Health Information Technology

CS463/ECE424 University of Illinois

<u>Outline</u>

Privacy attacks on genomic data Privacy protecting genomic research

Genome

- Contains all of the biological information needed to build and maintain a "living example" of an organism
- Encoded in DNA, one polymer of nucleotides
 - A,G,C,T
- Human Genome:
 - Approximately 3 billion nucleotides
 - Stored in 23 chromosome pairs (plus mtDNA)

Cost Per Genome

New Frontiers

- Better understanding of human genome
- Many individuals have access to key parts of their genomes
 - Precision medicine enabled
- Testing possible not only in-vitro but also via sumulation

Genetic Exceptionalism

How Special is Genomic Data?

McGuire, Amy L., Rebecca Fisher, Paul Cusenza, Kathy Hudson, Mark A. Rothstein, Deven McGraw, Stephen Matteson, John Glaser, and Douglas E. Henley. "Confidentiality, privacy, and security of genetic and genomic test information in electronic health records: points to consider." *Genetics in Medicine* 10, no. 7 (2008): 495-499. Evans, James P., and Wylie Burke. "Genetic exceptionalism. Too much of a good thing?." *Genetics in Medicine* 10, no. 7 (2008): 500-501.

Privacy Concerns

- Genomic data carry sensitive information that may reveal
 - Identity
 - Predisposition to diseases
 - Facial features ...
- Disclosure may propagate the privacy risks to blood relatives.
- Data are irrevocable once they are disseminated
- New privacy threats may emerge over time with new discoveries of human genetics and the advance of attack methods.
 - Aggregated results removed from the public domain hosted by NIH.

Genomic Privacy Attack

Quantification of Kin Genomic Privacy, CCS 2013

Sharing Genomic Data Online?

Name	Confidence	Your Risk	Avg. Risk
Atrial Fibrillation	****	33.9%	27.2%
Prostate Cancer 🔿	****	29.3%	17.8% 7.2% 6.5% 5.6% 3.4%
Alzheimer's Disease	****	14.2%	
Age-related Macular Degeneration	****	11.1%	
Colorectal Cancer	****	7.8%	
Chronic Kidney Disease	****	4.2%	
Restless Legs Syndrome	****	2.5%	2.0%
Parkinson's Disease	****	2.2%	1.6%

Privacy Concerns

- Kin genomic privacy
 - Correlated genomic info between family members
 - Partial leakage of one member \rightarrow threaten the whole family
- Example threat: blackmail, denial of insurance, discrimination ...

• How much is the individual's genomic privacy threatened by their relatives revealing their genomes?

Kin Genomic Privacy

openSNP	News	Genotypes	Phenotypes -	SNPs	Users	Search here	
Bastian has upl	Bastia	n Gresha) 🔊 🧭	ake's page	20 50	.),	
• 🔒 Downlo	ad this set (23a	indme)					
On Bastia	n:						
Description	# rsid	chron	nosome	pos	ition	L	genotype
Life Scientis	rs44772	212	1	720	17	AA	5 11
encounter b	rs30943	315	1	742	429	AA	
	rs31319	972	1	742	584	GG	
	rs12124	4819	1	766	409	AG	
Homepag	rs11240	0777	1	788	822	AG	
10000	rs66810	049	1	789	870	CC	
Twitter: http://	rs49703	383	1	828	418	CC	
opensive blog	rs44756	591	1	836	671	CC	
Bastian's va	rs7537	756	1	844	113	AA	
	rs13302	2982	1	851	671	GG	
Characteristi	rs11100	052	1	863	421	тт	
dotonoti	rs2272	756	1	871	896	GG	
white skin	rs3748	597	1	878	522	CC	
Lactose intole	rs13303	3106	1	881	808	GG	
	rs2841	5373	1	883	844	CC	
Eye color	rs13303	3010	1	884	436	AA	
Hair Type	rs66962	281	1	892	967	CC	
	rs28393	1282	1	894	028	GG	
	rs2340	592	1	900	798	GG	

SNP

- Human DNA sequence
 - Identical at 99.5% of the positions
- SNP (Single Nucleotide Polymorphism)
 - Positions where a nucleotide is different between people
 - Define physical characteristics, indicator of diseases
 - 50 million SNP positions

B: Major allele b: Minor allele

Rules of Reproduction

Linkage Disequilibrium (LD)

- SNPs are NOT entirely independent
 - A given SNP value can be inferred from other SNPs
 - Results of existing genetic research, publicly known

- MAF (minor allele frequencies)
 - Also public knowledge, from medical research

Attack Model

- Using your relatives (partial) SNP values to infer yours
- Attacker knows
 - Family member relationships: Social network sites
 - Partial SNPs of a subset of family members: Genome sharing sites
 - Linkage Disequilibrium (LD) : Public available knowledge
 - Minor allele frequencies (MAF): Public available knowledge
- Attacker's goal
 - Infer all family members' unknown SNPs

Inference Algorithm: A Toy Exampl 🤤 🖡

- n family members, each has m SNPs
 - n = 3, father, mother, child
 - m = 3, three SNPs
 - Each SNP: three possible values: (BB, Bb, bb), denoted as (0, 1, 2)

Μ

- Step1: Construct a factor graph
- Step2: Belief propagation: update node value until converge

Step2: Belief Propagation

Step2: Belief Propagation P-15 iterations until converge

Genomic Privacy Metrics

- Estimation Error (E)
 - Expected estimation error
 - Needs ground-truth
- Uncertainty (H)
 - Entropy of estimated distribution
 - Don't require ground-truth

Mutual Information (I)

- Mutual dependency between unknown SNP and observed SNP
- Privacy decreases with mutual information

Good Privacy = High Estimation Error, High Uncertainty, and Low Mutual Info

$$E_{j}^{i} = \sum_{x_{j}^{i} \in \{0,1,2\}} p(x_{j}^{i} | \mathbb{X}_{\mathrm{K}}) ||x_{j}^{i} - \hat{x_{j}^{i}}||_{\mathbf{K}}$$

Ground-truth Evaluation

- 1 family (11 people), SNPs (80k), CEPH/Utah Pedigree 1463
- Example: Target P5, gradually reveal relative's SN info to attacker, from distant relatives to close relatives

Attacking People in the Wild

- Attacking two families, focusing on health privacy
 - Genome from OpenSNP, family tree from Facebook
 - Only 1 person in each family revealed genome to attacker
 - No ground-truth, the only usable metric is "entropy"

Privacy Protection Schemes

Privacy-enhancing Technology for Genomic Data

- Homomorphic encryption
- Secure multi-party computation (MPC)
 - Garbled circuits
- Secure two-party computation
 - Private Set Intersection (PSI)
- Differential privacy
 - Adding noise
- Trusted execution environments
 - SGX

Privacy-Preserving Genetic Paternity Test (1 of 2)

Strawman Approach for Paternity Test

- On average, ~99.5% of any two human genomes are identical
- Parents and children have even more similar genomes
- Compare candidate's genome with that of the alleged child:
 - Test positive if % of matching nucleotides is > 99.5 + τ

First-Attempt Privacy-Preserving Protocol

- Use an appropriate secure two-party protocol for the comparison
- PROs: High-accuracy and error resilience
- CONs: Performance not promising (3 billion symbols in input)
- Experiments showed computation takes a few days

Privacy-Preserving Genetic Paternity Test (2 of 2)

- Improved Protocol
 - ~99.5% of any two human genomes are identical
 - Why don't we compare *only* the remaining 0.5%?

But... We don't know (yet) where *exactly* these 0.5% occur!

Using **Private Set Intersection Cardinality** for privacy-preserving comparison, it takes about 1 hour

Private Set Intersection Cardinality (PSI-CA)

PPGT Strategy

In-vitro emulation – RFLP-based paternity test

- Restriction Fragment Length Polymorphism (RFLP) analysis:
 a difference between samples of homologous DNA molecules from differing locations of restriction enzyme sites
- DNA sample is cut into fragments by enzymes
 - Fragments separated according to their lengths by gel electrophoresis
 - Paternity test is positive if enough fragments have the same length

Privacy-Preserving RFLP-based Paternity Test

PPGT Strategy

In-vitro emulation – RFLP-based paternity test

- Restriction Fragment Length Polymorphism (RFLP) analysis:
 a difference between samples of homologous DNA molecules from differing locations of restriction enzyme sites
- DNA sample is cut into fragments by enzymes
 - Fragments separated according to their lengths by *gel electrophoresis*
 - Paternity test is positive if enough fragments have the same length

RFLP-based PPGPT – Reduction to PSI-CA

- Participants: "client" (receives the result), "server" (remains oblivious)
- Public input: l, enzymes $E = \{e_1, \dots, e_j\}$ markers $M = \{mk_1, \dots, mk_l\}$
- Private input: digitized genomes

Remarks

- Why compare fragment lengths?
 - Isn't it more accurate to compare actual contents?
 - In practice, RFLP yields "false positives" with very low probability
 - This approach increases resilience to sequencing errors
- Performance Evaluation
 - About **1 min pre-processing** to emulate enzyme digestion process
 - About **10 ms computation** time on Intel Core i5 with 25 fragments
 - Extending to 50 fragments doubles computation time and increases accuracy by orders of magnitudes
 - Communication overhead: only a few KBs

Discussion

 What security and privacy issues are raised by DTC (direct-toconsumer) genomics?

 How would you like to see your DNA data managed? What about the DNA of your relatives?

• Should it be legal to obtain your DNA without your consent?

References

 Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. 2013. Addressing the concerns of the lacks family: quantification of kin genomic privacy. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security (CCS '13). Association for Computing Machinery, New York, NY, USA, 1141– 1152. DOI:https://doi.org/10.1145/2508859.2516707