Nmap: Network
Exploration and
Security Auditing

COOKDOOK

Second Edition

Ampltgdtmt ing Nmap and its s ptg
engine, gp Itkfp etration tester
dytmdm tt

Iy

Title Page

Nmap: Network Exploration and Security Auditing
Cookbook

Second Edition

A complete guide to mastering Nmap and its scripting engine, covering practical
tasks for penetration testers and system administrators
Paulino Calderon

BIRMINGHAM - MUMBAI

Copyright

Nmap: Network Exploration and Security Auditing
Cookbook

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2012
Second edition: May 2017

Production reference: 1240517

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-745-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Paulino Calderon

Copy Editors

Dipti Mankame

Safis Editing
Reviewer Project Coordinator
Nikhil Kumar Judie Jose
Commissioning Editor Proofreader

Pratik Shah

Safis Editing

Acquisition Editor

Rahul Nair

Indexer

Rekha Nair

Content Development Editor

Abhishek Jadhav

Graphics

Kirk D'Penha

Technical Editor

Aditya Khadye

Production Coordinator

Shantanu Zagade

About the Author

Paulino Calderon (¢caiderpwn on Twitter) is the cofounder of Websec, a company offering
information security consulting services based in Mexico and Canada. When he is not
traveling to a security conference or conducting on-site consulting for Fortune 500
companies, he spends peaceful days in Cozumel, a beautiful small island in the Caribbean,
learning new technologies, conducting big data experiments, developing new tools, and
finding bugs in software.

Paulino is active in the open source community, and his contributions are used by
millions of people in the information security industry. In 2011, Paulino joined the Nmap
team during the Google Summer of Code to work on the project as an NSE developer. He
focused on improving the web scanning capabilities of Nmap, and he has kept
contributing to the project since then. In addition, he has been a mentor for students who
focused on vulnerability detection during the Google Summer of Code 2015 and 2017.

He has published Nmap 6: Network Exploration and Security Auditing Cookbook and
Mastering the Nmap Scripting Engine, which cover practical tasks with Nmap and NSE
development in depth. He loves attending information security conferences, and he has
given talks and participated in workshops in dozens of events in Canada, the United
States, Mexico, Colombia, Peru, Bolivia, and Curacao.

Acknowledgments

As always, I would like to dedicate this book to a lot of special people who have helped
me get where [am.

Special thanks to Fyodor for mentoring me and giving me the opportunity to participate
in this amazing project named Nmap. To all the development team, from whom I have
learned a lot and now I have the pleasure to know personally, thanks for always
answering all my questions and being outstanding individuals.

To my mother, Edith, and my brothers, Omar and Yael, thanks for always supporting me
and being the best family I could ask for.

To Martha, who I will always love more than anything, and Pedro Moguel, Martha Vela,
Maru, Jo, Fana, Pete, and Pablo, thanks for welcoming me into your family.

Nothing but love to all my friends. It is impossible to list all of you, but know that I
appreciate all your love and support. You are always in my heart. Greetings to b33rcon,
H4ckDO0g5, Security Room LATAM, and the Negan clan, keep on hacking!

To Pedro, Roberto, and the Websec team, thanks for joining me in this crazy adventure
that started 6 years ago.

In memory of my father, Dr. Paulino Calderon Medina, who [miss every day.

About the Reviewer

Nikhil Kumar has over 5 years of experience in information security. Currently he is
working with Biz2Credit as a Senior Security Consultant. He is a certified ethical hacker,
and has bachelor's and master's degrees in computer science. He has done globally
accepted certifications such as OSCP, OSWP, and CEH. He has written many articles on
web application security, security coding practices, web application firewalls, and so on.
He has discovered multiple vulnerabilities in big hotshot applications, including Apple,
Microsoft, and so on.

Nikhil can be contacted on LinkedIn at https://in.linkedin.com/in/nikhil73.

https://in.linkedin.com/in/nikhil73

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at serviceepacktpub.com fOr more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon
page at https://www.amazon.com/dp/1786467453.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos
in exchange for their valuable feedback. Help us be relentless in improving our products!

10

https://www.amazon.com/dp/1786467453

Table of Contents

Preface
What this book covers
What you need for this book

Who this book is for
Sections

Getting ready
How to do it...
How it works...
There's more...
See also
Conventions

Reader feedback
Customer support

Downloading the color images of this book
Errata
Piracy
Questions
1. Nmap Fundamentals

Introduction
Building Nmap's source code

Getting ready
How to do it...

How it works...
There's more...

Experimental branches
Updating your local working copy
Customizing the building process

Precompiled packages
Finding live hosts in your network

How to do it...

How it works...
There's more...

Tracing routes
Running the Nmap Scripting Engine during host discovery

Exploring more ping scanning techniques
Listing open ports on a target host

How to do it...

How it works...
There's more...

Privileged versus unprivileged
Scanning specific port ranges
Selecting a network interface

More port scanning techniques
Fingerprinting OS and services running on a target host

How to do it...

How it works...
There's more...

11

Increasing version detection intensity
Aggressive detection mode
Configuring OS detection

OS detection in verbose mode

Submitting new OS and service fingerprints
Using NSE scripts against a target host

How to do it...

How it works...
There's more...

NSE script arguments
Script selection
Debugging NSE scripts

Adding new scripts
Reading targets from a file

How to do it...

How it works...
There's more...

Excluding a host list from your scans
Scanning an IP address ranges

How to do it...

How it works...
There's more...

CIDR notation
Scanning random targets on the Internet

How to do it...

How it works...
There's more...

Legal issues with port scanning
Collecting signatures of web servers

How to do it...
How it works...

There's more...
Monitoring servers remotely with Nmap and Ndiff

Getting ready
How to do it...

How it works...
There's more...

Monitoring specific services
Crafting ICMP echo replies with Nping

How to do it...
How it works...

There's more...
Managing multiple scanning profiles with Zenmap

How to do it...

How it works...
There's more...

Zenmap scanning profiles

Editing or deleting a scan profile
Running Lua scripts against a network connection with Ncat

How to do it...

How it works...
There's more...

12

Other ways of executing external commands with Ncat
Discovering systems with weak passwords with Ncrack

Getting ready
How to do it...

How it works...
There's more...

Configuring authentication options

Pausing and resuming attacks
Launching Nmap scans remotely from a web browser using Rainmap Lite

Getting ready
How to do it...

How it works...
There's more...

Custom arguments
2. Network Exploration

Introduction
Discovering hosts with TCP SYN ping scans

How to do it...

How it works...
There's more...

Privileged versus unprivileged TCP SYN ping scan

Firewalls and traffic filtering
Discovering hosts with TCP ACK ping scans

How to do it...

How it works...
There's more...

Privileged versus unprivileged TCP ACK ping scans

Selecting ports in TCP ACK ping scans
Discovering hosts with UDP ping scans

How to do it...

How it works...
There's more...

Selecting ports in UDP ping scans
Discovering hosts with ICMP ping scans

How to do it...

How it works...
There's more...

Local versus remote networks

ICMP types
Discovering hosts with SCTP INIT ping scans

How to do it...

How it works...
There's more...

Unprivileged SCTP INIT ping scans

Selecting ports in SCTP INIT ping scans
Discovering hosts with IP protocol ping scans

How to do it...

How it works...
There's more...

Setting alternate IP protocols
Generating random data for the IP packets
Supported IP protocols and their payloads

13

Discovering hosts with ARP ping scans
How to do it...

How it works...
There's more...

MAC address spoofing

[Pv6 scanning
Performing advanced ping scans

How to do it...

How it works...
There's more...

Ping probe effectiveness
Discovering hosts with broadcast ping scans

How to do it...

How it works...
There's more...

Broadcast ping options

Target library
Scanning IPv6 addresses

How to do it...

How it works...
There's more...

[Pv6 fingerprinting
Discovering new [Pv6 targets
Gathering network information with broadcast scripts
How to do it...

How it works...
There's more...

Script selection

Target library
Scanning through proxies

How to do it...

How it works...
There's more...

Proxychains
Spoofing the origin IP of a scan

Getting ready
How to do it...

How it works...
There's more...

Choosing your zombie host wisely
The IP ID sequence number
3. Reconnaissance Tasks

Introduction
Performing IP address geolocation

Getting ready
How to do it...

How it works...
There's more...

Submitting a new geolocation provider
Getting information from WHOIS records

How to do it...

How it works...

14

There's more...
Selecting service providers
Ignoring referral records

Disabling cache
Obtaining traceroute geolocation information

How to do it...
How it works...

There's more...
Querying Shodan to obtain target information

Getting ready
How to do it...

How it works...
There's more...

Saving the results in CSV files
Specifying a single target
Checking whether a host is flagged by Google Safe Browsing for malicious activities
Getting ready
How to do it...
How it works...

There's more...
Collecting valid e-mail accounts and IP addresses from web servers

How to do it...
How it works...

There's more...
Discovering hostnames pointing to the same IP address

How to do it...
How it works...

There's more...
Discovering hostnames by brute forcing DNS records

How to do it...

How it works...
There's more...

Customizing the dictionary
Adjusting the number of threads
Specifying a DNS server

Using the NSE library target
Obtaining profile information from Google's People API

Getting ready
How to do it...
How it works...

There's more...
Matching services with public vulnerability advisories

Getting ready

How to do it...

How it works...

There's more...
4. Scanning Web Servers

Introduction
Listing supported HTTP methods

How to do it...
How it works...

15

There's more...

Interesting HTTP methods
Checking whether a web server is an open proxy

How to do it...
How it works...

There's more...
Discovering interesting files and folders in web servers

How to do it...

How it works...
There's more...

Using a Nikto database
Abusing mod_userdir to enumerate user accounts

How to do it...
How it works...

There's more...
Brute forcing HTTP authentication

How to do it...

How it works...
There's more...

Brute modes
Brute forcing web applications

How to do it...

How it works...
There's more...

Brute forcing WordPress installations

Brute forcing WordPress installations
Detecting web application firewalls

How to do it...
How it works...

There's more...
Detecting possible XST vulnerabilities

How to do it...
How it works...

There's more...
Detecting XSS vulnerabilities

How to do it...
How it works...

There's more...

Finding SQL injection vulnerabilities
How to do it...
How it works...

There's more...
Detecting web servers vulnerable to slowloris denial of service attacks

How to do it...
How it works...

There's more...
Finding web applications with default credentials

How to do it...
How it works...

There's more...
Detecting web applications vulnerable to Shellshock

How to do it...

16

How it works...
There's more...
Executing commands remotely

Spidering web servers to find vulnerable applications
Detecting insecure cross-domain policies

How to do it...

How it works...
There's more...

Finding attacking domains available for purchase
Detecting exposed source code control systems

How to do it...

How it works...
There's more...

Obtaining information from subversion source code control systems
Auditing the strength of cipher suites in SSL servers

How to do it...
How it works...

There's more...
Scrapping e-mail accounts from web servers

How to do it...

How it works...

There's more...
5. Scanning Databases

Introduction
Listing MySQL databases

How to do it...
How it works...

There's more...
Listing MySQL users
How to do it...
How it works...
There's more...
Listing MySQL variables
How to do it...
How it works...

There's more...
Brute forcing MySQL passwords

How to do it...
How it works...

There's more...
Finding root accounts with an empty password in MySQL servers

How to do it...
How it works...

There's more...
Detecting insecure configurations in MySQL servers

How to do it...
How it works...

There's more...
Brute forcing Oracle passwords

How to do it...
How it works...

There's more...

17

Brute forcing Oracle SID names
How to do it...
How it works...

There's more...
Retrieving information from MS SQL servers

How to do it...

How it works...
There's more...

Force-scanned ports only in NSE scripts for MS SQL
Brute forcing MS SQL passwords

How to do it...
How it works...

There's more...
Dumping password hashes of MS SQL servers

How to do it...
How it works...

There's more...
Running commands through xp_cmdshell in MS SQL servers

How to do it...
How it works...

There's more...
Finding system administrator accounts with empty passwords in MS SQL servers

How to do it...

How it works...
There's more...

Force-scanned ports only in MS SQL scripts
Obtaining information from MS SQL servers with NTLM enabled

How to do it...
How it works...

There's more...
Retrieving MongoDB server information

How to do it...
How it works...

There's more...
Detecting MongoDB instances with no authentication enabled

How to do it...
How it works...

There's more...
Listing MongoDB databases

How to do it...
How it works...

There's more...
Listing CouchDB databases

How to do it...
How it works...

There's more...
Retrieving CouchDB database statistics

How to do it...
How it works...

There's more...
Detecting Cassandra databases with no authentication enabled

How to do it...

18

How it works...

There's more...
Brute forcing Redis passwords

How to do it...

How it works...

There's more...
6. Scanning Mail Servers

Introduction
Detecting SMTP open relays

How to do it...
How it works...

There's more...
Brute forcing SMTP passwords

How to do it...
How it works...

There's more...
Detecting suspicious SMTP servers

How to do it...
How it works...

There's more...
Enumerating SMTP usernames

How to do it...
How it works...

There's more...
Brute forcing IMAP passwords

How to do it...
How it works...

There's more...
Retrieving the capabilities of an IMAP server

How to do it...
How it works...

There's more...
Brute forcing POP3 passwords

How to do it...
How it works...

There's more...
Retrieving the capabilities of a POP3 server

How to do it...
How it works...

There's more...
Retrieving information from SMTP servers with NTLM authentication

How to do it...

How it works...

There's more...
7. Scanning Windows Systems

Introduction
Obtaining system information from SMB

How to do it...
How it works...

There's more...
Detecting Windows clients with SMB signing disabled

19

How to do it...

How it works...
There's more...

Checking UDP when TCP traffic is blocked

Attacking hosts with message signing disabled
Detecting IIS web servers that disclose Windows 8.3 names

How to do it...

How it works...
There's more...

Bruteforcing Windows 8.3 names

Detecting Windows 8.3 names through different HTTP methods
Detecting Windows hosts vulnerable to MS08-067

How to do it...

How it works...
There's more...

Exploiting MS08-067
Detecting other SMB vulnerabilities
Retrieving the NetBIOS name and MAC address of a host
How to do it...
How it works...

There's more...
Enumerating user accounts of Windows hosts

How to do it...

How it works...
There's more...

Selecting LSA bruteforcing or SAMR enumeration exclusively

Checking UDP when TCP traffic is blocked
Enumerating shared folders

How to do it...
How it works...

There's more...
Enumerating SMB sessions

How to do it...
How it works...

Preparing a brute force password auditing attack

Checking UDP when TCP traffic is blocked
Finding domain controllers

How to do it...

How it works...
There's more...

Finding domain master browsers

Finding DNS servers
Detecting Shadow Brokers' DOUBLEPULSAR SMB implants

How to do it...

How it works...

There's more...
8. Scanning ICS SCADA Systems

Introduction
Finding common ports used in ICS SCADA systems

How to do it...
How it works...

There's more...

20

Finding HMI systems
How to do it...

How it works...
There's more...

Creating a database for HMI service ports
Enumerating Siemens SIMATIC S7 PLCs

How to do it...
How it works...

There's more...
Enumerating Modbus devices

How to do it...
How it works...

There's more...
Enumerating BACnet devices

How to do it...

How it works...
There's more...

Discovering the BACnet broadcast management device
Enumerating Ethernet/IP devices

How to do it...
How it works...

There's more...
Enumerating Niagara Fox devices

How to do it...
How it works...

There's more...
Enumerating ProConOS devices

How to do it...
How it works...

There's more...
Enumerating Omrom PLC devices

How to do it...
How it works...

There's more...
Enumerating PCWorx devices

How to do it...
How it works...
9. Optimizing Scans
Introduction
Skipping phases to speed up scans
How to do it...
How it works...

There's more...
Selecting the correct timing template

How to do it...
How it works...

There's more...
Adjusting timing parameters

How to do it...

How it works...
There's more...

Estimating round trip times with Nping

21

Displaying the timing settings
Adjusting performance parameters
How to do it...
How it works...

There's more...
Distributing a scan among several clients using Dnmap

Getting ready
How to do it...

How it works...
There's more...

Dnmap statistics
Internet-wide scanning
10. Generating Scan Reports

Introduction
Saving scan results in a normal format

How to do it...
How it works...

There's more...
Saving scan results in an XML format

How to do it...

How it works...
There's more...

Structured script output for NSE
Saving scan results to a SQLite database

Getting ready
How to do it...

How it works...
There's more...

Dumping the database in CSV format
Fixing outputpbnj
Saving scan results in a grepable format
How to do it...
How it works...

There's more...
Generating a network topology graph with Zenmap

How to do it...
How it works...

There's more...
Generating HTML scan reports

Getting ready
How to do it...
How it works...

There's more...
Reporting vulnerability checks

How to do it...
How it works...

There's more...
Generating PDF reports with fop

Getting ready
How to do it...

How it works...

22

There's more...

Generating reports in other formats
Saving NSE reports in ElasticSearch

Getting ready
How to do it...
How it works...
There's more...
11. Writing Your Own NSE Scripts

Introduction
Making HTTP requests to identify vulnerable supermicro IPMI/BMC controllers

How to do it...

How it works...
There's more...

Setting the user agent pragmatically
HTTP pipelining
Sending UDP payloads using NSE sockets
How to do it...
How it works...

There's more...
Generating vulnerability reports in NSE scripts

How to do it...

How it works...
There's more...

Vulnerability states of the library vulns
Exploiting a path traversal vulnerability with NSE

How to do it...

How it works...
There's more...

Setting the user agent pragmatically
HTTP pipelining
Writing brute force password auditing scripts
How to do it...
How it works...

There's more...
Crawling web servers to detect vulnerabilities

How to do it...
How it works...

There's more...
Working with NSE threads, condition variables, and mutexes in NSE

How to do it...
How it works...

There's more...
Writing a new NSE library in Lua

How to do it...
How it works...

There's more...
Writing a new NSE library in C/C++

How to do it...
How it works...

There's more...
Getting your scripts ready for submission

How to do it...

23

How it works...

There's more...

. HTTP, HTTP Pipelining, and Web Crawling Configuration Options
HTTP user agent

HTTP pipelining

Configuring the NSE library httpspider
. Brute Force Password Auditing Options
Brute modes

. NSE Debugging

Debugging NSE scripts

Exception handling

. Additional Output Options

Saving output in all formats

Appending Nmap output logs

Including debugging information in output logs
Including the reason for a port or host state

OS detection in verbose mode

. Introduction to Lua

Flow control structures
Conditional statements - if, then, elseif
Loops - while
Loops - repeat
Loops - for

Data types
String handling

Character classes

Magic characters
Patterns

Captures

Repetition operators
Concatenation

Finding substrings

String repetition

String length

Formatting strings

Splitting and joining strings
Common data structures

Tables

Arrays

Linked lists

Sets

Queues

Custom data structures
I/0 operations

Modes
Opening a file
Reading a file
Writing a file
Closing a file
Coroutines

24

Creating a coroutine

Executing a coroutine
Determining current coroutine
Getting the status of a coroutine

Yielding a coroutine
Metatables

Arithmetic methamethods
Relational methamethods

Things to remember when working with Lua

Comments
Dummy assignments
Indexes
Semantics
Coercion
Safe language
Booleans
17. References and Additional Reading

25

Preface

Nmap: Network Exploration and Security Auditing Cookbook, is a practical book that
covers some of the most useful tasks you can do with Nmap. The book is divided into
tasks or recipes. Each recipe focuses on a single task explained with command-line
examples, sample output, and even additional personal tips that I know you will find
handy.

Nmap's vast functionality is explored through 11 chapters covering more than 120
different tasks for penetration testers and system administrators. Unlike Nmap's official
book, this cookbook focuses on the tasks you can do with the Nmap Scripting Engine and
unofficial related tools, covering the core functionality of Nmap, but without focusing on
the scanning techniques that are perfectly described in the official book. Think of this
book as an addition to what the official Nmap book covers.

There were many great NSE scripts I wish I had more space to include in this book and
many more that will be created after its publication. I invite you to follow the
development mailing list and stay up to date with Nmap's latest features and NSE scripts.

[hope that you not only enjoy reading this cookbook, but as you master the Nmap
Scripting Engine, you come up with new ideas to contribute to this amazing project.

26

What this book covers

Chapter 1, Nmap Fundamentals, covers the most common tasks performed with Nmap. In
addition, it introduces Rainmap Lite, Ndiff, Nping, Ncrack, Ncat, and Zenmap.

Chapter 2, Network Exploration, covers host discovery techniques supported by Nmap and
other useful tricks with the Nmap Scripting Engine.

Chapter 3, Reconnaissance Tasks, covers interesting information-gathering tasks with Nmap
and the Nmap Scripting Engine.

Chapter 4, Scanning Web Servers, covers tasks related to web servers and web application
security auditing.

Chapter 5, Scanning Databases, covers security auditing tasks for MySQL, MS SQL, Oracle,
and NoSQL databases.

Chapter 6, Scanning Mail Servers, covers different tasks for IMAP, POP3, and SMTP servers.

Chapter 7, Scanning Windows Systems, covers tasks for security auditing Microsoft
Windows systems.

Chapter 8, Scanning ICS SCADA Systems, covers tasks for scanning and identifying Industrial
Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems.

Chapter 9, Optimizing Scans, covers tasks from scan optimization to the distribution of
scans among several clients.

Chapter 10, Generating Scan Reports, covers the output options supported by Nmap and
some additional nonofficial tools to generate reports in formats that are not supported.

Chapter 11, Writing Your Own NSE Scripts, covers the fundamentals of NSE development. It
includes specific examples to handle sockets, output, NSE libraries, and parallelism.

Appendix A, HTTP, HTTP Pipelining, and Web Crawling Configuration Options, covers the
configuration options of libraries related to the protocol HTTP.

Appendix B, Brute Force Password Auditing Options, covers configuration options of the NSE
brute force engine.

Appendix C, NSE Debugging, covers the debugging options for the Nmap Scripting Engine.

Appendix D, Additional Output Options, covers additional output options supported by
Nmap.

Appendix E, Introduction to Lua, covers the basics of Lua programming.

Appendix F, References and Additional Reading, covers references, additional reading, and

27

official documentation used throughout this book.

28

What you need for this book

You will need the latest version of Nmap (https://nmap.org/) to follow the recipes in this
book. Installation instructions for unofficial tools can be found in the book.

29

https://nmap.org/

Who this book is for

This book is for any security consultant, administrator, or enthusiast looking to learn how
to use and master Nmap and the Nmap Scripting Engine.

30

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it.., How it works...,, There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows.

31

Getting ready

This section tells you what to expect in the recipe and describes how to set up any
software or any preliminary settings required for the recipe.

32

How to do it...

This section contains the steps required to follow the recipe.

33

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

34

There's more...

This section consists of additional information about the recipe in order to make the
reader more knowledgeable about the recipe.

35

See also

This section provides helpful links to other useful information for the recipe.

36

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If you
keep a working copy of the svn repository, you may do this easily by executing the
following commands inside that directory."

A block of code is set as follows:

if http.page exists(data, req 404, page 404, uri, true) then
stdnse.print debug(l, "Page exists! - %s", uri)
end

Any command-line input or output is written as follows:

|$svn co --username guest https://svn.nmap.org/nmap

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "You should see the
message NMAP SUCCESFULLY INSTALLED when the operation is complete."

0 Warnings or important notes appear in a box like this.

8 Tips and tricks appear like this.

37

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feeabackepacktpun.com, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

38

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

39

Downloading the color images of this
book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/N
mapNetworkExplorationandSecurityAuditingCookbookSecondEdition_ColorImages.pdf.

40

https://www.packtpub.com/sites/default/files/downloads/NmapNetworkExplorationandSecurityAuditingCookbookSecondEdition_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the search
field. The required information will appear under the Errata section.

41

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighteépacktpub.com With a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

42

Questions

If you have a problem with any aspect of this book, you can contact us
at questionsépacktpub.com, and we will do our best to address the problem.

43

Nmap Fundamentals

In this chapter, we will cover the following recipes:

Building Nmap's source code

Finding live hosts in your network

Listing open ports on a target host

Fingerprinting OS and services running on a target host
Using NSE scripts against a target host

Reading targets from a file

Scanning an [P address ranges

Scanning random targets on the Internet

Collecting signatures of web servers

Monitoring servers remotely with Nmap and Ndiff

Crafting ICMP echo replies with Nping

Managing multiple scanning profiles with Zenmap

Running Lua scripts against a network connection with Ncat
Discovering systems with weak passwords with Ncrack
Launching Nmap scans remotely from a web browser using Rainmap Lite

44

Introduction

Network Mapper (Nmap) was originally released by Gordon Fyodor Lyon in the
infamous Phrack magazine Vol 7 Issue 51 (https://nmap.org/p51-11.html). It is acclaimed today
as one the best tools for network reconnaissance and security auditing in the information
security industry. The first public version was introduced as an advanced port scanner
along with a paper describing research on techniques for port discovery, but it has
become so much more. It has evolved into an essential, fully featured tool that includes
several other great subprojects, such as Ncrack, Ncat, Nping, Zenmap, and the Nmap
Scripting Engine (all of them are available at https://nmap.org/). Nmap is described as
follows in the official website:

"Nmap (Network Mapper) is a free and open source (license) utility for network discovery
and security auditing. Many systems and network administrators also find it useful for tasks
such as network inventory, managing service upgrade schedules, and monitoring host or
service uptime. Nmap uses raw IP packets in novel ways to determine what hosts are
available on the network, what services (application name and version) those hosts are
offering, what operating systems (and OS versions) they are running, what type of packet
filters/firewalls are in use, and dozens of other characteristics. It was designed to rapidly
scan large networks, but works fine against single hosts. Nmap runs on all major computer
operating systems, and official binary packages are available for Linux, Windows, and Mac
0Ss X"

Other tools in the project were created to meet the specific needs of users. Nping (https://n
map.org/nping/) specializes in network packet crafting. Ncrack (https://nmap.org/ncrack/)
focuses on network authentication cracking. Ncat (https://nmap.org/ncat/) is an enhanced
version of Netcat and allows users to read, write, redirect, and modify network data.
Zenmap (https://nmap.org/zenmap/) is a cross-platform GUI focused on usability. Finally, the
Nmap Scripting Engine (https://nmap.org/book/nse.html) takes scanned information obtained
from targets and provides an interface for users to script additional tasks.

Nmap's community is very active, so | encourage you to always keep up with the releases
and latest patches. Announcements and discussions take place on the development
mailing list, so if you would like to contribute to the project, | recommend you subscribe
to it.

This first chapter is for newcomers. Starting with building Nmap, we will become familiar
with all the tools of the Nmap project. In just a few recipes, you will learn how flexible
and powerful Nmap really is, but as we move through chapters, we will go deep into the
internals to learn not only how to use the tools but to extend them and create your own.
The practical tasks chosen for this chapter will help you fingerprint local and remote
systems, map networks, craft custom network packets, and even identify systems with
weak passwords.

45

https://nmap.org/p51-11.html
https://nmap.org/
https://nmap.org/nping/
https://nmap.org/ncrack/
https://nmap.org/ncat/
https://nmap.org/zenmap/
https://nmap.org/book/nse.html

Building Nmap's source code

Throughout the following recipes, we will use the tools included with the Nmap project,
so it is a good idea to install the latest versions now. This recipe will show how to
download the latest copy of the source code from the development repositories and
install Nmap and related tools in your UNIX-based system.

We always prefer working with the very latest stable version of the repository because
precompiled packages take time to prepare and we may miss a patch or a new NSE script.
The following recipe will show the process of configuring, building, and maintaining an
up-to-date copy of the Nmap project in your arsenal.

46

Getting ready

Before continuing, you need to have a working Internet connection and access to a
subversion client. Unix-based platforms come with a command-line client named
subversion (svn). To check whether it's already installed in your system, just open a
terminal and type the following command:

|$ svn

If the command was not found, install svn using your favorite package manager or build it
from source code. The instructions to build svn from source code are out of the scope of
this book, but they are widely documented online. Use your favorite search engine to find
specific instructions for your system.

When building Nmap, we will also need additional libraries such as the development
definitions from OpenSSL or the nake command. In Debian based systems, try the
following command to install the missing dependencies:

|#apt—get install libssl-dev autoconf make g++

Note that OpenSSL is optional, and Nmap can be built without it; however, Nmap will be
crippled as it uses OpenSSL for functions related to multiprecision integers, hashing and
encoding/decoding for service detection, and the Nmap Scripting Engine.

47

How to do it...

First, we need to grab a copy of the source code from the official repositories. To
download the latest version of the development branch, we use the checkout (or co)
command:

$svn co --username guest https://svn.nmap.org/nmap

Now you should see the list of downloaded files and the message Checked out
revision <Revision number>. A new directory containing the source code is now
available in your working directory. After we install the required dependencies, we
are ready to compile Nmap with the standard procedure: configure, make, and
make install. Go into the directory containing the source code and enter the
following:

$./configure

If the configuration process completes successfully, you should see some nice ASCII
art (it's selected randomly, so you might not necessarily see this one):

4. To compile Nmap, use nake:

Smake

5. Now you should see the binary nmap in your current working directory. Finally, to

install Nmap on the system, execute make insta11 with administrative privileges:

#make install

You should see the message NMAP SUCCESFULLY INSTALLED when the
operation is complete.

48

How it works...

The SVN repository hosted at https://svn.nmap.org/nmap contains the latest stable version of
Nmap and has world read access that allows anyone to grab a copy of the source code.
We built the project from scratch to get the latest patches and features. The installation
process described in this recipe also installed Zenmap, Ndiff, and Nping.

49

https://svn.nmap.org/nmap

There's more...

The process of compiling Nmap is similar to compiling other Unix-based applications, but
there are several compiled time variables that can be adjusted to configure the
installation. Precompiles binaries are recommended for users who can't compile Nmap
from source. Unix-based systems are recommended because of some Windows
limitations described at https://nmap.org/book/inst-windows.html.

50

https://nmap.org/book/inst-windows.html

Experimental branches

If you want to try the latest creations of the development team, there is a folder named
nmap-exp that contains several experimental branches of the project. The code stored in
this folder is not guaranteed to work all the time as it is used as a sandbox until it is ready
to be merged in production. The subversion URL of this folder is https://svn.nmap.org/nmap-ex

p/.

51

https://svn.nmap.org/nmap-exp/

Updating your local working copy

The Nmap project is very active (especially during summer), so do not forget to update
your copy regularly. If you keep a working copy of the svn repository, you may do this
easily by executing the following commands inside that directory:

$svn up
Smake
#imake install

52

Customizing the building process

If you do not need the other Nmap utilities, such as Nping, Ndiff, or Zenmap, you may use
different configure directives to omit their installation during the configuration step:

./configure --without-ndiff
./configure --without-zenmap
./configure --without-nping

For a complete list of configuration directives, use the --he1p command argument:

|$./configure --help

53

Precompiled packages

Precompiled Nmap packages can be found for all major platforms at https://nmap.org/downlo
ad.html for those who do not have access to a compiler. When working with precompiled
packages, just make sure that you grab a fairly recent version to avoid missing important
fixes or enhancements.

54

https://nmap.org/download.html

Finding live hosts in your network

Finding live hosts in your local network is a common task among penetration testers and
system administrators to enumerate active machines on a network segment. Nmap offers
higher detection rates over the traditional ping utility because it sends additional probes
than the traditional ICMP echo request to discover hosts.

This recipe describes how to perform a ping scan with Nmap to find live hosts in a local
network.

55

How to do it...

Launch a ping scan against a network segment using the following command:

| #nmap -sn <target>

The results will include all the hosts that responded to any of the packets sent by Nmap
during the ping scan; that is, the active machines on the specified network segment:

Nmap scan report for 192.168.0.1

Host is up (0.0025s latency).

MAC Address: F4:B7:E2:0A:DA:18 (Hon Hai Precision Ind.)
Nmap scan report for 192.168.0.2

Host is up (0.0065s latency).

MAC Address: 00:18:F5:0F:AD:01 (Shenzhen Streaming Video Technology
Company Limited)

Nmap scan report for 192.168.0.3

Host is up (0.00015s latency).

MAC Address: 9C:2A:70:10:84:BF (Hon Hai Precision Ind.)
Nmap scan report for 192.168.0.8

Host is up (0.029s latency).

MAC Address: C8:02:10:39:54:D2 (LG Innotek)

Nmap scan report for 192.168.0.10

Host is up (0.0072s latency).

MAC Address: 90:F6:52:EE:77:E9 (Tp-link Technologies)

Nmap scan report for 192.168.0.11

Host is up (0.030s latency).

MAC Address: 80:D2:1D:2C:20:55 (AzureWave Technology)

Nmap scan report for 192.168.0.18

Host is up (-0.054s latency).

MAC Address: 78:31:C1:Cl:9C:0A (Apple)

Nmap scan report for 192.168.0.22

Host is up (0.030s latency).

MAC Address: F0:25:B7:EB:DD:21 (Samsung Electro Mechanics)
Nmap scan report for 192.168.0.5

Host is up.

Nmap done: 256 IP addresses (9 hosts up) scanned in 27.86 seconds

Ping scans in Nmap may also identify MAC addresses and vendors if executed as a
privileged user on local Ethernet networks.

56

How it works...

The Nmap option -sn disables port scanning, leaving the discovery phase enabled, which
makes Nmap perform a ping sweep. Depending on the privileges, Nmap by default uses
different techniques to achieve this task: sending a rce svn packet to port 443, tcp acx
packet to port so and ICMP echo and timestamp requests if executed as a privileged user,
or a sy packets to port so and 443 via the connect () syscai1 if executed by users who can't
send raw packets. ARP/Neighbor Discovery is also enabled when scanning local
Ethernet networks as privileged users. MAC addresses and vendors are identified from
the ARP requests sent during the ARP/Neighbor Discovery phase.

57

There's more...

Nmap supports several host discovery techniques, and probes can be customized to scan
hosts effectively even in the most restricted environments. It is important that we
understand the internals of the supported techniques to apply them correctly. Now, let's
learn more about host discovery with Nmap.

58

Tracing routes

Ping scans allows including trace route information of the targets. Use the Nmap option -
-traceroute t0 trace the route from the scanning machine to the target host:

#inmap -sn --traceroute google.com microsoft.com
Nmap scan report for google.com (216.58.193.46)
Host is up (0.16s latency).
Other addresses for google.com (not scanned):
2607:£8b0:4012:805::200e
rDNS record for 216.58.193.46: gro0lsl3-in-f14.1e100.net

TRACEROUTE (using port 443/tcp)
HOP RTT ADDRESS
1.28 ms 192.168.0.1

158.85 ms 10.165.1.9

... 5

165.50 ms 10.244.158.13

171.18 ms 10.162.0.254

175.33 ms 200.79.231.81.static.cableonline.com.mx
(200.79.231.81)

9 183.16 ms 10.19.132.97

10 218.60 ms 72.14.203.70

11 223.35 ms 209.85.240.177

12 242.60 ms 209.85.142.47

13 ...

14 234.79 ms 72.14.233.237

15 235.17 ms gro0l1lsl3-in-f14.1e100.net (216.58.193.46)

Nmap scan report for microsoft.com (23.96.52.53)

Host is up (0.27s latency).

Other addresses for microsoft.com (not scanned): 23.100.122.175
104.40.211.35 104.43.195.251 191.239.213.197

TRACEROUTE (using port 443/tcp)

HOP RTT ADDRESS

- Hops 1-9 are the same as for 216.58.193.46

10 183.27 ms 10.19.132.30

11 231.26 ms 206.41.108.25

12 236.77 ms aeb5-0.atb-96cbe-lc.ntwk.msn.net (104.44.224.230)
13 226.22 ms be-3-0.ibr0l.bnl.ntwk.msn.net (104.44.4.49)

14 226.89 ms be-1-0.ibr02.bnl.ntwk.msn.net (104.44.4.63)

15 213.92 ms be-3-0.ibr02.wasO5.ntwk.msn.net (104.44.4.26)

16 251.91 ms ae71-0.bl2-96c-1b.ntwk.msn.net (104.44.8.173)

17 ... 19

20 220.70 ms 23.96.52.53

Nmap done: 2 IP addresses (2 hosts up) scanned in 67.85 seconds

O Jo b W

59

Running the Nmap Scripting Engine
during host discovery

The Nmap Scripting Engine can be enabled during ping scans to obtain additional
information. As with any other NSE script, its execution will depend on the hostrule
specified. To execute a NSE script with ping scans, we simply use the Nmap option --
script <file, folder,category>, the same way as we would normally call NSE scripts with
port/service detection scans:

#inmap -sn --script dns-brute websec.mx
Nmap scan report for websec.mx (54.210.49.18)
Host is up.
rDNS record for 54.210.49.18: ec2-54-210-49-18.compute-
1l.amazonaws.com

Host script results:

| dns-brute:

| DNS Brute-force hostnames:

\ ipv6.websec.mx - 54.210.49.18
| web.websec.mx - 198.58.116.134
| www.websec.mx - 54.210.49.18
| beta.websec.mx - 54.210.49.18

Another interesting NSE script to try when discovering live hosts in networks is the script

broadcast-ping:

$ nmap -sn --script broadcast-ping 192.168.0.1/24
Pre-scan script results:
| broadcast-ping:
| IP: 192.168.0.11 MAC: 80:d2:1d:2c:20:55
| IP: 192.168.0.18 MAC: 78:31:cl:cl:9c:0a
| ~ Use --script-args=newtargets to add the results as targets

60

Exploring more ping scanning techniques

Nmap supports several ping scanning techniques using different protocols. For example,
the default ping scan command with no arguments (rmap -sn <target>) as a privileged user
internally executes the -pss43 -pnso -pe -pp Options corresponding to rce syn to port 443,
tce ack to port so, and ICMP echo and timestamps requests.

In Chapter 2, Network Exploration, you will learn more about the following ping scanning
techniques supported in Nmap:

e -PS/PA/PU/PY [portlist]: TCP SYN/ACK, UDP or SCTP discovery to given ports
e -PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes
e -PO [protocol list]: IP protocol ping

61

Listing open ports on a target host

This recipe describes how to use Nmap to determine the port states on a remote host, a
process used to identify running services commonly referred to as port scanning. This is
one of the tasks Nmap excels at, so it is important to learn the essential Nmap options
related to port scanning.

62

How to do it...

To launch a default scan, the bare minimum you need is a target. A target can be an [P
address, a host name, or a network range:

| $nmap scanme.nmap.org

The scan results will show all the host information obtained, such as IPv4 (and IPv6 if
available) address, reverse DNS name, and interesting ports with service names. All listed
ports have a state. Ports marked as opened are of special interest as they represent
services running on the target host:

Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.1l6s latency).

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Not shown: 995 closed ports

PORT STATE SERVICE
22/tcp open ssh

25/tcp filtered smtp
80/tcp open http
9929/tcp open nping-echo
31337/tcp open Elite

Nmap done: 1 IP address (1 host up) scanned in 333.35 seconds

63

How it works...

The basic default Nmap scan nnap <target> executes a simple port scan that returns a list of
ports. In addition, it returns a service name from a database distributed with Nmap and
the port state for each of the listed ports.

Nmap categorizes ports into the following states:

e Open: Open indicates that a service is listening for connections on this port.

e Closed: Closed indicates that the probes were received, but it was concluded that
there was no service running on this port.

o Filtered: Filtered indicates that there were no signs that the probes were received
and the state could not be established. It also indicates that the probes are being
dropped by some kind of filtering.

e Unfiltered: Unfiltered indicates that the probes were received but a state could not
be established.

e Open/Filtered: This indicates that the port was filtered or open but the state could
not be established.

e Close/Filtered: This indicates that the port was filtered or closed but the state
could not be established.

Even for this simplest port scan, Nmap does many things in the background that can be
configured as well. Nmap begins by converting the hostname to an IPv4 address using
DNS name resolution. If you wish to use a different DNS server, use --dans-servers
<servl[,serv2],...>, Or use-n if you wish to skip this step, as follows:

|$ nmap --dns-servers 8.8.8.8,8.8.4.4 scanme.nmap.org

Afterward, it performs a host discovery process to check whether the host is alive (see
the Finding live hosts in your network recipe). To skip this step, use -¢n as follows:

| $ nmap -Pn scanme.nmap.org

Nmap then converts the IPv4 or IPv6 address back to a hostname using a reverse DNS
query. Use -n to skip this step, as follows:

| $ nmap -n scanme.nmap.org

Finally, it launches either a SYN stealth scan or TCP connect scan depending on the user
privileges.

64

There's more...

Port scanning is one of the most powerful features available, and it is important that we
understand the different techniques and Nmap options that affect the scan behavior.

65

Privileged versus unprivileged

Running the simplest port scan command, nmap <target>, as a privileged user by default
launches a SYN Stealth Scan, whereas unprivileged users that cannot create raw packets
use the TCP Connect Scan technique. The difference between these two techniques is that
TCP Connect Scan uses the high-level connect () system call to obtain the port state
information, meaning that each TCP connection is fully completed and therefore slower.
SYN Stealth Scans use raw packets to send specially crafted TCP packets to detect port
states with a technique known as half open.

66

Scanning specific port ranges

Setting port ranges correctly during your scans will be very handy. You might be looking
for infected machines that use a specific port to communicate or a specific service and do
not really care about the rest. Narrowing down the port list also optimizes performance,

which is very important when scanning multiple targets.

There are several accepted formats for the argument -o:

e Port list:

| # nmap -p80,443 localhost

e Portrange:

| # nmap -pl-100 localhost

All ports:

| # nmap -p- localhost

Specific ports by protocols:

| # nmap -pT:25,U:53 <target>

Service name:

| # nmap -p smtp <target>

e Service name wildcards:

| # nmap -p smtp* <target>

e Only ports registered in Nmap services:

| # nmap -p[1-65535] <target>

67

Selecting a network interface

Nmap attempts to automatically detect your active network interface; however, there are
some situations where it will fail or perhaps we will need to select a different interface in
order to test networking issues. To force Nmap to scan using a different network
interface, use the argument -e:

#nmap -e <interface> <target>
#nmap -e eth2 scanme.nmap.org

You will need to set your network interface manually if you ever encounter the message
WARNING: Unable to find appropriate interface for system route to.

638

More port scanning techniques

In this recipe, we talked about the two default scanning methods used in Nmap: SYN
Stealth Scan and TCP Connect Scan. However, Nmap supports several more port
scanning techniques. Use nmap -n Or Visit https://nmap.org/book/man-port-scanning-techniques.html
to learn more about them.

69

https://nmap.org/book/man-port-scanning-techniques.html

Fingerprinting OS and services running
on a target host

Version detection and OS detection are two of the most popular features of Nmap.
Nmap is known for having the most comprehensive OS and service fingerprint databases.
Knowing the platform (OS) and the exact version of a service is highly valuable for people
looking for security vulnerabilities or monitoring their networks for any unauthorized
changes. Fingerprinting services may also reveal additional information about a target,
such as available modules and specific protocol information.

This recipe shows how to fingerprint the operating system and running services of a
remote host using Nmap.

70

How to do it...

1. To enable service detection, add the Nmap option -sv to your port scan command:

| $ nmap -sV <target>

2. The -sv option adds a table containing an additional column named VERSION,

displaying the specific service version, if identified. Additional information will be

enclosed in parentheses.

$ nmap -sV scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (l.4s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f
Not shown: 994 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 6.6.1pl Ubuntu 2ubuntu2.3
(Ubuntu Linux; protocol 2.0)

25/tcp filtered smtp

80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
514/tcp filtered shell

9929/tcp open nping-echo Nping echo

31337/tcp open tcpwrapped

Service Info: 0S: Linux; CPE: cpe:/o:linux:linux kernel

Nmap done: 1 IP address (1 host up) scanned in 137.71 seconds

Service detection performed. Please report any incorrect results at https://nm

3. To enable OS detection, add the Nmap option -o to your scan command. Note that OS

detection requires Nmap to be run as a privileged user:

| # nmap -0 <target>

4. The result will now include OS information at the bottom of the port list:

nmap -O scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.25s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f
Not shown: 994 closed ports

PORT STATE SERVICE
22/tcp open ssh

25/tcp filtered smtp
80/tcp open http
514/tcp filtered shell
9929/tcp open nping-echo
31337/tcp open Elite

Device type: WAP|general purpose|storage-misc

Running (JUST GUESSING): Actiontec embedded (99%), Linux
2.4.X]3.X (99%), Microsoft Windows 72012 |XP (96%), BlueArc
embedded (91%)

No exact OS matches for host (test conditions non-ideal).

Nmap done: 1 IP address (1 host up) scanned in 114.03 seconds

71

OS CPE: cpe:/h:actiontec:mi424wr-gen3i cpe:/o:linux:1linux kernel cpe:/o:linux:
Aggressive OS guesses: Actiontec MI424WR-GEN3I WAP (99%), DD-WRT v24-sp2

(Linu:

0S detection performed. Please report any incorrect results at https://nmap.:«

How it works...

The Nmap option -sv enables service detection, which returns additional service and
version information. Service detection is one of the most loved features of Nmap because
it's very useful in many situations, such as identifying security vulnerabilities or making
sure a service is running on a given port or a patch has been applied successfully.

This feature works by sending different probes defined in the nmap-service-proves file to the
list of suspected open ports. The probes are selected based on how likely they can be
used to identify a service.

documentation on how service detection mode works and how the file

If you are interested in the inner workings, you can find very detailed
0 formats are used at https://nmap.org/book/vscan.html.

The -o option tells Nmap to attempt OS detection by sending several probes using the
TCP, UDP, and ICMP protocols against opened and closed ports. OS detection mode is
very powerful due to Nmap's user community, which obligingly contributes fingerprints
that identify a wide variety of systems, including residential routers, [P webcams,
operating systems, and many other hardware devices. It is important to note that OS
detection requires raw packets, so Nmap need to be run with enough privileges.

The complete documentation of the tests and probes sent during OS detection
0 can befound at https://nmap.org/book/osdetect-methods.html.

Nmap uses the Common Platform Enumeration (CPE) as the naming scheme for
service and operating system detection. This convention is used in the information
security industry to identify packages, platforms, and systems.

72

https://nmap.org/book/vscan.html
https://nmap.org/book/osdetect-methods.html

There's more...

OS and version detection scan options can be configured thoroughly and are very
powerful when tuning the performance. Let's learn about some additional Nmap options
related to these scan modes.

73

Increasing version detection intensity

You can increase or decrease the amount of probes to use during version detection by
changing the intensity level of the scan with the argument --version-intensity [0-97, as
follows:

| # nmap -sV --version-intensity 9 <target>

This Nmap option is incredibly effective against services running on nondefault ports due
to configuration changes.

74

Aggressive detection mode

Nmap has a special flag to activate aggressive detection, namely -a. Aggressive mode
enables OS detection (-o0), version detection (-sv), script scanning (-sc), and traceroute (--
traceroute). This mode sends a lot more probes, and it is more likely to be detected, but
provides a lot of valuable host information. You can try aggressive detection with the
following command:

nmap -A <target>
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.071ls latency) .
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f
Not shown: 994 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.6.1pl Ubuntu 2ubuntu2.3
(Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)
| 2048 20:3d:2d:44:62:2a:00:5a:9d:b5:03:05:14:c2:a6:b2 (RSA)
| 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57 (ECDSA)
25/tcp filtered smtp
80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
| http-server-header: Apache/2.4.7 (Ubuntu)
| http-title: Go ahead and ScanMe!
514/tcp filtered shell
9929/tcp open nping-echo Nping echo
31337/tcp open tcpwrapped
Device type: WAP|general purpose|storage-misc
Running (JUST GUESSING): Actiontec embedded (98%), Linux 2.4.X]|3.X
(98%), Microsoft Windows 72012 |XP (96%), BlueArc embedded (91%)
OS CPE: cpe:/h:actiontec:mi424wr-gen3i cpe:/o:linux:linux_ kernel
cpe:/o:linux:linux kernel:2.4.37 cpe:/o:linux:linux kernel:3.2
cpe:/o:microsoft:windows 7 cpe:/o:microsoft:windows server 2012
cpe:/o:microsoft:windows xp::sp3 cpe:/h:bluearc:titan 2100
Aggressive OS guesses: Actiontec MI424WR-GEN3I WAP (98%), DD-WRT
v24-sp2 (Linux 2.4.37) (98%), Linux 3.2 (98%), Microsoft Windows 7
or Windows Server 2012 (96%), Microsoft Windows XP SP3 (96%),
BlueArc Titan 2100 NAS device (91%)
No exact OS matches for host (test conditions non-ideal).
Network Distance: 2 hops
Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_ kernel
TRACEROUTE (using port 80/tcp)
HOP RTT ADDRESS
1 0.08 ms 192.168.254.2
2 0.03 ms scanme.nmap.org (45.33.32.156)
0S and Service detection performed. Please report any incorrect
results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 208.05 seconds

75

Configuring OS detection

In case OS detection fails, you can use the argument --osscan-guess to force Nmap to guess
the operating system:

|#nmap -0 --osscan-guess <target>

To launch OS detection only when the scan conditions are ideal, use the argument --

osscan-limit.

|#nmap -0 --osscan-limit <target>

76

OS detection in verbose mode

Try OS detection in verbose mode to see additional host information, such as the TCP and
IP ID sequence number values:

| #nmap -0 -v <target>

The IP ID sequence number can be found under the label IP ID Sequence Generation. Note
that incremental IP ID sequence numbers can be abused by port scanning techniques
such as idle scan:

#nmap -0 -v 192.168.0.1
Initiating Ping Scan at 11:14
Scanning 192.168.0.1 [4 ports]
Completed Ping Scan at 11:14, 0.00s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 11:14
Completed Parallel DNS resolution of 1 host. at 11:14, 0.02s elapsed
Initiating SYN Stealth Scan at 11:14
Scanning 192.168.0.1 [1000 ports]
Discovered open port 80/tcp on 192.168.0.1
Completed SYN Stealth Scan at 11:14, 13.80s elapsed (1000 total
ports)
Initiating OS detection (try #1) against 192.168.0.1
Retrying OS detection (try #2) against 192.168.0.1
Nmap scan report for 192.168.0.1
Host is up (0.11ls latency).
Not shown: 998 closed ports
PORT STATE SERVICE
80/tcp open http
514/tcp filtered shell
Device type: WAP|general purpose|storage-misc
Running (JUST GUESSING) : Actiontec embedded (99%), Linux 2.4.X]|3.X
(99%), Microsoft Windows 72012 |XP (96%), BlueArc embedded (91%)
OS CPE: cpe:/h:actiontec:mi424wr-gen3i cpe:/o:linux:1linux kernel
cpe:/o:linux:linux kernel:2.4.37 cpe:/o:linux:linux kernel:3.2
cpe:/o:microsoft:windows 7 cpe:/o:microsoft:windows_server 2012
cpe:/o:microsoft:windows xp::sp3 cpe:/h:bluearc:titan 2100
Aggressive OS guesses: Actiontec MI424WR-GEN3I WAP (99%), DD-WRT
v24-sp2 (Linux 2.4.37) (98%), Linux 3.2 (97%),
Microsoft Windows 7 or Windows Server 2012 (96%), Microsoft
Windows XP SP3 (96%),
BlueArc Titan 2100 NAS device (91%)
No exact OS matches for host (test conditions non-ideal) .
TCP Sequence Prediction: Difficulty=259 (Good luck!)
IP ID Sequence Generation: Incremental

Read data files from: /usr/local/bin/../share/nmap
0OS detection performed. Please report any incorrect results at
https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 32.40 seconds
Raw packets sent: 1281 (59.676KB) | Rcvd: 1249 (50.520KB)

77

Submitting new OS and service
fingerprints

Nmap's accuracy comes from a database that has been collected over the years through
user submissions. It is very important that we help keep this database up to date. Nmap
will let you know when you can contribute to the project by submitting an unidentified
operating system, device, or service.

Please take the time to submit your contributions, as Nmap's detection capabilities come
directly from the databases. Visit https://nmap.org/cgi-bin/submit.cgi? to submit new
fingerprints or corrections.

78

https://nmap.org/cgi-bin/submit.cgi?

Using NSE scripts against a target host

The Nmap project introduced a feature named Nmap Scripting Engine that allows users
to extend the capabilities of Nmap via Lua scripts. NSE scripts are very powerful and have
become one of Nmap's main strengths, performing tasks from advanced version
detection to vulnerability exploitation. The variety of scripts available (more than 500)
help users perform a wide range of tasks using the target information obtained from
scans.

The following recipe describes how to run NSE scripts, and the different options available
to configure its execution.

79

How to do it...

Enable script scan using the Nmap option -sc. This mode will select all NSE scripts
belonging to the default category and execute them against our targets:

$nmap -sC <target>
$nmap -sC scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.14s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f
Not shown: 995 closed ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey:
| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)
| 2048 20:3d:2d:44:62:2a:00:5a:9d:b5:03:05:14:c2:a6:b2 (RSA)
| 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57 (ECDSA)
25/tcp filtered smtp
80/tcp open http
| http-title: Go ahead and ScanMe!
9929/tcp open nping-echo
31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 24.42 seconds

In this case, the results included the output of the ssh-hostkey and nttp-titie scripts. The
number of scripts executed depends on the host or port rules of the scripts.

80

How it works...

The Nmap option -sc enables script scan mode, which tells Nmap to select the default
scripts and execute them if the host or port rule matches.

NSE scripts are divided into the following categories:

e auth: This category is for scripts related to user authentication
e broadcast: This is a very interesting category of scripts that use broadcast petitions

to gather information

e brute: This category is for scripts that help conduct brute-force password auditing
o default: This category is for scripts that are executed when a script scan is executed

(-sc)

discovery: This category is for scripts related to host and service discovery.

dos: This category is for scripts related to denial of service attacks

exploit: This category is for scripts that exploit security vulnerabilities

external: This category is for scripts that depend on a third-party service

fuzzer: This category is for NSE scripts that are focused on fuzzing

intrusive: This category is for scripts that might crash something or generate a lot
of network noise; scripts that system administrators may consider intrusive belong
to this category

malware: This category is for scripts related to malware detection

safe: This category is for scripts that are considered safe in all situations

version: This category is for scripts that are used for advanced versioning

vuln: This category is for scripts related to security vulnerabilities

81

There's more...

Let's learn about some Nmap options that are required to customize the Nmap Scripting
Engine. Some scripts require to be configured correctly, so it is important that we are
familiar with all the Nmap Scripting Engine options.

82

NSE script arguments

The --script-args flag is used to set the arguments of NSE scripts. For example, if you
would like to set the useragent HTTP library argument, you would use the following:

|$ nmap --script http-title --script-args http.useragent="Mozilla 999" <target>

You can also use aliases when setting the arguments for NSE scripts. For example, you
have the following code:

|$ nmap -p80 --script http-trace --script-args path <target>

Instead of the preceding code, you can use the following one:

|$ nmap -p80 --script http-trace --script-args http-trace.path <target>

83

Script selection

Users may select specific scripts when scanning using the Nmap option --script <filename

or path/folder/category/expression>:

|$nmap --script <filename or path/folder/category/expression> <target>

For example, the command to run the NSE script ans-brute is as follows:

|$nmap --script dns-brute <target>

The Nmap Scripting Engine also supports the execution of multiple scripts
simultaneously:

$ nmap --script http-headers, http-title scanme.nmap.org
Nmap scan report for scanme.nmap.org (74.207.244.221)
Host is up (0.096s latency).
Not shown: 995 closed ports

PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http

| http-headers:
| Date: Mon, 24 Oct 2011 07:12:09 GMT
| Server: Apache/2.2.14 (Ubuntu)

| Accept-Ranges: bytes

\ Vary: Accept-Encoding

| Connection: close

| Content-Type: text/html

\

| (Request type: HEAD)

| http-title: Go ahead and ScanMe!
646/tcp filtered 1ldp

9929/tcp open nping-echo

In addition, NSE scripts can be selected by category, expression, or folder:

e Run all the scripts in the vuin category:

| $ nmap -sV --script vuln <target>

e Run the scripts in the version Or discovery categories:

| $ nmap -sV --script="version,discovery" <target>

e Run all the scripts except for the ones in the exp10it category:

| $ nmap -sV --script "not exploit" <target>

e Run all HTTP scripts except nttp-brute and nttp-siowloris:

| $ nmap -sV --script " (http-*) and not(http-slowloris or http-brute)" <target>

Expressions are very handy as they allow fine-grained script selection, as shown in the
preceding example.

84

Debugging NSE scripts

To debug NSE scripts, use --script-trace. This enables a stack trace of the executed script
to help you debug the script execution. Remember that sometimes you may need to
increase the debugging level with the -a11-91 flag to get to the bottom of the problem:

$ nmap -sC --script-trace <target>

$ nmap --script http-headers --script-trace scanme.nmap.org
NSOCK INFO [18.7370s] nsock trace handler callback(): Callback:
CONNECT SUCCESS for EID 8 [45.33.32.156:80]
NSE: TCP 192.168.0.5:47478 > 45.33.32.156:80 | CONNECT
NSE: TCP 192.168.0.5:47478 > 45.33.32.156:80 | 00000000:
48 45 41 44 20 2f 20 48 54 54 50 2f 31 2e 31 0d HEAD / HTTP/1.1
00000010: Oa 43 6f 6e be 65 63 74 69 6f 6e 3a 20 63 6¢C 6f
Connection: clo
00000020: 73 65 0d 0Oa 55 73 65 72 2d 41 67 65 6e 74 3a 20 se
User- Agent:
00000030: 4d 6f 7a 69 6¢c 6Cc 61 2f 35 2e 30 20 28 63 6f 6d
Mozilla/5.0 (com
00000040: 70 61 74 69 62 6c 65 3b 20 4e 6d 61 70 20 53 63 patible;
Nmap Sc
00000050: 72 69 70 74 69 6e 67 20 45 6e 67 69 6e 65 3b 20 ripting
Engine;
00000060: 68 74 74 70 73 3a 2f 2f 6e 6d 61 70 2e 6f 72 67
https://nmap.org
00000070: 2f 62 6f 6f 6b 2f 6e 73 65 2e 68 74 6d 6¢c 29 0d
/book/nse.html)
00000080: Oa 48 6f 73 74 3a 20 73 63 61 6e 6d 65 2e 6e 6d Host:
scanme.nm
00000090: 61 70 2e 6f 72 67 0d 0Oa 0d Oa ap.org
[Output removed to save space]Nmap scan report for scanme.nmap.org
(45.33.32.156)
Host is up (0.14s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f
Not shown: 995 closed ports

PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http

| http-headers:

| Date: Sun, 24 Apr 2016 19:52:13 GMT
| Server: Apache/2.4.7 (Ubuntu)

| Accept-Ranges: bytes

\ Vary: Accept-Encoding

| Connection: close

\ Content-Type: text/html

\

| (Request type: HEAD)
9929/tcp open nping-echo
31337/tcp open Elite

Nmap done: 1 IP address (1 host up) scanned in 18.89 seconds

85

Adding new scripts

There will be occasions where you will want to try scripts not included officially with
Nmap. To test new scripts, you simply need to copy them to your /scripts inside your
Nmap directory and run the following command to update the script database:

| # nmap --script-updatedb

After updating the script database, you simply need to select them, as you would
normally do with the --script option. In addition, you may execute scripts without
including them in the database by setting a relative or absolute script path as the
argument:

|# nmap --script /root/loot/nonofficial.nse <target>

The https://secwiki.org/w/Nmap/External_Script_Library Wiki page attempts to keep track of all
scripts that for different reasons could not get included officially with Nmap. I
recommend you visit it as there are some great scripts in there.

86

https://secwiki.org/w/Nmap/External_Script_Library

Reading targets from a file

Many times, we will need to work with multiple targets, but having to type a list of targets
in the command line is not very practical. Fortunately, Nmap supports the loading of
targets from an external file.

This recipe shows how to scan the targets loaded from an external file in Nmap.

87

How to do it...

Enter the list of targets into a file, each separated by a new line, tab, or space(s):

$cat targets.txt
192.168.1.23
192.168.1.12

To load the targets from the targets.txt file, use the Nmap option -iv <filename>:

| $ nmap -iL targets.txt

exclusion rules set by --exciude OF --exclude-file. Th€ —-exciude ANd --exciude-

This feature can be combined with any scan option or method, except for
0 rile option flags will be ignored when -i1 is used.

88

How it works...

The Nmap option -ir <filename> tells Nmap to load the targets from the <fiiename> file.
Nmap supports several formats for this input file. The target list contained in the input
file may be separated either by spaces, tabs, or newlines. Any exclusions should be
reflected in the input target file.

89

There's more...

You can also use different target formats in the same file. In the following file, we specify
an I[P address and an IP range:

$ cat targets.txt
192.168.1.1
192.168.1.20-30

You may enter comments in your target list by using the character #:

$ cat targets.txt
FTP servers
192.168.10.3
192.168.10.7
192.168.10.11

90

Excluding a host list from your scans

Nmap also supports the argument --exciude-frile <rilename>to exclude the targets listed in

<filename>.

|$ nmap --exclude-file dontscan.txt 192.168.1.1/24

91

Scanning an IP address ranges

Very often, penetration testers and system administrators need to scan not a single
machine but a range of hosts. Nmap supports IP address ranges in different formats, and
it is essential that we know how to deal with them.

This recipe explains how to work with IP address ranges when scanning with Nmabp.

92

How to do it...

1. Open your terminal and enter the following command:

| $ nmap <IP address range>

2. For example, to scan from 192.168.1.0 t0 192.168.1.255 use the following command:
| $ nmap 192.168.1.0-255

3. Alternatively, you can use any of the following notations:

$ nmap 192.168.*

$ nmap 192.168.0/24
$ nmap 192.168.1.0 192.168.1.1 192.168.1.2 ... 192.168.1.254 192.168.1.255

93

How it works...

Nmap supports several target formats that allows users to work with IP address ranges.
The most common type is when we specify the target's IP or host, but it also supports the
reading of targets from files, ranges, and we can even generate a list of random targets.

Any arguments that are not valid options are read as targets by Nmap. This means that
we can tell Nmap to scan more than one range in a single command, as shown in the
following command:

|# nmap -p25,80 -O -T4 192.168.1.1/24 scanme.nmap.org/24
There are several ways that we can handle IP ranges in Nmap:

e Multiple host specification
e Octet range addressing (they also support wildcards)
e CIDR notation

To scan IP addresses 192.168.1.1,192.168.1.2,and 192.168.1. 3, the following command can
be used:

|$ nmap 192.168.1.1 192.168.1.2 192.168.1.3

We can also specify octet ranges using -. For example, to scan hosts 192.168.1.1, 192.168.1.2,
and 192.168.1.3, we could use the expression 192.168.1.1-3, as shown in the following
command:

| $ nmap 192.168.1.1-3

Octect range notation also supports wildcards, so we could scan from 192.168.1.0 to
192.168.1.255 with the expression 192.168.1. *:

| $ nmap 192.168.1.%*

The CIDR notation can also be used when specifying targets. The CIDR notation consists
of an IP address and a suffix. The most common network suffixes used are /8, /16, /24,
and /32. To scan the 256 hosts in 192.168.1.0-255 using the CIDR notation, the following
command can be used:

| $ nmap 192.168.1.0/24

94

There's more...

In addition, you may exclude the hosts from the ranges by specifying the parameter the --
exclude Option, as shown:

$ nmap 192.168.1.1-255 --exclude 192.168.1.1
$ nmap 192.168.1.1-255 --exclude 192.168.1.1,192.168.1.2

Otherwise, you can write your exclusion list in a file and read it with--exciude-fi1e:

$ cat dontscan.txt
192.168.1.1
192.168.1.254
$ nmap --exclude-file dontscan.txt 192.168.1.1-255

95

CIDR notation

The Classless Inter-domain Routing (CIDR) notation (pronounced cider) is a compact
method for specifying [P addresses and their routing suffixes. This notation gained
popularity due to its granularity when compared with classful addressing because it
allows subnet masks of variable length.

The CIDR notation is specified by an IP address and network suffix. The network or IP
suffix represent the number of network bits. IPv4 addresses are 32 bit, so the network
can be between 0 and 32. The most common suffixes are /8, /16, /24, and /32.

To visualize it, take a look at the following CIDR-to-Netmask conversion table:

CIDR | Netmask

/8 255.0.0.0

/16 | 255.255.0.0

/24 255.255.255.0

/32 255.255.255.255

For example, 192.168.1.0/24 represents the 256 IP addresses from 192.168.1.0 to
192.168.1.255. And 50.116.1.121/8 represents all the [P addresses between 50.0-255.0-
255.0-255. The network suffix /32 is also valid and represents a single IP.

96

Scanning random targets on the Internet

Nmap supports a very interesting feature that allows us to run scans against random
targets on the Internet. Although it is not recommended (and probably not legal) to do
aggressive scans blindly, this is very useful when conducting research that needs a
sample of random hosts.

This recipe shows you how to generate random hosts as targets for your Nmap scans.

97

How to do it...

1. To generate a random target list of n hosts, use the following Nmap command:

| $ nmap -iR <n>

2. For example, to generate a list of 100 targets, we use the following command:

| $ nmap -iR 100

3. Now, let's check how common is ICMP in remote servers. Let's launch a ping scan
against three random targets:

$ nmap -sn -iR 3
Nmap scan report for host86-190-227-45.wlms-broadband.com
(86.190.227.45)
Host is up (0.000072s latency).
Nmap scan report for 126.182.245.207
Host is up (0.00023s latency).
Nmap scan report for 158.sub-75-225-31.myvzw.com (75.225.31.158)
Host is up (0.00017s latency).
Nmap done: 3 IP addresses (3 hosts up) scanned in 0.78 seconds

98

How it works...

The argument -ir 100 tells Nmap to generate 100 external IP addresses and use them as
targets in the specified scan. This target assignment can be used with any combination of
scan flags.

While this is a useful feature for conducting Internet research, [recommend you to be
careful with this flag. Nmap does not have control over the external IP addresses it
generates; this means that inside the generated list could be a critical machine that is
being heavily monitored. To avoid getting into trouble, use this feature wisely.

99

There's more...

To tell Nmap to generate an unlimited number of IPs and hence run indefinitely, set the
argument -ir to o using the following command:

| $ nmap -iR 0

For example, to find random NFS shares online, you could use the following command:

| $ nmap -p2049 --open -iR 0

100

Legal issues with port scanning

Port scanning without permission is not very welcome, and it is even illegal in some
countries. I recommend you to research your local laws to find out what you are
permitted to do and if port scanning is frowned upon in your country. You also need to
consult with your ISP as they may have their own rules on the subject.

The official documentation of Nmap has an amazing write-up about the legal issues
involved with port scanning, available at https://nmap.org/book/legal-issues.html. I recommend
that everyone considering doing Internet-wide research scanning reads it.

101

https://nmap.org/book/legal-issues.html

Collecting signatures of web servers

Nmap is an amazing tool for information gathering, and the variety of tasks that can be
done with the Nmap Scripting Engine is simply remarkable. The popular service
ShodanHQ (https://www.shodan.io/) offers a database of HTTP banners, which is useful for
analyzing the impact of vulnerabilities. Its users can find out the number of devices that
are online by country, which are identified by their service banners. ShodanHQ uses its
own built-in house tools to gather its data, but Nmap can easily be used for this task.

In the following recipe, we will see how to scan indefinitely for web servers, and collect
their HTTP headers with Nmabp.

102

https://www.shodan.io/

How to do it...

Open your terminal and enter the following command:

|$ nmap -p80,443 -Pn -T4 --open --script http-headers,http-title,ssl-cert --script-args http.

This command will launch an instance of Nmap that will run indefinitely, looking for web
servers in port so and 443 and then save the output to random-webservers.xm1. Each host that
has port so or 443 open will return something like the following:

Nmap scan report for XXXX

Host is up (0.23s latency).

PORT STATE SERVICE

80/tcp open http

| http-title: Protected Object

| http-headers:

| WWW-Authenticate: Basic realm="TD-8840T"
| Content-Type: text/html
| Transfer-Encoding: chunked
| Server: RomPager/4.07 UPnP/1.0
| Connection: close
| EXT:

\

\

(Request type: GET)

103

How it works...

The following command will tell Nmap to only check port so or 443 (-pso, 443), without ping
(-en), and to use the aggressive timing template (-r4). If port 80 or 443 is open, Nmap will
run the NSE SCFiptS http-title, http-headers, and ssl—cert(——script http-headers, http-
title,ssl-cert) to collect server headers and web server title; if HTTPS is detected, we will
also extract information from SSL certificates if available:

|$mnap -p80 -Pn -T4 --open --script http-headers,http-title --script-args http.useragent="A £

The script arguments that are passed are used to set the HTTP user agent in the requests
(——script—args http.useragent="A friendly web crawler (http://calderonpale.com) ") and use a cer
request to retrieve the HTTP headers (——script—arqs http-headers .useget).

Finally, the argument -ir o tell Nmap to generate external IP addresses indefinitely and
save the results in a file in XML format (-ox random-webservers.xm1).

104

There's more...

Nmap's HTTP library has cache support, but if you are planning to scan many hosts, you
need to consider your cache file. The cache is stored in a temporary file that grows with
each new request. If this file starts to get too big, cache lookups start to take a
considerable amount of time.

You can disable the cache system of the HTTP library by setting the http-max-cache-
size=0 library argument, as shown in the following command:

|$ nmap -p80 --script http-headers --script-args http-max-cache-size=0 -iR 0

Pipelining, and Web Crawling Configuration Options, to learn more about the

The HTTP NSE library is highly configurable. Read Appendix A, HTTP, HTTP
0 advanced options available.

105

Monitoring servers remotely with Nmap
and Ndiff

Using tools from the Nmap project we can set up a simple but powerful monitoring
system. Because our monitoring system will depend on Nmap, we can monitor any
information Nmap can gather. To detect changes on the network, we will need to
compare the results of two scans: the base or known good state and the last results
obtained. Now it is the perfect time to introduce Ndiff.

Ndiff was designed to address the issues of using the traditional 4i rr command with two
XML scan results. It compares files by removing false positives and producing a more
readable output, which is perfect for anyone who needs to keep track of the scan results.

This recipe describes how to use bash scripting, cron, Nmap, and Ndiff to setup a
monitoring system that alerts the user by e-mail if changes are detected in a network.

106

Getting ready

In this recipe, we assume the system has been configured to send mail via the mai1
command. If you would like to change the notification method, you simply need to update
the bash script. You could use cur1 to rost data to your favorite social network or run a
script that restarts the service. The possibilities are endless.

107

How to do it...

To setup a simple monitoring system with Nmap, we are going to need to do a few things:

1. Create the directory /usr/1ocal/share/nmap-mon/ directory (or whatever location you
prefer) to store all the files required for our monitoring system.

2. Scan your targets and save the result in XML format in the directory that you just
created:

| # nmap -oX base_results.xml -sV -Pn <target>

The resulting file base resuits.xm1 file will be used as your base file, meaning that it
should reflect the known good versions and ports.

3. Create the file nmap-mon. sn file in the directory you created earlier and paste the
following code:

#!/bin/bash
#Bash script to email admin when changes are detected in a network using Nmap and Nd
#
#Don't forget to adjust the CONFIGURATION variables.
#Paulino Calderon <calderon@websec.mx>
#
#CONFIGURATION
#
NETWORK="YOURTARGET"
ADMIN=YOURG@EMAIL.COM
NMAP FLAGS="-n -sV -Pn -p- -T4"
BASE PATH=/usr/local/share/nmap-mon/
BIN PATH=/usr/local/bin/
BASE FILE=base.xml
NDIFF FILE=ndiff.log
NEW RESULTS FILE=newscanresults.xml
BASE RESULTS="S$BASE PATHSBASE FILE"
NEW RESULTS="SBASE PATHSNEW RESULTS FILE"
NDIFF RESULTS="$BASE PATHSNDIFF FILE"
if [-f $BASE RESULTS]
then
echo "Checking host $NETWORK"
${BIN_PATH}nmap -oX $NEW_RESULTS $NMAP_FLAGS SNETWORK
${BIN7PATH}ndiff $BASE7RESULTS $NEW7RESULTS > $NDIFF7RESULTS
if [$(cat $NDIFF RESULTS | wc -1) -gt 0]
then
echo "Network changes detected in $SNETWORK"
cat $NDIFF RESULTS
echo "Alerting admin S$ADMIN"
mail -s "Network changes detected in SNETWORK" S$SADMIN < SNDIFF RESULTS
fi
fi

4. Update the configuration values according to your system:

NETWORK="YOURTARGET"
ADMIN=YOUR@EMAIL.COM

NMAP FLAGS="-sV -Pn -p- -T4"

BASE PATH=/usr/local/share/nmap-mon/
BIN PATH=/usr/local/bin/

BASE FILE=base.xml

NDIFF FILE=ndiff.log

NEW RESULTS FILE=newscanresults.xml

108

5. Make nmap-mon.sh executable by entering the following command:

| # chmod +x /usr/local/share/nmap-mon/nmap-mon.sh

6. Now run the nmap-mon.sh script to make sure it is working correctly.

| # /usr/local/share/nmap-mon/nmap-mon.sh

7. Launch your crontab editor to execute the script periodically automatically:

| # crontab -e

8. Add the following command:

| 0 * * * ¥ /usr/local/share/nmap-mon/nmap-mon.sh

You should now receive e-mail alerts when Ndiff detects a change in your
network.

109

How it works...

Ndiff is a tool for comparing two Nmap scans. Think about the traditional diff but for
Nmap scan reports. With some help from bash and cron, we set up a task that is executed
at regular intervals to scan our network and compare our current state with an older
state, to identify the differences between them. We used some basic bash scripting to
execute our monitoring scan and then executed Ndiff to compare the results:

if [$(cat SNDIFF RESULTS | wc -1) -gt 0]
then

echo "Network changes detected in $NETWORK"

cat SNDIFF RESULTS

echo "Alerting admin $ADMIN"

mail -s "Network changes detected in SNETWORK" S$ADMIN < SNDIFF RESULTS
fi

110

There's more...

You can adjust the interval between scans by modifying the cron line:

|O * * * * /usr/local/share/nmap-mon/nmap-mon.sh

To update your base file, you simply need to overwrite your base file located at
/usr/local/share/nmap-mon/. Remember that when we change the scan parameters to create
our base file, we need to update them in nmap-mon. sh too.

111

Monitoring specific services

To monitor some specific service, you need to update the scan parameters in nmap-mon. sh:

| NMAP_FLAGS="-sV -Pn"

For example, if you would like to monitor a web server, you may use the following
parameters:

| NMAP_FLAGS="-sV --script http-google-safe -Pn -p80,443"

These parameters set port scanning only to ports so and 443, and in addition, these
parameters include the nttp-googie-safe script to check whether your web server has been
marked as malicious by the Google safe browsing service.

112

Crafting ICMP echo replies with Nping

Nping is a utility designed to ease the process of crafting network packets. It is very
useful to debug and troubleshoot network communications and perform traffic analysis.

This recipe will introduce Nping and go over the process of crafting and transmitting
custom ICMP packets.

113

How to do it...

Let's say that we want to respond to an ICMP echo request packet with an echo reply
using Nping. Consider that the first ICMP echo request packet has a source IP of
192.168.0.10 with an ICMP ID of 520, and the data string was the word ping. With that
information, we can craft the reply with the following command:

|#nping --icmp -c 1 --icmp-type 0 --icmp-code 0 --source-ipl92.168.0.5 --dest-ip 192.168.0.10

In the output, you should see the sent ICMP echo reply packet with the values taken from
the ICMP echo request packets:

SENT (0.0060s) ICMP [192.168.0.5 > 192.168.0.10 Echo reply
(type=0/code=0) id=520 seq=0] IP [ttl=64 1d=10898 iplen=32]
Max rtt: N/A | Min rtt: N/A | Avg rtt: N/A

Raw packets sent: 1 (32B) | Rcvd: 0 (OB) | Lost: 1 (100.00%)
Nping done: 1 IP address pinged in 1.01 seconds

114

How it works...

Nping allows configuring the values of most fields in TCP, UDP, ARP, and ICMP packets
easily. The following command will send an ICMP echo reply packet with the values
obtained from the ICMP echo request packet:

|#nping -—-icmp -c 1 --icmp-type 0 --icmp-code 0 --source-ipl92.168.0.5 --dest-ip 192.168.0.10
Let's break it down by its arguments:

e —_icmp: This sets ICMP as the protocol to use.

e —c 1: Packet count. Send only one packet.

® —icmp-type 0 --icmp-code 0: This sets ICMP type and code. This type corresponds to
an echo reply message.

® __source-ip 192.168.0.5 --dest-ip 192.168.0.10: This sets the source and destination IP
address.

e __icmp-id 520: This sets the ICMP identifier of the request packet.

® __icnp-seq 0: This sets the ICMP Sequence number.

® __data-string 'ping': This sets the data string.

115

There's more...

Nping can set most fields in TCP, UDP, ARP, and ICMP packets via arguments but offers a
lot more customization than we offer. In addition to the interesting timing and
performance options, Nping supports a mode named echo that is handy when
troubleshooting firewall or routing issues. I highly recommend you go over the
documentation at https://nmap.org/nping/ to become familiar with this powerful tool and the
scenarios where it can be handy.

116

https://nmap.org/nping/

Managing multiple scanning profiles with
Zenmap

Scanning profiles are a combination of Nmap options and arguments that can be used to
save time when launching Nmap scans.

This recipe is about adding, editing, and deleting a scanning profile in Zenmap.

117

How to do it...

Let's add a new profile for scanning web servers:

Launch Zenmap.
Click on Profile on the main toolbar.
Click on New Profile or Command (Ctrl + P). The Profile Editor will be launched.
Enter a profile name and a description on the Profile tab.
Enable Version detection and select TCP connect scan (-st) in the Scan tab.
Enable Don't ping before scanning (-en) in the Ping tab.
Enable the following scripts on the Scripting tab:
e hostmap-ipZhosts
e http-apache-negotiation
http-apache-server
http-auth-finder
http-backup-finder
http-config-backup
http-cors
http-cross-domain-policy
http-csrf
http-default-accounts
http-devframework
http-dombased-xss
http-enum
http-exif-spider
http-favicon
http-git
http-headers
http-iis-short-name-brute
http-methods
http-mobileversion-checker
http-ntlm-info
http-open-proxy
http-open-redirect
http-trace
http-php-version
http-phpself-xss
http-robots.txt
http-server-header
http-shellshock
http-svn-info
e http-title
8. Next, go to the Target tab and click on Ports to scan (-p) and enter so, 443.

No Ul wbh R

9. Save your changes by clicking on Save Changes:

118

Profile Editor e e o

e, http-methods, http-ntim-info, http-open-proxy, http-open-redirect,http-phpself-xss,http-robots. txt,http-server-header, http-shellshock http-svn-info, http-title, http-w

Profile 5can Ping Scr\pting.Target Source Other Timing

- hostmap-bfk
-hostmap-robtex
http-adobe-coldfus
http-affiliate-id @
B http-apache-negoti 1
. http-apache-server-
lE http-auth-finder
Ehttp-auth
http-avaya-ipoffice-

: http-awstatstotals-
http-axis2-dir-trave
= http-backup-finder
- http-barracuda-dir-1

http-brute
é http-cakephp-versic

‘ http-chrono

Add

Remove

af-detect ‘ Scan

Help

- http.useragent
Categories: discovery, external

The value of the User-Agent header field sent with requests. By
default it is "Mozilla/5.0 [compatible; Nmap
Scripting Engine; https://nmap.org/book/
nse.html)". A value of the empty string disables sending the
User-Agent header field.

Finds hostnames that resolve to the target's IP address by querying the online
database:
* nttp://www.ipZhosts.com { Bing Search Results)

The script is in the "external” category because it sends target IPs to a third party in
order to query their database.

Usage

Aman - -scrint hastman-in?hnsts --scrint-aras 'hastman-
Arguments

Arguments values

hostmap. prefix

newtargets

http.max-cache-size:
http.useragent

http.pipeline

http.max-pipeline

newtargets

max-newtargets

|Delete‘ |Cancel| ‘ O; save Changes|

Your new scanning profile should be available on the Profile drop-down menu.

119

How it works...

After using the editor to create our profile, we are left with the following Nmap
command:

|$ nmap -sT -sV -p 80,443 -T4 -v -Pn --script hostmap-ip2hosts,http-apache-negotiation, http-a

Using the Profile wizard, we have enabled service scanning (-sv), set the scanning ports to
so and 443, configure ping options (-en), and select a bunch of HTTP-related scripts to
gather as much information as possible from this web server. We now have this
command saved for our scanning activities against new targets in the future.

120

There's more...

Customizing scan profiles can be done through the user interface. Default scanning
profiles can be used as templates when creating new ones. Let's review how we work
with the scanning profiles.

121

Zenmap scanning profiles

The predefined Zenmap scanning profiles help newcomers familiarize themselves with
Nmap. I recommend you to analyze them to understand the scanning techniques
available in Nmap, along with some useful combinations of its options:

Intense scan: nmap -T4 -2 -v

Intense scan plus UDP: nmap -ss -su -14 -a -v

Intense scan, all TCP ports: nmap -p 1-65535 -14 -a -v

Intense scan, no ping: nmap -T4 -2 -v -Pn

Ping scan: nmap -sn

Quick scan: nmap -14 -F

QlliCk scan plus: nmap -sV -T4 -0 -F -version-light

QlliCk traceroute: nmap -sn -traceroute

Regular scan: nmap

Slow comprehensive scan: nmap -ss -su -T4 -a -v -PE -PP -PS80,443 -PA3389 -PU40125 -PY

-g 53 --script default or discovery and safe

You can find more scanning profiles at https://github.com/cldrn/rainmap-lite/wiki/Sca
nning-profiles.

122

https://github.com/cldrn/rainmap-lite/wiki/Scanning-profiles

Editing or deleting a scan profile

To edit or delete a scan profile, you need to select the entry you wish to modify from the
Profile drop-down menu. Click on Profile on the main toolbar and select Edit Selected
Profile (Ctrl + E).

The editor will be launched allowing you to edit or delete the selected profile.

123

Running Lua scripts against a network
connection with Ncat

Ncat allows users to read, write, redirect, and modify network data in some very
interesting ways. Think about it as an enhanced version of the traditional tool netcat.
Ncatoffers the possibility of running external commands in different ways once a
connection has been established successfully. One way is with the help of Lua scripts that
act as programs and allow users to perform any task they wish.

The following recipe will show you how to run a HTTP server contained in a Lua script
with Ncat.

124

How to do it...

1. Running Lua scripts against network connections in Ncat is very straightforward;
just use the --1ua-exec Option to point to the Lua script you want to execute and the
listening port or host to connect:

| $ncat --lua-exec <path to Lua script> --listen 80

2. To start a web server with Ncat, locate the nttpd.1ua script inside your Ncat's script
folder and use the command:

| $ncat --lua-exec /path/to/httpd.lua --listen 8080 --keep-open

3. Ncat will start listening on port soso and execute the Lua program specified on
connection. You may verify that the script is running correctly by pointing a web
browser to that direction and checking whether the Got a request for message
appears on the output.

125

How it works...

If you have ever used netcat, you will be familiar with Ncat. Similarly, Ncat can be put
into listening (--1isten) and connect mode. However, netcat lacks the --1ua-exec option,
which serves the purpose of executing an external Lua program against network sockets.
This option is very handy for scripting tasks aimed at testing or debugging a wide range
of services. The main strength of using this execution mode is that the programs are
cross-platform as they are executed on the same built-in interpreter.

The nttpd. 1ua script is an example distributed with Ncat to illustrate service emulation,
but it should be clear that our options are endless. Lua is a very powerful language, and
many tasks can be scripted with a few lines.

126

There's more...

Ncat offers a wide range of options that are documented thoroughly at https://nmap.org/ncat/
guide/index.html. Do not forget to stop there and go over the full documentation.

127

https://nmap.org/ncat/guide/index.html

Other ways of executing external
commands with Ncat

Ncat supports three options to execute external programs:

® __cxec: This runs command without shell interpretation
® __sh-exec: This runs command by passing a string to a system shell
® —-lua-exec: This runs Lua script using the built-in interpreter

128

Discovering systems with weak
passwords with Ncrack

Ncrack is a network authentication cracking tool designed to identify systems with weak
credentials. It is highly flexible and supports popular network protocols, such as FTP,
SSH, Telnet, HTTP(S), POP3(S), SMB, RDP, VNC, SIP, Redis, PostgreSQL, and MySQL.

In this recipe, you will learn how to install Ncrack to find systems with weak passwords.

129

Getting ready

Grab the latest stable version of Ncrack from https://nmap.org/ncrack/. At the moment, the
latest version is 0.5:

|$wget https://nmap.org/ncrack/dist/ncrack-0.5.tar.gz

Untar the compressed file and enter the new directory:

$ tar -zxf ncrack-0.5.tar.gz
$ cd ncrack-0.5

Configure and build Ncrack with the command:

|$./configure && make

Finally, install it in your system:

| #make install

Now you should be able to use Ncrack anywhere in your system.

130

https://nmap.org/ncrack/

How to do it...

To start a basic dictionary attack against a SSH server, use the following command:

| $ncrack ssh://<target>:<port>

Ncrack will use the default settings to attack the SSH server running on the specified IP
address and port. This might take some time depending on the network conditions:

Starting Ncrack 0.5 (http://ncrack.org) at 2016-04-03 21:10 EEST
Discovered credentials for ssh on 192.168.1.2 22/tcp:

192.168.1.2 22/tcp ssh: guest 12345

Ncrack done: 1 service scanned in 56 seconds.

Ncrack finished.

In this case, we have successfully found the credentials of the account guest. Someone
should have known better that 12345 is not a good password.

131

How it works...

Ncrack takes as arguments the hostname or IP address of the target and a service to
attack. Targets and services can be defined as follows:

<[service-name]>://<target>:<[port-number]>

The simplest command requires a target and the service specification. Another way of
running the scan shown earlier is as follows:

Sncrack 192.168.1.2:22
Starting Ncrack 0.5 (http://ncrack.org) at 2016-01-03 22:10 EEST
Discovered credentials for ssh on 192.168.1.2 22/tcp:
192.168.1.2 22/tcp ssh: guest 12345
192.168.1.2 22/tcp ssh: admin money$
Ncrack done: 1 service scanned in 156.03 seconds.
Ncrack finished.

In this case, Ncrack automatically detected the SSH service based on the port number
given in the target and performed a password auditing attack using the default
dictionaries shipped with Ncrack. Luckily, this time we found two accounts with weak
passwords.

132

There's more...

As we have seen Ncrack provides a few different ways of specifying targets, but it takes it
to the next level with some interesting features, such as the ability to of pause and
resume attacks. We will briefly explore some of its options, but I highly recommend you
read the official documentation at https://nmap.org/ncrack/man.html for the full list of options.

133

https://nmap.org/ncrack/man.html

Configuring authentication options

Ncrack would not be a good network login cracker without options to tune the
authentication process. Ncrack users may use their own username and password lists
with the options -uv and -» correspondingly if the included lists (inside the directory /lists)
are not adequate:

|$ ncrack -U <user list file> -P <password list file> <[service-name]>://<target>:<[port-numb

Otherwise, we might have a specific username or password we would like to test with the
Options --—user and --pass.:

$ ncrack --user <username> <[service-name]>://<target>:<[port-number]>
$ ncrack --pass <password> <[service-name]>://<target>:<[port-number]>

134

Pausing and resuming attacks

Ncrack supports resuming incomplete scans with the --resune option. If you had to stop a
cracking session, just resume it passing the filename of the previous session:

|$ncrack --resume cracking-session <[service-name]>://<target>:<[port-number]>

If we would like to set the filename of the session, use the --save option:

|$ncrack --save cracking-session <[service-name]>://<target>:<[port-number]>

135

Launching Nmap scans remotely from a
web browser using Rainmap Lite

Rainmap Lite is a web application designed for running Nmap scans from any web
browser. It was designed to be light and to depend on as few dependencies as possible. It
is perfect for installing on a remote server and then just logging in from your phone and
scheduling scans when you are on the road.

In this recipe, you will learn how to launch a Nmap scan using Rainmap Lite.

136

Getting ready

To run Rainmap Lite, we need to download the code and run the application as follows:

1. Grab the latest stable version of Rainmap Lite:

| $git clone https://github.com/cldrn/rainmap-lite.git

2. Install Django and the only project dependency, 1xn1:

$ pip install Django
$ pip install 1lxml

3. Change your working directory to the newly created folder and create the database
schema:

| $python manage.py migrate

4. Load the default scanning profiles:

| $python manage.py loaddata nmapprofiles

5. Locate nmaper-cronjob.py and update the ease_urr, sure_server, sure_user, sure_eass, and
sure_port Variables to reflect your installation.
6. Run the application:

| #python manage.py runserver 127.0.0.1:8080

7. Add a cron task that executes the agent periodically:

| */5 * * * * cd <App path> && /usr/bin/python nmaper-cronjob.py >> /var/log/nmaper.lo

8. And finally, don't forget to add an administrative user:

| $ python manage.py createsuperuser

137

How to do it...

Point your favorite web browser to the URL where Rainmap Lite is running. If you follow
the steps described previously, it should be running on port soso.

The interface was designed to require as little typing as possible. Just fill in the field for
target, select a scan profile from the drop-down list, and enter the e-mail address where
you would like to receive the report. Hit SCAN when you are ready to add your scan to the

queue:

RainmaplLite

Enter email address and target, select a scanning profile and scan!

Target(s)

Profile

Fast scan
Custom Nmap arguments
Disable DNS resolution

Skip host discovery

138

How it works...

Rainmap Lite is a simple Django application that allows users to schedule and run Nmap
scans from any web browser. The application was designed to be easy to install on any
server, and it is great for installing on a remote VPS and use the interface to schedule
scans and share the results with your team.

An important aspect is that it is based on a standard cron agent to reduce the number of
dependencies. A more robust queue will probably be implemented in the future.

This project is very young and started as a personal project that I decided to share at
Blackhat US Arsenal 2016. Feel free to send any bug report or suggestion to the project's
GitHub page directly:

https://github.com/cldrn/rainmap-lite

139

https://github.com/cldrn/rainmap-lite

There's more...

Scan profiles can be customized from the management console. The scanning profiles are
updated in every version, and you are invited to contribute your own to the project's wiki
at https://github.com/cldrn/rainmap-lite /wiki/Scanning-profiles.

140

https://github.com/cldrn/rainmap-lite/wiki/Scanning-profiles

Custom arguments

Custom arguments may be added on the fly without accessing the administration console
by checking the box with the Custom Nmap arguments option:

Nmaper
Enter email address and target, select a scanning profi
Target(s)

Oxdeadbeefcafe.com

Profile Email

Fast scan calderon@websec.mx

a‘& Custom Nmap arguments

141

Network Exploration

This chapter covers the following recipes:

Discovering hosts with TCP SYN ping scans
Discovering hosts with TCP ACK ping scans
Discovering hosts with UDP ping scans
Discovering hosts with ICMP ping scans
Discovering hosts with SCTP INIT ping scans
Discovering hosts with IP protocol ping scans
Discovering hosts with ARP ping scans
Performing advanced ping scans

Discovering hosts with broadcast pings
Scanning IPv6 addresses

Gathering network information with broadcast NSE scripts
Scanning through proxies

Spoofing the origin IP of a scan

142

Introduction

In the information security industry, Nmap is the de facto tool for network exploration,
leaving all other scanners far behind with its cutting-edge features, such as IPv6 scanning
and advanced optimization options. It supports several different ping and port scanning
techniques for host and service discovery correspondingly.

Hosts protected by packet filtering systems, such as firewalls or intrusion prevention
systems, may return incorrect results when scanned because of the rules used to block
certain types of network packets. In these situations, Nmap really shines as users can
easily try different scanning techniques (or a combination of them) to bypass these
network restrictions. In addition, it supports some options useful to make our scan traffic
less suspicious. Learning about these different scanning techniques and how to combine
them is necessary if we want to perform very comprehensive scans.

System administrators will gain an understanding of the inner workings of different
scanning techniques and hopefully understand the importance of hardening their traffic
filtering rules to make their networks more secure.

This chapter introduces the supported ping scanning techniques--TCP SYN, TCP ACK,
UDP, IP, ICMP, and broadcast. Other useful tricks are also described, including how to
force DNS resolution, randomize a host order, append random data, and scan IPv6
addresses.

Don't forget to also visit the reference guide for host discovery at https://nmap.o
0 rg/book/man-host-discovery.html.

143

https://nmap.org/book/man-host-discovery.html

Discovering hosts with TCP SYN ping
scans

Ping scans are used for detecting live hosts in networks. Nmap's default ping scan (-se)
sends TCP SYN, TCP ACK, and ICMP packets to determine if a host is responding, but if a
firewall is blocking these requests, it will be treated as offline. Fortunately, Nmap
supports a scanning technique named the TCP SYN ping scan that is very handy to probe
different ports in an attempt to determine if a host is online or at least has more
permissive filtering rules.

This recipe will talk about the TCP SYN ping scan and its related options.

144

How to do it...

Open your terminal and enter the following command:

| # nmap -sn -PS <target>

You should see the list of hosts found in the target range using TCP SYN ping scanning:

nmap -sn -PS 192.1.1/24
Nmap scan report for 192.168.0.1
Host is up (0.060s latency).
Nmap scan report for 192.168.0.2
Host is up (0.0059s latency).
Nmap scan report for 192.168.0.3
Host is up (0.063s latency).
Nmap scan report for 192.168.0.5
Host is up (0.062s latency).
Nmap scan report for 192.168.0.7
Host is up (0.063s latency).
Nmap scan report for 192.168.0.22
Host is up (0.039s latency).
Nmap scan report for 192.168.0.59
Host is up (0.00056s latency).
Nmap scan report for 192.168.0.60
Host is up (0.00014s latency).
Nmap done: 256 IP addresses (8 hosts up) scanned in 8.51 seconds

145

How it works...

The -sn option tells Nmap to skip the port scanning phase and only perform host
discovery. The -rs flag tells Nmap to use a TCP SYN ping scan. This type of ping scan
works in the following way:

1. Nmap sends a TCP SYN packet to port so.

2. Ifthe portis closed, the host responds with an RST packet.

3. If the portis open, the host responds with a TCP SYN/ACK packet indicating that a
connection can be established.

4. Afterward, an RST packet is sent to reset this connection.

The CIDR /24in 192.168.1.1/24 is used to indicate that we want to scan all of the 256 IPs in
our local network.

146

There's more...

TCP SYN ping scans can be very effective to determine if hosts are alive on networks.
Although Nmap sends more probes by default, it its configurable. Now it is time to learn
more about discovering hosts with TCP SYN ping scans.

147

Privileged versus unprivileged TCP SYN
ping scan

Running a TCP SYN ping scan as an unprivileged user who can't send raw packets makes
Nmap use the connect () system call to send the TCP SYN packet. In this case, Nmap
distinguishes a SYN/ACK packet when the function returns successfully, and an RST
packet when it receives an econnrerusep €rror message.

148

Firewalls and traffic filtering

A lot of systems are protected by some kind of traffic filtering, so it is important to always
try different ping scanning techniques. In the following example, we will scan a host
online that gets marked as offline, but in fact, was just behind some traffic filtering system
that did not allow TCP ACK or ICMP requests:

nmap -sn Oxdeadbeefcafe.com
Note: Host seems down. If it is really up, but blocking our ping
probes, try -Pn
Nmap done: 1 IP address (0 hosts up) scanned in 4.68 seconds
nmap -sn -PS Oxdeadbeefcafe.com
Nmap scan report for Oxdeadbeefcafe.com (52.20.139.72)
Host is up (0.062s latency).
rDNS record for 52.20.139.72: ec2-52-20-139-72.compute-
1l.amazonaws.com
Nmap done: 1 IP address (1 host up) scanned in 0.10 seconds

During a TCP SYN ping scan, Nmap uses the SYN/ACK and RST responses to determine if
the host is responding. It is important to note that there are firewalls configured to drop

RST packets. In this case, the TCP SYN ping scan will fail unless we send the probes to an
open port:

|# nmap -sn -PS80 <target>

You can set the port list to be used with -»s (port list or range) as follows:

nmap -sn -PS80,21,53 <target>
nmap -sn -PS1-1000 <target>
nmap -sn -PS80,100-1000 <target>

149

Discovering hosts with TCP ACK ping
scans

Similar to the TCP SYN ping scan, the TCP ACK ping scan is used to determine if a host is
responding. It can be used to detect hosts that block SYN packets or ICMP echo requests,
but it will most likely be blocked by modern firewalls that track connection states
because it sends bogus TCP ACK packets associated with non-existing connections.

The following recipe shows how to perform a TCP ACK ping scan and its related options.

150

How to do it...

Open your terminal and enter the following command:

|# nmap -sn -PA <target>

The result is a list of hosts that responded to the TCP ACK packets sent, therefore, online:

nmap -sn -PA 192.168.0.1/24
Nmap scan report for 192.168.0.1
Host is up (0.060s latency).
Nmap scan report for 192.168.0.60
Host is up (0.00014s latency).
Nmap done: 256 IP addresses (2 hosts up) scanned in 6.11 seconds

151

How it works...

The -sn option tells Nmap to skip the port scan phase and only perform host discovery.
And the -ra flag tells Nmap to use a TCP ACK ping scan. A TCP ACK ping scan works in the

following way:

e Nmap sends an empty TCP packet with the ACK flag set to port so (the default port,

but an alternate port list can be assigned).

e [fthe hostis offline, it should not respond to this request. Otherwise, it will return
an RST packet and will be treated as online. RST packets are sent because the TCP
ACK packet sent is not associated with an existing valid connection.

152

There's more...

TCP ACK ping scans use port 80 by default, but this behavior can be configured. This
scanning technique also requires privileges to create raw packets. Now we will learn
more about the scan limitations and configuration options.

153

Privileged versus unprivileged TCP ACK
ping scans

TCP ACK ping scans need to run as a privileged user. Otherwise a connect () system call is
used to send an empty TCP SYN packet. Hence, TCP ACK ping scans will not use the TCP
ACK technique, previously discussed, as an unprivileged user, and it will perform a TCP
SYN ping scan instead.

154

Selecting ports in TCP ACK ping scans

In addition, you can select the ports to be probed using this technique, by listing them
after the -»a flag:

nmap -sn -PA21,22,80 <target>
nmap -sn -PA80-150 <target>
nmap -sn -PA22,1000-65535 <target>

155

Discovering hosts with UDP ping scans

Ping scans are used to determine if a host is responding and can be considered online.
UDP ping scans have the advantage of being capable of detecting systems behind
firewalls with strict TCP filtering but that left UDP exposed.

This next recipe describes how to perform a UDP ping scan with Nmap and its related
options.

156

How to do it...

Open your terminal and enter the following command:

| # nmap -sn -PU <target>

Nmap will determine if the target is reachable using a UDP ping scan:

nmap -sn -PU scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.13s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Nmap done: 1 IP address (1 host up) scanned in 7.92 seconds

157

How it works...

The -sn option tells Nmap to skip the port scan phase but perform host discovery. In
combination with the -ruv flag, Nmap uses UDP ping scanning. The technique used by a
UDP ping scan works as follows:

1. Nmap sends an empty UDP packet to port s012s.
2. If the host is online, it should return an ICMP port unreachable error.
3. If the host is offline, various ICMP error messages could be returned.

158

There's more...

Services that do not respond to empty UDP packets will generate false positives when
probed. These services will simply ignore the UDP packets, and the host will be
incorrectly marked as offline. Therefore, it is important that we select ports that are
closed for better results.

159

Selecting ports in UDP ping scans

To specify the ports to be probed, add them after the -¢u flag, as follows:

nmap -sn -PU1337,11111 scanme.nmap.org
nmap -sn -PU1337 scanme.nmap.org
nmap -sn -PU1337-1339 scanme.nmap.org

160

Discovering hosts with ICMP ping scans

Ping scans are used to determine if a host is online. ICMP echo request messages were
designed specifically for this task, and naturally, ping scans use these packets to reliably
detect the status of a host.

The following recipe describes how to perform an ICMP ping scan with Nmap and the
flags for the different types of supported ICMP messages.

161

How to do it...

To make an ICMP echo request, open your terminal and enter the following command:

| # nmap -sn -PE <target>

If the host responded, you should see something similar to this:

nmap -sn -PE scanme.nmap.org
Nmap scan report for scanme.nmap.org (74.207.244.221)
Host is up (0.089s latency).
Nmap done: 1 IP address (1 host up) scanned in 13.25 seconds

162

How it works...

The arguments -sn -pE scanme.nmap.org tell Nmap to send an ICMP echo request packet to
the host scanme.nmap.org. We can determine that a host is online if we receive an ICMP echo
reply to this probe. By setting the --packet-trace Option, we can see easily what happens
behind the curtains:

SENT (0.0775s) ICMP 192.168.1.102 > 74.207.244.221 Echo request
(type=8/code=0) ttl=56 1d=58419 iplen=28

RCVD (0.1671s) ICMP 74.207.244.221 > 192.168.1.102 Echo reply
(type=0/code=0) ttl=53 id=24879 iplen=28

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.090s latency).

Nmap done: 1 IP address (1 host up) scanned in 0.23 seconds

163

There's more...

ICMP ping scanning supports several ICMP messages. And even though remote I[CMP
traffic is usually blocked, this technique is very effective for local networks. You can learn
more about ICMP ping scan configuration options in the following section.

164

Local versus remote networks

Unfortunately, ICMP has been around for a pretty long time, and remote ICMP packets are
usually blocked by system administrators. However, it is still a useful ping technique in
order to monitor local networks.

165

ICMP types

There are other ICMP messages that can be used for host discovery, and Nmap supports
the ICMP timestamp reply (-¢r) and address mark reply (-eu). These variants could
bypass misconfigured firewalls, which only block ICMP echo requests:

$ nmap -sn -PP <target>
$ nmap -sn -PM <target>

166

Discovering hosts with SCTP INIT ping
scans

SCTP packets can be used to determine if a host is online by sending SCTP INIT packets
and looking for ABORT or INIT ACK responses. Nmap implements this effective technique
named SCTP INIT ping scan.

The following recipe describes how to launch SCTP INIT ping scans from Nmap.

167

How to do it...

Open your terminal and use the -»vy option:

| # nmap -sn -PY <target>

The output follows the same format as the other types of ping scans:

nmap -sn -PY scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.15s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Nmap done: 1 IP address (1 host up) scanned in 4.31 seconds

168

How it works...

The arguments -sn -pvy scanme.nmap.org tell Nmap to send an SCTP INIT ping scan against
the host scanme.nmap.org to determine if it's online. Nmap attempts to initiate a connection
to a service by sending a SCTP INIT packet and looks for an ABORT or SCTP ACK message
indicating that the service is closed or open correspondingly. Either of those messages
give away that the host is online. Let's set the --packet-trace Option to see all the packets
sent:

SENT (0.0194s) SCTP 192.168.0.14:41354 > 45.33.32.156:80 ttl=50

1d=7028 iplen=52
RCVD (0.1604s) SCTP 45.33.32.156:80 > 192.168.0.14:41354 ttl=49 id=0

iplen=36
NSOCK INFO [0.1610s] nsock iod new2(): nsock iod new (IOD #1)
NSOCK INFO [0.1610s] nsock connect udp(): UDP connection requested

to 127.0.1.1:53 (IOD #1) EID 8
NSOCK INFO [0.1610s] nsock read(): Read request from IOD #1
[127.0.1.1:53] (timeout: -1lms) EID 18

NSOCK INFO [0.1610s] nsock write(): Write request for 43 bytes to
IOD #1 EID 27 [127.0.1.1:53]

NSOCK INFO [0.1610s] nsock trace handler callback(): Callback:
CONNECT SUCCESS for EID 8 [127.0.1.1:53]

NSOCK INFO [0.1610s] nsock trace handler callback(): Callback: WRITE
SUCCESS for EID 27 [127.0.1.1:53]

NSOCK INFO [0.1850s] nsock trace handler callback(): Callback: READ
SUCCESS for EID 18 [127.0.1.1:53] (316 bytes)

NSOCK INFO [0.1850s] nsock read(): Read request from IOD #1

[127.0.1.1:53] (timeout: -1lms) EID 34

NSOCK INFO [0.1850s] nsock iod delete(): nsock iod delete (IOD #1)
NSOCK INFO [0.1850s] nevent delete(): nevent delete on event #34
(type READ)

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.14s latency).

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

The first two lines show clearly the SCTP messages used to determine that the host was
online:

SENT (0.0194s) SCTP 192.168.0.14:41354 > 45.33.32.156:80 ttl=50

id=7028 iplen=52

RCVD (0.1604s) SCTP 45.33.32.156:80 > 192.168.0.14:41354 ttl1=49 id=0
iplen=36

169

There's more...

SCTPINIT scanning can be configured via some Nmap options. Let's review some
additional aspects of this ping scanning technique.

170

Unprivileged SCTP INIT ping scans

SCTP INIT ping scans require to be run as a privileged user in Unix boxes. This scanning
technique does not have a fallback technique like the ACK ping scan; it will not run if
unprivileged.

171

Selecting ports in SCTP INIT ping scans

You may select the ports to be probed using this technique by listing them after the -
ry flag:
nmap -sn -PY21,22,80 <target>

nmap -sn -PY80-81 <target>
nmap -sn -PY22,1000-1005 <target>

172

Discovering hosts with IP protocol ping
scans

Nmap supports an interesting scanning technique named IP protocol ping scan. It
attempts to determine if a host is online by sending packets using IP packets with
different protocols.

The following recipe describes how to perform IP protocol ping scans.

173

How to do it...

Open your terminal and enter the following command:

| # nmap -sn -PO <target>

If the host responded to any of the requests, you should see something like the following:

nmap -sn -PO scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.18s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Nmap done: 1 IP address (1 host up) scanned in 0.40 seconds

174

How it works...

The arguments -sn -po scanme.nmap.org tell Nmap to perform an IP protocol ping scan of
the host scanme. nmap.org.

By default, this ping scan will use the protocols IGMP, IP-in-IP, and ICMP to try to
determine if the host is online. Using --packet-trace will show more details of what
happened behind the curtains:

nmap -sn -PO --packet-trace scanme.nmap.org
SENT (5.0337s) ICMP [192.168.0.5 > 45.33.32.156 Echo request
(type=8/code=0) 1id=33907 seqg=0] IP [ttl=47 id=28320 iplen=28]
SENT (5.0338s) IGMP (2) 192.168.0.5 > 45.33.32.156: ttl=37 id=41324
iplen=28
SENT (5.0340s) IP (4) 192.168.0.5 > 45.33.32.156: ttl=42 i1d=42854
iplen=20
RCVD (5.2153s) ICMP [45.33.32.156 > 192.168.0.5 Echo reply
(type=0/code=0) id=33907 seqg=0] IP [ttl=49 id=39869 iplen=28]

NSOCK INFO [5.2160s] nsock iod new2(): nsock iod new (IOD #1)

NSOCK INFO [5.2160s] nsock connect udp(): UDP connection requested
to 127.0.1.1:53 (IOD #1) EID 8

NSOCK INFO [5.2160s] nsock read(): Read request from IOD #1
[127.0.1.1:53] (timeout: -1lms) EID 18

NSOCK INFO [5.2160s] nsock write(): Write request for 43 bytes to
IOD #1 EID 27 [127.0.1.1:53]

NSOCK INFO [5.2160s] nsock trace handler callback(): Callback:
CONNECT SUCCESS for EID 8 [127.0.1.1:53]

NSOCK INFO [5.2160s] nsock trace handler callback(): Callback: WRITE
SUCCESS for EID 27 [127.0.1.1:53]

NSOCK INFO [5.3930s] nsock trace handler callback(): Callback: READ
SUCCESS for EID 18 [127.0.1.1:53] (288 bytes)

NSOCK INFO [5.3930s] nsock read(): Read request from IOD #1

[127.0.1.1:53] (timeout: -1lms) EID 34

NSOCK INFO [5.3930s] nsock iod delete(): nsock iod delete (IOD #1)
NSOCK INFO [5.3930s] nevent delete(): nevent delete on event #34
(type READ)

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.18s latency).

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fel8:bb2f

Nmap done: 1 IP address (1 host up) scanned in 5.39 seconds

Note the three lines beginning with the sent keyword showing the ICMP, IGMP, and IP-in-
IP packets:

SENT (5.0337s) ICMP [192.168.0.5 > 45.33.32.156 Echo request
(type=8/code=0) id=33907 seqg=0] IP [ttl=47 id=28320 iplen=28]

SENT (5.0338s) IGMP (2) 192.168.0.5 > 45.33.32.156: ttl=37 id=41324
iplen=28

SENT (5.0340s) IP (4) 192.168.0.5 > 45.33.32.156: ttl=42 1d=42854
iplen=20

Out of those three, only ICMP responded. However, this was enough to reveal that this
host is online:

RCVD (5.2153s) ICMP [45.33.32.156 > 192.168.0.5 Echo reply
(type=0/code=0) id=33907 seq=0] IP [ttl=49 id=39869 iplen=28]

175

There's more...

IP protocol ping scan is an interesting technique that can be configured through a few
Nmap options. Let's review how we can change the protocol used, add additional random
data, and what protocols are supported.

176

Setting alternate IP protocols

You can also set the IP protocols to be used by listing them after the option -ro. For
example, to use the ICMP (protocol number 1), IGMP (protocol number 2), and UDP
(protocol number 17) protocols, the following command can be used:

| # nmap -sn -PO1,2,17 scanme.nmap.org

177

Generating random data for the IP
packets

All of the packets sent using this technique will be empty. Remember that you can
generate random data to be used with these packets with the --data-1ength option:

|# nmap -sn -PO --data-length 100 scanme.nmap.org

178

Supported IP protocols and their
payloads

The protocols that set all its protocol headers, when used, are as follows:

TCP: Protocol number 6
UDP: Protocol number 17
ICMP: Protocol number 1
IGMP: Protocol number 2
IP-in-IP: Protocol number 4
SCTP: Protocol number 132

For any of the other IP protocols, a packet with only the IP header will be sent.

179

Discovering hosts with ARP ping scans

ARP ping scans are the most effective way of detecting hosts in LAN networks. This
makes them the preferred technique when scanning local Ethernet networks, and Nmap
will use it even if other ping options were specified. Nmap uses its own algorithm to
optimize this scanning technique. The following recipe goes through the process of
launching an ARP ping scan and its available options.

180

How to do it...

Open your favorite terminal and enter the following command:

| # nmap -sn -PR <target>

You should see the list of hosts that responded to the ARP requests:

Company Limited)

Host is up.

nmap -sn -PR 192.168.0.1/24
Nmap scan report for 192.168.0.1
Host is up (0.0039s latency).
MAC Address: F4:B7:E2:0A:DA:18
Nmap scan report for 192.168.0.
Host is up (0.0037s latency).
MAC Address: 00:18:F5:0F:AD:01

Nmap scan report for 192.168.0.
Host is up (0.00010s latency).
MAC Address: 9C:2A:70:10:84:BF
Nmap scan report for 192.168.0.
Host is up (0.0034s latency).

MAC Address: 50:1A:C5:90:20:23
Nmap scan report for 192.168.0.
Host is up (0.00015s latency).
MAC Address: 00:0C:29:EC:38:A9
Nmap scan report for 192.168.0.
Host is up (0.027s latency) .

MAC Address: 78:31:C1:Cl:9C:0A
Nmap scan report for 192.168.0.5

Nmap done: 256 IP addresses

(Hon Hai Precision Ind.)
2

(Shenzhen Streaming Video Technology
3

(Hon Hai Precision Ind.)
6

(Microsoft)
7

(VMware)
8

(Apple)

(7 hosts up) scanned in 1.91 seconds

181

How it works...

The arguments -sn -pr 192.168.1.1/24 make Nmap initiate an ARP ping scan of all if the 256
IPs (CIDR /24) in this private network.

ARP ping scanning works in a pretty simple way:

e ARP requests are sent to the target
e [fthe host responds with an ARP reply, it is pretty clear it's online

To send an ARP request, the following command is used:

|# nmap -sn -PR --packet-trace 192.168.1.254

The result of this command would be as follows:

SENT (0.0734s) ARP who-has 192.168.1.254 tell 192.168.1.102
RCVD (0.0842s) ARP reply 192.168.1.254 is-at 5C:4C:A9:F2:DC:7C
NSOCK (0.1120s) UDP connection requested to 192.168.1.254:53 (IOD

#1) EID 8

NSOCK (0.1120s) Read request from IOD #1 [192.168.1.254:53]
(timeout: -lms) EID 18

NSOCK (0.1120s) Write request for 44 bytes to IOD #1 EID 27
[192.168.1.254:53]: ..., 254.1.168.192.in~-addr.arpa.....

NSOCK (0.1120s) Callback: CONNECT SUCCESS for EID 8
[192.168.1.254:53]

NSOCK (0.1120s) Callback: WRITE SUCCESS for EID 27
[192.168.1.254:53]

NSOCK (0.2030s) Callback: READ SUCCESS for EID 18 [192.168.1.254:53]
(44 bytes): ..., 254.1.168.192.in-addr.arpa.....
NSOCK (0.2030s) Read request from IOD #1 [192.168.1.254:53]
(timeout: -1ms) EID 34

Nmap scan report for 192.168.1.254

Host is up (0.01lls latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawel Device Co.)

Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds

Note the ARP requests at the beginning of the scan output:

SENT (0.0734s) ARP who-has 192.168.1.254 tell 192.168.1.102
RCVD (0.0842s) ARP reply 192.168.1.254 is-at 5C:4C:A9:F2:DC:7C

The ARP reply reveals that host 192.16s.1.254 is online and has the MAC address
5C:4C:A9:F2:DC:7C.

182

There's more...

Every time Nmap scans a private address, an ARP request needs to be made inevitably
because we need the targets destination before sending any probes. Since the ARP replies
reveal that a host is online, no further testing actually needs to be done after this step.
This is the reason why Nmap automatically uses this technique every time you perform a
ping scan in a private LAN network, no matter what arguments were passed:

nmap -sn -PS --packet-trace 192.168.1.254
SENT (0.0609s) ARP who-has 192.168.1.254 tell 192.168.1.102
RCVD (0.0628s) ARP reply 192.168.1.254 is-at 5C:4C:A9:F2:DC:7C
NSOCK (0.1370s) UDP connection requested to 192.168.1.254:53 (IOD
#1) EID 8
NSOCK (0.1370s) Read request from IOD #1 [192.168.1.254:53]
(timeout: -1ms) EID 18
NSOCK (0.1370s) Write request for 44 bytes to IOD #1 EID 27
[192.168.1.254:53]: 1............ 254.1.168.192.in-addr.arpa.....
NSOCK (0.1370s) Callback: CONNECT SUCCESS for EID 8
[192.168.1.254:53]
NSOCK (0.1370s) Callback: WRITE SUCCESS for EID 27
[192.168.1.254:53]
NSOCK (0.1630s) Callback: READ SUCCESS for EID 18 [192.168.1.254:53]
(44 bytes): 1............ 254.1.168.192.in-addr.arpa.....
NSOCK (0.1630s) Read request from IOD #1 [192.168.1.254:53]
(timeout: -1ms) EID 34
Nmap scan report for 192.168.1.254
Host is up (0.0019s latency).
MAC Address: 5C:4C:A9:F2:DC:7C (Huawel Device Co.)
Nmap done: 1 IP address (1 host up) scanned in 0.18 seconds

To force Nmap to not perform an ARP ping scan when scanning a private address, use
the option --send-ip. This will produce output similar to the following:

nmap -sn -PS --packet-trace --send-ip 192.168.1.254
SENT (0.0574s) TCP 192.168.1.102:63897 > 192.168.1.254:80 S ttl=53
1id=435 iplen=44 seg=128225976 win=1024 <mss 1460>
RCVD (0.0592s) TCP 192.168.1.254:80 > 192.168.1.102:63897 SA ttl=254
1d=3229 iplen=44 seqg=4067819520 win=1536 <mss 768>
NSOCK (0.1360s) UDP connection requested to 192.168.1.254:53 (IOD
#1) EID 8
NSOCK (0.1360s) Read request from IOD #1 [192.168.1.254:53]
(timeout: -1ms) EID 18
NSOCK (0.1360s) Write request for 44 bytes to IOD #1 EID 27
[192.168.1.254:53]: d~.vvii i 254.1.168.192.in-addr.arpa.....
NSOCK (0.1360s) Callback: CONNECT SUCCESS for EID 8
[192.168.1.254:53]
NSOCK (0.1360s) Callback: WRITE SUCCESS for EID 27
[192.168.1.254:53]
NSOCK (0.1610s) Callback: READ SUCCESS for EID 18 [192.168.1.254:53]
(44 bytes): d~v.ovii... 254.1.168.192.in-addr.arpa.....
NSOCK (0.1610s) Read request from IOD #1 [192.168.1.254:53]
(timeout: -1ms) EID 34
Nmap scan report for 192.168.1.254
Host is up (0.0019s latency).
MAC Address: 5C:4C:A9:F2:DC:7C (Huawel Device Co.)
Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

183

MAC address spoofing

MAC spoofing can allow us to fake the origin of our connections and can be helpful to
evade IDS systems. It is possible to spoof your MAC address while performing an ARP
ping scan. Use --spoot-mac to set a new MAC address:

|# nmap -sn -PR --spoof-mac <mac address> <target>

184

[Pv6 scanning

If the option -¢= for ARP scanning is used to scan IPv6 addresses, Nmap will use ICMPv6
neighbor discovery, which is the equivalent of ARP.

185

Performing advanced ping scans

In this chapter, you have learned all the different ping scanning techniques supported by
Nmap. We have been using these techniques independently across different scenarios,
but one of the strengths of Nmap is the ability to combine them. Discovery scans can yield
better results by expanding the set of probes sent to the network, but it is up to us to
optimally combine the scanning techniques and probe ports. The following recipe will go
through the process of launching advanced ping scans.

186

How to do it...

Open your terminal and enter the following command:

|# nmap -sn --send-ip -PS21,22,23,25,80,445,443,3389,8080 -PA80,443,8080 -PO1,2,4,6 -PU631,16

You should see the list of hosts that responded to any of the probes:

nmap --send-ip -sn -PS21,22,23,25,80,445,443,3389,8080 -PA80,443,8080 -PO1,2,4,6 -PU631,16
Nmap scan report for 192.168.1.67
Host is up (0.093s latency).
MAC Address: 78:31:C1:Cl:9C:0A (Apple)
Nmap scan report for 192.168.1.69
Host is up (0.041ls latency).
MAC Address: 9C:2A:70:10:84:BF (Hon Hai Precision Ind.)
Nmap scan report for 192.168.1.254
Host is up (0.0077s latency).
MAC Address: 7C:B1:5D:4D:09:68 (Huawei Technologies)
Nmap scan report for 192.168.1.70
Host is up.
Nmap done: 256 IP addresses (4 hosts up) scanned in 98.43 seconds

The results will vary depending on the probes you selected, it is important to
think carefully before launching a ping discovery scan in a new target if we
care about being stealthy.

187

How it works...

In the nmap --send-ip -sn -Ps21,22,23,25,80,445,443,3389,8080 -PA80,443,8080 -PO1,2,4,6 -
PU631,161,137,123 192.168.1.1/24 command, we set multiple ping scanning probes
simultaneously, improving its effectiveness.

Let's briefly recap the options used in the previous scan (you can always go back to any of
the previously discussed ping scanning techniques in this chapter):

e -PS<Ports>: This uses SYN ping scanning against the specified ports

e -PA<Ports>: This uses ACK ping scanning against the specified ports

e -PO<IP protocol>: This uses IP protocol ping scanning against the specified
protocols

e -PU<Ports>: This uses UDP ping scanning against the specified ports

We use the argument --send-ip when working with LAN networks to override Nmap's
behavior of using ARP ping scans.

188

There's more...

Use the previous command as a starting point to customize probes for your environment.
This will not only help you improve the scanning performance, but it will also result in
fewer false negatives/positives. Think about the objective. More probes can obtain better
results, but they may not be the best option if we are trying to be stealthy. For example, if
itis a Windows-based network, try including the common SMB ports.

189

Ping probe effectiveness

David Fifield and Fyodor have conducted research about ping probe effectiveness. It is a
very interesting read, and it will give you an idea of a good starting point for probe sets.
You may find their research notes and results at this URL:

https://www.bamsoftware.com/wiki/Nmap/EffectivenessOfPingProbes

190

https://www.bamsoftware.com/wiki/Nmap/EffectivenessOfPingProbes

Discovering hosts with broadcast ping
scans

Broadcast pings send ICMP echo requests to the local broadcast address, and even if
they do not work all the time, they are a nice way of discovering hosts in a network
without sending probes to the other hosts.

This recipe describes how to discover new hosts with a broadcast ping using Nmap NSE.

191

How to do it...

Open your terminal and type the following command:

|# nmap --script broadcast-ping

You should see the list of hosts that responded to the broadcast ping:

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.0.8 MAC: 78:31:cl:cl:9c:0a

| ~ Use --script-args=newtargets to add the results as targets

WARNING: No targets were specified, so 0 hosts scanned.
Nmap done: 0 IP addresses (0 hosts up) scanned in 3.37 seconds

192

How it works...

A broadcast ping works by sending an ICMP echo request to the local broadcast address
255.255.255.255 and then waiting for hosts to reply with an ICMP echo reply. It produces
output similar to the following:

nmap --script broadcast-ping --packet-trace
NSOCK INFO [0.1740s] nsock iod new2(): nsock iod new (IOD #1)
NSOCK INFO [0.1740s] nsock pcap open(): PCAP requested on device
'ens33' with berkeley filter 'dst host 192.168.0.5 and
icmp[icmptype]==icmp-echoreply' (promisc=0 snaplen=104 to ms=200)
(IOD #1)
NSOCK INFO [0.1740s] nsock pcap open(): PCAP created successfully on
device 'ens33' (pcap desc=5 bsd hack=0 to valid=1 13 offset=14) (IOD
#1)
NSOCK INFO [0.1750s] nsock pcap read packet(): Pcap read request
from IOD #1 EID 13
NSOCK INFO [0.3710s] nsock trace handler callback(): Callback: READ-
PCAP SUCCESS for EID 13
NSOCK INFO [0.3710s] nsock pcap read packet(): Pcap read request
from IOD #1 EID 21
NSOCK INFO [0.3710s] nsock trace handler callback(): Callback: READ-
PCAP SUCCESS for EID 21
NSOCK INFO [0.3710s] nsock pcap read packet(): Pcap read request
from IOD #1 EID 29
NSOCK INFO [3.3710s] nsock trace handler callback(): Callback: READ-
PCAP TIMEOUT for EID 29
NSE: > | CLOSE
NSOCK INFO [3.3720s] nsock iod delete(): nsock iod delete (IOD #1)
Pre-scan script results:
| broadcast-ping:
| IP: 192.168.0.8 MAC: 78:31:cl:cl:9c:0a
| IP: 192.168.0.54 MAC: 80:d2:1d:31:48:d0
| ~ Use --script-args=newtargets to add the results as targets
WARNING: No targets were specified, so 0 hosts scanned.
Nmap done: 0 IP addresses (0 hosts up) scanned in 3.38 seconds

193

There's more...

Broadcast scripts are very interesting and allow us to run Nmap scans without defining a
specific target. Nmap can also add targets during a scan through NSE. Let's review some
useful Nmap options for broadcast scripts.

194

Broadcast ping options

To increase the number of ICMP echo requests, use the script argument broadcast-

ping.num probes.

|# nmap --script broadcast-ping --script-args broadcast-ping.num probes=5

When scanning large networks, it might be useful to increase the timeout limit, using --
script-args broadcast-ping.timeout=<time in ms>, t0 avoid missing hosts with bad latency:

|# nmap --script broadcast-ping --script-args broadcast-ping.timeout=10000

You can specify the network interface using vroadcast-ping. interface. If you don't specify an
interface, vroadcast-ping Will send probes using all of the interfaces with an [Pv4 address:

|# nmap --script broadcast-ping --script-args broadcast-ping.interface=wlan3

195

Target library

The argument --script-args=newtargets forces Nmap to use these new-found hosts as

targets:

Pre-scan script results:

| broadcast-ping:

\ IP: 192.168.1.105 MAC: 08:
| IP: 192.168.1.106 MAC: 40:
Nmap scan report for 192.168.1.
Host is up (0.00022s latency).
Not shown: 997 closed ports

PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
111/tcp open rpcbind

MAC Address: 08:00:27:16:4F:71
Nmap scan report for 192.168.1.
Host is up (0.49s latency).

Not shown: 999 closed ports
PORT STATE SERVICE

80/tcp open http

MAC Address: 40:25:C2:3F:C7:24

2 IP addresses

Nmap done:

Note that we did not specify a target, but the argument newtargets still added the IPs

(2 hosts up)

nmap --script broadcast-ping --script-args=newtargets

00:27:16:4£:71
25:¢c2:3f:c7:24
105

(Cadmus Computer Systems)

106

(Intel Corporate)

scanned in 7.25 seconds

192.168.1.106 and 192.168.1.105 to the scanning queue anyway.

The argument max-newtargets sets the maximum number of hosts to be added to the

scanning queue:

|# nmap --script broadcast-ping --script-args max-newtargets=3

196

Scanning IPv6 addresses

One of the most important updates of Nmap is its IPv6 support. All port scanning and
host discovery techniques can take IPv6 addresses, including OS detection, and there are
even some new interesting discovery techniques that address the problem of brute force
scanning the [Pv6 address space.

This recipe describes how to scan an IPv6 address with Nmap.

197

How to do it...

Open your terminal and type your desired Nmap command with the additional -6 option:

nmap -6 <target>
nmap -6 scanme.nmap.org
Nmap scan report for scanme.nmap.org
(2600:3c01::f03c:91ff:fel8:bb2f)
Host is up (0.065s latency).
Other addresses for scanme.nmap.org (not scanned): 45.33.32.156
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 1.20 seconds

198

How it works...

The -6 option enables IPv6 scanning, which is one of the most important updates in the
latest versions of Nmap. TCP port scanning, including raw packet scanning, service
detection, OS detection, Nmap scripting engine scripts, and a new ping scanning
technique named IPv6 neighbor discovery, are now supported in IPv6 mode.

Always add the -6 option at the beginning to let Nsock know as soon as possible that you
will be working with [Pvé6.

nmap -6 -sT <target>
nmap -6 -O <target>
nmap -6 -A <target>

199

There's more...

Besides [Pv6 support integrated directly to Nmap, there are a few NSE scripts that use
discovery techniques. Let's learn more about IPv6 scanning in Nmap.

200

IPv6 fingerprinting

Internally, the service fingerprint database has a different format than the IPv4 database.
If you need to create new IPv6 fingerprints, you can find all the details about its structure
at https://nmap.org/book/osdetect-ipv6-methods.html.

201

https://nmap.org/book/osdetect-ipv6-methods.html

Discovering new IPv6 targets

Because brute forcing the address space of [Pv6 is impractical, we must use different
techniques to overcome this when scanning unknown address spaces.

The NSE script targets-ipvé-multicast-mia uses Multicast Listener Discovery (MLD)
requests to find new IPv6 hosts in our LAN:

nmap -6 --script targets-ipv6-multicast-mld --script -args inter
Pre-scan script results:
| targets-ipv6-multicast-mld:
| IP: fe80::clcc:1d6b:5e79:d690 MAC: 50:1a:c5:90:20:23 IFACE:

en0
| IP: fe80::c057:f6a4d4:8ael:70e6 MAC: 9c:2a:70:10:84:bf IFACE:
en0
| IP: feB80::82d2:1dff:fe2c:2055 MAC: 80:d2:1d:2c:20:55 IFACE:
en0
| IP: fe80::féb7:e2ff:fela:dal8 MAC: f4:b7:e2:0a:da:18 IFACE:
en0

Another technique implemented in the NSE script targets-ipvé-multicast-slaac US€S
ICMPv6 Router Advertisements requests to trigger Stateless Address
Autoconfiguration (SLAAC) to discover IPv6 hosts:

#nmap -6 --script targets-ipv6-multicast-slaac --script-args interface=en0 -sn
Pre-scan script results:
| targets-ipvé6-multicast-slaac:
| IP: feB80::62f1:89ff:fe24:6af7 MAC: 60:f1:89:24:6a:f7 IFACE:
en0
| IP: feB80::fda9:bcbSb:cebl:e785 MAC: 60:£1:89:24:6a:f7 IFACE:
en0
| IP: feB80::15f5:623:af0d:3a7b MAC: 80:d2:1d:2c:20:55 IFACE:
en0
| IP: feB80::c057:f6cad4:8ael:70e6 MAC: 9c:2a:70:10:84:bf IFACE:
en0
| IP: fe80::fda7:e7f0:7e20:e754 MAC: 9c:2a:70:10:84:bf IFACE:
en0
| IP: fe80::82d2:1dff:fe2c:2055 MAC: 80:d2:1d:2c:20:55 IFACE:
en0

The NSE script targets-ipvé-multicast-echo uses an ICMPv6 Echo request to the all-nodes
link-local multicast address (££o2::1):

nmap -6 --script targets-ipv6-multicast-echo --script-args 'newtargets,interface=eth0' -sL
Pre-scan script results:
| targets-ipvé6e-multicast-echo:
\ IP: 2001:0db8:0000:0000:0000:0000:0000:0001 MAC:
11:22:33:44:55:66 IFACE: ethO
| ~ Use --script-args=newtargets to add the results as targets

Another interesting IPv6 multicast script is targets-ipvé-multicast-invalid-dst, Which uses
ICMPv6 requests with an invalid extension header to the all-nodes link-local multicast
address (££02::1):

nmap -6 --script=targets-ipv6-multicast-invalid-dst.nse --script-args 'newtargets,interfac
Pre-scan script results:
| targets-ipv6-multicast-invalid-dst:

\ IP: 2001:0db8:0000:0000:0000:0000:0000:0001 MAC:

202

11:22:33:44:55:66 IFACE: ethO
| ~ Use --script-args=newtargets to add the results as targets

203

Gathering network information with
broadcast scripts

Broadcast requests are often used to reveal protocol and host details with very few
packets. NSE broadcast scripts perform tasks, such as detecting dropbox listeners,
sniffing hosts, and discovering DHCP, MS SQL, or NCP servers, among many other things.

This recipe describes how to use the NSE broadcast scripts to collect interesting
information from a network.

204

How to do it...

Open a terminal and enter the following command:

|# nmap --script broadcast -e <interface>

Note that broadcast scripts can run without setting a specific target. All the NSE scripts
that found information will be included in your scan results:

nmap --script broadcast -e ethO
Pre-scan script results:
broadcast-dhcp-discover:
Response 1 of 1:
IP Offered: 192.168.0.13
Subnet Mask: 255.255.255.0
Router: 192.168.0.1
Server Identifier: 192.168.0.1
_ Domain Name Server: 200.79.231.5, 200.79.231.6
broadcast-igmp-discovery:
192.168.0.3
Interface: ens33
Version: 2
Group: 224.0.0.251
Description: mDNS
192.168.0.3
Interface: ens33
Version: 2
Group: 239.255.255.250
Description: Organization-Local Scope (rfc2365)
_ Use the newtargets script-arg to add the results as targets
broadcast-listener:

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
| sender ip sender mac target ip
\
\
\
\
\
\
\
\
o
\
\
\

ether
ARP Request
192.168.0.3 78:31:C1:C1:9C:0A 192.168.0.6
udp
Spotify
ip
192.168.0.3
SSDP
ip uri
192.168.0.2 urn:schemas-upnp-
rg:device:InternetGatewayDevice:1l
192.168.0.3 urn:dial-multiscreen-org:service:dial:1
DHCP
srv ip cli ip mask gwdns

vendor

\ 192.168.0.1 192.168.0.13 255.255.255.0 192.168.0.1
200.79.231.5, 200.79.231.6 -

| 192.168.0.1 192.168.0.5 255.255.255.0 192.168.0.1
200.79.231.5, 200.79.231.6 -

| broadcast-ping:

| IP: 192.168.0.3 MAC: 78:31:cl:cl:9c:0a

| ~ Use --script-args=newtargets to add the results as targets

| broadcast-upnp-info:

| 192.168.0.2

| Server: Linux/3.0.8, UPnP/1.0, Portable SDK for UPnP
devices/1.6.14

\ Location: http://192.168.0.2:49152/description.xml

| eap-info:

| Available authentication methods with identity="anonymous" on
interface ens33

| unknown EAP-TLS

| unknown EAP-TTLS

| unknown PEAP

205

_unknown EAP-MSCHAP-V2
ipve-multicast-mld-list:
fe80::7a3l:clff:fecl:9c0la:
device: ens33
mac: 78:31:cl:cl:9c:0a
multicast ips:
ff02::2:ff84:d3a6
ff02::1:ffcl:9c0a
fe80::f6b7:e2ff:fela:dall:
device: ens33
mac: f4:b7:e2:0a:da:18
multicast ips:
ff02::1:ff0a:dals8
fe80::62f1:89ff:fe24:6af7:
device: ens33
mac: 60:£f1:89:24:6a:£f7
multicast ips:
_ £f£f02::1:ff24:6af7
targets-ipvo-multicast-mld:

IP: fe80::62f1:89ff:fe24:6af7 MAC: 60:£f1:89:24:6a:f7 IFACE:
ns33

IP: fe80::7a31l:clff:fecl:9cla MAC: 78:31:cl:cl:9c:0a IFACE:

IP: fe80::fob7:e2ff:fela:dal8 MAC: f4:b7:e2:0a:da:18 IFACE:
ns33

Use --script-args=newtargets to add the results as targets

(Node Information Queries)

(NDP Solicited-node)

(NDP Solicited-node)

(NDP Solicited-node)

targets-sniffer: Sniffed 18 address(es).

224.0.0.1
224.0.0.251
239.255.255.253
239.255.255.250
224.0.0.9
fe80::68f3:£f91b:c57c:b%al
c0a8:5:ff02::
0:1:3a00:8001::fe00:420b
192.168.0.1
0:1:8000:e62e:5:6:4e6d:6170
224.0.0.13
192.168.0.2
127.0.1.1
fe80::f6b7:e2ff:fela:dals8
192.168.0.3
fe80::62f1:89ff:fe24:06af7
224.0.23.12

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
e
\
ens33
\
e
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
| fe80::7a3l:clff:fecl:9cla

WARNING: No targets were specified, so 0 hosts scanned.
Nmap done: 0 IP addresses (0 hosts up)

206

scanned in 40.24 seconds

How it works...

The argument --script broadcast tells Nmap to initialize all of the NSE scripts in the
broadcast category. This category contains scripts that use broadcast requests, meaning
that no probes are sent directly to the targets but to broadcast addresses.

At the moment that this was being written, there were 44 different broadcast scripts
available. Let's look at some of the script descriptions, taken from Nmap's official
documentation:

® broadcast-avahi-dos: This script attempts to discover hosts in the local network using
the DNS service discovery protocol and sends a NULL UDP packet to each host to
test if it is vulnerable to the Avahi NULL UDP packet denial of service (CVE-2011-
1002).

® broadcast-db2-discover: This script attempts to discover DB2 servers on the network
by sending a broadcast request to port 523/udp.

® broadcast-dhep-discover: This script sends a DHCP request to the broadcast address
(255.255.255.255) and reports the results. It uses a static MAC address
(pe:2p:co:pe:ca:Fe) While doing so, in order to prevent scope exhaustion.

® broadcast-dns-service-discovery: ©hiS script attempts to discover hosts' services using
the DNS service discovery protocol. It sends a multicast DNS-SD query and collects
all of the responses.

® broadcast-dropbox-listener: This script listens for the LAN sync information broadcasts
that the https://www.dropbox.com/?landing=cntl client broadcasts every 20 seconds, then
prints all of the discovered client [P addresses, port numbers, version numbers,
display names, and more.

® broadcast-listener: This script sniffs the network for incoming broadcast
communication and attempts to decode the received packets. It supports protocols,
such as CDP, HSRP, Spotify, Dropbox, DHCP, ARP, and a few more. See https://github.co
m/nmap/nmap/blob/master/nselib/data/packetdecoders.lua for more information.

® broadcast-ms-sql-discover: This script discovers Microsoft SQL servers in the same
broadcast domain.

® broadcast-netbios-master-browser: 1hiS script attempts to discover master browsers
and the domains they manage.

® broadcast-novell-locate: This script attempts to use the service location protocol to
discover Novell NetWare Core Protocol (NCP) servers.

® broadcast-ping: This script sends broadcast pings to a selected interface using raw
Ethernet packets, and outputs the responding hosts' [P and MAC addresses or (if
requested) adds them as targets. Root privileges on Unix are required to run this
script since it uses raw sockets. Most operating systems don't respond to broadcast-
ping probes, but they can be configured to do so.

® broadcast-rip-discover: This script discovers devices and routing information for
devices running RIPv2 on the LAN. It does so by sending a RIPv2 request command
and collects the responses from all devices responding to the request.

® broadcast-upnp-info: ThiS script attempts to extract system information from the UPnP
service by sending a multicast query, then collecting, parsing, and displaying all

207

https://www.dropbox.com/?landing=cntl
https://github.com/nmap/nmap/blob/master/nselib/data/packetdecoders.lua

responses.

® broadcast-wsdd-discover: This script uses a multicast query to discover devices
supporting the Web Services Dynamic Discovery (WS-Discovery) protocol. It also
attempts to locate any published Windows Communication Framework (WCF)
web services (.NET 4.0 or later).

® 11td-discovery: This script uses the Microsoft LLTD protocol to discover hosts on a
local network.

® targets-ipvé-multicast-echo: This script sends an ICMPv6 echo request packet to the
all-nodes, link-local multicast address (£f02::1), to discover responsive hosts on a
LAN without needing to individually ping each IPv6 address.

® targets-ipvé-multicast-invalid-dst: This script sends an ICMPv6 packet with an invalid
extension header to the all-nodes, link-local multicast address (rf02::1) to discover
(some) available hosts on the LAN. This works because some hosts will respond to
this probe with an ICMPv6 parameter problem packet.

® targets-ipvé-multicast-slaac: This script performs IPv6 host discovery by triggering
SLAAC.

® targets-sniffer: This script sniffs the local network for a considerable amount of time
(10 seconds by default) and prints discovered addresses. If the script argument
newtargets iS Set, the discovered addresses are added to the scan queue.

Consider that each script has a set of arguments available that sometimes need to be
tweaked. For example, targets-snifrer sniffs the network for only 10 seconds, which might
not be enough for a large network:

|# nmap --script broadcast --script-args targets-sniffer.timeout 30

As you can see, the broadcast category has some very nifty NSE scripts that are worth
checking out. You can learn more about them and the specific arguments for a broadcast
script at https://nmap.org/nsedoc/categories/broadcast.html.

208

https://nmap.org/nsedoc/categories/broadcast.html

There's more...

Although we won't go in depth into NSE in this chapter, it is important that you have on
mind the following aspects of the Nmap scripting engine.

209

Script selection

Remember that NSE scripts can be selected by category, expression, or folder. Thus, we
could call all broadcast scripts excluding the ones named targets-+, as follows:

|# nmap --script "broadcast and not targets-*"

210

Target library

The argument --script-args=newtargets forces Nmap to use these new-found hosts as
targets:

nmap --script broadcast-ping --script-args newtargets
Pre-scan script results:
| broadcast-ping:
| IP: 192.168.1.105 MAC: 08:00:27:106:4f:71
| IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24
Nmap scan report for 192.168.1.105
Host is up (0.00022s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
111/tcp open rpcbind
MAC Address: 08:00:27:16:4F:71 (Cadmus Computer Systems)
Nmap scan report for 192.168.1.106
Host is up (0.49s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
80/tcp open http
MAC Address: 40:25:C2:3F:C7:24 (Intel Corporate)
Nmap done: 2 IP addresses (2 hosts up) scanned in 7.25 seconds

Note that we did not specify a target, but the argument newtargets added the IPs
192.168.1.106 and 192.168.1.105 to the scanning queue anyway. The argument max-
newtargets Sets the maximum number of hosts to be added to the scanning queue:

|# nmap --script broadcast-ping --script-args max-newtargets=3

211

Scanning through proxies

One of the important additions in recent versions is HTTP and SOCKS4 proxy support. By
scanning through a proxy, we can mask the origin IP address, but we should consider the
additional latency introduced.

This recipe will show you how to tunnel your scans through proxies.

212

How to do it...

Open a terminal and enter the following command:

|# nmap -sV -Pn -n --proxies <comma separated list of proxies> <target>

This feature is implemented within Nsock, and not all Nmap features are supported. You
need to be careful to avoid accidentally disclosing your origin IP address. For example, to
scan a host through TOR, we can use this:

nmap -sV -Pn -n --proxies socks4://127.0.0.1:9050 scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.13s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
Service detection performed. Please report any incorrect results at
https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 9.58 seconds

Unfortunately, the output does not include a message that clearly indicates that our
routing worked. If you think that it is not working as expected, you should try the --
packet-trace Option. You should see the proxy connection taking place there.

213

How it works...

The argument --proxies tells Nmap to proxy all TCP connections through the given list of
proxies. This feature is implemented within Nsock, and not all Nmap features are
supported. You need to be careful to avoid accidentally disclosing your origin IP address
as ping and port scanning, as well as OS detection, do not tunnel connections through the
proxy. For example, note how in the first connection Nmap ignores the proxy when it
tries to establish whether the port is open. Later, all NSE connections do go through the

proxy:

nmap -Pn -n --proxies socks4://127.0.0.1:9050 Oxdeadbeefcafe.com -p80 --script +http-title
SENT (12.5420s) TCP 192.168.0.7:57493 > 52.20.139.72:80 S ttl=40
1id=17769 iplen=44 seg=3295579933 win=1024 <mss 1460>
RCVD (12.6032s) TCP 52.20.139.72:80 > 192.168.0.7:57493 SA ttl=42
id=0 iplen=44 seg=2389752706 win=26883 <mss 8961>
NSOCK INFO [0.1700s] nsock iod new2(): nsock iod new (IOD #1)
NSOCK INFO [12.7340s] nsock connect tcp(): TCP connection requested
to 52.20.139.72:80 (IOD #1) EID 8
NSOCK INFO [12.7340s] nsock trace handler callback(): Callback:
CONNECT SUCCESS for EID 8 [127.0.0.1:9050]

NSOCK INFO [12.7340s] nsock write(): Write request for 9 bytes to
IOD #1 EID 19 [127.0.0.1:9050]
NSOCK INFO [12.7340s] nsock readbytes(): Read request for 8 bytes

from IOD #1 [127.0.0.1:9050] EID 26

NSOCK INFO [12.7340s] nsock trace handler callback(): Callback:
WRITE SUCCESS for EID 19 [127.0.0.1:9050]

NSOCK INFO [13.0530s] nsock trace handler callback(): Callback: READ
SUCCESS for EID 26 [127.0.0.1:9050] (8 bytes): .Z......

NSOCK INFO [13.0530s] forward event(): Forwarding event upstream:
TCP connect SUCCESS (IOD #1) EID 26

NSE: TCP 127.0.0.1:37151 > 127.0.0.1:9050 | CONNECT

NSE: TCP 127.0.0.1:37151 > 127.0.0.1:9050 | 00000000: 47 45 54 20 2f
20 48 54 54 50 2f 31 2e 31 0d Oa GET / HTTP/1.1

NSOCK INFO [13.0530s] nsock write(): Write request for 156 bytes to
IOD #1 EID 35 [127.0.0.1:9050]

NSOCK INFO [13.0530s] nsock trace handler callback(): Callback:
WRITE SUCCESS for EID 35 [127.0.0.1:9050]

NSE: TCP 127.0.0.1:37151 > 127.0.0.1:9050 | SEND

NSOCK INFO [13.0530s] nsock read(): Read request from IOD #1
[127.0.0.1:9050] (timeout: 7000ms) EID 42
NSOCK INFO [13.3750s] nsock trace handler callback(): Callback: READ

SUCCESS for EID 42 [127.0.0.1:9050] (195 bytes)

NSE: TCP 127.0.0.1:37151 < 127.0.0.1:9050 | 00000000: 48 54 54 50 2f
31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK

NSE: TCP 127.0.0.1:37151 > 127.0.0.1:9050 | CLOSE

NSOCK INFO [13.3750s] nsock iod delete(): nsock iod delete (IOD #1)
Nmap scan report for Oxdeadbeefcafe.com (52.20.139.72)

Host is up (0.061s latency).

PORT STATE SERVICE

80/tcp open http

| http-title: Site doesn't have a title (text/html) .

Nmap done: 1 IP address (1 host up) scanned in 13.38 seconds

214

There's more...

This feature only supports HTTP and SOCKS4 proxies. Authentication is not supported
yet.

215

Proxychains

An alternative to relay our scans through a proxy is the tool proxychains (http://proxychains.
sourceforge.net/). Check it out whether you are having problems with the official feature, but
don't forget to create a bug report describing your problem.

216

http://proxychains.sourceforge.net/

Spoofing the origin IP of a scan

Idle scanning is a very powerful technique where Nmap takes advantage of an idle host
with a predictable IP ID sequence number to spoof the origin IP of a port scan.

This recipe illustrates how to find zombie hosts and use them to spoof your IP address
when scanning a remote host with Nmap.

217

Getting ready

To launch an idle scan, we need a zombie host. A zombie host is a machine with a
predictable IP ID sequence number that will be used as the spoofed IP address. A good
candidate must not be communicating with other hosts in order to maintain the correct
IP ID sequence number and avoid false positives.

To find hosts with an incremental IP ID sequence, you could use the ipiaseq script as
follows:

#nmap -p80 --script ipidseq <your ip>/24
#nmap -p80 --script ipidseq -iR 1000

Possible candidates will return incrementa1 in the script's output section:

Host is up (0.28s latency).
PORT STATE SERVICE

80/tcp open http

Host script results:

| ipidseq: Incremental!

218

How to do it...

1. Tolaunch an idle scan, open your terminal and type the following command:

| #nmap -Pn -sI <zombie host> <target>

2. The output will look similar to the following:

Idle scan using zombie 93.88.107.55 (93.88.107.55:80); Class:
Incremental

Nmap scan report for meil.Oxdeadbeefcafe.com (106.187.35.219)
Host is up (0.67s latency).

Not shown: 98 closed|filtered ports

PORT STATE SERVICE

465/tcp open smtps

993/tcp open imaps

993/tcp open imaps

3. Idle scanning should work if the zombie host meets the previously discussed
requirements. If something did not work as expected, the returned error message
should give you an idea of what went wrong:

Idle scan zombie XXX.XXX.XX.XX (XXX.XXX.XX.XX) port 80 cannot be
used because it has not returned any of our probes -- perhaps it
is down or firewalled.

QUITTING!

Idle scan zombie Oxdeadbeefcafe.com (50.116.1.121) port 80 cannot
be used because IP ID sequencability class is: All zeros.

Try another proxy.

QUITTING!

219

How it works...

Idle scanning was originally created by Salvatore Sanfilipo (the author of hping) in 1998.
It is a clever and very stealthy scanning technique where the origin IP is spoofed by
forging packets and analyzing IP ID sequence numbers of an idle host usually referred as
the zombie host.

The -s1 <zomvie> flag is used to tell Nmap to initiate an idle port scan using <zomoie> as the
origin IP. Idle scanning works in the following way:

1. Nmap determines the IP ID sequence of the zombie host.

2. Nmap sends a forged SYN packet to the target as if it were sent by the zombie host.

3. If the portis open, the target sends a SYN/ACK packet and increases its IP ID
sequence number to the zombie host.

4. Nmap analyzes the increment of the zombie's [P ID sequence number to see
whether a SYN/ACK packet was received from the target and to determine the port
state

220

There's more...

The idle scan technique only works if we choose our target correctly. Let's review some
important concepts related to the IP ID sequence number and see how to choose the best
zombie hosts.

221

Choosing your zombie host wisely

Other hosts communicating with the zombie machine increment its IP ID sequence
number causing false positives in your scans. Hence, this technique only works if the
zombie host is idle. So making the right selection is crucial.

It is also important that you find out if your ISP is not actively filtering spoofed packets.
Many ISPs today block and even modify spoofed packets, replacing the spoofed address
with your real IP address, making this technique useless as the target will receive your
real [P address. Unfortunately, Nmap can't detect this situation, and this may cause you to
think you are scanning a host leaving no tracks, when in reality all of your packets are
sending your real origin IP address.

222

The IP ID sequence number

The ID field in the IP header is mostly used to track packets for reassembling, but because
a lot of systems implement this number in different ways, it has been used by security
enthusiasts to fingerprint, analyze, and gather information from these systems.

Home routers, printers, I[P webcams, and primitives often use incremental IP ID sequence
numbers and are great candidates to be used as zombie hosts. They also tend to sit idle
most of the time, which is an important requirement for idle scanning. To find out if a
host has an incremental IP ID sequence, there are two options:

e Using verbose mode with OS detection, as follows:

| #nmap -sV -v -O <target>

e Using Kriss Katterjon's NSE script ipidseq as follows:

| $nmap -p80 --script ipidseq <target>

223

Reconnaissance Tasks

This chapter covers the following recipes:

Performing I[P address geolocation

Getting information from WHOIS records

Obtaining traceroute geolocation information

Querying Shodan to obtain target information

Checking whether a host is flagged by Google Safe Browsing for malicious activities
Collecting valid e-mail accounts and IP addresses from web servers

Discovering hostnames pointing to the same IP address

Discovering hostnames by brute forcing DNS records

Obtaining profile information from Google's People API

Matching services with public vulnerability advisories

224

Introduction

The most important process during a penetration test is the information-gathering phase.
During this phase, we investigate our target with the goal of learning everything about it.
We should attempt to gather information, such as usernames, possible passwords,
additional hosts and services, including version banners, among many other interesting
bits of data. The information we discover could be invaluable in further stages of our
penetration test.

There are several tools depending on many different external data sources and
techniques that help us successfully complete this phase. The effectiveness of this phase
will be using all resources available at our disposal. Dare to ignore or neglect any of them,
and you could be missing out on the one piece of information that you need to completely
compromise your target.

Nmap is well known for its information-gathering capabilities, such as OS fingerprinting,
port enumeration, and service discovery, but thanks to the Nmap Scripting Engine. It is
now possible to perform several new information-gathering tasks, such as obtaining
additional IP address information, checking whether a host is known for conducting
malicious activities, brute forcing DNS records, and collecting valid e-mail accounts
among many other tasks.

In this chapter, [will cover a combination of Nmap options and NSE scripts to query
WHOIS servers, obtain geolocation information of remote targets, and collect various bits
of information useful during penetration tests, such as discovering new targets and even
matching services against public security vulnerabilities.

Put on your robes and wizard hats and let's recon some targets.

225

Performing IP address geolocation

Identifying the location of an IP address may help system administrators identify the
origin of a network connection. Nmap ships with several NSE scripts that help us perform
geolocation of a remote IP address: ip-geolocation-maxmind , ip-geolocation-ipinfodb, and ip-

geolocation—-geoplugin.

This recipe will show you how to set up and use the geolocation scripts included with
Nmap NSE.

226

Getting ready

The ip-geolocation-maxming SCript depends on a database that is not included in Nmap by
default. Download Maxmind's GeoLite City database in binary format from http://dev.max
mind.com/geoip/legacy/geolite/ and place it in your local Nmap data folder (/nse1lib/data/) inside
your installation directory.

The ip-geoiocation-ipinfodb Script requires an API key to query an external service. The
service is free, and you only need to register at http://ipinfodb.com/register.php to get one. This
service does not limit the number of queries, but connections are only processed from
one [P address that you need to register during the signup process.

227

http://dev.maxmind.com/geoip/legacy/geolite/
http://ipinfodb.com/register.php

How to do it...

1. Open a terminal and enter the following command:

$nmap -sn --script ip-geolocation-* <target>

2. For example, let's locate the host scanme.nmap.org:

3. The geolocation information available in the databases will be displayed for each of

$nmap -sn --script ip-geolocation-* scanme.nmap.org

the targets:

Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.059s latency) .

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Host script results:

| ip-geolocation-geoplugin:

| 45.33.32.156 (scanme.nmap.org)

\ coordinates (lat,lon): 39.4899,-74.4773
| state: New Jersey, United States

| ip-geolocation-ipinfodb:

| 45.33.32.156 (scanme.nmap.orgq)

| coordinates (lat,lon): 39.4201,-74.4998
| city: Pomona, New Jersey, United States
| ip-geolocation-maxmind:

| 45.33.32.156 (scanme.nmap.orq)

| coordinates (lat,lon): 37.567,-121.9829
| city: Fremont, San Francisco, CA, United States

Nmap done: 1 IP address (1 host up) scanned in 1.10 seconds

228

How it works...

The argument --script ip-geolocation-* tells Nmap to launch all scripts with the pattern ip-
geolocation- at the beginning of the name. At the time of writing, there are three
geolocation scripts available:

® ip-geolocation-geoplugin
® ip-geolocation-maxmind

® ip-geolocation-ipinfodb

Sometimes, these service providers will not return any information on a particular IP
address, so it is recommended that you try and compare the results of all of them. The
information returned by these scripts include latitude and longitude coordinates,
country, state, and city where available.

229

There's more...

The NSE script ip-geolocation-geoplugin WOrks by querying a free public service. Consider
the number of queries you need to send and be considerate; otherwise, the provider will
restrict the service as other providers did in the past.

It is a common misconception that IP-to-geolocation services provide a 100 percent
location of the computer or device. The location accuracy heavily depends on the
database, and each service provider may have used different methods of collecting data.
Remember this when interpreting results from these NSE scripts.

230

Submitting a new geolocation provider

If you know a better IP-to-geolocation provider, don't hesitate in submitting your own
geolocation script to the official mailing list. Don't forget to document if the script
requires an external API or database. If you do not have experience in developing for
Nmap, you may add your idea to the NSE script wish list located at https://secwiki.org/w/Nma
p/Script_Ideas.

231

https://secwiki.org/w/Nmap/Script_Ideas

Getting information from WHOIS records

WHOIS records often contain useful information, such as the registrar/organization
name, creation and expiration dates, geographical location, and other contact
information, such as the e-mail address to report abuse. System administrators have been
using WHOIS for years now, and although there are many tools available to query this
information, Nmap can take IP ranges or target lists as input and obtain [P address and
domain name information in one place.

This recipe will show you how to retrieve the WHOIS records of an IP address or domain
name with Nmap.

232

How to do it...

Open a terminal and enter the following command:

| $nmap -sn --script whois-* <target>

The output will look similar to the following:

$nmap -sn --script whois-* websec.mx
Host script results:
whois-domain:

Domain name record found at whois.mx

Domain Name: websec.mx
Created On: 2010-04-14
Expiration Date: 2018-04-13
Last Updated On: 2014-10-07
Registrar: Akky (Una division de NICMexico)
URL: http://www.akky.mx
Whois TCP URI: whois.akky.mx
Whois Web URL: http://www.akky.mx/jsf/whois/whois.jsf
Registrant:
Name : Pedro Vapo Rub
City: Cozumel
State: Quintana Roo
Country: Mexico

Name Servers:
DNS: dora.ns.cloudflare.com
DNS: rick.ns.cloudflare.com

whois-ip: Record found at whois.arin.net

netrange: 54.210.0.0 - 54.211.255.255

netname: AMAZO-ZIADS

orgname: Amazon.com, Inc.

orgid: AMAZO-4

country: US stateprov: WA

orgtechname: Amazon EC2 Network Operations
_orgteche-mail: amzn-noc-contact@amazon.com

233

How it works...

The -sn --script whois-+ command tells Nmap to skip port scan (-sn) and execute the NSE
scripts that match the filename pattern, whois-+. At the moment, there are two scripts that
match this eXpreSSiOIl: whois-ip and whois-domain.

The wnois-ip script queries a regional Internet registries WHOIS database and the whois-
domain SCript queries http://www.iana.org/whois to obtain referral records until it finds the
information.

234

http://www.iana.org/whois

There's more...

The behavior of the NSE script whois-ip can be configured to enable or disable
cache. Select a service provider and ignore referral records. Let's see how to use these
options.

235

Selecting service providers

The whois-ip script uses the IANA's assignments data to select the RIR, and it caches the
results locally. Alternatively, you could override this behavior and select the order of the
service providers to use in the argument whodo:

| $nmap --script whois-ip --script-args whois.whodb=arin+ripe+afrinic <target>

236

Ignoring referral records

The wnois-ip script will query, sequentially, a list of WHOIS providers until the record or a
referral to the record is found. To ignore the referral records, use the value nofo110w:

| $nmap --script whois-ip --script-args whois.whodb=nofollow <target>

237

Disabling cache

Sometimes, cached responses will be preferred over querying the WHOIS service, and
this might prevent the discovery of an IP address assignment. To disable cache, you could

set the SCI'ipt argument whodb tO nocache:

|$nmap -sn --script whois-ip --script-args whois.whodb=nocache <target>

As with every free service, we need to consider the number of queries that we need to
make to avoid reaching the daily limit and getting banned.

238

Obtaining traceroute geolocation
information

Nmap can map network paths by tracing the hops between the origin and destination.
Geographical information can be useful when tracing events, and we can include it with
Nmap's traceroute functionality with some help from the NSE script traceroute-geolocation.

In this recipe, we will use Nmap to obtain traceroute geolocation information of a remote
target.

239

How to do it...

To obtain traceroute geolocation information of the remote nodes, use the following
command:

| # nmap --traceroute --script traceroute-geolocation <target>

The remote nodes will have GPS coordinates and location next to the hostname and IP
address in the results:

nmap --traceroute --script traceroute-geolocation scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.057s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£f03c:91ff:fel8:bb2f

Host script results:
| traceroute-geolocation:

| HOP RTT ADDRESS

GEOLOCATION

| 1 3.87 192.168.1.1 - -
| 2 8.08 192.168.0.1 -, -
| 3 5.84 192.168.222.254 -,
| 4 24 .67 dsl-servicio-1200.uninet.net.mx (200.38.193.226)
19.430,-99.130 Mexico ()

| 5 67.54 Dbb-la-grand-8-tge0-13-0-7.uninet.net.mx

(189.246.189.118) 19.430,-99.130 Mexico ()
| [57.56 10geb-3.corel.laxl.he.net (64.62.205.33)
37.516,-121.896 United States (California)

| 7 68.79 100geld4-1l.corel.sjc2.he.net (184.105.223.249)
37.516,-121.896 United States (California)

| 8 83.34 10ge3-2.core3.fmt2.he.net (184.105.222.13)
37.516,-121.896 United States (California)

| 9

| 10 68.85 173.230.159.3

39.490,-74.477 United States (New Jersey)
|11 59.70 scanme.nmap.org (45.33.32.156)
39.490,-74.477 United States (New Jersey)

TRACEROUTE (using port 443/tcp)
HOP RTT ADDRESS

1 3.87 ms 192.168.1.1

2 8.08 ms 192.168.0.1

3 5.84 ms 192.168.222.254

4 24.67 ms dsl-servicio-1200.uninet.net.mx (200.38.193.226)
5 67.54 ms bb-la-grand-8-tge(0-13-0-7.uninet.net.mx
(189.246.189.118)

6 57.56 msl0ge5-3.corel.laxl.he.net (64.62.205.33)

7 68.79 msl00geld-1.corel.sjc2.he.net (184.105.223.249)
8 83.34 msl0ge3-2.core3.fmt2.he.net (184.105.222.13)

9 ce

10 68.85 ms 173.230.159.3

11 59.70 msscanme.nmap.org (45.33.32.156)

Nmap done: 1 IP address (1 host up) scanned in 19.51 seconds

240

How it works...

The NSE script traceroute-geolocation Shows the geographical location of each hop in a
traceroute. It depends on a service provided by http://www.geoplugin.com/, and it does not
require an API key and has no limitations on lookups. The script must be run in addition
to --traceroute because Nmap is actually in charge of generating the traceroute
information used by the script.

241

http://www.geoplugin.com/

There's more...

You may save the results in KML format and plot them in Google Maps or Earth later by
Setting the SCI'ipt argument traceroute-geolocation.kmlfile:

|$nmap --traceroute --script traceroute-geolocation --script-args traceroute-geolocation.kmlf

Victatia RN
Seattle b
WASHINGTON BAKOTA
MONTANA
MINNESOTA
Porilarid
o
Minneapolis
r
50UTH WISCONSIN
DAKOTA
OREGON
1DAHO
WYOMING
Chicago
1oWA 2
NEBRASKA
Detlver -+ . ILLINOIS . LIN
NEVADA o United States i
i Kansas City Indi
L)
Seclameny COLORADO PR
San Frafisco MISSOURI
E
EN
San Jo
CATNEORNIA Las Vegas Nash
~ a 3
NG OKLAHOMA TENNE]
\\\ ARKANSAS
228 Angelen et NEW MEXICO
i g L MISSISSIPPI
SanDiego "~ "\ allas
g ey Tucson 3 ALAS
e £l Pasa
So~din B TEXAS
cAliFoRNIA L Aust
i
“SQNORA \ U8 Liouston L -LOUISIANA
N CHIHUAHUNG 3/ S gtenio—=0 New Orleans
e S
\\ COAHUILA
3 P L
NUEVO LEON
Monterrey -
S
BAJA s
cAUIFGRNIASUR. S "EO% DURANGO
i TAMAULIPAS
exico
SAN LUIS
NAYARIT POTOSI
Merida Conc
Guadalajara o
) uL‘:UANAhAQTO o
JALISCO, i VUCATAN
MmlmAcn.:i B CAMPECHE QUINTA
covima ™ I ROO
Google My Maps PUEBLA”VERACRUZ TABASCO -
GUERRERD T

242

Querying Shodan to obtain target
information

Shodan is a search engine for Internet-connected devices. It is a useful source of
information where we can find port and banner information of remote targets. One of the
advantages is that we don't even need to send a single packet directly to the target to
obtain juicy host information, including port number, protocol, and service banner.

In this recipe, you will learn how to use Shodan to obtain port and version information
from a remote host with Nmap.

243

Getting ready

The NSE script shodan-api needs an API key before it can be used. Shodan offers a free
developer API that you can obtain from

https://developer.shodan.io/.

Make sure that you have your Shodan API key at hand before continuing.

244

https://developer.shodan.io/

How to do it...

To obtain host information of a remote target from Shodan, use the following command:

$nmap -sn -Pn -n --script shodan-api --script-args shodan-api.apikey=<ShodanAPI KEY> <tai

The results will contain all the host information available in Shodan, including port
number, protocol, production, and version information:

$nmap -sn -Pn -n --script shodan-api --script-args shodan-api.apikey=<ShodanAPI KEY> scar
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up.

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£f03c:91ff:fel8:bb2f

Host script results:
| shodan-api: Report for 45.33.32.156 (scanme.nmap.org)

| PORT PROTO PRODUCT VERSION
| 22 tcp
| 80 tcp Apache httpd 2.4.7

Post-scan script results:
| shodan-api: Shodan done: 1 hosts up.
Nmap done: 1 IP address (1 host up) scanned in 15.95 seconds

245

How it works...

In the previous command, we query Shodan to obtain information similar to the one
returned by the version detection engine (-sv) without contacting the target at any point.
ShodanHQ (https://www.shodan.io/) scans the Internet regularly to gather port and service
information, and we can use this valuable information in our engagements when
scanning remote targets.

If you need to perform large volume scanning, | recommend you to consider buying the
license that fits your needs:

https://developer.shodan.io/pricing

246

https://www.shodan.io/
https://developer.shodan.io/pricing

There's more...

The NSE script shodan-api supports configuration options that allow us to save the results
in additional formats or set a different target. Let's briefly review the script arguments
available.

247

Saving the results in CSV files

You may save the results in CSV format by setting the script argument shodan-api.outfile:

|$nmap -sn -Pn -n --script shodan-api --script-args shodan-api.apikey='<ShodanAPI KEY>', shoda

248

Specifying a single target
Use the script argument shodan-api .target to set a single target to be scanned. Remember

to use an IP address as a target since DNS resolution (-») is disabled:

|$nmap -sn -Pn -n --script shodan-api --script-args shodan-api.apikey='<ShodanAPI KEY>', shoda

249

Checking whether a host is flagged by
Google Safe Browsing for malicious
activities

System administrators hosting users often struggle with monitoring their servers against
malware distribution. Nmap allows us to systematically check whether a host is known
for distributing malware or being used in phishing attacks, with some help from the
Google Safe Browsing API.

This recipe shows system administrators how to check whether a host has been flagged
by Google's safe browsing service as being used in phishing attacks or distributing
malware.

250

Getting ready

The nttp-google-maiware script depends on Google's safe browsing service, and it requires
you to register to get an API key. Register at https://developers.google.com/safe-browsing/?csw=1.

251

https://developers.google.com/safe-browsing/?csw=1

How to do it...

Open your favorite terminal and type the following:

| $nmap -p80 --script http-google-malware --script-args http-google-malware.api=<API> <tar¢

The script will return a message indicating if the server is known by Google's safe
browsing for distributing malware or being used in a phishing attack.

Nmap scan report for mertsssooopa.in (203.170.193.102)

Host is up (0.60s latency) .

PORT STATE SERVICE

80/tcp open http

| http-google-malware: Host is known for distributing malware.

252

How it works...

The nttp-google-malware Script queries the Google Safe Browsing service to determine if a
host is suspected to be malicious. This service is used by web browsers, such as Mozilla
Firefox and Google Chrome, to protect its users, and the lists are updated very frequently.

253

There's more...

If you don't want to use the argument nttp-google-malware.api €very time you launch this
script, you can edit the nttp-google-maiware.nse file and hardcode your API key into the
script. Look for the following section and store your key in the variable ap1key:

Rl
--ENTER YOUR API KEY HERE #
oA A
local APIKEY = ""

Rl

For complete documentation, visit https://nmap.org/nsedoc/scripts/http-google-malware.html.

254

https://nmap.org/nsedoc/scripts/http-google-malware.html

Collecting valid e-mail accounts and IP
addresses from web servers

Valid e-mail accounts are useful in penetration testing engagements because they can be
used for exploiting trust relationships in phishing attacks, password auditing of mail
servers, and as usernames in many IT systems including Active Directory services.

This recipe illustrates how to get a list of valid public e-mail accounts with Nmap.

255

How to do it...

Open your terminal and enter the following command:

| # nmap -p <Port> --script http-grep <target>

Nmap will crawl the web application and return any interesting information found, as
follows:

nmap -p443 --script http-grep nmap.org
Nmap scan report for nmap.org (45.33.49.119)
Host is up, received syn-ack (0.072s latency).
Other addresses for nmap.org (not scanned):
2600:3c01::£03c:91ff:fe98:ffde
rDNS record for 45.33.49.119: ack.nmap.org
Scanned at 2016-08-22 10:44:08 CDT for 9s

PORT STATE SERVICE REASON
443/tcp open https syn-ack
| http-grep:

(1) https://nmap.org/movies/#elysium:
(1) e-mail:
+ fyodor@nmap.org
(2) https://nmap.org/mailman/listinfo/dev:
(2) e-mail:
+ dev@nmap.org
+ dev-owner@nmap.org
(6) https://nmap.org/5/:
(6) ip:
207.68.200.30
64.13.134.52
4.68.105.6
209.245.176.2
69.63.179.23
69.63.180.12
https://nmap.org/changelog.html:
e-mail:
dln@inbox.com
fyodor@insecure.org
uce@ftc.gov
rhundt@fcc.gov
jgquello@fcc.gov
sness@fcc.gov
president@whitehouse.gov
haesslich@loyalty.org
rchong@fcc.gov
ip:
255.255.255.255
10.99.24.140
74.125.53.103
64.147.188.3
203.65.42.255
192.31.33.7
168.0.40.135
(1) https://nmap.org/book/man.html:
(1) ip:
+ 74.207.244.221

+ 4+ o+ A+ o+

(16)
(9

e T T e T

256

How it works...

The ntep-grep script crawls a web application and matches patterns to extract interesting
information from all pages. The script will search for e-mail and [P addresses by default,
but there are other built-in patterns for things such as social security or credit card
numbers. The results are grouped by URL.

The script also has the ability to match custom patterns by setting the script argument

http-grep.match.

|$nmap -p 80 <target> --script http-grep --script-args='match="[A-Za-z0-9%.%%%+%-]+Q[A-Za-z0-

257

There's more...

The script ntep-grep can select different patterns for extraction by setting the script
argument nhttp-grep.builtins. The built-in patterns are:

E-mail
Phone
Mastercard
Discover
VISA

Amex

SSN

IP address

Pass a table of patterns to nttp-grep.buiitins to select any of the built-in patterns:

|$nmap -p 80 <target> --script http-grep --script-args 'http-grep.builtins ={"mastercard", "d

By just setting nttp-grep.builtins, all patterns will be enabled:
|$nmap -p80 --script http-grep --script-args http-grep.builtins <target>

The NSE ncep library is highly configurable. Read Appendix A, HTTP, HTTP
Pipelining, and Web Crawling Configuration Options, to learn more about the
advanced options available.

258

Discovering hostnames pointing to the
same IP address

Web servers return different content depending on the hostname used in the HTTP
request. By discovering new hostnames, penetration testers can access new target web
applications that were inaccessible using the server's IP.

This recipe shows how to enumerate all hostnames pointing to the same IP address to
discover new targets.

259

How to do it...

To discover hostnames pointing to the same IP address, open your terminal and enter the
following command:

| $nmap -sn --script hostmap-* <target>

The hostmap-robtex, hostmap-bfk, and hostmap-ip2hosts SCI'iptS will return all records that
match the given IP address:

Nmap scan report for nmap.org (45.33.49.119)
Host is up (0.057s latency).

Other addresses for nmap.org (not scanned):
2600:3c01::£03c:91ff:fe98:ff4e

rDNS record for 45.33.49.119: ack.nmap.org

Host script results:

| hostmap-bfk:
| hosts:

| sectools.org
| svn.nmap.org
| www.secwiki.org
| mail.seclists.org
| WWW . NInap . com
| seclists.org
| www.linsecure.org
| nmap.org
| cgi.insecure.org
| www.sectools.org
| insecure.org
| WWW.nmap.org
| hostmap-ip2hosts:
| hosts:

| nmap.org
| svn.nmap.org

| sectools.org

| insecure.org

| seclists.org

| secwiki.org

| hostmap-robtex:

| hosts:

| insecure.com

| nmap.com

| nmap.org

| seclists.org

| sectools.org

| secwiki.org

| WWW . Nmap . com

| www.sectools.org

Nmap done: 1 IP address (1 host up) scanned in 2.84 seconds

260

How it works...

The -sn —-script hostmap-* <target> command tells Nmap to run all NSE scripts that match
the filename hostmap-*, which are hostmap-ip2hosts, hostmap-bfk, and hostmap-robtex. All these
scripts depend on external services that use different techniques to obtain the
information. http://ip2hosts.com/ is a web service maintained by myself that is based on
Bing's search API and other data sources.

All of these services are free, and abusing them will most likely get you banned.

261

http://ip2hosts.com/

There's more...

The scripts hostmap-bfk and hostmap-ip2hosts can save the hostname list for each IP scanned.
Use the argument prerix to create a file named <prefix><target> in your working directory:

|$nmap -sn --script hostmap-ip2hosts --script-args hostmap-ip2hosts.prefix=HOSTSFILE <target>

262

Discovering hostnames by brute forcing
DNS records

DNS records hold a surprising amount of host information, and by brute forcing them, we
can reveal additional targets. DNS entries often give away information; for example, a
DNS record type A named mail obviously indicates that we are dealing with a mail server,
or Cloudflare's default DNS entry named direct most of the time will point to the IP that
they are trying to protect.

This recipe shows how to brute force DNS records with Nmap.

263

How to do it...

To brute force the DNS entries, run the following command:

$nmap --script dns-brute <target>
Nmap scan report for websec.mx (54.210.89.118)
Host is up (0.099s latency).
rDNS record for 54.210.89.118: ec2-54-210-89-118.compute-
l.amazonaws.com

Host script results:

| dns-brute:

| DNS Brute-force hostnames:

| ipv6.websec.mx - 54.210.89.118
| beta.websec.mx - 54.210.89.118
| web.websec.mx - 198.58.106.134
| www.websec.mx - 54.210.89.118

264

How it works...

The argument --script dns-brute initiates the NSE script ans-prute.

ans-brute Was developed by Cirrus, and it attempts to discover new hostnames by brute
forcing the target's DNS records. The script basically iterates through a hostname list,
checking whether the DNS entry exists to find valid records.

This brute force attack is easily detected by security mechanism monitoring for
NXDOMAIN responses.

265

There's more...

The behavior of the NSE script dns-brute can be customized using some NSE script
arguments. Now, let's review the available configuration options for the script and NSE

libraries.

266

Customizing the dictionary

The default dictionary used by dns-orute is hardcoded in the NSE file located in your local
script folder, /scripts/dns-brute.nse. TO use your own dictionary file, use the argument ans-

brute.hostlist:

|$nmap --script dns-brute --script-args dns-brute.hostlist=words.txt <target>

267

Adjusting the number of threads

To set the number of threads, use the argument ans-brute. threads:

|$nmap --script dns-brute --script-args dns-brute.threads=8 <target>

268

Specifying a DNS server

You can set a different DNS server with --dns-servers <servi[,serv2i,...>:

|$nmap --dns-servers 8.8.8.8,8.8.4.4 scanme.nmap.org

269

Using the NSE library target

The NSE library target helps us add new targets found during scans. This is specially
useful in a combination of scripts such as ans-brute. Refer to the Appendix ¢, NSE
Debugging, for more information.

270

Obtaining profile information from
Google's People API

Taking advantage of public APIs during the reconnaissance phase can provide a lot of
information about our targets. Profile information from people in organizations using
Gmail can be obtained via Google's People API. This service provides name details and the
profile photo from the registered contact information and can be queried by anyone with
a valid Gmail account. This makes the API perfect for enumerating and obtaining
information from valid users in organizations.

This recipe shows how to obtain profile information from people in organizations using
Gmail with Nmap.

271

Getting ready

For this task, we are going to use the NSE script that is not included in the official Nmap
repository. Please install it manually before continuing.You can download googie-peopie-
enum.nse from https://raw.githubusercontent.com/cldrn/nmap-nse-scripts/master/scripts/google-people-enu

m.nse.

272

https://raw.githubusercontent.com/cldrn/nmap-nse-scripts/master/scripts/google-people-enum.nse

How to do it...

Run the following Nmap command to check whether any e-mail address contained in
users.txt €XIiStS:

| $nmap -sn --script google-people-enum --script-args='username=<username>,password=<passwc¢

For any valid e-mail address found in the domain, it will return the contact information
that includes the full name and photo:

Host script results:
google-people-enum:
users:

|
!
!
| userl@example.com:

| photo:
https://1h3.googleusercontent.com/XXXXXXXXXXXXX/photo.jpg
| name: User 1

I

|

!

h

user2@example.com:
photo:
ttps://1h3.googleusercontent.com/XXXXXXXXXXXXXXX/photo.jpg

273

How it works...

The NSE script googie-peopie-enum queries the Google's People API to obtain contact
information. The script was written by Aaron Velasco from Websec, and it can be used to
enumerate valid users and retrieve information, such as full name and photo. The script
can be executed independently from a port scan (-sn to skip port scan), and it uses
Nmap's upwds library to manage the username list (--script-args userdb=users.txt).

Besides a user list (Nmap will use the default one if userdas is not set), this script requires a
valid Gmail account to query Google's People API. Free accounts work fine for this
purpose. The script will take each entry of the user list and check against the API whether
the user is indeed valid and then it will attempt to retrieve the contact information that
can include the full name and photo.

274

There's more...

Brute force scripts or any other scripts that depend on lists are only as effective as the
word list we use. Each situation is unique; you should customize them, and if you haven't
started yet, start collecting these word lists. A good collection to start is OWASP's SecList
project (https://github.com/danielmiessler/SecLists) that contains different types of lists that
include usernames, passwords, URLs, attack payloads, and more. The username word
lists can be found at https://github.com/danielmiessler/SecLists/tree /master/Usernames.

275

https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists/tree/master/Usernames

Matching services with public
vulnerability advisories

Version discovery is essential to penetration testers as they can use version strings to
find public security vulnerabilities affecting a scanned service. The Nmap Scripting
Engine allows us to match popular vulnerability databases with the services versions
obtained from our scan.

This recipe shows how to list public security advisories that could possibly affect a
service discovered with Nmap.

276

Getting ready

To accomplish this task, we use the NSE script vuiscan. This script is not included in the
official Nmap repository, so you need to install it manually before continuing.

To install it, download the latest version of vuiscan from my GitHub repository:

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/vulscan.nse

Copy the script vuiscan.nse in your local script folder (swmap 1nstaniarron/scripts/). Then,
create the files cve.csv, scipvuldb.csv, and exploitdb.csv inside your data directory
(sNMAP_INSTALLATION/nselib/data).

Now execute the command to download the databases:

|$nmap -p80 -sV --script vulscan --script-args vulscan.updatedb <target>

If the databases got updated correctly, you should see the following message:

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up, received reset ttl 54 (0.077s latency).

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03c:91ff:fel8:bb2f

Scanned at 2016-08-28 17:52:43 CDT for 614s

PORT STATE SERVICE REASON VERSTON

80/tcp open http syn-ackttl 54 Apache httpd 2.4.7 ((Ubuntu))
| http-server-header: Apache/2.4.7 (Ubuntu)

| vulscan: Vulnerability databases updated.

277

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/vulscan.nse

How to do it...

To match security advisories with the service versions obtained from the version
detection engine, use the following command:

| # nmap -sV --script vulscan <target>

The NSE script vuiscan will return all security advisories that match the service version:

nmap -sV --script vulscan scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up, received reset ttl 54 (0.068s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::£03¢c:91ff:fel8:bb2f
Scanned at 2016-08-28 18:10:13 CDT for 8s
PORT STATE SERVICE REASON VERSION
80/tcp open http syn-ackttl 54 Apache httpd 2.4.7 ((Ubuntu))
| http-server-header: Apache/2.4.7 (Ubuntu)
| vulscan: MITRE CVE - http://cve.mitre.org:
| [CVE-2014-8109] mod lua.c in the mod lua module in the Apache HTTP Server 2.3.X ¢
configuration in which the same Lua authorization provider is used with different
remote attackers to bypass intended access restrictions in
opportunistic circumstances by leveraging multiple Require
directives, as demonstrated by a configuration that specifies
authorization for one group to access a certain directory, and
authorization for a second group to access a second directory.
| URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8109
| [CVE-2015-3184] mod authz svn in Apache Subversion 1.7.x before
1.7.21 and 1.8.x before 1.8.14, when using Apache httpd2.4.x, does
not properly restrict anonymous access, which allows remote
anonymous users to read hidden files via the path name.

URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3184

|

|

| Exploit-DB - http://www.exploit-db.com:

| [360] Apache HTTPd - Arbitrary Long HTTP Headers DoS (Perl)
| URL:http://www.exploit-db.com/exploits/360

| [371] Apache HTTPd - Arbitrary Long HTTP Headers DoS (C)

| URL:http://www.exploit-db.com/exploits/371

| [17696] Apache httpd - Remote Denial of Service (Memory
Exhaustion)

| URL:http://www.exploit-db.com/exploits/17696

| [19536] Apache 1.1 / NCSA httpd 1.5.2 / Netscape Server
1.12/1.1/2.0 - a nph-test-cgi

| URL:http://www.exploit-db.com/exploits/19536

| [20435] Apache 0.8.x/1.0.x& NCSA httpdl.x - test-cgi Directory
Listing

| URL:http://www.exploit-db.com/exploits/20435

| [20595] NCSA 1.3/1.4.x/1.5 / Apache httpd 0.8.11/0.8.14 -
ScriptAlias Source Retrieval

| URL:http://www.exploit-db.com/exploits/20595

|

| scipVulDB - http://www.scip.ch/en/?vuldb:
| There were no matches. =(
I_

278

How it works...

In the previous command, the flag -sv enables service detection, and the argument --
script vulscan initiates the NSE script vuiscan. The NSE script vuiscan will use the version
information to match any public vulnerability advisories from CVE, Scipvuldb, and
exploitdb.

The script vuiscan parses each service name and version and compares these against a
local copy of the databases. This method is far from perfect, as name matching in vuiscan
still suffers some bugs, and of course, it depends on Nmap's version detection, but it is
still amazingly useful when finding possible public vulnerabilities affecting the scanned
service.

279

There's more...

Remember to keep your vulnerability database up to date. You may update it manually or
using Nmap with the following command:

|$nmap -p80 -sV --script vulscan --script-args vulscan.updatedb <target>

If everything worked as expected, you should see the following message:

| vulscan: Vulnerability databases updated.

280

Scanning Web Servers

This chapter covers the following recipes:

Listing supported HTTP methods

Checking whether a web server is an open proxy
Discovering interesting files and folders in web servers
Abusing mod userdir to enumerate user accounts

Brute forcing HTTP authentication

Brute forcing web applications

Detecting web application firewalls

Detecting possible XST vulnerabilities

Detecting XSS vulnerabilities

Finding SQL injection vulnerabilities

Detecting web servers vulnerable to slowloris denial of service attacks
Finding web applications with default credentials
Detecting web applications vulnerable to Shellshock
Detecting insecure cross-domain policies

Detecting exposed source code control systems
Auditing the strength of cipher suites in SSL servers
Scrapping e-mail accounts from web servers

281

Introduction

HyperText Transfer Protocol (HTTP) is arguably one of the most popular protocols in
use today. Web servers have moved from serving static pages to handling complex web
applications with user interaction.

This has opened the doors to tainted user input that could change an application's logic to
perform unintended actions. Modern web development frameworks allow almost anyone
with some knowledge of programming to produce web applications within minutes, but
this has also caused an increase of vulnerable applications on the Internet. The number of
available HTTP scripts for the Nmap Scripting Engine grew rapidly, and Nmap turned
into an invaluable web scanner that helps penetration testers perform a lot of the tedious
manual checks in an automated manner. Not only can it be used to find vulnerable web
applications or detect faulty configuration settings, but thanks to the new spidering
library, Nmap can even crawl web servers, looking for all sorts of interesting information.

This chapter is about using Nmap to audit web servers, from automating configuration
checks to exploiting vulnerable web applications. I will introduce some of the NSE scripts
['ve developed over the last year and that I use every day when conducting web
penetration tests at Websec. This chapter covers tasks, such as detecting a packet
filtering system, brute force password auditing, file and directory discovery, and
vulnerability exploitation.

Most of the scripts shown in this chapter use the NSE libraries nctp and
nttpspider. These libraries are highly configurable. Read Appendix A, HTTP,
HTTP Pipelining, and Web Crawling Configuration Options, to learn more
about the advanced options available.

282

Listing supported HTTP methods

Web servers support different HTTP methods on their configuration and software, and
some of them could be dangerous under certain conditions. System administrators and
penetration testers need a way of quickly listing the available methods. Nmap NSE has
few scripts that will allow us not only to list these potentially dangerous methods, but to
test if they are also accessible.

This recipe shows you how to use Nmap to enumerate all the HTTP methods supported
by a web server.

283

How to do it...

Open a terminal and enter the following command:

| $ nmap -p80,443 --script http-methods,http-trace --script-args http-methods.test-all=true

The results will include the supported methods for every web server detected on ports so
Or 443:

$ nmap -p80--script http-methods,http-trace --script-args http-methods.test -all=true 12
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000042s latency).
PORT STATE SERVICE
80/tcpopen http
| http-methods:
| Supported Methods: GET HEAD POST OPTIONS CONNECT
| Potentially risky methods: CONNECT

Nmap done: 1 IP address (1 host up) scanned in 0.28 seconds

Potentially risky methods will be marked accordingly in the results.

284

How it works...

The Nmap OptiOHS -p80,443 --script http-methods,http-trace --script-args http-methods.test-
a11=true make Nmap launch the nttp-methods and nttp-trace scripts if a web server is found
on ports so or 443 (-pso, 443). The NSE script nttp-methods was submitted by Bernd
Stroessenreuther, and it uses a predefined list of methods, some of which are potentially
risky, to determine the methods supported by a web server.

The HTTP method orrrons is implemented in web servers to inform the clients of its
supported methods. Remember that this method does not take into consideration
configuration or firewall rules, and having a method listed by oerrons does not necessarily
mean that it is accessible to you. This is the reason the script nttp-netnods will individually
try the methods cer, nEap, post, opr1oNS, TRACE, DELETE, connict, and put if the script argument
test-all iS set. On the other hand, the script nttp-trace uses a arre trace request and returns
any header fields modified in the response.

285

There's more...

To individually check the status code response of the methods, use the script argument
http-methods.retest.

|$nmap -p80,443 --script http-methods --script-args http-methods.retest <target>

Consider the following example:

$ nmap -p80 --script http-methods --script-args http-methods.retest localhost
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000040s latency).
PORT STATE SERVICE
33070/tcpopen unknown
| http-methods:
| Supported Methods: GET HEAD POST OPTIONS CONNECT
| Potentially risky methods: CONNECT
| Status Lines:
| GET: HTTP/1.1 200 OK
| OPTIONS: HTTP/1.1 200 OK
\ HEAD: HTTP/1.1 200 OK
| POST: HTTP/1.1 200 OK
| CONNECT: HTTP/1.1 400 Bad Request

Nmap done: 1 IP address (1 host up) scanned in 0.28 seconds

By default, the script nttp-methods uses the root folder as the base path (/). If you wish to
set a different base path, set the argument nttp-methods.uri-path:

|# nmap -p80,443 --script http-methods --script-args http-methods.url-path=/mypath/ <target>

Let's scan a web server running on port so and using the path /webdav/:

nmap -p80 --script http-methods --script-args http-methods.url-path=/mypath/ localhost
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000037s latency).
PORT STATE SERVICE
80/tcp open http
| http-methods:
| Supported Methods: GET HEAD POST OPTIONS CONNECT
\ Potentially risky methods: CONNECT
\ Path tested: /webdav/
| Status Lines:
| CONNECT: HTTP/1.1 400 Bad Request
| HEAD: HTTP/1.1 404 Not Found
\ GET: HTTP/1.1 404 Not Found
| POST: HTTP/1.1 404 Not Found
| OPTIONS: HTTP/1.1 200 OK

Nmap done: 1 IP address (1 host up) scanned in 0.27 seconds

286

Interesting HTTP methods

The HTTP methods Trace, connecrt, put, and perere might present a security risk, and they
need to be tested thoroughly if supported by a web server or application.

rrace makes applications susceptible to Cross-Site Tracing (XST) attacks and could lead
to attackers accessing cookies marked as nttponiy. The connecr method might allow the
web server to be used as an unauthorized web proxy. The methods rur and perere can
change the contents of a folder, and this could obviously be abused if the permissions are
not set properly.

You can learn more about common risks associated with each method at https://www.owasp.
org/index.php/Testing_for HTTP_Methods_and_XST_(OWASP-CM-008).

287

https://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_(OWASP-CM-008)

Checking whether a web server is an
open proxy

HTTP proxies are used to make requests through their addresses, therefore hiding our
real [P address from the target. Detecting them is important if you are a system
administrator who needs to keep the network secure or as an attacker looking to spoof
your real origin. Misconfigured web servers are more common than we think, and they
could be abused by attackers if left exposed.

This recipe shows you how to use Nmap to detect an open HTTP proxy.

288

How to do it...

Open your terminal and enter the following command:

$ nmap --script http-open-proxy -p8080 <target>

The results include the HTTP methods that were successfully tested and if the proxy is
indeed exposed:

PORT STATE SERVICE
8080/tcp open http-proxy

| proxy-open-http: Potentially OPEN proxy.
| Methods successfully tested: GET HEAD CONNECT

289

How it works...

We use the Nmap options --script http-open-proxy -psoso to launch the NSE script nttp-open-
proxy if @ web server is found running on port soso, a common port for HTTP proxies.

The NSE script nttp-open-proxy was submitted by Arturo Buanzo Busleiman, and it was
designed to detect open proxies, as its name indicates. By default, it requests https://www.go
ogle.co.in/?gfe_rd=cr&ei=7cYSWafqDOfy8AeikZ_oAQ&gws_rd=ssl, https://www.wikipedia.org/, and http://www
.computerhistory.org/ and looks for a known text pattern to determine if there is an open
HTTP proxy running on the target web server.

290

https://www.google.co.in/?gfe_rd=cr&ei=7cYSWafqDOfy8AeikZ_oAQ&gws_rd=ssl
https://www.wikipedia.org/
http://www.computerhistory.org/

There's more...

You may request a different URL and specify the pattern that will be returned if the
connection is successful using the script parameters nttp-open-proxy.url and http-open-

proxy.pattern:

|$nmap --script http-open-proxy --script-args http-open-proxy.url=http://whatsmyip.org, http-o

291

Discovering interesting files and folders
in web servers

One of the common tasks during penetration tests that cannot be done manually is file
and directory discovery hosted in web servers. There are several tools made for this task,
but Nmap shines with its robust database that covers interesting files, such as:
README's, database dumps, and forgotten configuration backups; common directories,
such as administration panels or unprotected file uploaders; and