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Digital Controls in Automobiles

• Digital control, in the form of self-contained embedded systems called 

Electronic Control Units (ECUs), entered US production vehicles in the 

late 1970s.

• This was driven by legislation like the Clean Air Act of 1970 and 

pressure from increasing gasoline prices.

• By dynamically measuring the oxygen present in exhaust fumes, the 

ECU could adjust the fuel/oxygen mixture before combustion, thereby 

improving efficiency and reducing pollution.
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Software in Cars

• F-35 Joint Strike Fighter – 5.7M lines of code

• Windows XP – 40M lines of code

• A premium car in 2009 – 100M lines of code, 
– 70-100 ECUs

• Mercedes Benz S-class 
– Radio and navigation system – 20M lines of code

– Has as many ECUs as Airbus A 380.

• Cost of software and electronics can reach 35%-40% of the 
cost of the car.
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Current Software Functionality

• Car controls 

• Performance monitoring 

• Automatic crash response 

• Emergency call system

• Theft recovery system
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• Remote execution

• Navigation system

• App integration – Twitter, 
Facebook, Google Search

• Driver monitoring 
capabilities



Android Auto and Apple CarPlay

• Allows smartphone to connect to the car with a rich interface

• Car can exchange data and access Internet using the smartphone

• Majority of car manufacturers support this

• Android Auto

• iOS CarPlay 
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https://www.android.com/auto/
http://www.apple.com/ios/carplay/
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First Case Study

• [Why?] Cars have advanced internal vehicular networks of many 
computers creating risks of cyber exploits on these networks

• [What?] Empirically tested a car to find vulnerabilities available to 
attackers who obtain physical access to the cabin of the car.

• [Wow!] Demonstrated serious vulnerabilities such as disabling the 
brakes and stopping the engine while the car is being driven.

8

[Koscher 2010]



Connectivity enabled by OBD-II Port

• On-Board Diagnostics II (OBD-II) port 
gives access to vehicle buses via their 
communication protocol

• CAN - Controller Area Network - ISO 
11898-[1-6]
– Originated by Bosch in 1983.

– Message based with division into high speed 
and low speed buses.

– Used by BMW, Ford, GM, Honda, Volkswagen, 
and others.
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CAN Bus and ECUs
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Sample ECUs on High-Speed CAN Bus of 
Test Car
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Sample ECUs on Low-Speed CAN Bus of 
Test Car
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CAN Security Issues

• [Issue 1] Packets are broadcast to all nodes: the nodes decide 
whether to accept the information or not

• [Issue 2] Packet flooding attack: priority-based arbitration 
allows node to assert dominant state indefinitely

• [Issue 3] No source Identifier fields in the packets: any source 
can send packets to any other node in the car
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CAN Security Issues (Continued)

• Access control is based on challenge response sequence to protect ECU 
against certain actions without authorization.

• [Issue 4] ECUs are expected to use a fixed challenge (seed) for each of 
these challenge-response pairs.

• [Issue 5] The responses (keys) are also fixed and stored in the ECUs.

– Challenges and responses are both 16 bits – can be brute forced

– Many of the seed-to-key algorithms in use today are known by the car tuning 
community
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Deviations from Standards
There are some standards, but not every manufacturer follows

• ECUs should reject commands like 
“disable CAN communications” when it 
is unsafe (viz. when the car is moving).

• An ECU should reject a request to 
initiate a programming event if the 
engine is running.

• It should be possible to re-flash the 
unit only after authentication.
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• Reading data from sensitive memory 
areas (viz. challenge responses) should 
not be allowed.

• Gateways between the two networks 
must only be re-programmable on the 
high-speed network to prevent a low-
speed device from compromising a 
gateway to attack the high-speed 
network.



Attack Methodology

• [Attack 1] Packet sniffing and targeted probing

• [Attack 2] Fuzzing: the range of valid CAN packets is small, 
significant damage can be done by simple fuzzing of packets

• [Attack 3] Reverse engineering: notably the telematics unit – 
dumped the code via the CAN ReadMemory service and used 
a third-party debugger (IDA Pro)
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Testing Environments
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Attacks

• All the attacks used the above-mentioned methodology to 
determine the message for each function

• The authors modified the code to replay the messages to have the 
desired effect

• The details on how to modify the code etc. are omitted from the 
paper

– Why?

18



Power of Exploits

• Control of radio, disable user control, 
increase volume, etc.

• Display arbitrary messages on the 
instrument panel cluster

• Honk the horn, lock doors, shoot 
windshield fluids etc.

• Boost engine RPM, disturb engine 
timing, disable all cylinders 

• Deploy airbags
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• Lock individual brakes, release 
brakes, prevent enabling of 
brakes

• Turn on/off fans and AC, 
Control lights

• Make an arbitrary offset to 
reported speed

• Self destruct, self-wiping code



Hacked Car

Displaying an arbitrary message and a 
false speedometer reading on the Driver 
Information Center.

Note that the car is in Park.
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Limitation of This Study

• Need physical access to the car (OBD-II port)
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Second Case Study

• Internal networks in cars are insecure but there has been 
insufficient study of attack surfaces for those networks.

• The authors provide a comprehensive experimental view of 
current status with two experimental cars.

• [Wow!!] Exploitation is shown to be possible through several 
pathways including mechanics tools, CD players, Bluetooth, 
and cellular radio.
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Threat Model
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• Indirect physical

– Audio CD, USB, iPod 

• Short Range Wireless

– Bluetooth devices (phones), WiFi 
Access Points

– Remote Keyless entry, RFID car 
keys

– Wireless tire pressure monitoring 
sensors

• Long Range Wireless

– Telematics Units Broadcast 
channels like radio, cellular

Previous paper required physical connection to the 
OBD port (weak threat model). This paper looks into 
three more general avenues for access.



Attack 0: Media Player Attack

• [What?] One of the file read functions makes strong assumptions about 
input length. But, there is a path through the (music) WMA parser (for 
handling an undocumented aspect of the file format) that allows arbitrary 
length reads to be specified
– These two features together allow a buffer overflow

• [How?] Authors developed their own native code debugger for the media 
player to determine how to overwrite function pointers as well as contents 
of the state variables

• [Wow!!] They modified a WMA audio file such that, when burned onto a 
CD, it plays perfectly on a PC but sends arbitrary CAN packets of attacker’s 
choosing when played by the car’s media player
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Background: PassThru for OBD-II

• Since 2004, the Environmental Protection Agency has mandated that all new cars in 
the U.S. support the SAE J2534 “PassThru” standard.

– Windows API that provides a standard, programming interface to communicate with a car’s internal 
buses.

• Typically implemented as a Windows dynamic link library (DLL) that communicates 
over a wired or wireless network with the reprogramming and diagnostic tool called 
the “PassThru device”.

– The device consists of a popular SoC microprocessor running a variant of Linux as well as multiple 
network interfaces, including USB, WiFi, and a connector for plugging into the car’s OBD-II port.
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Pass-Thru Diagnostics
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Attack 1 on OBD-II PassThru

• After booting up, the device periodically advertises its 
presence by sending a UDP multicast packet on each network 
to which it is connected, communicating both its IP address 
and a TCP port for receiving client requests.

• Problem: Communication between the client application and 
the PassThru device is unauthenticated; it relies on security of 
the communication link (e.g., WiFi).

– An attack on this network can reprogram the PassThru device and send 
it instructions to upload malicious software to the car.
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Attack 2 on OBD-II Why Possible?

• Background: Recall that the PassThru device 
exports a proprietary, unauthenticated API for 
configuring its network state (e.g., for setting 
with which WiFi SSID it should associate).

• Issue 1: Input validation bugs in the 
implementation allow an attacker to run 
arbitrary (Bourne) Shell commands via shell-
injection.

• Issue 2: Underlying implementation had telnet, 
ftp and nc (netcat) which could be used to 
open more connections (exacerbated by a 
poor choice of root password).

• Combined: Made a worm that actively seeks 
out and spreads to other PassThru devices in 
range.
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Attack 3: Bluetooth Attacks

• A popular embedded implementation of the Bluetooth protocol stack and a 
sample hands-free application were present in the car.

– The interface to this program and the rest of the telematics system appeared to be 
custom-built.

• In the custom interface code, over 20 calls to strcpy were present, 
providing opportunities for buffer attacks. Why?

– It performs no bounds checking on the destination buffer

– It blindly copies until it hits a null terminator in the source string

– It provides no way to limit how many bytes are copied

• Authors explored and found one such attack.

– However, attack requires its device to be paired with the car.
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Attack 3 Cont’d: Pairing attack on 
Bluetooth
• Step 1: Attacker must learn car’s Bluetooth MAC address

– One can sniff it when the car’s Bluetooth starts

– One can also sniff it via a previously paired device (owner’s cell phone)

• Step 2: After initiating the pairing request on the MAC address, car requires the 
user to enter the PIN number on the phone

– Using a simple laptop to issue pairing requests, one can brute force this PIN at a rate of 8 to 9 PINs/min 
for an average of 10 hours per car.

• This requires a significant effort in development time and an extended period of 
proximity to the vehicle but might have promise in a public garage, for any 
arbitrary car (not a specific target).
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Attack 4: Long Range – Cellular 
(Background)
• Telematics unit is equipped with a cell phone interface supporting voice, 

SMS and 3G data.

– Unit uses voice channel for critical telematics functions (crash notification).

• Manufacturer uses the Airbiquity aqLink software modem to covert 

between analog waveforms and digital bits.

– aqLink software is common to virtually all popular North American telematics 

offerings today.

• How did they launch the attack? The authors also reverse engineered 

telematics unit’s own proprietary command protocol.
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Cellular Gateway Vulnerability

• Issue 1: AqLink code explicitly supports 
packet sizes up to 1024 bytes.

– The custom code assumes that packets will never 
exceed 100 bytes (presumably since well-formatted 
command messages are always smaller).

• Outcome: Leads to an exploitable stack-based 
buffer overflow vulnerability.

• How? Attack uses lowest level of the protocol 
stack to bypass higher-level authentication 
checks.
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• Issue 2: Hard to deploy directly 
– buffer overflow required 
sending over 300 bytes. 

• Caveat 1: aqLink protocol has a 
maximum effective throughput 
of about 21 bytes a second so it 
takes 14 seconds to transmit.

• Caveat 2: The protocol closes 
connection if there is no 
response in 12 seconds.

Solution: get more time, modify this 12s timeout 
value to a larger value via another vulnerability



Attack 5: Remote Monitoring

• How? Modified the telematics unit to 
support an IRC client

– Showed how attackers controlling the audio 
system could record conversations in the car 

• Due to the high bandwidth, they were able 
to easily upload the saved files using FTP 
provided by the telematics unit.

• Attackers could have the car periodically 
“tweet” the GPS location of the vehicle.
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Hacking Automobiles

These 20-something hackers won $375,000 and a Model 3 for finding a Tesla bug, March 22, 2019
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https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-
hack/, August 6, 2020
Qihoo 360, found more than a dozen vulnerabilities in a Mercedes-
Benz E-Class car that allowed them to remotely open its doors and 
start the engine

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/ July 21, 2015
Kill a Jeep’s engine remotely 

https://www.wired.com/story/hackers-can-clone-millions-of-toyota-hyundai-kia-keys/
March 5, 2020
New vulnerabilities are found in the encryption systems used by immobilizers, the radio-enabled devices 
inside of cars that communicate at close range with a key fob to unlock the car's ignition and allow it to start.

https://www.cnbc.com/2019/03/25/pwn2own-hackers-found-a-bug-in-teslas-system-won-model-3-and-cash.html
https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-hack/
https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-hack/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/story/hackers-can-clone-millions-of-toyota-hyundai-kia-keys/


Discussion

• What changes are occurring in the automotive sector? 

– How might these changes affect security and privacy? 

• What threats might exist for other safety-critical embedded 
devices like medical devices?
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