import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.stats import norm import keras from keras.layers import Input, Dense, Lambda, Layer from keras.models import Model from keras import backend as K from keras import metrics from keras.datasets import mnist # import parameters from mnist_params import * """ loading vae model back is not a straight-forward task because of custom loss layer. we have to define some architecture back again to specify custom loss layer and hence to load model back again. """ # encoder architecture x = Input(shape=(original_dim,)) encoder_h = Dense(intermediate_dim, activation='relu')(x) z_mean = Dense(latent_dim)(encoder_h) z_log_var = Dense(latent_dim)(encoder_h) # Custom loss layer class CustomVariationalLayer(Layer): def __init__(self, **kwargs): self.is_placeholder = True super(CustomVariationalLayer, self).__init__(**kwargs) def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss) def call(self, inputs): x = inputs[0] x_decoded_mean = inputs[1] loss = self.vae_loss(x, x_decoded_mean) self.add_loss(loss, inputs=inputs) # We won't actually use the output. return x # load saved models vae = keras.models.load_model('../models/ld_%d_id_%d_e_%d_vae.h5' % (latent_dim, intermediate_dim, epochs), custom_objects={'latent_dim':latent_dim, 'epsilon_std':epsilon_std, 'CustomVariationalLayer':CustomVariationalLayer}) encoder = keras.models.load_model('../models/ld_%d_id_%d_e_%d_encoder.h5' % (latent_dim, intermediate_dim, epochs), custom_objects={'latent_dim':latent_dim, 'epsilon_std':epsilon_std, 'CustomVariationalLayer':CustomVariationalLayer}) generator = keras.models.load_model('../models/ld_%d_id_%d_e_%d_generator.h5' % (latent_dim, intermediate_dim, epochs), custom_objects={'latent_dim':latent_dim, 'epsilon_std':epsilon_std, 'CustomVariationalLayer':CustomVariationalLayer}) # load dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) x_test_encoded = encoder.predict(x_test, batch_size=batch_size) # plt.figure(figsize=(6, 6)) fig = plt.figure(figsize=(12,12)) ax = fig.add_subplot(111, projection='3d') #for x, y, z in zip(x_test_encoded[:, 1], x_test_encoded[:, 2],x_test_encoded[:, 3]): # ax.scatter(x, y,z, c=y_test) ax.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1],x_test_encoded[:, 2], c=y_test) #plt.colorbar() plt.show() # display a 2D manifold of the digits n = 25 # figure with 15x15 digits digit_size = 28 figure = np.zeros((digit_size * n, digit_size * n)) # linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian # to produce values of the latent variables z, since the prior of the latent space is Gaussian grid_x = 1.5*norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = 1.5*norm.ppf(np.linspace(0.05, 0.95, n)) grid_z = 1.5*norm.ppf(np.linspace(0.05, 0.95, n)) #grid_x = norm.ppf(np.linspace(-10.0, 10.0, n)) #grid_y = norm.ppf(np.linspace(-10.0, 10.0, n)) for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): for k,zi in enumerate(grid_z): # xi = input() # yi = input() # zi = input() z_sample = np.array([[xi, yi,zi]]) # print z_sample x_decoded = generator.predict(z_sample) digit = x_decoded[0].reshape(digit_size, digit_size) # plt.figure(figsize=(10, 10)) # plt.imshow(digit, cmap='Greys_r') # plt.show() figure[j * digit_size: (j + 1) * digit_size, k * digit_size: (k + 1) * digit_size] = digit plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='Greys_r') plt.show()