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Agenda

• Mobile Advertising

• Permission re-delegation attacks

• Update and collusion attacks
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Why In-app Advertising

• Paid $0.99

• Year 1 (one month)
– 12,000,000 downloads

– $8,000,000 profit (total)

• Year 4 (one month)
– ?

• Free

• Year 1 (one month)
– 8,000,000 downloads

– $1,000,000 profit (per month)

• Year 4 (one month)
– 100,000,000 – 500,000,000 installations

– More than $10,000,000 profit (per month)

Angry Birds on iPhone Angry Birds on Android



Why in-app advertising?

Abs workout
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COST DOWNLOADS

$1.49 10,000 – 50,000

COST DOWNLOADS

free
10,000,000 – 
50,000,000



How does it work?

• App Developer registers with ad network or ad exchange

• Receives a dev id and the ad SDK

• Includes the ad library in the application

• Includes a UI element in the app’s layout

• Requests the permissions the ad network requires (Android) 
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Most free apps rely on it for profit

• Main app UI
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Ad component

* Responsible for 65%-75% 

of energy usage in free 
applications!



AdRisk: Overview

• Problem: assessing security and privacy risks of third-party 
advertising libraries embedded into apps

• Approach: the authors collected 100,000 apps, identified 100 
ad libraries and statically analyzed them to assess their 
potential risk

• Contributions: found that ad libraries send sensitive 
information to remote servers and, fetch and run code 
dynamically
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[Grace, Michael C., et al. 2012]



Ad Libraries Collection

• 100,000 apps from Google Play (March-May 2011)

– Extract: permissions requested; 

– Extract: app Java class tree hierarchy

– Candidate Set (CS) includes those apps with Internet permission; Ad Set 
(AS) is initially empty
o Randomly select one app from CS and disassemble

o If it contains a new ad library
– add to AS; store its ad library class hierarchy (as a signature)

– remove all apps in CS with this class hierarchy

o Repeat until |AS| = 100

– 100 ad libraries present in 52.1% of all apps
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AdRisk

• Step 1

– Identify dangerous APIs

– Identify sinks

• Step 2

– Identify possible risks
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Identifying Dangerous APIs

• Analysis of

– Android documentation

– Android source code

• Annotate APIs with permissions they require

• ClassLoader APIs and use of java.lang.reflect package can also 
be dangerous

• Permissions found: 34 dangerous, 26 signature, 11 
signatureOrSystem, 5 normal
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Identifying possible risks (1/2)

• Dangerous behaviors

– Can be triggered from one of many entry points

– It is dangerous if:

o There exists a path from an entry point to an API call that can cost the user 
money (e.g sending an sms) or,

o There exists a path from entry point to an API call that allows access to 
personal info AND there exists a path from that API call to a sink (e.g,  
sending data over the Internet)
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Identifying possible risks (2/2)
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[Grace, Michael C., et al. 2012]

Dangerous API

Entry Point

If the API provides 

access to personal info

Network Sink



AdRisk Output

• Potentially-feasible paths

• Use of reflection
– Java.lang.reflect

• Dynamic code loading
– Class Loader

• Permission probing
– Ad networks opportunistically check for permissions

• JavaScript linkages
– Wrap Android API’s with JS and expose it to rich-media apps

• Reading list of installed packages (apps)
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Results
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Results
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Results

• Location and IMEI

– Targeted advertising

• Place phone call, send text message, add event to calendar

– Only through user interaction

• Other

– Sosceo transmits call history through the Internet

– Some of them upload the user’s phone number

– WAPS uploads the list of all installed apps

– Mobus reads through SMSs to determine the text-messaging service center they 
use
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Results

• Categorization of ad libraries

– Invasively collecting Personal Info

o Usually employed by smaller ad networks ; SMS, call logs, list of apps e.t.c.

– Permissively disclosing data to running ads

o JS wrapping of Android API (user interaction)

o gpsStart(<callback>) (no user interaction)

– Unsafely Fetching and Loading Dynamic Code

o One ad network allows the host app to be remotely controlled!
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[Grace, Michael C., et al. 2012]
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Agenda

• Mobile Advertising

• Permission re-delegation attacks

• Update and collusion attacks
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Privilege Escalation Attacks on Android

• Gaining elevated access to resources that are normally 
protected against an unauthorized application

• 3 major classes

– Confused deputy attacks: leveraging unprotected interfaces of benign 
programs

o Permission re-delegation attacks

– Collusion attacks: malicious applications work together to achieve their 
goal

– Update attacks: vulnerabilities in software update mechanisms
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Permission Re-delegation Attacks

21

Wi-Fi Control 
App

Attack App

Wi-Fi 

Manager Permission 

requested in 

advance

Permission 

not requested

Access 

Wi-Fi?

confused 

deputy

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.



Why Could This Happen?

• App w/ permissions exposes a public interface

– The “deputy” app may accidentally expose privileged functionality

– The attacker invokes it in a surprising context

o Example: broadcast receivers in Android

– Or intentionally expose it and but fail to correctly reduce the invoker’s 
authority

o Dynamic (programmatic) permission checks
– checkCallingPermission(), checkCallingOrSelfPermission() etc.
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[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.



Public Interfaces in Android Manifest

• Via exported tag

– <service android:name=”.WiFiService" android:exported=“true" 
android:permission=“com.app.MY_PERMISSION">

• Via intent filters
–  <receiver android:name=”.WiFiBroadcastReceiver"> 

 <intent-filter>                                                            

 <action android:name="android.intent.action.WIFI”/> 

 </intent-filter>                                            

 </receiver>
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[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.

Component is still public if 
android:exported=“false” AND

it has an intent filter!



Prevalence of Public Interfaces

• Examine 872 apps and check their AndroidManifest.xml

– 16 core system apps; 

– 756 most popular free; 100 most popular paid

• 320 of these (37%) have dangerous/signature permissions and at least one 
type of public component

• Only 9% of all apps perform dynamic permission checks

– But typically to protect content providers and not services or broadcast receivers

– Only 1 application in a random set w/ 50 apps does so to protect a service or 
broadcast receiver

• 11 of 16 system applications are at risk
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Implementing the Attack

• Constructing the attack

– Decompile the potentially vulnerable app

– Build call graph of the app

– Search the call graph to find paths from public entry points (sources) to 
protected system APIs (sinks)

• Likely to miss some viable paths

– Cannot detect flow through callbacks

• Only construct attacks on API calls for verifiable side effects
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[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.



Case Studies

• Build attacks for 5 system apps

– Settings: phone’s primary control panel
o Settings UI sends intent to Settings receiver on user’s button clicks

o Unprivileged app can also send Intents to this broadcast receiver

o Requires CHANGE_WIFI_STATE, BLUETOOTH_ADMIN, ACCESS_FINE_LOCATION 
permissions

– DeskClock: time and alarm functionality
o Public service that accepts directions to play alarms

o Send Intent to indefinitely vibrate the phone (prevent phone from sleeping)

o Requires VIBRATE and WAKE_LOCK permissions
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Defense: IPC Inspection

• Ideas borrowed from:
– Stack inspection

o When a privileged API call is made, system checks within a runtime whether 
the call stack includes any unprivileged application. Depends on runtime 
(Java vs C).

– History-based access control (HBAC)
o Reduces the permissions of trusted code after interactions with untrusted 

code. Relies on runtime mechanisms.

– Mandatory access control (MAC)
o Central flow control by OS enforced fixed info. flow policy

o Apps cannot be strictly ordered in terms of integrity level
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We need runtime independence and 
ability of reduction of privileges!

[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.



Defense: IPC Inspection

• When an app receives a message from another app, reduce 
the privileges of recipient to the intersection of requester’s 
and recipient’s permissions
– Maintain a list of current permissions for each app

– Build privilege reduction into system’s IPC mechanism

– Allow apps to accept or reject messages

o They can register a set of acceptable requesters

o Requesters are identified based on their permissions
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[FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security Symposium. 2011.
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Install-time Permissions
< version 6

Permission Types

Normal

Signature

Dangerous

SignatureOr
System

Permission Model Revision



Runtime Permissions
>= version 6

Permission Model Revision

Permission Types

Normal

Signature

Dangerous



Permission Groups

Permission Model Revision



App A

Custom Permissions
Protect Exported
App Components

App BApp B

Permission Types

Normal

Signature

Dangerous

Permission Model Revision
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Prevalence of Custom Permissions

[Tuncay, Güliz Seray., et al. 2018]



1308

65%
apps

declare custom permissions

70%
apps

use custom permissions

1350
permissions

total # of custom permissions

Prevalence of Custom Permissions

[Tuncay, Güliz Seray., et al. 2018]



No clear distinction between 
system permissions and custom permissions

Observation 1

[Tuncay, Güliz Seray., et al. 2018]



declared by 
the system

declared by
3rd party apps

? ?
?

Observation 1

[Tuncay, Güliz Seray., et al. 2018]

No clear distinction between 
system permissions and custom permissions



? ?
?

My_Permission

normal

Microphone Group

dangerous

? ?
?

record audio

My_Permission

Granted

Granted

Privilege (Permission) Escalation Attack

[Tuncay, Güliz Seray., et al. 2018]



No distinction between 
custom permissions owners

Observation 2

[Tuncay, Güliz Seray., et al. 2018]



App B
? ?

? Skype_Permission

Skype_Permission

dangerous

? ?
?

Granted

Skype_Permission

signature

? ?
?

FCFSApp A

Collusion + Confused Deputy Attack

[Tuncay, Güliz Seray., et al. 2018]



Provides a backward-compatible OS-
level naming convention for tracking 
ownership of custom permissions

Formally verified to be correct

cuspercus per

Defense

android

Custom permissions are claimed on a 
FCFS basis

Software testing

Decisions made by principals outside the 
framework’s Trusted Compute Base affect 
enforcement at runtime        

—> privilege escalation

—> spoofing

[Tuncay, Güliz Seray., et al. 2018]

Systematically addresses the lack of 
separation of trust by decoupling 
system from custom permissions



Reading

• Advertising Attacks
– [Grace, Michael C., et al. 2012] Grace, Michael C., et al. "Unsafe exposure analysis of mobile in-app advertisements." 

Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks . ACM, 2012.

– [DemetriouNDSS16] Demetriou, Soteris, et. al. “Free for all! Assessing User Data Exposure to Advertising Libraries on 
Android” Proceedings of the 23rd Annual Network and Distributed System Security Symposium (NDSS). 2016.

• Permission Re-Delegation Attacks
– [FeltUSENIX11] Felt, Adrienne Porter, et al. "Permission Re-Delegation: Attacks and Defenses." USENIX Security 

Symposium. 2011.

– [BugielNDSS12] Bugiel, Sven, et al. "Towards Taming Privilege-Escalation Attacks on Android." NDSS. 2012.

• Update and Collusion Attacks
– L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your Android, Elevating my Malware: Privilege Escalation 

through Mobile OS Updating,” in IEEE Security and Privacy, 2014.

– [Tuncay, Güliz Seray et al. 2018] Tuncay, Guliz Seray, Soteris Demetriou, Karan Ganju and Carl A. Gunter. ”Resolving the 
Predicament of Custom Permissions." Proceedings of the 25th Annual Network and Distributed System Security 
Symposium (NDSS). 2018.
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Discussion Questions

• Why are we not making all app components private to protect apps 
from privilege escalation attacks?

• Does IPC inspection have an impact on application developers?

• What kind of apps would you be more comfortable sharing your data 
with? Are there any apps you are not comfortable sharing your data 
with?

• Other kinds of attacks on smartphones?
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