
CS463/ECE424

University of Illinois

Automotive

Automobiles Security

2
Image from https://www.aa1car.com/library/2004/bf110412.htm

Digital Controls in Automobiles

• Digital control, in the form of self-contained embedded systems called

Electronic Control Units (ECUs), entered US production vehicles in the

late 1970s.

• This was driven by legislation like the Clean Air Act of 1970 and

pressure from increasing gasoline prices.

• By dynamically measuring the oxygen present in exhaust fumes, the

ECU could adjust the fuel/oxygen mixture before combustion, thereby

improving efficiency and reducing pollution.

3

Software in Cars

• F-35 Joint Strike Fighter – 5.7M lines of code

• Windows XP – 40M lines of code

• A premium car in 2009 – 100M lines of code,
– 70-100 ECUs

• Mercedes Benz S-class
– Radio and navigation system – 20M lines of code

– Has as many ECUs as Airbus A 380.

• Cost of software and electronics can reach 35%-40% of the
cost of the car.

4

Current Software Functionality

• Car controls

• Performance monitoring

• Automatic crash response

• Emergency call system

• Theft recovery system

5

• Remote execution

• Navigation system

• App integration – Twitter,
Facebook, Google Search

• Driver monitoring
capabilities

Android Auto and Apple CarPlay

• Allows smartphone to connect to the car with a rich interface

• Car can exchange data and access Internet using the smartphone

• Majority of car manufacturers support this

• Android Auto

• iOS CarPlay

6

https://www.android.com/auto/
http://www.apple.com/ios/carplay/

References

Experimental Security Analysis of a
Modern Automobile

Karl Koscher, Alexei Czeskis, Franziska
Roesner, Shwetak Patel, Tadayoshi
Kohno (UW), Stephen Checkoway,
Damon McCoy, Brian Kantor, Danny
Anderson, Hovav Shacham, and Stefan
Savage (UCSD).

IEEE S&P 2010.

7

• [Koscher 10] • [Checkoway 11]

Comprehensive Experimental
Analyses of Automotive Attack
Surfaces

Stephen Checkoway, Damon
McCoy, Brian Kantor, Danny
Anderson, Hovav Shacham, and
Stefan Savage (UCSD), Karl
Koscher, Alexei Czeskis, Franziska
Roesner, and Tadayoshi Kohno
(UW). USENIX Security 2011.

https://scholar.google.com/scholar?hl=en&q=Experimental+Security+Analysis+of+a+Modern+Automobile&btnG=&as_sdt=1,14&as_sdtp=
https://scholar.google.com/scholar?hl=en&q=Experimental+Security+Analysis+of+a+Modern+Automobile&btnG=&as_sdt=1,14&as_sdtp=
https://scholar.google.com/scholar?hl=en&q=Comprehensive+Experimental+Analyses+of+Automotive+Attack+Surfaces&btnG=&as_sdt=1,14&as_sdtp=
https://scholar.google.com/scholar?hl=en&q=Comprehensive+Experimental+Analyses+of+Automotive+Attack+Surfaces&btnG=&as_sdt=1,14&as_sdtp=
https://scholar.google.com/scholar?hl=en&q=Comprehensive+Experimental+Analyses+of+Automotive+Attack+Surfaces&btnG=&as_sdt=1,14&as_sdtp=

First Case Study

• [Why?] Cars have advanced internal vehicular networks of many
computers creating risks of cyber exploits on these networks

• [What?] Empirically tested a car to find vulnerabilities available to
attackers who obtain physical access to the cabin of the car.

• [Wow!] Demonstrated serious vulnerabilities such as disabling the
brakes and stopping the engine while the car is being driven.

8

[Koscher 2010]

Connectivity enabled by OBD-II Port

• On-Board Diagnostics II (OBD-II) port
gives access to vehicle buses via their
communication protocol

• CAN - Controller Area Network - ISO
11898-[1-6]
– Originated by Bosch in 1983.

– Message based with division into high speed
and low speed buses.

– Used by BMW, Ford, GM, Honda, Volkswagen,
and others.

9

CAN Bus and ECUs

10
Image from https://resources.infosecinstitute.com/future-now-car-hacking/#gref

Sample ECUs on High-Speed CAN Bus of
Test Car

11

Sample ECUs on Low-Speed CAN Bus of
Test Car

12

CAN Security Issues

• [Issue 1] Packets are broadcast to all nodes: the nodes decide
whether to accept the information or not

• [Issue 2] Packet flooding attack: priority-based arbitration
allows node to assert dominant state indefinitely

• [Issue 3] No source Identifier fields in the packets: any source
can send packets to any other node in the car

13

CAN Security Issues (Continued)

• Access control is based on challenge response sequence to protect ECU
against certain actions without authorization.

• [Issue 4] ECUs are expected to use a fixed challenge (seed) for each of
these challenge-response pairs.

• [Issue 5] The responses (keys) are also fixed and stored in the ECUs.

– Challenges and responses are both 16 bits – can be brute forced

– Many of the seed-to-key algorithms in use today are known by the car tuning
community

14

Deviations from Standards
There are some standards, but not every manufacturer follows

• ECUs should reject commands like
“disable CAN communications” when it
is unsafe (viz. when the car is moving).

• An ECU should reject a request to
initiate a programming event if the
engine is running.

• It should be possible to re-flash the
unit only after authentication.

15

• Reading data from sensitive memory
areas (viz. challenge responses) should
not be allowed.

• Gateways between the two networks
must only be re-programmable on the
high-speed network to prevent a low-
speed device from compromising a
gateway to attack the high-speed
network.

Attack Methodology

• [Attack 1] Packet sniffing and targeted probing

• [Attack 2] Fuzzing: the range of valid CAN packets is small,
significant damage can be done by simple fuzzing of packets

• [Attack 3] Reverse engineering: notably the telematics unit –
dumped the code via the CAN ReadMemory service and used
a third-party debugger (IDA Pro)

16

Testing Environments

17

Attacks

• All the attacks used the above-mentioned methodology to
determine the message for each function

• The authors modified the code to replay the messages to have the
desired effect

• The details on how to modify the code etc. are omitted from the
paper

– Why?

18

Power of Exploits

• Control of radio, disable user control,
increase volume, etc.

• Display arbitrary messages on the
instrument panel cluster

• Honk the horn, lock doors, shoot
windshield fluids etc.

• Boost engine RPM, disturb engine
timing, disable all cylinders

• Deploy airbags

19

• Lock individual brakes, release
brakes, prevent enabling of
brakes

• Turn on/off fans and AC,
Control lights

• Make an arbitrary offset to
reported speed

• Self destruct, self-wiping code

Hacked Car

Displaying an arbitrary message and a
false speedometer reading on the Driver
Information Center.

Note that the car is in Park.

20

Limitation of This Study

• Need physical access to the car (OBD-II port)

21

Second Case Study

• Internal networks in cars are insecure but there has been
insufficient study of attack surfaces for those networks.

• The authors provide a comprehensive experimental view of
current status with two experimental cars.

• [Wow!!] Exploitation is shown to be possible through several
pathways including mechanics tools, CD players, Bluetooth,
and cellular radio.

22
[Checkoway 2011]

Threat Model

23

• Indirect physical

– Audio CD, USB, iPod

• Short Range Wireless

– Bluetooth devices (phones), WiFi
Access Points

– Remote Keyless entry, RFID car
keys

– Wireless tire pressure monitoring
sensors

• Long Range Wireless

– Telematics Units Broadcast
channels like radio, cellular

Previous paper required physical connection to the
OBD port (weak threat model). This paper looks into
three more general avenues for access.

Attack 0: Media Player Attack

• [What?] One of the file read functions makes strong assumptions about
input length. But, there is a path through the (music) WMA parser (for
handling an undocumented aspect of the file format) that allows arbitrary
length reads to be specified
– These two features together allow a buffer overflow

• [How?] Authors developed their own native code debugger for the media
player to determine how to overwrite function pointers as well as contents
of the state variables

• [Wow!!] They modified a WMA audio file such that, when burned onto a
CD, it plays perfectly on a PC but sends arbitrary CAN packets of attacker’s
choosing when played by the car’s media player

24

Background: PassThru for OBD-II

• Since 2004, the Environmental Protection Agency has mandated that all new cars in
the U.S. support the SAE J2534 “PassThru” standard.

– Windows API that provides a standard, programming interface to communicate with a car’s internal
buses.

• Typically implemented as a Windows dynamic link library (DLL) that communicates
over a wired or wireless network with the reprogramming and diagnostic tool called
the “PassThru device”.

– The device consists of a popular SoC microprocessor running a variant of Linux as well as multiple
network interfaces, including USB, WiFi, and a connector for plugging into the car’s OBD-II port.

25

Pass-Thru Diagnostics

26
Image from http://www.mechanexpert.com/pass-thru-diagnostics-explained/

Attack 1 on OBD-II PassThru

• After booting up, the device periodically advertises its
presence by sending a UDP multicast packet on each network
to which it is connected, communicating both its IP address
and a TCP port for receiving client requests.

• Problem: Communication between the client application and
the PassThru device is unauthenticated; it relies on security of
the communication link (e.g., WiFi).

– An attack on this network can reprogram the PassThru device and send
it instructions to upload malicious software to the car.

27

Attack 2 on OBD-II Why Possible?

• Background: Recall that the PassThru device
exports a proprietary, unauthenticated API for
configuring its network state (e.g., for setting
with which WiFi SSID it should associate).

• Issue 1: Input validation bugs in the
implementation allow an attacker to run
arbitrary (Bourne) Shell commands via shell-
injection.

• Issue 2: Underlying implementation had telnet,
ftp and nc (netcat) which could be used to
open more connections (exacerbated by a
poor choice of root password).

• Combined: Made a worm that actively seeks
out and spreads to other PassThru devices in
range.

28

Attack 3: Bluetooth Attacks

• A popular embedded implementation of the Bluetooth protocol stack and a
sample hands-free application were present in the car.

– The interface to this program and the rest of the telematics system appeared to be
custom-built.

• In the custom interface code, over 20 calls to strcpy were present,
providing opportunities for buffer attacks. Why?

– It performs no bounds checking on the destination buffer

– It blindly copies until it hits a null terminator in the source string

– It provides no way to limit how many bytes are copied

• Authors explored and found one such attack.

– However, attack requires its device to be paired with the car.

29

Attack 3 Cont’d: Pairing attack on
Bluetooth
• Step 1: Attacker must learn car’s Bluetooth MAC address

– One can sniff it when the car’s Bluetooth starts

– One can also sniff it via a previously paired device (owner’s cell phone)

• Step 2: After initiating the pairing request on the MAC address, car requires the
user to enter the PIN number on the phone

– Using a simple laptop to issue pairing requests, one can brute force this PIN at a rate of 8 to 9 PINs/min
for an average of 10 hours per car.

• This requires a significant effort in development time and an extended period of
proximity to the vehicle but might have promise in a public garage, for any
arbitrary car (not a specific target).

30

Attack 4: Long Range – Cellular
(Background)
• Telematics unit is equipped with a cell phone interface supporting voice,

SMS and 3G data.

– Unit uses voice channel for critical telematics functions (crash notification).

• Manufacturer uses the Airbiquity aqLink software modem to covert

between analog waveforms and digital bits.

– aqLink software is common to virtually all popular North American telematics

offerings today.

• How did they launch the attack? The authors also reverse engineered

telematics unit’s own proprietary command protocol.

31

Cellular Gateway Vulnerability

• Issue 1: AqLink code explicitly supports
packet sizes up to 1024 bytes.

– The custom code assumes that packets will never
exceed 100 bytes (presumably since well-formatted
command messages are always smaller).

• Outcome: Leads to an exploitable stack-based
buffer overflow vulnerability.

• How? Attack uses lowest level of the protocol
stack to bypass higher-level authentication
checks.

32

• Issue 2: Hard to deploy directly
– buffer overflow required
sending over 300 bytes.

• Caveat 1: aqLink protocol has a
maximum effective throughput
of about 21 bytes a second so it
takes 14 seconds to transmit.

• Caveat 2: The protocol closes
connection if there is no
response in 12 seconds.

Solution: get more time, modify this 12s timeout
value to a larger value via another vulnerability

Attack 5: Remote Monitoring

• How? Modified the telematics unit to
support an IRC client

– Showed how attackers controlling the audio
system could record conversations in the car

• Due to the high bandwidth, they were able
to easily upload the saved files using FTP
provided by the telematics unit.

• Attackers could have the car periodically
“tweet” the GPS location of the vehicle.

33

Hacking Automobiles

These 20-something hackers won $375,000 and a Model 3 for finding a Tesla bug, March 22, 2019

34

https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-
hack/, August 6, 2020
Qihoo 360, found more than a dozen vulnerabilities in a Mercedes-
Benz E-Class car that allowed them to remotely open its doors and
start the engine

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/ July 21, 2015
Kill a Jeep’s engine remotely

https://www.wired.com/story/hackers-can-clone-millions-of-toyota-hyundai-kia-keys/
March 5, 2020
New vulnerabilities are found in the encryption systems used by immobilizers, the radio-enabled devices
inside of cars that communicate at close range with a key fob to unlock the car's ignition and allow it to start.

https://www.cnbc.com/2019/03/25/pwn2own-hackers-found-a-bug-in-teslas-system-won-model-3-and-cash.html
https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-hack/
https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-hack/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/story/hackers-can-clone-millions-of-toyota-hyundai-kia-keys/

Discussion

• What changes are occurring in the automotive sector?

– How might these changes affect security and privacy?

• What threats might exist for other safety-critical embedded
devices like medical devices?

35

	Default Section
	Slide 1: Automotive

	intro
	Slide 2: Automobiles Security
	Slide 3: Digital Controls in Automobiles
	Slide 4: Software in Cars
	Slide 5: Current Software Functionality
	Slide 6: Android Auto and Apple CarPlay
	Slide 7: References
	Slide 8: First Case Study
	Slide 9: Connectivity enabled by OBD-II Port
	Slide 10: CAN Bus and ECUs
	Slide 11: Sample ECUs on High-Speed CAN Bus of Test Car
	Slide 12: Sample ECUs on Low-Speed CAN Bus of Test Car
	Slide 13: CAN Security Issues
	Slide 14: CAN Security Issues (Continued)
	Slide 15: Deviations from Standards There are some standards, but not every manufacturer follows
	Slide 16: Attack Methodology
	Slide 17: Testing Environments
	Slide 18: Attacks
	Slide 19: Power of Exploits
	Slide 20: Hacked Car
	Slide 21: Limitation of This Study
	Slide 22: Second Case Study
	Slide 23: Threat Model
	Slide 24: Attack 0: Media Player Attack
	Slide 25: Background: PassThru for OBD-II
	Slide 26: Pass-Thru Diagnostics
	Slide 27: Attack 1 on OBD-II PassThru
	Slide 28: Attack 2 on OBD-II
	Slide 29: Attack 3: Bluetooth Attacks
	Slide 30: Attack 3 Cont’d: Pairing attack on Bluetooth
	Slide 31: Attack 4: Long Range – Cellular (Background)
	Slide 32: Cellular Gateway Vulnerability
	Slide 33: Attack 5: Remote Monitoring
	Slide 34: Hacking Automobiles
	Slide 35: Discussion

