
CS463/ECE424

University of Illinois

Android Security

Agenda

• Mobile Advertising

• Permission re-delegation attacks

• Update and collusion attacks

2

Why In-app Advertising

• Paid $0.99

• Year 1 (one month)
– 12,000,000 downloads

– $8,000,000 profit (total)

• Year 4 (one month)
– ?

• Free

• Year 1 (one month)
– 8,000,000 downloads

– $1,000,000 profit (per month)

• Year 4 (one month)
– 100,000,000 – 500,000,000 installations

– More than $10,000,000 profit (per month)

Angry Birds on iPhone Angry Birds on Android

Why in-app advertising?

Abs workout

4

COST DOWNLOADS

$1.49 10,000 – 50,000

COST DOWNLOADS

free
10,000,000 –
50,000,000

How does it work?

• App Developer registers with ad network or ad exchange

• Receives a dev id and the ad SDK

• Includes the ad library in the application

• Includes a UI element in the app’s layout

• Requests the permissions the ad network requires (Android)

5

Most free apps rely on it for profit

• Main app UI

6

Ad component

* Responsible for 65%-75%

of energy usage in free
applications!

AdRisk: Overview

• Problem: assessing security and privacy risks of third-party
advertising libraries embedded into apps

• Approach: the authors collected 100,000 apps, identified 100
ad libraries and statically analyzed them to assess their
potential risk

• Contributions: found that ad libraries send sensitive
information to remote servers and, fetch and run code
dynamically

7
[Grace, Michael C., et al. 2012]

Ad Libraries Collection

• 100,000 apps from Google Play (March-May 2011)

– Extract: permissions requested;

– Extract: app Java class tree hierarchy

– Candidate Set (CS) includes those apps with Internet permission; Ad Set
(AS) is initially empty
o Randomly select one app from CS and disassemble

o If it contains a new ad library
– add to AS; store its ad library class hierarchy (as a signature)

– remove all apps in CS with this class hierarchy

o Repeat until |AS| = 100

– 100 ad libraries present in 52.1% of all apps

8
[Grace, Michael C., et al. 2012]

AdRisk

• Step 1

– Identify dangerous APIs

– Identify sinks

• Step 2

– Identify possible risks

9
[Grace, Michael C., et al. 2012]

Identifying Dangerous APIs

• Analysis of

– Android documentation

– Android source code

• Annotate APIs with permissions they require

• ClassLoader APIs and use of java.lang.reflect package can also
be dangerous

• Permissions found: 34 dangerous, 26 signature, 11
signatureOrSystem, 5 normal

10
[Grace, Michael C., et al. 2012]

Identifying possible risks (1/2)

• Dangerous behaviors

– Can be triggered from one of many entry points

– It is dangerous if:

o There exists a path from an entry point to an API call that can cost the user
money (e.g sending an sms) or,

o There exists a path from entry point to an API call that allows access to
personal info AND there exists a path from that API call to a sink (e.g,
sending data over the Internet)

11
[Grace, Michael C., et al. 2012]

Identifying possible risks (2/2)

12
[Grace, Michael C., et al. 2012]

Dangerous API

Entry Point

If the API provides

access to personal info

Network Sink

AdRisk Output

• Potentially-feasible paths

• Use of reflection
– Java.lang.reflect

• Dynamic code loading
– Class Loader

• Permission probing
– Ad networks opportunistically check for permissions

• JavaScript linkages
– Wrap Android API’s with JS and expose it to rich-media apps

• Reading list of installed packages (apps)

13
[Grace, Michael C., et al. 2012]

Results

14
[Grace, Michael C., et al. 2012]

Results

15
[Grace, Michael C., et al. 2012]

Results

• Location and IMEI

– Targeted advertising

• Place phone call, send text message, add event to calendar

– Only through user interaction

• Other

– Sosceo transmits call history through the Internet

– Some of them upload the user’s phone number

– WAPS uploads the list of all installed apps

– Mobus reads through SMSs to determine the text-messaging service center they
use

16
[Grace, Michael C., et al. 2012]

Results

• Categorization of ad libraries

– Invasively collecting Personal Info

o Usually employed by smaller ad networks ; SMS, call logs, list of apps e.t.c.

– Permissively disclosing data to running ads

o JS wrapping of Android API (user interaction)

o gpsStart(<callback>) (no user interaction)

– Unsafely Fetching and Loading Dynamic Code

o One ad network allows the host app to be remotely controlled!

17
[Grace, Michael C., et al. 2012]

18

Agenda

• Mobile Advertising

• Permission re-delegation attacks

• Update and collusion attacks

19

Privilege Escalation Attacks on Android

• Gaining elevated access to resources that are normally
protected against an unauthorized application

• 3 major classes

– Confused deputy attacks: leveraging unprotected interfaces of benign
programs

o Permission re-delegation attacks

– Collusion attacks: malicious applications work together to achieve their
goal

– Update attacks: vulnerabilities in software update mechanisms

20

Permission Re-delegation Attacks

21

Wi-Fi Control
App

Attack App

Wi-Fi

Manager Permission

requested in

advance

Permission

not requested

Access

Wi-Fi?

confused

deputy

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Why Could This Happen?

• App w/ permissions exposes a public interface

– The “deputy” app may accidentally expose privileged functionality

– The attacker invokes it in a surprising context

o Example: broadcast receivers in Android

– Or intentionally expose it and but fail to correctly reduce the invoker’s
authority

o Dynamic (programmatic) permission checks
– checkCallingPermission(), checkCallingOrSelfPermission() etc.

22
[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Public Interfaces in Android Manifest

• Via exported tag

– <service android:name=”.WiFiService" android:exported=“true"
android:permission=“com.app.MY_PERMISSION">

• Via intent filters
– <receiver android:name=”.WiFiBroadcastReceiver">

 <intent-filter>

 <action android:name="android.intent.action.WIFI”/>

 </intent-filter>

 </receiver>

23
[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Component is still public if
android:exported=“false” AND

it has an intent filter!

Prevalence of Public Interfaces

• Examine 872 apps and check their AndroidManifest.xml

– 16 core system apps;

– 756 most popular free; 100 most popular paid

• 320 of these (37%) have dangerous/signature permissions and at least one
type of public component

• Only 9% of all apps perform dynamic permission checks

– But typically to protect content providers and not services or broadcast receivers

– Only 1 application in a random set w/ 50 apps does so to protect a service or
broadcast receiver

• 11 of 16 system applications are at risk

24
[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Implementing the Attack

• Constructing the attack

– Decompile the potentially vulnerable app

– Build call graph of the app

– Search the call graph to find paths from public entry points (sources) to
protected system APIs (sinks)

• Likely to miss some viable paths

– Cannot detect flow through callbacks

• Only construct attacks on API calls for verifiable side effects

25
[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Case Studies

• Build attacks for 5 system apps

– Settings: phone’s primary control panel
o Settings UI sends intent to Settings receiver on user’s button clicks

o Unprivileged app can also send Intents to this broadcast receiver

o Requires CHANGE_WIFI_STATE, BLUETOOTH_ADMIN, ACCESS_FINE_LOCATION
permissions

– DeskClock: time and alarm functionality
o Public service that accepts directions to play alarms

o Send Intent to indefinitely vibrate the phone (prevent phone from sleeping)

o Requires VIBRATE and WAKE_LOCK permissions

26
[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Defense: IPC Inspection

• Ideas borrowed from:
– Stack inspection

o When a privileged API call is made, system checks within a runtime whether
the call stack includes any unprivileged application. Depends on runtime
(Java vs C).

– History-based access control (HBAC)
o Reduces the permissions of trusted code after interactions with untrusted

code. Relies on runtime mechanisms.

– Mandatory access control (MAC)
o Central flow control by OS enforced fixed info. flow policy

o Apps cannot be strictly ordered in terms of integrity level

27

We need runtime independence and
ability of reduction of privileges!

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Defense: IPC Inspection

• When an app receives a message from another app, reduce
the privileges of recipient to the intersection of requester’s
and recipient’s permissions
– Maintain a list of current permissions for each app

– Build privilege reduction into system’s IPC mechanism

– Allow apps to accept or reject messages

o They can register a set of acceptable requesters

o Requesters are identified based on their permissions

28
[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

29

Agenda

• Mobile Advertising

• Permission re-delegation attacks

• Update and collusion attacks

30

Install-time Permissions
< version 6

Permission Types

Normal

Signature

Dangerous

SignatureOr
System

Permission Model Revision

Runtime Permissions
>= version 6

Permission Model Revision

Permission Types

Normal

Signature

Dangerous

Permission Groups

Permission Model Revision

App A

Custom Permissions
Protect Exported
App Components

App BApp B

Permission Types

Normal

Signature

Dangerous

Permission Model Revision

12345102030405010020030040050010001308

Prevalence of Custom Permissions

[Tuncay, Güliz Seray., et al. 2018]

1308

65%
apps

declare custom permissions

70%
apps

use custom permissions

1350
permissions

total # of custom permissions

Prevalence of Custom Permissions

[Tuncay, Güliz Seray., et al. 2018]

No clear distinction between
system permissions and custom permissions

Observation 1

[Tuncay, Güliz Seray., et al. 2018]

declared by
the system

declared by
3rd party apps

? ?
?

Observation 1

[Tuncay, Güliz Seray., et al. 2018]

No clear distinction between
system permissions and custom permissions

? ?
?

My_Permission

normal

Microphone Group

dangerous

? ?
?

record audio

My_Permission

Granted

Granted

Privilege (Permission) Escalation Attack

[Tuncay, Güliz Seray., et al. 2018]

No distinction between
custom permissions owners

Observation 2

[Tuncay, Güliz Seray., et al. 2018]

App B
? ?

? Skype_Permission

Skype_Permission

dangerous

? ?
?

Granted

Skype_Permission

signature

? ?
?

FCFSApp A

Collusion + Confused Deputy Attack

[Tuncay, Güliz Seray., et al. 2018]

Provides a backward-compatible OS-
level naming convention for tracking
ownership of custom permissions

Formally verified to be correct

cuspercus per

Defense

android

Custom permissions are claimed on a
FCFS basis

Software testing

Decisions made by principals outside the
framework’s Trusted Compute Base affect
enforcement at runtime

—> privilege escalation

—> spoofing

[Tuncay, Güliz Seray., et al. 2018]

Systematically addresses the lack of
separation of trust by decoupling
system from custom permissions

Reading

• Advertising Attacks
– [Grace, Michael C., et al. 2012] Grace, Michael C., et al. "Unsafe exposure analysis of mobile in-app advertisements."

Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks . ACM, 2012.

– [DemetriouNDSS16] Demetriou, Soteris, et. al. “Free for all! Assessing User Data Exposure to Advertising Libraries on
Android” Proceedings of the 23rd Annual Network and Distributed System Security Symposium (NDSS). 2016.

• Permission Re-Delegation Attacks
– [FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security

Symposium. 2011.

– [BugielNDSS12] Bugiel, Sven, et al. "Towards Taming Privilege-Escalation Attacks on Android." NDSS. 2012.

• Update and Collusion Attacks
– L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your Android, Elevating my Malware: Privilege Escalation

through Mobile OS Updating,” in IEEE Security and Privacy, 2014.

– [Tuncay, Güliz Seray et al. 2018] Tuncay, Guliz Seray, Soteris Demetriou, Karan Ganju and Carl A. Gunter. ”Resolving the
Predicament of Custom Permissions." Proceedings of the 25th Annual Network and Distributed System Security
Symposium (NDSS). 2018.

43

Discussion Questions

• Why are we not making all app components private to protect apps
from privilege escalation attacks?

• Does IPC inspection have an impact on application developers?

• What kind of apps would you be more comfortable sharing your data
with? Are there any apps you are not comfortable sharing your data
with?

• Other kinds of attacks on smartphones?

44

	Default Section
	Slide 1: Android Security

	intro
	Slide 2: Agenda
	Slide 3: Why In-app Advertising
	Slide 4: Why in-app advertising?
	Slide 5: How does it work?
	Slide 6: Most free apps rely on it for profit
	Slide 7: AdRisk: Overview
	Slide 8: Ad Libraries Collection
	Slide 9: AdRisk
	Slide 10: Identifying Dangerous APIs
	Slide 11: Identifying possible risks (1/2)
	Slide 12: Identifying possible risks (2/2)
	Slide 13: AdRisk Output
	Slide 14: Results
	Slide 15: Results
	Slide 16: Results
	Slide 17: Results
	Slide 18
	Slide 19: Agenda
	Slide 20: Privilege Escalation Attacks on Android
	Slide 21: Permission Re-delegation Attacks
	Slide 22: Why Could This Happen?
	Slide 23: Public Interfaces in Android Manifest
	Slide 24: Prevalence of Public Interfaces
	Slide 25: Implementing the Attack
	Slide 26: Case Studies
	Slide 27: Defense: IPC Inspection
	Slide 28: Defense: IPC Inspection
	Slide 29
	Slide 30: Agenda
	Slide 31: Permission Model Revision
	Slide 32: Permission Model Revision
	Slide 33: Permission Model Revision
	Slide 34: Permission Model Revision
	Slide 35: Prevalence of Custom Permissions
	Slide 36: Prevalence of Custom Permissions
	Slide 37: Observation 1
	Slide 38: Observation 1
	Slide 39: Privilege (Permission) Escalation Attack
	Slide 40: Observation 2
	Slide 41: Collusion + Confused Deputy Attack
	Slide 42: Defense
	Slide 43: Reading
	Slide 44: Discussion Questions

