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Deepfake in Practice

There's Something Fishy About Amazon's Anti-Union
Twitter Army [Updated]

Darlaat GYR1
@AmazonFCDarla

&

Darla at GYR1 § @AmazonFCDarla - Mar 29

What bothers me most about unions is there's no ability to opt out of dues!
As a single mother with two boys I'm barely scraping by as it is, and now
unions want to come to Amazon and make pay them a piece of my salary.
No thanks!
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https://www.technologyreview.com/2021/03/31/1021487/deepfake-amazon-workers-are-sowing-confusion-on-twitter-thats-not-the-problem/ 3
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Deepfake presidents used in Russia-
Ukraine war

Meanwhile, this week Meta and YouTube have taken down a deepfake video of
Ukraine's president talking of surrendering to Russia.

| The deepfake appeared on the hacked website of Ukrainian TV network Ukrayina 24



Background - Visual Deepfake Taxonomy
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Face Swapping: What People Do in the Past

Input Image

Alignment, relight
recolor

Rank1

Select Candidate Images
Ranked Images

Similar in appearance
and pose

Korshunova, Iryna, et al. "Fast face-swap using convolutional neural networks.” ICCV, 2017 7



Face Swapping: What People Do in the Past

Limitations
* Candidate image have fixed facial expressions
* Unable to specify a certain target identity



Face Swapping via Style transfer

* Intuition: learn to transfer the style of an image based on
another reference image




Face Swapping via Style transfer

* Intuition: learn to transfer the style of an image based on
another reference image

Output: X

Content: x
(pose, impression)
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Face Swapping Pipeline

standard tools standard tools

input

Nicholas Cage
Trained Model
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Face Swapping Architecture
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Multi-Scale Generative CNN Pre-Trained Discriminative CNN
e Goal: Provide loss needed to train generator
e Latent Representation:

o Lower Layers: Textures, lines

o Upper Layers: Objects, Structure ,

* Goal: Generate z for trained identity Y
given content image x



Optimize with Four Types of Loss

Content Loss: compare X and x
Y = Trained ldentity

Style Loss: compare Y and X

x = Content Light Loss: compare Siamese representation
of x and Siamese representation of x

£ = Output Smooth Loss: penalize large color changes
near each pixel of X

L(fi, X, Y) = Econtent (i, X) + aﬁstyle (}2, Y)—l—

BLiight(X,%) + vLrv(X) .



Face Swapping Results

With proper conditions, Decent!
Often too smooth
- Skin tones often are off

Why Important?
- First automated method for targeted identity swapping

- Spawned a series of generative and defensive works
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More Recent Results

Source

Target

Result

FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping, CVPR 2020 15



Deepfake Detection based on
Artifacts



Detection with Technique-induced Artifact

Heuristic-Based Features: Deep Learned Features
(manually engineered features) (directly classify deepfake content from real content)
Images: Images:
* CNN using statistical properties *  Pure CNN
— Rahmouni, 2017. — Bayar and Stamm., 2016
* Inconsistent eye color, missing * Transfer learning via CNN XceptionNet

reflections

— Matern et al., 2019 — Rossleretal, 2019

Video: Video:
e Lip and audio inconsistency * CNN +RNN

— Korshunov and Marcel, 2018 — Guera Delp, 2018

e Head Movement

— Yanget al.,, 2018
17



Detection with Technique-induced Artifact

Heuristic-Based Features: Deep Learned Features
(manually engineered features) (directly classify deepfake content from real content)
Images: Images:
* CNN using statistical properties *  Pure CNN
— Rahmouni, 2017. — Bayar and Stamm., 2016
*_Inconsistent eye color, missing * Transfer learning via CNN XceptionNet

Open Problems:

* Specific techniques may only work for specific types of deepfake

* Unsure of how methods generalize across different datasets

* Unsure of how methods compare against other methods

* Continuous cat-and-mouse game as deepfake generation improves over time

— YdNg et dl.,, ZUI3
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Low Quality Video Encoding

Video Facial Forgery Database

* Video Collected

— 1,000 videos from Youtube
— All front facing

* Insight: videos are often compressed

* 3 Video Quality Sets:
— Raw: No Compression
— HQ: Low Compression
— LQ: High Compression

Rossler, Andreas, et al. "Faceforensics++: Learning to detect manipulated facial images." ICCV 2019.
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Video Quality
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Summary

* Pros:
— Views media in isolation
— Cheap to implement and run

* Cons:
— No limit to how close generated images can mirror real ones
— Just as susceptible to adversarial ML
— Can get provide short term benefit, but a quickly losing battle
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Defense with Provenance



Provenance-Based Method

* |dea: cryptographically sign media
— Private keys in camera hardware
— Private keys of trusted entities/companies
— Source is verifiable

* Where to store provenance?
— Single trusted entity
— Distributed trust

Hasan et al. - “Combating deepfake videos using blockchain and smart contracts.”, IEEE Access 2019
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P2P File System Ethereum Chain
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P2P File System Ethereum Chain
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Editing Artist 1
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P2P File System
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P2P File System Ethereum Chain
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P2P File System Ethereum Chain
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P2P File System
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P2P File System

Ethereum Chain

ORG Edit 1
. @ .9

Editing Artist 1

F
v

<€ child of
— parentof

Original

Can | add my video as a child?

Y

7y ‘\‘Edit 1

. Original Addr
o>

. Original Name
© Ed1Addr

Do
: Ed1Name

Yes

.

Original Artist

35



P2P File System
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P2P File System Ethereum Chain
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Provenance-Based Defenses

Pros:

* Not dependent on media format

* Not dependent on forgery techniques
» Strong provenance guarantees

Cons:

* No guarantees on video authenticity

* Potentially impractical for generic media on social networks
* Organization-wide root of trust
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