
CS463/ECE424

University of Illinois

Mobile OS Security

Mobile OS Security Overview (Today)
Attacks on Android (Next Class)

2

Mobile Phone Evolution

• Basic Phone
– Phone call + SMS

• Feature Phones
– Extra features on the phone firmware itself

– Typically provided by the phone manufacturer

• Smart Phones
– API available that enables third-party apps

3

My phone when
I was in college

Growth of Mobile OS

4
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

PC vs. Smartphones

• Why worry specifically about mobile OS security?

– Why not use the same security principles we developed for PC?

• PC vs. smart phones
– Users: root privileges typically not given to user

– Persistent personal data, persistent login within apps

– Battery performance is an issue

o Implementing some security features may drain battery

– Network usage can be expensive

5

PC vs. Smart Phones

• Unique features in Smart Phones

– Location Data
o GPS and Wifi-based tracking

– Premium SMS Messages (expensive)

– Placing and recording phone calls

– Different authentication mechanisms
o Fingerprint reader (available across platform)

o Face Unlock (Android 5.0)

o Trusted Places, Devices, Voice (Android 5.0)

– Mobile payments

– Specific third-party app markets

6

Mobile OS Security Frameworks

Android Security Model Apple iOS Security (Briefly)

iOS Platform

• Kernel, Core OS, and Core services
– Kernel: based on Mach kernel (like Mac OS X)

– APIs: files, network, SQLite, POSIX threads, UNIX
sockets, etc.

• Media layer
– Supports 2D and 3D drawing, audio, video

• Cocoa Touch
– Application framework, file management,

network operations, UIKit

• Implemented in C, Objective-C, or Swift

8

iOS Security

• System security: integrated software/hardware

– Cyrpto engines built in hardware (apple’s TPM)

– Support secure enclave

• Encryption and data protection: protects user

data even when a device is lost

– E.g., the file system is encrypted

• App security: secure platform foundation

– E.g., app sandboxing

• Device controls: prevent unauthorized use of the

device and enable remote device management

9

FBI–Apple Encryption Dispute

• Why passcode matters?

– The passcode is also used together with hardware ID for

generating encryption keys

• File system is encrypted even when powered off

– The file system key is encrypted (wrapped) with an

ephemeral key (never stored on disk)

– Ephemeral key is stored in secure enclave (RAM) when

powered on, thrown away once powered off

– Ephemeral key is re-created when the device is turned on

combining user passcode and hardware UID

iOS System Security

• Secure boot chain (application processor)

– All startup process components are crypto-signed by Apple

– Ensure integrity and proceed only after verifying the chain of trust

– BootROM -> {Low-level bootloader ->} iBoot -> kernel

• Secure enclave coprocessor (Apple’s interpretation of TPM)

– Secure crypto-processor (secure boot; encrypted memory)

– Provides primitive cryptographic functions

– Provides secure storage of cryptographic keys

– Responsible of processing fingerprint/face data.

• Touch ID/Face ID

11

A strong passcode forms the foundation of

iOS device’s cryptographic protection

iOS App Security

• Mandatory code signing
– All apps must be signed using an apple-issued certificate

• Runtime protection
– App “sandbox” prevents access to other app’s data

– System resources, kernel shielded from user apps: third-party apps and majority of
iOS run under a non-privileged user-id: “mobile”

– Inter-app communication and background tasks only through iOS APIs

– Access to user information (or iCloud) by third-party must be declared

• Application data protection
– Apps can take advantage of built-in hardware encryption

12

iOS Permissions

• iOS apps all have common default
permissions (e.g. Internet)

• iOS 6, Sep 2012 onwards: certain
permissions need to be enabled
dynamically (e.g., location)

13

14

Android

• Platform outline:

– Linux kernel

– Embedded Web Browser

– SQL-lite database

– Software for secure network communication

o Open SSL, Bouncy Castle crypto API and Java library

– Java platform for running applications

– C language infrastructure

– Video APIs, Bluetooth, vibrate phone, etc.

15

Android Run Time
(ART) after v4.4

Android Market

• Open market

– Less rigorously reviewed (the situation is improved recently)

– Bad applications may show up on market

– Malware writers can get code onto platform: self-signed applications

• App permissions granted on user installation Android < 6.0, at
runtime for Android >= 6.0

17

Android Application Structure

• Four main components
– Activity – one-user task

o E.g., scroll through your inbox

– Service – Java daemon that runs in background
o E.g., application that streams music

– Broadcast receiver
o “mailboxes” for messages from other applications

– Content provider
o Store and share data using a relational database interface

• Activating components
– Using “Intents” (a form of IPC)

18

Android Intents

• Message between components in same or different apps

• Intent is a bundle of information

– action to be taken

– data to act on

– category of component to handle the intent

– instructions on how to launch a target activity

• Routing can be

– Explicit: delivered only to a specific receiver

– Implicit: all components that have registered to receive that action will get
the message (more “dangerous”)

19

intent

Android Manifest File

• Declarations

– Components

– Component capabilities

o Intent filters

o Permissions etc.

– App requirements

o Permissions

o Sensors etc.

20

Android Permissions

• Example of permissions provided by Android

– “android.permission.INTERNET”

– “android.permission.READ_EXTERNAL_STORAGE”

• Protection levels

– Dangerous

– Normal

– Signature

– SignatureOrSystem

21

Granted in runtime

Granted during
app installation

Custom permission (granted at installation)
Allow/disallow other apps to use your features

Permission to call system components

Android Runtime Permissions

• Dangerous permissions granted at runtime

• Normal and signature permissions still
granted at installation

• Only valid for apps API >= 23 (Android 6.0)

• Permissions granted based on a permission
group basis (changes in Oreo v8)

22

Android Permission Groups

• All dangerous permissions in a
group will be granted!

23

Isolation

• Multi-user Linux operating system

• Each app normally runs as “a different user”
– Each app has its own VM

– Traditional linux-based permissions (DAC: Discretionary Access Control)

• Applications announce permission requirements
– Create an allowlist – user grants access

– Inter-component communication (ICC) reference monitor checks permissions
(MAC: Mandatory Access Control)

24

Linux Process

Dalvik / ART

App 1

Linux Process

Dalvik / ART

App 2

Binder IPC & Permission Enforcement

25

App 1

Android Middleware

Binder IPC

Linux Kernel

App 2

A1C1 A2C1

DAC

MACICC Reference Monitor

Intent

F
ile

 S
y
s
te

m
,

S
o

c
k
e

ts

http://www.androidpolice.com

Skype Privacy Leak

26

http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/

http://blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html

Skype Privacy Leak

27

http://blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html

http://blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html

Skype Privacy Leak

28

http://blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html

Comparison: iOS vs Android

• App approval process
– Android apps from “open” app store

– iOS vendor-controlled store of vetted apps

• Application permissions
– Android permission: install-time manifest (< 6.0), + ask-on-first-use (>= 6.0)

– All iOS apps have same set of “sandbox” privileges, modified from iOS6 onwards

• App programming language
– Android apps written in Java; no buffer overflow

– iOS apps written in Objective-C (now Swift)

• TPM on smartphones!

29

Countermeasures

• App-store based model

– Rely on manual audit and accountability

– Rely on automated analysis

• Hardened Platform Security

– Security Enhancements for Android (SEAndroid)

o SELinux (Security-Enhanced Linux) equivalent for Android

30

Google Bouncer

• Perform Static and Dynamic Analysis
– Exact details not known

• Static Analysis
– Look at information flow from sources to sinks

– Impractical to do it for all possible cases
o Choose some sensitive sinks and sources

• Dynamic Analysis
– Run app for 5 minutes (emulator)

– Look for hidden behavior
o Unknown heuristics

• If flagged → manual analysis → suspension

31

Discussion Questions

• Which permission model do you prefer: Installation-Time vs Ask-On-
First-Use vs something else?

• We’ve seen that most of mobile malware target Android phones. Why
do you think this is happening?

• What could a malware do on a mobile device vs a desktop machine?

32

Reading

• https://www.apple.com/business/docs/iOS_Security_Guide.pdf

• https://source.android.com/security/

• [EnckIEEES&P09] Understanding Android Security. Enck, William, Machigar
Ongtang, and Patrick McDaniel. "Understanding android security." IEEE security &
privacy. 2009

• [WijesekeraUsenix15]: Primal Wijesekera, University of British Columbia; Arjun
Baokar, Ashkan Hosseini, Serge Egelman, and David Wagner, University of
California, Berkeley; Konstantin Beznosov, University of British Columbia

• [SmalleyNDSS13]: Smalley, Stephen, and Robert Craig. "Security Enhanced (SE)
Android: Bringing Flexible MAC to Android." NDSS. Vol. 310. 2013.

33

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://source.android.com/security/

	Default Section
	Slide 1: Mobile OS Security

	intro
	Slide 2: Mobile OS Security Overview (Today) Attacks on Android (Next Class)
	Slide 3: Mobile Phone Evolution
	Slide 4: Growth of Mobile OS
	Slide 5: PC vs. Smartphones
	Slide 6: PC vs. Smart Phones
	Slide 7: Mobile OS Security Frameworks
	Slide 8: iOS Platform
	Slide 9: iOS Security
	Slide 10: FBI–Apple Encryption Dispute
	Slide 11: iOS System Security
	Slide 12: iOS App Security
	Slide 13: iOS Permissions
	Slide 14
	Slide 15: Android
	Slide 16
	Slide 17: Android Market
	Slide 18: Android Application Structure
	Slide 19: Android Intents
	Slide 20: Android Manifest File
	Slide 21: Android Permissions
	Slide 22: Android Runtime Permissions
	Slide 23: Android Permission Groups
	Slide 24: Isolation
	Slide 25: Binder IPC & Permission Enforcement
	Slide 26: Skype Privacy Leak
	Slide 27: Skype Privacy Leak
	Slide 28: Skype Privacy Leak
	Slide 29: Comparison: iOS vs Android
	Slide 30: Countermeasures
	Slide 31: Google Bouncer
	Slide 32: Discussion Questions
	Slide 33: Reading

