Password Security

CS463/ECE424 University of Illinois

Background of Password Guessing Password Strength Evaluation Password Reuse

Means of Authentication

- Something you know
 - Password or PIN
- Something you have
 - Smart card
 - Private key (of a public-private key pair)
 - Phone (running 2FA)
- Something you are
 - Biometrics (e.g., iris or fingerprint)

Means of Authentication (Cont.)

- Somewhere you are
 - Location-limited channels
- Someone you know (social authentication)
 - Someone vouches for you
 - You can identify people you should know
- Some system vouches for you
 - Single sign-on
 - PKI Certificate Authorities

Password Advantages

- Familiar to people
- You can have many different ones
- Nothing to carry
- Easy to revoke / replace
- Easy to deploy
- Low cost
- Doesn't require a trusted third party
- Not linked to an individual*

Disadvantages of Passwords

- Predictability
- Interference between multiple passwords
 - Limits of human memory
 - Password reuse or "trivial" modification
- Requiring a large portfolio of passwords
- Easy to deploy incorrectly / naively
 - System administrators (store in plaintext?)
 - Users

What about Biometrics?

- Fingerprint
- Retina scans
- Face recognition
- Finger/hand geometry
- Voice or speech recognition
- (Many others)

Practical Challenges for Biometrics

- You cannot change them or create a new one (e.g., fingerprint)
- Potentially sensitive data (identifiable information)
- High equipment costs
- Sensitive to changes in the environment
- Biometrics can change over time
- Easy to forge?

Password Guessing: Two Threat Models

- Online guessing
 - Usually has a rate limit
 - Must guess it correctly within a few attempts
- Offline guessing
 - To crack the password hashes
 - Leaked pwd databases where pwds are stored in a hashed format
 - Inefficient if the password is also "salted"

Keep me lo	gged in (for up to 30 days)			
Keep me logged in (for up to 30 days)				
Enter your password				
Password	Forgot your password?			
Enter your use	rname			

Passwords, Hashes, Salt

Password database

Username Plaintext Password

- Not a good idea to store plaintext directly
- Login without directly matching plaintext password:
 - HASH(input password + salt) \rightarrow password hash
 - Plaintext password is stored in other places
 - Password hash and salt is used to authenticate users

Security of Server-side Password Storing

- Worse way: storing password in plaintext
 - Example: username1, password1_plaintext
- Slight better, but still not secure
 - Example: username1, hashed(password1)
- The right way: adding salt
 - Salt: a fixed length random long string
 - Example: username1, hashed(password1+salt1), salt1

Background of Password Guessing Password Strength Evaluation Password Reuse

How strong is a particular password?

Password		
Password	•••••	
Password	•••••	
Password	•••••	

By looking at them?

iloveyou

n(c\$JZX!2dfa^dafdIAX^N

Leet transformation

How to Measure password strength?

- Number of characters, types of characters
- Shannon entropy
- John the Ripper (password cracking software)

• Which one is better?

Old metric: Entropy

- Calculated based on input symbol size (many)
 - Doesn't account for human patterns
- NIST back-of-envelope estimate (NIST 2006)
 - Vague, not empirical
- Estimated Shannon entropy (Shay 2010)
 - Requires big sample sizes, underestimates
- Average, doesn't tell you about your weak links

Better Way: Guessability (Offline Guessing)

- How many guesses to reach password?
 - Subject to guessing algorithm, training data
 - Calculate quickly via lookup algorithm
 - Most research focuses on offline guessing model
- Result: guess number or beyond cutoff
 - Model real attacker
 - Per-password estimates

	Password	Guess number
Example:	12345678	4
EACT	Password178	1.4×10^{6}
	jn%fKXsl!8@Df	Beyond cutoff

Perception vs. Reality

Evaluating Password Pairs

4,000,000,000 x more secure!

300,000 x more secure!

Ways People Were Wrong

- Overstated security benefits of:
 - Digits
 - Character substitutions (e.g., $a \rightarrow @$)
 - Keyboard patterns (e.g., 1qaz2wsx3edc)
- Did not recognize common words/phrases

Many Ways People Were Right

- Capitalize letters other than the first
- Put digits and symbols in middle, not end
- Use symbols rather than digits
- Avoid:
 - Common first names
 - Words related to account
 - Years and sequences

Different Ways to Guess Passwords

- Guessing attacks are data-driven
 - Previously stolen passwords
 - Natural-language corpora
- Array of tools
 - Cracking software
 - Academic algorithms

Markov Models

- Predicts future characters from previous
- Approach requires weighted data:
 - Passwords
 - Dictionaries

Markov Models: Basic Idea

Markov Models: Basic Idea

Deep Learning based Password Guessing

• Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks, USENIX Security 2016

Background of Password Guessing Password Strength Evaluation Password Reuse

Chun Wang, Steve T.K. Jan, Hang Hu, Douglas Bossart, Gang Wang. The Next Domino To Fall: Empirical Analysis of User Passwords across Online Services. In Proceedings of The ACM Conference on Data and Applications Security and Privacy (CODASPY), Tempe, AZ, March 2018.

Data-Driven Analysis: Password Reuse & Modification

- Collect massive password datasets with email addresses
 - Link the same users' passwords across services
- Data collection method
 - Searched through online forums, data archives, darknet markets
 - Obtained 107 public password datasets leaked during 2008-2016

Diverse Categories of Online Services

Category	#Plain PWs	# Datasets	Top 3 Largest Datasets
Social	286,000,000	7	Myspace, VK.com, LinkedIn
Adult	75,200,000	9	Zoosk, Mate1, YouPorn
Game	40,800,000	13	Neopets, 7k7k, Lbsg
Entertainment	30,700,000	4	Lastfm, Swingbrasileiro, LATimes
Internet	16,400,000	18	000webhost, Comcast, Yahoo
Email	9,600,000	3	Gmail, Mail.ru, Yandex
Forum	1,100,000	25	CrackingForum, Abusewith.us, Gawker
Shopping	340,000	12	RedBox, 1394store, Myaribags
Others	210,000	7	Data1, Data2, Data3
Business	10,000	9	Movatiathletic, Hrsupporten, 99Fame

Research Questions

 How often do users reuse or modify passwords across services?

 How long does it take for users to update their reused passwords after data breaches?

• How guessable are the modified passwords?

Measuring Password Reuse and Modification

- 37 million password pairs from the same users
- Given a pw pair, determine "reused", "modified", or "unknown"

Highlights of Findings

- 53% of the 28.8 million users reused/modified passwords
 - 38% users once reused the same password
 - 21% users once modified an existing password for a new service
- Sensitive services received most reused/modified passwords
 - Ratio = (# reused+modified pws) / (# pws of a service category)
 - Shopping services have the highest ratio (85%)
 - Email services are at the second place (62%)

Password Guessing

Password modification patterns have a low variance

- Given a user's leaked PW \rightarrow guess modified PW of un-breached services
- Possible for online guessing

Training-based guessing schemes

- Learn the different rules of transform one password to a new one
- Given a password, learn the optimized orders to apply the transform rules
 - Bayesian inference model

Password Guessing Results

0.1% training data, guess the rest of 99.9% modified passwords

Summary

• Offline and online guessing model are very different!

• Password reuse and modification are still common

• Modified passwords are highly predictable

Password strength meters should consider online guessing models