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Secure Communication

• Private-key (symmetric-key) setting

Encryption

𝑘
Decryption

𝑘

ciphertextplaintext plaintext



Components

• Key-generation algorithm: Gen

• Encryption algorithm: Enc

• Decryption algorithm: Dec

• Key: 𝑘

• What should we hide?

– Kerckhoffs’ principle: only the key



Kerckhoffs’ Principle

“A cryptosystem should be secure even if everything about the system, 
except the key, is public knowledge.”  

 – Auguste Kerckhoffs

• In other words: the security should be based only on the secrecy of 
the key

• In contrast with the idea of “security by obscurity”

• Q: Why is this a good idea?



Kerckhoffs’ Principle

• Easier to exchange a (short) key than maintain secrecy of the 
algorithms

• If key is leaked, it can be changed easily, whereas changing 
algorithms is cumbersome.

– Good practice to change key periodically

• Everyone uses the same algorithms, and different parties can use 
different keys to communicate



Open Cryptographic Designs?

• Public scrutiny increases confidence in the strength of the 
algorithms

• Better if “ethical hackers” to reveal flaws

• If cryptosystems are secret, they can be reverse-engineered

• Standards can be established



Recap: Attack Scenarios

• Ciphertext-only attacks

• Known-plaintext attacks

• Chosen-plaintext attacks

• Chosen-ciphertext attacks



Principles of Modern Cryptography



Historical Ciphers

• Caesar’s Cipher, ROT-13, Vigenère 
Cipher

• These and others were all broken

– E.g., through frequency analysis

• Historically, designing ciphers was 
more like an art than a science



Principles of Modern Cryptography

1. Formulation of exact definitions

2. Reliance on precise assumptions

3. Rigorous proofs of security



1. Formulation of exact definitions

• Designing cryptosystems

– What do we want to achieve?

• Using cryptosystems

– What encryption scheme suffices for an application?

• Studying cryptosystems

– How to compare two different encryption schemes?



1. Formulation of exact definitions

• Why is this important?

• Example: how do we define secure encryption?

• Definition: An encryption scheme is secure if no adversary can 
find the secret key when given a ciphertext.

• What about?  𝐸𝑛𝑐 𝑘, 𝑚 = 𝑚



1. Formulation of exact definitions

• Example: how do we define secure encryption?

• Definition: An encryption scheme is secure if no adversary can 
find the plaintext that corresponds to the ciphertext.

• What if we reveal 90% of the plaintext?

• 𝐸𝑛𝑐 𝑘, "𝑐𝑠463" = "𝑐𝑠46 ∗ "



1. Formulation of exact definitions

• Example: how do we define secure encryption?

• Definition: An encryption scheme is secure if no adversary can 
determine any character of the plaintext that corresponds to 
the ciphertext.

• Suppose we encrypt someone’s salary

• What if the scheme reveals whether that salary is more than 
USD 100’000?



1. Formulation of exact definitions

• Example: how do we define secure encryption?

• Definition: An encryption scheme is secure if no adversary can 
derive any meaningful information about the plaintext from 
the ciphertext.

• What is “meaningful”? Is learning part of the plaintext 
meaningful?



1. Formulation of exact definitions

• Example: how do we define secure encryption?

• Definition: An encryption scheme is secure if no adversary can 
compute any function of the plaintext from the ciphertext.

• Close to the “right” definition, but does not specify the 
attacker model, e.g., adversary’s computing power



2. Reliance on precise assumptions

• Modern cryptographic schemes can only be proved secure 
under some assumptions

• Security relies on some hard problems

• These problems are assumed to be hard



Plain RSA

19
[RSA76]

Alice Bob

Setup:
p and q large primes, N = pq, φ =(p-1)(q-1), 

Take e coprime with φ, 

d = e-1 mod φ, K’ = (N, d)

c ← me mod N

K ← (N, e)

Message m

Decryption
m ← cd mod N



2. Reliance on precise assumptions

• Example: RSA

• The security of RSA is based on two assumptions:

1. Hardness of factoring: Given the modulus 𝑁, it is difficult to find primes 𝑝 and 

𝑞 such that 𝑁 =  𝑝𝑞 (hard to reverse the private key)

2. RSA assumption: Given the public key (𝑁, 𝑒), finding the eth root of an 

arbitrary number mod N is difficult (hard to get the plaintext)

(Here difficult means it can’t be done in polynomial time.)



2. Reliance on precise assumptions

• Validity:

– The more an assumption is studied without being refuted, the more 
confident we are that it is true

– We can provide evidence that the assumption is true by showing it is 
implied by some other (accepted) assumption

– Assumption needs to be precisely stated to be studied



2. Reliance on precise assumptions

• Comparison of cryptographic schemes:

– Two schemes A and B have same efficiency, but A depends on an 
assumption implied by B’s assumption

– Then A is better

– If the assumptions are incomparable, then we give preference to better 
studied assumptions



2. Reliance on precise assumptions

• Facilitation of proofs of security:

– Security proofs for most cryptographic schemes are stated as “the 
scheme is secure if the assumption is true”

– This is only meaningful if the assumption is precise



3. Rigorous proofs of security

• Having exact definitions and precise assumptions make 
rigorous proofs possible

• Modern cryptographic schemes are accompanied with a proof 
of security

• Without a proof we are left with our intuition, and experience 
has shown this is disastrous
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Perfectly Secret Encryption



Perfectly Secret Encryption

• We want:

– An encryption scheme that cannot be broken by an adversary even if 
they has unlimited computing power and unlimited time.

• Intuition:

ciphertext
plaintext

Perfectly Secure 
Encryption

observing the ciphertext should give no information about the plaintext, i.e., the 
a posteriori distribution (of the plaintext) is the same as the a priori distribution



Perfectly Secret Encryption

• Defintion 1:

– Message space ℳ — set of all messages

– Ciphertext space 𝒞— set of all ciphertexts

– An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every 
probability distribution over ℳ, every message 𝑚 ∈ ℳ, and every 
ciphertext 𝑐 ∈ 𝒞 for which Pr[c ∈ 𝒞] > 0:

Pr 𝑴 = 𝑚 𝑪 = 𝑐] = Pr[𝑴 = 𝑚]

a posteriori distribution:
the probability that the message 

was 𝑚 if the ciphertext is 𝑐

a priori distribution:
the probability that the 

message was 𝑚

To simplify the presentation,  
we won’t mention these.



Perfectly-Secret Encryption

• Definition 2 (Equivalent to Def. 1):

– An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every probability 
distribution over ℳ, every message 𝑚 ∈ ℳ, and ciphertext 𝑐 ∈ 𝒞:

• Definition 3 (Equivalent to Def. 1):

– An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every probability 
distribution over ℳ, every message 𝑚0, 𝑚1 ∈ ℳ, and ciphertext 𝑐 ∈ 𝒞:

Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚0] = Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚1]

Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚] = Pr[𝑪 = 𝑐] 



Perfectly Secret Encryption

Pr 𝑴 = 𝑚 𝑪 = 𝑐] = Pr[𝑴 = 𝑚]

Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚] = Pr[𝑪 = 𝑐] 

Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚0] = Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚1]

⟺

⟺

The distribution over ciphertext is independent of the plaintext, 
i.e., the ciphertext contains no information about the plaintext.



Perfectly-Secret Encryption

• Proof (Def. 1 ⟺ Def. 2):
⟹ 

Suppose: Pr 𝑴 = 𝑚 𝑪 = 𝑐] = Pr 𝑴 = 𝑚 ,

Now, multiply both sides by  
Pr[𝑪=𝑐]

Pr[𝑴=𝑚]
:

• Simple exercise: ⟸, (Def. 1 ⟺ Def. 3)

Pr 𝑴 = 𝑚 𝑪 = 𝑐] Pr[𝑪 = 𝑐]

Pr[𝑴 = 𝑚]
= Pr[𝑪 = 𝑐]

Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚] = Pr[𝑪 = 𝑐]     (Bayes’ Theorem)



Perfectly Secret Encryption

• Adversarial indistinguishability game:
1. Adversary 𝒜 chooses messages 𝑚0, 𝑚1 ∈ ℳ.

2. Gen outputs random key 𝑘, and a random bit 𝑏 ∈ 0,1  is selected. Then 
ciphertext 𝑐 = Enc𝑘(𝑚𝑏) is sent to 𝒜.

3. Adversary 𝒜 (guesses) outputs bit 𝑏′ ∈ 0,1 .

4. The output is 1 if 𝑏 = 𝑏′, and 0 otherwise. If the output is 1 we say adversary 
𝒜 is successful.

• Definition 4 (Equivalent to Def. 1):
– An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every adversary 

𝒜:

Pr[ 𝒜 is successful] = ൗ1
2



One-Time Pad

• Message space ℳ, key space 𝒦, ciphertext space 𝒞 are 0,1 𝑙, for 
some integer 𝑙 > 0.

• Gen: picks key uniformly at random in 𝑘 ∈ 𝒦.

• Enc: given key 𝑘, message 𝑚 ∈ ℳ, output ciphertext 𝑐 = 𝑚⨁𝑘.

• Dec: given key 𝑘, ciphertext c ∈ 𝒞, output plaintext 𝑚 = 𝑐⨁𝑘.



One-Time Pad

• Suppose 𝑙 = 4, and Gen outputs 𝑘 = 1011 𝑏 = 0xB

• If the plaintext is 𝑚 = 0x5 = 0101𝑏, then the ciphertext is: 
𝑐 = 𝑚⨁𝑘 = 0101𝑏 ⨁  1011 𝑏 = 1110 𝑏 = 0xE

• Why is this perfectly secret?

– Ciphertext: 𝑐 = 0xE, what is the plaintext 𝑚 = 0xE⨁𝑘?

𝑘 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑚 E F C D A B 8 9 6 7 4 5 2 3 0 1

Each of the possibility with probability Τ1
16



One-Time Pad

• Theorem 1: The one-time pad is perfectly secret.

• Proof: 
– Pick some arbitrary distribution of the message space ℳ, and a particular 𝑚 ∈

ℳ, and ciphertext 𝑐 ∈ 𝒞. We have: 

– So: Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚0] = Pr[𝑪 = 𝑐| 𝑴 = 𝑚1] (Def. 3), since the above holds 
for every 𝑚0, 𝑚1 ∈ ℳ and 𝑐 ∈ 𝒞.

Pr[ 𝑪 = 𝑐 | 𝑴 = 𝑚] = Pr 𝑴⨁𝑲 = 𝑐 𝑴 = 𝑚  

= Pr[𝑚⨁𝑲 = 𝑐] 

= Pr 𝑲 = 𝑚⨁𝑐 = 2−𝑙  



One-Time Pad

• What happens if we use the same key to encrypt multiple 
messages?
– 𝑐1 = 𝑚1⨁𝑘, 𝑐2 = 𝑚2⨁𝑘

– then 𝑐1⨁𝑐2 = 𝑚1⨁𝑚2

• Observation: keys are as long as the messages. 
– Can we have perfect security with shorter keys?



Perfectly Secret Encryption

𝑐

𝒞

ℳ

𝑀(𝑐)

𝒦

Enc

Enc

Observe that 𝑀 𝑐 ≤ 𝒦 , but since 𝒦 < ℳ , there exists 𝑚′ ∈ ℳ ∖ 𝑀 𝑐

𝑚′



Perfectly Secret Encryption

• Theorem 2: Let (Gen, Enc, Dec) be a perfectly secret encryption scheme 
for some message space ℳ, and with key space 𝒦. 

– Then: |𝒦| ≥ |ℳ|

• Proof:
– Suppose 𝒦 < |ℳ|, take the uniform distribution over ℳ, and pick any 

ciphertext 𝑐 ∈ 𝒞 with Pr[𝑪 = 𝑐] > 0.

– Define 𝑀(𝑐) to be the set of possible plaintext 𝑚 ∈ ℳ which are valid 
decryptions of 𝑐.

– Observe: 𝑀 𝑐 ≤ 𝒦 ; since 𝒦 < ℳ , ∃𝑚′ ∈ ℳ ∖ 𝑀 𝑐

– But, Pr 𝑴 = 𝑚′ 𝑪 = 𝑐] = 0 ≠ Pr[𝑴 = 𝑚′].



Symmetric-Key Encryption

• Schemes used in practice are not perfectly secure, but only 
computationally secure

• Key space (e.g., 128 bits) is much smaller than plaintext space (i.e., 
virtually unlimited)

– Use modes of operations to encrypt arbitrary length messages using block 
ciphers (which operate on fixed-length chunks)
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Discussion Questions

1. One-Time Pad: 

– What if the key happens to be 0𝑙? 
o Suppose 𝑚 = “hello”,  what is the ciphertext 𝑐?

– Is it a good idea to change Gen to only pick keys 𝑘 ≠ 0𝑙?

– Why or why not? Is the scheme still perfectly secret?
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