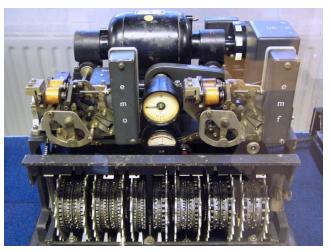
Crypto Models

Computer Security II CS463/ECE424 University of Illinois

<u>Outline</u>

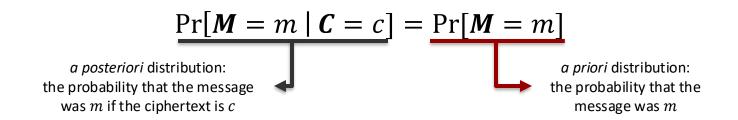
Computational Security Computationally Secure Encryption Pseudorandomness



Recap: Perfectly Secret Encryption

• Defintion:

- Message space \mathcal{M} set of all messages
- Ciphertext space \mathcal{C} set of all ciphertexts
- An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[c \in \mathcal{C}] > 0$:



Recap: One-Time Pad

- Message space \mathcal{M} , key space \mathcal{K} , ciphertext space \mathcal{C} are $\{0,1\}^l$, for some integer l > 0.
- Gen: picks key uniformly at random in $k \in \mathcal{K}$.
- Enc: given key k, message $m \in \mathcal{M}$, output ciphertext $c = m \oplus k$.
- Dec: given key k, ciphertext $c \in C$, output plaintext $m = c \oplus k$.

Perfectly Secret Encryption

- Perfectly secret encryption provides:
 - Security against an adversary that has unlimited computation power and unlimited time.
 - The adversary gains absolutely no knowledge about the plaintext from looking at the ciphertext.
- But, perfectly secret encryption (e.g., one-time pad) is impractical
 - Key must be at least as long as the message

- One (other) Kerckhoffs' Principle
 - "The [cryptosystem] should be, if not theoretically unbreakak unbreakable in practice."
- Basic idea: a scheme does not need to be perfectly secret, but only:
 - Not breakable within a reasonable amount of time
 - Not breakable with a reasonable probability of success

- We require:
 - 1. Security against an *efficient* adversary running in a *feasible amount of time*.
 - 2. Adversary may succeed with some very small probability.
- We need to precisely define:
 - Efficient adversary
 - Feasible amount of time
 - Very small probability

- There are two common approaches for formalization:
 - 1. Concrete approach
 - 2. Asymptotic approach

- (Template) Definition:
 - Let $t, \varepsilon > 0$, with $\varepsilon \leq 1$.
 - A scheme is (t, ε) -secure if every adversary running for time at most t breaks the scheme with probability at most ε .
- What does it mean to "break" the scheme?
- What is the time unit?

- Example (optimal security):
 - Modern encryption schemes with key length of n bits and adversary running in time t, are breakable with probability at most $t \times 2^{-n}$
 - Brute-force attack: try to decrypt using all 2^n keys
 - It may be useful to think of the time unit as being either:
 - Clock cycle
 - Time to invoke the decryption function

- How to get a feeling for *t*, *ε*?
- Today, computation on the order of $t = 2^{64}$ is somewhat within reach
 - A 4GHz computer will take roughly 146 years to execute for 2^{64} cycles.
 - Parallelization: with 146 such computers it would take only about one year
- Assume n = 128 bits
 - If an adversary runs a 4GHz computer for 146 years can break a modern encryption scheme (e.g., AES) with probability at most 2^{-64} .
 - Is probability 2^{-64} small enough?

Intuitive Sense: Asteroid Impact

- What's the probability of us getting killed by an asteroid impact?
- On average, an asteroid of mass 40 billion kilograms and
 325m diameter can impact earth once every 80,000 years
- Probability of impact anywhere on earth at any given second is 2⁻⁴¹
- Probability of impact on Champaign county at any given second is 2^{-59} , i.e., 32 times more than 2^{-64}
- Probability of impact on Champaign county in any given day is 2^{-42} , i.e., 4 million times more than 2^{-64}

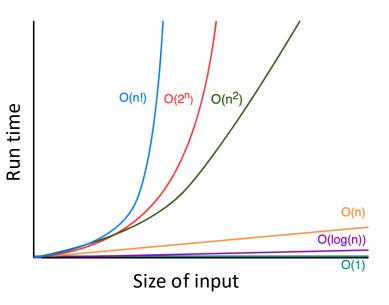


- The approach is useful, but we should be careful:
 - 1. For what values of t, ε can we say the scheme is "secure"?
 - 2. What are the capabilities of the adversary?
 - Hardware: "off-the-shelf" or custom-built?
 - Algorithms & Software: "off-the-shelf" or designed for the attack?
 - 3. What about Moore's law?
 - Computing power doubles every 18 months (?) --- attack now or later?
 - Now: 146 computer (4GHz) run for 1 year to break AES-128 with probability $\leq 2^{-64}$.
 - Later (in 18×64 months = 96 years): 146 computers (of the future) run for one year to break AES-128 with probability 1.

Asymptotic Approach ("Big O")

Basic idea:

- Use complexity theory
- Running time and success probability of the adversary are *functions* (of some parameters), not concrete numbers
- Formally, we define a security parameter



- Security parameter:
 - For encryption: the key length, i.e., for encryption with an *n*-bit key, we say the security parameter is *n*.
- Efficiency:
 - Honest parties and feasible adversaries runs in PPT (in n).
 - PPT stands for *probabilistic polynomial time*, i.e., $a \times n^c$ for some constants a and c.
- Probability of success:
 - Must be smaller than any inverse polynomial, i.e., n^{-c} for every constant c. This is called a *negligible* probability.

Probabilistic Polynomial Time

- Concretely (for large enough values of n):
 - Running times of n^2 , n^{10} , and even n^{1000} are all feasible.
 - Running times of 2^n , $2^{\sqrt{n}}$, and even $n^{\log n}$ are all infeasible.
 - -2^{-n} , $2^{-\sqrt{n}}$ and $n^{-\log n}$ are all negligible probabilities.

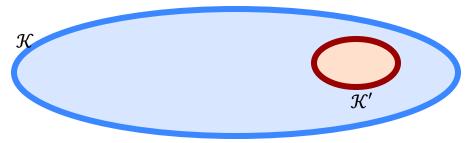
- (Template) Definition:
 - A scheme is secure if every adversary running in PPT succeeds in breaking the scheme with only negligible probability.
- Remarks:
 - The security only holds for large enough values of the security parameter.
 - We will use the asymptotic approach in the rest of the lecture.

- Example:
 - Take a secure scheme with security parameter n
 - Suppose there is an adversary can break the scheme running for n^3 minutes with probability $2^{40} \times 2^{-n}$.
 - Since 2^{-n+40} is a negligible function, the definition is satisfied
 - However, if we take n = 40, then the adversary can break the scheme by running for 40^3 minutes ≈ 6 weeks, with probability 1.

- Observation: we have relaxed the security in two ways
 - 1. We restrict the running time of the adversary to be polynomial (in terms of the security parameter)
 - 2. We allow the adversary to successfully break the scheme with some very small (i.e., negligible) probability
 - Why?
 - because we are using short keys, i.e., $|\mathcal{H}| \ll |\mathcal{M}|$.

A. Running Time

- Suppose $|\mathcal{K}| \ll |\mathcal{M}|$, and the adversary is attempting a known-plaintext attack
 - Adversary knows pairs (m_i, c_i) , such that: $c_i = \text{Enc}_k(m_i)$
 - Adversary can perform a brute-force search:
 - Try all keys $k' \in \mathcal{K}$ until for all i: $\mathrm{Dec}_{k'}(c_i) = m_i$
 - $_{\circ}~$ Success probability is 1 and running time is linear in $|\mathcal{K}|.$



We want the keyspace the adversary can explore *K*' ⊂ *K* to be much smaller than *K*, i.e., |*K*| must be super-polynomial in *n*.

B. Success Probability

- Suppose $|\mathcal{K}| \ll |\mathcal{M}|$, and the adversary is attempting a known-plaintext attack
 - Adversary knows pairs (m_i, c_i) , such that: $c_i = \text{Enc}_k(m_i)$
 - Adversary can pick a random key $k' \in \mathcal{K}$ and try to decrypt:
 - If for all $i: \text{Dec}_{k'}(c_i) = m_i$, then key is correct with high probability
 - $_{\circ}~$ Success probability is $^{1}/_{|\mathcal{K}|}$ and running time is constant.

 So we must allow for a break with some very small probability (i.e., negligible) and still call the scheme "secure"

Computationally Secure Encryption

Computationally Secure Encryption

1ⁿ: a bit stream of n "1" bits

- We need to add security parameter *n* in the definition
- Key-generation algorithm: Gen
 - We get the key k by invoking $Gen(1^n)$, we assume $|k| \ge n$
- Encryption algorithm: Enc
 - Given a key k and a message $m \in \{0,1\}^*$, $Enc_k(m)$ returns a ciphertext c
 - Enc may be randomized
- Decryption algorithm: Dec
 - Given a key k and a ciphertext c, $Dec_k(c)$ outputs a message m
 - Dec is deterministic
- For correctness: $Dec_k(Enc_k(m)) = m$

Recall: Perfectly Secret Encryption

- Adversarial indistinguishability game:
 - 1. Adversary \mathcal{A} chooses messages $m_0, m_1 \in \mathcal{M}$.
 - 2. Gen outputs random key k, and a random bit $b \in \{0,1\}$ is selected. Then ciphertext $c = \text{Enc}_k(m_b)$ is sent to \mathcal{A} .
 - 3. Adversary \mathcal{A} outputs bit $b' \in \{0,1\}$.
 - 4. The output is 1 if b = b', and 0 otherwise. If the output is 1 we say adversary A is successful.
- Definition 4 (Equivalent to Def. 1):
 - An encryption scheme (Gen, Enc, Dec) is perfectly secret if for every adversary A:

$$\Pr[\mathcal{A} \text{ is successful}] = \frac{1}{2}$$

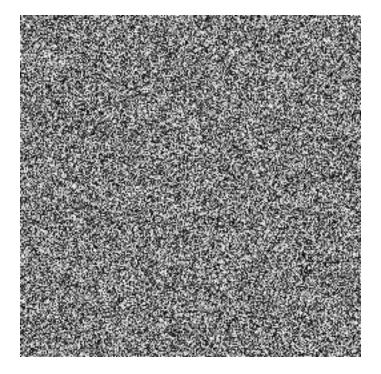
Computationally Secure Encryption

• Eavesdropper indistinguishability game:

- 1. Adversary \mathcal{A} is given input 1^n and chooses messages $m_0, m_1 \in \mathcal{M}$ of the same length.
- 2. Gen (1^n) outputs random key k, and a random bit $b \in \{0,1\}$ is selected. Then $c = \text{Enc}_k(m_b)$, called the *challenge ciphertext*, is sent to \mathcal{A} .
- 3. Adversary \mathcal{A} outputs bit $b' \in \{0,1\}$.
- 4. The output is 1 if b = b', and 0 otherwise. If the output is 1 we say adversary A is successful.
- Definition:
 - An encryption scheme (Gen, Enc, Dec) has indistinguishable encryption (in the presence of an eavesdropper) if for all PPT adversaries A there exists a negligible function negl such that:

$$\Pr[\mathcal{A} \text{ is successful}] \leq \frac{1}{2} + \operatorname{negl}(n)$$

Pseudorandomness



Pseudorandomness

- Roughly speaking, a pseudorandom string "looks" random as long as the "looking" entity runs in PPT.
 - Any PPT algorithm cannot distinguish between a truly random string and a pseudorandom string.

- Remarks:
 - Pseudorandomness is a computational relaxation of randomness
 - If we say a string is pseudorandom we really mean: the process generating this string is pseudorandom

Pseudorandomness & Encryption

- Intuition:
 - With the one-time pad, the ciphertext was truly random because the key was picked uniformly at random
 - If we use pseudorandomness we can make the ciphertext look random to any PPT adversary
 - If we can generate a long pseudorandom string from a small truly random seed, a small key will suffice

Pseudorandom Generators (PRGs)

- Roughly speaking:
 - A PRG is a deterministic algorithm that receives a short truly random seed and stretches it into a long pseudorandom string.
 - In other words, a PRG uses a small amount of true randomness in order to generate a large amount of pseudorandomness.

- To formally define PRGs, we will need the notion of distinguishers
 - A distinguisher D is an algorithm which receives an input string u and outputs a bit $b \in \{0,1\}$. Its goal is to determine whether its input u is random string.

PRGs

- Definition:
 - Let $\ell(\cdot)$ be a polynomial and G be a deterministic PPT algorithm such that for any input $s \in \{0,1\}^n$: G outputs a string of length $\ell(n)$. G is a pseudorandom generator if:
 - 1. (Expansion) For every n, we have: $\ell(n) > n$
 - 2. (Pseudorandomness) For all PPT distinguishers D, there exist a negligible function negligible such that: $|D_{n}[D_{n}(A_{n})] = |D_{n}[D_{n}(A_{n})] = |D_{n}[D_{n}[D_{n}(A_{n})] = |D_{n}[D_{n}(A_{n})]$

 $\left|\Pr[D(r)=1] - \Pr[D(G(s))=1]\right| \le \operatorname{negl}(n),$

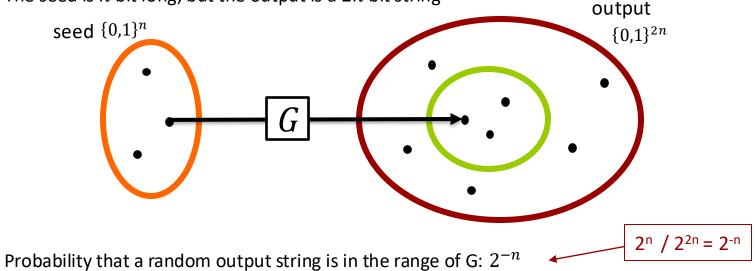
where $r \in \{0,1\}^{\ell(n)}$ and $s \in \{0,1\}^n$ are chosen uniformly at random.

 $-\ell(\cdot)$ is called the expansion factor.

PRGs: Example

_

- How random is the output of a PRG?
 - Suppose we have a PRG with $\ell(n) = 2n$
 - The seed is n bit long, but the output is a 2n bit string



Secure Fixed-Length Encryption

- Let G be a PRG with expansion factor ℓ
- Let key k, message m, and ciphertext c
 - -k is n bits; m and c are $\ell(n)$ bits
- Gen:
 - Generate a uniformly random *n*-bit key *k*, i.e., with probability 2^{-n}
- Enc:
 - Compute $c = G(k) \oplus m$
- Dec:
 - Compute $m = G(k) \oplus c$

Secure Fixed-Length Encryption

- Theorem:
 - If G is a PRG, then the fixed-length encryption scheme is secure, i.e., it has indistinguishable encryptions in the presence of an eavesdropper.

- Proof (by reduction):
 - If an adversary can break our fixed-length encryption scheme, then we can construct a distinguisher, i.e., an algorithm which can distinguish output of G from a truly random string.

Proof (Sketch)

- If we replace our G with a truly random generator, then our scheme is identical to the one-time pad.
 - And so no adversary can succeed with probability better other than $1/_2$
- So, if a PPT adversary A can break the fixed-length encryption scheme, then the adversary **must be** implicitly distinguishing the output of *G* from a truly random string.
 - This is the key part of the proof, where we construct a distinguisher D using \mathcal{A}
- This implies that *G* is not a PRG, which contradicts our starting assumption.
- Therefore, the scheme is secure.

Computationally Secure Encryption (same as before)

- Eavesdropper indistinguishability game:
 - 1. Adversary \mathcal{A} is given input 1^n and chooses messages $m_0, m_1 \in \mathcal{M}$ of the same length.
 - 2. Gen (1^n) outputs random key k, and a random bit $b \in \{0,1\}$ is selected. Then $c = \text{Enc}_k(m_b)$, called the *challenge ciphertext*, is sent to \mathcal{A} .
 - 3. Adversary \mathcal{A} outputs bit $b' \in \{0,1\}$.
 - 4. The output is 1 if b = b', and 0 otherwise. If the output is 1 we say adversary A is successful.
- Definition:
 - An encryption scheme (Gen, Enc, Dec) has indistinguishable encryption (in the presence of an eavesdropper) if for all PPT adversaries A there exists a negligible function negl such that:

$$\Pr[\mathcal{A} \text{ is successful}] \leq \frac{1}{2} + \operatorname{negl}(n)$$

Reduction

- We are given a PPT adversary \mathcal{A}
- Distinguisher *D*:
 - On input $u \in \{0,1\}^{\ell(n)}$, do the following:
 - 1. Run $\mathcal{A}(1^n)$ to obtain messages $m_0, m_1 \in \{0,1\}^{\ell(n)}$
 - 2. Select a random bit $b \in \{0,1\}$, and compute $c = u \oplus m_b$
 - 3. Send ciphertext c to \mathcal{A} and obtain bit b'. Output is 1 if b = b', and 0 otherwise
- Observation:
 - If u is a random string then A is being run against the one-time pad, and so A will be successful with probability 1/2
 - If u = G(k), for some key k, then $\Pr[D(G(k)) = 1] = \Pr[\mathcal{A} \text{ is successful }]$

Reduction

- So far, we have a PPT adversary \mathcal{A} and a distinguisher D
- Observation:
 - If u is a random string then A is being run against the one-time pad, and so A will be successful with probability 1/2
 - If u = G(k), for some key k, then $\Pr[D(G(k)) = 1] = \Pr[\mathcal{A} \text{ is successful }]$

Recall: PPT adversary \mathcal{A} **can break the encryption scheme:** $\Pr[\mathcal{A} \text{ is successful}] > 1/2 + \operatorname{negl}(n)$

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| > \frac{1}{2} + \operatorname{negl}(n) - \frac{1}{2}$$

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| > \operatorname{negl}(n)$

Distinguisher D can tell a truly random string r and $G(k) \rightarrow G(k)$ is not a PRG

Computationally Secure Encryption

- In practice we need a few more steps:
 - variable output-length PRGs \rightarrow stream ciphers
 - pseudorandom permutations \rightarrow block ciphers
 - modes of operations
 - chosen-plaintext attacks \rightarrow non-deterministic encryption

References

• Jonathan Katz, and Yehuda Lindell. "Introduction to modern cryptography." CRC Press, 2014. Chapters 2 & 3. (Mostly chapter 3.)

Discussion Questions

- 1. What do you think:
 - Is the C++ rand() function or Java Random class secure PRGs?
 - Do you know of any alternatives?
- 2. Is it a good idea to roll your own crypto?
 - Design your own algorithms?
 - Implement standardized algorithms (e.g., AES) yourself?