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In The News: Crashing of Self-Driving Car (Uber

2018)

* “Inadequate safety risk
assessment procedures”

* The system is not trained to react
to pedestrians crossing the street
outside of designated crosswalks

https://www.theverge.com/2019/11/19/20972584/uber

* Vehicle ope rator distracted by -fault-self-driving-crash-ntsb-probable-cause
personal cellphone



https://www.theverge.com/2019/11/19/20972584/uber-fault-self-driving-crash-ntsb-probable-cause
https://www.theverge.com/2019/11/19/20972584/uber-fault-self-driving-crash-ntsb-probable-cause

In The News: Crashing of Self-Driving Car (Tesla
2016)

* Car's cameras failed to pick out a white trailer against a bright
sky in Florida




Case Study 1: Adversarial Examples to
Attack Vision Sensors

Robust Physical-World Attacks on Deep Learning Visual Classification. Kevin Eykholt, Ivan Evtimoy,
Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, Dawn Song.
Computer Vision and Pattern Recognition (CVPR 2018)




Perils of Stationary Assumption

Traditional machine learning approaches assume
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Autonomous Driving in Practice




Adversarial Examples
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57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing
adversarial examples.” ICLR 2014.



Adversarial Perturbation In ML

Deep Neural Networks
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Adversarial perturbation

How to solve the adversary strategy
* Local search
* Combinatorial optimization

e Convex relaxation Gradient Descent
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Optimization Based Attack belonging to
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Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR

mean prob  mean prob || mean prob  mean prob || mean prob  mean prob
Our Lg 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%
ISMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%
Our L2 1.36  100% 0.17 100% 1.76  100% 0.33 100% 2.60 100% 0.51 100%
Deepfool 2.11  100% 0.85 100% - - - - - - - -
Our Loo 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%
Fast Gradient Sign 0.22 100% 0.015 99% 0.26 42% 0.029 51% - 0% 0.34 1%
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26 100% 0.023 100%

[Carlini, Wagner, Towards robustness of neural networks. 2017]



Vulnerabilities of Perceptron Systems of
Automobiles

Robust Physical-World Attacks on Deep Learning Visual Classification. CVPR, 2018



However, What We Can See Everyday...




The Physical World Is... Messy

Varying Physical Conditions (Angle, Distance, Lighting, ...) Physical Limits on Imperceptibility

a

.

Fabrication/Perception Error (Color Reproduction, etc.)

Digital Noise Whatis  What acamera
(What you want)  printed may see

[Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song, 2017]



Creating Robust Physical Adversarial
Examples
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Optimizing Spatial Constraints
(Handling Limits on Imperceptibility)
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Handling Fabrication/Perception Errors
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NPS based on Sharif et al., “Accessorize to a crime,” CCS 2016



How Can We Realistically Evaluate Attacks?

Field Test (Drive-By)

Lab Test (Stationary)
Angles=0°  Road Sign (Top View) ‘@‘
15°,30°, ...) > l
e A3 ~ 250 feet, 0to 20 mph
5)
* Record video
10
Camera * Sample frames every k frames
[ ]

Run sampled frames through DNN




Lab Test (Stationary)

Target Class:
Speed Limit 45

Subtle Subtle Camo Camo Art  Camo Art
Poster Poster Graffiti



Art Perturbation




Subtle Perturbation




Thinking more about Physical objects

Similar attack against LiDAR sensors




Numerous Defenses Proposed
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Case Study 2: Attacking GPS Sensors

All Your GPS Are Belong To Us: Towards Stealthy Manipulation of Road Navigation Systems. Kexiong (Curtis)

Zeng, Shinan Liu, Yuanchao Shu, Dong Wang, Haoyu Li, Yanzhi Dou, Gang Wang, Yaling Yang Proceedings
of The 27th USENIX Security Symposium (USENIX Security), Baltimore, MD, August 2018.



GPS Navigation Systems used by 1+Billion Users

* GPS navigation is widely used by drivers around the world




GPS Navigation Systems used by 1+Billion Users

GPS malfunction can lead to real-world consequences




Known Threat: GPS Spoofing

* Civilian GPS is vulnerable to spoofing attacks
— A lack of authentication of signal source

* Take over victim GPS via brute-force jamming or smooth methods

True location False location



Portable GPS Spoofer is Affordable (5223)

A Pen

(for size reference)

Antenna
3
Raspberry Pi 33)
($35)
HackRF One SDR
| ($175)
Mobile Charger ———@

($10) L3 }l A



GPS Spoofing in Free Space (Air, Water)

In 2012, a drone was diverted In 2013, a yacht was diverted on
in White Sands, New Mexico the way from Monaco to Greece




Spoofing Road Navigation: More

Challengjng
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Making the Attack More Stealthy
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Navigation instructions lead to attacker’s pre-defined location



Core Idea: Calculate Spoofing Location and
Timing
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Route Searching Algorithm

Turn pattern matching

Concatenate VICtIm routes

:> Directed :> Exhaustive
Graph BFS

Trace Driven Evaluation

lterative
searching

« 600 real-world trips from the taxi datasets of New York City and Boston

« Deviating attack: 3,507 qualified victim routes per trip
« Endangering attack: 599 out of 600 (99.8%) contains wrong-way




Real-world Experiments =

* Experiments with legal permission from local authority and IRB
approval
— After midnight, spoofing signals do not affect outside (-127.41 dBm)




Can Human Users Detect the Attack?

* Let users drive in a simulator
— Play truck drivers to “deliver packages” from location A to B
— Advertise the study as a usability study, spoof locations in real time
— Post-study interview to know why users can/cannot detect the attack

S FEERGPBAVERTL 4 wm

Experiment setup Simulator view Google Street View



User Study Results

* Attack success rate: 95% (38 out of 40)

— Two users detect it by cross-checking surrounding environment and the
map to find inconsistency (Highway vs. local way)

* Users are more likely to use GPS in unfamiliar areas
— Not enough pre-knowledge/time to check the inconsistency
— Heavily rely on voice and turn-by-turn instructions

* Most users experienced GPS malfunction in real life
— Unstable GPS signal does not alert users



Take-aways: Learning from Users

* |tis feasible to manipulate road navigation systems
— Advanced GPS spoofing strategies
— Works even when humans are in the loop

1 Melrose Ave | g
Normandie Ave |

* Defense ideas inspired by the user study
— Cross-check data from digital and physical worlds
o Computer vision-based localization

— GPS-free localization & navigation







Remarks

* Different sensors in automobile could be vulnerable against
adversarial attacks

» Different attacks are optimized differently but they have
common adversarial goals

* General/universal defense is hard, but we can leverage certain
properties of learning tasks and develop more robust models



Discussion Questions

* What does it take to make you feel safe to ride in a self-driving
vehicle?

* Do you prefer a world of autonomous vehicles or the

coexistence of human drivers and autonomous driving (or
human drivers only)?

* Can you point out other security/privacy challenges faced by
autonomous driving systems?
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