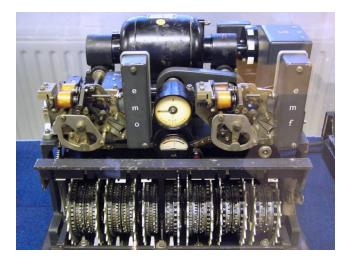
Crypto Models

CS463/ECE424 University of Illinois

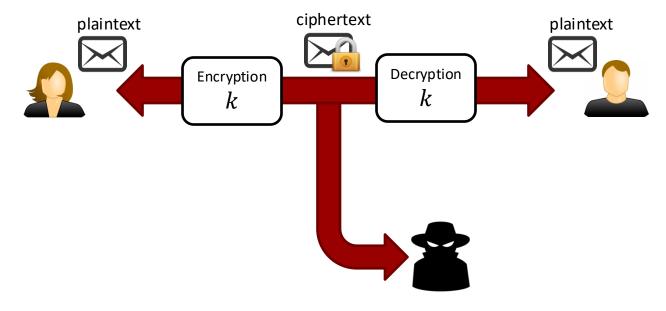
<u>Outline</u>

Secure Communication & Kerckhoffs' Principle Principles of Modern Cryptography Perfectly Secret Encryption (One-Time Pad)



Secure Communication

• Private-key (symmetric-key) setting



Components

- Key-generation algorithm: Gen
- Encryption algorithm: Enc
- Decryption algorithm: Dec
- Key: *k*

- What should we hide?
 - Kerckhoffs' principle: only the key

Kerckhoffs' Principle

"A cryptosystem should be secure even if everything about the system, except the key, is public knowledge."

– Auguste Kerckhoffs

- In other words: the security should be based only on the secrecy of the key
- In contrast with the idea of "security by obscurity"
- Q: Why is this a good idea?

Kerckhoffs' Principle

- Easier to exchange a (short) key than maintain secrecy of the algorithms
- If key is leaked, it can be changed easily, whereas changing algorithms is cumbersome.
 - Good practice to change key periodically
- Everyone uses the same algorithms, and different parties can use different keys to communicate

Open Cryptographic Designs?

Public scrutiny increases confidence in the strength of the algorithms

• Better if "ethical hackers" to reveal flaws

• If cryptosystems are secret, they can be reverse-engineered

• Standards can be established

Recap: Attack Scenarios

- Ciphertext-only attacks
- Known-plaintext attacks
- Chosen-plaintext attacks
- Chosen-ciphertext attacks

Principles of Modern Cryptography

Historical Ciphers

- Caesar's Cipher, ROT-13, Vigenère Cipher
- These and others were all broken
 E.g., through frequency analysis
- Historically, designing ciphers was more like an art than a science

Principles of Modern Cryptography

- **1**. Formulation of exact definitions
- 2. Reliance on precise assumptions
- 3. Rigorous proofs of security

- Designing cryptosystems
 - What do we want to achieve?
- Using cryptosystems
 - What encryption scheme suffices for an application?
- Studying cryptosystems
 - How to compare two different encryption schemes?

• Why is this important?

• Example: how do we define secure encryption?

- Definition: An encryption scheme is secure if no adversary can find the secret key when given a ciphertext.
- What about? Enc(k,m) = m

• Example: how do we define secure encryption?

- Definition: An encryption scheme is seedre if no adversary can find the plaintext that corresponds to the ciphertext.
- What if we reveal 90% of the plaintext?

•
$$Enc(k, "cs463") = "cs46 * "$$

- Example: how do we define secure encryption?
- Definition: An encryption scheme is secure if no adversary can determine any character of the plaintext that corresponds to the ciphertext.
- Suppose we encrypt someone's salary
- What if the scheme reveals whether that salary is more than USD 100'000?

- Example: how do we define secure encryption?
- Definition: An encryption scheme is secure if no adversary can derive any meaningful information about the plaintext from the ciphertext.

 What is "meaningful"? Is learning part of the plaintext meaningful?

• Example: how do we define secure encryption?

• Definition: An encryption scheme is secure if no adversary can compute **any** function of the plaintext from the ciphertext.

• Close to the "right" definition, but does not specify the attacker model, e.g., adversary's computing power

 Modern cryptographic schemes can only be proved secure under some assumptions

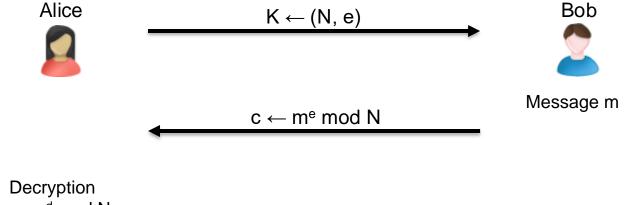
• Security relies on some hard problems

• These problems are *assumed* to be hard

Plain RSA

Setup:

p and q large primes, N = pq, ϕ =(p-1)(q-1), Take e coprime with ϕ , d = e⁻¹ mod ϕ , K' = (N, d)



 $m \gets c^d \bmod N$

- Example: RSA
- The security of RSA is based on two assumptions:
 - 1. Hardness of factoring: Given the modulus N, it is **difficult** to find primes p and q such that N = pq (hard to reverse the private key)
 - 2. RSA assumption: Given the public key (N, e), finding the eth root of an arbitrary number mod N is *difficult* (hard to get the plaintext)

(Here difficult means it can't be done in polynomial time.)

- Validity:
 - The more an assumption is studied without being refuted, the more confident we are that it is true
 - We can provide evidence that the assumption is true by showing it is implied by some other (accepted) assumption
 - Assumption needs to be precisely stated to be studied

- Comparison of cryptographic schemes:
 - Two schemes A and B have same efficiency, but A depends on an assumption implied by B's assumption
 - Then A is better
 - If the assumptions are incomparable, then we give preference to better studied assumptions

- Facilitation of proofs of security:
 - Security proofs for most cryptographic schemes are stated as "the scheme is secure if the assumption is true"
 - This is only meaningful if the assumption is precise

3. Rigorous proofs of security

 Having exact definitions and precise assumptions make rigorous proofs possible

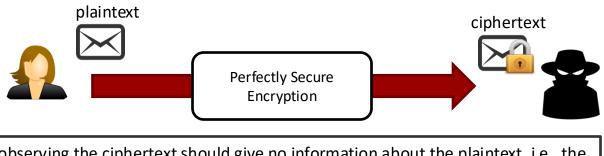
Modern cryptographic schemes are accompanied with a proof of security

• Without a proof we are left with our intuition, and experience has shown this is disastrous

Perfectly Secret Encryptio

Perfectly Secret Encryption

- We want:
 - An encryption scheme that cannot be broken by an adversary even if they has unlimited computing power and unlimited time.
- Intuition:



observing the ciphertext should give no information about the plaintext, i.e., the *a posteriori* distribution (of the plaintext) is the same as the *a priori* distribution

Perfectly Secret Encryption

• Defintion 1:

- Message space \mathcal{M} set of all messages
- Ciphertext space \mathcal{C} set of all ciphertexts
- An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[c \in \mathcal{C}] > 0$: To simplify the presentation,

o simplify the presentation, we won't mention these.

$$\Pr[\mathbf{M} = m \mid \mathbf{C} = c] = \Pr[\mathbf{M} = m]$$
a posteriori distribution:
the probability that the message
was *m* if the ciphertext is *c*

$$\Pr[\mathbf{M} = m \mid \mathbf{C} = c] = \Pr[\mathbf{M} = m]$$
a priori distribution:
the probability that the message
message was *m*

Perfectly-Secret Encryption

- Definition 2 (Equivalent to Def. 1):
 - An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and ciphertext $c \in C$:

$$\Pr[\mathbf{C} = c \mid \mathbf{M} = m] = \Pr[\mathbf{C} = c]$$

- Definition 3 (Equivalent to Def. 1):
 - An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every probability distribution over \mathcal{M} , every message $m_0, m_1 \in \mathcal{M}$, and ciphertext $c \in \mathcal{C}$:

$$\Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1]$$

Perfectly Secret Encryption

$$\Pr[\mathbf{M} = m \mid \mathbf{C} = c] = \Pr[\mathbf{M} = m]$$
$$\Leftrightarrow$$
$$\Pr[\mathbf{C} = c \mid \mathbf{M} = m] = \Pr[\mathbf{C} = c]$$
$$\Leftrightarrow$$

$$\Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1]$$

The distribution over ciphertext is independent of the plaintext, i.e., the ciphertext contains no information about the plaintext.

Perfectly-Secret Encryption

• Proof (Def. 1 \Leftrightarrow Def. 2):

$$\Rightarrow$$
Suppose: $\Pr[M = m \mid C = c] = \Pr[M = m]$,
Now, multiply both sides by $\frac{\Pr[C=c]}{\Pr[M=m]}$:
$$\frac{\Pr[M = m \mid C = c] \Pr[C = c]}{\Pr[M = m]} = \Pr[C = c]$$

 $\Pr[\mathbf{C} = c \mid \mathbf{M} = m] = \Pr[\mathbf{C} = c] \quad (Bayes' \text{ Theorem})$

• Simple exercise: \Leftarrow , (Def. 1 \Leftrightarrow Def. 3)

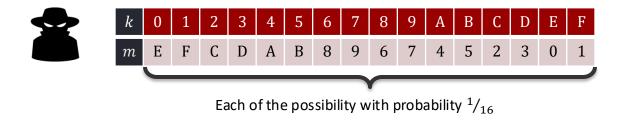
Perfectly Secret Encryption

- Adversarial indistinguishability game:
 - 1. Adversary \mathcal{A} chooses messages $m_0, m_1 \in \mathcal{M}$.
 - 2. Gen outputs random key k, and a random bit $b \in \{0,1\}$ is selected. Then ciphertext $c = \text{Enc}_k(m_b)$ is sent to \mathcal{A} .
 - 3. Adversary \mathcal{A} (guesses) outputs bit $b' \in \{0,1\}$.
 - 4. The output is 1 if b = b', and 0 otherwise. If the output is 1 we say adversary \mathcal{A} is successful.
- Definition 4 (Equivalent to Def. 1):
 - An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every adversary A:

$$\Pr[\mathcal{A} \text{ is successful}] = \frac{1}{2}$$

- Message space \mathcal{M} , key space \mathcal{K} , ciphertext space \mathcal{C} are $\{0,1\}^l$, for some integer l > 0.
- Gen: picks key uniformly at random in $k \in \mathcal{K}$.
- Enc: given key k, message $m \in \mathcal{M}$, output ciphertext $c = m \oplus k$.
- Dec: given key k, ciphertext $c \in C$, output plaintext $m = c \oplus k$.

- Suppose l = 4, and Gen outputs $k = 1011_{b} = 0$ xB
- If the plaintext is $m = 0x5 = 0101_b$, then the ciphertext is: $c = m \oplus k = 0101_b \oplus 1011_b = 1110_b = 0xE$
- Why is this perfectly secret?
 - Ciphertext: c = 0xE, what is the plaintext $m = 0xE \oplus k$?



- Theorem 1: The one-time pad is perfectly secret.
- Proof:
 - Pick some arbitrary distribution of the message space \mathcal{M} , and a particular $m \in \mathcal{M}$, and ciphertext $c \in \mathcal{C}$. We have:

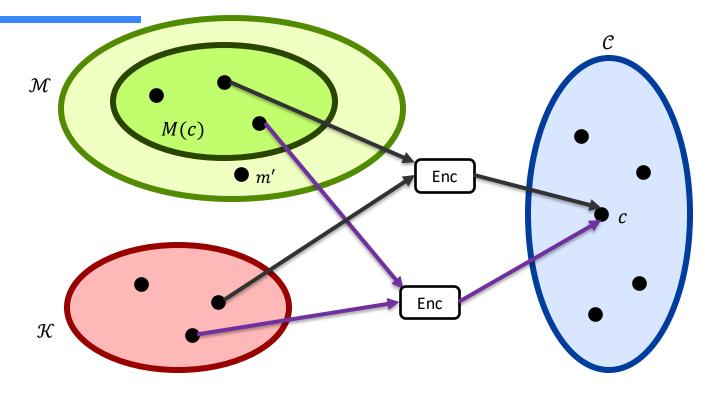
$$\Pr[\mathbf{C} = c \mid \mathbf{M} = m] = \Pr[\mathbf{M} \oplus \mathbf{K} = c \mid \mathbf{M} = m]$$
$$= \Pr[m \oplus \mathbf{K} = c]$$
$$= \Pr[\mathbf{K} = m \oplus c] = 2^{-l}$$

- So: $\Pr[\mathbf{C} = c \mid \mathbf{M} = m_0] = \Pr[\mathbf{C} = c \mid \mathbf{M} = m_1]$ (Def. 3), since the above holds for every $m_0, m_1 \in \mathcal{M}$ and $c \in \mathcal{C}$.

- What happens if we use the same key to encrypt multiple messages?
 - $-c_1 = m_1 \oplus k$, $c_2 = m_2 \oplus k$
 - then $c_1 \oplus c_2 = m_1 \oplus m_2$

- Observation: keys are as long as the messages.
 - Can we have perfect security with shorter keys?

Perfectly Secret Encryption



Observe that $|M(c)| \leq |\mathcal{K}|$, but since $|\mathcal{K}| < |\mathcal{M}|$, there exists $m' \in \mathcal{M} \setminus M(c)$

Perfectly Secret Encryption

- Theorem 2: Let (Gen, Enc, Dec) be a perfectly secret encryption scheme for some message space \mathcal{M} , and with key space \mathcal{K} .
 - Then: $|\mathcal{K}| \ge |\mathcal{M}|$
- Proof:
 - Suppose $|\mathcal{K}| < |\mathcal{M}|$, take the uniform distribution over \mathcal{M} , and pick any ciphertext $c \in C$ with $\Pr[C = c] > 0$.
 - Define M(c) to be the set of possible plaintext $m \in \mathcal{M}$ which are valid decryptions of c.
 - Observe: $|M(c)| \leq |\mathcal{K}|$; since $|\mathcal{K}| < |\mathcal{M}|$, $\exists m' \in \mathcal{M} \setminus M(c)$
 - But, $\Pr[\mathbf{M} = m' | \mathbf{C} = c] = 0 \neq \Pr[\mathbf{M} = m'].$

Symmetric-Key Encryption

- Schemes used in practice are not perfectly secure, but only computationally secure
- Key space (e.g., 128 bits) is much smaller than plaintext space (i.e., virtually unlimited)
 - Use modes of operations to encrypt arbitrary length messages using block ciphers (which operate on fixed-length chunks)

References

 Jonathan Katz, and Yehuda Lindell. "Introduction to modern cryptography." CRC Press, 2014. Chapters 1 & 2.

Discussion Questions

1. One-Time Pad:

- What if the key happens to be 0^l ?
 - Suppose m = "hello", what is the ciphertext c?
- Is it a good idea to change Gen to only pick keys $k \neq 0^l$?
- Why or why not? Is the scheme still perfectly secret?