ljkyZNyn0pAAAAVAlvsgP8nXwNAACA/y/5Wnk1Wer/gUYzbdq0dOGFF6bFixenVVddNfXv3z9169YttWzZstyXBo3ulVdeSVOnTk0bbLBBatu2berYsWO5LwkaTD1TJOqZolHT1II5c+ak9dZbr9yXAVAR5GvUEmtdikQ9UzRqmiJRz9QC+Vpl0IDUSK699tr0s5/9LO26665p7bXXTnV1dWn69Olpv/32S6effnpq3rx5uS8RGkXcMi6++OI0duzYtM4666S5c+fm3YhHH310OvDAA1OrVq3y99ihSDVQzxSJeqZo1DS14LnnnksjRoxIb775ZmratGl+g71fv3655gFqkXyNWmGtS5GoZ4pGTVMk6plaIF+rLF8q9wVUu7gpf/LJJ+nmm29Om222WTr++OPT+uuvn7/205/+NF1//fW50IcNG1buS4VG8cILL6TLL7889enTJ+2///5p5ZVXThMnTkzjxo1LL7/8cjrvvPMsVKga6pkiUc8UjZqm6J5++ul07LHHpg033DB17949vf7662n8+PFp1qxZaejQoalDhw7ps88+Syut5OR0oPjka9Qaa12KRD1TNGqaIlHPFJ18rfJoQPqc4qYcAcmf//zndNxxx+VwJH6/yiqrpEGDBqWFCxem3//+92mPPfZIO+20U7kvFz63yZMnpw8//DD17ds338xLYeCSJUvSjTfemLbddtvUs2dPHdNUBfVMkahnikZNU3R33nln+uijj/Kb7Ntss01+7ZprrkljxozJb7DH58IRoFbI16g11roUiXqmaNQ0RaKeKTr5WuXxv3YjmDdvXh5R99e//jX/PsKR6KSLUdG9evVKG2+8cR4fHTdzqFYR/IVYgDRr1qz+DM2PP/44vzZgwIDUpUuXdP7556e3337bQoWKpp4pEvVM0ahpiuifnXw+Y8aM9PWvf70+HAkHHXRQ6t+/f5o5c2a68MILV/BVApSXfI1aYK1LkahnikZNUyTqmSKSr1UHDUiNYKONNkprrrlmev7559Ps2bOX+wsQxR5naEZ4EuOioVpcffXV+de9995bH/yFWIR8+umn6aGHHlru9S222CL17t07d5ledNFF+bUICqESqGeKRD1TNGqaops/f34O/krPiFGvsftwtdVWS3Pnzk0ffPBBfr30hvq+++6bJ3xccskl6aWXXirrtQOsSPI1ishalyJRzxSNmqZI1DNFJ1+rHhqQGkmEIDEm+qmnnsq/jzM044YeI726du2aOnfunM/ThEr38MMPp27duqULLrggjR49Oh1xxBFp8ODB6Yknnshfj68tWLAg/z4WJqXFS9h5553Td7/73XTVVVelN954I9f/P+tGhRVFPVMk6pmiUdMUXQQe5557bp7asf/++6eBAwemF154Idfqqquumtq0aZPmzJmTz6oPX/rS/56QHscO7bfffnmH4tixY/NrQkCgVsjXKAprXYpEPVM0apoiUc8UnXyt+mhAaiR77bVXatu2bfrDH/6QXn311fxa6TzBGBEdIcm7776bpkyZUuYrhX8tbtbjx49P6667bh5JF4uOGG9+//3355v7W2+9lbbaaqu8KJk6dWq+wZcCwRCj0r/zne/kG350lAZjGykX9UyRqGeKRk1TdAsXLkxHH310+uMf/5hrtVOnTnlqx5FHHpkmTZqUvyd2Gv7tb3/LuxDj+0MpBNx+++3TnnvumW699db04osvCgGBmiFfowisdSkS9UzRqGmKRD1TdPK16qQBqZHEiOhDDz00d5red9999WdolsZ8RUASHXevvfZauS8V/qXYZfjggw/mLtIYb77pppumH/zgB+n444/PtTts2LD8fYcddlh6/fXX84KlNNJu2Zv5V7/61fTMM8+kefPmlfW/h9o2a9Ys9UxhuD9TNO7RFF2EIfFsGOfNH3vssWn48OHpsssuS2ussUb6+c9/nv70pz/l+o3w5JZbbsnfXwoBIwhZffXV02677ZZatmyZrr322vw1ISBQC+RrFIHnN4rEsxtF4x5NkbhHU3TyteqkAakRxU19u+22SxMnTkxPPvnkcru04izNtdZaK7333ntlvkr4u+h2jp2DpW7PUtfzl7/85fxx8eLF+WOMqDvooINy+BddotEtHbsS42b9+OOP1/9sBINxM//GN76Rx92V/jxYEaK7/4EHHljutVhIqGeq0XPPPbfcA19pPaGeqVYxwWDRokX1vy896Klpiqa0rq6rq8vn0kc9r7LKKvnzdu3apeOOOy6/uX7mmWfm74032WOXVkz6iHX5suOgv/3tb+ddjDEGfdm/PwBFJ1+j2sjXKBL5GkUjY6NI5GvUCvladdOA1IjiJn3aaaelN998M1188cXp2WefrV/MxNivt99+O2244YblvkzIXc7f+973csfoHnvskU455ZTc+R8doy1atEiPPvpo/r44FzNu0PHa3nvvnTp27JjGjBmTFyVHHXVUru8Y7xhd1qFp06b5YyxSoos6/iGAFRX2nX322enmm2/OC+XSYnu11VZTz1SVO++8Mz8Mxv05zt8+/fTTc303b948j8JVz1Sb22+/PdfowQcfnLp3757HQcd9OmramoOiKAUby4qajGBkxowZy4WCEXr06dMn7yy84oorcsgXIUoEJPfcc099XcfPx4SPDh065IAk/m4A1Ar5GtVCvkbRyNcoEhkbRSJfoxbI14pDA1IjizFfsZCJm/fgwYPTddddl4v98ssvTxtttFHaZZddyn2J1LBYeER4d+KJJ+ZzX/v165cOOOCAdNttt6VjjjkmfeUrX0mbb755mj59epo9e/Y/1HbPnj3z2MYrr7wytW/fPgeCTz31VB5z98477+QFyl/+8pd8Fufuu++e1llnnbL9t1J7nf9h5syZ9bu0unTpktZbb7302GOPqWeqwh133JHH4sb9+Uc/+lHaZ599cqAdD5gxPneDDTZQz1SVWP8OHTo012iPHj3yKOgISOIs+qjpjTfeOD3yyCNqmqp100035Xt13759c83GfXzBggX5a1G3EfDF5I5Yg0fYEePNIyiJsHDHHXdMv/71r/POq3hujGfF3/zmN2natGn55yNcib8DMUo6dnYFZ9QDtUS+RiWTr1FU8jWKQsZGkcjXKDr5WvF8qdwXUES9e/dOrVu3zv8AxI6B6CBdf/3107nnnpvatm1b7sujhs2dOzdNmjQp7brrrumEE05Ibdq0ya/HDXnEiBFp3LhxaeDAgflXdEzHjsLoEI2beXyMMY3bbrtt7iaNTuvooI6O0VgAde3aNYcrpS7pGPEIX7RYcETXfvyKXbJxjnGMFN16661zPR5yyCF5BKN6ptLrOBbMN9xwQx6XO2jQoHxfDnF2catWrfLnsWMrwhP1TDV4//3381jnLbfcMq854k2YEA+C8cbMD3/4w3yPPumkk9Q0VenSSy9NY8eOzffp2D0b0zmi1nv16pXOOOOMtNNOO6XNNtss3XvvvXnX7SabbFI/vSMCjzheKM6wj52Hcd8/77zz0vHHH5/fbI/1TBwvFBMUFi5cmOs/OKMeqDXyNSqVfI2ika9RFDI2ika+RtHJ14rJBKQvSHSKRkdpdFVH0d9yyy15/BeUU4wpj07PuHFHOLJkyZL8eoyLjlDv7rvvzt3SsZiJRc3LL7+cv1469zUW69tvv32+UcfY83DYYYelq6++Oi9y4h+BqP2o9x122KGM/6XUitJC4/nnn8+1GzsBYrERZxvHInvPPffMdRm7ZdUzlVzH8ZAXXfwxtj9qszTuNmovdrKE6OiPnSvXXHONeqbiRXgR9+ao6QhHYqdKiJ2HEQjGGP/ddtstbbHFFtYcVJXYJRV1GbXXuXPnHPpFqBFhXgQhUc+jR4+ur9nYYfXggw/mvwMRcMT6JETdxvNh7OqKQLFTp05p1KhReefW+eefn84555wcJsafH6EgQK2Sr1GJ5GsUjXyNopCxUTTyNYpKvlZsGpC+QNGpF6McYxweVIJ58+bljy+++GL+WBpVF+FIjFaMm3bsJjz00EPT008/naZMmZIXOKG0sImFTtzElx1RF13VQ4YMyZ2l0WkdO2VgRSjVYZxF/+GHH+bxjHGucSxOoqu5ZcuWeTEeo6PVM5W+gzZqLUbflkaDRs3uv//+eXdK7DSMc+qPPvroXNuTJ09Wz1S0qMVYW0RgveyZ8jHWOV6PAGTNNddMP/7xj/OaQ01TDUojnj/66KNcy7HLKtbRpZqNMCOCvziSJe7V8SZkHFlx1VVX5R1cpRAwajqCwwhF5s+fn3cfhtiVOGbMmDz6PP6M2N0Vx7kA1Dr5GpVGvkbRyNcoEhkbRSJfo4jka8WnAQlqSHQ6x0jFCO5Knf9xk44u6bfeeisHJiFG3UWH6WWXXZbuuuuu5RY28XNxUy8tYko/U/qzYEUqjUqM0C/CkFgoH3XUUbnTPzqnY8ESi5eo54kTJ6pnKlY89MUbK7GLNu7HccxE7DiM0dDNmjXL4/0PP/zwHARGiD1hwgT1TEWLnYRxJEWMf44z6Z944ok0Y8aMdMkll+TQ48QTT0wjR47MO8YjAIw1x5133pl/Vk1TSZ555pm8AyvqsVR38aZjjPOfNWtWfc1GrUY9x3FB8TF2WzVv3jwdeeSR6ZVXXslv3kQQHkqBSuzGilA8vi+UwsD11lsvByvL1jwAUDnkaxSNfI0ikbFRJPI1ikK+Vls0IEENiZtvjFaMEaPR+V9SV1eXu0NjMRM3+Pi+2AkQD5yxQJ82bVr+vjlz5qQbb7wxByxxdiyUW2khEeN148EyFhzRGR0d0RGQxHn1sUCJHQCxE+CCCy5Qz1SsCPNilGj8ijo9+eSTc6d+PDjGudxt27bNY0Nj1+G6666bfvnLX6pnKtoRRxyRHw7jfvyTn/wkn0sfNdq3b9+8OyXWJMcdd1we5x/36DjvO8blBjVNpYgjf2644Ya8Y7YkjqWI3eGxSysC7RCjz0u7rGJX1WOPPZbv0bvssksOASMgifH+IULvCFwiFIwQPNbesaZxBj0AVAf5GkUjX6NoZGwUiXyNIpCv1RYtX1Bj4ma+7Ji76DR96qmn8k15q622yq/Hjq1YqIwYMSL96le/SoMGDUrt2rVLa6yxRj5vduDAgWmttdZyI6fsSvUXi5MI90pd/VGjsSg566yzchgYAcnw4cPVMxUtwuvf/e53adiwYfnhsU+fPvW7Abbbbrs0YMCAdOqpp+YF9UUXXZQ/V89Usgj0IgD5/ve/n3dkffOb38w7XWL3SenB8+yzz87jcCP4i51cxxxzjJqmIpRqLs6jj/AjxjzHjqoIp2PnVI8ePXKoF4F27MiK+3V8X6xFYrz57bffntcdcW8/5ZRT8oj/8ePH511acTZ97Dx84IEH8ps68fMAQHWRr1Ek8jWKRsZGkcjXqGbytdqkAQlqWGnRfffdd+fgZOutt67vGg077LBD2mabbdKVV16ZZs+enW/ksbDp3LlzWa8b/q9Fixal9u3b58+jg3r06NG5vpcsWZLP81577bXzoiZqPDqkX3rpJfVMxYkzu3v16pV3xrZo0SLXdYw9jzqOxXjUcNR57Dw88MAD89jz6PZXz1S6xx9/PO9kiZAkwpF4iIydtbHOiNAk1hkR9EU4GL9izL+aptwiHHn33XfTfffdl+/Jca+NUf2xrggRkETt3nzzzXl9UQr+Qkw96Nq1a95Ze8899+Td4/GmzW233ZZDlcmTJ+cAZu+9905Dhgwp438lANAY5GsUhXyNopCxUUTyNaqRfK02aUCCGhddoo888ki+sW+xxRb5tVi4xD8CEYp069Yt7wjQFU0li4fIqNfYifXggw/mMbs9e/bMi/EIAHffffe06aab5iAwzvaGShQByF577ZU79qOe40zvOOM7HiRD7NiKXSvR/R+vxYJdPVMN4iEzfPTRR8uN94+dVzHeP46kiKMq1l9//bzmgEoR4UjUb4QYEd5FGBJriq997WtpnXXWSf369cu7sGK9HGuP0pszcT+P+3cEJG+88UZ9AB7rlAhW4lz6uJ/HawBAMcjXKAL5GkUhY6OI5GtUK/la7fnff22BmvX000/nkdCl819j1G50jw4dOjSfJxs3deEIlax0JmwsYuKM+ksuuSSdccYZ+YzYGDU6Y8aMfM5xfA0qXZx73L9//7RgwYI8jrSurq4+HIn7dfy+FGZDtYjdKfHgGPfjefPm5c/jfO5nn302Pfzww6lLly7L7W6BSllfXHHFFTnEiDPmY1x5rItjV1aIIygi7OjQoUOaMGFCmjlz5nI/36lTpzz1IHYblv68ECOmt9xyS+EIABSMfI1qJ1+jaGRsFI18jWokX6tNJiBBjZ+7+corr+SPG2ywQR7heOmll6a77rord5XGGd/RLQ2VLB4cYyfWa6+9lkeNRsd0SYxejJr+8MMPy3qN8N+K+3Hs0IoQJMZEx2I8zqkPMWY0dhlGXUM1iQfIfffdN1188cV5Z8o+++yTd73EqPPYYRs7akvHVkAlrS8OOeSQ+jdYYgfW9ddfn9fJsSMrfkWwd+qpp6a+ffum3/72t6l169b1wUfsEI9wJHbWlv48AKB45GsUhXyNopGxUTTyNaqRfK02NVlamtEG1KQ4//W6667L3dNPPvlkPst72LBh9Tu2oFqUzjz+vyFgLE7ijG+oNrE7K0aSvvrqq3kUdHT1n3nmmXn3IVSbGJt70kkn5YfGeOCMnStt2rTJNR3hNlSDRx99NB1xxBFpu+22y6Ohmzdvnl+P8C92iEc4EmFJrD9uuumm9P7776dx48bl+zcAUGzyNYpCvkYRydgoCvkaRSBfKz4NSFDjYvfKqFGj0pprrplH3znrGKByRMC3cOHCNHfu3NSxY8dyXw58LhGMvPnmm3lMdHy+/fbbl/uS4L9SetMlnHLKKfk4ldgdXto9G6ZOnZrGjBmTazx2HLZv3z4NHz48n2cPABSffA2gssnYKAr5GtVKvlY7NCBBjZs+fXo+U3PAgAGpadOm5b4cAACoOJ9++mkOPuJIit69e+ddVzHGf9njVBYsWJDmz5+fQ8A4ox4AqB3yNQAA+Pfka7VBAxLUuGU7TgEAgH9/HMVFF12Uxo4dmw4//PA0ePDgcl8WAFAB5GsAAPCfydeK7++H+QI1STgCAAD/vQhGNt9883TllVemJ554otyXAwBUAPkaAAD89+RrxaUBCQAAAP6D2J0Vo6LjWJW+ffvmc+jXXnvtcl8WAAAAAFQF+VrxOYINAAAAAAAAAABoMBOQAAAA4P/BPh4AAAAAaDj5WjGZgAQAAAAAAAAAADSYCUgAAAAAAAAAAECDaUACAAAAAAAAAAAaTAMSAAAAAAAAAADQYBqQAAAAAAAAAACABtOABAAAAAAAAAAANJgGJAAAAAAAAAAAoME0IAEAAAAAAAAAAA2mAQkAAAAAAAAAAGgwDUgAwOf2wQcfpG7duqUOHTqkadOm/cvvGzx4cP6eSZMmrdDrAwAAAIBKJl8DAKqdBiQA4HNbffXV0/Dhw1OTJk3SWWedld57771/+J7rr78+TZkyJe2xxx6pV69eZblOAAAAAKhE8jUAoNppQAIAGsWOO+6YDj744PTOO++kc845Z7mvvfTSS+ncc89NrVu3/oevAQAAAADyNQCgumlAAgAazZAhQ1K7du3S5MmT0x133JFf++STT9IJJ5yQFi1alEaOHJlatWpV7ssEAAAAgIokXwMAqpUGJACg0bRo0SKNGDEirbTSSunss89O8+fPT2PHjk2zZs1K/fr1S9/61rfKfYkAAAAAULHkawBAtWqydOnSpeW+CACgWEaNGpUmTJiQA5Hp06enTTbZJJ9R37Rp03JfGgAAAABUPPkaAFBtNCABAI1u8eLFqUePHqmuri6HItddd13q0KFDuS8LAAAAAKqCfA0AqDaOYAMAGl2zZs3SlltuWf/5WmutVe5LAgAAAICqIV8DAKqNBiQAoNFNnTo13XrrrTkYWbBgQTrttNPKfUkAAAAAUDXkawBAtdGABAA0qjlz5qQzzzwztWjRIl199dX5fPr7778/XXPNNeW+NAAAAACoePI1AKAaaUACABrN0qVL08knn5zmz5+fhg4dmjbeeON03nnnpZVWWimNGjUqvfbaa+W+RAAAAACoWPI1AKBaaUACABrNxIkT00MPPZR23nnn1KdPn/xa586d04ABA9LChQvTqaeemkMUAAAAAOAfydcAgGrVZKlVCgDQCJ599tl0wAEHpGbNmuXz6du0aVP/tcWLF6cePXqkurq6fF59//79y3qtAAAAAFBp5GsAQDUzAQkA+Nw+/vjjNGTIkPzx9NNPXy4cCRGajBw5Mq288spp9OjR6eWXXy7btQIAAABApZGvAQDVTgMSAPC5/eIXv0jPPfdc6t69e96J9c906tQpj4petGhRPsf+s88+W+HXCQAAAACVSL4GAFQ7R7ABAAAAAAAAAAANZgISAAAAAAAAAADQYBqQAAAAAAAAAACABtOABAAAAAAAAAAANJgGJAAAAAAAAAAAoME0IAEAAAAAAAAAAA2mAQkAAAAAAAAAAGgwDUgAAAAAAAAAAECDaUACAAAAAAAAAAAaTAMSAAAAAAAAAADQYBqQAAAAAAAAAACABtOABAAAAAAAAAAANJgGJAAAAAAAAAAAoME0IAEAAAAAAAAAAKmh/gfH/CMQpJELQAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gpv.plot_2d(geo_model, \n", " direction=['x', 'x', 'y', 'y'], \n", " cell_number=[25, 50, 25, 75], \n", " show_topography=False, \n", " show_data=True)" ] }, { "cell_type": "markdown", "id": "74135615", "metadata": {}, "source": [ "Next to the lithology data, we can also plot the calculated scalar field." ] }, { "cell_type": "code", "execution_count": 22, "id": "e7181346", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAYAAALBCAYAAADLZ6PvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaLpJREFUeJzt3QmYneP5B+An+2IPibWtrUIsiaraoiEJjaKoPcRStRStvUiVqlhKbbVU+cdaKdVWqUSDaK21VhXVxFpbiDUhi2zzv55PzzSThRkSZ+Z8931d42TOec/MNzOfM/P+vud93lZ1dXV1AQAAAJRS62ofAAAAAFA9ggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAADWgrq6u2ocAQAslGABgvpo8eXL8/ve/j3322Sf69OkTa621Vmy88cZx4IEHxh133DFfPkf37t1j3XXXrX//lVdeKe7bZpttGv38fLv22ms/dtygQYOKcU888URU23HHHVccy5///Ocoiz/84Q/F1/zTn/60UeOHDh1ajL/gggs+ceyDDz5Yfx7M+rbmmmvGV7/61dhhhx3i3HPPjbfeeqtR52A1vfHGG3HYYYfFU0899an/nwCg3NpW+wAAqB3/+te/ignKSy+9FAsvvHAxMVlnnXXi1Vdfjb/+9a/F27e+9a342c9+Fq1bVz+bPvvss2PzzTeP5ZZbrtqHQpUsueSSRXBVMXPmzHj33XeLc/mSSy6J6667Ln71q19Fr169ork65phjiqDju9/9brUPBYAWSjAAwHzx3HPPxcCBA4uKgYMOOij233//IhyoyKuZ3//+9+Pmm28u7j/ppJOi2iZOnFgcx2WXXVbtQ2Eutthii+jZs2cstthiC+xzrLLKKvHzn/98jvunTJlSBFjDhg2L733ve3HjjTfGMsssU//4iBEjmkW4Na8lBEsvvXRxjO3bt6/KMQHQsjSP32gAtGg5MTn66KOLUOAHP/hBHHHEEQ1CgZQl2jkBb9u2bVx//fVFVUE1tWvXLpZYYom4++67449//GNVj4W5W2SRRYqJ+1JLLfW5f+6OHTsWoVHfvn3jnXfeKaoHZpXHtdJKK0Vzled3HuMXvvCFah8KAC2AYACAz+zhhx8uSq/zimpWCsxLTlR23nnn+PrXvx7jxo1r8FhOvk499dRiIpZ9CXr37h3HH398sQxhQU2cfvSjHxX/Pv300+Ptt9/+zGv957bGvTL+5ZdfjquuuioGDBgQa6+9dmy55ZZxzTXXFGPyc+e4DTbYIL72ta/Fd77znRgzZsxcP3+Wuufn6d+/f/Fxtt5667j88stj2rRpcw1sfve73xXf81wP/5WvfCX23HPPufZ6qBzn3//+99hvv/2Kj73pppvGXXfd1aDfQq77b2xvgLzN4GW33XYrrvxvsskmRb+ADJDyePP7lD/vLNPPNf2zH9e8egzk8/O5+T3MpSq5jn5BhTs//OEPi9usGJg6deo8ewxUehZkX4Jf/vKXxc8xv98nnHDCpz7Hc3xWM3zjG98ovn/9+vVrML7SR+Chhx4q3t9pp52K9/P+j+sx8MADD8QBBxxQHGP+nPOcPP/88+ODDz6Y6/f/hhtuiL/97W/FuZNfc/ZgyKqgf//733N87MaeJ//4xz+Kcbm0aG7++c9/Fo8ffPDBH/txAJg/BAMAfGa33nprcZuT1U8qXf7JT35SXH3NyUVFTpq//e1vx9VXX11UFGy22WbRtWvXYnKR9z/99NML5Li33XbbosfAe++91+gGd5/WySefHGeccUYRnqy//vrFxG3IkCHF92KXXXaJe++9N9Zbb71izft9990Xe+yxRzExnN0vfvGLOPPMM4ur6BmwZOO5LHnPSo1ZS8rz37n2PMOP559/vpik5ltOuA455JC46KKL5nqcOfHMCV9+7PxZ9OjR41N/zcOHDy8moFmWn+v4P/zww6LhYx5THm8GHHnVPT9HBkt5XPfff//Hfsz8GBmcXHjhhTFp0qTiXMlz7thjj21UaNFUeXxf+tKXiq/h8ccf/8TxGRjlzygDi1VXXbW+qqCp53ieHznRzyqbDFGykWdW4eT4HXfcsfh4nTt3Ls7hPGdS/szy/bx/Xq688sqiMWiebznxzvM/A4GLL744dt1117mec6NGjYp999033nzzzSLcWXzxxeMvf/lL7L777p+68ifDoJVXXjlGjx491xDspptuKm633377T/XxAWgaPQYA+MxeeOGF4javPn4auQxh7NixxRKE3L2gVatWxf05CcqJat6fk8w2bdrE/JZBRVY85IQur1hnuLEg5FXaX//618XkP+UEOcOIvMKcV27zKnNO/KZPn15MwvIq8MiRI4vJ1+zf63zON7/5zeL97Jq/1157xZ133llMpioTqVyu8ac//am4wpshQGXymBPKnBjmFfesUJg1oEkTJkyIW265pRif1QmVdfQZPuSV+m7dujX6a87JZ15xzwqElBPAvEKcP8sMNvJ4c9Kd8mvKkCSvTs/aDHBuE9usasir7fl1Zcl/ygl3Xo1fEHIC+5///CdefPHFItT5ODkmK1Bysp/ye/hpzvE8L7MyIH+2Wc1RuT9/bhmK5OfIyXxWFORV+qw6ybCl8v9ghiazy901MpzKJRoZOFQaKmbYMnjw4OLn/uMf/3iO0ChDgFmPO8/RrBi45557ivMsA6iKppwnWSWSDUCz70h+fyry4+f3IgOIDFAAWPBUDADwmVWWBVQmn02Rk7wsK84JV042KhOmlJOrLJ/OyXBOQhaEvIJfmZTkVf33339/gXyevJJbCQXSVlttVf/vnFhVejLk1eT8mtPcrsbmY5VQIOUEOydzKSfVFVdccUXxvTzrrLMa/FxyzXlORLOiICfTs8vjqoyftble7tyQS0FyUtlYK6ywQnF1v2K11VYrPkbK8KMSCqQsl085Af84v/3tb4vjOuWUU+pDgZQT6AxYFoTKzyZ3K2jM2FmvcuexNvUcf+2114p/5/dv1lAgZSPE/D7mZH7GjBlN+joymMqfewYIs+6y0KFDhyJUyQqGDMdmP+9WXHHFBsed52guD6k0HZ1VU86T7bbbrvj+ZAgwa7VLfu35vc7zXPNEgM+HYACAzywnCpUrfU1VWR+dV6/nJq8MzzpuQchJTk4qM+DIK6oLwuzVFNn4MOVka/XVV2/wWGVSlZO/2WVPgdnl965Tp05FqXuWnefygrxynZO0uTWf22ijjYoJWVZKzC4nnfPza551Ejzr1z2vr3nWdfyze/3114sS+7yCP7ctJiuByvxWOa9n/1rmJpcPzL5bQVPP8crPJe+fvUom/1/LSpBchtHUCppHHnmkuM3eDLPLkCWXFcw6rmJulUCVhpBzq0xorNw5IatDMgiZ9Vy0jADg82cpAQCfWV5pzLXCc1uf/ElyspeyPDrf5iUnuwtKTvjyCnRewcxmfdmwLSfP89PsW+5VJpk5oZ/9qujHTUCXX375Oe7LiWiWbufV9rzSWvleZSl6riOfl/x5ZZCQjRgrFl100Zhf5vaxKl/bvL4fjalMyQllY78388P48eOL28Zsmzi3r7mp53iu5U/LLrtszE/5cfNn/Unfv1yeMqu5Xf2vhBJz2yqxKbJiIpecZNiR4Vz2O8ilC9mbIRsuAvD5EAwA8Jll87j84z4b22VjtI+TY3K9fXa8X2ONNerXYGdjvI+b2GUX9wUpy6UPPfTQYs12dpLP9dZN9XGl3fOrP0KWfX+cvKJcOY4MbDbccMNPvBo+azAw+9Xu+VFJMr98UniwIHpQpAy90pe//OVPHDu3719Tz/HK+Pntkybxlc/blKDqs8qeHhmmZI+PE088MW677bai0aNqAYDPl2AAgM8sS5AvvfTSYmu7LAX/uHXB2XQvt5bLNdXZQC0nr5UJQqVJXbXkevjcYeGpp54qmuHNTWWSNLfJ24LqTzD7VfMMVGaf3OfV5qw+yKvale9pNm/LoKNWVBrazWt7v8qV9vkpG/ZlY7+cvK655pqf6mM09Ryv9HiYV5VMNprMyXPuQlDpf9DY718uxciPO7eqgXwsdenSJT4vGXRlL4HrrruuWEpx++23F/+PzWsbQwAWDD0GAPjMsvN9NjPLruvZ9G5ennzyyfqtDSvd9isN+ebVXDAnttm9PEuNF7S84nzaaacVV9CvueaaYpu/2S200ELFbU4WZ5cN5ha03MpwdnfffXcxUczvZX4N2bQumypmn4HchWB2GXzkOvNZu8m3BDmZzRLz/Lpmb3qXMpia33KnhJTLTD5tI7ymnuP5/1PKrRtnD6Dyqn82CszdHppaxl85jrwqP7vsZ1H5/s2+U8WCVtnBIat0/va3vxVLCubWQwKABUcwAMBnllf4sgw4J9R5pT33cZ84cWKDMdmZPfepzwnIzjvvXOzznnItf5Zo54Qgt+ybdSKUE97cnu7f//73p94KsamyKV5e1c3jmH2t9azN+XIHgNyWrSK3nVuQDRIrhg0bVnyvKvLq+ZAhQ+o781fsueeeRf+AnPxX1uan7EGQSyWyH0EGCI2VDeJyMv55VEV8nNyaL2W3/sra/5RVKKNGjZpvnyeb6uXWe9mlP6/4H3zwwZ/6YzX1HM/mijk5zgDk/PPPbxAA/OpXvyqu7OdSnMra/8ryklyf/3HynMilDvn/ZzaqrMgqnzwn8nzP6p/PMin/NOdJ9hLInQzyZ5j/T2VIAsDny1ICAOaLLLPOvdFz8p/7oF911VXFmuksZ88JTk58Ujb2yxBh1lAh9zLfZ5994rzzzism3Fkqn1fkH3vssfo93bMHwOclv4YsaZ7bVekse86vL9ed5xZ7WSmRk+z8+nJLwgVd2ZD9HHLJQ259l9UL2a8hJ7F777139OnTp35cjsnu8n/9619jwIABRRCTE8i8LyeQOfHMLega69hjjy2Cj1z+UbnCWw1ZaZJX0nPCnlUPld0kslojJ5izTngbI3/Gle0qU4Yp2ZQxqyoy3MpQICfjn6W8/tOc41m5ssceexQVCyNHjiwCqVx+M2bMmOKYfvrTn9aPzedlNcLgwYOLcCHDoLn1BchzIL/WM888s/g+ZgVB7hKRx5DfwwwvsgnnZ/Fpz5PsKZDfo86dO8911wQAFizBAADzTV4ZHTFiRFGGnyXv2WgwKwRy8tG3b9/YddddY7PNNpvjedk5P68W5gQsJ7JZ0pzPyTXU3/3ud+e5zduCkiXjeRU+J2azl3Lnmu7f/OY3RWVETsbyWPP4L7744uKxBR0M5JXd/B7l7gl59T+vtGYoMPtV1lxSkMd0/fXXx4033lhMmPNq8Re/+MWiLD4nhp/UyLA5qlzxznMsJ9j5/c8lBjkpztvDDjusSR8vJ+ez/szy4+fPMbcdzKAlr7I3ZjeCT9LUczy3mfz9739fVBhkl/7sK5DHkZPt/BorfQvS9773vSKcyi3/8v+7bACa58XcZDVMVsVcfvnlxf+fWS2Qn2vgwIHFeZQT82rIxoxpiy22qF+uA8Dnp1XdZ91nBgAAPoPsm3D11VcXlUaftJMGAPOfHgOzySZNuV1VlibmWzb3+TT7cgMAMG/ZMLPSfyQrYLKx5OddHQTARywlmEWWZGYZXZbVZVlf7gM9dOjQYh1plit+2m7EAAA0lMtxcllOLjdKRx111Fx7IwCw4AkGZpFdgV9//fVirWFlbV42Mtp3332LdYG77LJLtQ8RAKAmZCPN7OmQvSGyEWb2FwCgOvQYmEX//v2LrZsyIJhVdnPOX1q57g0AAABqiR4D/5V7IWd/gdxua3Z5X25bBAAAALVGMPBfb7zxRnGblQGzyy2B3n///eINAAAAaokeA/81ceLE4rZTp05zPFbZ53nSpEmxyCKLNPpjfvWrXy0aGc661zAAAABUvPnmm0Wj+0ceeSSqRTDwX41ptdDUTrnZZfc3lz0b7dq9+BmODAAAgFo1bdq02H3/Vat6DIKB/+rcuXNxW9kyZ1aV+xZeeOEmfcxu3bpFu3b/ie7dV5tPRwkAAEAtGT16TDF3rCY9Bv5rueWWqy/jmN24ceNi0UUXrQ8PAAAAoFYIBv4rJ/65VeHcdh/417/+FWuttVZVjgsAAAAWJMHALLbccsv429/+Fs8991z9fffff3+88MIL8c1vfrOqxwYAAAALgh4Ds9h///3jpptuin322Se+853vFL0F/u///i/WXHPN2G677ap9eAAAADDfqRiYRZcuXeLXv/51rL766vGLX/wirrrqqujfv38RDuT2EQAAAFBrVAzMZuWVV47LLrus2ocBAAAAnwsVAwAAAFBiKgYAAACqbGZdm5gwcf34cHrPiFYdo1W0qvYh8RnURV20qns7Fl9oRLRv9040d4IBAACAKocCb7x7YCzeZf1YrGPraNVKKFALZs6si9df/1Iss/gZ0brVjGjOLCUAAACooqwUyFCgU6c2QoEa0rp1q1hyyVXjvff7R3MnGAAAAKiiXD7QsaOpWS3q0KFNTJv5pWjunH0AAADVlD0FVArUrladorkTDAAAAFSRRoO1rVUL+PkKBgAAAKDEBAMAAABQYoIBAAAAPhfHDf5FdO+xQ7zy6rhoiS751e+ib/8Dota0rfYBAAAAMP9NmDQtrrr7P/HHh1+L9yZOi8UXahfbr79c7P31L8WindtV+/BanHvufSwuvOj66NZtiag1ggEAAIAac8VfX4wfXPGPmPjhjAb3/+WpN2Pwb56MX+zbK/bdbMWqHV9Lc/1vb4tTTr0spk2fHrVIMAAAAFBjocB+lzw6z8czLKg8Lhz4ZN/57k/ivvsfj96914133xkf7733ftQaPQYAAABqaPlAVgo0xmFXPl6Mb45u/fN9sedeP4r1vrZHrLXOztF3iwPjzJ9fFVOnfnS8110/suhVcNddcwYgu+x2bOy4yzH17z/77MtxyPfPiK9usEf0/MqusdsexxfLAmY1aO8TYr8Dfhrnnn9trLve7rFR771j9Jj/FI+9+uq4OOnEA+P/fvXjWGihTlGLBAMAAAA1InsKzL58YF4+mDI9rr77o8lvc3LD726Pw4/8eSyyyEJx9JGD4ofH7B3LL9c1hl7+xzjvF8OKMQO+sXG0a9s2bh15X4PnvvzKG/H4P8fEtltvWryfk/tdBx4Xzz73chx4wE5xxGF7xPTp0+OAg4bEiFvvbfDcvz/6dNx6631xzDF7xw7b941VV1mhuP9PN50fA3cbEK1atYpaZSkBAABAjchGg00df+iAVaM5ufzKm2LdXt3j4guPr5+MD9x9q+i35YHFlf4fHr13LL74ItF703Vj1J0PFVUE7dt/1ExxxIh7o3Xr1rHVVr2L94ecell0WWLRuPF3Z0fnzh2L+/bcY+vYe98T49TThkb/fhvUP3fS5Clx1s8Oj549V2twPJXHa5mKAQAAgBqRuw80aXwzXEpw843nxaWX/LjBFfq33xkfiy66cEyaNKX+vqwKmDBhYtx3//+WTgy/9d5Yf/0esXS3LvHuexPioYefij5fXy+mfDg13nl3QvE24f2JsUX/DeKtt9+LJ558tv65HTu2j7XXbl4hyedFxcAC1irqImbWZudKAABgPqibmf+ZLx8qtyRs0vhi28L587mbpm6en7dduzbx8MPPxC0j7o3nX3glXnrp9Xj77fHFY7mkoPK8vpuvX1QB/Hnk/bH5Zl+N5557JUaPfjGG/PR7xZiXX3q9GHfNtcOLt7kZO/bNiFi9+HdWIbRu3aqR34+6pv18P2ZO2KZV/vyrSzCwgHXpPDXi3cerfRgAAEBzNfO9iOmT58uH2n69pYotCRs/vut8+9yNUpkgT58yz897yulXxa9/c1v0WH3F6NVz1dhu641j3V6rxSmnXRljX3+7/nmd2kX077veR8sJJr8fI4b/Ndq1axtb9l23GDNj2kfj9thti+jf96tz/VyrrrL8Rx+vbma0yVDgk74XlRCnKd+zae997Jxw1SWj6gQDC1ruZNG52gcBAACUwd69l4/B149pVAPChTu2ib16LxfNyauvvVmEAttt0zvOPC2v/P/PW/+tGpjVNlttHDffcl88/MjTMeqvj8amm6wTiy26UPHY8sstVdy2adMmNt5wrQbPe/a5V+KVV9+MTh07LNCvp6XQYwAAAKBGLNq5Xfxirx6NGnv+oB7F+OZk/PiJ/7uSP4u77vlHvPif12P69IaBxyYbrV00F7zhD3+Jp//9nyIoqOjWdYlYa82V48ab7443xr1bf/+0adNj8ImXxg+OOj+mz2jcDg61TsXAAvbOm+1jqcXXqPZhAAAAzVXrxSPqOs23D7fv17+cK/XjsGv+WWxJOLuFO7aN8wetE/t+fcUqtBf4aAp67gW/j4U6z/k1b9F3g1hu2aXikv+7OT78sC6WWXrJ+OeTz8aNN/0lOnRoHxMnfdjge9W2TcRWW24S115/a3Tu1DH69tkkou5/VQAnHLt/7L3/SbHjbifE7rsMKPoIZIPCx594Lo76wZ6xxGLd/vs9yGvmrRrxc2jsuFnMWDxiWs95Pvzsc/9rgFgtgoEFrK4um1f4NgMAAJ8w2ZyP9v36SrHj+ivE1ff+J/74yGvF7gPZaHD7ry4Xe/X+UiyaC/Sr6JYR98z1/pVXWiEuvfDHccbPr4irrx0edVEXX1xhmRh87H4xfdr0OPXMofHkv56PtXqsUv+cbbf+ehEM9N38a9Gp00dbElas23P1+M1Vp8UFF18XV1xzc0yfNiNWWnH5OOOU78cO3+o7lyNo1civoFUTf77znhPOmFH9Qv5WdXV11WhBWQr9+vWLi494OLqv1nAfTAAAgIpxrQ+Pbit8pdqH0WI9/s8xscugY+PSi06IPr3Xi+Zm3Ct/j24zz5vn46PHjImDz10/Ro0aFdVS/WgCAAAAPqXrbhgZ3bp2id4b9ar2obRYatwBAABocU44+aJ4+ZU34oGHnojjjtqn2H2AT0fFAAAAAC3O2++Mj38+8UzsutOWsdce21T7cFo0FQMAAAC0OL88f3C1D6FmqBgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAA4HNx3I9/Ed177hCvvDouWop/PjEm9vveT+MrGw+Mdb62a+w66Ni4655Ho5a0rfYBAAAAMP9NnTAlnvv1P+I/N/8rpo6fEu0X6xhf+laPWGXPXtF+0Y7VPrwW4YUXX41B3/1xdFlisTjouztFhw7t4g833RkHfv/UuODsH8YW/TaMWiAYAAAAqDHPXP33ePDI4TF94tQG979+1wvx6Im3xwbnbB1f3usrVTu+luLn510Tbdq0id/++mfRdaklivt23XHL2Hanw+Os866umWDAUgIAAIAaCwXuO/DGOUKBirw/H89xzFtdXV08/OhT0XvjXvWhQOrYsUNs3mf9+M9LY+Odd8ZHLVAxAAAAUEPLB7JSoDEePGp4fGn7Hs1yWcGtt90X1143Ip4e/WJ8OGVqdOvWJQZsuXEcfsjAaN++XVx3w8g4acglcemFJ0SfTddr8Nxd9jw2ZsycGb8fdlbx/rPPvRznXnBtPPjIEzFt2vRYY/WV45ADdolNN1m3/jmD9jsh2rdvH2utuUpc/etbomPH9nHlZT+N3//m59GqVas5ju/ddycUt23atolaoGIAAACgRmRPgXlVCsxu+gdT47lr/xHNzQ1/uD0OP+bnscgiC8XRhw2KHx65dyy/XNcYeuUf47yLhhVjMiRo17ZtESDM6uVX3ojHnxgT2261afH+6Gf+E7vudVw8+/zLceB+O8URh+4R06dNjwMOHRIj/nxvg+f+/bGn49aR98UxR+4dO2zXN1ZdeYX4wgpLxwrLd2sw7q2334s77nwwVl5p+Vhs0YWjFqgYAAAAqBHZaLApXrr56Vjje81rnfzlV98U6/bsHhefd3z91fqBu24V/b55YNxz32PxwyP2jsUXWyR6b7JujPrLQzF12rRo365dMW7EyHujdevWsdU3ehfvDznjsuiyxKJx43VnR+fOH1VG7Ln71rH3/ifGqWcOjf79Nqh/7qTJU+KsUw+PnuusNs9jmz59Rhz7o/OLsQfut2PUChUDAAAANSJ3H1iQ4z8PN99wXlx64Y8blPC//c74WHTRhWPSpP8db1YFTHh/Ytx3//+qHob/+d5Yf70esXS3LvHuexPioUeeij6914spH06Nd96dULzlc7bou0Fx5f+JJ5+tf24uH1h7rVXneVwzZsyIY084P+792z9im602je233TxqhYoBAACAGpFbEi7I8Z+Hdu3aFk3/brn1nnj+xVfjpZfGFsFAyiUFFX03+1pRBfDn2+8vmgE+9/zLMXrMizHkpIOLx19++fXi9prfDC/e5mbs62/V/zurELLaYG6mTp0WRx13Ttw26oGiN8Hpp3w/aolgAAAAoEZ86Vs9ii0JG+uL31ojmptTTr8sfn3diOix+srRq+dqsd3WfWLdXqsX9499/c36cZ06dYj+m28Qo/760XKCESPvK0KFLftvVDyeDQjTHrtuFf37bjDXz7XqKl+o/3ebNnMPBbJK4ZAjzoj7H3g8Nv/6V+MXZ/+wfvlBrRAMAAAA1IhV9uwVj554e6MaELZduH2sskevaE5efW1cEQpst81mceaphzV47K233p1j/Dbf3DRuHn5XPPzIU0W/gbyaX2kIuPxy3ep3Dth4w54Nnpc7Fbzy6hvRqWOHjz2e7Cnw/aPOLEKBbHj489OOKMKHWqPHAAAAQI3IrQc3OGfrRo3d4Oytm91WhePHf1Dc5o4As7rrnkfjxZfGxvTpH1UBVGyyYa+iueANf7gjnh79Qmwz4KPdCFK3rl1irTVXjRtvvjPeGPdO/f25ZeHgky6MHxx9VkyfMeNjj+eiX10f997/WGzZb8M454wjazIUSLX5VQEAAJTUl/f6SnH74FHDiy0J51YpkKFAZVw1nHvhtbHQf3cJmNUWfTeM5ZbtGpcM/X18OHVaLLP0kvHPJ5+JG2/6S3To0D4mTprcYHzbtm1iqy03iWuvvzU6d+pY9B2Y1QnH7hd7739S7Lj70bH7LgNi8cUXieG33lNsaXjUD/aMJRZfdJ7H+N7494sdEnJbxA03WKfoeTC3463sdtCSCQYAAABqTE76v7R9j3ju2n8UWxLm7gPZaDB7CuTygWpXCtwy4u653r/ySivEpReeEGf8/Iq4+tpboi7q4osrLBODj90vpk+bXmwx+OS/nou1eqxS/5xtt/56EQz03fxrRd+BWa3bc/X4zVWnxQUXXxdXXHNTTJ82I1Zacfk445Tvxw7f6vuxx/jPJ5+JKVM+ClZ+etqlcx0zakSPmggGWtXV1dVV+yBqVb9+/eLiIx6O7qvNex9MAACg3Ma1Pjy6rVC9q/ct3eP/HBO7DDo2Lr3ohGJrwuZm3Ct/j24zz5vn46PHjImDz10/Ro0aFdWixwAAAAAt1nU3jCz6CfTeqHk1UmxJLCUAAACgxTnh5Ivi5VfeiAceeiKOO2qfaNOmTbUPqcVSMQAAAECL8/Y74+OfTzwTu+60Zey1xzbVPpwWTcUAAAAALc4vzx9c7UOoGSoGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAPhcHPfjX0T3njvEK6+Oi5biX08/H9858Cexfu89Y8PN9o7jf3xBvPX2e1FL2lb7AAAAAFgApn8Q8eZNEe/cETHj/Yg2i0R06R/RdbuItgtX++hahGefezkG7jM4lu7WJQ793q7xwQeT48prbo6//+Pp+MP1Z8dCnTtFLRAMAAAA1JpxN0a8cGrEzMkN75/wUMRL50as9KOIbjtU6+hajPMvGhZt2raJX19xanRdaonivrV6rBIHHDokbrrlrhi4y4CoBYIBAACAWgsFnjth3o9nWFB5XDjwsdq1axvbbd2nPhRI66+3ZnE7esyLUSsEAwAAALW0fCArBRrjhdMiumzRLJcV3HrbfXHtdSPi6dEvxodTpka3bl1iwJYbx+GHDIz27dvFdTeMjJOGXBKXXnhC9Nl0vQbP3WXPY2PGzJnx+2Fn1S8HOPeCa+PBR56IadOmxxqrrxyHHLBLbLrJuvXPGbTfCdG+fftYa81V4upf3xIdO7aPKy/7aZzzs6PmOLanR79Q3C63bNeoFZoPAgAA1IrsKTD78oF5mTnpo/HNzA1/uD0OP+bnscgiC8XRhw2KHx65dyy/XNcYeuUf47yLhhVjMiRo17ZtESDM6uVX3ojHnxgT2261afH+6Gf+E7vudVw8+/zLceB+O8URh+4R06dNL5YCjPjzvQ2e+/fHno5bR94Xxxy5d+ywXd9YdeUVGjw+7s13YuQdf4tjBp8b3bp2iZ227xe1QsUAAABArchGg00aPypi2T2iObn86pti3Z7d4+Lzjo9WrVoV9w3cdavo980D4577HosfHrF3LL7YItF7k3Vj1F8eiqnTpkX7du2KcSNG3hutW7eOrb7Ru3h/yBmXRZclFo0brzs7OnfuWNy35+5bx977nxinnjk0+vfboP65kyZPibNOPTx6rrPaXI9rwHaHxsSJk6NNm9Zx5qmHx5JLLh61QsUAAABArcjdBxbk+M/BzTecF5de+OP6UCC9/c74WHTRhWPSpCn192VVwIT3J8Z99/+j/r7hf7431l+vR7GLwLvvTYiHHnkq+vReL6Z8ODXeeXdC8ZbP2aLvBsWWg088+Wz9c3P5wNprrTrXY5o+fUacePwBce7PjoqNvrZOHHXcOXHlr/8UtULFAAAAQK3ILQkX5PjPqeHfw48+Fbfcek88/+Kr8dJLY4tgIOWSgoq+m32tqAL48+33x+Z91o/nnn+5aAg45KSDi8dffvn14vaa3wwv3uZm7Otv1f87qxCy2mBu2rZtE9tvu1nx762+sUnsvs/gOP/CYbHTDv1j4YVa/paFggEAAIBa0aX/R1sSNnp881snf8rpl8WvrxsRPVZfOXr1XK3YFWDdXqsX9499/c36cZ06dYj+m28Qo/760XKCESPvK0KFLftvVDyeDQjTHrtuFf37bjDXz7XqKl+o/3cuEWiMrGQY0H+jeOwf/44XXnw11l5z7lUGLYlgAAAAoFZ03S7ipXMb14CwdeePxjcjr742rggFtttmszjz1MMaPPbWW+/OMX6bb24aNw+/Kx5+5Kmi30DuNLDYoh/tsrD8ct2K2zZt28TGG/Zs8LzcqeCVV9+ITh07zPNY3n9/Yuw48JjYst+GcfThezV47IOJH31/O3ZoH7VAjwEAAIBakVsPrvSjxo1daXCz26pw/PgPitvZdwS4655H48WXxsb06R9VAVRssmGvorngDX+4o9hGcJsBH+1GkHLngLXWXDVuvPnOeGPcO/X355aFg0+6MH5w9FkxfcaMeR5L7orQvl3b+OOf/hrjJ3x0XJXA4Pd/HBUrLL90g4qDlkzFAAAAQC3ptsNHty+c9tGWhHOrFMhQoDKuCs698NpY6L+7BMxqi74bxnLLdo1Lhv4+Ppw6LZZZesn455PPxI03/SU6dGgfEydNnmPt/1ZbbhLXXn9rdO7Useg7MKsTjt0v9t7/pNhx96Nj910GxOKLLxLDb72n2NLwqB/sGUssvujHHueJgw+IfQ44KXbf+/jYZccti1Dh+t+NjDffejcuu6hhg8SWTDAAAABQa3LS32WLiDdv+mhLwtx9IBsNZk+BXD5Q5UqBW0bcPdf7V15phbj0whPijJ9fEVdfe0vURV18cYVlYvCx+8X0adOLLQaf/NdzsVaPVeqfs+3WXy+Cgb6bf63oOzCrdXuuHr+56rS44OLr4oprborp02bESisuH2ec8v3Y4Vt9P/E4v/bVtWLoL0+KC355XZzzi18XfQjWW3eNOOdnR8U6a305akWrurq6umofRK3q169fXHzEw9F9tbnvgwkAADCu9eHRbYWvVPswWqzH/zkmdhl0bFx60QnF1oTNzbhX/h7dZp43z8dHjxkTB5+7fowaNSqqRY8BAAAAWqzrbhhZ9BPovVGvah9Ki2UpAQAAAC3OCSdfFC+/8kY88NATcdxR+0SbNm2qfUgtlooBAAAAWpy33xkf/3zimdh1py1jrz22qfbhtGgqBgAAAGhxfnn+4GofQs1QMQAAAAAlVjPBwEsvvRTrrLNOPPjgg3N9fNiwYTFgwIBizLbbbhvDhw//TOMAAACgFtREMDBhwoQ45JBD4sMPP5zr40OHDo2TTz45unfvHoMHD45u3brFkUceGSNGjPhU4wAAAKBWtPhg4Lnnnotdd901xowZM8/Q4MILL4xtttkmzj///Nhtt93isssui69+9atx5plnxowZM5o0DgAAAGpJiw4Gbrzxxthuu+3ivffei5133nmuY+68886YNGlS7L777vX3tW7dOgYOHBhjx46Nxx57rEnjAAAAoJa06GBg9OjRsfXWW8ef/vSn+MpXvjLXMU8++WRxu+aaaza4v0ePHg0eb+w4AAAAqCUtervCXP/fvn37jx0zbty4WGyxxaJTp04N7u/atWtx+9prrzVpHAAAANSSZhcMvPnmmx/7eOfOnWOhhRYq/v1JoUCaOHFidOzYcY77K/dNnjy5SeMAAACgljS7YKB3794f+/hBBx0URxxxRKM/Xl1dXbRq1Wqej1cea+w4AAAAPp3jfvyLuPHmv8SoEb+KFZbvFi3NuDffiW2+fVj03Wz9OOOUH0StaHbBwJAhQz728TXWWKNJHy8rDKZMmTLH/ZX7KtUHjR0HAADQEkyZ+kE8PPqmePKFO2Py1PejU/tFYq2V+sb63beLju0XrvbhtUgnnnJJjJ/wQdSaZhcMzGt3gU9r2WWXjfHjx8fUqVMbLD3IngJp6aWXbtI4AACA5u6hf98YN957ekyd3nBJ9LOvPRQjHjw/duh9fHxt9R2qdnwt0R//9Ne49/7a3K2uRe9K0Bi5y0AuE3j66acb3F95f+21127SOAAAgOYeClz/1xPnCAUq8v58PMfROG++9W6cdubQOPiAXaIW1Xww0KdPn+jQoUNcc8019ffNnDkzhg0bFssvv3z06tWrSeMAAACa8/KBrBRojD/ed0Yxvjm69bb7Ys/v/CjW22SPWGu9naPvVgfGmedeFVOnTisev+6GkdG95w5x1z2PzvHcXfY8NnYceEz9+88+93IccvgZ8dXee0TPDXaN3fY+Pu65r+GV/0H7nRD7fe+nce6F18a6G+4eG222d4x+5j/1j5805JJYdtmlYv99a7PKotktJZjfllhiiTjggAPiggsuKCoCNtxwwxg5cmQ8+uijce6550abNm2aNA4AAKC5yp4C86oUmN2H0ybFI2Nujt5rDYzm5IY/3B4nnHxx0eDv6MMGxbRp0+P2Ox+IoVf+sXj8h0fsHQO23DiGnPF/RYDQZ9P16p/78itvxONPjInjj963eD8n9wP3GRxLLbl4HLjfTtGubZu45dZ74oBDh8TZpx8R3xzwv+b3f3/s6Xj5ldfjmCP3jldefSNWXXmF4v6bh99VBBA3/PrMaNeuNqfQtflVzeaQQw6JTp06xbXXXhu33357rLjiinHeeefFgAEDPtU4AACA5igbDTbFEy/c2eyCgcuvvinW7dk9Lj7v+Prd4QbuulX0++aBxZX+DAYWX2yR6L3JujHqLw/F1GnTon27dsW4ESPvjdatW8dW3/howj/kjMuiyxKLxo3XnR2dO3+0Ff2eu28de+9/Ypx65tDo32+D+udOmjwlzjr18Oi5zmr1x/LW2+/FqT/7v/juPttHjzVWjlpVM8HAt7/97eJtbvJk2m+//Yq3j9PYcQAAAM1R7j7QFFM+nBDNzc03nBeTJ3/YYMv4t98ZH4suunBMmvS/neS23WrT+MtdD8d99/8jNu+zfnHf8D/fG+uv1yOW7tYl3n1vQjz0yFMxaPetY8qHU4u3ii36bhCn//yKeOLJZ2O9dT/a+a5jx/ax9lqrNjiWnwy5JJZccvE45MBdo5bVTDAAAABQdrklYVN07LBoNDdZrv/wo08VJf/Pv/hqvPTS2CIYSMsv17V+XN/NvlZUAfz59vuLYOC551+O0WNejCEnHVw8/vLLrxe31/xmePE2N2Nff6v+31mFkNUGFcNvvSduv/PB+OX5g+ODiZMj8u2/stfBO+9OiEUW7lwTywta/lcAAABAYa2V+hZbEjbW2iv1jebmlNMvi19fNyJ6rL5y9Oq5Wmy3dZ9Yt9fqxf1jX3+zflynTh2i/+YbxKi/frScYMTI+4pJ+pb9NyoenzFzZnG7x65bRf++G8z1c626yhfq/92mTcPe/Pf8d2vC7x122hzPy8qEfLv6/06JDdZfK1o6wQAAAECNWL/7djHiwfMb1YCwQ7vO8dXVvhXNyauvjStCge222SzOPPWwBo+99da7c4zf5pubFs0BH37kqaLfwKabrBuLLbpw8djyy3Urbtu0bRMbb9izwfNyp4JsMNipY4d5Hst399khvrV1nznu3/fAn0TvjXrFfvtsH6t3XzFqgWAAAACgRnRsv3Ds0Pv4uP6vJ37i2O03Oa4Y35yMH//R9omVHQEqcleAF18aG0t3W7LB/Zts2KtoLnjDH+6Ip0e/0GA7wW5du8Raa64aN958ZzHJz74DKXc5GHzShfHvMS/GXbddNs9jyWqCWSsKZtW16xJzhA0tmWAAAACghnxt9Y8mx3+874xiS8K5VQpkKFAZVw3nXnhtLPTfXQJmtUXfDWO5ZbvGJUN/Hx9OnRbLLL1k/PPJZ+LGm/4SHTq0j4mTGlZCtG3bJrbacpO49vpbo3OnjkXfgVmdcOx+sff+J8WOux8du+8yIBZffJGid0BuaXjUD/aMJRZvfj0WqkEwAAAAUGNy0r/OylvEI2NuLrYkzN0HstFg9hTI5QPVrhS4ZcTdc71/5ZVWiEsvPCHO+PkVcfW1t0Rd1MUXV1gmBh+7X0yfNr3YYvDJfz0Xa/VYpf4522799SIY6Lv514q+A7Nat+fq8ZurTosLLr4urrjmppg+bUastOLyccYp348dvtX8+itUS6u6urq6qn32GtevX7+4+IiHo/tq/9sHEwAAYFbjWh8e3Vb4SrUPo8V6/J9jYpdBx8alF50QfXqvF83NuFf+Ht1mnjfPx0ePGRMHn7t+jBo1KqqlYdtFAAAAaEGuu2Fk0U8gGwLy6VhKsIC1irqImdOrfRgAAEBz1WpmhELuJjvh5Ivj5VffiAceeiKOO2qfaNO6dfP8PtbN/Ng5YZv8+VeZYGAB69J+asQbj1f7MAAAgOZqyfciGrG9IA29/fY78c8nxsSu3+4be+3Sr/l+Dz98L+Ltec8JV20GG0MIBha097PtZ7UPAgAAoLb88pyjqn0INUOPAQAAACgxFQML2DvvtI+lllyj2ocBAAA0V3WLR0Snah8FC/LnW9dzng8/+9yzUW2CgQWsrq6VbzMAADBPdZFzhnyjdn++bef5+IwZ1S/kr/4RAAAAlNmMKVHXHLvpM3/MaKZNEWchGAAAAKiiDpMejykfVn/LOua/D6fOiHYf/ieaO8EAAABAFS069eF479WHY/KUGSoHasiMmXXxzuvPxOKT74jmzuJ3AACAKmodM2Lp934VEyb9PSZ07hnRpmO00nOgRavLzgLT3o4l3x9e/HybO8EAAABAleXkcfGpD0TkG3zOLCUAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBibat9AGUzaVqbmDS9TbUPAwAAgCrp3HZGdG43I5oLwcDn7MzHVo2fPrx6tQ8DAACAKjlx/X/HT742OpoLSwkAAACgxAQDAAAAUGKWEnzOfrjus3Ho2i9U+zAAAACoYo+B5kQw8DnLBhPNqckEAAAA5WYpAQAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMRadDDwwQcfxJAhQ+LrX/96rLXWWtG3b98499xzY+rUqXOMHTZsWAwYMCDWWWed2HbbbWP48OFz/ZiNHQcAAAC1oMUGA3V1dXHooYcWE/l+/frFj370o1h//fXjV7/6VRxxxBENxg4dOjROPvnk6N69ewwePDi6desWRx55ZIwYMeJTjQMAAIBa0aouZ9gt0B133BGHHHJInHjiibHHHnvU358VA5dcckkRGKy33noxYcKE6NOnT1FNcPbZZxdjZs6cGYMGDYpXX301Ro0aFW3atGn0uKbIwOLiXR+O7qutNp+/egAAAGrB6DFj4uDr1y/mnNXSYisGHnrooeJ2hx12aHD/VlttVdw+9thjxe2dd94ZkyZNit13371+TOvWrWPgwIExduzYJo8DAACAWtJig4GDDz44/vjHP0bnzp0b3P/uu+8Wt23bti1un3zyyeJ2zTXXbDCuR48eDR5v7DgAAACoJR/NnlugxRdfvHib3W9+85vidt111y1ux40bF4sttlh06tSpwbiuXbsWt6+99lqTxgEAAEAtaXbBwJtvvvmxj2eFwEILLTTXx7KCYOTIkbHBBhtEz549i/smTpwYHTt2nGNs5b7Jkyc3aRwAAADUkmYXDPTu3ftjHz/ooIPm2HUgZaOGE044objCf8YZZ9Tfn70VW7VqNc+PV3msseMAAACgljS7YGDIkCEf+/gaa6wxx3233HJLHHfccUUlwWWXXRbLLbdcgwqDKVOmzPGcyn2V6oPGjgMAAIBa0uyCgZ133rlJ46+77ro4+eSTi/4AV155Zay++uoNHl922WVj/PjxMXXq1Gjfvn39/dlTIC299NJNGgcAAAC1pMXuSlDpKXDSSSfFUkstFddee+0coUBll4FcJvD00083uL/y/tprr92kcQAAAFBLWmww8Oyzz8aPf/zj6NKlS1xzzTWxyiqrzHVcnz59okOHDsWYipkzZ8awYcNi+eWXj169ejVpHAAAANSSZreUoLEuvPDCoux/0003jccff7x4m1X37t2LCoIlllgiDjjggLjggguKioANN9yw2Lng0UcfjXPPPTfatGlTjG/sOAAAAKglLTYYePjhh4vbm266qXib3aGHHlq/tOCQQw6JTp06FcsNbr/99lhxxRXjvPPOiwEDBjR4TmPHAQAAQK1oVZeXx1kg+vXrF7/c9aFYbR7LHAAAACi3Z597Ng68foMYNWpU1Y6hxVYMtBRd2kyNeKXhMgcAAABIq3aIqmuxzQdbjA+qfQAAAAAwb4IBAAAAKDFLCRawd8a3j6W6rlHtwwAAAKCZ9hioNsHAAlZX1yqilW8zAAAAc5oxs/qF/NU/AgAAAKBqBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGJtq30AZTP9w1bFGwAAAOXUtkNd8dZcCAY+Z0/8adF4/A+LV/swAAAAqJKe334v1t1pfDQXlhIAAABAiQkGAAAAoMQsJficrb3thFhjy/erfRgAAABUSdtm1F8gCQZK3mQCAACAcrOUAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGItOhj44IMP4rTTTou+fftGr169Yrfddot77713rmOHDRsWAwYMiHXWWSe23XbbGD58+GcaBwAAALWgxQYDM2fOjEMPPbSYyH/jG9+IY445prj/u9/9btx9990Nxg4dOjROPvnk6N69ewwePDi6desWRx55ZIwYMeJTjQMAAIBa0aqurq7ukwb98Y9/jKWWWip69+7d6A98xx13xKhRo+L000+PBeHOO++M733ve3HSSSfFwIEDi/umTJkSW221VXGsN9xwQ3HfhAkTok+fPkVVwdlnn10fKgwaNCheffXV4hjbtGnT6HFN0a9fv7j46w9H99VWm+9fPwAAAC3f6DFj4uC71y/mnM26YuC4446L/fffP44//viYPHlyoz7wv//97yJQWFByIr/GGmvEt771rfr7OnbsGGuvvXaMHj26QYAwadKk2H333evva926dREmjB07Nh577LEmjQMAAIDSLiXIif6OO+5YTPqrbfvtty+OZ+GFF66/b8aMGfHMM8/EsssuW3/fk08+WdyuueaaDZ7fo0ePBo83dhwAAADUkraNHbjPPvvEiy++GH/5y19i1113jWOPPba+hL/a8kr/c889F5deemk8//zzceaZZ9Y/Nm7cuFhsscWiU6dODZ7TtWvX4va1115r0rimahV1ETOmf6rnAgAAUNvaxMyWEwwstNBC8ctf/jKuuOKKOOecc+KUU06JBx54IE499dRYZJFF5tsBvfnmmx/7eOfOnYtjmVUezzXXXFP8OxsRbrnllvWPTZw4sVhiMLvKfZWlEY0d11RdYmrEc49/qucCAABQ21at9gE0JRio2HfffeNrX/ta0a3/tttui6eeeqqYmPfs2XO+HNAnNTg86KCD4ogjjpijyd+GG24Yjz/+eBFc7LXXXnHttddG+/btI3srtmrVap4fr/JYY8c12fsRMf9yEwAAAKhuMFBZh5/r+3/605/GjTfeGHvssUccdthhRYPCz2rIkCEf+3g2HJzdRhttVNz2798/VlhhhTjxxBPj5ptvjp122qmoMMjdCmZXua9SfdDYcQAAABBlDwZSrsXPrQjzCn9uGZhVAw8++GCxvr9Lly6f+oB23nnn+CwGDBhQBAP/+te/ivezEeH48eNj6tSpRQVBRfYUSEsvvXSTxjXVOx+0j6WWmTPMAAAAgGefe7blBgMVW2+9dbGM4Oijj4577703tttuuzjrrLNiQcseB3fffXeMHDmy2FawInsFpA4dOtRXN+QygaeffrrBcod8P+X2hk0Z11R1da0iWn3mbzMAAAA1aMbMJm0WuEDMlyPI8v1c05/r/99+++347ne/W0zYF6TlllsuXnrppbj11lsb3H/55ZcXt5tvvnlx26dPnyIkqDQnTDNnzoxhw4bF8ssvH7169WrSOAAAAKglbRs7CV900UU/dkybNm3i8MMPj4033jiOOeaYeOaZZz59w75G2HPPPYs+B4MHD44nn3wyvvCFLxQVC6NGjSp6C2SDxLTEEkvEAQccEBdccEFREZBNCjO0ePTRR+Pcc88tjrsp4wAAAKB0wcCdd97Z6A+YE/Js/HfRRRfF++9nS/4FI6/uX3XVVfHzn/+8CAjyc33xi1+ME044oQgNZnXIIYcUPRGyquH222+PFVdcMc4777yiH8GnGQcAAAC1olVdXh5ngchtFC9e9eHovtpq1T4UAAAAmqHRY8bEwc+uX1S/V0v1uxwAAAAAVSMYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlFjbah9A6bSaGdF6ZrWPAgAAgGqZ2TqirvlcpxcMfN6WeT1i2bHVPgoAAACqZeyyEWOXi+ai+UQUAAAAwOdOMAAAAAAlZinB5+31ZSLGdav2UQAAAFDNHgPNiGDg85YNJmY0r5MAAACA8jJDBQAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAibWt9gHUulZ1dRHTp1f7MAAAAGiG2tTNrPYhCAYWtC4zpkb8+/FqHwYAAADN0KrVPgBLCT4HH1T7AAAAAGDeBAMAAABQYjW1lODwww+PW2+9NUaPHj3HY8OGDYurr746XnvttfjSl74UBx10UGy99dafelxjvTO5fSy1/Bqf+vkAAADUrmefe7bah1A7wcBtt91WhAJzM3To0DjzzDNjwIABsc8++8Ttt98eRx55ZLRq1Sq++c1vNnlcU9RFq4jWNfNtBgAAYD6aUVf9Qv5WdXXZNr9le/fdd4ur+hMmTIhp06Y1qBjI+/r06RN9+/aNs88+u7hv5syZMWjQoHj11Vdj1KhR0aZNm0aPa4p+/frFxQs9HN1XW20+f8UAAADUgtFjxsTBE9cv5pzVUv1oYj445ZRTYokllohvfOMbczx25513xqRJk2L33Xevv69169YxcODAGDt2bDz22GNNGgcAAAC1pMUHA3fccUexhOC0006Ldu3azfH4k08+WdyuueaaDe7v0aNHg8cbOw4AAABqSYsOBt5777046aSTYu+9946ePXvOdcy4ceNiscUWi06dOjW4v2vXrsVtNhlsyjgAAACoJc2uK96bb775sY937tw5FlpoofolBPnv3I1gXiZOnBgdO3ac4/7KfZMnT27SOAAAAKglzS4Y6N2798c+ntsHHnHEEUVjhuHDhxdbC85tQl+RvRVzV4F5qTzW2HEAAABQS5pdMDBkyJCPfXyNNdaI8ePHF0sIttlmm1h11VXjnXfeKR6bOnVqcZvvd+jQoagmyAqDKVOmzPFxKvdVqg8aOw4AAABqSbMLBnbeeedPHPPggw8WSw7+9Kc/FW+z22ijjWKHHXaIM844I5ZddtkiSMjQoH379vVjsqdAWnrppYvbxo4DAACAWtLsgoHGWH311eOKK66Y4/6hQ4fGvffeWzzWrVu3+l0GcpnA008/3aBBYb6f1l577SaNAwAAgFrSIoOB3D1g4403nuP+m2++ubid9bE+ffoUywquueaa+gn/zJkzY9iwYbH88stHr169mjQOAAAAakmLDAaaYokllogDDjggLrjggqIiYMMNN4yRI0fGo48+Gueee260adOmSeMAAACgltR8MJAOOeSQ6NSpU1x77bVx++23x4orrhjnnXdeDBgw4FONAwAAgFrRqi4vj7NA9OvXLy5e6OHovtpq1T4UAAAAmqHRY8bEwRPXj1GjRlXtGFpX7TMDAAAAVScYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlFjbah9A2UxtNbN4AwAAoJza17Uu3poLwcDn7C+LvBG3Lfp6tQ8DAACAKtlywjLxjQnLRnPRfCIKAAAA4HMnGAAAAIASs5Tgc7b5+0vHJh90rfZhAAAAUCXtm1F/gSQYKHmTCQAAAMrNDBUAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKrG21D6DWtaqri5g+vdqHAQAAQDPUZubMah+CYGBB6zJ1asTjj1f7MAAAAGiGVm0GtfyWEixo71f7AAAAAGDeBAMAAABQYpYSLGDvTG0fS31xjWofBgAAAM3Qs889G7FodY9BMLCA1UWriNa+zQAAAMxpRl31C/mrfwQAAABA1QgGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAl1qKDgbvuuiu6d+8+17cxY8Y0GDts2LAYMGBArLPOOrHtttvG8OHD5/oxGzsOAAAAakHbaMGeeeaZaNWqVZx++unRunXDjGPZZZet//fQoUPjzDPPLCb8++yzT9x+++1x5JFHFs/95je/2eRxAAAAUCta1dXV1UULdeyxx8bDDz8cd9555zzHTJgwIfr06RN9+/aNs88+u7hv5syZMWjQoHj11Vdj1KhR0aZNm0aPa4p+/frFxeMfju6rrfYZv1IAAABq0egxY+LgxdYv5pzV0rqlVwysvPLKHzsmQ4NJkybF7rvvXn9fVhcMHDgwxo4dG4899liTxgEAAEAtabHBQBY6PP/887HqqqsW73/44Ycxffr0OcY9+eSTxe2aa67Z4P4ePXo0eLyx4wAAAKCWtNhg4OWXX47JkyfHSy+9VDQJ7NmzZ/Tq1SuOOOKIeOedd+rHjRs3LhZbbLHo1KlTg+d37dq1uH3ttdeaNA4AAABqSbNrPvjmm29+7OOdO3eOhRZaqFhGkB5//PHYf//9Y4UVVohHH300rr766nj22WfjhhtuiI4dO8bEiROL29lV7stwITV2HAAAANSSZhcM9O7d+2MfP+igg4qqgC984QtxyCGHFNUCK620UvFY//7940tf+lKcdNJJ8bvf/S723HPPYslB7iowL5XHGjsOAAAAakmzCwaGDBnysY+vscYaxe1qq61WvM1uxx13jFNOOSUefPDBIhjICoMpU6bMMa5yX1YfpMaOAwAAgFrS7IKBnXfe+TM9v127drHooosWOwykZZddNsaPHx9Tp06N9u3b14/LngJp6aWXbtI4AAAAqCUttvngeeedF/369YsPPvigwf3vvfde0Xxw+eWXr99lIJcJPP300w3GVd5fe+21mzQOAAAAakmLDQaWW265eOWVV4peArO66KKLitvsPZD69OkTHTp0iGuuuaZ+zMyZM2PYsGFFeJA7GTRlHAAAANSSZreUoLF22GGH+O1vfxtnnXVWvPjii0W/gb/97W9x2223xa677hrrr79+MW6JJZaIAw44IC644IKiImDDDTeMkSNHFjsYnHvuudGmTZsmjQMAAIBa0qouZ8EtVC4bOOecc2LUqFFFf4DcqSBDgb322itat/5fMUR+iZdffnlce+218dZbb8WKK64YBx98cAwYMKDBx2vsuMbKpQ4Xj384us+lSSIAAACMHjMmDl5s/WJeWy0tOhho7gQDAAAANPdgoMX2GAAAAAA+O8EAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAiQkGAAAAoMQEAwAAAFBiggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJta32AdS6VnV1EdOmV/swAAAAaIbazJxZ7UMQDCxoXSZPjXjk8WofBgAAAM3QqvmfJap7DJYSLGjvV/sAAAAAYN4EAwAAAFBilhIsYO/MaB9LrbhGtQ8DAACAZujZ556t9iEIBha0umgV0ca3GQAAgDnNaAaF/NU/AgAAAKBqBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASa/HBwK233hrf/va3Y5111ol+/frFOeecEx9++OEc44YNGxYDBgwoxm277bYxfPjwuX68xo4DAACAWtCig4Hf/va3cfjhh8diiy0Wxx9/fGy88cZx6aWXxgknnNBg3NChQ+Pkk0+O7t27x+DBg6Nbt25x5JFHxogRIz7VOAAAAKgVrerq6uqiBXr33Xejf//+0atXryIMaNOmTXH/6aefHldeeWXccccd8YUvfCEmTJgQffr0ib59+8bZZ59djJk5c2YMGjQoXn311Rg1alTx3MaOa4qsYLj46Yej+2qrLYDvAAAAAC3d6DFj4uA11i/mnNXSYisGbr/99vjggw/iiCOOaDBh32233eLggw+O6dOnF+/feeedMWnSpNh9993rx7Ru3ToGDhwYY8eOjccee6xJ4wAAAKCWtNhg4NFHH43FF1881lxzzeL9KVOmFGHASiutFIcddlhxm5588snitjKuokePHg0eb+w4AAAAqCUtNhj4z3/+E8sss0xxJX/HHXeMnj17FssKfvjDHxaVBBXjxo0rehB06tSpwfO7du1a3L722mtNGgcAAAC1pG00M2+++ebHPt65c+dYaKGFip4A77//fuy3336x0047xUEHHRR///vf46qrripK/6+++upo1apVTJw4MTp27DjHx6ncN3ny5OK2seOaIsOGadOmFWtGAAAAYHY5Z8y5YzU1u2Cgd+/eH/t4BgDZV2Dq1KnFN+8HP/hBHHLIIcVjW2yxRSy88MLxi1/8Iu66667YbLPNInsrZkAwL5XHGjuuKTp06BADl/1yfdUBAAAAzH5xvEP79lFNzS4YGDJkyMc+vsYaaxS3lZL/nXfeucHj22+/fREMPPjgg0UwkBUG2X9gdpX7svogNXZcUzzyyCNNfg4AAACUOhiYfaI/L0svvXSMGTMmunTp0uD+JZdcsn5pQFp22WVj/PjxRYVB+1lSmEqpRn6cpowDAACAWtJimw9Wdg949tlnG9z/yiuvFLfLLbdc/bhcJvD00083GFd5f+21127SOAAAAKglLTYY2HrrraN169Zx2WWXNbi/0nSwf//+xft9+vQp1vpfc8019WNmzpwZw4YNi+WXX77YyaAp4wAAAKCWNLulBI212mqrxb777htDhw4tdgz4+te/Hg8//HDccsstMWjQoFh11VWLcUsssUQccMABccEFFxQVARtuuGGMHDkyHn300Tj33HOjTZs2TRoHAAAAtaRVXc6CW6g89Lyif+2118bLL78cyyyzTOy2227xne98p8EuAjnu8ssvL8a99dZbseKKK8bBBx8cAwYMmOPjNWYcAAAA1IoWHQwAAAAAJe0xAAAAAHx2ggEAAAAoMcEAAAAAlJhgAAAAAEpMMAAAAAAlJhhYgGz4AAAAQHMnGFgA3nzzzeK2VatW1T4UAAAAakjdArgA3Xa+f8QSu/322+PCCy+MDz/8MDp37hx77bVX9O3bNxZddNFqHxosMC+99FL8+c9/juWXXz6++MUvxtprr13tQ4LPzHlNLXJeU4uc15TJG2+8EUsvvfQCuQDdqk69+3xxww03xJlnnhl9+vSJJZZYIp5//vl44IEHYocddogTTjghOnbsWO1DhPkqXzouvfTSuOiii2KppZaKcePGFS9Shx56aOy8887RpUuXYozKGVoS5zW1yHlNLXJeUyZjxoyJ0047LcaOHRvt27cvLj4PGjSoOPfnFxUDn1G+4EybNi1uvvnmWHXVVePII4+M5ZZbrnjspz/9afz+978vfngnnnhitQ8V5qtnn302rr766hg4cGB8+9vfjjZt2sSVV14Zl1xySbz44otx+umn+2VMi+O8phY5r6lFzmvK4p///GccdthhscIKK8QWW2wRr776avzf//1fPPXUU3HMMcdE9+7dY+bMmdG69WfrEiAY+IzyBSeDgSeffDIOP/zwIhTI99u1axff//73Y+LEiTFs2LDo379/bLzxxtU+XJhvhg8fHpMmTYo999yzeKGqhGHTp0+PG2+8Mb761a/GjjvuKK2nRXFeU4uc19Qi5zVlcccdd8SUKVOKC9Drrrtucd/1118f5513XnHxOf/9WUOBpPngfPDOO+8U5Ur//ve/i/czFMjUJpcU7LLLLrHSSisVywzyhQpaugy+Uv6S7dChQ7HOKU2dOrW4b99994311lsvzjrrrKIRp1/GtATOa2qR85pa5LymltXNZZX/Y489FmuuuWZ9KJB23XXXop/d448/XvS4mx8EA/PBF77whVhsscXimWeeif/85z8Nfqj5A8x1Thka5LICaGmuu+664u2uu+6qD75S/qKdMWNG3H///Q3uX2211WK33XYrks1f/vKXxX0ZlEFz4rymFjmvqUXOa8rivffeK4Kvyjwyz9usillooYWKHhoffPBBcX/lYvN2221XVKVfdtll8cILL3zmzy8YmE9y8p/LCf7xj38U7+c6p3yxyrKOzTffPHr16lWseYKW4m9/+1vR2OSCCy6Ic845Jw488MA44ogj4tFHHy0ez8fef//94v385Vv5BZ022WST+MY3vhG/+c1v4rXXXiv+P9DnlObAeU0tcl5Ti5zXlMX06dNjyJAhRaV59sv43ve+V/TQyHM2d7pbZpllit0IstdAatv2o24AuYQ9G91n5Uw24fysIZhgYD755je/WWyR8sc//jFefvnl4r7KWo9cSpDhwNtvvx0jRoyo8pHCJ8sXomxq0q1bt6I8KX+x5nKYe+65p3jhev3112OttdYqfvHmFkH54lUJxFIurdlyyy2LF7NMMZNSPqrNeU0tcl5Ti5zXlMXEiROLnTTuvPPO4pzt2bNnUWl+0EEHxW9/+9tiTFbAjB8/vqiOyfGpEoJtsMEGMWDAgLjlllviueee+0whmGBgPsmlBPvss0+Rbt59993165wqpR4ZDGS688orr1T7UOETZfXLfffdVySXuRxmlVVWiW9961tF05M8hyu7bHznO98pOqPmL+VKedOsL1Srr756/Otf/yr6cEC1Zfde5zW1xus1tcjrNWXx73//u5g/Zr+A3Hng1FNPjauuuioWWWSR+PnPfx5PPPFEcR5naPCnP/2pvqddhmAZACy88MKx2WabxaKLLho33HDDZwrBBAPzUb5grb/++sVWKX//+98bVA3keqfFF1883n333SofJcwpk/asaKkkjJXEfckllyxuP/zww+I2y5Wy2UmGX5lMZlKf1TL5QvTII4/UPzeDsXyh+spXvlKUPlU+Hnye8grTvffe2+C+/GXpvKal72U96ySn8neG85qWLKttJ0+eXP9+ZWLjvKZW1f33b+7nn3++6CuQ53X2ych/f+lLXyp2u8sLzyeddFIxNi9AZ9VAVqfn3+yzLhv4+te/XlTX5LKZWf8/airBwHyUL0A/+tGPYuzYsXHppZfG6NGj639hZ+lHdkatbKcCzUEm7FtttVWRUmbzkuOPP764+pQpZadOneKhhx4qxuXapXzxyfu22WabWHvttYstUvIX7yGHHFKc55X9VFP79u2L2/xFnAl+pYMwfJ5h18knnxw333xz8Udh5Q/LbODjvKalbleVE6B8vc610yeccEJxnnfs2LEol3Ze0xKNHDmyOE/32GOPYn/2XDaQr9l5Xvs7hFrz9n8n9LOqbHOfOw/MGorlZH/gwIFFxcs111xThFwZHmQw8Ne//rX+/M7nZ1V69+7di2Ag/x/5tAQD81mWeuQv63xhygYpv/vd74of4NVXX13sXrDppptW+xCh+OWa4dUPf/jDYo3eoEGDYqeddopbb701fvCDH8Syyy4bX/7yl+OBBx6o32lj1nM89wXOUr5rr702VlxxxSIQy8abWfL01ltvFb+En3766WK9VL9+/WKppZaq2tdKOVV6veQ2PpWqgdy+Kre1evjhh53XtCi33XZbUTqdr9f7779/bLvttkWwm5OqLLFefvnlnde0OPm38THHHFOcp9tvv32xZCCDgewlkOd19uh68MEHnde0eDfddFPxur3nnnsW526+pmfjzJTnbwZcWW2ef5/nJD+Xw2RAkGHZRhttFBdffHFRCZBzy5xP/upXv4rbb7+9eH6GCvn/Qi45yEqD9Gl7DHzU0pD5KhtEdO3atXhxyytWmVpm18hslpINCqHacsuTbGjSp0+fOOqoo4pupylfbE477bRiB43siJpvmdZnpUtlp428zdK9r371q0WCmSl/pveZUuYv+eynkaFCJaHPsj/4vOQv1bxylG9ZxZVrT7PcdJ111inOy7333rsoy3Ne01LO5/zj8A9/+ENRUv3973+/eJ1Oud40G6ylrCLI4MB5TUsxYcKEovy/R48exd8heUEi5cQnL1Lsvvvuxev1scce67ymRbviiiuKHQMqzTCzojzP+eyf8eMf/zg23njjWHXVVYvtOLMqbOWVV66vOM+Jfi5Vzx4EWRGTvwNOP/30otdGXojOv3FyqXpW+2ZTwvz/IOkx0MxkOpkpZib6+YPMZhFZAgLNQS5ryXQxX5QyFKg0ycxlBRlq/eUvfymS+vyFnb+4X3zxxeLxyhq9/MM0m/rki1Bl/+BsAJT7DOcv8nyBy/8H8rzfcMMNq/iVUjaVX6bPPPNMcQ7n1ahKU9j8gzI79+b5mdVczmtawvmcE5u8kpTLvfIcrZRE5zmYV1VTXlXKq6jXX3+985oWISft+Tqd53WGAnnFNGVFTAZiufQrG6pljy5/h9AS1dXVFednnoO5bX2GXjmZzzCr0hcjt+GsnLt5xT8bblYa2FeaaOb5m3PIrDLIQC13LfjZz35WVBKcddZZccoppxRhWn78DMU+C8HAApSpUJb3ZWkUNCeVxlW5rUmqlC1lKJDldvmClFUu2egk90zNbTYr3X4rv7zzl3m+QM1arpSJ/tFHH12kmZny5xVb+DxVzsfsJTBp0qSiZC/XouYv4EzUs2tv/uGZSwyc17SUCq8857I8ulI2mudu7nWdV0qzAiZ7DeR2V3mODx8+3HlNs5fnY/69kaHtrD0Bsvw/78+JfzZeO+CAA4q/Q5zXtCQz/rsUYMqUKcU5nVf982/syrmbk/gMvnJZb75u54W5XO6YTZOzomDWXQcyOMsw4L333iuqYlJWy2SPjVwqkx8jqw1ySfBnJRiAEsqUPcvsMriqXH3KF6BM6HNv4AwKUpY9ZaqZ26aMGjWqwS/vfF6+YFV+UVeeU/lYUA2V8rkMvTIEyD8KszFVXm3K1D5/Kecv6DyvcwcZ5zXNXU508kJDVnnl63MuU8xKmFxGkA3ZclnYfvvtVwRhGeZefvnlzmuavaxwyeWMuUwgewo8+uijRfO1yy67rJjsZw+kM844o6hqzAAs/w7JBpzJeU1z9K9//auoCMjzsnL+5YW4XAY2a1PMPGfzvM6l53mbV/+z2eZBBx0UL730UnEhIwPhVAkSsjogw+EclyphWPZNykBh1nP/sxAMQAnlC0uW22X5aV59qsgtUzKRzF/Y+eKV4/JqVE6w8o/RSqOT7Bh84403FsFCrvOD5qLyyzJLsHMylb9UM5XPND6Dgew3kL+E8ypUXo264IILnNc0exlmZZlpvuX5etxxxxVXi3KylGuqs39RlpRmNUxuWXX++ec7r2n2DjzwwGIylK/NBx98cNFXIM/TbNCWV0nz75Tcsi2XgOXrda7TznLq5Lymufnzn/9c9IPJiq6KXNKYFYxZNZDB7qxbDOZV/7zKn41j8/U6G9RnCJbBQC4LSxn+ZtCQoViGwfl3ef6d82l7CHwSzQehpPKFqqLSzCc7+uYLTna+TllBkL+MsyHhL37xi6LpSTZCye0Mc21gNifMpicL8kUKmqJyHuYv4Ay3KleW8lzNX7w/+clPijAsg4FTTz3VeU2LkCHur3/966LBYE6YcguryhWp9ddfP/bdd98YPHhw8cfjL3/5y+Lfzmuauwy0cuK/9dZbFxUCX/va14orrnkVtDLRyibeWS6dwVdWFuTOSc5rmpO6/5572U8gJ/25HCCv8GdIm1fyc8eNDLUy2M0KgXztznH590kuh8ndZfJvkXydz23Dc2lY9qfLqoHsLZAVMbm7Ul7gqDQLX1AEA0D9H5jZdDADg+zgXkkqK41PsldGNtTMbYPyRSp/eWczFWiOcluf3AIoZXqfDX7yPM9Gm7kWe4kllih+cee5nun8Cy+84Lym2cr11tksNiu3co/qPL9zmUyez/mHZ57Leb5nRczOO+9cLJPJK07Oa1qCRx55pLiimuFAhgKV3WXyb48MC/Jvjwy6MhzLt1wa5rymuWjVqlW8/fbbRb+MfH3O191c4pV/a6QMBvIcvvnmm4u/OSrBV8oK3WwYmJVff/3rX4sKx7yAkc0EM0zI3hoZPORuA9k7Y0ETDACFTCZzv+B80couwCl/OecLXIYBffv2La5KSeRpCXLilOdtVgZkl98sxc5GhPmHZwZg2a06O7pnEJbrsqE5y8l/9sXIq0Z5Xud67FyfXdmFI6sI8gpqXoHK+/KPU+c1LUVOqlI2apt1SVhWAuSSsFzOmMscsyly/h0Czc3dd99dnMc5ec/wKkOA/DtjjTXWKJppDho0qKgKyL+l8++RyoWKfG3P1/IMBiqNBTMIzr9dMlDIvgL52l7ZpnZB02MAKGTX31w6UFmrl6XYmVhmk6tc+5cvWEIBWoLK+r38RZ09BrKZVe4VnOv5sgw1G1zl2tRKUx9oCXKt6l577RXvv/9+UaqaPWEqwUC+fuf7lVAXWpK8SpoTpXxtzmZt+e9cV53d2XO72WyuNutVVmhuf3Ncc801xeQ9ewTk8pb8mzmrBFIuX8xJfvfu3YvmsLkr0qxyx4Gs0K000az8DZNLEXLb8M8rFEgqBqDkKmujshNq3mYjnyzru+KKK4rO1plk5trsTOqhJcjJUlYGZBf3LEPNtL4iy/Hy3M4O7tCS5OtzVg1kAJBLCvIPz+w1kLIENatf8vyGliYnTNttt12x7VpeId12222Lq6+5NCarv7Layy4DNOe/Ofbee+/6iw1ZEfD73/+++Bs6KwTyLYOt7P2SjTWHDh1abF1YmfBnFWOGAln5Vfl41dKqbtbNP4HSyrV6v/vd74rk/u9//3uxBjsbXen2S0tVWac6ewiWv4DtbU1LlhUDWa768ssvF8sG8spS7iCTVTHQEmVZ9bHHHltMknKClVdQs9FantcZ8EJL8tBDDxW7bmRz2FxCUNlmMMOvrGLMUCBDgvyb5Kabbiq26LzkkkuK1/JqEgwAhbyKmtu45S4EWQZlfSpA85UBV3bBzv4wa6+9drUPBz6zDATGjh1bLCfIf2+wwQbVPiRokll3x8gdBnJJblYwVqq7Krtt5Hazea5nJUw2js1dkrIfQbUJBoDCAw88UKx7ysY+lS3eAACAxqlsAZ7LGXfbbbeiCiCXf826JDd7xWRDzQzBssdAcyEYAAr2AAYAgPmzlPGXv/xlse3gfvvtF0cccUQ0d3YlAApCAQAAmD8yEPjyl79c7FCQ28w2d4IBAAAAmA+yWiCXFOTS3GwymH0Esql3c2cpAQAAAJSYigEAAACYz1rSNXjBAAAAAJS4h5dgAAAAAEpMMAAAAAAlJhgAAACAEhMMAAAAQIkJBgAAAKDEBAMAAABQYoIBAAAAKDHBAAAAAJSYYAAAmO8++OCD6Nu3b3Tv3j1uv/32eY474ogjijG//e1vP9fjAwD+RzAAAMx3Cy+8cJx66qnRqlWr+MlPfhLvvvvuHGN+//vfx4gRI6J///6xyy67VOU4AQDBAACwgGy00Uaxxx57xFtvvRWnnHJKg8deeOGFGDJkSHTt2nWOxwCAz5dgAABYYI4++uj40pe+FMOHD4/bbrutuG/atGlx1FFHxeTJk+OMM86ILl26VPswAaDUBAMAwALTqVOnOO2006J169Zx8sknx3vvvRcXXXRRPPXUUzFo0KDo3bt3tQ8RAEqvVV1dXV21DwIAqG0/+9nP4vLLLy+CgAceeCBWXnnlosdA+/btq31oAFB6ggEAYIH78MMPY/vtt4/nn3++CAN+97vfFbsRAADVZykBALDAdejQIXr06FH/78UXX7zahwQA/JdgAABY4P785z/HLbfcUgQC77//fvzoRz+q9iEBAP8lGAAAFqg33ngjTjrppKIR4XXXXVf0F7jnnnvi+uuvr/ahAQCCAQBgQcpWRscdd1yxG8ExxxwTK620Upx++unFLgXZkPCVV16p9iECQOkJBgCABebKK6+M+++/PzbZZJMYOHBgcV+vXr1i3333jYkTJ8bgwYOL8AAAqB67EgAAC8To0aNjp512KpoNZn+BZZZZZq67FGS/gb322quqxwoAZaZiAACY76ZOnRpHH310cXvCCSc0CAVShgVnnHFGtGnTJs4555x48cUXq3asAFB2ggEAYL47++yzY8yYMbHFFlsUlQFz07Nnz2JJweTJk4s+BDNnzvzcjxMAsJQAAAAASk3FAAAAAJSYYAAAAABKTDAAAAAAJSYYAAAAgBITDAAAAECJCQYAAACgxAQDAAAAUGKCAQAAACgxwQAAAACUmGAAAAAASkwwAAAAACUmGAAAAIASEwwAAABAlNf/A0jA518uCg4qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gpv.plot_2d(geo_model, show_data=False, show_scalar=True, show_lith=False)" ] }, { "cell_type": "markdown", "id": "several-artwork", "metadata": {}, "source": [ "\n", "\n", "## Visualizing the computed model in 3D\n", "\n", "The computed model can be visualized in 3D using the `pyvista` library. Setting `kwargs_plotter= {'notebook':True}` will open an interactive windows and the model can be rotated and zooming is possible. " ] }, { "cell_type": "code", "execution_count": 23, "id": "838f0e34", "metadata": { "ExecuteTime": { "end_time": "2022-03-27T11:06:37.661135Z", "start_time": "2022-03-27T11:06:36.848563Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\gempy_viewer\\modules\\plot_3d\\drawer_surfaces_3d.py:38: PyVistaDeprecationWarning: \n", "../../../../Anaconda3/envs/gemgis_12/Lib/site-packages/gempy_viewer/modules/plot_3d/drawer_surfaces_3d.py:38: Argument 'color' must be passed as a keyword argument to function 'BasePlotter.add_mesh'.\n", "From version 0.50, passing this as a positional argument will result in a TypeError.\n", " gempy_vista.surface_actors[element.name] = gempy_vista.p.add_mesh(\n", "C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\pyvista\\jupyter\\notebook.py:56: UserWarning: Failed to use notebook backend: \n", "\n", "cannot import name 'vtk' from 'trame.widgets' (C:\\Users\\ale93371\\Anaconda3\\envs\\gemgis_12\\Lib\\site-packages\\trame\\widgets\\__init__.py)\n", "\n", "Falling back to a static output.\n", " warnings.warn(\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAMABAADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqhqutabokAm1G8jt1P3QxyzcgHao5OMjOBxXA638WFjlMWiWayKrcz3QOGHP3VBBx0IJIPXiqjBy2IlUjHdnptFeY6J8WVklEWt2axqzcT2oOFHH3lJJx1JIJPQYrv9K1vTdbgM2m3kdwg+8FOGXkgblPIzg4yOaJQcdwjOMtmX6KKKksKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiorm5gs4Gnup44IVxuklcKoycDJPHU0AS0V59rHxV023SSPSbeS7m6LLINkXI6/3jg4GMDPPNef674w1nxDlLu52W5/5doMpH26jq3IB+YnB6YrWNKT3MZV4x21PXNb8d6FocpgluGubgNteK1Acp1B3HIAIIwRnPI4rzzWPifrOoJJDZJHp8LcZjJaXGMEbzx1OcgAjjn14iito0oo5pV5S8h0ssk0ryyu0kjsWd3OSxPUk9zTaKK0MhtPilkhlSWJ2jkRgyOhwVI5BB7GmUUhnb6P8AFDWtOSOG9SPUIU4zISsuMYA3jjqM5IJPPPp6JonjzQtclEEVw1tcFtqRXQCF+gG05IJJOAM54PFeCUVnKlFmsa0on1DRXz5oXjHWvD2EtLnfbD/l2ny8ffoOq8kn5SMnrmvQtH+K2m3KRx6tbyWkx4aWMb4uB1/vDJyMYOOOaxlSktjojWi99D0Giora5t7yBZ7WeOeF87ZInDKcHBwRx1FS1mbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTZZY4YnlldY40Us7ucBQOpJ7CuS1n4j6FpTNFBI1/OFOBbYKA4BAL9MHPVd2MH6U1FvYmUlHc6+snW/Euk+H4i1/dKshXckCfNI/XGF9DgjJwM968j1j4i6/qjyLDcfYbduBHb8MADkZf72egOMA46cmuSraNHuc8sQvsno2u/FW7uMw6Jb/ZY/+e84DSHoeF5UdxzuyD2rg9Q1K91W6a6v7mS4mP8AFI2cDJOAOgGSeBwKq0VtGKjsc8pyluwoooqiQooooAKKKKAG0UUUhhRRRQAUUUUAWtP1K90q7W6sLmS3mH8UbYyMg4I6EZA4PBrvNC+K13b4h1u3+1R/894AFkHU8rwp7DjbgDvXnNFTKKluXGco7H0VonibSfEEQbT7tWkC7ngf5ZE6ZyvoMgZGRnvWvXy9XW6P8Rtf0t41muPt1svBjuOWIJycP97PUDOQM9OBWUqPY3jiF9o90orj9G+JGhaqyxTyNYTlRkXOAhOCSA/TAx1bbnI+ldbFLHNEksTrJG6hkdDkMDyCD3FYtNbnQpKWw+iiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuf1nxroWiKwnvFmnVipgtiJHBBAIPOFIz/ABEdDXnmrfFTV7zaumwx6eowSeJXJ57sMY5HbPHXtVxpykZyqxjuer6jq2n6TF5moXsFspVmUSOAWA67R1Y9OBk8iuD1n4sW0StHo1m00gYjzrkbUwCMEKDkgjPXaRx9K8tubme8nae6nknmbG6SVyzHAwMk89BUVbRopbnNLESe2hqat4j1fXNo1K+knVcYThUBGedqgDPJ5xmsuiitkrbGDbe4UUUUAFFFFABRRRQAUUUUAFFFFADaKKKQwooooAKKKKACiiigAooooAK1NJ8R6voW4abfyQI+dycMhJxztYEZ4HOM1l0UNX3Gm1sesaN8WbaVVj1mzaGQsB51sNyYJOSVJyABjpuJ5+ld5p2r6dq0XmafewXKhVZhG4JUHpuHVT14ODwa+a6ltrm4s51ntZ5IJkztkicqwyMHBHPQ1lKknsbRryW59OUV41pPxV1ez3LqUMeoIclTxE4PHdRjHB7Z569q9E0bxtoWuKogvVgnZgot7kiNySSABzhicfwk9RWMqconRGrGWx0NFFFQaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ2qa/pOjKTqF/BAwUN5ZbLkE4BCD5iM+g7H0oSuJtLc0aiubmCzgae6njghXG6SVwqjJwMk8dTXmGsfFmWRJItHsfJzwtxcEFgMc4QcAg9MkjjpzxwGo6tqGrS+ZqF7PcsGZlEjkhSeu0dFHTgYHAraNFvcwliIrbU9a1v4oaTp0phsIm1GRWw7I2yMdQcNg5PA6DBB6155rHjnX9aSSKa88m3k6wW42LjGCCfvEHJyCSOfpXOUVtGnGJzyqykFFFFWZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFJmgcYuWwtJmkzUUtzBB/rZACP4Ry3bt9D3xSu3sb+yjFXmyTNLUEFxFcKCjjceqZ5H4fhUuaNVuHs4yV4MdRSZpaDJxcdwooooJCiiigAooooAKKKKACiiigAooooA6PR/HWv6KkcUN551tH0guBvXGMAA/eAGBgAgcfWvRNE+KOk6jKIdQibTpGbCM7b4z0Ay2Bg8nqMADrXjFFRKnFmkason05bXNveQLPazxzwvnbJE4ZTg4OCOOoqWvmvTtX1HSZfM0+9ntmLKzCNyAxHTcOjDrwcjk132j/FqWNI4tYsfOxw1xbkBiMcZQ8Ek9cEDngcc4ypNbHRGvF76Hq1FZul6/pOtKDp1/BOxUt5YbDgA4JKH5gM+o7j1rSrK1jZO+wUUUUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiquoalZaVatdX9zHbwj+KRsZOCcAdScA8Dk1weu/FW0t8w6Jb/apP+e84KxjoeF4Y9xztwR3qoxctiJTjHdno1clrHxF0DS0kWG4+3XC8CO35UkjIy/3cdAcZIz04NeTax4q1nXHk+230nkvx9njJWIDOQNo4OD3OTwOeKxq2jR7nPPEP7J2Wu/EjWdWzFaN/Z1uf4YGJkPTq/B6g/dxwcHNcfLLJNK8srtJI7FndzksT1JPc02itlFLY55SctWFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRSZouXGnKWwtJmkJwCT0AyfpVSfUreLIUmVwei9OvPP+GaSvLY1cKdNXqMuAFiAMkngAVVnvoIMgtucfwrzzz1/Gsqe+nnyC+1SMFU4B6dfXpVatY0f5jnqY3pTReuNUmlG2MCJc5+X735/4YqjRRWySWxxSnKbvJhVy31GWJv3mZVPXcefwP/66p0UNJ7hGcou8WbkV9by4Acqx42sMelWjkEg8Edq5mrMN/PCoUNuQdFbnH9RWMqP8p2wxnSojdzS1St9QimO1yIm7bjwfx/xq2DwCOhGR9KyacdzoUYVFeDHUUmaWi5nKEo7hRRRQQFFFFABRRRQAUUUUAFFFFABRRRQA+KWSGVJYnaORGDI6HBUjkEHsa6/QviTrWk4iu2/tG2H8M7ESDr0fk9SPvZ4GBiuNopOKe5UZOOx7po/xG0DVEjWa4+w3LcGO44UEDJw/3cdQM4Jx05FdbXy9Wzo/irWtCeP7FfSeSnH2eQl4iM5I2ngZPcYPJ55rKVHsbxxH8x9EUV5zoXxWtLjEOt2/2WT/AJ7wAtGep5Xlh2HG7JPau80/UrLVbRbqwuY7iE/xRtnBwDgjqDgjg8isZRcdzojOMti1RRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU2WWOGJ5ZXWONFLO7nAUDqSewoAdRXF6z8TNE05WSyLahcBiu2PKoCCAcuRyOuCoIOPfNec634713XIjBLcLbW5Xa8VqCgfqDuOSSCDgjOOBxWkaUmYzrRj5nr+s+LtE0Fmjvb1ftAUnyIwXfIAIBA+6TkY3YBzXnmsfFXUrh5I9Jt47SHossg3y8Hr/dGRgYwcc8159RW0aUVuc8q8pbaE93fXd/KJby6nuZAu0PNIXIHpk9uT+dQUUVqYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSZpM0rmkaMpDs0majkljhXdI4RfU/h+fUVn3GqjlYFJ4+8/wDQf5+lNRlLYuTpUvid2aTEIhdjhRgFj0Gaoy6rEhxEnmH1PA7fie/pWXLNLO26Ryx5xnoPoO1R1rGkluc1TGSlpDQmnuprk5kfjso4A/CoaKK1SscbbbuwooopiCiiigAooooAKKKKACpYriWA/I5AznHaoqKTVxptO6NeLVIn4lXyz6jkd/xHb1q6jK6B0OVPAI6VzdSQzywNuicqe/ofqO9ZSpJ7HXTxklpPU6LNLmsuDVOQJ1wMfeUf0rQSRJF3Rurr6qf846d6ycZR3OqLpVfhepJRTc0uaVyZUpIWiiigzCiiigAooooAKKKKACiiigAooooAKsWl9d6fKZbK6ntpCu0vDIUJHXGR24H5VXooGeg6P8VtStnjj1a3ju4Rw0sY2S8nr/dOBkYwM8c16Jo3i7RNeZY7K9X7QVB8iQFHyQSQAfvEYOduQMV89UVnKlF7Gsa0lvqfUNFeCaJ4813Q4hBFcLc24XakV0C4ToBtOQQABgDOOTxXo2jfE3RNRVUvS2nXBYLtkyyEkkDDgcDpksFAz7ZrGVOSOiNaMjtaKZFLHNEksTrJG6hkdDkMDyCD3FPrM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqrqWo2ekabcahqFwlvaW6GSWV+iqP5/QcmgC1RXD+Efir4e8Y6s+mWaX1pd+X5sMd7CE89OcshBOcYzzg88ZwcdxQAUUUUAFFFFABRRRQAUUVzWt+O9C0OUwS3DXNwG2vFagOU6g7jkAEEYIznkcU0m9hOSWrOlqhqutabokAm1G8jt1P3QxyzcgHao5OMjOBxXk2sfE/WdQSSGySPT4W4zGS0uMYI3njqc5ABHHPrxUssk0ryyu0kjsWd3OSxPUk9zW0aL6nPLEJfCenat8W/uro2n+haS8/HICqfpzu9eO9efarrWpa3OJtRvJLhh90McKvAB2qOBnAzgc1QoraMIx2OeVSUt2FFFFUQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFJmkpXNo0JPfQXNJmoJry3tyVkfLD+FRk9/y5FZk2pzycRnyh/s9e3f8O1UoSkEqtGltqzWnnjtlBlYAkZC9zxnp/XpWdNqznIgQKP7zDJx9Og/Ws0kkkk5JorWNKK3OSpi6k9FohWdnbc7Fm9Sc0lFFanMFFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKVWZG3KxU+oOKSigZoW+qMgCzLvGfvDqP8f0rQguYrjiNstjJXuK5+gEggg4IrKVKL2Omnipw0eqOlzS5rGj1OdBh8Se7dfz7/jWlBdwXGAj4c8bG4Ofb1/CsZQlE641aVXyZYoptLmpuOVFrYWiiimZBRRRQIKKKKACiiigAooooAKKKKACiiigC/pWt6lok5m028kt3P3gpyrcEDcp4OMnGRxXoWk/Fz7y6zp/qVks/wwCrH687vTjvXl1FTKCluXGpKOx9JaVrem63AZtNvI7hB94KcMvJA3KeRnBxkc1fr5hilkhlSWJ2jkRgyOhwVI5BB7Gu00f4oa1pyRw3qR6hCnGZCVlxjAG8cdRnJBJ559MZUX0OiOIT+I9qormdE8eaFrkogiuGtrgttSK6AQv0A2nJBJJwBnPB4rpqyaa3N009UFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFea+Kg3jnx7Z+DE3HR9MCX+tkEgSHrDAeMHPDEdxyCCtelV5LqvgHxsni3xDN4f1mxtNL8RGP7VcShmuIFUYIQY64ZgORxjlSAaALnhdYvGfxQ1DxhBGn9kaTb/2Vp0oAxO4JMkqkH7o3FR2IYHgg0zxN8XLvS7/AFL+xPDM+r6ZpD+XqN8JvLRJOhRflOdpIyfrxjDVBN4t0/RvhLb2vgiG5Z5bv+w9KeWMJ505JXzgeFIPzNu6FjggcgVNa0KKz0nQfhHob5lvFW41e7RSClurBpJD1wzsMAEkDAU8EUAesaXqEOraTZ6lbBxBdwJPGHGG2uoYZHrg1bqK1toLK0htbaJYoIEWOONRgIqjAA9gBUtABRWNrHirRtDST7bfR+cnH2eMhpScZA2jkZHc4HI55rz/AF34q3dxmHRLf7LH/wA95wGkPQ8Lyo7jndkHtVxhKWxnKrGO7PVLm5gs4Gnup44IVxuklcKoycDJPHU1wesfFXTbdJI9Jt5Lubossg2Rcjr/AHjg4GMDPPNeV6hqV7qt011f3MlxMf4pGzgZJwB0AyTwOBVWto0UtznniG/hNvWfF2t68rR3t632csT5EYCJgkEAgfeAwMbskYrEoorVJLY5229WFFFFMAooooAKKKKACiiigAooooAKKKKACiijNA0m9gopM00kAEsQAOpJwBSv2N40OsmOzQAScAEms+fVIUXEOZG9cYA4/Os6e7nuMh3O0/wjgf5571apye5EsTSp6Q1Zqz6jBASoPmsD0Q8du/8Ahms2fULiddpIRfRBjPGDz1/DpVWito04xOKpiKlTd6BRRRVmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAWbe+mgI53rjG1q0YtRgk65jPo3I/P/APVWLRUSpxkb08ROGz0Ol5H86XNYEF5Pb4CPlM52NyP/AK34VoW+pRyfLN+7bsccH/CsJU5LY7Y4mnU0lozQopoIIBBBB6EHIP40uai5bo9Yi0UZopmLTW4UUUUCCiiigAooooAKKKKACiiigAooooAK3NG8Xa3oKrHZXrfZwwPkSAOmASSAD90HJztwTmsOihpPcabWqPYNH+K2m3KRx6tbyWkx4aWMb4uB1/vDJyMYOOOa7y2ube8gWe1njnhfO2SJwynBwcEcdRXzHVrT9SvdKu1urC5kt5h/FG2MjIOCOhGQODwaxlRT2N412viPpeivJNC+K13b4h1u3+1R/wDPeABZB1PK8Kew424A716Fo/irRddSP7FfR+c/H2eQhJQcZI2nk4HcZHB54rKUJR3OiNSMtjZoooqCyNp4kmjheVFlkyUQsAzY64HfGa8++MF/qdloWjxWWrS6Ta3uqwWt7fQvseCJs/Nu42gEZJyOmOhNcc/ga38SfFPxpZ6tfXVvrwWG+0W9id0MUfZlxwQh8tD34OMHkdp4cvY/iT4B1Hw94jTy9WtgbDVYvl3pMv3ZQBxyVDA4xuUgZAoAi8KX+r+E/F7eCfEOpzalBdRG50bUbhT5koGTJC7ZO5l6j27gFVHo9fPXibxPGngKXRPEd2LXxv4Wu4nsZ2DM1wUZdkqkj5gydc9SAxHYe8aPfSanolhfywGCS6to5mhPWMsoJX8M4oAu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVn3+uaVpe4X2o2sDqhfy3lAcgdcL1P4CgL2MLx54IHjHSbSC21BtLvbK7W8tbqKPcUkGe2R1JzkHOQDSeEPBlv4Oi1DUtQ1STU9XvD5l9ql18pKKPlUAkhEUe/6AAYWsfFmKN5ItHsfOxwtxcEhSc84QckEdMkHnpxz5/q3iPV9c2jUr6SdVxhOFQEZ52qAM8nnGa1jRk9zCVeK21PXNZ+I+haUzRQSNfzhTgW2CgOAQC/TBz1XdjB+leeax8Rdf1R5FhuPsNu3Ajt+GAByMv97PQHGAcdOTXJUVtGnFHPKtOQUUUVoZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZouVGEpbC0maSo5Z4oBmVwueg7nr2/CldvY2VGMVebJM02R1ijMjsFUdycZ9h6ms241Yk4tlKgfxOASfw6D9aznkeRtzuzHGMsc1pGk3uZTxkIaU0ac+qqCVgTd/tN079B+R/pWdNcS3D7pXLHOcdAPoOgqOitowUdjiqVp1PiYUUUVRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmecUtRnPnVJSG0FFFFMQUUUUAPjlkibMbFT7VpQ6qrYEybT/eXkdu35/4VlUVMoKW5rTrTp/Czo45EmTfG25ehI7U7Nc4kjxtuR2U4xlTir8OqOGAnUFc8so5/Lp/KsZUmtjthi4S0mjVzS1FFNHMuY5FbjJA6j6j8afWWq3NXSjJXgx1FJmlpmUouO4UUUUEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHW6P8Rtf0t41muPt1svBjuOWIJycP97PUDOQM9OBXomjfEjQtVZYp5GsJyoyLnAQnBJAfpgY6ttzkfSvDqKiVOLNY1ZRPZPiFot5dwaX4w8NRpc61ozefCsYDfa7dhiSIHvlSSMZPJ28tXG+GPFUHjL4yyX3hq3vreyvdHMOrOw2GORc7H6kFx8ig88Z461g6T4j1fQtw02/kgR87k4ZCTjnawIzwOcZr0HRvizDI8cWsWPk54a4tiSoJPUoeQAOuCTx054xlSa2OiNeL30Oj0zwTZf2Lptv4mS08Q6lZJsGoXlopkYbiVHOTwCByeSMnk11NZ2n69pGquqWOpWtxKyCTyklBcKe5XqPxFaNZG17hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG/E281Ow8KC50y7e2K3CrOUOGeNlZcBuq/MUORzxjvXh8cnnMGY5uJBlwzZZmClm92AwTn0GTivofxfpkWr+EdUtJLdrgmBpI40zuMifOmMck7lXjv05r5wBKnKkg4xkHBrak7HPWV9y3RUUUy7NshxtWNI8A4AAIYseSSfl/XOc1O6FCA2MlQwwQeCMjp9a6FK5yyi0NooopkhRRRQAUUUUASJbzSQSzpDI0MWBJIqkqmemT2zio6yte0myuLW+1HULuc20Fvi3VQIxHOUG1QCx3FnXk9SoY4UL8r7/AFvT9Lg0+FzL5/kQrcpgsYiI1DyM2SDukzgAk4ycD5Qc/aWdma+yuk46mlRSKQ8ccikFJI1kUg9VYBgfyIpa0MtgooooAKKM0maVy405S2FpM0nU1Wl1C2h6sZG/up/j0/n9KFd7G3JTpq82WahuLqG2OJW+buq8sOfTt+OKyZ9QnmyoOxD2Xv16n6Gqlaxo/wAxz1MbbSmi9Nqk0gKxqI1Iwe5/P/CqRJYkkkk8kmkorZRS2OKc5Td5MKKKKZAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAM/5bf8Bp9NwfMLdsYp1JDYUUUUxBRRRQAUUUUAFFFFAACQQQcEVeg1OSJQkiiRQMDsR+NUaKTinuXCcoO8Wb0N3DcMFjY7icBSME1PXNVai1C4iwC3mL6Pz6d/wrGVHsdtPGdJo3M0tVIL6CZRlwjgchuB+BqyQQSDwRWTutzoUYVFeDHUUmaXNFzKVOUdwooooICiiigAooqjNrWm2OptZag91AwjVzIkG9U3Y2l+QQuCDkBjgjAOcUm0tyoxcnZF6inMjIRuH3lDqezKRkEHuCCCD3BptMQUUUUCCiiigAopyoz7sY+VSxJIAAH1pss8cchW3PmAAgyOvDZXBwpHGDnBPPTgGk3YpRbJCggCzSSGKRSDGF/wBZyuQw6YHTnI68Zwa9t+Gl7qWoeEEn1K4e4fzmSKRzuYxjAGWPLHIbk8mvBSSxJYkk9STkmvpHwlp0el+E9LtUtjbsLdXkjIIIkYbnyDyDuJzWFU6qKtsbNFFFYm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXy5f2cmnajc2UxVpbeV4XKHIJUkHGe3FfUdfO/jyzjsfHGqwxFirSiYljzl1Dn8Msce1a0tzKqtEznKdE/lPkfcZ0eVRgeYFJwCeuMFh+JptFamBZhkEiDeyrK0gjWPJJcsSF28c9uOuTgZ60+qgJVgykgg5BHapIZdrwxyHECghmA3Py2c5J5xkjH05GMVSlbchwT2J6KBgojg5V8lTjGQGK5weRyD1+veirvcyatuFZ+s6teaRZfabGw8915lnlh8yO2G5QrYzgkscfONvIHzFvl0KUEqQQSCOQRSkrqyKhJRd2rjLWGxe8sdavdWm1jdL5EGpO2I4MfMEhiO0RSKobCE4yVKAfKxz9KbVrTxCsF7cw3K6sZpGKxxjdJHGSEKHAKbTsCdMMQoPKku9Ije0gSwjt4JoLlbhPMyIzjJKkKM8nGCOmMcdRHfaUPspurvUYUv9RvIdPJggdoLWCUMW27juYjBBBGe4Y9+drl6HTGXP13HTTapqFlfT6fdQWthbrNNaeXYoouVjU72VmC4j+VgoHdcbQa0YJRPZ2s4GDLbxSMNwI3MgLYx2yTx1HQ81U1K3imvrfQZIDFFCFe+t0VIzHAm0Igz8wdiBk43AfMdwJqxc3slu0aWlvE19cuUtU8k+VFjl5SiqQUjXkr0GQcMoINRfLdg6bml0Jc0ZrFD3Wk+IEtp9SuNSgubQv5t4pRo1RiqlPnOeEC4zgZIx8oNWZ9VjT5YF3t/ebhfy6n9K1hzT2RMvZUfiepodiSQAOpJwB9TVGfU4owVj/eP6joOvfv2/xrKmuJZyDK5bHQdh+H4Co63jRS3OWpjZPSGhYuL2a54dgF7KowP/r/AI1XoorVJLY45ScndhRRRTJCiqOrSvFYkRlhI7BVKnBz1/pUst7DFcJbks8rEDagzj3NQ5pOzNFTk0mvP8CzRRRVmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVDHdRSmXa3+qOHzxj/P8ASmW1/b3bssL5ZecEY49anmj3L5Jau2xZoooqiAqe3u5bY/IQV7qwyD/h+FQUUmk9xqTi7o2ItThfAdWjPvyPz/OrgIZVYcqwyD61zdSxXE0H+rkKg9R2PbpWUqK6HZTxklpPU6HNGazrfU1Y7Zxs9GUZH49/51cNxCsJmaVBEOrlgAPqe3UVi4yjudUXSq/C9SaorqdLOxuLyX/VW6B3wRkgsFGAepyw/n0BqncXr3Gh3N7pM0EzxxNJt2s7bRw3A+6VGX+bAwvfIzLd2pm0SbR59ZjvbyZAhmeVMuuFkj2IQZPLG3IfHKYACjis3Poh+xtqyW0ufODQXdtc6dqCoJha3kflGSEnCvGT97nqMA45G4BirFjlXWnjfMyawI4owAOJol2rERu5DI3BKks3yqPvGn393d69aLqsMEiass7yPGwlVluQMXEGFA4kyPlHOGjBYfNROul6vp0c4uxBaXbYtX8wGaKUDcAMgfMp4z8ofayq3IqbtrUfKk9NtiGxVNPd9JKxqgBubNwVG6Jmw0Z+cksj5wMFirFjgBau0y0m1c6xaSat9iW1s47zyXsP+W8k0JhL7SfkUlFYqQpAJwoBAD6unexnVte4UUUoXIZiyqqjLEntnH1PXoOaszSuJUjCODcJ93mAMvlLwysOm7I4GfqeOgzmoZLkGMxRRqoDODIeWkXPy/7nAB45yT8xHFV6hu5oopbj5Jnl4bAQMXWNc7VJ64ySew6kmmUUUiixYWcmo6jbWUJVZbiVIULnABYgDOO3NfUdfO/gOzjvvHGlQylgqymYFTzlFLj8MqM+1fRFZVdzektGwooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8U+L1r5Xim2uFg2JNaLmQJgSOGYHnuQNn4Y9q9rrzL4yWcj6dpV6CvlQyyQsCeSXAIx7fuz+lXTfvEVF7p5DRRRXQcwUUUUAGWUSGNzG7xmMuoGQpIOOR6gH8BVk3MOws5EISMvI7sAmdwGB36HOD/dPPaq1FGwW5tC66NG7I6lWU4KkYIPpSVWW4eNJzsEzvlh5jkENxznnjjpyOTxk5qwdjF2iYvEJGjV2XaWwAc4+hHt19DTU0P6tLrsGaiuYIr2zktLqPzbdyGMZYgbgCFbgjkbjg+5HQkFs13Bb/AOtkA9hye3b8e+KzZ9VeUYhARSOuck8f5/xq1CUxSq0qPqalkbTRoLazitbWKwZy90WkcPKQj4bjJL5+VT9xCc7SGc1zK+IlXUtSvjFbRsEW2jDLuZEUgkrk9WYZP4gYU4qRmZ2LMSWJySTyTVN9NtJLjzniBcnJ54J+lV7C1nE53jOa6ei8htiJbh5NQumLT3HOT/CvYflj9Ku0UVvGKirHHObnLmYUUUVRAUUUUAFFFFAGXqbST3Nva25HmhvMJ7LjoTVu0so7RSRl5W+/I3VjTorWOK4lnG4ySdSxzj2HtSXl5HZQ735Y8Kg6sayUUm5yN3NySpw/4cdc3MVpCZJWwOw7k+gptlcm7thMY9gYnA3ZrAmuXMsr3sT+cUxEpGFXPfFbHmf2dpEb7MlFXK5xyev8zURq80m+iNJ0FCKW8my/RTBLGZDGHXzAMlc8imW9zFcqxiYkKxUnHet7rY5uV2vYmooopkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjHCk0ALRSKcqDS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVFNPHAE3k/O4RQO5NS0r9B2drjUkSQsEdWKnDYOcGoJr2GJpI94MyIWCHjPFZDLNa6leSQSDch8woejKeT+WRV/NrrFmWx86j/gSH/CsVVcrpbnS6MYtSesSCa4kaC3vGyYJF2ToOgzxn/PtUYS809CY5rd40XcF43Muf/r+tJYvcLYpFJAZrWXIBQZZeT1q3FpKPCqXeHaMkIykglewNZJSnqtzaTjTvGW1/X+mi/FIJYUkAIDqGGfen0iqqIFUYVRgD0FLXWvM4Ha+gUUUUxBRRRQAVS1S3lubIpDktuB25xuHp/X8Ku0VMoqSsyoScJKS6D4tVt7PxDZzz6fbNBPE0NxbwwJHHMABs3KoAHzY3FcEjIzyTVjTvD+jTwzadaTxtdcTC+l3JLaj5TuIViAiYbLY5DEkA7dvO6pO0Go2rrEXKhto9SeP8KkjsWvYt+oRqJc/KUOCB6H/PeuOVNSk1FanpQryhCMp7fjudPZ22p3ENjr9rc6Zaz39qJJEngJjkaN3iDbUQgNlC2MbT3ySQbllbxWmi2FgyJK1tFtZ5EDfOZGkymR8uC2Mjk4J43EVmW+pyQW8Fu+Db26bI16bFznA/Ek+5JJ5NaUN1BcgGGUNnnB4Pf/Dtmj2LhuaRr06qstCxSojSOqIpZmOAoGST6UieXkGSQIm4Angtj2Xqf5cjJGaZJds0LQxjy4pECygHJkwc8n0zjgccDOSM0OQewfQc8iRoCpWSQ4IU52jDchuh5APQ9xzxiopppLiUySNk5JAAAVcnOFA4UZPQVHRUitbQKKKKYBRRRQB6B8IbXzfFNzcNBvSG0bEhTIjcsoHPYkb/AMM+9e115l8G7ORNO1W9JXyppY4VAPIKAk59v3g/WvTa56j946aa90KKKKgsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjPijZx3Pge4mcsGtZY5kCngkts59sOfxxXZ1meIrFtS8N6lZJCs0s1tIsUbYwX2nb14B3YIPY8007MUldWPmeiiiuk5VFvYKKSkJCgknAAyTSubxodZC5oAycDqaoz6rbwkqoMrD+6cDv3/wrLuL6e5G13wn91eB2/PpVKnJ7kyxFKnpHU17nUILfK7t746Ic/mazLjU55mGw+TtJ2lDhhkEfe69CRxjNUqK1VOKOOpiZz8kJDMwYm4BcbiA390duP6ir6srqGVgynkEHg1QAxn3OaUFkbdG209x2P1rSLaOacVLYv0VDFcLIdrDY/p2P0Pepq1TT2MGmnZhRRRTEFFFFABRRRQAUUjsqIXYgKBkk9qgtb2C8XMT8jqp4IpcyTsUotq6WhYpjwxSOjvGrMhypI5FPootcSbWxnatC06QLsJjEgMjD+Ef5P6VR1O/N3blYYz5AcAyNxuPoK36r3dot3EqFiu1w4wP8+tY1Kbd+V7nRRrRi4qS2KE8K2EaxW+XvLg7fMP3vc+3+fSnf2qtu4j8pnjVgjz9AW79qZcNLZzyX88Ydi4jjXPAX1/z70lgkb6hdRJtlteHGRkBvb9fyrO7UrR0NrRceaev9fp0Nmiiius4AooooAKKKKACiiigAooooAKKKKACiiigAooooAKbIMofbmnU1/uN9DSY1uEYwg9+adTU+4v0p1CB7hRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXCzPAywSCOTsxGalopNXVhp2dzAvLybEEV3EUljlVt4+6wHf+Vb4ORkdKy9eH+gofSQfyNOjtLqylAtpBJbk8pIcbfoawi5Rm1vsdU1GdOLWj1INTtY5dUtfMJCSjacdcj/APWKtjTI4p4pbZzCV4YDkMPSrjRo7KzIrMv3SR0p1WqUbtszdeXKop7EcECW0KxRghV9TmpKKK0StojFtt3YUUUUxBRRRQAUUUUAFFFFACYBIJAyOhpaKhkuFQ7VG9/QdvrSbSGk3oiUsFBLEADuaoyy8hoAUBIBPTP4f1px3OQ0h3EdB2FBUNjPY5rOTbNoRUdy/BqlxGQJWM6gBfnbLADoN3+Oa0INQgnIXOxsdH4/WsGis3Tizop4icPM6ggg4IwRRmufhvriEBVkJUdFbkD6enWtO31KGUASHy3zjnofx/xrJ05I7I4inU0loXqKaCGAIIIPIIpai5UqPWItFFFMyaa3PePhdZx23ge3mQsWupZJnDHgENs49sIPxzXZ1meHbFtN8N6bZPCsMsNtGssa4wH2jd04J3ZJPc81p1zN3Z1RVkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8vapZ/2bq97YeZ5n2ad4d+3G7axGcdulVK6X4g20Np471WOBNiNIshGSfmdFZjz6lia5mtk+51eyXKnEX8vxrD1AXm79+5aPqNv3R26etblIyq6lWAIPUGrjLlZy1qPtFa9jlaK1rvSur2/1KH+lZTKVYhgQR2IrpjJS2PKqUpU3aQlFFFUZhRRRQAhAYYIyKek8kRw2XT/x4f402igGk9GXUkSVdyMGHtTqz8ENuRireo7/AFqxFdAkLKAjnv8Awn8atT7mUqdtUWKKKKsyCiiigDM1VbieICAK8K5MgDdSOxqNZ7eK2jvYbdRcTDYqLxk5x0qOO11CGKSzjjXy3Y5mJHQ1JYxJ58kzHENrmOPJ9PvN/n19q5NXK9t/wO+0Ywte6Xbr6+rJra8uRei1u40VmXcpT+v+e1aNc/5s11c70JWW5+WP/YjHU/59DViC3Wz1iOG3dyhQtKCc+uM/pVQqP1VyKlFb7O23obFFISFGSQB6mlrpOMbJGkqFJFDKeoIpIoY4E2RIqL6AU+ilZXuO7tYKKKKYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKQjII9aWigBAMAD0paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjmgjuE2SruXOcGpKKKVh3drBRRRTEFFJkAgEjJ6Csp7y+muJ/sqR7IGwVPVv8AOKiU1E0hTc9i9fXJtLSSYLuI6A+pqtBe3MdxHFexInm/cZemfQ1MGi1TTz2WQYI/un/9dVI1N9YSWkvy3MBwD7joazk3zJxfoawjFRakuuvl/TNaiqun3Ju7JJG+/wBG+oq1W0WpK6MJRcW4sKKKKZIU13WNSzHAqJ7kcrFhz69hUOCW3Odzep/pUOXY0UO455XkyBlE/U/4U0AAYAxS0VBptogooooAKKKKACilVSxwoJJ7CtO10zo8/sQo/rSlJR3NKdKVR2iQWCXRk3QHavcsPlNbf5fhSKoRQqgADoBS1zSlzO56lGl7NWvcKt6XZ/2lq9lYeZ5f2mdId+3O3cwGcd+tU66b4fW0N3470qOdN6LI0gGSPmRGZTx6FQazcux1qh7rcz6HooorE5wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8Y+MdtMniKwumTEElp5aNkcsrsWGOvAdfzrzmvYfjLZeZpGmX/mY8mdodm3rvXOc+3l/r7V49VrY76LvBBS0lFVcqcFIWq11ZRXSnI2v2YDmrSI8hwqk1bjs1HMhz7DpSdWMOpyVKelpLQ4+5tJbVsOPlzww6GoK79o42jKMqlCMFSOK4/VIrGKcCzm3A9VHIX/gXetaOJVR2aPMqYSW9PUoUUUV1nGFFFFABQQCMHpRRQAqSyQ/dy6f3SefwP8AT+VW45UlGVPTqD1FU6Qrk7gSrjow6imm0TKKkaFFVUutvE2FH98dPx9Ktda0TTMZRcdwrOk0iOS4Z/OkWNzueMHhjWjRSlCMtxwqSh8LMOG7hsr28acESA7Y1C/wjoB6dqvadA8cb3E/+umO5s/wjsKttDE8gdo0Z16MVBIqhexzw6feN5zSFzkDH3VyMj8qx5XDV62ub86qe6tG7f1+pCIl1SWW4nZltY8iMZxnHVv8/wBKsaMZDYZdmK7iEJ/u9P8AGqpnju4INPsshSB5jYxtHf8AH/PetiNFijWNBhVGAPaikry5l/X/AAw60mo8r+S7Jf5jqKKK6DkCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnFqUM959niDPwcuBx/n3q5WIFu7a8ks7QIodjIrkdB6f0rKpJxtY3owjNO+4kNkLue8LyOt0knytnGPQ/59qba3ZguhNJ8okbyrgcDa46N+P8AjR9omW4N00W2eH5LhB/Eh7/59qerQX2qsIQXhki/e8Ecjofr0rmVtOXe/wDX+TOt3s+ba33f1uizGPsermJf9VcguB/dYdf8/wCFDWZv8zMslrOCUO0/eH9aktdLitpxN5kkjKMJuP3RV6uiNO6tL7jlnVSd4PXuQ21ulrAsUedo7nqamozgZNV3uC2RF/30en4etaaRVjK0pu5LJKkQBY9eAAMk1Wd3l+98qf3Qev1NIFwSSSWPUnrS1DbZoopAAAMAYFFFFIYUUUUAFFFFABU9vaS3J+UYXux6VPpkdlJN/pUwUg8KeFb6muqVEWMIqrsAwAOlc1bE8jskdtPCS3qKxj21nFbD5Rlv7x61Yq09qDyhx7GqzqyHDAisVVUup6NKnfSK0EpKKKG7nbCmoBXo3wctpn8RX90qZgjtPLdsjhmdSox15CN+Vec17D8GrLy9I1O/8zPnTrDs29Ni5zn38z9PepewqztBnplFFFQcAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcd8ULaGfwJeSSJue3kikiOSNrFwuffhmHPrXgdfTuu2st94e1K0gUNNPayxRgnGWZCBz9TXzkLJYjiQEt79KTqRhudeHl7rRSjieQ/KOPXtVuO0VeX+Y+narAAAwOBUVy0627m3RXlA+VWOAawlWlLRaG+48lIkJJVUUZJ6ACsm88RWsGVgzO/I44Ufj3/AArntQu72edku2YFT/q+gX8Px61TraGHW8tTrhhYte/qXrzVLq/P72TCdo14X/6/41TptKDXVGy0CeH5fg2HBvWnfSmUA46VrGTR5eJwUK2q0Y+ikBB9jS1qmnseHWoTou00FFFFUYhRRRQAUIzwn92flJyVPT8PSiikBajuEkB52sOobjFOWTc3yqSv97t+FZ06qyruGcMMH0Oasx3LRgCXLD++Bz+I/wAKpT1syJU9Lot0UisrqGUhlPIIPBpa1MRkcUcQIjjRAeu1cZp9FFIG77hRRRTEFFFFABR0oqOU4AFJjSuySikU5UGlpgFFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvd/afKBtSu8HJDfxD0qxRSaurFRdnczrK3uTey3d0ixsy7AoOfT/Cr6RpGCERVB67RinUhYKCWIAHc1MYqKKnNzY1pNjfMpC9mHI/H0pHnRAOdxIyAvOaie4Z+I/lH94jn8KrwKqq20fxH+dJz10KVPS7JXLSn5z8v9wdPx9aKKKkoKKKKACiiigAoooJA9zSbS3NqNCdZ2gg7ZPFNLZ4HSkJz1orKUmz3MNgoUdd2FWbXULiyYeU/y90blTVUmkrKTT0PWp4Xm/ibHVWeu21xhZv3Mn+0flP49vxrTBWRARhlYZB6giuCq3Y3V5DKEtWc5P3AMg9O35c1yzoLdFTwkUvc0OsktlblflP6VXeNoz8w/GrVuZjCpuFRZO4Q8VKRkYNZRqyjo9Ti2M2vfPhfbQweBLOSNNr3EkskpyTuYOVz7cKo49K8R+xiVsRghuvFfR+hWstj4e020nULNBaxRSAHOGVADz9RWqqKWxhiJe6kaFFFFM5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8A1KyW01C6s2bzPIleLfjGdpIz7dK9/rxfxlBHb+LtQSJdql1cjJPzMoYn8ya48YvdUjai9TlZYDHyOVqKtKq8tsDzHgH0rmhV6SOlMy73T7e/j2zJyM7WHBWuSv9KubBsuu+LtIo4/H0ruCCDggg+9NdFkQo6hlIwQRkGuynWcPQ6KVaUPQ87orotU8PgZms+55iJA/L/CueIKsVYEEHBB7V2wmpq6O+FSM1dCZp2abRWiZNSkp+o6lDetNBpatPscFaimuWauh/0opgOOlOBB9jWsZ9zw8Tl8oe9T1X4i0UUVoeaFFFFACEAjBAPfmloopAClo2LRnBPUHoasxXCyNtI2v6Hv9D3qtSFQwwRnvTTa2FKKluaFFU455IsBsyLnr/EP8f8APWrSSJKgZGDL6itFJMxlBxHUUUVRAUUUUAFMm/1Rp9Nk/wBW30pPYa3HUVVvI5pLYGGfyWU7tx6HHY+1Q6bfvcQyNOFURcGQHhv8/wBannSlystU24cyNCikVgyhlIIIyCO9LVmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTPOi83yvMTzP7m4Z/KlcaTY+iiimIKKKKACiiigAoprusalmOAKrPM8uQuUT1/iP+FS5JFRi2TSTqhKqNz/AN0dvrVdt0jZkO7ByB2FAAUYAxS1Dbe5qklsFIAAMAAd+KWikMKKKKACiiigAo7ZPFBIHuaYTk81Ep9j08Nl8p+9U0X4ils8DgUlFITWLfc9yjQ05aa0FzTc0UVDdz0qdGMPUKKVVZm2qCSewFb2m6EMCW7wehEYP8/8Kic1FXZVSrGmtTNsNMnvmyvyRd3IrqLSxgsowsS84wWPU1YACgAAADsKcAWOACT6CuOpVcvQ86rXlU9BKmht2l+Y8J6+tTQ2oX5pME9hVquKpW6ROdsm0yxW61C1slby/PlSLfjONxAz79a9/rxfwbBHceLtPSVdyh2cDJHzKpYH8wK9orowa91yZzVnqFFFFdhiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmHxMgkXWrS4K/unt9itkcsrEkf+PL+den1wvxNtd+nWF3vx5UzRbMddwznPts/WufEq9Jl03aR5pRSMwUcnFQtMT90Y9zXlpNnS5JD5UR1+bAPY1nTFozgDjs1WSSTknNKI94wQNvv0rWE/Zq8tiVOT0RmkljknNU7zTIb5csNsmMLJ6f41ry2ewbo/m7kH+lVM5603j4f8utTqo0ZJ8zdjjryymspSsi/L/C46Gq1dvJGkyFJEDKeoIrAv8ARHizJa5dOpQ9R9PWuzDY+M/dqaP8D0Yz7mPRmiivRLaTVmOzRTaUGqTOSpQa1iODetO+lMoBx0rSMmjy8TgoVtVox9FICD7GlrVNPY8KtQnRdpoKKKKoyCiiigApACr70Yq3t0P1HelopATxXQYhJBsc9D2P4/0qxWeQGBBAIPBBpySyQ9PnT+73/A1anbczlTT2L1FMjlSUEo2ccEdxT6vcyatuFMlkSGNpJGCoo5Jp9Iyq6lXUMp6gjIND8gVr6mV++1c/xRWQP4yf/W/z9ItRdYnjtTDIllHgvsH3vTmtadGNpKkQwxQhQOOccVjfa5LuyWwSKU3Bwrl+2D1Nc1Rcqs93+PkdtJ8zulovw8y3F9n0qBpvOd4pcGNP8KsWl/FdlkAZJF5KMOcetU7GMXNz5zHNvbKI4iehIHLf59vSpLDN1fz3oGIyPLTjr05/SnCT0tt/WpNSMWpOW66/kjToqld6nBaSCNgzvjJCDOB71ZhmjuIhJE25D0NbqcW7J6nM6cklJrQkoooqiAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSSxxLukdUGcZY4qpLqcSXS28aNLJuw23+H1qtPBHNrmy6BaN4/3Qyev4fjWUqn8uvQ3hRf29Fa5qtlozsYAkfKaw7WwjuNPYx7lvY2OTnBDA8CrdizWd29hIxKfehJ7j0/z70XSvY3v2yJC8TjEyr29/8AP9aidpJSa8maU7wbhF76rz/r8y1Y3X2u2VyMOPlcehqzWXphMt3dXCRtHDJggMOp9f5/nWpWlOTlG7Ma0VGbSCiimSSJEuWP0Hc1ZmlcfUElwAdsY3N3PYVE7vN1yiZ+6Dyfqf6UgAAwBgVDlfY0UEtwwSdzsXb1Pb6UtFFSaBRRRQIKKKKACiigkD3NJtI2o0J1naCDtk8Cmls8DgUhOTzRWUpNnuYbBQo6vVhRmkJpKzcj1qWHb1kGaKKAMnA61B2pKKsgqzZ2M17IFjX5c/M56Cr9hojShZbnKoeQnc/4VvxxpEgSNQqjoBXnYnHxp+7T1ZMp9ina6dFZL8q7m/vnr/nirQJByDipKuRadvG+T5c8hR/X0rjWYwX8XQ82tRk3zJ3K8AeU8jC92rThiSNflwT3NRmIxjG0Be2OlJnHSlOr7RXi9DkcmtGWaKiWU/xc1ICG6GsWrDTTO3+GcEja1d3AX90lvsZsjhmYED/x1vyr0+uF+GVrs06/u9+fNmWLZjptGc599/6V3VerhlakjmqP3goooroICiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmPH9t9o8HXbrE0ksBSVNoJK4YBjgdgpb+faunqnq1pJf6NfWcRUSXFvJEpY8AspAz7c1M1zRaDY+eQ+/nOaWqwJByKmSQNweDXluNi1K+5KhXcMjn1J4qXOQKgpyuVGOoGeK4sVhpVNYv5HVRqqGjRLUM1skvP3W9alBBHFLXle9CXZncnfVGVJG0TYYY9/WmVrMiuuGAI96ozWrR5ZfmX9RXXTrqWj3LTMe/0mG8y64jm/vAcH6iububWa0k2TIVPY9j9K7So57eK5jMcqBl9+1erhsdOl7stUaxm0cTRWnqGjyWoMkWZIRyfVfrWZXuU6sKkeaDuapp7BmnZptFaJmdSipa9R1KG9eaaDS1afY4K1FNcs1oP+lFMBx0pwIPsa1jPueHicvlD3qeq/EWiiitDzQooooAKKKKAEI5ypKsOjDqKnjusHbMAOeGHT8fSoaKE2thNJ7l/rRVBGeE/uz8vdD0/D0q3FMko4yG7qeorRSuYyg1qSUUUVRBjLY38cbWaPGLdicyd8en+fzq2t1bW2ms8BDRxfIPdqvVSv7ET2JhhVUIbcoAwCax9m4JuB0qqqjSn3/q5XgxYafJdz4M8vzHPcnoKsaXbtbWCKww7fMR6Z/+tiq8dteXlzG98qJFFyEBzuPr1rVpU4637BWnpy3u3v8Aogooorc5gooooAKKKKACiiigAooooAKKKKACiiigAooooAQnAJAJx2HesO4u9RaMXezyYEYEIerfXuRW7VbUIxLp86n+4T+XP9KyqxbWjNqM1GWqvco3i3MF/vsx/wAfKgE4yAQev5f1qGdbt5Ftrgq1wv7yCVeMkdR+n6Vft2kuNIj8iTZIUADEZ5HB/lUUNvfTXsU13sVYchQv8RI61k432vr9x0Rnbe119/l/kVpLw301qiwOtzHIC+RwvrWtHbLFcyzBmzJjIJ44qaito07O7d2c86t1aKsgoqOSVY8A5LHoo6mq7M8v+s4H9wdPx9apysRGDZI9xn5Yuf8AbPT/AOvUQXksSSx6k0tFQ9dzVJLYKKKKQBRRRQAUUUUAFHbJ4oJA9zTCc9aiU+x6eGy+U/eqaL8RS2eBwKSikJrFvue5RoaclNaC5puaKKhu56NOhGGvUKKK07DR5LnEk2Y4vTHLVlUqwpx5puxs2luUra1mu5NkKFj3PYfWujsdJhtMO37yX+8eg+lXIIIreMRxIFUVJXiYnHTq+7HRGMpNhT4onmbagz6nsKnt7J5cM/yp1Hqa0kRY12ooA9q8iriFHSOrM3KxDBaJBz95/wC8asUUjOqY3HGelcXvVJd2Zt21Yp6HPTHNVpCm4hR+IPFDyFz6DHTNMr1sLhnS96T17HDWrKeiCkZwnJOKY8oXgcmoCSTk9a71G5ySnbY9z8AW3keD7R2iaOScvK+7ILZYhTz2Khf5966aqek2klho1jZylTJb28cTFTwSqgHHtxVyvVguWKRne4UUUVQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOOrWkdhrN9ZxFjHb3EkSljyQrEDPvxVOun+INt9m8a3+IfKSTZIuE2h8oMsPXLbsn1zXMV50lZtCHpJjg9KmBBGRVam+dsPy8mpUHJ6FKVi3kjocU9ZkY4zg9B71TEvmd/wAKU8KSeAO/+fpUVsFCpH95o+5006rhsX6KopfqCFbcwycuTV1WDqGUgg9xXz9Wm6cmr38zuhUU1oV57USEsnDH8jVFlKMVYYIrXpkkSSrhh9D6VdOu46S2NUzKrKv9FjuMyQYjk6kdm/wrbmt2hP8AeX1AqGvQo15QfPTZafVHEzQyW8hjlQow7Go67O6s4byPZKmfRh1H0rm7/SprMlx88WeGHb617uGxsKvuy0ZtGaZQoBoortKcVJWY6im0oNUmclSg1rEcG9ead9KZQDjpWkZNHl4nBQrarRj6KQEH2NLWqaex4VahOi7TQUUUVRkFFFFABSFQ2Ceo6HuKWikAv2qVAEbBz0kI6e5A/pVtFU4fdvJH3s9vaqJB3Lx35pylo23RtjJ5B5B/CmpNbkygmtNC/RUMVwsh2kbH/unv9PWpq1TT2MGmtGFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEBgQeQeDS0UAQWdsLS2WEOXx3NT0VFJOqEqPmf8Auj+tTpFWKd5u/UWRV++W2ED72e3vVf7TI+UXAweXx1+gpG3SNukOfRewpFB3sT0OMVDb6GsYpLUUKFzjqepPU0tFFIoKKKKBBRRRQAUUUEge5pNpG1GhOs7QQdsnimls8DgUhOetFZSk2e5hsFCjq9WFFITSVm5HrUsO5ay0QE0UUVB2xioqyCpIYJLiURxKWY+lW7HSprzDn93F/ePf6V0dtaQ2keyJMep7muLE42FL3Y6sUppbFKw0aO32yT4kl9OwrUoqe3tXnOfup/eIrwq9eU3z1GYt9WQqrOwVRknoK0reyWIh3O5x09BU8UKQrhBjPU9zUleZVxDlpHRGbkFFIzKilmIAHc1QmvQ+Y1HyHgn1/wDrVlSp+0kley7mU6igtS1JcKh2qQWBwcjgVCSW5JJ+tQA5AI6UjS+X359K+io4KFOP7vV9zgqVXPcnJAGT0qCSUtkL0qIzeYfm4pa19m47nNKd9gq5pNpHf6zY2cpYR3FxHExU8gMwBx781Trp/h9bfafGthmHzUj3yNlNwTCHDH0w23B9cVcVdpEHudFFFeiMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8m+LNpIms2F4Svly25iUZ5yjEnPt84/WvO2kA6c16v8AGC1RtD0+9LP5kVyYgoPykOpJz7/IMfjXkIIPSsZULvmewh7OW6mm/wAJY8AdSelFQ3EbS/NuJIGAvaio5Qh7iuAkl0qkiP5j/e6Dv0/Smi5aRv3rc9j2/wDrVXIKnBBB96SvErVJ1X77Gm0XalhuHgbKnjuD0NUY5SnHUVYVgwyDkVyyj0ZtCfVG1DcJOPlOG7qalrCVirAqSCO4rQt74NhZcA/3u1cs6TWqO6nXT0kXSARgjIqnPZ5JaL/vmrlFRCbg7o6E7GOQQcEYNHUYNac0CzDnhh0IqhLC8Rww49R0rtp1VP1LTuYN/oavmS0wrdTH2P09KwZI3ico6lWXgg13FVbywhvY8SDDDo46ivXw2YSh7tTVdzSM7bnH0VbvdOnsm+cbkPR16f8A1qqV7MJxmuaLujVO4oNLTaKtMyqUVLVbjqUN6800Glq0+xw1aKa5Zof9KKYDjpTgQfY1rGfc8PE5fKHvU9V+ItFFFaHmhRRRQAUUUUAIyhhggHvUkc7xYD5kT1/iH+P+etMoo22BpNWZdR1kXcjBh6inVn/Mrb422vjHsfqKsx3IYhJBtY9PQ/jVqfcxlTa1RPRRRVmYUUUUAFFFFABRRVa9uxZQrKY2ddwBx2HrSbSV2VGLk7Is0U1HEkauAQGAOCOadTEFFFFAgooooAKKKKACmu6ou5iAPeopLgA7YwHYHB54FQ4LNuc7m7H0+lQ5djSMO455nlGFBjX3+8f8KaqhRgCloqDTbRBRRRQAUUUUAFFFFABR2yeKCQPc0wnPWolPsenhsvlP3qmi/EUtngcCkopCayb7nt0aKS5KaFpCaSis27no0qChq9WFFFW7LTp71vkG2Pu56ConOMFzSdkbt23KyI0jhEUsx6ACt6x0RY8SXWGbsg6fjWhZ2MNkmI1yx6uepqzXjYnMJT92nojKU77B0GBQASQAMk9qlht5JzhBx/ePStOC2SAHHLHqTXj1a0Yepk3YrW9jgh5u38H+NXwAAABgDtRRXnzqSm7shu4VDPcJAvzct2UVBcXwXKRYJ/vdhWezFmJY5J71cKTerOapXS0iSTXDztljwOgHaoqRmCDLHAqpLMZOBwtdcYdEcU59WTtdmM/ujz3Pb/69IlwjYEnyt/e6g/WqtKAWOB1rro1J0n7jOdyb3L+OAeoPQjkUBiKghiK4Ykg+lTV7VNynG81YRKHB9q9D+E1pI+s394CvlxW4iYZ5y7AjHt8h/SvNmYKOa9c+EFsg0TUL3c3mS3IiKk/KAigjHv8AOc/hVxoWfMtgPRqKKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcr8R7X7V4F1DbB5skWyVMJuKYcbmHphd2T6ZrwAHFfTmsWcmoaHqFlEVWW4tpIkLnABZSBn25r5jrantYRIr569adUNOV8cGpnT6oAkhWQHgBvWqjxtGcH8+1X6RlDKVPQ1wV8LGpqtGBnUqsVORUs0GzLL930qGvIqU5QfLJAWo5Q/HRvSn1S6VNHN2f86xcexrGfc0Le7eEhWyyenp9K0o5UlXcjZFYnWnxyvE25Dg1zzpKWqOqnWcdHsbdIyh1KsMg1Xt7tJsKflf09fpVmuZpxep2RkpK6KM9oV+aPJGfu9xVWtioJrVZclflb+f1rop1+kjRS7mayq6lWUMpGCCOtYN/oRXMlpkjvGTz+BroXRo22sMGm16NDETpO8GWm1scMQVJBBBHBBpK62/0yG9GT8ko6OB1+vrXNXVlPZvtlTjsw6H8a93D4uFZWWj7G0ZJlelBpKK6glFSVmOoptKDVJnJUouOq2HBvXpTvpTKAcdK0jJo8zE4KFbVaMfRSAg+xpa1TT2PCrUJ0ZWmgoooqjIKKKKACkZQylWAIPUGlopAKk0kPrIn909R9D/AI1bjlSUEo2cHBHcGqdJj5gwJVh0IqlJomUFI0KKrR3WCFmAHow6H6+lWa0TT2MZRcdwoopkkscS7pHVF6ZY4oElfYfWZL/xMNSEI5gtzuf/AGm9P8+9OvriVpLaG2mVBOT+8HPA9KpNJNp0VzaHBZl3xuoxnoD+OBn8KwqTWz2OqjSdrrd7flcfvvNRurgQ3HlpCTtCnG70/lVvT9RE1l5ty6IytsJJxnisiV47WKI2k4Bmi2ygHOD6+3enWMNvPqZUR7oFU8sfQfeP1/rWMajUlbc6J0ouDurJbaa6b/edIrBlDKQQRkEd6WsKyu0s4pmVXZJZSIIx1Pv/ACrTs75bvcpRo5U+9G3UV0wqxlZdTjqUJQu1sWqKKrvc54iwf9rsP8a0bSMlFvYlkkWNcsfoO5qu8jy5ByiegPJ+ppuPm3Elm9TS1m22aqKQgAAwBgUtFFIYUUUUAFFFFABRRQSB7mk2kbUaE6ztBB2yeKQtngcCmkk9aKylJs9zDYKFHV6sKKQmkrNs9Wlh3LV6IUmkooqDujFRVkFKqlmCqCSegAqe0spryTbEvAPLHoK6Sx0yGyGQN8uOXP8AT0rlxGLhRVt32FKSRnWGiEkS3Y46iP8AxrdVVRQqgKoGAB2padHG8rbUXJrwq+InVfNNmTbe42rlvYl8PLlVz93uf8Ks29mkOGb5n9T0H0qzXmVcT0gZuXYRVVFCqMAdBS0VWuLtIRtXDP6elciTk9DOUlFXZNJKkS7nOBWbcXbTfKuVT09ahkleVtznJ/lTOgya6oUlHV7nFUrOWi2Co5JggIHLelRS3GeE6etQdTk10Rh3OWU+iFZi7ZPWkoqWOEtyeAD0rop05TfLFGIxUZyMA4zirSRKmOOfWnKoUYAA70vSvWoYWNPXdgFMZwOByaa0meB+dMr0YUusgAnJya9/+HFr9l8C6fug8qSXfK+U2l8udrH1yu3B9MV4BX05o9nJp+h6fZSlWlt7aOJyhyCVUA49uKuptYC7RRRWIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5j1izj0/XNQsoizRW9zJEhc5JCsQM+/FfTleAfEe1+y+OtQ2weVHLslTCbQ+UG5h65bdk+ua0pPUDlaKKK3EKGIqQEHpUVOVWJ+X86zlTUgJKiktDJl0B3E55PWrUar/F1/Spq5alBTXLNAYbKUYqwwRwaStee3SdeeG7Nis2aB4W+YfLnhvWvHxGFlS13QDUkZPcelWFcOMg1UpQSpyDiuNxuVGVi5V23viuFl5H97uKzo5Q3DcGpKxnBPRnRCo46xN0EMAQQQe4pax4Lh4G+Xle6mtOG4Sdcqee4PUVyzpuJ206qn6j5I1kQqw4qhNatFkr8y/qPrWjRRCrKGxsnYx6ZLEk0ZjkQMp6g1ozWYbLR8H09apEFTggg+hrup1FLWJadzm7/RJISZLbLx9dvdf8ayK7qs7UNJiuw0keEm9ex+tezhsx+zV+/wDzNYz7nLUVLcW0trIY5kKnt6H6VFXrJpq6NRQaWm0VSZhUoqWq3HUob16U0Glq0+xw1aSkuSaH/SimAkdKcCD7GtYzvueJicvlD3qeq/EWiiitDzQooooAKKKKACiN3hwI8bB/Aen4elFU5LmaG7USIq27HaGB7+p/z61MpcupUYuWhbm1ZI38tIJZJANzKB90e9VZZYL3UbV5MtbuhVQTgB/Q+/T9Ka58jUQ7Z2TAAMONrDgf596hnh8uZoWYBJzuQ/3XH09c/r7VnOcnv3NYU4Lbe3/D/cPubU285tkJCufMt2z91h/Dn3/wp17eQXWnRylwt1GwwuOQe/Hp3pXe8v1gga3ZHRwxm7cdx2rVNnbmfzjCnmdd2O/rTjByvy7f1+RMqihyue67f11Kh08lnaJY4llhKlNvIY+9U4o7prf7CloYSTiWbHUf1/Ot6kdlRGZyAoGST6Vq6K32MI4iWzVzJ02NGd71hthjGyIHso6n/PqaWxkDzzX7ggynbGg6kD/9QrO3E7oIJLh7MtnCx5/D/P5VcN5BBbFoVOQCFBHpgflz+hrCE1p5fmdU6bbduunyJLnUVErRurttGWWMZAHv6/yqzHIksavGcoehqmP9AsGkfmd+STySx7f596ns4TBaRxt94DJ+p5q4uTlqZzjFR93/AIcnooorQxCiiigAooooAKPrSEge5ppJPWolO2x6WGy+U/eqaL8RS3YdKSikJrJvqz3KVFJclNC0hNJRUNnoUsOo6y1YUUVLb20t1J5cKFj39qhtJXZ0EQGTgda17DRXmxJcZSPqF7n/AArRsNJitAHfEkvqRwPpWjXk4nML+7S+8zlPsNjjSJAkahVHQCnUqqWOFBJ9BWhb2KrhpfmP93sP8a8apVUNZGTdivb2bzYZvlT1PU/StKKJYkCIMD+dPorzqlaVTfYzbuFISFBJIAHc1HNcJAuWPPYDvWZPcPOfm4XsopQpuRjUqqHqT3F8WykXA/vd6pUVDLOE4Xlv5V1wglojhnUb1kSO6oMsaqSStJ7D0FNZixyTk0lbxjY55TbClVSzBQMk9BT4oHmJCDp1JrThgSEfKOe5rsw+FlV12RBTW1aPDOOQc8GpKu1BKi/w8N+lexToKK5YICAsFHNQsxb6UrqwPzfnTa7IU1HfcAooorQC7o9nHqGuafZSlliuLmOJyhwQGYA49+a+nK8A+HFr9q8dafug82OLfK+U3BMIdrH0w23B9cV7/WFV6jCiiiswCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvHfjDZyJrmnXpK+VNbGJQDyCjEnPt+8H617FXnHxhs0k0TTr3L+bFcmJQOhDqSc+/7sfrVw+IDx2lALHAFSLF3b8qkAAGAMV0pCGLEP4uakAx0ooqrDCnq/Y0yik4p7gT0jIrrtYAj0NRKxWpQQelc06dt9hGdcWTJ80YLKT0A5FVK3aqXFksnzR4Vu/oa8rEYL7VP7gM2pY5iOG5HrUbKVYqwII7Gkry2ujGnYuAgjI6U5WZGDKSCO4qmjsh4P4VZSQOOOvpWUo2NYyualvfB8LLgN69jVysGrVvePFhXyyfqK5p0usTsp1+kjUqOWFJRhhz6jrTo5EkXcjAinVgm4s6k+qMuWB4TyMrng1HWwQCMEZFUp7THzRdMfd/wrrp109JFqRnz28VzH5cyBl9+30rnL/SJbTMkeZIeue6/WuoIIOCMGivSw+KnRemq7Gik0cLRXSahoqT5lt8JL1K/wt/hXPSxSQyFJUKsOxFe7QxMKyvHfsaxkmMpQaSitwlFSVmOoptKDVpnHUouOq2HBvWnfSmUA4q4yaPMxOChW1WjH0UgINLWyaex4dWjOlK00FFFFMyCo5olniaNuh7+nvUlFJq+g07O6KMIF1bPbT/6yM4Pr7H/P9adHazGZJLifzPLPyADH4k1aCKHLhV3Hgtjk06oUF1LdR62EUtEcxELzkrjg1aiuEkIU/JJ/dJ/l61WpGAI5FaJtbGUoqW5blnWM7R8z4+6P61VmRriN1kb7ykADoP8AGljUKgAGO9EkixRtI5wqjJobutRRXK9NylGb+BFiEMbhQAGDY4pJIru8QxyxRxp1znJz7YqZLq4lQOlkSp6Eyhcj6Go5pstELy0aNN3DiQMAe2cVi7W3dv68jpTlfZX/AB+64sVpM06S3UqybPuKvTPqeKu0UVrGKjsYSk5bhRRRTJCiigkD3NJtLc1pUZ1XaCD3NNLelIST1orKUmz3cNgoUdXqwopCaSs27HqUqDnq9EKTSUUVNzuhCMFZBRT4opJ5BHGpZj0ArobDRo4MSXGJJOw7CueviYUVeW/YcpJGbYaPLdYeXMcX05P0ro4IIraMRxIFUVJQASQAMk9q8LEYqdZ67djFybCpoLd5z8owueWParFvY5w8w4xwvf8AGtAAAAAYA7V5lXEpaRM3LsRQ28cAwg5/vHrUtFNeRY13OQBXC25PUhvqx1U7i+CZWLlvXsKrXF402VX5U/U1WreFHrI5alfpEVmZ2LMSSe5ppIUEk4Apskqxjnr2FVHkaQ8nj0rqjG5xSnYkknLEhOB696hopVVnbCjJraMeiMW29xKtW9m0nzSZVf51Pb2ap80mGbsPSrdeph8D9qp9whFUKMKAB7UtIzBRzULOW+letCm5egxzSZ4X86joorqjFRVkAEAjBGaiaEH7px7GpaKqwFQqVOCMGkq2QGGCM1E8PdfyqHER6D8HrOR9c1G9BXyobYRMCeSXYEY9v3Z/SvYq84+D1mkeiaje5fzZbkRMp6AIoIx7/vD+lej1zT+IYUUUVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVzbQXkDQXUEc8LY3RyoGU4ORkHjqKlooA8c8YfDyfSftGpaWPN05fnaLJMkI5z/vKPXOQDz0Jrg6+n64Hxj8O49Wlm1PSmWG9ZS0kBGEnb1B/hY8+xOM45Nbwq9JAePUU6WKSGV4pUaORGKujjBUjqCOxptbgFFFFABQCR0oooAlVwevBp1QU9X7GsZ0+qASaBJ1AbPHQisya3eAjdgg9CK2KRlDKVYZB6159fCxq67MRh0AkHIOKuXFkU+aLJXuCeRVOvGq0pU3yyQE8c2eH496mqlUiSleDyKwcOxpGfcuRSvC+5Dj+tadvdpPx91/T1rIVgwyDkUucHIrCdNSOinVcNtjeorPt74jCzcjs3+NXwQwBBBB7iuWUHHc7oTU1dEU1skvP3W9aoSRPE2GH0PrWrTWRXXDAEe9aU6zjo9jROxk1BdWcN5HslTJ7MOo+lX57Vo/mTLJjn1FV676dT7UGWn2OTv9MmsmLY3w9nH9ao13JAIIIyD2NYt/oatmS0wrdTGeh+npXs4bMFL3auj7msZ9zAopWVkYq6lWHUEYIpK9Q0FBpabRTTMKlBPWI6lDetIDRVp9jhq0lJck0PopgOKcCDWsZ33PExOXyh71PVfiLRRRWh5oUUUUAFIehpaQ9DSAev3B9KbLGs0TRuMqwwacv3B9KWnuhXsykLW7jRUS8+VRgZjHFL9jllKfabjzEVt2wIBk1coqPZov2sv6SCiiirMwo9zQSB7mmkk9aiU7bHpYbL5T96povxFLdhwKbRQTWTfVnt0qSiuSmgpCaSiocj0aWHUdZasKKKciNI4RFLMeABUnQNq9Y6XNeMGwUi7uR/KtGw0RUCy3Q3N1EfYfWtkAKAAAAOgFeXicwUfdpavuZyn2Iba0htI9kSY9T3NT0Vat7JpcM+VTHHqa8WpV+1NmTfchiheZsIM46nsK0oLRIOfvP/eNTIixrtRQB7U6vOq15T0WiIcrhRSEhQSSAB3NULi+zlIeB3asowcnoZzmoK7LFxdJAMfef0rMlleZtznPp7UwnJyaRmCDLHArrhTUThqVXPfYWoJLgDhOT61HJMz8DhaireMO5zSn0QEknJOTRRVu3sy/zScLjgd66KVKVR8sUZEMNu8zYHA9TWlDAkKjAG7HJqRVCqAowBS17WHwsaWu7GFMaQLwOTTWkzwv51HXoQpdZAKSSck0lFFdABRRRQAUUU6KKSaVIokaSR2CoijJYnoAO5oAbXd+D/h7Pq32fUdUHlac3zrFkiSYcY+in1zkgcdQa6Xwd8PI9Jlh1LVWWa9VQyQYysDepP8AEw49gc4zwa72sJ1ekQIre2gs4FgtoI4IVztjiQKoycnAHHWpaKK5wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOf8T+ENP8TxIbjdDdRqRHcRgZA5wGH8S55xweuCMmvEdZ0LUNBvWtr+3aM7iEkAOyQDHKt3HI9xnnBr6OqhrGj2Wu6bJY30W+J+QRwyN2ZT2I/+scgkVpCo46PYD5vorqvFnge+8OSy3EStcaXuGyfjKZ6Bx2PbOMHI6E4rla6U01dAFFFFMAooooAVWK1KCD0qGgEjpUTgpAT1VuLNZfmTCt9OtWFcHrwadXJVpKa5ZoRiOjI2GUg+9NrZlhSZcMBnse4rMntngPPzL/eArxcRhJUtVqgIlYqcg1ZSUPx0PpVWjpXG4plKTRdqaC5eA8cr3U1Sjm7P+dT9aylHozaM+qNqGdJ1yh57g9RUlYaOyMGUkEdxWjb3qyYWTCt69jXLOk1qjtp11LSW5bqvParJ8yYV88+hqxRWcZOLujoMhkZGwwIPvSVqyRJKuGH0PpVCa2eLn7y+tdtOspaPctO5nXmnwXq/vFw/Z16iuavLCeyfEi5QnCuOhrsKa6LIhR1DKeCCOtelhsZOjo9UXGTRw9FbWoaGUDS2mSo5MfUj6etYpBBIIwR2r3KVaFWPNBmyaewUoNJRW1xSgpKzHUU3NOzVJnHUouOvQUN606mUA4q4zaPMxOBhV95aMfRSAg/WlrZNPY8OrRnSlyzQUh6GlpD0NBkPX7g+lLSL9wfSlpiCiigkD3NJtLc0pUZ1ZWgg9z0pC3YcUhJPWkrKUmz3MNgoUdXqwoozTc1m3Y9SnQlPXoKTSUUVLdzvhCMFZBRSgEkADJPQCtqw0QtiW6yo7R9z9axrVoUo802NtIzrPT571/kGEHVz0H+NdLZ2EFkn7tcuernqasIixoERQqjgACnV4eJxk62i0RlKTYU5EaRtqKSfapYLR5+fup/eNacUKQrhBjPU9zXl1a8YaLVmblYht7JYsM+GfPHoKtUUVwSm5u7IbuFRzTpCuXPPYdzUFxerHlY8M3r2FZzuzsWYkk9zWkKTerOepXUdI7kk9y855OF7KKho6DJqvJcZBCfnXVGPRHFOfWRJJMsfHVvSqruznLGm9Tk0VsopHPKTYU5EMjhVGSakgt3mYcYXua0oYVhQKvXufWu3D4SVXV6Ikht7NY/mflsdOwq1RTGkC8Dk17VKiorlghjmYKOahZy30pCSTkmkrthTUdeoBRRRWgBRRRQAUUV1XhTwRfeIpYriVWt9M3HfPxl8dQg7ntnGBg9SMUm0ldgY2jaHqGvXi21hbtIdwDyEHZGDnlm7Dg/XHGTXtnhnwhp/hiJzb7prqRQJLiQDJHGQo/hXPOOe2ScCtHR9HstC02OxsY9kScknlnbuzHuT/wDWGAAKv1yzqOWi2AKKKKzAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBssUc0TxSoskbqVdHGQwPUEdxXlXi/4bSW7fbPD0DSQbf3lqG3MmB1XJywOOnJz0znA9XoqoycXoB8wUV7X4v8AW2vL9q04QWmoBssSNqTAnJLYH3uSd2MnoexHjd7ZXOnXstneQtDcRNtdG6g/wBR3B6EV1RmpAQUUUVQBRRRQAU9X7GmUUnFPcCekZQylWAIPY1ErFalBB6Vzzg0IoXFkVy8X3f7veqVbtVri0WbLLw/6GvKxGCv71P7gMunpIU9x6Ujo0bbXGDTa8troxp2LauHGQadVMEqcg4qwkwbg8GsnG2xpGd9y9b3jRYV8sn6itJHWRQyHIrDqSKZ4W3IfqOxrnnST1R1U67jo9jaoIBGCMioILpJxj7r/wB01PXM007M7FJSV0VJrMHLRcH+7/hVIgg4Iwa2KilgSYcjDY4NdFOu1pItSMyqN9pcF6C33Jf74HX6+taUsLxHDDj1HSo67qVWUHzQZafVHGXVnNZybJlxnoR0P0qCu3mhjnjMcqBlPY1z1/oskGZLfMkf93uv+Ne3hsfGp7s9H+BrGd9zJooor0DQUGlptGapM56lBPWI6lDetJmiqT7HDVpRmuSaH0h6Gmg46U7IIPatVO+54uIy+UPep6r8R6/cH0pfc9KRSAg7nFRzOwidl5YKSB70SnZaE4fL5T96povxJC3YcCm1mweXNCHkv5Fc9R5oXH4Uk5ECq0F5JJJu4TfvB/AVg6l9WexCMacPdVkadITQetJQ5Hp08MlrMKKKKk6Qqe1s5ryXZEvHdj0FX7HRZJ8SXGY4+y/xH/CugiijgjCRoFUdhXn4nHxp+7DVkSnbYqWOlw2YDfflxy5/pV6ipYbeSc4Qcf3j0rxKtVyfPNmTfVkQBJAAyT2rQt7ALhpuT2UdPxqxBbpAPlGWxyx71NXnVcS5aRIcuwAAAADAHaiioJ7pIBjq/pXMk27IzclFXZK7rGpZzgCs24vWlyqZVP1NQyzPM2XP0HYVHXTCko6s46ldy0WwU13VBljTJJwnA5b+VVWYsck5NdMYX3OSU7bD5JWkPoPSo6KciNIwVQSTWsY30Rk3fcb1OBVy2sy215Pu9dvrVi3tFiwzfM3r6VYr1cPgUveqfcIRVCqFUYA6ClpGYKOahZy30r1YU3L0GOaTPC/nUdFFdUYqKsgCiiiqAKKKKACip7KyudRvIrSzhaa4lbaiL1J/oO+e1exeEPANtoS/atREF3qBbKkDckIByCuR97gHdjjoO5MTmo7gc74Q+G8lw32zxBA0cG393altrPkdWwcqBnpwc9cYwfVIoo4YkiiRY40UKiKMBQOgA7CnUVyym5PUAoooqQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorL8S6j/AGP4W1bUs4NrZyzKfdUJH6188/Djwj8Ntd0rSo9X1WVvENzI2bSOUgZ3nauNuPugE896APpqivGfA2vadp2q/ETxtqs4jsjqX2ZJMZJWMsAqjuSGTitM/GK4s5La71jwZq2m6FcSKiajMc4DdGZMcDv1PHTNAHqdFee+J/ifLoXjRPDOn+HbrWLp7QXA+yy4bcSflK7TgYAJbPfpWPZ/Gq61FZ7Ox8Earca5bO63Ngj5EKrxln25znjG3t9MgHrVFcPoXxR0TVfAdx4ruxJYWtrI0NxFJ8zLIMfKuPvZ3Ljgde1Yh+MVxZyW13rHgzVtN0K4kVE1GY5wG6MyY4HfqeOmaAPU6K898T/FB9B8ax+GbHw9davdSWgnX7LL824k4Urt4GACWzxnpVC0+Lk2o+FfE15H4dubbV9DUefYSzDgEkFt20fdCsSMdvegD1GivA/hx4zfwN8MbUXuh3MtxqF6Rp0ccgLX7v1IGPlAwq55JJHFer+DPFVz4psLmW90K90a7tpfKkt7pTg+6sQNw/CgDpaKKKACiiigAooooAKxPEfhbT/Elk8dxGsdztxFdKo3oRnAz3Xk5Xpz2OCNuimm1qgPnnxJ4bvfDOpG1uhvifJgnUYWVf6Edx29wQTjV9MXtlbajZS2d5Cs1vKu10boR/Q9weoNeM+K/h/e6B/pVkZL2xO4syp88IGT84HbA+9wODkDjPRConowONooorUAooooAKASOlFFAEqvu4706oKer9j+dYTp9UAssSTIVYfj6VmT2zwknqmeDWtSEBgQRkHsa4a+GhVWujEYdFXrmyxl4uf9nFUSCCQRgivGq0Z0naQEscxHDcj1qcEEZHSqdORyh46elYON9i4ztuWwSDkHBq/b33RJj9G/xrOSQOOOvpTqxlBPRm8KjjqjeBBGQciisiC6eA4HKf3TWnFMky7kP1HcVyzpuJ3U6qn6jyAwwQCPQ1SmsyuWj5Hp3FXqKUKkoPQ1TsY9FaM1qsuSvyt/P61QkjaNyrDmu6FWM9i07mVf6PFdZkixHN19mPvXO3FvLbSmOVCrD8j9K7Wobi2huovLmQMO3qPpXp4bHSp+7PVGkZtHF0Vo3+kTWmXTMkP94DlfrWdXt06kakeaDujVNPYKUGkorRMmcFNWY6kPQ0maQODlSNrYPBp3OOdNwaJV+6PpS0zeAABy2OgpJgzQuE4YqQPrTbsTTpSmroik+x723+RvzzuxnNIvlf8ALoLXzff079KrQ+XFEqPYyFx1Plhsn60kqefsFvayROGzvKbAPxFZN3LjJRjdJX+d/wAtzSoorRsNIlu8SPmOE9+5+lKpUjTjzTdkeg2luU4LeW5kEcSFm/l9a6Kx0iK1w8mJJfXHAq7b20VrH5cSBR396lrxMTjpVPdhojGU2wop8UTSuEQZP8q0rezSHDN8z+p6D6V5dStGnvuQ3Yr29izYaX5R/d7n/CtBVCjCgAegpaK8+pUlN6mbdwoJABJOAKjlmSFdzn6DuazJ7p5zg8L/AHRRCm5GVSqoepYuL7qkP4t/hVAnJyetFMklWMc9ewrqhBR0RwzqOWshxIUEk4AqtLOW4TgevrTJJGkPPT0plbxhbc55TvsFFHU4FXbeyJw0vHP3fWuilRnVdomZBBbPMc9Ezya04okhXagpwAAwBgUte1Qw0KK01fcYUx3C8dTTXk7L+dR13wpdZAKSSck0lFFdABRRRQAUUUUAFbPhvw3e+JdSFtbDZEmDNOwysS/1J7Dv7AEjY8KeAL3Xv9JvTJZWI2lWZPnmBwfkB7Y/i5HIwDzj2WysrbTrOK0s4Vht4l2oi9AP6nvnvWU6qWiAy/DnhfT/AA3ZpHbxrJc7cS3TKN7k4yM9l4Hy+3c5J26KK5m29WAUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4f4upqE/w01S00uyury7ufLhWK2iaRtpcFjhQTjaD+dcf4FvIbWC2t1+Fd3p99p+ns41OfTQrySRx44bywxdz2zk5r2iigD51f4deIr34HaZDDY3X9oLqUmoXdg/7qZx8yZAYfe2gEZHQ9+hi0zwFqHiy9gsJ9K8bWunlgbubV9UVUQA/woYcufT8OnWvo+igDzLwZo96/wAXfGGuXen3Ntbxxw2Nk88TIsiAAEoSPmH7tTkf3qr/AA1stU06x8beJb3S7yC+v7+aeK3mt2WWREBZAqkZOS5A9cV6rRQB86v8OfEN58DtMghsbr7eupSahd2D/upnHzJwGH3toBAI6Hv0MWmeAtQ8WXsFhPpXja108sDdzavqiqiAH+FDDlz6fh0619H0UAeZeDNHvX+LvjDXbvT7m2t444bGyeeJkWRAACUJHzD92pyP71cbJpWv/wDCG/EnU10TU/t+t6kILe3+ySeY0IfO4LjJXa7DOMcV7/RQB4r4y0a9tNA8MaBc+CZ9e0i2sI0aWyLi5t7gLg4K9AflPIwefQV2fwo0bXtD8ERW3iKeZ7t5mkjiml8xoIiAFQt+BOO27FdvRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmXjH4cR+VNqWhRt5m4vJZr0I7+WOx6nb3zxjAB8vlikhleKVGjkRiro4wVI6gjsa+na5XxZ4HsfEcUtxEq2+qbRsn5w+Ogcdx2zjIwOoGK2hVtowPCqKuappN9o16bTULdoJwobaSCCD0II4I+ncEdqp10AFFFFABRRRQA5WK/SpAQRxUNKCQcis501LYCaq9xaJNkjCv6+tTK4bjvTq5alNSXLNCMWSNonKsMf1plbUkaSrtcZHWsye1eDn7y+o/rXj4jCSp+9HVAQAkHIOKsJMDw3B9ar0VwtJjTaLtOR2jYMhII7iqkcpTg8irAIYZBzWco2NoyvsatverLhXwr/oatVg1bt71o/lkyy+vcVzTpdYnXTr9JGnTXRZF2sMihHWRQykEHuKdWGqZ1GdPatFyuWX6dKgrYqrPaBvmjwDj7vY11U6/SRal3KNY9/oiS5ktcRv8A3P4T/hWyylGKsMEUld1GtOk+aDLTa2OIlikhkKSIVYdQaZXZXdlDex7ZV5H3WHUVzV9pk9kSxG+Ls4/r6V7uGxsK2j0ZrGaZSprqGUgjg06g9K7CmrrUVAAgwKSYsIZCn3gpxgZ5py/dH0pJH8uJ3xnapOKBuyj2M171jBEhmKSFsSELgqPy/lUzwyxXMMVtLLLO74ETNnI96u2cGpX0Qmt9PLRnuZlXP0zXQ6XHfW9xHGNFSASlY5bg3cZIXIyT6gdce1cWIxUKadmm/VI89tNfE29LOz0/4cfYaKkJEtxh36hew/xrWopVVnYKoyT0FeHWrTqvmmzqbvuJVm3s2m+Zsqn05NWbexCYeXDNj7vYf41crz6uJ6QIcuw2ONIl2ouBTqKa7rGpZiAB61x6tkNjqqXF6seVj+Z/0FV7i9aTKx5VfXuaqVvCj1kctSv0iOd2kYsxJJ9abSMwUZJwKqyTF+BwP510xjfY45StuSSXAHCcn1qsSSck5NFFbJJGLk3uFOSN5DhFJNSwWrzc/dUdzWlHEkS4QYruw+DlU96WiJIoLVYeT8zVYopjuF4717NOmorlghjiwUZNQs5b2HpSEknJpK7IU1HV7gFFFFaAFFFFABRRVzTNKvtZvBaafbtPOVLbQQAAOpJPAH19QO9AFWKKSaVIokaSR2CoijJYnoAO5r0/wd8OI/Kh1LXY28zcHjs26AdvMHc9Dt7Y5zkgdF4U8EWPh2KK4lVbjU9p3z84TPUIOw7Zxk5PQHFdVXPOrfSIBRRRWABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4o8SWXhHw7da3qCzPbW+3ckKguxZgoABIHUjvWxXmfxnvLYaX4e0u7uIoLe+1mAXEkrhVWFCS5JPYfLQB3er6hLY+G7/UoYwJYLOS4RJR/EqFgGAPqOcGvGf+F1+JP+fLSv+/Un/wAcq78U/E9nq9zp+mJriw+HrrT7q5NzazgR3k6KQkJccYDAZHfIHXFeGWltbzX90lsxaBYdg+YkAt6flXXhlFqzVzixUpJ3jJqyPZv+F1+JP+fLSv8Av1J/8co/4XX4k/58tK/79Sf/AByvF7HzL2CIFCY7NSdp/jkGcD8BVRRJcIsrXMBndvlJd/MU+m0dPyrZulZNQ3OdKtdpz2Pp/wCHvxD1bxZr89hqFvYxRR2rTAwI6sWDooHLHj5jXTaf41stR8a33hZNP1KG9s4TO808ISJ0DBcod2SCW4OMHBrw74I6Va6p8Sby7vY/Nexti8B3EBZQUUtgdeGbr616l4M/4mXxS8daseUhkt9PhPpsT5x/31iuSvbn91WR3Yfm9n7zuz0SiiisTcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDL1zw9pviG1EGoQb9mTHIp2vGSMZB/Lg5BwMg4rxTxP4Q1DwxKhuNs1rIxEdxGDgnnAYfwtjnHI64Jwa9/qK5toLyBoLqCOeFsbo5UDKcHIyDx1FXCbiB8y0V3njD4eT6T9o1LSx5unL87RZJkhHOf8AeUeucgHnoTXB11RkpK6AKKKKYBRRRQAU9X7H86ZRSlFS3AnoqJWK/SpAQRxXNKDiIpXFj/FCPquf5VQ6Vu1BPapNz91vUD+deZiMEpe9T37AZNKrFTkGnSRPE2HXHp70yvKlFp2YFpJA/sfSn1S6VNHN0VvzrJx7GsZ9y3DO8DZQ/UHoa1ILlJxxw3dTWP1oBIOQcEd6xnTUjop1XD0N6iqNvfdEm/76/wAavA5GR0rllFxep2wmpq6GSxLKuG/AjqKz5oGhPPKnoRWnQQCMEZFXTquHoaJ2MekIDAggEHqDV2ezwC0X/fNUyCDgjBrthNSV0Uncw7/Q8ky2nB6mM/0rCdWQlXUqw6gjBFdzVS802G/GHG2ToJAOR/jXrYfMHD3auq7minbc5OJGfYiAljgADvW9YaIBiW75PUR/41e0+wgtIUKLmQry561doxOYSl7tPRdynO60H20aNPFEeELBTt4wM9qqafdjUNKtL0RmPz0ZihbdjDsvXA/u1aQsrqUJDg5Ur1z7VoR28twRLdyPIcYAdiTj6/0ryKlRQ1l/W/8AXyM3o73KcFs85OOFHUmtSGBIF2oOvUnqakAAAAGAO1FcFWtKpp0JbuFFHTrVG4vgMrD/AN9f4VnGLk9DOc1BXZYnuUgHPLdlFZc07zNlzx2A6CoySTknJPejoMmuqFNROKpVc/QKjklWMep9Kjln6qn51X6nJreMO5zSn0Q53ZzljTaKfHE8rbUGTW0YtuyMRgBJwBmr0Fl/FL+C1PBapCAer45NT162HwSj71TfsMOnSikLBRk1CzlvYelenCm5AOeTsv51HRRXVGKirIAoooqgCiiigAooru/B/wAPZ9W+z6jqg8rTm+dYskSTDjH0U+uckDjqDSlJRV2BieGfCGoeJ5XNvthtY2AkuJAcA8ZCj+Jsc447ZIyK9p0Tw/pvh61MGnwbN+DJIx3PIQMZJ/PgYAycAZq/b20FnAsFtBHBCudscSBVGTk4A461LXLOo5AFFFFZgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWTruhWWtwwrdaXpd88TEoNQthMqA9duRwTgflWtRQBxev6BBH4F1WzuNK0YWNtY3ElvBBagLFJtY7lUjCnJJyOc183tCBG4h2xOwxvC9PSvqzxZ/yJuuf9g+4/wDRbV8sV6WCScWeTmDalEhtLZLS2SFOcdT6nuacsEKyGRYkDnqwUZ/OpKK7lFJWPPcm223uejfBKNI/GV7sRV3WEjHAxk+ZHzXuNrp9lYGc2dpb25uJTNMYYwnmSHq7YHLHuTzXiHwU/wCRyvP+we//AKMjr3evJxn8U9rA/wAEKKKK5TsCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuB8Y/DuPVpZtT0plhvWUtJARhJ29Qf4WPPsTjOOTXfUU4ycXdAfMUsUkMrxSo0ciMVdHGCpHUEdjTa9/8T+ENP8AE8SG43Q3UakR3EYGQOcBh/EueccHrgjJrxHWdC1DQb1ra/t2jO4hJADskAxyrdxyPcZ5wa6oTUgM6iiirAKKKKAClBIORSUUASq4bjvTqgp6v2P51hOn1QDnjWRdrqCP5VmXFo8JyuWX1x0rVo6jBrir4eFVa79xGFRV+4sQfmiAHqtUCMHB6141WjOk7SAekhT3HpVlWDDINU6UEqcg4rncblxlYuVYt7p4Dj7yelU45Q/B4NSVlKN9GbRm1rE24pkmXchz6j0p9YaSNG25GINaVveLLhXwr/oa5p0mtUdtOspaPctVDNbrMP7reoFTUVmpOLujcypInibDD6H1pE++v1FarKHUqwyDVKS1Mbhk5UEfUV1wrqStLcq5Uh/1Mf8Auj+VTxQvM2EGcdT2FSWVi0kMbSZVdo479KuXl3baVp8t1OSkEK5O0ZJ9APcnj8adWvaXLDVlOSSH29qkAz95/wC8RU9ctFqninUUW6stMsre1kUNEtzIWYqRnOQR/IUk+teI9Iia71TTLSWyQDzGtZCrJkgA/MTnk9MfiKxlhakpWck5drq/oYOst2nb0OqpksqQpuc49B61VOpwyW8csB3iRA6ntgjIqg8jSNudiTWMKLfxaEVK6jpEluLp5yR91PT/ABqCis291iO11C3sY4mluJiOB0Rc8k/TBP4dq66dNy92COKc76yNB3VBljVWSVpD6D0rDn1+Rp7n7NZvcxW/+tlD4A65xwcjg/rWla3Md5ax3EOdjjIyMGuh0JU1zSRhKbZNRSgFiABkmr1vZAANKMn+7WtGhOq7RIIILVpjk5VMdfWtJI1jUKowKdjAwKK9qhh4UVpv3GFMdwvHemvJ2X86jruhS6yAUkk5NJRRXQAUUUUAFFFFABToopJpUiiRpJHYKiKMliegA7mr+jaHqGvXi21hbtIdwDyEHZGDnlm7Dg/XHGTXtnhnwhp/hiJzb7prqRQJLiQDJHGQo/hXPOOe2ScConUUQMLwd8PI9Jlh1LVWWa9VQyQYysDepP8AEw49gc4zwa72iiuSUnJ3YBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbTTrSS7vrqG1to8F5p5AiLk45Y8Dkip686+MrG68KafoaE7tZ1W2ssDqQW3H9VFAHV+KnV/BOtyIwZG06chlOQR5bcivlfzB717z8UPEmoW0J8K6LHAtzeadc3NzNMMrDbIh3BQOrNggdh+o+bkkvRdz27XAfZCWDBAPmPTNdNCrKCaR2YbL8NilevFvWyszY8we9HmD3rEhv5riOAI+CqGSdwB0Hb6mof7Qv5V86KOUAnKosG5SP96t/rcjZ5Tldk1GTv5/1tc9q+CbBvGd4B/wBA9/8A0ZHXtiazpcupNpsepWb36glrVZ1Mox6pnP6V84/CCHU9W8dX8Npqr6bBFYP5zRxKzsDtG0E/dwxDZ/2cd66zRvDOjan4u0C28IWvmWegXJn1LxAQM3UnXyg//LQk9T0APHvyVpuc7s46+Ho0JunQT5fM9vooorIxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqhrGj2Wu6bJY30W+J+QRwyN2ZT2I/+scgkVfoo2A8K8WeB77w5LLcRK1xpe4bJ+MpnoHHY9s4wcjoTiuVr6dlijmieKVFkjdSro4yGB6gjuK8q8X/DaS3b7Z4egaSDb+8tQ25kwOq5OWBx05Oemc4HRCrfRgeb0UUVsAUUUUAFFFFADlYr9KkBBHFQ0oJByKznTUtgJqhntknGTw2ODUiuG4706uapTUlyzQjFlieF9rj8explbbosiFWGQazbi0aLLLynr3FePiMHKn70NUBWqWOYjhuR61FRXC1cabRdBBGQc0VURyh46elWUcOOOvpWTjY1jJMvW980eFkyy+vcVoqyuoZSCD3FYVSwzvA2VPHcHoawnST1R1U67jpLY2aR/uN9KiguEnXjhu6mnLIk0HmROroy5VlOQR7GuezT1OtNNXRYg/494/8AdH8qS5toby2ltriMSRSqVZT3BojdY7VGdgqhBkk4A4qnrWrLo+mT3fl+bJGmVj9T0GfbJ59qmMZSmlDe+g20o3kZMfhvUdPjMdj4jngtV+7HLCshUemSR+gFZGrWsixB9b164nsgwXy1h8sMeoyFznp/+qpbd9d1azhu31uONZBuWOO2RlQE9M9TjpzVXU5dX0W3W7fVIrlQwBikgVN2fTHJr2aUantLSnFy8lZ/fy7+Z51SomvdTt6/pc6NFVEVEACqMADsKUkAZJwKiW4UwJIVKllDbD1GexqCSRpDz09K5FFt6mbmkLc3ZSJ2RXYKC2EGWbHYVzuq/Z75bd5tP1AybMq0MfzKMn5T/nvW9WLrV3LYzJNDfhJCg22rIWEnPXjp6Z4zjrXZhlaaUd/mYtt7lVmtjp32FNM1WOHdubZHguf9o9//AKwrorC3VreGO3iMUewEIwwU4zg+9YlteXV/draajeDQkdPkkeFt0r8AAMcBBnksSNozyeh7aK3htY1gt23wxjaj+asu4Dod68N/vDg9RXoRwkqlufRb73AjgtkhAOAX9anopjuF4716FOmkuWCAcWCjJqFnLew9KQkk5NJXZCmo6vcAooorQAooooAKKKKACuq8KeCL7xFLFcSq1vpm475+MvjqEHc9s4wMHqRit3wh8N5LhvtniCBo4Nv7u1LbWfI6tg5UDPTg564xg+qRRRwxJFEixxooVEUYCgdAB2FYzq20iBS0fR7LQtNjsbGPZEnJJ5Z27sx7k/8A1hgACr9FFc24BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyPjrwfZeKotOku7rWIHsZjJCdLkVHDkfeJKnpjgjHWuuooA8p8SeA9Lu/B8rTTeIft+kWN1JBqV1cfv5AQzGN3/iU5xjA4yM8nPgkdolmJpIFeSRwOGbqR7mvrjxd/wAiXrv/AGDrj/0W1fKVbUlofQ5NTjKEpW1T08tCnp9mLW12uo8x+X/wpqaVbow+aVkU5WNnyoP0q9RWvKj2VhqSjGPLtsdf8L/DFt4g1bW9Inu723hvbBzLJbSBJMebESoJBGDjBGOQSK9l8KfDq18IXMUln4g8Q3NvFG0cdld3oe3UHuIwoGf8a81+CH/I6Xn/AGDn/wDRkde+VhU+I+YzaKjibLsgooorM8wKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4vxf4AtteX7VpwgtNQDZYkbUmBOSWwPvck7sZPQ9iPG72yudOvZbO8haG4iba6N1B/qO4PQivpisTxH4W0/xJZPHcRrHc7cRXSqN6EZwM915OV6c9jgjWFS2jA+e6K2fEnhu98M6kbW6G+J8mCdRhZV/oR3Hb3BBONXSnfVAFFFFABRRRQAU9X7H86ZRSlFS3AnoqJWK/SpAQRkVzSg4iKdxZBsvFwf7vY1QZSjFWBBHY1uVDPbpMpyAG7NXnYjBKfvU9GBkUoJByOtPmgeFiGBxnhuxqOvJlFxdpAWI5geG4PrUtUqkSYrweRWTh2NIz7loEqQQSCO4qXz2RJZIyqTFSTuzsc47gdD7j9agBDDIOabL/AKl/901na+5tGbjqjQ87McbORJIoG3+6n0Hc+9UtRuobWxnuLob4lX5wRndnjHPrnFSxf6pP90VFfQ29xZSxXRUQMuGLNjHvmpgoqSvsVOblucgukyXiLcW/h+NIpAGXddHkHnPWkFvFpTLcXmhxiNWAMiTl9me+0kg/44p0V5HAjx2niORIEHypLBuIXpgE9foKjSWO8mhXVby88h8NGssIhjkOR3BORz1469RXt+/9rb/t6/4nK7HVFt53bt2ec+tFKcgnIwfTGKfFC8zYUcZ5PpXmRi5O0USNjjeVwkaFmPQKMmoZb/RdOlE9zeWstz5IaMW7CZmU/wAO5MgHknDEe9a/9n2ckDwXVslzC4+ZJGZQfTlSDwcHr25yOKoWej3mgi4bw5q1xYtcwPFcJKiSpKDnA5HyjBx3I5PtXr4fBKHvT1YwtvEcmqJPbaTosV1aLOElbVnAhKlGCloFO7cuSQys23jjJ51IbdbO3jtlaNlhURho92wgDGRu5x6Z59awtMtdU8P3N+k+nHWVuJlKz6dPtZpH7iNk3uM9gq/UZFdDfosF9cW8UyzRRSMiyrjDgHAYYJ69etelCDkwInk7L+dR0UV1RioqyAKKKKoAooooAKKK2fDfhu98S6kLa2GyJMGadhlYl/qT2Hf2AJA3bVgZtlZXOo3kVpZwtNcSttRF6k/0HfPavYvCHgG20JftWoiC71AtlSBuSEA5BXI+9wDuxx0HcnZ8OeF9P8N2aR28ayXO3Et0yje5OMjPZeB8vt3OSduuWdW+iAKKKKyAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorhPi5qd7p3gZodMuprW/v7yCzt5oXKOrM4PBHI4Uj8aAOk8VRvL4Q1uONGeR7CdVVRksTG2ABXzB/YOsf8AQJv/APwGf/Cvonxj4rt/DNjb6bFa3OpapfRvHa2kJy7hV+Z2Y9FA5JP+OPNLfxzqEmo32nXHhyW2vbOxkvJI3ulYHbjaqsqkHOevb3rzMfmOIwkkqMFLS7u0v1PayvFKjCSfVnA/2DrH/QJv/wDwGf8Awo/sHWP+gTf/APgM/wDhXoqeOkuLTQmtbIS3WqqZGhM+0W8a53uzbegwewzg1l3HxWtEZ57bTvP06N9rTm8iSQjOMrCTuI/KuGOeZjJ2VBff527907d+h6jzKC3/AFNP4NaZf2Xi+7kurG5gjNg6hpYmUE+ZHxkj2Ne5V5T4V8Y3N94+l0XTNINzbxQRvcXpnCrEjqGBKkZJ6AAHPJ6Yqjot7rdp8a7bRrjxLqd6fKnkvkvIxBbTDbmNbaLJ+6Tyc/wn3r1sFiauJoqrVjyt9PLoeBmNVVa7kj2Siiius4AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAgvbK21Gyls7yFZreVdro3Qj+h7g9Qa8Z8V/D+90D/SrIyXtidxZlT54QMn5wO2B97gcHIHGfbaKuM3ED5gor1Lxj8OI/Km1LQo28zcXks16Ed/LHY9Tt754xgA+XyxSQyvFKjRyIxV0cYKkdQR2NdMZKS0AbRRRVAFFFFABSgkHIpKKAJVYN9adUFPV+x/OsJ07aoQ50WRSrDINZ1zZtFl05T07itOiuOth4VVZ7gYVFaVxZCQl4+GJyQehrOZSjFWGCOorxq1CdJ2kAquUOQalaQPC/Y7TxUFI33T9K53FMpSaNASrHCnc7RxWfqEA1Gzlt5XKhxgEdj1H61JHzGn0FOpRXI7rcJSbKEWlQG0t4b1Uujb8RswK4HYYB+lQ6hbS6yI44rmA2JYNIyHc5YZ6dvT/PFa6Alxhd3PT1qXSNFj0u1WHcZMHI3V2YeFSq+ZPb7vMkfDaNK29/lXPT1rQRFRdqgAU6ivUo4eFFWjuMq6jfxaZYS3kyu0ceMhACeSB3+tNstVsNTgR7G8hmkK5aAErIhwSQVIBOApJK5UetV9dtH1PSZ7KFlV5NuGbpwwP9KS/0qx1KIJdW6OyjCyhdsg+UKPmHJAAGAcgY6V2RpSYDtV1GLS9PN9cB2j81YtqAFssGI644+U/mKtVg65omo39vFaQaxNc2nmeYY74AyR4G1B5oBLgJgchQOgHet6t4N9VYAoooqwCiiigAop0UUk0qRRI0kjsFRFGSxPQAdzXp/g74cR+VDqWuxt5m4PHZt0A7eYO56Hb2xznJAmUlFagc/wCFPAF7r3+k3pksrEbSrMnzzA4PyA9sfxcjkYB5x7LZWVtp1nFaWcKw28S7URegH9T3z3qeiuWc3LcAoooqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuF+JHhvXvEJ0GXRJ9LjbTb4XrLqLuqM6j5OFU5/izyK7qkZVYYZQR7ik79AXmeXaz4Y8YXs2m+Jo9T0IeIbK0nt7uBVkNrJCxJG3+INgjPTJ9hzzmnaVd6Ff634j8S39tOJbZFzEhVY0UEsoB7ZwBySfqa9rvo0XTroqig+S/Qexrhq+R4jrypzhDo1r3tdPR9Nj1svgpJvt/ked/DvwksPhya8vhJ5moQNDCrn5obZiSFHoTuLflUWm/DrUbbyLGf/hH2sYXyboacj3Uq5+629So+vJ+tek0V4M80xEqk5p/F87djtWGgopdjB8PeDdWZPFcdrqi6dqGpyeZaXNqzZhRGTYp4GOAQQOx4rpdC8I+IrjxTZeIvF+oafcXenW7wWcOnxsEBcYaRmbksRxgDFaXhr/kJSf8AXE/zFdVX2mQ1ZVcIpy3u/wANDx8bFRq2QUUUV7JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr4s8D2PiOKW4iVbfVNo2T84fHQOO47ZxkYHUDFdVRTTad0B82appN9o16bTULdoJwobaSCCD0II4I+ncEdqp19F654e03xDaiDUIN+zJjkU7XjJGMg/lwcg4GQcV4p4n8Iah4YlQ3G2a1kYiO4jBwTzgMP4WxzjkdcE4NdMKilp1A5+iiitACiiigAooooAcrFfpUgIIyKhpQSDkVnOmnqgJqimt0nA3ZyOhFPVg31p1c04JrlkhGPNA8B+YcHoR3qFvun6VusqsMMAR6Gs64sXUfuQz54CgZP/ANevIxGCcPehqgK8f+qT/dFTQwPMcKOB1JqSzszJEjP8q7Rx61ennisLSW5eIvHChkaNG2lgoyQDg4PHXB+lKhgnN809EAsMCQj5RyepNS1iwjWdZVb86jaabFMivHb2MAnRQRnku5IPqMnByOOlJPJq2gwzakb611WC2QNLb3ds0QOWVRgxNnOW7sB9SQD60YKKtFDNokKMmoWct9KjiuUvYY7qKN445lEiRu24oCMgE4GSPXA+lOrrp00tWAUUUVqAUUUUAFFFFABVzTNKvtZvBaafbtPOVLbQQAAOpJPAH19QO9anhnwhqHieVzb7YbWNgJLiQHAPGQo/ibHOOO2SMivadE8P6b4etTBp8GzfgySMdzyEDGSfz4GAMnAGaznUUdOoGT4U8EWPh2KK4lVbjU9p3z84TPUIOw7Zxk5PQHFdVRRXK227sAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXLfEPxPdeEfBtzqtjFDNfCSKK3imBKO7OBggEHpk9e1AHQ6h/yDbr/ri/8jXCV0nizWbTQ/CN7c6pfQWpa2eNXLbd0hQ4CjqTnoBzXhMPjW1uAxh1id9kbSttMmVVepNfLcQYKpiKkJQWiXY7cLi1QTTV7nqVFeaN4oCW9rOdTuPLumCw4ZyXJ6cdahm8Z2tvd/ZZdbdZs7SPNYgH0J6D8a+dWVVnt+TOr+1Ifys9q8Nf8hKT/rif5iuqrxrwD4tsovGv9lXmoytdTwmOKEh3y5KsOxA+UE5ro5PiO978UdP8J6LBDPa5lF/eOrEBkQkpGQQMg4BJzycdq+0yOjKjhFGXdnn4msq0+dKx6FRRRXrmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFc20F5A0F1BHPC2N0cqBlODkZB46ipaKAPHPGHw8n0n7RqWljzdOX52iyTJCOc/wC8o9c5APPQmuDr6frgfGPw7j1aWbU9KZYb1lLSQEYSdvUH+Fjz7E4zjk1vCr0kB49RUtzbT2c7QXUEkEy43RyoVYZGRkHnoaircAooooAKKKKACnq/Y/nTKKUoqW4E9T2P/IQtv+uq/wAxVNWK/Srdg6nUrdQwLCRCQD0yRXNODiIih/1Mf+6P5U8EA5ZEcd1kQOp9ipyCPY8Goo3VYowzAEqMDPJ4pk014sMz6fbx3F2sbGGJwCC204IU8Mw6heQxAGDnBmMW9RmdL4f0cEC3szbgABvKnlAY+pyx5Ptge1N/sPS4YJbg2Bu5oQrxJJKzknevADOFPGcgg8A8VQsbiwvrWGS48R3k0oiRXFzfGIxttGUUFh8oOQPYdulJeXFvaQOuma5eyag+z7NawXBuEuH8xPldfmBGMkA9SAMGtPdS2A6N872ySTnkk5zSUDzMfvkjSX+NY23Kp7gHJyPfNFdK2AKKKKACiipbe2nvJ1gtoJJ5mztjiQsxwMnAHPSgCKu78H/D2fVvs+o6oPK05vnWLJEkw4x9FPrnJA46g10vg74eR6TLDqWqss16qhkgxlYG9Sf4mHHsDnGeDXe1hOr0iBFb20FnAsFtBHBCudscSBVGTk4A461LRRXOAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5r8XvtskXhmO30fUtStYtVjvLuOwtmmby4v4TjgZ3cZx09q9KqG4t/tEYQyyx4OcxPtNAHjfji61PV7zRfFUvhXWJtIisbuI2M1v8Av7Sc7lErxZ6YAIPYDPpXnWnW0t7r2p313YPaRSW6wqJAAWU8kk9M8DPpX0rq9kLfw/qri4uJM2UwxLIWH3DXhdxbx3VvJBMC0cilWAYjI+o5rw81q8kkrbrf5iZx3hfTrq9shdTOALaJ7eyPbJJzJ/IfhVGz0W5e2TTpbTWVkZsTDzlS3xn7wO05+legQQRW0EcEKBIo1Cqo7AVJXA8fLmk0tHt5f1e/qK5U8DaJ4hvdQ8Tp4fkisdSuIPssNzeb02wqyAspCk5I6HHv2rrvBHhjxVpvxPg+3aZplrp2k6WLMSWqT+S6uS+YmcfPJuPzk9ie9aHwz/5GS4/69G/9DSvVq93LqjqUOZ/1YaCiiiu4YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHP+J/CGn+J4kNxuhuo1IjuIwMgc4DD+Jc844PXBGTXiOs6FqGg3rW1/btGdxCSAHZIBjlW7jke4zzg19HVT1TSbHWbI2moW6zwFg20kggjoQRyD9OxI71pCo46MD5sorqvFnge+8OSy3EStcaXuGyfjKZ6Bx2PbOMHI6E4rla6U01dAFFFFMAooooAKktYvMv4NrmKRmVBKiqXQFgeMgjqB2xxUdWNP8A+Qla/wDXZP5ilLYCrCD5EW5i7BANx609zstbuXvDazTL7skbMM+2QKbF/qU/3RU0SyN5ohIEnkyEKZAgfCH5ckgfN938e/Shq0dAMC416K40+xk8ywnvrnyoM3EgMdvuXG5jnKheMDoMc9MGe7hvvDVhc341NbqOIrHcWlxaLbB92BhWRiS4bcQpGMJuOcFagsnnu7i50ZPCVhDdxHdLBeC3t5x8uTjzQr4AXJA6DnjNSme8uvEr29x4dsptTig85J5NSjLDJxncz+Uw+Y9BvDc7uMVz38wNufYLiTy4p4o952x3AxIgzwH/ANod/eo6KK6gCiiuq8KeCL7xFLFcSq1vpm475+MvjqEHc9s4wMHqRik2krsDG0bQ9Q168W2sLdpDuAeQg7Iwc8s3YcH644ya9s8M+ENP8MRObfdNdSKBJcSAZI4yFH8K55xz2yTgVqaZpVjo1mLTT7dYIAxbaCSST1JJ5J+voB2q5XLOo5aLYAooorMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKxvFPiay8I6DLq9/HPLDG6J5duoaR2ZgoABIHfPXoDQBY8Qf8i3qn/XpL/wCgGvB6908TSGPwnrEgHzLYzMAfaM182f23c/3IvyP+NedjcsxGMkpUUtPMTN+isD+27n+5F+R/xo/tu5/uRfkf8a4v9Xcd2X3isepfDP8A5GS4/wCvRv8A0NK9Wrxb4Q6jNd+LLqORUAFi7fKD/fj969pr1cJhKmFp+yq7jQUUUV0jCignAyelY3hbxLZ+LtBi1nT4riO1md1j89QrNtYqTgE8ZBoA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBssUc0TxSoskbqVdHGQwPUEdxXlvi34aNDvvvD6ZhVMvZliz5GPuE5LZGTgnPHGcgD1SiqjJxegHzBRXtfi/wBba8v2rThBaagGyxI2pMCcktgfe5J3Yyeh7EeN3tlc6dey2d5C0NxE210bqD/UdwehFdUZqQEFFFFUAVY0//AJCVr/12T+YqvVjT/wDkJWv/AF2T+YpPYCtF/qU/3RT6ZF/qU/3RT6oBs0VvdQrBeW0V1ADkRTDIGSpbaRhlJ2KCVIJAxmsrTUsb+/fWLPUNUvN0f2cnUcbxjGACGb5QAoHNa9OdlYjZb20AAxttrdIV+u1ABn361DjeSYDaKnsrK51G8itLOFpriVtqIvUn+g757V7F4Q8A22hL9q1EQXeoFsqQNyQgHIK5H3uAd2OOg7kk5qO4GB4T+GrTbL3X0xCyZSzDFXyc/fIwVwMHAOeecYIPqMUUcMSRRIscaKFRFGAoHQAdhTqK5ZScnqAUUUVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeVfG67s2tPDOj3961la3uqo89wpwY4kHzHPbBdTntjNeq1narpkWoLGxsrC4mTcqteQhwqMMMB3GeAfUUAeI3tlotj4mvh4Cu5bmxj0O+k1porp7iFyYW8rLkkFy3PB7fWvG5Gs5NKa6luWe+YEjEhypz0x2FfWuo6UdI8Ga7BDZaXZ2p0+4by7GDyhu8s8kDjpXzb9lt8sfIiy33jsHP1rtw1Jzi7Ac7feXH5ERcSCCJEa33FGDHuvqaW7Z572dJ5YFjhwFjuJGXjHUbeprpDDE0olMSGQdHKjI/Gke3hlcPJDG7DoWUEiup4du+oiz8OfDo8TeNNG0q+mle1SKa5mMMjoxjxgLu4YAkgfQmuoXwpo8nhHx9qE0t82m6NeXFvo8Bu5PLgkUD5gM85YoOc8D15rW+C8Uf/Ca3cuxfM/s51345x5kfGa9n/sHRzp82n/2TY/Yp3Mk1t9nTy5GJBLMuME5AOT6V5+Jhy1LDPAPEF3repalovh/WdU0y3srbQ7acx6zezW0N3IyDexePBdgcjBPY980yz029v8Aw74e8PnVoptP1jxAJbX7C9xiCCJT5gjaZQ2ASCDyMjr1r6Ev9E0rVEiTUNMsrtIv9WtxbrIE+mQcVI+mae9xaXD2Ns09mGFtIYlLQAjBCHGVyODjtWAHh8+laZ4d1b4mWNiJho1rosfm2z3DupuJE3Kck5yfr3P0r0n4X+HbTw34A0uG3g8qa6gju7o5JLSui5PPTgAYHHFdFLoekTreLLpVjIL4qbsPboftG37vmcfNjtnOKuoixoqIoVFACqowAPQUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArG8SeG7LxNpptbobJUyYJ1GWib+oPcd/YgEbNFNO2qA+efEnhu98M6kbW6G+J8mCdRhZV/oR3Hb3BBONX0xe2VtqNlLZ3kKzW8q7XRuhH9D3B6g1434v8AAFzoLfatOE93p5XLEjc8JAyS2B93gndjA6HsT0QqX0YHF1Y0/wD5CVr/ANdk/mKr1Y0//kJWv/XZP5itHsBWi/1Kf7opzMqqWdlVQMlmIAA9ST0FNi/1Kf7opLiBLm2lt5CwSVCjbTg4IwcVQEcGsaS0LSvHrk0HmvHFc2WmebDMFxkqzyIe/QrkZGetObV9GAilK69BaefHHcXd1pQSKBWz8xKyMSeDhcc4NdB4X8C+MLjTilpYaDcWURC211q4uoJZo8fKQsTYxjHPPXqea6DX9B8dy+Em0XWdW8F6D4eO2K4ntjMCqFumZeCSfUgk9+a5nUkuuoHong/R9K0rQLd9KlW5juo1ma7A5nyMg+wweB2+uSd+srwxp1jpPhfTLDTZxcWUNsiwzhgwlXGQ+Rwc9eOOa1aybvqwCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv/AJE7W/8AsHz/APotq+XK+q9bspNS0HUbCFkWW5tZYULkhQzKQM47c141/wAKX8R/8/ulf9/ZP/iK78HVhCL5nYDzmivRv+FL+I/+f3Sv+/sn/wARR/wpfxH/AM/ulf8Af2T/AOIrs+sUv5hB8F/+Rxu/+we//oyOvdK82+H3w+1bwpr09/f3FlJFJatCBA7ltxZD3UcfKa9JrzcVOM6l4sYUUUVzAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeaeLfhos2++8PpiZny9mWCpg4+4TgLg5OCcc8YwAfNrSN4dWgilRkkSdVdGGCpDYII7EGvpSuJ8V+AYNUuf7X0pUh1RDvMZOyK5YEH5yASrcY3D15B4xrGq0rMDxi1ikmEMUSNJI+1URBksT0AHc16Jp/giPw/oF/4j8Q25nk0+CW6XT1ddrCNGbDkZBzjoOPXOSB0Hg34eW2hpbX2p7LjU40G0DmOFiBnb/eII4Y/gBznpfEd/pumeG9SvNYCNp0Vu5uEfBEiEYKYOAS2doHckDvTnVvogOA0TXPir4o0e31nT4PCNpZXYMkEVy07SBM8bimRn8vcDpVPxdqnxC0Lw3PqPijSvBmsaLC8ZurWNZmZlLgDAkG3qRzg49K43S/Der6hA2o+D/CnizT9GumL26W/ieK1V16BtjoW5HPLN7EimapoVzooh1bx54U8U3ujQOFkN14kivFj3cBtkaKeuB95Rkgd8ViB9B+H7u1v/AA3pd5Y2wtrS4tIpYIAoURRsgKrgcDAIGBxxWjVTS5rK50iyn00ILCSBHthGmxREVBXC8YGMcdqt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWX4ktNKvvDeoW2ubP7MeBvtLOcBUAyWz2xjOe2M1qVFc20F5bS21zDHPBKpSSKRQyup4IIPBFAHjF/pd14C8J/2lpfxVuIfDgOyzj+wRXzMcHEaPuAOcHGNoHfHWuXvdUm1pLSPx54g8aJ4enZcvNoKWUEh+8u50dtw4yPlPqMYzXc+J/gJomqQSDQb+50Yu4ke2BMts7ANg7CQQ3zYBBwBkAc1n2uneLviv4eSwvvFOgSaAkoju7jS4JTNO6bW2kSKqg8qcrgc9D0oA9jsIbW2061gsQgs44USAIcqIwAFwe4xirFV7Cyg03TrWwtVKW9tEkMSk5wqgADP0FWKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=", "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAMACAIAAAA12IJaAAEAAElEQVR4AWL8//8/wygYDYHREBgNgdEQGA2B0RAYDYHREBgNgdEQGBmAaWR4c9SXoyEwGgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9OQpGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenM0BEZDYDQERkNgNARGQ2A0BEZDYDQEQGC0AwAKhVE8GgKjITAaAqMhMBoCoyEwGgKjITAaAiMEjHYARkhEj3pzNARGQ2A0BEZDYDQERkNgNARGQ2A0BEBgtAMACoVRPBoCoyEwGgKjITAaAqMhMBoCoyEwGgIjBIx2AEZIRI96czQERkNgNARGQ2A0BEZDYDQERkNgNARAYLQDAAqFUTwaAqMhMBoCoyEwGgKjITAaAqMhMBoCIwSMdgBGSESPenM0BEZDYDQERkNgNARGQ2A0BEZDYBSAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIDAaAcAFAqjeDQERkNgNARGQ2A0BEZDYDQERkNgNARGCBjtAIyQiB715mgIjIbAaAiMhsBoCIyGwGgIjIbAaAiAwGgHABQKo3g0BEZDYDQERkNgNARGQ2A0BEZDYDQERggY7QCMkIge9eZoCIyGwGgIjIbAaAiMhsBoCIyGwGgIgMBoBwAUCqN4NARGQ2A0BEZDYDQERkNgNARGQ2A0BEYIGO0AjJCIHvXmaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIDAaAcAFAqjeDQERkNgNARGQ2A0BEbBaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMhsBoCIyGwGgIjBAw2gEYIRE96s3REBgNgdEQGA2B0RAYDYHREBgNgdEQAIHRDgAoFEbxaAiMhsBoCIyGwGgIjIbAaAiMhsBoCIwQMNoBGCERPerN0RAYDYHREBgNgdEQGA2B0RAYDYHREACB0Q4AKBRG8WgIjIbAaAiMhsBoCIyGwGgIjIbAaAiMEDDaARghET3qzdEQGA2B0RAYDYHREBgNgdEQGA2B0RAAgdEOACgURvFoCIyGwGgIjIbAaAiMhsBoCIyGwGgIjBAw2gEYIRE96s1RMBoCoyEwGgKjITAaAqMhMBoCoyEAAqMdAFAojOLREBgNgdEQGA2B0RAYDYHREBgNgdEQGCFgtAMwQiJ61JujITAaAqMhMBoCoyEwGgKjITAaAqMhAAKjHQBQKIzi0RAYDYHREBgNgdEQGA2B0RAYDYHREBghYLQDMEIietSboyEwGgKjITAaAqMhMBoCoyEwGgKjIQACox0AUCiM4tEQGA2B0RAYDYHREBgNgdEQGA2B0RAYIWC0AzBCInrUm6MhMBoCoyEwGgKjITAaAqMhMBoCoyEAAqMdAFAojOLREBgNgdEQGA2B0RAYDYHREBgNgdEQGCFgtAMwQiJ61JujITAaAqMhMBoCoyEwGgKjITAaAqMhAAKjHQBQKIzi0RAYDYHREBgNgdEQGA2B0RAYDYHREBghYLQDMEIietSboyEwGgKjITAaAqMhMBoCoyEwGgKjAARGOwCgUBjFoyEwGgKjITAaAqMhMBoCoyEwGgKjITBCwGgHYIRE9Kg3R0NgNARGQ2A0BEZDYDQERkNgNARGQwAERjsAoFAYxaMhMBoCoyEwGgKjITAaAqMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkNgNARGQ2A0BEZDYDQERkMABEY7AKBQGMWjITAaAqMhMBoCoyEwGgKjITAaAqMhMELAaAdghET0qDdHQ2A0BEZDYDQERkNgNARGQ2A0BEZDAARGOwCgUBjFoyEwGgKjITAaAqMhMBoCoyEwGgKjITBCwGgHYIRE9Kg3R0NgNARGQ2A0BEZDYDQERkNgNARGQwAERjsAoFAYxaMhMBoCoyEwGgKjITAaAqMhMBoCoyEwQsBoB2CERPSoN0dDYDQERkNgNARGQ2A0BEZDYDQERkMABEY7AKBQGMWjITAaAqMhMBoCoyEwCkZDYDQERkNghIDRDsAIiehRb46GwGgIjIbAaAiMhsBoCIyGwGgIjIYACIx2AEChMIpHQ2A0BEZDYDQERkNgNARGQ2A0BEZDYISA0Q7ACInoUW+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAiMdgBAoTCKR0NgNARGQ2A0BEZDYDQERkNgNARGQ2CEgNEOwAiJ6FFvjobAaAiMhsBoCIyGwGgIjIbAaAiMhgAIjHYAQKEwikdDYDQERkNgNARGQ2A0BEZDYDQERkNghIDRDsAIiehRb46GwGgIjIbAaAiMhsBoCIyGwGgIjIYACIx2AEChMIpHQ2A0BEZDYDQERkNgNARGQ2A0BEZDYISA0Q7ACInoUW+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAiMdgBAoTCKR0NgNARGQ2A0BEZDYDQERkNgNARGQ2CEgNEOwAiJ6FFvjoLREBgNgdEQGA2B0RAYDYHREBgNARAY7QCAQmEUj4bAaAiMhsBoCIyGwGgIjIbAaAiMhsAIAaMdgBES0aPeHA2B0RAYDYHREBgNgdEQGA2B0RAYDQEQGO0AgEJhFI+GwGgIjIbAaAiMhsBoCIyGwGgIjIbACAGjHYAREtGj3hwNgdEQGA2B0RAYDYHREBgNgdEQGA0BEBjtAIBCYRSPhsBoCIyGwGgIjIbAaAiMhsBoCIyGwAgBox2AERLRo94cDYHREBgNgdEQGA2B0RAYDYHREBgNARAY7QCAQmEUj4bAaAiMhsBoCIyGwGgIjIbAaAiMhsAIAaMdgBES0aPeHA2B0RAYDYHREBgNgdEQGA2B0RAYDQEQGO0AgEJhFI+GwGgIjIbAaAiMhsBoCIyGwGgIjIbACAGjHYAREtGj3hwNgdEQGA2B0RAYDYHREBgNgdEQGAUgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgdEQGA2B0RAYDYERAkY7ACMkoke9ORoCoyEwGgKjITAaAqMhMBoCoyEwGgIgMNoBAIXCKB4NgdEQGA2B0RAYDYHREBgNgdEQGA2BEQJGOwAjJKJHvTkaAqMhMBoCoyEwGgKjITAaAqMhMBoCIDDaAQCFwigeDYHREBgNgdEQGA2B0RAYDYHREBgNgRECRjsAIySiR705GgKjITAaAqMhMBoCoyEwGgKjITAaAiAw2gEAhcIoHg2B0RAYDYHREBgNgVEwGgKjITAaAiMEsIwQf456czQERkNgNARGQwASAo7Z9RAGw98/EMb+Ga0Qxig5GgKjITAaAqMhMBIA4////0eCP0f9OBoCoyEwGgKjIYBo+kPCAtYBgPBGuwGQcBglR0NgNARGQ2DYg9EOwLCP4lEPjobAaAiMhgADetMfEiSoHQCI2Gg3ABIOo+RoCIyGwGgIDGMw2gEYxpE76rXREBgNgZEeAtjb/fBQwdYBgEuO9gTgQTHKGA2B0RAYDYFhBkY7AMMsQke9MxoCoyEwGgKgECDQ9AcpYYDvAYDwsJKj3QCswTIqOBoCoyEwGgJDGox2AIZ09I06fjQERkNgNARQQoCodj9cB94ZALgqCGO0JwAJh1FyNARGQ2A0BIYBGO0ADINIHPXCaAiMhsBoCOBY5Y8/YEjpAEBMGu0GQMJhlBwNgdEQGA2BIQ1GOwBDOvpGHT8aAqMhMBoCZDX9IcFGegcAom+0GwAJh1FyNARGQ2A0BIYoGO0ADNGIG3X2aAiMhsBIDwHSVvtgDS1yOwBww0Z7AvCgGGWMhsBoCIyGwBACox2AIRRZo04dDYHREBgNAVAIUKHpDzKGqE3AEIX4ydFuAP7wGZUdDYHREBgNgcEGRjsAgy1GRt0zCkZDYDQEsIcA1dr9cOMpngGAmwRhjPYEIOEwSo6GwGgIjIbAIAejHYBBHkGjzhsNgdEQGA0BClb54w88ancAILaNdgMg4TBKjobAaAiMhsCgBaMdgEEbNaMOGw2B0RAYDQGaNf0hQUubDgDE7NFuACQcRsnREBgNgdEQGIRgtAMwCCNl1EmjITAaAiM9BKi/2gdriNKyAwC3cLQnAA+KUcZoCIyGwGgIDBIw2gEYJBEx6ozREBgNgdEQAIUAnZr+IKuotgkYYhh+crQbgD98RmVHQ2A0BEZDgJ5gtANAz9AetWs0BEZDYDQEcIYAXZv+EFfQZQYAYhWEHO0GQMJhlBwNgdEQGA2BgQWjHYCBDf9R20dDYDQERnoIDEC7Hx7kdO8AwG0e7QnAg2KUMRoCoyEwGgL0B6MdAPqH+aiNoyEwGgKjIQAKgYFs+oPsp+sSIIiFaORoNwAtQEa5oyEwGgKjIUAfMNoBoE84j9oyGgKjITAaAtAQGPh2P9QhA98BgDtktCcAD4pRxmgIjIbAaAjQAYx2AOgQyKNWjIbAaAiMhgAoBAZR0x/knEHUAYA4Z7QbAAmHUXI0BEZDYDQEaA1GOwC0DuFR80dDYDQERkOAxsf5kx3AA7cHAI+TR7sBeAJnVGo0BEZDYBRQBYx2AKgSjKOGjIbAaAiMhgCWEBh0Q/5obhyUHQC4G0d7AvCgGGWMhsBoCIyGAHXBaAeAuuE5atpoCIyGwGgIgEJgsDf9QW4cdEuAII5CI0e7AWgBMsodDYHREBgNAcrBaAeA8jAcNWE0BEZDYDQEoCEwNNr9UMcOjQ4A3LGjPQF4UIwyRkNgNARGQ4BCMNoBoDAAR7WPhsBoCIyGACgEhljTH+TkIdYBgDh5tBsACYdRcjQERkNgNAQoAaMdAEpCb1TvaAiMhsBoCAzWDb7ExMzg3gOAxwej3QA8gTMqNRoCoyEwGgIEwWgHgGAQjSoYDYHREBgNASwhMCSH/NH8MWQ7AHB/jPYE4EExyhgNgdEQGA0B4sFoB4D4sBpVORoCoyEwGgKgEBgOTX+QP4bkEiCIw9HI0W4AWoCMckdDYDQERkMAPxjtAOAPn1HZ0RAYDYHREECEwPBp+kP8NPRnACD+gJCj3QBIOIySoyEwGgKjIUAQjHYACAbRqILREBgNgZEeAsOt3Q+Pz+HVAYB7a7QnAA+KUcZoCIyGwGgIYAWjHQCswTIqOBoCoyEwGgKgEBi2TX+Q54bPEiCIb9DI0W4AWoCMckdDYDQERkMADkY7APCgGGWMhsBoCIyGADQEhnm7H+rLYd4BgIPRngA8KEYZoyEwGgKjIQABox0ASDiMkqMhMBoCoyEACoGR0vQH+XWkdAAgfh3tBkDCYZQcDYHREBgFDAwMox2A0WQwGgKjITAaAqAQGFlNf5CPR1YHAOLj0W4AJBxGydEQGA2BEQ5GOwAjPAGMen80BEZ6CIzEdj88zofpJmC4//AwRnsCeAJnVGo0BEZDYNiD0Q7AsI/iUQ+OhsBoCGAPgRHd9IcEyQjuAEACYLQbAAmHUXI0BEZDYKSB0Q7ASIvxUf+OhsBID4HRdj8iBYz4DgA8KEZ7AvCgGGWMhsBoCIwEMNoBGAmxPOrH0RAYDQFQCIw2/UGhgIxHOwDIocHAMNoNQA2PUd5oCIyGwLAFox2AYRu1ox4bDYHREICHwGjTHx4UKIzRDgBKcEA5o90AaECMUqMhMBoCwxeMdgCGb9yO+mw0BEZ8CIy2+wkkgdEOAN4AGu0J4A2eUcnREBgNgSEMRjsAQzjyRp0+GgKjIYArBEab/rhCBkV8tAOAEhzYOaPdAOzhMio6GgKjITCUwWgHYCjH3qjbR0NgNAQwQmC06Y8RJLgFRjsAuMMGTWa0G4AWIKPc0RAYDYEhDUY7AEM6+kYdPwpGQwAaAqPtfmhAkESNdgBICi6w4tGeADgYRonREBgNgaENRjsAQzv+Rl0/GgKjITDa9Cc/DYx2AMgNu9FuALkhN6pvNARGQ2BQgNEOwKCIhlFHjIbAaAiQGgKj7X5SQwyL+tEOAJZAIU1otCdAWniNqh4NgdEQGBxgtAMwOOJh1BWjITAaAkSHwGjTn+igIqRwtANAKISIlB/tBhAZUKPKRkNgNAQGCRjtAAySiBh1xmgIjIYA4RAYbfoTDiOSVIx2AEgKLkKKR7sBhEJoVH40BEZDYLCA0Q7AYImJUXeMhsBoCOAKgdF2P66QoVR8tANAaQhi1z/aE8AeLqOioyEwGgKDBox2AAZNVIw6ZDQERkMAIwRGm/4YQUJVgdEOAFWDE82w0W4AWoCMckdDYDQEBg8Y7QAMnrgYdcloCIyGADQERtv90ICgNTXaAaB1CIPNH+0JgINhlBgNgdEQGERgtAMwiCJj1CmjITAaAqNNf7qmgdEOAB2De7QbQMfAHrVqNARGQ4AAGO0AEAigUenREBgNAfqEwGjTnz7hjGLLaAcAJTjowRntBtAjlEftGA2B0RAgBEY7AIRCaFR+NARGQ4CWITDa7qdl6BIye7QDQCiEaCc/2hOgXdiOmjwaAqOAIBjtABAMolEFoyEwGgI0CYHRpj9NgpUkQ0c7ACQFFw0Uj3YDaBCoo0aOhsBoCBAGox0AwmE0qmI0BEZDgLohMNr0p254km/aaAeA/LCjps7RbgA1Q3PUrNEQGA0BIsBoB4CIQBpVMhoCoyFAjRAYbfdTIxSpasZoB4CqwUm5YaM9AcrDcNSE0RAYDQFiwGgHgJhQGlUzGgKjIUBRCIw2/SkKPtppHu0A0C5sKTB5tBtAQeCNah0NgdEQIAqMdgCICqZRRaMhMBoCZITAaLufjECjmxbpjz9+M/x9xcNONxtHLSI1BEZ7AqSG2Kj60RAYDQEiwWgHgMiAGlU2GgKjIUBCCIw2/UkILLorlf74A2Lnb4a/EMZoNwASDoOTHO0GDM54GXXVaAgMaTDaARjS0Tfq+NEQGHQhMNr0H3RRguQgeNMfIgbvAEC4o90ASDgMTnK0GzA442XUVaMhMETBaAdgiEbcqLNHQ2BwhcBou39wxQeqa9Da/XBJtA4AXHy0JwAPikHIGO0JDMJIGXXSaAgMOTDaARhyUTbq4NEQGFwhMNr0H1zxgeoaXE1/iCpcHQCI7Gg3ABIOg5Mc7QYMzngZddVoCAwVMNoBGCoxNerO0RAYXCEw2u4fXPGB4Rr8TX+IcvwdAIia0W4AJBwGLTnaExi0UTPqsNEQGMxgtAMwmGNn1G2jITAYQ2C06T8YYwXJTcQ0/SHKiekAQFSOdgMGORjtBgzyCBp13mgIDDYw2gEYbDEy6p7REBi8ITDa9B+8cQN2GfFNf7ByBuI7ABD1o90ASDgMWnK0GzBoo2bUYaMhMNjAaAdgsMXIqHtGQ2DQhcBou3/QRQmqg0ht9zMwMPz+80fQWPv+kVMCvDyohhHFG+0JEBVMA6dotCcwcGE/avNoCAwNMNoBGBrxNOrK0RAYkBAYbfoPSLATbynZTf/TF2+ef/eFgYHBUIhHW1X+5+17xFsKVznaDYAHxeBkjHYDBme8jLpqNAQGAxjtAAyGWBh1w2gIDLoQGG36D7ooQXUQeU1/dk3lq7cfQpr+yOaNdgOQQ2OYsUe7AcMsQke9MxoCVAGjHQCqBOOoIaMhMExCYLTdP/gjkuym/5KTVwn6LsZc+8v1W6wsLARVoikYnQ1AC5BByB3tCQzCSBl10mgIDBQY7QAMVMiP2jsaAoMrBEab/oMrPrC5hrym/x85yfVX7mMzD6dYoI7i/0dPRrsBOANoKEuMdgOGcuyNun00BKgGRjsAVAvKUYNGQ2AohsBou3/wxxoZ7X4GBgYeffW795/sffCSbA8aCvGIfP44ukuY7AAc5BpHewKDPIJGnTcaAjQFox0AmgbvqOGjITB4Q2C06T944wbmMjKa/pDjfShs+sPsB9Gj2wNAoTB88Wg3YPjG7ajPRkMAHxjtAOALnVG50RAYliEw2vQf/NFKXtMf1x5fyv072g2gPAwHswmj3YDBHDujbhsNAVqA0Q4ALUJ11MzREBiMITDa7h+MsYLhJrKb/sTs8cWwjTSB0W4AaeE1BFWP9gSGYKSNOnk0BMgBox0AckJtVM9oCAwtMNr0H/zxRUa7H3KfFxl7fCkPDbIPC2JgYBg9L4jy8Ke1CaPdAFqH8Kj5oyEw4GC0AzDgUTDqgNEQoFUIjLb7aRWyVDWX7Kb/OyF+Svb4Uu6J0V3ClIfhIDdhtCcwyCNo1HmjIUA2GO0AkB10oxpHQ2DwhsBo03/wxg2Sy8ho+lN9jy+Sc8hkjq4LIjPgho620W7A0ImrUZeOhgCxYLQDQGxIjaobDYEhEQKjTf8hEU3kNf1pt8eX8kAb7QZQHoaD3ITRbsAgj6BR542GAElgtANAUnCNKh4NgUEaAqPt/kEaMRjOIrvpT4c9vhiOJVlgtBtAcpANQQ2jPYEhGGmjTh4NAXQw2gFAD5FR/mgIDK0QGG36D4n4IqPdD9njy66pPCSa/mixMLpLGC1Ahh93tBsw/OJ01EcjCox2AEZUdI96dviEwGi7f6jEJdlN/wE53oe6oeqsIM7x8hUXJwcZxo4eFkRGoA2IltGewIAE+6iloyFAIRjtAFAYgKPaR0OA3iEw2vSnd4iTax8ZTf9BuMeXXN8j9I0eFoQIi+HLGu0GDN+4HfXZ8ASjHYDhGa+jvhqWITDa9B8q0Up20//0xZvn330ZKt4kyZ2j2wNICq4hqni0GzBEI27U2SMQjHYARmCkj3p5iIXAaLt/CEUYeU3/IbrQn4x4Ge0GkBFoQ1HLaE9gKMbaqJtHFBjtAIyo6B717BALgdGm/1CJMDLa/UN6jy/l8TK6S5jyMBz8Jox2AwZ/HI26cMSC0Q7AiI36UY8P6hAYbfoP6uhBchzZTf9hsMcXKRjIZDoriPO+e8fKwkKG/tFdwmQE2oBoGe0GDEiwj1o6GgL4wWgHAH/4jMqOhgBdQ2C03U/X4KbMMvKa/jz66nfvP9n74CVllg8r3aO7hIdVdOL2zGhPAHfYjMqMhgC9wWgHgN4hPmrfaAhgDYHRpj/WYBmcgmQ0/Yfl8T7UjZ3R7QHUDc9Ba9poN2DQRs2ow0YUGO0AjKjoHvXsoAuB0Xb/oIsSvA4ir+nPrql89fbD4Xq8D94AI1lytBtAcpANWQ2jPYEhG3WjDh8OYLQDMBxicdQPQzEERpv+QyjWyGj3j/A9vpRH7uguYcrDcEiYMNoNGBLRNOrI4QdGOwDDL05HfTTYQ2C06T/YYwjJfWQ3/Uf3+CKFIvnM0W4A+WE3pHSOdgOGVHSNOnY4gNEOwHCIxVE/DIkQGG33D4logjuSvKb/t+8/PosLj+7xhQcjVRiju4SpEoxDwpDRnsCQiKZRRw4DMNoBGAaROOqFwR4Co03/wR5DqO4jo+k/uscXNQhpwhvdHkCTYB2Uho52AwZltIw6aliB0Q7AsIrOUc8MqhAYbfcPqugg6Bgy2v3whf6je3wJBi+1FFDSDWBgYBi9PYBaEUEfc0Z7AvQJ51FbRiAY7QCMwEgf9TLNQ2C06U/zIKaqBZQ0/ZecvEpVt4waRlQIjHYDiAqm4aJotBswXGJy1B+DCIx2AAZRZIw6ZRiEwGjTf2hF4mjTf2jFFyYY3SWMGSbDVWS0GzBcY3bUXwMCRjsAAxLso5YOtxAYbfcPuRglu+k/erzPIIxrQyEeqe9fuTg5yHDb6KIgMgJtYLWM9gQGNvxHbR8eYLQDMDzicdQXAxYCo03/AQt6ci0mo+k/useX3MCmqz5K1gWNdgPoGlXUsGy0G0CNUBw1Y+SC0Q7AyI37UZ9TGAKjTX8KA5DO2slo94/u8aVzHFHFOkq6AaO7hKkSBfQ0ZLQbQM/QHrVrOIHRDsBwis1Rv9AjBEbb/fQIZaraQUnTf3SPL1Wjgn6GjXYD6BfWg8Om0Z7A4IiHUVcMGTDaARgyUTXq0AEPgdGm/4BHAakOGG36kxpiw0/96C7h4ReneHw02g3AEzijUqMhgAxGOwDIoTHKHg0BLCEw2u7HEiiDXojspv/oHt9BH7fkONBZQZz33TtWFhYyNI9uDyAj0AZcy2hPYMCjYNQBgxyMdgAGeQSNOm8gQ2C06T+QoU+u3eQ1/Xn01e/ef7L3wUtyrR3VNwRCwFCIR+TzRwFeHjLcOtoNICPQBlzLaDdgwKNg1AGDFox2AAZt1Iw6bCBDYLTpP5ChT5bd5LX7Icf7nL548/y7L2RZO6pp6IXA6PaAoRdnlLl4tBtAWfiN6h6eYLQDMDzjddRX5IXAaLufvHAbWF1kN/3ZNZWv3n442vQf2OgbKNtHuwEDFfIDaO9oT2AAA3/U6sEGRjsAgy1GRt0zMCEw2vQfmHCnzFZKmv6jx/tQFvbDR/foLuHhE5fE+WS0G0BcOI2qGuZgtAMwzCN41Hv4wWi7H3/4DFpZspv+o3t8B22cDqzDAnUU/z96MrpLeGBjgc62j/YE6Bzgo9YNKjDaARhU0THqGPqFwGjTn35hTT2byGv3MzAwjO7xpV4kDGeTKNklPHqJ2BBNGaPdgCEacaPOphCMdgAoDMBR7UMvBEab/kMvzhgYyGv6Q/b4jh7vMxRjfADdPLo9YAADf6CsHu0GDFTIj9o7UGC0AzBQIT9qL71DYLTdT+8Qp5J9ZDf9R/f4UikGRqgxo92AkRnxoz2BkRnvIxCMdgBGYKSPOC+PNv2HaJRT0vQf3eM7RCN9sDl7tBsw2GKEPu4Z7QbQJ5xHbRlAMNoBGMDAH7Wa5iEw2vSneRDTxgKym/6je3xpEyGjpjKMHhY0AhPBaDdgBEb6yAGjHYCRE9cjyKej7f4hGtnktfsZGBh+//nzToh/9B7fIRrvQ8jZo7uEh1BkUdGpoz0BKgbmqFGDBIx2AAZJRNDQGX/+/GFhYaGhBYPJ6NGm/2CKDRLcQl7Tf3SPLwlBPKqUeiEwui6IemE5lEwa7QYMpdgadSshMNoBIBRCQ1ze1tb26NGj////Z2dn//HjxxD3DU7nj7b7cQbNoJcgu+k/usd30MftMHfgaDdgmEcwbu+N9gRwh82ozJABox2AIRNVZDhUVVX1zp07yBpPnz5tYmKCLDLU2aNN/6Ebg5Q0/Uf3+A7deB9mLh/tBgyzCCXeO6PdAOLDalTlIASjHYBBGCnUcVJCQsLChQsZGBhiYmIYGBiWLFnCwMDg5eW1detW6lgw0KaMNv0HOgbIt3+06U9+2I3qHKwhMLpLeLDGDG3dNdoNGAVDFIx2AIZoxBFw9r1795SVlRkYGM6dO2doaMjAwCAjI/P06VN9ff0LFy4Q0Dy4pUfb/YM7fvC5jrx2P2SP7+jxPvhCdlRu0ISAs4I4x8tXXJwc5LnoFQ87eRpHdQ14CAy/nsDXr1+5ubkHPGBHHUAjMFL2htIo+AatsQYGBgwMDHl5eZDWPwMDAxsbGwMDg7W19aB1M0GHjTb9CQbRoFVAXtMfZY/vlfuD1nejDhsNAXgIQI6iMuRkFvn8UYCXBy5OJEPsy08GBobRbgCRwTWolDlmVDMwMAyPbgAbG9vv378ZGBiEhYVfv37NyMg4qIJ61DFUAaMzAFQJxsFlyLJly6KjoxkYGP7//w93GSQDf/r0iZeXFy44JBij7f4hEU24HElJ0//0xZvn333BZfKo+GgIDPIQGN0eMMgjiKbOG6I9gVevXomLi6OFDHJbAk1qlDt0wWgHYOjGHU6XQ9r6ly5d0tXVhSiqr69vampC6xJApBgYGJ49ezZz5szGxka4yCBhjDb9B0lEkOcMspv+7JrKo3t8yQvzUV2DMARGuwGDMFLo5qQh1w3Yv3+/k5MTAwNDRESEg4NDRkYGAwMDIyPjv3//6BZooxbRB4x2AOgTzvSzJS8vb/LkyWhtfUiX4Pr16xoaGmhOUVdXv3XrFkRQQkLi+fPnEPbAkqNN/4ENfwptH236UxiAo9qHZQiM7hIeltFKjKeGUDdgxowZmZmZzMzMf/78Ae2/+v0bsn546dKlUVFRxHh2VM1QAaMdgKESU8S6E9LWf/XqlaioKESPg4PDwYMHFRQU7t9HX0UtISHx8uVLiDII6eLisnv3bgib/uRou5/+YU5FG8lr94PqmD9/Rvf4UjEiRo0azCHgrCDO++4dK7mXM45uDxjMkUvQbYO/J/D8+XMpKSnkMcQ9e/a4uroiixD05qiCIQFGOwBDIpqIdaSTk9P+/ft1dHQuX74M0XPt2jVtbW0GBoaPHz/y8fFBBCFkbGws5GzQKVOmqKmpubm5MTAw8PLyfvr0CaKAnuRo05+eoU11u8hu+vPoq9+9/wSyb5Lqrho1cDQEBm0IGArxkLdLGOKj0W4AJByGKDnIuwGQYcQ7d+5AzhJkYGCQl5d/9OhRYGDgunXrhmiYjzobE4x2ADDDZKiK/P//n4mJiYGB4f379wICAhBvQHJySUlJd3c3RARC3r17V0VFhYGB4cyZM8bGxgwMDO3t7VVVVZycnN++fYOooQ852vSnTzjTyBbymv4ox/vQyGWjxo6GwKAPgdHtAYM+imjowIHtBpSVlenq6sbExEAaCcj+TElJmTt3LvKQ/9u3b0VERCA7BiUlJZEVj7KHLhjtAAzduEN3+bFjx6ytrVlZWX/9+gWRW758OWTRHuYWfkFBwQ8fPkRGRi5btgyiGLJ5gIeH5/PnzxARmpKj7X6aBi8dDCe76c+uqXz19sPR433oEEejVgyJEBjtBgyJaKKdI+ncE9DS0rp+/TrEO9zc3O/evYOs8oeIQEhIr+DRo0eysrIQkcTExAULFiD3CiDio+TQBaMdgKEbd+guj4+PX7Rokbi4+IsXLxgYGP7+/csCXmZ66NAhW1tbZNVYOwaQDL9kyRLIEaLI6qnLHm36Uzc86Wwaee1+yEL/0eN96BxZo9YNoRCAdAO+XL81uj1gCMUaFZ1Kn27AggULEhMT0ZyNOUTY0tJSW1uL1tyHNBLgt4uiGTLKHXJgtAMw5KIMp4MbGhogR3nOmDFDVVXV2dkZohQzb0Oy8fbt2z08PCBqVqxYERkZiZbbIVLUIkfb/dQKyYEyh5Km/+ge34GKtVF7hxyg5LCg0UvEhlx0YzqYpj0BW1vbI0eOMDAwHDx4UExMTFtbG3K+J652wsKFC+Pi4iCOnD9/flJSEk3bCRCLRkn6gNEOAH3CmR62XL16VUdHB80mzFxdUFAwceJEtDwM6RJs3rzZx8cHzQTKuaNNf8rDcGBNILvp/+37j8/iwqN7fAc2+kZtH4ohMLpLeCjGGhXdTKNugL6+/qVLlzQ1Na9duwZxLaT2X758eUREBEQEQsIP//nz5w8zMzNEEKL48uXLmI0NiIJRcggB0J7RIeTcUafiCQFtbe34+HhI/mRgYBASEoJc5f3161dkXZDW/9OnT+GCeXl5EDbVW/+O2fWjrX9I2A5RUvrjDzJa/7///OHRV3/Jx73h+5/R1v8QjfpRZw9sCJx/92X3b+Y7DMzsqkpkuETsy0+xLz/J0DiqZZCEgGNGtWNGNdUdk5yczMDAgNwA2LRpEwMDA2QJALJ1Li4ukJNCXFxc4OJBQUEMDAwhISFwkVHG0AWjMwBDN+6wu/zly5cHDhxQVFQ0MzODqGBkZJw5c2ZaWhoDA4Onp+eOHTuEhYXfvHkDkf3y5QsvLy8DAwPWa8IgakglRxv9pIbYIFRPRrsfvtB/dI/vIIzQUScN3RCAbA/4efseeV4YPTOUvHAbVLqoNSHw798/yHD+t2/fODk5IX7k5+f/9OlTaGjoqlWrICIQ8tOnT/z8/AwMDFu2bPH29mZgYIiJiVm6dKmoqOirV68gakbJoQtGOwBDN+6IcjnkbB/4gh/I/MD9+/cVFBQg+vX09C5fvqympnbz5k2ICCXkaNOfktAbDHrJa/fDm/5LTl4dDL4YdcNoCAy/EKCwGzC6PWAYJAmqdAMUFRUfPHjg4OCwf/9+SJjcv39fSQk00fT8+XMJCQmIIIQsLy/v6upiYGDIzs5WUFAoLS2FXAvw4MEDiIJRcuiC0Q7A0I07olwOafFDbvR48OCBoqIivDPAwMBw5MgRyAFBmNeEEWU6TNFoux8WEkOYHm36D+HIG3X6SAqB0V3CIym2sfuVkp7As2fPpKWlGRgY3rx5IywsDLHA399/06ZNzMzMf/78gYjASQ0NDbTxwd7e3qKiIriCUcYQBaMdgCEacSQ4e82aNZAVe/39/UVFRYyMjJBd/3/+/GFlZWVgYKiqqmptbSXBRCSlo01/pMAYqkxKmv6jx/sM1VgfdfcQDwFDIR6p71+5ODnI88fouiDywm1Q6SK7GxAUFLR+/Xrk0UAGBgbIcOHFixf19PQg3nz37p2QkBADA4Ofn9/mzZshgtbW1pBzhCDcUXLogtEOwNCNO5JdfvjwYTs7OwYGBldXVy8vr+Li4n///jExMf39+5dksxgYRpv+ZATaYNNCXtN/9B7fwRaPo+4ZsSEweljQiI16uMfJ6wZAmvt3796FLP5hYGDo7e0tKSmB9wqWLl0aExMDV/Dly5dr165JgwHc6lHGkAajHYAhHX2kOR6+3xeuDT4bABchyBht9xMMoiGhgOym/+g9vkMifkcdOaJCgMLtAaOzAcMjtZDUE2hvb6+qqoI39yEhgNwryM7OnjZtGpoCiLJRcniA0Q7A8IhHYn2xdOnShIQEyCI/bm7up0+fQvb4E6N/tOlPTCgNcjXktftH9/gO8mgddd5oCDAwMFDYDRjdJTw8UhHx3QBIc7+6urqlpQXid8gtAUFBQWvXroUvCvr9+zcLCwtEwSg5nMBoB2A4xSaxfjlz5oyOjg47Ozsk/xPUNtr0JxhEg1/BaNN/8MfRqAtHQ4AqITC6S5gqwTikDSGmG7Bv3z5nZ2cGBoYrV65oa2szMDBISUk9f/5cS0vr6lXQeW6XLl2C7wcY0qEx6nisYLQDgDVYRgVBYLTdDwqFoY8pafqP7vEd+vE/6gMqhcC3zwxcoCtTqGQczY1xVhDnffeOldyx29F1QTSPIbpYgL8nYGFhcfLkSQYGhri4uF+/fq1YsQI0lWRoeO7cObq4btSSgQSjHYCBDP1Ba/do03/QRg1JDiO76c+jr373/pPRS3xJCu1RxcM5BP79Y/j6kYGLh4EZdHLaEPLp6C7hIRRZtHMqrm7A////hYSEPnz4gGz18ePHLSwskEVG2cMSjHYAhmW0kump0XY/mQE3yLSR3e6HHO9z+uLN8+++DDI/jTpnNAQGNAT+/mb49oWBjYOBHXp56oC6hmTLR7cHkBxkw1QDZk/g79+/SkpKjx49YmBg4OTkLCgoaGtrG6a+H/UWChjtAKAEx4jljDb9h0fUU9L0Hz3eZ3ikgVFf0CQEvn5k+PefgZWNgYOLJubTxdDRbgBdgnkIWILZDfj27RsDAwMX1xBO3kMg3AcZGO0ADLIIobtzRpv+dA9ymlhIYdN/yUnQli+auGzU0NEQGOoh8O8fw+d3DEwsDAz/Gbj5GZiYhrqHRncJD/UYpIr7MbsBVDF21JChAkY7AEMlpqjsztF2P5UDdOCMo6TpP7rHd+DibdTmoRMCv38yfPvMwMzC8P8/aAaAlX3oOB2fSwN1FP8/ejK6SxhfGI0MudGewMgEox2AERfvo03/YRPlZDf9R/f4Dps0MOoReoTA148Mf35Dt/8yMzNw8tDDUnrZMbpLmF4hPdjtGe0GjDQw2gEYKTE+2u4fNjFNdrsfssd39HifYZMSRj1CjxCArP9hYATNAICuRf3HwCtID3vpa8fo9gD6hvegtm20JzBCwGgHYPhH9GjTf9jEMSVN/9E9vsMmGYx6hK4hAOkAMDKC9wAwgDYADKnbAEgKq9FuAEnBNbwVj3YDhj0Y7QAM5ygebfoPm9ilsOk/usd32KSEUY8MQAj8+8fw7RNoFRCvIKgDwDjkNwHjD8PRbgD+8BlRsqPdgGEMRjsAwydyP378eO/evV27dq3ad5pPBXSt9/Dx2wj2yWjTfwRH/qjXB00IfPnw/9d3RiHJQeMgejhk9LAgeoTyULDjwN7dyfZ62dnZhoaGQ8G9o24kCox2AIgKpkGu6OPHj6dOnVq5cuX5xx/+8ggKSkgNcgePOo+YEKCk6f9OiH/0Hl9iAnlUzWgIEBUCH9/8//+fUUCUKMXDS9HoLuHhFZ9k+ub9i+fM3z8ZygqEh4e7urqSacqotsEERjsAgyk2yHLLkiVL+hdv+M7CyS8qxsE9rI6nICs8hrwmStr9gsbao3t8h3wKGPXAIAyBEdwBgMTG6LogSDiMcPLP71+f3769ePXKrmmto92AoQ5GOwBDOwYZGRmTk5NvMomysLINbZ+Mup6BgZKm/+ge39EUNBoCNAyBEd8BgITtaDcAEg4jnPzx9Ys2+1cGBoY5c+aM8KAY0mCYb2Ya0nFDvOPV/73+8fUL8epHVQ62EJD++IO81v/vP3+YVOVXf/qx5OTV8+9G08Bgi9hR9wyfEGBkZh4+niHXJ+fffVly8uodBmZ2VSXyzBD78lPsy0/y9I7qGgwh8Of3L232r9uOXR4Mjhl1AyVgtANASegNvN7k5OSLz79efP71xMK+ZEvVgXfQqAtIDAGqNP1JtHNU+WgIjIYAaSHw/99f0jQMa9WQbsDqd9/ZVZV+//lDhl9HuwFkBNqAa/nz+1dVsIM64/szD9/Jq2sMuHtGHUAhGF0CRGEADrD2JUuW9CxcJygm8ef378/v35rIC139wz+6E2CAY4U468kb8mdgYPj9588fOcn1V+4TZ8+oqtEQGA0BSkPg//uXjMwsDHzClBo0HPU7K4hzvHzFxclBnude8bCTp3FUFz1DoC89ZOrUqWcevuMVFGZhZZUV4taWESkvL6enG0btoi4YnQGgbnjS2zRxcXFlCSEGBgYWVlZBMYmrb39rs3z0kOOitztG7SM6BCBD/mS0/n//+cOjr/6Sj3v1px+jrX+iw3tU4WgIUCME/v6B3gRMDcOGmRl7H7zc+v3/HQbmD5/JWYUImQ0YXRc0aFMFZOB/6tSpF59/FRSTYGFlZWBgeP74kZGR0aB186jDiAGjHQBiQmnwqhEREfn08QPcfRxc3He/sy3fc/LAtKaqABu4+PBg7JvSMC0nYuj6BdL0J8P9kKb/HRaWWfvPjh7uSUYAjmoZDQGKQ4CRYhOGuQHn333Z/Zt5dHvAcIpmSNNfnfF9adf0u9/ZeAQEkX2npqaGzB1lDzkwugRoyEUZioM/fvwooKDp4BWAIsrA8Of3bx9jldu3bw+bA4Ii9KRycnL+gNebcnJymieWonl5MHPJGO+HeOf3nz/smsqj9/hCQmOUHA2BgQmBf3//v3vJyM3HwDl6zjJRMTB6WBBRwTS4Ff35/ctHTeT27dtX3/7m4OJGc+yBnVsfnD0kLy+PJj7KHUJgtAMwhCILu1MZGRkdojKxyr1/9eLinvW7du1q23AEq4KhIqjw7dGCBQuQXcvIyGifWYssMjjZo03/wRkvo64aDQESQuDfX9AeAK7RDgAJYQZROnqXMCQchhb55/evugi3lStXnnn4TlBMAqvjlTl/jZ4BOtTBaAdgqMcgyP2O0VkgChuGTwUM3c3BXQk+ZmZmDAwMPDw8eXl5bW1tEI9+//7ds7gdwh5sJNnt/tE9voMtKkfdMwoYRjsAlCUCZwVx3nfvWFlYyDZmdKMw2UFHqsY/v3+pM75nYGC4+YkRstwfqwn7l07DKj4qOITA6B6AIRRZ5DiVhZV1x6WHkHNCh+iugIAA0AInOzs7k7iiYx9Yrl69CgmIly9fQhiDiiR7oT+ohzO6x3dQxeWoY0ZDABICf8FngDKN3gMACQ6Syb0PXm749JvsXcIMDAyQjcIkWzyqgZQQgK/4P/Pw3d3vbHha/6SYOqp28ILRDsDgjRsquoxHQNAmNOXly5fKP58OuSvDnjx5UlBQwKTjAAkQOTk5CENMTAzCyLDTOjp74KcCyG76Q/b4vuTjHt3jC4nQUXI0BEZDYPiFwMjZJbygMm3f9JahFYN96SHqjO/zm/pvfmLEtexnaPlo1LUEwegSIIJBNAQU4FkChOb6H9++aguzqqqq7nj0DU1qqHCtBf+2trYyMDA4ZNUxMDDs6Kvi4ICeP52amnqbVZL+HiF7wQ9kj+/V2w9HL/Glf6yN2jgaAiSEwK/vDCxsDKOTACQEGT6lw3WX8OklE79+/crAwMDFxXXgwIGyuRvwhcLgkCNmxT+mS0eXAA0DMNoBGAaRyEB8BwDi2/evXpjIC4WHhw+5zcG7JtSwsbExMDCkpaXdYgFtTjowrQniKTh59OjR6qU74VyaMihs+o8e70PT2Bk1fDQERkNgMIcApBvw5fotsrcHDKq9Afd3LH348CFygE+cOHH9tcG4VBXuyKpgB/ybfeEq0RijHYBhAEaXAA2DSGQgNSsKiknc/MR47tw55Z9P//z+NVSCYHZhLKT1z8LCAmn9vz28noGBgZOT08rKCu6L48ePw9k0YkBW+5DX+v/95893KdHVn36Mtv5pFDujxo6GwGgIDIkQOP/uy5KTVzd8+s2uqvQbfMQzqc6G7A0YDJeIdSb5w1v/Pj4+zMygHSP5+flrWotI9RR91P/5/ctDkW/lypVX3/4mdc0PqU0O+vho1BZSwWgHgNQQGybqIZuDzzx8d2R2xyDfHLx/auOqhpwX+1apqqpCQv/UqVMMDAy5zvqXL19mYGC4evUqm4HLnj17ILJb7n2CMGhBQpr+5Jn87fuP0Xt8yQu6UV2jITAaAsM4BCDdgCG9S/jevXuQCDp27NgXaT3blHLIdjURERGI+OAh4Zt9l+85efc7G+YZ/4PHqaMuoSkY7QDQNHgHu+GCYhI2oSmQqYBBuDl47+T6ienBoqKiYmJiN27cgITm0aNHi+Zs2Du5Pjg4mIGBYcaMGUk9oCsCWtYdev369c2bNyHK9k9trA60lXx/W/P/a4gIhSTZTX/4Ht8N3/+M3uNLYSyMah8NgdEQGK4hMKR3CQsJCUHipWrhFghDyTMGwogzV4EwBgMJOeVz5cqVo5t9R8HoHoBhkgZI3QaA5u0vH96f2bZi8FwZtntibU9PT11d3e/fvyFOZWJi8vLyWr9+vWt+MwMDA3zpv6ioqL29/RsxLYgyOPloxxL4kAwTE5NdRg1cilQGeUt9ICf6s2sqj+7xJTXAR9WPhsBoCIzwEIBsD/h5GzqsTkZo0H97wIGZoDtqbt26ldYLGpNiYGDwVOIvLy8H1QW/f7vm1JPhCypqIW+zL1YHjC4BGh5gdAZgeMQjpb6AnBM6SKYCdJnfs7GxVVZWQlr/vLy8NTU1X79+/SJnBGn9RxvKwj38+vXrNWvWaDG8gYswMDBcWDYJ3vpnYGD49+/fgWlN80sTkdUQw6Zk1J9JVR6y0H/0hB9ignpUzWgIjIbAaAjAQwCyPeAOAzO7qhJckCQGZHsASVqootjHxwduzvZ7HyHssLAwCGOgyNFTPgcq5AczGO0ADObYoavbILsCrr79fWJhn4ccF13tRrJsR1/V5MmT////z8DAIC4ufvDgQePYwiPvmJAv/U1OTrazs9PS0nJ3d4donTZt2p5JoFNBGRgYVH49+/DhAwMDQ05OztGjR2NioPOwu3fvhigmSELa/eQN/P/+8wfe9Cdo0aiC0RAYDYHREBgNAVwhAOkGrH73fZDsEn5zdNOtzQsEXl7Desz/iRMnGBgYbt26taw+B+6j7du3MzAwrF+/fmFVOlyQngzIiv+pU6eeefhOXE5h9Hovegb+IAejS4AGeQSR4DwKVwEhgwE8J/To7HbIwD/EPWvWrAkODnbMxjl5yvv4/ObNm+HXAswujIXsFe7v7994G3SfOQMDw8Hpzf///8/IyLjBBL07DGI4Jkleox9izu8/f/7ISa6/ch/CHSVHQ2A0BEZDYDQEqBgChkI8Ut+/cnFCL34hw2Sy1wUJvLy2YQPKof53795N7pqL5obPZ3aePXsWVB+lV8GlIMeDMjMz26aAlgPBxenAIPuUTzxuG13/M2zA6AzAsIlKanoEck7oypUr6X9OqHVqpYeHB9wzISEh2traU7Kg86dXV0+vDrSFyzIwMEBWWDIwMOzsr2ZgYHB2dobIwlv/+6Y0QOYT/P39IVJYScioP1Yp/ILwPb6rP/0Ybf3jD6tR2dEQGA2B0RAgOwTOv/uy9ft/+h8WtKq5AN765+KCTo+rqantntKI5pf9+/dDRJqiEbXYoUOHGBgY/v79O7csGSJLB5KSUz7p4LxRKwYDGO0ADIZYGIxuYGFlvfudbUDOCf2hZPb582d4oFy7dk1HR2dFXVZtsP3r169dXV3hUgwMDKtWrWJgYGBmZnYvbM2w03r06BEDA8OLFy/gatauXQthd27Gfj8AJU1/JlX5Oywss/afHT3eBxLIo+RoCIyGwGgI0DQE6H9Y0Jw5cyA+mjFjxqdPn44cOQJp0Cspoe9P8CvtSEtLY2BgsLOzgy8Tim+bGRgYyMDAoKenBzGHpiRkzY864/vRUz5pGs7DAIx2AIZBJNLQCwN1TqhvebdDVl1bG+hQBQYGBhkZmYimaa2trQwMDOzs7MgenjZtGgMDQ2xsLAMDQ0REBAMDg7W1dUQTSBCiLDQ0lIGBQUBAAMKFk5B2v/THH3Pnot8lDFeDi4G80H90jy+uUBoVHw2B0RAYDQEahQBkewDlu4RxXSK2tC4b7nJeXl4GBgYmJqakpCSX7LqaxdvWrwfdQfn48eO+9BC4MgjjFiP04P/c3FyICAMDw/LlyxkYGL5+/bq1DzRTDRenOmP0lE+qB+kwBqMdgGEcudTxGmRz8JmH704s7KPzlWG7nvxwyKqTkpJS8UuCN/2R71X5eX73H/D9kQ+45Mx4fkA8jLzZN8EMOkIDuTIMogDS9GdgYOjtLTp+fA0HB8fSpV1bt86CyOInkZv++FUOlOz/HdP/b0f0fwbKGaP2jobAaAiMhgCtQwDSDaBklzADAwPmeUHfL+yVlpaOMJSDuN/JyQlymhwLCwtEZOKO07a2oMWoRkZGEBFkcubMmQwMDFOnTp1ZFA8RZ2KCtrVu3boFEaE6CR/4P/Pw3d3vbKObfakewsMPQBPl8PPYqI+oGwIDNRXAwMCgFpAC8YuGhgYDA8PTp0/DdCSm50b+OLfr+HHQqp6WlhYGBoauri4GBoZJkyZ5lXRA1DMwMCQkJDAwMERGRsa2z2ZgYIA3/cHq8yUkJOCnhX748GHp0q7eXpzXtv/+8+e7lCjkZE+4+YORAT5AieHjq8HotlE3jYbAaAiMhgANQgByl/A7Pr7f4CEhMmyAdAOijBUOzGw7efIkAwNDRkYGxJzsSUshjHnz5kEYDAwM27Ztg7DjLaBX1EO4oPH+cw/5+fkZGBh0dHSWN4DmAQ4cOACR/fr1K4RBXXJBZZo64/v8pv7R672oG7DDG4yeAjSs4peKBwHhCpcf376e2LCoo6Njx6NvuNTQSHxaToSWFvqFX46Ojv81bUVeXVuzZg3o7IUs6GGgDAwM6n9fQkZifv36lZiIchHY3LlNHBzQoyT4+Pg+ffoEcbORkZGmpguEDSd59NXv3n8yNFb5f33//xBorpnRJYmBFepBuEdGGaMhMBoCoyEw7EPAUIhH5PNHAV4eUn26amkvspbQ0NDp06eHVPeBlu+zf5k0aRJkHsApE1qbWAr9b29vZ2Bg+PXrl1tuA7LehVXp8vLyDAwMjIyM0tLST548gcj+/fvXOasWwqYKScXrvYhxz+gRQMMJjM4ADKfYpIdfOLi4bUJTlu85qfzzKZ1XBGVNWeHl5YXsydDQ0H379u2f2ghp/S9evBguu6wmA9L6X7JkCVrrn4GBAX6BwLt373x9M969eyciAlq4efPmTbgJkON9rjMwDKU9vq8fQ93PirJTAio4So2GwGgIjIbAcA8BsncJBwcHQ8KGi4vr6NGjr4VUIa1/BgaGSz+h3Qnklf3H3zFC1EdGRkIYcDK+bSbkBoD////DW/8+Pj7wtUBwlZQwqoIdjszrKe2afvc7m6CYBCVGjeodgWC0AzACI51SL7OwssLPCfWQ4/rz+xelJhKt/5uCya5du3JzcysqKp4/f/5aVNMxu/769esQA6KioiAMBgYGNzc3CHv79ksQBpzMyPA9ePAg6H6Agwdzc0HrhXJzO6SkpBgYGH78AG0kgCz0hxzvM7T2+P5/Bb+FAFozgXz97Nb/7dNGNwaAgmIUj4bAaAgQCoH/u6GH3iAr/H/zOMP9Cwz//iILDmY2ZHsASbuEIVt1IefITZy2DrIoCL5LuLu7G7Kyf0NnGdzjkLGntWvXQpb6QMTrwkHTyJ0bDr97905JSYmLi0taWjo7O/uLtJ5jBnU2AcNP+bQIiBtt+kOCfZQkFYx2AEgNsVH10BCAnBO6fM/JI7M76DkV0LbhyOW/gic+sUU2T4c4BXLKMhMTk3Mu6FRm6Y8/kixUrly5wsDAcOHCBYgaZBI+/D9r1la4+J07dxgYGOzt7eH3+A6tpj/UI19AVyAziMhCuQwM/89t/39xD4jLyMjwHnE6KkhkFI+GwGgIjIYAcgi8fwEaKfjzi+HVA4Twp9f/d85kuHf+/41jIMajqwipQc+CdANw7RJet3Lito0zE2NA7XUGBoaYxEoDAwMGBoYJEyZAfBbsZ5aZ4gPpCWy9856RETSwArlrEqJgyu5zkOX+ioqKDAwMe6c1azK9d3JyKvQyZ2BgCKrskXON+Pz5s6pP/NU/oF0BEF2UkPDNvqOnfFISjKMAdLDVaCiMhgAlITCAm4PhzhYSEoIszdRn/bi8NtPdXScuLg60B0Bdvbt7GVwZhGFuLvPtG2j3wqtXiG2yxcUREMH9jPJLTg6l6g3iKQT5+zto1amcNkTk//5FDC/BcwJsnIxOCQyCo3PEkIAZJUdDYDQEsIWAoAQDN+jE5P+3QLtgISr+XzuCPPD//+pBhj/0m/WFuIFyErJL+I+UBGSX8InDq1ct7f3z58+XL188PT2fPYT6d/Xq1QwMDE1NTaUFEZvXTQsPD3d0dFy1tFdThUfsy889e0CDKa9fv15UDd0fzMDAALkjDDJ77JxVy8bGxsDAgHzvJBUX/Y+e8jkKqAhGZwCoGJgj1KgBPCcUEuLOzs6QgZmJEydKSkpCWv/s7OzXrl2DKEAm8/LyGBgYvLy8Cgt7IOI8+uq2dvYQNgMbJ5QxRKl//0AOF5Fl+Pf3/65ZDD++gLh8oozOCUPeayCfjOLREBgNAdqGAKOZHwjZhDP8/QO1CTJzyMnLaBXCICLHaB3GwAJq40JlhxS1/sr9DZ9+3314GXJlJNztR44cef7oFAMDQ3XDDAYGhj9//piZmX3/DhpPgahpbGzk4/w4c942ExMTBgYGOTnoCaEMDAyNK3ZD1US5MzAwXPzBzcDAALk6ACJOFRI+8D96yidVwnMUjM4ADLc0MIA79AdqKkD644+8vM78/HzkuGRhYXn06FFcXCWyIAMDAysrdNR/7dq1kD2+L/m4Zy1f/fUL6OJhRptwNPVDjPsd5AuQm3/9+L97NrT+ltNmtA5lYADNXIOkRvFoCIyGwGgI4AkBDh4GYZn/l/b93zOX4TdoTxQDN2Ttyn8GfjFGUx8GPtB5CXgMGPxSZ08dBrV+mFkWLF39588fyOaxw4cP56T7MzAwQM6V/g8+T5mPjy8iIgJy/P+cOXP8vYzg98yoM7yF+BS+JeDSJeh+s6dPnxpHgU7/hCignBwkp3wOYAOD8jAcNQETjM4AYIbJqAiZIQCZCrj69veJhX0eclxkmkKcNsiJ/tIfwfUTA8Pr12wHDx60s7PT1NSsra39+fNnURHoQDctLX74Rb8TJpQuWLCAgYFh+vQZaZ3zIHt89z54+f/8DpCdvMIMvMIgxtDFb6Enzf0/sIQBPBXAaBnMqA2b3Bi6/hp1+WgIjIYA3UIA3PBleHoDNIt4bjtoSaEW6MYrhu9f/h9a/v/42v/7F4HOGn5+m24uooFF/0GrRlnYEpfsN4uvYlazhiz9h5wyV1VVBbfx0aNH/5ilf//+DTm9JyYmJj2npa4OdNj0zJkzP5/ZGW4gqwU7nBq+NyC6aSrcBAoZkIH/5ubmMw/ficspjF7vRWF4jmpHBqP3ACCHxnBg0+EqAILB9Of378/v35rIC4WHh7dtOEJQPUkK4I1+grosLeVycnJkZWVv376dnFz35s3FnTt3guozzyy4XtBS17tnQYLOSQxsQ/vg/P/ntkNX/IO9x+iWxsAMvbcSLICX+PNr6E7r4/XYqORoCIyGAHEh8Pbp/1MbQROhvMIML+5BRkYYrUIZ+EX/H1jMAJ9ghBsmpsBojHIuM1xmkDP+H13N8Ok1qNiH1QWGQjznloKuknz69GlhWR/T36crVqxQVFQ0tQqC+wVyS0B2dvbrDxxHD6x4+vQpXArC+Pnzp3se6CAKCJdysirYwc3NTd8lcJCc8zM6AzDMwOgMwDCL0EHhHRqdEwoZ9Sfehzk5OZDl/snJdb///IG0/hlUTBEm/PnFAG79MygZDfXWP8hTH0FVGojBK8TomUVC6//X9/+754COCj2wBKR9FI+GwGgIjLwQ+H9qE8jTX96DSAklEMnA8P8YaFMso0MslpU/rx4wvHsGUTa0SEY10BE9IDf//gkiGRhAZ76BT/jpnzTt958//5il//79i9z6B50RFBMDOQaUgYHB2iHC1dUVsveMgYGBjY1tw4YNsUlV8DNDIcaSTY6e8kl20I1qJB6MdgCID6tRlaSFABXPCSW16Q9xKGQmt7Or+yUf9+qPoJN/QEM+Uohr2/+fhd7lzqhuAdEyhMnXD6FbfuV0GG0iSPDIz2//986HqGeUUYcwRsnREBgNgREXAkyg9sD/t9CBbfDeIXAYvLgLKjmtwxhdkhltIhjtohgdYhjYQVtd/58Dr58EqxpKhCh4Cy8LG8MHpJORGUHe71m2fsOn33cYmD0DERPFEK9VVFRAGIvntTEwMAiK6b1+/XrJkiUrV64MCM1dthq0r4CBgQFyZihEJRkkZM2POuP70VM+yQi9US0kAaJXCJBk6qji0RCAhQDy5uCrf/g5uKH3KcLkCdDEL/hBM+j3nz9vBdRdMhsFI8Cl9k/YeQ5vn0LOuWN4eBkyfMVoEYimdyhy/1+AnkTBqG1Hgvs/voaM8EG1yOlCGaPUaAiMhsCwCYH3zxkEJbH45tFV0JmeoDOC4xkYmRhYWBl+/WX4ATtLgE+UQUCc4cPL/+d3gmYUQacosDOwsjP8/8/AyMhoGwHdJfz/H0gvFtMHtRBolISDG+QdqDP/Q486Bc8JgCYEGJgNGZjZ7x+TVYROF7x8+RKi9u9f6G1oWfntEBFMEjIV8IqHtBvZR0/5xAzJURHaAVCXl3amj5pM/xAYhKv0IJuDzzx8d2JhH5FXhkGG/Mlr/SPf47v3AbTIZmCFnlv3/+rB/7dO/j+79f816IAN9qqR/jFHgY3/rx+FnMwNGpkj3pyX91Fa/6CZ7KG9C4J4r4+qHA2BERICoKV9J9YzYNuz+x88tM/w6/v/HTMYXt5jEATdhs7wEzpZChr1N/aGhBK0tPzzG3Sx4M4ZDF/e/X8APfEG1B+AKBpaJK8QUusf5Feo83kEoYz//8+tmnT82JHVy/r0daUKc0KCg4NB6hgZISf9Q5XhpSCzAZDOAF6FDPCB/0F7yucgbFrgD9JRWYJgtANAMIhGFVAnBJCnAn58BZ9Pj81gSNMfmwxhMUjTf/WnH0tOXgUP4SBpYWZlEAJXbwwMoHX/rx5C5KAjWxDO0CUfXAS5nYmZgZMPxCAGP7gI2jTMwAAa9hMBT4gP9TsQiPH1qJrREBhRIfD9E8S7oBlCSCkB4YNJ0Hn/Rp4M4LXvoMU878CLfyB7AMAKQDujlI1BzIeXGX58Zfj1DXTMwP///w+vYLhzGiTOyMTAxAxiDHUMu9qMURh2jTojI+jMUwaG////V1cUW1pafvgAumedn5+fmZlkL0N6ArgCCXLKZ0ZV+81PjINkvy8up46KDycw2gEYTrE52P0CmQqAnBOabIlYiw9xN7Wa/hDTMElG8wAGVqQRbg4eRg/EbY6Y6oeKyP+TGyBOZXSMhzAIkv+vHgJNGjAwMDCzgnS9A58fKixDUOOogmEVAuCzYoeVj0Y9gxYCHIgll/+vHwUdeoamQFyR0TWFgR18ajN49QvkBGG4Kvh+2f9ntjBw8TPqu8KlQMPhKqBbsZBFhiob4ne0WVB+MdDdZ+C9AVB/MbO2dvYFRRRAuSRSmN0AyMA/5JRPOTWN0VM+SQzRUeUUgdFjQCkKvsGpeTCcBIo/ZNDOCSVvqQ/Eit9//vyRk1x/5T6ES5h89wx0np2gJAMX0YPlhA0dSBX/b55guHeOQUqNUd+FGHeAzvqA3BjAzMLoGMfAyvF/+zRQXW4egJgkIcagUTVDPQQgV70Sf1bsUPfviHQ/6EZwUEQzMjCADr9nkNVm1MF2N8idM/9vg67CBQUSIxOoVwBPGK8fgVr/DAyg7VKCkgw/vv5/dJnh7x9GWS0GHiGQ+mGAP7z8f3wtqBh0TwfNaXz7BFr1xMbBqOfM8P8fw+tH/5/eYOASgB8X4awgzvvuHSsL+bsoX/GwVwU7rFy58szDd0Ni1H90CdDwA+Qn3+EXFqM+olsIQM4Jfffg7cqVKz1UVc+d+8QKW6NPpBt+//kjaKx99/4T0Cp/4lv/DAzDr40LqpPULdDG7XAF4/9Dyxi+giayGZhZGO1jQVMiz2AX+vCJouh69YBBTAFFZJQzzELgz2/QAm54O2+Y+W7UO5AQ4BUBnXXDyMDAysnw6zvD46v/f/9gNHSHSCJIFROG3z8ZIMuE/v8DdRskVBgN3UAKROVAbeJ/f/+fWA9aM8nBzag29I9NA3kMCX95h+A8uf7/8n4oV88ZtMVZTIERtTAE1TsMDIZC7CKfPwrwIqZZoLoIUb9//0q2MVi5cuXLR1+GROufkIdG5YckGF0CNCSjbag7WvrTD+lPP7g4uX+8/Ld3w6FVqybExxM1es3AwPD7zx8efXX4Pb5DPSio5n7wEX74Tfu/dx609c/AABr9BV+F8//+eZAuRkbQZgAQC4z//f1/dhtoZgByLShYbJQYbiHw9w+ozTfcfDXqH5QQYFQyBPH//wdN90HuOnxx9//JjSBBVMzICx7OZ2aBFgUv7vzfPYfh81vQuLh1KEgtRDuINdzwf9h5oP8PLUW0/hkY/l/ai8er59992f2b+Q4DM7sq9NoEPIohUr9//0qJdxfi/TZ32orPr/9zcXJjrguCqBwlR0OA1mB0CRCtQ3hgzB+0q4CkP/3ADJHff34bOejcvn373Tt2Li6coym///xh11S+evvh+Xc49xBjGj4qAgmB/9unQ9cAQPhoJCcv6K4fuOCfX6C6n4EBtASWXwwujMz4f2wNSBZZaJQ9hELg3z+GL+8ZGJkZODhRj0MZQn4YdSrD/+3TQKPyeEICnpeNvRjEFP7vm88AOROZRwh06S94BzBU96fXoCtyGRgYPTJBO4veP4eKy2gy6joyfPs0bJZNQv2FRP0/vZnhzWMkARCTkZTr4Q2FeLRV5X/evgfSiQP//v3L3EgaVNM9+8XKyoqp6hWJx4ZimkAjkdH1P8MSjM4ADMtoHYyegoz6Y3UZKwvr5SM3H119vn79NKxTAfiO98Fq4qggSgj8B43lQ1YAs7AxyGiiSII5jDIaYBpGgBYNg9l8ImCKgQFyQgiUw8Dw4SXDx1egEwZvHIeLjTKGUgiAdj0ygk6A+fN7KDl71K1IIQDO1+DZPCRBdCYLG0QEsgOY0SkRuuX3y7v/+xaA1oBBpEFHAkBVgo75twhkNPKEykC2CA+XTVNQT6FRH2AHRkPEVUxA3SpSZjzOv/uy5OTV1e++s6sq/f7zB2IMnIQP/O/YePjz6/9YW/+UXyIGt26UMRoCxIDRPQDEhNKoGopCAOuoP6aJYiLiYR4x586d4+B4C58KQOzxPXkVquXvb4aX9///+c0opw0VGaXwhMC/P/93zoLKs3GClgEwMTPIaP6/dQJyDxpUShL1UKav76Hi/xkYGBn+H18HWkbMwMBoG8kAPicbeoQoAwOjhiVU5Sg1tELgzy9Q65+BgeHXDwZOnNNuQ8tPI8u1sCt7QSv7OXnx+Z2Tj+H7J4bP4GXuL+4hTvr/9f3/7jmMbqlQvfBlhL9+gA4AFVcENYKhcsOcYnRO/L9zJsiTLGygDdAgFrH4/+3TDD++gI5LAveUloCrqkAdmf+PnkB2Cf/+/UuI91t5YaOCnJKYqDhBcyH3Bgza2QCC7h9VMFTAaAdgqMTU0HMnke1+ZI9BpgK+ff+6fu/cxYsXLzx2D7TXCrLH9+9vhq8fGd48+s/CzsgvxsiPumMV2ZRRNnIIPL0J5XHxMdrHQNmCEqBDUR9d/X/jGMNf8AAwFz9UCkJ9fA2hGUD9h7nQtUNMTJDrxkBrgu1jGF7cZWDGMosN1ThKDeYQ+PeP4c9v0M5OUFwygnYCsJJ2Zelg9txIcRt8SJ7QRh1GRX3QmTYMkJlA1OD5+/v/jumM7hmg3iA7N1Tuz09QBwDKGRkUEzODvA6jiDyDmDypHmZUNWX4+Pr/y/sMH18xKhkxcIPKUsjBdIb8zIW+pgf27bl77YWqsjpJJkO6AQwMDKM9AZLCbVQx8WC0A0B8WI2qJDYEyGj6w43+/eePmImuETNTXMuM/1/fgcpTDi6Grx//P7zMwC/GKK7MCC5e4epHGQRCQFabUVb7/8U9WA4JldNmuHoQpJ0RvBQExILi/z/AuywYmSA7AUCifKKMlsEMTEwM//7+P7iEUdGQQUEPJD6Kh2IIQHp9EJczMoE6A6MdAEhoDGby+2cG5JF++IA9cmxidb+MBgP84nO4AiVD0FTA05ugm652TGd0TWVghMn9+s6ANiIAkxnGNKOWHfm+4xcFjUl9lfn/9gnDvXOMkioMIrIMn96cu3w57vJZQwVFbQuTn3fR9xgQaR2kJzDaDSAyuEaVEQ9GOwDEh9WoSsIhQGHTn11V7s7th+f3gu+Y5BVmZOf6f+8cw5PrjIbu8AlWwo4YVYERAlha/6CDgMBj/wwMDOKK6Dq+gI8K/f8PIg5aDQxT8//qIdBB4NePMIrIQpYDQdSMkkMpBH4h7cVnBHXqhpLjR6Rbocv9JZQRJ3jCL6j69omBVxhfqKDN1IkrMmpaM4BvDf/Pzg26RYSB4f/u2aD1gZCrr/CZNSqHOwS4+UHjU3/VQPcGgA8SZRRTZGDjPP/28/njVwyFebXV5Ee7AbiDb1SG3mB0EzC9Q5w+9tF/zz6ePb4EvQza46sotfrNxyXHL59/A727HqSLjZNRQpVBQPL/+Z2Q0+hAgqOYWiEAW0PMKKeDMPLfv/8n1jG8eQQV4eABrQOGtf4Zvn1keHIdJCUqB2v9/wddlENoEQJIyygePCHAyQte/wMe8mViYuCArf0YPC4cdQlSCPy/uAfKe3H3/44ZDJAVemycUEHkk3ygQhgUuLkP2t1r5Anqz0O4DAyM6haMGtZQ1cyso+d6QYOCbOrvb4b3L/6/fsTw/SujjBYDPI4YGM6//bzk+JU7f/+xK8uSbfyAnBlK/+YE2eEzqpEkMDoDQFJwjSrGEgIUjvr/kRZZf/Euw5vLWIyGCTEaejF8ev3/+Z3ReQBYkFCB/v/gEtQUIWko4/XD/2e2QtlgCjQoCGZAiP+nt0AYjHrgexue3wGdmf0XvJpcXJHRAHxtEETFKDmYQ4CJiYFXkOHD6/8M/xkFsB/zOpidP9LcBprBU9ADHVX5+yfD/3//j61mEJVHZLfvnwkHiKQyw73zoDN/hGGZHa5HUZ9RWIoB7R5AuOwog/gQ+Pub4eHl/18/Moop/n94Bas+yGwAAwNDjKXOl5v3IbuEsarEIzi6KAhP4IxKEQ9GZwCID6tRlSgAMuRPduv/248fL7nYVr/5CGr9oxiMwfkAPo6aV4yRWwh0bh3Gac0YGkYFiAsB+MmejIyglf175iJa/5CBK7R14e+egmYAGBhA3TA2DoanN/5f2AXdQ/zvL8PzOwzPbhFn8aiqQREC/2FLvAaFa0YdgT8E+MUYXZIZpGHH9b5+CCoMwVr+f/sIpvERjPAdO5/eYFE32vrHEiikCP39zfDm8f9rRxhY2EED/8ysDJwEZtWWHL+y4d3XO3//ffgM3nBFim0QtZDZAEhnACIySo6GAElgtANAUnCNKgaFAKTpD2KRjkH3+GorveRi2/Dh69574JY9QUNkNBl+fQOp4hWGTgVc3g/avgYSGsXkhwCjRyajiQ+DkBTD3XOgI/BAB8MzMDCzMNpEMHCAz4WEdANgNiBuD1U2ZgDdkbkPJMPICL8eCDGlAJIYxaMhMBoCVA4BRj0n8CGV4LVb8L2/xMwAsHFBnPIfsoQPwhklqRICf3+Dmv5vnjJKqjHwgi9OgUcNIfPPv/28+/vfobguiJDPRuWHABjtAAyBSBo8TqSw6c+kKHWH4f+svaeJbfqDfc6IPGfNzMLAK8bILw4a/RodbwaHD0WEqByjecD/77ARREEJRrc0Bl4hyEg/w7+/CMMfQtdoMZp4gwTvnQORDAyMNuGMdtEQNsMX8EHjUM4oNRoCoyFAgxBgYWP0zGTURjqy5uV9hue3CdjEyMjAAj60980TAipHpYkPAdjAPyO/GOgoBWbYmuqfX0G7gYk2Z+huDyDai6MKByMY7QAMxlgZhG6ivOmPZY8v8f788RVFLScfaCrgx3fQAvSf4MkBFOlRDmkhwKjjyOiZxWjiw2gRBNUJuQmYlQPK/fMLfI44A2hmQBR0TvZ/+MWZoANG/kNXJkioQNWPUqMhMBoCNA0BOR3wVADUjv8Xdv/fMxd0pxtUABsFWecjJIlNblSM9BD49AY08P/tE2LgH9kMFpIv1hjtBiCH3yibDoDx/+jxHXQI5gGywjE6i0KbyV7iD7H3958/7KpyS45DB48hgiST3z8x/PjKIIit3vr1/f+7J6CxFiUjko0d1YA7BEAnjfz/xyClBtp9yMDw/9wOhpf3QHdG2UYw8AiB9N09B7pLmIGBgU8EdHIIIxPDm8cMghKjV4OBAmeI4P/vX4KOhRndBDxE4gvTmdCzQZEl5HUZNW1At3ohC0LYz24zSKFe+A0RHyVJDQHIUT/P7zAKycAXQKKY8fI+AxcvdDkQigQJHEp2CcOtofz2gNEjgIYxGJ0BGMaRS5HXKBnyZ2Bg+P3nz3dxAcioP0XuAGv+/xV8LD2YjUJAzgllYAZVhKObg1GChjIOZHso+GZ70MIecOsf1HqAtP4ZGBiUDMDnSDIwfHrDADlNSER2tPVPWaCP6h4NARJDgIUNpIFbAHTtFIjFADqFZt8CUK6EcJHJ0dY/cmiQx4at+WH49gm02Rd+GTOmafBrlTGliBOB7xL+9gPp1g7i9MJVQTYKw7mjjNEQQAajHQDk0Bhlg0KAkqY/fI8vUcf7gGwjAnPyMcpo4lOHvDmY6N1X+Awc8XKgs/85+RjAS1r/n9gACQ9GHQeGz+/+XzkA4jIyMaqZgRgMDP/vgC9ug3BGydEQGA0BOofAz2+Mpr6MTgmgi7oZGBh+ff9/dNX/C7vp7Irhbx3klM/nd0DXe0E2++Lyszjo/i9ckiSJn3/7eeunn5QcFsTAwDDaDSApzEcOGO0AjJy4JuxTCpv+5O3xJewsYlRANgdzC/3fNRu0FoUYLaNq8IYAo0MMo7IJw+tHDL9B40+gTYfMrP8v72V4fO3/wSUgrQqwSYA/sBuFQaKjeDQERkOAXiEAuQIMsmOHnYvRPYNRFdotZ3h+G7QrgF4OGeb2wAf+WcCnfKIej0YHv48eFkSHQB6BALZpfQR6fdTLSCFAyVp/yEL/1ccv47/MC8k2mjHhUwHD7sow0B1AHNyMuk40CztsBjMxMYjKMaqa/b99igFyW/Bn8Dk/kI1DjIzQpcaMo+MI2EJvVGw0BGgdAhw8DL9/QhfjQexSMWGU1fp/cgNo9w7/6BVvkEChjISc8snAANrsC54Upcw48nVDLhEzFObVVpP/efcxeQZB7g2gfG8AebaP6hpUYHQT8KCKDuo7Bv8+YEra/ZCF/lTY40t9TzMwfP/0/+oBRlNfxNJYWthCNzMfXoYewsPAADqoR1CCbjajWfR/5wyGf/9Au4HNA/6/esBw/wJIgbwuo5YtiDGKh1QIjG4CHlLRhcWx/09uYHj3DJQfPSk97wGL6aNC8M2+/GIU7uilRVjSYZfw6A7g4Q1GZwCGd/zi9B3lTf8/0iKgS3zfUHbCD04HUiYBOSf0F+icUNC1tZDNrJQZOWC6QYfNHYbb/v/EOgZWdtCdoHAhejL4xRneg65vA7U8IPayc462/iEhMUqOhgC9Q2B09R3tQvzTm/8PLzNyCQz4wD8uLy45foWBgcFZSYL3w2dWFjLbcqMTAiMZjM7dj7jYp2ShPwMDAw/4Hl9q7vGlUQwwszCwcjEKyfy/dZIBdmsVjayiobH///0/vhZkvoA4YqL/90+GF3dBgnTHjHrODMjrXzl4GG0j6e6KUQtHQ2A0BMAhwAe+d5aBAeXOPrDMKEF+CEBW/D+8DLreS0gKchYC+abRWOfeey82vPs6ukuYxsE8PAGZvcbhGRjD3VeUjPr//vNHUF/t9MWb5/cOqSNfIOeEfn77//J+RkmVIbci6P+RlZCqndEymOHvH4ZHV/7fOMbAwc0goTwwqZWLj9E5EXQDwNePoPAcKGcMjOdHbR0NgUEWAhw8oPU/auaI0YFB5sCh55w3j/8/v8PILwY65XPouP78288MDAyGXP9GtwcMnUgbeDC6B2Dg44CmLoDsAaCw6c+uKnf19sPzbz7R1Km0NfzvH4Zv7/5//cioZTNUjqsHHbj5+Bqogkde4Pv1A6iy5+SFBtfvH6DZAFltKHeUGg0BokNgdA8A0UE1qpD0EHh6k0FIigFeUpFuAL11QE75/PoRdMon8jwnvd1BqX0U7hKGWA/ZJTy6B2B4g9EOwPCOX4Yix2hITibbn99+/HjIwjy0W/9wz39++//m0aGxOfjdM6R19lwMMhqMahZwf0AYoP0A719A2AxMTIzuGVD2KDUaAsSEwPcvoM4kOycxakfVjIYAkSHwf9cs0HQlRDU7N6NjLMMgPyhscG/2hQQkSaShMK/U719cHBwk6UJTLP3pR9/+pWiCo9zhBEY7AMMpNrH7hfI+AAMDw6v3H/b8/IvdgqElCp8KUDNnGMSbg/+f2sTw9gly0DLqOjIgXYj2f/9Chh9fkRWA5grcUofK/Aaay0e5oyEwGgLDIAT+H1jC8B19rhh0seCg9dugOeWTWiFkz/pfTFCAQtNGW/8jAYxuAh4JsUyFiwDFBAUCBLgNRfiGfHhBrgzjF/+/b8FgvjKM0diTgYOHQVqdQVQeEub/L++HMBgYGEBsSOufX4xR0wY+zw7a8QxXNMoYDYHREBgNAXqGwM9v8NY/qFyC7RH6v30aPV1BrF2Qzb7XjkBX/A/oGf/EuhmvOkNhXm8+dgpb/xQeE4LXgaOSgwuMbgIeXPFBU9eIfflJyXIgLg4OTQYGYXbm4TAVADkn9NNr0H6vwTkVwMzK6BgHSQ//985j+AW6jhfCZfjyjuHJdRAbdgA/o5wO6IR+BgaGL+9B4qN4NARGQ2A0BOgfApCLAkHXlQQyCEoyKuiBLg6/cgDkkPfPGQQlQYxBggf9KZ+khhNo4J+ZiYGZ0mU/pNo7qn7ogtEZgKEbd+S4XOzLT8i5v+RoBusZblMBQjKgqYDBdE7o/z1zGZ7fAQc2jJDRArMYGcBX8P4/vQXMZUAcwM8Ey8jMrBApkMqf3zDXCEFlR6nREBgNgdEQoHoIcMEOJ+CGLUGR1QJtBWZg+H9iPdVtI9NAyMD/EDnlkxg/jg78ExNKo2owAazdgCkzKjJ8Q4DCPgBoKoCF1YWdeTiEEBsno4kfAwMzaFHNGzIvV6diOIA2/v7++f/6URQzX4JP/WdkZGBkZHh2i+HHF9Byfwfo/ACySkYZDRD305v/u2f/37fg//6F/3fOAomM4tEQGA2B0RCgdQhw8UNtQCpLQasZwaKDYoHim8f/rx1h+PYJdMonL+wWBbDzhihhz/pfhZmJ8v2+Q9T7o86mBIx2ACgJvSGsd3QqACXyeIUZRRX/P78D6gb8/Y0iRWfOpzcgC+H3+4A4DAxfP4JoJUPQ6v+Le0BsNk4GTtAR4CA2A8P/8zshDAYxBYZPr/8fXYU4hePfH9AC3IeD8sJmqKNHqdEQGA2B4RIC4LH//5BiCuInFnYGZSMQ8+5Zht9ISxlBQnTEf38z3DsHWvMppsgwLJr+owP/dEw9wxOMdgCGZ7wi+wrPSV6jUwGIgGJmYZRQZeQW+r9r9kBuDoZ0P76DbnWBuA3kHhCLkVHN/P8N6MwAo10USAyCv34AXQXAAF4R9PvH/6OrIcKgzoCwNIT9/9phCGOUHA2BUTAaApSEwP/Tm/+f3Mjw6gFWQxiNPKHiSArgRxj/P7UZKktPCrLm59oRBhZ20MD/UD7jHx5stB74x9NsgLthlDHUwegm4KEeg5S6X+zLT9ApnzzsZBsE2hUwbO4K4BVmNPQCDaI/v8M4IJuD+cUYPrxk+PLu/42jjNyC/68eYvj/D7Tgx8AFdCXw/YugaJLTYWBFxNf/07A6VV73/zFo658Rdh4o4jjRf39Bh76D9I/i0RAYDYHRECA5BP4fXMrwDTwbycDw/91TBm5BRrtIdFN4BEEHl71++P/sNkaPDPgNAIyG7qCJyk+vGb5+YADPEqBrpBF/2J3ySa0z/mkU3qPGDiEwOgMwhCKLhk6FdAPItmBY7QqAnBPKLQTaHIy0kpXswCFJI6O6JVT9/Yugm4DBrX8GOW0GSdX/F3ZDpBB7f0FdtwcM4OkCRstghtePGD6+BvUWzPzhtwEwiitAdIH2D0BZo9RoCIyGwGgIkBYC/y/thbf+oTq/vv9/YDGUjUQxmnhDeKAVlRAWAwODhDIDK+iAmv+HlsHFaMuADfwPm1M+GRgYaD3wT9sYGTV9kIHRDsAgi5CBc87orgCUsIdPBVzez/DzG4oUTTlCUgwKesiNdUZ1S0Zte5CdL++BGvdq5siy/89uA0mxsjMIiP8/uxXEZmBggK38Ae0ZeAw+MBSkczSzQ4NnlBoNgdEQIDkEXoDKH1BBYh4AutgLcsb/988Mj69iMUrZBCT49Cbyon94x4ABstARpIJm+Ptn0Gbfj28YJdVGV/zDQ3n0jH94UIwCBgaG0TbBaDJACYHRqQBEcECmAuh+Tiijpg2jezqjqS+jRSCjWxoDeO8vwzfY5ZpK4O10EFfeOQOhGa3DGO6eAx39ycDA6JQAEQSR//8xfH4LYkipgshRPBoCoyEwGgJkhMD//6AliAwMDCKykGM9GQ3dIYz/Vw4y/PmFZiSjmhlE5P++RRAGiBQQB5EMDAwPaHkmAWTg/84ZRn4xkAuH/vVeowP/0GQzSlEbjHYAqB2iQ9+80akAlDhk4wTtCqDzOaGMTKCKVlCSAV57fXkHdRW8rv3z6//tUyBBKVUGTt7/t06A2ALiDOxcIAYY/78APjKIgYFRxwEsgEH8+s7w6ArD42sYEqMCoyEwGgIjOgRASxDhG3kZGSGbkRh+g/aMQcKF0TwAwgAt7oewkEhGQw8Q798fhqc3QQwoZgRNS8KNhQpSj3rzGHRqwrfhc8rn6FE/1Escoyahg9FNwOghMiz5ffuXFjlGk+S10WuDEcEFmgoQZuTiBx0h9+k1g7wufIU9Qg2tWVx8EBv+X9wDas3/+wtfSsuo6/T//C6ILKOZH4QBIr+8Y3gBulAMdAQH/IIwkAQUI/YHMzAwXD3I6JEJlRilRkNgNARGcAj83zkTMt7///E1BmYWRpdk0PkB/GIMH1+BEFLIMGrZgk4Ye/MYy9ZeCSUGXmGGz2//X9rL+O8vaETj2W0Ghv8g3UhrFEFcquC/vxkeXv7/9SOjkRfDsDjnBzLwLzYQl/uOHgE0QsDoDMAIiWhyvDk6FYASauBzQkFXhg3IOaFcAgyQ635fPwRd73VwCWRAjtE2kuHXD2hDX8MKuWcCvzAYegg3imcY/u9fyPD2CULs/3/QdQH3zyNERlmjITAaAiMvBEDlwL+/CH///QPqDzAwMBq4QQWRx+/ldSGC8PEICBdCMloEQjYs/b9y4P+BxdBZSgYGRuquSISs+Rlep3yODvxDktAoSVMw2gGgafAOB8Mp3xWgwsA4TK4NZmBgGKjNwUxMjLpOoHE4pDQFOnKbR/D/lf1QMUUDKIOBgeHlPeiFwRZBCEE468kNhh9fQTx2LtAOY1ktEJuB4f/t09AhOgh/lBwNgdEQGFEh8P45zLuMjAauDLAdR6BeARcfaEk9AwPo4IF/oLOJISoRs47vnkFEECQLG6N9NPKoBEhKVpuBRwjEoAoGn/IJmpsdLpt9GUaP+qFKwhg1hAgw2gEgIpBGvBIK+wCsLCyguwIEuIdJQIJWBImBrgzbt4CuV4ZJqTG6pzMIy4AqVHFF0GZfcUVQkL5+BCI5eUEkDP8/twPEZGZhEJQAMVDx/8v7QAKcPCBD5LRBa4p4hUEif/8wMIAW6YLYo3g0BEZDYKSFwDtoB4DRPopBUpVR3YLR1BcaBnfOMBp7Qdig7QEQFujMMRkG8M3l/09ugIuBGI+ugEhOPkbXZEYtGwZROQZZLUbHOEYd8JlmIDnKMGzgfzid8mkozGvP+l9MUICyoGGQ/jRwNy5T6PRR7XQEox0AOgb2ULaK8uVAXBwcoSL8o1MBFKYCRjM/RrdU0Ng/ZLPvf/CaWtDpHDJwk/9fh10YbBMBF4QzoH0DBgbQ2UFwUV7qjcnBzRxljIbAaAgM+hD4v2cuwo0csGEaNthZAiKyDOAVO6AjB/7/Ax1SzMDA8PQGyvmesI4BwxPwocN/fv0/shJ0iSFkkSEjE4O8HqOJD2iggYMHYRclrGF3yid84J/C1v/oQZ+UJKuRBkY7ACMtxikCo1MBKMEHmQqg+zmhKG5gZISO2b9+DL2v4OV9hgfgC4MllBlgW4cRWj6/A60OYmBgUDGB3MsDlXr7FMSg5w2dIPtG8WgIjIbAgIXA/5vHQWt7fv/8fxN8hhjkui6Ic96BCwQwm1HfFUwz/D+zjVHTBsrej3QFGAcPg6Ak6HifG8dBsixsDCxsIO6pTSAudTFk4H94nfI5OvBP3TQyahqRYLQDQGRADXll1NrXPzoVgJ4UBuScUGRHiIDH/n98+b9vwf/t0/6f2w6SZGIGLeEFsVDw/3Pgi8MYGBhVTRES759DOg+MGtYIwVHWaAiMhsBwDYFvH0FN/3uwTf/3zjH8+wPyK+zcYdBCfxAfiqG3j394wfDlHWgzEgMD6DKvL++h0gwMjAp6IPZv6MoTRmNP0JVhauYgQSriYXfK5yAc+KdWU4GK0T5qFI3AaAeARgE7zI0dnQpAiWDQVIAwo6ji/+d3GO6dA1WNKNK05YDqY1Z2FDsYmRgdYhkYMXL3s1uQC8XAi38Qa/0R5wWJyaOYM8oZDYHREBh+IfDpzf+DSxHe4hVmtAlnYIKeCQ5pu4NkP70GkRAMP+3n8AoGGQ0G8Eqh/4eXQyRB5NcPIJKBAdqRYOUA3RasbAwVpJz6+5vh3jnQZl8jr+Fxsy8DA8PowD/l6WLUBEoARhOBEsNG9Y6kEKBkKkBQ4ZOgwidpjV9pJozBquDjaIZB0A3UOaEc3KCDuuGbgMUUQFzIDoGfKGH7/yL0XjDIpj1okD+9CemxMGI9LwiqaJQaDYHREBguIcAnAlmiAxqkN/IAtf4hZwBA/CemyMDND1rAc3Q18plgiNN+3jyB7wwGTSO8vM/w5Pr/WychuqErEmEcKtCQNT/D65RPBgYGb7nPRnLfVHRY+KS/8El/IS+gRlf8kxduo7ogYLQDAAmHUZLMECB1KgDS9IdbxsrCIiEskKCPOFQOLjVUGQN0TiijQyyjRwajZxbopA4WVlDoPbryf99Chme3QGwGBoaHlyEM0Mk/EBaY/H9pL4hmYcN6XhBIahSPhsBoCAyvEGDUsAR5iJmFQVwJxEDFoDIELPL/FviucTAbdP4Y5LSf05sYeIQYNawgwv/Pbf9/GXYSsYgs2lHFEDXkk8PxlE/QGf9ynyWEUY76IaMbMHrUD/npalQnGIx2AMDBMEpQEAJETgWgNf2RLeTmZB9mUwEMvANxTijqmh/QKRwMDP/vX4AE9f/rR0AMXmEGyOQAiMMAusUTzAAvCgKzRonREBgNgWEfArLaIC/+/QPZ/PP/+tH/h5f/P7AYOkzALcggoQxScPcsw59fIAYYMxq6g2kGhjePGBQNQH0A0CEEUDEGNk74zABMiAIaNvA/nE75hA/8o7X+4cFEZDdgdOAfHmKjDEoAdNkfJUaM6h0NAQYGBrEvP1/xoK5Eh4WLoMInGBMnDZ0K4Pq54OJw6ZTCpwKe32FUM0duduMMBSpKwJbkQqvk3z8YwAeGMqqDR/4gFv34Aq3vsZ4XBFEzSo6GwGgIDMsQ4OBm+PEVdHg/Bw/8UnDQiMCdM6DT+g3dQct7GBj+H18Lum4cEgJc/OAVPv//3zzJKCIH6gPIaTM8vv7/909GQQkGEVmIKiqQ3z//v3OGkZWTUVKNAbYvmQrGDqgRhsK8UtzPcDX9kZ0GWRH06Sn2I1NHB/6Rw2qUTQkYLo0tSsJgxOil9e5+zKkAPKP+WEMdMhXgJwfbT4ZV0RASBG0OFmOEnBMKX4pDH/dzC4CWA+m7MrBxolgIPp4PIgI/6INRzwkiMkqOhsBoCIyQEGA08wf59OsHeOsfxGVgYPj1HbR0kIEBNGzBwMDw5T3DqwdQKQYGaHP893eoCDMrg4Ie6EgxarX+IQP/kFM+xRWh1kEtG8IUZMU/Ma1/uCcxZwPoMPBP60YC3HejjMEARjsAgyEWhpUbILsCSG36Q4Lg7+8/jIzqP/b9tX1FeNIAomUIkJBzQn98B62UffOYrg4G3+ADshE8/A/a2HfzGMPvnwz//oJOC/30BrQLUN8FdLUwSNEoHg2B0RAYMSHALYA8LcloF8XoGMcAuQnk94//x9cyKBszgFf4gEYKXj9i+PuH4eV9yIEBDKCpABoE1JvH/68dYfj2iVFGa9gc9SP995/x5++/9/5kYVb++/sPqaEG7waMDvyTGnSj6gkCxv+wlgFBpaMKhkEIFDlG09oX8AU/uFYEYXXA399/fnyVebYFumCdgYHhDwfzR372s7yoA9hYNQ8VwV/f/797wsjNzyCvS/829//dsxn+/EYPKhY2RtcUdMFR/mgIjIbASAiBN4//n94M8qiCHuKGr0PLGMALCEHneH798P/QMpAC0FABE8N/6GkNoM0AkE0CUDmKqb+/GR5e/v/1I6OYIvqkJcVmD6ABxp+/C79AOYpNMdLq54+bzKwkrL6GN/1xLQqiogdHZwBGFBidARhR0U1bz6KN+kOmAgha+ff3n68fJO6tfIPc+mdgYGD58Vf45bfhNhUgocrAwPx/12wGOk8FMDAwGnqgH9DBxDza+ieYPkcVjIbAsA0BEVkGVnYGfjFGAXG4HxntoiBs0LEB3AKMxt4QLrz1zyAgAd0iDJWgjIKs+Rl2p3xCBv7RWv8MDAz3lx97tv7t12fcRM4GwFv/DAwM8NkAykJ8VPdoCEDB6AwANCBGCEWjGQD4qD/WYHyFY3Pw399/Pjzjf3f4LlZdcMFhOBXw9w/Dt3eg4S46bw7+9f3/iXUMXz+CTgGX14Wu8YUH9ChjNARGQ2A0BBgY/p/cyPDuKQMLO6NrMig8/v4GXSHy5T0DOxejrDYDfGEhSI4yDB/4H0abfRkYGDAH/rEGE5eGMK/ybzZu7LPcyE1/TO00mg0YnQEYUYCEeagRFS6jniUmBPC3++EmYB4QxMyh++rmPXDTH7QMHa4SKwM0FfDjm+3334fF+LAqGHqCkM3BDMz/9y0AndJDrf1zBAOCjZPRLhp8uQ/iGmCCmkYVjIbAaAgM/xD4/x+y4h/kUz5hUAfgz08QG7Txl5XRyBPKphb19zfD+xegm335xUAr/qll7ECbI/33n8S3n5gD/1jd9e3G2283GLg0WDllv3MJ8iKrwd/6h8wGQNTTqCcAMXyUHN5gdAZgeMcvFt9RZRKAyKY/mvXP2ZnZeA1hTX80ScLc0akAwmE0qmI0BEZDYDQESAyB/5f3Mbx5wugQw8AIWuj/f98Chl8/GJiYGN0zSDSJOOXg670YWTlBJ4cOl1M+iR/4xxpGXBrC4obqf/7eJdj0x6qdKt2A0eH/kQZGZwBGWoxT6l/ymv5/f//h4dFjOX3hxr3dZLtg2E4FsPOCpgL0XRik1MgOnFGNoyEwGgKjIUBOCLy4y/DkBuiIsF2zGYSlGT6/BbX+GRgYOFHGpMkxGVMP0sD/sDnnh4GBgaSBf8xQYWBg+Hbj7f0bx3TluXi01b78u49VDR5B/FcH4NE4KjWSwegMwIiLfbJnAMhu+rMyqb68evP7udfwsH4swAVnk8H4w8H8WIznNtsw6r6CdgV8/P/1HaOkCmhUDH+gfHoDuolTyQi/qlHZ0RAYDYHRECAmBEBnAWEcS8BoH8PARdSqy/+X9zMqGTFw8xOw69Ob/w8vM/KLDaemPwMDg863n2Jvv7H8+EvA+3ilVd4iDgviNBIVJ6sbALGB7NmA0RmAkQZGOwAjLcYZyOgAULHpDw9uCvsADAwM3/lYh8+uAEi4EDwnFNz0/8/CzigsQ7i6hZg5So6GwGgIjIYAwRB4/fD/hd0Mf36BFLKyM2paM0hrgNjE4J/f/r+8z/DxFc5uAHzgf3id8kn5wD8kdJFb/xAR0AQM3bsBox2AkQZGOwAjLcZJ6wBQ0vR/sPgI/sClvA8wDKcCGBgYPr/9f/Mo+uZgyHEZI7np//0LAycP/hQ1KjsaAqMhQFEI/PvL8P8/mffvwrsByIebwZv+owP/OCIGa+sfrpaeswGjHYCRBkY7ACMtxontANC06Y8c6JR3A4bhVABoRRDsnFAWVtAVOSzsoKlzflHkoBtB7H//GL58YOATGkFeHvXqaAgMxRD4+Pr/x1eg2QA1cwZI2fX1I+PwOuWTpgP/uOJcIdaajL0BENOIXBQ02gEYaWC0AzDSYhzkX/yrgOjW9Ac5BYwp7wMM46kA0BWcVqEMI7bpD04hDD+/M/z+ycDOCbq3CCIySo6GwGgIDNoQePvk/6lNDDKaoGELXpFB60wyHEaVFf8MDAz4B/5xOUwh1vrjz9skXSQMNwp/N2C09T8CwTDaRjkCY4/aXia76f/vu9TzdecZGF6S5yLZD98YGBgo6Qaw/Pir+OijxDDbFcArzKjv8v/inv+ProAu7WKnaOc0eVEzWHRBlib/+DbaARgsMTLqjtEQwBUCf3//f3abQViOkZt/OO33HZCBf7QwfrD4KAMDg2SQwQ+WZ6R2A0ZPCkILzFEw2gEYTQMM5LX7GRgY/v7+Q2HTHzn0ZT98o6QPANo19em3068Pw+yAIEZlUwYO7hF9Tui/fwx/fjMwszL8/8vwF8xATjej7FEwGgKDJASQV/wTOhNokDiZSGcM7MA/miOfr7vAwMAg6KLCIPSJvG4AAwMD/gkBNBtHucMSjHYAhmW0EuspSpr+317yvt9zh+xRf6xOHJ0KQA8WNk4Gho8MnHyMhl4M3z6CjttD3mCHrnqY8v/DztdjZGL49ZOBk3WY+nPUW6MhMJRDAHbKJ3TF/7tnDKxsQ9k/ULcPhoF/qFNQKXD9y8BpJMoq/5eNiwNVkjBvdEJgFIx2AEZoGiC76Q8Jr2/vPr3fQ+aCH4gJeMjRqQBE4Hz7DFr7zsAAOpeDV5iRnev/rZOgifURdQnAnz/QAAF1AL4zsHMxMDFBRUap0RAYDYEBDwH4wD/yKZ+/fzJwDPljuwbVwD/WeP5+7vU/IQ4yOgAQ00a7ASMZjNajIzH25ayfUehtXnEh8VBhCg3Bo132wzfIbAAeNfilILsCbF99wq9s8Mv+//Ud4Ug2TkYJVQYG5v/bpzFgXNyDUDbMWKANAIwwPzEy/P4BY4/SoyEwGgIDGgJ/fzO8efz/2hGGb58YZbQYQDOWUPf8//UDdAoQlDf0KOm//4w/f5d6+pnyG77I2+9LTJBxGomyu3DwilN6PBrlTQJiXDuqZrCB0VOABluM0Mk9E2ocQSfOP6VohObv7z+whUC0cjaFuwIYGBiG9gFBf//8v3+eUcUUPXzh54Rq2YAWx6NLDyP+v38Mn98xMDCC5kAYGBj+/WFgZGTgpbTCG0YBNOqV0RAYoBCAXE7y9SMj8sA/zC3/b59mlNdB7hLAZIYAPfgH/hkYGP6b/hFSlCJ1DwBa6AsogMbIClr2o4mPckcCGJ0BGAmxjNOPvNJfcMoRIcHMysIr810kgKjr4okwD4uSkT4VwIxjkR4zCwOvGCO30P9ds0fQVADoSFQmBg5uLAllVGg0BEZDgG4hAB/4Z2FHG/hHcQLz0NuuM4QG/kXV5KjS+keJslHOSAKjHYCRFNvY/EphH4CBgYFLgFc6Whx0IgE286kiRuFyIOgBQU8+qP6CrSanirPoY8iH5zjt4RUGbQ7+9Pr/5f0MP0FHqeJUOXQlmJhA4/0cXAx//zAw/AddBszKPnR9M+ry0RAY8iHw9/f/a0f+P78D2uyL54z/t4+gs3ZDx8M6336qP/so/OIrhU6m3ZofUF1mJMqhwkj5sh/I2D+FPh3VPqTB6BKgIR195DsesgQIWf9nypYDgRYUvXz3fjvSgnVk06nEpnxF0DC8NpiBgeH7p/9XDzCa+jKIyFIppAedMf/fPGNgZmYUFB90Lht10GgIjJAQgG/25RcbTgf8MzAwDNqjfpBTFqeR6D+hz7Ro+o8uARqZYHQGYGTGOxZfUz4VwCsuNDoVgCVk6SAEOSf007vhPBUA2gAAOw+UDkE6asVoCIyGAHIIfHoD2uz78Q2BgX9kLUOEPTrwP0QiatSZVAY4VhhT2ZZR44ZGCED6AJRMBUB2BTB4ctJuKgCyHIiSqQDIAUHD7dpg0K6AYX1OKDMLaAfw0MhJo64cDYFhFAKjA/+EIpOma34YGBjYXTi4xSndUDG65odQNI44MLoEaMRFOdzDmKuA4FKU9AEghvz8+uPl6rcQNo1ISvoAECcN7QOCIH7ASn5++//rO0ZJleG0Iuj/+5cM//4yCkth9fGo4GgIjIYATULgzWPQcv9ht+aHgYFhSBz1Q/Y9X2iJAU/rf3T9z4gFozMAIzbq8QHKpwLYuTmko8U/PX/7eR+t9t2OTgXgjEJeYUYufoZPr0E193A5J5SRifn/v78M//4yMDHj9PioxGgIjIYAtUIA7ymf1LJkQMwZEiv+kQb+KRr7x9P0H5DAH7V08IDRPQCDJy4GnUsg3QCyncXMyiIoJ07T+8IYGBgg3QCyHQk6VOHTb6chekAQHm+DVgQNu3NCGeHXgeHx+ajUaAiMhgBlIUDkKZ+UWTJQulV//RkSR/1Q5Yav0db/QCWzIQFGZwCGRDQNmCN5pb9QuBwIMhVA0/vCIH0ASlYEQXYFCAtznBAcXmfMw88JfX6HUc2cgZ1rwFIS5RYzszD8/Q06DHR0BoDywBw1YTQEcIUA+JRP0JUbkmpD7hxPXH6CiA+Vgf//pn84FBmZWSm97nC09Q+J91ESFxjtAOAKmVFxaAhA5gEo6QbQYWcwZCqAkj4AAwMD39sfTl9/Pxbjuc02jPIFZCqAheP/vgVD/5zQ0RkAaK4cpUZDgPohMHw3+zIwMKj++iP78jPLD0pPEqPpfl/aHfRJ/dQyauLQB6NLgIZ+HNLFB5BuACVWDYlDQiFTARbvKb0IhpKAoole6DmhQ//KsH8o9ff/C7v+b5/G8J2iC61pEuCjho6GwNAKgeF7yifkcl/Fhx8Gf+t/9IavoZVphjoYPQVoqMcgRe7HcxAQLnMpmQqAmPl5KNwXNmwPCPr1/f+l3YzqFgxKRpDoGDLk98//v39h5OZHXsgEav1DPMArxGgTAWGOkqMhMBoCJITA6MA/EYE1XAf+R48AGslgdAZgJMc+OX6n1lQAp5EoOdYTpweyK4A4tdhVDdupADZORhM/BgZm0JVhbx5j9/ygFkVaBfTpDcKln9+BOgMPLyNERlmjITAaAgRD4M1j0PVe3z4xymgNv8t9jT9/Hx34J5gERhWMWDDaARixUU++xynvAzCzsojqsQl6cpLvCEI6ZT98o7wbANoVMPwOCGJgYOAVZhRV/P/8Dqgb8Pc3obAcHPJMLAz/GVDuAuMTYXRNBW1uhjnw/7XDoG4A6jIhmOQoPRoCoyGAFAJ/fzPcOwc6KVhMcZg1/SEr/ql11A9Nx/5BN3xpsjKzUrrrbHS/L1LKHmUSC0Y7AMSG1Kg65BDglf5CeTeAV1xo8B8SOmynAphZGCVUGbmF/u+azTCUpgKQZgAYGBhYWBmUjRntIhkExBHpc7QDgAiLUdZoCGCEwLA+5XMIrfjn8ublFafCUT+jrX+MJD4qQBQY7QAQFUyjirCGAOV9AMghoYIuKljNp4rg6FQAvmCEnxN6eT/Dz2/4VA4Kuf+gY0AxXcItyCAsgxBmYYOyP72GMkap0RCgUQj8/sHw/x+NzKaJseBTPkED/5JqowP/uEJY5e1Xmg78fzBn5tZk5RLgxeUAIsVHm/5EBtSoMqyA0oknrIaOCo6cEID0AcjeGfziB2gUl0HkO4OfMMOmt7QLN9kP3yg8JBQyFTAM7wqAnBPKwDzYzwmFHP+P7S6w/8fXMXx4AUk8jJ5ZEAbDm0f/T28BHWcOF4FKjFKjIUCdEPi/axa0RyogzmgRxIAtcVLHJqqYMqw3+1LrjH8GBgaaNv05jURf8XwWEBN68xMUqSLsIJIMPNr0JyPQRrWggdFTgNACZMRxyTgICGsYkdoHADf9UUz6+/sP30fe93vuoIhSm0NhN4CBgWHYHhD09w/Dt3f/v34EraofnFeGff/KwM7BAOkJQBLG////Dyxm+AE9BpTRPYOBCTyr+fPr/30LIUpApJQao74LiDGKR0OAGiHw/8wWhtePUExiZGT0yEQRGVSc75//3znDyCXAwC82zK73gqz4H/xn/INunTcS/SLLiLnin9RuALVa/6NHAI1wAK4sR3gYjHqfGiFA/K6AFz8YMFv/DAwMzKwsX0W+/3Si4c5gyH1hFHoXMhUwDO8KgEwFCMn837eA4d45CkOJJto5uVFa/79//t8zF9r6Z+cCjf1DWv8MDP+PrUFxwLNboM3BsFkCFKlRzmgIkBoCXz8gWv/C0gyQJWf////fMYNUk+ihHrLi/84ZRn4xBiGpYdb6H0Ir/j/bcXxXwr7f981PBsiEAMH0IKDwiVqtf4J2jSoY9mB0CdCwj2K6epBX+gueqQCs7X409/GKCf0Npu1UgOwH0GJ3CqcC+IbltcEMDAxsnIyGXgzfPv6/vJ9RUoVBRBYtggYL98OL/yc2QJdfi8iCLjmGuez/ifUMP0BXuTFaBv9/eJnh2S2YDOoGYpjoKD0aAiSFwP9bJyHqGY08GMSVGBgY/p/eDNpJ//8fw7vnDEKSENlBQb55/P/0ZkZte9Apn4PCQdR0xJC43Bc+8M/LSmC/L6QPgGc2YLTpT83UMwoYGEZnAEZTAZVDALIrAM3QFzhG/dGUQbijUwGQcBgwEjQVAD0nFDQVMAjPCX1yHbTuH7z5klHdErn1z3D3HMP756Cl/6a+DALijPoujJbBoDFaUXmUk4IGLHBHLR76IQBf6w9u/UMTG3ge4P/J9YPFe/BTPo28ht9m3+Ex8I81qeCaDRht/WMNrlFBSsBoB4CS0BvViz0EkJcDkdT0RzaOV0yIOVic1veFQWYDkO0llc339ofTsLwrAHxOKOjKsEF2Tuj/G8dA1xeA44nRIpBByRDMBBPfP/+/dQLE4hFkYOUAMRgYQN0A50TQYC2Uz8Dw9SPDg0sMT27ABUYZoyFAfAgwYpsWg/dC/98+TbxRNFEJWfNz7QgDCzto4J+NtosqaeIFvIaq/vozJM745zQS/Sjxl1eMwMA/Vr8idwNGl/1gDaJRQcrBaAeA8jAcNQF7CHwV/kLMmh/smhkY/v/7oyssoqRwSsIGusUTl0oKxSnvAwzbXQGQK8MMvRg+vQa1uQf+nND/oLUW9y9AYpzRJZlBEGW5BWhDMETuy/v/x1b/378IwgPtHIBtHf5/dPX/Q0v/Xz/y//K+/zumQxWMUqMhQHwISKlB1d5F2iojIM4gIgcSv3Oa4dd3EGNA8LA+5XOoDPwzMDCI23xRVDhlIsb5/x/5Ny2++cnwV+rTgKSjUUtHAhg9BWgkxDIBP1LrICC4NWjtfjy7AuBakBn///3RFhD5/QZ0hiNE/Ps33ns7RCBs2pEU7goYzgcEMTAwfH77/+ZR0DAntuFP2kUKwuR/f/8fXAJZ3M/AzMrokgRq1iOkQaz/F/eAV/wzMoAuDQaJMKCe//N/zzyG36CjZ8FyMELFlFHVFMYZpUdDABwCf36D9svCV/uAxeAEaJ8JZKWZWyoDMytUHLIrHTLpZBkMFaQbNaxP+RxCR/2wKfwVlPkuLIa4hISFz+bip1+MTLB0QlySEFREafoLw243IU43YVWjRwCNgtEZgNE0QM0QeIFtrT/WXQFYbf3/748Wn4DanxPIrX/QJiquz2q+z3l1yB9KwWodmuDoVABagKBwB/bKsD+//u+eA239c/ExuiZjtv5BS7H1XRjVLRjd0xhN/aCOR+wAZvh/4xi09c/Bw6jnzKCgB1Vz5zTD//9Q9ig1GgIMDP93zwahnTMY7p7BGh6M+q4Q8f/ndkAYIJKVnUEF3JP88JLhy3uQCN3w98//rx1h+PiGcThe7zWEBv6FTL7L675Ebv2DBoY+HdFmOKXHw0j8bABa65+BgeHtLxCiW4IatWgkgNEOwEiIZZr7EdLuRxv4R7aVYB8AV9Mfbggr6w85tSeyTh/gIrRgjF4bjC9UQZuDxRgH5JxQFjboWn9ReUb7GAZG1ILr6U2Gj6+gLlcyAvUNRGQQW37//QVJff/EAFk7xC3A6BjHIK3OqGnDIKYIkmJgYICogXJGqZEbAv+PrgKdGPsHPNbw////W6f+n9yAJTg4eRhkNEHibx4jX6ENn0r6f3g5SJYOGLLif5ie8gkZ+B8SK/7ZFP6K23yRkHvBygq+4gsj6v8Q3Q3AbP3DDYN0A97+gguMMkZDgHyAWo+Sb86ozhEaApCmPzGeR94ZjKyeYNMfWTGfwPvRqQDkABkANuScUAZm0K6AN4/p5gBGVTNGzyxGE29MG/9f2f//2Jr/Z7aiSME7CWDG//M7IbKgQ4EgLAYGRviJjaMdAFiYjGj6wUWGT2+gIcAjCL3Z990zUFKHiiIoRl1HCAd0bwaEBSYZdRzANAMDHY7PevP4/67ZDN8+gTb78tJ8kSTUX/SihtDAP5vCX8yBf6zhhL8bIKj4CU/rH9lASE8AWWSUPRoCpILRDgCpITaqHhoCxDf9oRrAFPJUAElNf7BuEAGZCqDDzmDKVwTxDd8Dghh4B805of//M/z7B1r/IyYPSh9wDL/2i5GR4dV9ho+gJbmgS45Z2eFK/j+7DWUjCUJFRqmRB/7fOQvxNKNFIKNtJKN7OgMHD0jkyXXQyVEgFgoGTSJBBD6/hdAgUkYDRDIwMDy+DmXQghrWp3wyMDBI//03hAb+VYwe4Rr4xxr5WLsBRDb9kQ0c7QYgh8Yom1Qw2gEgNcRG1YPu8cWz2odgAPFKf+GR+IB1rT9BvXAFwmKvh9BUgPHngTsVBB5kVGcMlnNCYcv32bkQXvzwErqsX9kIdE/TOejwP4MSiAtV9vMbwydQr4CBVxgqMkqNwBBAnvyBjNkzs0BPl2JkAq03A4fJ/6MrwTQqoaDHAO46/j+yEnonHUiekYEBdOXc/3fPQDyqY8ian+F7yidk4F/73juWH+DFexQEoMpb0IWAFBhAQCvxA/9YDYJ3AwTk3pHR+oebOdoNgAfFKIMkMNoBICm4hqdi4k8DeIFtjy9JgfL/7x89ARZttiO8AktI0oipmG5TAZhWkyoi/PLb8LwrYDCcEwrbv/v/zhmGv39AUfPl/f/ja0EMRiZGNQuGO2cgjTNG2wjoog6QHAPoyCAwA3S0EZiBhfjxBbG7AIv0qNDQDoH/26eBDpaFe4KbH8wENd/BDAYGJiZGbTsQ++8fyAVzIDYSZjTyhPBAZ87++8vw5zfD/fOQQ6gYhaQgUtQkh/Upn1Qc+GdgYFChZesfsuKf1IF/rClBWG6jIc8RI4FP/zAPKMOqAYcgSd0A4it9HLaNCg8HwDIcPDHqB9qHACVD/hDX/f/7R1+Y48/nA38+QwQYhFRAO3rf3RGA8smihMVec3n8eHpD8OcDZrIMIKwJshaIwkNCIXcF8IlzneUdbvfygE5L5BVjZGD+v28BqDFN53NCmZgZ+ERAS7c/vfm/axbo0t8/0C1ykA0D/2+fgsYxD9KNPO+fM7x9AhKX1WJAnjoACYHxn9//Dyxi+A3dz8fomQUWHSWGSQj8v3KQ4fFVkGfePWN495RBSBq0ikzR4P+lfaC1+1/eM/AIgmQZGBjkdBiuHgLNI51YjyUZCEkxyGiALpX7+e3/zlmgoX9Yj5RBHLbFHGoQZdRwP+VT+u8/iW8/hV9QYcyepk1/BgYGNoW/0hrvOLkovaBGXAexcuzfz3NGfAxM7EZnXrMxscIuMSQ9yUD2B1P9zFDSHTKqYwiA0RmAIRBJA+tEKo76//m8B9MvkG4ApjjxIpxcn1WMHtFhVwDxTsKlcnQqAFfIUCLOaOzNwAQryuCtfx0HBhFZ0NGfYKMZneLBNJT4fwZ6ywRiGTdUBkz9+/t/92x46x/U+Ns+7f/R1WC5UWKIh8CnN6BzfiCtf4hXvsEOXJdShwigneGDOFX2LnSTAEQZhGTUdWKAdnr/QxeeMTAwKBowcPJCFFCBhJzy+ebpsDzlcwgN/ENu+FIxekTd1j88hYC7ASfoPBsAt32UMdIArNYcaf4e9S8RIUDrpj/cCZT3ARgYGITFXit5wE7wgBtNVQZVDgmFTAUM110BDLywc0KRDuCnaiRgM4yDm9EhloGDGyrHI8hoE84gqwXiPrgEInmFGdhhsgwMoPFa8DmPjAZuDMxYZkH/75wJ0sXAANoDKqYAZX96Db5lDMobpYZoCIDu8II7HXKqLORAT9AUACODiglU8itofhLKFpFh4BcD9QNvnWT4hXqRHCQhmfqC0hKPIAMLK4OQFKN9DKOGFVQvhRRkxT/klE9xRazJlUIbBlY7dVf803TsH7LsB+2Mf/JCD3nsH9OE0W4AZpiMitACjN4ETItQHXpmol0GTL0FP1iG/PGEDoXLgRgYGH7/5nh+X+TzFdLuXMTjJKxSFC4Hgpj5h4P5sRjPbTYsDVCIgiFM/v3D8O3j/6/vGCVVYIOjdPHN/3+g/Zfw21v//fu/cwaoXadpg7j2i4EBNAAMdg6WFR0MDP8v7GZ4DjodCHSmO+RepzePoSvFOXlBPQ2w3lFiqIbA3bP/b50EpQrzAAZsy/SxJ4/vn/8fWAzysogsaJ0bAwPDpzf/rx1m+PSG0S0VJE4L/Obx/+d3GPnFGIbdEZ+Q0IIc9UP5Zl9ar/hnYGDg0fklqfiGpKN+IH5EI/E3/dEUMzBQYVEQxEy0RUGjewBGASh1jYbCaAgghwDdRv2RLYWzKZ8KgOwMHhL3hQ33qQBh0JVhz+8w3DsHWlQNj2OaMhiZkLf5MvyHniLy/xfiFCbE3l/rMCxu+fIO0voHHQ0Eaf0zMID6MODLBNAvIMOif1Ro8IXAn1+gzb6X9kJdpqAPZcD3XP78xvD1AwN88ZihO1QB5OY4CIeTl0EavEAIfvfFh5egbcGgpfnPIUqoScJP+RRTHJat/yE38C+n9pT+rX/QFYWgvQGji4KombdGzYKD0SVA8KAY0YyClv0D2/SHh76QygfKuwFD5b4w0MqlYXxAEBsno4QqAwMz6K4ieLMJHtN0YDAyQfcG3D0LauExMICGbCFrk/jFQFuHMdzw//wuiBijeQCEASb/Q84RYoBfHAYWHSUGfwj8P7nh/+45IHc+vQkiGRhAq2iEQVt+IXfD/T+y8v++Bf8PLfu/e87/cztAaiSUQd0/BgbQBhJYrwA0YwC/4evbR5AyOW0QycDw//UjCIM6JGTNz/A95XNorfin8KBPeJIQ13lL6tg/XC/VuwGjw//IYTuSwegSoJEc+yh+T8lzFGFDESGJoy8m9PvtOpK04FdM+XIgBgaGt69EXxwBX+WD3zLKZKmyIujtsDwgCBKwoBVB7/5//Qi6hwvrkTsQZTQgQeeBfniJbjAzC6NLMgMTxrFRz2+D1v+A1hOYMKqaIXTdOQM5SojRLoqBm6JDqxBmjrJoHQLP7/y/AO3OQa2Cr+D69xe6zUNUnuH1Q6gshGJkAt3/9e3j/0PLQAL8YoxWISAGA+hmX1BXloGBUcOaQRE8jQA7PgiqgHLq72+Gh5dBOUVSDdRRodzAQWbC0DrqR1DmOx1W/JMaRSy8Lmdegc87JlUnWP3zHwxzJu0HM0eJkQ5GZwBGegpA9v8b6PGJyGLEsi++enf5M7hSJFYHAXVUmQoYKveFDfOpAGYW0OZgbqH/+xYw0HcqADSQj9ZkZ2FltInA0vqHrP4Hp0pG+E5Q0MbP/5DWP0gGzSiQ0CgejCEAWvOD1vpnYGD4CTtikokZcoEXovXPKwxNEv///T+4BNTNgyz4+fgKNGsE8SL8Zl8W2BYj8OGhEElKSbSBf2x70ym1YqD1Q1b8D5WDPuV1X1Le+qdw4B8zxs680aew9Y9p5qjIiAXDcQPiiI1MaoA3vxjIngdg5hK88sNCh+MENRwCNUNI5QOFUwGQXQFvBWg7FTB6VwA0wvBQvMKMhl4Mn16D9jWqmWM/fR+PdvKkmJhBw/YPLv1/fofh9w8GCSVGVXPoPoFPrxn4ROGmQjaGglZ6WIUir/X/f/UgRA1iJBjCHyUHawj8P440FcnKwWjqA4r9+xcY/v0DLeUCb+dgVDb5f+MoyAeMTKAzo3gEGf79A231fveU4ftnhme3GPWc/0NWDT28/P/5bdD9EtDTQhkZpNRAGqmIwdd7MbJygk75HKZN/6Fyxj/koE/Km/4gc3QQx/xTnliY2I1OPf3Lwg27noJ0E5+jnl9FugGjOoYbGJ0BGG4xSrl/3vxiIHsqgImV4+ovGxZeF8qdATeB8i0BoPF18CGh7ArQXaFww6nLgHQDKDRzON8VAJkKEJIBTQVA1uJTGFhEalfQY7QMYrSLAl0MDDkj6P3z/0dX/7+8H3rY/7+/DPAj3vkRvQLQzoHH10CWcAtADoIEsUfx4A4BRssgiAMZtWxB9z/wizHCz3L9CdsOLq8DUcPAzAK984uJidHcn4EddE8fZNSf0SMTqubXDwZo65+BQV4bpAUqQTEFG/gHHfUzHE/5HHIr/hU9Xg/O1v/Zt1xkt/6f/2AYbf1TnFeHIRjdAzAMI5VsL6XkOSLrJXsqALRc9tt7Xd6LyKZRzqZwKgBySOin97yjuwIojwtKTQDtChiIc0Jh7gbd8wU5wd0tlYGZleHRVchIP6jtKCABU8Xw/8gqhs+gyyVAp39S8V4nuAWjDBqFwKMroLObuPihxv/5DYpxBgZGI0/EBb13z4LujhCUZIArY2BgeHkPshWY0S0N3ND////Qcobvnxj+/Wfg4GJUMYXeLwE1lzLq05v/Dy+Dmv7D95TP0YF/ypII6BhQ6g78j24AoDBGhhMYXQI0nGKTyn6BzAOQ1w2ALAfS4//17+c5ajmLKsuBhMV+cHn8uLdDhFquwmqO7IdvlO8MBk0FfPw5PO8KAE0FCDOyc4GWA316zSCvC2qFYw1KGgly8DB8ec+o5wyx9/+jyyB7mJgYkFr/oAXi4NY/g5wONW91Bdk0imkcAnKwAX6IPbBV+/+f3WIUV4SIMSgbQxnIlCjs3rcv78BzPoygJWTICqjC/vub4eX9/2+fMoopMrCB5hyoYuqgMgSy4n9InPHPpvB3cO73ZWI3OvOajYWbg7yYHR31Jy/cRg4Y7QCMnLgm06dk7wpgYuW4/JlFX9jlz2fSrgPD41DIciAKpwI4uT6r+f5+TuP7wiDLgSjsBkDuCuAbrgcEQc4J/fz2/67ZoMuVRGTxRD11pRhtIxm+vIeu/WBgAC37BlnACCJg+P+ZrRAmoyaVbnWFGDdKDkgIcPAw/PjC8OEFFstf3kdMC/z4AlXw4wu4AwDlUY0C3RvwAtTv5RdjlAFfVk01oweLQUPoqJ8BvOGLYGydeaPPws3HBNtwTlA9moLR1j9agIxyMcHoHgDMMBkVQQ8ByFQAuigRfEZmlksf/lz+akKEWhKUQLoBJGjAUArZGSxhA6vsMRRQSwDSDaDQNNBUwJMPqr/IP/qNQgfQVjt8c/Dl/Qw/v9HWLmTTeZC200GW9/z7ywA70x208AOsGLRohGl0oAQcFkOaEJEBOf8HagL7++f/gUX/z23/f3YbA2ih/0cQA6SOgUFQCkJTk4Sc8vn8Dmiz7/Bd9qP+7ONQOepH3ObLQN3whSddgQb+Qa1/pAIKj2psUqOtf2yhMiqGDkYrNvQQGeVjDQFIH4DM5UAcPFd/2egLc1B3KoDCeQDIzmA+38+jUwFYY5yugqAVQWKMDMz/9y2g81QAxJuM6paQ8f7/Z7aALoH68o7h/3+QFCMjYmwYxB/FQzUEGKU1/j+5wcAAjlaEJ/4zfAePArx68H/vPIQwMwsDGzuCSzlrdOCflDBUeQs7sJUUXSSpZVP4K6/7kvLLfWlx2g94vy+ZbbPRpj9JyWCEg9EZgBGeAEjzPqQbQJoesGroVMDguyhgdCoAHD+DgxioqQAGBgZReQb4me6f30Jb/wwMiHNgBkcIjbqC/BAQhO3tRr75i5mV0SWJgQW1rc/MCuqFMqCsByPfXtCRCL//XzvC8Obp6MA/McFI69Y/m8JfcZsvKkaPKG/9U/eYf8jA/7kPfIzkHgU72vonJoGNqoGD0VOA4EExygCFANpBQCAhDEzePADEmH+/f1D3ogAGBgbKpwIgBwQ9vCz28wHG7bAQd1OPpHBXAMQhw/naYNCK/E//rx5g1Heh/oHrkODDQf4/v5PhzSMG8OlADPyijJYh0BsDcKgfFR5aIfB/x3RQ105ChdHQDcXl//8zvH74/+5Zhk9vQTdF6FPvFGOkgX+G4bvmZwgd9TOYB/7PvGZjYiVzvy8DA1EHfY4eAYSS8Uc8GO0AjPgkgBoAxHQAIDrI7gb8//uHusuBIO6hSjfg7Sva3hcGcSpV+gB/OJiH5wFBkDCCnxOqZMTADTvMESJFU/L/f4Y/P0FHAzHRvCtIU3+MGo4ZAv93z2H484uBmQV0xCemNNVF4Kd8cgmATxSlugUDb+AQOuoHtFbH5ssgPOOfgYHh9EtNVj5xsqOT+IH/0Q4A2YE8LMHoEqBhGa308BSly4EG385gyK4AJQ/Que80DUGq7AyGHBBk/Bl2sRFNXUx/w0G7AoQZhWT+3zvHcI9qJ8kS9gcjIwMrB8No659wSA1BFVx8IEf/pf1mesj1Xg8vg0755BUZlq1/6b//jD9/1773bqgc9Cnj9GEQtv4hy37o0/oHJf5RPBoCSGC0A4AUGKNMEkOAkjuDmcE7g1mofWcw5QcEgQ8Jfc6r85vEwCBNueyHb1TpBgzzA4Ig54QyMP/fPo3hzWOigvj7Z9D9vkQpHVU0wkIAfs4s6YdNgRIVMbogTf9rRxi+fQKd8jmsz/in1lE/tF70D1nxzyfwnsLkTt0V/wwMoNY/eL8vmaf9jN7vS2GEjoLRDsBoGqA0BCidCqDqzmAGBgbK+wCQncGjUwGUpgxq6UfeHPwXd8fs72+GZ7f+v37EiHYJFLWcMWrOEA8BRjHYJV8fXpLqFUY5nf+ProImo/CnwIeXQWf8iykO4xX/Q2vgX3ywLvs580Z/dL8vqdlwVD11wWgHgLrhOUJNI7sPwMDAALkzmLoBR3kfgIGBYXQqgLqRQpFpoBVBYozcQv93zcYyFQAZdn16i4FbkFFOm4FflCK7RjUP1xDgEYL47P+zmxAGCSS/KKOSAYOw7P97F3CmwGtHGFjYRwf+iQlVlbdfaT3wD9nvO2iX/bBwkznwT+R+X2JiYVTNCAejm4BHeALA4n3i9wFjah7dGYwZJkSKUGVnMAMDwzA/IAi0Ofjd/68fGdXMGdi5GCCnrJzezGjmxyAgDtq8S2RwjyobkSHwf/s0Rj0nBmkN8n3/9zfDh5f/n91mlFRhgKwp+gs+5ZOBAXTKJ7kHOJLvHrropOLlvgwMDHRo+gvKfB+ETX8GBoZTz5RY+aQG5KDP0R3AdMkrQwmMdgCGUmzRx62UdAAYGBjI7gOAzsv+9l6X9yJ1vUmV04F+/+ag9X1hEF9TpRswzA8Igp8Taur7//kdBn4xRnFFUGcAEoKj5GgI0CEE/v5meP0ItN5MUgW05odfbLiu+WFgYBhaR/1ABv4pP+MfdGqQzlsqJiUmdqNTT/8O4MD/aAeAirE5PMDoEqDhEY+DyBcULgc6+yZoEO4MhuwKkLABXxpKy8Cmys7gYX5AEGh5Fh+joReo9f/k+mjrn5bpcdRsHCHAzMrABTqdFtT6l1Qbrq3/IXfUD2S/L+Wtf1rs9z32UHYAW/840vGo8IgGozMAIzr6sXqewhkAuJmkTgX8+Ig4CPnvt1emMvvhRlGFQa2pgCF0X9gwnwr4/Irhz9//P78wcvMzKBlRJZGMGjIaAoRDALLw7PkdRi4BBsb/DILShLUMQRVDbuBfWuMdJxcVxmjEqTrwz8DAcOyBHTO3GDwJsPOQdtI08cf8w63AyhidAcAaLCMZjM4AjOTYp63fiZ8K+PFRHLn1D94ZLHbmpS913UeVncGsrD9UjB6NTgVQN2rIN42Dm1FClYGBGXRKI5HnhJJv2ajO0RBgYHjz+D/8lE8OnmEZIkNr4B+0Vsfmi4rRo0HY+mdiN0Jr/TMwMPz8IvLziwiRKYdarX8irRtVNqLA6AzAiIpuojxLrRkAuGV4pgLQ2v1wLRDG/3+/zRU//fm8B8KlFkmVqYDv33jv7SC2EKfE5aO7AnCG3u9vDD++M/AKgxTANwdr2YxuBQYFyCimegj8/c3w8DJoA7qYIgPkgP/PbxhYWBk4QWuBqG7bQBk45Ab+B+1+3yO39Fn4FBiZWfFEJZ7ZAKo3/UdnAPBExMgEox2AkRnvBHxNhz4A/qY/svsG83KgIbQzeBgeEITcAYCkmM9v/988ymjqCz2eBSI4So6GAIUhAF/zg7bZd3h1AIbWUT+gK19MvgtLvqd8xT9oDoGqy36Y2I2O3ORBXvaDPwFidgNGW//4Q2xUlipgtANAlWAcboZQvQOAfDoQ8U1/eLD+//fbVPrBv5/n4CJUYVBlKuDTB8HH+wSo4h78hoxOBaCHD+N/hncvGAQlUcThUwGQc0JR5EY5o4D0EMBzyue7ZwysbMNjB/DowD/pKQO7DtCyn4ey+Af+seqEdwOo3vpnYGAYHf7HGuYjHIzuARjhCYB+3n/zi+HJawkyWv8MDAyMTKxfhUyffmekrnOpsiuAT+C9mu9zXh3cN9RSydGjBwQRFZCQK8P4xf/vW4DlwiaijBhVNBoC4BCAXDB37Qgjvxjoeq/he8b/ELrcl4GBAXLQ5+A85v/pN8bdN4XJaP1D9gY8fC1Ci9Y/ODWPEqMhgA5GZwDQQ2SUz8DAQPUZgB8fJeABK8L2H84mhvHn728B0U/P3+wFTSOwMmjzk6adGCuoMhXw9pXoiyP02BQ4OhUAjdPvnxh+fEWfAYDKMTD8/cPw79f/t0+hV4bBxUcZoyFATAh8evP/4WXQOT/8Ygy4mv4v7zNw8Q7pGYDRgX9i0gIxan79Y3j9g/HON5BaXm7Dz28lONi5QByi8YvvCKVsvKSdFITQiYM1OgOAI2BGNBidARjR0U8fzyO3/hkYGN78InYg/8/f3zxCb78zroe0/kF6fzOcfs/4+TexJhDpQapMBQiLvR6dCiAywKmm7PdPnEYxszCwcjEKyYCmAu5RefEYTktHJYZBCEAG/h9eZuQXYxCSwtn6h/iUmQ1CDzlyyB31M5gH/n/9Y7j4Edr6Z2Bg+Pz1PAPHdlaeez9+gjsERCQO5NY/AwPDr8/0OGGCCHeNKhnOYHQGYDjHLtl+o9YMAFrTH809eKYC/vz9LSXHcPfxejQtcK4KN4M0J5WnAqgyDwDaazs6FQCPp0HC+Pz2/9d3jJIqo5uDB0mEDF5nvHkMutsLbbPv4HUumS4bsQP/VN/vizzwjzUyJESc37zgZsF9FhBa0x/NEGpNBYzOAKAF7CgALa7+/5/KrajRYB0eIUBhHwB/0x8eRJh9gD9/f6uocV++vQSuBheDi5lBn/8/G7UnsajSDfj+jffpDcGfD5hxOZ5a4lRZDgTqtIhzneXlpJarBqM5f//8f30fVOSNnhM6GKNnELgJ85TPQeAoqjthyB31w6bwd9De8AUZ+P/2l3As4eoG4G/9w82lsBsw2vqHh+QoAxmMzgAgh8YoGxECZHcAiGz6I2xiYIB0A4hv+iPr1eZlEGGncieWKn0AUKt6dCoAOaoGA3v0nNDBEAuDzQ24TvkcbO6k2D1Da+AfNFpv84Uqm31BRum8pTj8UAx4+g2x5gdFAjdHRzXmxvVPkNkAIpv+yIaR3Q0Y7QAgB+MoGw5GOwDwoBhloIQAGR0AMpr+ECv//P1tocNFzKg/RD0aKTKIdwYPrfvCQJ2WETAVwPDtHeg6p9FzQtEy0sjk4jnlcxgFyFAc+B+0N3wRXPaDP+HoqMYcuYi04Re/agxZMroBox0AjFAcFQCB0Q4AKBRGMWYIkNQBoKTpL6/CdekWaMGPFAUrULiYGTR4GHhZB+NUwO/fHEPrvrA/HMyPxXhus7FgporhIzI6FTB84pJcn4wO/JMVcipvv5KljwRNPDq/JBXfDMIbvkDbc8H7fYlZ9oPLww/A4aenGvPoDp26AaMdAFxxMcLBaAdghCcAnN4nsgNAlaY/siMo6QYM5p3BQ+u+sNGpAOQ0OcoehiHw/fP/O2cInPI59L09kgf+qb7sh8KBfwYGBkjTH56s+LgNFaS06dANGO0AwMN8lIEMRjsAyKExykaEAMEOANWb/nC7KekDiLAyqPIO0p3Bo1MB8CgeRIxf3/9f2s2obsGgZDSIXDXqFNqFwOjAP1lhS4eBf8hBn4N24P/WZ8a3FNz3iNb6h0cCHboBox0AeGiPMpDBaAcAOTRG2SgAVx+Awqb/g6dXP309j2ITBoeSPsBgXg4EGlkfUjuDQQ4eEbsCPo6eE4qRC4ejwJvH/09vZtS2H9K3dxGMmNGBf4JBRJICMvb7opmPq/UPV0a7bsBo6x8eyKMMNDDaAUALkFEuIgQwOwB0aPojrGdgoKQbIMPBoMxD5S0BDAwMVDkgaHQqADmWBwsbfE4oIzc/g7wuA+5DuweLa0fdQWoIjIxTPhkYGKh41A8DA8PowD/8fl9SUxxEPcGmP0QZhKRFN2C0AwAJ21ESE4x2ADDDZFQEGgLIHQBKmv4aOiLX754mOOoPtRWVoqQPMDoVAAnL0bsCIOFAFDm6OZioYBpSikbSmh+Jbz+FX4A3mVIcRXRo+oOW6Q/igz6JP+YfV2CT1PqHG0LdbsBoBwAesKMMNDDaAUALkFEuIgQgHQCym/6g0SNNfrKb/gh3UDYVQIudwdSaChhy94WNiAOC/v4ZPScUOfcNbfbIOOVziA78D+Ybvug58I81i/FxG357I8zDxY9VlhhByIGhox0AYsJqZILRDsDIjHeifB0TH0mUOhyKpBVZIed74pAnTZiSqYDBfFHA798cn97zvjjCQ1pwkKV6dCqAhGAbnQogIbAGpdLRgX+yomV04P/XP4bH3xif/CAr+MCayBv4B2tFJ6REnL+9FUAXJYW/aP5qUpSPqh1BYLQDMIIim1SvhgXnMDAwsPGQf4Hih0+v/nLuJ9VeXOop6QMM8uVAQ+6+sNGpAFypdFR8UITAyDjlc4gO/FPrhi/QCiJq3+/7+TfjjS8MlB/zT51c8NlOgE+UbKN+fBJnYGBYtXYK2SaMahzeYLQDMLzjl1LfUd4H+PHz21emzZS6A0k/Jd2A0Z3BkIAcnQqAhANR5LA8J/T/fwZGRqK8P+QUjQ78kxVl9Bn4H+Q3fA34sh941PFxG356wTva+ocHyCiDFoCJFoaOmjnMQuDXF2GyfcTBzsXPFCQl6ky2CWgan5F/eSLDkx8Mp98zfv5N5aaPkMoHNEeSwWVl/SGn9kTC5gsZeknVIvvhG6lasKoXfvnN6ckH1V9/sMoOE0E2TkZDLwYG5v+X9zO8eTw8PPX/0t7/26cND7+g+OLN4/+7ZjN8+8QoozXsD/pUf/ZxCO33ZVP4K27zRU7t6aA95v/iR8Y7FJSLVFz2w8dt+O+zLOWtf5SsMcoZDQEMMDoDgBEkowJIIQCZAYALDI/lQKDdydwM0pwj/ZBQBgaG0akAeNomzBg254R+ff//0HKof4WlGc38oewhTY2kUz6H3FE/g/mGLwYGBjoc809C3qLGsh+4daPrf+BBMcrABKMzAJhhMiqCMwQomQoQ4BPj/ueL02gSJZ59Z6BkKuDOV4arH6k8D8DAwDA6FUBiNA4p5cwsjBKqoKmAXbOH9lQAIzMDjxA06N89hzKGLvX3N8Obx/+vHWFgYQcN/LNxDl2vEHQ55Iz/ITfwr2L0aNAO/FPY+n/wlYFaY/983IYMVG39E0xOowpGOBidARjhCYCA99FmACCqKZkH+PP3N7fwx2ev90KMopykZEsAjXYGU+uQ0N+/OR5eFvv5gJnyUCJowuhUAMEgQigYBueEPrnx//I+BgYGRgM3BkkVhNeGHGsknfI5OvBP3eQ5qPb7Qpb9sFBwBSFkyy9aEI3OAKAFyCgXGYzOACCHxiibqBD49UWY7KkAFmbWnx9EmL87EmUTEYoomQr49pfh3EeGp98H71SAitGj0V0BRKQC+iphZmHgFWPkFvq/b8EQnQr4f/UgKMiYWYZw6x828M/ILwYa+GdmAflomOIhN/APOp/H5ssgH/g/95H8036oOPAPSrOf7Zi+KZHd+v/xSRxr6x9k8igeDQHcYHQGAHfYjMqAQwDrJABYhqITQgfV6UA0mgp4d4ei85shgczAwEC3Q0JHdwXAw5woxtCcCvh/cQ/Ds1ug4X/PLGRv/j+yguHrBwYmFgYxeUZ9V2SpQceGnPLJyskgIssw3Jv+Q3HgX0zpM5/Ae6okG3Ed8s+hxuqAgbrfF6tjqHXaD1bDR4f/sQbLqCAcjHYA4EExysAeAng6ABTeEjColgON7gyGRz+1lgP94WC+Kcn3lHm4TzNCzgnVd2GQUoOH4WBmQM//YWVndEmGuPP/wSUM3z5B2HCSEbV7ABcfYMaIOeUTcsa/0psvnJ9+USXM6XPQp7jNF2Gx11RxMNWb/oNtvy+Nlv3AA3+0AwAPilEGVjDaAcAaLKOCiBDA3wGAqKNkVwB1LwtjYGCgZFfAYL4zeHQqAJLYBiMJmgr4+P/rO0ZJFdCY9GB0ItRN/4+vZfjwEnn4///JDQzvnkGlUSlGE28GUXlUsQHlvXn8//kdRn6x4X3EJ6TpPxQH/gfzDV+//jEMv2P+8efG0Q4A/vAZBcN9cG40hukSAmRvCWBgYKDu6UAMDBSdDvTmN60uCqDKAUGcXJ/VfJ/z6vymQ6xS964A6b//6ODmAbMCtCtAmFFI5v/zOwz3zjH8pUcEkePZT28grX8GOR2E9veIg4AYrUIZLYLgUv+vH4WzB5jx9zfDvXOg1r+Y4kho/Su9+SL84itVwpw+A/+Qgz6pMvYvrvOW6mP/kGU/g+eY/29vhEeP+adK8h41hBIw2gGgJPRG9SJCgJI+wKC6LGzw7wwecveFsfz4q33/vfFnCq5wQyS0Qcxi4xzk54T+P7sVFHxMTIzadiAGAwPDv78M/6EXYjBaBjPwizIISjComEBlf9DjWjqoXbgo2GbfEXLKp/Hn79r33g2hZT+QG74G+X7f4+8Yv/3FlcIIi1ProE8GBoavr/X/fZbl4eInbCsOFaP7fXEEzKgwyWC0A0BykI1qwBUCw+Z0IAYGhjtfQVMBv6g9bE2VeQAGBgZhsdf0mQqQ/fBtdCoAV4LHLs4rDLo5+NNr0M3BPym4WRS76RSI3r/A8AM0qMxo6ocw5fcPKJuNk0FAHMJmVDWDMBj+It3x/OsHrpVCUMW0oCDXez2/wyipNjrwT1IAq7z9SoexfzaFv/K6L6ky8A86OIg2+30pHPinVusfcsy/tJjK6Gk/JKXkUcW0A6N7AGgXtsPHZGK2ASD7lpItAT9+fmPmffLp63lkAylhU7IlYJDvDGZgYHj7SvTFER5KwodIvdTaGQxyszjXWd7hfFsTNEg/v/1/8yijqe8g2RUA3fvLzMrolgp1IQPD/xPrGWBLgJB3/UIVMzAw6rswiMj+P7iU4Q90KyqyMrg51GeMsM2+VFzxDyq13oJ6etSPFCQT2RT+DuYV/4Nwv++v9xIc7FxIQUgak9SB/9ENAKSF74gEox2AERntJHqa1A7AMDsdaJDvDB6K94WNlAOCQJuD3/3/+pFRzZyBgrqfxPyKRTlo8c+rh8h7f0GK3j75f2oTiAHGjJZBDAISDAwM/68eYnh0BSwGIRgZGKDLhCB8Bi4+RvsYKJsW1N/f/68dYRwBp3xC9vsOuaN+2BT+Smu84+SizgoxWqz4p3C/LwMD1e73hSz7kRaj6Lo9Ulv/DAwMox0AWpRMwwyMLgEaZhE6WLwznJYDDfKdwaysP4bcfWEjZVcAaHOwGGhz8L4FkKP3ByR/gs75+fEVdOkvjyCyA/6f2wHlgjsn/4+vA+0H+P4J2vrnF4PKQlr/ghKMqqZQkW+fGO5RbY4OaiaEgq34Bx31I67IMNzP+B9yK/5BC3XAN3xRpfU/aPf7Un3ZDyR1k0GOXvJFRqCNaiESjM4AEBlQI1oZGTMA8PCiZDnQn7+//3PeH10OBA9M/IyheF/YSJoKGIBzQkF3FSPvQ2BhZXSFrf958/j/6c2gOQHrMIa/f/6fWAdKXUqGDG+fMHwEnePO6JwIUvDpDUiNpg2Dgh5IwZ/f/3fPBjHYOBmdE0EMKuJPb/4/vAxq+vOKUNHUwWmU9N9/Q3HgfzAv+6H8oE/qDvzT+ph//Al7dAYAf/iMAgYGhtEZgNFkQNsQoOR0IBZmVtZfalKiztRy4rPvFB0SSrudwVTZHDwUDwkdSVMB9D4n9P/eeQzIrX8GBoY/v//vnAnJTf8v7IIwGPhEQCf/iMiCuPfOQ1v/auYMrBwM4NY/SJwJVlOwsDJwgPecMDKCxKmF//5meHYL1PofGad8DsWBfyGT79Ta70ujgf9bnxkHyX5fULb4bMf0TYns/b4MDAxkLPsB2TuKR0OAaAAr1onWMKpwNARIDQFKlgMxMDD8/CDC/sudVEvxqH9GwXGU3/4yHH/H+Pk3VVs/YLdSpQ/AyvpDTu2JrNMHsJG0JUYPCCI5fOl5Tujvnwy/wCf8cPIyOsSCBv7FlUAO/vf3/+3TIMbvnyAS0u5nYGA08gBx4VjZ+P/5nXDe/1cP4GyGn+ANprAjgxie3/5/aNn/XbP/n96CUEM8C7bmh+HPb0YZLQa2Yb47HDLwT8Uz/ulz1I+4zRcJuResrOA0Q3zkYlNJ9RX/kP2+x98xvqXg+g1qrflhYGCAnPZD4TH/o61/bGlnVIzKYLQDQOUAHZbGUWUykZKpAB5uAX6mIOpOBVASU+c+Mtz9Mkj7AKAaSOA9fQ4JZWBgoNYhoSNlKoCBgYE+54R+eQ9J4aCWPScvAwsriMEnChK8c5rhF6wT/AfWaGJmhewABilQMQWN/b+8B2JDMSy1P7oK2ifAwMCoBbpJ4P/JDf8v7Gb4+gF099mbR/+3T4cqJ5IaYad8DsWB/8F/0OfTbxQN/NNi2Q+FrX8icw8eZVSpsvGYPyo1PMBoB2B4xOPQ8AUlfQAWZtafH0T+fbKillcpXA705AfoogCqTwUIqXyg4lSAhA11junAH+ajUwH4wweLLGRzMLcQaI3+m8dYFJAnhLzghxt20xCXANwwRmNPCPv/2W0MXHwg9ocXDE9ugM77v3ee4cMLkAjoFozToH3DUA6IYpRQBlGgA4IOQhgMHNygKYJ3z0BcRkbYbt3/oPND4QuHQHI4MHzgn4UdNPA/rDf7wo/6GYoD/1S84YvqY/9Uud+XimP/DKPLfnBk91HhwQlGNwEPzngZdK6iZB8wpmco2Rn85euHn2yIxQmYhpMqMrwvCvj9m+P5fZHPV1hJDRYy1I/eFUByoFHpnND/e+YxQK70YmRkVDGFXOULaouD5mi0GXXs4Q77f/0ow4OLoH29NuH/j6yEi0MZjIyQAX4oF0Jx8DA6xoGPBz3I8OgqWG8Yw89v0DU/3PyMliEMrOwMT2/+v7QXpENMntHYG8TAhUfYKZ9D7ox/0DnO4Bu+qLLmB3RwkM5bXGmBPPFBuN/30wveAR/4hwfm6AwAPChGGXjA6AwAnsAZlaJVCFAyFTDYlgPd+cpw9SNsgQT1Amx0KsDpyQfpv9S+ipl6EUQdkyBTAfzioKmAZ7fIMxPU0Ie0/kGN9P//b58Cnd7DwMAgJAUy8PFV+B1eoLa7pjVIkIHh/5GVjFq2DMh7eZmYGW0iGG0iIAqgJDMrpPXP8O0jpPXPwC/GwCvy/zx0DzGjVSio9Q8a5VZnYARXKHhmAGAD/6Cjfob7KZ+gIAEf9TM68A9NS1Sifv1joHC/77Bc9kOl0B01ZgQBcHk9gvw76tXBEgKU9AEgy4GYvztSyzMULgei0UUBoCacCnW28wqLvVbzfc6u8JdaIYbHnNFdAXgCB7sUJx+joRfDj+//L+9n+PoRuxrsov//754DlRGWZpDXhbLfPGb48JJR1wnChfYHIBwGBkY92LFaXHyMHpmMahYM0uqMWraMek4MPIIMPLAlQ0JSjLaR8GuDQQt+wCYwGnuBLgEAXwzMaOLDwMIGFkYi/v5B4iAxP735f+0Iw7dPjJJqDMP9oE/pv/+G6Ip/aY13wmKgc2CRYo5MJtXX/DAwMLz5yUj5ft/RZT9kxuiotuEFRjsAwys+h5RvKDwdSIBPjPufLxV9TOHpQIN8ZzCd7wujVjdA+OW3ETMVAD4n9N45hnvniE3VP79DR/fFFRnN/EGNePcMBgbQfNT/42sZOHkYpNVBRn14yfADfHQPiMMAEmRlB80WnNkKElA2YpRU+X/tMGg776/vDH+hvURGKTVQfwCkgoHh1QPQtmAGBgZlYwZ2rv83j0OEGUTloAwGBobPbxn+g2dsZDQRghAWZOD/4WVGyCmfoyv+IcFCHKny9isdjvoBLdSh3g1fINNosOzn6TfGq5+JCzUcqqjY9B897QdHGI8KDxkw2gEYMlE1sA6l3ZpCSqYCONi5qH46ECXdgEG+M5iBgUFY7LWSB+hqJzokJ2r1AUbQAUHwc0K3T2MgZnMw7DAfRkVDaIQyMTGa+kDY/2+egA/2/9+/ECIIIUG3AkNYkF28kNOBGBhAm4NhrfP/j64y/AM36P/+AYmD1TOqmv2/uAfMZIAuDYJwGBj+X9oHYTKqmkEYIBLS9IcM/I+AUz4ZGBiG6MC/uM0XKg78U33sf7Dt94Vc8jV4Fv2D8hoM066yhtkwSg8TMNoBGCYROaS9QUkfgOrLgRgYKLos7NtfhnMfGZ5+B43CUjdSqHI6EAMDA53vC6NWN0D45TfbV5+G/64AtHNC/8KO6QQnpv8Xdv0/vvb/zRPQrbqcvGBhBgZIOx7CEZFlgBzSf/8Cw4+vjBrQRf8oaoRlIGr/QzYesHMxKBow8IsxWgaDdgUISoBkP73+v3PG/6Or/++aBeIyMDDaRTF8/8QA0cInAr0RDCL3+hHDJ/C6EXk9BlgXAnQ26MPL/5/fgQ78s7EzvHvC8IXK+0Eh9g8GUvrvP9uXn4bWin8GBgYenV/UuuGLFgP/8GP+v0GnpsiJaioO/IOsHz3tBxQKo3jIg9EOwJCPwuEBKOkDMDAwCPCJibGDDiqhVmhQMg8AOkdxKOwMps99YaBzaD58o0q8cH76rX3/vfFn2Bn2VDF0cBoC2RzMLfR/12zIVMD/A0tAm32f32H48JLh3jmQ+Kc38PX3/2+dQPYHfID//5ktDIr6EGWgkz3BC/dBKuF7fyGLdhgYGDWsGK1CQFIMDIyGnqBrgCEcSLOegYFBSo2BW+D/Zdgwv5k/RB5CgiwCsxg1LEE0fOAfcsonG+f/iztB94XdOvn/yoH/J9aC1AwvPHQH/uXUnlLltB8a3e9798vgOuaf528gJQP/o1f8Dq98P7TBaAdgaMffcHI92VsCuDmFuDmFONi5pbhTqHtZGCXdgMG/M5iPvveFjU4FkJxb4VeG7VsAGnpH1v/vz/9jaxj+/mY0cIUKP70JZYBmeXgZFPRA3M9vGT69AV0BBuIw/N+/iOHre4av7+HbghlFkBbxg9WACHZORpckBvj0Agsbo5EHo74LSOrdcxApoQw9+QfEYWB4cAlCg/YHMzEzgE/5BA38wzb7/j+1geE7ypUU/0+s/f/gAkTXUCeH6MD/IL/hC7Sp5DfjxY+MT8D3WZOXSB58ZaDi2D8ftyH3P2NBfglebjFebjEynPTjk/joFb9khNuoFhoBFhqZO2rsaAiQFwK/vggTf0sAN6cQsi0szKwMP9X4/vN9YlyPLE4J+9l3BrIvCoAsB1LhZpTm/E+JGzD1QpYDvbsDO7AFUwVxIqysP+TUnrwVEH1xhIc4HRSpkv3wjSp3BYCmAj69lxDnOsvLSZGDBr9mZhYGOV2Gm+ABfkZGRptwBm7B/7dOgjYK///3/9gaRttIhuvHGH5+/X9pL+i6LtjyG0ZNm//gdvn/o6sYPbNAG3+f3mT48+v/oeUonpZUQeEicRgdYkFreP4zMLDALpGAHe/DqGyEUPj3z//rR6BcYWmGN49BTX/wUaEQwf8v7zD8A6/eYGZhNPNj+P4ZtNuYgYHhxV0GLRuGbygdA4iWIUQaf/5OrTU/DAwM9Nnsy6bwV1DmOxVX/FM9vgbbMf+ghVJ/A/kZJRiYEX6F9AE+f32FEMLLGm364w2eUckBAKMzAAMQ6KNW4g8BYpYDQUb9sZojwC8x2JYDnX7PSPU7g6l+SCivDspyc6xhS7kgteYBQBuaR8iugO+fIMHOqGz0//5Fhl/fGdUtGCAN9y/vGT6+YjR0gyj4fwm6PRfCZdRxgDAYvn8G7QaG3eYLFWRiZnSMh7JxUcysiNY/AwMDbM8xw+d3cB3/L+6GsBkN3ECnfH58g3LKJyc3w33QvWMMTMyMpv4M/xkZOPhAh4dC9OC5MQCiYBCT1B34p2frf5Cv+Kd8vy/Vj/kXZIwQ5AdvjMFIkETOBoy2/jFCblRg4MHoTcADHwdDyAXUvQ+YoMexTgWgjfrjMuTP398MXPefvQZfTYpLEYniZE8FQOxR4Wag+lQAAwMD5fMAEOcxMDC8fUWnqQAGBgaqTAVAXP52eE8FCIr/3z0bdIeXVQjDl4//3z1h5OZnUDICbQkA+5/RMwt0Ke+bRyA1TokM7IhZkf87poO2C0urgzoADAwMXz/8v3MatDNYSpVBVhusmxTi39//O2cxMICmsxjtYxg4uEEt/segu4EZeIVBe4iFZBi4+JBN/H/zKMP7F1CHfYP2ZBg4uP4fWAwS1LFn4BFBVj9U2KMD/7Tb73uHsh1DVFzzw8DAAFn2A5pbJiJpYp0NoHPTf/QIICIialQJFIzOAEADYpQahCGAORVAZOufgYGBhZmVBbQcKJCK/qJkS8Dg3xkMGlMHHxI6tO4LAzl7OE0FsLH/P7cFJdG+fwnh/r93jgF+Tujl/YyKBhBxhifXEZMAqMd9Qrb/MkAW7jMwMHALMOq7MpoHkNP6Z2BgYGJmkFaDWPr/4JL/O2cyQFr/jEyMauaMMlporX+GPz8grX/QfAW89c/AwPD8NsQQBj5yFlJD9Q4QNXQH/ql7wxctDvp8+m3Q7fflZ7QgsvUPOr4LY2MAnVv/A5QnRq0dqmC0AzBUY26EuBveB8Cz5gdPUNBiORAl3YDBvzOYk+uzitEjCRt6rMyW/fCNWiuCQLsChv4BQf8v7vp/bDXDv3//n15DSdWCkiDui3sMAuDxcl5hRlFFBjYOBiZQAQ66P5iBEXSOJwMD6CquO2dAihkYQPuGf/8EseFn/oA4FGHQTAI/aqudiYnRzJ+BFTHtALcAutafgQF+JzFECnSMKYTFLwqhhwpJ9aN+6LPoX3xw3/AF3+9Lydj/A2rv92X/pYtr2Q+e5Iq8Imi09Y8noEalBgMYXQI0GGJhyLiBzkuAIOHCzQHa6cvGS/7x4SNnORAVVwR9/8Z7bwe4uQmJBlqSVFwO9J2P9Z4wz1NmUMuYlk6mvtn/z29jgO2yBS2PMfFD2MHJ/f8wePMuNz+jpj1C/Ovb/9ePgrhSaoz6LvBFQaAjesQUGGDnAjGa+jKIyIKUUQu/f/b/zjmGz28ZJZRAG3nfg/dBsrEz/AL3NyC2vH8GuTAYdHwQJz9EDER+fAnZNAzqS3BRuosdZCBdsPTff0pvvnB++kUt2+jT9B/d70tGfDF/dRQTUSZ+4B/Tih8fxUG9mm/gfIEpTUuR0SVAtAzd4QaGXjU53GJg1D+4Q4CbQwjS+gftP/wsjFshAZnBuRzo9HvGX+CLVgm4nkRpyAFBJGrConyI3hc2dKcCGE2RWvwMDP8v7EDEyvevDFKqIO7Xjww8SI1pbmEGISmQ+LNbDF/eMzongdgMDAy/f8Jb/wyCEtRs/f/++f/8jv+nNjO8eQQ6eujh5f/bp4PP9f8HOub/1T0GAdH/V/YzfH0Haf2D3IPc+ucThrT+QeJDp/U/RAf+B/8NX4Nwvy/P30ApcQ3KW/+gFUFcYrxcqNNloHQ/ikdDYLCA0Q7AYImJUXcghwBy0x8u/ouCPgDosjB+CSnuFD5uQ7iBFDKefaf0zuDj7xgH853BkENCh9x9YUN1V8CfP4xatowuyQyQa3r//GLgR3R6GaU0IckVsn0WwgZNFECO52dgAE0RfHrN6JSAuMOLmYVBWp3RIgiumFLGoyv/98xleHEPeqwnknH/z2wF8e6dZ/jzm+HLOwYWdhCXgYHRAmUTzv8rB6DisEvHINxBSw7dFf/iNl+odcMX7fb7Hn/HSOH9vlTc8gvZ70vGsh/k1AsZ+0cW4R3tBiAHxyh7MIHRJUCDKTaGgltovQoIPuSPJzCG2XIgEVYGbX7QySp4vEyeFLUOCPr9m+P5fZHPV2DnwZPnGqJ1UXFF0BA9IOj/mU2g0GJmYTT0AjEg+NMryI2/jIbuDMzQFjZo2f/ZLaCl/8wsjDoO/98+ZVQzB53d+fcPAxuWdfkQk8ghP735f3QVVCO/GKOkCgM3YgHP/xd3GZ7eZNS2+//5HcOzW6BDgd4/Z2BkYjRH6gCwsPw/shJkAo8go44TiDG48VA86oeBgQFywxdVLvelUdN/EB7zz/zVUUpcg5L0iNn0xzTtM40XBY2u/8EM81ERPGB0BgBP4IxK0TsEiGn9D7/lQIN/ZzBkKoA+O4MZGBiotTN4qE4FMDAwKIHnqf7+Yfj+AZEJ+cQYmEF9sP/ndyJPDjBALv9iZmGQUmMUkvm/bwHDw8vUbP3//Q263uvhZYhLGPVdGDVtGQQkQRt/WTkhJKOsDqNFMAOvKKOUOqOJL8O3jyDFqJuP/5+HLmpC3AMAUjQY8ZAe+FcxejTIW/8XPw66037o0PqHLAoajMl91E0jFYx2AEZqzA8yf2Nd84PHjcNvOdC5jww0Wg5ErV0BwmKv1Xyf0+2QUGp1A4birgBGIVlICx500D5SNmA0gN35dXQ1tA/w7zfDH/DOVC4BhtdPQOeEgnYPM4OOBnrzGEkrucw3j0Fu+PYJdMonxAxhaQiNj+QRBMn++8vwF+w2Bob/z24wfAX3CuR1GX5QdtI7yGga4iG64h8y8E/F+31pdNDnSFj2gyd1jq4IwhM4o1J0BqNLgOgc4EPeOqovASJy1B9XwFGyHIiBgeEP+61BdVkYFzODPv9/Nhp0zKm1HGjo3hc21A4I+gtdWC8kzahkDE///x9dYnj1AMRlZAQdzA87OIjRMpjhN9Jdzn///H99H7RJQMsGMm8A0kIS/vub4eHl/18/MoopQnsjJ9aCDFDQY5QA70gGcbBhNnbQSaZHVkDlhGVAuwJ+Qhv9jO7pDB/fQKUGGTVEj/oBLdSx+UKtpj/INB3yj1zDFaWQ/b6UrPin7v2+DAwMPH8Dqb7iH5f3sYpTfUXQ6BIgrOE8KogLjHYAcIXMqDj2EKBiB4DCpj/cfRT2Ab58ff/uL6yxAjeUMgaFdwZr8zKIsA/qXQH0PCR0xF4b/P/WMYZPoLYyI2hQH5YiRWX+n1gHvWALJsagZMQoJAPnIRif3/6/eZTkY0D//mZ4/+L/8zuM/GIMvIijYMGn/YDNZmEDnT7EzgXmIBG/f4IcDFn/I63B8PQGkhyICdri/AVpURNIbLDgobviX1rjHScXdS7uoPqoPyR2B9UNX5D7ff99UhjY1j8kZKh7WuhoBwAeqqMMYsBoB4CYUBpVgwgBqnQAqNX0hzuLwj7AILwoYHRnMDxyIQwq7gweMlMBQuL/d80GeZ+FjdHAA8SA49/f/t+/wPD9M4OQNKORB2jxD1wKjfH3D8O3d6CBfDVzBswmO5piBgaGv79Ba34YGBgl1RgguwvgalhY/h9bg3kEEFwehaFkyMjJ+//2aYZf3xkYGBm4eBltIhg+UX9oGcVSsjijA/+QYKNF638Q7veFnPZDyUGfDAxEbfmFhCqRJFVmA0Y7AESG9qgyCBjtAEDCYZQkIQQo6QNQvemP7G4KuwEfPr74xLge2UAK2RTOA3AxM2jwMPCyUn8qgIrLgUanAihMJPi1/394keH1Q9BKHptwhh/f8SvGJ0vMVACOgX90Y39++X/vPKhZ/x/zGgtG0AFEovKM6pYMH2C3IAmIMTD8Z/jwGt2cwcEfugP/gjLfR5f9kJqIBnzZD34HU9INGG394w/bUVlMMNoBwAyTURECIUBeB4CmTX+4iynsA/z4+fXVz0Vw06jCoLAboMLNIM1J/T4AFe8MHrqHhH7nYz0sxkeVWKadIf/Pbmb4/5+BiZnRyJsiW/BPBXz//P/OGUYuAQZ+MfSBf4psHbyapf/+k/j2U/jFV2o5kT6X+zIwMPDo/JJUfDPIj/p5/WMQHfUz2Jb94E9y5HUDRjsA+EN1VBYTjHYAMMNkVIRACJDRAaBP6x/ibgr7AINzOZAq7+jOYEj0QklqrQj6w8H8kZ/9LC9Vj8yHupFK1OdX/2+eAJmlYsIoAL73F8QhF//6/v/SbkZ1CwYlI6gRRA78Q1UTQfEIMHwFL/Rn5xq0B/6MDvxDIpJGy35ufWZ8i7QjHWIXSSQVb/iCtP65/xkPtmU/eAKEjD7AaAcAT3iOSmEFox0ArMEyKogvBEjqANCz6Y/saAq7ASNnOdDoVAADA8Mgnwr4f2Ufw48voCM+9VyREzmZbNBUwMf/X9+BLvNiYPh/ejOjtj3yZl8yjYVr+/kFdFMB+DYDRjEluPAgYQzdgX/IQZ+DeeCfgYGB8v2+w++0H7JTPkndgNEOANnhPGLBaAdgxEY9+R4nsgMwUE1/uMco7AMMwuVAMhwMyjyDejkQnQ8JpeIBQYN6KoCFhYGRgeH3H3japgIDfk4o7JRPKpgJMeLHp/8XdoOYKqaMInIgxqDBowP/kKig0cD/6LIfSPBSlySyGzDaAaBusI8EMNoBGAmxTGU/EuwADHjTH+5hCvsAg3A5EO12BlN3KuDhZbGfD5jhEUFTBrWWAw3+qQAqg9/fGP78pubYP5XdR03jhvTA/+A/6HMQHvM/OE/7ITtNE+wGjHYAyA7bEQtGOwAjNuop8jiuPsDgafoje4/CbgDVlwMxMDAM+53BdJ4KoGIfYFBPBSAna8rZZHcABMUZ/v5m+IdxChAjEwMLC8N72Pk/lLuQSiZQd+CfgYGBbvt9xYfCDV+DbeAftE96oC/5olLKRTcGVzdgtPWPHlKjfCLAaAeAiEAaVYIRApgdgMHZ9Ic7nMI+wCBcDjT4LwoADah/4723A3GTFDw6aMSgYjdgkO8KoE4AktoBEBRneHnv/4VdWJr+qA5i1LRmUNAbDD2BIT3wPyQO+hyE+30HzyVfqNmCajzMbsBoB4BqgTuSwGgHYCTFNvX8itYBGOStf4i/KewDjC4HggQjqeTQPSR0+E8FkNQBEBT/f2w1w0eij/Nn52Z0imd4/5LUBENF9UN34F/I5LuE3AtqBQUtVvyDrrD9zXjuI6VuHOGn/ZAdfGh9gNEOANkhOZIBy0j2/KjfKQ+BIdH0h3jz12dhBgYGsrsBoCPkfqrx/eej4mVhz8A3O5G9HOjbX4ZzHxlkOBhpsTNYSOUDVe4LY2X9Iaf25JOY4ON9ApCIoCkp++EbtXYGs/z4K/zjm+3334P/rgCaBinU8Jf3oa1/RiZGc38GbgEGRiaoFIL6z/D98/9jaxn+/2P4+ZXh7lkGIRmEJB1ZowP/8MCmRet/cN7v+++TAj+jBAMFO49+fBSHh9sgZ/ByiYH6YN8G3XK7QR5uo85DBqMzAMihMcomNgTCgnOGUNMfzVdk9wEg5gzC5UBDZWfw8/sin6+wQoKR1iQVlwMN26kAUmYA/l/aw/ANNN7L6BjH8B3v5Vl8wv93zQLFLwc3o4EHiEFfPHQH/ofEQZ+Dc78v8zd1Hm5BShLaEGr9o3nz87dXozMAaGEyyiUGYA7hEKNrVM1ID4EhXdxApgLIjkIOdm4p7hQpUWeyTcDUCJkKwBQnUgQyFfD0OyOR6klSJqQCvtSJJD3YFEOmAiRsvmCTpL6Y7IdvkNkAyo0GTQW8/Gb76hPlRg1hE37/hDqemeguHOYuYagRtKKk//6jbutf5e1X+uz3ZVP4K27zRcXo0eA/5v/4O8ZvfymKQeou+2H+6sj9z3jEtv4ZGBiGdHVMUUoa1UwZGJ0BoCz8RrzuxOi6oRsGFE4FDMLTgYbEzuDRXQGDJcuQNAPw8g7D/Ysgl0soMxq641zcLyj2/8Iehue3QSqVjRlFFUAMumDqNv3pedQPdQf+GRgYRtSyH0F+CUrS19Ad+GdgYJi7eAjXv5TE2qheqoDRDgBVgnFEGzKS+wCjy4HITvpvX4m+OMJDtnZSNVJxRdDwOSCIlA4AA4/A/30LGP4RPfbLzMronMDw6R2pMUWG+tEV//BAo0XTH7TW/DfjjS8Mg2rgn4/bkP2XLgc7N9zvZDBGW/9kBNqolmEDRjsAwyYqB9IjI7kPQIvTgUbIRQG/f3MM0fvChsmuAJI6AKDD1fn/H1vD8I2IpVDcgozWoQyf3tKhVBrSA/9UvOFr5Az8MzAwMH91FBNRBh3MQEEKG239UxB4o1qHAxjtAAyHWBwMfhjSfQBKTgeCBP4gXA40JHYG0/m+MGodEASJ9CE/FUBqBwDibVBuYWd4/5zh1w+4AJTBys4gLM3wE0McKk1laugO/IMa64P+hi8GBobBud932B/zTzCfjK78IRhEowqIAaMdAGJCaRQQGwJDuhtA4ZaAP39/f2E4++nreWIDiwh1ZJ8QCjdbhZtBmvM/nEtFBlUOCYW45/uQvS9saE8FkN0BgETbgJJDeuB/8N/wxcDA8PQb4x3QmboURTN19/vycRty/zMeHfinKEpGNY+GAAyMdgBgITFKUykERngfgIHr/rPXe6kUllBjKOwG0G5nMAMDA7W6AXTeGTw6FQBKW0OzAzCkB/55dH5JKr4Z5Ef9DMJj/kEL0P4GUrjfl4GBYXTZDyjjj+LREACD0Q4AOBhGCaqGwJDuA4AWOPBStHb5y9f37/6uoGqIMlDYBxgqy4E+faDTfWGQ2KHizuA/HMyPxXhusw2pqxWHYAdgdOAfknRBi4h0KCqm4OagMUaX/aAFyCDhji77GSQRMZzAaAdgOMXm4PLLkO4GjC4HIikxUWsegIGBYXQqgKSQp0jxkOoADOmB/5Fz0CcDA8Posh+KciWG5tGmP0aQjApQB4x2AKgTjqOmYA2BkdwHYGBgeP32wXfW7VhDhmxByqcC9Pn/s9HmAkAqdgOG7iGhQ2kqYOh0AHS+/RR7+43lB9GHkBLKYPS53gs0najwd0is+B+EA/+jy35GT/onlI9H5SkCox0AioJvVDPBEBjSfQBQ/T3slgOBbjgaCjuDR6cCCGYuShUMhQ7A6MA/cizT6Jj/wbnfd/S0n9Gxf+TEP8qmOhjtAFA9SEcNRA+BEd4HGJwXBQyJncFD+pDQITAVMOg7AKMD//DClEZN/8G533f0tJ/RsX94yh9l0A6MdgBoF7ajJqOEwJDuBlC4JYCBgWH0ogCU1EAK5/s33qc3BH8+YCZFE0Vqqbg5eFDfFTCIOwBDfeB/8N/wNTiP+R9d9jPa9Keo7B7VTAoY7QCQElqjaikLgSHdB6B8OdCPn19f/VxEWRCi66ZwS8BQWQ40OhWAHvFU4Q/WDsDQHfgHHc5D1Ru+QAbS4LQfqgz802K/7+iyn9FlP1Qp20YNIQaMdgCICaVRNVQLgRHeBxicy4G4mBmGxM7goXtfGAMDw2CcChh8HQCqD/yDurhvv1Kt/MJrENvQ2e976zPj2994PUNIkrpH/TAwMIwu+xkd+yeU6EblqQxGOwBUDtBR4wiGwAjvAwzO5UAMDAzavAwi7IP9zuAhvTN40O0KGGQdgCE98E/dG75oNPA/OO/3HV32AwGjY/+QcBgl6QZGOwB0C+pRi1BCYIR3AwbncqChsjN46N4XNrimAgZNB2B04B+5cBzM+31Hl/0gxxS12KNNf2qF5Kg5JIHRDgBJwTWqmJohMML7AIN2OZAGDwMv6+hUAHpSp+LO4MEyFTA4OgBDeuB/SNzwNWj3+44u+xld9oNezo7y6QhGOwB0DOxRqzBCYIT3AQbtciAVml0UwMDAMHpfGCQfDPyugIHuAIwO/ENSAoQcUQP/o8t+IJE+OvYPCYdRckDAaAdgQIJ91FKUEBjh3YBBuxxIlXcI3Bk8uisAJS+RxBnQDsDowD9yXNGu9U/5ft/RZT/IMUUt9mjTn1ohOWoO2WC0A0B20I1qpGYIjPA+wOhyIAoT09tXoi+O8FBoCPHaqbgcaCB3BQxQB2BID/yDtucOhYM+GRgY3vxkvPqZ+ESNXeXoaT/Yw4Uy0dHWP2XhN6qbOmC0A0CdcBw1hfIQGOF9gEG7HEiGg0GZhyZbAqi7HIjOh4QyMDBQsRswMLsCBqIDMNQH/ofKDV+vfzDe+UZpqUzd1j8ftyHlx/wzMDD8+ChOqccGVP9o639Ag3/UcgQY7QAgwmKUNeAhMNT7AIPzsjAGBgYK7wvjYmYYKjuD3zwXeHeGk24pmYp9gAGYCqBvB2B04B8tWdJu2c/Fj4zf/qLZRhqXuk1/yDH/7L90Odi5SXMHquqh3vQf3fKLGp+jvAEGox2AAY6AUesxQ2CodwPYeN9ieop4kcG5HAh0odIQ2Rk8OhVAbGKjYwdgqA/8C8p8FxZ7TWzAElJHo6b/oD3mn/mro5iIMgszK6GAwSc/1Fv/owP/+GJ3VG4gwGgHYCBCfdROQiEwwvsAg3Y50FC5KGBI7wym31QAXToAQ33gf6jc8PXrH8Pjb4xPfhAqWwnJU3fsf3TZDyS8R1v/kHAYJQcVGO0ADKroGHUMIgSGeh+A8uVAf/7+/sJw9tPX84hAoQZrhCwHYmBgoPPO4KG3K4D2HYDRgX+0LEujsf/PvxlvfGEYXfaDFtqDhDva+h8kETHqDDQw2gFAC5BR7iAKgdE+wKBdDjRUdgaPTgXgA7TsAAz1gf8hdMPXINzvy8DAwPzVUUpcA1/yI0JuqC/7GV30T0QkjyoZMDDaARiwoB+1mMgQGOrdAAq3BAza5UBDZWfw6FQAzoxGsw6A6q8/si8/s/ygbCMqkrtV3n5F4tGWyabwl7or/kEnh+pQtC8Il4d//WOgfL/v4Dzmf/S0H1yRPio+GgLUAqMdAGqF5Kg5NAyBod4HGK7LgYbQzuDfvzkeXhb7+YCZhskU1WjqHhD0SZjjhCBFJ6igug7Mo0EHYHTgHxyyCIJGa34G7X5fPm5D7n/GI3y/7+jAPyIDjLIGMRjtAAziyBl1GlIIjPYBGBgY/rDfevZ6L1KoUIFJ4ZYABgaGobIzeHQqAD25ULsDMKQH/kHj9EPkhq9f/xgG57Ifnr+BgvwS6MmMRP7osh8SA2xU+WgIkAlGOwBkBtyotgEJgaHeDaB8OdCXr+/f/V1B9cCnsBtA0+VAo/eFIUc3NacCqNcBGAYD/9Rd9kO7gf9Bu9939JKv0YF/5JJqlD34wWgHYPDH0agLUUJgqPcBqLIciIHr/iCcClAZIhcF0H9n8CA9IIhKHYChPvAvZPJdQu4FSilDGYdGrf9BO/A/uuwHkl5GT/uBhMMoOVTAaAdgqMTUqDsRITDaB2BgYHj99sF31u2IQKEGi8J5AAYGBppOBby7I0ANX0LNGNL3hTEwMFBhKoDiDsDowD80MSFRtGv9D8L9vgwMDKPLfiCRP9r6h4TDKDmEwGgHYAhF1qhTESEw2gdgYGAYnMuBhtbO4Of3RT5foeiCUkSiJIJF3Z3BfziYH4vx3GZjIcJmbEoo6wBQfeAflHLoe9qPvO5LVtaf2IKGHDEaNf0H837f0WU/kIQy2vqHhMMoObTAaAdgaMXXqGtRQmC0GzBoLwoY3RmMklJROdTtBpA/FUBuB2B04B81PkE8GrX+R5f9gAJ3EOPRpv8gjpxRpxEAox0AAgE0Kj3IQ2C0DzAyLwqg7s5g+u8KoG4fgMypALI6AKMD/2hFIo2a/gwMDIPzmP/RZT/wBDDa+ocHxShjKILRDsBQjLVRN6OEwGgfAHRpzs+vr34uQgkXanAo3xUwVHYGD/VDQsnZFUBiB2B04B8zS9Go9T+YB/5Hl/1AksFo6x8SDqPk0AWjHYBRMBxCYBj0AYbx6UBczAz6/P/ZmGiV0qi4OXio3xdG2lQAKR2AYTDwL63xjpPrC7VSIY2a/oN54H/0tB944hlt/cODYpQxdMFoB2Doxt2oy9FDYBh0Ayi/KODDxxefGNejBw3F/NGpAIqDEJ8B1F0RROyuAOI6AEN94H8I3fA1aPf7Moye9gPLvqNNf1hIjNJDHox2AIZ8FI56ADkERvsAg3k50BDaGTzUDwklaiqAiA7AMBj4p+4NX6DuhM5b5DKHWuzRZT/UCknamTPa+qdd2I6aTH8w2gGgf5iP2kjbEBgGfYDhvRxIg4eBl/U/jRIBdZcD0fmQUOreF0Z4VwDeDgD+gX+bt//fM/xAi0UmBkZeBrbjwjgXe6nQ8ZRPBgYGIZPvwpLvh8RBn4N2v+/osh94STXa+ocHxShjeIDRDsDwiMdRX6CHwDDoBowuB0KPVOL4VOwDgNrQHwQf76PmBWQEPUHd5UD4pgJwdwBwDfxLv/2wnOHqd4Y/+H3BzMDow6DyQ1gKWRk9W/9sCn9HB/6RA58MNh+34eh+X0i4jTb9IeEwSg4zMNoBGGYROuodRAiM9gEG83KgobUzeHhOBWDrAOAZ+Gd/+2wTw21EBiPEMmeQEhBWpfP1XqDZM4W/Q+WGr1//GG59Znz7m1BQEpJ/8JWQChLl+bgNmb+p83ALkqgPXfmPj+LoQkONP9r6H2oxNupeYsFoB4DYkBpVNxRDYBj0AUANGl6K1hwP2svCuJgZhspyoGFwSCiWqQCMDgCugX9I3t/59iCEkcZg8FCYH8LGJDXefpvIcBoiXsVg9ZHhF4RNB3IIDfxTa78vAwMDLVr/3P+MWZgpuiF7GDT9GRgYRlv/dMi2o1YMFBjtAAxUyI/aS6cQGO0DQAJ60J4OJMPBoMyDtpgc4mQqkNRdDkT/+8JouysAqQOAZ+AfHg2QDoAXg/JfYRm4IFaG6Nu3SxiuMDAw5DKY/MOqggaCbNQe+B/d70t2LI22/skOulGNoyFANzDaAaBbUI9aNJAhMAy6AZRvCfgxWC8LG50KwJ83aLUrANYBwD/wD3cbpANgySDNJ6wCF8TK+Pb23mGGxwwMDKUMFt8IbRjAagJJgkNr4H8w7/dl/6XLwc5NUuBjKh4Grf/RgX/MaB0VGX5gtAMw/OJ01EfYQ2AY9AEG7XIgBgaGEXVRwPdvvE9vCP58wIw9qdFGlLrdgLfiXGc5/kt//yHByif8gqgl5LvfHvrHAJqrsWOQs2GQ4WFgY0T16V+G/18Zfh1heAJp/TMzMLYxODxi+Iyqiso8NoW/1L3hawQO/DMwMDB/dRQTUR5d9jO67IfK+XPUuEEMRjsAgzhyRp1G7RAY7QNAQnTQLgei6UUBDAwM1F0R9PaV6IsjPJAgpQ9J3T6A8IcPt4TZhRl4iXS81Nv3CxgugXoARGhgYmDMZTD5A+4wEKGcTCXiNl+ExV6TqRmbNpre7zto9/uOnvYDB6Nj//CgGGUMezDaARj2UTzqQZQQGO0DQILjz9/fXxjOfvp6HsKlFkn5PMDQWg5E//vCqLgrgNQOAAMDg8NbxkkMZ14yfIVMBWBNNkwMjLIMfJkMho8ZvmBVQBXBobXs581PxqvUmAgZnPt9QaeNDf3TfkbH/qmSMUcNGUJgtAMwhCJr1KlUC4HRbgADAwONTgeiynIgmu4Mpu5UwNDdGUxGBwBXDqTnGf8MDAw8Or8kFd8MlRu+Xv9gvPMNV8gRK071pj8DAwPHT09RYQViXYBD3TBY8T/a9McRt6PCwxyMdgCGeQSPeg9XCIz2ASAh8+Xr+3d/V0DYVCRH2lTAJ7rfF0b5VABVOgCYTX8lBn74MqH7DB+pmKhAe2CGzg1fDAwMg3m/7+iyH3jKHF32Aw+KUcaIAqMdgBEV3aOeRQmB0T4AJDgG7XIg0B1S3AzSnPD2JMS9VCOpuyVgyE0FUN4BwGz9MzAwSDBw1TIcgkRSNoMJhEEVcggd9Dnsj/kfXfZDlSQ9ashoCAwgGO0ADGDgj1o9KEJgtBsAiYbXbx98Z90OYVORpHwqYHRnMP7oIHtnMIUdAKytfwYGBjEGznqGwxA3U6sDMLRW/P/6x/D4G+OTH5AwIJ98QNThTKSZz/M3UJBfgjQ9GKpHl/1gBMmowGgIDD0w2gEYenE26mKqh8BoHwASpKPLgSDhQCE5VKYCyO4A4Gr6Q8JNkYH/B+zs/+cMVGjDDq2B/8+/GW98Yfj2FxIY5JNUb/3zcRuOLvuBx8fosh94UIwyRiwY7QCM2Kgf9ThKCIz2ASDBMZh3BqvQcjkQdXcGMzAwDP5DQsnrAOBv/UNSERXJoXXQ56Dd78vHbcj9z5jCY/5Hl/1QMWGPGjUaAgMORjsAAx4Fow4YLCEw2geAx8SgvShgyB0SOpjvCyO1A6Dy9qsiA/98hkv3GN5/h43xw9MMnMHHwG7GIOnBoEzhDuAhdMPXYN7vCzo0iRrLfkZb//AUPsoYDYHhAUY7AOTE4+/fv7m5uX///o2mWUBA4P379zt37vTw8GBgYFiwYEF8fDyamkHOVVJSun//vrm5+YkTJwa5U2nkvNFuACRgf/z8+urnIgibiiTlWwKG3M7gN88F3p3hpGIYEjSKyF0BJHUAVN5+/cbwawHD5f/E3e3FysDUzuBIdh+A6gP/tLvfd5Dv9x1d9gPPL6PLfuBBMcoYBQwMDCyjoUBGCFy/fh2z9c/AwKCnp8fAwHDx4kWImRAuhD0kyK9fvz548ICBgUFHR2dIOJgWjpy/tGkY9AF+fRZm431LSfhwsHNLsaQwcN1/9novJeag6X32HSRAYTfgzleGD78YtRGnTYLMpBYWUvlAxeVArKw/JOVeCIjw3tshQi0XEjRH9gPo2HkiuwEETYOv+VkEa/2bMkhaMkhzM7Axomr+x/D/E8PPLQx3HjF8+s3wr4bhYDKDAaoSwrwht993sC/74WclHOh4VYxu+cUbPKOSoyEwVMFoB4CcmIM38W1tbeXl5eFGODg4wDsALCwsWlpacKkhwbh69er//6AjF0dyB4CBgWG0DwBJrqAVwz/V+P7zfWJcDxGhFvnsOwOFfYA3vxlOv2fU4GHgZQWlWGo5DA6EVD5Q8ZBQTq7Par6/n98X+XyF0tYY3IUEGbIfvlHeB4C3/hkYGP6Cx/49GZSVGAT/MjB8YviF6QZGBiZfBrWNDDefMHz+xUDyTliq3/BF04H/QbvfF7Lsh59RgoEZM4pIExlt/ZMWXqOqR0Ng6IDRDgA5cXXp0iWItv7+fmNjYwgbTkJkNTQ02NnZ4YJDgnHlyhWIO7W1tSGMEUsOmz4A6O4kyqYCBPglOH7GUX05EOV9gG9/Gc59ZFDhZqTRRQFUnwqQU3vyVkD0xREeumUrSqYCkJv+yA6WYeBF5mJlszAwYRXHIzgyB/4ZGBhGT/vBkyqoIjW68ocqwThqyPADJBfTwy8IyPARZAaAmZkZc4z/58+fN27cgC8Hght+8eLFxMREBQUFLi4uHR2dzMzMV69ewWX////Px8fHyMhYV1fX2dlpaGjIzc2tqqo6efJkBgaG+/fvJyQkaGtr8/Dw6OrqTpo06e9f9KE1Is2vqalZsmSJubk5Ly+vvLx8Wloa3BnKysrJyckQJ7m5ufn5+TEwMPz582fixIlmZma8vLy6urorVlD/yliIjYOQnL+0af7SpkHoMFKd9OuzMKla0NSDlgNxp0iJOqOJU8h99p0BsiKIEnPufAVNBfz6R4kZ+PRCugH4VJAiJyz2Ws33Oa8O+vYhUswgWa3sh29XGZ5+xzZgj2nWH4a/Vxme4mr9g7Y2MVziY8A5j6HEwP+U4dMD8AXAPAxsmOZjFYEc9Cks9hqrLHmC4joULYHDYynkft87oGVWeFQRlnrwlSatf+5/xqMn/UNCf+7iutHWPyQoRsnREMAEo5uAMcOEsIiEhMTLly81NDSuX7+Opvr8+fNGRkYMDAydnZ1lZWWgefO/fzs6OhobG9G2DQgKCh4/flxdXZ2BgeHOnTuqqqoMDAz8/PwfP35ENrOgoGDBggUfPoDWJcPFGxsb6+rqINy/pJgvIiLy5s0biEYIaWdnd/DgwY8fPwoKCkLW/0DE6+vra2pqPDw89u5FLAFnZGTctm0bZIszRNlIIIfBlgDK5wEgET1oTwei9c5gKu4KgIQknQ8J/crweznDFRMBPWGk8Xu0TcB/GP5+ZPjG/PaFFAOfFAOWaYp9DPevM5DQqq5gsPzMQKCrM7QG/gfzfl/Ish/Km/6jp/1AcugoORoCwx6MdgBIjuKXL19KSIBuUpSSknJzc4Prt7W1TUpKWrhwYUJCAgMDw44dO9zd3RkYGOLi4hYvXszAwKChoeHj48PNzX3s2LHdu3czMDDAD9tZs2ZNaGgoxChnZ2crK6vTp0/v2LEDIsLAwGBjY2NnZ3cYDBgYGGRlZR89egSRJdV8IyMjd3f3q1evbt68GdLif/ToEQcHx8qVKwsLC//8+aOvr5+amuri4rJly5aSkhIGBgZPT08hIaGlS5cyMDBkZGRMnz4dYvXIIYdHH4Aq3QAanQ7EwEDprgAGBoahdWfw798cDy+L/XxA8TJt4vLhb4a/bxi+XRT4o8Qgygkem0fuAPxh+HuT4YXuWwYZBl423CvHHzF83Mxwm6CFIgycBQxmBG8Bgwz8s7L+JGgg8QpoOvA/mPf7jp72g5xIRgf+kUNjlD0aAljB6B4ArMGCTxCy/oeBgeHZs2cLFiyAK9XU1ITvAIYvAVq5ciWk9V9VVdXS0sLICD02Iy8vb/LkySdPnnzx4oWEhMSFCxcg5uTl5U2cOBHC1tPTu3z5MgMDQ2Zm5tSpUxkZGf/+/auqqnr//v2nT5/+//+fkZGRVPMjIyMXLVrEwgKKd3t7+0OHDjEwMDx//tzMzMzX1zc3NxfS3M/OzmZgYIBwGRkZ58yZIyoqmpqaCmqlSUlBnDeiSMhaoGHQDRi0pwOBMtQI2xnMyvpDxejRWxk67QpgZWCWZODl+/B7OcNp5KkA+MC/KY6Bf+ScLsfAn81gIsfA+5Lh63eGP2j7r5kZGPkY2EUYOO8xfCTY+h9aB31Clv0Mwvt9GRgYoJd8jZ72A06po01/cDCMEqMhQBiAGoKEVY2qQAoBeAcASQzE1NfXh3cAREVFJSUlf/78mZWVxcDAICYmpqmpuWzZMpA6MObhgc6wX7t2Dd4BYGJigi/sAQ1nioDODWRmZm5ra4P0HJiZmSUlJe/fvy8qKsrIyEiq+YyMjL29vZDWP2jJhIoKpAMgIyPDwMAA74RAPMLAwMDFxcXAwPD//399ff2AgIDY2Fg7Ozuw80coMWx2BlN4QuhgPh1oaO0MZmBgEBZ7zeXxg26HhHIzsMYz6L358O2iwCdphl8/GURuMrxQeftblUEcz8A/WoZ/xPCZgYGBCbbTV4GB7z7Dx1cMX/8x/P/F8JefgcDhB2wKf8WUPvMJvEczlhLu4B/4p91+39HTfuApZ7T1Dw+KUcZoCBAEox0AgkGErgByyA8DA8PDhw/l5OTQpCGykDb03r173717x8DA8OrVq9jYWDSVEC6kkQ1pfOvp6QkLI/Zr3rx5k4GBwdDQUEBAAKIYsluAgYEBMttAqvn6+vqSkpJwo54+fcrAwMDJyQlZ0QRxAwMDg4EB9Ojunp6ep0+fnjlz5s2bN3PAIC0tbebMmXATRiBj2PQBKF8ORLvTgUATTZRdnHXnK8OzH4z6/P/ZaHPMwZA+JBQyFcD+4fs6hgfmbxlUQAP/iBIGT6ZmB7f4WRiYvsKuAZZn4J3FcOEOA3pTXpCBo5DB7CUDln2yowP/eEKYJCk+bkPmb+r8/IIk6cJUPDwO+mRgYBht/WNG7qjIaAjgAbSpHvFYOPSlIDMAgoKCmK3/Z8+eQbbYQq4Au3XrFn7vsrKy6ujovHnzBtIWNzU1hat/9erVs2fPGBgYkAWfPXsGObTH0NCQgYGBVPMtLS3h5jMwMFy7dg2yVImJCZQMIB0ATk5OyHZkyBTB6dOnT548mZmZycwMWqk8a9asb9+wVOrIxg57NmQ50DDw5qA9HQiyHIjCEP72l+H4O8Y3P6GL7ig0DVO7kMoHKh4QxMr6Q07tiZIHygZ9TEupKCLEwBnFoI1rvy9Wi/oYTvUxnFrEAFqXCFFQzrAf3vpnY2DmBW8tYGBgeM/wo4HhsBDqVACbwl+qt/7Fdd7Sbuz/6TfG4+8YB+eyH+avjtz/jHm4R1v/kJQ42vqHhsMoNRoCxIPRGQDiwwqk8tevX5BTPiFNcJAQEob0DRgYGCAzAJCRdQYGhpqamubmZrjCe/fuvX4NOvBOQUGBh4fnxIkTECnI8UEQ9vnz5yEMrIIQ20k1H6ILYuybN28eP34MmWGAiEA6ALq6uszMzP///4+KimJgYJCXl+/o6DAzMzt//vyJEyckJCQgUxYQLSOWhPQBRrcEgO4SZ2ZlGKyXhTEwMFz9zCDyg1Z3BjMwMAzpqQDy8i8TA7RPdZHhJWQPgCKDQBaD0QOGTxADHzJ82MJw5x/D/6UMVz0ZVCCCI3O/L+2W/QiKgw6igIQt2eTwGPsfHfgnOwGMahzhYLQDQFoCuH79OuQ0z8ePHycmJsI16+joFBcXQ9b/wDsATk5OkGM9W1tbDxw4YG1tzc7Ofu7cua1bt/7//19dXR3S9Ie0vJHb4gwMDOfOnYMYjtxqhwtCVulQYj68gwEx/8OHDw8ePIC7HHKK0YcPHxgZGT99+vT161eIU3EtZII4daSRo8uB4DEOWQ70g+Xyp6/QjitcihIG5JaAwX9nMBUPCYVMBdD5vjCS4gi5AwDRmMigB2/9g0YNGKALih6DuwRD7qDPQb7fl/2XLgc/NyTkySaHR9N/dNkP2QlgVOMoAI3fjYYCSQA+xn8bDOB6IQfmQGRZWVkha/TFxMSWLFkSEhLy8+fPI2AAV+/k5LR48WLI4n5IB4CZmRmycAiiBtJAh6wRgogwMDBABNnZ2ckzX0dHB80oeK8D4nL4BgBGRsbo6OipU6f+//8ffuink5NTa2sr3IRRBgMDw/DoAzAwMFDldCCWv8Y8okLPXiMujqBKIhn8dwZTfSpAWOw1n+/n5/dFPl/BeeUWVcKWDEN+MfzlZGAWY+ByZJDfBD4S9B3Dd2RzFBn4IVxeBrbRgX9IUFCFZP7qyM+jgbquihyDR1v/5ITaqJ7REBh2ALT4e9h5ioYego/xo9kBWfMDkdXQ0GBjg16B6ePjc+PGjaSkJG1tbU5OTnl5eX9//40bN+7evVsKdp4mpAOgoaHByYnY+Qhp62tpabGzI47UgAjq6urCT/Ih3nxNTU0ODg64syFGsbCw6OrqYj0CqLe3t7a2VklJiYeHx8rKaurUqbt372ZlHXTNEbiPBooBWQ40ULZT0d5fFF8YzMLMygJaDhRIRVdBjKLWncFXPzL+GiJ3BkOmAiRsvkBCYPCQrxi+9TCcLGPYD2n9MzAwTGA4LcUAGpOWZuB5z/C9kmE/xLWJnmIqRo+G0DH/tz4zDtr7fXn+BkqJa0AClhJytPVPSeiN6h0NgeEERi8CG06xOeqXgQyBYbAlABJ8FB4SysDA8Ofv7y8MZ6m7HAjiNgqXA4EOt2Vm0OBh4GWFLF+HmEpl8t0d6BoYqphLu/vCvjH8+s7wF+ulv1hd/pPh932Gj88YPr9k+Pae4Ts8BJkYGLsYnO4zfPzA8H0pw1WI3khbfhtRai4xpd1m30F+vy/0mH9mSgdfRpv+kJQ5So6GwGgIQMBoBwASDqPkaAhQIQRG+wDIgfiH/RbVlwNRfkIoxIUyHAzKPPAWLESMmiR1+wAMDAxvX1H/vjBSOwCYAaTIwP+S4esvhr9/GECB+Ybh60qG67oyPLNKv5w7iDjRGFMjqSK0a/3/+sdAlft9abHfl4GBgedvoCD/6H5fRHoZ3fKLCItR1mgIUAZGOwCUhd+o7tEQQA2B0T4Acnh8+fr+3d8VyCLUYo/AqYDv33ipe18Y5R0AtNgc3e+LFiCUcPm4Df99Uhht/SOH4WjrHzk0RtmjIUAhGO0AUBiAo9pHQwBLCIx2A+CB8ufvbwau+4N2KkCFm0GaEzR6DXcwdRnUnQr4/ZuDijuDqdsBEDL5Liz5fgit+B/MA/+jy37QsuFo0x8tQEa5oyFAORjtAFAehqMmjIYAlhAY7QMgB8rrtw++s25HFqEKm/J5AAYGBhFWBm3+IdMHYGBg+PRB8PE+KmwzoFYHgBYD/wwMDDRd9nPrM+Pb31RIgw++UsEQNCNGl/2gBcho6x8tQEa5oyFAFTDaAaBKMI4aMhoCWEJgtA+AHCijy4GQQ4NCNlWmAkjtAMxigF5OguJ4JgZm5v8M4D0AKOIMDMuqGJ5fJmcnAO2a/gwMDJ9/M974wjA47/cdXfaDloRGT/rHDJBRkdEQoBYY7QBQKyRHzRkNASwhMGz6AAwMDFQ5HWgwLwcaaTuDSe0ATGU4gyWJ4xba2sLw4BzJHQDatf4H+X7f0WU/mElpdOwfM0xGRUZDgFpgtANArZAcNWc0BHCGwLDpBlDeB2BgYPjw8cUnxvU4A4tcCaosB+IagoeEkr0rgLwOgCKDgC2DLKf2X02b52zs7/FEl4Mew/5tJHQAaNf0B11194/h4kdGygf+R0/7wRPjVJQabfpTMTBHjRoNAaxgtAOANVhGBUdDgMohMNoHQA7QHz+/vvq5CFmEWmyqdAOG1s5gsg8JJa8DYCkh4akiICz2mlpRBjGHpq3/p9+ocMMXjZr+o8t+IAkAmRxt/Y+C0RCgAxjtANAhkEetGA0BUAgMmz7ASFgOROudwQwMDNQ9IOj7N96nNwR/PmAGJTXiMKkdAFC8K/yV1njHyUXN+4lp2vQfXfZDXFoYRKpGW/+DKDJGnTKswWgHYFhH76jnBlkIjPYB0CKERsuBqHJf2JBbDkTqVACpHQBxmy9Da+B/MO/3ZRi95AutLABzR1v/4GAYJUZDgB5gtANAj1AetWM0BJBDYNh0A6iyJWB0ORBy2qCcTfx9YcR3AIbiQZ+D/Jj/0Uu+0JL6aNMfLUBGuaMhQGsw2gEgJ4SZQpvJ0UaEnn+ra4lQNapkyIfAsOkDgJaF8L6lMD4G+WVhQ24qgMhDQonsAPDo/JJUfIPnhi93/7frj4KSgLsJw+EdRO36pfWyn8G833f0tB9QWkHFo61/1PAY5Y2GAD0AEz0sGbVjNARGQwA1BOYvbUIVGMK8X5+JavPh8SELMyvLTzW+/4F41JAn9ew7w7Pv5GlF6Pr2l+HcR4an3xkRQtRmCal8oKKRrKw/5NSeyDpRaiabwl9xmy9yak/xtP4ZGBg+fmUonQVC7z4R5Qmatv6ffmM8/o4Kp/08+MpAo0u++BktWJhZiQop3Ip+fBTHLTnEZEZb/0MswkadO1zAaAcAZ0waGBgwMjIuXLgQpwoaS/T09DDCwM2bN2ls26jx9A6B+Uubhk03gPI+AAMDgwC/hBh7HC2igfI+AAMDw52vDFc/0rYPQN1uAJ/AezXf57w6ZF54y6bwV173JTGL/n/+gkYaO6FmrbjOW9q1/n/9Yxjkp/0IMkYI8ktAA4sCati0/ucurhtt/VOQEEa1joYARWC0A4A9+H7//n39+nUGBgY9PT3sKmgvevHiRYglnJycKioqEPYoOcxCYDj1ASjvBnCwc0txp0iJOlM9lqnSB3jzm+H0e8bPv2nbDaCi3yFTARI2pB3aAxn4VzF6hH/gH+7OX3+gTDa8HQDaNf3hx/zf+QZ1CSUULQb+Ict+eLgFKXEYAwPDj4/iw6n1T2FojGofDYHREKAEjHYAsIfe9evXf/36xcLCoqWlhV0FbUR//vz56tUriNkLFy5ctmwZAwODjo4OMzMJp/tBtI+SQyUEhk0fANQOG10ORHGyo+48AAMDg7DYa+KnAogf+Id79CdsjgHPDADtWv+Qgf9Bu+yHj9uQ52/g6LIfeGqBMEYH/iHhMEqOhsAAApYBtHswWw0ZfdfQ0GBnZ0d2558/fyZMmPD/4HyGD88ZOHkZ5fT///zKcPs4o3EAg4jc/52TGBgYGB2SGEQUQLp+ff+/YwLDr++MBl4MKhYM//8x3Dn5//lNkF4WNgYRBUZtZwZuAQYGhv/nNjPcO80gqyMs3FlfX19aWsrAwMDExHTlyhUGBgZ9fX2QaaN4+IbA/KVNw2Zb8K/PwpSfDiTAL8HxM44Wl4U9+85A+WVhd74yPPvBqM//n402QyiQPgAVLwqATAW8FRB9cYQHTzYi76BPDTmGB4tBpjJhCw3aNf1BHc5/g/p+Xz5uQ/Zfuhz83KDQoQwPm4F/BgaG0dY/ZWlhVPdoCFAHjHYAsIcjpAOA1vJ+9OhRYGDguXPnQHoYmRg+vf5/ZQ8DE3hsXkCcgVeYgZWD4fcPhk9vIB2A/zcOMfz6ziAgyaBsxvDl3f9jyxg+gUf3GRlB4o8u/n91l9E5g4GTj+HjC5CZj6/8YmU1NTUFscH40qVLA7sMCeyKUYIeIQCZBxge3QDIWiAKuwGg5UAsKQxc95+93kvdCIAsB6KwG/DtL8Pxd4w0vTNYSOUDFfsAkKkALo8fWO8LY6Pghq8ta3HuAqdp638wr/hnYGBg/urIzanMgmdahLhkPdr0Jy6cRlWNhsBoCJAGRjsA2MMLswPw79+/2NjYc+fOWVlZHefUBTXrP7/5f3w5w+e3DIxMDHxiDAyMDEIyDC/v/P/yBrRG+OsHhjsnGRgYGQ19GP7++X98GcOn1wzqNoyKxgzcggxf3/8/s4HhzUOG+2cZtBwYPr4EuUNS/d2tMzw8iCE6TGeAlI3i4RsCo1MByHELOiwFdDoQ3yfG9cjiVAHUmgr48ItRm/8/VZyEaQjVpwI4uT7L6/7+JMOLPBVA3sA/pmuRRWja9B/89/uCjvkXH93vi5wiRgf+UUJjlDMaAgMOsE3ZDrijBoEDIEPvyDMAy5YtO3TokJKS0s6dOxkEpSGNfkZ1W5Bjqt2NuwAAVfBJREFUeYUZIMe6CcmAuJ/fgFb1XNnN8O8Pg6IRg7AsqJX/8RUDExPDkyv/Dy/8v2PC/8MLQf0BBob/v38wfHnP8OcXAyMTo74Hcuv//fv3jx8/Hp0BAAXpSMKQqYDh4WPIVACFfhHgl5DiTuHjNqTQHEztkKkATHGSRIbizmBhsddKHqBiilPhz1Bs/V/8yDjI9/uOnvaDlolGl/2gBcgodzQEBhyMdgCwRMHz588hO3GROwAHDx5kYGCIjo5GbqMz/AeP/MFOdmMUhnUA3j9leHyFgY2TUdcV1Bl4fR9kzb+/DF8/INAv0IkVjHxi0PU/ApIMPCgz6ZBOiJycnIAAaJ8AyIRRPDJCYJj1ASjvBrAws/IwGNPodCDKuwH0uSgAMhtArRzAyfXZPOuqqMx7Yg76JN5SOhz0OWj3+0KW/VBrv+/oyh/iU92oytEQGA0BMsDoEiAsgQZZeCMOBnDpGzduMDAwcHJywkUYGP7/fwRao88oAJvqhcwAfP3w/+IOBob/jLpuDGxcIPWQfoKaNaOeO4iLiv9f2wcS4Ee/2AXSAUDuhICUjeKREQKQPkBidN3w8C7lO4OHxHIgmu4MZmBgoPquAOqmLlov+7n1mfEt7MQhSlxOo4M+R5f9YEbK6MA/ZpiMioyGwCABozMAWCIC0gFQVVV9CgM/f/6EnMQ/depU8Cbg/6BNvSdWMUCG9gUkoaawcTHwCIFO+3nzELQfQNEIIs4oJA1i3D8LWvTP8J/h06v/e2f+X9vw/8RKkPgH0AYARowOAMQZox0AUBCNVAzpBgwP31M+DwC5LGwwLweC7Ax+8xO0CYhGsUbdeQAqOpKmrX/I/b6DufXP/c94dNkPWnIabf2jBcgodzQEBhUYnQHAEh2QlveRI0dkZMBLehgYLl68WFRUtGzZsqdPnxobG4NO/vn3l4GVHcqALQECmSUkw/DlHWhBv5EvaFswSIiBQdUStA3g28f/B+ZCtTAwMAhKMxr6guQhRwDBpxFAQiAMmQEYwJvIQI4YxQMdAsNsWzADAwOFpwOxMLMKMFjwiAoNztOBGBgYrn5mEPkxlHYGU5jGadr0H+T7fRkYGMDH/EswgE+DoyQkh9Oan9GzPilJCaN6R0OAPmC0A4AlnCEtb7gEGxubpqYmKyvr4cOHq6qqzp079/7HXwZhOUYdl/8nVzOwsDFwIM7tYfgJWtkPOvcTPi3AwMDAws7olP7/ym6GV/cZfn1j4BNllNNnUDZnYGZh+PMTtCuAgYEBdQbg379/o5cAwKNghDMg8wCjy4GQkwHLTzUhZtF3f1cgC1KFTZXTgSA7gzV4GHhZwduEqOIyVEMGyXIgWrf+L35k/PYX1edk8Wi47Ad5AIgst0Gu+CVX66DTNzrwP+iiZNRBoyGADTD+hyxPxyY3KoYrBJhCm7FLPb0OOhiUg4fRPQ90JwB2RfhE/62uxSc9KjeyQ2DY9AEonweAJIQ/f3/T4qIAiOEUXhQAMYSmFwVArCD7rgAmiQ/3LgmriUGMIZmkddP/9Y/Be9QPAwMDH7ch9z9j0NYUkkMOXcNwGvsfbf2jx+4ofzQEBisY3QNAvZj58+v/xW2gm4D13Mlr/VPPKaMmDc8QgEwFDA+//fosTPmuABZmVhbQRQGBtAgTyk8HYmBguPOV4epHGm4JgOwMpoX38ZtJ69b/rc+DuvUPXvZjQXnr/8dH8dHWP/6UNio7GgKjIUAjMLoECHvALlkPPpkHQzIm0AlDDCrw//oBhm8fQXcAy+lDhUap0RCgdggMpy0BDAwMlJ8OBNkZzPEz7tXPRdQObIbR5UBYg5Smrf83PxmvfsZqLcmCo8t+SA4yCjSMjv1TEHijWkdDYADAaAcAe6CLC/Njl8AtCjr0U9cNt/yozGgIUCcEIPMAw2Y5EFX6ABzs3FIsKbRYDgSZB6BwORDkogAZDkZlHhpuCWBgYCB7ORCRSZOmTf/Bv98XuuyHn5XI4MKjbHTgH0/gjEqNhsBoCNABjO4BIAfg3ANAjmEoekb3AKAExygHbwgMmz4AxJcUng4EMeTDxxefGNdD2NQlKewDQBzDxcxA053BJPUBSN0DQOvW/2De78sAPu1n9KBPSDJGJkcH/pFDY5Q9GgJDCIzuARhCkTXq1NEQQAkByFQAitBQ5lC+JQCyHEiMPY4WwQCZCqDQZMhUwNPvNNwVIKTygep3BdD0fl8GBgbIMf+D+bQfnr+Bo61/zMQ/2vrHDJNRkdEQGCpgtAMwVGJq1J2jIYAlBEb7AJiBAloOxJ0iJeqMKUWhyLPvoF0BFBoy5HYG03rg/+4Xqu33pdGi/9FLvrCm+dHWP9ZgGRUcDYGhAkb3AAyVmBp152gIYA8BSB9g2CwHgswDULgcCHQ8C+h0ID5aLAcaQjuDSVoRhJm8aNr0Z2Bg+Pyb8cYXhkE78A9Z9sPPOHrJF3rSGG36o4fIKH80BIYgGJ0BGIKRNurk0RDACAFINwBDeKgKQLoBFLpegF+CdsuBKF8RBFkOdPcLDZcDUXJIKE1b/7/+gZb9nPtIhdb/g68MNBr4H132gzUDjrb+sQbLqOBoCAw5MNoBGHJRNurg0RDAHgKjfQDMcKHdciAGBuosB3ryg+H0e8bPv2nYDSBjSwCtW/8XP1Jt2Q9mpFMuAjntZ3TRP2ZIjrb+McNkVGQ0BIYoGF0CNEQjbtTZoyGAJQQgfYDR5UDIQTP4lwNBpgJUuBmlOQf+kFD8TX8TNYYr9xlqFjBcuIscxihsMQGG8nAGf0uGC/dQxCGcp9+o0/RnYKDVwP+/Twqjy34gkYVMjjb9kUNjlD0aAsMAjB4DSk4kjh4DSk6ojeqhYwgMmz4AJMwo3BIAMeTHz6+0uCwMYjhVDgkVYWXQ5qdVHwDiTuSLAjCPAcXf+hfkYXCrYPj7D2ISAZKRkSHTh8HJEKGMWsf8v2FhPLbj/6Pb/4PTmH7+AAXXx7cMh7f+/w9igqzjFWBwj2D6+R3GB4kRhfm4DZm/qfNwCxKlGq+i4XTMPwMDw2jrH29sj0qOhsCQBKMdAHKibbQDQE6ojeqhbwiM9gEww/vP39+0uCwMYhFV+gB0uCgAvjMYuQOAv+nPwMCgIcOgkwbxKAMzE4OVNoOWHAMLM1QEQv3/z/DmI8OGYwy//kAEGJoTGDTlQGxq7fe9+Zph12poyz48m+nbl/+PbjNcPAYVAdkEwy4hjJzcMA4RNGTZD2i+iAjF+JWMtv7xh8+o7GgIjIbAYACjS4AGQyyMumE0BKgfAvOXNg2nPgBkWzCFUwGg5t3gPh2IDsuBIDuDkacCCLb+GRgY8qZBk2icK4OfJZSNlQpzYPj4lSG5FyQ5fydDSzLD6x9UW/azbyO0rS8qycDBycDOybh1CXRKQk6FUdeC4fo5hnvXQGpO7/tv50vUzgo+bsPRZT+g2MKGR8f+sYXKqNhoCAwHMNoBGA6xOOqH0RDAGgLDbEsAAwPDr8/CFPYBIJeFcfyMo8VyIMjRQJRPBdz5yvDsByNN7wwWUvnw4QuDiMpbcfAIPdb0gyx4/DqUl+bF8OI9lI2LstSEyjx5w0Dd+33//IKa7BvP9Pr5/4tHGf79BYnwCjC4hTO+fPLf0o0R0gH4/AEkThDzcRuy/9Ll4CdlsgCHoaMD/zgCZlR4FIyGwGAEo6cADcZYGXXTaAhQMQQg3QAqGjiwRkGmAih0w+A/HQgyFUDTO4NJCkMDZajyJXuhDDzU7nNQSX4RKhz0Cd/vKyqJGNFfNe3foc3/H90BDfYzMDA4BzG9fPKfT4Bx80LohICAKNQNeCjmr47c/4w52Edb/+iBNDrwjx4io/zREBh2YHQPADlROroHgJxQG9UzoCEwnJYDQQKS8qkABgaGDx9f0OKyMIgLKZ8KYGBgoN3O4A9fGD59g67RhzgYDynKz2BfDJXn42KIcGDQkANtBoAKgak/fxluPGZYdRC0BAgswOAVzajMD2GSSSKf8S8hy3jtzP+jO6CNfriJhraMJvaMLx7/37Pm//evUGG/BCbEvmCoGIKCLPsZPegTESJIrNHWP1JgjDJHQ2DYgtEOADlRO9oBICfURvUMdAiM9gGwxsCfv7+/MJz99PU8VlkKBanSB6DRzmCSOgAMDAwfvzCkTmD4Bx1hJxAwjIwMtj6M+rIElOGXRm79w1WysDKe3PP/xeP/TIwMAqIMpo6MLKxQyV0r///8wSAkyuASyvT9K3o/AaqIgWF0vy88KDAZo61/zDAZFRkNgWEJRjsA5ETraAeAnFAb1TM4QmCYdQOoMg8w+E8HYmBgUOFmoO5FAaR2ACDp9/lbhqr5DF++QXhYSCZmBnNXRmMlLFIkCWFt/eM3QUIWNA+AXw217vdlYGAYXfSPP6hHZUdDYDQEBjMY7QCQEzujHQByQm1Uz6AJgWHWB2BgYKBKN+DL1/fv/q6gUSxRaypAn/8/G5W2bpHXAcAVPr/+UXm/L9yiH+DOBgcXIwPD/3//GH79gMvgY0grMr59iTIJMLrsB094jQ784wmcUanREBiWYLQDQE60LmAMJkcbEXoS/q8lQtWoktEQoDQERvsAWENw8C8HouJUABU7AGj3+75iZPwNPq6HX4iB5zNKKxxrsCMLYg78b14IMkFejVHPkuHo9v/vXiErx8mOK2Z6/wakEaJidNkPJBywkqOtf6zBMio4GgLDG4weAzq843fUd6MhgD0EIEcDDaduAFVOCGVhZhVgsPj9W+I763bsAUeB6LPvDFSZB7jzleHDL0Za3xlMpEex3u97eOv/Zw9Aje/QDCYeUuYrMFv/cGdAFvpDDv2EC+JhILf+ef4G8jNKMKBeW4ZHLx6p0WU/eAJnVGo0BEZDYAiB0RkAnJFlYGBw8eLFBQsWxMfHoymizwzAkiVLFi9efOrUKWFh4eTk5PLyciYmUupSNEePckdDAFsIDKc+AMR/I2c5EIUXBVA+A4Br2c/qLf9fPALFRmQuk8hfUE8AxMGL8TT98eojIDm67AdPAI0O/OMJnFGp0RAY9mC0A4A9in///s3Dw/Pr169z584ZGhqiKaJ1B+Dfv38ZGRmzZ89mYGBgYmL6Bz53o6enp7gYdg4fmoNGuaMhQEEIjPYBsAbesN8ZTEkHAOvAP9ZgJEaQ+Na/mDTjq6cEehTiMozHd/1X0ho97Qdf2I+2/vGFzqjcaAiMADA6oow9kq9fv/7r1y8WFhYtLS3sKmgj+vPnz1evXs2aNWv27NmSkpKnTp169+6dr68vAwPDihW02p5IG6+MmjpkQgCyHGjIOJcIh1LlsjAWZlaWn2p8/wOJsJBkJc++M0CuDSZZJ6qGO18ZTr9n/EXc0ZyoWsnnaSsxPmFlOvOP8QMHKuJk/MKLuKuLGAsefGUgvvXPwMAwt+3fpeMMvPzYbRGRYLxzhWFO67+rp/+Dl/1YsDDDjgglxjU41AyzZT+gYFxch8Ovo8KjITAaAiMFjO4BwB7TFy9eZGBg0NDQYGdnR1bx58+fCRMmzGM4/JDhgwADhyWD3GeGn7sY7iQyGKkyCFcx7GZgYKhgsFNnEGFgYPjK8LucYedXhl/RDPouDMr/GP7vYbh7keHFQ4YP7AzM6gyiQQxaIgxcDAwMixjO72e4b8YgkyMsXF9fv3r1agYGho6ODlNTUwYGhoCAgM2bN3///h3ZJaPs0RCgYghA+gDDaSoA0gegfDmQAL8Ex8+4Vz8XUTG04UZRZVfAt7+g43coXA4EdxIehokaw7rDDOXzGH7//s/AgG8YnpmFwT2cUVqRkeMdPmUkNf3hDnt46//DW/+FxRkcA5h+/oCaLyjKeGL3/80XET2h0Uu+4CGGzBgd+EcOjVH2aAiMZDDaAcAe+5AOgL6+PrL0o0ePAgMDz50DXXPPxMD4jOHzWoarLAygWRQ5Bn4JBl4uBtZvDL+fM3yGdAC2MNz4yvBLjoHfiUHpFcOXSQwnnjJ8YmBgYGRg/Mrw6zjDo6sMLxsYnAQZOB8zfGRgYDjF8IT1F6upqam+vv7////t7Owgtu/eDepXmJubQ7ij5GgI0CgE5i9tGk59AAYGUDeA8j4ABzu3FEsKA9f9Z6/3Uj3kqdUHOPeRQYaDUZkH2iCmujuNVEA3AT98SZTBf/8wbFv6X0jsf3QI9qF6BgbSBv7htvILM3x8C+K9fcmwZuY/ZmYG3wSmk3v+PX+I8LiIiMixY8cmTJwAUkcBHh34pyDwRrWOhsBoCAx2MNoBwB5DmB2Af//+xcbGnjt3zsrKyvUYuxyDwHOGz1MYTrxg+MLEwCjFwMfIwKDEIHSF4eULhi8MDAxvGL7tYbjLyMAQy2D4m+HvJIYTzxg+eTGo2TEoiDJwv2b4Oo/h3C2GN4cYHvgxaD4BdwwMGCQPv7vFw8OD7KaFCxeuXLmSjY2toqICWXyUPRoCtAiB0T4A1lAFrSQBLQfi+8S4HqsCSgQha4EoPyDoyQ+Gd78ZaTQV0LuOAdL6B7W545lkORANbjS/X33OsH/D////Gd69YrjzgUFFAE2ezKY/xBQ7H0ZhMcbLp/6fOwSy4u9fhg1zEaP+7p7OixYsa2xqHG39Q4ILmRwd+0cOjVH2aAiMAtDo9WgoYIbApUuXGBgYkGcAli1bdujQISUlpZ07dyowCDIxMEoz8HkxqDEwMEgw8LKBT5hTYhBkYGB4wfCZgYFhLcPVPwz/bBkUVBiEDjI8eMrwiZmB6RTDkx6GI+UMO3sYjjwDN/q/Mvx+zfD1B8MfJgbGCAZd5Nb/////W1paEhMTmZiYFi1apKqqiunOUZHREKB6CECWA1Hd2AE08NdnYciKIArdIMAvIcYeR6EhuLRDugG4ZIkU//aX4dxHhqffcY67E2kOsrJf/xiefmOctwcqFpyGr/XPwMCgLcngFQV1wNmD6P0E8pb9QO0GU29f/dcxY9Q0YmSEWgIWZWCwsbOcNWNeY1MjlE8u9eOj+OjYP7mBN6pvNARGQ2DIgNEZACxR9fz581evQJfNIHcADh48yMDAEB0djdJGB+uWY+AH0wzKDELgDsCXBwzvTzI85mZgC2XQYWBguMHwmoGB4Q/DvzcM4DstIarBpDQDH2T9jxyDgDgDYuz/69ev8fHxa9euFRAQWLVqlaurK1j5KDEaAvQIAUgfYHQ5EGZYD/7lQAwMDFS8KODXP4Zbnxnf/maAH8DPzMLA8BczYFBE/sIUsLKhNNIpb/2zczDuXPnv8wdEv4JfmOHTO9BxdkcOHZeXl1dUVFyxYoWpqWlObg6Km4jjjDb9iQunUVWjITAaAkMejHYAsEQhZP2POBjApW/cuMHAwMDJyQkX+c/AcJzhMQMDgyysA6AE7gC8Zvi6jOHSfwaGMAYdHgY2Bth2OQ8G1XAGXbh2OGMDw3VkQxgYGO7duxcQEHD58mUjI6M1a9YoKirCFY8yRkOAbiEwuhwIa1APieVAb36DTgeCLweK72KojGTQkMXqIYTg958MD14yXH3AEALef/TmJ+NV0HQmSIGCOuPNC6Bm99Yl/wKSmfi/gdggCQz88BvjrtXQZTlGtoyQ8o/ypj8DA4OYFOPcdqjJDAwMMsqMHhGMXx8GCPJL3Ll9Z9euXQwMDPfv34dsl8rKzsJwGgGB0dY/gQAalR4NgdEQGEZgtAOAJTIhHQBVVdWnT59CpEVERFRUVI4cOTJ16lR3d/f/DAyvGb6sYbgKGdqHzwDwMLCJMXC/Yvh6m+GtEoOQLYMCRLsCg8AFhucHGR4YMUipMAg/Y/g0l+HsI4YPRgxSWQzmkBkAWQY+iOK9e/eGhYW9e/cuNTV10qRJHBwcEPFRcjQE6B8Cw7IPwMDAQPnO4CFxOhB8Z/CMAoYHLxhWHWTwtWTgBA1KYElK338ybDzOIMzL4G3OgHnMv7kz471r/3//Yvj0nmFRD6IVjsUg2AFBkvIMCuBNyVRp/TMwMPz8AbKNkZHBxotRXZ/x+weDrw8VIKf9qKiqrF27Nj8/f968eSBFJOLh1/QfPeuTxCQwqnw0BEYcAM2cjjhPE/JwVFTU8uXLkVVdvHiRkZHRxMTk169fDAwMzAxMfxn+cTKw/mL4+5fh3wQGL34GaDN9FsPp4wyPmRgY6xgc5Rmg299+MPypZtj9juE7XC8DA4Mig2ARgzUPA1sZw87XDF/LGWw1GESDPs4XEhL6C59BhzmitLS0q6sLxhulR0OA3iEwzJYDUaUPAFrX9/c3jU4HYmBgoHxbMCSVcDEzQKYCbjxm2H6awdMUOhWAfBHY9UcMF+8x6CsxaMqBWv8XPzJ+gy3jgRjCwMDwhZfx8Nb/d67gHPuHq2RgYLD3ZdQDTzhQq/XPwMDAJ8D4+tl/dtDJyTgv+ZrQPyEnJ2f27NmZWZnI7sHDHn6t/9H9vniie1RqNARGQwACRmcAIOGAQkJ2AMOF2NjYNDU1WVlZDx8+XFVVBToG9P0PVQbhYAatGQynORhY4K1/BgaGzwygHoITgxK89c/AwMDBwFLP4LSa4cp1htdfGH5JMfBaMcg5MyixMjD/YPjzhuEraDobvI7o0qVLmK1/tO3IcIeNMkZDgG4hMCynAiifBxgSy4EgO4NVuBk1ZP/Li4OmAvacZ3CB3W8OX/bjb8nAyQ7a73sHfacSNJXxfP7vacfAYMf4iZvxywcG8GAIVApCMTIysHEwCAgzcL4HdRIegAo2iAx1yE8fQK1/Pm7Df58U+BklwCcvoJvMyspaUFDAysr6HzYRga4ClT/a+kcNj1HeaAiMhsBIAaMzAOTE9ALGYKzazjI8m8Jwgo+BvYPBjZOBnBsoE/6vxWryqOBoCAyGEBh+8wDUmgr48fMrjS4Lo+JUgAgrgzY/qGl+4zHDpXsMvJwMcmIM914gBv4ff2N8Al5mgyexvWRgfHrv/+cPDL9BYx0oChmZGNg5GITEGBTUGV89A1mEIk0NDh+3IfsvXQ52bjTDJk+afOXKFVdXV8j5DaKioqFhoWhq0LjDr+k/uuwHLYpHuaMhMBoCeMBoBwBP4OCUwtoB+Mnwpwq8zieNwcSSQQ6nZrwSox0AvMEzKjnwITDaB8AVB39ouRyIWt0A+HKgd58ZCqczRDgwaCuAlv18/s144wsD5rIfZM8+/Mq4ffk/zHY/sho4W1SKwTeO6fVzanYDmL86iokog2ZdYNb09vQ2NjYuWrTo2bNnMDEQraWl5eDoAGLhwKOtfxwBMyo8GgKjITBSwGgHADs4tWQdVgmzmCAGBgasHYDVDFe2MdxSZxCpYACfoIFVPyHB0Q4AoRAalR8UITD8ugGULweCRMyHjy9ocVkYxHBq7QpQ4WaQ5vwP2QOgLMPw+gcjrmU/EHtBp+t8ZtiyGNqaZ2Ri4OVnYGOHS0IZ//8z/PzO8AV03TlIhJefISKX6cVjqC6QELkYsuwHst+XgYEhPi5+woQJGzZs+P4dtLEK2VQ9Pb2ioqKQkJCy8jJkcWT28Gv9jy76R47fUfZoCIyGADFgtAOAPZSu7z6EVULTFdS4x9oBwKqeVMHRDgCpITaqfqBCYPj1Aai1HOjP399fGM5++nqeFlFDrT4AFzPDjy8MYiz//wpg2e+L6fIVG/6/Bg+y23gyGuI4lxiy6F9ClnFx378f4I0EDv6MvNCjEDCNJFYEsuxnYv+UXbt2NTc3X7hwAVOnqKjo5s2bFy1ehCmFLDL8mv6jy36Q43eUPRoCoyFAPBjtABAfVgiVox0ARFiMskZwCIz2AXBF/pBYDnT/LYM4M4OoBC5PoIhPnfkfchdYUgUT9yf0QX1I0x+u4fcvhh3LQWqM7RmloIchwyVJY7jZ171/wtzU1PTnzx9knUxMTEJCQiIiIpAbWoyNjc0tzJEVYLJHW/+YYTIqMhoCoyEwYgHTiPX5qMdHQ2A0BCgMAciFwRQaMti0//osTLmTWJhZWX6q8f0PpNworCY8Q1/5glUVNQU5Ydtuv8GuBoObjtb6l5BlvHQcKilAQVjycRvy/A3MTWqsq6uDt/65ubl7e3vfvHnz+/fvsPAwT09PiE3IVzRCRNDI0dY/WoCMckdDYDQERjgYPQZ0hCeAUe+PhgBFIQDpAwyzqYBfn4WpsiVAgF+C528KjZYDPftOtYsCiEkB6vqM5w6DBvVXTP0nIMygZ8koKMoI0cgEG0f6/uX/80cMmxdCrwlj52RQ0mIkbw8AH7ch9z9jFn70s9T+//+/efNmMTGx8PBwBgaGd+/eQdyA/8LE4df6H130D4n3UXI0BEZDgGwwugSInKAbXQJETqiN6hnWITDM+gCQuKJKNwB0Xxj7rWev90LMpDpJ9q4AkpYAMTAwbD3AcO8aqA9AjBfYOBgicpjevyZWPbKZPH8D4ft9p0yesnbt2unTpx84cODfP2jXAqKYmZmZi4vr82fQlISvr6+sHPjiMYgcjBx+Tf/RRf+wuB2lR0NgNAQoAqMdAHKCb7QDQE6ojeoZ7iEw2gfAE8Nfvr5/93cFHgWUSJHXByC1AwBx4f4zDFdO4WvW8/AzeEUxff+GTw3EKEwS7bQfNAWlJaX5+fn79++HNPqRZdnY2Do7OyMiIiQkJLJzsiFSo61/SDiMkqMhMBoCoyGACUY7AJhhQlhktANAOIxGVYzUEBh+3QCqzQMMsosCyOsAoK34p2Iyhy77YUZf9oPVCnk5+fr6+h8/sNxblpCQMGPGjKyUTqwah67g6LKfoRt3oy4fDYFBCGCLNweh00adNBoCoyEwBEMAsitgCDocp5N/fRam4s5gzt/Qfas47SNXgg47g7G2/n//Ytiz5v+2Jf+3LAKRe9ZAzwsiyR88fwP5GS2QL/nCr/3ho4dJyUnfv38/ceKEiooKsuIFCxa8efMGWWQYsEdb/8MgEke9MBoCgwqMzgCQEx2jMwDkhNqonpEUAsNvHoBatwQwMDD8+Pn11U8CJ9aTnViIXw5E6gzAZx7GtbP+ffnI8B+8uoeDC3TX7+Gt/148xuJYNnbQLWDE7AHAv+wHi9E4hJKTkmfOnDl79uz//////PkzM7kDh8KhJzza+h96cTbq4tEQGPRgtANAThSNdgDICbVRPSMsBEb7AHgifDBcFEB8B+DBV4bvXxj2rvsPafpj9ZdPLBOvAMOHt/93rfr/F3xkPwcXQ0wh08sn4O4CVj0MDCQt+8FhBkIYsuh/wrTCgqx+hOgQZ422/kfBaAiMhgAtwGgHgJxQHe0AkBNqo3pGZAiMdgPwRPuHjy8+Ma7Ho4ASKYJTAUR2ACDLfvau/f/tC8g5XlGMwhKML5+AGvogPgMDGztDbDHTq6fQhr64DOPG+f8g1wZH5DB9/QwVhyhGJpFP+0EWJ4MNafqToXEwaxlt+g/m2Bl122gIDHUwugdgqMfgqPtHQ2BQh8Dw2xLAwMBAlS0BDAwMAvwSYuxxNIo/qmwJgLT+QcuWYFePMbOChvnZORlklaH3ABjaMMJb/wwMDC+f/BcUgUox4qhhIJd8wc/6pDAERlv/FAbgqPbREBgNgREIcBTPIzAkRr08GgKjIUCbEBjtA+AJVw52binuFClRZzxqyJZ69p2B7G7Ag68M8NY/AwODoCjUFduW/v8Evn3LLZwxuZIpuZJJ1wLa3Ieq+M94+zJ01J+DEyqGTEGW/Yy2/pHDBI09OvaPFiCj3NEQGA0BqoPRDgDVg3TUwNEQGA0B9BAYrn0AqkwFsDCzsvxU4/sfiB5qVOKT0QdAbvpDXOEXz8QObs3//cPw6ydI7NXT/6+egRB8lT8LC+PWJf83L/oH2Srg4M/45gW0JwDSAMaknvYD1oSd+PFRfHTsH3vQjIqOhsBoCIyGACEwugeAUAhhkx/dA4AtVEbFRkOAcAiMbgnAE0Y0PR2IgYEBbVcA1j0AmE1/ZAdzcDI+ufdfSIyBiRlZGMr+95dh6xJQi5+RkcE7lomREcSGyoH3+/77pDA68A8PEEzG6MA/ZpiMioyGwGgI0AiMdgDICdjRDgA5oTaqZzQEwCEw2gcABwN2gp6nA2F2APC3/rG7GEmUl5/xw5v/gqKMnz6gNP0ZwK1/7n/GxB/zDzd12tRpIO18fNOmTQsNDS0sKgRtSPgoDlcAZ4REmXp5eUG4STGNEMYQIkdb/0MoskadOhoCwwCMLgEaBpE46oXREBhKITC6HAhPbA3gciAKW/8MDAyfP/5nZmVAa/3zcRtSvuzn06dPMTEx7Ozsz589b21pxRqAX79+xSo+JARHW/9DIppGHTkaAsMJsAwnz9DNLwn71tHNrlGLRkNg+IUApA8w/KYCfn0WZuN9S3l8CfBLcPyMo9FlYZAtAcjLgShv+m9eCBry1zRiVNFF8T0ftyHzN3V+fkEUUQo468GAl5d3586dc6btRjZpiHYARpv+yJE4yh4NgdEQoBsYnQGgW1CPWjQaAqMhgBICkG4AitDQ5/z6LEwVT9D0dCAGBsTpQJS3/uH+ZUYdUIKc9sPDTYXWv6ur6/r16/n5+SF2ff782crKaunqNkb2R9PmlEMEh2IHYLT1D4m7UXI0BEZDgP5gtAOAM8wNDAwYGRkXLlyIUwWNJZYvX25kZMTLy2tpaXn+/Hka2zZq/GgIDEAIDNc+AFW6AbReDsTAwPDoGxUiXUwaegwoM2xnMFWW/SC7jJube/PaS8G+RTdv3vT394dI/fz5c+7cuRwcHJdubE7P9RhyHYDR1j8kHkfJ0RAYDYEBAaMdAOzB/vv37+vXrzMwMOjp6WFXQWPRtra2qKio8+fPf/369cSJEyEhITS2cNT40RAYmBAYln2AoXJZGFWi/N9fqDGQGQA+bkP2X7rUOu0HYjQ7OzuE0dm8QpjXKCmmsbu7m4+PDyJ45swZc3PzsrIyCHdIkKOt/yERTaOOHA2BYQxGOwDYI/f69eu/fv1iYWHR0tLCroI2oj9//nz16tXHjx9bWloYGBi2b99+/PhxBgaGe/fuvXsHvn2HNvaOmjoaAgMYAvOXNg3LbgBV5gEYGBhovRyI0qhnZDC2ZzS2Z5RWZGT+6sj9z5iDnZtSM8H64cf8c3BwgAUQxPWL30L8ih88eGBsbIwQBbM4OcEXFoDZg5CYu7hutPU/CONl1EmjITDSwGgHAHuMX7x4kYGBQUNDAz7yBFH358+fnp4ep2IGQT8GrUSGtqUMhVMZGJ0Y5m5juPEIxGB0Yjh0CaKW4f1nBmF/kODk9SCRP38ZJqxlcCkBCcpFMMS2Mzx4ARJnYGDInABSFtHMICwsvHDhQn5+/m/fvv3//9/Dw+Phw4cMDAwSEhJCQkJQ1aPUaAgMxxAYrn0AqnQD6LAciOw09eb5fykFBg1tQ55/AVLiGmSc9YlpNfySLyEwEBTEvpGgqWahvqbfv3//ysrK4GW1qCjs1mJMcwdaZLTpP9AxMGr/aAiMhgAUoG7aggqOUgyQDoC+vj5yWDx69CgwMPDcuXMMDAzMTAwfvjBUz2VgYwUp0VdmUJdlEOABCd54xGAHXjfUupTh3WcGAxWGLH+GO08ZAmoZrj4AKWZiAokv2c2w+wzD2ZkM0iIMF++AxFfuZ2Bl/WVqagriMDDcv3/fz8/v2rVrzMzMfX19EMFRcjQEhnEIzF/aNPyOBoIsB6LW6UA8f1O+MJz99HVwbQqC7Pdl4QeXhhQnUPjAPwMDQ4BXPgMDw6c3+AxNiWtmYOCODq3Cp2gQyI22/gdBJIw6YTQERkMACkZnAKABgUZhdgD+/fsXGxt77tw5Kyur09MZfu5iuDyXQU2G4ddvUGdAW4GBkZHBTANkzM3HIPLBC4Yp60GC0woYfvxiCKxjuPaQoSyC4dYihl+7QKStLsPL9wxztjL8/89w+T5Ii68lw7t37xwcHEAcBoZTp05duXLl379/fHx8KioqEMFRcjQEhncIDMt5AEgfgCoRx8LMysNgLCXqTBXTqGIIx09PfkYLqgz847rkiyruHFhDRlv/Axv+o7aPhsBoCKCB0Q4AWoBAuZcugdbxIM8ALFu27NChQ0pKSjt37jRRBzX6dRQZyiNB6tVlGTjBW9TMNUFcSAegag7Dz98MyV4MlloMs7cyXLnPwMrCsOoAg1sZg0oMiLwGWtrD8P4Lw73nDF++gwzszWTg4eEBGQHGtra269at09XVff/+fUJCAlhslBgNgeEfAsN4SwAVlwMJMUcMeFKAnPYjKqxAFZfAl/1QxbTBY8joov/BExejLhkNgdEQgIPRDgA8KBCM58+fv3r1ioGBAbkDcPDgQQYGhujoaOQ2+j/Q7TcM+spQvRbgDcM3HzOcucmwYj+DEC9DRypI6sAFEPnrN2jR/4MXUPLtJ5CgtgLDxbsghqEqg6oMiAHHUlJSgYGBnZ2dDODlQP//gy2DS48yRkNgWIfA6FQA/ujl4RaU4k7h4zbEr4x2spBlP9Q67Qd52Q/t3Ex/k0cH/ukf5qM2jobAaAgQA0Y7AFhCCbL+RxwM4NI3btxgYGBAPl/i/3+GpXtA8vAOAGQG4P5zhsJpoIU9nekMwuBz6v79AykrDmP4vw8dpXpDOwB6SiA1z58/dwUDSA+EgYHh/fv3DAwMkEsJQCpG8WgIjJgQGO0D4I9qFmZWAWYLzt+e+JXRQpbnb+Dosh+CATva+icYRKMKRkNgNAQGCox2ALCEPKQDoKqq+hQGfv78CVmFP3Xq1HPnzv3/D9rUG97EABnaN4CtzxfmY1CWYvj7j+HIZQZzTYZkWL1sog6yZc5WkPj//6CtwGZZDKyuDGGNIPFL90AkpAPAz8+/f//+PXv29PT0fPv27fTp0+XloHsuU1PBUwkghaN4NARGUAiMLgciGNmiwgr0XA4EWfZDxYH/YTn2P7rsh2C6HVUwGgKjITCwgHF0YQlmBERFRS1fvhxZ/OLFi4yMjCYmJr9+/WJgAK3m//2HgY+L4fsvht9/GJ6vYZCAHdEZ0waaFmBmYjg9ncFQFWrG528M2kkMj0GriqB6GRgYTDUYtrUziPAzKEUz3H/OsL+PwcGAgcHxf1xc3OLFi0EHDTEz//0LumInLi5uAC8khvphlBoNgQENgWF5OhADAwNVTgdiYGD48/c3A9f9Z6/3Eh9LP78x/PzJICxOvA4GyLKf0f2++INsdOAff/iMyo6GwGgIDAYwOgOAJRYgO4DhEmxsbJqamrq6uocPH3Z2dhYUFBQXZAhzAJ3gaaDC4GiIaP0zMDC8+QjSl+WPaP0zMDDwcoH6AwkeDPLiDGwsoD0DPRkMhyaAWv+fv4G2BDAwMOiClwAxMDBMmzatoKBARkaGl5fXwcFh6dKlo61/UJiO4pEdAqPLgfDHPx0uChhd9oM/CiCyo61/SDiMkqMhMBoCgxyMzgCQBfYzYtW2/ghDUB2DuCDDzUUM/ORdhek4utMXa9COCo6GACgEhus8ABWnAn78/Prq5yJQYBHCxM8A8HEb/vukQMVlP4ScNlTlR1v/QzXmRt09GgIjD4x2AMiKc2wdgK8/GDQTQOt8FlcyxLiSZSwDaAkQuTpH9Y2GwEgJgeHaDaDzciAiOwCjy36IyVejTX9iQmlUzWgIjIbA4AGjNwHjiItbS7BLqMVgF2dgaFoEav3b6VHQ+sdl9Kj4aAiMhgBSCIxeGIwUGFiYoDX6P9X4/vN9YlyPRZoUIfCyHwkGZlL04FY7LPf7MjAwjLb+ccf5qMxoCIyGwCAFozMAOCLm0W7sEnLgsX1sMwDY1ZMqOroEiNQQG1U/UkNguM4D0G05EP4ZgNFlP0RmrNHWP5EBNapsNARGQ2BQgdEOAFnRMdoBICvYRjWNhgB1Q2C0D0AwPPGcDoSnAzC67IdgwEIUjLb+IeEwSo6GwGgIDDkw2gEgK8pGOwBkBduoptEQoEUIDNduALW2BDAwMHz4+AJzORCuDgDP30Bc+32nTpl6//79zMzMnTt34opKHh6ezMzMiooKISGh7Jzs0WU/uAJqVHw0BEZDYDQEBhCMdgDICvzRDgBZwTaqaTQEaBQCw7UPQNPlQJgdAPzLfhobGsXFxf9BLjYnIiIVFBTu3LmTltBKhNohpmR04H+IRdioc0dDYDQEMMBoBwAjSIgRGO0AEBNKo2pGQ4COITDaByAY2GjLgdA6AASX/cyeNfv3798MDAyMjIyenp4ODg5cXFxolr59+3bevHkPHz6EiAsLC/t75kHYw4Ycbf0Pm6gc9choCIxkMHoK0EiO/VG/j4bA8AkByE1hw7Ib8OuzMFWWA+E6HQgy8M/PSOC0H0jr38fHR05ejoGB4cHDB1hTj7eP94T+CQICAt++fXv79i1WNUNUcLTpP0QjbtTZoyEwGgKYYPQmYMwwGRUZDYHREBiqIQDpBgxV1+N296/Pwr8+C+OWJ0FGgF9CjD0OroGP25D5mzquRf9wZXBGc3MznI3J+PFR/MdH8YykdsjkACMj9jsTMTUOfpHR1v/gj6NRF46GwGgIEA9GOwDEh9WoytEQGA2BIRACw7UPwMDAQK0+AAc7txR3ird9Oy+jI/c/Yx5uQeLj1d/fH5di+H7f5EwXyNg/Ozs7LsVDS3y09T+04msUjIbAaAgQBKN7AAgGETYFo3sAsIXKqNhoCAyeEBiWa4EgwUuV5UAMDAy2NpbrN6yXkJCAGEuQnDVz1p8/fxgYGJiYmBQUFAQEBJiZUW4I+////5cvXx4/fvz161eIaX19fVfOfYawhy452vofunE36vLREBgNAVxgdA8ArpAZFR8NgdEQGMIhAJkHGJbdAMg8ALW6AcTH8YcPHxQUFN68efPv37979+4R1Lhu3bot6y4TVDaYFYw2/Qdz7Iy6bTQERkOAEjA6A0BW6I3OAJAVbKOaRkOA/iEwLPsAkGCksA9A6gwAxNLmpuaDBw8eOXLk+fPnf//+hQjCSV5eXh0dHVtb22kTtsIFhyhjtPU/RCNu1NmjITAaAsSA0Q4AMaGEoWa0A4ARJKMCoyEwaENgtA+ANWrI6wAgGwVf9I8sODzYo63/4RGPo74YDYHREMAFRjcB4wqZUfHREBgNgWESApDlQMPEM6jeoOLpQKgGE+BBTvvBpSg40uT1xzOvP56RVgTtGcClbNCKj7b+B23UjDpsNARGQ4BaYHQPALVCctSc0RAYDYHBGwKQPsBwnQqg1kUBRMYfwYH/W7dubd68GbJdWJjXiEhjB4Oy0ab/YIiFUTeMhsBoCNABjM4A0CGQR60YDYHREBgUIQDpBgwKp1DbEZCdwdQ2FYt5BFv/DAwMCgoKgWBgb2+PxYjBKjTa+h+sMTPqrtEQGA0B6oPRDgD1w3TUxNEQGA2BQRsCw7sPQNNuAP5lP8gxvnntJUFuA0FugyF0Buho6x85BkfZoyEwGgLDHowuARr2UTzqwdEQGA0BlBCA9AFGlwOhBAohDnzgv2dS7saNG69evfr+/fv///+j6ePh4VFSUnJ3d+9uXYUmNWi5o03/QRs1ow4bDYHREKAdGO0AkBO2xRdpNXPS60iOe0b1jIbAaAiQGgLzlzaN9gGIDDRI67+9N8PIyGieUD0xujg5OdesWbN2+RliFA+gmtHW/wAG/qjVoyEwGgIDCEY7AAMY+KNWj4bAaAgMJBjefQAGBgYKLwpgYGCANP0ZGBgmzSjm4eGBxBYTE5Oampq0tDQTE/pQyOfPn8+cOfPnz5/v3797e3uvXr16+8ZrEF2DkBxt/Q/CSBl10mgIjIYAfQB68U0fW4eELQYGBoyMjAsXLhxY1/78+dPGxoaRkXHt2rUD65JR20dDYPiFAGQ50PDzF8RHFG4JgLf+GRgYkpOTIWZGREQkRNVbmUTKS9rJitugIS0Vz7iIWnix2dDQANE1CMnR1v8gjJRRJ42GwGgI0A2MdgCwB/Xv37+vX7/OwMCgp6eHXQW9RFNSUo4ePcrAwKCvr08vO0ftGQ2BERQC85c2DeNuANl9AOTWPwMDw5YtWyBporW1FcLAQwYEBEBk79y5A2EMKnLu4rrR1v+gipFRx4yGwGgI0B+MdgCwh/n169d//frFwsKipaWFXQVtRH/+/Pnq1Su42a2trUuWLGFgYODh4VFWVoaLjzJGQ2A0BKgbAsO7D/DrszA792diQoyd+zPW034sLCwg2qdMmQJh4CHh05WDcNhitOmPJ+JGpUZDYDQERg4Y3QOAPa4vXrzIwMCgoaHBzs6OrOLPnz8TJkxYPev/qyf/ufkYNE0Yv39hOHfwv1s4o5QS44L2fwwMDGE5TDLgtvqPbwzzWv/9+MbgGMRoaMv47x/DhcP/711jePXkPysbg4wKo7UnI58QyPi9q/9fPPZf3ZBxZo1wfX19aWkpAwPD6tWra2tr+fj4Pn36pKenx8jICFI6ikdDYDQEaBMCw3hLAAMDg7SY9smze0SF1HAF3u/fv3kEfnx6y4ZVwZw5cxQVFRkYGPr7+3l4eHx8fJSVlZmZmZEV//nz5+7du1u3bp235AtEvK+vb96MvRD2YCBHW/+DIRZG3TAaAqMhMBjAaAcAeyxAOgBow1ePHj0KDAw8d+4cAwMDIxPDz5cMR7f+h9SAotKMQqIM7JwMP78zvHv1X0YZ1Fg/uef/j28MotIMBtaMH94wbJz77+0LkHWMjAw/vjFcP/P/4c3/McVMPPwMr56BTtO7ef4/K+svU1NTBgaG06dPx8fH6+jo2NraTps2Dc0lIFNG8WgIjIYAtUMAMg8wLE8HunHp64/38tden5CX0eXm5kYLud+/f9++d5ab0VRcXApNCsJtrl104sQJBweHHz9+fPnyZcWKFRBxXCQHB8eWLVsGT+t/tOmPK6ZGxUdDYDQERiYY7QBgj3fMDsC/f/9iY2PPnTtnZWWlaHFCTJrh7UuGzfP/vX8N6gwISzAwMDJIyDE+vPn/PXgJz6d3oPF+RkYGlxCmP38YNs379+4lg6kTo44Fo4Aww4e3DLtW/Ht6j+Hyif+WboxvnoOcoaTNePHEOx4enidPnvj7+/Py8m7evDktLW10AwAodEbxaAjQKwSG61SAuJgUzze+pUv6c4tif37lhQcnO/fnn2/Z8LT+ISpnTdkZFVKZXeizaNGiGzdufPr0Ce0eAEZGRm5ubhUVlejo6Pkz9y1bANq8BNE7sORo639gw3/U9tEQGA2BQQhGOwDYI+XSpUtoze5ly5YdOnRISUlp586d9XP4GRgYRCQZTJ0Zd634LyTGwMIKMkdSnuHhTQZIB+DI1v9//zDoWjBKKoDWCL15zsDMzHDzwv+bF0CD/QwMDL9/grT8/AbqDPz+CepF2Psz8vDwfP361dfX9927d/v27ZOXl79w4QKaS0DaRvFoCIyGAC1DYLj2Abi5eKJDy6XFBE+e3cPAYPnjxw927s+f3rL9+iIhLo598Q9aME/t38LAICQtaiUtiiYD5f76wjB/5j4oZxBQo63/QRAJo04YDYHREBh0YLQDgCVKnj9/DtmJi7zw5uDBgwwMDNHR0fDDsBkYGCD3YIpKgRb8MDAwSCqATHv36v/Lx4w3z//n4GKw9QFJPQafhPH3L8OndyAFyFhYguE1eP2PmDSDoCjDv3//oqKiLly4sHDhQisrK4hLmJiYdHV1kXWNskdDYDQEaB0Cw7UPwMrKBlkOFBsbK6XIwPgrXVxcihU8hEFGkFbURSYlJR05cgRZr52d3axZs7paViILDgh7tPU/IME+auloCIyGwOAHox0ALHEEWf8jDgZw6Rs3bjAwMHBycsJFGP4z3DgL4onCFs1KyjEyMPz/+I7hwIZ///8z2PoycoCX2kL6CcaOjPZ+oP4ASA8SPrYDNCcA6UUsWLBg06ZNzMzM9WDw8yd4moCBQUdH59y5c4KCgkj6RpmjITAaArQNgWG8JUBcTGrx4sULZu/BtegfLWSTMpxtbGwYGBji4uJY/oFPOQDdNPZQTQ3LruJDhw5paGjk5eVNnDgxObYJzSj6cEeb/vQJ51FbRkNgNASGKBg9BhRLxEE6AKqqqk9h4OfPnyoqKgwMDFOnTgVtAv7P8OENw5ZF/x/fAbfdpaGGcHAzCIgw/P/H8PQeg6Q8g645tLkvIQtScOX4/6f3GBj+M7x9wbCs/9+E4n9bFoK0v3kGkhUB9yJOnTrFwMDw9+/fB2Dw/Dloc8C/f/9+/vw52voHBdMoHg0BuocApBtAd2vpYSEHOweR1vz58weikoUFOmwUFmM+b9480IkIjIzV1dXfv39Pimn8/fv3lClT2NhAq4kmTZp06NAhiC46k6OtfzoH+Kh1oyEwGgJDDox2ALAASAfgyJEjMjBw8+bNoqIiNja2p0+fGhsbTyj9N6/134Mb/5nAh+CJSkMb+qBVQPIgNiMTg3MoEwOICTLfyIGRV4Dh5w+GlZP/TSj9t7Dz34tHDGIyDM4hIBWQJUCQaYQZM2b8RwKRkZEMDAxtbW3PnoF7CSDDRvFoCIyGAL1DYBj3AYgMyt+/f0NUwjsAbW1tEJEFCxY8f8iWndrFwMCQnth27sTbHTt2QKTg9wdDuPQhR1v/9AnnUVtGQ2A0BIY0GO0AYIk+yA5guAQbG5umpqauru7hw4ednZ0FBQW5eRnUDBhjipnEpBlkVRm5eeFqGb5/BbENrBnFYNMCoHlydoboIiZtM0Y+QdBWYFEpBnt/xrBcJk5uhl8/oRsDRCVBnQGQZiR85coVBgYGTU1NJLFR5mgIjIbAAITACO8DwDsArLDtAtra2pBoEBcXhzDgJHypJBMTvauY0dY/PBZGGaMhMBoCoyGABzCineOGR+moFDwEiieAR/7hfBjjzuX/m+b95+JlSKxiInpqHaYZTPcW/AXTo8RoCIyGwCANgWFzS4Czp9qKRUeI3AMQEGbo5+cHjxImJiYFBYV79+4xMDCws7Nv3rx5xaLjENn4VAc/P7+PHz8yMDBcvny5v3MdRJzW5GjTn9YhPGr+aAiMhsBwAvQenhlOYYfml9+/GPavA63pt/djJK/1j2bgKHc0BEZDYBCGwMicCpCRkXFwcIAP7f/79w/S+mdgYPj58yd8XdC6Lf329vaQ1n92dvZo638QJuBRJ42GwGgIjAIGBgbodq7RsEALgR2Hl6CJQLgetjEQBiZ5Yuf/zx8YZJQZNE2wLObBVD8qMhoCoyEwRENguJ4Qiic6pvRtVpJxVJJxhKiZMqv0/v379+7dO3/+/PXr15fMOwwR//fvHwMDg6Cg4L59+yb3boII0pocHfundQiPmj8aAqMhMPzAaAcAe5wK8qGvasWuDknU1pfR1ne06Y8UIqPM0RAYviEAmQcYNsuBSI2onLRuuBZOZg04+86dO8LCwqnxLfRp/Y82/eEhP8oYDYHREBgNAZLAaAcAe3CZ67tilxgVHQ2B0RAYDQFYCIzAqQCY17HQIlJfxcTEGBgY7t2711K3GIsKqgqNtv6pGpyjho2GwGgIjCww2gEYWfE96tvREBgNAeqGwAjpAzh5KBcVFeEPui9fvkAUmJmZQc7/8XHLhohQnRxt/VM9SEcNHA2B0RAYUWC0AzCionvUs6MhMBoC1A+BkdAH+Pz586tXr4gMuzdv3hCpkjxlo61/8sJtVNdoCIyGwGgIwMFoBwAeFKOM0RAYDYHRECAzBIb9loCUlJSvX7+WlJTAA+jo0aNo15NXVlZu3LiRgYHh0qVLkHOBetpWw9VThTHa9KdKMI4aMhoCoyEwCkY7AKNpYDQERkNgNASoEwLDeCogPRF07++/f//27Nnj6en59+9fa2trTk7OHTt2LJx9ABJ8HBwcEMaErvUQBnXJ0dY/dcNz1LRRMBoCIxmM3gMwkmN/1O+jITAaAlQOAchUAJUNHTTGpcQ1r1h0PD6y7t27d0xMTN+/f7e3t5+3pN7ATHDu4rqfP3/SzqWjrX/ahe2oyaMhMBoCIxCMdgBGYKSPenk0BEZDgIYhMLz7AJCAK8mbnBBV//79ewUFBQYGhry8PEZGxi1btkBkqU6Otv6pHqSjBo6GwGgIjHAw2gEY4Qlg1PujITAaAtQPgflLm0ZCN6A4d5KTTeLPnz+dnZ0ZGRn//PlD9aCcu7hutPVP9VAdNXA0BEZDYBSM7gEYTQOjITAaAqMhQJMQGMZbApDDKzO5Q17SLjHajpnzyZUrV5ClKGSPNv0pDMBR7aMhMBoCoyGAC4x2AHCFzKj4aAiMhsBoCFAaAiOkD1BSFcrAwMDMzNzZvILSIIPpH239w0JilB4NgdEQGA0B6oPRDgD1w3TUxNEQGA2B0RCAhwBkLVBidB1cZPgxtLS0GBgYxMTEqHLz12jTf/ilkFEfjYbAaAgMNjC6B2Cwxcioe0ZDYDQEhmEIQLoBw9Bj1PbSaOuf2iE6at5oCIyGwGgIYAGjHQAsgTIqNBoCoyEwGgJUD4Fh3wdgZGSkMNBGW/8UBuCo9tEQGA2B0RAgEox2AIgMqFFloyEwGgKjIUBpCAzvPgCFHYDR1j+lyWtU/2gIjIbAaAgQDUb3ABAdVKMKR0NgNARGQ4DiEID0AYbZloBXr15BNgGX5k8hI4RGm/5kBNqoltEQGA2B0RCgBIx2ACgJvVG9oyEwGgKjgJwQGGanA1UUTScnFMB6Rlv/4GAYJUZDYDQERkOArmC0A0BOcF9a1UaONmL0FBCjaFTNaAiMhsCQD4Fh1gcgLz5GW//khduortEQGA2B0RCgEIzuAaAwAEe1j4bAaAiMhgCZIQBZDkSm5qGvbbT1P/TjcNQHoyEwGgJDFYx2ALDH3OfPn5mYmBgZGV+/fo1dxRAX9fT0ZGRknDlz5hD3x6jzR0NgaIfA/KVNI7AbMHdx3Wjrf2gn3FHXj4bAaAgMcTDaAcAegZcuXfr//78oGGBXMcRFL168yMDAoKenN8T9Mer80RAYDiEwovoAo03/4ZBkR/0wGgKjITDEwWgHAHsEQtrHOjo62KWHuOibN2+eP3/OyMioq6s7xL0y6vzREBgmITBC+gCjrf9hkl5HvTEaAqMhMMTBaAcAewReuHCBgYFBUVGxurpaVVWVm5vb0NBw8eLFyKr////38Nmhs9dmHzjdePxC3/2n+2892LLneMWzV6cZGBj+/f97/+m+Yxd6DpxquHxr2d+/PyF6////9+j5kXPX5hw83XTkbPvVOyu//3wPkbpxbwMjI2NNTY2Xl5eQkJChoeGUKVO+ffuWn5+voaHBw8NjZWV1/PhxiGIGBoY/f/5MmDDBxcVFWFhYTk4uNjb2wYMHENnMzExGRsbGxsbo6GgxMTFRUdH4+PjPnz8zMDBs2LBBVFSUgYHh////vLy89+7dg2gZJUdDYDQEBjYEhvdyoNFlPwObukZtHw2B0RAYDQFkwPj//39k/igbEgLm5uanTp1iZmb++/cvExPTv3//IOIzZsxIT093ter88fPDxZuLP399ysDAwMjI9P8/SAETI/O//3/NdHP4eGSu3ln5/PV5BgZGBgZQCMtL2anKe3378fbizUVfv70E6WJg/A+WYmPlMdfLY2fjO31l2sfPjyAWMTKCooaRkVFJSenu3bsQLgMDg6io6KNHjzg4OO7cuRMQEHD16lUGBga4C8XFxc+ePSstLY3cVYDLlpSUdHd3d3V11dXV/fz5k42NTVxc/OHDhxRe3wNx8Cg5GgKjIUCtEKDPLQHOnmorFh0RF5eilrPxmDM68I8ncEalRkNgNARGQ4D+YHQGAEuY//v37/LlywwMDLKyslu3bv369evz58/d3d0ZGBiamppAY+cM/6/eWfn561N+Xnkz3Rwn8xYL/UIuTpF///8yMjLxcIn//PUJ3PpnsDQo1FGNkBI15mAX+Pvv16Wbi79+eyUvZW9lWOJk0WplWCLAp/jr95enr04xMPz/8u0FAwODh4fHixcv3r59a2Rk9P///3v37k2dOvXr168rVqxgYGB4/fr1jRs3vn79GhgYeO3atbKyslu3bv369evWrVu2trYvX76cM2fO////Ie63srK6d+/e69evbW1tGRgYTp06xcDAUFZWFhQUxMDAUFNT8+jRo9HWP5YUMCo0GgIDGgLDbDnQaOt/QFPTqOWjITAaAqMhgAWM3gOAJVBu3br1/ft3dnb2bdu2aWpqMjAwSEhIdHd379y589mzZx8/fnzx+sL7T/c5OYSMNJOZmdkYGBh4uMQVpByu3V3DxSHCxMT6n+EbZOz/9sPtUqJGGspBTIzMj54f+fLtBRMj86u3l169vQSx+A94adCfP9+//3j39+8vBgaG2bNni4uLMzAwmJubnzt3ztvbOysri4GBITg4GDIPwMXFNXv27CtXrrCxsa0CA4hRkBU+79+/v3fv3pcvXxgYGBYtWqSoqMjAwODi4nL48GF+fn6IykuXQLbr6+tDuKPkaAiMhsBgC4Fhc0vAaOt/sCWtUfeMhsBoCIwCBgaG0Q4AlmQA2QBgbW0Naf1DVEDWSgkICPDz83/4BFo3LyFiCGn9QxWA1/PwcksyMDBwsPErSDs8en74zfvrb95f5+YSN9PJfg/W9e//X/iif4hGBgYGbk7xz9+eMzAwaGhoyMjIQMTv378PabtDuA8fPvz//z8rK6uCgsKBAwcYGBh+/foFX/QPUcPAwKCtrQ3Zwayurq6srAwRhxxmCukM/Pz58+bNm6NHAEFCZpQcDYFBGwKQeQD6LAciNRDmLq6DFImYGhkZGZNjQTOlo01/zMAZFRkNgdEQGA2BQQJGOwBYAKQBzcHBgSy3cOFCBgYGV1dXBgaGr99BlwMwM7EiKfj/ArTin4GHC7qgVkXOXV7K9unL03cebf/67SWofQ/ebiEvZasq742kEcq893g3AwODiYkJlM/AAOmHwEUgrtLW1mZjY4PsSSguLu7p6YGrhzPq6+shEwhwkWvXrjEwMBgYGDAwMFy7du3Pnz98fHwKCgpwBaOM0RAYDYHBGQKDaipg5vwqR0fHI0eOzFsCKmTwhJiamtqvXxVsbKAJUjzKRqVGQ2A0BEZDYDQEBgSM7gHAEuyQlvfOnTtXrFjx9+/fN2/e1NXVTZgwgZWVtbW1lYGBgYtDmIGB4fGLY+BNwP+//Xh7+dYyyAA/L7fk56/P9p2s2Xey5tevz0ICKowMjJCNAbw8oKH9py9Pf/j8gIHh/9dvL09dnrL3RNXlW0sZGBg+gzcAQNroDAwML1++fPHiBSMjI/yofkgHAKIA0iuYM2fOkSNH/v//f/XqVTMzM1ZW1rCwMAYGBswVPhAfQdb8QMyBG4vF/6NCoyEwGgKDKQQgUwED7iJdYz5WVtYjR44Q45Jbt26xs7OXl5cTo3hUzWgIjIbAaAiMhgCdwegMAJYAv3jxIiMjIzc3d2RkZFxc3O/fvxkYGPj5+VevXq2qqsrAwCAnZfvizYWfvz6dvDSZkZH5//+/LMwcEAYvtyQzEzsjI/Pfvz9PXJwAOedHVc6DhZlDXtLm2ctTP359PHNlBkQxAwMDH4+MhlIAAwPDl6+gJUCQ9j0DbPhfWVmZl5cX4kRIIx6ioLCwcM6cOY8fP7a1tWVlZYW40NTUdNq0aQwMDJAmPkQlAwPDkydP3r17x8LCoq2tjbV7ADF/lBwNgdEQGLQhMBjmAQoLCyHhExMTM3/+/PTENggXjZy1oLqgoGDKlCkMDAxdXV0xMTGj942gBdEodzQERkNgNAQGHIzOAKBHwefPn6Wlpb28vHbu3Glra8vGxiYoKBgQEHD8+HHI+h/wll8JE50MIX4VVhZONlYecWE9M71cXm5JQX5lNlZeZmY2ffVYHi5JJiZWPh4ZXbUoeSl7BgYGZmZ2M71c8IlAgkyMzLzckqry3ibaGaws3H///oRsDIAM0sM7APBGPFqznpeX9/Tp0wkJCfLy8mxsbPr6+j09PYcOHRIREfn8+TNkYwCaURoaGuzs7PAOwOgMAHrEj/JHQ2Bwh8AguSWgsLCQjUEVa+sfctI/MzPz5MmTa2pqIMG5ceNGCGOUHA2B0RAYDYHREBg8AHTY/OBxzVBxiatVJ42cuvvY6Iw5jYJ21NjREBgmIUCtbcGk3gMAWfdfWFj48bUAZlCibflNS0ubPXs2AwPDpEmTcnNzMdWPioyGwGgIjIbAaAgMIBhdAjSAgT9q9WgIjIbAaAiQHAIDtRwIcgxxf39/RUVFVVUVBwcHExNiDvnv37+Q68m/f/9eUlIyd+5c0HWHjIyhoaEk+3BUw2gIjIbAaAiMhgCNwegMAPYAXr0SdM4mplxouAPoLKDRGQDMoBkVGQ2B0RCgbwhQOBVA6gyAsOSXnp4eXKd/YnqdiYlpxYoVox0AzJAZFRkNgdEQGA2BAQeI8ZsBd8qgcoCoKD9WNKgcOeqY0RAYDYGRHAJ0Ph3o7XOeT58+GRgYEDzck4ODw83N7fPnz6Ot/5GcPkf9PhoCoyEwmMHoDAA5sTO6B4CcUBvVMxoCoyFAgxAgex6A1BkANLejLfpHkx3ljobAaAiMhsBoCAxmMDoDMJhjZ9RtoyEwGgKjIUAgBOg8DwBxDf7W/9+/fz/BAET9KDkaAqMhMBoCoyEwqMDoJuBBFR2jjhkNgdEQGA0BkkMA0gcgeyqAJPvwN/0hRl24cAFyWSEDAwPxewYgekfJ0RAYBaMhMBoCdACjMwB0CORRK0ZDYDQERkOA5iEA6QbQ1BpiWv+Qs4Bo6oxRw0dDYDQERkNgNAQoBKMdAAoDcFT7aAiMhsBoCAyWEKBpH4DI1j8DA4O5ufl/GBgsQTPqjtEQGA2B0RAYDQEkMLoECCkwRpmjITAaAqMhMMRDgEa3BKC1/r9///7hwwfM5T3s7Oz8/PwsLKM1yxBPRqPOHw2B0RAY7mC0mB7uMTzqv9EQGA2BERYCkHkAam0JQG76r1u3LjEx8dOnTwRD1MLCYvXq1TIyMgRVjioYDYHREBgNgdEQoD8YXQJE/zAftXE0BEZDYDQEaB4CkG4AhdYgt/6tra2Dg4OJaf0zMDCcOHFCVlZ248aNFDpgVPtoCIyGwGgIjIYALcBoB4AWoTpq5mgIjIbAaAgMfAhQ2AdAbv0zMDAcO3YM4qUTJ07AVvhjoX/9+tXW1gZRGRAQ8O/fPwh7lBwNgdEQGA2B0RAYPGB0CdDgiYtRl4yGwGgIjIYAlUMA0gcgdTkQWtMf2U27du0yNzdHFkFjs7KyVlZWzpkz5969ewwMDExMo8NMaCE0yh0NgdEQGA2BgQejRfPAx8GoC0ZDYDQERkOApiEwf2nT6w/XCVrx+/cvdu4veFr/DAwMO3bsIGgOAwPD27dviVE2qmY0BEZDYDQERkNgQMBoB2BAgn3U0tEQGA2B0RCgawjY2plcv3P49+9fuGz9/fvXnYcn5BWFcSlgZGRkYGDo6+vT0NBYsmTJ7du3n6CCR48e7dmzJy4ujoOD4+PHjwwMDPLy8rhMGxUfDYHREBgNgdEQGEAwugRoAAN/1OrREBgNgdEQoFMIlJeXGxkZ1da0yUkZcnPxoNkqo8A9aeK8VWtnu7q6oknBuUePHrWysmJgYLh582ZsbCxcHBdDRkbmwYMHuGRHxUdDYDQERkNgNAQGEIzOAAxg4I9aPRoCoyEwCugXAq6uritXLVi9oZ+N+wuyrezcX54+v46/9c/AwGBpafnv379Dhw6Ji4sja8dkR0ZG/vjx4/Hjx5hSoyKjITAaAqMhMBoCgwGMzgAMhlgYdcNoCIyGwGgI0CME5OXlP3z4MGPGjMOHzjAwqP34+YOd+8uvP+96e3v5+fkJuoCRkdHW1vbFixf////HerwPIyPj6K5fgsE4qmA0BEZDYDQEBhyMzgAMeBSMOmA0BEZDYDQE6BcC/Pz85eXltnYmsbGxZ88fCAx2nTNnDjGtfwYGhtu3bwsKCkJa+SzYADMzMyMYNDQ0YO0h0M+fozaNhsBoCIyGwGgI4AaMmHe541Y8KjMaAqMhMBoCoyEwTEJg9+7dDAwMeBb9o/nTwsLi5MmTaIJ4uOzs7E+ePBEREcGjZlRqNARGQ2A0BEZDYEDAaAdgQIJ91NLREBgNgdEQGGIhADkFiJube9WqVV5eXrhc/+XLF3d3d8itYTo6OpcvX8alclR8NARGQ2A0BEZDYKDAaAdgoEJ+1N7REBgNgdEQGDIhIC0t/ezZMwYGhv379zs4OOB3969fv9jZ2RkYGNjZ2X/8+IFf8ajsaAiMhsBoCIyGAP3B6B4A+of5qI2jITAaAqMhMMRCQEBAAOLiW7duQRh4yC9foKcM8fCgnzeKR9eo1GgIjIbAaAiMhgDdwOgMAN2CetSi0RAYDYHREBiqIXD16lUdHR0GBgZGRkY/P7/c3FwNDQ1WVlZk//z79+/OnTsrVqyYNWvW79+/GRgYMjMzp02bhqxmlD0aAqMhMBoCoyEwGMBoB2AwxMKoG0ZDYDQERkNgsIfA9OnTs7KyiHdlQEDA+vXriVc/qnI0BEZDYDQERkOAbmB0CRDdgnrUotEQGA2B0RAYwiGQmZn5/fv32bNn4z8zlImJKTs7+927d6Ot/yEc2aNOHw2B0RAY7mB0BmC4x/Co/0ZDYDQERkNgNARGQ2A0BEZDYDQERkMACYzOAIyC0RAYDYHREBgNATJD4OXLl5CrwcDXf0EJNja2DRs2jF4yQ2aYjmobDYHREBgNAdqD0Q4A7cN41IbREBgNgdEQGOIh8Pjx45kzZ/79+xfZH729vRISEh8+fEAWZGBg+P37d2BgoI6ODmQrMJrsKHc0BEZDYDQERkNgwMFoB2DAo2DUAaMhMBoCoyEw2EPgx48fGRkZLCwsMTEx7969gzi3qakJwkhMTPwPA+/fv9fV1WVgYLh27VpVVRVEwSg5GgKjITAaAqMhMKjA6B6AQRUdo44ZDYHREBgNgcEYAjdu3NDU1IS7TF9ff+nSpaampt+/f+fg4Pj+/TtcioGB4cGDB4qKigwMDIKCgvDeArKCUfZoCIyGwGgIjIbAwILRGYCBDf9R20dDYDQERkNgCISAhobGjx8/4EP+Fy9e1NHRgbT7Me/6ffDgAcRLIiIiEMYoORoCoyEwGgKjITCowGgHYFBFx6hjRkNgNARGQ2CQhgA7O3ttbe2/f//27NnDy8uL7EpZWdlLly4xMDD8+fOnoqLC1dUVIjtr1iwIY5QcDYHREBgNgdEQGFRgdAnQoIqOUceMhsBoCIyGwNAIgU+fPunq6j569AiXcxcvXhwTE4NLdlR8NARGQ2A0BEZDYADB6AzAAAb+qNWjITAaAqMhMFRDgI+P7+HDh////1+yZAkvLy8rKysTExMzMzM3N3d5efm/f/9GW/9DNWpH3T0aAqMhMALA6AzACIjkUS+OhsBoCIyGwGgIjIbAaAiMhsBoCIyGAAywwBij9GgIjIbAaAiMhsBoCJATAl5eXgwMDJD7v8jRP6pnNARGQ2A0BEZDgL5gdAaAvuE9attoCIyGwGgIDLsQYGRkZGBg4OLi+vr167Dz3KiHRsFoCIyGAGDDMAQAfDLB4pZnvAoAAAAASUVORK5CYII=", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gpv.plot_3d(geo_model, \n", " image=False, \n", " show_topography=True,\n", " plotter_type='basic', \n", " kwargs_plotter= {'notebook':True},\n", " show_lith=True)" ] }, { "cell_type": "markdown", "id": "smooth-characterization", "metadata": {}, "source": [ "\n", "# Conclusions\n", "\n", "
\n", "In this tutorial, you learnt the following:
\n", "- How to import input data into GemPy via CSV-Files (comma-separated-values) and what the files have to look like
\n", "- How to build a simple model consisting of horizontal layers belonging to one Series
\n", "- How to visualize the resulting model with cross sections in 2D and the entire model in 3D\n", "\n", "
\n", "\n", "\n", "\n", "# Outlook\n", "\n", "
\n", "In the next tutorial, you will learn the following:
\n", "- Get a better undestanding of what orientations mean in GemPy and how to plot them using mplstereonet
\n", "- How to build a simple model consisting of folded layers belonging to one Series
\n", "\n", "\n", "
\n", "\n", "[Take me to the next notebook on Github](https://nbviewer.org/github/cgre-aachen/gemgis_data/blob/main/notebooks/01_basic_modeling/model2_Folded_Layers.ipynb)\n", "\n", "[Take me to the next notebook locally](model2_Folded_Layers.ipynb)\n", "\n", "" ] }, { "cell_type": "markdown", "id": "4190b239", "metadata": {}, "source": [ "\n", "\n", "## Licensing\n", "\n", "Institute for Computational Geoscience, Geothermics and Reservoir Geophysics, RWTH Aachen University & Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geotechnologies IEG, Authors: Alexander Juestel. For more information contact: alexander.juestel(at)ieg.fraunhofer.de\n", "\n", "All notebooks are licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/). References for each displayed map are provided. Most of the maps originate from the books of [Powell (1992)](https://link.springer.com/book/9783540586074) and [Bennison (1990)](https://link.springer.com/book/10.1007/978-1-4615-9630-1). References for maps with unknown origin will gladly be added." ] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }