Deepfake

CS463/ECE424 University of Illinois

Outline

- Deepfake and Abusive Use
- Defense
 - Detection-based Method
 - Provenance-based Method

Deepfake in Practice

There's Something Fishy About Amazon's Anti-Union Twitter Army [Updated]

	Dar Wha As a unic No t	Darla at GYR1 <a>@AmazonFCDarla · Mar 29 <a>What bothers me most about unions is there's no ability to opt out of dues! As a single mother with two boys I'm barely scraping by as it is, and now unions want to come to Amazon and make pay them a piece of my salary. No thanks!							
Darla at GYR1 📦 @AmazonFCDarla	9	1.1K	ţ]	1.1K	\bigcirc	100	\uparrow	ılı	

Deepfake in Practice

There's Something Fishy About Amazo via Amti Ilmi Twitter Army [Updated]

@EmilyGorcenski

What bothers me mos As a single mother wit unions want to come t No thanks!

1.1K

wanna explain this

...

https://www.technologyreview.com/2021/03/31/1021487/deepfake-amazon-w

Meanwhile, this week Meta and YouTube have taken down a deepfake video of Ukraine's president talking of surrendering to Russia.

The deepfake appeared on the hacked website of Ukrainian TV network Ukrayina 24

Background - Visual Deepfake Taxonomy

Face Swapping: What People Do in the Past

Face Swapping: What People Do in the Past

Limitations

- Candidate image have fixed facial expressions
- Unable to specify a certain target identity

Face Swapping via Style transfer

• Intuition: learn to transfer the style of an image based on another *reference image*

Face Swapping via Style transfer

• Intuition: learn to transfer the style of an image based on another *reference image*

Identity/style: Y

Output: \hat{x}

Content: *x* (pose, impression)

Face Swapping Pipeline

Face Swapping Architecture

Multi-Scale Generative CNN

Goal: Generate x̂ for trained identity Y given content image x

Pre-Trained Discriminative CNN

- Goal: Provide loss needed to train generator
- Latent Representation:
 - Lower Layers: Textures, lines
 - Upper Layers: Objects, Structure 12

Optimize with Four Types of Loss

Y = Trained Identity

Content Loss: compare \hat{x} and x

Style Loss: compare *Y* and \hat{x}

x = Content

Light Loss: compare Siamese representation of *x* and Siamese representation of \hat{x}

 $\hat{x} = \text{Output}$

Smooth Loss: penalize large color changes near each pixel of \hat{x}

$$\begin{aligned} \mathcal{L}(\mathbf{\hat{x}}, \mathbf{x}, \mathbf{Y}) = & \mathcal{L}_{content}(\mathbf{\hat{x}}, \mathbf{x}) + \alpha \mathcal{L}_{style}(\mathbf{\hat{x}}, \mathbf{Y}) + \\ & \beta \mathcal{L}_{light}(\mathbf{\hat{x}}, \mathbf{x}) + \gamma \mathcal{L}_{TV}(\mathbf{\hat{x}}) \end{aligned}$$

Face Swapping Results

With proper conditions, Decent!

- Often too smooth
- Skin tones often are off

Why Important?

- First automated method for targeted identity swapping
- Spawned a series of generative and defensive works

More Recent Results

FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping, CVPR 2020

Deepfake Detection based on Artifacts

Detection with Technique-induced Artifact

Heuristic-Based Features: (manually engineered features)

Images:

- CNN using statistical properties
 - Rahmouni, 2017.
- Inconsistent eye color, missing reflections
 - Matern et al., 2019

Video:

- Lip and audio inconsistency
 - Korshunov and Marcel, 2018
- Head Movement
 - Yang et al., 2018

Deep Learned Features

(directly classify deepfake content from real content)

Images:

- Pure CNN
 - Bayar and Stamm., 2016
- Transfer learning via CNN XceptionNet
 - Rossler et al, 2019

Video:

- CNN + RNN
 - Guera Delp, 2018

Detection with Technique-induced Artifact

Heuristic-Based Features: (manually engineered features)

Images:

- CNN using statistical properties
 - Rahmouni, 2017.
- Inconsistent eye color, missing

Deep Learned Features

(directly classify deepfake content from real content)

Images:

- Pure CNN
 - Bayar and Stamm., 2016
- Transfer learning via CNN XceptionNet

Open Problems:

- Specific techniques may only work for specific types of deepfake
- Unsure of how methods generalize across different datasets
- Unsure of how methods compare against other methods
- Continuous cat-and-mouse game as deepfake generation improves over time

Yang et al., 2018

Video Facial Forgery Database

- Video Collected
 - 1,000 videos from Youtube
 - All front facing
- Insight: videos are often compressed

- 3 Video Quality Sets:
 - Raw: No Compression
 - HQ: Low Compression
 - LQ: High Compression

High Quality Video Encoding

Video Quality

Summary

- Pros:
 - Views media in isolation
 - Cheap to implement and run

- Cons:
 - No limit to how close generated images can mirror real ones
 - Just as susceptible to adversarial ML
 - Can get provide short term benefit, but a quickly losing battle

Defense with **Provenance**

Provenance-Based Method

- Idea: cryptographically sign media
 - Private keys in camera hardware
 - Private keys of trusted entities/companies
 - Source is verifiable

- Where to store provenance?
 - Single trusted entity
 - Distributed trust

Original Artist

Original Artist

Original Artist

Editing Artist 1

Editing Artist 1

Editing Artist 1

Original Artist

• Contract Addr

Provenance-Based Defenses

Pros:

- Not dependent on media format
- Not dependent on forgery techniques
- Strong provenance guarantees

Cons:

- No guarantees on video authenticity
- Potentially impractical for generic media on social networks
- Organization-wide root of trust